
Domain-Specific Scenarios
for Refinement-Based Methods

Colin Snook(B) , Thai Son Hoang , Dana Dghaym , and Michael Butler

ECS, University of Southampton, Southampton, UK
{cfs,t.s.hoang,d.dghaym,mjb}@ecs.soton.ac.uk

Abstract. Formal methods use abstraction and rigorously verified
refinement to manage the design of complex systems, ensuring that they
satisfy important invariant properties. However, formal verification is not
sufficient: models must also be tested to ensure that they behave accord-
ing to the informal requirements and validated by domain experts who
may not be expert in formal modelling. This can be satisfied by scenar-
ios that complement the requirements specification. The model can be
animated to check that the scenario is feasible in the model and that the
model reaches states expected in the scenario. However, there are two
problems with this approach. (1) The provided scenarios are at the most
concrete level corresponding to the full requirements and cannot be used
until all the refinements have been completed in the model. (2) The nat-
ural language used to describe the scenarios is often verbose, ambiguous
and therefore difficult to understand; especially if the modeller is not a
domain expert. In this paper we propose a method of abstracting scenar-
ios from concrete ones so that they can be used to test early refinements
of the model. We also show by example how a precise and concise domain
specific language can be used for writing these abstract scenarios in a
style that can be easily understood by the domain expert (for valida-
tion purposes) as well as the modeller (for behavioural verification). We
base our approach on the Cucumber framework for scenarios and the
Event-B modelling language and tool set. We illustrate the proposed
methods on the ERTMS/ETCS Hybrid Level 3 specification for railway
controls (The example model and scenario scripts supporting this paper
are openly available at https://doi.org/10.5258/SOTON/D1026).

Keywords: Event-B · Cucumber · Validation · Domain specific
language

1 Introduction

Abstraction and refinement play a vital role in analysing the complexity of criti-
cal systems via formal modelling. Abstraction allows key properties to be estab-
lished which are then proven to be maintained as system details are gradually
introduced in a series of refinements. However, domain requirements are often
written in natural language [3] which can be verbose and ambiguous leading
c© Springer Nature Switzerland AG 2019
C. Attiogbé et al. (Eds.): MEDI 2019 Workshops, CCIS 1085, pp. 18–31, 2019.
https://doi.org/10.1007/978-3-030-32213-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32213-7_2&domain=pdf
http://orcid.org/0000-0002-0210-0983
http://orcid.org/0000-0003-4095-0732
http://orcid.org/0000-0002-2196-2749
http://orcid.org/0000-0003-4642-5373
https://doi.org/10.5258/SOTON/D1026
https://doi.org/10.1007/978-3-030-32213-7_2

A Domain-Specific Scenario Language 19

to potential misinterpretation by formal modelling engineers. Hence, model ver-
ification is insufficient; validation of the model by domain experts is equally
important to ensure that it is a true representation of the system in mind. In
previous work [9] we proposed a behaviour driven approach to formal modelling
that allows domain experts to drive the formal modelling using scenarios. The
model is animated to check that the scenario is feasible and reaches the states
expected in the scenario. In this paper we propose the use of a Domain Specific
Language (DSL) that can be understood both by domain expert and model engi-
neer and is precise enough to provide a repeatable validation/acceptance test of
the formal systems model. Furthermore, we propose a technique of synthesising
abstract scenarios from more concrete ones, so that the abstract refinements of
the model can be checked at an intermediate stage rather than waiting until
the final details have been incorporated. We illustrate the approach using the
European Rail Traffic Management System (ERTMS)/European Train Control
System (ETCS), Hybrid Level 3 (HL3) specification [7] for which we have pre-
viously developed a formal model presented in [4].

The paper is structured as follows: Sect. 2 provides background on the
Event-B formal modelling language, Cucumber framework for scenarios and the
HL3 case study. Section 3 introduces the example scenario (from [7]) that we
use for illustrating our proposed method. Section 4 illustrates a possible DSL for
scenarios of the HL3 model. Section 5 shows how we would describe the example
scenario in our DSL. Section 6 presents abstract versions of the concrete scenario
to illustrate how these can be systematically deduced to match the refinements
in the model. Section 8 describes future work and Sect. 9 concludes.

