
Chapter 10
Ordered Median Location Problems

Justo Puerto and Antonio M. Rodríguez-Chía

Abstract This chapter analyzes the ordered median location problem in three
different frameworks: continuous, discrete and networks; where some classical but
also new results have been collected. For each solution space we study general
properties that lead to solution algorithms. In the continuous case, we present two
solution approaches for the planar case with polyhedral norms (the most intuitive
case) and a novel approach applicable for the general case based on a hierarchy
of semidefinite programs that can approximate up to any degree of accuracy the
solution of any ordered median problem in finite dimension spaces with polyhedral
or �p-norms. We also cover the problem on networks deriving finite dominating
sets for some particular classes of λ parameters and showing the impossibility of
finding a FDS with polynomial cardinality for general lambdas in the multifacility
case. Finally, we present a covering based formulation for the capacitated discrete
ordered median problem with binary assignment which is rather promising in terms
of gap and CPU time for solving this family of problems.

10.1 Introduction

The Ordered Median location problem, see Nickel and Puerto (2005), has been
recognized as a powerful tool from a modeling point of view within the field of
Location Analysis. Actually, this problem provides a common framework for most
of the classical location problems (median, center, k-centrum, centdian, trimmed-
mean, among others) as well as for others which have not been studied before. As
an illustrative example, in the well-known case of logistics supply chain networks,
this modeling tool allows to distinguish the roles played by the different parties
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in the network inducing new type of distribution patterns, see Kalcsics et al.
(2010a,b). This type of formulation incorporates flexibility through rank dependent
compensation factors, and it allows one to model situations where the driving force
in a distribution problem can fall in any of its different parties.

The goal of the ordered median location problem is to minimize the
ordered weighted average of the distances or transportation costs, between the
clients/demand points and the server, once we have applied rank dependent
compensation factors on them. These rank dependent weights allow us, for instance,
to compensate unfair situations. Indeed, if a solution places a set of facilities so that
the accessibility cost of a demand point at j is in the s-th position in the ordered
sequence of cost between each client and its corresponding server and the cost of a
demand point at j ′ is in the t-th position with s < t , the model tries to favor j ′ with
respect to j by assigning to the demand point in the s-th position a smaller weight
than the one assigned to demand point in the t-th position. (Note that these weights
do not penalize site j but instead they compensate site j ′ because these weights
reduce the dispersion of the costs.) In order to incorporate this ordinal information
in the overall transportation cost, the objective function applies a correction factor
to the transportation cost for each demand point (to reach the facility) which is
dependent on the position of that cost relative to similar costs from other demand
points. For example, a different penalty might be applied if the transportation cost
of a demand point at j was the 5th-most expensive cost rather than the 2nd-most
expensive, see Boland et al. (2006), Marín et al. (2009), Nickel and Puerto (2005),
Puerto and Fernández (2000), Rodríguez-Chía et al. (2000). It is even possible to
neglect some costs by assigning a zero penalty. This adds a “sorting”-problem to the
underlying location problem, making its formulation and solution more challenging.

This type of objective function has been extensively studied and successfully
applied in a variety of problems within the literature of Location Analysis. Puerto
and Fernández (2000) and Papini and Puerto (2004) characterize the structure of
optimal solutions sets. Rodríguez-Chía et al. (2000), Blanco et al. (2013, 2014),
Espejo et al. (2009), Nickel et al. (2005), Drezner (2007), Drezner and Nickel
(2009a,b) and Rodríguez-Chía et al. (2010), among others, develop algorithms
for different continuous ordered median location problems. In addition, there are
nowadays some successful approaches available when the framework space is either
discrete (see Boland et al. 2006; Domínguez-Marín et al. 2005; Espejo et al. 2009;
Labbé et al. 2017; Martínez-Merino et al. 2017; Deleplanque et al. 2018; Marín
et al. 2009, 2010; Puerto et al. 2011, 2014, 2013; Redondo et al. 2016; Turner et al.
2015) or a network (see Berman et al. 2009; Kalcsics et al. 2003, 2002; Nickel and
Puerto 1999; Puerto and Tamir 2005; Puerto and Rodríguez-Chía 2005; Rozanov
and Tamir 2018; Turner and Hamacher 2011). The interested reader is also referred
to Chap. 7 in this book and Blanco et al. (2018) for some applications to the location
of extensive facilities.

The aim of this chapter is to introduce the reader into the field of ordered
median location providing some modeling tools and properties. These elements
will allow one to formulate and solve location problems in different solution
spaces (continuous, networks and discrete) using this unifying tool. To achieve
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this goal, in the next section we formally introduce the family of ordered median
functions (OMf ). Sections 10.3.2, 10.4 and 10.5 are devoted to analyze the ordered
median location problem in three different solution spaces: continuous, networks
and discrete, respectively. The chapter ends with some concluding remarks.

10.2 The Ordered Median Function

As mentioned above, the structure of Ordered Median Functions involves a nonlin-
earity in the form of an ordering operation that introduces a degree of complication
but at the same time gives an extra freedom which allows one a lot of flexibility in
modeling. In this section, we will review interesting properties of these functions in
a first step to understand their behavior and then, we shall give a characterization of
this objective function.

We start defining the ordered median function. This function is a weighted
average of ordered elements. For any x ∈ R

n denote xord = (x(1), . . . , x(n)) where
x(1) ≤ x(2) ≤ . . . ≤ x(n). We consider the function:

sortn : R
n −→ R

n

x −→ xord .
(10.1)

Definition 10.1 The function fλ : R
n −→ R is an ordered median function, for

short fλ ∈ OMf(n), if fλ(x) = 〈λ, sortn(x)〉 for some λ = (λ1, . . . , λn) ∈ R
n,

where 〈, 〉 denotes the usual scalar product in R
n.

It is clear that ordered median functions are nonlinear. Whereas the nonlinearity
is induced by the sorting. One of the consequences of this sorting is that the pseudo-
linear representation given in Definition 10.1 is pointwise defined. Nevertheless,
one can identify its linearity domains. (See Puerto and Fernández 2000; Nickel
and Puerto 2005; Rodríguez-Chía et al. 2000.) The identification of these regions
provides us with a subdivision of the framework space where in each of its cells the
function is linear. Obviously, the topology of these regions depends on the space and
on the lambda vector. A detailed discussion can be found in Puerto and Fernández
(2000). As mentioned in the introduction, different choices of lambda lead also to
different functions within the same family: λ = (1/n, . . . , 1/n) is the mean average,
λ = (0, . . . , 0, 1) is the center, λ = (α, . . . , α, α, 1) is the α-centdian, α ∈ [0, 1],
λ = (0, . . . , 0, 1, k. . ., 1) is the k-centrum or λ = (α, 0, . . . , 0, 1 − α) is Hurwicz’s
criterion, see Chaps. 1, 2 and 4 for further details.

These functions are not new and some operators related to them have been
developed by other authors independently. This is the case of the ordered weighted
operators (OWA) studied by Yager (1988) to aggregate semantic preferences in
the context of artificial intelligence; as well as SAND functions (isotone and
sublinear functions) introduced by Francis et al. (2000) to study aggregation errors
in multifacility location models.



264 J. Puerto and A. M. Rodríguez-Chía

First, we recall some simple properties and remarks concerning ordered median
functions. Most of them are natural questions that appear when a family of functions
is considered. Partial answers are summarized in the following proposition.

Proposition 10.1 Let fλ(x), fμ(x) ∈ OMf(n).

(1) fλ(x) is a continuous function.
(2) fλ(x) is a symmetric function , i.e., for any x ∈ R

n fλ(x) = fλ(sortn(x)).
(3) fλ(x) is a convex function iff λ1 ≤ . . . ≤ λn.
(4) If c1 and c2 are constants, then the function c1fλ(x) + c2fμ(x) ∈ OMf(n).
(5) If {fλr (x)} is a sequence of ordered median functions that pointwise converges

to a function f , then f ∈ OMf(n).
(6) If {fλr (x)} is a set of ordered median functions, all bounded above in each point

x of Rn, then the pointwise maximum (or sup) function defined at each point x

is in general not an OMf .
(7) Let p < n − 1 and xp = (x1, . . . , xp), x\p = (xp+1, . . . , xr ). If fλ(x) ∈

OMf(n) then fλp(xp) + fλ\p (x\p) � fλ(x).
(8) Every ordered median function OMf(n) is a difference of two positively

homogeneous convex functions and has a representation

fλ(x) =
n∑

i=1

λ1ϕi(x),

where
ϕr(x) = min

{
max{xi1 , xi2 , . . . , xir }|i1 < i2 < . . . < ir and i1, i2, . . . , ir ∈

{1, . . . , n}} .

Proof The proof of (1) can be found in Rosenbaum (1950). The proof of (3) and (8)
are in Grzybowski et al. (2011). The proofs of items (2) and (4) are straightforward
and therefore are omitted. A proof of (5) and counterexamples for (6) and (7) are
given in Nickel and Puerto (2005, Examples 1.1 and 1.2). �	

In order to continue the analysis of the ordered median function we need to
introduce some notation that will be used in the following. Let P(1 . . . n) be the
set of all the permutations of the first n natural numbers,

P(1 . . . n) = {π : π is a permutation of 1, . . . , n}. (10.2)

We write π = (π(1), . . . , π(n)).
The next result, that we include for the sake of completeness, is well-known and

its proof can be found in the book by Hardy et al. (1952).

Lemma 10.1 Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two vectors in R
n.

Suppose that x ≤ y, then xord = (x(1), . . . , x(n)) ≤ yord = (y(1), . . . , y(n))
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To understand the nature of the OMf we need a precise characterization. This
will be done in the following two results using the concepts of symmetry and
sublinearity.

Theorem 10.1 A function f defined over Rn+ is continuous, symmetric and linear
over {x : 0 ≤ x1 ≤ . . . ≤ xn} if and only if f ∈ OMf(n).

