
Chapter 2
p-Median Problems

Alfredo Marín and Mercedes Pelegrín

Abstract One of the basic problems in the field of discrete location is the p-
median problem. In this chapter we present and analyze several versions of the
problem, but we can roughly define it as the choice of p facilities, among a set
of n candidates, that minimize the cost of supplying a finite set of users. The
p chosen facilities are usually called medians. Since the nature of the problem
is combinatorial, integer programming is the common framework in which the
problem is studied. Hence different formulations and their polyhedral properties
constitute the kernel of this chapter. The study of the problem on a graph and
heuristic procedures are treated in separate sections. Necessarily and unfortunately,
we have to overlook many important references and results in the literature in the
interest of legibility. Extensions of the problem, also of great interest, are covered
in subsequent chapters and therefore are also ignored here. A companion problem
of unquestionable importance, the Simple Plant Location Problem, is one of the
main subjects of Chap. 4. Consequently, we have paid only little attention to it in
our discussion.

2.1 Introduction

Discrete location problems consist of choosing a subset of locations, among a finite
set of candidates, in which to establish facilities and then using these to satisfy the
demand of a finite set of users. The choice of the locations must be made to minimize
the sum of the fixed facility costs and of the cost of supplying the demand from the
facilities.

Within this general framework, various problems can be identified as discrete
location problems, most of which are studied and analyzed in this book. In this
chapter we deal with a problem in the family of median problems. This term, in
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contrast with others like center and equity, refers to the definition of the cost to be
minimized. When we speak about median (or minisum) problems we mean that the
objective to be minimized depends in equal measure on the costs associated with
each of the users.

The letter p in the term p-median refers to the number of locations to be chosen
among the candidates, which is fixed beforehand. In other words, in the p-median
problem a fixed number of p locations, usually called medians, must be chosen
from the set of candidate facilities. Alternatively, it can be considered that p is the
maximum number of locations that can be chosen. The cost to be minimized is
calculated as the sum of the allocation costs of users to the medians. Let then I =
{1, . . . , m} be the set of potential facilities and J = {1, . . . , n} the set of users to be
supplied. The unit costs of supplying users from candidate facilities are arranged in
a matrix C = (cij ). We assume that supplying costs satisfy cij ≥ 0 ∀i ∈ I, j ∈ J .
The demand of a user j ∈ J is denoted with dj > 0; then, the allocation cost of j

to a median i ∈ I is given by dj cij . In order to obtain the lowest overall cost, each
user will be assigned to the median with minimum allocation cost.

Now we can formally define the p-median problem as follows. Suppose a matrix
C = (cij ) with non-negative entries, m rows denoted by I = {1, . . . , m} and called
candidates facilities, and n columns denoted by J = {1, . . . , n} and called users.
Given an n-dimensional vector (dj ) with positive entries and given p ∈ Z, 1 ≤ p ≤
m − 1, choose a subset P ⊆ I of p rows of C in such a way that the total cost
defined by

∑
j∈J mini∈P {dj cij } is minimized.

Figure 2.1 shows several examples of optimal solutions to p-median problems.
Here I = J is given by the same set of n = 30 points on the plane. Costs cij

are given by the Euclidean distances between points and demands are assumed to
be equal to one. In Fig. 2.1a we have taken p = 2 and drawn the best choice of
2 facilities (represented with squares) and the allocation of the 30 points to the
corresponding closest facility. Different optimal solutions for p = 3, 4 and 5 are
given also in Fig. 2.1b, c, and d, respectively.

Note that the kernel of the problem is the choice of the p facilities among the m

candidates (a purely combinatorial subject, with
(
m
p

)
possible solutions). Customers

allocation to the facilities is trivially carried out by choosing, for each user j ∈ J ,
the facility in P with minimum allocation cost.

The p-median problem is strongly related with a problem that will be studied
in Chap. 4, the Simple Plant Location Problem (SPLP)—also called Uncapacitated
Facility Location Problem. In the SPLP, the number of facilities is not fixed a priori.
Instead, a cost associated to each of the candidates is given, usually represented by
fi ≥ 0 ∀i ∈ I . Then, given C = (cij ) with non-negative entries, (dj ) with positive
entries, and given the vector of non-negative costs f = (fi), SPLP aims to choose a
subset P ⊆ I of rows of C in such a way that

∑
i∈P fi + ∑

j∈J mini∈P {dj cij }
is minimized. SPLP is also a minisum problem, with a trade-off between costs
associated to the facilities and allocation costs.

Despite its apparent simplicity, the p-median problem is NP-hard (Kariv and
Hakimi 1979). Its origins can be traced back to Hakimi (1964, 1965), where
the problem was defined on a graph, and ReVelle and Swain (1970), where an
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Fig. 2.1 Optimal solutions to the same instance of the p-median problem for different values of
p. (a) p = 2. (b) p = 3. (c) p = 4. (d) p = 5

integer linear programming (ILP) formulation was proposed, inspired in Balinski
(1965). Other related seminal papers are Hua et al. (1962), Kuehn and Hamburger
(1963) and Manne (1964). Given its combinatorial nature, (mixed) integer linear
programming (Nemhauser and Wolsey 1988; Wolsey 1998) has usually been the
approach used to formulate and optimally solve the problem. The literature on the
p-median problem is vast and it is not our aim to give an exhaustive list of papers.
We focus our attention on recent results and suggest consulting Mirchandani (1990)
and Reese (2006) as additional information sources.

We have organized the rest of the chapter as follows. In Sect. 2.2 several non-
immediate applications, that show a wide range of possibilities of use, are presented.
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In Sect. 2.3 the first integer linear programming formulations of the problem are
introduced and analyzed. Section 2.4 deals with some of the most interesting
available solution methods. Valid inequalities and facets for the polyhedra defined
by the linear relaxations of different formulations are described in Sect. 2.5. We
have included in a separate Sect. 2.6 the formulations and polyhedral results that
arise when the p-median problem is solved on a (possibly non-complete) directed
graph. Since solving large instances of the p-median problem is a difficult task, the
literature on heuristic approaches is vast, and we try to give an idea of this vastness
in Sect. 2.7, before closing the chapter with some final considerations.

2.2 Applications

In this section we present some applications of the p-median model taken from the
literature. To emphasize its wide range of possibilities, we have selected applications
outside the field of location of warehouses, plants, shelters or other kind of facilities,
which is the natural interpretation of our problem.

Clustering was one of the first applications of the p-median problem. In the
paper by Vinod (1969) it is said that a large number of objects, persons, variables,
symbols, etc. have been often to be grouped into a smaller number of mutually
exclusive groups so that members within a group are similar to each other in some
sense. There is a limited number of groups, each of them having a distinguished
member called centroid. The fitness of the partition depends on the average
similarity of each object with the centroid of its group. The similarity between two
pairs can be calculated from the input data and would correspond with costs (dj cij )

in our problem. The number of groups or clusters would be p and the centroids
would be our medians.

