
Chapter 8
Facility Location Under Uncertainty

Isabel Correia and Francisco Saldanha-da-Gama

Abstract This chapter covers some of the existing knowledge on facility location
under uncertainty. The goal is to provide the reader with essential tools for modeling
and tackling problems in the area. To a large extent, the focus is put on discrete
facility location problems. Several issues related with uncertainty are discussed.
A distinction is made between problems in the areas of robust optimization,
stochastic programming and chance-constrained programming. The presentation is
complemented with several other aspects of relevance such as multi-stage stochastic
programming models, scenario generation, and solution techniques. Several well-
known facility location problems are used throughout the chapter for illustrative
purposes.

8.1 Introduction

Many facility location problems involve strategic decisions that must hold for a
considerable amount of time, during which uncontrolled changes may occur in the
conditions underlying the problem. For example, we may observe an unexpected
disruption in the network due to some failure, or we may realize that the values of
some parameters (e.g., demand levels) vary in an unpredictable manner. In such
cases it may be desirable to account for uncertainty in advance and thus make
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decisions that can somehow anticipate it. This can be accomplished by embedding
uncertainty in mathematical models developed for supporting decision making
processes.

The review papers by Louveaux (1993) and Snyder (2006) show that much
work has been done within the context of facility location under uncertainty. The
different sources of uncertainty we may face in these problems have led to the
development of different research branches. One of them consists of so-called
problems with congestion. In this case, the customers’ requests for service have
a probabilistic behavior. If a facility is busy when a new request arrives then we say
that “congestion” occurs. This is the topic covered by Chap. 17. Another important
research direction regards unexpected disruptions in the network structures, e.g., in
the facilities or in the transportation channels. This is a topic addressed in detail
in Chap. 22. In the current chapter, we focus on a third perspective: we consider
the aspects emerging from uncertainty associated with the parameters of a facility
location problem such as the demand levels or transportation costs. We show
how uncertainty can be embedded in optimization models aiming at supporting
a decision making process. For illustrative purposes, we work with several well-
known problems. We focus on a discrete setting, i.e., we assume that there is a
finite set of candidate locations for the facilities. This is motivated by the practical
relevance that this setting has gained overt time, which stems from many successful
applications of facility location theory to areas such as logistics, transportation and
routing (see Chap. 1).

In the following sections we assume that the reader is familiar with the basic
concepts of robust and stochastic optimization. Important references in these fields
include Birge and Louveaux (2011) and Shapiro et al. (2009) for stochastic program-
ming; Kouvelis and Yu (1997) and Ben-Tal et al. (2009) for robust optimization.

The remainder of this chapter is organized as follows. In the next section, we
discuss general aspects related with uncertainty. In Sect. 8.3, we address robust
facility location problems. In Sect. 8.4, we focus on stochastic programming models.
Section 8.5 is devoted to chance-constrained problems. In Sect. 8.6 we discuss
some challenges and give suggestions for further reading. The chapter ends with
an overview of the contents presented.

8.2 Uncertainty Issues

Basic information underlying a facility location problem often includes demand
levels, travel time, cost for supplying the customers, location of the customers,
presence or absence of the customers, and price for the commodities. Uncertainty
may occur in one or several of these parameters.

One crucial aspect when dealing with uncertainty regards its representation.
First, uncertain parameters may be discrete or continuous. Second, if probabilistic
information is available, the uncertain parameters can be represented through
random variables and thus they are jointly represented by a random vector. In this
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case, using the well-known characterization proposed by Rosenhead et al. (1972),
we say that we are making a decision under risk and we can resort to stochastic
programming models and methods for dealing with the problem. If this is not the
case, we are making a decision under uncertainty and a robustness measure is
usually considered for evaluating the performance of the system. It is important
to note that the existence of a probabilistic description for the uncertainty does not
prevent the use of robustness measures, as will be detailed in the next section.

We call “scenario” a complete realization of all the uncertain parameters. This
notion is independent of whether or not probabilistic information is available.
Nevertheless, if uncertain parameters can be represented by random variables, a
probability can often be associated with each scenario. Depending on the problem,
we may have a finite or an infinite number of scenarios. As will be discussed later,
this impacts the models and techniques that can be used.

One important feature that influences the optimization model to be considered
for a specific problem regards the attitude of the decision maker towards risk. Two
attitudes are usually considered: risk neutral and risk averse. In the first case, the
decision maker does not take risk into account when making a decision and a linear
function is a correct representation of the utility associated with the decision maker.
When a probability can be associated with each scenario, a risk neutral decision
maker looks for a decision that minimizes the expected cost (or maximizes the
expected return or utility). A risk averse decision maker can be associated with a
concave utility function (when utility is measured on the vertical axis and monetary
value is measured on the horizontal axis). In this case, the decision maker wants to
avoid unnecessary risk and the expected value of the future assets is no longer an
appropriate objective. Such a decision maker may look, for instance, for the solution
minimizing the maximum cost across all scenarios.

Finally, in some classes of problems, there is another aspect that influences the
mathematical model to be considered: the identification of the ex ante and ex post
decisions. In the first case, we have the decisions that must be implemented before
uncertainty is revealed—also called the here-and-now decisions; in the second case,
we have the decisions to be implemented after uncertainty is disclosed. The latter
set of decisions is often used as a reaction to the values observed for the uncertain
parameters. In a facility location problem, the location of the facilities is often an
ex ante decision. This is a consequence of the strategic nature of such decisions in
many problems, which imposes their implementation before uncertainty is revealed.
Regarding the allocation or distribution decisions, it will depend on the specific
problem being studied whether they are ex ante or ex post decisions. In the following
sections we refer to both situations.

8.3 Robust Facility Location Problems

We start by assuming that uncertainty is appropriately captured by a finite set of
scenarios. As mentioned above, each scenario fully determines the value of all the
uncertain parameters. If no probabilistic information is available, one possibility for
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measuring the performance of a system is to use a robustness measure. In this case,
two classical objectives are often considered: minmax cost and minmax regret.

For illustrative purposes, we consider the well-known p-median problem. In this
problem, we have a set of demand nodes J each of which to be served by one out
of p new facilities to be located. The potential locations for the facilities coincide
with the locations of the demand nodes. In its discrete version, the problem can be
formulated mathematically as follows:

Minimize
∑

i∈J

∑

j∈J

dj aij xij (8.1)

subject to
∑

i∈J

xij = 1, j ∈ J (8.2)

xij ≤ xii , i ∈ J, j ∈ J (8.3)
∑

i∈J

xii = p (8.4)

xij ∈ {0, 1}, i ∈ J, j ∈ J. (8.5)

In this formulation, aij represents the distance or travel time between demand nodes
i and j (i, j ∈ J ) and dj is the demand or weight of node j (j ∈ J ); xij is a binary
variable equal to 1 if node j ∈ J is allocated to node i ∈ J and 0 otherwise; xii = 1
indicates that a facility is located at i. The objective is to minimize the total weighted
distance or travel time.

