
Chapter 6
Anti-covering Problems

Emilio Carrizosa and Boglárka G.-Tóth

Abstract In covering location models, one seeks the location of facilities opti-
mizing the weight of individuals covered, i.e., those at the distance from the
facilities below a threshold value. Attractive facilities are wished to be close to the
individuals, and thus the covering is to be maximized, while for repulsive facilities
the covering is to be minimized. On top of such individual-facility interactions,
facility-facility interactions are relevant, since they may repel each other. This
chapter is focused on models for locating facilities using covering criteria, taking
into account that facilities are repulsive from each other. Contrary to the usual
approach, in which individuals are assumed to be concentrated at a finite set of
points, we assume the individuals to be continuously distributed in a planar region.
The problem is formulated as a global optimization problem, and a branch and
bound algorithm is proposed.

6.1 Introduction

Locational Analysis addresses decision problems involving the location of facilities
which interact with a set of individuals, and, eventually interact among them. For
attractive facilities, such as schools, libraries, emergency services or supermarkets,
individuals wish the facilities to be as close as possible to them. Such pull models
(facilities are pulled towards demand) do not properly model repulsive facility
location problems (Alonso et al. 1998; Carrizosa and Plastria 1998; Erkut and
Neuman 1989; Fliege 2001; Plastria and Carrizosa 1999), like, for instance, the
location of a polluting plant, wished to be as far as possible from the individuals.
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For such undesirable facilities, a push model, pushing facilities away from the sites
affected by facilities nearness, is more suitable: the location for the facilities is
then sought maximizing a certain non-increasing function of the distances from the
individuals to the facilities. For both desirable and undesirable facilities, interactions
may be measured as a function of the individual-facility distance (or time), or, as
studied here, via coverage; see e.g. Kolen and Tamir (1990), Li et al. (2011), Murray
et al. (2009), Schilling and Barkhi (1993) for extensive reviews on covering models
and solution approaches. It is important to stress here that, independently of the
nature of the facility, either attractive or repulsive, the very same models for covering
function apply (Farhan and Murray 2006), the difference being algorithmic: such
covering is to be maximized for desirable facilities and minimized for undesirable
facilities.

On top of individual-facility interactions, facility-facility interactions are also
likely to be relevant. Such interactions may be critical when facilities are obnoxious,
and risk or damage to population scales nonlinearly (e.g., with hazadarous materials
deposits or dangerous plants which may suffer chain reactions) and thus negative
impacts are to be dispersed. Facility-facility interactions are also important in
models for locating facilities which, although they are perceived as attractive by
the users, they are perceived as repelling by other facilities competing for the very
same market. In these models, locating the facilities far away from each other
avoids cannibalization and optimizes competitive market advantage (Christaller
1966; Curtin and Church 2006; Lei and Church 2013).

Although the models described are general, the algorithmic approach presented
here is restricted to the planar case (Drezner and Wesolowsky 1994; Plastria 2002;
Plastria and Carrizosa 1999): facilities are identified with points in the plane, and
interact with the remaining facilities and with individuals, also identified with points
in the plane. Interactions are measured via distances in the plane. See Plastria (1992)
for an excellent review of planar distances and planar location models. For covering
models for which interactions are not measured via planar distances, but network
distances instead (typically shortest-path distances) the works (Berman et al. 1996;
Berman and Huang 2008; Berman and Wang 2011; Colebrook and Sicilia 2013)
give a good overview.

Contrary to most papers in the literature, affected individuals are not assumed
here to be concentrated at a finite number of points, and, instead, an arbitrary
distribution (in particular, a continuous distribution) on their location is given. This
way we can directly address models in which affected individuals are densely spread
on a region, but we also address models in which uncertainties exist about the exact
location of the individuals, due to their mobility (Carrizosa et al. 1998b).

Regional models are not so common in the location literature, since, even when
individuals are assumed to be continuously distributed, a discretization process is
usually done, and such continuous distribution is replaced by a discrete one, by e.g.
replacing all points in each district by its centroid, or other central point, see e.g.
Francis and Lowe (2011), Francis et al. (2000, 2002, 2008), Murray and O’Kelly
(2002), Plastria (2001), Tong and Church (2012). Nevertheless, discretization is well
known not to perform well in applications, this issue being especially relevant in
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covering models, since significant discrepancies may exist between what is modeled
as covered and what is actually covered, see e.g. Current and Schilling (1990),
Daskin et al. (1989), Kim and Murray (2008), Murray (2005), Murray and Wei
(2013), Tong (2012), Tong and Murray (2009). For this reason, some papers are
found in which the regional aspect is directly handled. See for instance (Blanquero
and Carrizosa 2013; Carrizosa et al. 1995, 1998c; Fekete et al. 2005; Yao and
Murray 2014) for single-facility Weber problems with regional demand (Murat et al.
2010) for a heuristic method for the extension to p facilities, and Tong (2012), Tong
and Murray (2009) for discrete covering problems, in which the individuals are
identified with objects (polygons) in the plane, which can be considered as fully or
partially covered.

The remainder of the chapter is structured as follows. In Sect. 6.2, a rather general
p-facility covering model for continuously distributed demand is described; how
to address the optimization problem is presented in Sect. 6.3, and illustrated in
Sect. 6.4. Conclusions and future lines of research are outlined in Sect. 6.5.

