
Chapter 17
Stochastic Location Models
with Congestion

Oded Berman and Dmitry Krass

Abstract In this chapter we describe facility location models where consumers
generate streams of stochastic demands for service, and service times are stochastic.
This combination leads to congestion, where some of the arriving demands cannot
be served immediately and must either wait in queue or be lost to the system.
These models have applications that range from emergency service systems (fire,
ambulance, police) to networks of public and private facilities. One key issue is
whether customers travel to facilities to obtain service, or mobile servers travel to
customer locations (e.g., in case of police cars). For the most part, we focus on
models with static (fixed) servers, as the underlying queueing systems are more
tractable and thus a richer set of analytical results is available. After describing the
main components of the system (customers, facilities, and the objective function),
we focus on the customer-facility interaction, developing a classification of models
based on the how customer demand is allocated to facilities and whether the demand
is elastic or not. We use our description of system components and customer-
response classification to organize the rich variety of models considered in the
literature into four thematic groups that share common assumptions and structural
properties. For each group we review the solution approaches and outline the main
difficulties. We conclude with a review of some important open problems. We
specifically outline the advances and new approaches that have been developed since
the previous edition of this volume.

17.1 Introduction

The class of facility location models that is the main focus of the current chapter
make the following key assumptions:

1. Customers generate a stochastic stream of demands, typically assumed to be a
Poisson process, or, more generally a renewal process.

O. Berman (�) · D. Krass
Rotman School of Management, University of Toronto, Toronto, ON, Canada
e-mail: berman@rotman.utoronto.ca; krass@rotman.utoronto.ca

© Springer Nature Switzerland AG 2019
G. Laporte et al. (eds.), Location Science,
https://doi.org/10.1007/978-3-030-32177-2_17

477

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32177-2_17&domain=pdf
mailto:berman@rotman.utoronto.ca
mailto:krass@rotman.utoronto.ca
https://doi.org/10.1007/978-3-030-32177-2_17


478 O. Berman and D. Krass

2. Facilities, contain resources (often called “servers”) that have limited capacity
and stochastic service times.

3. Customer-facility interactions happen as the result of customers traveling to
facilities to seek service, i.e., our primary focus is on the “fixed” or “immobile”
server models (in the “mobile server” case, servers travel to customers to provide
service).

4. Due to stochastic arrivals of customer demands at the facilities, stochastic service
times, and limited capacities, facilities will experience periods of congestion
where not all arriving demands can be served immediately. Customers that arrive
when the system is busy may either enter a queue or leave without getting service.
This behavior will result in either queues, or lost demands, or both.

Applications of these models range from public service facilities such as hospitals,
medical clinics and government offices, to private facilities such as retail stores or
repair shops.

We note that these assumptions specifically exclude a number of interesting and
important classes of related location models, some of these are treated in other
chapters in the current volume; we refer the reader specifically to Chap. 8 for an
in-depth discussion of the issues outlined below.

First, there are many models that incorporate capacity limitations in a determinis-
tic, rather than stochastic, manner. These include models seeking to ensure that there
is sufficient average capacity to provide adequate service, models that try to design
a system that should perform well even under stochastic conditions by equalizing
loads between facilities, and models that handle possible congestion indirectly by
requiring certain reserve capacity at the facilities. All of these can be regarded
as deterministic approximations of the underlying stochastic system. While this
deterministic approach leads to large technical simplifications and, as a result, much
easier computations, the roughness of the approximation is usually impossible to
estimate a priori. This may lead to systems with poor levels of customer service (at
some of the facilities), and is typically not appropriate in cases where understanding
and controlling potential congestion is important.

Second, there are some models where facilities are modeled as reliability,
rather than queueing, systems, i.e., a facility may “fail” with certain probability
in some periods, at which point it cannot provide service to customers (who are
typically assumed to try to seek service from non-failed facilities)—these and
related models are discussed in Chap. 22. Such models do incorporate stochastic
demands explicitly. Moreover, “failure” periods may be regarded as representing
periods of congestion at the facilities when new customer arrivals are blocked. Thus,
these models are closer to the systems we study. However, the key difference is
that “reliability” models treat the blockage probability as exogenous to the system
(a typical assumption is that each facility may fail with certain probability at any
time, where such probability is a system parameter), while models where facilities
are represented as queues treat the probability of blockage as endogenous, i.e., a
direct outcome of other decisions such as capacity allocation and customer-facility
interactions. Thus, reliability models can only be regarded as approximations for
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the systems we are interested in. We refer to Snyder (2006) as well as to Chaps. 8
and 22 in this volume for a review of reliability and related models.

Third, there is an important class of models where servers are assumed to
be “mobile”, i.e., servers travel to customers rather than customers traveling to
facilities. Examples of the underlying systems include emergency services (fire,
ambulance, police) as well as repairmen making house calls. These models are
close “cousins” of the fixed-server models we are interested in as they include
most of the same components: stochastic demand streams, stochastic service
times, congestion/queuing behavior. However, these models also include additional
significant levels of complexity, such as dynamic dispatching and routing of servers,
repositioning servers between facilities, re-routing a sever before completion of
the call, etc. The underlying queuing models are analytically intractable, even if
the facility locations are assumed fixed, leading to various approximation-based
approaches. In contrast, the queuing systems underlying models with fixed servers
are often (though not always) analytically tractable, allowing for, theoretically, more
precise solutions in many cases. We refer the reader to a survey by Berman and
Krass (2002) and to a more recent survey on emergency systems planning by
Ignolfsson (2013) for more details on models with mobile servers. We note that
the technical distinction between models with fixed and mobile servers does not lie
in the server mobility per se, but rather in how the underlying queuing network is
modeled (in fact, some of the models described in this chapter have been applied in
mobile server contexts). We will provide more precision for this distinction below,
once the underlying technical framework is properly introduced.

The field of Stochastic Location models with Congestion and Immobile Servers
(SLCIS), the main focus of this chapter, has seen a rather explosive growth over a
relatively recent time period. As noted in Berman and Krass (2002), by the early
2000s, only a handful of papers on SLCIS could be found. However, by 2006 over
20 contributions were listed in the comprehensive review by Boffey et al. (2006) (we
are only counting the papers that meet the assumptions for SLCIS models discussed
earlier). In the last 8 years, this number has roughly doubled. It is our intent to
review the current state of the field, as well as to systematize the many variants of
SLCIS models that have been proposed.

We note that much of the recent work has been on models with elastic demand—
i.e., where the intensity of customer demands depends on the quality of the service
provided by the facilities. In this regard it is important to mention a review by
Brandeau et al. (1995) that describes early foundation for much of this work.

As with most other location models, one could focus on cost minimization or on
net revenue (profit) maximization. Cost minimization is more appropriate when the
revenues are either not well-defined (e.g., in the case of public health facilities), or
are assumed to be exogenous to the model (e.g., when customer demand levels and
prices are fixed). While most SLCIS models in the literature are formulated with the
cost minimization objective, profit optimization is more general and is much more
natural when demand is elastic. Therefore, we will assume this objective type in our
general formulation in the following section.
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Several interesting new ideas have been introduced to SLCIS models since the
previous edition of this volume. These are highlighted in the present version.

The remainder of this chapter is organized as follows. We start by describing the
main model components in Sect. 17.2. A crucial part of any SLCIS model is the
set of assumptions made about how customers and facilities interact, specifically
how customer demand is “allocated” to facilities and how much of the potentially
available demand is “captured”. These issues are explored in detail in Sect. 17.3,
where we also introduce a classification of SLCIS models based on the types of
customer response. All model components come together in Sect. 17.4 where we
formulate a “general” SLCIS model and review the main features that are typically
included in various sub-classes. In Sect. 17.5 we provide an overview of SLCIS
models discussed in the literature, providing a unifying structure organized around
four main “themes”. We also discuss the key challenges that arise for different model
classes and computational approaches that have been developed. In the last section
we discuss conclusions and suggestions for future research.

17.2 Key Model Components

In this section we specify the key model components that allow us to identify the
main classes of SLCIS models. These classes and the relevant solution approaches
will be described in the following sections. As noted earlier, SLCIS models describe
the system consisting of customers, facilities and their interactions. We start by
describing each of these components in more detail.

17.2.1 Customers

Customers are assumed to be located in a set J , with customer location j ∈ J

capable of generating a demand stream with maximum intensity of λmax
j per unit

time. In the vast majority of models described in the literature, J is assumed to be
a discrete set, often conceptualized as the set of nodes of some underlying network
G = (J,A), where A is the set of links. Other common alternatives in location
(but not in SLCIS) literature include J being a sub-region of the real plane R2, or
consisting of both links and nodes of a network G. The most general SLCIS setting
we are aware of is given in Baron et al. (2008), where J is a bounded sub-space of
RN and can contain a mixture of discrete points and continuous regions. To keep
the presentation as transparent as possible, we will retain the common assumption
that J is discrete and n = |J | is the number of customer demand points, which we
will frequently refer to as “nodes”.

Let uj represents the utility derived by customers at node j ∈ J from the services
offered by the facilities. The demand stream generated by j is assumed to be a
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Poisson process with rate λ(uj ) ∈ [0, λmax
j ]. We will postpone the description of

utility functions until Sect. 17.3.1, since other system components need to be defined
first. However, we can already identify two different classes of SLCIS models: the
elastic demand models, where λ(uj ) is a non-constant function, i.e., λ(uj ) �= λmax

j

for some values of uj , and the inelastic demand models where the demand rate is
assumed to be constant and equal to λmax

j . As a shorthand, we will use λj = λ(uj )

to represent the demand rate of customer node j ∈ J . The inter-arrival times of
the demand processes generated by different customer locations are assumed to be
independent.

We should also note that while it is tempting to relax the Poisson assumption
for the demand process, this must be done with care as the facilities see aggregate
demands from different customer locations, i.e., a superposition of the demand
processes. In order to apply standard queueing results to the facilities, the demand
process seen by each facility must be a renewal process. While the superposition
of Poisson processes is Poisson, which is obviously a renewal process, in general,
the superposition of renewal processes is not a renewal process. This quickly leads
to a loss of tractability for the models. Thus, except for some trivial extensions,
the Poisson assumption for demand streams appears unavoidable; one interesting
exception occurs when customer demand space is continuous, rather than finite, in
which case facilities see Poisson arrivals under much looser conditions—see Baron
et al. (2008) for the development and required assumptions. However, there is no
problem (at least from the analytical point of view) in assuming that the demand
process at each node j ∈ J is not time-homogenous, i.e., that the demand rate
is a function of time. To simplify the presentation, we will stick with the time-
homogenous assumption.

An important implicit assumption in all SLCIS models we are aware of is that
all customer nodes generate “identical” demands (possibly, within certain priority
classes), i.e., that the streams of demand are indistinguishable with respect to the
originating node once they reach the facility.

17.2.2 Facilities

Customer demands are serviced by the facilities that contain service resources (or
“servers”). All aspects related to the facilities, including their number, locations,
and the amount/ types of resources allocated to them can potentially be treated as
decision variables in the model. In describing the system dynamics below we will
initially treat the values of these variables as given, but will relax this assumption
when describing model formulations later.

We will assume that facility locations must belong to some set I and that at
most m ≥ 0 facilities can be located; we will use i ∈ I, to represent the location
(site) of facility i. By far, the most common assumption in SLCIS literature is that
set I is discrete, i.e., that all potential locations for the facilities have already been
enumerated. In this case, we can assume without loss of generality that I ⊂ J
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(since any point in I not containing customers can be treated as a customer demand
point with the maximum demand rate equal to 0). Other options, include I ⊂ R2,
leading to continuous SLCIS models (see, for example, Brimberg and Mehrez 1997
and Brimberg et al. 1997), or I ⊂ J ∪ A for a network G = (J,A), leading to
network SLCIS models (see, e.g., Berman et al. 2014). Unless stated otherwise, we
will generally assume I to be discrete.

To take advantage of the discreteness of I we will follow the typical convention
in location modeling and define yi ∈ {0, 1} to be a binary indicator variable with
the value 1 if a facility is open at site i ∈ I , and 0 otherwise. To ensure that the total
number of open facilities does not exceed m we require:

∑

i∈I

yi ≤ m. (17.1)

If a facility is opened at i ∈ I (i.e. yi = 1), it must be allocated some service
capacity μi > 0, which can be thought of as the average processing rate. We will
assume that μi = 0 whenever yi = 0, which can be enforced by

μi ≤ μmaxyi, i ∈ I, (17.2)

where μmax is the maximum possible processing capacity that can be assigned to a
facility.

As noted in Baron et al. (2008), there are two standard approaches to represent
facility capacity in queuing environment: as a “single-server” facility where the
capacity level can take on any value in some interval μi ∈ [0, μmax], or as a “multi-
server” facility housing κi ≥ 0 parallel servers each with fixed capacity μ0, where
κi ∈ {0, . . . , k} is an integer, μi = κiμ

0 is the processing capacity of facility i,
and k is the maximum number of servers that can be stationed at a facility (with
μmax = kμ0).

