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Preface

The first edition of the book Location Science was published as a response to a
need expressed by the location science community to have a comprehensive book
covering all main aspects in the field. The book was highly successful and its
chapters have been downloaded more than 50,000 times. Given this success, we
decided to publish the second edition.

The first edition contained 24 chapters and 644 pages. In this second edition,
we decided to remove some chapters that were not central to the field of location
science in order to add new topics. We also modified other chapters to better reflect
the evolution of the field. All remaining chapters were updated. The result is a much
improved book with 26 chapters and 788 pages.

We thank all the authors who accepted our challenge to be involved in the second
edition of the book. Their commitment, dedication, and enthusiasm will certainly
guarantee that this new edition will be as successful as the previous one.

Finally, we thank Mr Christian Rauscher and the Springer staff for their help and
encouragement throughout this project.

Montréal, QC, Canada Gilbert Laporte
Karlsruhe, Germany Stefan Nickel
Lisbon, Portugal Francisco Saldanha da Gama
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Chapter 1
Introduction to Location Science

Gilbert Laporte, Stefan Nickel, and Francisco Saldanha-da-Gama

Abstract This chapter introduces modern Location Science. It traces the roots of
the area and describes the path leading to the full establishment of this research
field. It identifies several disciplines having strong links with Location Science
and offers examples of areas in which the knowledge accumulated in the field of
location has been applied with great success. It describes the purpose and structure
of this volume. Finally, it provides suggestions on how to make use of the contents
presented in this book, namely for organizing general or specialized location courses
targeting different audiences.

1.1 Introduction

Since the 1960s, Location Science has become a very active research area, attracting
the attention of many researchers and practitioners. Facility location problems lie at
the core of this discipline. These consist of determining the “best” location for one
or several facilities or equipments in order to serve a set of demand points. The
meaning of “best” depends on the nature of the problem under study, namely in
terms of the constraints and of the optimality criteria considered.
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Location Science is a rich and fruitful field, gathering a large variety of problems.
The research conducted in this area has led to the creation of a considerable amount
of knowledge, both in terms of theoretical properties and modeling frameworks,
together with solution techniques. This knowledge has evolved over time, pushed
by the need to solve practical location problems, by technical and theoretical
challenges, and often by problems arising in various disciplines. In fact, the
interaction with other disciplines such as economics, geography, regional science
and logistics, just to mention a few, has always been a driving force behind the
development of Location Science. Nowadays, the potential of this field of study
in the context of many real-world systems is widely recognized. This book emerges
from the need to gather in a single volume the basic knowledge on Location Science
as well as from the importance of somehow structuring the field and showing how
it interacts with other disciplines.

In this introductory chapter we start by tracing the roots of what is now known
as Location Science. This is done is Sects. 1.2 and 1.3. In Sect. 1.4 we present the
purpose and structure of this book. Finally, in Sect. 1.5 we provide some suggestions
on how to make the best use of the book.

1.2 The Roots

In order to trace the roots of modern Location Science, one must go back to an old
geometric problem which is simple to state: What is the point in the Euclidean
plane minimizing the sum of its distances to three given points (Fig. 1.1)? This
problem is widely credited to the French mathematician Pierre de Fermat (1601–
1665)1 although its origin is a matter of debate (see Wesolowsky 1993).

Since the seventeenth century, different solutions have been proposed for Fer-
mat’s problem. There is evidence that the first one is due to the Italian scientist
Evangelista Torricelli (1608–1647). The geometric approach proposed by Torricelli
is depicted in Fig. 1.2 and can be described as follows: By joining the three given
points with line segments, a triangle is obtained. Equilateral triangles can now
be constructed on the sides of this triangle, their vertices pointing outwards. A
circumscribing circle can then be drawn around each of these three triangles. The
circles will intersect in a single point called the Torricelli point or, as some authors
call it, the Fermat–Torricelli point. If all the angles in the initial triangle are at
most equal to 120◦, this point is the optimal solution to the problem; otherwise,
the Torricelli point falls outside the initial triangle. In this case, the optimal solution
is the initial point located at the apex of the angle greater than 120◦ (Heinen 1834).

It is interesting to note that nowadays this problem and its extensions still attract
the attention of the scientific community (see, for instance, Nam 2013, Görner and
Kanzow 2016, Benko and Coroian 2018).

1The problem is presented in his famous essay on maxima and minima.
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Fig. 1.1 Fermat’s problem C

B

P

A

Fig. 1.2 Torricelli’s
geometric construction for the
Fermat’s problem

B
A

C

The first documented attempt to position location analysis within an economic
context is due to Johann Heinrich von Thünen (1783–1850), an educated landowner
in northern Germany. Von Thünen wished to understand the rural developments
around an urban center. The results of his analysis were presented in 1826
in a treatise entitled Der Isolierte Staat in Beziehung auf Landwirtschaft und
Nationalökonomie, which was edited as a book in 1842 and translated into English
in 1966 (von Thünen 1842). Figure 1.3 depicts the cover of the 1842 edition. von
Thünen (1842) considered an isolated and homogeneous area with an urban center
and aimed to discover laws which then governed agricultural prices translating them
into land usage patterns. He also considered several types of agricultural activities
(e.g., grain farming and livestock) grouped according to their relative economic
yield per unit area, their perishability, and the difficulty in delivering the products to
the (central) market. His findings led him to postulate that three factors should have
a crucial impact on the spacial distribution of the activities: (1) the more perishable
a product is, the closer to the market it will be grown; (2) the higher the economic
productivity of a product per land area, the closer to the market it will be grown;
(3) higher transportation difficulty leads to locating an activity closer to the market.
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Fig. 1.3 “Der Isolierte Staat”
by Johann Heinrich von
Thünen, Rostock, 1852
(Source: University of
Toronto—Robarts Library,
https://archive.org/details/
derisoliertestaa00thuoft)

One should therefore expect that the different agriculture activities will evolve in
concentric rings around the urban center (Fig. 1.4).

There still exists an intensive debate on the theory of von Thünen (Block and
DuPuis 2001). Despite its merit, von Thünen’s model is only descriptive, i.e., it is
aimed at predicting the behavior of the system. In fact, at the time, models were
mostly used to answer to questions such as “why do we do it?”. Von Thünen’s work
can be viewed as fundamental in urban economics and location theory. Nowadays,
it is still relevant in areas such as geography, agricultural economics and sociology
(Block and DuPuis 2001). These authors emphasize that the centrality theory of von
Thünen is still relevant for some dairy products such as milk. Other researchers have
pursued von Thünen’s centrality idea. The results are reviewed by Fischer (2011).

The first normative location models aimed at determining “what we should do”,
were proposed by Carl Friedrich Launhardt (1832–1918) and Alfred Weber (1868–
1958). Launhardt (1900) introduced the problem of tracing an optimal rail route
connecting three points. Interestingly, the author casted this problem within an
industrial context. The problem was revisited by Pinto (1977) who stated it as
follows: Consider the three nodes depicted in Fig. 1.5. Suppose that wA tons of
iron ore (collected at A) have to be combined with wB tons of coal (collected at

https://archive.org/details/derisoliertestaa00thuoft
https://archive.org/details/derisoliertestaa00thuoft
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Fig. 1.4 Von Thünen’s rings.
From “Der Isolierte Staat” by
Johann Heinrich von Thünen,
Rostock 1842, page 389
(Source: University of
Toronto—Robarts Library,
https://archive.org/details/
derisoliertestaa00thuoft)

Fig. 1.5 Location problem
proposed by Launhardt
(1900) within an industrial
context

A,w
B,w

A

P

B

B) to produce wC tons of pig-iron to be dispatched to C. The problem calls for
an industrial facility to be located somewhere between A, B and C. If dA, dB , dC
denote the Euclidean distances between the industrial location (to be determined)
and nodes A, B, and C, respectively, then the goal is to determine the location of
the industrial plant that will minimize the total weighted transportation cost given
by wAdA + wBdB + wCdC .

This problem introduced by Launhardt is exactly what we now call the 3-
node Weber problem. However, as pointed out by Pinto (1977), the problem was

https://archive.org/details/derisoliertestaa00thuoft
https://archive.org/details/derisoliertestaa00thuoft
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Fig. 1.6 Launhardt’s
geometric solution

C

B
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wAwB

wC

introduced about 10 years before Weber (1909). Indeed, Launhardt (1900) proposed
a simple geometric solution scheme for the problem. The solution is obtained as
follows (see Fig. 1.6): Consider the triangle ABC defined by the original nodes (the
locational triangle) and select one node, say C. Consider another triangle whose
sides are proportional to the weights wA, wB and wC—the weight triangle as it is
referred to by Weber (1909). Draw a triangle AOB similar (in the geometric sense)
to the weight triangle but such that the edge proportional wC has the same length as
edge AB, which is the one opposite to C in the locational triangle. The new triangle
AOB is depicted in Fig. 1.6.2 We can now circumscribe nodes A, B and O , by
just touching each point. Finally, a straight line can be drawn connecting O and C.
The intersection between the circle and this line yields the optimal location for the
industrial facility.

This same problem was treated by Weber (1909) or, to be more accurate, by
the mathematician Georg Pick (1859–1942), who is the author of the appendix
in which the mathematical considerations of Weber’s book are presented. The
problem was solved in a different way but this resulted in the same solution. As
put by Lösch (1944), the solution to this problem was discovered by Carl Friedrich
Launhardt and rediscovered “one generation later” by Alfred Weber. Nevertheless,
Weber (1909), presented a deeper analysis of the problem. He first noted that if
the geometric construction leads to a point outside the original triangle, then the
optimal solution lies on the boundary of the original triangle. Second, he observed
that the pole method, which Launhardt (1900) believed should work for polygons
with more than three sides, does not necessarily yield the optimal solution when
more than three nodes are involved. A practical algorithm for solving the problem
with an arbitrary number of nodes was proposed by Weiszfeld (1937).3 The iterative
procedure proposed in this work was revisited in depth more recently by Plastria
(2011).

2Node O was called by Launhardt the pole of the locational triangle.
3The author is now known to be Andrew Vázsonyi (1916–2003).
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A synthesis of the first steps towards inserting location theory into an economic
context is due to Lösch (1944). The importance of this work stems from the fact that,
for the first time, location theory and the theory of market areas were connected.
This work constitutes the first explicit recognition of the strong link that is often
observed between these two areas.

1.3 Towards a New Science

The 1960s set the foundations of Location Science as new scientific area. We first
witnessed the natural extension of the Weber problem to the multi-facility case.
This was done, among others, by Miehle (1958) and Cooper (1963). In particular,
the latter work introduced the planar p-median problem for which each demand
node must be served by one out of p new facilities to be located. This became
a fundamental problem in Location Science, which still attracts the attention of the
scientific community (see the papers by Brimberg and Drezner 2013; Brimberg et al.
2014; Drezner et al. 2015a,b; Drezner and Salhi 2017).

The seminal papers by Hakimi (1964, 1965) opened new important research
directions. Hakimi (1964) introduced the concept of absolute median of a graph:
a single facility is to be located anywhere in a network so as to minimize the sum
of the distances of the nodes of the network to the facility. The author proved that
there always exists an optimal solution for which the absolute median is a vertex
of the graph. It is also in this paper that the concept of absolute center was first
introduced: a single facility has to be located (anywhere in the network) in order to
minimize the maximum distance between the facility and all the vertices. This work
was extended to the multi-facility case by Hakimi (1965): now, p facilities are to
be located. The vertex-optimality property is still valid for the resulting p-median
problem. This property is of major importance because it means that many network
location problems can be cast into a discrete setting which, in turn, leads to the
possibility of using integer programming and combinatorial optimization techniques
for tackling these problems.

It is interesting to note that an important step toward the development of discrete
facility location problems had been taken the previous year when Manne (1964)
proposed the first mixed-integer linear programming (MILP) formulation for a
discrete problem which also became classical in Location Science: the uncapacitated
facility location problem (UFLP). This model would be revisited later by Balinski
(1965) who introduced inequalities of the type xij ≤ xjj ensuring that if a node i

is allocated to a node j , then the latter corresponds to a facility and therefore it is
assigned to itself. Such inequalities would be later considered by ReVelle and Swain
(1970) when formulating the first MILP model for the discrete p-median problem.
In the following year, Toregas et al. (1971) introduced the first integer programming
formulation for a covering-location problem.
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By the early 1970s, the foundations were laid for what would soon become a very
active research field. The book by Eiselt and Marianov (2011) describes the works
that can be considered to constitute the basis of Location Science.

Within a few decades, significant advances were made in several areas of
Location Science, which is attested by several review papers, such as those by
Brandeau and Chiu (1989), ReVelle and Laporte (1996), Avella et al. (1998), Hale
and Moberg (2003), ReVelle and Eiselt (2005), ReVelle et al. (2008), and Smith
et al. (2009).

Initially, the major concern of the researchers had to do with theoretical develop-
ments and properties of the problems and their solutions. Much work was developed
on continuous and network location problems as well as on fundamental discrete
facility location problems. Further links were created with other areas. For instance,
the developments in continuous location problems led to the important connection
between location analysis and computational geometry. This link remains quite
strong to this day. In fact, one of the most relevant structures in computational
geometry, the Voronoi diagram (after Georgy Feodosevich Voronoy (1868–1908)),
is of major importance in the resolution of many continuous location problems (see,
for instance, the review by Okabe and Suzuki 1997). In this volume, we do not
focus on computational geometry since there are excellent volumes covering the
topic (e.g. Goodman et al. 2017)

Nowadays, location problems can still be categorized according to the location
space (continuous, network or discrete), but also according to their context, namely
the objectives, constraints or type of facilities involved. Eiselt and Marianov (2011)
highlight the three major forms of facility location problems according to the type
of objective function: minsum, covering and minmax. For some time, it was also
popular to distinguish between public, semi-public and private facility location.

Location Science is highly interconnected with other disciplines and has appli-
cation in many areas. The theoretical foundations of this area lie in mathematics,
economics, geography and computer science. The developments we have observed
touch each of these areas.

More recently, stimulated by real-world problems, many areas have emerged
where facility location has been applied with great success. Among these, we can
point out logistics (see, for instance, Melo et al. (2006), for a problem in the context
of logistics network design), telecommunications (see, for instance, Gollowitzer and
Ljubić (2011), for a telecommunications network design problem), routing (e.g., in
the truck and trailer routing problem introduced by Chao (2002), the location of the
trailer-parking places is one of the relevant decisions to make), and transportation
(see, e.g., Nickel et al. (2001), for a location problem in the context of public
transportation systems). The application of location theory in these areas partially
explains why discrete facility location problems have progressively acquired a major
relevance when compared with the early developments in Location Science.

Nowadays, Location Science is a very active and well-established research area
with its own identity and research community. In addition to the fundamental prob-
lems, we observe different research branches being intensively investigated such has
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multi-criteria facility location, multi-period facility location, facility location under
uncertainty, location-routing and competitive location, just to mention a few.

1.4 Purpose and Structure of This Book

As highlighted above, many location problems have applications in other disci-
plines. Researchers working in these disciplines often encounter location decisions
as part of broader problems. From the point of view of researchers coming
from the location community, the recent decades have shown that several very
successful applications of the knowledge gathered in Location Science require a
deep understanding of these disciplines.

In this book, readers will find a full coverage of basic aspects, fundamental
problems and properties defining the field of Location Science, as well as advanced
models and concepts that are crucial to the solution of many real-life complex
problems. The book also presents applications of location problems to several fields.
It is intended for researchers working on theory and applications involving location
problems and models. It is also suitable as a textbook for graduate courses in
facility location. This book is neither a typical textbook with worked examples
and exercises, nor a collection of extensive surveys. It is more a book on “what
you should know” about various aspects of Location Science; it provides the basic
knowledge and structures the field. It is divided into three parts: basic concepts,
advanced concepts and applications.

I. Basic Concepts.
This part is devoted to the fundamental problems in Location Science, which

include:

• Chapter 2: p-median problems;
• Chapter 3: p-center problems;
• Chapter 4: Fixed-charge facility location problems;
• Chapter 5: Covering location problems;

The goal of this part is to provide the reader with the basic background of
location theory. The problems described in Part I serve as a basis for much of the
content of Parts II and III.

