
Chapter 25
Districting Problems

Jörg Kalcsics and Roger Z. Ríos-Mercado

Abstract Districting is the problem of grouping small geographic areas, called
basic units, into larger geographic clusters, called districts, such that the latter are
balanced, contiguous, and compact. Balance describes the desire for districts of
equitable size, for example with respect to workload, sales potential, or number of
eligible voters. A district is said to be geographically compact if it is somewhat
round-shaped and undistorted. Typical examples for basic units are customers,
streets, or zip code areas. Districting problems are motivated by very diverse
applications, ranging from political districting over the design of districts for
schools, social facilities, waste collection, or winter services, to sales and service
territory design. Despite the considerable number of publications on districting
problems, there is no consensus on which criteria are eligible and important and,
moreover, on how to measure them appropriately. Thus, one aim of this chapter is to
give a broad overview of typical criteria and restrictions that can be found in various
districting applications as well as ways and means to quantify and model these
criteria. In addition, an overview of the different areas of application for districting
problems is given and the various solution approaches for districting problems that
have been used are reviewed.

25.1 Introduction

Most problems discussed in this book focus on the location of facilities: where to
locate, how many to locate, when to locate, which type to locate, etc. However,
although the driving force is the location of facilities, equally important is the second
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aspect of location problems that is usually not mentioned explicitly: the allocation
of customers to facilities. Even if this task is trivial in many classical location
problems such as the p-median or the p-center problem (see Chaps. 2 and 3),
only after deciding about allocations can we evaluate a given facility configuration
and, thus, try to find the optimal one. Hence, the allocations have a fundamental
impact on the location of facilities and different rules of allocation will result in
different evaluations of the same facility configuration. The focus of districting
problems is now the other way around: we first find allocations—or, more generally,
determine which customers should be served together—and then, if necessary, we
find locations for the facilities serving the customers.

In general, districting is the problem of grouping small geographic areas,
called basic units or basic areas, into larger geographic clusters, called districts or
territories, in a way that the latter are acceptable according to relevant planning
criteria. Typical examples for basic units are customers, streets, or zip code areas.
Depending on the practical context, districting is also called territory design,
territory alignment, zone design, or sector design. Three important criteria are
balance, contiguity, and compactness. Balance describes the desire for districts
of equitable size with respect to some performance measure for the districts.
Depending on the context, this criterion can either be economically motivated,
for example, equal sales potentials, workload, or number of customers, or have a
demographic background, for example, the same number of inhabitants or eligible
voters. A district is called contiguous if it is possible to travel between the basic
units of the district without having to leave the district. Finally, a district is said
to be geographically compact if it is somewhat round-shaped, undistorted, and
without holes. Contiguous and compact districts usually reduce the travel time of
the person responsible for servicing the district. Unfortunately, a rigid and concise
mathematical definition of contiguity and compactness is often difficult and strongly
depends on the available data. In addition, for each district often the location of a
“facility” is either given or should be sought. This facility can be a branch office,
a depot, or the home address of a sales person. Figure 25.1 shows an example of a
districting plan for streets and for zip code areas.

Fig. 25.1 An example of a districting plan for streets and for zip-code areas
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Districting problems are motivated by very diverse applications, ranging from
political districting over the design of districts for schools, social facilities, waste
collection, or winter services, to sales and service territory design. Looking at the
literature, it is striking that only a few authors consider the districting problem
independently from a practical background. Therefore, the aim of this chapter is
to give a broad overview of typical criteria and restrictions that can be found in the
various districting applications as well as ways and means to quantify and model
these criteria. As most districting applications have a strong spatial component, it is
natural to integrate the algorithms into a Geographic Information System (GIS).
In a modern GIS, users can access and utilize the rich variety of maps, spatial
databases, and geographical objects available to appropriately mark out the problem
and display the solutions, see also Chap. 19.

The rest of the chapter is organized as follows. Section 25.2 reviews the broad
range of districting applications and identifies and motivates the different planning
restrictions. In Sect. 25.3, basic notations are introduced. This is followed by
Sect. 25.4 that discusses the most common criteria found in districting applications
and discusses possible approaches to quantify these criteria and to incorporate them
into districting models. Finally, Sect. 25.5 presents an overview of the different
solution techniques for solving districting problems.

25.2 Applications

There are four major areas of application for districting problems: political dis-
tricting, sales territory design, service districting, and distribution districting, and
this section provides a comprehensive but non-exhaustive overview. While sales
is also a type of service, due to its dominant role in the literature, sales territory
design will be discussed separately from service districting. But before we start,
we mention a first “application” in the context of facility location that derives from
the problem of aggregating demand points for location problems with the aim of
reducing the complexity of the problem. Simchi-Levi et al. (2003) formulate the
following guidelines (among others): aggregate demand points for 150–200 zones,
make sure each zone has an approximately equal amount of total demand, and place
aggregated points at the center of the zone. These guidelines read as a classical
districting problem.

25.2.1 Political Districting

Political districting is the problem of dividing a governmental area, such as a city or
a state, into constituencies from which political candidates are elected. Basic units
typically correspond to census tracts, which are given as polygons, and the districts
to the electoral constituencies. In general, the process of redistricting has to be
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periodically undertaken to account for population shifts. The length of these periods
varies from country to country, e.g., in New Zealand every 5 years, in Canada and
the U.S. every decade (after each census). In the past, political districting has often
been flawed by manipulation aiming to favor some particular party or to discriminate
against social or ethnic minorities. Since the responsibility for approving state and
local districting plans usually falls to elected representatives, plans are likely to be
shaped implicitly, if not overly, by political considerations, e.g., to keep them in
power. A famous case arose in Massachusetts in the early nineteenth century when
the state legislature proposed a salamander-shaped electoral district in order to gain
electoral advantage. The governor of the state at that time was Elbridge Gerry, and
this practice became known as gerrymandering. See Lewyn (1993) for an interesting
description of gerrymandering cases.

To avoid political interference, many states have set up a neutral commission
to determine political boundaries satisfying a number of legislative and common
sense criteria. Depending on the country or jurisdiction involved, these criteria
may be enforced by legislative directive, judicial mandate, or historical precedent.
However, there is no consensus in political science, law, or geography on which
criteria are legitimate for the districting process, i.e., satisfy the neutrality condition.
Moreover, it is often unclear how they should be measured (Williams 1995). One
important issue at stake is population equality. To respect the principle of “one
man-one vote”, i.e., every vote has the same power, all districts should contain
approximately the same number of voters, i.e., be balanced. In the U.S., population
equality has been deemed by the courts to be very important, and as a result,
the total deviation of congressional districts from perfect balance was less than
1% after the last census in 2000 (Webster 2013). In other countries, the allowed
deviations are usually higher (Handley and Grofmann 2008). Two other important
criteria always being mentioned are contiguity and compactness which both aim
at preventing gerrymandering. While contiguity is generally undisputed and easy
to verify, this is not the case for compactness. There is a broad discussion on how
to quantify this criterion adequately (Horn et al. 1993), and whether it is relevant
in the first place since an algorithm will never gerrymander on purpose as long
as it is does not use political data (Garfinkel and Nemhauser 1970). Moreover, if an
adequate minority representation is sought for, this may sometimes only be achieved
through non-compact districts (Dixon 1968). Other—often disputed—criteria are
the conformity to administrative boundaries, e.g., cities or counties, the preservation
of communities of interest, socio-economic homogeneity or a fair representation
of minority voters across the districts, the similarity with the previous electoral
districts, or the consideration of topological obstacles such as mountain ranges,
lakes, or rivers (cf. George et al. 1997; Parker 1990; Bozkaya et al. 2011). An
excellent review on typical criteria for political districting and their eligibility is
given in Webster (2013).

When discussing automated procedures in the literature, it is always noted that
they are non-partisan and neutral as long as they do not use political data and, hence,
prevent gerrymandering. However, even if the computer does not gerrymander on
purpose, it may still do it accidentally, precisely because no political data is taken
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into account. Therefore, Puppe and Tasnádi (2008) recently introduced the notion
of an (ex post) unbiased districting plan. In such a plan the number of districts won
by each party respects the relative strength of the party in the population as close
as possible. They focus on game theoretical aspects of the problem; see also Nagel
(1965). However, one has to do a careful weighing up to avoid forthright politically
biased criteria that lead, in spirit, to gerrymandering.

25.2.2 Sales Territory Design

The important but expensive task of designing sales territories is common to
all companies that operate a sales force and need to subdivide the market area
into regions of responsibility that are each attended to by one or more sales
representatives. According to Zoltners and Sinha (2005), approximately every tenth
full-time employee in the U.S. is working as a field and retail sales person and
the expenditure for them is more than three trillion dollars every year. Territories
with low sales potential, intense competition, or too many small accounts lead to
low morale, poor performance, a high turnover rate, and an inability to assess the
productivity of individual territories. Therefore, well-planned decisions enable an
efficient market penetration and lead to decreased costs and improved customer
service and sales. Zoltners and Sinha (2005) “guestimate” that a good territory
alignment can increase sales by 2–7% compared to an average alignment. In the
related literature, districts are predominantly called territories and districting is
termed territory alignment or territory design.