6.2 Regional Covering Model

Location models are specific in the way the interactions are modeled. Two types of
interactions take place, namely, individual-facility interactions and facility-facility
interactions. Depending on the specific problem, just one or the two types of
interactions may be relevant; see e.g. Erkut and Neuman (1989).

Since these two types of interactions have different nature, they are discussed
separately in what follows.

6.2.1 Individual-Facility Interactions

For a given individual location a and any facility location x, let c(a, x) ∈ [0, 1]
denote how much a is covered (affected) by the facility at x. In its general form,
c(·, ·) may be any function ϕ : R

+ −→ [0, 1], which is non-increasing in the
(Euclidean) distance ‖x − a‖ separating a and x,

c(a, x) = ϕ(‖x − a‖), (6.1)

so that, the lower the distance, the higher the coverage. This assumption, yet
sensible, may not be sound for specific problems of locating undesirable facilities;
for instance (Karkazis and Papadimitriou 1992) addresses the problem of locating
a polluting plant whose pollutant is discharged by means of high stacks, and thus
maximal interaction (damage) takes place at a non-negligible distance of the facility.

We remark that we are using the Euclidean distance, but this is not the only
choice of distance function ‖ · ‖ found in the literature in covering models: see e.g.
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Fernández et al. (2000) for a proposal of (weighted) �p norms and Plastria (2002)
for a thorough discussion on planar distances.

The basic form of ϕ is an all-or-nothing function, already suggested in Church
and ReVelle (1974), see also e.g. Drezner and Wesolowsky (1994),

c(a, x) = ϕ(‖x − a‖) =
{

1, if ‖x − a‖ ≤ R

0, otherwise,
(6.2)

where the threshold value R is called the range (Christaller 1966) or coverage
standard. For an attractive facility, R represents the highest distance a user is willing
to overcome to utilize a facility, whereas for undesirable facilities, R represents the
distance of the boundary of the zone within which the facility would have a negative
impact (Farhan and Murray 2006). Extensions of (6.2) abound in the literature,
leading to so-called gradual covering models (Berman et al. 2009c, 2003; Drezner
et al. 2004). For instance the all-or-nothing function above is replaced by a piecewise
constant function modeling different levels of coverage in Berman and Krass (2002),
by a piecewise linear function in Berman et al. (2003), Berman and Wang (2011),
Drezner et al. (2004), or by more general nonlinear functions, such as the logistic
model

c(a, x) = ϕ(‖x − a‖) = 1

1 + exp(αa + βa‖x − a‖) , (6.3)

in Fernández et al. (2000), see also Berman et al. (2003, 2010), Karasakal and
Karasakal (2004), Brimberg et al. (2015). Observe that in some of the papers cited
above the coverage functions c are introduced for attractive facilities, and thus
maximization, instead of minimization, is pursued. However, the models for c are
the very same.

Expressions above for c, as (6.2), are adequate just for the single-facility case.
When several facilities are to be located, the covering model (6.1) can be extended
in several ways, by first defining, for each facility i = 1, 2, . . . , p, the function
ϕi converting distances into coverage. In the simplest and most popular model in
the literature, for a p-tuple of facility locations x = (x1, . . . , xp), covering c of an
individual location a by x is given by

c(a, x) = max
1≤i≤p

ci(a, xi). (6.4)

In the particular form of individual covering ci given by (6.2) using ϕi instead of ϕ

and Ri instead of R, one considers the individual location a to be covered by the
p-tuple of facility locations x = (x1, . . . , xp) if it is covered by at least one of the p

facilities, i.e., if at least one facility i is at a distance smaller than its threshold value
Ri.

Multifacility covering functions other than (6.4) can be found in the literature,
see Berman et al. (2010) for an updated review. One may consider fuzzy operators
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to aggregate the covering functions ci, yielding, for example, the proposal of Hwang
et al. (2004),

c(a, x) = 1 −
∏

1≤i≤p

(1 − ci(a, xi)) , (6.5)

which, if each ci has the form (6.2) is identical to (6.4). Alternatively, realizing that
the max operator used in (6.4) is nothing but taking one of the ordered values of
ci(a, xi), further extensions are natural:

c(a, x) = max
(λ1,...,λp)∈�

p∑
i=1

λici(a, xi) (6.6)

for a given �. Taking as � the set

� =
{

(λ1, . . . , λp) :
p∑

i=1

λi = 1, λi ≥ 0 ∀i

}
,

one recovers (6.4); taking

� =
{

(λ1, . . . , λp) :
p∑

i=1

λi = 1,
1

r
≥ λi ≥ 0 ∀i

}
,

for some integer r ∈ {1, 2, . . . , p}, one obtains as coverage the weighted sum of
the r highest covers. These covering models belong to the class of so-called ordered
covering models (Berman et al. 2009c), in which a weighted sum of the ordered
values of the covers are considered.

Another class of models is given by the so-called cooperative cover model,
discussed in Berman et al. (2009a):

c(a, x) =
{

1, if
∑p

i=1 λici(a, xi) ≥ τ

0, otherwise
(6.7)

for some positive fixed scalars λi and threshold value τ. Assuming that each facility
covering function ci follows the all-or-nothing model (6.2), model (6.7) means that
we may consider an individual to be covered if the weighted sum of 1-facility covers
yields a value above a threshold limit τ.

Summing up, the different proposals in the literature can be considered as
particular cases of a general model of the form

c(a, x) = 	
(
c1(a, x1), c2(a, x2), . . . , cp(a, xp)

)
, (6.8)
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where 	 should take values in [0, 1] and should be componentwise non-decreasing,
so that the higher each individual-facility cover, the higher the cover of individual
location a by the p facilities.