II. Advanced Concepts
This part covers models and concepts that aim at broadening and extending

the basic knowledge presented in Part I, thus providing the reader with important
tools to better understand and solve real-world location problems. The chapters
in this part are the following:

• Chapter 6: Anti-covering problems.
• Chapter 7: Locating dimensional facilities in a continuous space;
• Chapter 8: Facility location under uncertainty;
• Chapter 9: Location problems with multiple criteria;
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• Chapter 10: Ordered median location problems;
• Chapter 11: Multi-period facility location;
• Chapter 12: Hub location problems;
• Chapter 13: Hierarchical facility location problems;
• Chapter 14: Competitive location models;
• Chapter 15: Location-routing and location-arc routing;
• Chapter 16: Location logistics in supply chain management;
• Chapter 17: Stochastic location models with congestion;
• Chapter 18: Aggregation in location.

III. Applications
The links between Location Science and other areas are the focus of the

third part. By presenting a wide range of applications, it is possible not only
to understand the role of facility location in such areas, but also to show how to
handle realistic location problems. These applications include:

• Chapter 19: Location and geographic information systems;
• Chapter 20: Green location problems;
• Chapter 21: Location problems in humanitarian supply chains;
• Chapter 22: Location problems under disaster events;
• Chapter 23: Location problems in healthcare;
• Chapter 24: The design of rapid transit networks;
• Chapter 25: Districting problems;
• Chapter 26: Facility location in the public sector.

This second edition of Location Science should be viewed as a complement to
the first edition. It covers topics that were not included in the first edition, such as
hierarchical facility location, location problems capturing environmental concerns,
location problems in humanitarian logistics, and location problems in the public
sector. On the other hand, some topics that were sufficiently covered by the first
edition are not part of the current volume. These include quadratic assignment
problems and location problems in telecommunications. For such problems the
reader should refer to the first edition of the book.

1.5 How to Use This Book

Problems, models, properties, and techniques from Location Science are taught
to students enrolled in different programs. We have identified six types of post-
graduate curricula having a strong location content: business, computer science,
economics, engineering, geography and mathematics.

Depending on the audience, different contents emerge as the most appropriate.
This book can be used with the purpose of organizing courses tuned for specialized
targets by selecting specific combinations of chapters. Below, we offer some
suggestions.
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Business

2: p-Median
problems

4: Fixed-charge facility
location problems

5: Covering location
problems

8: Facility location
under uncertainty

9: Location problems
with multiple criteria

11: Multi-period
facility location

12: Hub location
problems

14: Competitive 

location models

15: Location-routing and
location-arc routing

16: Location logistics in
supply chain management

18: Aggregation
in location

20: Green location
problems

21: Location problems in
humanitarian supply chains

25: Districting
problems

26: Facility location in
the public sector
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Computer science

2: p-Median

problems

3: p-Center

problems

4: Fixed-charge facility

location problems

5: Covering location

problems

6: Anti-covering

problems

7: Locating dimensional facilities

in a continuous space

9: Location problems with

multiple criteria

10: Ordered median

location problems

13: Hierarchical facility

location problems

14: Competitive

location models

17: Stochastic location models

with congestion

18: Aggregation
in location

19: Location

and GIS

22: Location problems under

disaster events

23: Location problems

in healthcare

24: The design of rapid

transit networks

25: Districting

problems
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Economics

2: p-Median
problems

3: p-Center
problems

4: Fixed-charge facility
location problems

5: Covering location
problems

6: Anti-covering
problems

7: Locating dimensional facilities
in a continuous space

8: Facility location
under uncertainty

9: Location problems
with multiple criteria

10: Ordered median
location problems

11: Multi-period
facility location

14: Competitive
location models

17: Stochastic location models
with congestion

18: Aggregation
in location

19: Location
and GIS

23: Location problems
in healthcare

24: The design of rapid
transit networks
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Engineering

2: p-Median

problems

4: Fixed-charge facility

location problems

11: Multi-period

facility location

12: Hub location

problems

13: Hierarchical facility

location problems

16: Location logistics in

supply chain management

17: Stochastic location models

with congestion

18: Aggregation

in location

19: Location

and GIS

24: The design of rapid

transit networks

25: Districting

problems
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Geography

2: p-Median

problems

3: p-Center

problems

5: Covering location

problems

6: Anti-covering

problems

8: Facility location

under uncertainty

13: Hierarchical facility

location problems
14: Competitive

location models

18: Aggregation

in location

19: Location

and GIS

20: Green location

problems

21: Location problems in

humanitarian supply chains

22: Location problems under

disaster events

23: Location problems

in healthcare

25: Districting

problems

26: Facility location in

the public sector
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Mathematics

2: p-Median

problems

3: p-Center

problems

4: Fixed-charge facility

location problems

5: Covering location

problems
6: Anti-covering

problems

7: Locating dimensional facilities

in a continuous space

8: Facility location

under uncertainty

9: Location problems

with multiple criteria

10: Ordered median

location problems

11: Multi-period

facility location

13: Hierarchical facility

location problems

14: Competitive
location models

15: Location-routing and

location-arc routing

17: Stochastic location models

with congestion

18: Aggregation

in location

This book can also be used to build specialized courses in specific areas. Below,
we provide examples in four areas: facility location and supply chain management,
location of undesirable facilities, location of emergency facilities, and location in
transportation systems.
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Facility location and supply chain management

4: Fixed-charge facility

location problems

8: Facility location

under uncertainty

11: Multi-period

facility location

12: Hub location

problems

13: Hierarchical facility

location problems

15: Location-routing and

location-arc routing

16: Location logistics in

supply chain management

20: Green location

problems

21: Location problems in

humanitarian supply chains

26: Facility location in

the public sector

Location of undesirable facilities

2: p-Median

problems

4: Fixed-charge facility

location problems

6: Anti-covering

problems

9: Location problems

with multiple criteria

15: Location-routing and

location-arc routing

18: Aggregation

in location

20: Green location

problems
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Location problems in transportation systems

2: p-Median
problems

4: Fixed-charge facility
location problems

7: Locating dimensional facilities
in a continuous space

12: Hub location
problems

13: Hierarchical facility
location problems

15: Location-routing and
location-arc routing

16: Location logistics in
supply chain management

20: Green location
problems

21: Location problems in
humanitarian supply chains

24: The design of rapid
transit networks

26: Facility location in
the public sector
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Location of emergency facilities

3: p-Center
problems

5: Covering location
problems

8: Facility location
under uncertainty

17: Stochastic location models
with congestion

18: Aggregation
in location

21: Location problems in
humanitarian supply chains

22: Location problems under
disaster events

23: Location problems
in healthcare

26: Facility location in
the public sector

When used for teaching, this book should be complemented with examples and
exercises; when used for research, it should be complemented with specialized
readings. We found the following comprehensive references particularly relevant:
Mirchandani and Francis (1990), Drezner (1995), Drezner and Hamacher (2002),
Nickel and Puerto (2005), Eiselt and Marianov (2011), and Daskin (2013).
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Brimberg J, Drezner Z, Mladenović N, Salhi S (2014) A new local search for continuous location

problems. Eur J Oper Res 232:256–265
Chao I-M (2002) A tabu search method for the truck and trailer routing problem. Comput Oper

Res 29:33–51
Cooper L (1963) Location-allocation problems. Oper Res 11:331–343



20 G. Laporte et al.

Daskin MS (2013) Network and discrete location: models, algorithms and applications, 2nd edn.
Wiley, Hoboken

Drezner Z (ed) (1995) Facility location: a survey of applications and methods. Springer, New York
Drezner Z, Hamacher H (eds) (2002) Facility location: applications and theory. Springer, Berlin
Drezner Z, Salhi S (2017) Incorporating neighborhood reduction for the solution of the planar

p-median problem. Ann Oper Res 258:639–654
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Basic Concepts



Chapter 2
p-Median Problems

Alfredo Marín and Mercedes Pelegrín

Abstract One of the basic problems in the field of discrete location is the p-
median problem. In this chapter we present and analyze several versions of the
problem, but we can roughly define it as the choice of p facilities, among a set
of n candidates, that minimize the cost of supplying a finite set of users. The
p chosen facilities are usually called medians. Since the nature of the problem
is combinatorial, integer programming is the common framework in which the
problem is studied. Hence different formulations and their polyhedral properties
constitute the kernel of this chapter. The study of the problem on a graph and
heuristic procedures are treated in separate sections. Necessarily and unfortunately,
we have to overlook many important references and results in the literature in the
interest of legibility. Extensions of the problem, also of great interest, are covered
in subsequent chapters and therefore are also ignored here. A companion problem
of unquestionable importance, the Simple Plant Location Problem, is one of the
main subjects of Chap. 4. Consequently, we have paid only little attention to it in
our discussion.

2.1 Introduction

Discrete location problems consist of choosing a subset of locations, among a finite
set of candidates, in which to establish facilities and then using these to satisfy the
demand of a finite set of users. The choice of the locations must be made to minimize
the sum of the fixed facility costs and of the cost of supplying the demand from the
facilities.

Within this general framework, various problems can be identified as discrete
location problems, most of which are studied and analyzed in this book. In this
chapter we deal with a problem in the family of median problems. This term, in
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contrast with others like center and equity, refers to the definition of the cost to be
minimized. When we speak about median (or minisum) problems we mean that the
objective to be minimized depends in equal measure on the costs associated with
each of the users.

The letter p in the term p-median refers to the number of locations to be chosen
among the candidates, which is fixed beforehand. In other words, in the p-median
problem a fixed number of p locations, usually called medians, must be chosen
from the set of candidate facilities. Alternatively, it can be considered that p is the
maximum number of locations that can be chosen. The cost to be minimized is
calculated as the sum of the allocation costs of users to the medians. Let then I =
{1, . . . ,m} be the set of potential facilities and J = {1, . . . , n} the set of users to be
supplied. The unit costs of supplying users from candidate facilities are arranged in
a matrix C = (cij ). We assume that supplying costs satisfy cij ≥ 0 ∀i ∈ I, j ∈ J .
The demand of a user j ∈ J is denoted with dj > 0; then, the allocation cost of j
to a median i ∈ I is given by dj cij . In order to obtain the lowest overall cost, each
user will be assigned to the median with minimum allocation cost.

Now we can formally define the p-median problem as follows. Suppose a matrix
C = (cij ) with non-negative entries, m rows denoted by I = {1, . . . ,m} and called
candidates facilities, and n columns denoted by J = {1, . . . , n} and called users.
Given an n-dimensional vector (dj ) with positive entries and given p ∈ Z, 1 ≤ p ≤
m − 1, choose a subset P ⊆ I of p rows of C in such a way that the total cost
defined by

∑
j∈J mini∈P {dj cij } is minimized.

Figure 2.1 shows several examples of optimal solutions to p-median problems.
Here I = J is given by the same set of n = 30 points on the plane. Costs cij
are given by the Euclidean distances between points and demands are assumed to
be equal to one. In Fig. 2.1a we have taken p = 2 and drawn the best choice of
2 facilities (represented with squares) and the allocation of the 30 points to the
corresponding closest facility. Different optimal solutions for p = 3, 4 and 5 are
given also in Fig. 2.1b, c, and d, respectively.

Note that the kernel of the problem is the choice of the p facilities among the m

candidates (a purely combinatorial subject, with
(
m
p

)
possible solutions). Customers

allocation to the facilities is trivially carried out by choosing, for each user j ∈ J ,
the facility in P with minimum allocation cost.

The p-median problem is strongly related with a problem that will be studied
in Chap. 4, the Simple Plant Location Problem (SPLP)—also called Uncapacitated
Facility Location Problem. In the SPLP, the number of facilities is not fixed a priori.
Instead, a cost associated to each of the candidates is given, usually represented by
fi ≥ 0 ∀i ∈ I . Then, given C = (cij ) with non-negative entries, (dj ) with positive
entries, and given the vector of non-negative costs f = (fi), SPLP aims to choose a
subset P ⊆ I of rows of C in such a way that

∑
i∈P fi + ∑

j∈J mini∈P {dj cij }
is minimized. SPLP is also a minisum problem, with a trade-off between costs
associated to the facilities and allocation costs.

Despite its apparent simplicity, the p-median problem is NP-hard (Kariv and
Hakimi 1979). Its origins can be traced back to Hakimi (1964, 1965), where
the problem was defined on a graph, and ReVelle and Swain (1970), where an
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Fig. 2.1 Optimal solutions to the same instance of the p-median problem for different values of
p. (a) p = 2. (b) p = 3. (c) p = 4. (d) p = 5

integer linear programming (ILP) formulation was proposed, inspired in Balinski
(1965). Other related seminal papers are Hua et al. (1962), Kuehn and Hamburger
(1963) and Manne (1964). Given its combinatorial nature, (mixed) integer linear
programming (Nemhauser and Wolsey 1988; Wolsey 1998) has usually been the
approach used to formulate and optimally solve the problem. The literature on the
p-median problem is vast and it is not our aim to give an exhaustive list of papers.
We focus our attention on recent results and suggest consulting Mirchandani (1990)
and Reese (2006) as additional information sources.

We have organized the rest of the chapter as follows. In Sect. 2.2 several non-
immediate applications, that show a wide range of possibilities of use, are presented.
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In Sect. 2.3 the first integer linear programming formulations of the problem are
introduced and analyzed. Section 2.4 deals with some of the most interesting
available solution methods. Valid inequalities and facets for the polyhedra defined
by the linear relaxations of different formulations are described in Sect. 2.5. We
have included in a separate Sect. 2.6 the formulations and polyhedral results that
arise when the p-median problem is solved on a (possibly non-complete) directed
graph. Since solving large instances of the p-median problem is a difficult task, the
literature on heuristic approaches is vast, and we try to give an idea of this vastness
in Sect. 2.7, before closing the chapter with some final considerations.

2.2 Applications

In this section we present some applications of the p-median model taken from the
literature. To emphasize its wide range of possibilities, we have selected applications
outside the field of location of warehouses, plants, shelters or other kind of facilities,
which is the natural interpretation of our problem.

Clustering was one of the first applications of the p-median problem. In the
paper by Vinod (1969) it is said that a large number of objects, persons, variables,
symbols, etc. have been often to be grouped into a smaller number of mutually
exclusive groups so that members within a group are similar to each other in some
sense. There is a limited number of groups, each of them having a distinguished
member called centroid. The fitness of the partition depends on the average
similarity of each object with the centroid of its group. The similarity between two
pairs can be calculated from the input data and would correspond with costs (dj cij )
in our problem. The number of groups or clusters would be p and the centroids
would be our medians.

Another application of the p-median problem, as presented in Vigneron et al.
(2000), is the optimal placement of cache proxies in a computer network (see also
Li et al. 1998). Nodes in a rooted tree network request a service that follows the
path from the node to the root. When a proxy, located at a node of the tree, is found
along this path, it satisfies the request. The location of p proxies in the nodes of the
network in such a way that the sum of the distances from the nodes to the closest
proxy in the corresponding path is minimized can be seen as a p-median problem.
Vigneron et al. (2000) developed an algorithm to solve it on this special tree network
topology.

We also include in this review of applications the so-called Optimal Diversity
Management Problem (see Briant and Naddef 2004). Assume that a factory will
manufacture a product that can, to some extent, be customized. For example, a car
with t different improvements to be chosen or not by the users. The car becomes
better and more expensive with each of these improvements, and then the users will
not complain if they receive a car with more extras than required, at the same price.
The factory cannot produce the 2t different vehicles, so they decide to produce only
p of the combinations and to deliver to each user the car with minimum cost among
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those that include all the extras the user asked for. In this p-median problem, p is the
number of different versions of the product that the factory can produce and I = J

is the set of all possible combinations of extras. Medians are the versions of the
product that will be finally produced, and a combination of extras will be assigned
to the median that will replace it when serving user requests. Replacing user request
j by the version of the product i has a cost djcij .

A similar application is to determine p times for public vehicle departures on a
temporal line, aiming at maximizing the total satisfaction of users. This served as
the base for addressing the Transit Network Timetabling and Scheduling Problem in
Mesa et al. (2014). In a public transit line, each vehicle performs a number of line
runs or expeditions that have to be located in time. Users of the transit corridor have
to be allocated to the line run that better fits their preferences, while fulfilling some
capacity requirements. The formulation in Mesa et al. (2014) is a more complex
version of the classical p-median that includes additional constraints.