Proof Since f is linear over X≤ := {x ≥ 0 : 0 ≤ x1 ≤ . . . ≤ xn}, there exists
λ = (λ1, . . . , λn) such that for any x ∈ X≤ f (x) = 〈λ, x〉. Now, let us consider
any y �∈ X≤. There exists a permutation π ∈ P(1 . . . n) such that yπ ∈ X≤. By
the symmetry property it holds f (y) = f (yπ). Moreover, for yπ we have f (yπ) =
〈λ, yπ 〉. Hence, we get that for any x ∈ R

n

f (x) = 〈λ, xord〉.

Finally, the converse is trivially true. �	
There are particular instances of the λ vector that make their analysis interesting.

One of them is the convex case, i.e., λ1 ≤ . . . ≤ λn, where we can obtain a
characterization without the explicit knowledge of a linearity region.

Theorem 10.2 Given λ = (λ1, . . . , λn) with λ1 ≤ λ2 ≤ . . . ≤ λn; and
λπ = (λπ(1), . . . , λπ(n)) with π ∈ P(1 . . . n), a symmetric function f defined over
R

n is the support function of the set Sλ = conv{λπ : π ∈ P(1 . . . n)} if and only if
f is the convex ordered median function

fλ(x) =
n∑

i=1

λix(i). (10.3)

Proof Let us assume that f is symmetric and the support function of Sλ. Then,

f (x) = sup
s∈Sλ

〈s, x〉 = sup
π∈P(1...n)

〈λπ , x〉 = sup
π∈P(1...n)

〈λ, xπ 〉 =
n∑

i=1

λix(i).

Conversely, it suffices to apply Theorem 368 in Hardy et al. (1952) to (10.3). �	
Convexity is an important property within the scope of continuous optimization.

Thus, it is crucial to know the conditions that ensure this property. Nevertheless, in
the context of discrete optimization convexity cannot even be defined. Nevertheless,
in this case submodularity plays a similar role. (The interested reader is referred to
the chapter of the Handbook Discrete Optimization by McCormick 2005.) In the
following, we also recall a submodularity property of the convex ordered median
function, Puerto and Tamir (2005).
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Let x = (xi), y = (yi), be vectors in R
n. Define the meet of x, y to be the vector

x
∧

y = (min{xi, yi}), and the join of x, y by x
∨

y = (max{xi, yi}). The meet
and join operations define a lattice on R

n.

Theorem 10.3 (Submodularity Theorem) Given λ = (λ1, . . . , λn), satisfying
0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn, fλ(x) is submodular over the lattice defined by the
above meet and join operations, i.e.,

fλ(x
∨

y) + fλ(x
∧

y) ≤ fλ(x) + fλ(y), ∀x, y ∈ R
n.

10.3 The Continuous Ordered Median Problem

This section is devoted to the analysis of the Ordered Median Location Problem
in a continuous framework. For the ease of understanding, we have divided this
section in two main parts. In the first one, we restrict ourselves to the polyhedral
gauges emphasizing the planar case. In this setting, one can derive nice geometrical
properties that help to capture the main elements of the problem, namely its
linearity domains, ordered regions and intuitive algorithms for obtaining the optimal
solutions. Second, we address a general case where we shall apply a new global
optimization technique that allows us to handle and solve a wide range of ordered
median location problems.

10.3.1 The Single Facility Polyhedral Ordered Median
Location Problem

Consider a set of demand points A = {a1, a2, . . . , an} ⊂ R
n (representing existing

facilities or clients) and two sets of non negative scalars w = (w1, . . . , wn) and
λ = (λ1, . . . , λn). The element wi is the weight assigned to the existing facility ai

and it represents the importance of this demand point. The elements of λ allow us
to choose between different kinds of objective functions. We also consider a gauge
γ (·) : R

n −→ R to measure distances. Recall that any gauge is defined by the
Minkowski functional of a compact, convex set with the zero in its interior (see
Nickel and Puerto 2005).

The ordered median problem is given by:

min
x∈Rn

F (x) = 〈λ, sortn((w1γ (x − a1), . . . , wnγ (x − an)))〉. (10.4)

Note that the problem is well-defined even if ties occur. In that case any order of the
tied positions gives the same value.
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a1

a2

O12 O21

B(a1, a2)

Fig. 10.1 Two regions where the function of Example 10.1 has different linear representation

Example 10.1 Consider two demand points a1 = (0, 0) and a2 = (10, 5), λ1 =
100 and λ2 = 1 with �1-norm as gauge and w1 = w2 = 1. We obtain only two
optimal solutions to Problem (10.4), lying in each demand point. Observe that a
linear representation of the objective function is regionwise defined and that the
objective function is not convex since we have a nonconvex optimal solution set,
see Fig. 10.1,

F(a1) = 100 × 0 + 1 × 15 = 15

F(a2) = 100 × 0 + 1 × 15 = 15

F(
1

2
(a1 + a2)) = 100 × 7.5 + 1 × 7.5 = 757.5.

In this section, for the sake of presentation, we restrict ourselves to study the
particular case where the distances are measured with polyhedral gauges, i.e., the
unit balls associated with these gauges are convex polytopes. For this reason we
will assume in this subsection that B ⊆ R

n is a bounded polytope whose interior
contains the zero and we denote the set of extreme points of B by Ext(B) = {eg :
g = 1, . . . ,G }. The polar set B0 of B is given by B0 = {x ∈ R

n : 〈x, p〉 ≤
1 ∀p ∈ B}. In the polyhedral case, B0 is also a polytope, see Ward and Wendell
(1985) and Durier and Michelot (1985). The normal cone to B at x is given by
N(B, x) := {p ∈ R

n : 〈p, y −x〉 ≤ 0 ∀ y ∈ B} and the boundary of B is denoted
by bd(B) .
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In what follows, we recall some geometrical properties of the planar formulation
of Problem (10.4) which give us specific insights into the considered model. In this
case we define fundamental directions as the halflines defined by 0 and the extreme
points of B. Let π = (pi)i=1,...,n be a family of elements of Rn such that pi ∈ B0

for each i ∈ {1, . . . , n} and let Cπ = ⋂n
i=1(ai + N(Bo, pi)). A nonempty convex

set C is called an elementary convex set (e.c.s.) if there exists a family π such that
Cπ = C.

It should be noted that if the unit balls are polytopes we can obtain the elementary
convex sets as intersections of cones generated by fundamental directions of these
balls pointed at each demand point. Therefore each elementary convex set is a
polyhedron whose vertices are called intersection points (see Fig. 10.1). Finally, we
recall that in the planar case an upper bound of the number of elementary convex
sets is O(n2G 2) where G is the number of extreme points of B (see Durier and
Michelot (1985) for further details).

Although the objective function of Problem (10.4) may look like the one of the
Weber problem we do not have a unified linear representation of such a function in
the whole space. From the definition of the objective function, it is easy to see, that
the representation may change every time γ (x−ai)−γ (x−aj ) becomes 0 for some
i, j ∈ {1, . . . , n} with i �= j . Next, we analyze the sets where the representation of
the objective function as a weighted sum stays unchanged.

Definition 10.2 The set Bγ (ai, aj ) consisting of points {x : wiγ (x − ai) =
wjγ (x − aj ), i �= j} is called bisector of ai and aj with respect to γ .

As an illustration of Definition 10.2 one can see in Fig. 10.1 the bisector line for
the points a1 and a2 with the �1-norm. The set of bisectors builds a subdivision of
the plane (very similar to the well-known order−k Voronoi diagrams, see the book
Okabe et al. 1992). The cells of this subdivision will be called from now on ordered
regions. We formally introduce this concept.

Definition 10.3 Given a permutation σ ∈ P(1, . . . , n), the ordered region Oσ is
the following set

Oσ = {x ∈ R
n : wσ1γ (x − aσ1) ≤ . . . ≤ wσnγ (x − aσn)}.

Observe that these regions need not be convex sets, see Fig. 10.1. The ordered
regions play a very important role in the algorithmic approach developed for solving
the problem. Moreover, under the above hypothesis the overall number of ordered
regions in the planar case is O(n4G 2), see Rodríguez-Chía et al. (2000) for further
details. The importance of these regions is that the ordered median function has a
unique linear representation in the interior of the intersection of any ordered region
with any elementary convex set. The sets resulting of these intersections are called
generalized elementary convex sets and it is known that the entire set of optimal
solutions of Problem (10.4) always coincides with some generalized elementary
convex sets, see Puerto and Fernández (2000) for further details.
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Although the set of optimal solutions of Problem (10.4) always coincides with
a generalized elementary convex set, the large number of these regions and their
intricate geometry requires some kind of good generation and enumeration schemes
to derive an algorithm. This approach is doable in the plane for polyhedral gauges,
where one can easily derive an appealing geometrical algorithm to solve these
problems. Compute the subdivision of the plane induced by the lines defining
the fundamental directions of the gauges and the bisectors. Observe that this con-
struction can be efficiently performed using any algorithm to generate subdivisions
induced by arrangements of hyperplanes, see Edelsbrunner (1987). The complexity
of computing the ordered regions and its number is O(n4G 2). Next, one needs to
evaluate the objective function in each vertex of the subdivision. Each evaluation
can be done in O(nG log nG ). This results in an algorithm that solves the problem
in the plane with a complexity of O(n5G 3 log nG ).

In what follows we present an alternative, intuitive solution approach for the
polyhedral version of the ordered median problem that consists in a enumerative
algorithm that solves a linear program per visited ordered region. In order to do that,
we first obtain some interesting properties of the following linear program where Oσ

is an ordered region defined by the permutation σ :

minimize
∑n

i=1 λizσi

subject to wi〈e0
g, x − ai〉 ≤ zi, eo

g ∈ Bo, i = 1, 2, . . . , n

zσi
≤ zσi+1 i = 1, 2, . . . , n − 1

(Pσ )

where e0
g are the extreme points of B0.