Another application of the p-median problem, as presented in Vigneron et al.
(2000), is the optimal placement of cache proxies in a computer network (see also
Li et al. 1998). Nodes in a rooted tree network request a service that follows the
path from the node to the root. When a proxy, located at a node of the tree, is found
along this path, it satisfies the request. The location of p proxies in the nodes of the
network in such a way that the sum of the distances from the nodes to the closest
proxy in the corresponding path is minimized can be seen as a p-median problem.
Vigneron et al. (2000) developed an algorithm to solve it on this special tree network
topology.

We also include in this review of applications the so-called Optimal Diversity
Management Problem (see Briant and Naddef 2004). Assume that a factory will
manufacture a product that can, to some extent, be customized. For example, a car
with t different improvements to be chosen or not by the users. The car becomes
better and more expensive with each of these improvements, and then the users will
not complain if they receive a car with more extras than required, at the same price.
The factory cannot produce the 2t different vehicles, so they decide to produce only
p of the combinations and to deliver to each user the car with minimum cost among
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those that include all the extras the user asked for. In this p-median problem, p is the
number of different versions of the product that the factory can produce and I = J

is the set of all possible combinations of extras. Medians are the versions of the
product that will be finally produced, and a combination of extras will be assigned
to the median that will replace it when serving user requests. Replacing user request
j by the version of the product i has a cost dj cij .

A similar application is to determine p times for public vehicle departures on a
temporal line, aiming at maximizing the total satisfaction of users. This served as
the base for addressing the Transit Network Timetabling and Scheduling Problem in
Mesa et al. (2014). In a public transit line, each vehicle performs a number of line
runs or expeditions that have to be located in time. Users of the transit corridor have
to be allocated to the line run that better fits their preferences, while fulfilling some
capacity requirements. The formulation in Mesa et al. (2014) is a more complex
version of the classical p-median that includes additional constraints.

Finally, in Goldengorin et al. (2012) (see also AlBdaiwi et al. 2011) the cell
formation problem is established and studied as a p-median problem. A set of
machines and their dissimilarities dj cij are given. It can be considered, for example,
that when two machines process almost the same set of parts, there is a small
dissimilarity between them (and can take part or the same cell). The problem is then
to find p machines that are best representatives of p manufacturing cells, that is to
say, the sum over the cells of the dissimilarities between these representatives and
all other machines belonging to the same the cell has to be minimum. The problem
can be considered as a special p-median problem on a graph, as defined in Sect. 2.6
below.

2.3 Integer Programming Formulations for the p-Median
Problem

The classical ILP formulation for the p-median problem is

(F1) minimize
∑

i∈I

∑

j∈J

dj cij xij (2.1)

subject to
∑

i∈I

xij = 1 ∀j ∈ J (2.2)

xij ≤ yi ∀i ∈ I, j ∈ J (2.3)
∑

i∈I

yi = p (2.4)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J (2.5)

yi ∈ {0, 1} ∀i ∈ I. (2.6)
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Two sets of binary variables are used. On the one hand,

yi =
{

1 if candidate location i is chosen as a median,
0 otherwise,

∀i ∈ I.

These variables are sometimes called location variables. Constraint (2.4) ensures
that p candidate locations are chosen as facilities. Note that yi = 1 when i ∈ P . On
the other hand,

xij =
{

1 if user j is supplied from candidate facility i,

0 otherwise,
∀i ∈ I, j ∈ J.

The variables in this second set are sometimes called allocation variables. Con-
straints (2.2) guarantee that each user j ∈ J is allocated to (supplied from) some
candidate location i ∈ I . And constraints (2.3) prohibit allocations to candidate
locations that were not chosen as facilities: when yi = 0 (i.e., i /∈ P ), xij = 0
∀j ∈ J , i.e., no user can be assigned to the location.

Allocation variables also serve to select the individual allocation costs that the
solution entails and that are used to compute the total cost in linear combina-
tion (2.1).

Formulation (F1) contains nm + m binary variables and n + nm + 1 linear
constraints. A reduced formulation can be produced by replacing the set of nm

constraints (2.3) by a set with only m constraints in the form

∑

j∈J

xij ≤ nyi ∀i ∈ I. (2.7)

Note that the effect of (2.7) when yi = 0 is the same of (2.3), fixing to zero xij for
all j ∈ J . In the case yi = 1, the sum of n binary variables will be upperly bounded
by n, thus producing no effect. We call (F2) formulation (F1) where constraints (2.3)
have been replaced by (2.7).

Although formulation (F2) is more compact than formulation (F1), it has obvious
disadvantages when a branch-and-bound procedure is used to solve the p-median
problem, since summing up (2.3) for all j ∈ J , constraints (2.7) directly follow.
This means that the polytope defined by the constraints of (F1) after relaxing the
integrity of the variables, is included in the polytope analogously defined by the
constraints of (F2). The consequence is that the lower bounds produced by (F1) will
be better than those produced by (F2).

Several ways of reducing the size of (F1) without loss of quality in the
formulation have been explored. First, it can be observed (see e.g. Church 2003)
that a user will never be supplied from a facility if there are at least m − p + 1
candidates with strictly less associated supplying cost. To formalize this, we sort,
for each user j ∈ J , the corresponding column in the cost matrix C to obtain
ĉ1j ≤ ĉ2j ≤ · · · ≤ ĉmj . Then, some x-variables can be fixed to zero: xij := 0
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∀i ∈ I : cij > ĉm−p+1,j . Another possibility, see Church (2003), is to identify and
match equivalent x-variables in the formulation. Consider two users j1 < j2 ∈ J ,
a candidate i ∈ I and a scenario where � := {� ∈ I : c�j1 < cij1} =
{� ∈ I : c�j2 < cij2}. If, in an optimal solution, xij1 = 1, it follows that no
candidate in � has been chosen as a facility, but i has been (since j1 was assigned
to i). Then, one facility to which j2 is allocated with minimum cost is i as well.
Consequently, xij2 = 1 is an optimal choice. On the other hand, xij1 = 0 means that
either a candidate in � has been chosen as median or there are no medians in � and
neither is i a median. In both cases, xij2 = 0. The conclusion is that xij1 and xij2

can be identified, and thus the size of the formulation can be reduced by replacing
all xij2 with xij1 .

