
Chapter 4
Fixed-Charge Facility Location Problems

Elena Fernández and Mercedes Landete

Abstract Fixed-Charge Facility Location Problems are among core problems in
location science. There is a finite set of users with demand of service and a finite
set of potential locations for the facilities that will offer service to users. Two types
of decisions must be made: Location decisions determine where to establish the
facilities, whereas allocation decisions dictate how to satisfy the users demand
from the established facilities. Potential applications of various types arise in many
different contexts. We provide an overview of the main elements that may intervene
in the modeling and in the solution process of Fixed-Charge Facility Location
Problems, namely, modeling hypotheses and their implications, characteristics of
formulations and their relation to other formulations, properties of the domains, and
appropriate solution techniques.

4.1 Introduction

Fixed-Charge Facility Location Problems (FLPs) are among core problems in
location science. In FLPs there is a finite set of users with demand of service and a
finite set of potential locations for the facilities that will offer service to users. Two
types of decisions must be made. Location decisions determine where to establish
the facilities, whereas allocation decisions dictate how to satisfy the users demand
from the established facilities. Each possible decision incurs fixed-charge costs for
the facilities that are established, and assignment costs for the allocation decisions.
In FLPs the aim is to make optimal decisions with respect to these costs.
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Applications of FLPs arise in an wide variety of contexts. The book by Drezner
and Hamacher (2002) surveys different applications of fixed-charge facility location
in such diverse areas as the public sector, software for GIS or robotics. Fixed-
charge facility location also plays a critical role in many other areas like supply
chain management, distributed systems, humanitarian relief, emergency systems,
location-routing problems or freight transportation. Melo et al. (2009) survey
facility location models in the context of supply chain management until 2009.
Klose and Drexl (2005) summarize applications of FLPs within distributed system
design. The paper by Balcik and Beamon (2008) is a recent sign of the interest of
the combination of both humanitarian relief analysis and facility location models.
Further examples of applications can be found in Owen and Daskin (1998), Daskin
et al. (2002), Nagy and Salhi (2007) and Jiaa et al. (2007). In fact, the applicability
of fixed-charge facility location models goes beyond the area of location analysis.
Some fixed-charge facility location models are also valid within other fields like
machine scheduling, cluster analysis or combinatorial auctions (Escudero et al.
2009; Klose and Drexl 2005; Singh 2008).

It has been traditionally assumed that in FLPs location decisions are strate-
gic, whereas allocation decisions are tactical or operational. There are potential
applications, however, in which location and allocation decisions are at the same
hierarchy level in the decision making process. One example of application in which
both decisions are strategic can be found in the design of a backbone network
in telecommunications. An example of application in which both decisions are
operational can be faced by some logistic companies which, at each time period,
have to solve an FLP to determine the warehouses locations and the distribution
pattern to be applied within the corresponding period.

Because FLPs are difficult optimization problems with many potential applica-
tions, the study of their properties and efficient solution methods is of interest on
its own. A further motivation for this study is that it sets the basis for the analysis
of more complex models related to FLP extensions. In some cases, these extensions
can, in turn, be modeled as some basic FLP. For example, some multi-period facility
location problems (see Chap. 11) or some hub-arc location problems (see Chap. 12)
can be can be reduced to the FLPs studied here (see, for instance Albareda-Sambola
et al. 2009a; Contreras and Fernández 2013).

There are indeed a number of issues that define the characteristics of FLPs.
These will be discussed in this chapter and include the possibility of satisfying
the demand of each of the users from more than one facility, or capacity limits on
the maximum demand that can be served from any selected facility, among others.
Furthermore, several alternative formulations can be valid for a given FLP. Usually,
none of these alternatives has a clear advantage over the others although, as it often
happens with other discrete optimization problems, each of them is better suited
for a certain solution technique. We aim to give the reader a broad overview of
the main elements that may intervene in the solution process of FLPs, namely,
modeling assumptions and their implications, characteristics of formulations and
their relation to other formulations, properties of the domains, and appropriate
solution techniques. However, in order to keep the length of the chapter within
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a reasonable limit, it has been impossible to address all relevant variants and
extensions of the problem. As a consequence, we have selected some topics which,
in our opinion, cover most of the major issues related to fixed-charge facility
location. Diversity among the selected topics has been a major guideline as well.

The material presented in this chapter is the result of the research carried out
by many authors in this area over the last 60 years. Most of it has been published
but occasionally we present and prove some unpublished results which are either
adaptations of well-known results for other cases, or simple results that can be easily
derived from the existing state of knowledge.

The remainder of this chapter is structured as follows. In Sect. 4.2 we introduce
our notation and we provide an overview of the problems we study. Section 4.2
also discusses modeling issues leading to standard formulations or to alternative Set
Partitioning formulations and properties of the domains. A sample of possible solu-
tion methods, namely Lagrangean relaxation and column generation is presented
in Sect. 4.3. Some of the major difficulties of FLPs that will offer service to users
derive from the assumption that individual facilities do not have enough capacity to
satisfy the demand of all customers. Releasing this assumption yields a particular
FLP known as the Uncapacitated Facility Location Problem (UFLP), which is
studied in Sects. 4.4 and 4.5. The UFLP satisfies some specific properties that do
not hold for general FLPs. These properties can be exploited for modeling purposes
or for deriving specific solution techniques. In particular, Sect. 4.4.1 studies some
properties derived from linear programming duality, whereas Sect. 4.4.2 presents a
formulation for the UFLP based on its supermodular property and relates it with the
so-called radius based formulations. Finally, Sect. 4.5 gives some polyhedral results
related to the UFLP. The chapter closes in Sect. 4.6 with some comments.

4.2 Overview and Modeling Issues

In this chapter we will use indistinctively the term service center when referring
to a facility, and customer or demand point when referring to a user. Let I =
{1, . . . , i, . . . , m} denote the index set for the potential locations for the facilities
and J = {1, . . . , j, . . . , n} the index set for the users. We will refer to potential
locations by their indices, so we will say that a facility is open at location i, or
simply that facility i is open, if the decision to establish a service center at the
potential location i is made. We will also denote users by their indices and simply
refer to user j . Associated with each i ∈ I , qi denotes the maximum capacity of
facility i, if it is opened. The service demand of user j ∈ J is denoted by dj . As
mentioned, there are two types of costs. The decision to establish a facility at i ∈ I

incurs a fixed-charge (setup) cost fi . For i ∈ I and j ∈ J , cij is the cost for serving
all the demand of customer j from facility i.
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Classical formulations for FLPs use two sets of decision variables: one set for the
selection of the facilities to open and another set for the allocation of users demand
to open facilities. For the location decisions, associated with each i ∈ I we define

yi =
{

1 if a facility is open at location i

0 otherwise.

For the allocation decisions, associated with i ∈ I , j ∈ J we define

xij =
{

1 if the demand at user j is served by facility i

0 otherwise.

A standard integer programming formulation for the FLP is as follows:

minimize z =
∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

cij xij (4.1)

subject to
∑
i∈I

xij = 1 j ∈ J (4.2)

∑
j∈J

dj xij ≤ qiyi i ∈ I (4.3)

yi ∈ {0, 1} i ∈ I (4.4)

xij ∈ {0, 1} i ∈ I, j ∈ J. (4.5)

Constraints (4.2) guarantee that each customer is served from one facility, while
constraints (4.3) play a double role: (1) they ensure that the capacity of facilities is
not exceeded; and (2) they prevent users from being allocated to non-open facilities.
Constraints (4.4) and (4.5) define the domains of the decision variables. In the above
formulation inequalities (4.3) can be substituted by the two sets:

∑
j∈J

dj xij ≤ qi i ∈ I (4.6)

xij ≤ yi i ∈ I, j ∈ J. (4.7)

Now the set of knapsack constraints (4.6) enforce that facility capacities are not
violated, whereas inequalities (4.7) relate the two sets of decision variables. While
constraints (4.3) are equivalent to (4.6) and (4.7) when the binary condition of the
y variables (4.4) is enforced, the compact set of constraints (4.3) dominates (4.6)
and (4.7) when the integrality of the location variables is relaxed to 0 ≤ yi ≤ 1,
i ∈ I .

