
Chapter 15
Location-Routing and Location-Arc
Routing

Maria Albareda-Sambola and Jessica Rodríguez-Pereira

Abstract This chapter overviews the most relevant contributions on location-
routing problems. Although there exist several models where location and routing
decisions must be made in an integrated way, the chapter focuses on the so-called
classical location-routing problems without entering into the details of other related
problems that might be included in the location-routing area from a more general
point of view. Reflecting the imbalance in the existing literature and available
approaches, the case of problems with node routing is treated in detail throughout
the chapter, while results concerning arc routing problems are concentrated in a
single section.

15.1 Introduction

Combined location-routing problems (LRPs) are location problems in which the
service to customers is provided by a fleet of vehicles in less-than-truckload routes.
That is, more than one customer can be served in one vehicle route from a facility.
Therefore, the cost of servicing a customer in a solution of a location-routing
problem does not only depend on the facility it is assigned to, but also on the
route followed by the vehicle that services it. As happens with pure vehicle routing
problems, a basic distinction needs to be made when referring to LRPs, depending
on whether the customers are associated with nodes or links of the underlying
network. In the first case, in order to provide service to a customer, a vehicle has to
visit the corresponding node, whereas in the second case, the vehicle has to traverse
the corresponding link. Most of the literature on LRPs is in fact devoted to node
routing LRPs and only a few references are concerned with solving some variant
with arc routing. For this reason, the name location-routing problem is commonly
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used to refer to problems where customers are located at the nodes, whereas the
term location-arc routing problem (LARP) is used when customers are located on
the links of the network. In both cases, the need to design vehicle routes to evaluate
the cost of a set of facilities adds an extra level of difficulty to these problems which
are, in general, N P-hard.

The first works addressing LRPs date back to the 1960s (e.g. Von Boventer 1961
and Maranzana 1964). However, it was not until the end of the 1980s, when a solid
knowledge on both pure location and routing problems was achieved, that location-
routing became a really active field of research. The most common approach in the
first references addressing this type of problems was to make locational and routing
decisions in two separate steps, although it is well known that this is most likely
to yield suboptimal solutions, as shown in Salhi and Rand (1989). For this reason,
more recent references address both decisions simultaneously.

LRPs arise as a natural extension of both, location and vehicle routing problems.
Moreover, there are several settings where LRPs appear naturally. For example,
Schittekat and Sörensen (2009) study the optimization problem arising in some
automotive companies that use third-party logistics partners for the distribution of
spare parts and model it as a large scale LRP. Other examples of real applications
where extensions of the LRP need to be solved are given in Ahn et al. (2012), where
the authors present a LRP with profits faced by NASA while planning planetary
surface exploration, or in Samanlioglu (2013) where hazardous waste management
of a Turkish region is dealt with by solving a multiobjective LRP.

Although there exist papers dealing with planar LRPs (see, for instance, al Ajdad
et al. 2012 or Salhi and Nagy 2009), most of the studies concerning LRPs deal with
discrete location problems. As a consequence, this chapter will only consider this
type of LRPs. Moreover, it does not pretend to be a complete survey of all available
works addressing discrete LRPs, and only presents the state of the art methods and
the tools that have proven to be the most suitable ones to tackle LRPs. For a complete
recent survey on works concerned with LRPs the reader is referred to Prodhon and
Prins (2014). The reader can also find a taxonomy of location-routing models and
the related literature in Borges Lopes et al. (2013). Earlier works are surveyed in
Nagy and Salhi (2007).

In the last years, several LRP extensions and variants have been considered. To
mention just a few some, authors have considered problems with time windows
(Farham et al 2018), heterogeneous fleets (Koç et al 2016), uncertain data (Caunhye
et al 2016) or environmental effects (Koç et al 2016b). Other works concerning LRP
extensions are surveyed in Drexl and Schneider (2015).

Given the little attention that LARPs have received, this chapter focuses on
LRPs with node routing, and the most relevant issues concerning LARPs are
gathered in a single section. The remainder of this chapter is organized as follows.
Section 15.2 provides a formal definition of the considered problems, together with
the notation that will be used throughout the chapter. The next two sections describe
the main scientific contributions on LRPs; Sect. 15.3 explores the different types
of LRP formulations, together with the most relevant valid inequalities used in
exact methods, whereas Sect. 15.4 is concerned with heuristic algorithms. The main
findings regarding LARPs are outlined in Sects. 15.5 and 15.6 concludes the chapter.
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15.2 Problem Definition and Notation

Let J be a set of customers and I a set of locations where facilities can be placed.
For each candidate location i ∈ I , let fi be the cost of setting up a facility at i, and
for each arc (i, j) with i, j ∈ I ∪ J , let �ij be its length or cost. The basic variant
of the LRP consists of choosing a set of locations from I and defining closed routes
starting and ending at one of these facilities such that each customer is visited by
exactly one of the routes, subject to side constraints. The goal is to minimize the total
cost, which typically includes the sum of facility set-up costs plus a traveling cost.
We also denote by G the underlying graph of an LRP instance formed by the set of
vertices V = I ∪J and the set of links E = EIJ ∪EI , where EIJ contains all links
connecting one facility with one customer, and EJ contains all links connecting two
different customers. In what follows, both, directed and undirected formulations will
be presented. For ease of notation, E will be used indistinctly to denote the set of
(directed) arcs (i, j) or the set of (undirected) edges {i, j}. For any set of nodes
S ⊆ V , ES will denote the set of links with both endpoints in S.

