
Chapter 9
Location Problems with Multiple Criteria

S. Nickel, J. Puerto, and A. M. Rodríguez-Chía

Abstract This chapter analyzes multicriteria continuous, network, and discrete
location problems. In the continuous framework, we provide a complete description
of the set of weak Pareto, Pareto, and strict Pareto locations for a general Q-criteria
location problem based on the characterization of three criteria problems. In the
network case, the set of Pareto locations is characterized for general networks as
well as for tree networks using the concavity and convexity properties of the distance
function on the edges. In the discrete setting, the entire set of Pareto locations
is characterized using rational generating functions of integer points in polytopes.
Moreover, we describe algorithms to obtain the solutions sets (the different Pareto
locations) using the above characterizations. We also include a detailed complexity
analysis. A number of references has been cited throughout the chapter to avoid the
inclusion of unnecessary technical details and also to be useful for a deeper analysis.

9.1 Introduction

Very often, locational decisions involve the investment of a significant amount of
money. It will be therefore very probable that a locational decision is made by a
group of Q decision makers (DM). In turn, it is very likely that each DM will choose
a median function to evaluate the quality of a new location, but the weights assigned
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to clients may differ a lot. The same scenario occurs if one location for different
types of goods has to be found.

Multicriteria analysis of location problems has received considerable attention
within the scope of continuous, network, and discrete models in the last years. For
an overview of general methods as well as for a more bibliographic overview of
the related location literature the reader is referred to Ehrgott (2005) and Nickel
et al. (2005a). Presently, there are several problems that are accepted as classical
ones: the point-objective problem (see, e.g., Wendell and Hurter 1973, Hansen et al.
1980, Carrizosa et al. 1993), the continuous multicriteria min-sum facility location
problem (see, e.g., Hamacher and Nickel 1996, Puerto and Fernández 1999), the
network multicriteria median location problem (see, for instance, Hamacher et al.
1999, Wendell et al. 1977) and the multicriteria discrete location problem (see, e.g.,
Fernández and Puerto 2003), among others.

In contrast to problems with only one objective, we do not have a natural ordering
in higher dimensional objective spaces. Therefore, in multicriteria optimization one
has to decide which concept of “optimality” to choose.

The goal in a multicriteria location problem is to optimize simultaneously a set
of objective functions (f 1, . . . , f Q). Therefore, the formulation of the problem is:

v − min
x∈X⊆Rd

(f 1(x), . . . , f Q(x)), (9.1)

where v − min stands for vectorial optimization. Observe that we get points in a
Q-dimensional objective space where we no longer have the canonical order of R.
Accordingly, for this type of problems, different concepts of solution have been
proposed in the literature (the reader is referred to Ehrgott (2005) as a general
reference in multicriteria optimization). A point x ∈ Rd is called a Pareto location
(or Pareto-optimal) if there exists no y ∈ Rd such that f q(y) ≤ f q(x) ∀q ∈
Q := {1, . . . ,Q} and f p(y) < f p(x) for some p ∈ Q. We denote the set of
Pareto solutions by X ∗

Par

(
f 1, . . . , f Q

)
or simply by X ∗

Par if this is possible without
causing confusion. If f q(x) ≤ f q(x ′) ∀ q ∈ Q and ∃q ∈ Q : f q(x) < f q(x ′)
we say that x dominates x ′ in the decision space and f (x) dominates f (x ′) in the
objective space.

Alternative solution concepts are weak Pareto-optimality and strict Pareto-opti-
mality. A point x ∈ Rd is called a weak Pareto location (or weakly Pareto-optimal)
if there exists no y ∈ Rd , such that f q(y) < f q(x) ∀ q ∈ Q . We denote the
set of weak Pareto solutions by X ∗

w−Par

(
f 1, . . . , f Q

)
or simply by X ∗

w−Par if this
is possible without causing confusion. A point x ∈ Rd is called a strict Pareto
location (or strictly Pareto-optimal) if there exists no y ∈ Rd , y 	= x, such that
f q(y) ≤ f q(x) ∀ q ∈ Q . Analogously, the set of strict Pareto solutions is denoted
by X ∗

s−Par

(
f 1, . . . , f Q

)
, or simply by X ∗

s−Par if this is possible without causing
confusion. Note that X ∗

s−Par ⊆ X ∗
Par ⊆ X ∗

w−Par and in case we are considering
strictly convex functions these three sets coincide. Finally, we recall that Warburton
(1983) proved the connectedness of the set X ∗

Par when the functions are convex.
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In our proofs we use the concept of level sets. For a function f : Rd → R the
level set for a value ρ ∈ R is given by L≤(f, ρ) := {x ∈ Rd : f (x) ≤ ρ} (the
strict level set is L<(f, ρ) := {x ∈ Rd : f (x) < ρ}) and the level curve for a value
ρ ∈ R is given by L=(f, ρ) := {x ∈ Rd : f (x) = ρ}. For a function f i(·) we use
the notation

X ∗(f i) := arg min
x∈Rd

f i(x).

For two points x and y we denote the segment defined by x and y as xy.
In this chapter we focus on some fundamental results in the continuous,

network and discrete cases. We will describe in some detail a complete geometric
characterization for the planar 1-facility case, an optimal time algorithm for the
1-facility network problem as well as the computation of the entire set of Pareto-
optimal solutions of the discrete multicriteria p-median problem. Although we are
concentrating on the median case we will give some outlook to extensions.

9.2 1-Facility Planar/Continuous Location Problems

In this section we study Problem (9.1) where f 1(·), . . . , f Q(·) are convex, inf-
compact functions, defined in R2, which represent different criteria or scenarios.
Recall that a real function f (·) is said to be inf-compact if its lower level sets
{x : f (x) ≤ ρ} are compact for any ρ ∈ R. The next result states a useful
characterization of the different solution sets defined in the previous section using
level sets and level curves which will be used later.

Theorem 9.1 The following characterizations hold :

x ∈ X ∗
w−Par

(
f 1, . . . , f Q

)
⇔

Q⋂

q=1

L<(f q, f q(x)) = ∅ (9.2)

x ∈ X ∗
Par

(
f 1, . . . , f Q

)
⇔

Q⋂

q=1

L≤(f q, f q(x)) =
Q⋂

q=1

L=(f q, f q(x)) (9.3)

x ∈ X ∗
s−Par

(
f 1, . . . , f Q

)
⇔

Q⋂

q=1

L≤(f q, f q(x)) = {x}. (9.4)

Proof If x 	∈ X ∗
w−Par

(
f 1, . . . , f Q

)
, there exists z ∈ R2 such that f q(z) < f q(x)

for each q ∈ Q, that means,

z ∈
Q⋂

q=1

L<(f q, f q(x)).
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Hence, we obtain that

Q⋂

q=1

L<(f q, f q(x)) 	= ∅.

Since the implications above can be reversed the proof is concluded. The
remaining results can be proved analogously. �
Remark 9.1 For the case Q = 2 the previous result states that the set
X ∗

w−Par(f
1, f 2) coincides with tangential cusps between the level curves of

functions f 1(·) and f 2(·) union with X ∗(f 1) ∪ X ∗(f 2) (see Example 9.1).

Corollary 9.1 If f 1, . . . , f Q are strictly convex functions then

X ∗
w−Par(f

1, . . . , f Q) = X ∗
Par

(
f 1, . . . , f Q

)
= X ∗

s−Par

(
f 1, . . . , f Q

)
.

Example 9.1 (Refer to Fig. 9.1) Let us consider the points a1 = (0, 0), a2 = (8, 3),
a3 = (−3, 5) and the functions f 1(x) = ‖x − a1‖1, f 2(x) = ‖x − a2‖∞, f 3(x) =

a1

a2

a3

X ∗
w−Par(f

1, f3)

X ∗
w−Par(f

1, f2)

Fig. 9.1 Illustration of Remark 9.1
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‖x − a3‖1. By Theorem 9.1, X ∗
w−Par(f

1, f 2) is the rectilinear thick path joining
a1 and a2 and X ∗

w−Par(f
1, f 3) is the filled rectangle with a1 and a3 as opposite

vertices.

In what follows, since we are dealing with general convex, inf-compact func-
tions, we will focus on providing information about the geometrical structure of
X ∗

w−Par(f
1, f 2, f 3). This characterization will allow us to obtain a geometrical

description of X ∗
Par

(
f 1, f 2, f 3

)
and X ∗

s−Par

(
f 1, f 2, f 3

)
in the next section for an

important family of functions. Actually, we will characterize X ∗
w−Par(f

1, f 2, f 3)

as a kind of hull delimited by the chains of bicriteria solutions of any pair
of functions f p, f q p, q = 1, 2, 3. This result enables us to obtain the set
X ∗

w−Par

(
f 1, . . . , f Q

)
by union of 3-criteria solution sets already characterized. In

order to do that, let

C∞(R+
0 ,R2) :=

{
ϕ | ϕ : R+

0 → R2, ϕ continuous, lim
t→∞ ‖ϕ(t)‖2 = ∞

}
,

where ‖x‖2 is the Euclidean norm of the point x. C∞(R+
0 ,R2) is the set of

continuous curves, which map the set of non-negative numbers R+
0 := [0,∞) into

the two-dimensional space R2 and whose image ϕ(R+
0 ) is unbounded in R2. These

curves are introduced to characterize the geometrical locus of the points surrounded
by weak-Pareto and Pareto chains.

For a set S ⊆ R2 we define the enclosure of S by

encl (S) :=
{
x ∈ R2 : ∃ ε > 0 with B(x, ε) ∩ S = ∅ , ∃ tϕ ∈ [0,∞) with

ϕ(tϕ) ∈ S for all ϕ ∈ C∞(R+
0 ,R2) with ϕ(0) = x

}
,

where B(x, ε) = {y ∈ R2 : ‖y − x‖2 ≤ ε}. Note that S ∩ encl (S) = ∅.
Informally, encl (S) contains all the points which are surrounded by S, but do not
belong themselves to S.

We denote the union of the bicriteria chains of weak-Pareto solutions by

X
gen

w−Par

(
f 1, f 2, f 3

)
:=

2⋃

p=1

3⋃

q=p+1

X ∗
w−Par

(
f p, f q

)
.

We use “gen” since this set will generate the set X ∗
w−Par

(
f 1, f 2, f 3

)
. The next

theorem provides useful geometric information to build X ∗
w−Par

(
f 1, f 2, f 3

)
. Its

proof can be found in Rodríguez-Chía and Puerto (2002).

Theorem 9.2

X ∗
w−Par(f

1, f 2, f 3) = encl
(
X

gen
w−Par

(
f 1, f 2, f 3

))
∪ X

gen
w−Par

(
f 1, f 2, f 3

)
.
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Remark 9.2 It is worth noting that the region encl
(
X

gen
w−Par

(
f 1, f 2, f 3

) )
is well-

defined because the set X gen
w−Par

(
f 1, f 2, f 3

)
is connected (see Warburton 1983).

As an illustration of the above result we present the following example.