While there are some important differences between the single-server and multi-
server models (these will be touched on later) our bias is to favor the single-server
representation. It is more transparent, typically leads to cleaner analytical results,
and seems more practical as well: a typical facility will house a variety of processing
resources and discrete “servers” may be hard to identify. For example, a medical
clinic will often house doctors, nurses, examination rooms, X-ray machines, etc.
While it is sensible for a planner to think of processing capacity of a clinic in
terms of patients per hour (and how this processing capacity changes when certain
resources are added or removed), it is harder to think of the clinic containing κ

distinct servers (are these doctors? nurses? rooms?). Thus, unless stated otherwise,
each facility will be assumed to house a single “server” with capacity μ.

We note that even in settings where μ is a continuous decision variable, it is
sometimes useful to discretize it. This is because, as will be seen shortly, μ appears
in many non-linear expressions for service levels and waiting times; discretization
is a common trick used to linearize the corresponding expressions—this idea was
first explored in Vidyarthi and Jayaswal (2014). When discretization is used, it is
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assumed that the capacity μi of each facility i must satisfy

μi ∈ {μ1, . . . , μL},

where μl, l = 1, . . . , L represent a discrete set of options for service levels.
Defining binary decision variables zil which take on a value of 1 is μi = μl and 0
otherwise, we can now write:

μi =
L∑

l=1

zilμ
l, i ∈ I (17.3)

L∑

l=1

zil = 1, i ∈ I, (17.4)

The service times at each facility are assumed to be stochastic. More specifically,
following Baron et al. (2008), we assume First Come First Serve (FCFS) service
discipline and that service requirements (which can be thought of as the amount
of work required to process one customer request) are independent and identically
distributed random variables with a cumulative distribution function (CDF) FS(w),
and a well-defined moment generating function (MGF) GS(η). We also assume that
the mean service time E[S] = 1. This assumption is made with no loss of generality
as it simply rescales service times. Note that in this framework, since μi represents
the service rate of facility i, the mean service time is 1/μi and it is not hard to show
that the distribution of service times is given by FS(μiw) with MGF GS(η/μi).

We define xij to be the demand allocation decision variables, specifying what
portion of demand from customer node j ∈ J is directed to facility i ∈ I . The
key underlying assumption is that once the decisions about the number of facilities,
their locations yi and the service capacities μi for i ∈ I are made, the demand
allocations xij can be determined; the exact mechanism for determining demand
allocations depends on the underlying assumptions about system dynamics and is
described later. Mathematically, we assume that xij satisfies the following set of
constraints

∑

i∈I

xij ≤ 1, j ∈ J (17.5)

xij ≤ yi, i ∈ I, j ∈ J (17.6)

xij ∈ {0, 1}, i ∈ I, j ∈ J (17.7)

These constraints are quite standard in location models: (17.5) ensures that at most
100% of customer demand from j is allocated to the facilities, (17.6) prevents
allocating a customer to an unopened facility. Constraint (17.7) enforces the binary
assumption for the allocation variables xij , with the value of 1 if the demand
stream generated by customer node j is directed to facility i, and 0 otherwise.
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The integrality of xij reflects the “single sourcing” assumption made in most
SLCIS models, requiring each customer point to be assigned to at most one
facility. An alternative is to allow “multi-sourcing”, in which case xij is allowed
to be continuous, by replacing (17.7) with its linear relaxation. We also note that
constraints (17.5)–(17.7) represent “minimal” requirements on xij ; they are often
supplemented by other constraints describing the mechanisms by which allocation
of customers to facilities is made.

We allow for the possibility that the demand from j is not assigned to any facility,
i.e.,

∑
i∈I xij = 0, which we interpret as the case of lost demand, i.e. demand that

could have been captured but was lost, usually due to insufficient system capacity.
The amount of lost demand is typically controlled via a penalty cost or constraints—
we will return to these when we discuss specific model formulations below.

For each facility i we define the set Ni = {j ∈ J |xij = 1}, which represents the
service region of facility i (clearly Ni = ∅ when yi = 0). Observe that once λi and
xij are known, the demand rate facing an open facility i is a Poisson process with
rate

�i =
∑

j∈Ni

λj =
∑

j∈J

λjxij . (17.8)

As mentioned earlier, the Poisson property results from the fact that superposition
of Poisson processes is also a Poisson process. Moreover, the demand streams faced
by different facilities are independent of each other. Thus, each facility i ∈ I acts as
a stand-alone queueing system with Poisson arrivals and general service times, i.e.,
a M/G/1 (or M/G/κi) queue with service rate μi .

System stability (i.e., ensuring that queue lengths are finite) requires that

�i ≤ μi, i ∈ I, (17.9)

which acts as a constraint on capacity assignment decisions. In addition, the
framework defined above allows us to express the key performance characteristics
of the facilities, such as the steady-state system waiting time Wi = W(�i, μi)

(this includes both queueing and service times), and the steady-state number of
customers in the system Li = Li(�i, μi), both of which are random variables
whose distributions can, in principle, be obtained. We will come back to these
quantities when we discuss system costs and service-level constraints in the next
section.

It may be also useful to require that each facility face some minimum demand
rate �min in order to ensure that it can be operated economically; sometimes these
minimum demand rates are imposed by regulators for public service facilities (see,
e.g., Zhang et al. 2010). These constraints take the form

�i ≥ �minyi, i ∈ I. (17.10)
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We note that many models make additional assumptions regarding the operations
of facilities. For example, the assumption that the distribution of service times is
exponential is quite common (though likely not very realistic in many real-life
systems; e.g., see the discussion in Boffey et al. 2006). Some authors (e.g., Boffey
et al. 2010) assume limited buffer space at the facilities. We will delay the discussion
of these additional aspects until Sect. 17.5. For the moment we regard each facility
as an infinite-buffer M/G/1 or M/G/κ queue.

Remark The fact that each facility (once location, capacity and customer allocation
decisions are made) can be viewed as an independent queueing system is the main
characteristic distinguishing immobile from mobile server models; in mobile server
models the systems operated by different facilities cannot be decoupled. This is
because in these models the typical assumption is that server assignments are
dynamic, i.e., depend on the state of the system: a server from a given facility may
service demands from customers at point j under some conditions, but not under
others. This leads to a system which is not, in general, separable, and where servers
located at different facilities must be treated as distinguishable. Such queueing
networks are analytically intractable even when all location, capacity and allocation
decisions are made. Thus, all modeling approaches involve strong approximations
and/or descriptive/simulation components (e.g., the Hypercube model proposed by
Larson (1974) is frequently used as the modeling foundation).

In contrast, SLCIS models decompose into a set of queues with Poisson
arrivals—systems for which strong analytical results (both exact and approximate)
are available. We emphasize that this tractability relies on the static nature of
customer-to-facility allocations: the demand allocations are determined once and
then remain in force for all states of the system. Thus, SLCIS models where
customers decide which facility to visit based on the current state of the system
(e.g., based on posted information about current waiting times), or where other
dynamic customer allocation mechanisms may be present, are likely to be closer
(in terms of tractability and solution approaches) to models with mobile servers.
On the other hand, models with mobile servers where static and non-intersecting
service regions are assumed for all facilities (effectively assuming away dynamic
customer reallocation) are quite similar to SLCIS models; many of the mobile server
models reviewed in Berman and Krass (2002) fall into this group. Thus, instead of
differentiating stochastic location models with mobile vs. immobile servers, it is
more useful to differentiate models with dynamic vs. static assignments.

17.2.3 Costs, Revenues, and Constraints

To complete the description of the system it remains to specify two components: (1)
the mechanisms by which customers are “allocated” to the facilities, expressed by
the variables xij (which would also determine the actual demand rates λj , j ∈ J ),
and (2) the overall system costs and constraints assuring acceptable service levels.
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We will postpone the discussion of (1) until Sect. 17.3, focusing on the costs and
constraints in the current section and treating values of the key location, allocation,
capacity assignment and demand level decisions {yi, xij , μi, λi}, i ∈ I, j ∈ J as
fixed. Following the common modeling practice, all costs below are assumed to be
per unit time.

17.2.3.1 Travel Cost and Coverage Constraints

We assume that for each customer j ∈ J and potential facility location i ∈ I a
distance metric d(i, j) is defined, satisfying the regular properties of distance. The
travel cost function T C(d), d ≥ 0, representing the cost of traveling distance d is
assumed to be non-decreasing and non-negative. This yields the System Travel Cost
per time unit of

ST C =
∑

j∈J

∑

i∈I

T C(d(i, j))λjxij , (17.11)

where we assume that constraint (17.6) ensures that customers are only assigned to
open facilities. This expression merely states that the system travel cost is the sum
of travel costs of all customers to their assigned facilities. We note that a frequent
assumption is that the travel cost is a linear function of distance. More generally,
since both J and I are discrete, one could simply redefine the distance measure
to be d ′(i, j) = T C(d(i, j)) for all j ∈ J, i ∈ I and use this new measure in
place of the original one. Thus, after suitably redefining distances and without loss
of generality, we can write

ST C = β
∑

j∈J

∑

i∈I

d(i, j)λjxij , (17.12)

where β > 0 is a parameter relating the travel cost to other terms in the objective
function (the meaning of this parameter is discussed in Sect. 17.3). We will use this
linear form in place of (17.11) from this point on.

A possible concern with the previous expression is that the short travel cost
of one customer will be added to the long travel cost of another, resulting in the
total quantity that may look reasonable, but will still provide poor service to some
customers. To assure that no customer faces an unreasonably long travel distance,
one can impose coverage constraints:

∑

i∈I

d(i, j)xij ≤ R for all j ∈ J, (17.13)

where R > 0 is the “coverage radius”, i.e., the maximum allowed travel distance
for a customer to be “covered” by a facility (this constraint should be interpreted
as referring to the “adjusted” distance measure that incorporates the travel cost,
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as discussed above). We note that most SLCIS models will include either (17.12)
or (17.13); while, in principle, both can be used in the same model, such usage is
rare.

17.2.3.2 Congestion Costs and Service Level Constraints

While travel-related costs are present in all classes of location models covered in
the current volume, the congestion-related costs and constraints are, of course, a
defining feature of the stochastic location models with congestion, in particular of
SLCIS models. As discussed earlier, the two common performance measures in
a queueing system operated by each open facility i ∈ I are the system waiting
time Wi (recall that this includes the service time; a closely related measure is W

q
i

which only covers the waiting time in queue) and the number of customers in the
system Li , which are random variables with certain steady-state distributions. The
most common way to define congestion costs is in terms of expectations of these
quantities, Wi and L̄i , respectively. Since the two are related by Little’s Law, we will
focus on the former (which is also more commonly used). For an M/G/1 queue, the
expression for the mean waiting time in the system W can be found in any standard
reference on queuing (see, e.g., Gross and Harris 1985, p. 255):

W = W
q + 1

μ
= 1 + γ 2

2

ρ

1 − ρ

1

μ
+ 1

μ
(17.14)

where W
q

is the expected time in queue, ρ = λ/μ is the utilization ratio and γ 2 is
the squared coefficient of variation for service times, given by γ 2 = σ 2μ2, where
σ 2 is the variance of service times. Each term in the expression for W

q
has an

intuitive interpretation. Recall that we are assuming Poisson arrivals, which have

coefficient of variation equal to 1, and thus the term 1+γ 2

2 represents the average
squared coefficient of variation for arrival and service processes, often called the
“variability factor” (for exponential service this term equals to 1). The second term,

ρ
1−ρ

can be interpreted by recalling that ρ is the probability that the server is busy
and thus (1−ρ) is the probability that an arriving demand goes straight into service.
The ratio can thus be interpreted as the length of the busy period measured in units
of the length of the free period. The last term is simply the average service time per
customer, sometimes known as the “scale effect” to recognize that as more capacity
is assigned to the system, the average service time per customer declines. Thus

W
q = [Variability Factor]

[
Prob system busy

Prob system free

]
[Scale Effect]. (17.15)

The expression for W simply adds the expected service time to the above.

Remark As noted earlier, two popular ways to represent the queueing system at a
given facility are as either single-server M/G/1 queue with capacity μ, where μ is
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a decision variable, or as a multi-server M/G/κ system where each of the κ servers
has capacity μ0 and κ is the decision variable. If we set κμ0 = μ, i.e., require both
systems to have the same processing capacity, we can ask to what extent are these
systems “equivalent”? Can the simpler M/G/1 system be used as an approximation
of harder-to-analyze M/G/κ one?

First note that the coefficient of utilization ρ is the same when μ = κμ0. While
no closed-form expression for W is known for the multi-server M/G/κ case, a
popular approximation (see e.g., Hopp and Spearman 2000, p. 273) is:

W = W
q + 1

μ0 = 1 + γ 2

2

ρ
√

2(κ+1)−1

1 − ρ

1

κμ0 + 1

μ0 , (17.16)

which is very similar to (17.14): focusing on the expression for W
q
, we see that the

only difference is that ρ in the numerator of (17.14) is replaced with ρ
√

2(κ+1)−1

in (17.16). In fact, the latter approximates the probability that all servers are busy in
the M/G/κ system. Thus, each term in the intuitive interpretation (17.15) of W

q
has

the same interpretation for both systems. The only difference in the expected waiting
times is that M/G/1 system is busy more frequently (since 1 > ρ > ρ

√
2(κ+1)−1),

thus yielding larger values of W
q
. On one hand, the relative difference in W

q
can be

quite large (it approaches 100% as ρ → 0). On the other hand, this difference should
be small when ρ is close to 1 and waiting times in both systems are significant,
while when ρ is small, the waiting times in both systems are quite small and the
large relative difference may not be of practical significance. Thus, as a rough
approximation, M/G/1 system can be used in place of M/G/κ when the expected
waiting times are of primary interest.