In a p-median problem, uncertainty can occur in the demands (or weights) or
in the distances (or travel times). Denote by � the finite set of scenarios and by
ω ∈ � one particular scenario (that fully specifies all the uncertain parameters).
Suppose that the location of the facilities is an ex ante decision and the allocation
of the customers to the operating facilities is an ex post decision. In order to capture
uncertainty, we need to consider binary location variables yi indicating whether a
facility is located at i ∈ J , and scenario-indexed binary allocation variables xijω

indicating whether demand node j ∈ J is allocated to facility i ∈ J in scenario
ω ∈ �.The minmax p-median problem can be formulated as follows:

Minimize v (8.6)

subject to
∑

i∈J

∑

j∈J

djωaijωxijω ≤ v, ω ∈ � (8.7)

∑

i∈J

xijω = 1, j ∈ J, ω ∈ � (8.8)

xijω ≤ yi, i ∈ J, j ∈ J, ω ∈ � (8.9)
∑

i∈J

yi = p (8.10)
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xijω ∈ {0, 1}, i ∈ J, j ∈ J, ω ∈ � (8.11)

yi ∈ {0, 1}, i ∈ J. (8.12)

In this model, djω represents the demand of node j ∈ J under scenario ω ∈ �,
and aijω represents the travel time between nodes i ∈ J and j ∈ J under scenario
ω ∈ �. The minmax objective arises from the combination of (8.6) and (8.7).

The solution provided by the previous model tends to be overly conservative.
It reflects a complete aversion of the decision maker towards risk. In fact, by
planning for the worst case scenario (the maximum weighted distance occurring
across all scenarios), the decision maker may be planning for a scenario which turns
out to be very unlikely. A better compromise can be achieved by considering the
minmax regret1 criterion. In this case, the decision maker chooses the decision that
minimizes the maximum regret across all scenarios. The corresponding model is
obtained by replacing (8.7) with

∑

i∈J

∑

j∈J

djωaijωxijω − v∗
ω ≤ v, ω ∈ �, (8.13)

where v∗
ω is the optimal value of problem (8.1)–(8.5) solved for scenario ω ∈ �.

Serra and Marianov (1998) consider the above minmax regret model after scaling
the demands. In particular, for each scenario, they divide each demand by the total
demand under that scenario. The authors also note a very relevant aspect: when the
optimal objective function differs significantly across the different scenarios, the
relative regret is a more appropriate robustness measure (see also Kouvelis and Yu
1997). In this case, (8.13) should be replaced with

∑
i∈J

∑
j∈J djωaijωxijω − v∗

ω

v∗
ω

≤ v, ω ∈ �. (8.14)

Serra and Marianov (1998) developed a heuristic for this problem.
A different problem is studied by Serra et al. (1996). They consider a firm that

wishes to locate p facilities in a competitive environment. The goal is to maximize
the minimum market captured in a region where competitors are already operating.
The criterion considered corresponds to the “maximization” version of the minmax
“cost” criterion discussed above. Uncertainty is assumed for the demand and for the
location of the competitors. Again, a heuristic is proposed for tackling the problem.

If the allocation of customers to facilities is also an ex ante decision, the models
above can be easily adapted. In this case, the scenario index should be removed
from the allocation variables, i.e., the allocation variables become those introduced

1In each scenario, the regret of a solution is the difference between the cost of the solution if the
scenario occurs and the optimal cost that can be achieved under that scenario (see Kouvelis and Yu
(1997) for further details).
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in model (8.1)–(8.5). Furthermore, the location variables yi are no longer necessary,
since the variables xii (i ∈ J ) can play their role.

The above models work with a finite set of scenarios. In practice, however,
this is not always a correct representation for the uncertainty. In many situations,
an uncertain parameter can lie in some infinite set. A popular way of capturing
such uncertainty in these cases is via intervals. In the general context of robust
optimization, two types of uncertainty sets are often considered: box and ellipsoidal
uncertainty sets (see Ben-Tal et al. 2009, for further details). In the first case,
uncertainty is defined by a set of linear constraints; in the second case, quadratic
expressions involving the uncertain parameters are used. We illustrate both cases
considering the uncapacitated facility location problem (UFLP), whose well-known
mathematical formulation is the following:

Minimize
∑

i∈I

fiyi +
∑

i∈I

∑

j∈J

cij dj xij (8.15)

subject to
∑

i∈I

xij = 1, j ∈ J (8.16)

xij ≤ yi, i ∈ I, j ∈ J (8.17)

yi ∈ {0, 1}, i ∈ I (8.18)

xij ≥ 0, i ∈ I, j ∈ J. (8.19)

In this model, I denotes the set of potential locations for the facilities, J is the set
of customers, fi represents the setup cost for facility i ∈ I , cij corresponds to the
unit cost for supplying the demand of customer j ∈ J from facility i ∈ I and dj is
the demand of customer j ∈ J . The binary variable yi indicates whether a facility
is installed at i ∈ I , and the continuous variable xij represents the fraction of the
demand of customer j ∈ J that is supplied from facility i ∈ I .

We consider now a common source of uncertainty in a facility location problem:
the demand. Under box uncertainty, each demand level, dj (j ∈ J ), lies in an
interval U B

j = [dj − ε�j , dj + ε�j ], 0 ≤ ε ≤ 1. The parameter ε measures the

uncertainty “magnitude”; dj denotes a reference value for the demand of customer
j ∈ J , and is commonly referred to as the nominal value for the unknown parameter;
�j is a scaling factor.

A particular case of box uncertainty arises when �j = dj (j ∈ J ), which leads
to the intervals U B

j = [dj (1−ε), dj (1+ε)], j ∈ J . Denote U B = U B
1 ×· · ·×U B|J |

and d the vector of demands, d = (d1, . . . , d|J |)′. We can write

U B = {d ∈ R | −1 ≤ dj − dj

εdj

≤ 1, ∀j ∈ J },

i.e., the multi-dimensional unit box is given by the absolute normalized deviations
(Baron et al. 2011). We can now formulate the so-called robust counterpart of model
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(8.15)–(8.19). To do so, we start by considering an auxiliary variable v, which allows
us to rewrite the objective function of the problem as

Minimize v. (8.20)

The following constraint must now be included in the model:

∑

i∈I

fiyi +
∑

i∈I

∑

j∈J

cij dj xij ≤ v. (8.21)

By considering an augmented constraint for (8.21), namely

∑

i∈I

fiyi + max
d∈U B

⎧
⎨

⎩
∑

i∈I

∑

j∈J

cij dj xij

⎫
⎬

⎭ ≤ v, (8.22)

the robust counterpart of (8.21) becomes

∑

i∈I

fiyi +
∑

i∈I

∑

j∈J

cij

[
dj (1 + ε)

]
xij ≤ v. (8.23)

The robust counterpart of (8.15)–(8.19) consists of minimizing (8.20) subject to
(8.16)–(8.19), and (8.23).

A drawback of box uncertainty is that it comprises the possibility of having all
the uncertain parameters taking their worst values simultaneously. This is often not
realistic.