Example 9.2 Let us consider three points a1 = (0, 0), a2 = (3,−1) and a3 =
(3, 3), and the functions f 1(·), f 2(·) and f 3(·) such that,

L≤(f 1, 1) =
{

(x1, x2) : x2
1

4
+ x2

2

9
≤ 1

}

L≤(f 2, 1) =
{
(x1, x2) : (x1 − 3)2 + (x2 + 1)2 ≤ 1

}

L≤(f 3, 1) =
{
(x1, x2) : (x1 − 3)2

9
+ (x2 − 3)2

4
≤ 1

}
.

We can see that these three functions are convex functions. Therefore by the previ-
ous result we obtain the geometrical characterization of the set X ∗

w−Par(f
1, f 2, f 3);

this set is the shadowed region in Fig. 9.2.

Fig. 9.2 Illustration of
Theorem 9.2

a1

a2

a3

X ∗
w−Par(f

1, f3)

X ∗
w−Par(f

1, f2)

X ∗
w−Par(f

2, f3)

X ∗
w−Par(f

1, f2, f3)
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Now we are in the right position to show the main result about the geometrical
structure of X ∗

w−Par(f
1, . . . , f Q).

Theorem 9.3

X ∗
w−Par(f

1, . . . , f Q) =
⋃

p,q,r∈Q
p<q<r

X ∗
w−Par(f

p, f q, f r).

Proof By Theorem 9.1, x ∈ X ∗
w−Par(f

1, . . . , f Q) if and only if
⋂

q∈Q
L<(f q,

f q(x)) = ∅. Furthermore, by Helly’s theorem (see Rockafellar 1970), this
intersection is empty if and only if there exist p, q, r ∈ Q (p < q < r) such
that L<(f p, f p(x)) ∩ L<(f q, f q(x)) ∩ L<(f r , f r (x)) = ∅ and this is equivalent
to x ∈ X ∗

w−Par(f
p, f q, f r ). Since in any case we have that

⋃

p,q,r∈Q
p<q<r

X ∗
w−Par(f

p, f q, f r ) ⊂ X ∗
w−Par(f

1, . . . , f Q),

the result follows. �
Remark 9.3 This result extends previous characterizations in the literature:

(i) Taking f i(x) = ‖x−ai‖ with ai ∈ R2 for i = 1, . . . ,Q and ‖·‖ being a strictly
convex norm or a norm derived from a scalar product, we get Proposition 1.3,
Theorem 4.3 and Corollary 4.1 in Durier and Michelot (1986). The set of
weakly efficient locations is the convex hull of the points ai with i = 1, . . . ,Q.
In Example 9.3, we illustrate this result.

(ii) Taking f i(x) = ‖x − ai‖ with ai ∈ R2 for i = 1, . . . ,Q and ‖ · ‖ being
a polyhedral gauge we get Theorem 6.1 in Durier (1990), where the set of
weakly efficient locations is the union of elementary convex sets, (see Durier
and Michelot (1985) for a definition). In Example 9.4, we illustrate this result.

(iii) Taking f i(x) = maxj∈M wi
j‖x−aj‖ with aj ∈ R2, wi

j > 0 for i = 1, . . . ,Q,
j ∈ M := {1, . . . ,m} and ‖ · ‖ being the �∞-norm, we get Theorem 6.1 in
Hamacher and Nickel (1996), where the set of weakly efficient locations is
the union of the sets of weakly efficient locations for all pairs of functions. In
Example 9.5, we illustrate this result.

Example 9.3 (See Fig. 9.3) Let us consider the points a1 = (0, 0), a2 = (5,−10),
a3 = (10, 0) and the functions f i(x) = ‖x − ai‖2 for i = 1, 2, 3. By Theorem 9.2,
X ∗

w−Par(f
1, f 2, f 3) is the filled region, which in this case is the convex hull of a1,

a2 and a3.

Example 9.4 (Refer to Fig. 9.4) Let us consider the points a1 = (0, 0), a2 = (8, 3),
a3 = (−3, 5) and the functions f 1(x) = ‖x − a1‖1, f 2(x) = ‖x − a2‖∞ and
f 3(x) = ‖x − a3‖1. By Theorem 9.1, X ∗

w−Par(f
1, f 2) is the thick path joining a1
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a1

a2

a3

X ∗
w−Par(f

1, f2, f3)

Fig. 9.3 Illustration of Remark 9.3.i

a1

a2

a3

X ∗
w−Par(f

1, f3)

X ∗
w−Par(f

1, f2)

X ∗
w−Par(f

2, f3)

X ∗
w−Par(f

1, f2, f3)

Fig. 9.4 Illustration of Remark 9.3.ii

and a2, X ∗
w−Par(f

2, f 3) is the thick path joining a2 and a3, and X ∗
w−Par(f

1, f 3)

is the filled rectangle with a1 and a3 as opposite extreme points. Therefore, by
Theorem 9.2, X ∗

w−Par(f
1, f 2, f 3) is the filled region surrounded by the union of

the three previous sets. Note that this region is the union of two full dimensional
elementary convex sets.

Example 9.5 (Refer to Fig. 9.5) Let us consider the points a1 = (4, 16), a2 =
(10, 5), a3 = (25, 12) and the functions f i(x) = ‖x−ai‖∞ for i = 1, 2, 3. By The-
orem 9.1, X ∗

w−Par(f
1, f 2) = R1, X ∗

w−Par(f
1, f 3) = R2 ∪ R4, X ∗

w−Par(f
2, f 3) =
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Fig. 9.5 Illustration of
Remark 9.3.iii

a1

a2

a3
R4R1

R2

R3

R3 ∪ R4. By Theorem 9.2, X ∗
w−Par(f

1, f 2, f 3) = R1 ∪ R2 ∪ R3 ∪ R4. Note
that in this example X ∗

w−Par(f
1, f 2, f 3) = X ∗

w−Par(f
1, f 2) ∪ X ∗

w−Par(f
1, f 3) ∪

X ∗
w−Par(f

2, f 3).

9.2.1 Polyhedral Planar Minisum Location Problems

Consider a set of demand points A := {a1, . . . , aM} ⊆ R2. For i ∈ M :=
{1, 2, . . . ,M}, let Bi ⊂ R2 be a compact, convex set containing the origin in its
interior. The gauge with respect to Bi is defined as γi : R2 → R, γi(x) := inf{r >

0 : x ∈ rBi}. Taking this definition into account, the planar minisum location
problem is

min
x∈R2

M∑

i=1

wiγi(x − ai),

where wi is a nonnegative weight associated with the demand point ai (i ∈ M ).
In this section we study the particular case where the functions f 1, . . . , f Q

are minisum location objective functions and the distances are measured with
polyhedral gauges, i.e., the unit balls associated with these gauges are convex
polytopes. This type of objective function is not strictly convex and for this reason,
the three solutions sets (Pareto, weak Pareto and strict Pareto locations) may not
coincide. Therefore, in this section we focus on the characterization of the Pareto
locations and how it can be extended to the remaining solution sets.
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p1 +N(B0, p1)

p2 +N(B0, p2)

(0, 0)

(0, 0)

d1

d2

d3

d4

e1

e2

e3

e4

B
B0

p1

p2

Fig. 9.6 Illustration of the unit ball for the �1-norm, its dual ball and two normal cones of this
dual ball

The polar set Bo
i of Bi is given by Bo

i := {p ∈ R2 : 〈p, x〉 ≤ 1 ∀x ∈ Bi} and the
normal cone to Bi at x is given by N(Bi , x) := {p ∈ R2 : 〈p, y − x〉 ≤ 0 ∀y ∈ Bi},
where 〈·, ·〉 denotes the scalar product. In case of polyhedral gauges (i.e., Bi is a
polytope), the set of extreme points of Bi is denoted by Ext(Bi) := {ei

1, . . . , e
i
Gi

} .
The maximal number of extreme points is denoted by Gmax := max{Gi : i ∈ M }.
We define fundamental directions di

1, . . . , d
i
Gi

as the half-lines determined by 0 and

ei
1, . . . , e

i
Gi

(see Fig. 9.6).

Let π = (pi)i∈M be a family of elements of R2 such that pi ∈ Bo
i for each

i ∈ M and let Cπ = ⋂
i∈M (ai + N(Bo

i , pi)). Adopting the definition introduced
by Durier and Michelot (1985), a nonempty convex set C is called an elementary
convex set if there exists a family π such that Cπ = C. If the unit balls are
polytopes, then we can obtain the elementary convex sets as intersections of cones
generated by fundamental directions of these balls pointed at each demand point
(for details, see Durier and Michelot 1985). The 2-dimensional elementary convex
sets are called cells. Let C denote to the set of these cells. Therefore each cell is
a polyhedron whose vertices are the intersection points, which we denote by IP .
Finally, in the case of R2 there exists an upper bound on the number of cells which
is O((MGmax)

2) (see Durier and Michelot 1985).
In Fig. 9.7 we show an elementary convex set for the �1-norm for two points

a1, a2. In this example the dual norm is the �∞-norm where its unit ball B0 has
the extreme points {(1, 1), (−1, 1), (−1−, 1), (1,−1)}. The normal cones to B0 at
p1 = (1,−1) and p2 = (−1, 1) are given by N(B0, p1) = cone((1, 0), (0,−1))

and N(B0, p2) = cone((−1, 0), (0, 1)), respectively, where cone stands for the
conical hull of its argument. Thus, the elementary convex set Cπ with π = (p1, p2)

is the rectangle defined by a1 and a2 with sides parallel to the coordinates axes.
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Fig. 9.7 Illustration of an
elementary convex set for the
�1-norm

a1

a2

(a1+N(B0, p1)) ∩ (a2+N(B0, p2))

9.2.1.1 Bicriteria Case

In this section we restrict ourselves to the bicriteria case, which, as will be seen later,
is the basis for solving the Q-criteria case. To this end, we are looking for the Pareto
solutions of the vector optimization problem in R2,

min
x∈2

(

f 1(x) :=
M∑

i=1

w1
i γi(x − ai), f 2(x) :=

M∑

i=1

w2
i γi(x − ai)

)

,

where the weights w
q
i are non negative (i = 1, . . . ,M; q = 1, 2). The following

theorem provides a geometric characterization of the set X ∗
Par.

Theorem 9.4 X ∗
Par

(
f 1, f 2

)
is a connected chain from X ∗(f 1) to X ∗(f 2)

consisting of faces or vertices of cells, or complete cells.

Proof First, we note that X ∗(f q) 	= ∅ for q = 1, 2 (see Puerto and Fernández
2000). Moreover, X ∗

Par ∩ X ∗(f q) 	= ∅ for q = 1, 2. Therefore, we know that
X ∗

Par 	= ∅, so we can choose x ∈ X ∗
Par. There exists at least one cell C ∈ C with

x ∈ C. We can assume without loss of generality that C is bounded. We also note
that the functions f 1 and f 2 are linear within each cell (see Rodríguez-Chía et al.
2000). Given a set A, in what follows, conv(A), bd(A) and int(A) will denote the
convex hull, the boundary and the interior of the set A, respectively. Three cases
may occur:

Case 1: x ∈ int(C). Since x ∈ X ∗
Par we obtain

2⋂

q=1

L≤(f q, f q(x)) =
2⋂

q=1

L=(f q, f q(x))
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and by linearity of the median problem in each cell we have

2⋂

q=1

L≤(f q, f q(y)) =
2⋂

q=1

L=(f q, f q(y)) ∀ y ∈ C

which means y ∈ X ∗
Par ∀ y ∈ C, hence C ⊆ X ∗

Par.
Case 2: x ∈ ab := conv({a, b}) ⊂ bd(C) and a, b ∈ Ext(C). We can choose

y ∈ int(C) and two cases can occur:

Case 2.1: y ∈ X ∗
Par. Hence we can continue as in Case 1.