Formulation (4.1)–(4.5) is appropriate for models requiring that the total demand
of each customer be served from the same facility. A number of situations exist
where such a requirement is justified, the most obvious one being the case where
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the demand of each customer represents a physical object that cannot be split. This
case is known as the single allocation FLP (SFLP). Equations (4.1)–(4.5) define
a valid formulation for the SFLP. Many FLP models, however, allow splitting the
demand at users among several open facilities. Such models, which are referred to
as multiple allocation FLPs (MFLPs), arise, for instance, when customers represent
population areas and not all the individuals in a given area need to be served from
the same service center. In MFLPs allocating customer j to facility i means that
some positive fraction of dj is served from facility i. Hence, for i ∈ I , j ∈ J

the allocation decision variables xij are defined as the fraction of demand of user
j served by facility i, and the domain for the x variables is thus substituted by its
continuous relaxation

0 ≤ xij ≤ 1, i ∈ I, j ∈ J. (4.8)

With the above definition of the allocation decision variables, constraints (4.2)
have a slightly more general interpretation than in the single allocation case. Since
they impose that the sum of all the fractions served from the different facilities be
one, they also guarantee that the total demand at each user is satisfied. Therefore,
in order to obtain a valid formulation for the MFLP, in formulation (4.1)–(4.5) we
“only” have to change the domain of the allocation variables x. It then follows that
that (4.1)–(4.4) together with (4.8) is a valid formulation for the MFLP.

The FLP is N P-hard since a polynomial transformation can be used to reduce
the node cover problem, which is known to be N P-hard (Garey and Johnson
1979), into the FLP (see, for instance, Cornuéjols et al. 1990).

The reader may note that the “difficult” decision in FLPs is the selection of the
facilities to open. This is readily seen in the multiple allocation case where, if the
set of facilities to open is given, S ⊂ I , the best allocation of customers within S

can easily be obtained by solving the following transportation problem:

T P (S) minimize z =
∑
i∈S

∑
j∈J

(cij /dj )sij (4.9)

subject to
∑
i∈S

sij ≥ dj j ∈ J (4.10)

∑
j∈J

sij ≤ qi i ∈ S (4.11)

sij ≥ 0 i ∈ S, j ∈ J. (4.12)

In formulation (4.9)–(4.12) the continuous decision variable sij denotes the
amount of demand of customer j which is served from facility i. Hence we have
the relation, xij = sij /dj .

In the single allocation case, finding an optimal allocation of customers to a
given set of open facilities S ⊂ I is still a difficult problem, namely a Generalized
Assignment Problem, which is also N P-hard (Fisher et al. 1986). Now, a
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formulation for finding the best allocation of customers within the set of facilities S

is given by

GAP(S) minimize z =
∑
i∈S

∑
j∈J

cij xij (4.13)

subject to
∑
i∈S

xij = 1 j ∈ J (4.14)

∑
j∈J

dj xij ≤ qi i ∈ S (4.15)

xij ∈ {0, 1} i ∈ S, j ∈ J. (4.16)

So far we have presented FLPs as minimization problems in which both types
of decisions incur costs. Nevertheless, the type of objective function depends on
the decision maker. Minimization FLPs usually appear in the public sector when
locating facilities for essential services: public hospitals or schools, dumps for
garbage collection, etc. In the private sector, however, service to customers produces
a profit to companies so that the objective of companies facing location decisions for
their service centers is to maximize the net profit defined as the difference between
the revenue derived from the serviced customers and the cost for the location of
the selected facilities. There is indeed an essential difference between these two
models: while minimization FLPs impose that all customers be served (no demand
point can be excluded from an essential service), in maximization FLPs not all users
necessarily have to be served. The company may not have enough incentive for
servicing all customers and only those generating a profit in an optimal location
setting will be served. As we will next see, from a mathematical programming point
of view the maximization and minimization versions of the FLP are equivalent.

Consider a maximization FLP where bij denotes the profit for servicing customer
j ∈ J from facility i ∈ I . As indicated in Cornuéjols et al. (1990), bij is typically
a function of the unit production costs at facility i (hi), the unit transportation costs
from facility i to customer j (tij ), and the service price for customer j (sj ). That is,
bij = dj (sj − hi − tij ). Then, the objective function for a maximization FLP is

maximize z = −
∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

bij xij . (4.17)

In principle, if not all customers have to be served, allocation constraints should
be stated as inequalities, i.e.

∑
i∈I xij ≤ 1, j ∈ J . However, such constraints are

easily transformed into equalities by simply defining a fictitious potential facility
0, representing the facility to which all unserved demand is allocated. To this end,
we assume a sufficiently large capacity for the fictitious facility, q0 = ∑

j∈J dj ,
and set to zero, both the fixed-charge cost of the fictitious facility (f0 = 0) and the
allocation profits of all customers (b0j = 0, j ∈ J ). Thus, without loss of generality
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we can assume that in the maximization FLP allocation constraints must also be
satisfied as equality.

Taking into account the expression of the coefficients bij and because of the
equality allocation constraints, the second term in (4.17) can be rewritten as
∑
i∈I

∑
j∈J

bij xij = ∑
i∈I

∑
j∈J dj (sj − hi − tij )xij =

∑
i∈I

∑
j∈J

dj sj xij −
∑
i∈I

∑
j∈J

dj (hi + tij )xij =

∑
j∈J dj sj − ∑

i∈I

∑
j∈J c′

ij xij .

Hence objective (4.17) reduces to

∑
j∈J dj sj − min [

∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

c′
ij xij ]. (4.18)

Since the first term in (4.18) is a constant, the maximization FLP is equivalent to a
minimization FLP.

4.2.1 Set Partitioning Formulation of FLPs

Below we present alternative formulations for FLPs which use decision variables
to model the overall customers demand allocated to open facilities. Consider for
the moment the single allocation case and note that feasible assignments to a
given facility i ∈ I are associated with subsets of customers T ⊂ J such that∑

j∈T dj ≤ qi . We will use the notation Ki to denote the index set of feasible
assignment subsets for facility i ∈ I , Tk ⊂ J the index set of the customers served
in feasible assignment k ∈ Ki , and pki for the fixed-charge cost of facility i plus the
cost for assigning to i all the customers indexed in Tk , i.e. pki = fi + ∑

j∈Tk
cij .

Also, for i ∈ I , k ∈ Ki , j ∈ J , let aijk = 1 if j ∈ Tk and 0 otherwise. Consider
now the following decision variables:

zki =
{

1 if the subset of customers Tk is assigned to facility i

0 otherwise.

Then, a set partitioning formulation for the SFLP is

SPSFLP minimize
∑
i∈I

∑
k∈Ki

pkizki (4.19)

subject to
∑
i∈I

∑
k∈Ki

aijkzki = 1 j ∈ J (4.20)

∑
k∈Ki

zki = yi i ∈ I (4.21)

yi ∈ {0, 1} i ∈ I (4.22)

zki ∈ {0, 1} i ∈ I, k ∈ Ki. (4.23)
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Constraints (4.20) ensure that each customer is assigned to exactly one facility.
Constraints (4.21) guarantee that no assignment is selected for a non-open facility
and also that one feasible assignment is selected for each open facility. Observe
that because of (4.20), constraints (4.21) can be written as ≤ inequalities and will
still be satisfied as equalities. Constraints (4.22) and (4.23) define the domain of the
decision variables. The above a formulation will be referred to as SPSFLP.

A set partitioning formulation for the multiple allocation case can be obtained
from the above formulation by simply relaxing the integrality conditions on the z

variables to 0 ≤ zki ≤ 1, i ∈ I, k ∈ Ki . It is now necessary to use the ≤ expression
for constraints (4.21), since optimal solutions may exist with some open facility
only serving fractions of demand of the allocated customers. This formulation will
be referred to as SPMFLP.