So far we have modeled the interaction between an affected individual at a and
the facilities at x = (x1, . . . , xp). Now we address the problem of defining a global
individuals-facilities covering measure C(x).

If the main concern is how much the highest coverage is, a worst-case perfor-
mance measure is suitable:

C(x) = sup
a∈A

c(a, x). (6.9)

Under (6.9) as criterion, searching locations x for the facilities such that C(x) ≤ α

means that no individual at all suffers a coverage of more than α.

The (safe) worst-case approach (6.9) may be unfeasible for densely populated
regions, and, instead of searching locations not affecting individuals, the average
coverage may be a suitable choice. Formally, assume that affected individuals are
distributed along the plane, following a distribution given by a probability measure
μ on a set A ⊂ R

2, and the individuals-facilities coverages are aggregated into one
single measure, namely, the expected coverage, given by

C(x) =
∫

A

c(a, x) dμ(a). (6.10)

Assuming, as in (6.10), an arbitrary probability measure μ for the distribution
of affected individual locations gives us full freedom to accommodate different
important models. Obviously, for a finite set A of affected individual locations,
A = {a1, . . . , an}, denoting μa = μ({a}), we recover the basic covering model,

C(x) =
∑
a∈A

μac(a, x), (6.11)

in which the covering is given by the weighted sum of the covers of the different
points a. However, we can consider absolutely continuous distributions, in which μ

has associated a probability density function f in the plane, and now (6.10) becomes

C(x) =
∫

A

c(a, x)f (a) da. (6.12)

Several types of density functions f are worthy to be considered. One can take,
for instance, f as the uniform density on a region A ⊂ R

2 (a polygon, a disc), and
thus f is given as

f (a) =
{

1
ar(A)

, if a ∈ A

0, otherwise,
(6.13)
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where ar(A) denotes the area of the region A; assuming a uniform density of
individuals along the full region A under study seems to be rather unrealistic;
instead, one may better split the region A into smaller and more homogeneous
subregions Aj (e.g. polygons), give a weight ωj to each Aj , and assume a uniform
distribution fj for each Aj :

f (a) =
r∑

j=1

ωjfj (a), (6.14)

where each fj is uniform on Aj , and thus its expression is given in (6.13).
Let us particularize (6.14) for the all-or-nothing case in which the covering

function is given by (6.4), and each ci is given by (6.2), i.e., c(a, x) takes the value
1 if at least one facility i is at a distance from a below the threshold Ri, and takes
the value 0 otherwise. Then, for any x, C(x) takes the form

C(x) =
∫

c(a, x)f (a)da

=
r∑

j=1

ωj

1

ar(Aj )

∫
Aj

c(a, x)da (6.15)

=
r∑

j=1

ωj

1

ar(Aj )
ar(Aj ∩ ∪r

i=1Bi(xi)),

where, for each i = 1, . . . , p, Bi(xi) gives the set of points covered by facility i, i.e.,
the disc centered at xi and radius Ri. Hence, the problem is reduced to calculating
areas of intersections of discs Bi(xi) with the subregions Aj . Such calculation,
although cumbersome in general, are supported in GIS, see Kim and Murray (2008),
Murray et al. (2009), Tong and Murray (2009).

Needless to say, the density f does not need to be piecewise constant, and one can
take, for instance, a mixture of bivariate gaussians, f (a) = ∑r

j=1 ωjfj (a), where
each fj is a bivariate gaussian density centered at some uj and with covariance
matrix Sj ,

fj (a) = 1

2π
√|Sj |

e
− 1

2 (a−uj )�S−1
j (a−uj )

, (6.16)

or, more generally, a radial basis function (RBF) density,

fj (a) = gj (‖a − uj‖) (6.17)

for some decreasing function gj , so that the density is the highest at some knot point
uj and decreasing in all directions.
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Fig. 6.1 Pdf of a mixture of 50 bivariate gaussians

A model like (6.16), or in general (6.17), may be rather promising when the only
information provided for the region is just a set u1, . . . , ur of points, aggregating
the actual coordinates of affected individuals around, and then a kernel density
estimation process (Bowman and Foster 1993; Wand and Jones 1993, 1995) is done.
For instance, Fig. 6.1 represents the probability density function (pdf) of the form
(6.16) with 50 knots.

6.2.2 Facility-Facility Interactions

The facility-facility interactions may be defined similarly. As in (6.1), the effect
caused by facility at xi on facility at xj is measured by the scalar cF

ij (xi, xj ),

cF
ij (xi, xj ) = ϕF

ij (‖xi − xj‖) (6.18)

for some non-increasing function ϕF
ij . All pairwise facility-facility effects are

aggregated into one single facility-facility interactions measure CF (x), which,
similarly to (6.8), is assumed to take the form

CF (x) = 	F
(
(cF

ij (xi, xj ))i �=j

)
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for some componentwise non-decreasing 	F . The simplest case is given by

	F
(
(cF

ij (xi, xj ))i �=j

)
= max

i �=j
cF
ij (xi, xj ), (6.19)

and thus CF (x) is calculated as the highest facility-facility interaction, i.e., the one
of the closest pairs of facilities. Hence, under (6.19),

CF (x) ≤ δ ifandonlyif

cF
ij (xi, xj ) ≤ δ ∀i, j, i �= j, ifandonlyif

‖xi − xj‖ ≥ (ϕF
ij )−1(δ) ∀i, j, i �= j.