In the classical problem, the task is to assign a given set of (prospective) customer
accounts, each with a fixed market potential, to the individual members of the sales
force such that each customer has a unique representative and each sales person
faces equitable workload and travel time and has an equal income opportunity in
terms of incentive pay (Zoltners and Sinha 2005). Thus, basic units correspond to
accounts and are usually given as points. Concerning the travel time, if a sales person
visits each customer every day, then the travel time is proportional to the length
of a traveling salesman problem (TSP) tour. However, the workload of districts is
usually balanced over 3–6 months and some customers may have to be visited only
once during this time whereas others require weekly service. Moreover, customers
may have time windows, tours may include overnight stays, and so on, which makes
the actual computation of the travel times almost impossible. Hence, in most cases
one has to rely on estimates. Typically, a sales person is exclusively responsible
for all customers within a specific geographic region. However, in large companies
sometimes a sales person is only responsible for a certain product segment or
accounts of a particular size within his region. In such cases, sales territories
may overlap. For practical examples of sales territory design see Fleischmann and
Paraschis (1988), Zoltners and Sinha (2005), and López-Pérez and Ríos-Mercado
(2013).
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Three classical sales districting criteria are again balance, contiguity, and com-
pactness. In contrast to political districting, typically more than one performance
measure has to be balanced, for example workload and sales potential. A district
with comparatively many small accounts or customers with low sales potential will
yield lower sales and, hence, lower incentives for the responsible sales person than a
district with an equitable workload but only high potential accounts. This disparity
will lead to discontent among the sales persons and, in the long run, lower sales
for the company. Having said that, only a few authors consider more than one
balancing criterion: Deckro (1977), Zoltners and Sinha (1983), and Ríos-Mercado
and Fernández (2009). Contiguous districts are desired to obtain clearly defined
geographic areas of responsibility for each sales person, which should prevent them
from competing for customers with a high sales potential. Unfortunately, customers
are typically represented by their addresses, i.e., points on the map, and it is not clear
how to assess contiguity in this case. Compactness describes the desire for districts
that are geographically closely packed. Apart from the visual appeal of compact
districts, the criterion often serves, together with contiguity, as a proxy for reducing
the unproductive travel time of the sales force. The hope is that geographically
compact and contiguous districts result in smaller travel times on a day-to-day basis
than non-compact and/or non-contiguous districts.

As the main goal of most companies is to maximize profit, several authors
relax the assumption that the sales potential of customers is fixed. Instead, they
propose an integration of time-effort allocation and territory design methods to
increase profit while maintaining the equitable workload criterion (cf. Lodish 1975;
Glaze and Weinberg 1979; Zoltners and Sinha 1983). These models not only assign
customers to sales people but also determine how much time should be invested
in the customer. Some authors even object that equity is not the primary goal for
most companies. Instead, the aim should be to maximize profits, regardless of any
balancing aspect (Drexl and Haase 1999). However, in practice sales persons are
typically reluctant to implement such detailed call plans resulting from pure profit
maximizing approaches (Zoltners and Sinha 2005). Moreover, designing territories
is a mid- or even long-term decision whereas time-effort allocation is an operational
problem that is influenced by weather (especially in the beverage industry), sales
promotions, etc. Thus, these two problems should be addressed separately.

Often, the number of districts to be designed is predetermined by the designated
sales force size (Fleischmann and Paraschis 1988). If the size is not self-evident,
methods based on the total workload involved in covering the entire market
compared to the available time per sales person can be used. Another possibility
is to follow the “decreasing returns” principle and add sales persons to the sales
force as long as the expected increase in profit exceeds the expected increase in
costs (Howick and Pidd 1990; Zoltners and Sinha 2005).

As sales persons have to visit their territories regularly, their home-base, e.g.,
office or residence, is an important factor to be considered in the alignment process.
However, there is no consensus as to whether predetermined locations should be
kept or be subject to the planning process. On the one hand, most sales persons have
strong preferences for home-base cities. Hence, such locations should be respected
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or determined prior to the alignment to socialize them with the sales management
(Zoltners and Sinha 2005). On the other hand, addresses and sales personnel
frequently change and the management often does not want sales persons residences
to overly influence the definition of territories (Fleischmann and Paraschis 1988).

One important, but only recently addressed aspect of sales territory design is
that customers often require service with different frequencies. Some customers
have to be visited weekly, while others require service only once per month. As
a result, planners not only have to design the districts, but also schedule visits to
customers within the planning horizon. For example, if the planning horizon is
divided into weeks and days, then we also have to decide which customers should
be visited in which week and on which day of that week. The criteria for scheduling
customer visits are very similar to the ones for designing the sales territories. The
total workload incurred by all customers served in each time period should be the
same across all periods and the set of all customers visited in the same time period
should be as compact as possible to reduce travel times during each period. While
contiguity is still desirable, differing visiting frequencies will make it very difficult,
or even impossible, to obtain contiguous sets of customers for each period. For more
details, see Bender et al. (2016, 2018).

25.2.3 Service Districting

The problem of designing service districts appears in various contexts. One area
of applications focuses on social facilities such as hospitals or public utilities.
Sometimes districts are needed to define for each inhabitant which facility he
should visit to obtain service, for example for preventive medical examinations,
or to determine areas of responsibility of home-care visits by health-care personnel
such as nurses or physiotherapists. The goal is to determine contiguous districts that
have a good accessibility with respect to public transportation and have an equitable
workload based on service and travel time or account for a high capacity utilization
of the social facility (cf. Minciardi et al. 1981; Blais et al. 2003; Benzarti et al.
2013).

A second field of applications deals with providing service to streets. A classical
problem concerns the design of districts for postal or leaflet delivery. Instead of
considering each household separately, districts are composed of whole streets.
Thus, basic units correspond to streets and each basic unit typically has two
attributes: the times required to traverse the street with and without providing
service. The task is to partition the streets into a given number of districts such
that the required delivery time is approximately the same for all districts and
does not exceed the working time restriction of the deliverer. The delivery time
is proportional to the length of a Chinese postman tour through the district, which
can be computed efficiently. Moreover, the delivery districts should be contiguous,
incur little deadheading, and should not overlap, i.e., be geographically compact
(Bodin and Levy 1991; Butsch et al. 2014; García-Ayala et al. 2016). A common
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characteristic of these applications is that the deliverer either walks through his
district on foot or goes by bike so that one-way streets are no hindrance. If a street is
too wide or has too much traffic to serve it in a zig-zag pattern, then each side of the
street is modeled as a separate basic unit. A similar problem arises in the context of
meter reading in power distribution networks (de Assis et al. 2014). Closely related
are districting problems for solid waste disposal, salt spreading, and winter gritting
(Hanafi et al. 1999; Muyldermans et al. 2002; Lin and Kao 2008). The criteria are
almost identical to postal delivery. The only differences are that vehicles typically
have to respect one-way streets and have difficulties making U-turns, and that their
tours have to include a depot, e.g., to drop off the waste or refill salt. All these
aspects make the computation of the travel times more difficult. Other applications
deal with the design of patrol districts for police cars and primary response areas for
ambulances, where the districts additionally should have an average response time
and/or incident arrival rate below a given threshold (Baker et al. 1989; D’Amico
et al. 2002; Camacho-Collados et al. 2015).

Other applications deal with the problem of assigning residential areas to schools
(Ferland and Guénette 1990; Schoepfle and Church 1991). Criteria to be taken into
account are capacity limitations and an equal utilization of the schools, maximal or
average travel distances for students, good accessibility, and ethnic balance. Another
aspect is to decide which students should walk to school and which should take the
school bus. Districting problems also occur in electric power networks. According
to Bergey et al. (2003), the World Bank regularly faces the challenge of helping
developing countries to move from state owned, monopolistic electric utilities to a
more competitive environment with multiple electricity service providers. At that,
they face the task of partitioning the physical power grid into economically viable
districts (distribution companies). The main aim is to determine non-overlapping
and contiguous districts with approximately equal revenue potential (to foster
competition) which are compact over a geographic region (to be easier to manage
and more economical to maintain).

Fernández et al. (2010) study a very unique districting problem arising in the
context of collection of waste electric and electronic equipment (WEEE) in Europe.
The problem was motivated by a recycling directive adopted in the European Union
which states, among other things, that each company selling electrical or electronic
equipment in a European country has the responsibility to collect and recycle an
amount of returned items proportional to the firm’s market share. A districting
plan assigns basic units to companies; however, in contrast to classical districting
problems, the territories should be as geographically dispersed as possible to avoid
regional monopolies. The problem also involves particular balancing constraints and
allows splitting basic units to balance territories with respect to different product
types. They termed this the maximum dispersion territory design problem. In a
related work, Fernández et al. (2013) introduce the maximum dispersion problem
which is essentially a partition problem seeking to maximize a dispersion function.
In this new problem, no split basic units are allowed, so it can be seen as a special
case of the maximum dispersion territory design problem.
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25.2.4 Distribution Districting

Another important field of applications is the design of pickup and delivery districts
in logistics. Typically, such problems are modeled and solved as vehicle routing
problems. However, if there exists considerable uncertainty in the demand of
customers, several authors propose a two-phase approach. In the first phase, pickup
and delivery districts are created based on uncertain demands. Once the districts
are given, the uncertainty is revealed and the routing is done in the second phase
on a day-to-day basis (Haugland et al. 2007). This conforms with the well-known
“cluster first–route second” paradigm for vehicle routing problems. Hence, basic
units correspond to potential customers, given as points, and the task is to partition
the set of customers into districts, one for each driver, such that the districts satisfy
certain planning criteria. A first advantage of these fixed customer assignments is
that the driver becomes familiar with his district. This, in turn, increases the driver’s
performance since he becomes quicker at finding customer addresses, localizing
offices within buildings as well as organizing his routes (Zhong et al. 2007).
A second advantage is that customers become familiar with their drivers, which
increases customer satisfaction (Jarrah and Bard 2012). These advantages however
have to be carefully weighed against flexible customer assignments on a daily basis
which enable the planner to maximize the driver utilization and minimize the routing
costs (Zhong et al. 2007).

