
Chapter 26
Facility Location in the Public Sector

Knut Haase, Lukas Knörr, Ralf Krohn, Sven Müller, and Michael Wagner

Abstract In this chapter we focus on facility location problems that arise in
the public sector. In particular, we consider selected problems in transportation,
health care, and education—important sectors of public service. The adequate
consideration of demand in these models is of core interest in this chapter. Besides a
discussion of selected model formulations we provide a quantitative and qualitative
overview of recent publications in the field.

26.1 Introduction

In this chapter, we discuss recent work related to public sector facility location
planning. Of course, a location of a public service does not necessarily strictly
belong to the public sector. For example, healthcare facilities may also be owned
by a private firm while being regulated by a public health agency. The main
difference between the planning of public and private facility locations are the
objectives that are considered by decision makers. The optimization criteria in
private applications are mainly profit and market capture maximization, whereas
in public applications social cost minimization, access, efficiency, and equity are
the primary goals. Since the measurement of these objectives is relatively difficult,
they are frequently simplified by minimizing the locational and operational costs
needed for full coverage, or the search for maximal coverage under a given amount
of available resources (Marianov and Serra 2002).
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Most of the public facility location models proposed in the selected papers rely
on covering problems, p-median problems or a combination of both. They are
benchmarks in the development of location models. The public sector applications
of covering models are based on the concept of acceptable proximity. If a service
is provided by a facility located within a maximum distance or travel time, the
service is considered adequate – the client demand is covered. Two major types
of formulations can be distinguished in such covering models. Set covering models
seek to minimize the number of facilities needed for full coverage of the population.
In contrast, maximum covering models are limited by the number of facilities or
services and maximize the covered population share. Furthermore, a distinction can
be made between fixed servers (e.g., schools, hospitals) and systems with mobile
servers (e.g., ambulances, see Nickel et al. (2016)). Additionally, a server can be
classified as capacitated or uncapacitated. An example of a capacitated service is
a primary school that has a limit on the number of students who can enroll in a
particular year (Marianov and Serra 2002; Müller et al. 2009). In the following, we
discuss selected areas of application of public facility location planning approaches:
Bike sharing systems, simultaneous bus scheduling and depot location planning,
electric vehicle charging station planning, healthcare facility location planning, and
school location planning. The presented models are classified as discrete location-
allocation models as well as location choice models.

26.2 Bike Sharing

Since the political interest in the promotion of cyclists continues to increase, it is
important to create enough hubs and parking areas for bicycles. People who do not
have a bicycle on their own should have an appropriate possibility to use bicycles
within cities. Thus, bike sharing models are becoming more and more popular. Bike
sharing is often linked to transport hubs, but there are also stand-alone models for
rental stations and also station-less approaches.

With the proposal of Sayarshad et al. (2012), an optimization formula to design
a bike-sharing system for small communities is presented. This formula can also
be used to extend the public transport with incoming and outgoing bike traffic.
They try to find a minimum required bike fleet size that also minimizes the unmet
demand, non-utilized bikes, and the need to transport bikes between the stations. The
mathematical model maximizes the considered company’s total benefit where the
objective function consists of six terms: (1) the revenue from rented bikes traveling
between network nodes, (2) the cost of moving empty bikes within the network,
(3) the cost of processing and maintenance of bikes, (4) the bike holding cost at
a station, (5) the bikes’ capital cost per period, and (6) the penalty cost of unmet
demand.

By combining the models for private cars and public bicycles, in Romero et al.
(2012) the goal is to achieve an efficient and sustainable transport system that is
also economically and socially efficient at the same time. The choice between motor
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vehicle and bicycle and route selection is simulated by a user behavior model. Thus,
in turn, a combined vehicle-bicycle transport network was created on which a modal
split model can be matched. The goal is then to optimize the location of bike stations.
The study in Lin and Yang (2011) deals with strategic planning of bike sharing
taking into account both the interests of users and investors. Considering those
interests, the model attempts to determine the number and location of bike sharing
stations, the network structure as well as the travel paths between the stations.
Lin et al. (2013) continue expanding this approach by considering the number and
location of bicycle stations in the system, the creation of bicycle lanes, and selection
of paths between the stations and the inventory levels of the bike sharing facilities.
Decisions are made under consideration of total costs and service. An approach to
maximize the coverage of a bike sharing facility by also using the available budget
as a constraint is proposed by Frade and Ribeiro (2015). They combine the strategic
decision for a bike sharing facility and the dimension of the stations with operational
decisions. The result is an optimal location as well as the capacity of each station
and the number of bikes needed while staying within the budget.