If a weight wj is associated with each customer j ∈ J , capacity constraints
can be considered by imposing a maximum weight Q delivered by a vehicle or a
maximum weight qi delivered from each facility i ∈ I . From now on, Q will be
referred to as the vehicle capacity, and qj as the facility capacity and, for each set
of customers S ⊆ J , w(S) will denote the total weight of customers in S: w(S) =∑

j∈S wj . LRPs considering either type of constraint, or both of them, are referred
to as Capacitated LRPs (CLRPs). Additionally, many papers consider fixed vehicle
utilization costs, g, and a limited size fleet indexed in set K . Figure 15.1 depicts an
LRP solution.
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Fig. 15.1 Example of an LRP solution
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Fig. 15.2 Influence of facility location on the routing costs

Further considerations and characteristics of the main elements of the problem
(number of facilities to locate, types of customers, size and characteristics of the
vehicle fleet, time horizon, etc.) give rise to a large variety of LRPs. A comprehen-
sive recent classification, following the ideas already presented in Laporte (1988)
can be found in Borges Lopes et al. (2013).

The main difficulty when modeling LRPs through mathematical programming
formulations is to ensure that each vehicle tour is connected to exactly one
facility; that is, there are no closed tours visiting only customers, and there are
no paths connecting two different facilities. Therefore, incorporating the design of
vehicle routes within facility location problems entails a relevant additional level
of difficulty. Furthermore, as some authors argue, facility location is most often a
strategic decision, while vehicle routing is operational. These facts have discouraged
many researchers from considering combined LRPs. However, although routing
decisions can be readjusted relatively often once the facilities are established, the
possible configurations of the routes are strongly conditioned by these locations.
Therefore, if locations are chosen without taking into account the routing component
of the final system, initial savings in the facilities set up costs may not compensate
for large losses in distribution in the long run. Consider, for instance, the extreme
situation depicted in Fig. 15.2. In this example, assume that the capacity of any
of the two candidate facilities (black squares) is sufficient to serve all customers
(white circles), and there is only one vehicle available at each location, also with
a large enough capacity. If one single location is to be chosen and routing costs
are ignored (i.e. if an uncapacitated facility location problem is considered in this
setting) obviously, the facility will be located at 2. However, if a tour needs to
be defined to serve all the customers once this facility is set, its cost will be
2M + (10πM)/6 � 7.24M . On the other hand, if the facility is set at node 1, a
better route, with cost 2πM � 6.28M can be defined. Since distribution is most
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often a repetitive activity, this extra routing cost for having chosen facility location
2 will be incurred regularly and, after some time, these accumulated extra costs can
be larger than the initial possible savings in set up costs.

15.3 Formulations and Exact Algorithms

The available exact algorithms for solving LRPs rely on mathematical programming
formulations of the problem. Most of these formulations have been developed
around the existing formulations for discrete facility location problems and multi-
depot vehicle routing problems. Since the early formulations of Golden et al. (1977)
and of Perl and Daskin (1985), several LRP formulations have been studied. CLRPs
have received particular attention, since they are amongst the most basic LRPs. This
section will concentrate on these problems.

As mentioned above, the main difficulty when developing a formulation for an
LRP model is to guarantee that each route will start and end at one facility and
neither closed loops visiting only customers, nor paths connecting two different
facilities will be formed. For this reason, to a large extent, the developments
concerning formulations for LRP models are strongly related with the literature
on capacitated vehicle routing problems, especially, on multi-depots problems. As
happens in these problems, one can assume, without loss of generality, that an
optimal solution exists in which no edge of EI is used more than twice and the
only edges used twice, if any, belong to EIJ . This is actually the case of problem
instances in which the edge lengths satisfy the triangle inequality. Any instance
can in fact be easily transformed into an equivalent one satisfying this property, by
replacing the actual length of each edge with the length of a shortest path connecting
its endpoints.

Broadly speaking, the existing formulations for the LRP can be classified
in either of two families. On the one hand, one can find the so-called flow
formulations, where different sets of variables are used to determine the set of
located facilities and to describe the vehicle routes. On the other hand, one can
find set covering formulations, where one single variable is defined associated with
each feasible vehicle route. To a large extent, the appropriate solution method
depends on the formulation employed; while branch-and-cut approaches are the
most suitable for flow formulations, set covering formulations are in general better
suited for algorithms based on column generation, especially if they are tightly
constrained. The most recently presented algorithms combine column generation
and cut generation methods.
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15.3.1 Flow Formulations

Within the flow formulations, different models can be distinguished according to
two criteria: the number of indices of the variables used to define the vehicle routes
(including or not a third index to identify which vehicle uses a given link), and the
nature of these variables, known as commodity flow variables when they consider
the quantity of goods traveling on every link and as vehicle flow variables when they
only indicate whether it is used or not.