Lemma 10.2 Let X∗ be an optimal solution of Pσ .

(i) If X∗ ∈ Oσ then X∗ is also an optimal solution to the ordered median problem
constrained to Oσ .

(ii) If X∗ ∈ Oσ ′ �= Oσ then the optimal solution of the ordered median problem
constrained to Oσ ′ is better than the optimal solution of the ordered median
problem constrained to Oσ .

Proof

(i) At an optimal point X∗ in Oσ we have

wi〈eo
gi

, X∗ − ai〉 = zi, i = 1, 2, . . . , n , for some gi,

which means that zi = wiγ (X∗ − ai) and the result follows.
(ii) At an optimal point X∗ of Pσ in Oσ ′ we have

〈eo
g,X

∗ − ai〉 < zi for all g

for at least one i. This means that we can decrease the objective function by
moving from Oσ to Oσ ′ and the result follows. �	
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Based on Lemma 10.2 we develop another algorithm for this problem. For each
ordered region we solve the problem as a linear program which geometrically means
either finding the locally best solution in this ordered region or finding out that this
region does not contain the global optimum by Lemma 10.2. In the former case
two situations may occur. First, if the solution lies in the interior of the considered
region (in R

n) then we move to a different one not yet processed and secondly, if
the solution is on the boundary we do a local search in the neighborhood regions
where this point belongs to. It is worth noting that to accomplish this search a list
L containing the already visited neighborhood regions is used in the algorithm.
Besides, it is also important to realize that neither Step 2 nor Step 5 of the next
algorithm need to explicitly construct the corresponding ordered region. It suffices
to evaluate and to sort the distances to the demand points. In addition, this algorithm
can be improved in the interesting, important case where λ1 ≤ . . . ≤ λn. In this
situation the objective function is globally convex and this fact can be exploited to
reduce the enumeration of the entire list of ordered regions. Indeed, if one optimal
solution of any Problem Pσ is interior to the ordered region Oσ or this solution
cannot be improved in adjacent regions then by the global convexity property of the
objective function, it is the global minimum. Otherwise, one can follow a descent
iterative scheme moving from one region to another one not previously visited. The
above arguments justify the validity of the following algorithm for the convex case.
Alternatively, one could simply resort to general randomized subgradient descent
algorithms which, under mild conditions (see Ruszczynski and Syski 1986) will
converge to the global optimal solution due to the finiteness of the linearity regions
of these problems.

Algorithm 10.1

Step 1. Choose xo as an appropriate starting point. Initialize L := ∅, y∗ = xo.
Step 2. Consider Oσo which y∗ belong to, where σo determines the order.
Step 3. Solve the linear program Pσ 0 . Let u0 = (x0

1 , x0
2 , z0

σ ) be an optimal
solution. If x0 = (x0

1 , x0
2) �∈ Oσo then let Oσo be such that x0 ∈ Oσo and go

to Step 3.
Step 4. Let yo = (x0

1 , x0
2).

Step 5. If yo belongs to the interior of Oσo then set y∗ = y0 and go to Step 8.
Step 6. If F(yo) �= F(y∗) then L := {σ 0}
Step 7. If there exist i and j verifying γ (yo − aσo

i
) = γ (yo − aσo

j
) with i < j

such that (σ o
1 , . . . , σ o

j , . . . , σ o
i , . . . , σ o

n ) �∈ L then do

(a) y∗ := yo, σo := (σ o
1 , σ o

2 , . . . , σ o
j , . . . , σ o

i , . . . , σ o
n )

(b) L := L ∪ {σo}
(c) go to Step 3

else go to Step 8 (Optimum found)
Step 8. Output y∗
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The above algorithm is efficient in the sense that it is polynomially bounded
in fixed dimension. Once the dimension of the problem is fixed, its complexity is
dominated by the complexity of solving a linear program for each ordered region.
Since the number of ordered regions is polynomially bounded, Algorithm 10.1 is
polynomial.

The nice geometry of the problem in the plane allows us to derive the two above
algorithms. Nevertheless, this geometry in higher dimension is rather intricate and
the above approach, based on building ordered regions, is very difficult since no
efficient algorithm for computing bisectors is available in dimension greater than 2.

In spite of that, we will present an alternative algorithm for solving the single
facility ordered median problem in any dimension d. For this, we shall introduce
a valid MILP model that provides the optimal solution of the problem. Indeed,
consider the following set of binary variables

zij :=
⎧
⎨

⎩

1 if the distance induced by facility i

goes in sorted position j

0 otherwise.

and the continuous variable

θj = distance between a facility and its server in the j -th position in the ordered

sequence of distances between each facility and its corresponding server.

In order to minimize the ordered median function for a given set of nonnegative
lambda parameters λ1, . . . , λn, we define the following problem.

minimize
n∑

j=1

λj θj (10.5)

subject to (1 − zij )M + θj ≥ wi〈e0
g, x − ai〉, eo

g ∈ Bo, i, j = 1, 2, . . . , n (10.6)

n∑

i=1

zij = 1, j = 1, . . . , n (10.7)

n∑

j=1

zij = 1, i = 1, . . . , n (10.8)

θj ≤ θj+1, j = 1, . . . , n − 1 (10.9)

θj ≥ 0, j = 1, . . . , n (10.10)

zij ∈ {0, 1}, i, j = 1, . . . , n (10.11)

x ∈ R
d . (10.12)
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Constraints (10.7) and (10.8) define a permutation by placing a single distance to
a facility at each position and each distance to a facility at a single sorted position.
Constraints (10.6) relate distance values with the values placed in a sorted sequence.
Constraint (10.9) imposes that the sorted values are ordered non-increasingly.
Finally, (10.10)–(10.12) define the range of variables of the model.

The above approach solves efficiently the problem in any dimension provided
that the gauges used to measure distances are polyhedral since Problem (10.5)–
(10.12) is a MILP that can be handled with any of the nowadays available MIP
solvers.

We would like to conclude this section with some comments on several exten-
sions of the considered problem. On the one hand, the multicriteria planar version
of the above problem was analyzed in Nickel et al. (2005). On the other hand, the
planar case of the ordered median problem using an �p-norm was also studied
by Drezner and Nickel (2009a,b) where techniques of global optimization were
used for solving it. In addition, Espejo et al. (2009), Rodríguez-Chía et al. (2010)
proposed an adaptation of the Weiszfeld algorithm for the convex version of this
problem, i.e., 0 ≤ λ1 ≤ . . . ≤ λn. Finally, we would like to mention some
references that consider the multifacility version of particular classes of ordered
median problems. These references can be seen as a starting point to dig into this
challenging topic. The interested reader is referred to Blanco et al. (2016), Ben-
Israel and Iyigun (2010), Brimberg et al. (2000), Schöbel and Scholz (2010) for
different approaches to the continuous multifacility location problem.

10.3.2 Generalized Continuous Ordered Median Location
Problems

This section extends the analysis presented above, in Sect. 10.3.1, to the case of non-
polyhedral norms and any dimension d. In doing that we shall cast that problem
within the more general paradigm of polynomial programming. This approach
allows us to apply powerful tools borrowed from the theory of global optimization to
solve our original problem, see Blanco et al. (2013). This section contains advanced
material which is self-contained. For this reason those nonspecialized readers not
interested in global optimization techniques may decide to skip it without losing
continuity with the remaining sections of this chapter.

We are given a set A = {a1, . . . , an} ⊂ R
d endowed with a �τ -norm (here �τ

stands for the norm ‖x‖τ =
(∑d

i=1 |xi |τ
)1/τ

, for all x ∈ R
d ); and a feasible domain

K := {x ∈ R
d : gj (x) ≥ 0, j = 1, . . . , �} ⊂ R

d , assumed to be a closed semi-
algebraic set, i.e., a set defined by a finite number of polynomial inequalities, where
each gj (x) ∈ R[x] is a polynomial, being R[x] the ring of real polynomials in
(x1, . . . , xd). Since we are interested in solving location problems we shall assume
without loss of generality that we wish to solve the problem in a bounded domain so
that K is compact. The goal is to find a point x∗ ∈ K minimizing some globalizing
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function of the distances to the set A. Here, we consider that the globalizing function
is rather general and that it is given as an ordered weighted average of polynomials
(the reader may observe that the same approach also extends to rational functions,
Blanco et al. 2013).

Some well-known examples, that are formulated in the above terms, are the
following (see, e.g., Blanquero and Carrizosa 2009, Drezner 2007, Espejo et al.
2009, Kalcsics et al. 2015, López-de-los-Mozos et al. 2008 or Nickel and Puerto
2005): f (u1, . . . , un) = ∑n

i<j |ui − uj |, is the absolute deviation or envy cri-

terion, f (u1, . . . , un) = ∑n
i=1(ui − 1/n

∑n
j=1 uj )

2, is the variance function,

f (u1, . . . , un) = ∑n
j=1 wj/u

2
j , where wj are scalar weights, is the obnoxious

facility criterion and f (u1, . . . , un) = ∑n
j=1 bj /(1 + hj |uj |λ), with bj and hj

appropriate weights, is the Huff competitive location objective function.
The main feature and what distinguishes location problems from other general

purpose optimization problems, is that the dependence of the decision variables
is given through the norms to the demand points in A, i.e., ‖x − ai‖τ . In this
section, we consider a generalized version of the ordered continuous single facility
location problem over closed semi-algebraic feasible sets, i.e., the Ordered Median
of Polynomial Functions problem:

ρλ := minimize {
m∑

j=1

λj f̃(j)(x) : x ∈ K }, (OMPF)

where:

• λj ∈ R j = 1, . . . , m are modeling weights.
• fj (u) : Rn �→ R, with fj (u) ∈ R[u1, . . . , un] (the ring of real polynomials in

(u1, . . . , un)), x ∈ K for all j = 1, . . . , m. We shall define the dependence of
fj to the decision variable x ∈ R

d via u = (u1, . . . , un), where ui : Rd �→ R,
ui(x) := ‖x − ai‖τ , i = 1, . . . , n. Therefore, the j -th component of the ordered
median objective function of our problems reads as:

f̃j (x) : Rd �→ R

x �→ f̃j (x) := fj (‖x − a1‖τ , . . . , ‖x − an‖τ ).

