
Chapter 18
Aggregation in Location

Richard L. Francis and Timothy J. Lowe

Abstract Location problems occurring in urban or regional settings may involve
many tens of thousands of “demand points,” usually individual residences. In
modeling such problems it is common to aggregate demand points to obtain
tractable models. We discuss aggregation approaches to a large class of location
models, consider various aggregation error measures, and identify some effective
measures. In particular, we focus on an upper bounding methodology for the error
associated with aggregation. The chapter includes an example application.

18.1 Introduction

Many location problems involve locating services (called servers) with respect to
customers of some sort (called demand points, and abbreviated as DPs). Usually
there is travel between servers and DPs, so that travel distances, or (more generally)
travel costs, are of interest. Location models represent these travel costs, and
solutions to the models can provide locations of the servers of (nearly) minimal cost.
For books on location models and modeling, see Daskin (2013), Drezner (1995),
Drezner and Hamacher (2002), Eiselt and Marianov (2011), Francis et al. (1992),
Handler and Mirchandani (1979), Love et al. (1988), Mirchandani and Francis
(1990), and Nickel and Puerto (2005).

A common difficulty with modeling location problems that occur in urban or
regional areas is that the number of DPs may be quite large, since each private
residence might be a DP. In this case it may be impossible, and also unnecessary, to
include every DP in the corresponding model. Further, the corresponding problems
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may be NP-hard to optimize (Kariv and Hakimi 1979). For problems as diverse as
those including the location of branch banks (Chelst et al. 1998), tax offices (Domich
et al. 1991), network traffic flow (Sheffi 1985), and vehicle exhaust emission
inspection stations (Francis and Lowe 1992) a popular aggregation approach is used:
to suppose every DP in each postal code area or zone of the larger urban area is at
the centroid of the postal code area or zone, and to compute distances accordingly.
The result is a smaller model to deal with, but one with an intrinsic error. If the
modeler wishes to aggregate to have a small number of aggregate demand points
(abbreviated as ADPs), and also desires a small error, then aggregation becomes a
nontrivial matter.

It is tempting to ask the following question: How many ADPs are enough?
There are no general answers to this question. This is because there are important
tradeoffs in doing aggregation. Aggregation often decreases: (1) data collection cost,
(2) modeling cost, (3) computing cost, (4) confidentiality concerns and (5) data
statistical uncertainty. The first four items seem self-explanatory; item (5) occurs
because aggregation leads to pooled data, which provides larger samples and thus
smaller sample standard deviations. The price paid for aggregation is increased
model error: instead of working with the actual location model we work with some
approximate location model. How to trade off the benefits and costs of aggregation
is still an open question. The question is open in part because there is no general
agreement on how to measure the aggregation error, and also because there is
no accepted way to attach a cost to model aggregation error. To the best of our
knowledge, professional judgment is generally used to do the tradeoffs. Francis et
al. (2009) provide a survey of various demand point aggregation error measures and
an extensive literature discussion. In fact, much of the early material in this chapter,
and Table 18.4, is from that paper.

One can categorize location models as strategic, tactical, or operational in scope.
As pointed out by Bender et al. (2001), planar distances are often used for strategic-
level location models, and network distances for tactical-level location models. Such
models are often converted to equivalent mixed integer programming (MIP) models
for solution purposes, using some finite dominating set principle to reduce the set
of possible locations of interest to a finite set (Hooker et al. 1991). Thus, results to
follow for these planar and network models also apply to their MIP representations,
including those for the p-median, p-center, and covering location models. These
models are the subject matter of Chaps. 2, 3, and 5 respectively. Operational-level
location models are not too common (mobile servers are one example), but for
such models no aggregation may be best. Note that the scope of the location model
may well indicate the degree of aggregation; a more detailed scope requires a more
detailed aggregation.

http://dx.doi.org/10.1007/978-3-030-32177-2_2
http://dx.doi.org/10.1007/978-3-030-32177-2_3
http://dx.doi.org/10.1007/978-3-030-32177-2_5
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18.2 Terminology and Examples

We suppose that servers and DPs are all either points in the plane, or on some travel
network. In either case, there is some well-defined set of server points and DPs,
say Ω , and a distance d(x,y) between any two points x, y in Ω . If Ω is a travel
network (assumed undirected) then d(x,y) is usually the length of a shortest path
between x and y. For planar problems when Ω =R2, with x = (χ1, χ2), y = (ψ1,
ψ2), d(x,y) is often the �p-distance: ||x – y||p = [|χ1 – ψ1|p + | χ2 – ψ2|p]1/p, with
p ≥ 1. Taking p = 1 or 2 gives the well-known rectilinear or Euclidean distance,
respectively. The limiting case of the �p-distance as p goes to infinity, denoted by
||x – y||∞, is given by ||x – y||∞ = max{| χ1 – ψ1|, | χ2 – ψ2|}, and is called
the Tchebyshev distance. The Tchebyshev distance in R2 is sometimes analytically
convenient because it is known (Francis et al. 1992) to be equivalent to the planar
rectilinear distance under a 45-degree rotation of the axes. We define the diameter
of Ω by diam(Ω) = sup{d(x,y): x, y ∈ Ω}, with the understanding that possibly
diam(Ω) = +∞. More generally, Ω can be a metric space (Goldberg 1976) with
metric d, but no loss of insight occurs by considering the network and planar cases
for Ω .

Suppose we have n DPs, vj ∈ Ω , j = 1, . . . , n. Denote the list (or vector) of
DPs by V = (v1, . . . ,vn). When we aggregate, we replace each DP vj by some ADP
vj

′ in Ω , obtaining an ADP list V′ = (v1
′, . . . , vn

′). While the DPs are usually
distinct, the ADPs are not, since otherwise there is no computational advantage to
the aggregation. When we wish to model q distinct ADPs, we let Γ denote the set
of q distinct ADPs, say Γ = {γ 1, . . . , γ q}. We use the former (latter) ADP notation
when the correspondence between DPs and ADPs is (is not) of interest. Usually we
have q << n.