The large number of variables both in SPSFLP and in SPMFLP make these
formulations suitable for column generation.

4.3 Solution Algorithms for Fixed-Charge Facility Location

In this section we overview the available algorithms for FLPs. Several heuristic
and exact algorithms have been proposed for FLPs and an exhaustive survey
on the related literature is outside the scope of this chapter. Branch-and-bound
methods proposed in the early papers (Sá 1969; Davis and Ray 1969; Ellwein
and Gray 1977; Akinc and Khumawala 1977; Nauss 1978; Neebe and Rao 1983)
where followed by many algorithms based on Lagrangean relaxation (Geoffrion and
McBride 1978; Christofides and Beasley 1983; Guignard and Kim 1983; Barceló
and Casanovas 1984; Klincewicz and Luss 1986; Pirkul 1987; Beasley 1988;
Guignard and Opaswongkarn 1990; Barceló et al. 1990, 1991; Cornuéjols et al.
1991; Beasley 1993; Sridharan 1993; Holmberg et al. 1999). Some of the first works
on approximation algorithms are those of Shetty (1990), Shmoys et al. (1997), and
Chudak and Shmoys (1999). Algorithms based on Benders and cross decomposition
have been respectively proposed by Wentges (1996) and Van Roy (1986), whereas
branch-and-price has been applied by Díaz and Fernández (2002) and Klose and
Görtz (2007). Some more recent works are Barahona and Chudak (2005), Sankaran
(2007), Sharma and Berry (2007), Ghiani et al. (2012), and Zhen et al. (2012). In
the paper of An et al. (2017) the authors give an alternative formulation for the FLP
based on multi-commodity flows whose integrality gap is constant, i.e, its linear
relaxation approximates the optimum value within a constant. For an overview of
heuristics for FLPs the interested reader is addressed to Jacobsen (1983), Filho and
Galvão (1998), Delmaire et al. (1999a,b), Hindi and Pienkosz (1999), Cortinhal and
Captivo (2003), and Ahuja et al. (2004) and references therein.

The most obvious strategy for solving an FLP instance to optimality is to use
a standard mixed integer programming (MIP) solver with formulation SFLP or
MFLP, depending on the case. This approach may, however, fail on large instances,
especially for the single-source case. Some alternatives are presented below, which
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somehow exploit the structure of the problem and lead either to an exact algorithm
or to methods that can be embedded within an exact algorithm. First we study
Lagrangean relaxation, which has been used by a number of authors both for the
single and multiple allocation cases. Then we address the pricing problem for the
set partitioning formulation SPSFLP, which is one of the main ingredients of the
branch-and-price algorithm of Díaz and Fernández (2002).

4.3.1 Lagrangean Relaxation

We next present a Lagrangean relaxation of model SFLP in which the assignment
constraints (4.2) are relaxed. This relaxation has been used by a number of authors
(see, for instance, Pirkul 1987; Barceló et al. 1990, 1991; Beasley 1993; Holmberg
et al. 1999). The Lagrangean subproblem associated with a given set of multipliers
π ∈ Rn, is

LSFLP (π) = minimize
∑
i∈I

⎛
⎝fiyi +

∑
j∈J

cij xij

⎞
⎠ +

∑
j∈J

uj

⎛
⎝1 −

∑
i∈I

xij

⎞
⎠ (4.24)

subject to
∑
j∈J

dj xij ≤ qiyi i ∈ I (4.25)

xij ∈ {0, 1} i ∈ I, j ∈ J (4.26)

yi ∈ {0, 1} i ∈ I. (4.27)

After rearranging its terms the objective function can be rewritten as

∑
j∈J

πj + min
∑
i∈I

⎛
⎝fiyi +

∑
j∈J

(
cij − πj

)
xij

⎞
⎠ .

A solution to LSFLP (π) can be obtained applying the following two steps:

1. For each i ∈ I solve the knapsack problem

KP(i) : maximize
∑
j∈J

(
cij − πj

)
xij (4.28)

subject to
∑
j∈J

dj xij ≤ qi (4.29)

xij ∈ {0, 1} j ∈ J. (4.30)

Let J (i) denote the index set of variables at value 1 in an optimal solution to
KP(i) and v(i) = ∑

j∈J (i)

(cij − πj ) its associated optimal value.

2. For each i ∈ I , with fi + v(i) < 0 then yi = 1, and xij = 1, for j ∈ J (i).
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The Lagrangean dual associated with LSFLP (π) is

DSFLP max
π∈Rn

LSFLP (π).

Proposition 4.1 The optimal value of the Lagrangean dual DSFLP coincides with
the value of the linear programming (LP) relaxation of program SPSFLP .

Proof Consider the following Lagrangean function resulting from relaxing con-
straints (4.20) in SPSFLP in a Lagrangean fashion:

LSPSFLP (π) = minimize
∑
i∈I

∑
k∈K

pkizki +
∑
j∈J

πj

⎛
⎝1 −

∑
i∈I

∑
k∈Ki

aijkzki

⎞
⎠

(4.31)

subject to
∑
k∈Ki

zki ≤ yi i ∈ I (4.32)

zki ≥ 0 i ∈ I, k ∈ Ki (4.33)

yi ∈ {0, 1} i ∈ I. (4.34)

The objective function (4.31) can be expressed as

∑
j∈J

πj + min

⎡
⎣∑

i∈I

∑
k∈Ki

pkizki −
∑
i∈I

∑
k∈Ki

∑
j∈J

πjaijkzki

⎤
⎦ =

∑
j∈J

πj + min

⎡
⎣∑

i∈I

∑
k∈Ki

(pki −
∑
j∈Tk

πj )zki

⎤
⎦ .

Thus, for a given vector π , the solution to LSPSFLP (π) can be obtained as
follows:

• For i ∈ I , do

– Find k(i) ∈ arg maxk∈Ki
{pki − ∑

j∈Tk

πj }.
– If pk(i)i − ∑

j∈Tk(i)

πj < 0 then yi = 1, zk(i)i = 1, zki = 0 k ∈ Ki \ {k(i)}.
If pk(i)i − ∑

j∈Tk(i)

πj ≥ 0 then yi = 0, zki = 0, k ∈ Ki .

Note that for each feasible solution (ẑ, ŷ) to (4.32)–(4.34), for each i ∈ I

there exists a one-to-one correspondence between (ŷi , (ẑki)k∈Ki
), and a vector

(ŷi , (x̂ij )j∈J ), that satisfies constraints (4.25). In particular, x̂ij = ∑
k∈Ki

aijkẑki for
all i ∈ I , j ∈ J . Note that the above solution is well defined since for i ∈ I there is
at most one k ∈ Ki with ẑki = 1. Furthermore, by definition of the z variables, for
i ∈ I , (x̂ij )j∈J represents a feasible assignment to facility i, i.e.

∑
j∈J dj x̂ij ≤ qi ŷi .
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Finally, the objective function values of the two solutions coincide since for i ∈ I

fixed,
∑

k∈Ki
pki ẑki = fi ŷi + ∑

j∈J

cij x̂ij . Therefore, taking into account the above

considerations, LSPSFLP (π) can be rewritten as

∑
i∈I

πi + minimize
∑
j∈J

⎛
⎝fiyi +

∑
j∈J

cij xij

⎞
⎠ −

∑
j∈J

∑
i∈I

πj xij (4.35)

subject to
∑
j∈J

dj xij ≤ qiyi i ∈ I

xij ∈ {0, 1} i ∈ I, j ∈ J

yi ∈ {0, 1} i ∈ I,

which is indeed LSFLP (π). �
The reader will immediately conclude that a similar result holds for the MFLP.
Proposition 4.1 establishes that DSFLP and the LP relaxation of SPSFLP are

equally tight in terms of the lower bounds they produce (the same is true for DMFLP

and the LP relaxation of SPMFLP). Now, the question that arises naturally is how
to compare both types of formulations from an algorithmic point of view.