In the classical ordered median problem these functions correspond with the
distances from the demand points to the service facility, i.e. fj (‖x −a1‖τ , . . . , ‖x −
an‖τ ) = ‖x − aj‖τ ; thus, in our application to the ordered median problem we will
always assume to have m = n and functions f̃j (x) := ‖x − aj‖τ .

• K := {x ∈ R
d : gj (x) ≥ 0, j = 1, . . . , �} ⊂ R

d satisfies Archimedean
property. (See Lasserre (2009) for a detail discussion on the Archimedean
property and its implications in real algebraic geometry and global optimization.
In our setting this property is essentially equivalent to assume compact feasible
regions.)

• τ := r/s, r, s ∈ N, r ≥ s and gcd(r, s) = 1.
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First of all, since K is compact there exist M ′ > 0 such that ‖x‖2 ≤ M ′ for all
x ∈ K. Then, we observe that any feasible solution of (OMPF) satisfies ‖x−ai‖2 ≤
M ′ + ‖ai‖2 ≤ M ′ + max1≤i≤n ‖ai‖2 := M. Then, since all norms are equivalent
in R

d , there exists γ > 0 such that ‖x‖2τ /‖x‖2 ≤ γ , for all x ∈ R
d . Hence,

‖x − ai‖2τ ≤ γM =: M̄ . This bound will allow us to derive the constraints (10.21)
of our reformulation of Problem (OMPF). These constraints ensure that the feasible
region is bounded which in our framework is sufficient to imply compactness. For
this reason, we will call them from now on compactness constraints.

Next, our goal is to cast the above problem within the framework of polynomial
optimization. Associated with the above minimization problem we introduce an
equivalent formulation that will be useful to apply the moment tools to solve the
ordered median problem. For each i = 1, . . . , m, j = 1, . . . , m consider the
following family of decision variables for each x ∈ K

wij =
{

1 if f̃i (x) = f̃(j)(x),

0 otherwise.
.

However, we observe that �τ -norms are not, in general, polynomials. To avoid this
inconvenience, we introduce the following auxiliary problem. Observe that this
formulation lifts the original problem in a higher dimensional space to represent
the piecewise polynomials that appear in (OMPF) as polynomials in the new set of
variables.

ρλ = minimize
m∑

j=1

λj

m∑

i=1

fi(u)wij := pλ(x, u, v,w) (10.13)

subject to
m∑

j=1

wij = 1, i = 1, . . . , m, (10.14)

m∑

i=1

wij = 1, j = 1, . . . , m, (10.15)

m∑

i=1

wijfi(u) ≤
m∑

i=1

wij+1fi(u), j = 1, . . . , m − 1, (10.16)

w2
ij − wij = 0, i, j = 1, . . . , m, (10.17)

v2s
k� = (x� − ak�)

2r , k = 1, . . . , n, � = 1, . . . , d, (10.18)

ur
k = (

d∑

�=1

vk�)
s, k = 1, . . . , n, (10.19)



10 Ordered Median Location Problems 275

m∑

j=1

w2
ij ≤ 1, i = 1, . . . , m, (10.20)

d∑

j=1

v2
ij ≤ M̄2τ , i = 1, . . . , n, (10.21)

wij ∈ R, i, j = 1, . . . , m, (10.22)

vk� ≥ 0, uk ≥ 0, k = 1, . . . , n, � = 1, . . . , d, (10.23)

x ∈ K. (10.24)

By means of the w variables, the objective function (10.13) is the ordered
weighted sum of the fi polynomials which can be written as the polynomial pλ. The
first set of constraints (10.14) ensures that for each x, f̃i (x) is sorted in a unique
position. The second set (10.15) ensures that the j th position is only assigned to
one polynomial function. The next constraints (10.16) state that f(1)(u) ≤ · · · ≤
f(m)(u). Constraints (10.17) are added to assure that wij ∈ {0, 1}. Next, the two
families of constraints (10.18) and (10.19) set ur

k as the correct value of ‖ak − x‖τ

(recall that τ = r/s). The last set of constraints (10.20) and (10.21) ensure that
Archimedean property holds for the new feasible region K of the above auxiliary
problem. (Note that this last set of constraints are redundant but it is convenient to
add them for a better description of the feasible set.)

We also observe that the above problem simplifies for those cases where r is even.
In these cases, we can replace the constraints (10.18) by the simplest constraints

vs
k� = (xk − ak�)

r , ∀ k, �.

This reformulation reduces the degree of the polynomials defining the feasible set.
We illustrate the above formulation with a standard model in location analysis:

the k-centrum problem in the plane.

Example 10.2 Let us assume that we are given a set of demand points
A = {a1, . . . , an} ⊂ R

2, where ai = (ai1, ai2), for i = 1, . . . , n. We wish to
model the k-centrum (k < n) with �3-distance, i.e., r = 3 and s = 1, with respect
to the demand points in A and a feasible region defined by a set K. It is clear that in
this case d = 2, m = n and each function f̃i (x) := ‖x − ai‖3, i = 1, . . . , n.
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According to the model above this problem can be formulated as follows:

minimize
n∑

j=n−k+1

n∑

i=1

uiwij

subject to
n∑

i=1

wij = 1, j = 1, . . . , n,

n∑

i=1

wij = 1, j = 1, . . . , n,

n∑

i=1

wijui ≤
n∑

i=1

wij+1ui, j = 1, . . . , n − 1

w2
ij − wij = 0, i, j = 1, . . . , n,

v2
k� = (x� − ak�)

6, k = 1, . . . , n, � = 1, . . . , 2,

u3
k = (

d∑

�=1

vk�), k = 1, . . . , n,

n∑

j=1

w2
ij ≤ 1, i = 1, . . . , n,

2∑

j=1

v2
ij ≤ M̄6, i = 1, . . . , n,

wij ∈ R, i, j = 1, . . . , m,

vk� ≥ 0, uk ≥ 0, k = 1, . . . , n, � = 1, . . . , d,

x ∈ K

Next, we get a result that shows the equivalence between the above polynomial
optimization formulation and our location problem (OMPF).

Theorem 10.4 Let x be a feasible solution of (OMPF) then there exists a solution
(x, u, v,w) for (10.13)–(10.24) such that their objective values are equal. Con-
versely, if (x, u, v,w) is a feasible solution for (10.13)–(10.24) then there exists a
solution (x) for (OMPF) having the same objective value. In conclusion, ρλ = ρλ.
Moreover, if K ⊂ R

d satisfies the Archimedean property then K ⊂ R
d+m2+n(d+1)

also satisfies the Archimedean property.

The interested reader is referred to Blanco et al. (2013, Theorem 4) for a detailed
proof.

Now, we can prove a convergence result that allows us to solve, up to any degree
of accuracy, the above class of problems. In order to proceed further we need to
introduce some additional material related to the Theory of Moments, Lasserre
(2009).

Recall that by R[x] we denote the ring of real polynomials in the variables x =
(x1, . . . , xd), for d ∈ N (d ≥ 1), and by R[x]r ⊂ R[x] the space of polynomials
of degree at most r ∈ N (here N denotes the set of non-negative integers). We also
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denote by B = {xα : α ∈ N
d} a canonical basis of monomials for R[x], where

xα = x
α1
1 · · · xαd

d , for any α ∈ N
d . Note that Br = {xα ∈ B : ∑d

i=1 αi ≤ r} is
a basis for R[x]r . For any sequence indexed in the canonical monomial basis B,
y = (yα)α∈Nd ⊂ R, let Ly : R[x] → R be the linear functional defined, for any
f = ∑

α∈Nd fα xα ∈ R[x], as Ly(f ) := ∑
α∈Nd fα yα .

The moment matrix Mr (y) of order r associated with y, has its rows and columns
indexed by (xα) and Mr (y)(α, β) := Ly(x

α+β) = yα+β , for |α|, |β| ≤ r (here
|a| stands for the sum of the coordinates of a ∈ N

d ). For g = ∑
γ∈Nd gγ xγ ∈ R[x],

the localizing matrix Mr (gy) of order r associated with y and g, has its rows and
columns indexed by (xα) and Mr (gy)(α, β) := Ly(x

α+βg(x)) = ∑
γ gγ yγ+α+β ,

for |α|, |β| ≤ r . Let y = (yα) be a real sequence indexed in the monomial basis
(xβuγ vδwζ ) of R[x, u, v,w] (with α = (β, γ, δ, ζ ) ∈ N

d × N
n × N

nd × N
m2

).
Let h0(x, u, v,w) := pλ(x, u, v,w), and denote ξj := �(deg gj )/2� and νj :=
�(deg hj )/2�, where {g1, . . . , g�}, and {h1, . . . , h3m+m2+n(d+3)} are the polynomial

constraints that define K and K \ K in (10.13)–(10.24), respectively. For

r ≥ r0 := max{ max
k=1,...,�

ξk, max
j=0,...,3m+m2+n(d+3)

νj },

we introduce the hierarchy of semidefinite programs:

minimizey Ly(pλ)

subject to Mr (y) � 0,

Mr−ξk
(gk, y) � 0, k = 1, . . . , �,

Mr−νj
(hj , y) � 0, j = 1, . . . , 3m + m2 + n(d + 3),

(Qr )

with optimal value denoted min Qr .