Finally, in Goldengorin et al. (2012) (see also AlBdaiwi et al. 2011) the cell
formation problem is established and studied as a p-median problem. A set of
machines and their dissimilarities dj cij are given. It can be considered, for example,
that when two machines process almost the same set of parts, there is a small
dissimilarity between them (and can take part or the same cell). The problem is then
to find p machines that are best representatives of p manufacturing cells, that is to
say, the sum over the cells of the dissimilarities between these representatives and
all other machines belonging to the same the cell has to be minimum. The problem
can be considered as a special p-median problem on a graph, as defined in Sect. 2.6
below.

2.3 Integer Programming Formulations for the p-Median
Problem

The classical ILP formulation for the p-median problem is

(F1) minimize
∑

i∈I

∑

j∈J
dj cij xij (2.1)

subject to
∑

i∈I
xij = 1 ∀j ∈ J (2.2)

xij ≤ yi ∀i ∈ I, j ∈ J (2.3)
∑

i∈I
yi = p (2.4)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J (2.5)

yi ∈ {0, 1} ∀i ∈ I. (2.6)
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Two sets of binary variables are used. On the one hand,

yi =
{

1 if candidate location i is chosen as a median,
0 otherwise,

∀i ∈ I.

These variables are sometimes called location variables. Constraint (2.4) ensures
that p candidate locations are chosen as facilities. Note that yi = 1 when i ∈ P . On
the other hand,

xij =
{

1 if user j is supplied from candidate facility i,

0 otherwise,
∀i ∈ I, j ∈ J.

The variables in this second set are sometimes called allocation variables. Con-
straints (2.2) guarantee that each user j ∈ J is allocated to (supplied from) some
candidate location i ∈ I . And constraints (2.3) prohibit allocations to candidate
locations that were not chosen as facilities: when yi = 0 (i.e., i /∈ P ), xij = 0
∀j ∈ J , i.e., no user can be assigned to the location.

Allocation variables also serve to select the individual allocation costs that the
solution entails and that are used to compute the total cost in linear combina-
tion (2.1).

Formulation (F1) contains nm + m binary variables and n + nm + 1 linear
constraints. A reduced formulation can be produced by replacing the set of nm

constraints (2.3) by a set with only m constraints in the form

∑

j∈J
xij ≤ nyi ∀i ∈ I. (2.7)

Note that the effect of (2.7) when yi = 0 is the same of (2.3), fixing to zero xij for
all j ∈ J . In the case yi = 1, the sum of n binary variables will be upperly bounded
by n, thus producing no effect. We call (F2) formulation (F1) where constraints (2.3)
have been replaced by (2.7).

Although formulation (F2) is more compact than formulation (F1), it has obvious
disadvantages when a branch-and-bound procedure is used to solve the p-median
problem, since summing up (2.3) for all j ∈ J , constraints (2.7) directly follow.
This means that the polytope defined by the constraints of (F1) after relaxing the
integrity of the variables, is included in the polytope analogously defined by the
constraints of (F2). The consequence is that the lower bounds produced by (F1) will
be better than those produced by (F2).

Several ways of reducing the size of (F1) without loss of quality in the
formulation have been explored. First, it can be observed (see e.g. Church 2003)
that a user will never be supplied from a facility if there are at least m − p + 1
candidates with strictly less associated supplying cost. To formalize this, we sort,
for each user j ∈ J , the corresponding column in the cost matrix C to obtain
ĉ1j ≤ ĉ2j ≤ · · · ≤ ĉmj . Then, some x-variables can be fixed to zero: xij := 0
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∀i ∈ I : cij > ĉm−p+1,j . Another possibility, see Church (2003), is to identify and
match equivalent x-variables in the formulation. Consider two users j1 < j2 ∈ J ,
a candidate i ∈ I and a scenario where � := {� ∈ I : c�j1 < cij1} =
{� ∈ I : c�j2 < cij2}. If, in an optimal solution, xij1 = 1, it follows that no
candidate in � has been chosen as a facility, but i has been (since j1 was assigned
to i). Then, one facility to which j2 is allocated with minimum cost is i as well.
Consequently, xij2 = 1 is an optimal choice. On the other hand, xij1 = 0 means that
either a candidate in � has been chosen as median or there are no medians in � and
neither is i a median. In both cases, xij2 = 0. The conclusion is that xij1 and xij2

can be identified, and thus the size of the formulation can be reduced by replacing
all xij2 with xij1 .

Following the same reasoning as in Cho et al. (1983a), we can handle formulation
(F1) to rewrite constraints (2.2) and (2.3) in a different way. Note that, since (2.2)
are equalities, the sums

∑
i∈I xij ∀j ∈ J will be constant in any feasible solution to

(F1). Hence using a large enough number, M , the alternative objective

∑

i∈I

∑

j∈J
dj cij xij −

∑

i∈I

∑

j∈J
Mxij =

∑

i∈I

∑

j∈J
c̃ij xij

where c̃ij := dj cij − M < 0 ∀i ∈ I, j ∈ J can be utilized. The advantage of
this function is that, since the coefficients are negative and we are minimizing, the
x-variables will take value one in an optimal solution if they are not restricted by the
constraints of the formulation. This means that constraints (2.2) can be relaxed to

∑

i∈I
xij ≤ 1 ∀j ∈ J. (2.8)

Consider now a different set of binary variables

y ′
i =

{
1 if candidate location i is not chosen as a facility,
0 otherwise,

∀i ∈ I,

that is to say, y ′
i := 1 − yi ∀i ∈ I . Using this new set of variables, constraints (2.3)

can be rewritten as

xij + y ′
i ≤ 1 ∀i ∈ I, j ∈ J. (2.9)

Both sets of constraints, (2.8) and (2.9), are defined as sums of binary variables
upperly bounded by 1. These set packing constraints can be analyzed, see Cánovas
et al. (2000, 2002, 2003), Cho et al. (1983a,b), and Cornuéjols and Thizy (1982), to
produce a tighter formulation, using the so-called intersection (or conflict) graph,
where each node is associated with a variable, and nodes are neighbors if they share
at least one constraint. Since this analysis is the same as that carried out for the
SPLP, we refer the reader to Chap. 4 for a detailed analysis. The reformulation of
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(F1) by means of (2.8) and (2.9) still contains constraint (2.4), which enables us to
perform the polyhedral analysis of the formulation in a different way, see Sect. 2.5.

A different relaxation of (F1) can be carried out, that of the integrity of the x-
variables. Constraints (2.5) can be replaced by

xij ≥ 0 ∀i ∈ I, j ∈ J. (2.10)

To see this, observe that (2.2) and (2.10) imply xij ∈ [0, 1] ∀i ∈ I, j ∈ J . Now,
consider a set P ⊆ I of p facilities and the sets Aj := {i ∈ P : cij = min�∈P c�j }.
It is obvious that in any optimal solution where P is the set of chosen facilities,∑

i∈Aj
xij = 1 holds for all j ∈ J . Since all variables in the last sum have the same

cost, an equivalent integer solution can be trivially obtained by fixing one of them to
one and the rest to zero. After relaxing (2.5)–(2.10), the meaning of the x-variables
can be re-established as xij = fraction of the demand of user j that is supplied by
facility i.

Consider now the version of the problem where I = J and cii = 0 ∀i ∈ I .
This case has some special characteristics that allow to reformulate the problem.
Whenever yi = 1, the minimum possible allocation cost for point i will be 0,
obtained by allocating i to itself. Then yi = 1 ⇒ xii = 1. Since yi = 0 ⇒ xii = 0,
both variables can be identified, and yi can be replaced by xii in the formulation.
The resulting reduced formulation is given by

(F3) minimize
∑

i∈I

∑

j∈I :
i 
=j

djcij xij

subject to (2.2)

xij ≤ xii ∀i, j ∈ I : i 
= j (2.11)
∑

i∈I
xii = p (2.12)

xij ∈ {0, 1} ∀i, j ∈ I : i 
= j (2.13)

xii ∈ {0, 1} ∀i ∈ I. (2.14)

Again, constraints (2.13) can be relaxed to xij ≥ 0 ∀i, j ∈ I : i 
= j .
Under the given conditions, constraints (2.7) can be slightly improved. Note that

the existence of p users that are going to be self-allocated guarantees that no more
than n−p+ 1 users will be allocated to the same facility. Hence the constant in the
right hand side of (2.7) can be modified to yield the tighter constraints

∑

j∈J :
j 
=i

xij ≤ (n − p)xii ∀i ∈ I. (2.15)
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In what follows we still assume cii = 0 ∀i ∈ I and cij ≥ 0 ∀i, j ∈ I : i 
= j to
produce a formulation based on a completely different set of variables. The ideas we
are going to present come from Cornuéjols et al. (1980), where they were applied to
the SPLP. A preprocessing of the data is required before proceeding. It is necessary,
for each j ∈ J , to sort the entries of the j -th column of the cost matrix C, removing
the multiplicities: 0 = c̄1j < c̄2j < · · · < c̄Gjj = maxi∈I cij . Since we do not know
a priori how many different supplying costs there are in column j of C, we use Gj

to denote this number. A new set of binary variables, sometimes called cumulative
variables, is defined as

zkj =
⎧
⎨

⎩

1 if the supplying cost of user j is at least c̄kj
(no matter which facility it is allocated to),

0 otherwise,
∀j ∈ J, 2 ≤ k ≤ Gj .

Note that the variables z1j have not been used, since by definition z1j = 1 if the
supplying cost of user j is at least c̄1j = 0, and this condition is always satisfied.
Initially we will also use variables yi , ∀i ∈ I , to keep track of the chosen facilities.
Then consider a new formulation for the p-median problem given by

(F4) minimize
∑

j∈J

Gj∑

k=2

dj (c̄kj − c̄k−1,j )zkj (2.16)

subject to (2.4), (2.6)

zkj +
∑

i∈I :
cij <c̄kj

yi ≥ 1 ∀j ∈ J, 2 ≤ k ≤ Gj (2.17)

zkj ∈ {0, 1} ∀j ∈ J, 2 ≤ k ≤ Gj . (2.18)

In formulation (F4) we keep constraints (2.4) and (2.6) to account for the number of
facilities. The difference between (F4) and the previously introduced formulations
is that in (F4) there is no information in the variables about the allocation of users
to facilities, but there is about the smallest allocation costs of the users when
only chosen facilities are considered. Let us analyze constraints (2.17). The term∑

i∈I : cij<c̄kj
yi takes value zero only when no candidate with supplying cost less

than c̄kj (the k-th supplying cost for user j ) has been selected as a facility. It is
clear, then, that zkj , as defined, must take value 1. Since the coefficients in the
objective function (2.16) are strictly positive, in an optimal solution all variables
will take value 0 unless the corresponding constraint (2.17) force them to take value
1. For this reason, z-variables can be relaxed to be positive continuous variables and
constraints (2.18) can be simply removed.

For a given user j ∈ J , the sets of candidates inside a radius c̄kj , Bk := {i ∈
I : cij < c̄kj }, satisfy the strict inclusion relations B2 � B3 � · · · � BGj . This
implies that, in any optimal solution, z2j ≥ z3j ≥ · · · ≥ zGj j , that is to say, the
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appearance of vector z·j will be (1, . . . , 1, 0, . . . , 0). Assume the last 1 corresponds

with variable zaj . Then, in the objective function (2.16) the sum
∑Gj

k=2 dj (c̄kj −
c̄k−1,j )zkj will be

∑a
k=2 dj (c̄kj − c̄k−1,j ). Taking into account that c̄1j = 0, the

value of this telescopic sum will be dj c̄aj , that is to say, the cost of allocating j to
median a, as wished.

In Fig. 2.2 we see, using the same example as in Fig. 2.1d (where I = J , dj = 1
∀j ∈ J , and supplying costs are given by Euclidean distances between points),
the effect of constraints (2.17) on user j = 1 assuming that the facilities of the
optimal solution are given. Constraint (2.17), with k = 2, reads z21 + y1 ≥ 1.
Since 1 is not a median, it follows that z21 = 1. Taking now k = 3, it reads z31 +
y1 + y2 ≥ 1, implying z31 = 1. Similarly, z41 = z51 = 1. Then, for k = 6,
z61 + y1 + y2 + y3 + y4 + y5 ≥ 1 is satisfied since y5 = 1. Due to the objective
function, z61 = z71 = · · · = 0, and that the cost of allocating point 1 to point 5 will
be (10.77−0)·1+(15.65−10.77)·1+(16.49−15.65)·1+(17.72−16.49)·1 = 16.49,
the distance between points 1 and 5.

A reduction in the size of (F4) can be made noting that constraints (2.17) when
k = 2 read z2j + yj ≥ 1 and these constraints are always satisfied as equalities by
an optimal solution. Then yi can be replaced with 1 − z2i ∀i ∈ I .
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Fig. 2.2 Graphical representation of the role of the z-variables in formulation (F4) on the same
example as in Fig. 2.1d
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Regarding the size of (F4), observe that for each user j ∈ J , the number of
z-variables in (F4) will be the number of different costs in the j -th column of C,
minus one. Therefore, the total number of z-variables in the formulation will be in
the set {0, . . . , nm}. For each z-variable there is one constraint in family (2.17), thus
the number of linear constraints will be in {1, . . . , nm+ 1}. In the worst case, when
all costs in each column of C are distinct, the size of (F4) will be exactly the same
as the size of (F1).

Although the size of (F4) can be smaller than the size of (F1), Cornuéjols et al.
(1980) proved that both linear relaxations yield the same lower bound on the optimal
value of the problem. There exist many works where formulations (F1)–(F3) have
been used. However, references containing formulation (F4) are scarce, and almost
limited to the study of the companion problem SPLP: Kolen (1983) used a version of
formulation (F4) to solve the SPLP in polynomial time on a tree; Simão and Thizy
(1989) studied the linear relaxation of a modification of (F4); (F4) for SPLP was
also considered in Cornuéjols et al. (1990) and Kolen and Tamir (1990). Finally, Xu
and Lowe (1993) compared the work of Simão and Thizy (1989) with a previous
method in the literature to solve the SPLP.

2.4 Optimal Solution Procedures

Several exact algorithms for the p-median problem are available. We summarize
some of them here, without intending to be exhaustive.

Galvão (1980) realized that solving the p-median problem within a branch-and-
bound framework means solving many linear relaxations of subproblems of large
size. He then devised a method to efficiently obtain good lower bounds instead of
optimally solving the relaxed continuous subproblems. To this end, he considered
formulation (F3), replaced the equality (2.2) by ‘≥’, relaxed constraints (2.13)
and (2.14) and built the dual problem

(F3D) maximize pσn+1 +
∑

i∈I
σi

subject to σi + σn+1 −
∑

j∈I :
j 
=i

πij ≤ 0 ∀i ∈ I

σj − πij ≤ dj cij ∀i, j ∈ I

πij ≤ 0 ∀i, j ∈ I : i 
= j

σi ≥ 0 ∀i ∈ I

σn+1 ≤ 0.
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Table 2.1 A summary of the computational experience on exact solution methods up to date

Authors Year Computer n t (s)

Galvão 1980 Unknown 30 879

Church 2003 Sun Ultra Sparc 10 372 879

Avella
et al.

2007 Compaq EVO W4000 PC Pentium IV 1.8 GHz, 1 GB
RAM

5535 394

García
et al.

2011 Intel CORE 2 CPU 6600 2.4 GHz, 3 GB RAM 85,900 66,000

The last three columns stand for the maximum size and time in seconds of the instances tested but
do not necessarily correspond to one same instance

Noticing then that, in any optimal solution to (F3D),

σn+1 ≤ min
i∈I {−σi +

∑

j∈I :
j 
=i

πij } and πij = − max{0, σj − dj cij } ∀i, j ∈ I : i 
= j,

he designed a two-phase method to calculate good feasible solutions of (F3D) in
an attempt to increase the objective value. In the first phase the value of σn+1 was
maximized and then the values of σi , i ∈ I , were maximized without modifying
σn+1. Then he embedded this procedure, which produces good lower bounds in a
short time, into the branch-and-bound algorithm and obtained good computational
results. Table 2.1 gives an insight about the evolution of the sizes of the instances
that could be solved with each exact method. Note that the best lower bound that
can be produced with this approach is the one provided by the linear relaxation of
(F3).