For any positive integer p, let S = {sk,...,sp} denote any p-server, the set of
locations of the p servers, S ⊂ Ω . (This symbol p is a different symbol from the
one defining the �p-distance.) Denote the location model with the given original
DPs by f(S:V), and the one with the aggregate DPs by f(S:V′). The notation f(S:V)
and f(S:V′) captures a key idea that an aggregation is a replacement of V by V′, with
the entries of V′ not all distinct.

For the large class of location models with similar or indistinguishable servers,
with only the closest one to each DP assumed to serve the DP, for any p-server S ⊂ Ω

and DP v ∈ Ω we denote by D(S,v) ≡ min{d(sk,v): k = 1, . . . , p} the distance
between v and a closest element in S. We then define the closest-distance vectors
D(S,V) ≡ (D(S,vj): j = 1,...n), D(S,V′) ≡ (D(S,vj

′): j = 1,...n) ∈ Rn+. Suppose g is
some “costing” function with domain Rn+ attaching a cost to D(S,V) and D(S,V′).
This gives original and approximating location models f(S:V) ≡ g(D(S,V)) and
f(S:V′) ≡ g(D(S,V′)), respectively. Important and perhaps best-known instances of
g are the p-median and p-center costing functions, g(U) = w1 u1 + . . . + wn un,
and g(U) = max{w1 u1, . . . , wn un} respectively; the wj are positive constants, often
called weights, and may be proportional to the number of trips between servers and
DPs. Thus f(S:V) is either the p-median model, w1 D(S,v1) + . . . + wn D(S,vn),
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or the p-center model, max{w1 D(S,v1), . . . , wn D(S,vn)}. These models originate
from Hakimi (1965) (each is called unweighted if all wj = 1: j = 1,...n). They are
perhaps the two best-known models in location theory. The covering model, a model
related to the center model, will be described later in this chapter. Subsequently, we
refer to the p-center, p-median, and covering location model as PCM, PMM, and
CLM respectively. These models are NP-hard to minimize (Kariv and Hakimi 1979;
Megiddo and Supowit 1984).

Consider several aggregation examples which serve to illustrate our notation and
basic aggregation ideas. Let J = {1, . . . , n} denote the set of all DP indices. We
suppose, for these examples, that the DPs will be aggregated into two postal code
area centroids. Let Ji denote the subset of indices of the DPs in postal area i = 1, 2.
Let γ i denote the centroid of postal area i = 1, 2. Clearly, the Ji form a partition of
J. To aggregate the DPs in the postal code areas into the centroids we replace each
vj with j ∈ Ji, by γ i for i = 1, 2. Thus vj

′ = γ i for j ∈ Ji and i = 1, 2. Hence V′ is
now the n-vector of ADPs, and Γ = {γ 1,γ 2} is the ADP set.

Example Aggregation 1, PMM

f (S : V ) = Σ
{
wj D

(
S, vj

) : j ∈ J
}
.

Let ω1 = Σ{wj: j ∈ J1}, ω2 = Σ{wj: j ∈ J2}. We then have f(S:V′) = Σ

{wj D(S,vj
′): j ∈ J} = Σ{wj D(S,γ 1): j ∈ J1} + Σ{wj D(S,γ 2): j ∈ J2} = ω1

D(S,γ 1) + ω2 D(S,γ 2).
This example illustrates how aggregation error can occur. If only p-servers are of

interest (with p ≥ 2), then taking S to be {γ 1,γ 2} minimizes f(S:V′) with minimal
value of 0, giving a useless underestimation of min{f(S:V):S}.

If there is only one server, S = {s}, and the �p-distance is used, then it is known
that this 1-median under-approximation is valid for all s. Letting ω = Σ{wj: j∈ J},
and γ = Σ{(wj/ω) vj: j ∈ J} be the centroid of the DPs, so that f(s:V′) = ω ||s–
γ ||p, it is known (Francis and White 1974) that f(s:V) ≥ f(s:V′) for all s. This is an
important reason why underestimation can occur for PMM aggregation when few
centroid ADPs are used. It is also known that for �p distances (Plastria 2001) the
difference f(s:V) – f(s:V′) goes to zero as s gets farther from γ along an infinite ray
with one end point at γ . There are good theoretical reasons due to self-canceling
error (Plastria 2000, 2001; Francis et al. 2003) for using centroids as ADPs for the
PMM, but none that we know of for the PCM and CLM. Indeed, better choices than
centroids are available for the latter two models.

Example Aggregation 2, PCM

f (S : V ) = max
{
wj D

(
S, vj

) : j ∈ J
}
.

Let w1
+ = max{wj: j ∈ J1}, w2

+ = max{wj: j ∈ J2}. We then have
f(S:V′) = max{wj D(S,vj

′): j ∈ J} = max{max{wj D(S,vj
′): j ∈ J1}, max{wj D(S,vj

′):
j ∈ J2}} = max{max{wj D(S,γ 1): j ∈ J1}, max{wj D(S,γ 2): j ∈ J2}} = max{w1

+
D(S,γ 1), w2

+ D(S,γ 2)}. Again, if only p-servers (p ≥ 2) are of interest, then taking
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S to be {γ 1,γ 2} minimizes f(S:V′) with minimal value of 0, giving an underestimate
of f(S:V).

Example Aggregation 3, CLM Minimize |S| subject to D(S,vj) ≤ rj, j ∈ J, S ⊂ Ω ,
where rj is a “covering radius” associated with vj. All but two covering constraints
for the aggregated model are redundant. Define ρ1 = min{rj: j ∈ J1}, ρ2 = min{rj:
j ∈ J2}. Thus, the aggregated model has constraints D(S,γ 1) ≤ ρ1, D(S,γ 2) ≤ ρ2,
S ⊂ Ω . This means it takes at most two servers to solve the aggregated model. CLMs
and PCMs are known to be closely related (Kolen and Tamir 1990). We shall see
that aggregation results developed for one model often also apply to the other.