Following the same reasoning as in Cho et al. (1983a), we can handle formulation
(F1) to rewrite constraints (2.2) and (2.3) in a different way. Note that, since (2.2)
are equalities, the sums

∑
i∈I xij ∀j ∈ J will be constant in any feasible solution to

(F1). Hence using a large enough number, M , the alternative objective

∑

i∈I

∑

j∈J

dj cij xij −
∑

i∈I

∑

j∈J

Mxij =
∑

i∈I

∑

j∈J

c̃ij xij

where c̃ij := dj cij − M < 0 ∀i ∈ I, j ∈ J can be utilized. The advantage of
this function is that, since the coefficients are negative and we are minimizing, the
x-variables will take value one in an optimal solution if they are not restricted by the
constraints of the formulation. This means that constraints (2.2) can be relaxed to

∑

i∈I

xij ≤ 1 ∀j ∈ J. (2.8)

Consider now a different set of binary variables

y′
i =

{
1 if candidate location i is not chosen as a facility,
0 otherwise,

∀i ∈ I,

that is to say, y′
i := 1 − yi ∀i ∈ I . Using this new set of variables, constraints (2.3)

can be rewritten as

xij + y′
i ≤ 1 ∀i ∈ I, j ∈ J. (2.9)

Both sets of constraints, (2.8) and (2.9), are defined as sums of binary variables
upperly bounded by 1. These set packing constraints can be analyzed, see Cánovas
et al. (2000, 2002, 2003), Cho et al. (1983a,b), and Cornuéjols and Thizy (1982), to
produce a tighter formulation, using the so-called intersection (or conflict) graph,
where each node is associated with a variable, and nodes are neighbors if they share
at least one constraint. Since this analysis is the same as that carried out for the
SPLP, we refer the reader to Chap. 4 for a detailed analysis. The reformulation of
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(F1) by means of (2.8) and (2.9) still contains constraint (2.4), which enables us to
perform the polyhedral analysis of the formulation in a different way, see Sect. 2.5.

A different relaxation of (F1) can be carried out, that of the integrity of the x-
variables. Constraints (2.5) can be replaced by

xij ≥ 0 ∀i ∈ I, j ∈ J. (2.10)

To see this, observe that (2.2) and (2.10) imply xij ∈ [0, 1] ∀i ∈ I, j ∈ J . Now,
consider a set P ⊆ I of p facilities and the sets Aj := {i ∈ P : cij = min�∈P c�j }.
It is obvious that in any optimal solution where P is the set of chosen facilities,∑

i∈Aj
xij = 1 holds for all j ∈ J . Since all variables in the last sum have the same

cost, an equivalent integer solution can be trivially obtained by fixing one of them to
one and the rest to zero. After relaxing (2.5)–(2.10), the meaning of the x-variables
can be re-established as xij = fraction of the demand of user j that is supplied by
facility i.

Consider now the version of the problem where I = J and cii = 0 ∀i ∈ I .
This case has some special characteristics that allow to reformulate the problem.
Whenever yi = 1, the minimum possible allocation cost for point i will be 0,
obtained by allocating i to itself. Then yi = 1 ⇒ xii = 1. Since yi = 0 ⇒ xii = 0,
both variables can be identified, and yi can be replaced by xii in the formulation.
The resulting reduced formulation is given by

(F3) minimize
∑

i∈I

∑

j∈I :
i 	=j

dj cij xij

subject to (2.2)

xij ≤ xii ∀i, j ∈ I : i 	= j (2.11)
∑

i∈I

xii = p (2.12)

xij ∈ {0, 1} ∀i, j ∈ I : i 	= j (2.13)

xii ∈ {0, 1} ∀i ∈ I. (2.14)

Again, constraints (2.13) can be relaxed to xij ≥ 0 ∀i, j ∈ I : i 	= j .
Under the given conditions, constraints (2.7) can be slightly improved. Note that

the existence of p users that are going to be self-allocated guarantees that no more
than n − p + 1 users will be allocated to the same facility. Hence the constant in the
right hand side of (2.7) can be modified to yield the tighter constraints

∑

j∈J :
j 	=i

xij ≤ (n − p)xii ∀i ∈ I. (2.15)
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In what follows we still assume cii = 0 ∀i ∈ I and cij ≥ 0 ∀i, j ∈ I : i 	= j to
produce a formulation based on a completely different set of variables. The ideas we
are going to present come from Cornuéjols et al. (1980), where they were applied to
the SPLP. A preprocessing of the data is required before proceeding. It is necessary,
for each j ∈ J , to sort the entries of the j -th column of the cost matrix C, removing
the multiplicities: 0 = c̄1j < c̄2j < · · · < c̄Gj j = maxi∈I cij . Since we do not know
a priori how many different supplying costs there are in column j of C, we use Gj

to denote this number. A new set of binary variables, sometimes called cumulative
variables, is defined as

zkj =
⎧
⎨

⎩

1 if the supplying cost of user j is at least c̄kj

(no matter which facility it is allocated to),
0 otherwise,

∀j ∈ J, 2 ≤ k ≤ Gj .

Note that the variables z1j have not been used, since by definition z1j = 1 if the
supplying cost of user j is at least c̄1j = 0, and this condition is always satisfied.
Initially we will also use variables yi , ∀i ∈ I , to keep track of the chosen facilities.
Then consider a new formulation for the p-median problem given by

(F4) minimize
∑

j∈J

Gj∑

k=2

dj (c̄kj − c̄k−1,j )zkj (2.16)

subject to (2.4), (2.6)

zkj +
∑

i∈I :
cij <c̄kj

yi ≥ 1 ∀j ∈ J, 2 ≤ k ≤ Gj (2.17)

zkj ∈ {0, 1} ∀j ∈ J, 2 ≤ k ≤ Gj . (2.18)

In formulation (F4) we keep constraints (2.4) and (2.6) to account for the number of
facilities. The difference between (F4) and the previously introduced formulations
is that in (F4) there is no information in the variables about the allocation of users
to facilities, but there is about the smallest allocation costs of the users when
only chosen facilities are considered. Let us analyze constraints (2.17). The term∑

i∈I : cij <c̄kj
yi takes value zero only when no candidate with supplying cost less

than c̄kj (the k-th supplying cost for user j ) has been selected as a facility. It is
clear, then, that zkj , as defined, must take value 1. Since the coefficients in the
objective function (2.16) are strictly positive, in an optimal solution all variables
will take value 0 unless the corresponding constraint (2.17) force them to take value
1. For this reason, z-variables can be relaxed to be positive continuous variables and
constraints (2.18) can be simply removed.

For a given user j ∈ J , the sets of candidates inside a radius c̄kj , Bk := {i ∈
I : cij < c̄kj }, satisfy the strict inclusion relations B2 � B3 � · · · � BGj

. This
implies that, in any optimal solution, z2j ≥ z3j ≥ · · · ≥ zGj j , that is to say, the
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appearance of vector z·j will be (1, . . . , 1, 0, . . . , 0). Assume the last 1 corresponds

with variable zaj . Then, in the objective function (2.16) the sum
∑Gj

k=2 dj (c̄kj −
c̄k−1,j )zkj will be

∑a
k=2 dj (c̄kj − c̄k−1,j ). Taking into account that c̄1j = 0, the

value of this telescopic sum will be dj c̄aj , that is to say, the cost of allocating j to
median a, as wished.