Case 2.2: y /∈ X ∗
Par. Therefore using the linearity we first obtain

2⋂

q=1

L≤(f q, f q(z)) 	=
2⋂

q=1

L=(f q, f q(z)) ∀ z ∈ int(C).

Second, since x ∈ X ∗
Par, we have

2⋂

q=1

L≤(f q, f q(z)) =
2⋂

q=1

L=(f q, f q(z)) ∀ z ∈ ab.

Hence, we have that C 	⊆ X ∗
Par and ab ⊆ X ∗

Par.

Case 3: x ∈ Ext(C). We can choose y ∈ int(C) and two cases can occur

Case 3.1: If y ∈ X ∗
Par, we can continue as in Case 1.

Case 3.2: If y /∈ X ∗
Par, we choose z1, z2 ∈ Ext(C) such that xz1, xz2 are

faces of C,

– If z1 or z2 are in X ∗
Par, we can continue as in Case 2.

– If z1 and z2 are not in X ∗
Par, then using the linearity in the same way as

before we obtain that (C \ {x}) ∩ X ∗
Par = ∅.

Hence, we conclude that the set of Pareto solutions consists of complete cells,
complete faces, and vertices of these cells. Since we know that the set X ∗

Par is
connected, the proof is completed. �

In the following we develop an algorithm to solve the bicriteria planar minisum
location problem. The idea of this algorithm is to start in a vertex x of the cell
structure which belongs to X ∗

Par, say x ∈ X ∗
1,2 := arg minx∈X ∗(f 1) f 2(x) (set of

optimal lexicographical locations, see Nickel 1995). Then, using the connectivity of
X ∗

Par, the algorithm proceeds by moving from vertex x to another Pareto-optimal
vertex y of the cell structure which is connected with the previous one by an
elementary convex set. This procedure is repeated until the end of the chain reaches
X ∗

2,1 := arg minx∈X ∗(f 2) f 1(x).
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Fig. 9.8 Illustration to
y, x, z ∈ Ext(C) in
counterclockwise order

Cy

z

x

Let C be a cell and y, x and z three vertices of C enumerated counterclockwise
(see Fig. 9.8). By the linearity of the level sets in each cell we can distinguish the
following disjoint situations, if x ∈ X ∗

Par :

(S1) C ⊆ X ∗
Par , i.e., C is contained in the chain.

(S2) xy and xz are candidates for X ∗
Par and int(C) 	⊂ X ∗

Par.
(S3) xy is candidate for X ∗

Par and xz is not contained in X ∗
Par.

(S4) xz is candidate for X ∗
Par and xy is not contained in X ∗

Par.
(S5) Neither xy nor xz are contained in X ∗

Par.

We denote by sit(C, x) the situations (S1, S2, S3, S4 or S5) in which the cell
C is classified according to the extreme point x of C. The following lemma, whose
proof is based on an exhaustive case analysis of the different relative positions of x

within C, can be found in Weissler (1999). It states when a given segment belongs
to the Pareto-set in terms of the sit(·, ·) function.

Lemma 9.1 Let C1, . . . , CPx be the cells containing the intersection point x ,
considered in counterclockwise order, and y1, . . . , yPx the intersection points
adjacent to x , considered in counterclockwise order (see Fig. 9.9). If x ∈ X ∗

Par
and i ∈ {1, . . . , Px}, then the following holds (assume that i + 1 = 1 whenever
i = Px ) :

xyi+1 ⊆ X ∗
Par ⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

sit(Ci , x) = S1
or sit(Ci+1, x) = S1

or

{
sit(Ci , x) ∈ {S2, S3}

sit(Ci+1, x) ∈ {S2, S4}
}

⎫
⎪⎪⎬

⎪⎪⎭

These results validate the following algorithm for finding X ∗
Par

(
f 1, f 2

)
.
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x

y1

y2

y3

y4
y5

y6

C1C2

C3

C4

C5

C6

Fig. 9.9 Illustration to Lemma 9.1 with Px = 6

Algorithm 9.1

Step 1. Compute the planar graph generated by the cells and the two sets of
lexicographical locations X ∗

1,2 , X ∗
2,1 .

Step 2. If X ∗
1,2 ∩X ∗

2,1 	= ∅ then set X ∗
Par := conv(X ∗

1,2) (trivial case X ∗(f 1) ∩
X ∗(f 2) 	= ∅). Otherwise set X ∗

Par := X ∗
1,2 ∪ X ∗

2,1 (non trivial case X ∗(f 1) ∩
X ∗(f 2) = ∅)

Step 3. Choose x ∈ X ∗
1,2 ∩ IP .

Step 4. Scan the list of cells adjacent to x until we get situation S1 for a cell
C or two consecutive cells, C, C, in situations C∈ {S2, S3} and C ∈ {S2, S4},
respectively.

Step 5. If situation S1 occurs then X ∗
Par := X ∗

Par ∪ C (we have found a bounded
cell.) Otherwise X ∗

Par := X ∗
Par ∪xy where y is a vertex of C defined in situations

S2 and S4 (we have found a bounded face.)
Step 6. Let C be the last scanned cell. Choose y ∈ IP ∩ C and, such that, y is

connected to x. If y ∈ X ∗
2,1 stop. Otherwise, set x := y and go to Step 4.

Output: X ∗
Par

(
f 1, f 2

)
. �

Edelsbrunner (1987) proved that the computation of a planar graph induced by
n lines in the plane can be done in O(n2) time. This implies that in the case of
the minisum location problem the computation of the planar graph generated by the
fundamental direction lines is doable in O(M2G2

max) time.
The evaluation of the minisum location function needs O(M log(Gmax)) for

one point, therefore we obtain O(M3G2
max log (Gmax)) time for the computation

of lexicographic solutions. At the end, the complexity for computing the chain
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a1 a2

a3

a4 a5

a6

a7 a8

a9

X ∗
1

X ∗
3

X ∗
2

Fig. 9.10 Illustration to Algorithm 9.1

is O(M3G2
max log (Gmax)), since we have to consider at most O(M2G2

max) cells
and the determination of sit( . , . ) can be done in O(M log(Gmax)) time. Hence,
the overall complexity is O(M3G2

max log (Gmax)). Notice that the polynomial
complexity of this algorithm allows an efficient computation of the solution set.

Example 9.6 Consider a problem with 9 facilities A = {a1, . . . , a9} (see Fig. 9.10).
The coordinates ai = (xi, yi) of the existing facilities are given by the set
{(−3, 0), (3, 0), (0,−4), (11,−6), (17,−6), (14,−2), (11, 2), (17, 2), (14, 6)}.
Consider three median objective functions f q , q = 1, 2, 3, namely those induced
by the weights-vectors w1 = (2, 2, 1, 0, 0, 0, 0, 0, 0), w2 = (0, 0, 0, 2, 2, 1, 0, 0, 0)

and w3 = (0, 0, 0, 0, 0, 0, 2, 2, 1).
The optimal solutions of the location problems associated with the median

functions f 1, f 2 and f 3 with f q = ∑M
i=1 w

q
i ‖ x − ai ‖1, q = 1, 2, 3, are unique

and given by X ∗
1 = {(0, 0)}, X ∗

2 = {(14,−6)} and X ∗
3 = {(14, 2)}, respectively,

all of them with the (optimal) objective value 16. The bicriteria chains (consisting
of cells and edges with respect to the fundamental directions drawn in Fig. 9.10) are
given by

X ∗
Par

(
f 1, f 3

)
= (0, 0) (3, 0) ∪ conv({(3, 0) , (3, 2) , (11, 2) , (11, 0)}) ∪ (11, 2) (14, 2),

X ∗
Par

(
f 2, f 3

)
= (14, 2) (14, −6),
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X ∗
Par

(
f 1, f 2

)
= (0, 0) (3, 0) ∪ (3, 0) (3,−2) ∪

conv({(3,−2) , (3, −4) , (11, −4) , (11, −2)}) ∪
(11, −4) (14, −4) ∪ (14, −4) (14, −6).

9.2.1.2 Three-Criteria Case

In this section we consider the 3-criteria case and develop an efficient algorithm for
computing X ∗

Par

(
f 1, f 2, f 3

)
using the results for the bicriteria case. In particular,

we obtain a characterization of the Pareto solution set for the three criteria case
using the region surrounded by the chains of bicriteria Pareto solutions. We denote
the union of the bicriteria chains including the 1-criterion solutions by

X
gen

Par

(
f 1, f 2, f 3

)
:=

3⋃

q=1

X ∗(f q) ∪
2⋃

q=1

3⋃

p=q+1

X ∗
Par

(
f p, f q

)
.

We use “gen” since this set will generate the set X ∗
Par

(
f 1, f 2, f 3

)
(see

Fig. 9.11).
The next lemma provides useful geometric information to build X ∗

Par(
f 1, f 2, f 3

)
. For a set A, let cl(A) denote the topological closure of A.

Lemma 9.2 The following inclusion of sets holds:

cl
(

encl
(
X

gen
Par

(
f 1, f 2, f 3

)))
⊆ X ∗

s-Par

(
f 1, f 2, f 3

)
.

The interested reader is referred to Nickel et al. (2005b) for a detailed proof of this
result.

Fig. 9.11 The enclosure of
X

gen
Par

(
f 1, f 2, f 3

) X ∗
1

X ∗
2

X ∗
3

X ∗
Par f 1, f 2

X ∗
Par f 1, f 3

X ∗
Par f 2, f 3

encl X gen
Par f 1, f 2, f 3
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Remark 9.4 Since X ∗
Par

(
f i, f j

) = X ∗
w−Par

(
f i, f j

)
for any i, j ∈ {1, 2, 3}, we

have that:

encl
(
X

gen
Par

(
f 1, f 2, f 3

))
= encl

(
X

gen
w−Par

(
f 1, f 2, f 3

))
.

Finally we obtain the following theorem which provides a subset as well as a
superset of X ∗

Par

(
f 1, f 2, f 3

)
.

Theorem 9.5 The following inclusions of sets hold:

encl
(
X

gen
Par

(
f 1, f 2, f 3

))
⊆ X ∗

Par

(
f 1, f 2, f 3

)

⊆ X
gen

Par

(
f 1, f 2, f 3

)
∪ encl

(
X

gen
Par

(
f 1, f 2, f 3

))

= X ∗
w−Par

(
f 1, f 2, f 3

)
.

Proof Using Lemma 9.2 and Theorem 9.2 we have the following chain of inclusions
that proves the thesis of the theorem.

encl
(
X

gen
Par

(
f 1, f 2, f 3

))
⊆ X ∗

s−Par

(
f 1, f 2, f 3

)

⊆ X ∗
Par

(
f 1, f 2, f 3

)
⊆ X ∗

w−Par

(
f 1, f 2, f 3

)

⊆ X
gen

Par

(
f 1, f 2, f 3

)
∪ encl

(
X

gen
Par

(
f 1, f 2, f 3

))
.