These examples of models illustrate two equivalent approaches for representing
n DPs with an aggregation of q ADPs. Either we have a partition of the DP index set
J into q sets J1, . . . , Jq with one ADP per set, or for each vj there is a replacing ADP
vj

′, with each vj
′ in the set Γ of q distinct ADPs. In either case, three aggregation

decisions (Francis et al. 1999) must be made: (1) the number of ADPs, (2) the
location of ADPs, (3) the replacement rule: for each vj, what is vj

′? The (reasonable)
replacement rule often used is to replace each DP by a closest ADP. Further, for the
aggregation to be computationally useful we require the number of ADPs, q, to be
less (usually much less) than the number of DPs, n; also it is reasonable to have
p 	 q. The authors note that versions of these three aggregation decisions occur in
location modeling. Hence results in location theory help in doing DP aggregation,
so DP aggregation is a sort of “second-order” location problem to solve prior to
solving the original or “first-order” problem.

These three examples may suggest that as more ADPs are used the aggregation
error decreases – ideally, if we could use q = n ADPs, we have no aggregation error
at all. In fact there are classes of location models where the law of diminishing
returns applies: aggregation error decreases at a decreasing rate as q increases
(Francis et al. 2004b). Thus a very small value of q may cause a very high
aggregation error, while a large value of q might give little less error than an
appreciably smaller value of q.

18.3 Case Study

This section is based on the work by Dekle et al. (2005), where supplemental
information may be found. We refer to the authors of this study as the “team”.

FEMA is an acronym for Federal Emergency Management Agency, a national
U.S. agency that deals with disasters such as fires, floods, hurricanes, tornadoes, and
terrorist attacks. This work stems from a FEMA request to all counties in Florida to
identify possible locations for disaster recovery centers (DRCs). FEMA describes a
DRC as “a facility established in or nearby the community affected by the disaster,
where people can meet face-to-face with representatives from Federal, State, local
and volunteer agencies to obtain assistance.” For the county this study deals with,
Alachua County, FEMA required the identification of at least three DRCs, which
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could be called upon at very short notice for use in a local disaster. Alachua County
had a population of about 219,000 at the time of the study. The east-west and
north-south dimensions of the county are about 32 and 30 miles (51.5, 48.3 km)
respectively; the land area is about 874 square miles (2266 km2).

FEMA provided seven DRC requirements/evaluation criteria. The County
accepted all of these requirements, but added four more, including that the proposed
DRC locations should be buildings allowing reasonable travel distances to them by
potential users. This criterion was the most challenging to satisfy, and led to the
principal objective of the study. The team spent a substantial effort discussing with
their Alachua County sponsor possible principal objectives for the study; eventually
they agreed upon the following idealized one: minimize the total number of DRCs
needed, subject to each county resident being within a specified distance r (called
the radius) of a closest DRC. Thus if B(s,r) denotes the set of all points in the plane
whose distance from a given point s is at most r, a requirement meaning that each
county resident location must be in at least one B(s,r) for some DRC location s;
that is, each resident point in the county must be “covered” by at least one B(s,r)
for some DRC location s. Hence the location requirement specifies a “covering”
problem (see Chap. 5). It was the belief of the team (eventually confirmed) that if
they could solve this idealized problem meeting the location requirement, then they
could find nearby locations that would meet all the other requirements.

A natural and important question was how to measure distances between points.
Ideally, shortest path distances on the existing road network would have been used,
but these were unavailable due to the very limited study budget. Since the county had
a largely rectilinear/right-angle road network, the team, with the agreement of its
sponsor, settled on the use of rectilinear distances: for any planar points s = (s1,s2),
t = (t1,t2), d(s,t) = |s1 - t1| + |s2 - t2| defines the rectilinear distance between s
and t.

We refer to resident locations as “demand points”, abbreviated as DPs. For any
real aggregation location problem, obtaining and dealing with DP data will probably
be a major part of the problem-solving effort. Interaction with the county property
appraiser’s office elicited the information that principal DP data sources could
be obtained from GIS data available in a library, and from the county property
appraiser’s office. The county DP data was arranged by “parcels” of land. There
were about 6600 parcels, and for each parcel the following information was known:
x and y coordinates of the parcel center, the total heated square footage of the parcel
buildings, and whether parcel buildings were residential or commercial. The parcel
locations were used as residential location/DPs, and as possible DRC sites. As many
as 3900 of the parcels seemed possibly usable for DRC sites, as they had public or
commercial buildings whose total usable footage exceeded 2000 ft2. Figure 18.1
shows a plot of all the DPs, as well as the aggregated DPs (yet to be discussed).

Covering models are discussed in Chap. 5; they provide a way to compute, for a
specified covering radius r, a minimal set of locations, say S = {s1,...,sk}, so that each
DP is contained in at least one B(si,r). To formulate the covering problem using all
the available data as an integer program model would give a constraint matrix with
about 6600 rows and 3900 columns. The size of this model was beyond the resources

http://dx.doi.org/10.1007/978-3-030-32177-2_5
http://dx.doi.org/10.1007/978-3-030-32177-2_5
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Fig. 18.1 Plot of demand
points and aggregate demand
points
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available to the team to deal with. The covering algorithm readily available to the
team was one in Excel, which could deal with at most 200 variables/columns. The
need to somehow aggregate the DP data and the potential site data thus became quite
evident.

In a later section we discuss a useful error bound for covering location problems,

max
{
d

(
vj , vj

′) : j = 1, . . . , n
}
,

where vj is the location of DP j, and vj
′ is the ADP that replaces vj; the vj are

distinct while the vj
′ are not. Choosing the vj

′ to keep this error bound small keeps
the covering error small. Note, if there are n distinct vj

′, that max{d(vj,vj
′): j = 1,

. . . , n} may be viewed as the objective function of an n-center problem with DPs vj

and facility locations defined by the vj
′. This observation indicated that it would be

reasonable to modify some p-center algorithm to locate the ADPs. As discussed
in Dekle et al. (2005), the team used a variation of a Dyer and Frieze (1985)
pick-the-farthest (PTF) algorithm to pick the ADPs. Possible center locations were
also similarly aggregated. Figure 18.1 illustrates that the algorithm chooses well-
dispersed locations. A number of runs of the PTF algorithm were made, and finally
solutions were chosen that reduced the number of DPs from 6600 to 198 and the
number of potential DRC sites from 3900 to 162.