In Fig. 2.2 we see, using the same example as in Fig. 2.1d (where I = J , dj = 1
∀j ∈ J , and supplying costs are given by Euclidean distances between points),
the effect of constraints (2.17) on user j = 1 assuming that the facilities of the
optimal solution are given. Constraint (2.17), with k = 2, reads z21 + y1 ≥ 1.
Since 1 is not a median, it follows that z21 = 1. Taking now k = 3, it reads z31 +
y1 + y2 ≥ 1, implying z31 = 1. Similarly, z41 = z51 = 1. Then, for k = 6,
z61 + y1 + y2 + y3 + y4 + y5 ≥ 1 is satisfied since y5 = 1. Due to the objective
function, z61 = z71 = · · · = 0, and that the cost of allocating point 1 to point 5 will
be (10.77−0)·1+(15.65−10.77)·1+(16.49−15.65)·1+(17.72−16.49)·1 = 16.49,
the distance between points 1 and 5.

A reduction in the size of (F4) can be made noting that constraints (2.17) when
k = 2 read z2j + yj ≥ 1 and these constraints are always satisfied as equalities by
an optimal solution. Then yi can be replaced with 1 − z2i ∀i ∈ I .
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Fig. 2.2 Graphical representation of the role of the z-variables in formulation (F4) on the same
example as in Fig. 2.1d
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Regarding the size of (F4), observe that for each user j ∈ J , the number of
z-variables in (F4) will be the number of different costs in the j -th column of C,
minus one. Therefore, the total number of z-variables in the formulation will be in
the set {0, . . . , nm}. For each z-variable there is one constraint in family (2.17), thus
the number of linear constraints will be in {1, . . . , nm + 1}. In the worst case, when
all costs in each column of C are distinct, the size of (F4) will be exactly the same
as the size of (F1).

Although the size of (F4) can be smaller than the size of (F1), Cornuéjols et al.
(1980) proved that both linear relaxations yield the same lower bound on the optimal
value of the problem. There exist many works where formulations (F1)–(F3) have
been used. However, references containing formulation (F4) are scarce, and almost
limited to the study of the companion problem SPLP: Kolen (1983) used a version of
formulation (F4) to solve the SPLP in polynomial time on a tree; Simão and Thizy
(1989) studied the linear relaxation of a modification of (F4); (F4) for SPLP was
also considered in Cornuéjols et al. (1990) and Kolen and Tamir (1990). Finally, Xu
and Lowe (1993) compared the work of Simão and Thizy (1989) with a previous
method in the literature to solve the SPLP.

2.4 Optimal Solution Procedures

Several exact algorithms for the p-median problem are available. We summarize
some of them here, without intending to be exhaustive.

Galvão (1980) realized that solving the p-median problem within a branch-and-
bound framework means solving many linear relaxations of subproblems of large
size. He then devised a method to efficiently obtain good lower bounds instead of
optimally solving the relaxed continuous subproblems. To this end, he considered
formulation (F3), replaced the equality (2.2) by ‘≥’, relaxed constraints (2.13)
and (2.14) and built the dual problem

(F3D) maximize pσn+1 +
∑

i∈I

σi

subject to σi + σn+1 −
∑

j∈I :
j 	=i

πij ≤ 0 ∀i ∈ I

σj − πij ≤ dj cij ∀i, j ∈ I

πij ≤ 0 ∀i, j ∈ I : i 	= j

σi ≥ 0 ∀i ∈ I

σn+1 ≤ 0.
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Table 2.1 A summary of the computational experience on exact solution methods up to date

Authors Year Computer n t (s)

Galvão 1980 Unknown 30 879

Church 2003 Sun Ultra Sparc 10 372 879

Avella
et al.

2007 Compaq EVO W4000 PC Pentium IV 1.8 GHz, 1 GB
RAM

5535 394

García
et al.

2011 Intel CORE 2 CPU 6600 2.4 GHz, 3 GB RAM 85,900 66,000

The last three columns stand for the maximum size and time in seconds of the instances tested but
do not necessarily correspond to one same instance

Noticing then that, in any optimal solution to (F3D),

σn+1 ≤ min
i∈I

{−σi +
∑

j∈I :
j 	=i

πij } and πij = − max{0, σj − dj cij } ∀i, j ∈ I : i 	= j,

he designed a two-phase method to calculate good feasible solutions of (F3D) in
an attempt to increase the objective value. In the first phase the value of σn+1 was
maximized and then the values of σi , i ∈ I , were maximized without modifying
σn+1. Then he embedded this procedure, which produces good lower bounds in a
short time, into the branch-and-bound algorithm and obtained good computational
results. Table 2.1 gives an insight about the evolution of the sizes of the instances
that could be solved with each exact method. Note that the best lower bound that
can be produced with this approach is the one provided by the linear relaxation of
(F3).

The use of formulations (F1) and (F3) with aggregated but weaker
constraints (2.7) or (2.15), combined with the inclusion of (2.3) as valid inequalities,
has served as an alternative strategy in several papers. As an example, in Church
(2003) a subset of constraints (2.3), those corresponding to the candidates with
minimum supplying cost with respect to each user, is initially incorporated in
formulation (F3). The combination of this strategy and the matching of equivalent
x-variables (see Sect. 2.3) also produced good computational results (see Table 2.1).

Beltrán et al. (2006) approached the p-median problem from a similar point of
view. They initially considered formulation (F1) and the Lagrangian relaxation of
constraints (2.2) and (2.4) by means of unrestricted multipliers vj , ∀j ∈ J and v0,
respectively. An overview on Lagrangian relaxation can be consulted in Guignard
(2003). The advantage of relaxing equality constraints is that any optimal solution
to a relaxed subproblem that also satisfies the relaxed constraints is an optimal
solution of the primal problem. The disadvantage of relaxing all these constraints is
that the optimal value of the dual problem is the same as the optimal value of the
linear relaxation of the problem. The authors found first a good set of Lagrangian
multipliers and used them as a starting point for a second problem relaxed in a
Lagrangian fashion. In this case they added constraints

∑
i∈I xij ≤ 1, ∀j ∈ J , to

the relaxed subproblem, which becomes more difficult to solve but can yield better
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lower bounds. The advantage of using the ‘≤’ version of the constraints is that all
variables xij with non-negative coefficient dj cij +vj in the relaxed subproblem can
be fixed to zero. The subproblem is then easier to solve and can even be decomposed,
since the non-removed variables could be grouped in subsets that do not relate each
other. The final set of multipliers is then used as the starting point for a third and
last relaxation obtained by adding one more constraint to the subproblem, namely∑

i∈I yi ≤ p.
Avella et al. (2007) designed a branch-and-cut-and-price algorithm that was able

to solve very large instances (see Table 2.1) of the p-median problem on a graph (see
forthcoming formulation (F5)). Cuts were added based on new valid inequalities
called W − q, lifted odd hole and cycle inequalities. Details of them are given in
Sect. 2.6. Pricing was carried out by solving a master problem to optimality and
using dual variables to price out the variables of the initial problem that were
not considered in the master, adding new variables if necessary. The novelty of
the approach was that constraints (2.20) were also relaxed and incorporated to the
master problem when the corresponding column was. The authors also developed
criteria to fix the values of some y-variables to zero when lower bounds calculated
fixing yi to one were greater than previously known upper bounds.