Nikoofal and Sadjadi (2010) avoid the too conservative solutions often arising
from considering box uncertainty by imposing a maximum total scaled variation for
the uncertain parameters. The authors consider a p-median problem with interval
uncertainty associated with the distances (or travel times). In particular, for each pair
(i, j), i, j ∈ J , they assume that aij can take any value within an interval [aij , aij ]
previously defined. Additionally, the choices for the values aij are restricted by the
constraint

∑

i,j∈J, i<j

(aij − aij )/(aij − aij ) ≤ L,

where L denotes a maximum level imposed for the total scaled variation. This
type of constraint avoids the situation in which all or several parameters take their
extreme values simultaneously.

Another alternative for overcoming the above-mentioned drawback when using
box uncertainty is to consider ellipsoidal sets. Baron et al. (2011) apply this idea to
a facility location problem with a time-varying (uncertain) demand. The location of
the facilities and their operating capacity are ex ante decisions and should hold for
the entire planning horizon, during which the demands must be satisfied. The goal is
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to maximize the overall profit. We illustrate the process using the UFLP. Ellipsoidal
uncertainty can be embedded in a model by defining the following uncertainty set

U E = {d ∈ R|J | |
∑

j∈J

[
dj − dj

εdj

]2

≤ L2} =
{
d ∈ R|J | | (d − d)T �−1(d − d) ≤ L2

}
,

with d being the demand vector already presented, L being a parameter and �|J |×|J |
being a diagonal matrix whose generic entry is σj = εdj . Since � is a positive
definite matrix, the set U E defines an ellipsoid. As pointed out by Baron et al.
(2011), the set induced by L = 1 is the largest ellipsoid contained in U B while the
set induced by L = √|J | is the smallest ellipsoid containing U B .

Under ellipsoidal uncertainty the augmented constraint for (8.21) is similar
to (8.22) but replacing U B with U E . Denote Vj = ∑

i∈I cij xij and
V = (V1, . . . , V|J |)′. The augmented constraint can be written as

∑
i∈I fiyi +

maxd∈U E V ′d ≤ v.
The problem that consists of finding a value d ∈ U E maximizing V ′d can be

easily solved by standard optimization techniques. The optimal solution is V ′d +
L

√
V ′�V . This leads to the following robust counterpart of (8.21):

∑

i∈I

fiyi +
∑

j∈J

djVj + L

√∑

j∈J

σ 2
j V 2

j ≤ v, (8.24)

The non-linearity in the above expression is typically handled by introducing a

new variable, W =
√∑

j∈J σ 2
j V 2

j , which allows casting the problem as a conic

programming problem (see Baron et al. (2011) and the references therein for further
details).

In all problems discussed above, no probabilities were associated with the
scenarios. However, in some situations, a probability πω can be associated to
scenario ω ∈ �. A well-known robustness measure in this case, is the expected cost,
which is equivalent to the expected regret (Snyder 2006). Current et al. (1997) study
a facility location problem consisting of locating a set of p facilities here-and-now,
together with the possibility of locating an extra set of facilities (whose cardinality
is endogenously determined) during a planning horizon previously defined. The
authors compare the solutions obtained using the minmax regret and the expected
regret criteria.

When probabilities can be associated with the scenarios, an alternative robustness
measure proposed by Snyder and Daskin (2006) is “α-robustness”. The idea is to
look for a solution minimizing the expected cost/distance but such that the relative
regret in each scenario is less than or equal to a parameter α. In the case of the
p-median problem, assuming ex ante location decisions and ex post allocation of
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customers to the operating facilities, we obtain the following model:

Minimize
∑

ω∈�

∑

i∈J

∑

j∈J

πωdjωaijωxijω (8.25)

subject to (8.8)–(8.12)
∑

i∈J

∑

j∈J

djωaijωxijω ≤ (1 + α)v∗
ω, ω ∈ �. (8.26)

As pointed out by Snyder and Daskin (2006), this model generalizes the well-
known models proposed by Weaver and Church (1983) and Mirchandani et al.
(1985). Snyder and Daskin (2006) also apply these ideas to the UFLP. They analyze
the complexity of both problems (the α-robustness p-median problem and the α-
robustness UFLP) and develop Lagrangean relaxation based procedures in order to
compute lower and upper bounds for the problems. The final gaps are closed using
branch-and-bound procedures.

All the robustness measures discussed and illustrated above involve all scenarios.
When the number of scenarios is too high, the large-scale models obtained may
become intractable. In this case, restricting the scenario set may be unavoidable.
This was done by Daskin et al. (1997) who introduced the α-reliable minmax regret
p-median problem. The authors seek to minimize the maximum regret over a subset
of scenarios. This subset is referred to as the reliability set. It is built from the
original set in such a way that the total probability associated with its scenarios is
equal to at least some pre-specified value α. As pointed out by Baron et al. (2011),
this idea has a purpose similar to the use of ellipsoid uncertainty: the exclusion of
low-probability (typically extreme) scenarios. An extension of the above robustness
measure was introduced by Chen et al. (2006) who introduced the α-reliable mean-
excess regret. This measure weights the maximum regret over the reliability set
and the conditional expectation of the regret over the scenarios not included in the
reliability set.

A different robustness concept was introduced by Carrizosa and Nickel (2003)
within the context of continuous facility location, although the concept can be
extended to network or discrete problems. In that paper, nominal values are assumed
to have been estimated for the (uncertain) weights of a set of nodes. A maximum
value is preset for the weighted distance between a single facility to be located and
the demand nodes. The robustness of a location is then defined as the minimum
deviation of the vector of weights with respect to the nominal vector that turns that
location an infeasible solution. The goal of the problem is to find the most robust
location. This yields a non-linear fractional model that the authors tackle by existing
methods and by ad hoc procedures they propose in the paper.

One final aspect worth mentioning in this section regards the relevance of using
a model like the ones described above, instead of a “simplified” deterministic
model. When probabilities can be associated with the scenarios, we can measure this
relevance by using the expected value of perfect information (EVPI). This is a value
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indicating how much the decision maker would be willing to pay to obtain perfect
information. For an expected cost minimization problem, the EVPI is obtained by
computing the difference between the weighted sum of the optimal values for all
scenarios (using the probabilities as weights) and the minimum expected cost. The
reader can refer to Kouvelis and Yu (1997) for further details.

8.4 Stochastic Facility Location Problems

A facility location problem under uncertainty can often be cast within a stochastic
programming modeling framework if we know the joint probability distribution
of the underlying random vector. In this case, we say that we are dealing with a
stochastic facility location problem.