The team’s version of the Dyer-Frieze algorithm works as follows. First, an
arbitrary DP is chosen as an ADP. Next, a DP whose closest-distance to an ADP
is farthest is then chosen to be an ADP. Continuing, at each iteration a DP is chosen
as an ADP whose closest-distance to the collection of ADPs is farthest. This process
continues until the closest-distance of every remaining DP to the collection of ADPs
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Table 18.1 (a) Shows how some DRC performance measures changed with various r values for
the idealized stage 1; (b) Shows similar results for the actual stage 2 results

a b
Idealized Actual

Travel limit r (miles) 10 15 20 10 15 20
Maximum travel distance (miles) 10.9 15.1 20.3 14.0 25.8 26.94
Average travel distance (miles) 4.9 9.1 7.6 4.86 6.76 7.36
% Parcels covered 99.78 99.96 99.92 97.7 89.8 97.4
Average covering violation (miles) 0.184 0.84 0.184 1.05 2.80 2.55

is no more than a “control parameter” b. This parameter may be adjusted to provide
a computationally manageable number of ADPs. Dyer and Frieze give a low-order
implementation of this approach.

Subsequently, the covering location model is solved using the ADPs as DPs; the
model formulation guarantees that each ADP will be within the radius r of at least
one center. However, original DPs not chosen as ADPs may possibly not be within
such a radius r; supposing that v is any such unchosen DP, the algorithm guarantees
that some ADP, say v′, satisfies d(v′,v) ≤ b. Thus for any center s that covers v′,
d(s,v) ≤ d(s,v′) + d(v′,v) ≤ r + b. Hence if b can be kept small then the uncovered
DPs will be nearly covered, as was true in this application (see Table 18.1).

Note that max{d(vi,vi
′): all unchosen DPs vj} ≤ b when the algorithm terminates,

so keeping b small guarantees a small aggregation error. Aggregation error is
discussed in the next section.

Once the DPs were aggregated and the potential DRC sites were also similarly
aggregated, the covering location problem could be solved. We call the covering
location problem the idealized problem, while we call the one that considers all
11 criteria the actual problem. The team solved the idealized problem first, and
then sought good solutions to the actual problem that were “close” to those of
the idealized problem. This approach greatly simplified the problem and worked
acceptably.

Because of initial uncertainty about an appropriate value of r, the greatest
distance any resident should need to travel to a closest DRC, it was decided to treat
r as a parameter of the study, try various r values, and then evaluate the resultant
solutions. The team eventually chose r values of 10, 15 and 20 miles (16.1, 24.2 and
32.3 km respectively). By solving the idealized covering model with these three r
values, solutions were found requiring 8, 4 and 3 DRCs respectively; see Fig. 18.2
for the case of three DRCs; note Fig. 18.2 illustrates three B(s,20) regions. The team
then proceeded to solve the actual problem by finding potential DRC locations near
the idealized solutions which would meet the other evaluation requirements. To aid
in this effort, they and the sponsor developed a score card, much like a grade card,
on which they could score each potential location considered; most of the buildings
considered were schools, churches, recreation centers, or government buildings.
Table 18.1a illustrates some DRC performance measures for the solutions to the
idealized problem. Discrepancies between Table 18.1a performance measures and
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Fig. 18.2 The set of points
within 20 miles of three
Disaster Recovery Centers
(DRCs)
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the three different radius measures are due to aggregation effects, and can be seen
to be quite small. Table 18.1b shows performance measures for the actual problem.
There are some bigger discrepancies than in Table 18.1a, but these locations scored
well on all the other criteria. Also it was recognized that the proper choice of a
radius value r was somewhat subjective.

A number of modeling insights were gained in the course of this study, including
the following. (1) Sponsors may not have a principal objective. (2) The choice of
a model may be somewhat subjective. (3) Getting and working with all the data
can be most of the work in an aggregation/location study. (4) Data aggregation can
be essential and helpful. (5) The covering location model solutions were easy to
explain to the sponsor, in part due to the figures. (6) The well-dispersed locations of
the covering model also had political and geographic redundancy advantages.

The three-location solution to the actual location model for r = 20, which covered
97.4% of the parcels, was accepted by the sponsor. The following is a quote from a
letter the sponsor provided to the team.

The Florida Division of Emergency Management has requested that all county emergency
management offices provide at least three sites preidentified as potential DRCs. With
completion of this project, Alachua County is now able to comply with this request . . .

Overall, this was an outstanding project which has provided the Office of Emergency
Management with tangible results. When DRCs must be opened in the future, it will be
based upon careful research and problem solving rather than guesses on which locations
would be best.

In closing, we remark that this approach easily generalizes to covering problems
using network distances, given adequate network data. The approach worked well,
and controls the covering error. We recommend its use for aggregating covering
location problems, as well as unweighted p-center problems.
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18.4 Aggregation Error Measures

While there can be other types of error in location models, the one we focus on
is demand point aggregation error, which result from replacing DPs by ADPs.
Thus, instead of actual distances we obtain approximating ones. The use of these
approximating ADPs creates error. It is thus important for the location modeler
who does the aggregation to be aware of the aggregation error being created. The
modeler who does DP aggregation intentionally introduces error into the model.
The use of ADPs is the cause of the aggregation error, but there are error effects—
including inaccurate values of the objective function and of server locations, due
to using the approximating distances. It is important to consider both cause and
effects in order to get the whole picture. There are a number of ways to measure
error effects; further, the magnitude of aggregation effects can depend on the model
structure—for the same aggregation, some models can have more error than others.
What is clear, in any case, is that the way to minimize DP aggregation error is to not
aggregate DPs—certainly this is what we recommend when it is feasible. The ideal
way to aggregate DP data is to not aggregate it.