2 Background

2.1 Event-B

Event-B [1] is a formal method for system development. An Event-B model con-
tains two parts: contexts and machines. Contexts contain carrier sets s, constants
c, and axioms A(c) that constrain the carrier sets and constants. Note that the
model may be underspecified, e.g., the value of the sets and constants can be
any value satisfying the axioms. Machines contain variables v, invariants I(v)
that constrain the variables, and events. An event comprises a guard denoting
its enabling-condition and an action describing how the variables are modified
when the event is executed. In general, an event e has the following form, where
t are the event parameters, G(t, v) is the guard of the event, and v := E(t, v) is
the action of the event.

any twhere G(t,v) then v := E(t,v) end

Actions in Event-B are, in the most general cases, non-deterministic [8], e.g.,
of the form (v is assigned any element from the set E(v)) or v :| P(v,v’) (v is
assigned any value satisfying the before-after predicate P(v,v’)). A special event
called INITIALISATION without parameters and guards is used to put the system
into the initial state.

20 C. Snook et al.

A machine in Event-B corresponds to a transition system where variables
represent the state and events specify the transitions. Event-B uses a mathe-
matical language that is based on set theory and predicate logic.

Contexts can be extended by adding new carrier sets, constants, axioms, and
theorems. Machines can be refined by adding and modifying variables, invari-
ants, events. In this paper, we do not focus on context extension and machine
refinement.

Event-B is supported by the Rodin Platform (Rodin) [2], an extensible open
source toolkit which includes facilities for modelling, verifying the consistency
of models using theorem proving and model checking techniques, and validating
models with simulation-based approaches.

2.2 Cucumber for Event-B

The Behaviour-Driven Development (BDD) principle aims for pure domain ori-
ented feature description without any technical knowledge. In particular, BDD
aims for understandable tests which can be executed on the specifications of a
system. BDD is important for communication between the business stakehold-
ers and the software developers. Gherkin/Cucumber [10] is one of the various
frameworks supporting BDD.

Gherkin [10, Chapter 3] is a language that defines lightweight structures for
describing the expected behaviour in a plain text, readable by both stakeholders
and developers, which is still automatically executable.

Each Gherkin scenario consists of steps starting with one of the keywords:
Given, When, Then, And or But.

– Keyword Given is used for writing test preconditions that describe how to
put the system under test in a known state. This should happen without any
user interaction. It is good practice to check whether the system reached the
specified state.

– Keyword When is used to describe the tested interaction including the provided
input. This is the stimulus triggering the execution.

– Keyword Then is used to test postconditions that describe the expected out-
put. Only the observable outcome should be compared, not the internal sys-
tem state. The test fails if the real observation differs from the expected
results.

– Keywords And and But can be used for additional test constructs.

In [9], we described our specialisation of Cucumber for Event-B with the pur-
pose of automatically executing of scenarios for Event-B models. Cucumber [10]
is a framework for executing acceptance tests written in Gherkin language and
provides Gherkin language parser, test automation as well as report generation.
We provide Cucumber step definitions for Event-B in [5] allowing us to exe-
cute the Gherkin scenarios directly on the Event-B models. The Cucumber step
definitions for Event-B allow to execute an event with some constraints on the
parameters, or to check if an event is enabled/disabled in the current state, or
to check if the current state satisfies some constraint.

A Domain-Specific Scenario Language 21

2.3 Hybrid ERTMS/ETCS Level 3 Basics

The train separation function of ERTMS/ETCS Level 3 relies entirely on the
condition that the system knows at all times the position, length, and integrity
status of the train [7]. Each train needs to be fitted with a Train Integrity
Monitoring System (TIMS) to report its position and integrity status to the
system. Due to the limitation of GSM-R communication, these pre-conditions for
Level 3 operation are not satisfied as the train may disconnect from the system
because of poor communication. The HL3 concept is brought up to solve the
disconnect issue by using a limited implementation of track-side train detection.
Trains that are disconnected from the HL3 are still visible using track-side train
detection. Thus trains which are not confirming integrity can still be authorized
to run on the line.