As we have seen, the Lagrangean subproblem LSFLP (π) is rather easy to solve
and subgradients are easy to compute at each point. For a given vector π , let
(y(π), x(π)) denote an optimal solution to LSFLP (π). Then, a subgradient of
LSFLP (π) is given by ϕ = (ϕj )j∈J , where ϕj = 1 − ∑

i∈I xij (π). Therefore,
DSFLP can be efficiently solved with subgradient optimization. However, when
looking for an exact algorithm, the Lagrangean dual DMFLP may not be very
handy within an enumeration scheme. In contrast the LP relaxation of SPSFLP may
be more demanding than DSFLP from a computational point of view (the pricing
subproblem must be solved repeatedly to generate all the needed columns), but it
can be very well integrated within a branch-and-price scheme. For this reason, the
next section studies the pricing problem for generating columns for SPSFLP, which
is the main component of an exact branch-and-price algorithm for the SFLP based
on this formulation (Díaz and Fernández 2002).

4.3.2 The Pricing Problem for SPSFLP

Suppose we have solved the LP relaxation of the subproblem of SPSFLP associated
with a subset of columns K = (Ki)i∈I . Let π , and λ denote the optimal values of
dual variables associated with constraints (4.21) and (4.20), respectively. Then in
order to know whether there exists a z variable of the overall formulation which, if
added to the current set of columns, would improve the current LP solution, we must
find the column of the coefficient matrix of SPSFLP with the smallest reduced
cost. The reduced cost of variable zki , i ∈ I, k ∈ Ki , is given by rki = pki −∑

j∈J πjaijk −λi . Thus, in order to find the column that yields the smallest reduced
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cost we must solve the following pricing problem:

(PP ) min
i∈I, k∈Ki

rki = pki − ∑
j∈J

πjaijk − λi.

Since pki = fi + ∑
j∈Tk

cij , then rki = fi + ∑
j∈J

(
cij − πj

)
aijk − λi . Note

also that feasible columns aik , k ∈ Ki, i ∈ I , are characterized by the condition∑
j∈J dj aijk ≤ qi . Therefore, the solution to PP can be obtained by solving a

series of independent problems, one for each i ∈ I . Since, for a given i ∈ I , the
value fi − λi is fixed, then the corresponding problem reduces to

PPi minimize
∑
j∈J

(
cij − πj

)
aijk

subject to
∑
j∈J

dj aijk ≤ qi

aijk ∈ {0, 1} j ∈ J.

4.4 The Uncapacitated Facility Location Problem

An important particular case of the FLP arises under the assumption that the
capacity of any open facility is sufficient to satisfy the demand of all customers,
i.e. qi ≥ ∑

j∈J dj , i ∈ I , so that the capacity constraints (4.3) are not needed. This
particular case is known as the Uncapacitated Facility Location Problem (UFLP)
and has received a considerable amount of attention. Next we focus on the UFLP
and study some of its properties. The interested reader is addressed to Cornuéjols et
al. (1990) for a deeper analysis and further details.

A first observation is that the UFLP basically involves one main decision: finding
the set of facilities to open. Note that an optimal allocation of customers within a
given set of open facilities, say S, is trivial, and consists of serving all the demand of
each customer from a facility in S with minimum allocation cost, with ties broken
arbitrarily. That is, for j ∈ J , let i(j) ∈ arg min{cij | i ∈ S} be arbitrarily chosen,
then xi(j)j = 1, xij = 0, i ∈ I \ i(j) is an optimal allocation of customers within
the set of facilities S. Thus, a closed expression for the objective function value for a
set of facilities S ⊆ I is z(S) = ∑

i∈S fi + ∑
j∈J mini∈S cij . The main implication

of this observation is that the UFLP can be stated as the minimization of a known
set function. Before addressing this issue, we study some properties and algorithmic
alternatives, derived from a standard MIP formulation for the UFLP.

Indeed a MIP formulation for the UFLP can be obtained with the y and x decision
variables of the previous sections. Now it is no longer necessary to impose the
binary condition on the allocation variables, even if single allocation is imposed.
The argument is simple: if some customer is allocated to more than one facility in
an optimal solution, the allocation costs of that customer to all its allocated facilities
must be equal (otherwise the solution would not be optimal). Thus the customer can
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be fully served from any arbitrarily selected open facility of minimum allocation
cost. On the other hand, even if capacity constraints are no longer needed, it is still
necessary to impose that no customer is assigned to a non-open facility. Hence, by
replacing constraints (4.3) by (4.7) we obtain the following valid formulation for the
UFLP:

UFLP minimize
∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

cij xij (4.36)

subject to
∑
i∈I

xij = 1 j ∈ J (4.37)

xij ≤ yi i ∈ I, j ∈ J (4.38)

0 ≤ xij i ∈ I, j ∈ J (4.39)

yi ∈ {0, 1} i ∈ I. (4.40)

A broad literature exists on the UFLP. From seminal papers (Kuehn and
Hamburger 1963; Stollsteimer 1963; Manne 1964; Balinski 1966; Efroymson 1966;
Spielberg 1969a,b; Khumawala 1972; Bilde and Krarup 1977; Cornuéjols et al.
1977; Guignard and Spielberg 1977; Nemhauser et al. 1978) and other early
contributions (Guignard 1980; Cornuéjols and Thizy 1982; Guignard 1988; Beasley
1988; Körkel 1989; Beasley 1993; Aardal 1998), to more recent works (Goldengorin
et al. 2004; Klose and Drexl 2005; Mladenović et al. 2006; Janacek and Buzna 2008;
Beltran-Royo et al. 2012; Letchford and Miller 2012, 2014), virtually any type of
solution algorithm has been proposed for it. As with the general facility location
problem, an extensive literature review is outside the scope of this chapter. The
interested reader is referred to Krarup and Pruzan (1983), Cornuéjols et al. (1990),
Labbé et al. (1995), ReVelle and Laporte (1996) or Verter (2011) for overviews of
the main contributions, and to Posta (2014) or Fischetti et al. (2017) for insight on
the difficulty of the benchmark instances in the UFL library UflLib, some of which
remain unsolved.

4.4.1 Bounds for UFLP Derived from LP Duality

Consider the LP relaxation of UFLP expressed in standard form, for which
constraints (4.38) have been written as yi −xij ≥ 0, and the upper bound constraints
on the y variables as −yi ≥ −1, i ∈ I . Let u, w and t denote the vectors of dual
variables of appropriate dimensions associated with constraints (4.37), (4.38) and
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the upper bound constraints, respectively. Then, the dual of the LP relaxation of
UFLP is

DUFLP maximize
∑
j∈J

uj −
∑
i∈I

ti (4.41)

subject to
∑
j∈J

wij − ti ≤ fi i ∈ I (4.42)

uj − wij ≤ cij i ∈ I, j ∈ J (4.43)

wij ≥ 0 i ∈ I, j ∈ J (4.44)

ti ≥ 0 i ∈ I. (4.45)

The optimal values for the t variables can be determined from the optimal w

values as ti =
(∑

j∈J wij − fi

)+
, i ∈ I , where (a)+ = max{0, a}.

In turn, the optimal w values can be determined from the optimal u values as
wij = (

uj − cij

)+, i ∈ I, j ∈ J . Therefore, DUFLP can be expressed in terms of
only u variables as

DUFLP max D(u) =
∑
j∈J

uj −
∑
i∈I

⎛
⎝∑

j∈J

(
uj − cij

)+ − fi

⎞
⎠

+
.

Furthermore, the following optimality conditions hold:

(a) There exists an optimal DUFLP solution where uj ≥ mini∈I cij for all j ∈ J .
If uj < mini∈I cij for some j ∈ J , then we can increase the value of uj

without decreasing the objective function value.
(b) There exists an optimal DUFLP solution where

∑
j∈J

(
uj − cij

)+ −fi ≤ 0 for
all i ∈ I .