The use of formulations (F1) and (F3) with aggregated but weaker
constraints (2.7) or (2.15), combined with the inclusion of (2.3) as valid inequalities,
has served as an alternative strategy in several papers. As an example, in Church
(2003) a subset of constraints (2.3), those corresponding to the candidates with
minimum supplying cost with respect to each user, is initially incorporated in
formulation (F3). The combination of this strategy and the matching of equivalent
x-variables (see Sect. 2.3) also produced good computational results (see Table 2.1).

Beltrán et al. (2006) approached the p-median problem from a similar point of
view. They initially considered formulation (F1) and the Lagrangian relaxation of
constraints (2.2) and (2.4) by means of unrestricted multipliers vj , ∀j ∈ J and v0,
respectively. An overview on Lagrangian relaxation can be consulted in Guignard
(2003). The advantage of relaxing equality constraints is that any optimal solution
to a relaxed subproblem that also satisfies the relaxed constraints is an optimal
solution of the primal problem. The disadvantage of relaxing all these constraints is
that the optimal value of the dual problem is the same as the optimal value of the
linear relaxation of the problem. The authors found first a good set of Lagrangian
multipliers and used them as a starting point for a second problem relaxed in a
Lagrangian fashion. In this case they added constraints

∑
i∈I xij ≤ 1, ∀j ∈ J , to

the relaxed subproblem, which becomes more difficult to solve but can yield better
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lower bounds. The advantage of using the ‘≤’ version of the constraints is that all
variables xij with non-negative coefficient dj cij + vj in the relaxed subproblem can
be fixed to zero. The subproblem is then easier to solve and can even be decomposed,
since the non-removed variables could be grouped in subsets that do not relate each
other. The final set of multipliers is then used as the starting point for a third and
last relaxation obtained by adding one more constraint to the subproblem, namely∑

i∈I yi ≤ p.
Avella et al. (2007) designed a branch-and-cut-and-price algorithm that was able

to solve very large instances (see Table 2.1) of the p-median problem on a graph (see
forthcoming formulation (F5)). Cuts were added based on new valid inequalities
called W − q , lifted odd hole and cycle inequalities. Details of them are given in
Sect. 2.6. Pricing was carried out by solving a master problem to optimality and
using dual variables to price out the variables of the initial problem that were
not considered in the master, adding new variables if necessary. The novelty of
the approach was that constraints (2.20) were also relaxed and incorporated to the
master problem when the corresponding column was. The authors also developed
criteria to fix the values of some y-variables to zero when lower bounds calculated
fixing yi to one were greater than previously known upper bounds.

Finally, we summarize the solution method based on (F4) developed in García
et al. (2011). Recall that, in (F4), given an optimal solution (y∗, z∗) and a fixed
user j ∈ J , z∗·j will have the shape (1, . . . , 1, 0, . . . , 0). We have also a similar
property of any optimal solution of the linear relaxation of (F4), (ȳ, z̄): for all j ∈ J ,
z̄2j ≥ z̄3j ≥ . . . ≥ z̄Gj j . Therefore, if z̄aj = 0 for some a, then z̄kj = 0 for
all k > a. Suppose we could know this optimal solution (ȳ, z̄) beforehand. Since
each z-variable only appears in one constraint, and the z-variables taking value zero
have not been forced by the optimal values of the y-variables to take value 1, we
could remove all variables and constraints associated with the null z̄-values and
the linear relaxation of this reduced formulation would provide us with the same
optimal solution. Conversely, let us remove variables za+1,j ,. . . ,zGj j , for a given
j ∈ J , from the linear relaxation of (F4). If z̄aj = 0 in the optimal solution of
the relaxed problem, this is done. Otherwise, if z̄aj > 0, it is possible that some
of the removed variables had taken a positive value in the optimal solution. In this
case, a has been wrongly selected and a larger value for it must be considered. The
method proposed in García et al. (2011) then considered a first formulation with
a very small set of z-variables and constraints, and added more variables and their
corresponding constraints when needed. At every node of the branching tree, the
final formulation of the predecessor node was used. The result was an exact branch-
and-cut-and-price method that allowed the authors to solve the p-median problem
with a drastically reduced formulation that required much fewer constraints and
variables than formulations (F1)–(F4). This method performed extremely well on
very large instances (see Table 2.1) with large values of p. Note that the larger the
value of p, the smaller the allocation costs associated to the users and, consequently,
the smaller the number of z-variables (and constraints) added to the initial reduced
formulation.
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2.5 Polyhedral Properties

In this section we present polyhedral properties of the formulations (F1) and (F3)
or their modifications. It is worth mentioning that since the polyhedron of these p-
median formulations is obtained from the polyhedron of the SPLP by adding only
one constraint, all valid inequalities for the corresponding formulations of the SPLP
are also valid for the p-median problem. Nevertheless, they do not usually define
facets. In this section we focus on models that produce valid inequalities or facets for
the p-median problem that are not necessarily valid for the SPLP. Basic knowledge
on polyhedral theory is assumed in this section (we refer the interested reader to
Nemhauser and Wolsey 1988)

A seminal paper in this field is de Farias (2001). The author considered a
modified version of formulation (F1), with equalities (2.2) and (2.4) relaxed
to inequalities of type ’≤’. He proved that the polyhedron so defined is fully
dimensional, and found a family of facets by taking a subset J ′ of J with cardinality
at least p + 1 and disjoint nonempty subsets of I named Ij , j ∈ J ′, with
∪j∈J ′Ij � I . He showed that the constraints

∑

j∈J ′

∑

i∈Ij
xij +

∑

i /∈ ∪
�∈J ′I�

∑

j∈J ′
xij ≤ p + (|J ′| − p)

∑

i 
∈ ∪
�∈J ′I�

yi

are valid for the given formulation and define facets. We now present an example
taken from de Farias (2001) with n = 3, m = 4, p = 2, J ′ = J , Ij = {j },
j = 1, 2, 3:

x11 + x22 + x33 + x41 + x42 + x43 ≤ 2 + y4.

Note that y4 = 0 implies x41 + x42 + x43 = 0 and then x11 + x22 + x33 ≤ 2 is valid
since p = 2. On the other hand, in the case y4 = 1, the inequality becomes trivial.

Consider now de Vries et al. (2003). Among different results on the polyhedral
structure of the p-median problem, the authors generate a family of valid inequali-
ties for (F3) of the form

∑

i∈R∪S

xii − 1

r − p

∑

i∈R

∑

j∈R:
i 
=j

xij − 1

r − p + 1

∑

i∈S

∑

j∈R
xij ≤ p − 1, (2.19)

where R is a subset of I = J of cardinality r ≥ p, and S is a subset of I \ R. For
example, take m ≥ 4, p = 2, R = {1, 2, 3} and S = {4}. The facet in family (2.19)
would be

2x11 + 2x22 + 2x33 + 2x44

≤ 2x12 + 2x21 + 2x13 + 2x31 + 2x23 + 2x32 + x41 + x42 + x43 + 2.
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Observe that when all medians belong to the set {1, 2, 3}. To illustrate, assume that
the two medians are 1 and 2. Then 2x11 +2x22 +2x33 +2x44 = 4 and the inequality
becomes 1 ≤ x13 + x23, and it obviously holds. A second possibility is that the
two medians are 1 and 4. Then it follows that 2 ≤ 2x12 + 2x13 + x42 + x43. Since
2 and 3 must be supplied from 1 or 4, it also holds. Finally, if x11 + x22 + x33 +
x44 ≤ 1, the inequality becomes trivial. In de Vries et al. (2003) it is proven that
inequalities (2.19) define facets when r > p, S 
= ∅ and S ∪ R 
= I .

In Zhao and Posner (2011), a generalization of the family of facets (2.19) is
developed. Here, a partition of I given by the sets T1,. . . ,Tr , S and Q, with r > p

and Ti 
= ∅, i = 1, . . . , r , Q 
= ∅, is required. Defining T = ∪r
i=1Ti , R ⊆ T ∪Q of

cardinality r such that |R ∩ Ti | ≤ 1, i = 1, . . . , r and a bijection τ of R in the set
{1, . . . , r}, the new family of valid inequalities for (F3) is given by

∑

i∈T∪S

xii − 1

r − p

∑

j∈R

∑

i∈T \Tτ(j)
xij − 1

r − p + 1

∑

i∈S

∑

j∈R
xij ≤ p − 1.

These inequalities define facets when 2 ≤ p < r and |Q| = 1 or |(T ∪ S) \R| ≥ 1.
The authors also devised a heuristic procedure to separate these inequalities.

Also observe that Cánovas et al. (2007) introduce dominance constraints in the
shape of xij1 ≤ xij2 that can be incorporated to formulation (F3). These inequalities
can be used whenever {� ∈ I : c�j2 < cij2} ⊆ {� ∈ I : c�j1 < cij1}. We present
additional polyhedral material after introducing a new version of the problem, in the
next section.

2.6 p-Median Problem on a Graph and Additional
Polyhedral Results

Many authors consider and analyze a particular case of the p-median problem
defined on a directed graph (V ,A). The set of nodes, V , represents users and also
candidate locations for facilities. The set of arcs A, is used to express the possible
allocations of users to facilities. Self-allocation is implicitly assumed or, in other
words, a node is either chosen as a median or it must be allocated to another node.
Note that this is equivalent to fixing some variables xij to zero in formulation
(F3): xij = 0 if (i, j) 
∈ A. The same effect can be achieved by taking cij large
enough in the objective function of (F3). Nevertheless, knowing beforehand that
some variables have been removed from the formulation has some advantages that
several authors have exploited. We explicitly state the following formulation of the
p-median problem on a directed graph (V ,A):

(F5) minimize
∑

(i,j)∈A
dj cij xij

subject to xii +
∑

j∈V :
(j,i)∈A

xji = 1 ∀i ∈ V
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xij ≤ xii ∀(i, j) ∈ A (2.20)
∑

i∈V
xii = p

xij ∈ {0, 1} ∀(i, j) ∈ A (2.21)

xii ∈ {0, 1} ∀i ∈ V.

A different version of this formulation is considered by Avella and Sassano (2001)
who do not make use of the xii variables. Instead, they pay attention to the fact that
n − p nodes must be allocated by means of an arc (i.e., they are not self-allocated)
and then each feasible solution will correspond to a set of n − p arcs in A. They
then propose the following formulation:

(F6) minimize
∑

(i,j)∈A
dj cij xij

subject to (2.21)

xij +
∑

�∈V :
(�,i)∈A

x�i ≤ 1 ∀(i, j) ∈ A (2.22)

∑

(i,j)∈A
xij = n − p. (2.23)

Avella and Sassano (2001) consider the case where A is a complete digraph
and develop two families of inequalities. The first family, the so-called W − 2
inequalities, only makes use of constraints (2.22). They can then be used for the
SPLP. The shape of these constraints is

∑

(i,j)∈A∩[((W×W)\H)∪(W̄×U)]
xij ≤ |W | − 2, (2.24)

where W ⊆ V and 3 ≤ |W | ≤ n − p + 1, H is a subset of arcs of A in W × W

such that ∀w ∈ W there is exactly one arc in H with origin in w, and U is the
set of nodes of W that are not destinations of any arc of H . Inequalities (2.24) are
facets whenever |U | ≤ max{1, |W |−3}. We present here the example used in Avella
and Sassano (2001) to illustrate this family. Consider the complete directed graph
of eight nodes and the subgraph given in Fig. 2.3a. Here |W | = 6, H = {(1, 3),
(3, 1), (2, 4), (4, 2), (5, 3), (6, 4)} and U = {5, 6}. It produces the inequality in the
family (2.24) in the shape of

x12 + x14 + x15 + x16 + x21 + x23 + x25 + x26 + x32 + x34 + x35 + x36 + x41 + x43 +
x45 + x46 + x51 + x52 + x54 + x56 + x61 + x62 + x63 + x65 + x75 + x76 + x85 + x86 ≤ 4.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 2.3 Illustration of several inequalities and families of subgraphs. (a) W − 2. (b) Cover. (c)
W − q. (d) Odd hole inequalities. (e) W − 1 and |F | odd. (f) 2-cycle and Y -graph. (g) Graphs with
Y -subgraphs. (h) Forbidden structure in Baïou and Barahona (2011)

Nodes 5 and 6 can be supplied or not from nodes not belonging to W . Take x75 =
x76 = 1. Thus, the inequality becomes x12+x14+x21+x23+x32+x34+x41+x43 ≤
2. Since no node in the set {1, 2, 3, 4} can supply more than two other nodes in the
set, it must be satisfied. Similar reasonings can be applied by taking other values of
x75 and x76.

The second family of inequalities in Avella and Sassano (2001), called cover
inequalities, make use of constraint (2.23). They again consider A to be a complete
digraph. Consider a set S of arcs and let r(S) be the maximum number of arcs of S
that can simultaneously take part in a solution for (F6). Let F(S) be the collection
of all subsets of A containing r(S) arcs from S that form a solution for (F6). Choose
at least one arc from each subset in F(S) to create set T (S). Then

∑

(i,j)∈S
xij −

∑

(i,j)∈T (S)

xij ≤ r(S) − 1
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are valid inequalities for (F6). As an example, take the complete directed graph
of five nodes, let S be the subset of arcs of Fig. 2.3b and p = 2. Then r(S) =
2 and F(S) = {{(1, 2), (1, 3), (4, 5)}, {(1, 2), (1, 3), (5, 4)}, {(1, 2), (1, 3), (1, 4)},
{(1, 2), (1, 3), (1, 5)}}. Taking T (S) = {(4, 5), (5, 4), (1, 4), (1, 5)}, the inequality
produced is x12 + x21 + x13 ≤ 1 + x45 + x54 + x14 + x15. In the case x45 = x54 =
x14 = x15 = 0, all nodes other than 1 should be assigned to node 1, but in this case
p 
= 2. Otherwise, the sum in the left hand side is bounded by 2, the value of r(S).

Regarding (F5), valid inequalities and characterizations of the polyhedron in
some particular cases have been obtained by several authors. We present the main
results below.

In Avella et al. (2007), the so-called W − q inequalities were derived. We show
an example of such inequalities based on the graph of Fig. 2.3c. Let W be the set
of nodes {1, 2, 3, 4} and F the set of arcs {(2, 1), (3, 2), (1, 3), (2, 4), (3, 4)}. Note
that arc (3, 1) is not included in the set.

Consider the following valid inequalities:

x21 +x13 ≤ 1,
x32 +x21 ≤ 1,
x32 +x24 ≤ 1,
x13 +x32 ≤ 1,
x13 +x34 ≤ 1,
x24 + x34 ≤ 1.

These valid inequalities are arranged in blocks and have been systematically built in
the following way. Each block is devoted to one node j ∈ W . For each j , the sum of
all variables corresponding to arcs of F that end in j is considered. Then, the sum is
completed in several ways (one represented by each row of the block) by adding xjh
for all distinct h such that (j, h) ∈ F (if any). In the example, this yields at most two
inequalities for each block, since no more than two arcs of F leaves the same node.
Note that this construction of the inequalities implies that every variable xij with
(i, j) ∈ F appears in two inequalities or in three when there are two arcs leaving
node j . In order to complete those blocks that only have one inequality, we add a
copy of x24 + x34 ≤ 1 to the last block and x21 ≤ 1 to the first one. Summing up
the resulting set of eight inequalities, we obtain 3(x21 + x32 + x13 + x24 + x34) ≤ 8.
Dividing by 3 and rounding down the right-hand side, the following valid inequality
in the family W − 2 is produced: x21 + x32 + x13 + x24 + x34 ≤ 2. In the general
case, consider a set of nodes W ⊆ V , an integer number 1 ≤ q ≤ |W |− 1, and a set
of arcs with both ends in W , F ⊂ A∩ (W ×W), in such a way that no more than q

arcs leave the same node. The valid inequality associated to W and F , in the family
W − q , is then

∑

(i,j)∈F
xij ≤

⌊
q|W |
q + 1

⌋

.
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Avella et al. (2007) also studied odd-hole inequalities and lifted them. As an
example, consider Fig. 2.3d. It is obvious that x12 + x23 ≤ 1, x23 + x34 ≤ 1,
x34 + x54 ≤ 1, x54 + x25 ≤ 1 and x25 + x12 ≤ 1. Summing up and rounding
down, it follows that x12 + x23 + x34 + x54 + x25 ≤ 2, named odd-hole inequality
by the authors. Moreover, this kind of inequality can be lifted to x12 + x23 + x34 +
x54 + x25 + x62 + x72 ≤ 2 since arcs (1,2), (6,2) and (7,2) play the same role and
only one of them can be taken in a feasible solution.