Figure 1 shows the HL3 system conventions. The track line is divided into
Trackside Train Detection (TTD) sections according to the track-side equip-
ment. If no train is shown on the TTD section, the TTD section is considered
as free. Otherwise, it is considered as occupied. This large physical section is
then split into as many Virtual Sub-Section (VSS) as required for the intended
performance. These VSS are fixed virtual blocks to avoid train collision. The
occupation status of the VSS is determined using both TTD status informa-
tion and position reports of the train. The VSS is considered as free when the
track-side is certain that no train is located on the VSS while it is considered as
occupied when some integer train is located on this VSS while the track-side is
certain that no other vehicle is located on the same VSS. Status unknown and
ambiguous are used to indicate the states under the scenario with disconnected
trains. A VSS is considered as unknown when there is no certainty if it is free.
And a VSS is considered as ambiguous when it is known to be occupied but it is
unsure whether there is another train on the same VSS. The track-side detection
equipment can improve the system performance by providing a faster release of
VSS when the TTD is free on the basis of train position reports. A train on a
track with an established safe radio connection to the track-side is considered
as a connected train. The train location defines the track-side view of the VSS
that is currently occupied by a connecting train, whose granularity is one VSS.
The front and rear end of the train location is considered independently from
each other. Each train has an estimated front end, while the rear end is derived
from the estimated front end and the safe train length through train integrity
confirmation. It takes time for a train to stop after it applies brakes. The esti-
mated front end and rear end are extended to the max safe front end and min
safe rear end with an additional safety margin to guarantee the safety proper-
ties of the system. When the track-side receives the report that the max safe
front end of the train has entered a VSS, it considers the train to be located on
this VSS. A train that allows the track-side to release VSS in the rear of the
train based on its position reports is defined as integer train [7]. However, when
modelling the HL3 system in Event-B is complicated as the events in Event-B
models can be difficult to validate due to the complexity of conditions that
are challenging to explain to domain experts. Fischer and Dghaym propose to

22 C. Snook et al.

Fig. 1. Hybrid ERTMS/ETCS Level 3 system conventions [7]

create test cases on Event-B models using a Cucumber framework, which defines
lightweight structures for describing the expected behaviour readable by both
domain experts and modelers [6]. Based on their definition for the concrete sce-
narios, we define approaches to map concrete scenarios to abstract scenarios and
refine the abstract scenarios to concrete scenarios.

3 Example Scenario

In this section, we use Scenario 4: Start of Mission/End of Mission in [7] to
illustrate our approach to generation of abstract scenarios. In this scenario, there
are eight numbered steps. However, since most steps contain a sequence of actions
and consequent state changes, we break the steps down further into sub-steps1.
We also note that the associated diagram (Fig. 2) shows, for each step, more
details about the expected state, than is given in the text. We have included
some (but for brevity, not all) of this state in the scenario. Hence, the sub-steps
given in italic are derived from the diagram rather than the original text of [7].

1. (a) Train 1 is standing on VSS 11
(b) with desk closed and no communication session.
(c) All VSS in TTD 10 are “unknown”.
(d) TTD 10 is occupied and TTD20 is free.

2. (a) Train 1 performs the Start of Mission procedure.
(b) Integrity is confirmed.
(c) Because train 1 reports its position on VSS 11,
(d) this VSS becomes “ambiguous”.

3. (a) Train 1 receives an OS MA until end of VSS 12
(b) and moves to VSS 12
(c) which becomes “ambiguous”.

1 Note that we have adapted step 3 slightly compared to the specification because our
model does not support granting Full Supervision Movement Authority (FS MA)
containing VSS that are not free.

A Domain-Specific Scenario Language 23

Fig. 2. Start of Mission/End of Mission [7]

(d) VSS 11 goes to “unknown”.
(e) Train 1 receives an FS MA until end of VSS 22

4. (a) Train 1 moves to VSS 21
(b) which becomes occupied
(c) and all VSS in TTD 10 become “free”, VSS 11 and VSS 12.
(d) TTD 10 is free and TTD20 is occupied.