An early example of a three-index vehicle flow formulation is that of Perl and
Daskin (1985). In fact, this reference defines a three-layer problem with suppliers,
distribution centers and customers where, in addition to the characteristics of the
basic LRP, the authors consider variable costs associated with the throughput at
each distribution center, and extra constraints limiting the length of the routes.
The proposed formulation, simplified by excluding these extra considerations, is
described next. To this end, the following binary variables will be used:

• For each i ∈ I , yi indicates whether a facility is established at i.
• For each i ∈ I, j ∈ J , xij indicates whether customer j is served from facility i.
• For each (i, j) ∈ E and k ∈ K , zijk indicates whether vehicle k uses arc (i, j).

Using the above variables, a three index vehicle flow formulation for the LRP is
detailed next:

(LRP1) minimize
∑

i∈I

fiyi +
∑

k∈K

∑

(i,j)∈E

�ij zijk (15.1)

subject to
∑

k∈K

∑

i∈V

zijk = 1 j ∈ J (15.2)

∑

j∈J

wj

∑

i∈V

zijk ≤ Q k ∈ K (15.3)

∑

j∈J

wjxij − qiyi ≤ 0 i ∈ I (15.4)

∑

k∈K

∑

i∈S

∑

j∈V \S
zijk ≥ 1 I ⊆ S ⊂ V (15.5)

∑

j∈V

zijk −
∑

j∈V

zjik = 0 k ∈ K, i ∈ V (15.6)

∑

i∈I

∑

j∈J

xijk ≤ 1 k ∈ K (15.7)

∑

t∈J

zitk +
∑

t∈V

zjtk − xij ≤ 1 i ∈ I, j ∈ J, k ∈ K (15.8)
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yi ∈ {0, 1} i ∈ I (15.9)

xij ∈ {0, 1} i ∈ I, j ∈ J (15.10)

zijk ∈ {0, 1} (i, j) ∈ E, k ∈ K. (15.11)

Constraints (15.2) mean that each customer is reached by one vehicle route, while
constraints (15.3) and (15.4) are vehicle and plant capacity constraints, respectively.
Additionally, constraints (15.4) guarantee that customers will be served from opened
facilities. Connectivity constraints (15.5) ensure that each vehicle route includes a
facility, while flow conservation constraints (15.6) ensure that z variables do indeed
define routes, and constraints (15.7) mean that these routes visit one single facility.
Finally, constraints (15.8) force the x and z variables to take consistent values.

Formulations of this type tend to be rather large because they have an exponential
number of connectivity constraints and because they contain O(|V |3) variables.
Connectivity constraints, as well as additional valid inequalities, have traditionally
been dealt with by using cutting plane procedures, such as branch-and-cut. However,
even after relaxing connectivity constraints, the size of the formulations remains too
large for solving realistic size instances.

As an alternative, several authors have worked on formulations where vehicle
flow variables z do not include the third index to identify which vehicle uses each
arc. In fact, early works addressing the particular cases of the LRP with one single
depot or one single route per depot, such as Laporte and Nobert (1981) or Laporte
et al. (1983) already used this type of approach.

A very successful example of this type of formulations is presented in Belenguer
et al. (2011). In this case, the authors propose an undirected formulation that uses
the following variables:

• For each i ∈ I , yi indicates whether a facility is established at i.
• For each edge {i, j} ∈ E, z1

ij indicates whether edge {i, j} is used exactly once
in the solution.

• For each edge {i, j} ∈ EIJ , z2
ij indicates whether edge {i, j} is used twice in the

solution.

Note that, as mentioned above, it can be assumed that the only edges that can be
traversed twice in an optimal solution belong to EIJ and, therefore, variables z2 are
only defined for those edges.

Additionally to the above variables, the following notation is used. For each set
of customers S ⊆ J , κ(S) is a lower bound on the minimum number of vehicles
needed to serve the aggregate demand of all customers in set S. The most commonly
used bound in this type of formulations is

κ1(S) =
⎡

⎢
⎢
⎢

1

Q

∑

j∈S

wj

⎤

⎥
⎥
⎥

.
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However, instead of κ1(S) some authors have used the optimal value of the bin
packing problem defined by the weights of the customers in S, and bin size equal
to the vehicle capacity, Q. In what follows, this second bound will be referred to as
κ2(S).