Concerning the criteria for the districting process, districts should be contiguous
and compact, and the workload should either be balanced or at least not exceed a
given upper bound, e.g., the driver working time. The workload includes the service
time at the customers and typically also an estimate of the average travel time within
the district and to a centralized depot (Galvão et al. 2006; Zhong et al. 2007; Jarrah
and Bard 2012; Lei et al. 2012, 2015).

A final application concerns the establishment of a distribution center which
involves a considerable level of risk due to its enormous start-up investment and
volatile customer demand patterns. One way of reducing this risk is to avoid both
overcrowding and, especially, underutilization of centers by balancing the allocation
of customers to them (Zhou et al. 2002).

25.3 Notations

This section introduces notations for the main components of districting problems.

25.3.1 Basic Units

A districting problem comprises a set J = {1, . . . , n} of basic units, sometimes
also called sales coverage units, basic areas, or geographical units. Each basic unit
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represents a geometric object in the plane: a point, e.g., a geo-coded address, a
line segment, e.g., a street, or a polygonal area, e.g., a zip-code area, county, or
predefined company trading area. The distance between two basic units i, j ∈ J is
denoted as dij = d(i, j). Typical examples for dij are Euclidean (cf. Fleischmann
and Paraschis 1988) or road distances (cf. Ríos-Mercado and Salazar-Acosta 2011).
The latter have the advantage that they can properly reflect obstacles such as rivers
or mountain ranges. For non-point objects, distances are either computed between
representative points, e.g., the midpoint of a street or the centroid of a polygon, or
as the surface-to-surface distance.

Moreover, one or more quantifiable attributes, called activity measures, are
associated with each basic unit. Typical examples are service times, estimated sales
potential, or number of voters. Sometimes, they also include an estimate of the travel
time for visiting the basic unit (Jarrah and Bard 2012). The activity measures are all
assumed to be deterministic. Let w

q
j denote the q-th activity measure of basic unit

j ∈ J , 1 ≤ q ≤ Q, where Q is the number of different attributes to be considered.
If Q = 1, the superscript is usually omitted.

If explicit neighborhood information is given for the basic units, then G =
(V ,E) denotes the neighborhood or contiguity graph where vj ∈ V corresponds
to j ∈ J and {vi, vj } ∈ E if and only if basic units i and j are neighboring. The
length of edge {vi, vj } is dij . Finally, N(j) ⊆ V denotes the set of basic units
adjacent to vj ∈ V .

25.3.2 Districts

A district Dk , 1 ≤ k ≤ p, is a subset of basic units, where p is the total number
of districts. The number of districts can either be fixed in advance, e.g., the number
of political districts to create or the number of available nurses for elderly care, or
be subject to planning, e.g., the minimal number of salespersons required to service
all customers or the minimal number of patrol cars to ensure a certain response
time. The q-th activity measure of a district is the sum of the activity measures of
its basic units, i.e., wq(Dk) = ∑

j∈Dk
w

q
j . For Q = 1, w1(Dk) is simply called

the size of the district. Note that sometimes the size also includes an estimate of
the (expected) travel time. However, as travel times are represented through the
compactness criterion, we refrain from including them and just mention when this
may change things.

In some applications the location ck of a facility is associated with each district
Dk . This may be some predefined site, e.g., a hospital providing preventive medical
care, or be an outcome of the districting process, e.g., the optimal location of a sales
office. In districting, this location is called the center of the district. One has to
be aware of the ambiguity with the notion of a center in location theory, which is
something different, see Chap. 4. Typically, the center coincides with a basic unit,
i.e., ck ∈ J . A predetermined set of centers is denoted by Jc.

Finally, a districting plan D is defined as a set of p districts D = {D1, . . . , Dp}.
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25.3.3 Problem Formulation

The districting problem can now informally be described as follows: Partition all
basic units J into a number of p districts that satisfy the planning criteria of balance,
compactness, and contiguity and, if required, locate a center within each district.
Unfortunately, in contrast to many other optimization problems, there does not
exist the mathematical model for districting problems. This is mainly due to the
considerable ambiguity on how to quantify the different planning criteria and in the
motivation and relevance of some of them.

25.4 Districting Criteria

This section presents an overview over typical criteria employed in districting
problems and various ways and means to quantify them. In the following, a measure
for a criterion applied to a single district (the whole districting plan) is termed a local
(global) measure. Moreover, if not explicitly stated otherwise, let Q = 1.

25.4.1 Complete and Exclusive Assignment

In most cases, each basic unit is assigned to exactly one district, i.e., the districts
define a partition of the set J of basic units:

D1 ∪ · · · ∪ Dp = J and Dl ∩ Dk = ∅, l �= k, 1 ≤ l, k ≤ p.

The requirement of exclusive assignment is sometimes also termed integrity. For
political districting, these criteria are obvious. In sales territory design, unique allo-
cations result in transparent responsibilities for the sales force avoiding contentions
and allowing the establishment of long-term customer relations.

25.4.2 Balance

This criterion is one of the trademarks of districting problems. It expresses the desire
for districts of equitable size with respect to the activity measure(s). In political
districting, this criterion is employed to ensure the “one man–one vote” principle,
and in sales territory design to avoid districting plans with large discrepancies in
terms of workload, sales potential, or travel time.

Due to the discrete structure of the problem and the integrity assumption,
perfectly balanced districts can generally not be accomplished. There exist different
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approaches in the literature to quantify imbalance and to incorporate the criterion
into the districting process. The most common local measure is based on the relative
deviation of the district size w(Dk) from the mean district size μ = w(J )/p:

bal(Dk) =
∣
∣
∣
∣
w(Dk) − μ

μ

∣
∣
∣
∣ , 1 ≤ k ≤ p

(cf. Forman and Yue 2003; Ríos-Mercado and Fernández 2009; de Assis et al.
2014). The larger this deviation is, the worse is the balance. A district Dk is
perfectly balanced, if bal(Dk) = 0. If district sizes also include a solution dependent
performance measure—in addition to the activity measure—, then this affects μ and
the balance of one and the same district may be different for different districting
plans. For example, in sales and service territory design, districts often have to be
balanced with respect to workload; workload, in turn, usually consists of service
times plus travel times. While the total sum of the former is solution independent,
the latter depend on the actual district layout. Another approach concedes a priori
a certain relative deviation α > 0 from perfect balance and only measures the
imbalance exceeding this threshold (Bodin and Levy 1991; Bozkaya et al. 2011)

bal(Dk) = 1

μ
max{w(Dk) − (1 + α)μ, (1 − α)μ − w(Dk), 0},

i.e., the district is balanced if its size is between this lower and upper bound. Instead
of determining the bounds based on the mean district size, they are sometimes
directly motivated by the application, e.g., the working time restrictions of the
mailman or the sales potential required to ensure a decent living for the sales person.

Using these local measures, the global balance of a districting plan is then
typically computed as the maximal balance of a district

balmax(D) = max
k=1,...,p

bal(Dk).

Less common are the sum over all districts (Bozkaya et al. 2003; Bodin and Levy
1991) or a convex combination of both (Butsch et al. 2014):

balsum(D) =
p∑

k=1

bal(Dk) and balcv(D) = λ balsum(D)+(1−λ) balmax(D),

with λ ∈ (0, 1). The convex combination alleviates some of the weaknesses of
balsum and balmax. The latter does not take into account the balance of all districts
and sometimes yields rather poor solutions on average whereas the former allows a
few highly unbalanced districts to be compensated by some well-balanced districts.
A different global approach computes the range of district sizes (Tavares-Pereira
et al. 2007)

balrng(D) = max
k=1,...,p

w(Dk) − min
k=1,...,p

w(Dk).
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Mathematical Modelling
In districting models, there is no clear trend on whether to treat balance as a hard
constraint (Hess et al. 1965; Fleischmann and Paraschis 1988; Zoltners and Sinha
2005) or to include it in the objective function (Blais et al. 2003; Ricca and Simeone
2008; de Assis et al. 2014). In the former case, the size of each district is required
to lie between a given lower and upper bound. Some authors even do both (Bergey
et al. 2003; Salazar-Aguilar et al. 2013b). All of the above measures easily give rise
to linear expressions. While several different activity measures have been discussed
in the literature, only a few authors consider more than one criterion simultaneously
(Deckro 1977; Zoltners and Sinha 1983). In a recent series of papers, two activity
measures have been considered simultaneously: the number of customers and the
total demand per district (Salazar-Aguilar et al. 2011b, 2012, 2013b; Ríos-Mercado
and Escalante 2016).

Concerning solution dependent performance measures, the most common addi-
tion is to include travel times in the district size. Due to the scale of realistic
data sets, calculating the exact travel times within each district is usually too
costly during optimization. Instead, most authors rely on estimates. A common
way to approximate the total travel time (or distance) within a district is to use
the Beardwood-Halton-Hammersley formula (Lei et al. 2012, 2015). This formula,
however, has the downside that it is non-linear and therefore does not easily admit
linear programming formulations. As an alternative, some authors propose to add
to the service time of each basic unit a fixed estimate of the travel time to the “next
basic unit in the district”. This estimate can, for example, be the average (expected)
travel time to the k closest basic units, where k is a parameter that has to be tuned
for each (set of) data instance(s) (Bard and Jarrah 2009; Jarrah and Bard 2012).