If
∑

j∈J

(
uj − cij

)+ − fi > 0 for some i ∈ I , we can decrease the value of
some component uj (with uj > cij ) without decreasing the objective function
value.

Condition (b) means that the objective function value of an optimal dual solution
reduces to

∑
j∈J uj . In other words, an optimal dual solution exists with ti = 0 for

all i ∈ I . Hence, the complementarity slackness conditions for constraints (4.42)
are

(fi −
∑
j∈J

(
uj − cij

)+
)yi = 0 i ∈ I. (4.46)

These conditions, which apply to any primal-dual optimal pair to the LP
relaxation of UFLP, hold trivially for all i ∈ I with yi = 0. When yi > 0,
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(4.46) holds provided that
∑

j∈J

(
uj − cij

)+ = fi . For the integer UFLP the
complementarity slackness conditions (4.46) give the guidelines for primal-dual
heuristics. Two alternative strategies may be applied: (i) the primal solution is
obtained first and then a vector u is built to satisfy

∑
j∈J

(
uj − cij

)+ = fi for
all i ∈ I with yi = 1; or (ii) the dual solution u is first obtained and then the primal
solution sets yi = 1 for all i ∈ I with

∑
j∈J

(
uj − cij

)+ = fi . The first strategy
can be applied starting from any set of open facilities S (which can be obtained, for
instance, with a greedy heuristic). The associated dual solution u(S) can be obtained
by setting uj (S) = mini∈S cij for all j ∈ J (note that this solution need not satisfy
condition (b)). The DUFLP objective function value for uj (S) is

D(u(S)) = ∑
j∈J

uj (S) − ∑
i∈I

( ∑
j∈J

(
uj (S) − cij

)+ − fi

)+
=

∑
j∈J

mini′∈S ci′j − ∑
i∈I

( ∑
j∈J

(
mini′∈S ci′j − cij

)+ − fi

)+
=

∑
j∈J

mini′∈S ci′j − ∑
i /∈S

( ∑
j∈J

(
mini′∈S ci′j − cij

)+ − fi

)+
.

Since the value of the primal solution associated with S is Z(S) = ∑
i∈S fi +∑

j∈J mini∈S cij , the deviation between the primal/dual values of S and u(S) is

Z(S) − D(u(S)) =
∑
i∈S

fi +
∑
i /∈S

⎛
⎝∑

j∈J

(
min
i′∈S

ci′j − cij

)+
− fi

⎞
⎠

+
.

The above expression for the deviation suggests choosing S in order to satisfy∑
j∈J

(
mini′∈S ci′j − cij

)+ − fi ≤ 0 for all i /∈ S, since in this case the above
deviation reduces to

∑
i∈S fi .

To illustrate the second strategy let u be a dual solution satisfying the optimality
condition (b) above and define I (u) = {i ∈ I | ∑

j∈J (cij − uj )
+ − fi = 0}.

Assume further that uj ≥ mini∈I (u)cij . Consider now a set of facilities S(u) ⊆ I (u)

satisfying maxi∈I (u) cij = maxi∈S(u) cij , for all i ∈ I and let sj = {i ∈ S(u) | cij <

uj }, j ∈ J . Then, D(u) = Z(S(u)) (see Proposition 3.2. in Cornuéjols et al. 1990).
This means that under the above assumptions, S(u) is an optimal UFLP solution.

Note that D(u) = Z(S(u)) means that the optimal UFLP value coincides with
that of its LP relaxation. Thus, in general, one should not expect to find a solution u

that together with S(u) satisfies the conditions stated above. However the DUALOC
heuristic (see Erlenkotter 1978; Bilde and Krarup 1977), which follows this spirit
has proved to be extremely effective for finding optimal or near-optimal solutions
for the UFLP. The basic idea is to start with u = (uj )j∈J = (min

i∈I
cij )j∈J , and then
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progressively attempt to increase each component uj while satisfying condition (b).
If uj can be increased, then its next value is min{cij | cij > uj }, provided that this
value satisfies (b). If not, uj is increased to the maximum possible value. Indeed,
the outcome of the above heuristic depends on the order in which the indices in
j ∈ J are considered. Necessary and sufficient conditions for the duality LP gap to
be zero, which may lead to tighter bounds have been proposed in Mladenović et al.
(2006). Heuristics in the same spirit have been proposed for other discrete facility
location problems, like the one for the stochastic version of the FLP proposed in
Louveaux and Peeters (1992).

4.4.2 The UFLP as the Optimization of a Supermodular Set
Function

As mentioned, the UFLP can be stated as the minimization of a set function. In
this section we see that an alternative formulation for the UFLP can be obtained
by exploiting the supermodularity property of this set function, which has been
observed by several authors, namely Spielberg (1969a), Frieze (1974), Babayev
(1974), Fisher et al. (1978), and we relate such a formulation with a radius based
formulation. We start by recalling some well-known results on supermodular set
functions (see, e.g., Sect. III.3.1 in Nemhauser and Wolsey 1988) and introduce
some additional notation.

Definition 4.1 Let N be a finite set, and Z a real-valued function on the subsets
of N . The function Z is supermodular if Z(S) + Z(T ) ≤ Z(S ∪ T ) + Z(S ∩ T ),

∀S, T ⊆ N .

For i ∈ N let ρi(S) = Z(S∪{i})−Z(S) be the incremental value of adding element
i to the set S.

Lemma 4.1 Each of the following statements is equivalent and defines a super-
modular set function.

(a) Z(S) + Z(T ) ≤ Z(S ∪ T ) + Z(S ∩ T ), ∀S, T ⊆ N .
(b) Z(S ∪ {i}) − Z(S) ≤ Z(T ∪ {i}) − Z(T ), ∀S ⊂ T ⊂ N and i ∈ N .
(c) If, in addition, Z is non-increasing, then Z(T ) ≥ Z(S) + ∑

i∈T \S
ρi(S),

∀S, T ⊂ I .

In the following we suppose that N is the set of potential facilities, i.e. N = I ,
and we consider as set function Z the cost function of UFLP solutions. That
is Z(S) = ∑

i∈S fi + ∑
j∈J mini∈I cij . To see that Z(.) is supermodular we

recall that a positive linear combination of supermodular functions is supermodular
and we observe that Z(S) = f (S) + c(S) with f (S) = ∑

i∈S fi and c(S) =∑
j∈J mini∈I cij . Thus, it is enough to see that both f (.) and c(.) are supermodular.

Because f (S) is linear, it is clear that it is supermodular. We next see that c(.) is
also supermodular.
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Proposition 4.2 c(.) is supermodular and non-increasing.

Proof We will use the characterization of supermodular functions of Lemma 4.1(b).
For S ⊂ T ⊂ I , and i ∈ I \ T ,

c(S ∪ {i}) − c(S) =
∑
j∈J

[
min

i′∈S∪{i}
ci′j − min

i′∈S
ci′j

]
=

∑
j∈J

min

{
0, cij − min

i′∈S
ci′j

}
≤

∑
j∈J

min

{
0, cij − min

i′∈T
ci′j

}
=

∑
j∈J

[
min

i′∈T ∪{i}
ci′j − min

i′∈T
ci′j

]
=

c(T ∪ {i}) − c(T ),

where the inequality follows since mini′∈S ci′j ≥ mini′∈T ci′j for all j ∈ J .
Furthermore, c is non-increasing since c(S ∪ {i}) − c(S) = ∑

j∈J

[
mini′∈S∪{i} ci′j −

mini′∈S ci′j
] ≤ 0. �

For the function c(.) the incremental value of adding element i to the set S is
c(S ∪ {i}) − c(S). Hence, statement (b) of Lemma 4.1 can be rewritten as

c(T ) ≥ c(S)+
∑

i∈T \S
[c(S ∪ {i}) − c(S)] = c(S)+

∑
i∈T \S

[c(S ∪ {i}) − c(S)] ,∀S, T ⊂ I.