However, when the primary measure of interest is the expected total time in the
system W , one has to be more careful. When the system is highly utilized, i.e., ρ is
close to 1, the main determinant of W is the waiting time and the previous argument
applies. However, when the system utilization is lower, the expected service time
will play a large role. Since it is 1/μ0 for M/G/κ and 1/μ = κ/μ0 for M/G/1,
the former system will process customers κ times faster than the latter, and the
approximation is no longer appropriate. Thus, with respect to W , the approximation
can only be justified in the heavy utilization case.

Turning our attention back to the M/G/1 system, we would like to
rewrite (17.14) in terms of decision variables in our model. This is not difficult
to do, and with a little algebraic manipulation we obtain the following expression
for the expected waiting time at an open facility i ∈ I :

Wi = W
q

i + 1

μi

= (1 + γ 2)�i

2μi(μi − �i)
+ 1

μi

(17.17)

with �i given by (17.8). We assume that Wi = 0 if there is no facility at i.
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One important question is how to treat the term γ 2 in the preceding expression.
The “traditional” approach, adopted by all models described in the previous edition
of the current text, has been to treat γ 2 as an intrinsic model parameter, rather than
a decision variable, i.e., to assume that the coefficient of variation of service times
is fixed in advance. While this is certainly the case when a specific distribution of
service times is assumed (e.g., in M/M/1 queues γ 2 = 1), there is, in principle, no
reason why this should not be a decision parameter in the system. For example, if
the decision on how much capacity to install in facility i also deals with what kind of
capacity to install, then the coefficient of variation γ could well be affected: service
systems with higher level of automation may have lower γ , while more manual
processes may have higher γ (of course the resulting values may be different at
different facilities, so γi notation would have to be used). Another case where γ may
be a decision variable is when customers at different nodes have different service
time variabilities, in which case the allocation decisions xij may well influence not
only �i , but also the variability of service times γi . Nevertheless, the treatment
of this parameter as exogenous, rather than a decision variable is quite common
in SLCIS models; moreover its value is typically assumed to be identical at all
facilities, which is reflected in our usage of γ without a subscript.

Several recent papers have relaxed the assumption that γ 2 is a fixed model
parameter. One approach is to assume a one-to-one relationship between coefficient
of variation of service times γi and service capacity μi at facility i, replacing γ 2

with γ 2(μi) in the previous expression. This idea is explored in Ahmadi-Javid et al.
(2018), where γi is assumed to be a linear function of μi .

If the discretization of service times described by (17.3) and (17.4) is used, a very
general relationship between μ and γ can be modeled. Recall that this approach
assumes there are L discrete choices of capacity level. It is quite natural to assume
that each choice l ∈ L defines a pair (μl, γ l) (in fact, two different choices could
have identical capacity but different variability values). The coefficient of variation
at facility i can now be written as

γi =
L∑

l=1

zilγ
l, (17.18)

where the decision variables zil, i ∈ I, l ∈ {1, . . . , L} represent the choice of
capacity level, as before. Now, for each fixed arrival rate �i and capacity level l

at facility i we can pre-compute the values of W
l

i(�i) and write

Wi(�i) =
L∑

l=1

W
l

i(�i)zil,

which is linear in the decision variable. If, in addition we assume that �i is discrete
(which is natural in many contexts), we can further simplify the previous expression,
while allowing for different coefficients of variation at different facilities (at the cost,
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of course, of the approximation inherent in the discretization approach). Variations
of this approach are used in Ahmadi-Javid and Hoisenpour (2018), Azizi et al.
(2017), and Schön and Saini (2018).

Another observation regarding (17.17) is that Wi (and W
q

i ) is decreasing in μi ,
increasing in �i and convex with respect to both μi and �i whenever system
stability conditions (17.9) hold. These properties are exploited in several SLCIS
models that follow.

Let WC(w) represent the “waiting cost”, i.e. the cost incurred by customers
waiting w units of time in the system (here, and hereafter, we assume that waits
include service times; an equivalent treatment can be developed by focusing on
waiting times in queue only, i.e. Wq ). As with the travel costs, we assume that
WC(w) is non-negative and non-decreasing, noting that many models make the
simplifying assumption that the waiting cost is proportional to w. The total expected
waiting cost in the system can now be expressed as

SWC =
∑

j∈J

∑

i∈I

WC(Wi)xij . (17.19)

In view of non-linear dependence of the expected waiting time Wi on the decision
variables, SWC is a non-linear function even when the waiting cost is assumed to
be linear.

We note that since the waiting cost is only incurred by customers who are
assigned to some facility, we should also add a penalty term for customers that
are not assigned to any facility (i.e., not served)—otherwise the model may have
an incentive to not assign customers even if service capacity is available. The “lost
demand” customers may be represented in the revenue term described later (i.e.,
they are treated as an opportunity cost of lost revenue). Alternatively they can be
represented by a term p

∑
j∈J

(
1 − ∑

i∈I xij

)
which may be added to the SWC

expression above, where p represents the penalty for not servicing a customer.
There are two potential issues with using (17.19) as the sole measure of service

quality (in terms of waiting times) at the facilities. First, as with the system travel
cost, a small value of SWC does not necessarily ensure that all customers are
receiving adequate service—a small expected waiting time at one facility may
“hide” a large expected waiting time at another. Thus, one may want to add the
constraints (these are traditionally stated in terms of waiting time, rather than system
time; we follow this tradition):

W
q

i ≤ EW, i ∈ I, (17.20)

where EW represents the acceptable maximum waiting time at any facility.
Second, the expected waiting time may not be sufficient to express the desired

service quality; we may wish to ensure that most customers experience no waiting
at all or that the probability of “long” waits is sufficiently low. For this we need to
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consider a constraint of the form

P(W
q
i > T ) ≤ αT , i ∈ I, (17.21)

where P(·) is the steady-state distribution of W
q
i , T > 0 is the specified threshold

for the waiting times, and αT ∈ (0, 1) is the maximum acceptable probability
of waits longer than T at any facility. For example, α0 represents the maximum
acceptable proportion of customers that must wait for service at any facility.

Both (17.20) and (17.21) above are examples of Service level Constraints (SCs)
that are quite common in SLCIS models. Since (17.20) refers to the expected
behavior of the system, while (17.21) refers to the probability of occurrence of
certain (undesirable) events, we will refer to the former as the “Mean SC” and the
latter as the “Probabilistic SC”. While the Mean SC is easily expressed in terms
of the decision variables by substituting (17.17) into (17.20), the Probabilistic SC
requires an expression for the steady-state distribution of the waiting time, which
is not generally available. One option is to make additional assumptions about
the distribution of service times (e.g., assuming M/M/1 or M/Ek/1 queues at
the facilities) since steady-state distributions of waiting times have been derived
for many common systems. Another option is to use an approximation. The
one we follow here is based on Baron et al. (2008). Assume that the service
constraints (17.21) are specified and let

V (T , αT ) = − ln(αT )

T
;

observe that since ln(αT ) < 0, this is a positive constant that is decreasing in αT and
in T . Then (under certain mild technical assumptions), constraint (17.21) is satisfied
whenever

GS(
V (T , αT )

μi

)(�i − 1) ≤ V (T , αT ), (17.22)

where GS(·) is the MGF of service times defined earlier. Recall that GS(η) is
an increasing function for η > 0, implying that the left-hand side of (17.22)
is decreasing in μi . This is quite intuitive: when T or αT are decreased, the
probabilistic SC becomes tighter, requiring more capacity at the facility. In fact,
as V (T , αT ) becomes larger, satisfying (17.22) requires more capacity μi .

This leads to a general view of service constraints: for any arrival rate �i at
facility i ∈ I one can define a minimum capacity level μ̄(�i) such that SC holds if
and only if

μi ≥ μ̄(�i), (17.23)

where μ̄(�i) is computed (perhaps numerically) from (17.20), (17.21), or (17.22).
Of course, an equivalent view is to specify a function �̄(μ), which is just an inverse
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of μ̄(�), so that SC holds whenever

�i ≤ �̄(μi), (17.24)

i.e., for a given capacity level μi there is a maximal arrival rate �̄(μi) for which
an adequate service level can be provided by facility i. This view extends to other
definitions of SCs (e.g., instead of using waiting time one could use L or another
service level measure)—the only thing that changes is the way functions μ̄(�) and
�̄(μ) are computed.

We note that system stability conditions imply that μ̄(�) > � (equivalently
�̄(μ) < μ) and the difference μ̄(�) − � may be interpreted as the amount of
the “capacity cushion” (capacity in excess of the minimal possible level) needed
to ensure adequate service given the arrival rate �. For many systems and many
specifications of service level constraints it has been shown that this amount grows
proportionately to

√
�, i.e.

μ̄(�) ≈ � + Q
√

� (17.25)

for some constant Q (see, e.g., the discussion in Castillo et al. 2009). The derivations
in Whitt (1992) suggest that, under many conditions, a good approximation for Q

is provided by

√
2Q ≈

√
γ 2 + 1P(W > 0).

Thus,
√

2Q/
√

γ 2 + 1 is approximately equal to the probability of waiting, a natural
service level measure. To summarize, when the probability of waiting is used as the
service-level measure, the constraint

P(Wi > 0) ≤ α0, i ∈ I

holds if

μi ≥ μ̄(�i) ≈ �i +
⎡

⎣
√

γ 2 + 1

2
α0

⎤

⎦
√

�i, i ∈ I. (17.26)

Similar expressions can be derived with for service level measures where the
threshold for waiting time is set above 0.

As noted earlier, incidence of long waits can be controlled through service level
constraints and/or explicit waiting cost terms in the objective function. While, in
principle, both can be used in the same SLCIS model, it is far more common
to use one or the other. In models where only service level constraints are used,
these constraints will be tight in an optimal solution (since capacity is costly). If,
in addition, the demand is assumed to be inelastic, �i is a linear function of the
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decision variables xij . In this case a significant simplification is achieved by using
the previous expression: setting the SC as an equality, we can eliminate decision
variables μi from the model, replacing them with the right-hand side of (17.26).

17.2.3.3 Facility Costs

We assume that the decision to open a facility at i ∈ I incurs two types of costs:
the fixed cost FCi , which depends on the characteristics of the location i, and the
variable cost V C(μi), which depends on the amount of capacity μi allocated to
the facility. The function V C(μ) is assumed to be non-decreasing and non-negative
with V C(0) = 0; concavity of V C(μ) is a frequently made assumption, reflecting
economies of scale. With these definitions, the System Facility Cost is defined as
follows:

SFC =
∑

i∈I

FCiyi +
∑

i∈I

V C(μi) (17.27)

17.2.3.4 Revenues and Overall Objectives

We assume that each customer that is served brings in a revenue r to the system (for
public service applications, we can treat r as a “system benefit” parameter). The
total expected revenue can now be expressed as

SR = r
∑

i∈I

�i = r
∑

j∈J

λj

∑

i∈I

xij . (17.28)

In principle, parameter r can be treated as a decision variable—the price charged
by the decision-maker for service. However, in the majority of SLCIS literature this
term is treated as an exogenous parameter (Tong 2011 and Berman et al. 2014 being
the exceptions). Since treating prices as decision variables introduces significant
new complications, we will generally treat r as constant in the model.

We also observe that when demand is inelastic (i.e., λj = λmax
j for all j ∈ J )

and when the constraints require that all customers must be served (i.e.,
∑

i∈I xij =
1, j ∈ J ), it is easy to see that SR = r

∑
j∈J λmax

j , which is a constant. In this case,
the revenue term in the objective can be dropped, leading to a pure cost minimization
case. Even in models where some customers may not be served, but the demand is
inelastic, it is common to use cost minimization with a penalty term, which can be
interpreted as opportunity cost for unserved customers.

To summarize, the overall objective for a general SLCIC model is given by

maximize [SR − ST C − SWC − SFC] ,
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where the respective components are defined by (17.28), (17.12), (17.19),
and (17.27). We note that in most specific models described in the literature,
only a subset of the terms above is present, the rest being implicitly controlled by
constraints (e.g., in the presence of service level constraints, the SWC term is often
dropped).

Most of the terms above depend on demand allocations xij and demand rates λj ,
which have not yet been described. This is the subject of the following section.

17.3 Customer Response: Demand Levels and Allocations

In this section we discuss the mechanism determining the allocation of customer
demand to facilities, represented by xij variables, and the amount of demand λj

generated by customers at j ∈ J .
In location modeling two approaches for allocating customer demand to facilities

are generally considered: directed choice, where the same decision-maker determin-
ing the number and locations of the facilities also has the power to assign customers
to the facilities in a way that will optimize the model objective, and user choice
where customers self-assign to facilities based on maximization of their own utility
functions which may not be aligned with the overall model objective. For example,
a common customer utility function is the travel distance. Thus, in a user choice
environment, each customer will select the closest facility, while in the directed
choice case a customer may be assigned to a further facility even when a closer one
is open (if such assignment reduces the overall facility cost).