The formulation proposed in Belenguer et al. (2011) is

(LRP2) minimize
∑

i∈I

fiyi +
∑

{i,j}∈E

�ij z
1
ij +

∑

{i,j}∈EIJ

2�ij z
2
ij (15.12)

subject to
∑

i∈I

2z2
ij +

∑

i∈V \{j}
z1
ij = 2 j ∈ J (15.13)

z1
ij + z2

ij ≤ yi i ∈ I, j ∈ J (15.14)
∑

i,j∈S

z1
ij ≤ |S| − κ(S) S ⊆ J (15.15)

∑

s∈S

∑

j∈J\S
z1
sj +

∑

t∈I\{i}

∑

s∈S

(z1
ts + 2z2

ts ) ≥ 2 i ∈ I, S ⊂ J ;w(S) > qi

(15.16)

z1
j t +

∑

s∈S

(z1
sj + z1

st ) +
∑

s,u∈S

z1
su

+
∑

i∈I ′
z1
ij +

∑

i∈I\I ′
z1
it ≤ |S| + 2 S ⊂ J, I ′ ⊂ I ; j, t ∈ J \ S

(15.17)
∑

i∈I

(z1
ij + z2

ij ) ≤ 1 j ∈ J (15.18)

yi ∈ {0, 1} i ∈ I (15.19)

z1
ij ∈ {0, 1} {i, j} ∈ E (15.20)

z2
ij ∈ {0, 1} {i, j} ∈ EIJ . (15.21)

The original formulation includes an extra term in the objective function to
account for fixed costs for the use of vehicles. Although this term has not been
included here, these costs can be easily included in the above formulation by
suitably modifying the lengths �ij for each {i, j} ∈ EIJ .

In this formulation, constraints (15.13) are the degree constraints, which force
each customer to be visited by some route. Constraints (15.14) are imposed in order
to ensure that no route is rooted at a closed facility. Constraints (15.15) play two
major roles. On the one hand, they forbid solutions with subtours which are not
linked to any facility. On the other hand, they ensure that the vehicle capacities are
not exceeded. Note that only z1 variables are involved in these constraints since
each z2 variable is associated with one complete facility-customer-facility tour,
which will not violate the vehicle capacity constraints in any feasible LRP instance.
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Facility capacities are imposed through constraints (15.16): if a set of customers S

cannot be fully served from a given facility i because of its capacity, then at least
one customer in S must be visited by a vehicle route rooted at a different facility
and, therefore, at least two edges must be used that link set S with customers
outside it, or to some facility different from i. Additionally, since individual
routes are not identified using 2-index variables, it is necessary to explicitly forbid
tours connecting two different facilities. This is done by means of the so-called
path elimination constraints (15.17). Additionally, constraints (15.18) are needed
to forbid paths connecting two facilities through one single customer. The path
elimination constraints are similar to the chain-barring constraints introduced by
Laporte et al. (1988).

Using this formulation enriched with some families of valid inequalities,
Belenguer et al. (2011) were able to solve within less than 2 h instances of up
to 50 customers and five potential facilities.

15.3.2 Set-Partitioning Formulations

Set partitioning formulations for the LRP were introduced much later than flow
formulations. Indeed, papers addressing this type of formulations have appeared
relatively recently, in parallel with similar formulations for vehicle routing prob-
lems. The first such formulation was presented in Berger et al. (2007); the slightly
different formulation presented in Akca et al. (2009) was later used in Baldacci et al.
(2011) and further strengthened by Contardo et al. (2014a).

In order to present this type of formulations, some extra notation is required.
Variables now correspond to the possible vehicle routes that are feasible with respect
to the vehicle capacity and serve more than one customer. These routes will be
indexed in � = ∪i∈I�i , where �i gathers the routes starting from facility i. The
return trips from a facility to a single customer will be dealt with separately. For
each route r ∈ �, we will denote by �r the total length of the route, by wr its total
demand and, for each edge {i, j} ∈ E, the coefficient aijr will denote the number
of times edge {i, j} is used in route r . Note that coefficients aijr are binary if route
r is elementary, but can take larger values if non-elementary routes are allowed.

The formulation exploited by Contardo et al. (2014a) uses the following binary
variables:

• For each i ∈ I , yi indicates whether a facility is established at i.
• For each i ∈ I and j ∈ J , z2

ij indicates whether a return trip from facility i to
customer j is part of the solution.

• For each route r ∈ �, λr indicates whether route r is used.
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(LRP3) minimize
∑

i∈I

fiyi +
∑

r∈�

�rλr +
∑

{i,j}∈EIJ

2�ij z
2
ij (15.22)

subject to
∑

r∈�

∑

i∈V

aijrλr +
∑

i∈I

2z2
ij = 2 j ∈ J

(15.23)
∑

r∈�i

∑

{j,s}∈E

(wj + ws)ajsrλr +
∑

j∈J

2wjz
2
ij ≤ 2qiyi i ∈ I

(15.24)

yi ∈ {0, 1} i ∈ I

(15.25)

z2
ij ∈ {0, 1} {i, j} ∈ E

(15.26)

λr ∈ {0, 1} r ∈ �.

(15.27)

Here, constraints (15.23) ensure that each customer is either visited once by one
of the selected routes, or in a round trip from a facility. Facility capacities are stated
by constraints (15.24). For ease of notation, in these constraints, an artificial demand
wi = 0 is defined for each facility i.

Of course, in order to take advantage of this formulation it is essential to use a
method based on column generation since the number of λ variables is exponential.
Therefore, a crucial issue when developing exact solution methods based upon this
formulation is the pricing problem. Here, the pricing problem consists of finding
negative cost vehicle routes in �. It belongs to the family of resource constrained
shortest path problems, which have been the focus of an abundant literature, mostly
because they appear as pricing problems in many column generation algorithms
where vehicle routes are involved (see, for instance, Desrochers et al. 1992; Feillet
et al. 2007; Righini and Salani 2008).