26.3 Location Decisions in Public Transport

Traffic planners face the trade-off between improving accessibility with addi-
tional bus stops while simultaneously increasing efficiency so that traffic reach
destinations in a reasonable time. Delmelle et al. (2012) address this specific
problem with an optimization framework that builds upon facility location coverage
models. In contrast to the p-median and maximal covering location problem, the
demand can partially be assigned to more than one facility. Furthermore, facility
attraction is explicitly integrated. The modeling approach considers the impact of
walking distance from a residential location to a stop as well as the transit facility
attractiveness (the number of destinations served, for example). Cipriani et al.
(2012) deal with the bus network design problem in a multimodal transit context.
The approach determines the (near) optimal network configuration regarding bus
routes and service frequencies. It aims to minimize the total costs involved in the
transport system. A similar method is used by Ciaffi et al. (2012) to solve the feeder-
bus network design problem. Their results show that the design procedure could lead
to a reduction of the total travel time, an increase in the number of transfers, in a
more efficient way.

The locations of bus stops affect travel times and therefore also the expected
demand. By using a random utility model (RUM) we can measure the expected
impact of travel time and other factors on demand. Klier and Haase (2015) integrate
a RUM in line planning that results in a difficult optimization problem. If we assume
that distance to the departure stop is the only relevant factor influencing the choice
behavior over a given set of potential stop locations, RUM approaches as defined
in Haase and Müller (2013, 2014), Müller and Haase (2014) or Ljubić and Moreno
(2018) might be appropriate.
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Another topic in public transport is the location of bus depots. The depot
locations determine the vehicle costs. Therefore, we combine vehicle scheduling
and bus-depot location in one integrated approach.

Defining the sets

N set of nodes representing line trips and potential bus depot nodes,
M set of potential bus depot nodes,
I set of nodes representing line trips,
A set of arcs representing feasible idle trips (compatible with the timetable),

the parameters

cij costs of idle trip (i, j) ∈ A ,
fm fixed costs per day of depot m,
km maximum number of vehicles in depot m,

and the binary variables

Xmij = 1 if a vehicle from depot m serves idle trip (i, j) ∈ A (0, otherwise),
Ym = 1 if depot m is to be established (0, otherwise)

then we formulate the depot location and vehicle scheduling model as follows:

Minimize F =
∑

m∈M

∑

(i,j)∈A
cijXmij +

∑

m∈M
fmYm (26.1)

subject to

∑

m∈M

∑

(i,j)∈A
Xmij = 1 ∀ i ∈ I (26.2)

∑

(i,j)∈A
Xmij −

∑

(j,i)∈A
Xmji = 0 ∀ m ∈ M ; j ∈ N (26.3)

∑

(m,j)∈A
Xmmj ≤ kmYm ∀ m ∈ M (26.4)

Xmij ∈ {0, 1} ∀ m ∈ M ; (i, j) ∈ A (26.5)

Ym ∈ {0, 1} ∀ m ∈ M (26.6)

The objective function (26.1) minimizes the total costs per day. Equation (26.2)
ensure that each line trip is operated exactly once. Equation (26.3) are flow
conservation constraints and Eq. (26.4) ensure that trips can only start from a depot
if it is established and the depot capacity is considered.
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26.4 Electric Vehicle Charging Station Location

In the application of electric vehicle (EV) charging station location, we find plenty
of recent work attributed to the technical developments in the EV industry and to
the rising importance of eco-friendly transport modes in times of climate change
(Müller and He 2018). With the increasing demand for vehicles with alternative
fuel usage, the demand for their charging or refueling stations is also increasing.
The papers in Table 26.1 discuss this topic in several approaches by maximizing
the coverage, maximizing the traffic flow, minimizing the costs or by combining of
these objectives.