Theorem 10.5 Let K ⊂ R
d+m2+n(d+1) be the feasible domain of Problem (10.13)–

(10.24). Then, with the notation above:

(a) min Qr ↑ ρλ as r → ∞.
(b) Let yr be an optimal solution of the SDP relaxation (Qr ). If

rank Mr (yr ) = rank Mr−r0(y
r ) = t

then min Qr = ρλ and one may extract t points (x∗(k), u∗(k), v∗(k), w∗(k))tk=1 ⊂
K, all global minimizers of Problem (OMPF).

Proof The convergence of the semidefinite relaxation (Qr ) follows from a result
by Jibetean and de Klerk (2006, Theorem 9) that is applied here to the polynomial
function in (10.13) and the closed semi-algebraic set K. The second assertion on the
rank condition, for extracting optimal solutions, follows from applying (Lasserre
2009, Theorem 5.7) to the SDP relaxation (Qr ). �	
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We also observe that one can exploit the block diagonal structure of the prob-
lem (10.13)–(10.21) since the only monomials that appear in that formulation are of
the form xαu

β
i

∏m
j=1 v

γj

ij for all i = 1, . . . , m. Hence, a result similar to Theorem 12
in Blanco et al. (2013) about a sparse reformulation also holds for this problem.

Tables 10.1 and 10.2 present some computational results obtained applying the
above technique for different planar ordered median problems. Programs were
coded in MATLAB R2010b and executed in a PC with an Intel Core i7 processor
at 2 × 2.93 GHz and 8 GB of RAM. The semidefinite programs were solved
by calling SDPT3 4.0, Kim-Chuan et al. (2006). We report the CPU times for
computing solutions as well as the gap, εobj, with respect to upper bounds obtained
with the battery of functions in optimset of MATLAB, which only provide
approximations on the exact solutions (optimality cannot be certified). In order to
compute the accuracy of an obtained solution, we use the following measure for the
error (see Blanco et al. 2013):

εobj = |the optimal value of the SDP − fopt|
max{1, fopt} , (10.25)

where fopt is the approximated optimal value obtained with the functions in
optimset. The interested reader is referred to Blanco et al. (2013, Section 5)
for further details and computational results using the tools in this section applied
to location problems.

10.4 The Ordered Median Problem on Networks

Let N = (G, �) denote a network with underlying graph G = (V ,E), with node
set V = {v1, . . . , vn} and edge set E = {e1, . . . , em}. We restrict ourselves to
undirected graphs. Therefore, we write every edge e ∈ E as {i, j}, vi, vj ∈ V .

Each edge e ∈ E is associated with a positive length by means of the function
� : E → R+. By d(vi, vj ), we denote the length of the shortest path between vi

and vj measured by �. Through w : V → R+ ∪ {0}, every vertex is assigned to
a nonnegative weight. A point x on an edge e = {i, j} is defined as a pair x =
(e, t), t ∈ [0, 1], with

d(vk, x) := d(x, vk) := min{d(vk, vi) + t�(e), d(vk, vj ) + (1 − t)�(e)}. (10.26)

The set of all the points of a network (G, �) is denoted by P(G). It should be noted
that this set also contains the nodes V .
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10.4.1 The Single Facility Ordered Median Problem

In this section we deal with the simplest version of the ordered median problem on
networks where just a single location is to be placed. In order to do that, we consider
the following notation. Let

d(x) := (w1d(v1, x), . . . , wnd(vn, x))

and

d≤(x) := (w(1)d(v(1), x), . . . , w(n)d(v(n), x))

a permutation of the elements of d(x), verifying

w(1)d(v(1), x) ≤ w(2)d(v(2), x) ≤ . . . ≤ w(n)d(v(n), x).

For the sake of simplicity, let d(i)(x) := w(i)d(v(i), x). The ordered median
problem on N is defined as

fλ(d(x)) :=
n∑

i=1

λid(i)(x) with λ = (λ1, . . . , λn) ≥ 0 , (10.27)

and

M(λ) := min
x∈P(G)

fλ(d(x)). (10.28)

In this section we state the fundamental properties of Problem (10.28). We
will present a localization result which generalizes the well-known results by
Hakimi on finite dominating sets for the center and median problems on networks
(Hakimi 1964) and gives some insight in the connection between median and center
problems.

For all vi, vj ∈ V, i �= j define

EQij := {x ∈ P(G) : wid(vi, x) = wjd(vj , x)} (10.29)

and let EQ := ⋃{EQij : i, j with i �= j}.
The points in EQ are called equilibria points of N . Two points a, b ∈ EQ are

called consecutive, if there is no other c ∈ EQ on the shortest path between a

and b. The points in EQ establish a partition on N with the property that for two
consecutive elements a, b ∈ EQ the permutation which gives the order of the vector
d≤(x) is the same for all x ∈ [a, b].

Now we will give a finite dominating set (FDS) for the optimal locations of
Problem (10.28), see Nickel and Puerto (1999) for further details.
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Theorem 10.6 An optimal solution for Problem (10.28) can always be found in the
set Cand := EQ ∪ V .

Proof Starting from the original graph G, build a set of new graphs G1, . . . ,GK

by inserting all points of EQ as new nodes. Now every subgraph Gi is defined by
either

I. Two consecutive elements of EQ on an edge or
II. An element vi ∈ V \EQ and the adjacent elements of EQ

and the corresponding edges. In this situation for every subgraph Gi the permutation
of d≤(x) is constant (by definition of EQ). Therefore for all x ∈ P(Gi) we have

n∑

i=1

λid(i)(x) =
n∑

i=1

λiwπ(i)d(vπ(i), x) ,

where π ∈ P(1, . . . , n), and P(1, . . . , n) is defined as the set of all permutations of
{1, . . . , n}. Therefore we can replace the objective by a classical median-objective.
Now we can apply Hakimi’s node dominance result in every Gi and the result
follows. �	

Theorem 10.6 also gives rise to some geometrical subdivision of the network
N . Like indicated in the proof of Theorem 10.6 we can assign to every subgraph
Gi, i = 1, . . . , k a n-tuple giving in the i-th position the i-th nearest vertex to all
points in Gi . As an example we have in Fig. 10.2 a graph with 3 nodes and all
weights wi and all lengths are 1.

This partition can be seen as a kind of higher order Voronoi diagram of N quite
related to the Voronoi partition of networks introduced in Hakimi et al. (1992).

For algorithmic purposes one should note that the set EQ can be computed by
intersection of all distance functions, see (10.26), on all edges. Since a distance
function has maximally one breakpoint on every edge we can use a line sweep

Fig. 10.2 A 3-node network
with EQ = {EQ12, EQ13,

EQ23, v1, v2, v3} and the
geometrical subdivision
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technique to determine EQ on one edge in O((n + k) log n), where k ≤ n2 is
the number of intersection points. Therefore we can compute EQ for the whole
network in O(m(n+k) log n) time. Of course, this is a worst-case bound and the set
of candidates can be further reduced by some domination arguments: Take for two
candidates x, y the corresponding weighted (and sorted) distance vectors d≤(x),
d≤(y). If d≤(x) is in every component strictly smaller than d≤(y) then there is
no positive λ with which fλ(d(y)) ≤ fλ(d(x)). This domination argument can
be integrated in any line sweep technique reducing, in most cases, the number of
candidates.

Example 10.3 Consider the network given in Fig. 10.3 with w1 = w2 = w5 = 1
and w3 = w4 = w6 = 2. Table 10.3 lists the set EQ, where the labels of the rows
EQij indicate that i, j are the vertices under consideration and the columns indicate

Fig. 10.3 A 6-node network
used in Example 10.3 where
the numbers on the edges
represent their length
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v4 v5

v63
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Table 10.3 List of the set EQ for Example 10.3

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {2, 5} {3, 5} {3, 6} {4, 5} {5, 6}
EQ12

1
2

2
3

5
6

2
3

1
2

EQ13
2
3

4
9

2
3

1
2

EQ14 1 2
3 0 0 8

9
8
9

1
6

EQ15
5
6

1
2

1
6

1
6

1
2

EQ16 1 1 8
9

8
9 0 5

6

EQ23
1
3

2
3

2
3

1
2

EQ24
2
3

2
3

1
2

EQ25 [ 3
4 , 1] 1 1

2 0 0 1
4

EQ26
2
3

8
9

1
3

1
6

EQ34
1
4

1
6

1
3

5
6

1
4

EQ35
1
6

1
9

1
3

1
3 1 1

EQ36 [ 5
6 , 1] 1 1

3
5
6

1
2 0

EQ45
1
2

1
3

1
3

1
9

1
3

EQ46 0 0 0 1
2 [ 2

3 , 1] [ 2
3 , 1] 1 0

EQ56
1
2

2
3

1
9

2
3
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the edge e = {r, s}. The entry in the table gives for a point x = (e, t) the value of t

(if t is not unique an interval of values is shown).
Now we only have to evaluate the objective function with a given set of λ-values

for EQ and determine the optima. Table 10.4 gives the solutions for some specific
choices for λ. To describe the solution set we use the notation EQ

ij
kl to denote the

part of EQkl which lies on the edge {i, j}.
Kalcsics et al. (2002) gives an FDS for the single facility ordered median problem
with general node weights, i.e., the w-weights can be negative. Moreover, for the
case of a directed network with non-negative w-weights, they prove that there is
always an optimal solution in V .

10.4.2 The p-Facility Ordered Median Problem

In this section we deal with the multi-facility extension of the ordered median
problem. The p-facility ordered median problem consists of finding a set Xp =
{x1, . . . , xp} that minimizes the following objective function

minimizeXp

n∑

i=1

λid(i)(Xp) (10.30)

where d(v,Xp) := mini=1,...,p d(v, xi) for all v ∈ V ; d(Xp) := (w1d(v1, Xp), . . . ,

wnd(vn,Xp)) and d≤(Xp) := (w(1)d(v(1), Xp), . . . , w(n)d(v(n), Xp)) a permuta-
tion of the elements of d(Xp), verifying:

w(1)d(v(1), Xp) ≤ . . . ≤ w(n)d(v(n), Xp).