�
Now it remains to consider the Pareto-optimality of the set X gen

Par

(
f 1, f 2, f 3

)

with respect to the three objective functions f 1, f 2, f 3. For a cell C ∈ C we define
the collapsing and the remaining part of C with respect to Q-criteria optimality by

colQ(C) :=
{
x ∈ C : x /∈ X ∗

Par

(
f 1, . . . , f Q

)}

remQ(C) :=
{
x ∈ C : x ∈ X ∗

Par

(
f 1, . . . , f Q

)}
.

Summing up the preceding results we get a complete geometric characteriza-
tion of the set of Pareto solutions for the three criteria case. For each cell C,
colQ(C) ∪̇ remQ(C) = C and, as shown by Nickel et al. (2005b), determining both
sets can be done with the gradients of the objective functions with a complexity of
O(Q log Q).



232 S. Nickel et al.

Theorem 9.6 The set of Pareto solutions satisfies:

X ∗
Par

(
f 1, f 2, f 3

)
= (

X
gen

Par

(
f 1, f 2, f 3

) ∪ encl
(
X

gen
Par

(
f 1, f 2, f 3

)) )

\ {x ∈ R2 : ∃C ∈ C , C ⊆ X
gen

Par

(
f 1, f 2, f 3

)
, x ∈ col3(C)}.

Proof Let y ∈ X ∗
Par

(
f 1, f 2, f 3

)
. Then we have, by Theorem 9.5, that

y ∈ X
gen

Par

(
f 1, f 2, f 3

) ∪ encl
(
X

gen
Par

(
f 1, f 2, f 3

))
. Moreover for C ∈ C with

y ∈ C we have y ∈ rem3(C), i.e., y /∈ col3(C) and the inclusion ⊆ is proved.
In order to prove ⊇, we distinguish the following cases :

Case 1: y ∈ encl
(
X

gen
Par

(
f 1, f 2, f 3

))
. Then y ∈ X ∗

Par

(
f 1, f 2, f 3

)
by Theo-

rem 9.5.
Case 2 : y ∈ X

gen
Par

(
f 1, f 2, f 3

)
.

Case 2.1 : ∃ C ∈ C , C ⊆ X
gen

Par

(
f 1, f 2, f 3

)
with y ∈ C

⇒ y /∈ col3(C) ⇒ y ∈ rem3(C) ⇒ y ∈ X ∗
Par

(
f 1, f 2, f 3

)
.

Case 2.2 : 	 ∃C ∈ C , C ⊆ X
gen

Par

(
f 1, f 2, f 3

)
with y ∈ C

⇒ L≤(f p, f p(y)) ∩ L≤(f q, f q(y)) = {y} for some p, q ∈ {1, 2, 3}, p < q

⇒ ⋂3
q=1 L≤(f q, f q(y)) = {y} ⇒ y ∈ X ∗

s−Par

(
f 1, f 2, f 3

) ⊆
X ∗

Par

(
f 1, f 2, f 3

)
.

�
In the case of median functions the gradients ∇f q(x), q ∈ {1, 2, 3}, (in

those points where they are well-defined) can be computed in O(M log(Gmax))

time (analogous to the evaluation of the function). Therefore, we can test in
O(M log(Gmax)) time if a cell C ∈ C , C ⊆ X

gen
Par

(
f 1, f 2, f 3

)
collapses.

We obtain the following algorithm for the 3-criteria median problem with time
complexity O(M3G2

max log(Gmax)) (see Nickel et al. (2005b) for more details).

Algorithm 9.2

Step 1. Compute the subdivision of the plane generated C , the family of elemen-
tary convex sets. ComputeX ∗

w−Par

(
f 1, f 2

)
,X ∗

w−Par

(
f 1, f 3

)
,X ∗

w−Par

(
f 2, f 3

)

using Algorithm 9.1.
Step 2. Set X

gen
Par

(
f 1, f 2, f 3

) := X ∗
w−Par

(
f 1, f 2

) ∪ X ∗
w−Par

(
f 1, f 3

) ∪
X ∗

w−Par

(
f 2, f 3

)
and X ∗

Par

(
f 1, f 2, f 3

) := X
gen

Par

(
f 1, f 2, f 3

) ∪ encl(
X

gen
Par

(
f 1, f 2, f 3

))
.

Step 3. For any C ∈ C with C ⊆ X
gen

Par

(
f 1, f 2, f 3

)
compute col3(C) and set

X ∗
Par

(
f 1, f 2, f 3

) := X ∗
Par

(
f 1, f 2, f 3

) \ col3(C).
Output: X ∗

Par

(
f 1, f 2, f 3

)
. �

Example 9.7 (Refer to Example 9.6) In Fig. 9.12, the dashed path joining X ∗
1 and

X ∗
3 in the picture represents the set X ∗

w−Par

(
f 1, f 3

)
after removing the col3(C).

In the same way, the path joining X ∗
1 and X ∗

2 represents the set X ∗
w−Par

(
f 1, f 2

)
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a1 a2

a3

a4 a5

a6

a7 a8

a9

X ∗
1

X ∗
3

X ∗
2

Fig. 9.12 Illustration of X gen
Par

(
f 1, f 2, f 3

)
and X ∗

Par

(
f 1, f 2, f 3

)
for the problem introduced in

Example 9.6

after removing the col3(C). Finally, the dotted segment joining X ∗
2 and X ∗

3 is
X ∗

w−Par

(
f 2, f 3

)
(in this case there are no cells to be collapsed).

9.2.1.3 Case Where Q > 3

In this section we consider the general Q-Criteria case (Q > 3). We prove that
the Pareto solution set can be obtained from the Pareto solution sets of all the three
criteria problems. This construction requires the removal of the dominated points
from the union of all the three criteria Pareto solution sets. The reader may notice
that all this process reduces to obtaining the bicriteria Pareto chains as proved in
Theorem 9.6.

Theorem 9.7 The following inclusions hold:

I.
⋃

p,q,r∈Q
p<q<r

cl
(
encl

(
X

gen
Par

(
f p, f q, f r

))) ⊆ X ∗
Par

(
f 1, . . . , f Q

)
.

II. X ∗
Par

(
f 1, . . . , f Q

)
⊆

⋃

p,q,r∈Q
p<q<r

X
gen

Par

(
f p, f q, f r

) ∪
⋃

p,q,r∈Q
p<q<r

encl

(
X

gen
Par

(
f p, f q, f r

)) = X ∗
w−Par

(
f 1, . . . , f Q

)
.
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Proof

(1) Let x ∈ ⋃

p,q,r∈Q
p<q<r

cl
(
encl

(
X

gen
Par (f p, f q, f r )

))
. This is equivalent to

x ∈ cl
(
encl

(
X

gen
Par

(
f p, f q, f r

)))
for some p, q, r ∈ Q, p < q < r.

Then, by Lemma 9.2, x ∈ X ∗
s−Par (f p, f q , f r ) for some p, q, r ∈ Q, p <

q < r . Applying characterization (9.4), this is equivalent to L≤(f p, f p(x)) ∩
L≤(f q, f q(x)) ∩ L≤(f r , f r (x)) = {x} for some p, q, r ∈ Q, p < q < r and
since x ∈ L≤(f q, f q(x)) for all q ∈ Q it follows that

⋂Q
q=1 L≤(f q, f q(x)) =

{x}. Finally, again by (9.4), x ∈ X ∗
s−Par

(
f 1, . . . , f Q

)
, which implies that x ∈

X ∗
Par

(
f 1, . . . , f Q

)
.

(2) Let x ∈ X ∗
Par

(
f 1, . . . , f Q

)
then x ∈ X ∗

w−Par

(
f 1, . . . , f Q

)
and, by (9.2), this

is equivalent to
⋂Q

q=1 L<(f q, f q(x)) = ∅. By Helly’s theorem, there exists
p, q, r ∈ Q, p < q < r , such that, L<(f p, f p(x)) ∩ L<(f q, f q(x)) ∩
L<(f r, f r (x)) = ∅. By characterization (9.2), this is equivalent to x ∈
X ∗

w−Par (f p, f q, f r ) for some p, q, r ∈ Q, p < q < r and, by Theorem 3.2 in
Rodríguez-Chía and Puerto (2002), this implies that x ∈ X

gen
Par (f p, f q, f r ) ∪

encl
(
X

gen
Par (f p, f q , f r )

)
for some p, q, r ∈ Q, p < q < r . Finally, this can

be equivalently written as

x ∈
⋃

p,q,r∈Q
p<q<r

X
gen

Par

(
f p, f q, f r

) ∪
⋃

p,q,r∈Q
p<q<r

encl
(
X

gen
Par

(
f p, f q, f r

))
.

�
In the Q-criteria case the crucial region is now given by the cells C ∈ C with

C ⊆
⋃

p,q,r∈Q
p<q<r

X
gen

Par

(
f p, f q, f r

) \
⋃

p,q,r∈Q
p<q<r

encl
(
X

gen
Par

(
f p, f q, f r

))

=
⋃

p,q∈Q
p<q

X ∗
w−Par

(
f p, f q

) \
⋃

p,q,r∈Q
p<q<r

encl
(
X

gen
Par

(
f p, f q, f r

))
.

Similar to the situation in the previous section one can test whether the cell C ∈ C
collapses with respect to f 1, . . . , f Q by comparing the gradients of the objective
functions in int(C). Finally we obtain the following theorem, which can be proven
using the same reasoning as in the 3-criteria case (see proof of Theorem 9.6).
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Theorem 9.8

X ∗
Par

(
f 1, . . . , f Q

) =
⎛

⎝ ⋃

p,q,r∈Q
p<q<r

X gen
Par (f p, f q, f r ) ∪ ⋃

p,q,r∈Q
p<q<r

encl
(
X gen

Par (f p, f q, f r )
)
⎞

⎠

\
⎧
⎨

⎩
x ∈ R2 : ∃C ∈ C , C ⊆ ⋃

p,q∈Q
p<q

X ∗
w−Par (f p, f q) \⋃

p,q,r∈Q
p<q<r

encl
(
X gen

Par (f p, f q , f r )
)
, x ∈ colQ(C)

⎫
⎬

⎭

For the Q-criteria median problem we obtain the following algorithm.

Algorithm 9.3

Step 1. Compute the subdivision of the plane generated by C , the family of
elementary convex sets. Compute X ∗

w−Par (f p, f q) , p, q ∈ Q, p < q, using
Algorithm 9.1.

Step 2. For every p, q and r with p < q < r set
X

gen
Par (f p, f q, f r ):=X ∗

w−Par (f p, f q) ∪ X ∗
w−Par (f p, f r ) ∪ X ∗

w−Par (f q, f r ),
and
X ∗

Par

(
f 1, . . . , f Q

):= ⋃

p,q,r∈Q
p<q<r

X
gen

Par (f p, f q, f r ) ∪⋃
p,q,r∈Q
p<q<r

encl
(
X

gen
Par (f p, f q, f r )

)
.