Frade et al. (2011) present a charging location problem for parked cars. For
this study area, a slow-charging model is suitable, because parked cars are parked
for several hours. The proposed model is based on a maximum coverage location
model (MCLP) to optimize the demand coverage by simultaneously keeping an
acceptable level of service. They optimize the number of stations and the scale of
each station. As input parameters, an estimated refueling demand for the day and
nighttime is needed. The approach of Giménez-Gaydou et al. (2016) also covers
urban areas. Their models consist of a location-allocation model with detailed
analysis of charging needs, charging coverage, and adoption potential. Zheng et al.
(2017) investigate a network-design-like problem with a bi-level structure. While
the upper level aims for optimal locations with minimized general costs calculated
from travel time and energy consumption, the lower level aims at minimized
individual costs with traffic equilibrium. By adding the lower level to the upper level,
those two levels are then combined to a single level model. The hybrid model from
Mozafar et al. (2017) handles the optimal allocation and sizing of either renewable
energy sources or electric vehicle charging stations. A multi-objective problem is
created to obtain several objective variables such as reducing power losses, voltage
fluctuations, charging and demand-supply costs, and battery costs. The location and
the dimension of the charging stations are handled as decision variables.

In contrast to public charging stations for private vehicles, Yang et al. (2017)
introduce a location model for electric powered taxis. With the goal to minimizing
the infrastructure costs, an integer linear program (ILP) is formulated. Their key
findings include positioning of the charging stations matching the dwell pattern of
the taxis, with the combination of charging and waiting spots, fewer chargers are
needed and this compromise can be qualified by the cost of charging spots versus
parking spots. Another taxi-based approach is proposed by Tu et al. (2016). In
contrast to the approach of Yang et al. (2017), their model’s goal is to maximize the
charging station service within the taxi network. To achieve this, a spatial-temporal
demand coverage location model is proposed and the results are analyzed with
respect to spatial coverage, temporal demand availability, and waiting and loading
behavior. A bus charging model is proposed by Xiang and Zhang (2017). In contrast
to the taxi models, for buses with electric drive it is common to replace the battery
instead of charging it. A particle swarm optimization algorithm (PSO) is used to
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calculate the optimal location for the replacement facilities with a minimum of total
costs (transport costs, construction costs, and operating costs).

Another approach is presented by Ghamami et al. (2016a) with the goal to
minimize the total system cost. Their idea is to use existing parking lots to install
charging facilities. The model becomes complex by introducing costs for uncovered
demand and also considering the drivers’ preferences for familiar parking lots.
Ghamami et al. (2016b) aim to configure charging stations to support long distance
intercity travel by using a general corridor model minimizing the total system costs
including infrastructure, battery, and user costs. Using a mixed-integer program with
non-linear constraints, it is possible to use realistic patterns of origin-destination
demands and also considering flow-dependent charging delay caused by traffic jam.
With this model, a strategic design of charging stations along highways is possible.

Different to the parking-and-charging models, a wireless-charging model is
investigated by Riemann et al. (2015). Based on a mixed-integer non-linear program
(MINLP), a method is formulated to find a number of charging facility locations
out of a set of candidates and to maximize the total captured flow. Similar to this,
a flow refueling location problem for both electric and plug-in hybrid vehicles is
introduced by Arslan and Karaşan (2016). With the goal of maximizing the vehicle
miles that can be traveled and minimizing the total cost, the presented exact solution
is an arc-cover formulation and makes use of a Benders decomposition approach.