5. (a) Train 1 continues to VSS 22
(b) which becomes “occupied”.
(c) VSS 21 becomes “free”;

6. Train 1 performs the End of Mission (EOM) procedure.
7. (a) Due to the EoM procedure VSS 22 goes to “unknown”

(b) and the disconnect propagation timer of VSS 22 is started.
8. (a) The disconnect propagation timer of VSS 22 expires.

(b) All remaining VSS in TTD 20 go to “unknown”.

This example scenario is useful for understanding the specification but it
still contains ambiguities that are revealed when considering a formally precise
model. For example trains do not usually move to a new section in one atomic
step; it is not stated when position reports are sent or what information they
contain. In addition, the use of natural language is not always consistent; in
order to animate the scenario in a repeatable way with tool support, we need a
more consistent syntax. We also need more abstract versions of the scenario if
we wish to validate the initial stages of our model.

24 C. Snook et al.

4 Domain Specific Language

To improve clarity and precision, we suggest a DSL for HL3 scenarios that aims
to retain understandability for domain experts of the natural language version.
We select nouns that are used in the natural language version of the scenario
to describe domain objects and their state. These will be used to describe the
expected state of the model. We select a set of adjectives to provide a consistent
way to link the nouns when describing state. Finally we select a set of verbs to
describe transitions that change the state of objects The DSL is generic in the
sense that it is agnostic of the target modelling language, although very specific
to the HL3 problem domain. In order to adapt the DSL for use with a particular
modelling notation (in our case Event-B) cucumber step definitions must be
written. Examples of these are shown in Sect. 7. The process of constructing
the DSL and adapting it using cucumber step definitions is straightforward and
relatively quick compared to the modelling stage. Hence, a new DSL can be
invented for each specification domain before beginning to construct a formal
model of it.

The kind of formal refinement modelling that we wish to support is based
on abstract representation of state. In each refinement further distinction of the
state values are added, either by replacing a state variable with an alternative
one that gives finer detail, or by adding a completely new variable. As state
details are added, the transition events that change state are elaborated to deal
with the new values. In many cases completely new transitions are revealed.
As the model refinement process is state driven, so is our DSL for scenario
abstraction/refinement. Therefore in the DSL we add alternative names for state
values so that the scenario can be adapted to abstract levels by re-phrasing
clauses when the state is modelled more abstractly.

Nouns

1 <train> = <label>
2 <section> = TTDx
3 <sub-section> = <section>.VSSy
4 <ma> = <abstract ma> | <concrete ma>
5 <abstract ma> = MA until <sub-section>
6 <concrete ma> = FSMA until <sub-section> | OSMA until <sub-section>
7 <timer> = <sub-section>.DisconnectTimer | <sub-section>.ShadowTimer | <sub-section>.

GhostTimer
8 <section state> = FREE | OCCUPIED
9 <sub-section sate> = <abstract sub-section state> | <concrete sub-section state>

10 <abstract sub-section state> = AVAILABLE | UNAVAILABLE
11 <concrete sub-section state> = FREE| OCCUPIED | AMBIGUOUS | UNKNOWN

A Domain-Specific Scenario Language 25

Adjectives

1 <train> stood at <sub-section>
2 <train> connected | disconnected
3 <train> in mission | no mission
4 <train> is integral | is split
5 <train> has <ma>
6 <section> is <section state>
7 <sub-section> is <sub-section state>

Verbs

1 <train> enters | leaves <sub-section>
2 <train> connects | disconnects
3 <train> starts mission | ends mission
4 <train> splits | couples
5 <train> receives <ma>
6 <timer> starts
7 <timer> expires
8 <train> reports position
9 <train> reports position as integral

10 <train> reports position as split

5 Concrete Scenario Using DSL

1 Given Train1 stood at VSS11
2 And Train1 disconnected
3 And TTD10.VSS11 is UNKNOWN
4 And TTD10.VSS12 is UNKNOWN
5 And TTD10 is OCCUPIED
6 And TTD20 is FREE
7 When Train1 starts mission and Train1 connects
8 When Train1 reports position as integral
9 Then VSS11 is AMBIGUOUS