(4.47)

The UFLP formulation below exploits the supermodular property of z(.) and c(.)

as well as the non-increasing property of c(.). Consider the polyhedron

PSF =
{

(η, x, y) ∈ R × B
|I |×|J | × B |I | : η ≥

∑
i∈S

fiyi + c(S) +
∑
i /∈S

ρi(S)yi,∀S ⊆ I

}
,

where η is a continuous variable and B
|I |×|J | and B

|J | are the domains of the binary
vectors associated with the location and allocation variables x and y, respectively.

Theorem 4.1 Let T ⊂ I and (η, xT , yT ) ∈ R × B
|I |×|J | × B

|I |, with x and
y the incidence vectors of the UFLP solution associated with subset T . Then,
(η, xT , yT ) ∈ PSF if and only if η ≥ Z(T ).

Proof If (η, xT , yT ) ∈ PSF then

η ≥
∑
i∈T

fiy
T
i + c(T ) +

∑
i /∈T

ρi(T )yT
i =

∑
i∈T

fi + c(T ) = Z(T ).

Suppose now that η ≥ Z(T ). We have

f (T ) =
∑
i∈T

fiy
T
i =

∑
i∈T ∩S

fiy
T
i +

∑
i∈T \S

fiy
T
i =

∑
i∈S

fiy
T
i +

∑
i∈T \S

fiy
T
i , for all S ⊆ I.
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Since c is non-increasing supermodular, by (4.47), we also have

c(T ) ≥ c(S)+
∑

i∈T \S
[c(S ∪ {i}) − c(S)] = c(S)+

∑
i /∈S

[c(S ∪ {i}) − c(S)] yT
i , for all S ⊆ I.

Thus, for all S ⊆ I

Z(T ) = f (T ) + c(T ) ≥
∑
i∈S

fiy
T
i +

∑
i∈T \S

fiy
T
i + c(S) +

∑
i /∈S

[c(S ∪ {i}) − c(S)] yT
i .

Hence, η ≥ Z(T ) ≥ ∑
i∈S

fiy
T
i + c(S) + ∑

i /∈S

ρi(S)yT
i , for all S ⊆ I .

Therefore, (η, yT , xT ) ∈ PSF and the result follows. �
As a consequence of Theorem 4.1, the UFLP can be stated as the following MIP

(see Nemhauser and Wolsey 1981):

minimize η (4.48)

subject to η ≥
∑
i∈I

fiyi + c(S) +
∑
e/∈S

ρi(S)yi ∀S ⊆ I ∗ (4.49)

η ≥ 0 (4.50)

yi ∈ {0, 1} i ∈ I, (4.51)

where I ∗ = I ∪ {i∗} and i∗ is a fictitious facility such that (i) ci∗k > maxi∈I cij ,
for all j ∈ J ; and (ii)

∑
j∈J ci∗j > maxi∈I (fi + ∑

j∈J cij ). This assumption
guarantees that at least one variable yi is at value one in any optimal solution to the
above formulation.

Taking into account the supermodularity of c(.) we can obtain a tighter formu-
lation by substituting objective (4.48) and constraints (4.49) by (4.52) and (4.53),
respectively, where

minimize
∑
i∈I

fiyi +
∑
j∈J

ηj , (4.52)

and ηj ≥ min
i∈S

cij +
∑
i /∈S

[
min

i′∈S∪{i}
ci′j − min

i′∈S
ci′j

]
yi, ∀S ⊆ I ∗, j ∈ J.

(4.53)
The following observation indicates that only a polynomial number of con-

straints (4.53) is required to obtain a valid formulation for the UFLP.

Remark 4.1 For S ⊂ I and j ∈ J given, the right-hand side of their associated
constraint (4.53) does not change if the summation is taken over all i ∈ I , since
mini′∈S∪{i} ci′j − mini′∈S ci′j = 0, for i ∈ S. Moreover, for any S ⊂ I , the value of
mini∈S cij will be one of the values cij , with i ∈ S. That is, for any S its associated
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constraint (4.53) can be written as

ηj ≥ csj +
∑
i∈I

(cij − csj )
−yi, for some s ∈ S.

To apply the above remark and obtain a formulation with a polynomial number of
constraints, for each j ∈ J , we order the elements of I in non-decreasing values of
their coefficients cij , and we denote by irj the r-th index according to that ordering.
That is, ci1j ≤ ci2j ≤ · · · ≤ cimj ≤ cim+1j , where cim+1j = ci∗j is the allocation
cost of customer j to the fictitious facility i∗. For simplicity, when the index j is
clear from the context we just write ir to denote the r-th ordered element.

Theorem 4.2 The UFLP can be formulated as

(SUFLP) vS = minimize
∑
i∈I

fiyi +
∑
j∈J

ηj (4.54)

subject to ηj ≥ cir j +
∑
i∈I

(cij − cir j )̄ yi r = 1, . . . , m + 1, j ∈ J

(4.55)

ηj ≥ 0 j ∈ J (4.56)

yi ∈ {0, 1} i ∈ I. (4.57)

The proof which is based on Remark 4.1 is left to the reader. Formulation (4.54)–
(4.57) involves |m| binary variables y and |J | continuous variables η. Its total
number of constraints is (m + 1)|J |.

The reader familiar with Benders type reformulations (Benders 1962) will
immediately observe that constraints (4.55) are nothing but Benders cuts. Thus
formulation (4.54)–(4.57) admits an alternative interpretation in terms of a Benders
type reformulation. The interested reader is addressed to Magnanti and Wong
(1990) for an extensive description of the application of Benders reformulations
to the UFLP.

Modern implementations of Benders decomposition, in which Benders cuts
are embedded within branch-and-cut enumeration methods, have been recently
developed for the UFLP and some extensions. In particular, Fischetti et al. (2016)
deals with the UFLP and its extension to separable quadratic allocation costs. The
reformulation is particularly successful for large scale instances of the classical
UFLP with linear costs, since the huge number of allocation variables is replaced
with a linear number of continuous variables that model the customer allocation cost
directly. Fischetti et al. (2017) have addressed the multiple allocation capacitated
case, both for the classical objective with linear costs (MFLP) and when the
objective includes convex but non-separable quadratic terms.

We close this section by interpreting SUFLP as a radius-based formulation. Such
formulations have been broadly used in recent years for different types of location
and hub location problems, after the work by Elloumi et al. (2004). Their main
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characteristic is the use of decision variables to model the service cost for customers.
Using the above notation, in which, for j ∈ J , cir j denotes the r-th smallest
allocation cost for customer j , we define a new set of binary decision variables
zrj , r = 1, . . . , m, where zrj = 1 if and only if the allocation cost of customer j is
at least cir j . With these decision variables, the allocation cost of customer j can be
written as the telescopic sum ci1j + ∑m

r=2(cir j − cir−1j )zrj , so that an alternative
UFLP formulation is

(RUFLP) vR = minimize
∑
i∈I

fiyi +
∑
j∈J

(ci1j +
m∑

r=2

(cir j − cir−1j )zrj ) (4.58)

subject to zrj +
∑
i∈I

cij <cir j

yi ≥ 1 r = 1, . . . , m + 1, j ∈ J (4.59)

zrj ∈ {0, 1} j ∈ J, r = 1, . . . , m + 1 (4.60)

yi ∈ {0, 1} i ∈ I. (4.61)

The equivalence between both formulations can be established by observing that
feasible solutions to SUFLP define feasible solutions to RUFLP and vice versa.
Indeed, if (η, y) is feasible for SUFLP we obtain a feasible RUFLP solution by
setting, for each j ∈ J , zrj = 0 for all r with cir j ≥ ηj , and zero otherwise.
Constraints (4.55) guarantee that (z, y) satisfies constraints (4.59) and is feasible
for RUFLP. Conversely, we can also check that a feasible SUFLP solution can be
obtained from a feasible RUFLP solution by setting for, j ∈ J , ηj = cir∗ j with
r∗ = arg min{cir j : yir = 1}.