25.4.3 Contiguity

Almost all districting approaches require districts to be contiguous. In political
districting, this criterion should prevent gerrymandering. For the other types of
applications, contiguous districts reduce the day-to-day travel distances for sales
persons, delivery vans, snow ploughs, mailmen, etc. Unfortunately, a rigid and con-
cise mathematical formulation of contiguity is difficult for basic units representing
points.

25.4.3.1 Graph-Based Measures

If basic units are lines or polygons, it is easy to derive explicit neighborhood
information. For example, two zip-code areas are neighboring if they share a
common border, or two streets if they meet in a crossroad. In the former case,
sometimes an additional requirement is the existence of a direct road connection
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between the two basic units. In general, two basic units are called neighboring, if
their geometric representations have a nonempty intersection. This information is
stored in the neighborhood graph G = (V ,E), and a district is contiguous if the
basic units of the district induce a connected subgraph in G.

If basic units are represented by points, e.g., customer addresses, it is not
clear how to assess contiguity. Over the years, different surrogate definitions for
contiguity have been proposed. One approach is based on proximity graphs to
estimate the adjacency of points. One such graph is the Gabriel graph, in which
two nodes vi and vj are connected by an edge if and only if the disc with antipodal
points vi and vj does not contain any other node in its interior (Gross and Yellen
2003). A second approach to construct a contiguity graph is based on the Voronoi
diagram (Lei et al. 2012). Two basic units are defined to be adjacent, iff their Voronoi
cells have a common link within the smallest axis-parallel rectangle enclosing all
basic units (for a definition of Voronoi diagrams and cells, see Aurenhammar et al.
2013). A third construction of the proximity graph is to start with a complete graph
and then sequentially go over all edges and delete for two intersecting edges in the
planar representation of the graph the longer or more costly one (Haugland et al.
2007). All three graphs are planar. Moreover, by definition the Gabriel graph is a
subset of the Voronoi-based graph.

Example 25.1 An example for these three proximity graphs for a point set with
26 basic units is depicted in Fig. 25.2. The Gabriel graph defines the most strict
neighborhood relation. The graphs obtained by Lei et al. (2012) and Haugland et al.
(2007) are fairly similar. The main difference is that the latter typically establishes
more adjacencies along the boundary of the convex hull of the point set. Just by
looking at the graphs it is difficult to decide which one is more suitable.

Finally, if the underlying road network is given, yet another possibility is to define
two basic units as being adjacent, if the shortest path between the two does not
contain another basic unit.

25.4.3.2 Geometric Measures

If no neighborhood information for basic units is given or can reasonably be derived,
an alternative is to determine the overlap between the districts. For example, by
computing the convex hull ch(Dk) around each district Dk and defining a district to
be contiguous if no basic unit of another district lies in its convex hull, i.e., ch(Dk)∩
ch(Dl) = ∅, ∀ l �= k (Kalcsics et al. 2005; Jarrah and Bard 2012). One advantage
of this approach is that convex districts usually prevent the crossing of routes of
different districts, a characteristic that typically implies inefficient routes.
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(a) (b)

(c) (d)

Fig. 25.2 Three different approximate contiguity graphs. (a) Point set of basic units. (b) Gabriel
graph. (c) Voronoi-based graph. (d) Non-crossing edges graph

25.4.3.3 Mathematical Modelling

In districting models, contiguity is always treated as a hard constraint (except in
Hanafi et al. 1999). One possibility to include it in a mathematical programming
formulation is due to Drexl and Haase (1999): Let ck ∈ Jc be the predetermined
center of district k and S ⊆ J \ {N(ck) ∪ {ck}} be a subset of basic units that are not
adjacent to basic unit ck . If all elements of S are assigned to district k (with center
in unit ck), i.e., S ⊂ Dk , then at least one basic unit not in S that is adjacent to an
element of S must also be assigned to district k:

∑

j∈⋃
i∈S N(i)\S

xck,j −
∑

j∈S

xck,j ≥ 1 − |S| ∀ S ⊆ J \ {N(ck) ∪ {ck}},

where xck,j is 1 if j ∈ J is assigned to the district with center ck and 0 otherwise.
A clear drawback of this formulation is that it requires an exponential number of
constraints. Nevertheless, this gives naturally rise to cut generation approaches, see
Salazar-Aguilar et al. (2011a) and Ríos-Mercado and López-Pérez (2013). A second
possibility that only needs a linear number of constraints is based on network flow
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constraints (Shirabe 2009). Each basic unit has one unit of supply, and the district
centers act as sinks. District k is contiguous if and only if there exists a flow from
each of its basic units to ck that only passes through basic units in Dk:

∑

i∈N(j)

fji −
∑

i∈N(j)

fij = xck,j ∀ j ∈ J \ {ck}
∑

i∈N(j)

fij ≤ (n − 2) xck,j ∀ j ∈ J \ {ck}
∑

i∈N(ck)

fi,ck
≤ n − 1,

where fij is the flow from basic unit i to j and fck,j = 0, ∀ j ∈ N(ck).
A simpler approach is to require that each district is a subtree of a shortest

path tree T (ck) rooted at the district center ck , where the edge lengths typically
correspond to road distances or are all assumed to be 1. Then, for each basic unit
j of district k, at least one of the adjacent basic units i ∈ N(j) that immediately
precedes j on some shortest path to the center ck also has to be included in the
district:

xck,j ≤
∑

i∈Sj

xck,i ∀j ∈ J \ {ck},

where Sj = {i ∈ N(j) | i immediately precedes j on some shortest path from
j to ck} (Zoltners and Sinha 1983; Mehrotra et al. 1998). Although this excludes
some contiguous districts, these are unlikely to be compact, as they typically have
large protrusions or indentations, or contain enclaves.

It is straightforward to extend all of the above constraints to the case where
the choice of district centers is part of the optimization. For geometric contiguity
measures obviously only informal mathematical formulations can be derived.

Remark 25.1 Only a few authors try to derive approximate neighborhood graphs
for point-like basic units. The majority simply does not consider contiguity at all
and tries to obtain districts with little overlap through an appropriate compactness
measure, see also Example 25.2 (Fig. 25.3).

Remark 25.2 It is much easier to ensure strict contiguity if heuristics are used to
solve the districting problem. Given a district Dk and the corresponding subgraph
of G, it is possible to check in O(|Dk|) time whether Dk is connected or not. If
the heuristic is based on local search, then adding a basic unit to a connected district
will preserve connectivity. Likewise, removing a basic unit from a connected district
will preserve connectivity if the removed basic unit does not coincide with a cut-
vertex of the subgraph (Ricca et al. 2013). To reduce the computational effort in the
latter case, King et al. (2012) have introduced the concept of geo-graphs for two-
dimensional basic units that utilizes information from the planar dual graph of G.
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Fig. 25.3 Districting plans
for two center-based
compactness measures
without contiguity.
(a) Districts for cmpud(·).
(b) Districts for cmpwd2 (·)

(a)

(b)

25.4.4 Compactness

A district is said to be geographically compact if it is somewhat round-shaped and
undistorted. The motivation for compact districts is almost identical to ensuring
contiguity: to prevent gerrymandering or to reduce the day-to-day travel distances
within the districts. Although being a very intuitive concept, a rigorous definition
of compactness does not exist and, moreover, strongly depends on the geometric
representation of basic units. In the context of political districting, typically mea-
sures based on the shape of districts are employed whereas in sales and distribution
districting, distance-based measures are predominant. In the following, the most
common ones for both approaches are presented.

25.4.4.1 Geometric Measures

If basic units are given as polygons, geometric approaches based on the area or
perimeter of a district can be used to quantify compactness. Two common local
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measures are the Reock and Schwartzberg tests. The former calculates the ratio
of the district area to the area of the smallest enclosing circle, while the latter
determines the ratio of the districts perimeter length to the circumference of a circle
with equal area

cmp(Dk) = A(Dk)

πr2
enc

and cmp(Dk) = P(Dk)

2
√

π A(Dk)
,

where A(·) and P(·) denote the area and the length of the perimeter, respectively,
of a district and renc the radius of the smallest enclosing circle (Young 1988). For
the Reock (Schwartzberg) test, larger (smaller) ratios indicate greater compactness.
Other measures relate the activity of a district with the total activity of all basic
units within the smallest enclosing circle (Ricca and Simeone 2008) or determine
the ratio of the squared diameter of a district and its area (Garfinkel and Nemhauser
1970). A common global measure for the compactness of a districting plan is based
on the length of the boundary between districts, i.e., the total length of the perimeter
of the districts in the interior (Bozkaya et al. 2003; Lei et al. 2012)

cmp(D) =
p∑

k=1

P(Dk) − P(J ).

Short inter-district boundaries typically result in compact districts. Numerous other
measures have been discussed in the literature. Unfortunately, none of them is
comprehensive; some fail to detect districts that are obviously noncompact, others
assign a low rating to visibly compact districts (Niemi et al. 1990; Horn et al. 1993;
Williams 1995).