We start by considering the UFLP (8.15)–(8.19). In practice, several parameters
in this model may be uncertain. This is the case of the distribution costs and of
the demands. Let us assume that uncertainty can be measured probabilistically. In
particular, denote by 
 the random vector containing all the stochastic parameters
(e.g., 
 = (

(cij )i∈I, j∈J , (dj )j∈J

)
). Furthermore, suppose that we know the joint

probability distribution of 
. Assuming ex ante location decisions, the model to
be adopted will depend on the ex post decisions, namely on the moment in time
at which the allocation or distribution decisions are to be implemented. If we have
ex post allocation decisions, the following stochastic uncapacitated facility location
problem with recourse can be considered:

Minimize
∑

i∈I

fiyi + Q(y) (8.27)

subject to
∑

i∈I

yi ≥ 1 (8.28)

yi ∈ {0, 1}, i ∈ I, (8.29)

with Q(y) = E
 [Q(y, ξ)], and Q(y, ξ) denoting the optimal value of the following
problem:

Minimize
∑

i∈I

∑

j∈J

cij dj xij (8.30)

subject to
∑

i∈I

xij = 1, j ∈ J (8.31)

xij ≤ yi, i ∈ I, j ∈ J (8.32)

xij ≥ 0, i ∈ I, j ∈ J. (8.33)
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Model (8.30)–(8.33) is defined for every realization ξ of 
, i.e., for every realization
of costs and demands. Accordingly, the allocation decisions xij (i ∈ I , j ∈ J ),
which do not appear in the first-stage problem, can change according to the different
observations of the random vector. For this reason, they are referred to as recourse
decisions. Regarding the variables yi associated with the location of the facilities
they correspond to ex ante (first-stage) decisions and hence they must hold for
all possible realizations of the random variables. The expectation defining the
recourse function Q(y) implicitly conveys a neutral attitude of the decision maker
toward risk. Later in this section, we discuss another possible attitude and the
corresponding consequences from a modeling point of view. Finally, due to the
presence of Constraint (8.28) we are dealing with a problem that has relatively
complete recourse, i.e., for every first-stage feasible solution, yi (i ∈ I ) there is
at least one second-stage feasible solution, xij (i ∈ I , j ∈ J ) for every possible
realization of the random quantities.

If we have a finite set of scenarios, say �, we can go farther with the above
model since we can consider scenario-indexed parameters and variables. Denote by
cijω the unit cost for supplying customer j ∈ J from facility i ∈ I under scenario
ω ∈ �, and let djω be the demand of customer j ∈ J under scenario ω ∈ �. If
xijω is the fraction of the demand of customer j ∈ J satisfied from facility i ∈ I

under scenario ω ∈ �, then we can consider the following extensive form of the
deterministic equivalent:

Minimize
∑

i∈I

fiyi +
∑

ω∈�

πω

⎛

⎝
∑

i∈I

∑

j∈J

cijωdjωxijω

⎞

⎠ (8.34)

subject to (8.28), (8.29)
∑

i∈I

xijω = 1, j ∈ J, ω ∈ � (8.35)

xijω ≤ yi, i ∈ I, j ∈ J, ω ∈ � (8.36)

xijω ≥ 0, i ∈ I, j ∈ J, ω ∈ �. (8.37)

In the above model, the non-anticipativity principle2 is implicitly considered: each
first-stage decision variable has the same value for all scenarios.

So far, facilities are assumed to be uncapacitated. When this is not the case,
several adjustments are required. Denote by qi the capacity of a facility established
at i ∈ I . A model for the capacitated stochastic facility location problem is obtained

2A decision should depend only on the information available at the time it is made (see Rockafellar
and Wets 1991).
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if we replace (8.32) with

∑

j∈J

dj xij ≤ qiyi, i ∈ I. (8.38)

With the inclusion of these constraints, it may happen that for some first-stage
feasible solution, no feasible completion exists in the second stage for one or
several realizations of the random vector, i.e., the problem no longer has relatively
complete recourse. This feasibility issue adds an extra difficulty to this stochastic
programming problem. Infeasibility in the second stage is often an indication of
an undesirable first-stage solution. A natural way of dealing with this issue is to
penalize the non-satisfied demand, which makes sense from a practical point of
view. In fact, such a penalty may correspond, for example, to a lost opportunity
cost or to outsourcing. Denote by ψj the demand of customer j ∈ J which is not
supplied from the open facilities and denote by μj the corresponding unit penalty
cost. Note that ψj is also a random variable since it depends on the occurring
realization of the random vector 
. We can still consider the first stage problem
(8.27)–(8.29). However, the second stage problem must be rewritten as follows:

Minimize
∑

i∈I

∑

j∈J

cij dj xij +
∑

j∈J

μjψj (8.39)

subject to (8.33), (8.38)

∑

i∈I

xij + ψj

dj

= 1, j ∈ J (8.40)

ψj ≥ 0, j ∈ J. (8.41)

Again, if a finite set of scenarios exists, we can consider scenario-indexed recourse
variables and parameters, and we can write the deterministic equivalent in its
extensive form.

In the capacitated model just described, capacities are exogenous. Louveaux
(1986) considers a stochastic facility location problem with endogenous capacities.
In particular, capacities must be set in advance before uncertainty is disclosed—
they correspond to ex ante decisions. A unit cost gi is assumed for the capacity
to be installed at location i ∈ I . Additionally, the author considers the existence
of variable production costs at the facilities as well as revenues associated with
demand satisfaction. Denote by rj the unit revenue obtained from customer j ∈ J .
Additionally, assume that cij (i ∈ I , j ∈ J ) includes the production costs. A new
decision variable zi (i ∈ I ) must be introduced, representing the capacity to be
installed at location i ∈ I . With the inclusion of revenues, it is no longer necessary
to consider constraint (8.28). Furthermore, it may not be rewarding to satisfy all the
demand; the trade-off between revenues and costs will determine the best service
level for each customer. The capacitated model formulated above, can be easily
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adapted to the new conditions, leading to the model proposed by Louveaux (1986):

Minimize
∑

i∈I

fiyi +
∑

i∈I

gizi + Q(y, z) (8.42)

subject to (8.29)

zi ≥ 0, i ∈ I, (8.43)

with Q(y, z) = E
 [Q(y, z, ξ)], and Q(y, z, ξ) denoting the optimal value of the
following problem:

Minimize
∑

i∈I

∑

j∈J

(
cij − rj

)
djxij (8.44)

subject to
∑

i∈I

xij ≤ 1, j ∈ J (8.45)

(8.32), (8.33)
∑

j∈J

dj xij ≤ zi, i ∈ I. (8.46)

Considering the above problem, Louveaux and Peeters (1992) assume that stochas-
ticity is captured by a finite number of scenarios and propose a dual-based procedure
for tackling the extensive form of the deterministic equivalent.

A different type of model emerges when the distribution decisions (represented
by x-variables) become first-stage decisions. In this case, penalties are paid in the
second stage for surplus or shortage inventory. In addition to the notation already
presented, we denote by φj the inventory surplus at customer j ∈ J and by λj the
corresponding unit cost. Assuming deterministic distribution costs (they are now
associated with an ex ante decision), we can formulate the stochastic facility location
problem as follows:

Minimize
∑

i∈I

fiyi +
∑

i∈I

∑

j∈J

cij xij + Q(x) (8.47)

subject to (8.29), (8.32), (8.33),

with Q(x) = E
 [Q(x, ξ)], and Q(x, ξ) denoting the optimal value of the following
problem:

Minimize
∑

j∈J

λjφj +
∑

j∈J

μjψj (8.48)

subject to ψj − φj = dj

(
1 −

∑

i∈I

xij

)
, j ∈ J (8.49)

ψj , φj ≥ 0, j ∈ J. (8.50)
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Capacities can be easily included in the above model leading to the so-called
stochastic transportation-location problem which has been investigated by several
authors (e.g., França and Luna 1982 and Holmberg and Tuy 1999).