Finally, we summarize the solution method based on (F4) developed in García
et al. (2011). Recall that, in (F4), given an optimal solution (y∗, z∗) and a fixed
user j ∈ J , z∗·j will have the shape (1, . . . , 1, 0, . . . , 0). We have also a similar
property of any optimal solution of the linear relaxation of (F4), (ȳ, z̄): for all j ∈ J ,
z̄2j ≥ z̄3j ≥ . . . ≥ z̄Gj j . Therefore, if z̄aj = 0 for some a, then z̄kj = 0 for
all k > a. Suppose we could know this optimal solution (ȳ, z̄) beforehand. Since
each z-variable only appears in one constraint, and the z-variables taking value zero
have not been forced by the optimal values of the y-variables to take value 1, we
could remove all variables and constraints associated with the null z̄-values and
the linear relaxation of this reduced formulation would provide us with the same
optimal solution. Conversely, let us remove variables za+1,j ,. . . ,zGj j , for a given
j ∈ J , from the linear relaxation of (F4). If z̄aj = 0 in the optimal solution of
the relaxed problem, this is done. Otherwise, if z̄aj > 0, it is possible that some
of the removed variables had taken a positive value in the optimal solution. In this
case, a has been wrongly selected and a larger value for it must be considered. The
method proposed in García et al. (2011) then considered a first formulation with
a very small set of z-variables and constraints, and added more variables and their
corresponding constraints when needed. At every node of the branching tree, the
final formulation of the predecessor node was used. The result was an exact branch-
and-cut-and-price method that allowed the authors to solve the p-median problem
with a drastically reduced formulation that required much fewer constraints and
variables than formulations (F1)–(F4). This method performed extremely well on
very large instances (see Table 2.1) with large values of p. Note that the larger the
value of p, the smaller the allocation costs associated to the users and, consequently,
the smaller the number of z-variables (and constraints) added to the initial reduced
formulation.
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2.5 Polyhedral Properties

In this section we present polyhedral properties of the formulations (F1) and (F3)
or their modifications. It is worth mentioning that since the polyhedron of these p-
median formulations is obtained from the polyhedron of the SPLP by adding only
one constraint, all valid inequalities for the corresponding formulations of the SPLP
are also valid for the p-median problem. Nevertheless, they do not usually define
facets. In this section we focus on models that produce valid inequalities or facets for
the p-median problem that are not necessarily valid for the SPLP. Basic knowledge
on polyhedral theory is assumed in this section (we refer the interested reader to
Nemhauser and Wolsey 1988)

A seminal paper in this field is de Farias (2001). The author considered a
modified version of formulation (F1), with equalities (2.2) and (2.4) relaxed
to inequalities of type ’≤’. He proved that the polyhedron so defined is fully
dimensional, and found a family of facets by taking a subset J ′ of J with cardinality
at least p + 1 and disjoint nonempty subsets of I named Ij , j ∈ J ′, with
∪j∈J ′Ij � I . He showed that the constraints

∑

j∈J ′

∑

i∈Ij

xij +
∑

i /∈ ∪
�∈J ′I�

∑

j∈J ′
xij ≤ p + (|J ′| − p)

∑

i 	∈ ∪
�∈J ′I�

yi

are valid for the given formulation and define facets. We now present an example
taken from de Farias (2001) with n = 3, m = 4, p = 2, J ′ = J , Ij = {j},
j = 1, 2, 3:

x11 + x22 + x33 + x41 + x42 + x43 ≤ 2 + y4.

Note that y4 = 0 implies x41 + x42 + x43 = 0 and then x11 + x22 + x33 ≤ 2 is valid
since p = 2. On the other hand, in the case y4 = 1, the inequality becomes trivial.

Consider now de Vries et al. (2003). Among different results on the polyhedral
structure of the p-median problem, the authors generate a family of valid inequali-
ties for (F3) of the form

∑

i∈R∪S

xii − 1

r − p

∑

i∈R

∑

j∈R:
i 	=j

xij − 1

r − p + 1

∑

i∈S

∑

j∈R

xij ≤ p − 1, (2.19)

where R is a subset of I = J of cardinality r ≥ p, and S is a subset of I \ R. For
example, take m ≥ 4, p = 2, R = {1, 2, 3} and S = {4}. The facet in family (2.19)
would be

2x11 + 2x22 + 2x33 + 2x44

≤ 2x12 + 2x21 + 2x13 + 2x31 + 2x23 + 2x32 + x41 + x42 + x43 + 2.
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Observe that when all medians belong to the set {1, 2, 3}. To illustrate, assume that
the two medians are 1 and 2. Then 2x11 +2x22 +2x33 +2x44 = 4 and the inequality
becomes 1 ≤ x13 + x23, and it obviously holds. A second possibility is that the
two medians are 1 and 4. Then it follows that 2 ≤ 2x12 + 2x13 + x42 + x43. Since
2 and 3 must be supplied from 1 or 4, it also holds. Finally, if x11 + x22 + x33 +
x44 ≤ 1, the inequality becomes trivial. In de Vries et al. (2003) it is proven that
inequalities (2.19) define facets when r > p, S 	= ∅ and S ∪ R 	= I .

In Zhao and Posner (2011), a generalization of the family of facets (2.19) is
developed. Here, a partition of I given by the sets T1,. . . ,Tr , S and Q, with r > p

and Ti 	= ∅, i = 1, . . . , r , Q 	= ∅, is required. Defining T = ∪r
i=1Ti , R ⊆ T ∪ Q of

cardinality r such that |R ∩ Ti | ≤ 1, i = 1, . . . , r and a bijection τ of R in the set
{1, . . . , r}, the new family of valid inequalities for (F3) is given by

∑

i∈T ∪S

xii − 1

r − p

∑

j∈R

∑

i∈T \Tτ(j)

xij − 1

r − p + 1

∑

i∈S

∑

j∈R

xij ≤ p − 1.

These inequalities define facets when 2 ≤ p < r and |Q| = 1 or |(T ∪ S) \ R| ≥ 1.
The authors also devised a heuristic procedure to separate these inequalities.