The same framework can be applied to the SLCIS models. However it may be
more useful to also classify the models in terms of the assumed customer reaction
to the service offered by the facilities. We differentiate four classes of models:

Type NR: Models with no customer reaction: customers do not control the
demand allocations and the demand rates are fixed (directed choice with inelastic
demand)
Type AR: Models with allocation-only reaction: customers select utility-
maximizing facilities, but the demand rates are fixed (user choice with inelastic
demand)
Type DR: Models with demand rate-only reaction: customer do not control the
demand allocations but do determine the demand rates (directed choice with
elastic demand)
Type FR: Models with full customer reaction: customers control both, the
allocation of demand (by selecting the utility-maximizing facilities) and the
demand rates (user choice with elastic demand).

This classification is summarized on Table 17.1.
The NR models correspond to the standard directed choice assumptions in the

literature: the values of the assignment variables xij are entirely controlled by the
decision-maker and must only satisfy the basic constraints (17.5)–(17.7). One may
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Table 17.1 Model
classification by customer
response

Demand allocation

Decision-maker Customer

Inelastic demand NR AR

Elastic demand DR FR

also interpret such models as describing a “social optimum” (also known as “first
best solution” in economics)—the customers will accept whatever assignments are
needed to optimize the overall system objective, even if that means that some of
them may have to travel to more distant and more congested facilities than the ones
available in their immediate neighborhood. On the other hand, since the objective
function combines the costs borne by the decision-maker (facility costs SFC) with
those borne by the customers (travel cost ST C and waiting cost SWC), the interests
of both parties should be “balanced” in the solution. Customer demand is assumed
to be inelastic, with λj = λmax

j for all j ∈ J . Since customer utility has no effect
in this model, there is no need to define it. We note that xij are usually assumed
to be binary in NR models (though it is easy to construct examples showing that
higher objective values may be possible with fractional assignments). This is due
to the concern that enforcing fractional demand allocations is likely impractical in
most contexts. Thus, in NR models only the “minimal” constraints (17.5)–(17.7)
need to be imposed on demand allocations: the decision-maker is free to choose any
allocation that satisfies these constraints.

The other three model types assume some form of customer reaction in the form
of utility-maximizing behavior. The description of the utility mechanism is provided
next.

17.3.1 Customer Utility Functions

Recall that uj is the utility derived by customer j ∈ J from the service provided
by the facilities. Note that there are two costs borne by the customer: travel and
waiting. Suppose a customer experiences travel distance d (as before we assume
that distances have been redefined to represent travel costs) and expected system
waiting time. Let the utility U(d,w) be a non-increasing function of d and w. To
relate uj to U(d,w) we assume that the total utility derived by customer j is only
affected by the facility this customer actually visits. Since

∑
j xij ≤ 1, xij ∈ {0, 1},

this leads to

uj =
∑

i∈I

U(d(i, j),Wi)xij , (17.29)

Note that this definition remains valid even when the single-sourcing assumption is
relaxed. In this case, xij ∈ [0, 1] represents the proportion of time facility i is used
by customer j , and uj can be interpreted as the resulting expected utility. Observe
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also that if a customer does not receive service from any facility, xij = 0 for all
i ∈ I and uj = 0.

Perhaps the most natural specification for the utility function U(d,w) is the
linear form

UL(d,w) = −(τdd + τww), (17.30)

where τd, τw > 0 are the relative weights on travel distance and waiting time,
respectively. When τw = 1, the parameter τd can be interpreted as the average
travel speed, so that τdd is the average travel time, and the right-hand side of (17.30)
represents the negative of the total expected time spent by the customer in the system
(until the end of service).

There are two other common specifications of U(d,w). The simpler one is

UD(d,w) = −τdd, (17.31)

i.e., customer’s utility is simply proportional to the traveling distance (representing
the travel cost) and is independent of the waiting time. This is a very popular
specification form appearing (often implicitly) in numerous SLCIS models. While
the lack of dependence on w may seem counterintuitive, it is usually justified by
assuming that customers do not have advance knowledge of waiting times at the
facilities and thus must make their decisions based on travel times only (though in a
steady-state system some learning about expected waiting times should, presumably,
occur). Alternative justification is that the waiting costs are dominated by the travel
costs. Perhaps more importantly, as will be seen below, specification (17.31) avoids
many technical complications that occur when a more general utility structure is
used and can thus be treated as an approximation.

Another natural specification is the log-linear form

UE(d,w) = exp(−τdd − τww), (17.32)

which is quite similar to (17.30) with the advantage of the utility being non-negative,
convex and bounded by 1. Note that UE(d,w) = 1 when d = w = 0, i.e., when
the customer incurs neither travel nor waiting cost, and UE(d,w) → 0 as d,w →
∞. This makes it convenient to interpret UE(d,w) as the proportion of maximum
available demand realized from customer j if this customer is faced with travel
distance d and expected wait w. This interpretation will be useful when describing
elastic demand models below.

Finally, we note that a utility function can be defined in terms of service measures
other than the expected waiting time—one can use the probability of waiting
P(Wq > 0), or any other performance measure of the queuing system operated at
the facilities. The specifications of the utility can also be generalized to incorporate
other decision variables, such as the price charged by the facility operator for service
(see Berman et al. (2014) for an example).
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17.3.2 SLCIS Models with Customer Reaction

Once a utility function is specified, it should be possible to specify the customer
reaction as well. At a first glance, this seems fairly straightforward: a SLCIS model
with customer reaction can be viewed as a Stackelberg Game, where the decision-
maker first specifies the number, locations and capacities of the facilities (i.e., values
of m, yi and μi for i ∈ I ) and then each customer selects a utility-maximizing
strategy, i.e. allocates their demand to the utility-maximizing facility. Unfortunately,
as we will see shortly, this may lead to situations where no equilibrium solution (i.e.,
set of choices for all customers) exists.

One fundamental issue is the implicit assumption that faced with the same set of
alternatives (here, set of open facilities and processing capacities) customers always
make the same choice. There is a rich body of research in marketing and economics
that suggests that this may not be the case. A related question is how well can
the customers measure their own utility? After all, if the utility function includes
waiting times, a stochastic element is automatically present in measuring U(d,w).
Other stochastic elements, including uncertainties about travel times or even the
non-waiting time aspects of the quality of the service interaction at the facility may
also be present. Game Theory and Marketing literature have defined two notions
of utility: deterministic and stochastic, with the associated large bodies of research.
SLCIS literature have also adopted these two different notions of utility, leading to
distinct classes of models.

As discussed below, in order to ensure the existence of equilibrium in deter-
ministic utility models one has to allow for fractional choice, where the customers
allocate their purchases among many (possibly all) facilities. Thus, the random
choice element naturally enters in the deterministic utility setting, with the allocation
vector derived from the equilibrium conditions. This set of models is discussed next.

An alternative approach, discussed in Sect. 17.3.2.4 is to assume a Proportional
Allocation (PA) mechanism, where customers allocate their demand among the
available facilities proportionally to the utility derived from each facility. The main
advantage of this approach is that the allocation vector is specified from the start in
closed form, leading to a simpler structure. Moreover, if one assumes a stochastic
utility setting together with some additional assumptions, the (PA) mechanism
naturally arises, providing additional axiomatic justification to this model class.

17.3.2.1 Customer Reaction Models with Deterministic Utility 1: Models
with Allocation-Only Reaction (AR)

Here we assume that, once the facility locations and service capacities are deter-
mined by the decision-maker, the customer allocates their demand so as to maximize
their deterministic utility function U(d,w). Moreover, AR models assume that the
demand rate of each customer node is fixed a priori, with λj = λmax

j for all j ∈ J .
For concreteness, we will assume the linear specification of the utility function
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UL(d,w) given by (17.30), though much of the discussion extends to alternative
specifications as well.

Even in this relatively simple setting complications quickly arise. This has to do,
primarily, with the fact that customer utility is a function of the waiting time Wi ,
which is not directly controlled by the decision-maker, but rather arises as a result
of joint actions of the decision-maker and all customers: the former determines
facility locations and capacities μi , while the latter determine the demand rates �i .
This gives rise to traffic equilibrium conditions, where the actions of one customer
(adjusting their demand rate λj and/or demand allocation xij ) change the waiting
times at the facilities and thus affect the utilities of all other customers. Thus, not
only is there a bi-level game being played between the decision-maker and the
customers, but there is also a simultaneous non-cooperative game being played
between the customers themselves. Moreover, the response functions in the latter are
rather complicated, which may lead to lack of equilibria (if customers are restricted
to simple strategies), or to multiple equilibria, not to mention serious difficulties
in computing these equilibria. We discuss these issues briefly below, referring the
interested reader to more general references on spatial equilibria, e.g., Nagurney
(1999).

Consider first the original “single-sourcing” assumption, i.e. that a customer will
only patronize a single facility. Utility maximization implies that if xij = 1 for some
i ∈ I and j ∈ J , then

UL
(
d(i, j),Wi

) ≥ UL
(
d(k, j),Wk

)
for all k ∈ I with yk = 1,

which, assuming for simplicity that τw = τd = 1 in (17.30), is equivalent to

d(i, j) + Wi ≤ d(k, j) + Wk if yk = 1, k ∈ I.

Recalling that �i is given by (17.8) and Wi by (17.17), this leads to the following
equilibrium conditions that must be satisfied by allocations xij :

d(i, j) + Wi ≤ [d(k, j) + Wk]yk + M(1 − xij ), i, k ∈ I, j ∈ J (17.33)

Wi = (1 + γ 2)�i

2μi(μi − �i)
+ yi

μi + M(1 − yi)
, i ∈ I (17.34)

�i =
∑

j∈J

λmax
j xij , j ∈ J (17.35)

∑

i∈I

xij ≤ 1, j ∈ J (17.36)

xij ≤ yi, i ∈ I, j ∈ J (17.37)

xij ∈ {0, 1}, (17.38)
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where M is a suitably large constant. We assume that some finite limit can be
imposed on the expected waiting time Wi at any facility and that M ≥ d(i, j)+Wi

for all j and i.
Of course a trivial solution to this system is to have xij = 0 for j ∈ J, i ∈ I

(which also implies Wi = 0 for all i ∈ I ), i.e., to have complete loss of all customer
demand. Clearly, we are interested in non-trivial solutions where at least some
customers choose to obtain service. On the other hand, the system may not have
enough capacity to serve all customers. We therefore make the following definition.

Definition 17.1 A subset of customer nodes J ′ ⊂ J is serviceable if

∑

j∈J ′
λmax

j ≤
∑

i∈I

μi.

A subset J ′ is fully served if
∑

i∈I xij = 1 for all j ∈ J ′, i.e. if (17.36) holds as
equality for all j ∈ J ′.

This definition simply assures that there is sufficient capacity to serve any service-
able subset. We are interested solutions where at least some serviceable subsets of
J are fully served. Unfortunately, the system (17.33)–(17.38) may have no such
solutions.

Example 17.1 Consider a network with one customer node j and two facility nodes
0, 1 both of which contain facilities, i.e., y0 = y1 = 1. Assume further that
μ0 = μ1 > λmax

j , and thus J = {j} is serviceable. Assume d(j, 0) = d(j, 1).
Then, since Wi = 0 if xij = 0 and Wi > 0 when xij = 1 for i = 0, 1, there is
no feasible solution to the system (17.33)–(17.38). Indeed, if customers at j select
facility i, it creates non-zero waiting time at that facility, making the other facility
a utility-maximizing choice. Other similar examples of non-existence of equilibria
with binary allocation vectors are easy to construct. �

The underlying reason for the phenomena illustrated above is that single-sourcing
strategies create discontinuities (a facility receives either all of customer’s demand,
or none of it), while the existence of equilibria typically requires continuity of the
underlying functions. Indeed, intuitively it is clear that in the previous example
equilibrium allocations are achieved if the customers at j visit each facility with
equal frequency. This, of course, requires the relaxation of the single-sourcing
assumption, allowing xij to take on fractional values, which are interpreted as
visit frequencies. In addition to replacing (17.38) with its linear relaxation, the
equilibrium-defining inequality (17.33) has to be adjusted as follows.

Recall the definition of uj given by (17.29), which is now interpreted as the
expected utility for customers at j ∈ J given a fractional allocations vector xij , j ∈
J, i ∈ I (we emphasize that the waiting times are affected by the allocations of all
customers, not just the ones at j ). We seek allocations under which no customer can
improve their utility by making unilateral changes. It follows that the equilibrium
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utilities u∗
j , j ∈ J must satisfy

d(i, j) + Wi

{
= −u∗

j if xij > 0;
≥ −u∗

j if xij = 0
(17.39)

(recall that we are assuming linear utilities which are equal to the negative of total
travel and waiting times). These conditions can be represented by replacing (17.33)
with the following complementarity conditions:

d(i, j) + Wi ≥ vj , j ∈ J, i ∈ I (17.40)

(d(i, j) + Wi − vj )xij = 0, j ∈ J, i ∈ I (17.41)

vj ≥ 0. (17.42)

Note that for a feasible solution we must have vj = −u∗
j , indicating that the new

decision variable represents the equilibrium “disutility” for customers at j ∈ J . We
will refer to a solution of the system (17.34)–(17.42) as Customer Flow Equilibrium.