In Contardo et al. (2014a), which has been the most successful work so far, the
authors allow for solutions that contain cycles, as long as they contain at least three
nodes. For this case, to guarantee that even if � contains non-elementary routes,
these routes will not be part of a solution of LRP3, the authors replace the degree
constraints (15.23) with their following stronger variant, the strengthened degree
constraints:

∑

r∈�

∑

k:{j,k}∈E

ajkrλr +
∑

i∈I

z2
ij ≥ 1 j ∈ J. (15.28)

On top of the efficiency of the algorithm used in the pricing problem, most
set partitioning based exact algorithms for the LRP also rely on the addition of
valid inequalities to tighten the bounds obtained during the branching process. In
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particular, Baldacci et al. (2011) proved that all valid inequalities developed for
flow formulations can be transformed into valid inequalities for the set partitioning
formulation presented above, since, thanks to the distinction between routes visiting
one or more customers made in the variables definition, the following equalities
hold:

z1
ij =

∑

r∈�

aijrλr ∀{i, j} ∈ E. (15.29)

Additionally to this equivalence, when adapting valid inequalities originally
stated for flow formulations to set-partitioning formulations, some authors have used
the following result, first established in Laporte et al. (1985) in the context of vehicle
routing problems. Many of the valid inequalities derived for two-index formulations
for vehicle routing problems are concerned with a combination of connectivity and
capacity issues. In these cases, arguments of the type “at least κ vehicles are needed
to satisfy the demand of all customers in S ⊂ J ” result in constraints of the form
“the border of S is crossed, at least, 2κ times”, that is, the sum of flows on edges
with a single endpoint in S must be at least 2κ . In these constraints, the number of
routes visiting S is overestimated using the flow in the cut-set of S, since there is
no way to compute the exact number of routes that visit S using the flow variables.
When equivalence (15.29) is used to derive valid inequalities for LRP3 from these
valid inequalities, the coefficient of each λr variable for a given set S is the number
of times route r traverses the border of S. Bearing in mind the rationale behind the
constraints, one can see that, actually, these coefficients can be changed to take value
2 if route r visits at least one customer in S, and 0 otherwise. In general, this results
in stronger valid inequalities.

15.3.3 Valid Inequalities

It is impractical to list all the valid inequalities that have been more or less
successfully used for LRPs. Actually, most of the valid inequalities that have been
developed for vehicle routing problems have been adapted later for the case of LRPs
and in many cases, families of inequalities have been gradually strengthened or
extended. In what follows, we present a selection of the most recent families. For
more detailed information on these cuts and their evolution, the reader is referred
to Belenguer et al. (2011) and Contardo et al. (2013) for flow formulations, and to
Baldacci et al. (2011) and Contardo et al. (2014a) for set partitioning formulations.

y-Strengthened Capacity Cuts (y-SCC)
For S ⊂ J , and r ∈ �, let the binary parameter ξrS take value 1 if route r visits at
least one customer in S, and 0 otherwise. Given S′ ⊂ S such that κ1(S

′) = κ1(S),
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the following inequalities are valid:

∑

r∈�

ξrSλr +
∑

i∈I

∑

j∈S\S′
z2
ij ≥ κ1(S).

This family of constraints is a strengthening proposed in Contardo et al. (2014a)
of the previous y-capacity cuts derived in Belenguer et al. (2011).

Set Partitioning Effective Strengthened Facility Capacity Inequalities (SP-
ESFCI)
As mentioned above, the main difficulty when modeling vehicle routes is to ensure
the connectivity of the solutions, especially in capacitated problems. When loca-
tional decisions must also be made, ensuring connectivity and capacity satisfaction
entails an extra degree of complexity. Most of the known valid inequalities focus on
vehicle capacities and rarely take facility capacities into account. SP-ESFCI aim at
putting facility capacity constraints in relation with the locational variables.

To this end, we need to extend the definition of κ1 to take into account a set of
facilities. Given a set of customers S ⊂ J and a set of facilities H ⊂ I , we define
κ1(S,H) = max

{
0,

⌈
w(S)−∑

i∈H qi

Q

⌉}
as a lower bound on the number of vehicle

routes rooted at facilities outside H , needed to serve all customers in S, even if all
facilities in H provided their service to customers in S. Then, for S′ ⊂ S ⊂ J , and
i ∈ H ⊂ I with κ1(S \ S′,H) = κ1(S,H), the following inequality is valid:

∑

i∈I\H

∑

r∈�i

ξrSλr +
∑

i∈I\H

∑

j∈S\S′
z2
ij ≥ κ1(S,H \{i}) + yi

(
κ1(S,H) − κ1(S,H \{i})

)
.

(15.30)

The main idea behind these constraints is similar to that of the y-SCC inequali-
ties, but now, the constraint takes two different shapes depending on whether facility
i is opened or not.

Strengthened Framed Capacity Inequalities (SFrCI)
Moving back to vehicle capacities, we find the following valid inequalities, which
have been successively improved since some early papers on vehicle routing.