If DP data must be aggregated, then we need to consider aggregation error
measures. We list and summarize ten such measures in Table 18.2. Some of these
error measures are discussed in NaimiSadigh and Fallah (2009), as well as in Irawan
and Salhi (2015a). All of the error measures in Table 18.2 have an ideal value
of zero. One simple way to measure aggregation error is to consider ADP-DP
distances. If these distance values are all zero then ADPs and DPs are identical,
so there is no error. Later we establish a relationship between ADP-DP distances
and other error measures, including the distance difference error. For the PMM,

Table 18.2 Various demand point aggregation error measures for a location model f(S:V). Ideal
error measures have value zero for all j and all S

No. Error name Error definition

1 ADP-DP distances d(vj
′,vj), j ∈ J

2 Distance difference error D(S,vj
′) – D(S,vj), j ∈ J, all S

3 DP error, PMM ej(S) = wj [D(S,vj
′) – D(S,vj)], j ∈ J, all S

4 Total DP error, PMM e(S) = Σ{ej(S): j ∈ J}, all S

5 ABC error for PMM: J1, . . . , Jq is a partition
of J = {1, . . . , n}; ωi ≡ Σ{wj: j ∈ Ji} for
i = 1, . . . , q

abci(S) = ωiD(S,γ i) – Σ{wjD(S,vj): j ∈
Ji}, all S

6 Absolute error, any location model ae(S) = |f(S:V′) – f(S:V)|, all S

7 Relative error, for all S with f(S:V) > 0 rel(S) = ae(S)/f(S:V), all S

8 Maximum absolute error mae(f′, f) = max{ae(S):S, S ⊂ Ω , |S| = p}
9 Error bound eb A number eb with ae(S) ≤ eb for all S

Ratio error bounds (when f(S:V), f(S:V′) > 0) |f(S:V′)/f(S:V) – 1| ≤ eb/f(S:V),
|f(S:V)/f(S:V′) – 1| ≤ eb/f(S:V′) for all S

10 Location error a measure, diff(S′,S∗), of the “difference”
between p-servers S′ and S∗
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this distance difference error leads to an error we call DP error. Like the difference
error, the DP error can be negative or positive. Still considering the PMM, note that
the total DP error e(S) in Table 18.2 satisfies e(S) = f(S:V′) − f(S:V), the difference
between the aggregated PMM and the original model. Even though no DP error is
zero, the total DP error can be zero or nearly zero, since negative errors can cancel
out positive errors—this is the concept of self-canceling error. Unfortunately self-
canceling error only applies to models with an additive cost structure.

Next, consider ABC errors for the PMM, due to Hillsman and Rhoda (1978),
pioneering aggregation researchers. Note that ABC errors are sums of the DP errors
which are organized by the ADPs. Suppose we represent an aggregation by a
partition of J = {1, . . . , n}, say J1, . . . , Jq, such that for i = 1, . . . , q, every DP
vj with j ∈ Ji is aggregated into the ADP γ i; that is, vj

′ = γ i for j ∈ Ji. Thus
∑ {wj

D(S,vj): j ∈ Ji} is replaced in the aggregate model by
∑{wj D(S, γ i): j ∈ Ji} = ωi

D(S,γ i), where ωi ≡ ∑ {wj: j ∈ Ji}. In the parlance of Hillsman and Rhoda, the
ABC error illustrates their Source A error, which they define actually as ωi D(S,γ i).
Using ωi D(S,γ i) instead of

∑{wjD(S,vj): j ∈ Ji} is a source of error. The special
case of Source A error when γ i ∈ S, so that ωi D(S,γ i) = 0, is their Source B error. If
ωi D(S,γ i) = 0, then it is useless as an estimate of

∑{wj D(S,vj): j ∈ Ji}. The Source
C error is a related sort of allocation error involving closest-distance definitions.
Suppose sk ∈ S is closest to γ i; we might then assume that every vj ∈ Ji will be
closest to sk. However, in reality, some vj ∈ Ji may be closer to another element of
S than sk. In effect, we would allocate some DPs to a wrong server location that is
not closest to them. Note abci(S) = ∑ {ej(S): j ∈ Ji} for all i, so total ABC error
is e(S) = f(S:V′) – f(S:V). ABC error can be negative or positive, again resulting in
possible self-cancellation effects. Hillsman and Rhoda recognize and discuss both
total error and error self-cancellation.

Now consider any location model f(S:V) with p-server S and its approximation
f(S:V′). A difficulty with error measures that can be negative or positive is that a
smaller error (e.g., −3000) can be worse than a bigger error (e.g., +3). We can avoid
this difficulty by using the (nonnegative) absolute error, ae(S) ≡ |e(S)| = |f(S:V′) –
f(S:V)| defined for all S. This measure is familiar from the calculus for measuring
how well one function approximates another. Related to ae(S) is the idea of an
error bound: a number eb for which ae(S) ≤ eb for all S. An equivalent way to
define an error bound, using f ′ and f to denote the functions f(S:V′) and f(S:V)
respectively, is based on the maximum absolute error, mae(f ′,f), a number which
may very well be quite difficult to compute. Any error bound is then an upper bound
on the maximum absolute error. Good error bounds may be much easier to compute
than the maximum absolute error. A relative error can be defined when f(S:V) is
always positive: rel(S) ≡ ae(S)/f(S:V), perhaps converted to percent. Depending on
the model structure, ae(S) may be large but rel(S) may still be small due to the
magnitude of f(S:V). Relative error is not affected by the measurement scale chosen,
whereas the preceding error measures are.
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Assuming f(S:V) > 0 and f(S:V′) > 0 for all S ⊂ Ω , the relative error idea gives
other equivalent ways of expressing the error bound, for all S ⊂ Ω:

∣∣∣∣∣
f

(
S : V ′)

f (S : V )
− 1

∣∣∣∣∣
≤ eb

f (S : V )
⇐⇒

∣∣∣∣∣∣

f (S : V )

f
(
S : V ’

) − 1

∣∣∣∣∣∣
≤ eb

f
(
S : V ’

) .

If the model f(S:V) is on a national scale, but aggregation is done on a city/town
scale (e.g., eb = 10 miles, f(S:V) = 500 miles), we could have relatively small ratios
eb/f(S:V) and eb/f(S:V′), in which case the model ratios would be nearly one and we
would have a good aggregation. By contrast, if the model is on a city/town scale
and the aggregation is also on a city/town scale, we might have a poor aggregation.
We need the aggregation scale to be substantially smaller than the model scale in
order to have a good aggregation. This is one reason that aggregation may be of
more interest for problems of city/town/regional scope than those of national or
international scope.