So far in this section, we have assumed that the allocation and distribution
decisions are made simultaneously (the latter determining the former), either after or
before uncertainty is disclosed. Nevertheless, in some problems these decisions are
made separately. Let us assume that the allocation of the customers to the facilities
is a here-and-now decision but the exact quantities to ship from the facilities to the
customers are to be decided after uncertainty is revealed. This situation is motivated,
for instance, by logistics applications, when a contract has to be previously signed,
determining a priori the distribution channels but leaving the shipping quantities
dependent on the observed values of the stochastic parameters. The same type of
situation occurs in service-providing companies that need to segment the customers
a priori by allocating each customer to a server or facility. In this case, we need to
explicitly consider allocation decision variables. In particular, we use the binary
variable wij equal to 1 if and only if customer j ∈ J is allocated to facility
i ∈ I . The single-allocation version of the problem was introduced by Laporte
et al. (1994), who proposed the following optimization model:

Minimize
∑

i∈I

fiyi +
∑

i∈I

∑

j∈J

bijwij + Q(w) (8.51)

subject to wij ≤ yi, i ∈ I, j ∈ J (8.52)
∑

i∈I

wij ≤ 1, j ∈ J (8.53)

yi, wij ∈ {0, 1}, i ∈ I, j ∈ J, (8.54)

with Q(w) = E
 [Q(w, ξ)], and Q(w, ξ) denoting the optimal value of the
following problem:

Minimize
∑

i∈I

∑

j∈J

(
cij − rj

)
djxij (8.55)

subject to xij ≤ wij , i ∈ I, j ∈ J (8.56)
∑

j∈J

dj xij ≤ qi, i ∈ I (8.57)

xij ≥ 0, i ∈ I, j ∈ J. (8.58)

In the above model, bij is a fixed cost for allocating customer j ∈ J to facility
i ∈ I . The other notation was already introduced before. Note that in this problem,
facilities are capacitated. Moreover, a service level of 100% is not imposed—a
customer may not be served by the system (constraints (8.53)). Laporte et al. (1994)
consider a finite set of scenarios for capturing the stochasticity and solved the
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extensive form of the deterministic equivalent using the integer L-shaped method
previously proposed by Laporte and Louveaux (1993).

In line with the idea of allocating the customers before uncertainty is disclosed,
Albareda-Sambola et al. (2011) consider Bernoulli demands, which represent a
possible request for some service. This is an example of a problem in which the
presence or absence of customers is itself a source of uncertainty. The problem,
which we revisit next, is important to show that deriving a compact model for the
deterministic equivalent problem is not always straightforward (or even possible) as
it could seem at a first glance when considering the contents presented so far in this
section.

In the problem studied by Albareda-Sambola et al. (2011), there is a limited
capacity for the facilities in terms of the number of customers that can be served.
In particular, for each facility i ∈ I , there is a maximum number qi of customers
who can be served from the facility. Due to the uncertainty in the demand, it makes
sense to allocate a priori to some facility more customers than the service capacity.
However, depending on how uncertainty is revealed, it may turn out that a facility
has a number of requests for service above its capacity. In this case, outsourcing is
considered and the corresponding costs is paid. An important assumption in many
logistics systems that the authors also consider is that, for each facility i ∈ I ,
there should be a minimum number �i of customers allocated to it to justify its
establishment. The problem can be conceptually formulated as follows:

Minimize
∑

i∈I

fiyi + E


[
Service cost + Outsourcing cost

]
(8.59)

subject to
∑

i∈I

xij = 1, j ∈ J (8.60)

xij ≤ yi, i ∈ I, j ∈ J (8.61)

�iyi ≤
∑

j∈J

xij , i ∈ I (8.62)

yi, xij ∈ {0, 1}, i ∈ I, j ∈ J. (8.63)

Denote by ξj the demand of customer j ∈ J , which is assumed to be a random
variable following a Bernoulli distribution with parameter pj . For each first-stage
solution, denote by zi the number of customers assigned to facility i ∈ I (i.e.,
zi = ∑

j∈J xij ) and denote by ηi the random variable representing the number
of customers who request the service (refereed to as demand customers) among
those assigned to facility i ∈ I (i.e., ηi = ∑

j∈J ξj xij ). Note that the probability
distribution of ηi is quite involved since it depends on the actual values of xij (j ∈
J ). Denote by Px(ηi = s) the probability that ηi is equal to s (s = 0, . . . , zi).

Albareda-Sambola et al. (2011), investigate two possible outsourcing actions.
We focus on the so-called customer outsourcing. In this case, when the number
of customers allocated to some facility i ∈ I requesting the service (demand
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customers) exceeds qi , ηi −qi customers have to be served directly from an external
source. A FIFO policy is assumed for deciding which customers to serve from
the facility and which ones to outsource. The cost for supplying each outsourced
customer is denoted by gi and depends on the facility to which the customer was
originally assigned. Denote by Pi (s) the conditional probability of serving a demand
customer assigned to facility i ∈ I given that the total number of demand customers
assigned to the facility is s (i.e., ηi = s). We have Pi (s) = (1/s) × min{qi, s}.

The recourse function can be written as the sum of the expected service cost plus
the expected outsourcing cost. These terms can be computed as follows:

Eξ (service cost) =
∑

i∈I

zi∑

s=0

Px(ηi = s) × E(Service cost|ηi = s)

=
∑

i∈I

zi∑

s=0

⎡

⎣Px(ηi = s)
∑

j∈J

P(ξj = 1|ηi = s)Pi (s)cij xij

⎤

⎦ ,

(8.64)

Eξ (Outsourcing cost) =
∑

i∈I

Px(ηi = s) × Eξ (outsourcing cost|ηi = s)

=
∑

i∈I

gi

⎛

⎝
zi∑

s=qi+1

Px(ηi = s)(s − qi)

⎞

⎠ . (8.65)

A close look at the above expressions reveals that even for tiny instances of the
problem they are not tractable. In fact, the number of scenarios is huge even
for a small number of customers because a scenario is defined not only by the
set of customers requesting the service but also by the order the requests arrive.
Nevertheless, for the homogeneous case, i.e., pj = p, j ∈ J , it is possible to go
farther and derive a compact formulation for the deterministic equivalent, as we
show next.

When all the customers have the same probability of requesting the service, then
ηi follows a binomial distribution with parameters zi and p. Thus, Px(ηi = s) =(
zi

s

)
ps(1 − p)zi−s , s = 0, . . . , zi . We denote by ζtps the probability that a binomial

random variable with parameters t and p takes the value s. In the homogeneous
case, it is straightforward to show that P(ξj = 1|ηi = s) = s/t and consequently
P(ξj = 1|ηi = s)×Pi (s) = min{qi, s}/t , which does not depend on x. Accordingly,
the expected service cost (8.64) can be written as

∑

i∈I

∑

j∈J

(
cij xij

zi∑

s=0

ζzips

min{qi, s}
t

)
.