Given a subset of customers S ⊂ J , partitioned into disjoint subsets S =
{S1, . . . , St } (S = ∪t

s=1Ss), we denote by κ3(S|S ) the optimal value of the bin
packing problem defined as follows. For each set Ss in S , we define κ1(Ss) items of
size Q, except for the last one, which will have a size equal to w(S)−(κ1(S)−1)Q,
and we define bin capacities equal to Q. Then, the SFrCI corresponding to frame
(S,S ) is

∑

r∈�

ξrSλr +
t∑

s=1

∑

r∈�

ξrSs λr ≥ κ3(S|S ) +
t∑

s=1

κ1(Ss). (15.31)
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These inequalities generalize and reinforce the capacity inequalities, which
force that the number of routes that visit a given set of customers S is at least
κ1(S). Note that when no location decisions have to be made, in the presence
of degree constraints, capacity constraints are equivalent to subtour elimination
constraints (15.15). Indeed, when for a given set S ⊂ J , S only contains one
set, the corresponding SFrCI constraint is indeed a capacity constraint (in this case,
κ3(S|S ) = κ1(S)). So, the two terms in the left-hand side of (15.31) are identical,
the two terms in the right-hand side are also equal, and the inequality becomes

∑

r∈�

ξrSλr ≥ κ1(S),

which is the basic expression of the capacity constraint.
As is the case for other sets of inequalities, the framed capacity inequalities

(FrCI) where originally developed for two-index flow formulations and later
adapted to the set-partitioning formulation by using Eq. (15.29), and reinforced by
modifying the coefficients of the λr variables as explained in the last section. The
FrCI for formulation LRP2 corresponding to (S,S ) is

∑

j∈S

∑

k∈V \S
z1
jk + 2

∑

i∈I

∑

j∈S

z2
ij +

t∑

s=1

∑

j∈Ss

⎛

⎝
∑

k∈V \Ss

z1
jk + 2

∑

i∈I

z2
ij

⎞

⎠ ≥ 2

(

κ3(S|S ) +
t∑

s=1

κ1(Ss)

)

.

(15.32)

To illustrate that FrCI (and, therefore, SFrCI) is a broader set of inequalities that
can be stronger than the combination of capacity constraints for the individual sets
Ss , Fig. 15.3 gives an example of a fractional solution with S = {S1, · · · , S4},
where the capacity constraints for each of the Ss sets are satisfied, but the overall
FrCI constraint is violated. In this figure, customers are numbered from 1 to 7 and
wi is given inside each customer. Note that, in this example, we have S = ∪4

s=1Ss ,

Fig. 15.3 Example of
unsatisfied FrCI

3 

Q=7

3 

1 

6 

1 

3 
3 

1 

0.5 

S2 

S3 
S1 

S4 



444 M. Albareda-Sambola and J. Rodríguez-Pereira

w(S) = 20 and Q = 7, so that κ1(S) = 3. Therefore, the capacity constraint for set
S is satisfied, since the total flow in edges with one endpoint in S equals its lower
bound, 2 · 3 = 6. Also, for each set in the partition, w(Ss) < Q, so that κ1(Ss) = 1
and the z−degree of Ss is 2 or larger in all cases. In contrast, the evaluation of
constraint (15.32) gives

6 + (2 + 2 + 3 + 2) ≥ 2(4 + 1 + 1 + 1 + 1),

which is clearly not satisfied. Here, note that in the computation of κ3(S|S ), four
items were defined, with sizes 6, 6, 2 and 6, respectively, and the bin capacity was
set to 7.

The example of Fig. 15.3 also provides some insight in the way how the variable
definition in set partitioning formulations such as LRP3 forbids some fractional
solutions that are sometimes encountered when using flow formulations. Indeed,
the solution of the figure can be obtained in a relaxation of formulation LRP2, but it
is impossible to obtain it from formulation LRP3, since it cannot be decomposed as
the (fractional) combination of vehicle routes which are feasible with respect to the
vehicle capacity constraint.

15.4 Heuristic Algorithms

Many heuristics have been devised for different variants of LRPs. It is not the
goal of this chapter to enumerate and explore all these contributions. Instead, we
concentrate on the tools that have been most useful in those heuristics.

In the design of heuristics for LRPs it is very difficult to ignore the fact that the
problem combines decisions of two completely different natures: the location of
the facilities and the design of vehicle routes. Indeed, even solution methods based
on the use of neighborhoods tend to distinguish between the neighborhoods that
affect the set of facilities (add, drop or swap) and those that are typically used in
vehicle routing problems. A clear example of this fact is the variable neighborhood
search (VNS) heuristic recently proposed in Jarboui et al. (2013) for an LRP with
capacitated facilities and uncapacitated vehicles or the granular tabu search heuristic
presented in Escobar et al (2014) for an LRP where both vehicles and depots are
capacitated. Possible exceptions are some algorithms based on the construction of
giant tours that encode both types of decisions, so that tour modifications can alter
both, facility locations and vehicle routes. Examples of this type of algorithm are
those of Yu et al. (2010) or Contardo et al. (2014b).