To use geometric measures for basic units representing points or lines, one can try
to give “shape” to the districts, for example through the smallest enclosing rectangle
or circle, or through the convex hull. Instead of the convex hull, one can also use χ -
shapes, which are polygons enclosing the point set that can provide a better fit to the
points than the convex hull (Duckham et al. 2008). However, much more common
are the following, distance-based measures:

25.4.4.2 Distance-Based Measures

Distance-based measures are used predominantly in applications where people have
to travel within the districts, e.g., salesmen or mailmen. This confers with the
motivation of compact districts in these applications: to reduce the day-to-day travel
times. Moreover, in these applications basic units typically represent points or lines,
making geometric measures unapplicable in the first place. The most common group
of local measures is based on the sum of distances between the center of a district
and its basic units. Variations exist in whether the distances are weighted with
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activity measures or not (w/u) and whether distances are squared or not (d2/d)

cmpud(Dk) =
∑

j∈Dk

dck,j cmpud2(Dk) =
∑

j∈Dk

d2
ck,j

cmpwd(Dk) =
∑

j∈Dk

wj dck,j cmpwd2(Dk) =
∑

j∈Dk

wj d2
ck,j

(Bard and Jarrah 2009; Bergey et al. 2003; Hess and Samuels 1971; Zoltners and
Sinha 2005). The second and fourth measure are also known as the (weighted)
moment of inertia (Hess et al. 1965). Although the four local compactness measures
follow the same idea, the resulting districts may look considerably different as the
following example shows.

Example 25.2 Consider a point set of n = 75 basic units that has to be partitioned
into p = 5 districts, each having a predetermined center. The allowed relative
deviation in terms of balance from the mean district size μ is 5%, and contiguity
is not explicitly imposed. Figure 25.3 shows the resulting districting plans that
minimize the sum of the two center-based compactness measures cmpud(·) and
cmpwd2(·) over all districts. The enlarged icons represent the district centers.

Having in mind that compactness acts as a proxy for travel times, the most natural
measure is cmpud(·). However, we observe that there is a considerable overlap in
the districts for this measure, especially between the districts represented by the
diamond and pentagon shaped basic units. A much better visual separation is instead
obtained for the weighted squared distance, cmpwd2(·), even if some district centers
now lie outside their actual district (again, diamonds and pentagons). A large overlap
between districts typically yields less efficient routes for sales persons. To underline
this observation, we determine for each district the TSP tour through all basic units,
including the center. The total lengths of the TSP tours for the two districting plans
are: 92.78 and 73.56. The travel distances for the weighted squared distance are
20 % smaller than for cmpud(·). The results for cmpwd(·) and cmpud2(·) in terms of
overlap and travel distances are between the other two measures, with the former
being slightly better.

The situation is different if we try to enforce contiguity. Assume that an approxi-
mate neighborhood graph has been computed using the approach in Haugland et al.
(2007). Using the contiguity constraints of Shirabe (2009), the resulting districting
plans for cmpud(·) and cmpwd2(·) are shown in Fig. 25.4. The separation between
the districts for cmpud(·) is clearer than before. However, even if the total length of
the TSP tours reduces considerably (from 92.78 to 81.15), the districts consisting
of the diamond, pentagon, and square shaped basic units are still distorted and will
receive little approval from planners. (The square shaped district is connected since
there exists an edge along the top of the point set.) For cmpwd2(·) the overlap is
not much different from the previous plan, and the total travel distance even slightly
decreased to 72.97. The main difference is that the centers are now all included in
their districts, if only at the boundary.
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Fig. 25.4 Districting plans
for two center-based
compactness measures with
contiguity. (a) Districts for
cmpud(·). (b) Districts for
cmpwd2 (·)

(a)

(b)

This example illustrates the considerable differences between districting plans
for different compactness measures and the influence of contiguity constraints.
However, this is just a single example, and the observations cannot be generalized
without further testing. Also, the length of a TSP tour is just an indicator for travel
distances, as a sales person may not visit all customers on a single day.

The fact that squared distances produce compact but non-contiguous districts
for fixed centers has been observed several times in the past (Hojati 1996;
Schröder 2001). An important factor influencing the shape of districts is the spatial
distribution of the district centers. If they are spread evenly, the differences between
the measures in terms of district overlap will decrease, see Example 25.3. However,
this uneven distribution is not unusual as sales force residences often concentrate
in certain areas, e.g., larger cities, and sometimes even have the same address. Also
the threshold for the allowed balance deviation has an impact on the compactness of
solutions. The smaller the threshold value is, the larger the overlap between districts
will get.
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Instead of taking the sum, one could also take the maximum for each of
the center-based measures (cf. Elizondo-Amaya et al. 2014; Ríos-Mercado and
Fernández 2009; Muyldermans et al. 2003). However, this leaves considerable
freedom for assignments below the maximal distance and typically increases the
overlap. A slightly different approach is based on the maximal pairwise distance
and the weighted sum of pairwise distances

cmpmpw(Dk) = max
i,j∈Dk, i �=j

dij cmpspw(Dk) =
∑

i,j∈Dk, i �=j

wi wj dij

(see Ríos-Mercado and Salazar-Acosta (2011), Ríos-Mercado and Escalante (2016)
for the former and Blais et al. (2003) for the latter).

In case of measures based on the sum (maximum) of distances, the global
compactness of a districting plan is then usually also computed as the sum
(maximum) over all districts. But sometimes also a sum-max combination is used
or a convex combination of sum and max (Muyldermans et al. 2003; de Assis et al.
2014; Butsch et al. 2014).

25.4.4.3 Mathematical Modelling

The majority of districting models has compactness as an objective function to
be optimized. In addition, sometimes the maximal distance between a basic unit
and its district center or between two basic unit of the same district is restricted
(Benzarti et al. 2013). The appeal of distance-based measures is that they easily
give rise to linear or, in case of pairwise distances, quadratic expressions. Therefore,
these measures are sometimes also used for polygonal basic units, even if geometric
measures could have been applied (Ríos-Mercado and Fernández 2009).

25.4.5 District Center

Strictly speaking, determining district centers is in most cases not an optimization
criterion in itself. However, several measures for contiguity and compactness rely on
district centers. Thus, if no centers are predefined for the districts, seeking district
centers is part of the optimization process. Typically, a district center is the basic
unit of the district that minimizes the respective compactness measure. But also the
(weighted) center of gravity can be used to determine a district center. Note however
that this center usually does not coincide with a basic unit, which is problematic if
distance computations are based on road networks.
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25.4.6 Other Criteria

There are a few other criteria for districting problems that are included from time
to time in districting models. For example, for redistricting problems the changes
in allocation from the old to the new districting plan should be kept small (de
Assis et al. 2014). Especially in sales territory design, customers often have a
preferred sales representative by whom they want to be serviced or vice-versa, i.e.,
customers have banned salesmen (Ríos-Mercado and López-Pérez 2013). Another
criterion concerns the number of districts. Typically, p is predetermined such that,
for example, the expected workload in a district neither exceeds the working time
restriction of a deliverer nor renders him underutilized. If however travel times
within a district account for a large portion of the total working time, then it is
not always possible to fix p a priori since travel times strongly depend on the shape
of districts, i.e., their compactness. Therefore, sometimes p is a design criterion
(cf. Muyldermans et al. 2003). For instance, some applications in healthcare, in
particular on the redistricting of liver allocation, attempt to minimize the disparity
in liver availability among districts (Gentry et al. 2015). In other areas such as
the location of Emergency Medical Service (EMS) the focus is to save lives and
to minimize the effects of emergency health incidents. In that context, districting,
or designing pre-determined response areas, allows an EMS system to reduce the
response time of paramedic support to the incident. An important criterion for these
applications is the patient survival probability. Thus, developing both dispatching
and districting policies under uncertainty to improve the performance of EMS
systems becomes very a very important issue (Mayorga et al. 2013).

25.5 Solution Approaches

As with most optimization problems also for districting many different solution
approaches have been proposed in the literature over the years. These approaches
can roughly be divided in those that utilize a mathematical programming model and
those that depend merely upon heuristics. Among the former, location-allocation
and set partitioning methods have been discussed. The latter mainly focus on
geometric algorithms, simple construction methods, and classical metaheuristics
such as GRASP, Tabu Search, Scatter Search, and Simulated Annealing. This
section will present only a rough overview and description of the most common
approaches. Detailed reviews can be found in Kalcsics et al. (2005) and Ricca et al.
(2013).
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25.5.1 Location-Allocation Methods

The first mathematical programming approach was proposed by Hess et al. (1965)
for political districting. They had the idea to model the problem as a capacitated
p-median facility location problem (see also Chap. 3). Basic units correspond to
customers and their activity measure to their demand. The facilities to be located
are the district centers, and the capacity of the facilities is chosen in such a way that
the districts obtained by solving the problem are well balanced. Candidate locations
for the facilities are all basic units. For an allowed relative deviation α > 0 of the
district size from the mean district size μ, the formulation of Hess et al. (1965) is

minimize
∑

i,j∈J

wj d2
ij xij (25.1)

subject to
∑

i∈J

xij = 1 ∀ j ∈ J (25.2)

∑

j∈J

wj xij ≥ (1 − α)μ yi ∀ i ∈ J (25.3)

∑

j∈J

wj xij ≤ (1 + α)μ yi ∀ i ∈ J (25.4)

∑

i∈J

yi = p (25.5)

yi, xij ∈ {0, 1} ∀ i, j ∈ J, (25.6)

where xij = 1 if basic unit j is assigned to district center i, 0 otherwise,
and yi = 1 if basic unit i is selected as district center, 0 otherwise. The
objective function (25.1) maximizes the compactness of the districts using the
center-based measure cmpwd2(·). Constraints (25.2), together with the integrality
constraints on the xij -variables, model the unique and exclusive assignment cri-
terion. Constraints (25.3) and (25.4) restrict the balance of the districts. Finally,
Constraints (25.5) ensure that exactly p basic units are selected as district centers.
As a result, all basic units allocated to the same basic unit i constitute a district with
the basic unit as its center, i.e., there is a one-to-one correspondence between centers
and districts. Note that the centers are just required to evaluate district compactness
and have no meaning in itself.