A deterministic equivalent can now be obtained by discretizing the location and
allocation variables accounting for the number of customers allocated to a facility.
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In particular, define yt
i as a binary variable equal to 1 if a facility is located at i ∈ I

and t customers in total are allocated to it (t = �i, . . . , |J |) and 0 otherwise. Also
define xt

ij as a binary variable equal to 1 if and only if customer j ∈ J is allocated
to facility i ∈ I which has t customers allocated to it (t = �i, . . . , |J |). Using the
new variables, we can formulate a deterministic equivalent problem:

Minimize
∑

i∈I

|J |∑

t=�i

yt
i gi

⎡

⎣
t∑

s=qi+1

ζtps(s − qi)

⎤

⎦

+
∑

i∈I

∑

j∈J

⎛

⎝cij

|J |∑

t=�i

xt
ij

[
t∑

s=0

ζtps

min{qi, s}
t

]⎞

⎠ (8.66)

subject to
∑

i∈I

|J |∑

t=�i

xt
ij = 1, j ∈ J (8.67)

∑

j∈J

xt
ij = tyt

i , i ∈ I (8.68)

|J |∑

t=�i

yt
i ≤ 1, i ∈ I (8.69)

yt
i ∈ {0, 1}, i ∈ I, t = �i, . . . , |J | (8.70)

xt
ij ∈ {0, 1}, i ∈ I, j ∈ J, t = �i, . . . , |J |. (8.71)

Albareda-Sambola et al. (2011) show that using a general solver, instances of
the problem with a realistic size can be solved within an acceptable CPU time
using this model. The authors also explore the advantages of the homogeneous
case for the alternative outsourcing action they consider. This work would be later
extended in two different ways. Bieniek (2015) showed that tractable expressions
can be obtained for the recourse functions when other probability distributions are
considered (not necessarily discrete) as long as the assumption of homogeneity
among customers is kept. Albareda-Sambola et al. (2017) proposed a heuristic
algorithm for tackling the general problem (heterogeneous demand probabilities).
The procedure consists of two phases. First, a GRASP algorithm is used for building
two pools of solutions—one based upon quality and another upon diversity. Second,
a path relinking procedure is devised for connecting solutions from both pools
hoping that better feasible solutions can be found during the process.

In all of the above models, the recourse function is the expected value of the
second-stage problem. As mentioned before, this conveys a neutral attitude of the
decision maker towards risk. Location decisions are often strategic and involve
significant investments. Accordingly, a risk-averse attitude towards risk cannot be
disregarded as a possibility to be considered. One way of capturing such attitude
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consists of applying a Markowicz type of objective in which the recourse function
is expanded to account for variance. Taking, as an example, model (8.27)–(8.33)
this consists of defining

Q(y) = E
 [Q(y, ξ)] − λVar
 [Q(y, ξ)] . (8.72)

Such a modeling framework in facility location is far from new (see Jucker and
Carlson 1976). Nevertheless, this type of model has a clear disadvantage: it often
results in a non-linear large-scale mixed-integer model. Different possibilities for
overcoming this difficulty are discussed by Louveaux (1993).

Stochastic programming approaches for discrete facility location problems have
attracted much attention in the recent years. Some papers not mentioned so far
include those by Ravi and Sinha (2004), Lin (2009), Wang et al. (2011), Kiya and
Davoudpour (2012), and Álvarez-Miranda et al. (2015).

Hybridizing between stochastic programming with robust optimization has been
also considered in the context of facility location. Alumur et al. (2012) explored
this possibility by using a robustness measure embedded within a stochastic
programming modeling framework. The authors apply the idea to a hub location
problem. Uncertainty is associated with two sets of parameters. In both cases, it
is captured by a finite set of scenarios. For one set of parameters, probabilistic
information is assumed to be known, which is not the case for the other set. The
authors propose a so-called robust-stochastic model: for each scenario associated
with the parameters that have no probabilistic information associated to them, a
stochastic program is formulated, capturing the uncertainty associated with the
other set of parameters (those for which probabilistic information exists). A minmax
regret formulation is then proposed for the overall problem.

Another work combining the flavor of two-stage stochastic programming with
robust optimization is due to Marques and Dias (2018) who study a multi-period
facility location problem. Uncertainty is associated with fixed and assignment
costs as well as to the customers that exist in each period. The authors seek the
minimization of the total expected cost but impose a constraint on the maximum
regret allowed in each scenario.

In the context of logistics systems with particular emphasis to logistics network
design, we can also observe an increasing attention paid to stochastic facility
location problems (see Chap. 16 for further details). We can refer, among others,
to Aghezzaf (2005), Listeş and Dekker (2005), Mo and Harrison (2005), Romauch
and Hartl (2005), Pan and Nagi (2010), Fonseca et al. (2010), and Nickel et al.
(2012).

One work worth pointing out is that of Hinojosa et al. (2014) who studied a
stochastic facility location problem with location decisions made at an operational
level, i.e., location decisions are ex post decisions. The multi-product problem
considered in that paper arises in the context of logistics systems. Like in some of the
above problems, the available distribution channels correspond to a decision made
before demand is known and result from some contract or option. Furthermore,
due to the limited capacity at the facilities, the distribution channels contracted in
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advance may turn out to be insufficient for covering the demand that occurs. In
this case, a penalty is incurred (corresponding, e.g., to a “last minute” and thus
more expensive contract, to an outsourcing action, or simply to an opportunity loss
cost). The location decisions correspond to the “activation” of existing equipments
or facilities from which the commodities will be shipped to the customers. Accord-
ingly, this becomes a decision that can be made only after demand is revealed. The
authors formulate the extensive form of the deterministic equivalent and solve it
for instances with a realistic size using a general solver. The single-commodity
version of this problem would be investigated by Fernández et al. (2019) from the
perspective of a risk-averse decision maker. In particular, the conditional value at
risk is to be minimized.

As in the preceding section, when using a stochastic programming model, it is
important to evaluate its relevance compared to a more simplified deterministic one.
Although no robust measure exists for asserting such relevance, two measures are
often used to provide an indication of such relevance: the EVPI and the value of the
stochastic solution (VSS). The EVPI is computed as described in Sect. 8.3. To obtain
it, we have to solve the distributional problem (i.e., to find the optimal value of
the single-scenario problem for every scenario). In many cases this is cumbersome,
namely when the number of scenarios is large or even infinite. The VSS emerges
as an alternative and can be obtained in two steps: (1) the expected value problem
is solved. This is the deterministic problem obtained when the random variables
are replaced by their expectation; (2) the stochastic problem is considered and the
difference between its optimal value and the value of the solution obtained in (1)
is computed. This difference gives the VSS (the reader should refer to Birge and
Louveaux 2011, for further details).

8.5 Chance-Constrained Facility Location Problems

One important class of optimization problems under uncertainty includes chance-
constrained problems. The idea is that one or several constraints of the problem are
not required to always hold. Instead, the decision maker is satisfied if they hold with
some given probability. This type of constraints may be of relevance when dealing
with reliability issues.

In the particular case of a facility location problem, if demand is uncertain but
still the decision maker wants to plan for satisfying all the demand whatever it
may turn out to be, the resulting solution may call for an operational capacity
much above the demand level that turns out being observed. In such situation, one
alternative is to plan for ensuring a certain service level, i.e., ensuring that with
some pre-specified probability, the overall demand does not exceed the capacity of
the operating facilities.