To propose a model for locating refueling stations in a transport network,
Miralinaghi et al. (2017a) assume that a central planner such as a hydrogen
manufacturer or a government agency is planning the locations for refueling stations
with alternative fuel type, especially hydrogen. Considering a multi-period travel
demand, both the non-linear refueling station operational cost and the deviation of
travelers from their shortest routes to refuel are taken into account. The proposed
capacitated facility location problem (CFLP) is solved with a combination of
Branch-and-Bound and Lagrangian relaxation. Another approach, presented by
Miralinaghi et al. (2017b), considers the refueling demand uncertainty with the
effect of the deviation of travelers to refuel. A cutting plane algorithm is used
to solve the robust centralized planning model (RCPM). The uncertainty model
from Hosseini and MirHassani (2015) provides a two-stage stochastic refueling
station model for permanent stations in the first stage and portable stations in the
second stage. Portable refueling stations are an innovative feature that can be used to
close temporary gaps in supply. A business-driven model for charging infrastructure
planning is introduced by Guo et al. (2016) by using a multi-agent optimization
problem with equilibrium constraint (MOPEC). The goal is to maximize providers’
profit. An approach in which a charging network can be planned without existing
facilities comes from Jeong (2017). They also provide a dynamic-programming-
based algorithm for the case where facilities already exist. The goal is to minimize
the total construction costs of the charging network by minimizing the cost of
charging stations. In particular, the model underlies the following assumptions:
(1) multiple origin-destination round trips along the shortest paths, (2) a single
type of alternative fuel vehicle with a constant driving range, (3) uncapacitated
stations, (4) possible refueling station locations that are only nodes in the traffic
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network (i.e., vertex restricted refueling stations), (5) a linear relationship between
fuel consumption and driving distance, and (6) fully fueled vehicles at the point of
origin.

Defining the sets

N nodes of the network,
E existing refueling stations E ⊂ N ,
K considered alternative fuel vehicles,
Pk sequence of arcs (i, j) along path of vehicle k, and

the parameters

dij (Euclidean) distance from node i to node j ,
ci cost of refueling station at node i,
S maximum vehicle range, and

the variables

Xi = 1 if a refueling station is set up at node i (0, otherwise),
Yik = 1 if vehicle k is recharged at node i (0, otherwise),
Zik remaining driving range of vehicle k at node i, and
Wik additional driving range of vehicle k if refueled at node i,

the refueling station location problem is to

minimize F =
∑

i∈N \E
ciXi (26.7)

subject to

Yik ≤ Xi ∀ i ∈ N \E , k ∈ K (26.8)

Wik = SYik ∀ k ∈ K , i ∈ N (26.9)

Wik ≤ S − Zik ∀ k ∈ K , i ∈ N (26.10)

Zjk = Zik + Wik − dij ∀ k ∈ K , (i, j) ∈ Pk (26.11)

Xi ≥ 0 ∀ i ∈ N \E (26.12)

Yik ∈ {0, 1} ∀ i ∈ N , k ∈ K (26.13)

Zik,Wik ≥ 0 ∀ i ∈ N , k ∈ K . (26.14)

The objective (26.7) is the minimization of the total set up cost of refueling stations.
If there is no refueling station at node i, refueling cannot occur at i by constraint
(26.8). The refueling amount at node i is S by constraint (26.9), and this amount
must not exceed S − Zik by constraint (26.10) if the vehicle refuels at node i.
Constraint (26.11) defines the remaining distance using the remaining fuel at each
node i. Considering arc (i, j) the remaining fuel at node j is the sum of the
remaining fuel at node i and the fueled amount at node i minus distance between
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node i and node j . The authors show that the problem is N P-complete and
propose several procedures for its solution. The approach is used to analyze the
diffusion of alternative fuel recharging stations in a given market.

26.5 Spatial Planning for Health Care Facilities

One of the key factors to achieve a high standard in healthcare is a systematic and
efficient system planning (Shariff et al. 2012). See Chap. 23 for a more detailed
discussion. Therefore, it is important to develop methods to facilitate the planners’
decision making process in the locating of new healthcare facilities (Zhang et al.
2016) (Table 26.2).