Unfortunately, due to its NP-hardness, the practical use of this formulation is
limited to instances with a few hundred basic units, which is rather small for
typical sales districting problems. To this end, Hess et al. (1965) propose to use
Cooper’s location-allocation heuristic to solve the problem. In this heuristic, the
simultaneous location and allocation decisions of the underlying facility location
problem are decomposed into two independent phases, a location and an allocation
phase, which are alternatingly performed until a satisfactory result is obtained. In
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the location phase, a set Jc of district centers is determined. A fairly simple and
commonly used method is to solve in each district resulting from the last allocation
phase a single facility location problem with the respective compactness measure
as objective function (cf. Fleischmann and Paraschis 1988; George et al. 1997).
To obtain an initial set of centers, one can determine new centers based on the
solution of a Lagrangian subproblem (Hojati 1996). Alternatively, one can use any
of the heuristics for the (uncapacitated) p-median problem or one of the heuristics
mentioned below.

Once the centers have been fixed, the allocation phase determines a balanced
assignment of basic units to district centers. This can be done by fixing yi = 1 for
all i ∈ Jc in the above formulation. With present-day computers and mixed-integer
linear programming (MILP) solvers, the resulting problem can be solved optimally
even for large instances with 10,000 basic units or more within a short time.
Even in the presence of contiguity constraints, several thousand basic units can be
assigned in reasonable time (Ríos-Mercado and López-Pérez 2013). Alternatively,
the allocation problem can be modeled as a minimum cost network flow problem
allowing more flexibility for measuring and optimizing the balance and compactness
of districts (George et al. 1997).

Example 25.3 Consider again the example depicted in Fig. 25.3, but assume now
that the district centers are flexible and the current ones are just a starting point.
Based on the districting plan for the measure cmpwd2(·), the new centers that
minimize cmpwd2(·) over each district are shown on the left-hand side in Fig. 25.5.
The subsequent allocation phase yields the new districts shown on the right-hand
side. The districts are visually much more compact and there is no overlap between
the convex hulls of the districts.

In former times, when the exact solution of the allocation problem was unattain-
able for larger instances, the assignment problem was solved heuristically. Setting
the tolerance α to zero and relaxing the integrality constraints on the assignment
variables, i.e., xij ∈ [0, 1], the resulting linear program is a classical transportation
problem that can be solved efficiently using specialized network algorithms.
However, solving the relaxed problem yields districts that are perfectly balanced
but usually assign portions of basic units to more than one district, i.e., ∃ i, i′ ∈ Jc,
i �= i′, j ∈ J , such that xij , xi′j > 0. Such basic units are called splits. For an
optimal basic feasible solution of the transportation problem, it is easy to prove that
there are at most p − 1 splits (Hojati 1996). To restore the integrity of basic units,
it is necessary to round for every split its fractional variables to one (one variable)
or zero (the other variables). This yields disjoint districts but destroys their perfect
balance. A simple split resolution rule is to assign a split to the district (center) that
“owns” the largest share of the split (Hess and Samuels 1971). However, if there are
just a few basic units per district, this rule may produce very unbalanced districts.
An optimal split allocation with a minimal maximal percentage deviation can be
obtained in polynomial time by using tree partitioning methods; unfortunately, the
problem of finding a split resolution with a minimal total deviation is NP-hard; see
Schröder (2001) for details.
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Fig. 25.5 Illustration of one
iteration of the
location-allocation procedure.
(a) Location phase: new
districts centers. (b)
Allocation phase: new
districts

(a)

(b)

25.5.2 Exact Methods

As districting is essentially a partitioning problem, classical set-partitioning
approaches can be used to solve the problem. In a first step, balanced, contiguous,
and compact candidate districts are generated in a heuristic fashion. In a second step,
districts are selected from the set of candidates to optimize the overall balance of the
district plan (Garfinkel and Nemhauser 1970; Mehrotra et al. 1998). Unfortunately,
only small instances can be solved optimally with this approach. An advantage
compared to location-allocation methods is however that almost any criterion can
be applied on the generation of candidate districts.

More recently, Salazar-Aguilar et al. (2011a) introduced an exact method for
handling districting problems subject to the connectivity constraints proposed by
Drexl and Haase (1999). The authors present an exact solution framework based
on a branch-and-bound algorithm combined with a cut generation strategy. First,
the (exponentially many) connectivity constraints are relaxed and then the integer
relaxation is solved by branch-and-bound. Afterwards, an easy separation problem
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is solved to find unconnected districts. The corresponding violated constraints
are then added to the formulation and the iterative process starts again. When
no more violated cuts are found, the algorithm stops with an optimal solution.
Extensive empirical evidence is presented for several classes of districting models
that include multiple balancing constraints and various compactness measures. Two
MILP models are assessed: one based on a p-center compactness measure and the
other based on a p-median function. The latter turns out to have a stronger linear
programming relaxation and results in fewer violated connectivity constraints. The
authors also propose two integer quadratic programming formulations for the center
and median based compactness measure that result in a smaller number of variables
than the linear formulations. These formulations are also solved within the same
exact optimization framework. The empirical results show that the quadratic models
allow solving larger instances than their linear counterparts. The former also require
fewer iterations of the exact method to converge.

Ríos-Mercado and Bard (2019) present an exact optimization scheme for the
maximum dispersion territory design problem introduced in Fernández et al. (2010).
The exact algorithm takes full advantage of a tighter dual bound and a new
reformulation embedded into a biased binary search scheme. Extensive testing
indicates that the proposed exact algorithm is able to find optimal solutions to
instances with up to 800 basic units and 12 companies and to instances with up
to 1400 basic units and 8 companies. Previous to this research, the largest instances
optimally solved with off-the-shelf branch-and-bound solvers had between 40 to 100
basic units and 4 companies. This work also extends the results for the maximum
dispersion problem introduced by Fernández et al. (2013).

In the context of multi-objective districting, Salazar-Aguilar et al. (2011b)
address a commercial districting problem. The authors propose a bi-objective
programming model where compactness and balancing with respect to the number
of customers are used as performance criteria. Constraints such as connectivity
and balancing with respect to product demand are also considered in the model.
They propose an improved epsilon-constraint method for generating the optimal
Pareto front. Empirical evidence over a variety of instances shows that the improved
method is well suited for finding optimal Pareto fronts with no more computational
effort than the traditional method. Instances of up to 150 units and 6 territories
are solved in relatively short amount of time. For this problem, the improved
method finds practically the same fronts than those found by the traditional epsilon-
constraint method. This is, to the best of our knowledge, the only exact method for
multi-objective districting developed up to date.

25.5.3 Computational Geometry Methods

A very simple but efficient solution approach for basic units representing points
is the successive dichotomies strategy (Kalcsics et al. 2005). The main idea is to
recursively subdivide the problem geometrically using lines into smaller and smaller
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subproblems until an elementary level is reached, where the problem can be solved
efficiently. Hence, the basic operation is to partition a subset J ′ of basic units into
two subsets J ′

l and J ′
r by drawing a line within this set of points. Given a number

of line directions, for each direction the position of the line is determined in such
a way that the two resulting subproblems are best balanced. For every direction,
the line is evaluated by a convex combination of its balance and its compactness
(evaluated through the length of inter-district boundaries), and the best line is then
used to divide the problem into two subproblems. This procedure is repeated until
every subset corresponds to a single district. The strategy quickly determines a well-
balanced districting plan with no overlap between districts. However, as it does
not explicitly account for (road) distances, the resulting districts sometimes lack
compactness. Moreover, it is difficult to include neighborhood information. Instead
of using lines, other geometric concepts can be used. Alternatively, the process of
subdividing a point set J ′ can be modeled and solved as a 2-facility location problem
(Salazar-Aguilar et al. 2013a).

Example 25.4 Consider again the example in Fig. 25.3 and assume that the district
centers are flexible. Figure 25.6 shows the districting plan obtained with the
successive dichotomies algorithm using horizontal, vertical, and diagonal lines.

Another approach is based on weighted Voronoi diagrams on networks (for a
definition of weighted Voronoi diagrams, see Aurenhammar et al. 2013). Assume
that the neighborhood graph G is given. For center-based measures the most
compact solution is obtained by assigning each basic unit to the closest center. If
the distances {dck,j | ck ∈ Jc} are unique for each j ∈ J , then each district
will also be connected. However, the resulting districts are often far from being
balanced. To overcome this drawback, the idea is to modify the distances dck,j

between basic units and centers in such a way that assignments to overly large
districts are “penalized” and allocations to too small districts are “stipulated”. There
are basically two options to modify distances. The first adds a real-valued weight
rk ∈ R to each distance dck,j (Zoltners and Sinha 1983) and the second multiplies
dck,j by a positive weight rk ∈ R

+ (Ricca et al. 2008). Hence, basic unit j ∈ J

is closer to center ck than to center cl ∈ Jc if dck,j + wk < dcl,j + wl or

Fig. 25.6 Districting plan
with the successive
dichotomies algorithm
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wk dck,j < wl dcl,j , respectively. Increasing (decreasing) the weight for a specific
center ck while keeping the other weights unchanged, will reduce (increase) the
number of basic units assigned to ck under the closest assignment rule and thus
reduce (increase) the size of the district. To obtain balanced districts, the weights
have to be updated iteratively until a satisfactory result is obtained. During the
update, care has to be taken since some districts may turn out empty under additive
weights or become disconnected for multiplicative weights if the weights are too
uneven. For details on the update procedures see Zoltners and Sinha (1983) and
Ricca et al. (2008). The partitions of the graph induced by these weights are the
so-called additively and multiplicatively weighted Voronoi diagrams. Note that
the approach using additive weights is in fact a Lagrangian relaxation where the
balancing constraints have been relaxed.