4.5 Polyhedral Analysis of the UFLP

This section concentrates on the polyhedral analysis of the UFLP. We assume the
reader is familiar with the basic polyhedral concepts (an exposition can be found, for
instance in Nemhauser and Wolsey 1988). Although any UFLP formulation can be
analyzed from a polyhedral perspective, we focus on the set packing formulation for
the UFLP, because it is the one that has received more attention from a polyhedral
point of view. An alternative analysis to the one we develop next, based on a set
partitioning UFLP formulation, can be found in Guignard (1980).

As indicated in Sect. 4.2 facility location problems can also be modeled as
maximization problems in which the expression of the objective function is (4.17).
In the case of the UFLP such a formulation can be easily transformed into a set
packing one by doing the change of variables ȳi = 1 − yi , i ∈ I ; i.e. ȳi = 1
if and only if facility i is not opened. The objective function can be rewritten in
terms of the new variables as −∑

i∈I fi + ∑
i∈I fi ȳi + ∑

i∈I

∑
j∈J pij xij , whose
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maximization reduces to maximizing the objective
∑

i∈I fi ȳi + ∑
i∈I

∑
j∈J pij xij

within the appropriate domain. Hence, a set packing formulation for the UFLP is

(KUFLP) maximize z =
∑
i∈I

fi ȳi +
∑
i∈I

∑
j∈J

pij xij (4.62)

subject to
∑
i∈I

xij ≤ 1 j ∈ J (4.63)

xij + ȳi ≤ 1 i ∈ I, j ∈ J (4.64)

xij ∈ {0, 1} i ∈ I, j ∈ J (4.65)

yi ∈ {0, 1} i ∈ I. (4.66)

Formulation KUFLP can be viewed as a set packing formulation and thus its set
packing properties are inherited. For this we will consider the intersection graph,
that we denote by G(m, n), with a node for each variable of KUFLP and with an
edge for each pair of variables sharing a constraint in KUFLP.

In the following P mn and Fmn denote the convex hull of the feasible solutions
of KUFLP and its LP relaxation, LKUFLP, respectively. For m∗ ≤ m and n∗ ≤ n,
we call m∗ × n∗ adjacency matrix S to any m∗ × n∗, 0–1 matrix with no zero row
and no zero column. Given an adjacency matrix S and two ordered sets IS ⊆ I

and J S ⊆ J , we denote by GS = (V S,ES) the subgraph of G(m, n) given by
V S = {xij : i ∈ IS, j ∈ J S, sij �= 0} ∪ {ȳi : i ∈ IS}, ES = {(xij , xkj ) : i, k ∈
IS, i < k, j ∈ J S, sij = skj = 1} ∪ {(ȳi , xij ) : i ∈ IS, j ∈ J S, sij = 1}. Finally,
α(G) denotes the independence number of graph G, i.e., the maximal cardinality of
a packing of nodes in G, and B denotes a cyclic matrix of type (k, t), i.e. its size is
k × k and its rows are 0–1 vectors with t adjacent 1’s, which move one position to
the right in each row.

Some relevant contributions on the polyhedral analysis of KUFLP are (in
chronological order): Cornuéjols et al. (1977), Guignard (1980), Cornuéjols and
Thizy (1982), Cho et al. (1983a,b), Myung and Tcha (1996), Cánovas et al. (2000,
2001, 2002), Baiou and Barahona (2009a) and Chen et al. (2012). New trends in this
area relate to the study of how to adapt the known polyhedral properties of the UFLP
to problems generalizing it. Nice examples are the papers by Hamacher et al. (2004)
and by Baiou and Barahona (2009b). In both cases the authors give results allowing
to directly adapt any valid inequality of the UFLP to the Hub Location Problem
and the Two-Level Facility Location Problem, respectively. Next we summarize the
main results in this area.

First of all, P mn is full-dimensional, i.e., dim(P mn) = mn + p. Thus, two
different facets of P mn always define two different sets of feasible solutions for
KUFLP.

Cho et al. (1983a) have proven that for m ≤ 2 or n ≤ 2 the coefficient matrix
of KUFLP is totally unimodular, so the polyhedral analysis is of little interest. They
have also given a complete description of the facets of P mn when m = 3 or n = 3.
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Recently, Baiou and Barahona (2009a) and Chen et al. (2012) have presented new
conditions for Fmn to be integral, i.e., to have all its extreme points integral. Both
papers define a particular type of odd cycles in the intersection graph of KUFLP
without which the extreme points of the polyhedron Fmn are integral.

The remainder of this section is divided in three parts: extreme points of Fmn,
valid inequalities and facets of P mn, and lifting procedures.

4.5.1 Extreme Points

We are aware of two papers dealing with the characterization of the fractional
extreme points. Cornuéjols et al. (1977) give a characterization for the extreme
points of Fmn. Let If = {i ∈ I : 0 < ȳi < 1}, J0 = {j ∈ J : xij ∈ {0, 1 − ȳi}
for all i and xij non-integer for some i} and let U be the |If | × |J0| matrix whose
elements are

uij =
{

1 if xij > 0,

0 if xij = 0.

Theorem 4.3 (Cornuéjols et al. 1977) The fractional feasible solution (x, ȳ) of
LKUFLP is an extreme point of Fmn if and only if

(a) 1 − ȳi = maxj {xij } for all i ∈ If ,

(b) for each j ∈ J, there is at most one i with 0 < xij < 1 − ȳi ,

(c) the rank of U equals |If |.
Cánovas et al. (2001) have later provided a characterization for the extreme points
of a more general polyhedron and prove that condition (a) of Theorem 4.3 follows
from conditions (b) and (c). Cho et al. (1983a) make use of this characterization
to prove that a certain family of valid inequalities can cut fractional solutions of
LKUFLP. The results of Cánovas et al. (2001) also characterize the extreme points
of the polyhedra associated with the FLP formulation in Leung and Magnanti (1989)
and of other related problems.

4.5.2 Valid Inequalities and Facets

Next we present several families of valid inequalities of P mn. Further details and
results can be found in Cho et al. (1983a) and Cánovas et al. (2002).
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Cornuéjols et al. (1977) presented the first polyhedral study of the KUFLP. They
proposed, without proof, the following family of valid inequalities of P mn

∑
i∈IC

bij xij +
∑
i∈IC

ȳi ≤ 2k − 
k/t�, (4.67)

where k and t are integers such that k = tp + 1 for some integer p, B is a cyclic
matrix of type (k, t) and IB ⊆ I, JB ⊆ J are subsets of cardinality k. Later,
Cornuéjols and Thizy (1982) proved that (4.67) is a facet.

Several well-known families of facets for the KUFLP with binary coefficients are
discussed below:

Theorem 4.4 (Cho et al. 1983b) Consider IS ⊆ I and J S ⊆ J . Then, the
inequality

∑
i∈IS

∑
j∈JS

sij xij +
∑
i∈IS

ȳi ≤ α(GS),

where sij = 0 or 1, is facet-defining for P mn (and different from a clique facet) if
and only if S is a |IS | × |J S |, maximal m × n-adjacency matrix.

A characterization of maximal m × n-adjacency matrices can be found in Cho
et al. (1983b). A special case of maximal m × n-adjacency matrix gives rise to a
concrete family of facet-defining inequalities of P mn:

Theorem 4.5 (Cornuéjols and Thizy 1982 ) Consider � and t such that 2 ≤ t <

� ≤ m and subsets P ⊆ I , D ⊆ J , such that |D| = ( �
t), |P | = �. Let A�t be the

matrix whose columns are all vectors 0–1 with t ones and � − t zeros. Then,

∑
i∈P

∑
j∈D

a�t
ij xij +

∑
i∈P

ȳi ≤ ( �
t ) + t − 1

is a facet-defining inequality of P mn.

By exploiting the set packing structure of KUFLP, the odd holes in the intersec-
tion graph of KUFLP allow to define two new families of valid inequalities.