Step 3. For every cell C ⊆ ⋃

p,q∈Q
p<q

X ∗
w−Par (f p, f q) \ ⋃

p,q,r∈Q
p<q<r

encl
(
X

gen
Par

(f p, f q, f r )) compute colQ(C) and set X ∗
Par

(
f 1, . . . , f Q

) := X ∗
Par(

f 1, . . . , f Q
) \ colQ(C).

Output: X ∗
Par

(
f 1, . . . , f Q

)
. �

The complexity of Algorithm 9.3 can be determined as follows. For each cell C,
colQ(C) can be computed in O(Q log(Q)) time. Algorithm 9.3 needs to solve
O(Q3) 3-criteria problems which dominates all other elementary operations of the
algorithm. Each one of them has the same complexity as the 2-criteria problem.
Thus, the overall complexity is O(M3G2

maxQ
3(log Gmax) + M2G2

maxQ log Q) =
O(M3G2

maxQ
3(log Gmax).

We would like to conclude this section pointing that the multi-facility versions
of the problems analyzed in this section have been scarcely studied in the literature,
although an exception is the paper by Nickel (1997).

9.2.2 Other References in Continuous Multicriteria Location
Problems

Along this section we have presented a complete description of the set of weak
Pareto, Pareto, and strict Pareto locations for a general planar Q-criteria location
problem based on the characterization of three criteria problems. The geometrical
description and the characterizations of these sets allow the reader to get a general
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idea of the multicriteria continuous location problem. In addition, one can also
find more references and an overview on other location problems in the survey by
Nickel et al. (2005a). Finally, Farahani et al. (2010) provides a review on results and
developments in multicriteria location problems in three categories including bi-
objective, multi-objective and multi-attribute problems and their solution methods.

In the following we list some interesting recent references in this field: The
planar single-facility multiobjective location problem is also studied using the
maximum norm in Alzorba et al. (2015) and using �1-norm in Alzorba et al. (2017).
A scalarization proximal point method for solving a very general unconstrained
multiobjective problem where the functions are locally Lipschitz and quasiconvex is
studied in Apolinário et al. (2016), this methodology is applied to location problems.
In Elleuch and Frikha (2018), a facility location decision which involves both qual-
itative and quantitative criteria is considered, the authors combined two methods,
preference-ranking organisation method for enrichment evaluation (PROMETHEE)
and a linear programming model, using the stretching and shrinking graphs method.
Bhattacharya (2018) proposes a new mathematical model for locating k-obnoxious
facilities that was solved by a nonlinear programming iterative algorithm.

9.3 Network Location Problems

9.3.1 1-Facility Median Problems

9.3.1.1 Pareto Locations in General Networks

Let G = (V ,E) be a connected graph with node set V = {v1, . . . , vn} and edge
set E = {e1, . . . , em}. Each edge e ∈ E has a positive length �(e), and is assumed
to be rectifiable. Let P(G) denote the continuum set of points on edges of G. We
denote a point x ∈ e = {u, v} as a pair x = (e, t), where t (0 ≤ t ≤ 1) gives
the relative distance of x from node u along edge e. For the sake of readability, we
identify P(G) with G and P(e) with e for e ∈ E. We also define (e, (t1, t2)) :=
{x = (e, t) : t ∈ (t1, t2)}; (e, [t1, t2]), (e, (t1, t2]), and (e, [t1, t2)) are used in an
analogous way.

We denote by d(x, y) the length of the shortest path connecting two points x, y ∈
G. Let vi ∈ V and x = ({vr , vs}, t) ∈ G. The distance from vi to x entering the
edge {vr , vs} through vr (vs ) is given as D+

i (x) = d(vr, x) + d(vr , vi) (D−
i (x) =

d(vs, x) + d(vs, vi )). Hence, the length of a shortest path from vi to x is given by
Di(x) = min{D+

i (x), D−
i (x)}. As d(vr , x) = t · �(e) and d(vs, x) = (1 − t) · �(e),

the functions D+
i (x) and D−

i (x) are linear in x and Di(x) is piecewise linear and
concave in x (cf. Drezner 1995). The distance from vi to a facility located at x is
finally defined as d(vi, x) = Di(x) = min{D+

i (x),D−
i (x)}.
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We consider the objective function f (x) = (f 1(x), . . . , f Q(x)), where each
f q(x), q ∈ Q, is a median function defined as:

f q(x) =
∑

vi∈V

w
q
i d(vi , x) .

More formally, we assign a vector of weights

wi =
⎛

⎜
⎝

w1
i
...

w
Q
i

⎞

⎟
⎠ 	= 0 to every vertex vi ∈ V, with w

q
i ≥ 0, q ∈ Q := {1, . . . ,Q}.

The quality of a point x ∈ P(G) in this multicriteria setting is defined by

f (x) :=
⎛

⎜
⎝

f 1(x)
...

f Q(x)

⎞

⎟
⎠ :=

⎛

⎜
⎝

∑
vi∈V w1

i d(x, vi)

...
∑

vi∈V w
Q
i d(x, vi)

⎞

⎟
⎠

in the undirected case and

f (x) :=
⎛

⎜
⎝

f 1(x)
...

f Q(x)

⎞

⎟
⎠ :=

⎛

⎜
⎝

∑
vi∈V w1

i (d(x, vi) + d(vi , x))
...

∑
vi∈V w

Q
i (d(x, vi) + d(vi , x))

⎞

⎟
⎠

in the directed case.
Let S ⊆ P(G) and W ⊆ RQ. We define Wpar = {f (x) ∈ W : �f (y) ∈ W such

that f (y) dominates f (x) in the objective space} and X ∗
par(S) := {x ∈ S : f (x) ∈

Wpar}. If S = P(G) we simply write X ∗
par . A point x ∈ X ∗

par(S) is called a Pareto
location with respect to S, and the elements of X ∗

par (V ) are called Pareto nodes or
Pareto vertices.

Computing X ∗
par (V ) can simply be done by pairwise comparison of the

nodes. For X ∗
par we first have to check if a multicriteria version of Hakimi’s

node dominance result holds (Hakimi 1964). For the directed case we even have
X ∗

par(V ) = X ∗
par . The proof relies on the concavity of the distance functions

among the edges and also on the fact that in the directed case we have no choice
on which side to exit or enter an edge. This implies that the objective function
is strictly concave and therefore the nodes always dominate the edges. For the
technical details and the proofs the reader is referred to Hamacher et al. (1999). In
the case of undirected networks, this aspect is slightly more complicated as shown
in the next example.
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v1 v2

v3 v4

v5 v6

1

3

3

1

3

3

1

22

Fig. 9.13 Network of Example 9.8

Example 9.8 (See Fig. 9.13) Consider the following network N = (G, �) with n =
6 nodes and a distance matrix D = (dij )i,j=1,...,6 given by

D =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

0 1 1 4 3 2
1 0 2 3 4 1
1 2 0 3 2 3
4 3 3 0 5 2
3 4 2 5 0 3
2 1 3 2 3 0

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

.

Assume that the weight vectors are

w1 =
(

1

2

)
, w2 =

(
2

1

)
, w3 =

(
1

2

)
, w4 =

(
2

2

)
, w5 =

(
2

2

)
, w6 =

(
2

1

)
.

Using this information we get

v1 v2 v3 v4 v5 v6

f (·) (21
19

) (19
21

) (21
17

) (27
29

) (29
27

) (17
21

)

By pairwise comparison we get

X ∗
par(V ) = {v3} ∪ {v6} = X ∗ (f 1(V )

)
∪ X ∗ (f 2(V )

)
.

Now we look at the points on the edges and get (by using concavity in the objective
functions):

• v3 dominates all points on the edges {v3, v5}, {v3, v4}, {v3, v1}
• v6 dominates all points on the edges {v6, v2}, {v6, v5}, {v6, v4}
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Fig. 9.14 Objective
functions on the edge {v1, v2}
in Example 9.8

19

20

21

22

19

20

21

22

0 1

f 2

f 1

• v2 dominates all points on the edge {v2, v4}
• v1 dominates all points on the edge {v1, v5}
We also observe that no vertex can dominate a point with both objective functions
smaller than 21. The only edge left is now {v1, v2} (Fig. 9.14).
We see that

I. For all points x ∈ P ({v1, v2}) with x 	= v1, x 	= v2 we have f 1(x) <

21, f 2(x) < 21.
II. No point on {v1, v2} dominates another point on {v1, v2}

⇒ X ∗
par = {v3} ∪ {v6} ∪ ({v1, v2}, (0, 1)) .

We conclude that we have no node dominance and that even on edges with
endnodes not in X ∗

par (V ) we can find elements of X ∗
par .

Since we do not have node dominance in the undirected case, we have to
explicitly solve a multicriteria global optimization problem. First we will identify
local Pareto locations with respect to an edge e = {vi, vj } for all edges of the
network. In a second step we will compare all local Pareto locations to get X ∗

par .
Due to the limited space and a possible overload of technicalities, we will describe
the main ideas which allow the reader to understand the final algorithm. For the
technical details and the proofs the reader is referred to Hamacher et al. (1999).

9.3.1.2 Bi-Criteria Case

We will first deal with the bi-criteria case, since here we can derive a geometrical
solution method. The main property of the objective functions we are using is the
concavity on an edge e = {vi, vj }. In addition we have also piecewise linearity but
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0 1

f 2

f 1

Fig. 9.15 Concavity on an edge with one objective function constant

this is not really needed. Suppose that f (vi) > f (vj ) or f (vj ) > f (vi). In the
first situation we say that vj dominates vi and in the latter vi dominates vj . Both
situations imply that any location on the edge is dominated by an endnode due to
concavity.

Now assume that for an edge e = {vi, vj } with vi and vj not dominating each
other one of the functions f 1 or f 2 is constant. It is easy to see that this is only
the case if f (vi) = f (vj ). If for an edge e only one of the objective functions is
constant then X ∗

par(e) = {vi} ∪ {vj }. If both objective functions are constant then
X ∗

par(e) = ({vi, vj }, [0, 1]). Again this is due to the concavity of the objective
functions and can be seen in Fig. 9.15.

Now we have only one situation left (the most typical one), where the endnodes
do not dominate each other and none of the two objective functions is constant.
Without loss of generality we can assume f 1(vi) > f 1(vj ) and f 2(vi) < f 2(vj )

(otherwise exchange the roles of vi and vj ). The behaviour of the objective functions
can be seen in Fig. 9.16. First, both objectives functions are increasing (maybe for an
interval with a small or null length) and all points are dominated by the left endnode.
Only after the first objective function is already decreasing and smaller than the
left endnode value, the endnode cannot dominate the points of the edge. The same
argument can be applied by starting from the right endnode. More formally we can
define

t1 := max{t ∈ [0, 1] : f 1(vi) = f 1 (({vi, vj }, t
))}

and

t2 := min{t ∈ [0, 1] : f 2(vj ) = f 2 (({vi, vj }, t
))}.
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0 1t1 t2

f 1

f 2

Fig. 9.16 Derivation of t1 and t2

Then

X ∗
par (e) = {vi} ∪ {vj } ∪

(
{vi, vj },

(
t1, t2

))
.