10 When Train1 receives OSMA until VSS12
11 When Train1 enters VSS12
12 When Train1 leaves VSS11
13 When Train1 reports position as integral
14 Then VSS12 is AMBIGUOUS
15 And VSS11 is UNKNOWN
16 When Train1 receives FSMA until VSS22
17 When Train1 enters VSS21
18 When Train1 leaves VSS12
19 When Train1 reports position as integral
20 Then TTD10.VSS11 is FREE
21 And TTD10.VSS12 is FREE
22 And TTD10.VSS21 is OCCUPIED
23 And TTD10 is OCCUPIED
24 And TTD20 is FREE
25 When Train1 enters VSS22
26 When Train1 leaves VSS21
27 When Train1 reports position as integral
28 Then TTD20.VSS21 is FREE
29 And TTD20.VSS22 is OCCUPIED
30 When Train1 disconnects and Train1 ends mission
31 Then TTD20.VSS22 is UNKNOWN
32 Then VSS22.disconnect_propagation_timer starts
33 When VSS22.disconnect_propagation_timer expires
34 Then VSS21 is UNKNOWN
35 And VSS23 is UNKNOWN

Fig. 3. Concrete scenario using DSL

With reference to the scenario
steps listed in Sect. 3, we first
illustrate how the natural lan-
guage scenario of the specifica-
tion can be expressed in our
domain specific language (Fig. 3).
In the Sect. 6 we will show how to
extract abstract scenarios that fit
with our refinement levels.

Steps 1a, 1b, 1c and 1d give
the initial starting state which
becomes a Given clause in our
language (Lines 1–6). Note that
the track state is included as
Given rather than checked by a
Then clause because it does not
necessarily follow from the train
state. Step 2a is an action that,
in our model, requires two dis-
tinct events which we conjoin in
a When clause (Line 7) where
Train1 starts mission and con-
nects. Steps 2b and 2c, are per-
formed in a single atomic report-
ing event in our model, giving
another When clause (Line 8).
Step 2d gives an expected conse-
quence concerning the state of a
VSS, which we check with a Then clause (Line 9). Step 3a grants an On Sight
Movement Authority (OS MA) up to VSS 12, to the train (Line 10). Step 3b
is somewhat ambiguous since trains can span more than one sub-section and
therefore enter and leave them in distinct events which are not normally simul-
taneous. We interpret Step 3b as two consecutive steps; enter the new VSS 12

26 C. Snook et al.

(Line 11) and then leave the previous VSS 11 (Line 12). Also, we assume that
the train then reports its new position as VSS 12 (Line 13), since otherwise the
Virtual Block Detector (VBD) would not know to update the VSS states as
indicated in Steps 3c and 3d. Step 3 is a good example of why a more precise
domain specific language is needed for describing scenarios. A similar process of
interpretation is followed in the remaining steps.

6 Abstract Scenarios

In order to obtain scenarios that can be used to validate our abstract models, we
deduce correspondingly abstract scenarios from the concrete one that has been
translated into our DSL in Sect. 5. To do this, we consider the data refinement
of the model including superposition of new data. The process systematically
reduces the concrete scenario by omitting any irrelevant details and only retain-
ing clauses that relate to the data representations used in that refinement level.
Note that data representation may vary in refinement levels which affects the
Cucumber step definition used to convert the scenarios into a form that can be
used to animate the model.

(a) Movement on VSS (b) Movement on VSS

Fig. 4. Abstract scenarios

Once a state has been checked at a particular refinement level it does not
need to be checked at subsequent levels because the proof of refinement ensure
this. Any Then clauses of the previous level are omitted and only if the state

A Domain-Specific Scenario Language 27

1 Given Train1 stood at TTD10.VSS11
2 And Train1 disconnected
3 And TTD10 is OCCUPIED
4 And TTD20 is FREE
5 When Train1 starts mission and Train1 connects
6 Then Train1 in mission
7 When Train1 receives MA until TTD10.VSS12
8 Then Train1 has MA until TTD10.VSS12
9 When Train1 enters TTD10.VSS12

10 When Train1 leaves TTD10.VSS11
11 When Train1 receives MA until TTD20.VSS22
12 Then Train1 has MA until TTD20.VSS12
13 When Train1 enters TTD20.VSS21
14 When Train1 leaves TTD10.VSS12
15 When Train1 enters TTD20.VSS22
16 When Train1 leaves TTD20.VSS21
17 When Train1 disconnects and Train1 ends mission
18 Then Train1 no mission