Assuming all cF
ij in (6.18) are modeled by means of the same ϕF

ij function, ϕF
ij = ϕF ,

we have

CF (x) ≤ δ if and only if min
i,j
i �=j

‖xi − xj‖ ≥ γ, (6.20)

with γ = (
ϕF

)−1
(δ). See Lei and Church (2013) for a discussion and extension of

(6.19) to so-called partial-sum criteria.

6.2.3 The Anti-covering Model

Depending on the specific problem under consideration, either one or the two
covering criteria C, CF are to be optimized. Pure repulsion among facilities
naturally leads to a dispersion criterion (Erkut and Neuman 1991; Kuby 1987; Lei
and Church 2013; Saboonchi et al. 2014; Sayyady and Fathi 2016), that has been
combined with the p-center, p-median and Max-Sum diversity objectives into a bi-
objective problem in Tutunchi and Fathi (2019), Sayyady et al. (2015), Colmenar
et al. (2018), respectively. By (6.20), minimizing CF amounts to maximizing the
minimal distance among facilities. This criterion alone yields a simple geometrical
interpretation: a set of p non-overlapping circles (the location of the facilities) is
sought so that their (common) radius is maximized (Mladenović et al. 2005).

When both C and CF are relevant, one naturally faces a biobjective optimization
problem in which both C and CF are to be minimized,

min
x∈S

(
C(x), CF (x)

)
, (6.21)
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where S ⊂ (R2)p is the feasible region, which is assumed to be a compact subset,
and thus embedded in a box. Sensible examples for S may be S = Sp, where S

is a polygon in the plane, or S = {ξ1} × {ξ2} × . . . × {ξk} × Sp−k, where S is a
polygon in the plane, and ξ1, . . . , ξk are fixed points in the plane, corresponding to
facilities already located.

One can address the problem of finding (an approximation to) the set of Pareto-
optimal solutions to (6.21), as done for other problems in Blanquero and Carrizosa
(2002), Romero-Morales et al. (1997). Alternatively, one can consider one of the
criteria as constraint, and address instead the problem of minimizing the covering
C(x) keeping the facility-facility cover CF (x) below a threshold limit δ:

minimize C(x)

subject to CF (x) ≤ δ

x ∈ S .

(6.22)

Assuming for CF the model given by (6.18), problem (6.22) amounts to finding p

points x1, . . . , xp so that they are at a distance at least
(
ϕF

)−1
(δ) from each other

and the covering C is minimized. This is the approach proposed e.g. in Berman and
Huang (2008), in which undesirable facilities are located (on a network) so as no
facilities are allowed to be closer than a pre-specified distance. In Drezner et al.
(2019) the same problem on the plane was solved by a Voronoi based heuristic.

6.3 Computational Approach

While nowadays computational tools allow one to address discrete p-facility
problems with a very large p, e.g. Avella and Boccia (2007), Avella et al. (2006),
nonconvex continuous location problems, as those addressed here, can only be
solved exactly for a very small number of facilities to be located. The most popular
and most effective technique is a geometric branch and bound, which can already be
found under the name of Big Square Small Square (BSSS) (Hansen et al. 1985), and
later modified by a number of authors (Blanquero and Carrizosa 2008; Drezner and
Suzuki 2004; Plastria 1992; Schöbel and Scholz 2010), coining names such as BTST
(Big Triangle Small Triangle) or Big Cube Small Cube. See Drezner (2012) for a
recent review of such variants. In our case the search space is the set of p rectangles
for the p facilities, that gives a multi-dimensional interval, also called a box. The
main steps of the branch and bound are as usual: a list of boxes is handled, each box
being associated with a subproblem, namely, the covering location problem in which
facilities are to be located within such box; at each step one box is selected from
the list and divided into smaller boxes. Bounds on the optimum over the subboxes
are calculated, so that boxes which are found not to contain the global optimum are
removed, while the rest is saved for further processing. The branching and bounding
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rules are iterated until the gap between the underestimation and underestimation of
the optimal value is smaller than the prescribed accuracy.

In our implementation, selection of the next box is done by the smallest lower
bound, and the division rule is defined by halving both sides of the largest rectangle
into four equal sized rectangles. An upper bound on the minimum is calculated
evaluating the objective function at the midpoint of the selected box. In what
follows, a bounding procedure, valid for arbitrary probability density functions
(pdf), is discussed.

A branch and bound can only be used as soon as increasingly tight bounds
are built for C(x) on a box X = (X1, . . . , Xp). Each Xi is a rectangle Xi =
([ai, bi], [ci, di]) where the i-th facility is allowed to be located. One has then on a
given box X

min
x∈X

C(x) = min
x∈X

∫
A

c(a, x)dμ(a) ≥
∫

A

min
x∈X

c(a, x)dμ(a).