Baïou and Barahona (2008) consider the particular case of W − q when q = 1
and |F | is odd. This corresponds with oriented odd-cycles of k nodes Ck , like the
one shown in Fig. 2.3e, that generate the inequalities

∑

(i,j)∈Ck

xij ≤ k − 1

2
. (2.25)

They prove that, when the graph does not contain either of the two subgraphs of
Fig. 2.3f, the linear relaxation plus all the constraints in family (2.25) completely
describe the polyhedron associated with formulation (F5). Graphs that do not con-
tain these two structures are called Y -free graphs. They also describe a separation
procedure for inequalities (2.25) through an auxiliary graph. Baïou and Barahona
(2011) show that the family of graphs whose p-median polytope is integer (that is
to say, the linear relaxation of formulation (F5) always produces an integer optimal
solution) for all values of p are those containing none of any of the structures of
Fig. 2.3g, nor any cycle of the type depicted in Fig. 2.3h. They also give additional
polyhedral results in their recent paper, Baïou and Barahona (2016). Note that the
structure of Fig. 2.3h is a cycle (continuous arcs) with an odd number of nodes with
positive in-degree in the cycle; there are arcs (dotted) with origin in the nodes of
in-degree two in the cycle and destination at nodes that either are not in the cycle or
have out-degree other than two in the cycle; and there is an arc with its two nodes
outside the cycle.

2.7 Heuristics

The literature on heuristics for p-median problems is vast. The account presented
here does not pretend to be exhaustive and many interesting works on the topic may
have been omitted. We invite the interested reader to consult other reviews for an
overview of the problem from different perspectives. For instance, in Reese (2006)
works are classified by solution method and are also listed by year; Mladenović
et al. (2007) classify them into two classes, classical heuristics and metaheuristics,
and describe the methods belonging to each group; Basu et al. (2015) focus on
metaheuristics; finally, Irawan (2016) is devoted to aggregation methods, which
reduce the number of demand points to obtain smaller problems.
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2.7.1 Classical Heuristics

The first methodologies approaching p-median problems were heuristics. A simple
one produces a feasible solution by starting from an empty set of medians and
successively adding the candidate that yields the greatest decrease in the current
solution value, until p candidates have been added to the set. This is known as the
greedy heuristic. Even if Kuehn and Hamburger (1963) is usually cited as the earliest
work on greedy heuristics for facility location, Cornuéjols et al. (1977) were the first
to formally state the greedy heuristic for p-median problems. In the same vein, the
greedy drop or simply drop heuristic, first devised by Feldman at al. (1966), starts
with I as the initial set of medians and iteratively discards the candidate location
whose closure produces the smallest increment of the objective function, until the
initial set has been reduced to p candidates (see e.g. Whitaker 1981; Salhi and
Atkinson 1995).

Other heuristics try to improve a given selection of p candidates. One of the
oldest and most widely known of these heuristics allocates each user to the candidate
in the initial selection with minimum supplying cost. By grouping users allocated
to the same candidate, p neighborhoods are obtained. Then, a 1-median problem
is solved for each neighborhood, yielding a new set of p (potentially) different
medians. The process is iterated until the set of medians becomes steady. This
heuristic is usually referred to as the alternate heuristic, and was first proposed
by Maranzana (1964). Nevertheless, the idea was not new at the time and it is, in
fact, a particular case of the k-means clustering, first conceived by Steinhaus (1957).
Another heuristic of this type is the so-called interchange heuristic or vertex substi-
tution, first proposed by Teitz and Bart (1968). The starting point is also a feasible
set of p location candidates, and possible exchanges with the rest of the candidates
are iteratively examined. A formal description of the interchange heuristic can be
consulted in Whitaker (1983). The alternate and interchange heuristics have been
compared empirically in several works. All of them conclude that the interchange
heuristic finds better solutions but consumes more time (see e.g. Rushton and Kohler
1973; Rosing et al. 1979). This is probably why the alternate heuristic has received
less attention and efforts have concentrated on improving the performance of the
interchange heuristic. Countless attempts have been made in this direction, and here
we mention some of them. Whitaker (1983) designed a variant of the interchange
heuristic that uses a greedy initialization, called fast interchange; Densham and
Rushton (1991) detailed specific speedup strategies and, later on, Densham and
Rushton (1992) introduced GRIA (global regional interchange algorithm); Resende
and Werneck (2003) presented an implementation of the fast interchange that
performed especially well for large instances and reported speedups of up to three
orders of magnitude over the original implementation of Whitaker. Finally, Lim and
Ma (2013) introduced a parallel vertex substitution and reported speedups ranging
from 10 to 57 times over the traditional algorithm.
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2.7.2 Metaheuristics

The above-mentioned methods, together with dynamic programming, dual ascent
and Lagrangean relaxation, can be considered as classical heuristics. These first
heuristic approaches were followed by the development of metaheuristics in the
1990s. The list of works on metaheuristics for p-median problems is long. One
can find well-known schemes, such as tabu search, variable neighborhood search,
genetic algorithms, simulated annealing or neural networks, among others. As
Mladenović et al. (2007) conclude in their review, empirical results show that
metaheuristics represent an improvement in solution quality on large instances,
where the performance of classical heuristics is poor. In the last decade the focus
has been on solving larger and larger instances. Most effective algorithms usually
combine features from different metaheuristics. In this section, we outline the most
noteworthy attempts to produce scalable solution techniques. Table 2.2 summarizes
some information on the accuracy and computational effort of these heuristics.

Resende and Werneck (2004) proposed a hybrid heuristic that has features of
GRASP (greedy randomized adaptive search procedure), tabu search, scatter search
and genetic algorithms. They empirically compared the procedure with six other
methods and concluded that it was a valuable candidate for a general-purpose

Table 2.2 Summary of the available computational experience on metaheuristics

Authors Year Computer n t (s) dev. (%)

Resende and Werneck 2004 SGI Challenge (196 MHz) 5934 8687 0.6

Hansen et al. 2009 Pentium 4 1800 MHz,
256 MB RAM

89,600 50,083 3.2

Avella et al. 2012 IntelCore 2Quad
2.6 GHz, 4 GB RAM, 64
bits

89,600 5779 54.7

Irawan and Salhi 2013 IntelCore i5-650
3.20 GHz, 4 GB RAM, 32
bits

89,600 4415 95.8

Irawan et al. 2014 IntelCore i5-6503.20 GHz,
4 GB RAM, 32 bits

89,600 3404 5.9

Salhi and Irawan 2015 IntelCore i5-650
3.20 GHz, 4.00 GB RAM,
32 bits

264,000 1,875,300 271.0

Janáček and Kvet 2016 IntelCore 2 Duo E6700
2.66 GHz, 3 GB RAM

3038 1102 9.7

Cebecauer and Buzna 2017 Brutus high-performance
cluster of ETH Zurich

670,000 –a 4.0

The last three columns stand for the maximum size, time in seconds and deviations of the instances
tested but do not necessarily correspond to one same instance. Deviations are calculated either with
respect to the optimum or to the best objective known
aThe authors set a time limit of several days and reported time efficiency with respect to the
unaggregated problem
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approach for the p-median problem. They used a varied testbed with instances of
up to 5934 demand points and gave an account of the strengths and weaknesses of
their approach, which they did not recommend for really large instances. Hansen
et al. (2009) tackled the clustering problem as a large scale p-median model, using
an approach based on the variable neighborhood search metaheuristic. They report
better solutions in less time than with the state-of-the-art heuristics, even after
upgrading these procedures with the same efficient strategies on instances of up
to 89,600 nodes.

Avella et al. (2012) introduced a heuristic for large-scale instances that consists
of three main components: subgradient column generation, a core heuristic, which
computes an upper bound based on Lagrangean reduced costs, and an aggregation
procedure that defines reduced size instances. They compared their approach with
that of Resende and Werneck (2004) and Hansen et al. (2009) using the same testbed
as these authors. They reported excellent results that have merited the recognition
as state-of-the-art heuristic for years. Irawan and Salhi (2013) designed a hybrid
heuristic for large-scale instances. The proposed approach was tested on the largest
“BIRCH” instances of Hansen et al. (2009) (from 25,000 to 89,600 demand points).
The authors claimed to have obtained better solutions than those of the algorithm by
Avella et al. (2012), AV, and relatively similar to the ones of the algorithm by Hansen
et al. (2009), HA. Nonetheless, improvement respect to AV in quality represents
some decimals (in %) and they do not run AV nor HA, but take the times reported
by Avella et al. (2012) and apply a transformation to estimate running times in their
machine.

Irawan et al. (2014) presented a multiphase approach that incorporates aggre-
gation, variable neighborhood search and an exact method. This heuristic proved
to be faster than the one by Irawan and Salhi (2013) on the same testbed used in
that previous work. This time, the algorithm is also compared with AV and HA,
and times for these algorithms are again obtained by estimation. Regarding solution
quality, the proposed heuristic compares with AV and HA in a similar way as that of
Irawan and Salhi (2013). Salhi and Irawan (2015) introduced a data compression
approach for very large facility location problems in the Euclidean space. They
incorporated these techniques into two different methods for p-median problems, a
multi-start and a reduced variable neighborhood search. After testing their approach,
the authors concluded that it is very effective when applied to very large instances
(up to 264,000 demand points in their experiments). Janáček and Kvet (2016)
suggested an approximate approach based on the radius formulation (F4) and
presented it as a compromise approach enabling a trade-off between accuracy and
computational time. They compared their proposal with AV and the exact approach
by García et al. (2011) on instances having up to 3038 demand points. Even though
the results reported are not conclusive, their method seems to be a good candidate
for some instances. Cebecauer and Buzna (2017) proposed the concept of adaptive
aggregation that keeps the problem size in reasonable limits. They introduced
a framework to approach facility location problems that iteratively adjusts the
aggregation level during the solution process. They applied it to the p-median and
compared its performance to the exact approach by García et al. (2011), obtaining
promising results for benchmarks, which reach up to 670,000 demand points.
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2.7.3 Approximation Heuristics

One of the drawbacks of many heuristics is that they do not provide any guarantee
regarding the quality of the solution obtained. Since the p-median is a core problem
in location, it is not surprising to find works that focus on guaranteeing good-quality
approximations, even these days. One of the first works concerned with approximate
solutions quality is Cornuéjols et al. (1977), who presented a worst-case analysis
for relative errors of the Lagrangean relaxation, the greedy, the interchange and
dynamic programming heuristics. Some of the heuristics mentioned above also
provide a lower bound on the objective function, which gives an estimation of the
quality of their solutions. When we have a precise assessment of the quality of the
solution with respect to the optimum we speak about approximation algorithms. We
define an α-approximation algorithm as a polynomial-time algorithm that computes
a solution with cost at most α times that of an optimal solution. Most of the papers
on approximation algorithms make some assumption regarding costs. When they
are given by Euclidean distances, it is known that, for any ε > 0, there exists
a nearly linear-time (1 + ε)-approximation algorithm, see Kolliopoulos and Rao
(1999). When costs satisfy the triangle inequality, we speak about the metric p-
median and the best current approximation factor is 2.675 + ε, obtained by Byrka
et al. (2014). Moreover, Jain et al. (2002) proved that there is no α-approximation
of the metric p-median with α < 1 + 2/e, unless P = NP.

2.8 Conclusions

We have briefly presented different versions of the p-median problem, their
formulations, solution methods, polyhedral properties and heuristic algorithms. We
have focused on the basic models, without going into details about the properties
of the Simple Plant Location Problem, a very similar problem that is well studied
in Chap. 4. Neither have we paid attention to the many possible extensions of
the problem, that make it more applicable and realistic, but which are covered
in different chapters of this book (addition of a limit of capacity in the facilities,
opening and closing facilities in different periods of time, stochastic demands,
different objective functions and a long list of options). The p-median problem still
receives considerable attention 50 years after its first appearance in the literature and
is an exciting field of future research.
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Chapter 3
p-Center Problems

Hatice Çalık, Martine Labbé, and Hande Yaman

Abstract A p-center is a minimax solution that consists of a set of p points
minimizing the maximum distance between a demand point and a closest point
belonging to that set. We present different variants of this problem. We review
special polynomial cases, determine the complexity of the problems and present
mixed integer linear programming formulations, exact algorithms and heuristics.
Several extensions are also reviewed.

3.1 Introduction

Minimizing the total or average distance that potential users have to travel to reach
a facility may not be the right criterion when locating some types of facilities.
Such measures tend to favor clients who are clustered in population centers to the
detriment of clients who are spatially dispersed. Accessibility discrimination may
have a negative impact on remote clients, for instance, in the case of an emergency
service. (ambulances, fire brigades, police stations, etc.) As a result, decision makers
may want to consider a criterion focusing on clients who are the poorest served.
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The 1-center location problem on a network consists of finding a vertex whose
distance to all the other vertices is minimum. This problem has been known for a
long time in graph theory (see, for instance, Berge 1967).

Hakimi (1964) introduced the absolute center problem to locate a police station
or a hospital such that the maximum distance of the station to a set of communities
connected by a highway system is minimized. Given a graph G = (V ,E) with
V = {v1, . . . , vn}, weight wj for node vj ∈ V and length �ij for edge {i, j } ∈ E

connecting nodes vi and vj , the aim of the absolute center problem is to find a
point x on the nodes or edges such that maxj=1,...,n wjd(vj , x) is minimized, where
d(vj , x) is the length of the shortest path between node vj and point x (referred
to as distance between vj and x). The optimal value of this problem is called the
absolute radius of graph G. If x is limited to the nodes of G, then we obtain the
center of graph G and the optimal value is the so-called radius of G. The center
of G is not necessarily an absolute center of G. In other words, the absolute radius
can be smaller than the radius. To see this, consider a very simple example with
two nodes of weight 1 and an edge connecting them with length 1. In this case, the
absolute radius is 0.5 whereas the radius is 1.

Hakimi (1964) proposed a solution method to compute the absolute center of a
graph and motivated further studies of this problem by casting it as a game. Two
people, X and Y, are playing a game on a graph G. Player X chooses a point x in G;
then player Y chooses a point y in G. As a result X pays d(x, y) units to Y. When
X chooses point x, Y chooses a point farthest from x to maximize his gain. Hence,
player X computes the absolute radius of graph G to minimize his loss.

In the conclusion of his subsequent paper on median and covering problems,
Hakimi (1965) mentions the generalization of the absolute center problem to
the p-center problem. Given a set Xp = {x1, . . . , xp} of p points in G, the
distance d(Xp, vj ) between Xp and node vj is computed as mini=1,...,p d(xi, vj ).
The p-center problem is to find a set Xp of p points in G such that
maxj=1,...,n wjd(vj ,Xp) is minimized.

As defined above, the p-center problem is a network location problem. The
literature contains several variants. In this chapter, we refer to the following
variants:

• vertex-restricted p-center problem: Xp is restricted to be a subset of the node set;
• unweighted p-center problem: all node weights are equal;
• discrete p-center problem: the graph G = (J ∪ I,E) is bipartite and complete

with I denoting the set of possible facility locations and J denoting the set of
demand points.

One can find a discussion of several theoretical results and exact methods for
the p-center problem on general and tree networks in Tansel (2011). A large scale
review of the exact and heuristic methods proposed for the p-center and capacitated
p-center problems is provided by Çalık (2013).

This chapter is organized as follows. We review some polynomial cases, identify
the complexity of the problems in general and present some approximation results
in Sect. 3.2. Section 3.3 is devoted to the mixed integer linear programming models
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and algorithms for solving p-center problems. Heuristics are discussed in Sect. 3.4
and some extensions of the p-center problem are considered in Sect. 3.5. Section
3.6 concludes the chapter.