Also observe that Cánovas et al. (2007) introduce dominance constraints in the
shape of xij1 ≤ xij2 that can be incorporated to formulation (F3). These inequalities
can be used whenever {� ∈ I : c�j2 < cij2} ⊆ {� ∈ I : c�j1 < cij1}. We present
additional polyhedral material after introducing a new version of the problem, in the
next section.

2.6 p-Median Problem on a Graph and Additional
Polyhedral Results

Many authors consider and analyze a particular case of the p-median problem
defined on a directed graph (V ,A). The set of nodes, V , represents users and also
candidate locations for facilities. The set of arcs A, is used to express the possible
allocations of users to facilities. Self-allocation is implicitly assumed or, in other
words, a node is either chosen as a median or it must be allocated to another node.
Note that this is equivalent to fixing some variables xij to zero in formulation
(F3): xij = 0 if (i, j) 	∈ A. The same effect can be achieved by taking cij large
enough in the objective function of (F3). Nevertheless, knowing beforehand that
some variables have been removed from the formulation has some advantages that
several authors have exploited. We explicitly state the following formulation of the
p-median problem on a directed graph (V ,A):

(F5) minimize
∑

(i,j)∈A

dj cij xij

subject to xii +
∑

j∈V :
(j,i)∈A

xji = 1 ∀i ∈ V
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xij ≤ xii ∀(i, j) ∈ A (2.20)
∑

i∈V

xii = p

xij ∈ {0, 1} ∀(i, j) ∈ A (2.21)

xii ∈ {0, 1} ∀i ∈ V.

A different version of this formulation is considered by Avella and Sassano (2001)
who do not make use of the xii variables. Instead, they pay attention to the fact that
n − p nodes must be allocated by means of an arc (i.e., they are not self-allocated)
and then each feasible solution will correspond to a set of n − p arcs in A. They
then propose the following formulation:

(F6) minimize
∑

(i,j)∈A

dj cij xij

subject to (2.21)

xij +
∑

�∈V :
(�,i)∈A

x�i ≤ 1 ∀(i, j) ∈ A (2.22)

∑

(i,j)∈A

xij = n − p. (2.23)

Avella and Sassano (2001) consider the case where A is a complete digraph
and develop two families of inequalities. The first family, the so-called W − 2
inequalities, only makes use of constraints (2.22). They can then be used for the
SPLP. The shape of these constraints is

∑

(i,j)∈A∩[((W×W)\H)∪(W̄×U)]
xij ≤ |W | − 2, (2.24)

where W ⊆ V and 3 ≤ |W | ≤ n − p + 1, H is a subset of arcs of A in W × W

such that ∀w ∈ W there is exactly one arc in H with origin in w, and U is the
set of nodes of W that are not destinations of any arc of H . Inequalities (2.24) are
facets whenever |U | ≤ max{1, |W |−3}. We present here the example used in Avella
and Sassano (2001) to illustrate this family. Consider the complete directed graph
of eight nodes and the subgraph given in Fig. 2.3a. Here |W | = 6, H = {(1, 3),

(3, 1), (2, 4), (4, 2), (5, 3), (6, 4)} and U = {5, 6}. It produces the inequality in the
family (2.24) in the shape of

x12 + x14 + x15 + x16 + x21 + x23 + x25 + x26 + x32 + x34 + x35 + x36 + x41 + x43 +
x45 + x46 + x51 + x52 + x54 + x56 + x61 + x62 + x63 + x65 + x75 + x76 + x85 + x86 ≤ 4.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 2.3 Illustration of several inequalities and families of subgraphs. (a) W − 2. (b) Cover. (c)
W − q. (d) Odd hole inequalities. (e) W − 1 and |F | odd. (f) 2-cycle and Y -graph. (g) Graphs with
Y -subgraphs. (h) Forbidden structure in Baïou and Barahona (2011)

Nodes 5 and 6 can be supplied or not from nodes not belonging to W . Take x75 =
x76 = 1. Thus, the inequality becomes x12+x14+x21+x23+x32+x34+x41+x43 ≤
2. Since no node in the set {1, 2, 3, 4} can supply more than two other nodes in the
set, it must be satisfied. Similar reasonings can be applied by taking other values of
x75 and x76.

The second family of inequalities in Avella and Sassano (2001), called cover
inequalities, make use of constraint (2.23). They again consider A to be a complete
digraph. Consider a set S of arcs and let r(S) be the maximum number of arcs of S

that can simultaneously take part in a solution for (F6). Let F(S) be the collection
of all subsets of A containing r(S) arcs from S that form a solution for (F6). Choose
at least one arc from each subset in F(S) to create set T (S). Then

∑

(i,j)∈S

xij −
∑

(i,j)∈T (S)

xij ≤ r(S) − 1
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are valid inequalities for (F6). As an example, take the complete directed graph
of five nodes, let S be the subset of arcs of Fig. 2.3b and p = 2. Then r(S) =
2 and F(S) = {{(1, 2), (1, 3), (4, 5)}, {(1, 2), (1, 3), (5, 4)}, {(1, 2), (1, 3), (1, 4)},
{(1, 2), (1, 3), (1, 5)}}. Taking T (S) = {(4, 5), (5, 4), (1, 4), (1, 5)}, the inequality
produced is x12 + x21 + x13 ≤ 1 + x45 + x54 + x14 + x15. In the case x45 = x54 =
x14 = x15 = 0, all nodes other than 1 should be assigned to node 1, but in this case
p 	= 2. Otherwise, the sum in the left hand side is bounded by 2, the value of r(S).

Regarding (F5), valid inequalities and characterizations of the polyhedron in
some particular cases have been obtained by several authors. We present the main
results below.

In Avella et al. (2007), the so-called W − q inequalities were derived. We show
an example of such inequalities based on the graph of Fig. 2.3c. Let W be the set
of nodes {1, 2, 3, 4} and F the set of arcs {(2, 1), (3, 2), (1, 3), (2, 4), (3, 4)}. Note
that arc (3, 1) is not included in the set.

Consider the following valid inequalities:

x21 +x13 ≤ 1,

x32 +x21 ≤ 1,

x32 +x24 ≤ 1,

x13 +x32 ≤ 1,

x13 +x34 ≤ 1,

x24 + x34 ≤ 1.