To find a more systematic and efficient way of locating healthcare facilities,
Shariff et al. (2012) use a MCLP with capacitated facilities. Zhang et al. (2016)
investigate the location problem of healthcare facilities to maximize the equity of
accessibility and the total accessibility and to minimize the population outside the
coverage range, and minimize the cost of new buildings.

Two location-allocation models to handle the uncertainty in the strategic hospital
network planning are proposed by Mestre et al. (2015). The models aim to
inform about the (re-) organization of hospital networking systems by improving
geographical access (minimize expected travel time) while minimizing costs.

The problem of determining locations for long-term care facilities is investigated
in Djenić et al. (2017), where the objective is to minimize the maximum number of
patients that are assigned to a single installed facility.

Kim and Kim (2013) focus on public healthcare facilities that can be used by
low-income patients. They examine the problem of determining locations of public
healthcare facilities within a given budget and allocating the patients to the facilities.
The objective is to maximize the number of served patients while considering the
patients’ preferences of the for the public and private facilities. Basu et al. (2018)
focus on socio-economically weaker patients. They aim to quantify the gap in
affordable healthcare facilities access. The optimization model shows where new
public facilities are required, and the positive impact of the proposed model with
increasing coverage is detected.

Besides operations research applications in healthcare operation management,
the design of blood supply networks also is important. Hospitals and clinics as
demand centers are dependent on blood products and an efficient procurement
system is needed. Arvan et al. (2015) intend to locate blood bank components
in a network and to determine the allocations among these network components
(donation sites, testing and processing labs, blood banks, and demand points). The
main objectives are to identify the locations of donation points and central blood
banks as well as to decide about the product quantity that is shipped among the
facilities. To model the problem a bi-objective approach is proposed not only to
minimize the cost but also to minimize the time period in which blood products
remain in the network.
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In contrast to immediate medical support, there are also studies regarding pre-
ventive healthcare. In this case, clients choose whether to participate in preventive
care programs or not. To maximize the total participation in these programs, Zhang
et al. (2012) investigate the impact of clients’ choice behavior on the preventive care
facility network design and the resulting level of participation. They present two
alternative models: the probabilistic-choice model and the so-called optimal-choice
model. Solving large instances (with CPLEX) can take days. Enhancing the model
of Haase (2009), Haase and Müller (2015) show that an alternative formulation
of the presented problem can be useful to solve problems considerably faster with
commercial solvers. An approach to derive a lower bound to the problem is also
presented to accelerate computation time. In the following, we present an extension
of this model, which includes variables in patients’ utility functions (Krohn et al.
2018).

The locations of client nodes (demand points), the number of eligible patients
per node, candidate locations for preventive healthcare facilities and a set of feasible
facility modes are given. Different modes represent waiting time for an appointment
and quality of care. The problem is to determine the locations and modes of
established facilities in a way that maximizes the target population’s expected
participation in the preventive healthcare program. We integrate quality and waiting
time into a deterministic mixed-integer linear problem via discretization of the
clients’ utility function and consider each combination of a facility’s location and its
mode as a separate choice alternative, e.g., a single facility with two possible modes
results in two alternatives within the client’s choice set. The two virtual facilities
cannot be established simultaneously, because only exactly one mode is assigned to
the facility. Hence, in the solution for this example, only one alternative (the facility
located in a specific mode) remains in addition to the no-choice alternative, which
is always present. Our approach makes use of the MNL’s IIA property (Haase 2009;
Aros-Vera et al. 2013; Haase and Müller 2015): The basic idea is to provide in
advance calculated choice probabilities as input parameters and to take advantage
of their constant ratios.