In order to exemplify this paradigm, we consider the classical single-source
capacitated facility location problem. Assume that fixed costs are associated with
the location of the facilities and also with the allocation of customers to the facilities.
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Additionally, assume that facility i ∈ I has capacity qi , and that demands dj

(j ∈ J ) are stochastic. We can formulate a capacitated facility location problem
with a service level constraint as follows:

Minimize
∑

i∈I

fiyi +
∑

i∈I

∑

j∈J

cij xij (8.73)

subject to (8.16)–(8.18)

P

⎡

⎣
∑

j∈J

dj xij ≤ qiyi

⎤

⎦ ≥ αi, i ∈ I (8.74)

xij ∈ {0, 1}, i ∈ I, j ∈ J. (8.75)

For every i ∈ I , the corresponding chance constraint sets qiyi equal to the αi-
quantile of the distribution of the demand assigned to facility i. In other words,
the constraint stipulates that the probability of observing a demand assigned to the
facility not exceeding the capacity of the facility is at least αi . Typically, high values
are assumed for αi (e.g., 0.90 or 0.95).

One desirable feature of such a model is the possibility of finding a deterministic
equivalent formulation, i.e., replacing the probabilistic constraints by deterministic
(equivalent) ones. Unfortunately, this is not always straightforward. One successful
example for the problem we are considering is due to Lin (2009). The author
assumes independent demands following a Poisson or a Gaussian distribution. For
illustrative purposes, we detail the former case.

If the demands dj are independent and follow a Poisson distribution P(λj ),
j ∈ J , then the total demand assigned to facility i ∈ I , i.e.,

∑
j∈J dj xij follows

a Poisson distribution P(μi) with μi = ∑
j∈J λjxij . Accordingly, (8.74) becomes

equivalent to

qiyi∑

�=0

e−μi
μ�

i

�! ≥ αi, i ∈ I (8.76)

which, in turn, has a deterministic equivalent of the form

∑

j∈J

λjxij ≤ νiyi, i ∈ I. (8.77)

In this model, νi = E [ϒ], where ϒ is a random variable following a Poisson
distribution with an expectation equal to the largest value ensuring that P(ϒ ≤ qi) ≥
αi . As detailed by Lin (2009), the value νi can easily be obtained by a search method
in which the mean of ϒ is changed until P(ϒ ≤ qi) is approximately equal to αi

(i ∈ I ). After replacing the probabilistic constraints (8.74) with (8.77) the resulting
problem becomes a single-source capacitated facility location problem which can
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be tackled by any appropriate method (see Chap. 4). Lin (2009) also explore the
possibility of having independent demands following a Gaussian distribution. In
this case, the deterministic equivalent of the probabilistic constraints yields a non-
convex feasible region. The author proposes a relaxation for the problem, which is
used as part of a heuristic.

A well-known facility location problem with chance constraints is the covering-
location problem proposed by ReVelle and Hogan (1989). The authors assume that
a server may be busy when a customer requests to be served. Let us denote by π

the probability that this occurs. In a discrete covering-location problem, we have
a set of potential locations for the facilities (see Chap. 5). A customer is said to
be covered if a facility is established within a maximum distance or travel time
specified in advance. Accordingly, for each customer, we can find the subset of
potential locations for the facilities which cover the customer. The goal is to cover all
the demand minimizing the number of facilities installed. The “classical” covering
constraints are

∑

i∈Ij

yi ≥ 1, j ∈ J, (8.78)

where Ij denotes the set of locations covering customer j ∈ J . The probabilistic
version of these constraints is the following:

P
[
At least one location is available for serving customer j

] ≥ α, j ∈ J. (8.79)

These constraints have as a deterministic equivalent,

∑

i∈Ij

yi ≥ β, (8.80)

with β = 	ln(1 − α)/ ln π
. In fact, the probability that no location among those
covering customer j ∈ J is available to serve the customer immediately is given by

π

∑
i∈Ij

yi . Therefore, the probability that at least one location among those covering

customer j ∈ J can serve it immediately is given by 1 − π

∑
i∈Ij

yi which, together
with (8.79) leads to the deterministic equivalent just presented.

For other applications of facility location problems with chance constraints we
refer the reader to Kınay et al. (2018, 2019) as well as to the references therein.

8.6 Challenges and Further Readings

Despite all the work we can find focusing on facility location problems under
uncertainty, many challenges still exist. In this section, we provide the reader with
some notes on relevant issues not discussed in the previous pages, and we give
suggestions for further readings.
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8.6.1 Multi-Stage Stochastic Programming Models

In most of the stochastic facility location problems discussed above, a single
moment in time for uncertainty to be disclosed was assumed. In many situations,
this is not the case. Instead, we may observe uncertainty being progressively
revealed in a succession of points in time. When this is the case, the two-stage
stochastic programming modeling framework discussed in Sect. 8.4 is no longer
appropriate, and a multi-stage setting is required. Nickel et al. (2012) address one
such case by considering a multi-period facility location problem with service
level and investment decisions. The demand as well as the rates of return for the
investments are uncertain. Uncertainty is captured via a scenario tree. In addition to
minimizing the overall cost, the problem seeks to minimize the downside risk.3

The deterministic equivalent problem is formulated in its extensive form and
solved using a general solver. Other works addressing multi-stage stochastic facility
location problems include that of Hernández et al. (2012), who consider a multi-
period problem with stochastic demands. The problem consists of (1) determining
the locations and dimensions of a preset number of new jails in Chile; (2) deciding
when and where to expand the existing capacity. The goal is to minimize the
total expected costs of the system. A large-scale model is obtained and solved
approximately using a heuristic that combines branch-and-fix coordination (Alonso-
Ayuso et al. 2003) and branch-and-bound. Albareda-Sambola et al. (2013), propose
a so-called fix-and-relax coordination approximation procedure for tackling a multi-
period facility location problem with uncertainty in the costs and in the customers’
requests for service. This work would be complemented by Escudero et al. (2018),
who developed two matheuristics for the problem. One is based upon cluster
Lagrangean decomposition (Escudero et al. 2016) whereas the other is based upon
a so-called sequential partial linear relaxation which is a scheme that optimizes a
decreasing stage-based relaxation of the integrality constraints of the variables for
obtaining tighter lower bounds to the original problem.

Taking the previous works into account, one might think that a stochastic
multi-period facility location problem necessarily leads to a multi-stage stochastic
programming problem. However, this is not true. In some cases, the strategic
multi-period decisions can be seen as first-stage decisions in a two-stage stochastic
programming modeling framework. For instance, we may decide here-and-now how
the location of the facilities will occur during the entire planning horizon. In the
second stage problem, the operational decisions will be made, which can adapt to
the different realizations of the uncertainty. Works exploring this possibility in the
context of facility location include those by Ahmed and Garcia (2004), Aghezzaf
(2005), Correia et al. (2018), and Marques and Dias (2018).

3The downside risk is a measure of how much the return on investment is below a target initially
imposed.