These valid inequalities are arranged in blocks and have been systematically built in
the following way. Each block is devoted to one node j ∈ W . For each j , the sum of
all variables corresponding to arcs of F that end in j is considered. Then, the sum is
completed in several ways (one represented by each row of the block) by adding xjh

for all distinct h such that (j, h) ∈ F (if any). In the example, this yields at most two
inequalities for each block, since no more than two arcs of F leaves the same node.
Note that this construction of the inequalities implies that every variable xij with
(i, j) ∈ F appears in two inequalities or in three when there are two arcs leaving
node j . In order to complete those blocks that only have one inequality, we add a
copy of x24 + x34 ≤ 1 to the last block and x21 ≤ 1 to the first one. Summing up
the resulting set of eight inequalities, we obtain 3(x21 + x32 + x13 + x24 + x34) ≤ 8.
Dividing by 3 and rounding down the right-hand side, the following valid inequality
in the family W − 2 is produced: x21 + x32 + x13 + x24 + x34 ≤ 2. In the general
case, consider a set of nodes W ⊆ V , an integer number 1 ≤ q ≤ |W |− 1, and a set
of arcs with both ends in W , F ⊂ A ∩ (W × W), in such a way that no more than q

arcs leave the same node. The valid inequality associated to W and F , in the family
W − q, is then

∑

(i,j)∈F

xij ≤
⌊

q|W |
q + 1

⌋

.
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Avella et al. (2007) also studied odd-hole inequalities and lifted them. As an
example, consider Fig. 2.3d. It is obvious that x12 + x23 ≤ 1, x23 + x34 ≤ 1,
x34 + x54 ≤ 1, x54 + x25 ≤ 1 and x25 + x12 ≤ 1. Summing up and rounding
down, it follows that x12 + x23 + x34 + x54 + x25 ≤ 2, named odd-hole inequality
by the authors. Moreover, this kind of inequality can be lifted to x12 + x23 + x34 +
x54 + x25 + x62 + x72 ≤ 2 since arcs (1,2), (6,2) and (7,2) play the same role and
only one of them can be taken in a feasible solution.

Baïou and Barahona (2008) consider the particular case of W − q when q = 1
and |F | is odd. This corresponds with oriented odd-cycles of k nodes Ck , like the
one shown in Fig. 2.3e, that generate the inequalities

∑

(i,j)∈Ck

xij ≤ k − 1

2
. (2.25)

They prove that, when the graph does not contain either of the two subgraphs of
Fig. 2.3f, the linear relaxation plus all the constraints in family (2.25) completely
describe the polyhedron associated with formulation (F5). Graphs that do not con-
tain these two structures are called Y -free graphs. They also describe a separation
procedure for inequalities (2.25) through an auxiliary graph. Baïou and Barahona
(2011) show that the family of graphs whose p-median polytope is integer (that is
to say, the linear relaxation of formulation (F5) always produces an integer optimal
solution) for all values of p are those containing none of any of the structures of
Fig. 2.3g, nor any cycle of the type depicted in Fig. 2.3h. They also give additional
polyhedral results in their recent paper, Baïou and Barahona (2016). Note that the
structure of Fig. 2.3h is a cycle (continuous arcs) with an odd number of nodes with
positive in-degree in the cycle; there are arcs (dotted) with origin in the nodes of
in-degree two in the cycle and destination at nodes that either are not in the cycle or
have out-degree other than two in the cycle; and there is an arc with its two nodes
outside the cycle.

2.7 Heuristics

The literature on heuristics for p-median problems is vast. The account presented
here does not pretend to be exhaustive and many interesting works on the topic may
have been omitted. We invite the interested reader to consult other reviews for an
overview of the problem from different perspectives. For instance, in Reese (2006)
works are classified by solution method and are also listed by year; Mladenović
et al. (2007) classify them into two classes, classical heuristics and metaheuristics,
and describe the methods belonging to each group; Basu et al. (2015) focus on
metaheuristics; finally, Irawan (2016) is devoted to aggregation methods, which
reduce the number of demand points to obtain smaller problems.
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2.7.1 Classical Heuristics

The first methodologies approaching p-median problems were heuristics. A simple
one produces a feasible solution by starting from an empty set of medians and
successively adding the candidate that yields the greatest decrease in the current
solution value, until p candidates have been added to the set. This is known as the
greedy heuristic. Even if Kuehn and Hamburger (1963) is usually cited as the earliest
work on greedy heuristics for facility location, Cornuéjols et al. (1977) were the first
to formally state the greedy heuristic for p-median problems. In the same vein, the
greedy drop or simply drop heuristic, first devised by Feldman at al. (1966), starts
with I as the initial set of medians and iteratively discards the candidate location
whose closure produces the smallest increment of the objective function, until the
initial set has been reduced to p candidates (see e.g. Whitaker 1981; Salhi and
Atkinson 1995).

Other heuristics try to improve a given selection of p candidates. One of the
oldest and most widely known of these heuristics allocates each user to the candidate
in the initial selection with minimum supplying cost. By grouping users allocated
to the same candidate, p neighborhoods are obtained. Then, a 1-median problem
is solved for each neighborhood, yielding a new set of p (potentially) different
medians. The process is iterated until the set of medians becomes steady. This
heuristic is usually referred to as the alternate heuristic, and was first proposed
by Maranzana (1964). Nevertheless, the idea was not new at the time and it is, in
fact, a particular case of the k-means clustering, first conceived by Steinhaus (1957).
Another heuristic of this type is the so-called interchange heuristic or vertex substi-
tution, first proposed by Teitz and Bart (1968). The starting point is also a feasible
set of p location candidates, and possible exchanges with the rest of the candidates
are iteratively examined. A formal description of the interchange heuristic can be
consulted in Whitaker (1983). The alternate and interchange heuristics have been
compared empirically in several works. All of them conclude that the interchange
heuristic finds better solutions but consumes more time (see e.g. Rushton and Kohler
1973; Rosing et al. 1979). This is probably why the alternate heuristic has received
less attention and efforts have concentrated on improving the performance of the
interchange heuristic. Countless attempts have been made in this direction, and here
we mention some of them. Whitaker (1983) designed a variant of the interchange
heuristic that uses a greedy initialization, called fast interchange; Densham and
Rushton (1991) detailed specific speedup strategies and, later on, Densham and
Rushton (1992) introduced GRIA (global regional interchange algorithm); Resende
and Werneck (2003) presented an implementation of the fast interchange that
performed especially well for large instances and reported speedups of up to three
orders of magnitude over the original implementation of Whitaker. Finally, Lim and
Ma (2013) introduced a parallel vertex substitution and reported speedups ranging
from 10 to 57 times over the traditional algorithm.
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2.7.2 Metaheuristics

The above-mentioned methods, together with dynamic programming, dual ascent
and Lagrangean relaxation, can be considered as classical heuristics. These first
heuristic approaches were followed by the development of metaheuristics in the
1990s. The list of works on metaheuristics for p-median problems is long. One
can find well-known schemes, such as tabu search, variable neighborhood search,
genetic algorithms, simulated annealing or neural networks, among others. As
Mladenović et al. (2007) conclude in their review, empirical results show that
metaheuristics represent an improvement in solution quality on large instances,
where the performance of classical heuristics is poor. In the last decade the focus
has been on solving larger and larger instances. Most effective algorithms usually
combine features from different metaheuristics. In this section, we outline the most
noteworthy attempts to produce scalable solution techniques. Table 2.2 summarizes
some information on the accuracy and computational effort of these heuristics.