The main result of this section establishes a generalization of the well-known
theorem of Hakimi which states that always exists an optimal solution in V .

Theorem 10.7 If λ1 ≥ λ2 ≥ . . . ≥ λn then Problem (10.30) has always an optimal
solution X∗

p contained in V .

Proof Since by hypothesis λ1 ≥ λ2 ≥ . . . ≥ λn we have that

dλ(d(Xp)) =
n∑

i=1

λid(i)(Xp) = minimize{
n∑

i=1

λidπ(i)(Xp) : π ∈ �({1, . . . , n})}.

Assume that Xp �⊂ V . Then there must exist xi ∈ Xp with xi �∈ V . Let e = {v,w}
be the edge containing xi and �(e) its length. Denote by Xp(s) = Xp \ {xi}∪ {x(s)}
where x(s) is the point on e with d(v, x(s)) = s, s ∈ [0, l(e)].
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The function g defined as g(s) = ∑n
i=1 λid(i)(Xp(s)) is concave for all s ∈

[0, �(e)] because it is the composition of a concave and a linear function, i.e.,

g(s) = min
π∈�({1,...,n})

{
n∑

i=1

λidπ(i)(Xp(s))

}

and each

dπ(j)(Xp(s)) = min{d(vπ(j), x1), . . . , min{d(vπ(j), a) + s, d(vπ(j), b) + �(e) − s}, . . . ,
d(vπ(j), xn)}

is concave. Hence, g(s) = F(Xp(s)) ≥ min{F(Xp(0)), F (Xp(�(e))} and the new
solution set Xp(s) contains one vertex of V instead of xi . Repeating this scheme a
finite number of times the result follows. �	

In the previous section we proved that the set V ∪ EQ always contains the set of
optimal solutions of the single facility problem (independent of the structure of λ).
It may seem natural to expect that the same result holds for the p-facility case as it
happens for the p-center problem. However, Example 10.4 shows that this property
fails to be true.

This easy example shows the limit for the set Cand = V ∪EQ to be a FDS (finite
dominating set) for the multifacility extension of our model. In the literature we
can find some characterizations of FDS for particular cases of the p-facility ordered
median problem. For instance, Kalcsics et al. (2003) studies the multifacility ordered
median problem where the λ-weights are defined as:

a = λ1 = . . . = λk �= λk+1 = . . . = λn = b,

for a fixed k, such that, 1 ≤ k < n. They prove that the set Y , defined by (10.31), is
a FDS for this problem.

However, none of these papers deals with the general case of the multifacility
ordered median problem. In fact, these papers impose very restrictive hypotheses
such that their respective results can not be extended further, see Puerto et al. (2018)
for an updated review. In the following section we characterize a FDS for the general
2-facility ordered median problem.

10.4.2.1 A Finite Set of Candidates for the Two Facility Case

In this section we identify a finite set of candidates to be optimal solutions of the
2-facility ordered median problem. In order to consider the set of equilibrium points
as a finite set we will assume that EQ only contains the equilibrium points that are
isolated and the extreme points of the subedges in equilibrium, see Rodríguez-Chía
et al. (2005) for further details.



10 Ordered Median Location Problems 287

Theorem 10.8 Consider the following sets:

R = {r : r = wid(vi, y), vi ∈ V, y ∈ V ∪ EQ},
Y (r) = {y ∈ P(G) : wid(vi, y) = r, vi ∈ V } with r ∈ R,

Y =
⋃

r∈R

Y (r), (10.31)

T = {X2 = (x1, x2) ∈ P(G) × P(G) : ∃vr , vs served by x1 and vr ′ , vs′ served
by x2, such that wrd(vr , x1) = wr ′d(vr ′ , x2) and wsd(vs, x1) = ws′d(vs′ , x2).
Moreover, if wr = wr ′ and ws = ws′ , then the slopes of the functions d(vr , ·) and
d(vs, ·), in the edge that x1 belongs to, must have the same (different) signs at x1
and the slopes of the functions d(vr ′ , ·) and d(vs′ , ·), in the edge that x2 belongs to,
must have different (the same) signs at x2 }.

F = ((EQ ∪ V ) × Y ) ∪ T ⊂ P(G) × P(G). (10.32)

The set F is a finite set of candidates to be optimal solutions of the 2-facility ordered
median problem in the network N .

Remark 10.1 The structure of the set F is different from previous FDS which
appeared in the literature. Indeed, the set F is itself a set of candidates for optimal
solutions because it is a set of pairs of points. That means that we do not have to
choose the elements of this set by pairs to enumerate the whole set of candidates.
The candidate solutions may be either a pair of points belonging to (EQ ∪ V ) × Y

or a pair belonging to T , but they never can be one point of Y and another point of
any pair in T .

The following examples show that the set F can not be shrunk because even in
easy cases on the real line all the points are needed. The first example shows a graph
where the optimal solution X2 = (x1, x2) verifies that x1 is an equilibrium point
and x2 is not an equilibrium point which belongs to Y (r) \ (EQ ∪ V ) for a given r .
In the second example the optimal solution X2 = (x1, x2) belongs to the set T .

Example 10.4 Let N = (G, �) be a network with underlying graph G = (V ,E)

where V = {v1, v2, v3, v4} and E = {{1, 2}, {2, 3}, {3, 4}}. The length function is
given by �({1, 2}) = 3, �({2, 3}) = 20, �({3, 4}) = 6. The w-weights are all equal
to one and the λ-weights are λ1 = 0.1, λ2 = 0.2, λ3 = 0.4, λ4 = 0.3, see Fig. 10.4.

It should be noted that this example can not have optimal solutions on the edge
{2, 3} because any point of this edge is dominated by v2 or v3. In addition, using the
symmetry of the problem we have omitted the evaluation of some of the elements
of Y .

In this example the optimal solution is given by x1 = p({1, 2}, 1.5) and x2 =
p({3, 4}, 1.5) (see Table 10.5). It is easy to check that x1 is an equilibrium point
between v1 and v2, and x2 ∈ Y (1.5). It is worth noting that the radius 1.5 is given
by the distance from the equilibrium point, p({1, 2}, 1.5), generated by v1 and v2 to
any of these nodes.
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| |
3 20 6

| |

v1 v2 v3 v4

Fig. 10.4 Network of Example 10.4 where the dots, the ticks and the small ticks are the nodes,
the equilibrium points and the elements of Y, respectively. Observe that in this case there are no
pairs in T

Table 10.5 Evaluation of the candidate pairs of Example 10.4

Candidate pair X2 Value Candidate pair X2 Value

p({1, 2}, 0), p({3, 4}, 0) 3 p({1, 2}, 1.5), p({3, 4}, 0) 2.7

p({1, 2}, 0), p({3, 4}, 1.5) 2.85 p({1, 2}, 1.5), p({3, 4}, 1.5) 2.4

p({1, 2}, 0), p({3, 4}, 3) 2.7 p({1, 2}, 1.5), p({3, 4}, 3) 2.55

| | |
5 20 5.1 1

| | | | | |
v1 v2 v3 v4 v5

Fig. 10.5 Network of Example 10.5 where the dots, the ticks, the small ticks and the stars are the
nodes, the equilibrium points, the elements of Y and T , respectively. By domination and symmetry
arguments not all the candidates are necessary and therefore, they are not depicted

Table 10.6 Evaluation of the candidate pairs of Example 10.5

Candidate pair X2 Value Candidate pair X2 Value

p({1, 2}, 0), p({3, 4}, 0) 11.81 p({1, 2}, 2.05), p({3, 4}, 3.05) 8.455

p({1, 2}, 0), p({3, 4}, 2.55) 11.6 p({1, 2}, 2.45), p({3, 4}, 2.55) 9.005

p({1, 2}, 0), p({3, 4}, 3.05) 10.6 p({1, 2}, 2.5), p({3, 4}, 0) 14.31

p({1, 2}, 0), p({4, 5}, 0) 10.61 p({1, 2}, 2.5), p({3, 4}, 2.5) 9.06

p({1, 2}, 0), p({4, 5}, 0.5) 11.66 p({1, 2}, 2.5), p({3, 4}, 2.55) 8.955

p({1, 2}, 0), p({4, 5}, 1) 11.71 p({1, 2}, 2.5), p({3, 4}, 2.6) 8.95

p({1, 2}, 0.5), p({4, 5}, 0.5) 11.16 p({1, 2}, 2.5), p({3, 4}, 3.05) 8.905

p({1, 2}, 1), p({4, 5}, 0) 10.61 p({1, 2}, 2.5), p({3, 4}, 3.6) 8.96

p({1, 2}, 1), p({4, 5}, 1) 11.71 p({1, 2}, 2.5), p({4, 5}, 0) 9.11

p({1, 2}, 1.45), p({3, 4}, 2.55) 10.005 p({1, 2}, 2.5), p({4, 5}, 0.5) 9.16

p({1, 2}, 1.95), p({3, 4}, 3.05) 8.455 p({1, 2}, 2.5), p({4, 5}, 1) 10.21

p({1, 2}, 2), p({3, 4}, 3.1) 8.41

Example 10.5 Let N = (G, �) be a network with underlying graph G = (V ,E)

where V = {v1, v2, v3, v4, v5} and E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}}. The length
function is given by �({1, 2}) = 5, �({2, 3}) = 20, �({3, 4}) = 5.1, �({4, 5}) = 1.
The w-weights are all equal to one and the λ-weights are λ1 = 0, λ2 = 1, λ3 =
0, λ4 = 1, λ5 = 1.1, see Fig. 10.5.