8 Facility Location Under Uncertainty 207

8.6.2 Algorithms

Most facility location problems under uncertainty are NP-hard since they generalize
well-known NP-hard problems. In particular, this is true for the discrete problems
that have been discussed in this chapter. In these cases, either the size of an
instance to be solved is such that the resulting model is manageable by a general
solver, or one must resort to techniques from combinatorial optimization and integer
programming, such as heuristics and relaxation-based procedures.

Regarding robust facility location problems, the minmax structure often con-
sidered makes them harder to solve than the corresponding minisum deterministic
problems. The reader can refer to Snyder (2006) for a deeper discussion of this
issue. That paper presents a sketch of the procedure typically followed for tackling
minmax regret problems. Although some general procedures have been proposed
for such problems (e.g., Mausser and Laguna 1998, for minmax regret linear
problems with interval uncertainty) in most cases, tailored procedures, exact or
approximate, must be developed to efficiently tackle the problems. Analytic results
and polynomial time algorithms have also been proposed but only for problems with
an underlying structure, such as a network.

As far as stochastic discrete facility location problems are concerned, again,
they are often difficult to solve to optimality. Even when the number of scenarios
is finite and a compact model can be derived for the extensive form of the
deterministic equivalent, realistic instances often induce a large-scale mixed-integer
linear programming problem not manageable by a general solver. In this case,
specific algorithms, exact or heuristic, have to be developed for tackling the
problems. Laporte et al. (1994) make use of the integer L-shaped method proposed
by Laporte and Louveaux (1993) for solving a two-stage stochastic facility location
problem with first-stage binary variables. Alonso-Ayuso et al. (2003) introduce the
so-called branch-and-fix coordination scheme for tackling a problem in the context
of logistics systems. The proposed technique can be used for solving general two-
stage stochastic programming problems with binary first-stage variables and both
binary and continuous variables in the second stage.

A general procedure for multi-stage stochastic mixed-integer linear program-
ming problems was introduced by Escudero et al. (2009, 2010). In those papers,
the branch-and-fix coordination scheme proposed by Alonso-Ayuso et al. (2003)
was extended to solve multi-stage problems with integer variables. As mentioned
above, Hernández et al. (2012) embed such approach within a heuristic procedure.

When exact algorithms fail to solve the problems, we must resort to approximate
procedures. One particular difficulty in stochastic programming arises when the
number of scenarios is too large or even infinite. In this case, one possibility is
to use a sampling scheme. Sample average approximation (SAA) was introduced
by Kleywegt et al. (2001) and it is one such example which has become quite
popular. Applications of this procedure to stochastic facility location were proposed
by Kiya and Davoudpour (2012), Romauch and Hartl (2005) and Santoso et al.
(2005). Sampling schemes have also been proposed for general chance-constrained
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problems by Luedtke and Ahmed (2008) and Pagnoncelli et al. (2009). The
application to facility location problems is a research direction worth exploring.

Armas et al. (2017) apply a so-called simheuristic to the stochastic UFLP.
Uncertainty is assumed for the transportation costs. The algorithm integrates
simulation and a metaheuristic. In particular, the authors integrate an iterative local
search with Monte Carlo simulation (MCS). This type of procedure may be quite
promising for tackling more complex stochastic facility location problems.

Other algorithms for stochastic programming problems include the generation of
cutting planes introduced by Guan et al. (2009) for multi-stage problems, and the
dual decomposition based algorithms developed by Carrøe and Schultz (1999) and
Escudero et al. (2012). To the best of our knowledge, the first type of algorithm
was never applied to stochastic facility location. However, there are several papers
proposing dual decomposition based algorithms for problems that include location
decisions, namely those by Schütz et al. (2008, 2009). The latter work combines dual
decomposition with SAA. In this type of method, the non-anticipativity constraints
are explicitly considered in the model and dualized, which allows a scenario-
decoupling for the relaxed problem.

8.6.3 Scenario Generation

In this chapter it has often been assumed that uncertainty can be represented by a set
of scenarios. In particular, it has been assumed that each scenario fully determines
all the uncertain parameters. In practice, defining the scenarios is itself a relevant
problem.

In some situations, scenarios are associated with driving forces (e.g., the political
conditions in a specific region, economic trends or some technological develop-
ments) which, in turn, influence the input of the model that supports the decision
making process. In this case, it is up to the decision maker to understand these
driving forces and the way they influence the input of the model. This understanding
leads to a complete definition of the scenarios. In some cases, experts may be
inquired in terms of plausible scenarios as well as their occurrence probabilities.
This may call for the use of subjective probabilities by means of eliciting probability
distributions (O’Hagan 1998; Casement and Kahle 2017; Oakley 2017).

In other situations, namely in the context of stochastic programming, scenario
generation may be important either to instantiate large deterministic equivalent
models or to restrict the set of scenarios in a sampling scheme used within a solution
procedure. The reader should refer to Dupačová et al. (2003), Høyland and Wallace
(2001), Di Domenica et al. (2007) and the references therein for further details.

In the case of facility location problems, a short discussion on scenario generation
is presented by Kouvelis and Yu (1997) who consider a network with uncertain
node weights. Assuming a small set of possible values for the demand of each node,
one possibility is to take as a scenario each element of the Cartesian product of
the sets for all nodes. Nevertheless, this is strongly discouraged since the number
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of scenarios easily leads to intractable models. Instead, the authors highlight that
in many location problems the driving forces mentioned above are the key element
inducing uncertainty and thus should be identified and taken into account. Typically,
these forces induce a high correlation between different parameters. If a small
number of such factors is identified, the number of scenarios associated with them
should be manageable.

8.6.4 Other Notes

One important research topic in facility location under uncertainty regards location-
inventory problems. These are problems in which location decisions are combined
with inventory management: uncertainty can hardly be disregarded in a realistic
modeling framework. This type of problems, which was introduced by Daskin et
al. (2002) and extended by Snyder et al. (2007), is of great relevance in complex
systems such as those arising in logistics. The reader should refer to Chap. 16 for
further details.

Another area with great potential is stochastic location-routing. One such
problem was solved by Albareda-Sambola et al. (2007). This is a complex and
challenging topic.

Finally, this chapter could not come to an end without a brief reference to
continuous and network facility location problems under uncertainty. We did not
focus on this type of problems although some significant work has been done and
much progress has been achieved. The reader can refer to Snyder (2006) for a review
of the fundamental literature addressing these problems. Some recent works on
network facility location under uncertainty include those by Conde (2007), Berman
and Drezner (2008), Berman and Wang (2010), Sonmez and Lim (2012), Lim and
Sonmez (2013), López-de-los-Mozos et al. (2013), Lu (2013), and Lu and Sheu
(2013). Recent references on continuous problems include Blanquero et al. (2011)
and Drezner et al. (2012).

8.7 Conclusions

We have covered several essential aspects related with discrete facility location
under uncertainty. Despite the extensive work reported, the existing literature can
still be considered scarce in comparison with the literature devoted to deterministic
models. However the relevance of facility location in areas where uncertainty
if often unavoidable, such as logistics, routing and transportation, has led to an
increased interest in the topic addressed in this chapter. In order to better support
many decision making processes, it is important to embed uncertainty in the
optimization models and, by doing so, to obtain solutions which can anticipate it.
This keeps being a challenging and promising research field.
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