For the general function c(a, x) = 	(c1(a, x1), c2(a, x2), . . . , cp(a, xp)), as in
(6.8), with 	 non-decreasing function of ci(a, xi) ∀i, it can be derived further to

∫
A

min
x∈X

c(a, x)dμ(a) =
∫

A

	

(
min

x1∈X1
c1(a, x1), . . . , min

xp∈Xp

cp(a, xp)

)
dμ(a)

=
∫

A

	

(
min

x1∈X1
ϕ1(‖a − x1‖), . . . , min

xp∈Xp

ϕp(‖a − xp‖)
)

dμ(a),

where, as in (6.1), ci(a, xi) = ϕi(‖a − xi‖) for a non-increasing function ϕi of the
distance for all i. This leads to

min
x∈X

C(x) ≥
∫

A

	

(
ϕ1( max

x1∈X1
‖a − x1‖), . . . , ϕp( max

xp∈Xp

‖a − xp‖)
)

dμ(a)

=
∫

A

	

(
ϕ1( max

x1∈ext(X1)
‖a − x1‖), . . . , ϕp( max

xp∈ext(Xp)
‖a − xp‖)

)
dμ(a),

where ext(Xi) denotes the set of vertices of the box Xi . For the particular case of an
all-or-nothing covering function as given in (6.2), the above integral simplifies to

∫
I (X)

dμ(a),

where the set I (X) = ⋃p

i=1 Ii(Xi) with Ii(Xi) = {a ∈ A|ci(a, xi) = 1 ∀xi ∈
ext(Xi)}, i.e. Ii(Xi) is the set of points a such that, for facility i, all points in Xi

cover a (the gray region in Fig. 6.2). For an easier description of the set Ii(Xi) one
can consider its inscribed circle, I ∗

i (Xi) as shown in Fig. 6.2.
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Fig. 6.2 Intersection of
covered areas from ext(Xi)

giving the region which is
covered by all points in the
box. The integral is computed
over the inscribed circle of
this region, I ∗

i (Xi)

Xi

i i

i i

I (X

I (X* )

)

This leads to

min
x∈X

C(x) ≥
∫

⋃p
i=1 Ii (Xi)

dμ(a) ≥
p∑

i=1

∫
I∗
i (Xi)

dμ(a) −
p∑

i,j=1
i<j

∫
I∗
i (Xi)

⋂
I∗
j (Xj )

dμ(a).

In what follows, the so obtained lower bound will be denoted by LB(X),

LB(X) =
p∑

i=1

∫
I∗
i (Xi)

dμ(a) −
p∑

i,j=1
i<j

∫
I∗
i (Xi)

⋂
I∗
j (Xj )

dμ(a).

Notice, that the integral could be computed directly as
∫
A

f (a) minx∈X c(a, x)da,
but that is not practical for the all-or-nothing covering function. Numerical
integrators take many sample points around discontinuities, that are introduced
with c(a, x), therefore taking a very long time for a single integration.

6.4 Numerical Examples

The branch and bound method outlined above was implemented in Fortran 90
(Intel©Fortran Compiler XE 12.0), using the integration tools of the IMSL Fortran
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Numerical Library. Executions were carried out on an Intel Core i7 computer with
8.00 Gb of RAM memory at 2.8 GHz, running Windows 7.

Two types of experiments were performed. First, a series of problems with
randomly generated demand functions were solved for p = 1 and p = 2. The
demand function was generated as a mixture of r bivariate gaussian distribution
functions (6.16) with centers and weights uniformly generated in [0, 10]2 and
[0.1, 0.1 + 1/(10r)], respectively. We set the covariance matrix to wiE, that is
the identity matrix scaled by the knot weight. The location of the facilities were
sought in the square [2, 8]2. Three parameters were considered, leading to different
problems: the radius R, the minimal distance γ in (6.20), and the number of knots r .
As stopping criterion, the algorithm, stopped when the gap was smaller than 10−2.

In order to reduce the random variability of the results, for each choice of radius
R, minimal distance γ and number of knots r, three independent instances were
generated and solved. The results presented in the tables correspond to the median
out of the three values obtained.

In Table 6.1 running times in seconds are shown for the problem of locating one
facility with a smaller and a larger radius (R = 1.8 and R = 2.4). It is not surprising
that the computational time grows with the number of knots, as for all knots we need
to do at least one integration.

Running times in seconds are reported in Table 6.2 for the problem of locating
two facilities. Again, the values presented are the median value of the three runs

Table 6.1 Results for
single-facility problems
(p = 1) with different
minimal distances

r R = 1.8 R = 2.4

10 3.6 1.9

20 11.8 38.0

50 143.7 244.0

100 675.5 897.6

Table 6.2 Results for
two-facility problems (p = 2)
with different minimal
distances

r Minimal
distance R = 1.2 R = 1.8

R 110.5 186.1

10 1.5R 182.8 124.7

2R 178.1 83.4

R 114.0 2714.5

20 1.5R 95.7 2593.5

2R 86.4 2543.9

R 3926.2 12,282.9

50 1.5R 3754.7 18,167.5

2R 3675.1 >8 h

R 20,026.1 >8 h

100 1.5R >8 h >8 h

2R >8 h >8 h
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Fig. 6.3 Pareto frontier of the problem of maximizing the radius and minimizing covering

performed. When at least two out of the three instances could not reach the desired
accuracy in 8 h, the message “>8 h” is reported. The results clearly show that,
the higher the number of knots or the radius, the higher the running times. The
connection between the elapsed time and the minimal distance is not so evident.
One can find cases where either smaller or higher minimal distance can be solved
faster, so it looks rather problem dependent.