Theorem 4.6 (Cornuéjols and Thizy 1982) The inequality

x21 + x32 + x13 +
3∑

i=1

xii +
3∑

i=1

ȳi ≤ 4

is facet-defining for P 33.
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Theorem 4.7 (Cornuéjols and Thizy 1982) The inequality

x15 + x13 + x41 +
5∑

i=1

xii +
4∑

i=1

x(i+1)i +
5∑

i=1

ȳi ≤ 7

is facet-defining for P 55.

Families of facet defining inequalities for KUFLP with general integer coeffi-
cients are also known.

Theorem 4.8 (Cánovas et al. 2000) Let S be an r×c adjacency matrix satisfying

(i) ∀i1, i2 ∈ IS ∃j ∈ J S such that si1j si2j = 1 and
(ii) ∀(i, j) ∈ IS × J S with sij = 1 ∃� ∈ IS , � �= i, such that s�j = 1 and

sihs�h = 0 ∀h �= j .

Then,

∑
i∈IS

∑
j∈JS

sij xij +
∑
i∈IS

(
∑
j∈JS

sij − 1)ȳi ≤
∑
i∈IS

∑
j∈JS

sij − |IS | + 1

is a facet-defining inequality of P rc.

Theorem 4.9 (Cánovas et al. 2002) Let S be the k × k adjacency matrix, k ≥ 3,
given by

S =
(

0 11×(k−1)

1(k−1)×1 I(k−1)×(k−1)

)

Then,

∑
i∈IS

∑
j∈JS

sij xij + (k − 2)ȳ1 +
k∑

i=2

ȳi ≤ 2k − 2

is a facet-defining inequality of P kk .

Theorem 4.10 (Cánovas et al. 2002) Consider three numbers, k ≥ 5, 1 ≤ a <

k − 3 and b = k − 3 − a and let S be the k × k adjacency matrix given by

S =

⎛
⎜⎜⎜⎜⎜⎝

Ia×a 0a×b 0a×1 0a×1 1a×1

0b×a Ib×b 1b×1 0b×1 1b×1

11×a 01×b 1 0 0
01×a 11×b 0 1 0
01×a 01×b 1 1 1

⎞
⎟⎟⎟⎟⎟⎠

.
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Then,
∑
i∈IS

∑
j∈JS

sij xij +
∑

i∈IS−{k−2,k−1}
ȳi + aȳk−2 + bȳk−1 ≤ 2k − 3

is a facet-defining inequality of P kk .

Theorem 4.11 (Cánovas et al. 2002) Let B be the cyclic (2k+1, 2) matrix, k ≥ 1,
and let S be the (2k + 2) × (4k + 2) adjacency matrix given by

S =
(

B(2k+1)×(2k+1) I(2k+1)×(2k+1)

01×(2k+1) 11×(2k+1)

)
.

Then,

∑
i∈IS

∑
j∈JS

sij xij +
2k+1∑
i=1

2ȳi + (k + 1)ȳ2k+2 ≤ 6k + 3

is a facet-defining inequality of P (2k+2)(4k+2).

Other types of inequalities have been suggested. For instance, Myung and Tcha
(1996) develop a family of inequalities that may cutoff feasible solutions but not
optimal ones. In particular, they propose a method for generating inequalities for a
constrained KUFLP which considers its feasible domain and the objective function
value, as well. For the sake of brevity, details are omitted here.

Recently an exponentially large family of valid inequalities called homogeneous
inequalities has been introduced in Galli (2018). Homogeneous inequities gener-
alize the valid inequalities in Theorems 4.4–4.8, namely, those whose coefficients
are binary. Necessary and sufficient conditions for homogeneous inequalities to be
facet-defining for P mn are given in the mentioned paper.

4.5.3 Lifting Procedures

The procedures that transform a valid inequality (facet) of a polyhedron P m∗n∗

into a valid inequality (facet) of a higher dimensional polyhedron P mn, m ≥ m∗
and n ≥ n∗, are called lifting procedures. Such results invite the study of smaller
polyhedra. The following result indicates how to lift all the facets in the previous
section. Apart from the results in this section, other lifting procedures for general
set packing models can be found in Cánovas et al. (2003).

Theorem 4.12 (Cho et al. 1983b) Let
∑
i∈P

∑
j∈D

πij xij +
∑
i∈P

μiȳi ≤ π0 (4.68)
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be a facet-defining inequality of P m∗n∗
. Then, (4.68) is also a facet-defining

inequality of P mn for m ≥ m∗, n ≥ n∗.

Cho et al. (1983b) also give a constructive procedure for obtaining facets of P mn

from cyclic adjacency matrices which do not define facets themselves.

Theorem 4.13 (Cho et al. 1983b) Consider P ⊆ I , D ⊆ J , such that |P | =
|D| = q, q ≥ 3. Consider the facet-defining inequality of P qq given by

∑
i∈P

∑
j∈Di

xij +
∑
i∈P

ȳi ≤ 2q − 2

where the sets Di are all the different subsets of D with |Di | = q − 1. Suppose we
add |S| + |T | facilities of I to P in such a way that each facility in S covers q − 1
destinations and each facility in T covers all the q destinations. Let |S| = s and
|T | = t . Then,

∑
i∈I∪S∪T

∑
j∈Di

πij xij +
∑

i∈I∪S∪T

μiȳi ≤ (2q + s − 2)(q − 1) + t (q − 2)

is a facet-defining inequality of P (q+s+t)q , where

I. πij = μi = q − 1, i ∈ P ∪ S, j ∈ Di ,
II. πij = μi = q − 2, i ∈ T , j ∈ Di .

Theorem 4.14 (Galli 2018) Let

∑
i∈I

∑
j∈J

πij xij +
∑
i∈P

μiȳi ≤ π0

be a valid inequality of P mn. Let P be an arbitrary subset of I and π+
j (P ) =

maxi∈P {πij }. The augmented inequality

∑
i∈I

∑
j∈J

πij xij +
∑
j∈J

π+
j (P )x(m+1)j +

∑
i∈I

μi ȳi + (
∑
i∈I

μi)ym+1 ≤ π0

is valid of P (m+1)n.

4.6 Conclusions

Fixed-Charge Facility Location Problems capture the main issues arising in fixed-
charge location, so they are an excellent workbench for reviewing relevant aspects
in this field. This was the aim of this chapter where we have covered a broad range
of possibilities related to the modeling and the solution process of FLPs. Indeed
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the problems studied in this chapter can be seen as simplifications of more realistic
models that take into account additional issues. We have studied deterministic static
problems, without taking uncertainty into account (see, for instance, Lin 2009;
Albareda-Sambola et al. 2011; Gao 2012; Albareda-Sambola et al. 2013, 2017),
or temporal aspects (see, for instance, Albareda-Sambola et al. 2009a, 2010, 2012).
Also, the way we have considered capacity constraints on the facilities may seem
simplistic, since modular capacities (incurring their corresponding costs) can be
more realistic (see, for instance, Gouveia and Saldanha-da-Gama 2006; Gourdin and
Klopfenstein 2008; Correia et al. 2010). FLPs can be extended in various ways: One
can consider more involved objective functions or multiple objectives (Fernández
and Puerto 2003; Boland et al. 2006; Wu et al. 2006; Zanjirani Farahani et al. 2010),
problems combining FLP decisions with network design (Melkote and Daskin
2011; Contreras et al. 2012), additional constraints (Albareda-Sambola et al. 2009b;
Gendron and Semet 2009; Marín 2011), or the possibility of installing several
facilities at the same site (Ghiani et al. 2002), just to mention a few possibilities.
Some of these extensions are addressed in other chapters of this book.

A wider view of FLPs is provided from the perspective of Multilevel Facility
Location (MFL), which defines a large class of problems that is receiving increasing
attention and generalizes FLPs. In MFL the set of potential facilities is partitioned
in several levels and the goal is to determine the facilities to open at each level, and
the assignment of customers to possible multiple sequences of open facilities, so as
to optimize a given objective function. The interested reader is referred to Contreras
et al. (2018) for a comprehensive overview on MFL, and to Contreras et al. (2017,
2019) for recent approaches to solving some problems of this class.
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