3.2 Polynomial Cases, Complexity and Approximation
Results

An algorithm to compute an absolute center of a graph was proposed by Hakimi
(1964). The idea is to compute, for each edge, an optimal point assuming that
the center is restricted to be on that edge. Such an optimal point is called a local
center of that edge. Then the algorithm finds the best local center. Hence, the
overall complexity is equal to the number of edges multiplied by the complexity
of computing a local center of an edge.

The computation of a local absolute center is based on the observation that
the objective function is piecewise linear on each edge and that local minima
correspond to the so-called intersection points and vertices (see Minieka 1970). A
point x on edge {vk, vm} ∈ E qualifies as an intersection point if there exist two
distinct nodes vi, vj ∈ V such that x is the unique point on {vk, vm} for which
d(vi, x) = d(vi, vk) + d(vk, x) = d(x, vj ) = d(x, vm) + d(vm, vj ).

It follows from this definition that the number of intersection points on an edge
is bounded by O(n2), where n denotes the number of nodes. Nevertheless, Kariv
and Hakimi (1979) observed that at most n + 1 such points can be local minima of
the objective function. The resulting algorithm proposed by those authors solves the
absolute center problem in O(|E|n+ n2logn) time.

An algorithm for finding an absolute center in the weighted case can be derived
along the same lines. In fact, a solution can be found in the set of local centers,
i.e., solutions to the problem where centers are restricted to be on edges. The
objective function remains piecewise linear on each edge. Nevertheless, the slopes
of the linear pieces depend on the vertex weights. A point x on an edge {vk, vm}
is an intersection point if there exist two distinct nodes vi, vj ∈ V such that x is
the unique point on {vk, vm} for which wid(vi, x) = wi(d(vi , vk) + d(vk, x)) =
wjd(x, vj ) = wj(d(x, vm)+d(vm, vj )). Kariv and Hakimi (1979) showed that, on
an edge, at most 3n − 2 intersections points can determine a local minima. Their
algorithm solves the weighted absolute center problem in O(|E|nlogn) time.

Goldman (1972) proposed an O(n2) algorithm to find an absolute center of a tree
in the unweighted case. The algorithm checks whether an edge contains an absolute
center and if not, searches the two subtrees obtained by deleting this edge. Handler
(1973) proposed an O(n) algorithm exploiting the fact that the midpoint of a longest
path of the tree is an absolute center and that the distance is a convex function along
any path of the tree. Given an arbitrary vi , the algorithm first determines the vertex
vj whose distance to vi is maximum. Then it determines the node vk whose distance
to vj is maximum. The path linking vj and vk is a longest one; its midpoint is the
absolute center of the tree.
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Kariv and Hakimi (1979) provided an O(nlogn) algorithm for the weighted
center problem on a tree, which was improved to O(n) by Megiddo (1983).

For a general graph G and p ≥ 2, Kariv and Hakimi (1979) proved that the p-
center problem is NP-hard even on a planar graph where the maximum degree is 3
and all node weights and edge lengths are equal to 1. The result is also true for the
vertex-restricted problem. The authors show that the problem with p ≥ 2 can be
solved in O(n2logn) time when G is a tree.

Hochbaum and Shmoys (1985) developed a 2-approximation algorithm for the
unweighted discrete problem with I = J and edge lengths satisfying the triangle
inequality. The algorithm runs in O(|E|log|E|) time. Hsu and Nemhauser (1979)
proved that it is NP-hard to find an approximation with a better guarantee. Dyer
and Frieze (1985) gave an O(np) algorithm with a guarantee of min{3, 1 + α},
where α is the ratio of the largest weight to the minimum weight. In the unweighted
case, this guarantee is 2. Recently, Garcia-Diaz et al. (2017) proposed a 3-
approximation algorithm for the vertex p-center problem that performs better than
the 2-approximation algorithms on benchmark instances.

3.3 Exact Methods

We first observe that the different variants of the p-center problem on networks can
be transformed into a discrete p-center problem and solved as such.

In the case of the vertex-restricted p-center problem on networks, the set I of
possible locations and the set J of demand points are both equal to the set of
vertices V .

The weighted and unweighted absolute p-center problems have the same prop-
erty as their single facility counterpart: an optimal solution can always be found in
the set of vertices and intersection points. This follows from the fact that each point
xi of an optimal solution Xp must be a local minimizer of the function given by
the maximum (possibly weighted) distance to the vertices that are allocated to xi ,
i.e., which are closer to xi than to any other point in Xp. To transform an absolute
p-center problem into a discrete p-center problem one thus simply sets I = V ∪P ,
where P denotes the set of intersection points, and J = V .

Given the above observation, the remainder of this section is devoted to models
and algorithms for solving the discrete p-center problem.

Several methods based on solving a finite number of instances of the set covering
problem have been proposed. The set covering problem (see Chap. 5) is closely
related to the p-center problem and can be stated as follows: Given a zero-one matrix
A = [aji] with some cost associated to each column, find a set of columns of
minimum total cost covering all the rows of the matrix A. In order to minimize the
number of facilities required to serve all customers within a given radius value r ,
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one can solve a set covering problem with unit column costs by constructing A as
follows:

aji =
{

1, if d(j, i) ≤ r,

0, otherwise
∀j ∈ J, i ∈ I.

If the optimal value of the set covering problem is greater than p, then the optimal
value of the p-center problem is greater than r; if it is less than or equal to p, then
it means that the optimal value of the p-center problem is less than or equal to r .

The first set covering based procedure for the p-center problem was proposed by
Minieka (1970). Let r1 < r2 < . . . < rK be an ordering of the distinct distance
values in the distance matrix D = [dji] : dji = d(j, i), i ∈ I, j ∈ J and R =
{r1, r2, . . . , rK }. The algorithm solves the set covering problem for the smaller value
in R not yet considered by updating the matrix A. The algorithm terminates when
the optimal value of the set covering problem is greater than p. Since the number
of different distance values in D is at most |I |.|J |, the algorithm converges to an
optimal solution in a finite number of steps.

Garfinkel et al. (1977) improved the set covering based approach by Minieka
(1970) by first finding a heuristic solution, then, reducing the search space of the
radius values and eliminating some of the intersection points. The authors also
propose the reduction of the size of the set covering matrix by using standard matrix
reductions and heuristic techniques. For the selection of the radius values to consider
along the execution of the algorithm, they proposed using a bisection method and a
binary search strategy instead of moving from one radius value to the next smaller
one. Both methods perform the search by halving the search space at each iteration.
The difference is that the search space of the bisection method is the real values
between the smallest and largest radius values whereas it is the finite set of radius
values for the binary search.

A mixed integer programming (MIP) formulation for the discrete p-center
problem can be found in Daskin (2013). The following decision variables are
defined: yi = 1 if a facility is placed at node i ∈ I and 0 otherwise, xij = 1 if
j ∈ J is assigned to a facility located at i ∈ I and 0 otherwise. The formulation can
be stated as follows:

Minimize z (3.1)

subject to
∑

i∈I
djixij ≤ z ∀j ∈ J, (3.2)

∑

i∈I
xij = 1 ∀j ∈ J, (3.3)

xij ≤ yi ∀i ∈ I, j ∈ J, (3.4)
∑

i∈I
yi ≤ p, (3.5)
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yi ∈ {0, 1} ∀i ∈ I, (3.6)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J. (3.7)

The objective function (3.1) together with (3.2) ensure that the objective value is
greater than or equal to the maximum of the distances between demand points
and the facilities they are assigned to. Constraints (3.3) establish the assignment of
each demand point to exactly one facility. Constraints (3.4) avoid the assignment of
demand points to locations with no facility. Constraint (3.5) restricts the number of
facilities to p. Constraints (3.6) and (3.7) are the binary restrictions for the decision
variables.

Daskin (2013) also presented a set covering based algorithm for the discrete
p-center problem, in which the radius value is selected from an interval of real
numbers between pre-determined lower and upper bounds. At each step of the
algorithm, the interval is halved and one of the segments is removed depending
on whether the objective value of the set covering problem is greater than p or less
than or equal to p. The idea behind this algorithm is similar to the bisection method
of Garfinkel et al. (1977). The main difference is that the individual set covering
problems of Garfinkel et al. (1977) consider the cardinality restrictions (3.5) as
constraints, so, they become feasibility problems whereas these are tackled by the
objective function in Daskin (2013) as aforementioned.

Ilhan and Pınar (2001) proposed a two-phase extension of the algorithm devel-
oped by Garfinkel et al. (1977). In the first phase, they solve the linear programming
(LP) relaxation of the feasibility problem defined by (3.5), (3.6), and

∑

i∈I
ajiyi ≥ 1, ∀j ∈ J, (3.8)

iteratively for fixed r values to obtain a relatively tight lower bound for the p-
center problem. In the second phase, they restrict the interval of the radius values
to consider using the lower bound obtained in the first phase. Finally, they solve
the integer programming (IP) version of the same feasibility problem iteratively to
obtain the optimal value of the p-center problem.

Elloumi et al. (2004) proposed a new IP formulation for the p-center problem.
This formulation utilizes the fact that the optimal value of the p-center problem
is restricted to a finite set of distance values. They introduced additional binary
variables zk , k = 2, . . . ,K , with zk = 0 if all demand points can be covered by
p facilities within a radius value of rk−1 and zk = 1 otherwise. The formulation is
given below:

Minimize r1 +
K∑

k=2

(rk − rk−1)z
k (3.9)

subject to (3.5) and (3.6),
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∑

i∈I
yi ≥ 1, (3.10)

zk +
∑

i:dji<rk

yi ≥ 1 ∀j ∈ J, k = 2, . . . ,K, (3.11)

zk ∈ {0, 1} k = 2, . . . ,K. (3.12)

Constraint (3.10) eliminates the solutions with no open facility. Constraints (3.11)
and the objective function (3.9) ensure that all demand points are served by a facility
within the smallest possible distance.

A semi-relaxation of this formulation, which is obtained by removing the binary
restriction on the y variables, provides the best known lower bound for the p-center
problem. This lower bound can be obtained by solving a finite series of LP problems,
which are the LP relaxations of the set covering problems. Elloumi et al. (2004)
also provided an exact algorithm that combines the two-phase idea of Ilhan and
Pınar (2001) with the binary search strategy like Garfinkel et al. (1977) to select the
radius values from the finite set, R, for solving the set covering problems at each
iteration.

Calik and Tansel (2013) developed new IP formulations and a new exact
algorithm for the p-center problem. They associated a binary variable uk with rk ,
for each k ∈ {1, . . . ,K}. In particular, uk is equal to 1 if rk is selected as the optimal
value and 0 otherwise. Initially, they proposed the following formulation:

Minimize
K∑

k=1

rkuk (3.13)

subject to (3.5) and (3.6),
∑

i:dji≤rk

yi ≥ uk ∀j ∈ J, k = 1, . . . ,K, (3.14)

K∑

k=1

uk = 1, (3.15)

uk ∈ {0, 1} k = 1, . . . ,K. (3.16)

Constraint (3.15) sets exactly one of the variables uk to 1 and the corresponding
rk value is selected as the optimal value according to the objective function (3.13).
Constraints (3.14) ensure that each customer is served within the selected radius
by at least one facility. Constraints (3.16) are binary restrictions. The authors
proposed a tightened formulation by using a relationship between their formulation
and the formulation proposed by Elloumi et al. (2004). In this formulation,
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constraints (3.14) are replaced with constraints (3.17) given below:

∑

i:d(i,j)≤rk

yi ≥
k∑

q=1

uq, ∀j ∈ J, k = 1, . . . ,K. (3.17)

The semi relaxations of these formulations, in which the binary restriction of
the y-variables is removed, provide the tight lower bound obtained by Elloumi
et al. (2004). The algorithm developed by Calik and Tansel (2013) solves their
formulations for restricted sets of radius values iteratively to converge to an optimal
solution. They proposed several selection strategies for a two-element specialization
of their algorithm. They also utilize the matrix reduction rules known for the set
covering problem in their restricted formulations when solving large problems.

In the recent studies, instances from the OR-Library (Beasley 1990) and TSPLIB
(Reinelt 1991) have been used for making computational experiments. The data
for the uncapacitated p-median problem found in the OR-Library consists of 40
instances where n ranges from 100 to 900 and p ranges from 5 to (n/3). This data
was used in the experiments conducted by Ilhan and Pınar (2001), Elloumi et al.
(2004), and Calik and Tansel (2013). In addition to these instances, Elloumi et al.
(2004) used the instances u1060, rl1323 and u1817 (n = 1060, 1323, and 1817,
respectively) and Calik and Tansel (2013) used the instances u1817, d15112, and
pcb3038 (n = 1817, 2500, and 3038, respectively) from the TSPLIB.

3.4 Heuristics

Mladenović et al. (2003) introduced the first metaheuristic approaches for finding
approximate solutions to the p-center problem. They proposed a multistart local
search algorithm (M-I), a chain substitution Tabu Search (TS) algorithm, and a
variable neighborhood search (VNS) algorithm and conducted large scale experi-
ments on 40 p-median instances from the OR-Library and instances with up to 3038
nodes from TSPLIB. These experiments reveal that their algorithms outperform the
algorithm proposed by Hochbaum and Shmoys (1985). Among the three heuristics
proposed, TS and VNS algorithms outperform M-I algorithm, VNS performs the
best on the average in terms of both the solution quality and solution time; however,
TS provides slightly better results for the instances with smaller p values.

Pullan (2008) proposed a memetic genetic algorithm (PBS) for the vertex-
restricted p-center problem, which combines a population based metaheuristic with
a local search algorithm. By using the phenotype crossover and directed mutation
tools of the genetic algorithm, a wide range of elite starting solutions are generated
and then, these solutions are improved to local optimality by using a local search
algorithm. From the computational experiments using the instances previously
tackled by Mladenović et al. (2003), an improvement in the CPU times and in the
objective value of some problems is observed when PBS is compared with the VNS
algorithm. The PBS algorithm can be executed also in a parallel processing mode.
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The experiments conducted by increasing the number of parallel processors utilized
in the algorithm provide better CPU times.

Salhi and Al-Khedhairi (2010) obtained tight lower and upper bounds by using a
three-level metaheuristic and integrated these bounds into the algorithm by Daskin
(2013) to solve the vertex-restricted p-center problem. In the first and second
levels of the algorithm, a variable neighborhood strategy is utilized with distinct
neighborhood structures. In the third level, a perturbation mechanism is introduced
to avoid sticking at local optima. The computational experiments conducted on the
40 uncapacitated p-median instances of the OR-Library revealed that the utilization
of these bounds decreases the solution times of Daskin’s algorithm.

Other than metaheuristics, Martinich (1988) proposed a vertex closing approach
for the vertex-restricted p-center problem on complete networks with distance
values that satisfy the triangle inequality. Initially, the algorithm places a facility
on each node and considers the problem of finding n − p facilities to close
so that the maximum of the distances between the nodes and their facilities is
minimized. In this study, the optimal set of facilities to close are obtained from the
embedded sub-graphs of the original graph. Through an analysis of the properties
of these embedded sub-graphs, initial lower and upper bounds were obtained, two
polynomial time algorithms were proposed and procedures to verify the optimality
of the solutions were developed. The algorithms provided optimal solutions for
several special cases. In terms of the number of instances solved to optimality, they
outperform the algorithm by Hochbaum and Shmoys (1985).

Bozkaya and Tansel (1998) showed that there exists a spanning tree of any
connected network such that the optimal absolute p-center of this tree is also the
absolute p-center for the network under consideration. They conducted experiments
on two classes of spanning trees to observe how often these trees provide the optimal
solution. They concluded that these two classes of spanning trees do not always
include the optimizing tree, but they do in most of the instances.

Mihelič and Robič (2005) solved the vertex-restricted p-center problem by
introducing a heuristic algorithm based on solving a finite series of minimum
dominating set problems. Given a graph G = (V ,E), the minimum dominating
set problem aims to find a node subset S ⊂ V of minimum cardinality so that any
node in V \ S is adjacent to some node in S. They assumed that the underlying
network is complete and the distance values satisfy the triangle inequality. The
computational experiments performed on 40 benchmark instances indicate that their
algorithm performs much better than the other polynomial time heuristics found in
the literature and competes with the best known non-polynomial time algorithms.