A second experiment was done in order to analyze the impact of the radius,
displaying the Pareto frontier if one maximizes the radius and minimizes the
coverage. In Fig. 6.3 the Pareto front is displayed for a problem with a mixture
of 50 bivariate gaussian distributions setting minimal distance γ = R, and radii
R = 0.45, 0.6, . . . , 1.65, 1.8. The pdf of such mixture of gaussians was shown in
Fig. 6.1, while the solutions for the different radii are drawn in Fig. 6.4. In the latter,
the demand function contours as well as the knots (with small crosses) are shown.
On the left, we focus on the optimal solution of the two extreme radii (R = 0.45
and R = 1.8). The optimal covered regions, i.e., the disc centered at the optimal
facilities and radius R, are plotted. On the right, the optimal covered regions for all
radii addressed are given.
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Fig. 6.4 Optimal covering for extreme radii (left) and all radii (right)

6.5 Conclusions

While we have focused on purely repulsive facilities, the approach described here
can be used to address location problems of semi-desirable facilities (Carrizosa
and Plastria 1999; Blanquero and Carrizosa 2002; Romero-Morales et al. 1997;
Plastria et al. 2013), in which, instead of having a set A of affected individuals,
all negatively affected and wishing to have the facilities as far as possible, one
has two separated sets, A+ and A−, identifying respectively the individuals feeling
the facilities attractive, and thus want them as close as possible, and those feeling
the facilities repulsive, and thus want them as far as possible. This would imply
replacing the expected coverage function (6.10) by

C(x) = −
∫

A+
c+(a, x) dμ+(a) +

∫
A−

c−(a, x) dμ−(a), (6.23)

where c+ and c− are the covering models respectively for positively and negatively
affected individuals. For finite probability measures μ+ and μ−, this model corre-
sponds to minimizing a weighted sum of the points covered, where now the points
in A+ have a negative weight, already studied in Berman et al. (2009b) in a discrete
setting. The planar version, including the regional case, remains unexplored. It calls
for deriving new bounds for the branch and bound; but, as done here in the repulsive
case, on can construct bounds after obtaining bounds for the covering functions
c(a, x). Whilst for c− the key is that c− is nonincreasing, monotonicity (in this
case, decreasingness) can be used to bound −c+. This approach is not new, since it
already dates back to the seminal branch and bound BSSS (Hansen et al. 1985), but
it deserves being tested.
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The basic all-or-nothing cover function c in (6.2) is built assuming R fixed, and
given R, the cover C is minimized. A dual problem consists of maximizing R so that
the cover C remains below a threshold value. This so-called maxquantile problem
(Plastria and Carrizosa 1999), would be solved by doing a binary search in the space
of the values R, and solving, for each R, one problem as those solved in this chapter.

While affected individuals have been assumed to be (continuously) distributed
in a planar region, facilities are considered here to have negligible size, so they are
properly modeled as points. Adapting the branch and bound (in particular, the design
of bounds) for the case of extensive facilities, e.g. Carrizosa et al. (1998a), deserves
further study.

We have considered from the beginning the number of facilities p to be fixed.
A related, somehow dual, problem is the problem of locating as many facilities
as possible so that the coverage function C (or CF , or both) remain(s) within a
given interval. Such is the case of the so-called anticovering location problem, e.g.
Chaudhry (2006), Moon and Chaudhry (1984), Murray and Church (1997), which,
in its simplest version, seeks the highest number p∗ of facilities such that no two are
at a distance smaller than a threshold value R. To mention a few extensions (Wei and
Murray 2014, 2017), include spatial uncertainty minimization (Niblett and Church
2015), introduce the disruptive anti-covering location problem.

Aggregation of the individual-facility cover functions c(a, x) to C(x) by any of
the procedures described in Sect. 6.2 is easily shown to be monotonic in the number
p of facilities. The same holds for the aggregation of the facility-facility cover
cF
jk(xj , xk) to CF (x). Hence, in order to find the highest p∗ for which such covers

remain within a given interval, one only needs to solve sequentially the problem for
different values of p. The design of more direct and efficient procedures is definitely
a promising research line.

Acknowledgements Research partially supported by research grants and projects ICT COST
Action TD1207 (EU), the Hungarian National Research, Development and Innovation Office—
NKFIH (OTKA grant PD115554), MTM2012-36163 (Ministerio de Ciencia e Innovación, Spain),
P11-FQM-7603, FQM329 (Junta de Andalucía, Spain), all with EU ERDF funds.

References

Alonso I, Carrizosa E, Conde E (1998) Maximin location: discretization not always works. Top
6:313–319

Avella P, Boccia M (2007) A cutting plane algorithm for the capacitated facility location problem.
Comput Optim Appl 43:39–65

Avella P, Sassano A, Vasil’ev I (2006) Computational study of large-scale p-median problems.
Math Program 109:89–114

Berman O, Huang R (2008) The minimum weighted covering location problem with distance
constraints. Comput Oper Res 35:356–372

Berman O, Krass D (2002) The generalized maximal covering location problem. Comput Oper
Res 29:563–581



6 Anti-covering Problems 139

Berman O, Wang J (2011) The minmax regret gradual covering location problem on a network
with incomplete information of demand weights. Eur J Oper Res 208:233–238

Berman O, Drezner Z, Wesolowsky GO (1996) Minimum covering criterion for obnoxious facility
location on a network. Networks 28:1–5

Berman O, Krass D, Drezner Z (2003) The gradual covering decay location problem on a network.
Eur J Oper Res 151:474–480

Berman O, Drezner Z, Krass D (2009a) Cooperative cover location problems: the planar case. IIE
Trans 42:232–246

Berman O, Drezner Z, Wesolowsky GO (2009b) The maximal covering problem with some
negative weights. Geogr Anal 41:30–42