There is another way to view the use of an aggregation error bound. The error
bound allows us to draw conclusions about a family of original models, instead
of just one. If the actual location model is F(S:V) instead of f(S:V), but the error
bound applies to both, that is |f(S:V′) – F(S:V)| ≤ eb and |f(S:V′) – f(S:V)| ≤ eb
for all S, then whatever conclusions we draw about the function f using the error
bound inequality also apply to the function F. While we lose accuracy when we
aggregate, we gain the ability to draw approximate conclusions about a family of
original functions. As a general example of the function F, suppose instead of the
DP set {vj: j ∈ J} we have a different DP set, say {bj: j ∈ J}, defining F, while
all other model data is the same as for f(S:V). If each DP bj is aggregated into vj

′,
then each of the functions F and f will be aggregated into the same approximating
model, denoted by f′. Further, if also d(vj,vj

′) = d(bj,vj
′) for j ∈ J, then the methods

we present later would provide both F and f′, and f and f′, with the same error bound.
The data for F and f differ, but are sufficiently similar that the aggregation does not
detect the differences.

Denote (globally) minimizing solutions to any original and approximating
location models f(S:V) and f(S:V′) by S∗ and S′ respectively. While we usually
cannot expect to find S∗ if we must aggregate DPs, we can still obtain some
information about S∗ if we know an error bound eb and S′. Geoffrion (1977) proves
that if |f(S′:V′) – f(S∗:V)| ≤ eb, then |f(S′:V) – f(S∗:V)| ≤ 2eb. Supposing f(S′:V) > 0,
we thus have |1 – f(S∗:V)/f(S′:V)| ≤ 2eb/f(S′:V). Hence, if 2eb is small relative
to f(S′:V), we may reasonably accept S′ as a good substitute for S∗. We assume
henceforth that we can compute S′ but not S∗. Note that if we wish to use S′ to
approximate S∗, then it makes no sense to allow p ≥ q, for then we can place a new
facility at every ADP and may achieve a minimal approximating function value of
f(S′:V′) = 0. Certainly it is desirable to have p << q.
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Table 18.3 Various types of
optimality errors for any
location model f(S:V). Ideal
error measures are zero

No. Error name Error definition

1 Total error at S′ e(S′) = f(S′:V′) – f(S′:V)

2 Opportunity cost error f(S∗:V) – f(S′:V′)
3 Optimality error f(S∗:V) – f(S′:V)

Various authors, cited in Francis et al. (2009), have proposed different types of
optimality errors which we list in Table 18.3. The first error can be computed, and
indicates how well the approximating function estimates the original function at S′.
For large models, the second two errors cannot be computed without knowing S∗.
They can be computed for smaller models where S∗ can be found without the need
to aggregate, or for larger models if one assumes the algorithm used to solve the
original problem provides S∗. Unless one can be certain that S∗ is known, or that
some properties of S∗ are known, the latter two measures do not seem useful.

Although it is reasonable to use some measure of the difference between f(S:V′)
and f(S:V) to represent aggregation error, doing so results in what may well be called
the paradox of aggregation (Francis and Lowe 1992). Often our principal reason to
aggregate is because we cannot afford, computationally, to make many function
evaluations of f(S:V). We want to aggregate to make the error small; however,
algorithms to do this typically require numerous function evaluations of f(S:V) and
thus cannot be used for this purpose. Usually it is practical, however, to compute
error measures for at least a few S, and we certainly recommend doing so whenever
possible. For example, given we know V and V′, we can use a sampling approach to
compute a random sample of size K of p-servers, say S1, . . . ., SK , compute f(Sk:V′)
and f(Sk:V) for each sample element Sk, and then compute a sample error estimate
of any error measure of interest.

Location error (Casillas 1987; Daskin et al. 1989) involves some comparison
of the p-server locations S∗ and S′. There are several difficulties with using this
concept. First, if we really knew S∗ we would not need to do the aggregation.
Second, when |S∗| ≥ 2, there appears to be no accepted way to define the difference
between S∗ and S′. Third (assuming we do know S∗), the function f(S:V), particularly
if it is the PMM function, may well be relatively flat in the neighborhood of S∗, as
pointed out by Erkut and Bozkaya (1999). This means we could have some S′ with
f(S′:V) only a little larger than f(S∗:V), but S′ is “far” from S∗. Fourth, S′ and S∗
may not be unique global minima. Why are comparisons made between S′ and S∗?
We speculate they are made in part due to unstated subjective evaluation criteria, or
known but unstated supplementary evaluation criteria. As another possible example
of the use of location error, we might solve the approximating model with three
different levels of aggregation (numbers of ADPs), obtaining three corresponding
optimal p-servers say S′, S′′ and S′′′. In this case, differences between successive
pairs of these p-servers might be of interest; we might want to know how stable
the optimal server locations are as we change the level of aggregation (Murray and
Gottsegen 1997).
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Subjective or unstated aggregation error criteria may well be important, but are
not well-defined. Thus, two analysts can study the same DP aggregation and not
agree on whether it is good or not. Further, if a subjective evaluation derives from
some visual representation of DPs and ADPs, such an analysis may single out
some relatively simple visual error feature that is inappropriate for the actual model
structure. For example, a visual analysis could not evaluate the (computationally
intense) absolute error for the PMM. Some generally accepted way to measure
location error is desirable.