The following result follows directly from Theorem 5.4 of Ashtiani and Magnanti
(1981) by continuity of U

(
d(i, j),Wi(x)

)
for all j ∈ J, i ∈ I , where x is a

fractional allocation vector with components xij .

Theorem 17.1 For any values of yi ∈ {0, 1} and μi ≥ 0 such that μi ≤ Myi , if a
subset J ′ ⊂ J is serviceable, then there exists at least one customer flow equilibrium
xij , j ∈ J, i ∈ I under which J ′ is fully served.

In particular, if the system has the capacity to service all of customer demand,
i.e., J is serviceable, at least one customer flow equilibrium must exist under which
all customers are served.

The discussion and the result above is quite general: in particular, they extend
models with elastic demand (i.e., models of type FR discussed below). Additionally,
in place of the expected waiting time for an M/G/1 queue, a general measure of
“congestion” can be used with the only requirements that it is strictly increasing,
twice differentiable, non-negative and convex (recall that all capacity decisions are
considered to be fixed in this section). These requirements are clearly satisfied
by most performance measures for queueing systems, including multi-server and
limited-buffer queues. We refer the reader to Brandeau et al. (1995) for a discussion
of these more general settings.

It is important to realize that the customer flow equilibrium may not be unique.
In fact, as illustrated in the following example, there may be multiple allocation
vectors satisfying the equilibrium conditions for a particular fully served subset of
customer nodes.

Example 17.2 Consider adding a second identical customer node j ′ to the system in
Example 17.1. Now, if customers at both nodes are assigned to different facilities:
xij = 1, x(1−i)j = 0, xij ′ = 0, x(1−i)j ′ = 1 for j = 0, 1, we have two different
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equilibria. In fact, there may be infinitely many equilibria: any assignment satisfying

xij = α, x(1−i)j = 1 − α, xij ′ = 1 − α, xij ′ = α, α ∈ [0, 1]

is also an equilibrium. �
In principle, different equilibrium allocation vectors may lead to different values

of the objective function in the underlying SLCIS model, creating uncertainty as to
which solution will actually arise. However, all equilibria are “similar” in certain
key aspects, as shown in the following theorem based on the result in Brandeau and
Chiu (1994):

Theorem 17.2 For any two customer flow equilibria under which the same subset
J ′ ⊂ J is fully served, the values of Λi i ∈ I (total demand seen at each facility)
and uj , j ∈ J (equilibrium utility of each customer) are the same.

This theorem implies that, under a sensible specification of the objective function,
where the total travel and waiting cost for each customer node is a function of uj ,
all equilibria will give rise to the same values of the objective.

While the previous results show that AR models with multi-sourcing demand
allocations are well-posed, there is an important issue concerning computational
tractability of system (17.34)–(17.42). Even for fixed facility locations and capac-
ities, solving the customer flow equilibrium conditions is far from easy. While the
system is a linear complementarity problem with respect to variables vj ,Wi and xij ,
the waiting time is, in general, non-linear with respect to the capacity decision μi ,
resulting in a non-linear complementarity problem, which is often computationally
challenging.

While certain numerical approaches (described in Nagurney 1999) do exist, they
are computationally heavy even for moderate-size problems (see Tong 2011). Often,
to get reasonable algorithmic efficiency one has to make simplifying assumptions
about the system. For example, assuming M/M/1 allows for a variable substitution
μi = λi+1/Wi , where the waiting times, rather than capacities, are used as decision
variables. This turns the equilibrium conditions into a linear complementarity
problem, making the system much more solvable. Zhang et al. (2010) were able
to compute equilibria for such a system with |J | ≈ 500 and |I | ≈ 40 (note that their
model also had elastic demands, which likely increased computational complexity).
However, computing the equilibrium is only a subproblem of an SLCIS model. Thus
embedding even a simplified computation in an overall exact optimization procedure
is very computationally challenging. Hence both of the papers cited above resort to
search heuristics for the upper level (location and capacity allocation decisions).

An interesting recent development was presented in Aboolian et al. (2016) who
show that for the M/M/1 system traffic equilibrium constraints can be linearized
through the introduction of additional binary variables zij = 1 if xij > 0 (i.e.
customer j makes some use of facility i) and zij = 0 if xij = 0. It is not clear if this
approach can be extended to non-M/M/1 settings.
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In view of the difficulties involved in using the customer flow equilibrium
approach above, it is natural to think of model simplifications. We mention two
such approaches. One is to keep the single-sourcing assumption in spite of the
possible non-existence of equilibria (see Zhang et al. 2009). The reason this may be
reasonable is that, as mentioned earlier, non-existence is a result of discontinuity—
when re-assignment of a single customer alters the waiting times at the facility
for the remaining customers. It is reasonable to assume that for realistic problem
instances, this should not be an issue: as the number of customers and customer
nodes grows, no single assignment should exert a significant impact on waiting
times at the facilities. Thus, asymptotically, single-sourcing equilibria should
emerge. Indeed, Zhang et al. (2009) did not report issues with non-existence of
equilibria when solving realistic-size problem instances for mammography clinics
in Montreal, Canada. The obvious advantage of the single-sourcing approach is that
the system (17.33)–(17.38) is much easier to solve and can be embedded as part of
constraints in a larger SLCIS model.

The second approach is to use distance-only utilities UD(d) given by (17.31).
Since these are independent of waiting times, the existence of customer flow
equilibria is no longer an issue; utility-maximizing behavior by customers merely
implies that once facility locations are specified, each customer travels to the closest
facility, replacing (17.33) with

d(i, j) ≤ d(k, j)yk + M(1 − xij ), i, k ∈ I, j ∈ J, (17.43)

which leads to significant simplifications (obviously, single-sourcing assumption
can be retained here as well).

Another alternative, which bypasses some of the difficulties discussed above, is
to use stochastic utility model, which is discussed in Sect. 17.3.2.4.

17.3.2.2 Customer Reaction Models with Deterministic Utility 2: Models
with Demand-Only Reaction (DR)

In this model class, the decision-maker has the control of the demand allocation
vector x, however, the demand λj = λ(uj ) for customer node j ∈ J is assumed to
be a function of the utility uj realized by customers at j . Following Brandeau et al.
(1995) we assume that

λj = λmax
j h(uj ),

where, as defined earlier, λmax
j is the maximum possible demand rate at node j and

h(u) ∈ [0, 1] is a strictly decreasing, twice differentiable function with h(0) = 1 and
h(u) → 0 as u → umin

j , where umin
j is the lower bound on the utility for customers

at j (e.g., if utilities are scaled to be non-negative, then we can set umin
j = 0). Thus,
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h(uj ) can be interpreted as the percentage of the maximum available demand at j

that is “captured” by the system; it is often called the “participation rate”.
Recall that by (17.29), the utility uj is a function of the waiting time and

travel distance faced by customers at j . As in the case of NR models, we will
assume that xij is binary, motivated by the same considerations: when customer
demand allocations are dictated by the decision-maker, rather than by an equilibrium
condition of the previous section, enforcing fractional assignments is typically
unrealistic. Thus, assuming all customers at j will be served (as will be shown
below, this assumption holds automatically in DR models), xij = 1 for exactly one
i = i(j) ∈ I . Then, the demand from customer j that is captured in response
to the offered travel distance of d(i(j), j) and waiting time Wi(j) is given by the
composition of the decay function and the utility functions by:

λj (d(i(j), j),Wi(j)) = λmax
j h(U(d(i(j), j),Wi(j))), j ∈ J. (17.44)

One example of a functional forms that satisfy the required assumptions is the
identity function h(u) = u together with the exponential utility UE given
by (17.32), leading to the popular “exponential decay” demand specification:

λj (d(i(j), j),Wi(j)) = λmax
j exp(−τdd(i(j), j) − τwWi(j)), j ∈ J. (17.45)

While this expression is assumed in several published DR models, most of the
results below apply to more general functional forms as well. Observe that (17.44)
implicitly defines an equilibrium condition: the left-hand side depends on the
waiting time Wi(j) at facility i(j), which is a function of demand �i(j) =∑

j∈J λjxi(j),j seen by this facility. Thus, (17.44) should be seen as a system of |J |
equations that must be solved to yield the actual demand rates; this system decouples
into subsystems consisting of all customers j ∈ J assigned to facility i (i.e., with
i(j) = i) for each open facility (i.e., yi = 1). Thus, even though the allocation
variables xij are fixed (or, rather, set by the decision-maker) for DR models, the
issues related to existence and uniqueness of equilibria must be dealt with. The
following result is based on Berman et al. (2014), where it is established for the
case where price r is also a decision variable.

Theorem 17.3 For any given facility location, capacity, and demand allocations
yi, μi, xij for i ∈ I, j ∈ J , there exist a unique equilibrium arrival rates
λj (d(i(j), j),Wi(j)) and waiting times Wi .

Note that, unlike the case for AR models, this result holds with binary demand
allocations xij (it obviously extends to the fractional allocations as well). As
illustrated in Aboolian et al. (2012), as well as in Berman and Kaplan (1987),
computation of the equilibrium demand is relatively simple in this case, based on
the fixed-point iteration approach.

An interesting feature of the DR model is that it is self-regulating: as waiting
times become longer at the facilities, customer demand is automatically reduced.
Thus, the system stability is assured by (17.44) without the need for explicit
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constraints (17.9). Moreover, even though customer assignments are “dictated” by
the decision-maker through the specification of xij , assigning a customer to a more
distant or more congested facility leads to a lower demand λj , with the resulting
loss of revenue. Thus, the model assures that the objectives of the decision-maker
and customers are aligned, while avoiding the complexities of full traffic equilibrium
treatment (another way to interpret the DR model is that the hard constraint requiring
each customer to be assigned to their utility-maximizing facility is replaced with a
soft constraint, allowing violations of such assignments at a cost). In fact, Aboolian
et al. (2012) report (based on computational experiments) that at optimum all
customers are almost always assigned to their utility-maximizing facility, though
rare exceptions do occur.

The behavior of DR model involves an interesting feedback loop: as the service
offered by the facilities is improved (by locating the facilities closer to customer
nodes, or allocating more capacities to the facilities), the customers respond by
generating more demand (positive feedback), which leads to increased congestion
at the facilities, leading to reduced demand (negative feedback). Thus one could
legitimately ask whether models with elastic demand may lead to counter-intuitive
results where service improvements result in a net loss of demand. Fortunately, this
is not the case as shown in the following result from Berman et al. (2014):

Theorem 17.4 For j ∈ J , let λj (dj , wj ) be the equilibrium demand rate when the
travel time is dj and the expected waiting time is wj . Then λj is non-increasing in
dj and wj (strictly decreasing when the utility function is strictly decreasing in the
corresponding parameter).

Thus, with a reasonably behaved utility function, when the service offered to
customers at j ∈ J is improved in terms of either travel distance or waiting time,
or both, the demand rate increases, leading to higher revenue for the decision-
maker (for this customer node). Since nodes that are currently not served (i.e., with∑

i xij = 0) can be treated as having the travel distance that is so high that the
demand rate is negligibly close to 0, the decision to serve these nodes by assigning
them to any open facility can be treated as reducing the travel distance. This leads
to the following result:

Corollary 17.1 In the elastic demand case, there exists an optimal solution to
SLCIS where every demand node is served.

17.3.2.3 Customer Reaction Models with Deterministic Utility 3: Full
Response Models (FR)

In this model class, the customer response to facility location and capacity allocation
decisions includes both the level and the allocation of demand. Thus, the equilibrium
values of xij and λj are described by a system that includes flow equilibrium
conditions (17.40)–(17.42), as well as the elastic demand equilibrium (17.44). The
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existence and uniqueness of equilibria are assured by the following corollary:

Corollary 17.2 The equilibrium existence and uniqueness results of Theorems 17.1
and 17.2 extend to the FR model class.

The reader can refer to Brandeau et al. (1995) for further details; note that the
uniqueness result has the same limitations as for the AR models (i.e., uniqueness
can only be guaranteed with respect to the values of the objective, provided the
objective function is suitably defined). Also, just as in AR models, this corollary
requires fractional allocation vectors xij .

The computation of equilibrium solutions presents even more challenges than
for AR models. One approach to deal with this complexity is by using the DR
model as an approximation—as noted above, computational experiments suggest
that optimal solutions to DR and AR models often coincide. Another approach,
which is becoming more popular, is to use an alternative specification of demand
allocation vectors described in the following section.

17.3.2.4 Proportional Allocation (PA) Models

As discussed above, the PA modelling framework is based on the assumption that
customers allocate their demand among many (possibly all) facilities in proportion
to the utility derived from these facilities. Essentially, each customer node j ∈ J is
viewed as a “market” with facilities competing for shares of this market.

The simplified structure, where customer demand allocations appear in closed
form and can be analyzed for additional insights, together with several attractive
mathematical properties have attracted significant recent interest to this model class,
with several new approaches appearing since the first edition of this book.

These models have their theoretical origins in the MCI model of Cooper and
Nakanishi (1988). As discussed below, they are also closely linked to stochastic
utility theory. In the competitive location literature these models have appeared
under many names, including “competitive interaction models”, “Huff-type mod-
els”, “gravity models”, “multinomial logit models”, “market-share models”. While
there are minor specification differences between these, the basic structure remains
the same; we refer the reader to Chap. 14, as well as the review by Berman et al.
(2009a).