A commonly accepted classification for heuristic methods for LRPs, due to
Nagy and Salhi (2007), includes four categories, depending on how the interaction
between these decisions is taken into account in the design of heuristics.

• Sequential methods split the problem into its subproblems. First they solve the
location problem, using estimates of the routing costs that only take into account
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the distances between customers and facilities and, they then solve the routing
problems defined at each opened facility with its assigned customers. Although
Srivastava and Benton (1990) show that this type of methods, that are typically
quite fast, can produce pretty good solutions for some types of instances, in
general, they tend to have a rather poor behavior, and most authors moved fast to
other types of heuristics.

• Clustering-based methods partition the set of customers into clusters and then
they either locate a depot for each cluster and solve a vehicle routing problem
afterwards, or solve an auxiliary traveling salesman problem for each cluster
before locating the depots. Barreto et al. (2007) present a method of this type and
also analyze different clustering criteria in this context. A more recent example
of this type of method is the constructive procedure considered in the two-phase
method of Escobar et al. (2013) for the capacitated LRP. With their algorithm,
the authors have provided the currently best known solutions for many of the
existing benchmark instances (with up to 200 customers and 20 facilities) taking
an average CPU time of about 4 min, although this average is about 10 min for
the most demanding set of instances.

• Iterative methods can be seen as an evolution of sequential methods, where
several iterations of a sequential method are performed, and the information
obtained at each iteration is used to guide the methods used for choosing the
locations and designing the vehicle routes built at the next one. The algorithm
proposed in Prins et al. (2007) falls in this category. Using their algorithm, the
authors could find very good solutions (proven to be optimal in several cases) for
instances with up to 200 customers and 20 facilities, and the CPU time exceeded
1 min in only a reduced subset of the considered instances.

• In hierarchical methods the problem is considered in a more integrated way,
without splitting its components. However, the two decisions are not considered
to be equally important; facilities location is regarded as the main problem
decision and vehicle routes design as a secondary one. Many contributions fit
in this category (Albareda-Sambola et al. 2005; Ting and Chen 2013; Escobar
et al 2014; Ferreira and de Queiroz 2018). Actually, this is the usual category for
the most recent works, since they tend to yield better results. Indeed, the results
obtained in Ferreira and de Queiroz (2018) are superior to those of previous
heuristics in terms of solution quality, although at a high computational cost,
whereas Escobar et al (2014) provides an excellent tradeoff between solution
quality and computing time.

Finally, one can also find in the literature one approximation algorithm for the
LRP in Harks et al. (2013). The proposed algorithm builds a solution by combining
the solutions to two auxiliary problems: and uncapacitated facility location problem,
and a minimum spanning tree. For this algorithm, they prove an approximation
factor of 4.38.



446 M. Albareda-Sambola and J. Rodríguez-Pereira

15.5 Location-Arc Routing

LARPs are typically defined on graphs G = (V ,E) that can be either directed,
undirected or, in the most general case, mixed. In G, a set I ⊂ V of selected
nodes where facilities may be established is given, together with a selected subset
of links R ⊆ E, known as required arcs or edges, which must be traversed to
receive some service. Common applications of LARPs include garbage collection,
road maintenance and postal delivery. For details on these applications, the reader
is referred to Ghiani and Laporte (2001).

In contrast to the volume of the literature on LRPs with node routing, LARPs
have been addressed only in a few references. This is due in part, to the difficulty
of these problems, but also to the fact that several strategies have been devised to
transform arc routing problems into node routing problems by suitably modifying
the underlying graph (see, for instance Pearn et al. 1987; Baldacci and Maniezzo
2006; Longo et al. 2006). However, significant differences exist between the
structures of the routes depending on whether service is provided at the nodes or
on the links. These differences suggest that, as happens with pure routing problems,
specific approaches for either type of problem may yield more efficient algorithms.

The most relevant difference between routes in node and arc routing is that in
node routing problems one can assume, without loss of generality, that no node
will be visited more than once, and the only links that may be traversed twice are
those connecting one facility with one customer, allowing thus for routes visiting
one single customer. In contrast, in arc routing problems, even required links may
be traversed more than once in optimal solutions. Also, the set of required arcs
induces a family of connected components of G which, as happens in pure arc
routing problems, play an important role in determining which links are susceptible
of being used more than once.

The first paper addressing a LARP is probably that of Levy and Bodin (1989)
in which a problem with uncapacitated vehicles arising in the USA postal services
was solved. To this end, the authors split the problem into its components and solve
them sequentially, following the scheme (1) location of facilities, (2) allocation of
required edges to facilities, and (3) route design.