Defining the sets

I set of demand nodes,
J set of candidate facility location nodes J ⊆ I ,
M set of modes in which a facility can be established (quality of care and waiting

time for an appointment), (might also contain capacity levels), and

the parameters

gi number of clients in node i that are eligible to require health service,
pijm MNL choice probability of clients in i to access service at a facility located

at j being in mode m given that (j,m) is the only facility established, i.e.
the choice set consists of the two alternatives {(j,m); no}, which results in
pijm = evijm

evi,no+evijm where vijm is the deterministic utility of clients in i going
to a facility located at j being in mode m and vi,no is the deterministic utility
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for demand node i of not attending any facility (“no-choice” or “opt-out”
alternative)

lm lower threshold for mode m measured in number of clients
l̄m upper threshold for mode m measured in number of clients,
p total number of available facilities, and

the variables

Xijm choice probability of clients in i to access service at a facility located at j

being in mode m,
Zi cumulative choice probability of clients in i to refuse to access any facility

(“no-choice”),
Yjm = 1 if location j is specified to offer healthcare service in mode m (0,

otherwise),

we formulate the healthcare facility location problems as follows:

Maximize F =
∑

i∈I

∑

j∈J

∑

m∈M
giXijm (26.15)

subject to

Zi +
∑

j∈J

∑

m∈M
Xijm ≤ 1 ∀ i ∈ I (26.16)

Xijm ≤ pijmYjm ∀ i ∈ I ; j ∈ J ;m ∈ M (26.17)

Xijm ≤ pijm

1 − pijm

Zi ∀ i ∈ I ; j ∈ J ;m ∈ M (26.18)

∑

i∈I
giXijm ≥ lmYjm ∀ j ∈ J ;m ∈ M (26.19)

∑

i∈I
giXijm ≤ l̄mYjm ∀ j ∈ J ;m ∈ M (26.20)

∑

m∈M
Yjm ≤ 1 ∀ j ∈ J (26.21)

∑

j∈J

∑

m∈M
Yjm = p (26.22)

Xijm ≥ 0 ∀ i ∈ I ; j ∈ J ;m ∈ M (26.23)

Zi > 0 ∀ i ∈ I (26.24)

Yjm ∈ {0; 1} ∀ j ∈ J ;m ∈ M (26.25)
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The objective function (26.15) maximizes the expected participation (measured
as the number of patients that are expected to access preventive healthcare service).
Equations (26.16)–(26.18) in combination with the objective function (26.15) are
a linear reformulation of the MNL choice probabilities. Equation (26.16) ensure
that a demand node i’s final choice probabilities to go to service facilities as well
as non-attendance sum up to at most 1. The case where the sum is less than
one can be interpreted as rejecting patients at certain facilities. This formulation
guarantees feasible solutions if mismatches between mode thresholds and mode
demand exist. As an alternative, we might consider a finer mode structure with
much more mode levels instead of only a few coarse ones to avoid infeasibility.
This is also a possibility to approximate continuous waiting times.

The linking constraints (26.17) allow choice probabilities for a facility to be
greater than 0 only if the facility is established. Using pijm yields a tighter upper
bound by the LP-relaxation than just using Xijm ≤ Yjm and tighter bounds
for Xijm (Haase and Müller 2015), because pijm is distinctly smaller than 1.
Equation (26.18) ensure that the pre-calculated constant substitution ratios between
the choice probabilities for any two alternatives are obeyed. They are derived from
Xijm

Zi
= pijm

1−pijm
. However, Xijm �= pijm and Zi �= (1 − pijm) (unless j is the only

established facility).
The correct mode in which a facility is established is selected by (26.19) (lower

mode interval threshold) and (26.20) (upper threshold). If a certain facility j is
established in mode m,

∑
i∈I giXijm has to be between the lower and the upper

mode thresholds.
Equation (26.21) ensure that a facility can either only be established in exactly

one mode or not at all. Equation (26.22) provides that p facilities are established. We
might use a budget constraint instead, with a parameter denoting fixed establishing
costs per facility and mode on the left-hand side and replacing the number of desired
facilities p with a budget.