Overall we have that for each e ∈ E in (G, �), X ∗
par(e) is a (possibly empty)

single subedge of e plus one or both endnodes. Now we can combine these results
to get an efficient algorithm for determining X ∗

par (e).

Algorithm 9.4 (Computation of X ∗
par (e) for the bi-criteria median problem on

a network)

Input: edge e = {vi, vj } ∈ E, undirected network (G, l), distance matrix D

Step 1. IF vi dominates vj then X ∗
par (e) := {vi}, go to Step 7

Step 2. IF vj dominates vi then X ∗
par (e) := {vj }, go to Step 7

Step 3. IF f (vi) = f (vj ) then

A. IF f
((

{vi, vj }, 1
2

))
= f (vi) then X ∗

par(e) := P({vi, vj }), go to Step 7

B. IF f
((

{vi, vj }, 1
2

))
	= f (vi) then X ∗

par(e) := {vi} ∪ {vj }, go to Step 7

Step 4. IF f 1(vi) < f 1(vj ) and f 2(vi) > f 2(vj ) then exchange vi and vj

Step 5. Compute t1 and t2 as defined above
Step 6. IF t1 < t2

THEN X ∗
par(e) := {vi} ∪ {vj } ∪ ({vi, vj }, (t1, t2)

)

ELSE X ∗
par(e) := {vi} ∪ {vj }

Step 7. STOP.

Output: X ∗
par(e)

To analyze the complexity of this algorithm, we need the following definition: A
point x = ({vi, vj }, t

)
, t ∈ [0, 1] on one edge e = {vi, vj } is called a bottleneck
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point for f q if there exists a vertex vk with w
q
k > 0, such that

d(vk, x) = d(vk, vi) + d(vi , x) = d(vk, vj ) + d(vj , x).

Let Bij denote the set of bottleneck points on the edge {vi, vj }. Note that |Bij | ≤
|V |.

If D is given, the only non constant operation in Algorithm 9.4 is the com-
putation of t1 and t2. To plot f q we have to determine the breakpoints of f q

which is piecewise linear on an edge. Since these breakpoints correspond to the
bottleneck points on this edge we have to compute Bij for e = {vi, vj }, this
can be done in O (|V | log |V |) (see Hansen et al. 1991). Then t1 and t2 can be
determined by exploring the sorted list of bottleneck points two times. The total
complexity for finding X ∗

par (e) is O (|V | log |V |) and the total complexity for
finding

⋃
e∈E X ∗

par (e) is O (|E||V | log |V |).
Example 9.9 Consider the following network (Fig. 9.17):
with distance matrix

D =

⎛

⎜⎜
⎝

0 1 2 2
1 0 2 1
2 2 0 1
2 1 1 0

⎞

⎟⎟
⎠ .

We first compute

v1 v2 v3 v4

f 1 10 7 8 6
f 2 7 8 9 9

Fig. 9.17 Network of
Example 9.9 v1 v2

v3 v4

1

1

1

2

1
3

2
1

2
1

2
2
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7

8

9

10

11

8

9

10

11

0 11
3

1
2

f 2

f 1

Fig. 9.18 Computing X ∗
par ({v1, v2})

and obtain X ∗
par (V ) = {v1, v2, v4}. Now we have to determine the set X ∗

par(e) for
every e ∈ E:

• e = {v1, v2}. v1 and v2 do not dominate each other and f 1, f 2 are not constant,
i.e., we need to plot f 1, f 2 and therefore we have to find B12

B12 =
{
b1

12 =
(

{v1, v2}, 1

2

)}

f 1
(
b1

12

)
= 9.5 and f 2

(
b1

12

)
= 8.5

So the objective function can be drawn as shown in Fig. 9.18.

t1 = max
{
t ∈ [0, 1] : f 1(v1) = f 1 ({v1, v2}, t)

}
= 0

t2 = min
{
t ∈ [0, 1] : f 2(v2) = f 2 ({v1, v2}, t)

}
= 1

3

(in [0,
1

2
], f 2(x) ≡ 7 + 3t, 7 + 3t = 8 ⇔ t = 1

3
)

X ∗
par(e) = {v1} ∪ {v2} ∪

(
{v1, v2},

(
0,

1

3

))
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8

9

10

11

8

9

10

11

0 11
2

1
4

3
4

4
5

f 2

f 1 t2 t1

Fig. 9.19 Computing X ∗
par ({v1, v3})

• e = {v2, v4}. f 1(v2) = 7 > f 1(v4) = 6 and f 2(v2) = 8 < f 2(v4) = 9 and
B24 = ∅ ⇒ t1 = 0, t2 = 1 ⇒ X ∗

par(e) = P(e).

• e = {v3, v4}. v4 dominates v3 ⇒ X ∗
par(e) = {v4}.

• e = {v1, v3}. (Fig. 9.19) B13 =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝{v1, v3}︸ ︷︷ ︸

b1
13

, 1
4

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝{v1, v3}︸ ︷︷ ︸

b2
13

, 3
4

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

f
(
b1

13

)
=
(

11.5

8.5

)
, f

(
b2

13

)
=
(

10.5

9.5

)

t1 = 4

5
, t2 = 1

2

X ∗
par(e) = {v1} ∪ {v3}

In a second step we have to compare all local Pareto locations X ∗
par (e), e ∈ E

to get X ∗
par . With two objective functions we can map everything to the objective

space where dominance can easily be computed. In the case of median objective
functions on a network, we know that f 1 and f 2 are piecewise linear with the
same potential breakpoints. This leads to the following mapping in the (z1, z2)-
space (or objective space) as shown in Fig. 9.20. Essentially, this plot shows all
pairs (z1, z2) of the objective function values f1(x) and f2(x) for all points x on
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5

6

7

8

5

6

7

8

t1 t2

f 1

f 2

Xpar(e)\ ({vi}∪{v j})

5

6

7

8

6 7 8 9 z1

z2

Fig. 9.20 Mapping X ∗
par (e) to the objective space

w1

w2

w3

w4

Fig. 9.21 w1 is dominating w2 and w3

the edge. Again we would like to skip the technical details and proofs and refer the
reader to Hamacher et al. (1999).

In the objective space, a point w dominates all other points in w + R2+\{0} :={
w + y : y ∈ R2+\{0}} (see Fig. 9.21).

In order to obtain X ∗
par we draw IM(f ) which is defined as the set of all images

of X ∗
par(e) for e ∈ E in the objective space. The lower envelope for a set P of

points in R2 is defined as

⋃{
(x, y) ∈ P : y ≤ y ′ for all (x, y ′) ∈ P

}
.
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Algorithm 9.5 (Combining the local Pareto locations)

Input: X ∗
par (e) for all e ∈ E

Step 1. Let z1
max := max

{
f 1(x) : x ∈ ⋃e∈E X ∗

par (e)
}

Step 2. Build IM(f ) =⋃e∈E f
(
X ∗

par(e)
)

Step 3. For each connected component l in IM(f ), let (z1
l , z2

l ) be the right-most
point (largest z1 value) and add to IM(f ) the horizontal segment going from
(z1

l , z2
l ) to (z1

max, z2
l ).

Step 4. Compute the lower envelope L of IM(f ), which is the lower envelope of
O(|E||V |) line segments.

Step 5. Eliminate every horizontal line segment of L, except its left-most point.
Step 6. Set X ∗

par := f −1(L).

Output: X ∗
par

In order to get the same result from the dominance relation we have to add an
artificial line segment and delete it from the solution (see Fig. 9.22).

Steps 1 and 3 are necessary to modify IM(f ) such that we can get X ∗
par

from the lower envelope. These steps as well as Step 2 can be done in linear
time. Step 4 can be done in a naive way in O

(|E|2|V |2) or in optimal time of
O (|E||V | log (max (|E||V |))) by an algorithm of Hershberger (1989). Since Step
5 can be done in linear time the complexity of Step 4 determines the overall
complexity. For easier handling of the segments, note that we may use instead
of an open subedge

({vi, vj }, (t1, t2)
)

the closed subedge
({vi, vj }, [t1, t2]

)
. After

applying the algorithm we then have to test if we deleted a point directly above the
left-most point (Fig. 9.23).

Example 9.10 (Example 9.9 Cont.) We first draw IM(f ) and add the horizontal line

segments. Finally, we get X ∗
par = P ({v2, v4}) ∪

(
{v1, v2},

[
0, 1

3

))
.

X ∗
par

lower
envelope

Fig. 9.22 Using the lower envelope to delete dominated solutions
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Fig. 9.23 Computing X ∗
par

for Example 9.9

6 7 8 9 10

7

8

9

10

z1

z2

v1

v2

v3
v4 {v1, v2}, 13

9.3.1.3 Q-Criteria Case

We will now briefly explain how this approach generalizes to the Q-criteria case.
Also in this situation we easily see that if for an edge e = {vi, vj } one endnode
dominates the other one, there are no Pareto locations in the interior of e. From now
on assume that neither vi dominates vj nor vj dominates vi . Let Q1 and Q2 be a
partition of Q, such that f q(vi) ≥ f q(vj ) for all q ∈ Q1 and f q(vi) < f q(vj ) for
all q ∈ Q2. Of course, Q1 	= ∅, Q1 ∩ Q2 = ∅ and Q1 ∪ Q2 = Q. Also in case
of constant functions we get a similar result as in the bi-criteria case. Accordingly,
assume that f (vi) 	= f (vj ) for an edge e = {vi, vj } and let

t1(f q) := max
{
t ∈ [0, 1] : f q(vi) = f q

(
({vi, vj }, t)

)}
for q ∈ Q1

and

t2(f q) := min
{
t ∈ [0, 1] : f q(vj ) = f q

(
({vi, vj }, t)

)}
for q ∈ Q2.

Then (see Hamacher et al. (1999) for the details)

X ∗
par(e) = {vi} ∪ {vj } ∪

(
{vi, vj },

(
min
q∈Q1

{
t1(f q)

}
, max

q∈Q2

{
t2(f q)

}))
.

For comparing the local Pareto locations, the mapping to the objective space
becomes rather involved especially when we have to compute lower envelopes.

In order to compare X ∗
par (e) for all e ∈ E pairwise, we use the following

iterative procedure: Let
({vj , vl}, [tr , tr+1]

)
be a subedge ofX ∗

par (el), el = {vj , vl}
(to have closed subedges we neglect the vertices and handle first only the Pareto
parts in the interior) where (tr , tr+1) are assumed to not include any further
bottleneck points of el (if this is not true we subdivide the subedge further). This
leads to

f q
(
({vj , vl}, t)

) = b
q
r + m

q
r t for all q ∈ Q, t ∈ [tr , tr+1],
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i.e., all f q are affine linear on
({vj , vl}, [tr , tr+1]

)
. Take now a closed linear

subedge from another edge ek = {vk, vm}, then we get
({vk, vm}, [sp, sp+1]

) ⊆
X ∗

par(ek). This leads to

f q (({vk, vm}, s)) = b
q
p + m

q
ps for all q ∈ Q, s ∈ [sp, sp+1],

If we apply the definition of a Pareto location to these two subedges, we get that
a point

({vj , vl}, t
)
, t ∈ [tr , tr+1] is dominated by some point ({vk, vm}, s) , s ∈

[sp, sp+1]

⇔ b
q
p + m

q
ps ≤ b

q
r + m

q
r t for all q ∈ Q,

where at least one inequality is strict. Now we define the polyhedron

F := {(s, t) : m
q
r t − m

q
ps ≥ b

q
p − b

q
r , ∀q ∈ Q

} ∩ ([sp, sp+1] × [tr , tr+1]
)
.