Resende and Werneck (2004) proposed a hybrid heuristic that has features of
GRASP (greedy randomized adaptive search procedure), tabu search, scatter search
and genetic algorithms. They empirically compared the procedure with six other
methods and concluded that it was a valuable candidate for a general-purpose

Table 2.2 Summary of the available computational experience on metaheuristics

Authors Year Computer n t (s) dev. (%)

Resende and Werneck 2004 SGI Challenge (196 MHz) 5934 8687 0.6

Hansen et al. 2009 Pentium 4 1800 MHz,
256 MB RAM

89,600 50,083 3.2

Avella et al. 2012 IntelCore 2Quad
2.6 GHz, 4 GB RAM, 64
bits

89,600 5779 54.7

Irawan and Salhi 2013 IntelCore i5-650
3.20 GHz, 4 GB RAM, 32
bits

89,600 4415 95.8

Irawan et al. 2014 IntelCore i5-6503.20 GHz,
4 GB RAM, 32 bits

89,600 3404 5.9

Salhi and Irawan 2015 IntelCore i5-650
3.20 GHz, 4.00 GB RAM,
32 bits

264,000 1,875,300 271.0

Janáček and Kvet 2016 IntelCore 2 Duo E6700
2.66 GHz, 3 GB RAM

3038 1102 9.7

Cebecauer and Buzna 2017 Brutus high-performance
cluster of ETH Zurich

670,000 –a 4.0

The last three columns stand for the maximum size, time in seconds and deviations of the instances
tested but do not necessarily correspond to one same instance. Deviations are calculated either with
respect to the optimum or to the best objective known
aThe authors set a time limit of several days and reported time efficiency with respect to the
unaggregated problem
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approach for the p-median problem. They used a varied testbed with instances of
up to 5934 demand points and gave an account of the strengths and weaknesses of
their approach, which they did not recommend for really large instances. Hansen
et al. (2009) tackled the clustering problem as a large scale p-median model, using
an approach based on the variable neighborhood search metaheuristic. They report
better solutions in less time than with the state-of-the-art heuristics, even after
upgrading these procedures with the same efficient strategies on instances of up
to 89,600 nodes.

Avella et al. (2012) introduced a heuristic for large-scale instances that consists
of three main components: subgradient column generation, a core heuristic, which
computes an upper bound based on Lagrangean reduced costs, and an aggregation
procedure that defines reduced size instances. They compared their approach with
that of Resende and Werneck (2004) and Hansen et al. (2009) using the same testbed
as these authors. They reported excellent results that have merited the recognition
as state-of-the-art heuristic for years. Irawan and Salhi (2013) designed a hybrid
heuristic for large-scale instances. The proposed approach was tested on the largest
“BIRCH” instances of Hansen et al. (2009) (from 25,000 to 89,600 demand points).
The authors claimed to have obtained better solutions than those of the algorithm by
Avella et al. (2012), AV, and relatively similar to the ones of the algorithm by Hansen
et al. (2009), HA. Nonetheless, improvement respect to AV in quality represents
some decimals (in %) and they do not run AV nor HA, but take the times reported
by Avella et al. (2012) and apply a transformation to estimate running times in their
machine.

Irawan et al. (2014) presented a multiphase approach that incorporates aggre-
gation, variable neighborhood search and an exact method. This heuristic proved
to be faster than the one by Irawan and Salhi (2013) on the same testbed used in
that previous work. This time, the algorithm is also compared with AV and HA,
and times for these algorithms are again obtained by estimation. Regarding solution
quality, the proposed heuristic compares with AV and HA in a similar way as that of
Irawan and Salhi (2013). Salhi and Irawan (2015) introduced a data compression
approach for very large facility location problems in the Euclidean space. They
incorporated these techniques into two different methods for p-median problems, a
multi-start and a reduced variable neighborhood search. After testing their approach,
the authors concluded that it is very effective when applied to very large instances
(up to 264,000 demand points in their experiments). Janáček and Kvet (2016)
suggested an approximate approach based on the radius formulation (F4) and
presented it as a compromise approach enabling a trade-off between accuracy and
computational time. They compared their proposal with AV and the exact approach
by García et al. (2011) on instances having up to 3038 demand points. Even though
the results reported are not conclusive, their method seems to be a good candidate
for some instances. Cebecauer and Buzna (2017) proposed the concept of adaptive
aggregation that keeps the problem size in reasonable limits. They introduced
a framework to approach facility location problems that iteratively adjusts the
aggregation level during the solution process. They applied it to the p-median and
compared its performance to the exact approach by García et al. (2011), obtaining
promising results for benchmarks, which reach up to 670,000 demand points.



2 p-Median Problems 47

2.7.3 Approximation Heuristics

One of the drawbacks of many heuristics is that they do not provide any guarantee
regarding the quality of the solution obtained. Since the p-median is a core problem
in location, it is not surprising to find works that focus on guaranteeing good-quality
approximations, even these days. One of the first works concerned with approximate
solutions quality is Cornuéjols et al. (1977), who presented a worst-case analysis
for relative errors of the Lagrangean relaxation, the greedy, the interchange and
dynamic programming heuristics. Some of the heuristics mentioned above also
provide a lower bound on the objective function, which gives an estimation of the
quality of their solutions. When we have a precise assessment of the quality of the
solution with respect to the optimum we speak about approximation algorithms. We
define an α-approximation algorithm as a polynomial-time algorithm that computes
a solution with cost at most α times that of an optimal solution. Most of the papers
on approximation algorithms make some assumption regarding costs. When they
are given by Euclidean distances, it is known that, for any ε > 0, there exists
a nearly linear-time (1 + ε)-approximation algorithm, see Kolliopoulos and Rao
(1999). When costs satisfy the triangle inequality, we speak about the metric p-
median and the best current approximation factor is 2.675 + ε, obtained by Byrka
et al. (2014). Moreover, Jain et al. (2002) proved that there is no α-approximation
of the metric p-median with α < 1 + 2/e, unless P = NP.

2.8 Conclusions

We have briefly presented different versions of the p-median problem, their
formulations, solution methods, polyhedral properties and heuristic algorithms. We
have focused on the basic models, without going into details about the properties
of the Simple Plant Location Problem, a very similar problem that is well studied
in Chap. 4. Neither have we paid attention to the many possible extensions of
the problem, that make it more applicable and realistic, but which are covered
in different chapters of this book (addition of a limit of capacity in the facilities,
opening and closing facilities in different periods of time, stochastic demands,
different objective functions and a long list of options). The p-median problem still
receives considerable attention 50 years after its first appearance in the literature and
is an exciting field of future research.
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