Uncapacitated LARPs were also studied in Ghiani and Laporte (1998). One of
the first consequences of having uncapacitated vehicles is that, when the triangle
inequality holds, only one route needs to be built for each open facility. Moreover,
the authors show that, in this case, optimal solutions exist where all the required
edges belonging to the same connected component are served in the same route,
which allows to transform this particular LARP into different arc routing problems,
depending on whether the number of depots to locate is bounded or not. Applying a
branch-and-cut algorithm to these problems, the authors solve uncapacitated LARP
instances on graphs with up to 200 nodes. Since then, no exact algorithm for any
LARP variant was proposed before the recent work Rodríguez-Pereira (2017), and
only heuristic algorithms for different variants could be found in the literature.
Actually, two mixed integer programming formulations for capacitated LARPs were
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proposed by Doulabi and Seifi (2013): one for the general case, and a second one for
the particular case where one single depot has to be located. Another formulation is
also presented in Borges Lopes et al. (2014). However, these papers do not explore
the possibility of solving these formulations exactly, possibly because they all use
flow variables, with up to four indices in some cases, and therefore, they are rather
large.

Rodríguez-Pereira (2017), after studying the multi-depot rural postman problem
as an intermediate step, propose two alternative formulations for different uncapac-
itated LARPs which are solved through branch-and-cut algorithms. The first one is
a natural formulation with flow variables with three-indices. These indices associate
each variable with an edge and the facility where the route traversing it starts. The
second one uses twice-indexed variables; now, indices are associated with edges but
not with facilities, which requires a new set of constraints to guarantee that the routes
are consistent and return to the original depot. The second formulation allowed to
solve instances with almost 200 nodes, over 300 edges and between 100 and about
200 required edges in small CPU times. These results can be found in Fernández
et al. (2019).

Bearing in mind the evolution of the formulations for the capacitated arc routing
problem (CARP), one might expect set partitioning formulations to yield more
efficient solution methods. Indeed, the most successful algorithms for the CARP
so far, proposed by Bode and Irnich (2012) and Bartolini et al. (2013), both rely
on set partitioning formulations for this problem. In any case, further research is
still needed on exact methods for solving general LARPs. Although it is true that
research on the CARP has been very fruitful in the past years, the subproblem
obtained from a LARP when the set of facilities to open is fixed is a CARP
with multiple depots, which has hardly been studied, and for which only heuristic
algorithms exist (see, for instance, Amberg et al. 2000).

In the case of heuristic methods, the original approaches relying on the sequential
solution of the different subproblems of a LARP have evolved with a recent
focus on the use of metaheuristics. Doulabi and Seifi (2013) propose a simulated
annealing heuristic which, at each iteration, proceeds following an allocation-
routing-location scheme: it first builds a routing solution then tries to improve the
depot locations. More recently, Borges Lopes et al. (2014) have developed and
compared several heuristics combining tabu search, variable neighborhood search,
and GRASP for which they also tested several constructive heuristics. According
to their computational experiments, the combination of tabu search and GRASP
provides the best results. With this combination, they find optimal or near optimal
solutions in less than 1 min, for instances with up to 140 nodes and 190 required
edges. They also propose a set of benchmark instances for future comparisons.

In contrast to the scarce literature available on the LARP, a relatively large
variety of related problems have been studied. This is the case, for instance, of
the capacitated arc routing problem with intermediate facilities presented in Ghiani
et al. (2001). In this case, no location decisions need to be made, and a single depot
is considered, like in the CARP, but several facilities are available in the network
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where a vehicle can unload the demand collected at the required edges before the
loaded demand exceeds the vehicle capacity.

Other examples are the capacitated arc routing problem with refill points or the
synchronized arc and node routing problem, presented in Amaya et al. (2007) and
Salazar-Aguilar et al. (2013), respectively. In these cases, an additional fleet of
vehicles is available to refill the main fleet, and the locations where these vehicles
meet each other need to be determined when designing their respective routes. These
problems differ in the types of routes performed by the vehicles used to replenish
the service vehicles.

A multiperiod LARP extension where inventories are considered is addressed
in Riquelme-Rodríguez et al (2016). The work is motivated by a road watering
application in open-pit mines and inventories are used to model road dust retention.
Depots are located to provide service for the whose time horizon, whereas different
routes must be designed for the different time periods.

A recent paper on the directed profitable location rural postman problem (Arbib
et al. 2014) also deserves a mention. This is an uncapacitated LARP where required
arcs have associated profits and the decision maker can choose whether or not to
serve any of them, taking into account the differences between the profit generated
and the cost of reaching the arcs. Using a branch-and-cut algorithm, the authors can
solve to optimality instances involving up to 140 nodes and 190 required arcs.

15.6 Conclusions

This chapter has summarised some the most relevant research contributions on LRPs
and LARPs. As it has been shown, the different research directions followed in the
study of formulations and exact algorithms for LRPs have finally converged to one
single proposal, which has been able to incorporate most of the relevant contribu-
tions in the field so far. In the case of heuristic algorithms, the research activity has
recently been reactivated, giving rise to several competitive algorithms in the last
years. The most successful approaches involve one or several metaheuristics, and the
current activity in this area gives the impression that relevant further improvements
can be expected in the near future.

In contrast, research on LARPs is still in its early stages. Exact algorithms have
only been proposed for very particular cases, and even in the case of heuristics the
literature is rather scarce. Keeping in mind the evolution followed by the research on
LRPs, especially in what concerns exact algorithms, further research is still required
on arc routing problems with multiple depots before it is possible to devise efficient
algorithms for solving LARPs.
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