In this example the optimal solution is given by x1 = p({1, 2}, 2) and x2 =
p({3, 4}, 3.1) (see Table 10.6). Therefore the optimal pair (x1, x2) belongs to the
set T . Indeed, d(v1, x1) = d(v4, x2) and d(v2, x1) = d(v5, x2) and the slopes of
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d(v1, ·), d(v2, ·) in the edge {1, 2} at x1 are 1,−1 respectively; and the slopes of
d(v4, ·), d(v5, ·) in the edge {3, 4} at x2 are −1,−1 respectively.

Once we have proved that F is an essential set to describe the set of optimal
solutions of the 2-facility ordered median problem we want to know its cardinality.

Proposition 10.2 The cardinality of F is O(m3n6).

Proof In each edge there are at most two equilibrium points associated with each
pair of nodes. Thus |EQ| = O(mn2) and |R| = O(mn3). The maximum degree of
a node vi ∈ V is m (the star network) so |Y (r)| = O(mn) with r ∈ R. Thus, |Y | =
O(m2n4). On the second hand, on each edge, each pair of nodes may determine
an element of a pair in T . Therefore, the set T has a cardinality O((n2m)2). In
conclusion |F | = O(m3n6 + m2n4) = O(m3n6). �	

It is worth noting that F is an actual set of finite elements to be optimal solutions
of Problem (10.30). The difference with previous approaches is that this set is not a
set of candidates for each individual facility but it is the set of candidate pairs to be
optimal solutions.

10.4.2.2 A Discouraging Result for the p-Facility Case

It is well-known that FDS of polynomial size exist for the classical p-median, p-
center, p-centdian and p-k-centrum problems (see Hooker et al. 1991; Kalcsics et al.
2003). In addition, our previous section has shown a finite set of candidates to be
optimal solutions of the 2-facility ordered median problem in a network. However,
despite the similarity existing between those problems and the general p-facility
ordered median problem, these results can not be extended to our model.

The reason for this is the following. For the 1-facility ordered median problem
we have that the set of candidates to be optimal solutions is EQ, that means, the
equilibrium points (see Nickel and Puerto 1999). For the 2-facility ordered median
problem we have obtained that the set of candidates to be optimal solutions is EQ×
Y ∪T , that means, the points generated by the distances between each node and each
equilibrium point and the set T. It should be noted that in this case we have added
these points because there may exist ties which do not allow to move the service
facility improving the objective function. In the 3-facility ordered median problem,
the previous candidate set is not enough because if x1 ∈ EQ and x2 ∈ Y \ EQ, the
distances between each node and x2 do not need to be included in the set of radius,
R. Therefore, it may occur that there exists a tie between two nodes and the service
facilities x2 and x3 respectively, so that there is no movement of the facilities at x2
and x3 which improves the objective function (see Example 10.6).

Example 10.6 Let N = (G, �) be a network with underlying graph G = (V ,E)

where V = {v1, v2, v3, v4, v5, v6} and E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}}.
The length function is given by �({1, 2}) = 3, �({2, 3}) = 50, �({3, 4}) =
6, �({4, 5}) = 50, �({5, 6}) = 10. The w-weights are all equal to one and the λ-
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| | |
3 50 6 50 10

| | |||
v1 v2 v3 v4 v5 v6

Fig. 10.6 Network of Example 10.6, using the same notation as in Fig. 10.4

modeling weights are λ1 = 0.1, λ2 = 0.2, λ3 = 0.4, λ4 = 0.3, λ5 = 0.6, λ6 =
0.55, see Fig. 10.6.

In this example the optimal solution is given by x1 = p({1, 2}, 1.5), x2 =
p({3, 4}, 1.5) and x3 = p({4, 5}, 4.5) (see Table 10.7). It can be seen that x1 is
an equilibrium point, x2 ∈ Y (1.5) and x3 neither belongs to Y nor is a component
of a pair of T .

This example illustrates that in order to obtain the optimal solution for the 3-
facility problem new points have to be added. Our conjecture is that these points can
be generated using recursively the construction of the set of radii but now regarding
the distances from the points in π2(F ) := {x2 : (x1, x2) ∈ F }, that is, the points in
P(G) which correspond to the second candidate of any pair in F , and the node set:

R1 = {r : r = wid(vi, y), vi ∈ V, y ∈ π2(F )},
Y1(r) = {y : y ∈ P(G),wid(vi, y) = r, vi ∈ V },

Y1 =
⋃

r∈R1

Y1(r).

The same situation occurs in the p-facility case, so that in general this construc-
tion must be repeated p-times in order to obtain a finite candidate set to be optimal
solutions for that problem. Therefore the structure of the candidate set defined in
the previous section depends on the number of facilities to be located. Actually,
Puerto and Rodríguez-Chía (2005) prove that there is no polynomial size FDS for
the general ordered p-median problem even on path networks. The proof consists
of building a family of O(nn) problems on the same graph with different solutions
(each solution contains at least one point not included in the remaining), n being the
number of nodes.

For the case of locating extensive facilities on the line, in Rozanov and Tamir
(2018), it is proved a nestedness property (given any two facility lengths t1, t2, 0 ≤
t1 < t2, there is an optimal solution with length t1 which lies within some optimal
solution with length t2). In addition, in Schnepper (2017), Schnepper et al. (2019),
it is analyzed the p-k-max problem on networks, a particular case of the ordered
median problem. The reader is referred to Puerto et al. (2018) for an updated review
of results on location of extensive facilities on networks.
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10.5 The Capacitated Discrete Ordered Median Problem

In this section our goal is to introduce the family of discrete ordered median location
problems. As we have seen in previous sections, the main feature of these models
is their flexibility to generalize the most popular objective functions studied in the
location analysis literature and to allow modeling a wide variety of new problems
appearing in logistics and manufacturing.

The uncapacitated version of the discrete ordered median location problem has
been analyzed in several papers, Boland et al. (2006), Nickel (2001), Nickel and
Puerto (2005), Marín et al. (2009, 2010), Puerto et al. (2011, 2013), Labbé et al.
(2017), Deleplanque et al. (2018), and different formulations and algorithms to
solve medium sized problems have been developed. Recently, these models were
extended to deal with capacities in Kalcsics et al. (2010a,b). However, although the
approach in the initial papers leads to satisfactory results concerning motivations,
applications and interpretations the solution times of larger problem instances need
further improvements.

The goal of this section is to present, first, an intuitive formulation of the
problem based on three-indexed variables, see Boland et al. (2006); and second,
a formulation which makes use of the coverage ideas in Marín et al. (2009,
2010), applied to the capacitated version of the Discrete Ordered Median Problem,
CDOMP, with binary assignment, see Puerto (2008), Puerto et al. (2011, 2013).
To perform this task, first we introduce the Capacitated Discrete Ordered Median
Problem formally and give these two mathematical programming formulations.
Then, the last part of this section is devoted to test the efficiency of the last approach
by providing some preliminary numerical experiments.

10.5.1 A Three-Index Formulation

In order to introduce this formulation let A denote the given set of n sites and
identify these with the integers 1, . . . , n, i.e., A = {1, . . . , n}. We assume without
loss of generality that the set of candidate sites for new facilities is identical to the set
of clients. Let C = (cij )i,j=1,...,n be the given non-negative n×n cost matrix, where
cij denotes the cost of satisfying the demand of client i from a facility located at site
j . Let p ≤ n be the number of facilities to be located. Each client i has a demand ai

that must be served and each server j has an upper bound bj on the capacity that it
can fulfill. We assume further that assignment is binary, that is, the demand of each
client must be served by a unique server.

A solution to the location problem is given by a set of p sites; we use X ⊆ A,
with |X| = p, to denote a solution. Then, the problem consists of finding the set of
sites X with |X| = p, which can supply the overall demand at a minimum cost with
respect to the ordered median objective function.
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A natural way to attack the formulation of the discrete ordered median problem
is to use variables that keep track of the order of the transportation costs from each
client and its server. This approach gives rise to a formulation with three-index
variables, one for the order and the remaining two indices, for the client-server
allocation. In order to formulate this model we consider a set of λ-weights, where λi

can be seen as a correction factor to the ith-position with i = 1, . . . , n. In addition,
we define the following set of variables:

xk
ij =

⎧
⎨

⎩

1, if client i is supplied by server j and is the k-th
cheapest cost allocation

0, otherwise,
i, j, k = 1, . . . , n,

yj =
{

1, if the server at j is open
0, otherwise,

j = 1, . . . , n.

Hence, the formulation of the model is:

minimize
n∑

i=1

n∑

j=1

n∑

k=1

λkcij x
k
ij (10.33)

subject to
n∑

j=1

n∑

k=1

xk
ij = 1, i = 1, . . . , n (10.34)

n∑

i=1

n∑

j=1

xk
ij = 1, k = 1, . . . , n (10.35)

n∑

i=1

n∑

k=1

aix
k
ij ≤ bjyj , j = 1, . . . , n, (10.36)

n∑

j=1

yj = p, (10.37)

n∑

i=1

n∑

j=1

cij x
k
ij ≤

n∑

i=1

n∑

j=1

cij x
k+1
ij , k = 1, . . . , n − 1. (10.38)

xk
ij ∈ {0, 1}, i, j, k = 1, . . . , n; (10.39)

yj ∈ {0, 1}, j = 1, . . . , n . (10.40)

The objective function accounts for the weighted sum of the transportation
cost using the lambda parameters. Constraints (10.34) ensure that each origin
site i is allocated exactly to one server j . Constraints (10.35) guarantee that any
position in the sorted vector of client-server costs is allocated to just one pair.
Constraints (10.36) are the capacity constraints and also ensure that one origin
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may be allocated to a specific server only if it is open. Constraint (10.37) fixes
the number of facilities to be located. Finally, constraints (10.38) ensure that the
transportation cost assigned to the k-position is smaller than the one assigned to the
(k + 1)-position.

10.5.2 A Covering Formulation and Some Properties

In this subsection, we introduce a formulation for the binary assignment capacitated
discrete ordered median problem based on covering variables. This formulation was
first presented in Puerto (2008).