Berman O, Kalcsics J, Krass D, Nickel S (2009c) The ordered gradual covering location problem
on a network. Discret Appl Math 157:3689–3707

Berman O, Drezner Z, Krass D (2010) Generalized coverage: new developments in covering
location models. Comput Oper Res 37:1675–1687

Blanquero R, Carrizosa E (2002) A DC biobjective location model. J Glob Optim 23:139–154
Blanquero R, Carrizosa E (2008) Continuous location problems and big triangle small triangle:

constructing better bounds. J Glob Optim 45:389–402
Blanquero R, Carrizosa E (2013) Solving the median problem with continuous demand on a

network. Comput Optim Appl 56:723–734
Bowman A, Foster P (1993) Density based exploration of bivariate data. Stat Comput 3:171–177
Brimberg J, Juel H, Körner MC, Shöbel A (2015) On models for continuous facility location with

partial coverage. J Oper Res Soc 66:33–43
Carrizosa E, Plastria F (1998) Locating an undesirable facility by generalized cutting planes. Math

Oper Res 23:680–694
Carrizosa E, Plastria F (1999) Location of semi-obnoxious facilities. Stud Locat Anal 12:1–27
Carrizosa E, Conde E, Muñoz-Márquez M, Puerto J (1995) The generalized Weber problem with

expected distances. RAIRO- Oper Res 29:35–57
Carrizosa E, Muñoz-Márquez M, Puerto J (1998a) Location and shape of a rectangular facility in

�n. Convexity properties. Math Program 83:277–290
Carrizosa E, Muñoz-Márquez M, Puerto J (1998b) A note on the optimal positioning of service

units. Oper Res 46:155–156
Carrizosa E, Muñoz-Márquez M, Puerto J (1998c) The Weber problem with regional demand. Eur

J Oper Res 104:358–365
Chaudhry SS (2006) A genetic algorithm approach to solving the anti-covering location problem.

Expert Syst 23:251–257
Christaller W (1966) Central places in Southern Germany. Prentice-Hall, London
Church R, ReVelle C (1974) The maximal covering location problem. Pap Reg Sci 32:101–118
Colebrook M, Sicilia J (2013) Hazardous facility location models on networks. In: Batta R, Kwon

C (eds) Handbook of OR/MS models in Hazardous materials transportation. Springer, New
York, pp 155–186

Colmenar JM, Martí R, Duarte A (2018) Heuristics for the bi-objective diversity problem. Expert
Sys Appl 108:193–205

Current JR, Schilling DA (1990) Analysis of errors due to demand data aggregation in the set
covering and maximal covering location problems. Geogr Anal 22:116–126

Curtin KM, Church RL (2006) A family of location models for multiple-type discrete dispersion.
Geogr Anal 38:248–270

Daskin MS, Haghani AE, Khanal M, Malandraki C (1989) Aggregation effects in maximum
covering models. Ann Oper Res 18:113–139

Drezner Z (2012) Solving planar location problems by global optimization. Logist Res 6:17–23
Drezner Z, Suzuki A (2004) The big triangle small triangle method for the solution of nonconvex

facility location problems. Oper Res 52:128–135
Drezner Z, Wesolowsky G (1994) Finding the circle or rectangle containing the minimum weight

of points. Locat Sci 2:83–90



140 E. Carrizosa and B. G.-Tóth

Drezner Z, Wesolowsky GO, Drezner T (2004) The gradual covering problem. Nav Res Logist
51:841–855

Drezner Z, Kalczynski P, Salhi S (2019) The planar multiple obnoxious facilities location problem:
a Voronoi based heuristic. Omega 87:105–116. https://doi.org/10.1016/j.omega.2018.08.013

Erkut E, Neuman S (1989) Analytical models for locating undesirable facilities. Eur J Oper Res
40:275–291

Erkut E, Neuman S (1991) Comparison of four models for dispersing facilities. Inf Syst Oper Res
29:68–86

Farhan B, Murray AT (2006) Distance decay and coverage in facility location planning. Ann Reg
Sci 40:279–295

Fekete SP, Mitchell JSB, Beurer K (2005) On the continuous Fermat-Weber problem. Oper Res
53:61–76

Fernández J, Fernández P, Pelegrín B (2000) A continuous location model for siting a non-noxious
undesirable facility within a geographical region. Eur J Oper Res 121:259–274

Fliege J (2001) OLAF—a general modeling system to evaluate and optimize the location of an air
polluting facility. OR Spectr 23:117–136

Francis RL, Lowe TJ (2011) Comparative error bound theory for three location models: continuous
demand versus discrete demand. Top 22:144–169

Francis RL, Lowe TJ, Tamir A (2000) Aggregation error bounds for a class of location models.
Oper Res 48:294–307

Francis RL, Lowe TJ, Tamir A (2002) Demand point aggregation for location models. In: Drezner
Z, Hamacher HW (eds) Facility location. Springer, Berlin, pp 207–232

Francis RL, Lowe TJ, Rayco MB, Tamir A (2008) Aggregation error for location models: survey
and analysis. Ann Oper Res 167:171–208

Hansen P, Peeters D, Richard D, Thisse JF (1985) The minisum and minimax location problems
revisited. Oper Res 33:1251–1265

Hwang M, Chiang C, Liu Y (2004) Solving a fuzzy set-covering problem. Math Comput Model
40:861–865

Karasakal O, Karasakal EK (2004) A maximal covering location model in the presence of partial
coverage. Comput Oper Res 31:1515–1526