Fig. 5. Missions and generic MA

data representation is refined to
add more detail is it necessary to
add new Then clauses. In our case
the concrete scenario derived from
the specification has the correct
final Then clauses to match our
most concrete model refinement.
In general the starting specifica-
tion scenario could contain excess
state checks that are already dealt
with in earlier refinement levels.
The number of Then clauses to add,
is somewhat subjective; one could
for example check that nothing else
has changed state after each When
clause. In the examples we have
avoided this and adopt the same
policy as the given scenario of the specification which is to only check for
expected changes in state. In the rest of this section, we present how the spec-
ification scenario is abstracted at the different level of refinement according to
our development.

1 Given Train1 stood at TTD10.VSS11
2 And Train1 disconnected
3 And TTD10.VSS11 is UNAVAILABLE
4 And TTD10.VSS12 is UNAVAILABLE
5 And TTD10 is OCCUPIED
6 And TTD20 is FREE
7 When Train1 starts mission and Train1 connects
8 When Train1 reports position as integral
9 When Train1 receives OSMA until TTD10.VSS12

10 Then Train1 has OSMA until TTD10.VSS12
11 When Train1 enters TTD10.VSS12
12 When Train1 leaves TTD10.VSS11
13 When Train1 receives FSMA until TTD20.VSS22
14 Then Train1 has FSMA until TTD20.VSS22
15 When Train1 enters TTD20.VSS21
16 When Train1 leaves TTD10.VSS12
17 When Train1 reports position as integral
18 Then TTD10.VSS11 is AVAILABLE
19 And TTD10.VSS12 is AVAILABLE
20 And TTD10.VSS21 is UNAVAILABLE
21 When Train1 enters TTD20.VSS22
22 When Train1 leaves TTD20.VSS21
23 When Train1 reports position as integral
24 Then TTD10.VSS21 is AVAILABLE
25 And TTD10.VSS22 is UNAVAILABLE
26 When Train1 disconnects and Train1 ends mission

Fig. 6. Position reports, VSS availability and
integrity

Movement on VSS. Our most
abstract model contains no other
state except for the position of
trains on VSS and hence, for its sce-
nario, we pick only the clauses that
are related to train movement and
add Then clauses that check the
train’s position after each move-
ment (Fig. 4a).

Radio Communication and TTD.
In our first and second refinements
we add radio communication and
status of TTD. Here we have com-
bined them into one scenario for
brevity. We add Then clauses to
check train connection and TTD
state after any When clause that
should affect this (Fig. 4b).

Introduce Missions and Generic
Movement Authority. Our next
model refinement introduces move-
ment authority but does not

28 C. Snook et al.

distinguish between Full Supervision Movement Authority (FS MA) and OS
MA modes. In the scenario we must use the generic form of the DSL syntax
which was introduced for this purpose. Note that we still split the granting of
Movement Authority (MA) into two When clauses so that the state check is an
abstract version of the order that will later be enforced in a refinement. The
refinement also introduces the start of mission and end of mission procedures
(Fig. 5).

Introduce Position Reports, VSS Availability, Integrity and Distinguish Between
FS and OS MA. In this refinement, we refine MA to distinguish between FS
MA and OS MA and introduce position and integrity reporting of trains which,
in conjunction with TTD status, determines abstract VSS status. Notice that
we replace the more abstract MA checks with OS MA and FS MA ones. At
this stage, VSS status is bi-state instead of the final four states of the concrete
scenario (Fig. 6).

Introduce Timers. This refinement introduces propagation timers that expand
the unavailable area of VSS in case a non-communicative train moves. When
the propagation timer expires, the adjacent VSS in the TTD become unavail-
able. Notice that the scenario is not like a refinement; we can add checks of old
variables when further steps of the scenario should affect this. In the previous
scenario we did not specify the state of these VSS, hence leaving room to add
them now without introducing a contradiction.