How should we measure the location error diff(S,Y), the “difference” between
any two p-servers S and Y? The answer is not simple, because the numbering
of the elements of S and of Y is arbitrary, and we must find a way to match up
corresponding elements. Further, S and Y are not vectors, but sets. We propose the
use of a method discussed by Francis and Lowe (1992). For motivation, consider
the case where for each element sk of S there is only one “nearby” element of Y, say
ykˆ. In this case we might use either max{d(sk,ykˆ): k = 1, . . . , p} or

∑{d(sk,ykˆ):
k = 1, . . . , p} as diff(S,Y). More generally, define the p × p matrix C = (cij)
with cij = d(xi,yj). Define an assignment (permutation matrix) to be any 0/1 p
x p matrix Z = (zij) having a single nonzero entry of one in each row, and a
single nonzero entry of one in each column, and let P denote the set of all such
p! assignments (permutation matrices). Define the objective function value v(Z) for
every assignment Z ∈ P by v(Z) ≡ max{cij zij: Z ∈ P}, so that v(Z) is the largest
entry in C for which the corresponding entry in Z is one. Define Δ(S,Y) = min{v(Z):
Z ∈ P}, so that Δ(S,Y) is the minimal objective function value of the min-max
assignment problem with cost matrix C. We propose using Δ(S,Y) for diff(S,Y).
There are several good reasons for using Δ(S,Y). One reason is that it has all
the properties of a distance (see Goldberg 1976): symmetry: Δ(S,Y) = Δ(Y,S);
nonnegativity: Δ(S,Y) ≥ 0 and Δ(S,Y) = 0 ⇐⇒ S = Y; triangle inequality:
Δ(S,Y) ≤ Δ(S,Z) + Δ(Z,Y) for any p-servers S, Y and Z. Another reason, further
explored in Francis et al. (2009), is that it is related to the absolute error. (We
could also use the optimal value of the conventional min-sum assignment model
for diff(S,Y). This optimal value also has all the properties of a distance, but we
know of no useful relationship between it and absolute error.) We call the distance
Δ the min-max distance. Note, for any two p-servers S, Y ⊂ Ω , Δ(S,Y) ≤ diam(Ω).
Further, when p = 1 the min-max distance is just the usual distance, d(x1,y1).

Both min-max and min-sum assignment models are well-studied and are effi-
ciently solvable in low polynomial order for any set of real coefficients (Ahuja et
al. 1993). In the assignment models we study, the coefficients typically correspond
to distances between points in some geometric spaces, e.g., planar Euclidean or
rectilinear cases. For these geometric models significantly more efficient algorithms
have become available (Agarwal et al. 1999; Agarwal and Varadarajan 1999; Efrat
et al. 2001, and Varadarajan 1998).

There are a number of relationships between the error measures of Table 18.2.
These relationships, some of which may not be obvious, are a subject of discussion
in Francis et al. (2009), where there are also numerical examples of many of the
error measures. It also seems worth pointing out that error measures 2 through 7 of
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Table 18.2 are local error measures, since they depend on S. By contrast, measures
1, 8 and 9 may be considered global error measures.

There is no general agreement on which aggregation error measure is best.
Until the research community agrees on one or more error measures, progress in
comparing various aggregation approaches, and in building a cumulative body of
knowledge, will necessarily be limited. The lack of agreement on error measures
also limits progress in trading off aggregation advantages and disadvantages.
Further, because comparisons of various aggregation algorithm results should all
be based on the same error measures, there is currently little point in developing a
data base of DPs that can be used by the profession to test their aggregation methods.
We personally recommend the uses of relative error based on absolute error and/or
error bounds, together with ADP-DP distances. The bound in the inequality |1 –
f(S∗:V)/f(S′:V)| ≤ 2 eb/f(S′:V) seems particularly promising.

An alternative to using some low computational order approach to aggregate
the original demand point set, and then solving the resulting aggregated location
model to optimality, is to use some low computational order metaheuristic approach
(Pardalos and Resende 2002; Reeves 1993; Resende and de Sousa 2004) to approxi-
mately minimize the original, unaggregated location model. The first approach gives
bounds on optimality to the original model. Remove space The second approach
introduces an additional source of error, since a heuristic is used, but may possibly
result in a better solution. Promising examples of this second approach include the
work of Avella et al. (2012), Irawan and Salhi (2015b), and Irawan et al. (2014).
Given the current state of the art, which approach is best is not known. Indeed,
“best” may not even be well-defined, since there is no generally accepted measure
of aggregation error.

18.5 Error Bounds

We have argued that an upper bound on the absolute error is among the best
representations and measures of the error associated with an aggregation. We have
used the symbol eb to represent this upper bound so that with f(S,V) a general
location model, |f(S:V′) – f(S:V)| ≤ eb.

Consider now obtaining error bounds for the PMM and PCM, say ebpmm and
ebpcm, with these two models defined in Examples 1 and 2 respectively. Both error
bounds are direct consequences of the triangle inequality for shortest distances,
which holds for all j ∈ J and all S ⊂ Ω:

−d
(
vj

′, vj

) ≤ D
(
S, vj

′) –D
(
S, vj

) ≤ d
(
vj

′, vj

) ⇐⇒ | D
(
S, vj

′) –D
(
S, vj

) |≤ d
(
vj

′
,
vj

)
.

(18.1)
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The p-median and the p-center models have the following error bounds respec-
tively:

ebpmm = Σ
{
wj d

(
vj

′, vj

) : j ∈ J
}
, ebpcm = max

{
wj d

(
vj

′, vj

) : j ∈ J
}
.

The error bounds themselves can be viewed as location models; if vj
′ is the closest

ADP to vj (which is reasonable), then we have

ebpmm = Σ
{
wj D

(
�, vj

) : j ∈ J
}
, ebpcm = max

{
wj D

(
�, vj

) : j ∈ J
}
.

Since it is of interest to have small error bounds when doing aggregation, we can
view each of the latter two error bound expressions as a location model, and use
heuristic location minimization algorithms to compute Γ . Thus, doing aggregation
may be viewed as solving a location problem.

We remark for PMM, if S is restricted to being in a finite set of possible sites, and
there are fixed site costs but the sites are not aggregated, then the site fixed costs can
be added to the objective function without affecting the error bound.

Francis et al. (2009) give an extensive discussion of the use of the above error
bounds for aggregation. The conditions for the PMM error bound to be tight are
much stronger than for the PCM error bound to be tight, and this is reflected by better
computational experience for the PCM than the PMM. However, computational
experience does show that the PMM error bound is well correlated with sample
absolute error measures, and that it makes sense to locate ADPs so as to keep the
PMM error bound small.

Another location problem of interest is the covering location model, defined by
Example 3. Since D(S,vj) ≤ rj is equivalent to D(S,vj)/rj ≤ 1, from (18.1) we obtain.

| D
(
S, vj

′) /rj –D
(
S, vj

)
/rj |≤ d

(
vj

′, vj

)
/rj, for all j ∈ J and all S ⊂ Ω.