Karkazis J, Papadimitriou C (1992) A branch-and-bound algorithm for the location of facilities
causing atmospheric pollution. Eur J Oper Res 58:363–373

Kim K, Murray AT (2008) Enhancing spatial representation in primary and secondary coverage
location modeling. J Reg Sci 48:745–768

Kolen A, Tamir A (1990) Covering problems. In: Mirchandani P, Francis R (eds) Discrete location
theory. Wiley, New York

Kuby MJ (1987) Programming models for facility dispersion: the p-dispersion and maxisum
dispersion problems. Geogr Anal 19:315–329

Lei TL, Church RL (2013) A unified model for dispersing facilities. Geogr Anal 45:401–418
Li X, Zhao Z, Zhu X, Wyatt T (2011) Covering models and optimization techniques for emergency

response facility location and planning: a review. Math Meth Oper Res 74:281–310
Mladenović N, Plastria F, Urošević (2005) Reformulation descent applied to circle packing

problems. Comput Oper Res 32:2419–2434
Moon ID, Chaudhry SS (1984) An analysis of network location problems with distance constraints.

Manag Sci 30:290–307
Murat A, Verter V, Laporte G (2010) A continuous analysis framework for the solution of

location—allocation problems with dense demand. Comput Oper Res 37:123–136
Murray AT (2005) Geography in coverage modeling: exploiting spatial structure to address

complementary partial service of areas. Ann Assoc Am Geogr 95:761–772
Murray AT, Church RL (1997) Solving the anti-covering location problem using Lagrangian

relaxation. Comput Oper Res 24:127–140
Murray AT, O’Kelly ME (2002) Assessing representation error in point-based coverage modeling.

J Geogr Syst 4:171–191

https://doi.org/10.1016/j.omega.2018.08.013


6 Anti-covering Problems 141

Murray AT, Wei R (2013) A computational approach for eliminating error in the solution of the
location set covering problem. Eur J Oper Res 224:52–64

Murray AT, Tong D, Kim K (2009) Enhancing classic coverage location models. Int Reg Sci Rev
33:115–133

Niblett MR, Church RL (2015) The disruptive anti-covering location problem. Eur J Oper Res
247:764–773

Plastria F (1992) Gbsss: the generalized big square small square method for planar single-facility
location. Eur J Oper Res 62:163–174

Plastria F (2001) On the choice of aggregation points for continuous p-median problems: a case
for the gravity centre. Top 9:217–242

Plastria F (2002) Continuous covering location problems. In: Drezner Z, Hamacher HW (eds)
Facility location. Springer, Berlin, pp 39–83

Plastria F, Carrizosa E (1999) Undesirable facility location with minimal covering objectives. Eur
J Oper Res 119:158–180

Plastria F, Gordillo J, Carrizosa E (2013) Locating a semi-obnoxious covering facility with
repelling polygonal regions. Discret Appl Math 161:2604–2623

Romero-Morales D, Carrizosa E, Conde E (1997) Semi-obnoxious location models: a global
optimization approach. Eur J Oper Res 102:295–301

Saboonchi B, Hansen P, Perron S (2014) MaxMinMin p-dispersion problem: a variable neighbor-
hood search approach. Comput Oper Res 52:251–259

Sayyady F, Fathi Y (2016) An integer programming approach for solving the p-dispersion
problem. Eur J Oper Res 253:216–225

Sayyady F, Tutunchi GK, Fathi Y (2015) p-Median and p-dispersion problems: a bi-criteria
analysis. Comput Oper Res 61:46–55

Schilling VJ DA, Barkhi R (1993) A review of covering problems in facility location. Locat Sci
1:25–55

Schöbel A, Scholz D (2010) The big cube small cube solution method for multidimensional facility
location problems. Comput Oper Res 37:115–122

Tong D (2012) Regional coverage maximization: a new model to account implicitly for comple-
mentary coverage. Geogr Anal 44:1–14

Tong D, Church RL (2012) Aggregation in continuous space coverage modeling. Int J Geogr Inf
Sci 26:795–816

Tong D, Murray AT (2009) Maximising coverage of spatial demand for service. Pap Reg Sci 88:85–
97

Tutunchi GK, Fathi Y (2019) Effective methods for solving the Bi-criteria p-Center and p-
Dispersion problem. Comput Oper Res 101:43–54

Wand MP, Jones MC (1993) Comparison of smoothing parameterizations in bivariate kernel
density estimation. J Am Stat Assoc 88:520–528

Wand MP, Jones MC (1995) Kernel smoothing. Springer, Berlin
Wei, R, Murray, AT (2014) A multi-objective evolutionary algorithm for facility dispersion under

conditions of spatial uncertainty. J Oper Res Soc 65:1133–1142
Wei, R, Murray, AT (2017). Spatial uncertainty challenges in location modeling with dispersion

requirements. In: Thill JC (ed) Spatial analysis and location modeling in Urban and regional
systems. Springer, Berlin, pp 283–300

Yao J, Murray AT (2014) Serving regional demand in facility location. Pap Reg Sci 93:643–662


	6 Anti-covering Problems
	6.1 Introduction
	6.2 Regional Covering Model
	6.2.1 Individual-Facility Interactions
	6.2.2 Facility-Facility Interactions
	6.2.3 The Anti-covering Model

	6.3 Computational Approach
	6.4 Numerical Examples
	6.5 Conclusions
	References