Since SLCIS models of AR and FR type can be regarded as bi-level games played
between the decision-maker and the customers, proportional allocation mechanism
can be applied to the SLCIS context as well. This mechanism specifies the solution
to the non-cooperative game played between customers once the decision-maker’s
strategy is specified as follows: for customers at j ∈ J and (open) facility at i ∈ I ,
the demand allocations are given by

xij = U(d(i, j),Wi)yi∑
k∈I U(d(k, j),Wk)yk

, (17.46)
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where the numerator represents the utility derived from facility i by customers at
j , and the denominator is the total utility derived by customers at j from all open
facilities. Note that if there are any pre-existing competitive facilities that may attract
customer demand, they should be included as additional term

∑
k∈C U(d(k, j),Wk)

in the denominator, where C is the set of competitive facilities. To simplify the
exposition, we will assume no competitive facilities in the remainder of the current
section.

Note that with the specification (17.46), it is easy to see that
∑

k∈I xkj = 1 for
all customers j , implying that all of customer’s visits will be captured by the open
facilities. In case where none of the open facilities provide adequate service (e.g., all
are too far away to be considered), this may be unrealistic. A common modification
is the inclusion of “outside option”, i.e., the option for the consumer not to use the
service offered by the facilities at all. Suppose the utility of this option for customers
at j is given by U0j . Then by adding this term to the denominator of the expression
above we obtain

xij = U(d(i, j),Wi)yi

U0j + ∑
k∈I U(d(k, j),Wk)yk

, (17.47)

where the outside option is modeled as a pre-existing competitive facility providing
utility constant U0j . Observe that in this case

∑
k∈I xij < 1.

In both cases, the demand allocations are fractional, and the demand rate from j

attracted by facility i is given by λjxij . For deterministic utility models we drew a
distinction between FR and AR models depending on whether λj is elastic or not.
A similar distinction can, in principle, be drawn for PA models, with λj = λmax

j

for AR models and λj being elastic with respect total utility derived by customer j

from all facilities: Uj = ∑
i U(d(i, j),Wi)xij . While PA-FR models of this type

have been considered in deterministic location literature (see, e.g., Aboolian et al.
2007, 2012), we are not aware of any SLCIS models of this type. Thus, all current
PA models follow the AR assumption that available customer demand at each node
is equal to λmax

j .
Note, however, that when specification (17.47) is used, the resulting model

automatically retains some aspects of elastic demand. This because the total
captured demand from customers j is given by λmax

j (1 − 1
U0j +Uj (I)

), where

Uj (I) = ∑
k∈I U(d(k, j),Wk)yk is the total utility derived by customers at j

from the service offered by all open facilities. Thus, as the value of offered service
declines, the amount of captured demand declines as well—exhibiting similar
behavior as when the demand is specified explicitly. The fact that this elasticity
of demand is represented by a single model parameter U0j makes the model
(as well as the parameter estimation) simpler, accounting for the popularity of
this representation. On the other hand, it should be obvious that explicit demand
specification via (17.45) provides much more modeling flexibility.

To complete the specification of the proportional allocation model one needs
to select a particular utility function. The popular Multinomial Logit (MNL)
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specification (McFadden 1974) employs exponential utilities, leading to

xij = exp(−τdd(i, j) − τwWi)yi

U0j + ∑
k∈I exp(−τdd(k, j) − τwWk)yk

, (17.48)

where weights τd, τw, as well as the outside option parameter U0j can be estimated
from the available consumer demand allocation data using the MNL methodology.

Two interesting observations can be made with respect to the MNL model. First,
it can be derived axiomatically from the stochastic utility theory. The following
discussion is based on McFadden (2005)—please refer there for further details. If
one assumes that customer utility is given by

Us
ij = UL(d(i, j),Wi) + εij ,

where UL(d,w) is the linear utility function given by (17.30) and εij is a Gumbel
random variable, then under further assumption that Independence of Irrelevant
Alternatives holds, Eq. (17.48) can be shown to be a unique equilibrium demand
allocation vector. This important result, due to McFadden (1974), provides a link
between stochastic utility and proportional allocation models. Indeed, the (MNL)
model is extremely popular in econometrics and marketing literature, being the
dominant model in brand choice and related fields. On the other hand, Independence
of Irrelevant Alternatives assumption is routinely observed to be broken, leading to
many generalizations of stochastic utility models; see McFadden (2005) for further
discussion.

The second observation for the (MNL) model is that, under very mild conditions,
the user equilibrium conditions (17.33) can be regarded as the limiting case of the
(MNL) model above. Assume that the weights τd, τw are scaled by same parameter
θ . It is shown in Fisk (1980) that the (MNL) allocation (17.48) approaches the user
equilibrium solution (17.39) as θ → ∞. This result holds as long as the waiting
times at the facility are continuous and non-decreasing in the total demand seen by
the facility. Thus, the (MNL) model can be viewed as a proper generalization of the
user equilibrium model with exponential utilities. This, together with its attractive
analytical properties described below, accounts for the popularity of this model in
some of the recent SLCIS papers.

The key advantage of the proportional allocation approach is that the values of
xij are directly computable from (17.46) or (17.48) without having to solve the
cumbersome flow equilibrium equations. Nevertheless, it is important to recognize
that an equilibrium condition is implicit in the definition above, even in the case of
models with inelastic demand: the expressions for xij above are functions of waiting
times Wi , which, in turn, are functions of xij . Thus, (17.46) together with waiting
time specification (17.17) and facility-level demand specification (17.8) form a
system of non-linear equations. A solution to this system represents the equilibrium
demand allocations and waiting times. The issues of existence and uniqueness of the
equilibrium were examined in some detail by Lee and Cohen (1985). The existence
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follows directly from standard fixed-point results and the continuity of xij in (17.46)
and is based on Theorem 1 in Lee and Cohen (1985):

Theorem 17.5 There exists an equilibrium solution (xij ,W i, λj ), i ∈ I, j ∈ J to
the proportional allocation model.

Lee and Cohen (1985) also examine uniqueness and stability of equilibria, where
stability refers to whether a system where customers start with some arbitrary
demand allocations, evaluate their utilities and then re-allocate according to (17.46)
will naturally reach an equilibrium. They derive sufficient conditions for both
uniqueness and stability.

Theorem 17.6 For proportional allocation models the equilibrium is unique and
stable

Some of the key results stated above also extend to PA models of FR type
(i.e., elastic demand), though sometimes certain additional conditions are required.
However, as noted earlier, no SLCIS models of this type have been described in the
literature (though AR models with outside option partially fill this gap).

17.4 General SLCIS Model Specification

In this section we summarize the discussion in the preceding sections. Putting all
the modeling components together allows us to provide the following formulation
for the General SLCIS with M/G/1 queues at facilities:

maximize Z =
r
∑

j∈J

λj

∑

i∈I

xij (17.49)

−
∑

j∈J

∑

i∈I

βd(i, j)λjxij (17.50)

−
∑

j∈J

∑

i∈I

WC(Wi)xij (17.51)

−
∑

i∈I

FCiyi −
∑

i∈I

V C(μi) (17.52)

Wi = (1 + γ 2)�i

2μi(μi − �i)
+ yi

μi + M(1 − yi)
, i ∈ I

(17.53)

[ λj specification for DR and FR models ] (17.54)

[ xij specification for AR, FR, and PA models ] (17.55)
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[ Coverage Constraints ] (17.56)

[ SC Constraints ] (17.57)
∑

i∈I

yi ≤ m (17.58)

�i =
∑

j∈J

λjxij , i ∈ I

(17.59)
∑

i∈I

xij ≤ 1, j ∈ J

(17.60)

xij ≤ yi, i ∈ I, j ∈ J

(17.61)

μi ≥ �i i ∈ I, j ∈ J

(17.62)

xij ≥ 0; μi ≥ 0; yi ∈ {0, 1}. (17.63)

The objective function (17.49)–(17.52) represents the total profit which includes
the revenue, travel, congestion, and facility fixed and capacity costs, respectively.
Constraints (17.53) define the expected waiting time for M/G/1 queues. These
can be substituted with constraints defining other relevant congestion measures,
different queueing mechanisms or both. Specifications (17.54) are only relevant
for elastic demand models of type DR and FR type; when the demand rate is
assumed to be inelastic, one should omit these and set λj = λmax

j . Similarly,
specifications (17.55) are only relevant for user-choice models of AR and FR
type. Constraints (17.58)–(17.62) enforce the basic interconnections between the
decisions variables and are typically present in some form in all models.

To the best of our knowledge, no published work contains all components listed
in the general formulation above. The specific SLCIS models considered in the
literature typically include only some of the terms in the objective function, differ in
terms of the queueing assumptions and performance measures, as well as in which
(if any) of the specifications (17.54)–(17.57) to include. The models also differ in
terms of the decision variables. While variables yi and xij are present in all models
we are familiar with (though xij may be restricted to binary values only), most
models will assume that the number of facilities is m and not a decision variable.
Many models also assume that all facilities have identical capacity μ, thus dropping
the decision variables μi as well.

It is clear that the variety of SLCIS models one can define by mixing and
matching different parts of the general formulation above is almost unlimited. In the
next section we try to bring some structure to the models considered in the literature
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by grouping them around some common themes and describing the key challenges
and solution techniques that have been developed for them.

17.5 SLCIS Models in the Literature: Overview and
Classification

Our primary focus (with a few exceptions) is on relatively recent SLCIS models that
have appeared since the survey of Boffey et al. (2006).

As noted earlier, the published SLCIS models constitute a rather bewildering
pattern of different assumptions, constraints and response mechanisms. However,
several common themes do emerge, allowing us to identify five common types of
models: Coverage-Type (CT), Service-Objective (SO), Balanced-objective (BO),
Explicit Customer Response (ECR), and Proportional Allocation (PA) models.
These are described in more detail in the following sections. The relevant references
are summarized on Tables 17.2–17.6. These tables have the following format: the
first column identifies the reference by the list of authors/year of publication; the
next two columns identify the Model Class by customer response type, as well as
by the utility function used, if applicable. The following three columns indicate
the main underlying system assumptions: the nature of the queuing system, and
whether the number of facilities and the number of servers are flexible or not. The
next two columns identify the presence of coverage and service level constrains.
The following five columns indicate the presence of the corresponding terms in the
objective function. The last two columns briefly describe the solution approach and
any additional comments.

17.5.1 Coverage-Type (CT) Models

These models, listed on Table 17.2, aim to design the system that provides adequate
service to customers, where adequacy is usually defined through travel distance
and congestion delays, which are controlled through coverage and service level
constraints, respectively. The defining feature of this model class is the presence
of general coverage constraints (17.56), for instance constraints (17.13). The CT
models include Baron et al. (2008), Berman et al. (2006), Kakhki and Moghadas
(2010), Marianov and Serra (1998). These models were among the very first SLCIS
models to be considered, dating back to Marianov and Serra (1998), and stem
directly from similar models for systems with mobile servers (see Berman and Krass
(2002) for an extensive discussion).

CT models usually assume that it may not be possible to provide adequate
service to all customers and thus demand losses may occur. The objective is
typically to maximize the “captured” demand, i.e., the total demand of customers
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who get adequate service. The travel and congestion costs are not included in
the objective as these are controlled through the corresponding constraints. Earlier
models were of type NR (directed choice); later models tended to be of type AR,
but customer allocations were assumed to be only a function of travel distance,
i.e., the underlying utility is given by (17.31), avoiding all complications related to
equilibrium behaviors. It is interesting to note that even though demand is assumed
to be inelastic, the assumption of demand losses can be viewed as (a rather crude)
form of demand elasticity—corresponding to an implicit stepwise utility function,
with customers using service only if coverage and service level constraints are met.

The typical formulation maximizes the objective consisting of (17.49) with
revenue r = 1, reflecting the maximization of captured demand, subject to
constraints (17.56)–(17.61). For models of type AR, one also adds constraints
specifying the allocations. These enforce each customer to travel to the closest
available facility. These constraints can be specified in various forms; see Berman
et al. (2006) for a discussion.

It can be seen that this leads to a formulation which is a linear mixed-integer
program (MIP), except for the service level constraints. However, as discussed in
Sect. 17.2.3.2, under some conditions, the latter can be linearized. Recall that a
general service level constraint can be recast as either (17.23), requiring adequate
service capacity at each facility, or (17.24), placing an upper limit on the allowed
arrival rate at each facility. When the capacities μi are decision variables, these
reformulations remain non-linear. However, if one makes a simplifying assumption
that all facilities have identical service rate μ (for multi-server facilities, this implies
assuming identical number of servers at all facilities), non-linearities disappear. This
is a common assumption in CT (and some other SLCIS) models: Berman et al.
(2006), Kakhki and Moghadas (2010), Marianov and Serra (1998) assume identical
and pre-specified service rates at the facilities. Under this assumption, (17.24) takes
the form

�i ≤ �̄,

where the right-hand side is a constant which depends on the desired service level
and is computable in advance. This shows the equivalence of a CT model with fixed
service rates to the capacitated location problems. Such connection is discussed at
length in Boffey et al. (2006).