We have two cases: If F = ∅, then
({vj , vl}, [tr , tr+1]

)
contains no point which is

dominated by a point from
({vk, vm}, [sp, sp+1]

)
. Otherwise, F 	= ∅ is taken as a

feasible solution of the two 2-variable linear programs

LB = min{t : (s, t) ∈ F }, UB = max{t : (s, t) ∈ F }.

Let sLB and sUB be the optimal values for s corresponding to LB and UB,
respectively. Now we still have to check if one inequality is strict: If b

q
p + m

q
psLB =

b
q
r +m

q
r LB and b

q
p+m

q
psUB = b

q
r +m

q
r UB for all q ∈ Q, then there is no dominance.

Otherwise X ∗
par(el) := X ∗

par(el)\ ({vj , vl}, [LB, UB])) . Note that this procedure
works also if tr = tr+1 or sp = sp+1 (in this case, we are testing a single point).

Algorithm 9.6 (Combining local Pareto location in the Q-criteria case)

Input: Network as in Algorithm 9.4

Step 1. Determine X ∗
par (e) for all e ∈ E and set X ∗

par :=⋃e∈E X ∗
par(e)

Step 2. Compare all vi and all edges, where all f q, q ∈ Q are constant
Step 3. For all Pareto linear subedges do a pairwise comparison as described

above and reduce X ∗
par accordingly.

Output: X ∗
par

The complexity of this algorithm is O(|E|2|V |2Q).

9.3.1.4 Multicriteria Median Problems on a Tree

Many difficult problems on general networks become easier to solve if the under-
lying graph has a tree structure. We will show that this is also true for multicriteria
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problems. We relate our results with the research that has previously been done
on trees and end up with a generalization of Goldman’s algorithm (see Goldman
1971a). The major concept which makes the analysis easier on trees is convexity.
We first introduce this concept based on Dearing et al. (1976).

Let N = (T , �) be a tree network, with T = (V ,E). For two points a, b ∈ P(T )

we define the line segment L[a, b] between a and b as

L[a, b] := {x ∈ P(T ) : d(a, x) + d(x, b) = d(a, b)} ,

which contains all points on the unique path between a and b. A subset C ⊆ P(T )

is called convex, if and only if for all a, b ∈ C, L[a, b] ⊆ C.
Now let C ⊆ P(T ) be convex and let h : P(T ) → R be a real valued function.

This function h is called convex on C, if and only if for all a, b ∈ C,

h(xλ) ≤ λh(a) + (1 − λ)h(b) , ∀λ ∈ [0, 1] ,

where xλ is uniquely defined by

d(xλ, b) = λd(a, b) and d(xλ, a) = (1 − λ)d(a, b) . (9.5)

A function is called convex on T if it is convex on C = P(T ). Note that it is possible
to define convexity also on general networks. Then one can show that d(x, c) for
c ∈ P(T ) fixed is convex if and only if the underlying graph is a tree. Median and
Center objective functions are convex functions on a tree (see Dearing et al. 1976).

Now let L(a, b) := L[a, b]\{a, b}, L(a, b] := L[a, b]\{a} and L[a, b) :=
L[a, b]\{b}. We have now the following important property (a proof can be found
in Hamacher et al. 1999).

Theorem 9.9 Let a, b ∈ P(T ) and h := (h1, . . . , hQ) be a vector of Q objective
functions, with hq convex on T , for all q ∈ Q = {1, . . . ,Q}. Then the following
holds:

{a, b} ⊆ X ∗
par if and only if L[a, b] ⊆ X ∗

par .

For T = (V ,E) and V ′ ⊆ V let

W(V ′) :=

⎛

⎜
⎜
⎜
⎝

w1(V ′)
w2(V ′)

...

wQ(V ′)

⎞

⎟
⎟
⎟
⎠

,

where wq(V ′) :=∑vi∈V ′ w
q

i , ∀q ∈ Q.
Using Theorem 9.9 together with two lemmata from Goldman (1971b) and the

above definition of W(V ) we can prove the following result which paves the way
for solving Q-criteria median problems on a tree.
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Proposition 9.1 Let T be partitioned in such a way that T = T1 ∪ T2 ∪ {e} and
T1 ∩ T2 = ∅. Then W(V (T1)) dominates W(V (T2)) if and only if for all x ∈ P(T1)

there exists some y ∈ P(T2) which dominates x.

Now we can state a multicriteria version of Goldman’s dominance algorithm
(see Goldman 1971a). We start with a subtree containing only one leaf of the tree
(check for dominance) and enlarge this subtree until we get a Pareto location using
the criterion established in Proposition 9.1. This procedure is then repeated for all
leaves and we end up with a subtree of all Pareto locations by using Theorem 9.9.

Algorithm 9.7 (Solving Q-criteria median problems on a tree)

Input: T = (V ,E), with length function � and node weight vectors wq , q ∈ Q.

Step 0. Set W := W(V )

Step 1. Choose a leaf vk of T , which was not yet considered and give it the status
“considered”.

Step 2. IF V = {vk}
Set X ∗

par (f (V )) := X ∗
par (f (T )) := {vk} and go to Step 6

Step 3. Let vl be the only node adjacent to vk

IF (w1
k . . . w

Q
k )T < 1

2 W

THEN
• w

q
l := w

q
l + w

q
k , q = 1, . . . ,Q

• T := T \ {vk}
Step 4. IF there are any leaves left in T give them status “not considered”

and go to Step 1
Step 5. Set X ∗

par(f (V )) := V (T ), X ∗
par(f (T )) := T

Step 6. STOP

Output: X ∗
par(f (V )) and X ∗

par(f (T ))

The complexity of this algorithm is O(Q|V |). To illustrate the algorithm consider
the following example:

Example 9.11 Consider the tree depicted in Fig. 9.24. We solve the following
instance of a 3-criteria median problem. Let l(e) := 1, ∀e ∈ E. The weights of
the nodes are given in the following table:

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

w1 14 6 8 4 1 2 1 3 2 2 7

w2 11 3 3 24 5 2 2 3 2 2 5

w3 16 2 1 1 2 3 3 1 6 4 21

Therefore W =
⎛

⎝
50
62
60

⎞

⎠ and 1
2W =

⎛

⎝
25
31
30

⎞

⎠.
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Fig. 9.24 Tree of Example
9.11. The bold edges and
nodes indicate the set of
Pareto locations

v1

v2

v3 v4

v5

v6

v7

v8

v9

v10

v11

The adjacency structure of the tree is also given in Fig. 9.24. Now we check every
leaf till there is none left with status “not considered”.

• Take v1: w1 =
⎛

⎝
14
11
16

⎞

⎠ dominates W
2 =

⎛

⎝
25
31
30

⎞

⎠.

Therefore w2 :=
⎛

⎝
6 + 14
3 + 11
2 + 16

⎞

⎠ =
⎛

⎝
20
14
18

⎞

⎠.

By following the algorithm we delete v8, v7, v6, v5 and v4. The actual value of w3
is ⎛

⎝
13
32
4

⎞

⎠.

• Take v3: w3 =
⎛

⎝
13
32
4

⎞

⎠ does not dominate W
2 .

• Take v11: w11 =
⎛

⎝
7
5

21

⎞

⎠ dominates W
2 . Therefore w9 :=

⎛

⎝
9
7
27

⎞

⎠.
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• Take v10: w10 =
⎛

⎝
2
2
4

⎞

⎠ dominates W
2 . Therefore w9 :=

⎛

⎝
11
9

31

⎞

⎠.

• Take v9: w9 =
⎛

⎝
11
9

31

⎞

⎠ does not dominate W
2 .

Since we delete after every domination step the corresponding node from the tree
according to Algorithm 9.7 and no leaf with status not considered is left we end up
with

X ∗
par = L[v9, v3] .

9.3.2 Other Multicriteria Location Problems on Networks

In the previous two subsections we presented optimal time algorithms for one
facility median problems when looking for Pareto locations. We chose these two
problems because the reader gets some insight into the needed properties. In
addition, the simplification on trees caused by the uniqueness of paths can be seen.
In survey by Nickel et al. (2005a) an overview on other location problems can be
found. In Hamacher et al. (2002) an extension to 1-facility center problems as well
as to positive and negative weight vectors on the nodes is developed. Those ideas
have been further extended to problems with criteria dependent lengths in Skriver
et al. (2004). A unified framework for multicriteria ordered median functions can be
found in Nickel et al. (2005b), Nickel and Puerto (2005). In Colebrook and Sicilia
(2007b) the location of undesirable facilities on multicriteria location problems on
networks is looked into by using convex combinations of two objective functions.
Some complexity analysis for the cent-dian location problem has been developed by
Colebrook and Sicilia (2007a). Most approaches to the (in general NP-hard) multi-
facility case are treated as discrete location problems (see Sect. 9.4). Only Kalcsics
et al. (2015) found polynomial cases of multi-facility multicriteria location problems
on networks. In Kalcsics et al. (2014), the authors discuss the multicriteria p-facility
median location problem on networks with positive and negative weights; providing
an efficient algorithm to solve the bicriteria 2-facility problem and a polynomial
algorithm for the general problem when the number of facilities and criteria is fixed.

9.4 Discrete Location Problems

The previous sections show that planar and network multicriteria location problems
have been widely developed from a methodological point of view so that important
structural results and algorithms are known to determine solution sets. On the
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contrary, multicriteria analysis of discrete location problems has attracted less
attention. In spite of that, several authors have dealt with problems and applications
of multicriteria decision analysis in this field. An annotated bibliography with
many references up to 2005 can be found in Nickel et al. (2005a). In general,
very few papers focus in the complete determination of the whole set of Pareto-
optimal solutions. Nevertheless, there are some exceptions, such as the paper by
Ross and Soland (1980) that gives a theoretical characterization but does not exploit
its algorithmic possibilities, as well as the work by Fernández and Puerto (2003)
that addresses the computation of the entire set of Pareto-optimal solutions of the
multiobjective uncapacitated plant location problem. The methodology developed
was extended to the capacitated version by Arora and Arora (2010).

Nowadays, Multi-Objective Combinatorial Optimization (MOCO) (see Ehrgott
and Gandibleux 2000, Ulungu and Teghem 1994) provides an adequate framework
to tackle various types of discrete multicriteria problems such as the p-Median
Problem (p-MP). Within this emergent research area, several methods are known to
handle different problems. It is worth noting that most of MOCO problems are NP-
hard and intractable (see Ehrgott and Gandibleux 2000, for further details). Even
in most of the cases where the single objective problem is polynomially solvable
the multiobjective version becomes NP-hard. This is the case of spanning tree
problems and min-cost flow problems, among others. In the case of the p-MP, the
single objective version is already NP-hard. This ensures that the multiobjective
formulation is not solvable in polynomial time unless P=NP. In this context,
when time and efficiency become a real issue, different alternatives can be used
to approximate the Pareto-optimal set. One of them is the use of general-purpose
MOCO heuristics (Gandibleux et al. 2000). Another possibility is the design of “ad
hoc” methods based on one of the following strategies: (1) computing supported
non-dominated solutions; and (2) performing partial enumerations of the solutions
space. Obviously, the second strategy does not guarantee the non-dominated
character of all the generated solutions although the reduction in computation time
can be remarkable.