1 Given Train1 stood at TTD10.VSS11
2 And Train1 disconnected
3 And TTD10.VSS11 is UNAVAILABLE
4 And TTD10.VSS12 is UNAVAILABLE
5 And TTD10 is OCCUPIED
6 And TTD20 is FREE
7 When Train1 starts mission and Train1 connects
8 When Train1 reports position as integral
9 When Train1 receives OSMA until TTD10.VSS12

10 When Train1 enters TTD10.VSS12
11 When Train1 leaves TTD10.VSS11
12 When Train1 receives FSMA until TTD20.VSS22
13 When Train1 enters TTD20.VSS21
14 When Train1 leaves TTD10.VSS12
15 When Train1 reports position as integral
16 When Train1 enters TTD20.VSS22
17 When Train1 leaves TTD20.VSS21
18 When Train1 reports position as integral
19 When Train1 disconnects
20 When Train1 ends mission
21 Then TTD20.VSS22.disconnect_propagation_timer starts
22 When TTD20.VSS22.disconnect_propagation_timer expires
23 Then TTD20.VSS21 is UNAVAILABLE
24 And TTD20.VSS23 is UNAVAILABLE

Introduce VSS State. In this refinement of the scenario we introduce the full VSS
states of the specification. That is, available is replaced by free and not available
is replaced by ambiguous, occupied or unknown as appropriate This refinement
brings us back to the full concrete scenario that was described in Sect. 4.

A Domain-Specific Scenario Language 29

7 Tool Support

In this section, we show examples of specifying step definitions that link the
domain specific scenarios with our model at different levels of refinement. Our
step definitions are built on top of the Cucumber for Event-B.

We start with our most abstract model which has events for trains to enter or
leave a VSS. The signature of the event to move the rear of a train is as follows

1 event ENV rear leave section
2 any
3 tr // The train
4 vss // The VSS from that the train moves
5 where ... then ... end

In order to link the above event with the Gherkin commands, e.g., When Train1
leaves VSS11, we define the following step definition.

1 When(~/^${id} enters ${id}$/) {

2 String train, String vss ->

3 fireEvent("ENV_rear_leave_section", "tr = " + train + " & " + "vss = " + vss)

4 }

Here fireEvent is a library method from Cucumber for Event-B to fire an event
in the model with possible additional constraints on the event’s parameters. In
the step definition above, the information about the train ID and the VSS is
extracted using pattern matching and subsequently used to build the parameter
constraint accordingly.

In the same model, we have a variable occupiedBy ∈VSS↔→ train to keep track
of information about occupation of VSS by trains. We can use this to specify the
step definition for commands, such as, Then Train1 stood at VSS11,VSS12, as
follows

1 Then(~/^${id} stood at ${id_list}$/) {

2 String train, String vss_set ->

3 assert true == isFormula("occupiedBy ~[{" + train + "}]", "{" + vss_set + "}"

)

4 }

Here isFormula is a library method from Cucumber for Event-B to compare the
evaluation of a formula (e.g., occupiedBy∼[{TRAIN1}]) and the expected result
(e.g., {VSS11,VSS12}).

Step definitions might need to change according to refinements of the model.
For example, when we introduce TTD information, event ENV rear leave section
is split into two events: ENV last train leave ttd (when the TTD will be freed) and
ENV rear leave section otherwise. We introduce an alternative step definition,
which selects whichever case is enabled, to reflect this refinement:

30 C. Snook et al.

1 When(~/^${id} leaves ${id}$/) {

2 String train, String vss ->

3 String formula = "tr = " + train + " & " + "vss = " + vss

4 if (isEventEnabled("ENV_rear_leave_section", formula))

5 fireEvent("ENV_rear_leave_section", formula)

6 else if (isEventEnabled("ENV_last_train_leave_ttd", formula))

7 fireEvent("ENV_last_train_leave_ttd", formula)

8 }

8 Future Work

We have previously used natural language descriptions of scenarios manually
converted ad-hoc into cucumber and executed with model animation tools. The
use of a DSL and abstract scenarios is a new proposal that requires further inves-
tigation and development. In future work we will continue to develop scenarios
from the HL3 case study and investigate tool automation of the abstractions
based on the refinements from the model. We will employ the scenario-based
modelling techniques in other domains such as aerospace to test its generality.
Our eventual aim is to utilise the scenarios in a ‘kind of’ continuous integration
development environment for formal modelling. Our future project commitments
include model transformation from Event-B systems models to semi-formal com-
ponent models and the use of precise and abstract scenarios could be utilised
to validate and verify this transformation stage by co-simulation of scenarios in
both models.