We first define H as the number of different non–zero elements of the cost matrix
C. Hence, we can order the different values of C in non–decreasing sequence:
c(0) := 0 < c(1) < c(2) < · · · < c(H) := max1≤i,j≤n{cij }.

Given a feasible solution, we can use this ordering to perform the sorting process
of the allocation costs. This can be done by the following variables (j = 1, . . . , n

and k = 1, . . . , H ):

ujk :=
{

1, if the j–th smallest allocation cost is at least c(k),

0, otherwise.
(10.41)

With respect to this definition the j–th smallest cost element is equal to c(k) if
and only if ujk = 1 and uj,k+1 = 0. Therefore, we can reformulate the objective
function of the CDOMP (i.e., the capacitated ordered median problem), using the
variables ujk , as

∑n
j=1

∑H
k=1 λj · (c(k) − c(k−1)) · ujk.

First of all, we need to impose the following group of sorting constraints on the
ujk–variables: uj+1,k ≥ ujk, j = 1, . . . , n − 1; k = 1, . . . , H . To guarantee
that exactly p servers will be opened among the n possibilities, we consider
constraint (10.37) defined in the previous formulation.

Then, we need to ensure that demand and capacities are satisfied. For these
reasons we introduce: (1) the variables xij (binary allocation) :

xij =
{

1, if the client i is allocated to server j

0, otherwise
(10.42)

and (2) the constraints
∑n

j=1 xij = 1, i = 1, . . . , n (each client is just assigned to
one server) and

∑n
i=1 aixij ≤ bjyj , j = 1, . . . , n (all the demand and capacity

requirements must be satisfied and clients can only be assigned to servers which are
open).

In addition, the relationship that links the variables u and x is:
∑n

j=1 ujk =∑n
i=1

∑
j :cij ≥c(k)

xij . The meaning being clear. The number of allocations with a
cost at least c(k) must be equal to the number of servers that support demand from
facilities at a cost greater than or equal to c(k).
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Summing up all these constraints and the objective function, the CDOMP can be
formulated as

minimize
n∑

j=1

H∑

k=1

λj (c(k) − c(k−1))ujk (10.43)

subject to
n∑

j=1

xij = 1, i = 1, . . . , n (10.44)

n∑

i=1

aixij ≤ bjyj , j = 1, . . . , n, (10.45)

xij ≤ yj i, j = 1, . . . , n (10.46)

n∑

j=1

yj = p (10.47)

n∑

j=1

ujk =
n∑

i=1

∑

j=1...,n
cij ≥c(k)

xij , k = 1, . . . , H (10.48)

uj+1k ≥ ujk, j = 1, . . . , n − 1; k = 1, . . . , H (10.49)

ujk ∈ {0, 1}, j = 1, . . . , n; k = 1, . . . , H (10.50)

xij , yj ∈ {0, 1}, i, j = 1, . . . , n; (10.51)

Since the proposed formulation contains O(nH) binary variables and O(nH)

constraints, fast solution times for larger problem instances, using standard software
tools, are very unlikely. In this sense, the following proposition states that we can
relax the yj variables to be continuous and the solution will not change.

Proposition 10.3 (CDOMP) admits a formulation with yj ∈ [0, 1] and for each
optimal solution of the relaxed problem one can obtain an optimal solution of the
original problem.

Proof Use (10.46) and (10.47) to ensure that any fractional y solution can be
modified to be binary and feasible without increasing the objective value.

�	
The above formulation admits some valid inequalities that, at times, reinforce the

linear relaxation improving the lower bound and reducing the computation time to
solve the problem. In the following, we list three families of them.

The first one are the natural inequalities ujk ≥ ujk+1, j = 1, . . . , n, k =
1, . . . , H − 1. They come from the fact that the rows of the u-matrix are sorted. We
have observed in our experiments that these constraints are not always satisfied by
the optimal solution of the linear relaxation and thus they are useful in improving the
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formulation. This family of inequalities were introduced in Marín et al. (2009) for
tightening the formulation of the Uncapacitated Discrete Ordered Median Problem.

Our next set of inequalities state that the number of assignments done by the
x-variables at a cost at least c(j) for clients in S cannot exceed the number of
ones in the last |S| = r rows of the j -th column of the u-matrix. Then, if there
are r allocations of demand points in S at a costs at least c(j), since the columns
in the u-matrix are ordered in non-decreasing sequence, we get the following:∑

i∈S

∑
k:cik≥c(j)

xik ≤ ∑n
i=n−r+1 uij , ∀ S ⊆ {1, . . . , n}, |S| = r, r =

1, . . . , n, j = 1, . . . , H. Note that there is an exponential number of inequalities
in this family.

Another set of valid inequalities are those stating that either client i is allocated
at a cost at least c(k) or there must exist an open server j such that the allocation
cost of client i is smaller than c(k). This results in:

∑
j :cij ≥c(k)

xij +∑
j :cij <c(k)

yj ≥
1, i = 1, . . . , n.

In addition, we mention the staircase inequalities introduced by Labbé et al.
(2017), where several new formulations for the Uncapacitated Discrete Ordered
Median Problem (DOMP) based on its similarity with some scheduling problems
are presented (some of them with a considerably smaller number of constraints ).

The rest of this section presents some computational results for this formulation
of the capacitated discrete ordered problem. We restrict ourselves to consider just
the second formulation, because although the first one is very intuitive and good
to have a better understanding of the problem, its running times are much bigger
than those obtained by the second one, see e.g., Puerto (2008). In order to test the
performance of the considered formulation, we report on an experimental design
that consists of the following factors: (1) Size of the problem: The number of sites,
n, determines the dimensions of the cost matrix and the λ vectors. Moreover, it is an
upper bound of the number of suppliers (p) to be located. We consider five different
levels of n = 10, 20, 30, 40, 60. (2) Number of suppliers: p is the second factor
with three levels for each choice of n: p = �n/5�+1, �n/2�, 4×�n/5�. (3) Type of
problem: Each λ-vector is associated with a different objective function. Its levels
are designed depending on the value of n as follows: (a) λ-vector corresponding
to the p-median problem, i.e., λ = (1, . . . , 1) ∈ R

n; (b) λ-vector corresponding
to the p-center problem, i.e., λ = (0, . . . , 0, 1) ∈ R

n; (c) λ-vector corresponding
with the �n/4�-centrum problems; and (d) λ-vector corresponding to the (k1, k2)-
trimmed mean problem, i.e., λ = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0) ∈ R

n where
k1 = �0.2n�, k2 = �0.2n�. (4) Demand of facilities: Each demand is considered
integer and uniformly drawn from [10, 20]. (5) Capacity of suppliers: We con-
sider that the capacities are uniformly discrete random variables in the interval
[1.1

∑n
i=1 ai/p, 1.4

∑n
i=1 ai/p]. This choice ensures feasibility of the considered

problems. (6) Transportation cost: We assume free self service and integer costs.
The values cij , i �= j , are drawn uniformly in [0, 200].

We solve five instances for each possible combination of levels and we report
the average and maximum: running time, gap at the root node and number of nodes
in the branch-and-bound tree for this formulation. All computational studies were



10 Ordered Median Location Problems 297

performed on a PC with a Genuine Intel(R) CPU U4100 with two processors at
1.30 GHz and 4 GB of RAM. To solve the different instances of the problems
we used XPRESS-IVE solver version 7.5, with a code implemented in XPRESS-
MOSEL version 3.4.2.

The information of our computational test is reported in Table 10.8 that sum-
marizes the results for the four considered problems types. The organization of
the table is the following: columns show the results for the different sizes of n

and p. A superindex in some values of p states the number of instances for the
corresponding combination of n and p exceeding the CPU time limit (1 h). Each
block of rows reports the results of the instances based on the formulation (10.43)–
(10.51). Within each block of rows we report on the gap at the root node [average
(Ag) and maximum (Mg)], CPU time to solve the integer problems [average (At)
and maximum (Mt)] and number of nodes in the branch-and-bound tree [average
(An) and maximum (Mn)].

We observe, from the results in Table 10.8 that we could solve most of the
instances, even medium sized n = 60, within 1 h of CPU time. This fact shows a
good performance of the formulation. In addition, it is worth noting that the quality
of the lower bounds provided by this formulation depends on the type of problem.
In general, the lower bounds are rather poor for larger values of p relative to n. On
the other hand, for small to medium values of p relative to n the performance of
the lower bounds are good for median and trimmed mean problems, reasonable for
k-centrum (less than 50%) and poor for the center problem. These results show that
there is room for further investigation on the polyhedral structure of this formulation
in order to develop valid inequalities that could be integrated in a Branch and Cut
algorithm to solve faster and hence larger problem sizes.

In conclusion, the formulation of the CDOMP based on covering, (10.43)–
(10.51), is a promising approach. Moreover, it can be also strengthen with known
valid inequalities, as for instance in Puerto et al. (2011), leading to solve larger
problem sizes of capacitated discrete ordered median problems.

Finally, we would like to mention that two ad-hoc solution procedures have
been developed for the uncapacitated DOMP, the first one based on a parallelized
Lagrangian relaxation approach, see Redondo et al. (2016) and the second one
is a Branch-Price-and-Cut procedure, see Deleplanque et al. (2018). These two
approaches could also be adapted to tackle the capacitated version of this problem.

10.6 Conclusions

This chapter provides an overview of the ordered median function and its corre-
sponding Ordered Median Location Problem as a powerful tool from a modeling
point of view within the area of Location Analysis. We have included some of their
most important insights considering three different solution spaces: continuous,
networks and discrete. Our goal has been to structure this chapter as an useful tool
for those readers that wish to start the study of the ordered functions and their related
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ordered median location problems. Moreover, the extensive list of references that
have been included may result in an interesting source, for expert readers, to carry
out a deeper study of this topic.
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