The resulting linear MIP may, in principle, be solved exactly using off-the-shelf
software, such as CPLEX. However, as pointed out in Berman et al. (2006), the
formulation resulting from the addition of linearized service level constraints and
the “closest assignment” constraints tends to be large and not very tight, causing
computational difficulties for even moderately-sized instances. This has led Berman
et al. (2006) and other authors to develop heuristic approaches.

We note an important result from Baron et al. (2008), who studied a very general
version of the CT model, where both the number and the capacities of facilities are
decision variables and the facility-related costs are quite general (in their version,
all customer demand must be served and the objective is to minimize fixed and
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variable location costs). They show that, under quite general conditions, the optimal
facility configuration is one that ensures that each facility sees (approximately) the
same demand, i.e., ideally, �i = �k should hold for all open facilities i, k ∈ I

(identical demand may not be possible to achieve when customer demand originates
from discrete nodes and single-sourcing assumption is made). Once the facility
locations are decided, the optimal capacities μi can be computed through a separate
optimization model.

This result provides an important insight for CT models: when the goal is to
ensure “satisfactory” service experience, the optimal design should equalize loads
on the facilities. This leads to an “Equitable Location Problem”—a deterministic
problem where one seeks to locate a set of facilities so that the attracted demand
is distributed as evenly as possible. Such problem was addressed in Baron et al.
(2007), Berman et al. (2009b), and Suzuki and Drezner (2009).

While traditional applications of CT models (with or without congestion) is in
emergency services, an interesting new theme is the location of recharging stations
for electrical vehicles. Due to limited battery range, coverage constraints are crucial.
On the other hand, user choice behavior must be taken into account as well. An AR-
type SLCIS model with these features is developed in Yang (2018), where each
station is modeled as an M/M/K queue, with the number of stations and the number
of servers at each station being decision variables. A service constraint limiting the
probability of long waits is assumed. Users select facilities based on travel distance
and capacities, not waits, which eschews the issues related to traffic equilibria (but
the assumption does seem questionable). Due to non-equal capacities at the facilities
and non-linearities inherent in the M/M/K system, a heuristic approximation is
developed to linearize the SC constraints.

17.5.2 Service-Objective (SO) Models

These models, listed on Table 17.3, seek to design a system that optimizes “customer
service” using limited resources. Here “limited resources” means that the number of
facilities to be located and the total available service capacity are specified through
constraints, rather than through the objective function term (17.52). “Customer
service” is typically defined as the combination of travel and congestion costs;
thus the objective function typically includes terms (17.50) and (17.51). Since the
congestion cost term (17.51) only measures the aggregate congestion, some authors
(e.g., Boffey et al. 2010; Marianov et al. 2009; Marianov and Serra 2011; Wang
et al. 2002) impose service level constraints to ensure that congestion is controlled
at each facility. SO models assume inelastic demand, so the revenue term is missing
in the objective as all available customer demand is assumed to be “covered” (even
though some models do allow for demand losses due to congestion, these losses are
controlled through service level constraints). Thus, all customers must be assigned
to facilities and constraint (17.60) is specified as equality.
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The models of this class are either of NR or AR type with distance-based utility
function (customers travel to the closest open facility). An interesting exception is
the use of AR model with proportional allocation and exponential utility (17.32)
by Drezner and Drezner (2011) (though they do not comment on the existence
and uniqueness of the equilibrium solution, it is in fact assured by the results cited
earlier).

While the constraint set for SO models is quite similar to that of CT models
(in fact, it is somewhat simpler since the coverage constraints and, in some
cases, service level constraints are missing), inclusion of the congestion term in
the objective leads to a non-linear model for which finding exact solutions is
problematic. This difficulty is further compounded when the queues at the facilities
are of multi-server type and/or have non-Markovian service times: in these cases
exact closed-form expressions for the congestion-related performance measures are
either not available, or are quite complex, requiring a separate procedure to evaluate
the congestion levels for a each set of values of the facility location and customer
allocation decision variables. For this reason, the proposed solution methods are all
heuristic-based, typically employing meta-heuristic approaches such as tabu search,
simulated annealing, and genetic algorithms.

SO models become significantly more complicated when capacities of facilities
are allowed to be flexible (i.e., when μi are not assumed to be identical at all
facilities). Most of the published models assume identical capacities, with Aboolian
et al. (2009) and Berman and Drezner (2007) being notable exceptions.

17.5.3 Balanced-Objective (BO) Models

These models seek to design a system that “balances” the costs incurred by the
two main “players” in the system: customers, who bear the travel and congestion
costs, and the decision-maker who bears facility-related costs. They are listed on
Table 17.4.

One may view BO models as seeking to achieve a “social optimum”; the
objective functions in these models are similar to social welfare functions in
economics, with the resulting models being similar to the “first best” models. Since
the objective incorporates customer concerns, the models are typically of NR type:
customers accept the directed assignments to optimize “social welfare”, even if this
leads to assignments that are suboptimal from individual customers’ point of view
(two references that incorporate customer response are Aboolian et al. 2008 and
Abouee-Mehrizi et al. 2011). The demand is assumed to be inelastic. The coverage
and service level constraints are typically absent, as service adequacy is addressed
by the objective; the one exception appears to be Aboolian et al. (2018) where
service constraint is present in one of the three proposed models.

The objective function typically includes the “customer-borne” cost terms
(17.50)–(17.51) representing travel and congestion costs, as well as the “operator-
borne” facility costs (17.52). Since most models do not assume any demand losses,
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the revenue term (17.49) is not included; the exception being Abouee-Mehrizi et al.
(2011), who model revenue losses due to balking and thus optimize the net profit.
Two of the models in Aboolian et al. (2018) include penalty terms for late deliveries
(i.e., delayed service), where the penalty is charged per instance or per amount of
delay.

Most models in this class assume relatively simple queuing systems at the
facilities with the two recent exceptions being Hoisenpour and Ahmadi-Javid
(2016) who study a system with random service interruptions, and Azizi et al.
(2017) who assume M/G/1-based hub-and-spoke system.

Other distinguishing features of most BO models are typically simple constraint
sets and the inclusion of flexible capacity at the facilities as the decision variables.
The main solution difficulty stems from the non-linearities inherent in the conges-
tion (third) term of the objective function (17.51). There are several approaches for
either making these terms less complex or linearizing them, leading to interesting
exact algorithms. We describe two such approaches below.

The first is based on Castillo et al. (2009). They assume an M/M/1 queuing
system at the facilities and use the average number of customers in the system
Li(�i, μi) as the performance measure at facility i. For M/M/1 queue, this can
be written as

Li(�i, μi) = �i

μi − �i

. (17.64)

All costs are assumed to be linear and uniform (i.e., identical for all facilities),
leading to the following objective function:

minimize Z = β
∑

j∈J

∑

i∈I

d(i, j)λj xij + WC
∑

i∈I

Li(�i, μi) + FC
∑

i∈I

yi + V C
∑

i∈I

μi,

(17.65)

where WC,FC, V C are the waiting cost, fixed cost and variable cost parameters
respectively. This function is minimized subject to constraints (17.58), (17.60)
specified as equality, as well as (17.59), (17.61) and (17.62).

Note that for any specified values of xij and yi , the optimal capacity μ∗
i can be

determined separately for each facility. Indeed, it is not difficult to show that

μ∗
i = �i +

√
WC

V C
�i.

Observe the similarity of this expression to (17.25) discussed earlier. It also has
the same interpretation: the optimal capacity at facility i consists of the minimal
level �i , necessary to ensure system stability, and “capacity cushion” which grows
with the square root of �i and whose size depends on the ratio of waiting and
capacity costs. Substituting the last expression into (17.65) and performing some
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algebraic manipulations and noting that for NR models the total customer demand
is an exogenous parameter, allows us to re-state the objective function as

mininize Z = β
∑

j∈J

∑

i∈I

d(i, j)λjxij + 2
√

WC · V C
∑

i∈I

√∑

j∈J

λjxij + FC
∑

i∈I

yi,

subject to constraints (17.58), (17.61), and (17.60) specified as equality; the
variables �i and μi are no longer required.

This is a MIP with a single concave term in the objective. Several methods
are available to obtain exact solutions for models of this type, which also arise
in location-inventory models, competitive location models and other contexts. One
approach, based on Lagrangian Relaxation, is described in Shen (2005); a variant
of this is used in Castillo et al. (2009). Another approach, based on tangent-
line approximation (TLA) of the concave term, is presented in Aboolian et al.
(2007). The TLA leads to an ε−optimal solution, where the maximum relative
error from the exact solution is bounded by ε, with the value of this parameter
set by the user (the smaller the ε, the higher the computational effort required;
ε = 10%, 5%, 1% are typical choices). Recently, Hoisenpour and Ahmadi-Javid
(2016) apply Lagrangian Relaxation to a model with random service interruptions
at the facilities.

It should be noted that in view of the discussion preceding (17.25), a similar
“trick” for replacing the congestion cost term with a concave form should work for
more general queueing systems as well, at least as an approximation.

The second approach for obtaining exact solutions to BO models is based on
capacity discretization ideas described earlier. The following discussion follows
Elhedhli (2006). Once again we start with the model whose objective function
is given by (17.65) and assume an M/M/1 queue at each facility. Assume the
processing capacity must be equal to one of H + 1 discrete values, i.e., that
μi ∈ {0, μ1, μ2, . . . , μH } for all i ∈ I , where μ1 < μ2 < . . . < μH .

Treating the expected queue length Li as a decision variable, we rewrite (17.64)
as

�i = Li

1 + Li

H∑

h=1

μhzih, i ∈ I, (17.66)

where zih, as defined in (17.3 and 17.4) is a binary decision variable taking the
value of 1 if μi = μh and 0 otherwise. Now consider the function f (L) = L

1+L
. It

is concave, and can thus be represented as the minimum of tangent lines, yielding
a linear form. This can be used to represent the expression (17.66) as an infinite
set of linear constraints (note that the objective is already linear, in terms of the
new variable Li). The resulting MIP can be solved through a column generation
approach. The reader should refer to Elhedhli (2006) for details. A similar approach
is applied to hub-and-spoke SLCIS system in Azizi et al. (2017).
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The capacity discretization approach with the resulting MIP with concave
objective naturally lands itself to the TLA methodology mentioned above. This
approach is applied, with promising computational results, to a set of balanced
objective models with explicit (per occurrence or per delay length) penalties on
service delays in Aboolian et al. (2018).

An interesting recent development in MIP literature is the efficient treatment
of conic functions (particularly conic constraints)—see Atamtürk and Vishnu
Narayanan (2011) for a general treatment and Atamtürk et al. (2012) for an
application to a location-inventory problem. Some standard solvers, e.g., CPLEX,
now provide automatic treatment of conic inequalities. The resulting methodology
has seen recent applications in the SLCIS literature as well. Ahmadi-Javid and
Hoisenpour (2018) consider a BO model with M/G/1 queues at the facilities,
where capacity is discretized and each choice leads to a certain μi, γi pair. The
initial MIP with non-linear objective is re-formulated as a conic program with a
linear objective and conic constraint to which CPLEX solver can be directly applied.
A further development along this lines is presented in Ahmadi-Javid et al. (2018)
where instead of using discretization, an affine relationship is assumed between the
coefficient of variation γi and facility capacity μi . Once again an original non-
linear MIP is recast as a conic program, but in addition to now-standard CPLEX
treatment, a number of additional valid cuts are developed. The latter lead to a strong
improvement in computational efficiency.

In summary, the simpler structure of BO SLCIS models allows for effective exact
approaches to be developed. Another interesting observation is that the “location-
allocation” and “capacity determination” sub-problems often separate. As noted
earlier, these models, being of type NR, may assign individual customers to rather
distant facilities. However, since the travel cost is in the objective function, these
“undesirable” assignments can be controlled by increasing the corresponding cost
coefficients. The computational results in Castillo et al. (2009) suggest that when
travel costs are “reasonably” high, the overwhelming majority of customers (over
99% in the instances solved) are assigned to the closest open facility in the optimal
solution.

17.5.4 Explicit Customer Response (ECR) Models

ECR models specify an “explicit” customer response mechanism, i.e., they are of
types AR, DR, or FR. These models are listed on Table 17.5. The demand in these
models is generally elastic, though in a few cases elasticity is specified implicitly
through demand losses due to blockages. The objective always includes the revenue
term (17.49), and may also include the facility cost terms (17.52), unless the number
of facilities and servers is given.

While this class of models has received much recent attention, the earliest
publications date back to the very beginning of the SLCIS modeling: see Berman
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and Kaplan (1987). Some of the seminal early work is described in Brandeau et al.
(1995).

Many of the technical issues related to ECR models have been covered in
Sect. 17.3.2. The problem of determining the optimal location for a single facility
(Berman and Drezner 2006; Berman and Kaplan 1987; Tong 2011; Berman et al.
2014) can be solved exactly. However, the treatment of the multi-facility case
is generally quite difficult since, as noted earlier, in addition to the non-linear
objective function the underlying models include the feedback loop between the
customer demand and congestion and/or the equilibrium conditions for facility-
client allocations, or both. Thus, heuristic approaches are almost always employed
for multi-facility models. These heuristics are usually two-level: at the lower level
they incorporate subroutines for computing the equilibrium solutions (using non-
linear optimization techniques) for a given location set. At the upper level they try
improvement strategies to determine a good set of open facilities, often using meta-
heuristics. As in the case of BO models, the determination of the optimal capacity
at a facility can often be done through a separate exact optimization procedure, for
a given location and customer-allocation scheme.