(18.2)

Thus we obtain n error bounds, one for each original constraint. Clearly, it makes
sense to aggregate so as to keep these error bounds small.

Let us now build on (18.2), the basic error bound idea for constraints. Generally,
we have location constraints of the form fj(S) ≤ rj, j ∈ J, S ⊂ Ω . Suppose each
function fj(S) is replaced by some approximating function, say fj′(S), resulting in
some constraints that are not distinct for the aggregated model of fj′(S) ≤ rj, j ∈
J, S ⊂ Ω . If we now define functions f(S) and f′(S) by f(S) ≡ max{(1/rj) fj(S): j
∈ J}, f′(S) ≡ max{(1/rj) fj′(S): j ∈ J}, then the constraints for the two models are
equivalent to f(S) ≤ 1 and f′(S) ≤ 1 respectively. Hence, we can view f′(S) as an
aggregated version of the function f(S), and apply whatever function error measures
are of interest. It is known (Francis et al. 2004a) for example, that if fj′(S) and fj(S)
have error bound bj (= d(vj

′,vj) /rj for the CLM) for j ∈ J, then f(S) and f′(S) have the
(unitless) error bound eb = max{bj: j ∈ J}. For the CLM, the resulting error bound
is identical in form to that for the PCM; hence aggregation methods providing small
PCM error bounds also can provide small CLM error bounds, and vice-versa.
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When f(S) and f′(S) are any original and aggregated functions with some error
bound eb, it follows directly that f′(S) ≤ 1-eb ⇒ f(S) ≤ 1; f(S) ≤ 1 ⇒ f′(S) ≤ 1+ eb.
Thus, the constraint f′(S) ≤ 1-eb gives a restriction of the original constraint, while
f′(S) ≤ 1 + eb gives a relaxation. Each can be easier to deal with than the original
constraint and may be used to compute lower and upper bounds on the optimal
objective function value of the original model. Supposing eb << 1 (which is clearly
desirable), feasibility conclusions about one model thus allow us to draw feasibility
or “near-feasibility” conclusions about the other model.

Following Francis et al. (2004c), Table 16.4 illustrates the use of error bounds as
discussed to obtain a relaxation and restriction of the aggregated CLM as well as a
relaxation and restriction of the original model.

Francis et al. (2004c) used the approach of Table 18.4. They solved to optimality
a CLM with almost 70,000 original CLM constraints by solving several aggregated
CLMs each with less than 1000 covering constraints. Their computational experi-
ence was usually that the minimal objective function value of the original model
was underestimated when solving the approximating model without enough ADPs,
which is consistent with the discussion in Sect. 18.2. The case study of Sect. 18.3
uses some of these aggregation ideas.

The error bound max{wj d(vj
′,vj): j ∈ J} for the PCM and CLM for some choice of

the wj including wj = 1/rj is quite robust. It applies to an obnoxious facility location
model (Francis et al. 2000); Erkut and Neuman 1989) and, when doubled, to a p-
center hub location model (Gavriliouk 2003; Ernst et al. 2002a, b). Although most
of the error bound results were developed for the case of discrete demand, Francis
and Lowe (2014) study the relationship between error bounds for the discrete and
the continuous demand cases.

Table 18.4 Relaxation and restriction of both the original and aggregated covering location
models assuming all δj < rj

Constructing Aggregated CLM

1 Definitions γ 1, . . . , γ q: the q distinct ADPs
δj ≡ d(vj

′,vj), j ∈ J; δj < rj, j ∈ J
β i ≡ min{rj- δj: vi

′ = vj}, i = 1, . . . , q
ρi ≡ min{rj + δj: vi

′ = vj}, i = 1, . . . , q

2 Original covering constraints D(S,vj) ≤ rj, j ∈ J, all S

3 Aggregate constraints D(S,vj
′) ≤ rj, j ∈ J, all S

4 Restrictions of both original and aggregate
constraints

D(S,vj
′) ≤ rj- δj, j ∈ J, all S ⇐⇒

D(S,γ i) ≤ β i, i = 1, . . . , q, all S

5 Relaxations of both original and aggregate
constraints

D(S,vj
′) ≤ rj + δj, j ∈ J, all S ⇐⇒

D(S,γ i) ≤ ρi, i = 1, . . . , q, all S

http://dx.doi.org/10.1007/978-3-030-32177-2_16
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18.6 Conclusions

For location problems with many thousands of demand points, aggregation is often
essential. This chapter has dealt with the topic of demand point aggregation for
location models. We have pointed out that demand point aggregation causes error
and presented some possible ways of measuring this error. Our focus has been on
the concept of an error bound, an upper bound on the maximum absolute error
due to aggregation. Error bounds are given for three key location models: the p-
median model (PMM), the p-center model (PCM) and covering location model
(CLM). We have shown that minimizing the error bounds for (PMM) or (PCM)
results in a location problem. This is a concept that we have called “the paradox
of aggregation”. We have also presented an application of the covering location
model to a real public sector location problem in the state of Florida, and have
demonstrated error bound analysis for this problem.

Difficulties in computing actual errors lead to the concept of an error bound, and
this error bound can be used as a surrogate for the maximum absolute error. In fact,
error bounds can be computed for many other location models since many of these
models share properties with (PMM), (PCM), or (CLM). In addition, error bound
analysis can be extended to more general costing functions g if f(S) = g(D(S,V)) and
the costing function g is subadditive and nondecreasing (SAND) (see Francis et al.
2000, 2009).

Based on our work on demand point aggregation for location modeling, we offer
the following observations:

1. The work of Hillsman and Rhoda (1978) is widely recognized and influential;
in particular, self-canceling error is a helpful concept for models with additive
structure;

2. There is little average-case analysis of aggregation error;
3. Much more research on aggregation for the median problem has been done than

for center, covering and other models;
4. Progress is definitely being made in understanding aggregation error;
5. Aggregation error bounds can be useful, particularly for center and covering

models;
6. Aggregation error measures used vary greatly, and there is no agreement on how

to measure error; hence it is pointless to ask which aggregation algorithm is best,
since “best” is not defined.
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