The aim of this section is to present methods to obtain the Pareto-optimal set for
the multiobjective p-median problem (p-MP). In all cases, our approach to solve the
multicriteria p-MP takes advantage of the problem’s structure. The first method is
exact and it determines the whole set of Pareto-optimal solutions based on new tools
borrowed from the theory of short rational generating functions. The second method
is an “ad hoc” approximate method that generates supported Pareto locations.

9.4.1 Model and Notation

Let I = {1, . . . ,M} and J = {1, . . . , N} respectively denote the sets of indices
for demand points and for plants, and Q = {1, . . . ,Q} denote the set of indices
for the considered criteria. For each criterion q ∈ Q , let (c

q

ij )i∈I,j∈J ∈ QM×N be
the allocation costs of demand points to plants. The multicriteria p-median location
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problem is:

v-Minimize

⎛

⎝
M∑

i=1

N∑

j=1

c1
ij xij , . . . ,

M∑

i=1

N∑

j=1

c
q
ij xij

⎞

⎠ (9.6)

subject to
N∑

j=1

xij = 1, i ∈ I, (9.7)

xij ≤ yj , i ∈ I, j ∈ J, (9.8)

N∑

j=1

yj = p, (9.9)

xij ∈ {0, 1}, yj ∈ {0, 1}, i ∈ I, j ∈ J. (9.10)

As it is usual, v-min stands for vector minimum of the considered objective
functions. Here variable yj takes the value 1 if plant j is open and 0 otherwise. The
binary variable xij is 1 if the demand point i is assigned to plant j and 0 otherwise.
Constraints (9.7), together with integrality conditions on the x variables, ensure that
each demand point is assigned to exactly one plant, while constraints (9.8) guarantee
that no demand point is assigned to a non-open plant. Finally, constraint (9.9)
ensures that exactly p plants are opened.

Recall that in the single criterion case the integrality conditions on the x variables
need not be explicitly stated. The reason is that when the xij represent the proportion
of demand of client i satisfied by plant j (i.e. 0 ≤ xij ≤ 1), there exists an optimal
solution with xij = 0, 1, i ∈ I , j ∈ J . This property is not necessarily true when
multiple criteria are considered because, in general, there might be non-dominated
solutions with non-integer values and even non-supported non-dominated integer
solutions.

9.4.2 Determining the Entire Set of Pareto-Optimal Solutions

In order to characterize the set of Pareto locations of the p-MP we shall use rational
generating functions. Short rational generating functions were used by Barvinok
(1994) as a tool to develop an algorithm for counting the number of integer points
inside convex polytopes, based on the previous geometrical paper by Brion (1988).
The main idea is to encode those integer points in a rational function of as many
variables as the dimension of the space where the polytope is defined. Let P ⊂ Rn+
be a given convex bounded polyhedron. Its integer points may be expressed in a
formal sum f(P, z) = ∑

α zα with α = (α1, . . . , αn) ∈ P ∩ Zn, where zα =
z
α1
1 · · · zαn

n Barvinok’s goal was to represent that formal sum of monomials in the
multivariate polynomial ring Z[z1, . . . , zn], as a “short” sum of rational functions
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with the same variables. Actually, Barvinok (1994) developed a polynomial-time
algorithm to compute those functions when the dimension, n, is fixed. A clear
example is the polytope P = [0, T ] ⊂ R with T ∈ N: the long expression of
the generating function of the integer points inside P is f(P, z) = ∑T

i=0 zi , and it
is easy to see that its representation as sum of rational functions is the well known
formula (1 − zT +1)/(1 − z).

The above approach, apart from counting lattice points, has been used to develop
some algorithms to solve integer programming problems exactly. Specifically,
De Loera et al. (2004, 2005), and Woods and Yoshida (2005) presented different
methods to solve this family of problems using Barvinok’s rational function of the
polytope defined by the feasible set of the given problem.

First of all, for the sake of readability, we recall some results on short rational
functions for polytopes that shall be later used in our presentation. For further details
the interested reader is referred to Barvinok (1994), Barvinok and Woods (2003).

Let P = {x ∈ Rn : A x ≤ b, x ≥ 0} be a rational polytope in Rn. The main idea
of Barvinok’s Theory was to encode the integer points inside a rational polytope in
a “long” sum of monomials:

f(P, z) =
∑

α∈P∩Zn

zα,

where zα = z
α1
1 · · · zαn

n , and then to re-encode, in polynomial-time for fixed
dimension, these integer points in a “short” sum of rational functions in the form

f(P ; z) =
∑

i∈I

εi
zui

n∏

j=1

(1 − zvij )

,

where I is a polynomial-size indexing set, εi ∈ {1,−1}, and ui, vij ∈ Zn for all i

and j (Theorem 5.4 in Barvinok and Woods 2003).
It is well-known that enumerating the entire set of Pareto-optimal solutions of

general multiobjective integer linear problems is #P-hard even in fixed dimension
(see, e.g., Ehrgott and Gandibleux 2002 and Chinchuluun and Pardalos 2007).
Therefore listing these solutions, in general, is hopeless. Nevertheless, one can try to
represent these sets in polynomial time using a different strategy by simply encoding
their elements in an efficient way. This strategy has been applied by Blanco and
Puerto (2012). In that paper, it is proved that using short generating functions of
rational polytopes, one can encode the whole set of Pareto-optimal solutions of
MOILP in polynomial time, fixing only the dimension of the space of variables.
As an application of this result we can state the following theorem.

Theorem 9.10 Assume that the number of facilities M and plants N is fixed.
Then, in polynomial time, we can encode the entire set of Pareto-optimal solutions
for (9.6)–(9.10) in a short sum of rational functions.
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Proof Apply Theorem 1 in Blanco and Puerto (2012) to the polytope of Prob-
lem (9.6)–(9.10). �

The combination of Theorem 9.10 and Theorem 7 in De Loera et al. (2009)
results in the following theorem.

Theorem 9.11 Assume M and N are constant. There exists a polynomial-delay
polynomial-space procedure to enumerate the entire set of Pareto-optimal solutions
of (9.6)–(9.10).

This construction can be implemented for problems of small to medium size
dimension using the open source software barvinok, see Verdoolaege (2008).

9.4.3 Determining Supported Pareto-Optimal Solutions

In some situations it suffices to generate the set of supported Pareto-optimal points.
It is well-known that the set of supported Pareto-optimal solutions to a problem can
be obtained by solving the scalarized problem for all possible values of the scalar
weights in the standard Q-dimensional simplex 
Q = {λ ∈ RQ : ∑Q

q=1 λq =
1, λq ≥ 0, ∀q = 1, . . . ,Q}.

In order to describe how to obtain these solutions in problem (9.6)–(9.10) we
need to introduce some additional notation. We denote by B any feasible basis of
the linear relaxation of Problem (9.6)–(9.10); and by N all the columns that are not
in B. Also, abusing notation, as usual in linear programming, we shall refer to the
indices determining the basis B (N ) in the variables and the objective function by
(x, y)B ((x, y)N ) and cB (cN ), respectively.

For any λ ∈ 
Q, we shall denote by c(λ) = (cij (λ))ij , where cij (λ) =
∑Q

q=1 λqc
q
ij .

For each feasible basis B, consider the subdivision of the space 
Q induced by
the hyperplanes:

λqc
q
BB−1N − λqc

q

N
= 0, q ∈ Q.

Next, let λ
Q
B ∈ 
Q be a parameter such that it belongs to the relative interior of

one of the elements in the above subdivision and satisfies cB(λQ)B−1N−cN(λQ) ≤
0. This choice of λQ ensures that the problem:

Minimize
M∑

i=1

N∑

j=1

cij (λ
Q
B )xij (9.11)

subject to
N∑

j=1

xij = 1, i ∈ I, (9.12)
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xij ≤ yj , i ∈ I, j ∈ J, (9.13)

N∑

j=1

yj = p, (9.14)

xij ≥ 0, yj ≥ 0, i ∈ I, j ∈ J. (9.15)

will identify supported Pareto-optimal solutions of the linear relaxation of Prob-
lem (9.6)–(9.10). However, these Pareto-optimal solutions may result in fractional
location variables since Problem (9.11)–(9.14) is a scalarization of the continuous
version of our original multiobjective location problem. To avoid this inconvenience
we shall solve the binary version of (9.11)–(9.14), namely

Minimize
M∑

i=1

N∑

j=1

cij (λ
Q
B )xij (9.16)

subject to
N∑

j=1

xij = 1, i ∈ I, (9.17)

xij ≤ yj , i ∈ I, j ∈ J, (9.18)

N∑

j=1

yj = p, (9.19)

xij ∈ {0, 1}, yj ∈ {0, 1}, i ∈ I, j ∈ J. (9.20)

Any optimal binary solution of (9.16)–(9.20) gives a supported Pareto-optimal
solution of our original multiobjective location problem. Repeating the above
process for all feasible basis of Problem (9.6)–(9.10) will result in a set of supported
Pareto-optimal solutions for the problem.

9.4.4 Other References in Discrete Location Problems

In the previous two subsections, the entire set of Pareto locations is characterized
using rational generating functions of integer points in polytopes and supported
Pareto-optimal solutions are identified by solving binary linear problems. These
approaches provide the reader with a general idea of the tools needed to characterize
the set of Pareto optimal solutions in discrete location problems. Some additional
references can be found in Nickel et al. (2005a). Also Farahani et al. (2010) reviews
results and developments in multicriteria location problems.

In the following we list some interesting recent references in this field:
Özpeynirci (2017) introduces new properties that restrict the possible locations
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of the non-dominated points necessary for computing the nadir points and applied
this methodology to multiobjective integer location problems. Pecci et al. (2017)
study the multiobjective co-design problem of optimal valve placement and
operation in water distribution networks. The resulting optimization problem is
a multiobjective mixed integer nonlinear optimization problem. The multi-objective
competitive location problem with distance-based attractiveness for two facilities
is introduced in Wang et al. (2018). The multiobjective version of the obnoxious
p-median problem was studied in Colmenar et al. (2018). That paper obtains
high-quality approximations to the efficient front of the bi-objective case using a
Multi-Objective Memetic Algorithm. Karatas and Yakici (2018) presents a novel
methodology for solving multi-objective facility location problems with the focus
on public emergency service stations, considering the p-median problem, the
maximal coverage location problem and the p-center problem.

9.5 Conclusions

In this chapter we have presented and analyzed some of the most important models
of multicriteria location problems considering three different decision spaces:
continuous, networks and discrete. This material provides a general overview of
the state-of-the-art of the field as well as a number of references that can be used by
the interested readers to go for a further analysis of the topic. Emphasis was put on
an efficient (if possible) description of the whole set of Pareto locations.
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