Irawan et al. (2016) propose two metaheuristics for the vertex p-center problem
and they adapt them for the conditional variant (see below).

3.5 Variants

In this section, we briefly discuss some extensions of the p-center problem.
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3.5.1 The Capacitated p-Center Problem

The first variant concerns problems with capacitated facilities. There are few studies
on this variant. Bar-Ilan et al. (1993) introduced a 10-approximation algorithm for
the special case of unit demands. The guarantee was improved to 6 by Khuller and
Sussmann (2000). If multiple centers can be located at the same location, then the
guarantee is further improved to 5.

Jaeger and Goldberg (1994) proposed a polynomial time algorithm for the
capacitated p-center problem when the graph is a tree, capacities are equal, and
multiple facilities can be located at the same location. In this work, the demand of a
node can be split among different facilities.

Özsoy and Pınar (2006) proposed an exact algorithm to solve the capacitated p-
center problem. The idea is to see if all nodes can be assigned within a given distance
and update lower and upper bounds on the optimal radius using this information. In
the subproblem solved to see whether it is possible to assign all nodes within a given
distance, the objective is to minimize the number of facilities required.

In addition to the subproblem solved by Özsoy and Pınar (2006) to obtain
bounds on the optimal radius, Albareda-Sambola et al. (2010) proposed a second
subproblem that maximizes the demand covered within a given distance using at
most p facilities. They used bounds from the Lagrangian relaxation of the two
subproblems to eliminate some radius values and concluded that the first approach
for finding the minimum number of required facilities is better. Based on this
conclusion, they proposed an exact algorithm using binary search over possible
values of the optimal radius.

A very large-scale neighborhood heuristic was developed by Scapparra et al.
(2004). Two types of exchanges were considered. In a cyclic exchange, one takes
a sequence of nodes that are served by different facilities and replaces the facility
of each node with the facility of the next node in the sequence (the facility of the
last node in the sequence becomes the facility of the first node). In a path exchange,
we again take a sequence of nodes served by different facilities and replace the
facility of each node with the facility of the next node. The facility of the last node
is replaced by a facility different from the facilities of the nodes in the sequence. A
relocation step that moves the facilities to better locations with respect to the set of
nodes they are serving is also added to the algorithm.

Quevedo-Orozco and Ríos-Mercado (2015) proposed an iterated greedy local
search with variable neighborhood descent and reported improvement over the
algorithm of Scapparra et al. (2004).

Three data sets were used in the last three papers mentioned. The first data set
contains 20 instances of the capacitated p-median problem from the OR-Library
(Beasley 1990), with 50 and 100 nodes. The second data set is from Lorena and
Senne (2004) and is also for the capacitated p-median problem. Here there are six
instances with the number of nodes ranging from 100 to 402. Finally, Scapparra
et al. (2004) provided a data set with 8 instances containing 100 and 150 nodes.
Additional instances of the p-median problem were used by Albareda-Sambola et
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al. (2010). These authors also compared their approach with the one of Özsoy and
Pınar (2006).

3.5.2 The Conditional p-Center Problem

The second variant is the conditional p-center problem. In this variant, there
are q existing facilities and additional p facilities are to be located so that the
maximum distance between a node and its facility (among p + q facilities) is
minimized. Minieka (1980) introduced the conditional 1-center problem. Drezner
(1989) showed that the conditional p-center problem can be solved by solving
O(log n) p-center problems. Suppose that the nodes are ranked in non-increasing
order of their distances to their facilities (using the existing q facilities). Then there
exists a node s such that the optimal value of the conditional p-center problem is
equal to the maximum of the optimal value of the p-center problem solved for the
first s nodes and the distance of the s + 1st node to its facility using the existing q

facilities. The algorithm tries to find the best s using bisection.
Berman and Simchi-Levi (1990) solved the conditional p-center problem by

solving a p + 1 center problem. They add a dummy demand node and a dummy
possible location. The distance from a demand node to the dummy location is the
distance of that node to its facility considering the existing facilities. The distance
of the dummy demand node to the dummy location is zero and its distance to the
other possible locations is a very large number. As a result, an optimal solution to
the p + 1-center problem includes the dummy facility location and opens p other
facilities. Berman and Drezner (2008) improved this approach and showed that the
conditional p-center problem can be solved by solving a p-center problem where
the distance between a node and a potential facility is set to the minimum of this
distance and the distance between this node and the closest existing facility.

3.5.3 The Continuous p-Center Problem

The next variant is the continuous p-center problem. When demand points are
continuously distributed over the whole graph, a set Xp of p points of the graph
minimizing the largest distance from a demand point to a closest point of Xp is
called a continuous p-center.

In the single facility case, i.e., when p = 1, the problem can still be solved
by choosing a best solution among all the local continuous centers, i.e., solutions to
continuous center problem in which the location is restricted to an edge. On an edge,
the objective function is again piecewise linear with O(|E|) breakpoints. Based on
these facts, O(|E|2log(|E|) algorithms were proposed by Hansen et al. (1991) and
Tamir (1988).
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On a tree, the absolute center coincides with the unweighted absolute center.
For the continuous p-center problem, Tamir (1987) identified a finite set of

rational numbers containing the optimal solution value. Hence, a continuous p-
center can be found by solving a finite number of continuous set covering problems,
i.e; problems in which one looks for the smallest set of facilities needed to cover all
points of the graph (vertices and interior points to edges) within a given maximum
distance.

3.5.4 The Fault Tolerant p-Center Problem

Another variant of the p-center problem that has recently attracted the attention of
the researchers is the fault tolerant p-center problem. This is a generalization of the
p-center problem in which each customer is assigned to α different facilities. The
idea is to make back-up services available in case of a failure of some facilities.
The fault tolerance can also be taken into account for the capacitated p-center
problem. Among the existing studies for the fault tolerant p-center and capacitated
p-center problems, Krumke (1995), Khuller et al. (2000), Chechik and Peleg (2015),
Fernandes et al. (2018) study approximation algorithms and Chen and Chen (2013)
presents two optimal algorithms. Espejo et al. (2015) focus on a variant where
they minimize the maximum distance from a customer to each second closest
facility. They propose several formulations, a preprocessing algorithm, and valid
inequalities.

3.5.5 The p-Center Problem with Uncertain Parameters

Finally, we consider the variants with uncertain parameters. Averbakh and Berman
(1997) studied the minmax regret version of the problem where the node weights
are uncertain within given intervals. They showed that the robust version of the
problem can be reduced to the resolution of n+1 deterministic problems. Averbakh
(1997) showed that the robust 1-center problem is strongly NP-hard on general
networks when there is uncertainty in edge lengths. Averbakh and Berman (2000)
developed polynomial time algorithms for the robust weighted 1-center problem
with uncertainty in both node weights and edge lengths on a tree network. Martínez-
Merino et al. (2017) introduced the probabilistic p-center problem where they
considered the K largest assignment distances. They provided several formulations
and a variable neighborhood search heuristic.

3.6 Conclusions

We conclude this chapter with some future research directions. The majority of the
solution methods proposed for the p-center problem are based on either the set cov-
ering or the dominating set problems. Well known optimization methods such as the
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cutting plane, branch-and-cut, Benders decomposition, or dynamic programming
are rarely used. Recently, Çalık (2013) provided a Benders decomposition method to
solve the vertex restricted p-center problem and developed a branch-and-cut method
for the capacitated p-center problem with multiple allocation. The experimental
study conducted revealed that the utilization of a branch-and-cut method enables
obtaining optimal solutions of large instances in small CPU time. The multiple
allocation variant, which was previously studied by Jaeger and Goldberg (1994)
on trees, is also an open research area for the capacitated p-center problem.

Although there are many studies for the p-center problem on trees, the capac-
itated version is not extensively investigated. The only study on this problem
considers multiple allocation and locating multiple facilities with identical capac-
ities at a node. Hence investigating the capacitated p-center problem on tree
networks with non-identical capacities, at most one center at each node and/or single
allocation might be a worthwhile undertaking.

Finally, developing different exact approaches and metaheuristic algorithms for
the variants of the fault tolerant p-center problem and the p-center problem with
uncertain parameters might also appeal to the researchers.
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Chapter 4
Fixed-Charge Facility Location Problems

Elena Fernández and Mercedes Landete

Abstract Fixed-Charge Facility Location Problems are among core problems in
location science. There is a finite set of users with demand of service and a finite
set of potential locations for the facilities that will offer service to users. Two types
of decisions must be made: Location decisions determine where to establish the
facilities, whereas allocation decisions dictate how to satisfy the users demand
from the established facilities. Potential applications of various types arise in many
different contexts. We provide an overview of the main elements that may intervene
in the modeling and in the solution process of Fixed-Charge Facility Location
Problems, namely, modeling hypotheses and their implications, characteristics of
formulations and their relation to other formulations, properties of the domains, and
appropriate solution techniques.

4.1 Introduction

Fixed-Charge Facility Location Problems (FLPs) are among core problems in
location science. In FLPs there is a finite set of users with demand of service and a
finite set of potential locations for the facilities that will offer service to users. Two
types of decisions must be made. Location decisions determine where to establish
the facilities, whereas allocation decisions dictate how to satisfy the users demand
from the established facilities. Each possible decision incurs fixed-charge costs for
the facilities that are established, and assignment costs for the allocation decisions.
In FLPs the aim is to make optimal decisions with respect to these costs.
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Applications of FLPs arise in an wide variety of contexts. The book by Drezner
and Hamacher (2002) surveys different applications of fixed-charge facility location
in such diverse areas as the public sector, software for GIS or robotics. Fixed-
charge facility location also plays a critical role in many other areas like supply
chain management, distributed systems, humanitarian relief, emergency systems,
location-routing problems or freight transportation. Melo et al. (2009) survey
facility location models in the context of supply chain management until 2009.
Klose and Drexl (2005) summarize applications of FLPs within distributed system
design. The paper by Balcik and Beamon (2008) is a recent sign of the interest of
the combination of both humanitarian relief analysis and facility location models.
Further examples of applications can be found in Owen and Daskin (1998), Daskin
et al. (2002), Nagy and Salhi (2007) and Jiaa et al. (2007). In fact, the applicability
of fixed-charge facility location models goes beyond the area of location analysis.
Some fixed-charge facility location models are also valid within other fields like
machine scheduling, cluster analysis or combinatorial auctions (Escudero et al.
2009; Klose and Drexl 2005; Singh 2008).

It has been traditionally assumed that in FLPs location decisions are strate-
gic, whereas allocation decisions are tactical or operational. There are potential
applications, however, in which location and allocation decisions are at the same
hierarchy level in the decision making process. One example of application in which
both decisions are strategic can be found in the design of a backbone network
in telecommunications. An example of application in which both decisions are
operational can be faced by some logistic companies which, at each time period,
have to solve an FLP to determine the warehouses locations and the distribution
pattern to be applied within the corresponding period.

Because FLPs are difficult optimization problems with many potential applica-
tions, the study of their properties and efficient solution methods is of interest on
its own. A further motivation for this study is that it sets the basis for the analysis
of more complex models related to FLP extensions. In some cases, these extensions
can, in turn, be modeled as some basic FLP. For example, some multi-period facility
location problems (see Chap. 11) or some hub-arc location problems (see Chap. 12)
can be can be reduced to the FLPs studied here (see, for instance Albareda-Sambola
et al. 2009a; Contreras and Fernández 2013).

There are indeed a number of issues that define the characteristics of FLPs.
These will be discussed in this chapter and include the possibility of satisfying
the demand of each of the users from more than one facility, or capacity limits on
the maximum demand that can be served from any selected facility, among others.
Furthermore, several alternative formulations can be valid for a given FLP. Usually,
none of these alternatives has a clear advantage over the others although, as it often
happens with other discrete optimization problems, each of them is better suited
for a certain solution technique. We aim to give the reader a broad overview of
the main elements that may intervene in the solution process of FLPs, namely,
modeling assumptions and their implications, characteristics of formulations and
their relation to other formulations, properties of the domains, and appropriate
solution techniques. However, in order to keep the length of the chapter within
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a reasonable limit, it has been impossible to address all relevant variants and
extensions of the problem. As a consequence, we have selected some topics which,
in our opinion, cover most of the major issues related to fixed-charge facility
location. Diversity among the selected topics has been a major guideline as well.

The material presented in this chapter is the result of the research carried out
by many authors in this area over the last 60 years. Most of it has been published
but occasionally we present and prove some unpublished results which are either
adaptations of well-known results for other cases, or simple results that can be easily
derived from the existing state of knowledge.

The remainder of this chapter is structured as follows. In Sect. 4.2 we introduce
our notation and we provide an overview of the problems we study. Section 4.2
also discusses modeling issues leading to standard formulations or to alternative Set
Partitioning formulations and properties of the domains. A sample of possible solu-
tion methods, namely Lagrangean relaxation and column generation is presented
in Sect. 4.3. Some of the major difficulties of FLPs that will offer service to users
derive from the assumption that individual facilities do not have enough capacity to
satisfy the demand of all customers. Releasing this assumption yields a particular
FLP known as the Uncapacitated Facility Location Problem (UFLP), which is
studied in Sects. 4.4 and 4.5. The UFLP satisfies some specific properties that do
not hold for general FLPs. These properties can be exploited for modeling purposes
or for deriving specific solution techniques. In particular, Sect. 4.4.1 studies some
properties derived from linear programming duality, whereas Sect. 4.4.2 presents a
formulation for the UFLP based on its supermodular property and relates it with the
so-called radius based formulations. Finally, Sect. 4.5 gives some polyhedral results
related to the UFLP. The chapter closes in Sect. 4.6 with some comments.

4.2 Overview and Modeling Issues

In this chapter we will use indistinctively the term service center when referring
to a facility, and customer or demand point when referring to a user. Let I =
{1, . . . , i, . . . ,m} denote the index set for the potential locations for the facilities
and J = {1, . . . , j, . . . , n} the index set for the users. We will refer to potential
locations by their indices, so we will say that a facility is open at location i, or
simply that facility i is open, if the decision to establish a service center at the
potential location i is made. We will also denote users by their indices and simply
refer to user j . Associated with each i ∈ I , qi denotes the maximum capacity of
facility i, if it is opened. The service demand of user j ∈ J is denoted by dj . As
mentioned, there are two types of costs. The decision to establish a facility at i ∈ I

incurs a fixed-charge (setup) cost fi . For i ∈ I and j ∈ J , cij is the cost for serving
all the demand of customer j from facility i.
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Classical formulations for FLPs use two sets of decision variables: one set for the
selection of the facilities to open and another set for the allocation of users demand
to open facilities. For the location decisions, associated with each i ∈ I we define

yi =
{

1 if a facility is open at location i

0 otherwise.

For the allocation decisions, associated with i ∈ I , j ∈ J we define

xij =
{

1 if the demand at user j is served by facility i

0 otherwise.

A standard integer programming formulation for the FLP is as follows:

minimize z =
∑

i∈I
fiyi +

∑

i∈I

∑

j∈J
cij xij (4.1)

subject to
∑

i∈I
xij = 1 j ∈ J (4.2)

∑

j∈J
djxij ≤ qiyi i ∈ I (4.3)

yi ∈ {0, 1} i ∈ I (4.4)

xij ∈ {0, 1} i ∈ I, j ∈ J. (4.5)

Constraints (4.2) guarantee that each customer is served from one facility, while
constraints (4.3) play a double role: (1) they ensure that the capacity of facilities is
not exceeded; and (2) they prevent users from being allocated to non-open facilities.
Constraints (4.4) and (4.5) define the domains of the decision variables. In the above
formulation inequalities (4.3) can be substituted by the two sets:

∑

j∈J
djxij ≤ qi i ∈ I (4.6)

xij ≤ yi i ∈ I, j ∈ J. (4.7)

Now the set of knapsack constraints (4.6) enforce that facility capacities are not
violated, whereas inequalities (4.7) relate the two sets of decision variables. While
constraints (4.3) are equivalent to (4.6) and (4.7) when the binary condition of the
y variables (4.4) is enforced, the compact set of constraints (4.3) dominates (4.6)
and (4.7) when the integrality of the location variables is relaxed to 0 ≤ yi ≤ 1,
i ∈ I .