We illustrate the foregoing discussion with the approach loosely based on
Aboolian et al. (2012), who proposed one of the few exact approaches available for
ECR models (in fact, the approach outlined below is an improvement on the original
methodology). The model is of DR type, i.e., customers accept directed assignments
to facilities, responding by reducing their demand when travel and congestion costs
increase. Both M/M/K and M/M/1 queueing systems can be considered; we will
focus on the latter for simplicity. The primary queuing performance measure is the
expected waiting time Wi at each facility i. While a general concave utility function
may be used, we employ the exponential utility (17.32) for transparency, with the
elastic demand given by (17.45). The fixed and variable costs are assumed to be
uniform, i.e., identical for all locations.

We start by observing that if customers at node j ∈ J are assigned to facility i,
the maximum demand is given by

λmax
ij = λmax

j exp(−τdd(i, j)),

quantities that can be pre-computed. The resulting model can be formulated as
follows:

maximize Z =r
∑

i∈I

�i − FC
∑

i∈I

yi − V C
∑

i∈I

μi (17.67)

s.t. W i = yi

μi − �i

i ∈ I (17.68)

�i =
∑

j∈J

λmax
ij exp(−τwWi)xij i ∈ I (17.69)

(17.60), (17.61).
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This reflects the typical structure of DR models: explicit specification of the waiting
time and demand, in addition to regular constraints for location models. Note that
system stability constraints (17.62) are omitted, since the demand automatically
adjusts to the offered capacities.

The next observation is that once customer allocation variables xij are specified,
both the optimal capacities at the facilities and the actual realized customer demands
are easy to determine. In fact, the latter only depend on xij through the total maximal
demand allocated to each facility:

�max
i =

∑

j∈J

λmax
ij xij . (17.70)

For each facility i we now solve the following univariate “capacity optimization”
model:

maximize r�i − V Cμi

s.t. �i = �max
i exp(−τw

�i

μi − �i

)

μi ≥ 0.

Aboolian et al. (2012) show that the solution to this model is unique and can
be found through a simple univariate search. Note that the solution yields both,
the optimal capacity μi and the corresponding demand level �i . It is convenient
to represent these quantities as functions of the allocated maximum demand:
μ(�max

i ),�(�max
i ). Substituting these quantities into the original model (17.67)–

(17.69) we obtain

maximize Z =r
∑

i∈I

�(�max
i ) − FC

∑

i∈I

yi − V C
∑

i∈I

μ(�max
i )

(17.60), (17.61), (17.70),

where the only non-linearities occur in the objective function. By solving the
capacity optimization model repeatedly over a range of possible values of �max

i ,
we can construct a piecewise linear approximation of the functions �(�max

i ) and
μ(�max

i ) to any desired level of tolerance. Using these approximations in the model
above yields a linear MIP which can be solved using standard off-the-shelf software.

As noted earlier, the separation of capacity optimization and customer allocation
problems is a common feature of ECR models and has been used by a number of
authors. However, an important driver of the exact approach outlined above is that
the model in Aboolian et al. (2012) is of DR type, i.e., directed assignment and
single-sourcing are both assumed. The computational results presented in Aboolian
et al. (2012) suggest that neither of these assumptions is very restrictive (echoing
the results in Castillo et al. (2009) discussed earlier). It was observed that in the



17 Stochastic Location Models with Congestion 529

vast majority of instances solved, customers were, in fact, assigned to facilities that
minimize their sum of waiting and travel times, i.e., the facilities they would have
selected under an FR model. Also, by splitting the original customer nodes into
k copies each containing 1/k of the original demand, and allowing each of these
new nodes to be assigned to a different facility, the impact of the single-sourcing
assumption was examined. Again, it turned out that for the instances solved, the
violation of this assumption was rare (all copies of the original node were assigned
to the same facility in the vast majority of the cases) and when split assignments
occurred, they did not have a large impact on the objective function. Intuitively, both
effects can be explained by the fact that in DR models the incentives of customers
and the decision-maker, while not identical, are well-aligned: by forcing customers
to use a less convenient facility, the realized demand (and the revenue) are reduced.
Thus, when designing the system, a design that maximizes customer utilities is often
optimal, even though such maximization is not explicitly enforced in the model.

A notable recent advance for ECR models was made in Aboolian et al. (2016).
They assumed M/M/1 system with the fixed costs and budget constraint replaced
by the requirement that any open facility must have the capacity of at least μmin

and at most μmax (a reasonable assumption in case of public service facilities).
As described earlier, using waiting times Wj in place of capacities μj as decision
variables and adding additional binary variables zij to represent whether customer i

makes any use of facility j , they derive an MIP with the only non-linearity limited to
1/Wj terms. Since this is convex in Wj , the TLA methodology can be used to obtain
a linear MIP which is ε-optimal for the original problem. They were able to solve
fairly large problem instances (up to 900 customer nodes and up to 40 potential
locations) to within (at most) 0.1% of optimality. However, as noted earlier, the
approach may be quite fragile with respect to the M/M/1 assumption.

17.5.5 Proportional Allocation (PA) Models

As discussed earlier, these models incorporate explicit customer response to the
service offered by the decision-maker; however the form of this response (allocation
of customer’s demand amongst the facilities) is pre-specified via Eq. (17.47). In
the first edition of this volume these models were classified under the ECR type.
However, with several interesting recent developments, these models now merit a
separate category; they are listed on Table 17.6.

There are well-established methods for linearizing the fractional market share
equation (17.47) when customer decisions are decoupled. However, as observed in
Sect. 17.3.2.4, when customer’s utility includes waiting time (or another measure
of congestion at the facilities), the decisions become coupled and (17.47) defines a
system of non-linear equations that make the resulting SLCIS computationally very
challenging.

The M/M/1 system offers significant simplifications since it is possible to treat
the waiting time, rather than capacity, as the decision variable. Zhang et al. (2012)
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uses this approach to linearize the customer-level problem in their Model 1, while
optimizing the decision-maker’s level via heuristics.

A more general approach (at the cost of discretizing some key decisions) is
developed in Schön and Saini (2018). For an M/G/1 system they use capacity
discretization (which also allows them to model coefficients of variation as part
of decision variables). In addition, they discretize offered service levels, i.e., wait
times, at the facilities. All non-linearities in the model, such as both the numerator
and denominator in (17.47), can now be discretized, and thus linearized through the
introduction of additional integer variables. The resulting model is quite general—it
can incorporate a variety of utility functions, as well as revenue and cost terms in
the objective—is formulated as a linear MIP. However, the formulation is very large,
and thus even relatively small instances cannot be solved to optimality by CPLEX.
This leads to the development of several heuristic approaches.

A different approach, heavily rooted in economics literature, is taken by Dan
and Marcotte (2017). Their starting point is the model of Marianov et al. (2008),
the first published SLCIS model with PA mechanism. The facilities are modeled as
limited buffer M/M/1/b queues where b is the buffer size; customers are blocked
from entering the facility when the queue size reaches b. The objective is to locate
m facilities to maximize total captured demand, where customers have an option to
choose either new or pre-existing “competitive” facilities. The model employs linear
utilities (17.30) and MNL structure (17.48). A metaheuristic procedure, combining
GRASP and Tabu Search, is proposed.

Dan and Marcotte (2017) point out and correct several deficiencies in this model:
(1) the “captured demand” does not account for demand lost to blockages, (2)
customer’s utility function does not account for dis-utility due to blockages, leading
to a perverse situation where a customer who obtains service after experiencing
some waiting time has a lower utility than a customer who traveled the same distance
but was then blocked from joining the queue, (3) the capacity μj was assumed to be
identical at all facilities and was treated as an exogenous parameter. In addition, the
new model of Dan and Marcotte (2017) introduces a budget constraint:

∑

i

(FCyi + V Cμi) ≤ B,

where B is the available budget, and other notation is consistent with the general
model in Sect. 17.4. Note that the capacity decision is treated as a continuous
variable (though the buffer size b is treated as an exogenous parameter with an
identical value for all facilities).

The problem is first formulated as a bilevel model, with the upper level (leader)
specifying the facility locations and capacities, with the objective of maximizing
captured demand (both the objective and the constraints are linear), while the lower
level (follower) allocating customer demand according to MNL mechanism and
constraints relating wait times and blockage probabilities. In this initial form, the
lower level is a fixed point equation, rather than an optimization problem. However,
using the standard results from Fisk (1980), the lower level is converted to an
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non-linear optimization problem, whose objective is shown to be convex. Next,
a “semi-exact” solution procedure is developed, based on a similar procedure in
Gilbert et al. (2015), using the following steps: (1) the lower-level objective is
approximated with piecewise linear function and re-cast as an LP, (2) the optimality
(i.e. duality) conditions for the LP are added as complementarity constraints to
the upper level, resulting in a single-level integer program with complementarity
constraints, (3) finally, similarly to Aboolian et al. (2016), the complementarity
conditions are linearized through the addition of binary decision variables, resulting
in a linear MIP. The resulting model yields an approximate solution to the
original model due to the piece-wise linear approximation in step (1), however
this approximation can be made arbitrarily precise by increasing the number of
segments, hence the “semi-exact” nature of the algorithm. It should be noted that
the resulting model tends to be quite large even when the original instance is of
relatively small size, leading to computational difficulties. Thus a heuristic approach
is proposed as well.

While these results may be quite fragile with respect to the M/M/1 assumption,
they do indicate that capacity discretization is not the only way to approach PA-
type models. They also point out that many methods developed in the transportation
economics literature may be applicable to SLCIS models as well.

We finish the previous two sections with an important message from Zhang
et al. (2012). In much of the literature, the difference between deterministic utility
optimization of Sect. 17.3.2 and the proportional allocation is considered mainly
on theoretical grounds, focusing on the difference between utility specifications,
choice axioms, etc. Theoretical arguments can be made in favor of either approach.
However, as shown in Zhang et al. (2012), these different mechanisms for modeling
customer response may lead to very different optimal facility network designs,
with wide-ranging implications: for example, it is shown that if PA choice model
is assumed, while customers are actually following the utility optimization model
(or vice-versa), many of the facilities will be over/ under-used, resulting in very
different congestion patterns and network performance than what is predicted by
the model. Thus, the choice of customer reaction model must be made based on
empirical evidence of customer behavior in a given setting, rather than theoretical
arguments for one or the other model.

17.6 Conclusions

In this chapter we have focused on a rather specialized sub-field of stochastic loca-
tion models: problems with congestion and static customer assignments. However,
as discussed above, this is a very active and growing field of research. We believe
that the key drivers of this growth are that, on the one hand, SLCIS models do
capture very important trade-offs and stochastic effects that must be taken into
account when designing many real-life systems. On the other hand, these models
retain enough structure to enable exact algorithmic approaches and managerial
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insights that may not be available when more complex models (e.g., models with
mobile servers or dynamic customer assignments) are considered.

The variety of SLCIS models considered in the literature is quite bewildering.
We have systematized the models along two dimensions: by customer response and
demand elasticity (leading to our NR/AR/DR/FR types), and by the key structural
elements of the models (leading to our CT/SO/BO/ECR/PA model classes), as
described in Sect. 17.5. We believe that this classification should be useful to future
researchers in this field, both with respect to the importance of clearly spelling out
the assumptions with respect to customer behavior and key model objectives, and
with regards to realizing what key difficulties may arise for a given model type. We
are pleased to note that several papers that were published after the first edition of
this volume have adopted this classification.

We also hope that the proposed systematization will motivate the authors to
ensure internal consistency of implicit assumptions in their models. This should help
to avoid models where customer utilities are affected by travel times, but not waiting
times, or by waiting times but not by blockages, etc. Of course, such simplifications
may be necessary to make the model computationally tractable, but they should be
explicitly spelled out and discussed.

Many open questions remain, as should be clear from the preceding sections.
The assumptions made with respect to queueing behavior in many models are
quite restrictive and could likely be generalized using the approximation approaches
described in Sect. 17.2.3.2. The assumptions underlying NR models or AR models
with distance-only utility are questionable and could lead to under-performance of
the resulting system (especially with respect to the realized demand). The reliance of
many authors on heuristic approaches without the ability to benchmark the resulting
solutions versus the optimal ones is not comforting given the strategic nature of
decisions underlying SLCIS models.

Some important strides towards deriving exact or semi-exact solution algorithms
for models with realistic customer response mechanisms have been made since
the first edition and are described above. These include (1) leveraging capacity
discretization to incorporate variability of service times as endogenous parameter of
the model, and also to develop clever linearization schemes; (2) adapting advances
in conic programming to SLCIS models, and (3) pushing the boundary on the PA-
type models. However, many ways to improve on the existing models remain to
be explored. We hope that some of these improvements will be investigated in the
next generation of SLCIS models. The importance of basing modeling choices on
empirical evidence of customer behavior must also be emphasized.

Finally we would like to mention that many of the issues that have been
explored in the SLCIS context (customer response, elastics demand) are still
waiting to be addressed in the models with mobile servers/dynamic customer
assignments. As noted earlier, these models involve a different level of complexity,
with the underlying queueing systems being much less tractable. Nevertheless,
the assumptions regarding customer behavior and response are very important and
deserve further study.
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