26.6 School Location

School networks are expanded or consolidated to meet expected student demand.
Müller et al. (2009), Müller (2008) and Delmelle et al. (2014) introduce multi-period
capacitated models for school network planning. Müller et al. (2009) consider free
school choice and substitution effects between school locations (Müller et al. 2012)
whereby school choice probabilities are determined by a mixed multinomial logit
model considering scenarios of opened schools. While minimizing total costs, one
scenario is selected for each period. Assuming that the students attend the nearest
school, the approach of Delmelle et al. (2014) minimizes student travel costs and
has the flexibility to modify the maximum capacity of each school, to integrate the
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minimum facility age closure, and to reflect the uncertainty of demand projections.
Considering free school choice, capacity constraints, a budget, and simulated
utility values, Haase and Müller (2013) maximize all students’ expected utility.
To reduce inefficiencies in school facility location such as travel times, Castillo-
López and López-Ospina (2015) present a model of location and modification of
school capacity, with the objective to maximize utility (minimize operating costs,
minimize travel times, maximize average amount of enrolled students per school,
minimize number of schools with multi-grade classes). The process of school choice
is modeled by including time and income constraints, and the decisions made by
other students (segregation).

Now we discuss a school location model that can be used by private school
organizations that want to enter a market or to expand their network. Without loss
of generality, we assume that there is one private school provider that competes
with public schools. Given already existing own and competing public schools, our
objective is to find the optimal location for the establishment of new additional
private schools to maximize our market share (number of first-year students that
apply for our private schools). We propose to utilize the simulation-based approach
introduced in Haase and Müller (2013). We generate a spatial representative
(location, numbers) sample of first-year students. We simulate their utility values
for all schools by applying a random utility model (e.g., multinomial logit model
or mixed-logit model). A student chooses a private school if we establish at least
one private school with a utility value larger than the utility values for the public
schools.

Defining the sets

I set of simulated first-year students (spatial representative sample),
J set of candidate private schools, and
Ji set of candidate private schools of first-year student i, i.e., for student i, the

simulated utility value of school j ∈ Ji is larger than the largest utility value
of all public schools,

the parameters

n number of expected first-year students, and
r number of private schools to be established, and

the variables

Xi = 1 if simulated first-year student i chooses a private school (0, otherwise),
and

Yj = 1 if a private school is to be established at location j (0, otherwise),
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we define the following mathematical model:

Maximize F = n

|I |
∑

i∈I
Xi (26.26)

subject to

Xi ≤
∑

j∈Ji

Yj ∀ i ∈ I (26.27)

∑

j∈J
Yj ≤ r (26.28)

Yj ∈ {0, 1} ∀ j ∈ J (26.29)

Xi ∈ [0, 1] ∀ i ∈ I | Ji �= ∅ (26.30)

The objective function (26.26) maximizes the expected number of all students
applying for a private school. Equation (26.27) satisfies that student i selects a
private school if at least one of her preferred candidate private schools is available.
Equation (26.28) limits the number of private schools to be established. Haase et al.
(2018) show that instances with large sample sizes can be solved by this (equivalent)
approach within reasonable time.

26.7 Summary

We briefly discussed recent developments in the literature on the public sector
facility location planning (2010–2018). They show that a remarkable part of the
applications aim at satisfying the needs of the population, minimizing social costs,
or ensuring equity. The current focus of the literature particularly lies on topics
such as emergency/disaster management and healthcare facility location as well
as on transport-related topics like the location of electric vehicle charging stations
or bike sharing systems design (Table 26.3). The evolution of approaches enables
practitioners to include more and more relevant planning decision factors to build
more realistic models. Especially the consideration of stochastic demand modeled
with state of the art methods based on behavioral theory is a promising extension of
existing facility location proposals.
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Table 26.3 Summary of references in public facility location planning 2010–2018

Number of papers per year

Application area 2010 2011 2012 2013 2014 2015 2016 2017 2018 Total

General 4 1 2 1 2 10

Hub location 1 2 1 4

Bike sharing 1 2 1 1 5

Bus network design 3 3

Charging and
refueling stations

1 2 2 4 7 16

Waste management 1 1 1 2 5

Emergency shelter
location

1 1 1 1 1 3 8

Disaster
management

2 1 3

Emergency medical
services

1 3 2 1 2 1 10

Healthcare facility
location

2 1 3 2 1 9

School location 1 1 1 3

Other applications 1 2 3

Totala 6 5 15 8 5 10 10 18 2 79
a Not all references listed here are discussed in the text
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