9 Conclusion

One of the strengths of formal methods lies in efficient, generic verification (using
theorem provers) which obviates the need for test cases and hence instantiation
with objects. However, to leverage this strength we need to convince domain
experts and, of course, ourselves, of the validity of the models. To this end we
adopt a strategy analogous to testing; animation of models using scenarios. We
envisage a growing reliance on scenarios as we seek to integrate formal systems
level modelling with industrial development processes. Scenarios are a reformu-
lation of the specification and, no matter what format they are expressed in,
errors may be introduced. However, errors are equally likely to exist in the orig-
inal specification. We have found that scenarios aid detection of specification
errors by allowing validation of the behaviour by domain experts. If errors are
introduced into the scenarios these will be discovered when they are used to
animate the model.

An important step is to make the scenarios more precise so that they are
clear and unambiguous while remaining easily understood by all stakeholders.
To achieve this, we have suggested deriving a scenario DSL from the particular

A Domain-Specific Scenario Language 31

specification in question, prior to commencing the formal modelling. Scenarios
that illustrate the desired behaviour embodied by the specification, may then be
expressed in a clear, precise and concise way. For early detection of problems, it
is important that we can use the scenarios at stages when our abstract models
do not contain all of the detail involved in the concrete scenario. We therefore
propose a technique of synthesising abstract versions of the scenario that are
suitable for use with the abstract refinement levels of the model. The abstraction
technique uses the data refinement of the model (including superposition of
new data as well as refinement of data representation) to make corresponding
abstractions in scenarios. We propose to develop these techniques in the future
as we continue to build our formal model based development process.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–466
(2010)

3. Cybulski, J.L.: The formal and the informal in requirements engineering. Technical
report, Technical Report 96/7, Department of Information Systems, The University
of Melbourne (1996)

4. Dghaym, D., Poppleton, M., Snook, C.: Diagram-led formal modelling using iUML-
B for hybrid ERTMS level 3. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K.
(eds.) ABZ 2018. LNCS, vol. 10817, pp. 338–352. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-91271-4 23

5. Fischer, T.: Cucumber for Event-B and iUML-B (2018). https://github.com/
tofische/cucumber-event-b

6. Fischer, T., Dghyam, D.: Formal model validation through acceptance tests. In:
Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS,
vol. 11495, pp. 159–169. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-18744-6 10

7. EEIG ERTMS Users Group. Hybrid ERTMS/ETCS Level 3: Principles, July 2017.
Ref. 16E042 Version 1A

8. Hoang, T.S.: An introduction to the Event-B modelling method. In: Industrial
Deployment of System Engineering Methods, pp. 211–236. Springer (2013)

9. Snook, C., et al.: Behaviour-driven formal model development. In: Sun, J., Sun, M.
(eds.) ICFEM 2018. LNCS, vol. 11232, pp. 21–36. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-02450-5 2

10. Wynne, M., Hellesøy, A.: The cucumber book: behaviour-driven development for
testers and developers. Pragmatic Programmers, LLC (2012)

https://doi.org/10.1007/978-3-319-91271-4_23
https://doi.org/10.1007/978-3-319-91271-4_23
https://github.com/tofische/cucumber-event-b
https://github.com/tofische/cucumber-event-b
https://doi.org/10.1007/978-3-030-18744-6_10
https://doi.org/10.1007/978-3-030-18744-6_10
https://doi.org/10.1007/978-3-030-02450-5_2
https://doi.org/10.1007/978-3-030-02450-5_2

	Domain-Specific Scenarios for Refinement-Based Methods
	1 Introduction
	2 Background
	2.1 Event-B
	2.2 Cucumber for Event-B
	2.3 Hybrid ERTMS/ETCS Level 3 Basics

	3 Example Scenario
	4 Domain Specific Language
	5 Concrete Scenario Using DSL
	6 Abstract Scenarios
	7 Tool Support
	8 Future Work
	9 Conclusion
	References