Most districting problems are solved using discrete models. However, these
problems (and a number of other logistics problems as well) can be converted into
problems with continuous demand functions. Continuous demand approximations
models are based on the spatial density and distribution of demand rather than on
precise information on every demand point. Given continuous approximations, one
can for example use Voronoi diagrams to compute or to smooth existing districts
(Galvão et al. 2006), or determine perfectly balanced districts (Carlsson and Delage
2013).

25.5.4 Construction Methods

There exist several easy approaches for constructing a districting plan from scratch.
One of the most popular ones is based on the multi-kernel growth methodology first
introduced in Vickrey (1961). The general idea of this methodology is to select
a certain number of basic units as “seed centers” and then assign to each seed
neighboring basic units in order of decreasing distance until the desired district size
is reached. Variations exist with respect to the selection of seeds, whether districts
grow simultaneously or sequentially around the seeds, and how to deal with enclaves
of unassigned basic units which typically occur at the end of this greedy process
(Bodin and Levy 1991; Williams 1995; Mehrotra et al. 1998; Bozkaya et al. 2003).
The resulting districting plans are not always connected or balanced and typically
serve as a starting point for a metaheuristic.

A different approach treats each basic unit initially as a single district and then
merges iteratively pairs of districts until the prescribed number of districts is reached
(Deckro 1977).
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25.5.5 Metaheuristics

Given the NP-hardness of most of the districting problems, it is not surprising that
moderate to large scale instances are intractable by exact optimization algorithms.
The development of structured heuristic or metaheuristics has been a very important
area of research over the past few years. Many interesting ideas and schemes have
been developed with great success. A major advantage of these methods is their
flexibility to include almost any practical criterion and measure for the design of
districts and handle complex constraints. In this subsection we review some of the
most relevant works on metaheuristics applied to districting problems in general.

25.5.5.1 Greedy Randomized Adaptive Search Procedure (GRASP)

In recent years, GRASP has been one of the most popular approaches to solve
districting problems. An important reason for this is its flexibility to successfully
handle connectivity constraints when constructing solutions from scratch.

The first GRASP implementation applied to a districting problem is due to Ríos-
Mercado and Fernández (2009). In that work, the authors address a commercial
districting problem with connectivity and multiple balancing constraints. They
develop a reactive GRASP, where territories are built one at a time during the
construction phase and reinsertion and swapping neighborhoods are explored during
the improvement phase. The method is enhanced by a reactivity feature that auto-
matically self-tunes the GRASP quality threshold parameter for accepting solutions
from the restricted candidate list. The algorithm is tested on data sets coming from
a commercial firm that range from 500 to 2000 basic units. It was observed that the
algorithm was very robust under many different scenarios, providing solutions of
significantly better quality than those from existing practice. In a follow-up work,
Ríos-Mercado (2016) provides further experiments by applying the reactive GRASP
for solving large scale instances ranging from 1000 to 2000 to basic units under
different settings. An interesting finding is that the metaheuristic is able to obtain
feasible designs with less than 3% balance deviation.

Fernández et al. (2010) present a GRASP approach for the maximum dispersion
territory design problem with three different construction heuristics and several dif-
ferent neighbourhood topologies in its local search phase. Extensive computational
testing shows the effectiveness of the proposed algorithm.

Ríos-Mercado and Salazar-Acosta (2011) address a commercial districting prob-
lem arising in the bottled beverage distribution industry where a set of city blocks
has to be grouped into territories. As planning requirements, the grouping seeks to
balance both the number of customers and the product demand across territories,
maintain connectivity of territories, and limit the total cost of routing. This work
addresses both district design and routing decisions simultaneously by considering
a budget constraint on the total routing cost. A GRASP that incorporates advanced
features such as adaptive memory and strategic oscillation is presented. Empirical
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evidence over a wide set of randomly generated test instances based on real-world
data shows a very positive impact of these advanced components, significantly
improving the solution quality.

Salazar-Aguilar et al. (2013b) study a commercial districting problem. Each ter-
ritory must be compact, connected, and balanced according to two activity measures
(number of costumers and product demand). Two GRASP heuristics (BGRASP
and TGRASP) are proposed for this problem. For each of them two variants are
studied: (1) keeping connectivity as a hard constraint during construction and post-
processing phases and, (2) ignoring connectivity during the construction phase and
adding this as a minimizing objective function during the post-processing phase.
The main difference between BGRASP and TGRASP is the way they consider
the planning criteria during the construction phase. In BGRASP, the construction
attempts to find high quality solutions based on the optimization of two criteria:
compactness and balance of the number of customers (product demand balance
is treated as a constraint). The construction phase in TGRASP considers three
objectives to be optimized: compactness and balance with respect to both activity
measures. The proposed procedures are evaluated on a variety of problem instances,
with 500 and 1000 basic units. An analysis of these procedures is carried out using
different performance measures such as the number of non-dominated points, the
k-distance, the size of the space cover (SSC), the coverage of two sets measure,
and time. It is observed that SSC, coverage of two sets measure, and time exhibit
significant variation depending on the GRASP procedure used. In contrast to that
the number of points and k-distance measures did not show any significant variation
over all evaluated procedures. BGRASP-I provides good frontiers in short time
and BGRASP-II has the best coverage of the efficient points given by the others
procedures.

A multi-objective capacitated redistricting problem (MCRP) arising from power
meter reading is addressed by de Assis et al. (2014). Two objective functions
are considered (compactness and homogeneity of districts) within a bi-objective
optimization framework. The redistricting relies on the existence of an original set
of districts. The goal of the problem is to partition power utility customers into
new districts. The expansion of cities with new developments, population migration,
and uneven changes of power demand in the suburbs are examples of forces that
pressure the re-definition of districts. Each district refers to the working zone of
a group of meter readers that perform readings of power consumption from the
customers of that same district. The readings are performed in situ and feed the
monthly invoice sent to each customer. The proposed solution method is based on a
GRASP and multi-criteria scalarization technique to approximate the Pareto front.
The approximate Pareto front is obtained iteratively by solving mono-objective
problems in which the objective function is a weighted sum expression of the two
criteria under consideration. The GRASP construction phase generates districts, one
at a time, by using a greedy function that penalizes both a dispersion measure
and district imbalance in weighted manner. If the resulting plan has more than p

territories, a repair phase consisting of merging the smallest territories is carried
out to ensure p territories are designed. As an improvement phase they use the
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reinsertion neighborhood. Computational tests are performed with a diverse set of
24 randomly generated instances with different sizes, demands and densities. A real-
life network extracted from the city of São Paulo, Brazil, is also included in the
tests. The results demonstrate the effectiveness of GRASP in producing high quality
districts with respect to compactness and homogeneity. The results indicate the
impact of conformity on the resulting trade-off curve, clearly showing a compromise
between attaining compact solutions and maintaining allocations of customers to
their current district. The authors conclude that the conformity is thus a relevant
criterion and should be included in the optimization and decision making process
regarding redistricting problems.

The existing literature reveals that practically all the works on commercial
districting use center or median based compactness measures. While these measures
yield mixed-integer programming models with some nice properties, they have
the disadvantage of being very costly to be evaluated when used within heuristic
frameworks. This is due to the center updating operations frequently needed
throughout the heuristic search. Ríos-Mercado and Escalante (2016) propose a
more robust dispersion measure based on the diameter of the formed territories,
allowing for a more efficient heuristic search. For solving this particular territory
design problem, they propose a GRASP that incorporates a novel construction
procedure where territories are formed simultaneously in two main stages using
different criteria. This also differs from previous literature where GRASP was
used to build only one territory at a time. The procedure is further enhanced with
two variants of forward-backward path relinking, namely static and dynamic. Path
relinking is a sophisticated and very successful search mechanism. This idea is
novel in any districting or territory design application to the best of our knowledge.
The proposed algorithm and its components are extensively evaluated over a wide
set of data instances. Experimental results reveal that the construction mechanism
produces feasible solutions of acceptable quality, which are improved by an effective
local search procedure. In addition, empirical evidence indicate that the two path
relinking strategies have a significant impact on solution quality when incorporated
within GRASP. The ideas and components of the developed method can be further
extended to other districting problems under balancing and connectivity constraints.

25.5.5.2 Tabu Search (TS)

Blais et al. (2003) study a districting problem arising in a local community health
clinic in Montreal, Canada, in which five districting criteria must be respected:
indivisibility of basic units, respect for borough boundaries, connectivity, visiting
personnel mobility, and workload balance. The last two criteria are combined into a
single objective function. The authors present a tabu search heuristic considering
two different neighborhood topologies. For the case study at hand, the design
obtained by the heuristic was able to improve the then current solution in terms
of workload balance and personnel mobility.
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Bozkaya et al. (2003) propose a tabu search for a districting problem that
considers the optimization of four different criteria in a single weighted objective
function: population equality, territory compactness, socio-economic homogeneity,
and similarity to the existing districting plan. Moreover, connectivity is treated as a
hard constraint. The local search is based on a reinsertion and swap neighborhood.
Concerning the tabu list, when a given basic unit is used in a move, it remains tabu
for the next θ iterations, where θ is chosen randomly. Moreover, an adaptive memory
procedure is employed. This procedure is based on the idea that components of high
quality solutions can be used to construct other high quality solutions. The method
therefore stores in a constantly updated pool a set of districts belonging to some of
the best-known solutions. Then, disjoint districts can be extracted from the pool to
serve as a basis for a new solution. Each district of the pool, or adaptive memory, is
given a larger probability of being selected if it belongs to a better solution. In their
empirical work, it was found that the proposed method is robust and powerful since
it can easily incorporate a large number of criteria and produces feasible and high
quality solutions. When tested on a real-world case study from Edmonton, Canada,
the test results indicate that the algorithm can produce maps that dominate the
existing districting map of Edmonton with respect to compactness and integrity of
communities. It can also reduce the amount of deviation around the average district
population from the current 25% to much lower levels (such as 1%), improving on
the equality of representation.

Haugland et al. (2007) develop tabu search and multi-start metaheuristics for
the problem of designing districts for vehicle routing problems with stochastic
demands. In particular, demands are assumed to be uncertain at the time when the
districts are made, and these are revealed only after the districting decisions are
determined. They use the same neighbourhoods for the local search phase and the
same tabu list implementation as in Bozkaya et al. (2003). The authors compare the
two heuristics, finding out that tabu search outperforms multi-start.

Ríos-Mercado et al. (2017) present a tabu search metaheuristic as a follow-up to
the work on the maximum dispersion territory design problem, first addressed by
Fernández et al. (2010). In this paper, the authors significantly improve the previous
GRASP approach by incorporating a strategic oscillation component within the tabu
search.

25.5.5.3 Simulated Annealing (SA)

D’Amico et al. (2002) address the problem of re-drawing police command bound-
aries. They model this problem as a constrained graph-partitioning problem involv-
ing the partitioning of a police jurisdiction into command districts subject to
constraints of contiguity, compactness, convexity and size. Since the districting
affects urban emergency services, they also include quality-of-service constraints,
which limit the response time (queue time plus travel time) to calls for service.
Given the size of the problem, they propose a simulated annealing heuristic to search
for good partitions of the police jurisdiction. At each iteration of the algorithm,



25 Districting Problems 737

they employ a variant of the well-known public domain software tool Patrol Car
Allocation Model (PCAM) to optimally assign patrol cars to districts and assess
the “goodness” of a particular district design with respect to some prescribed
performance measures. For the neighbour topology, they consider moves that
reassign a basic unit from a given district to an adjacent district. A computational
case study using data from the Buffalo, NY, Police Department (BPD) is carried out
revealing the merits of this approach. Among their main findings it was observed
that under optimal car allocations, they are able to find an improved district design
that lowers the disparity among officer workloads from 30% to only 14%. Also,
the proportion of small workloads under 36% is greatly reduced. Hence, officer
workloads are better balanced (primarily between 36% and 42%) across all districts
and work shifts. At the same time, the response time feasibility constraints ensured
no increase in the maximum response time of 29 min under current BPD operations.

25.5.5.4 Genetic Algorithm (GA)

Bação et al. (2005) solve a political districting problem using a genetic algorithm
and apply it to a case study in Portugal. Their results indicate that the GA obtains
better results when compared to the current practice.

Tavares-Pereira et al. (2007) study a multi-objective districting problem arising
for Paris public transportation. The goal is to partition a territory into “homo-
geneous” zones without inclusions, where each zone is composed of a set of
elementary territorial units. They propose a genetic algorithm to approximate the
Pareto front based on an evolutionary algorithm with local search. The algorithm
presents a new solution representation and new crossover/mutation operators. The
algorithm can deal with multiple criteria, allows to solve large-size instances in a
reasonable time, and generates high quality solutions. The algorithm is applied to
the Paris region public transportation.

Steiner et al. (2015) address a health-care districting problem arising in Parana
State, Brazil. The motivation for the problem is to develop a better system for
patients by aggregating various health services offered in the municipalities of
Parana into micro regions. The problem is formulated as a multi-objective graph
partitioning problem, where the municipalities are represented by nodes, and
roads connecting them are represented by edges. Their three-objective optimization
problem considers maximizing the population homogeneity in the micro regions,
maximizing the variety of medical procedures offered in the micro regions, and
minimizing the inter-micro region distances to be traveled by patients. They develop
a multi-objective genetic algorithm, which yields a significant improvement over the
existing health-care system map of Parana State.

Forman and Yue (2003) present a genetic algorithm for a political districting
problem, where the encoding of solutions and the genetic operators are based on
the ones for Traveling Salesman Problems. This encoding forces near equality of
district population and uses the fitness function to promote district contiguity and
compactness. A post-processing step further refines district population equality.
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Results are provided for three states (North Carolina, South Carolina, and Iowa)
using the 2000 census data.

25.5.5.5 Hybrid and Miscellaneous Approaches

Bergey et al. (2003) address an electrical power districting problem arising in the
Republic of Ghana. Due to a variety of political, economic, and technological
factors, many national electricity industries around the globe are transforming from
non-competitive monopolies with centralized systems to decentralized operations
with competitive business units. A key challenge faced by energy restructuring
specialists at the World Bank is trying to simultaneously optimize the various
criteria one can use to judge the fairness and commercial viability of a particular
power districting plan. The authors propose a simulated annealing genetic algorithm
for this problem. In their empirical work, they observe that the proposed method
outperformed a well-known parallel simulated annealing heuristic.

Wei and Chai (2004) present a hybrid approach combining tabu search and
scatter search for solving a multi-objective spatial zoning model. The problem
considers a scalar function with three objectives: population unbalance, territory
compactness, and socioeconomic homogeneity. The model also includes resource
capacity constraints, but no connectivity constraints. Later, Bong and Wang (2006)
tackle another multi-objective zoning model that optimizes four criteria: population
equality, territory compactness, socio-economic homogeneity, and similarity of
a solution with the existing plan. The model also includes resource capacity
constraints. The authors propose a hybrid algorithm with elements from tabu search,
scatter search, and path relinking. A comparative study between the results of multi-
objective decision-making and single objective decision-making is conducted for
the proposed multi-objective method with a selected single objective method called
WAMCF. The empirical results show concrete evidence on two aspects that the
proposed method can produce better results for the problem with lower values in
the objectives achieved for the minimization problem. It was also observed that a
more consistent result for the individual solution was delivered compared to the
single objective approach because there is a big difference between the generated
maximum and minimum best values.

Ricca and Simeone (2008) present a comparison of several local search meta-
heuristics for political districting considering territory connectivity, minimizing
measures of population inequality, noncompactness, and nonconformity to admin-
istrative boundaries. Experiments on a set of medium to large real-life instances is
carried out using descent search, tabu search, simulated annealing, and old bachelor
acceptance algorithms. Except for descent, all local search methods show a very
good performance. In particular, old bachelor acceptance produces the best results
in the majority of the cases, especially when the objective function is focussing on
compactness.

Salazar-Aguilar et al. (2012) propose a multi-objective scatter search heuristic for
a bi-objective territory design problem. They consider a problem where compact-
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ness and balance with respect to product demand are sought. The problem includes
also balancing territories with respect to workload and territory connectivity. The
proposed scatter search-based framework contains a diversification step based on
a greedy randomized adaptive search procedure, an improvement step based on
a relinked local search strategy, and a combination step based on a solution of
an assignment problem. The proposed metaheuristic is evaluated over a variety
of instances taken from literature. This includes a comparison with two of the
most successful multi-objective heuristics from literature such as the scatter tabu
search procedure for multi-objective optimization by Molina et al. (2007), and
the non-dominated sorting genetic algorithm by Deb et al. (2002). Experimental
work reveals that the proposed procedure consistently outperforms both existing
heuristics from literature on all instances tested.

25.5.6 Lower Bounding Schemes

To the best of our knowledge, the only work on lower bounds for districting
problems is due to Elizondo-Amaya et al. (2014). In their work, the authors study
a commercial districting problem that minimizes territory dispersion based on a
p-center type of function subject to multiple balance constraints. Lower bounds are
obtained using a binary search over a range of coverage distances. For each coverage
distance a Lagrangian relaxation of a maximal covering model is effectively used.
Their computational results indicate that the bounding scheme provides tighter
lower bounds than those obtained by the linear programming relaxation.

25.6 Conclusions

In this chapter, we have given a broad overview of typical criteria and restrictions
that can be found in various districting applications as well as ways and means to
quantify and model these criteria. In addition, an overview of the different areas of
application for districting problems was given and the various solution approaches
for them that have been used were highlighted.

Despite the large number of publications, it is striking that only few authors con-
sider the districting problem independently from a practical background. Moreover,
there is no consensus on which criteria are eligible and important and, on how to
measure them appropriately. Thus, instead of devising yet another (variant of a)
metaheuristic for a districting model with yet another measure for compactness or
additional constraint, research should first and foremost concentrate on a common
and generic framework for districting problems. And it should try to categorize the
suitability of criteria and measures based on the availability of data, the geometric
representation of the basic units, and the different types of applications.
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