Formulation (4.1)–(4.5) is appropriate for models requiring that the total demand
of each customer be served from the same facility. A number of situations exist
where such a requirement is justified, the most obvious one being the case where
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the demand of each customer represents a physical object that cannot be split. This
case is known as the single allocation FLP (SFLP). Equations (4.1)–(4.5) define
a valid formulation for the SFLP. Many FLP models, however, allow splitting the
demand at users among several open facilities. Such models, which are referred to
as multiple allocation FLPs (MFLPs), arise, for instance, when customers represent
population areas and not all the individuals in a given area need to be served from
the same service center. In MFLPs allocating customer j to facility i means that
some positive fraction of dj is served from facility i. Hence, for i ∈ I , j ∈ J

the allocation decision variables xij are defined as the fraction of demand of user
j served by facility i, and the domain for the x variables is thus substituted by its
continuous relaxation

0 ≤ xij ≤ 1, i ∈ I, j ∈ J. (4.8)

With the above definition of the allocation decision variables, constraints (4.2)
have a slightly more general interpretation than in the single allocation case. Since
they impose that the sum of all the fractions served from the different facilities be
one, they also guarantee that the total demand at each user is satisfied. Therefore,
in order to obtain a valid formulation for the MFLP, in formulation (4.1)–(4.5) we
“only” have to change the domain of the allocation variables x. It then follows that
that (4.1)–(4.4) together with (4.8) is a valid formulation for the MFLP.

The FLP is N P-hard since a polynomial transformation can be used to reduce
the node cover problem, which is known to be N P-hard (Garey and Johnson
1979), into the FLP (see, for instance, Cornuéjols et al. 1990).

The reader may note that the “difficult” decision in FLPs is the selection of the
facilities to open. This is readily seen in the multiple allocation case where, if the
set of facilities to open is given, S ⊂ I , the best allocation of customers within S

can easily be obtained by solving the following transportation problem:

T P(S) minimize z =
∑

i∈S

∑

j∈J
(cij /dj )sij (4.9)

subject to
∑

i∈S
sij ≥ dj j ∈ J (4.10)

∑

j∈J
sij ≤ qi i ∈ S (4.11)

sij ≥ 0 i ∈ S, j ∈ J. (4.12)

In formulation (4.9)–(4.12) the continuous decision variable sij denotes the
amount of demand of customer j which is served from facility i. Hence we have
the relation, xij = sij /dj .

In the single allocation case, finding an optimal allocation of customers to a
given set of open facilities S ⊂ I is still a difficult problem, namely a Generalized
Assignment Problem, which is also N P-hard (Fisher et al. 1986). Now, a
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formulation for finding the best allocation of customers within the set of facilities S
is given by

GAP(S) minimize z =
∑

i∈S

∑

j∈J
cij xij (4.13)

subject to
∑

i∈S
xij = 1 j ∈ J (4.14)

∑

j∈J
djxij ≤ qi i ∈ S (4.15)

xij ∈ {0, 1} i ∈ S, j ∈ J. (4.16)

So far we have presented FLPs as minimization problems in which both types
of decisions incur costs. Nevertheless, the type of objective function depends on
the decision maker. Minimization FLPs usually appear in the public sector when
locating facilities for essential services: public hospitals or schools, dumps for
garbage collection, etc. In the private sector, however, service to customers produces
a profit to companies so that the objective of companies facing location decisions for
their service centers is to maximize the net profit defined as the difference between
the revenue derived from the serviced customers and the cost for the location of
the selected facilities. There is indeed an essential difference between these two
models: while minimization FLPs impose that all customers be served (no demand
point can be excluded from an essential service), in maximization FLPs not all users
necessarily have to be served. The company may not have enough incentive for
servicing all customers and only those generating a profit in an optimal location
setting will be served. As we will next see, from a mathematical programming point
of view the maximization and minimization versions of the FLP are equivalent.

Consider a maximization FLP where bij denotes the profit for servicing customer
j ∈ J from facility i ∈ I . As indicated in Cornuéjols et al. (1990), bij is typically
a function of the unit production costs at facility i (hi), the unit transportation costs
from facility i to customer j (tij ), and the service price for customer j (sj ). That is,
bij = dj (sj − hi − tij ). Then, the objective function for a maximization FLP is

maximize z = −
∑

i∈I
fiyi +

∑

i∈I

∑

j∈J
bij xij . (4.17)

In principle, if not all customers have to be served, allocation constraints should
be stated as inequalities, i.e.

∑
i∈I xij ≤ 1, j ∈ J . However, such constraints are

easily transformed into equalities by simply defining a fictitious potential facility
0, representing the facility to which all unserved demand is allocated. To this end,
we assume a sufficiently large capacity for the fictitious facility, q0 = ∑

j∈J dj ,
and set to zero, both the fixed-charge cost of the fictitious facility (f0 = 0) and the
allocation profits of all customers (b0j = 0, j ∈ J ). Thus, without loss of generality
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we can assume that in the maximization FLP allocation constraints must also be
satisfied as equality.

Taking into account the expression of the coefficients bij and because of the
equality allocation constraints, the second term in (4.17) can be rewritten as
∑

i∈I

∑

j∈J
bij xij = ∑

i∈I
∑

j∈J dj (sj − hi − tij )xij =
∑

i∈I

∑

j∈J
dj sj xij −

∑

i∈I

∑

j∈J
dj (hi + tij )xij =

∑
j∈J dj sj −∑

i∈I
∑

j∈J c′ij xij .

Hence objective (4.17) reduces to

∑
j∈J dj sj − min [

∑

i∈I
fiyi +

∑

i∈I

∑

j∈J
c′
ij xij ]. (4.18)

Since the first term in (4.18) is a constant, the maximization FLP is equivalent to a
minimization FLP.

4.2.1 Set Partitioning Formulation of FLPs

Below we present alternative formulations for FLPs which use decision variables
to model the overall customers demand allocated to open facilities. Consider for
the moment the single allocation case and note that feasible assignments to a
given facility i ∈ I are associated with subsets of customers T ⊂ J such that∑

j∈T dj ≤ qi . We will use the notation Ki to denote the index set of feasible
assignment subsets for facility i ∈ I , Tk ⊂ J the index set of the customers served
in feasible assignment k ∈ Ki , and pki for the fixed-charge cost of facility i plus the
cost for assigning to i all the customers indexed in Tk, i.e. pki = fi + ∑

j∈Tk cij .
Also, for i ∈ I , k ∈ Ki , j ∈ J , let aijk = 1 if j ∈ Tk and 0 otherwise. Consider
now the following decision variables:

zki =
{

1 if the subset of customers Tk is assigned to facility i

0 otherwise.

Then, a set partitioning formulation for the SFLP is

SPSFLP minimize
∑

i∈I

∑

k∈Ki

pkizki (4.19)

subject to
∑

i∈I

∑

k∈Ki

aijkzki = 1 j ∈ J (4.20)

∑

k∈Ki

zki = yi i ∈ I (4.21)

yi ∈ {0, 1} i ∈ I (4.22)

zki ∈ {0, 1} i ∈ I, k ∈ Ki. (4.23)
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Constraints (4.20) ensure that each customer is assigned to exactly one facility.
Constraints (4.21) guarantee that no assignment is selected for a non-open facility
and also that one feasible assignment is selected for each open facility. Observe
that because of (4.20), constraints (4.21) can be written as ≤ inequalities and will
still be satisfied as equalities. Constraints (4.22) and (4.23) define the domain of the
decision variables. The above a formulation will be referred to as SPSFLP.

A set partitioning formulation for the multiple allocation case can be obtained
from the above formulation by simply relaxing the integrality conditions on the z

variables to 0 ≤ zki ≤ 1, i ∈ I, k ∈ Ki . It is now necessary to use the ≤ expression
for constraints (4.21), since optimal solutions may exist with some open facility
only serving fractions of demand of the allocated customers. This formulation will
be referred to as SPMFLP.

The large number of variables both in SPSFLP and in SPMFLP make these
formulations suitable for column generation.

4.3 Solution Algorithms for Fixed-Charge Facility Location

In this section we overview the available algorithms for FLPs. Several heuristic
and exact algorithms have been proposed for FLPs and an exhaustive survey
on the related literature is outside the scope of this chapter. Branch-and-bound
methods proposed in the early papers (Sá 1969; Davis and Ray 1969; Ellwein
and Gray 1977; Akinc and Khumawala 1977; Nauss 1978; Neebe and Rao 1983)
where followed by many algorithms based on Lagrangean relaxation (Geoffrion and
McBride 1978; Christofides and Beasley 1983; Guignard and Kim 1983; Barceló
and Casanovas 1984; Klincewicz and Luss 1986; Pirkul 1987; Beasley 1988;
Guignard and Opaswongkarn 1990; Barceló et al. 1990, 1991; Cornuéjols et al.
1991; Beasley 1993; Sridharan 1993; Holmberg et al. 1999). Some of the first works
on approximation algorithms are those of Shetty (1990), Shmoys et al. (1997), and
Chudak and Shmoys (1999). Algorithms based on Benders and cross decomposition
have been respectively proposed by Wentges (1996) and Van Roy (1986), whereas
branch-and-price has been applied by Díaz and Fernández (2002) and Klose and
Görtz (2007). Some more recent works are Barahona and Chudak (2005), Sankaran
(2007), Sharma and Berry (2007), Ghiani et al. (2012), and Zhen et al. (2012). In
the paper of An et al. (2017) the authors give an alternative formulation for the FLP
based on multi-commodity flows whose integrality gap is constant, i.e, its linear
relaxation approximates the optimum value within a constant. For an overview of
heuristics for FLPs the interested reader is addressed to Jacobsen (1983), Filho and
Galvão (1998), Delmaire et al. (1999a,b), Hindi and Pienkosz (1999), Cortinhal and
Captivo (2003), and Ahuja et al. (2004) and references therein.

The most obvious strategy for solving an FLP instance to optimality is to use
a standard mixed integer programming (MIP) solver with formulation SFLP or
MFLP, depending on the case. This approach may, however, fail on large instances,
especially for the single-source case. Some alternatives are presented below, which
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somehow exploit the structure of the problem and lead either to an exact algorithm
or to methods that can be embedded within an exact algorithm. First we study
Lagrangean relaxation, which has been used by a number of authors both for the
single and multiple allocation cases. Then we address the pricing problem for the
set partitioning formulation SPSFLP, which is one of the main ingredients of the
branch-and-price algorithm of Díaz and Fernández (2002).

4.3.1 Lagrangean Relaxation

We next present a Lagrangean relaxation of model SFLP in which the assignment
constraints (4.2) are relaxed. This relaxation has been used by a number of authors
(see, for instance, Pirkul 1987; Barceló et al. 1990, 1991; Beasley 1993; Holmberg
et al. 1999). The Lagrangean subproblem associated with a given set of multipliers
π ∈ Rn, is

LSFLP (π) = minimize
∑

i∈I

⎛

⎝fiyi +
∑

j∈J
cij xij

⎞

⎠+
∑

j∈J
uj

⎛

⎝1 −
∑

i∈I
xij

⎞

⎠ (4.24)

subject to
∑

j∈J
dj xij ≤ qiyi i ∈ I (4.25)

xij ∈ {0, 1} i ∈ I, j ∈ J (4.26)

yi ∈ {0, 1} i ∈ I. (4.27)

After rearranging its terms the objective function can be rewritten as

∑

j∈J
πj + min

∑

i∈I

⎛

⎝fiyi +
∑

j∈J

(
cij − πj

)
xij

⎞

⎠ .

A solution to LSFLP (π) can be obtained applying the following two steps:

1. For each i ∈ I solve the knapsack problem

KP(i) : maximize
∑

j∈J

(
cij − πj

)
xij (4.28)

subject to
∑

j∈J
djxij ≤ qi (4.29)

xij ∈ {0, 1} j ∈ J. (4.30)

Let J (i) denote the index set of variables at value 1 in an optimal solution to
KP(i) and v(i) = ∑

j∈J (i)
(cij − πj ) its associated optimal value.

2. For each i ∈ I , with fi + v(i) < 0 then yi = 1, and xij = 1, for j ∈ J (i).



76 E. Fernández and M. Landete

The Lagrangean dual associated with LSFLP (π) is

DSFLP max
π∈Rn

LSFLP (π).

Proposition 4.1 The optimal value of the Lagrangean dual DSFLP coincides with
the value of the linear programming (LP) relaxation of program SPSFLP .

Proof Consider the following Lagrangean function resulting from relaxing con-
straints (4.20) in SPSFLP in a Lagrangean fashion:

LSPSFLP (π) = minimize
∑

i∈I

∑

k∈K
pkizki +

∑

j∈J
πj

⎛

⎝1 −
∑

i∈I

∑

k∈Ki

aijkzki

⎞

⎠

(4.31)

subject to
∑

k∈Ki

zki ≤ yi i ∈ I (4.32)

zki ≥ 0 i ∈ I, k ∈ Ki (4.33)

yi ∈ {0, 1} i ∈ I. (4.34)

The objective function (4.31) can be expressed as

∑

j∈J
πj + min

⎡

⎣
∑

i∈I

∑

k∈Ki

pkizki −
∑

i∈I

∑

k∈Ki

∑

j∈J
πjaijkzki

⎤

⎦ =

∑

j∈J
πj + min

⎡

⎣
∑

i∈I

∑

k∈Ki

(pki −
∑

j∈Tk
πj )zki

⎤

⎦ .

Thus, for a given vector π , the solution to LSPSFLP (π) can be obtained as
follows:

• For i ∈ I , do

– Find k(i) ∈ arg maxk∈Ki {pki − ∑

j∈Tk
πj }.

– If pk(i)i − ∑

j∈Tk(i)
πj < 0 then yi = 1, zk(i)i = 1, zki = 0 k ∈ Ki \ {k(i)}.

If pk(i)i − ∑

j∈Tk(i)
πj ≥ 0 then yi = 0, zki = 0, k ∈ Ki .

Note that for each feasible solution (ẑ, ŷ) to (4.32)–(4.34), for each i ∈ I

there exists a one-to-one correspondence between (ŷi , (ẑki)k∈Ki ), and a vector
(ŷi , (x̂ij )j∈J ), that satisfies constraints (4.25). In particular, x̂ij = ∑

k∈Ki
aijk ẑki for

all i ∈ I , j ∈ J . Note that the above solution is well defined since for i ∈ I there is
at most one k ∈ Ki with ẑki = 1. Furthermore, by definition of the z variables, for
i ∈ I , (x̂ij )j∈J represents a feasible assignment to facility i, i.e.

∑
j∈J dj x̂ij ≤ qiŷi .
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Finally, the objective function values of the two solutions coincide since for i ∈ I

fixed,
∑

k∈Ki
pki ẑki = fi ŷi + ∑

j∈J
cij x̂ij . Therefore, taking into account the above

considerations, LSPSFLP (π) can be rewritten as

∑

i∈I
πi + minimize

∑

j∈J

⎛

⎝fiyi +
∑

j∈J
cij xij

⎞

⎠−
∑

j∈J

∑

i∈I
πjxij (4.35)

subject to
∑

j∈J
djxij ≤ qiyi i ∈ I

xij ∈ {0, 1} i ∈ I, j ∈ J

yi ∈ {0, 1} i ∈ I,

which is indeed LSFLP (π). �
The reader will immediately conclude that a similar result holds for the MFLP.
Proposition 4.1 establishes that DSFLP and the LP relaxation of SPSFLP are

equally tight in terms of the lower bounds they produce (the same is true for DMFLP

and the LP relaxation of SPMFLP). Now, the question that arises naturally is how
to compare both types of formulations from an algorithmic point of view.

As we have seen, the Lagrangean subproblem LSFLP (π) is rather easy to solve
and subgradients are easy to compute at each point. For a given vector π , let
(y(π), x(π)) denote an optimal solution to LSFLP (π). Then, a subgradient of
LSFLP (π) is given by ϕ = (ϕj )j∈J , where ϕj = 1 − ∑

i∈I xij (π). Therefore,
DSFLP can be efficiently solved with subgradient optimization. However, when
looking for an exact algorithm, the Lagrangean dual DMFLP may not be very
handy within an enumeration scheme. In contrast the LP relaxation of SPSFLP may
be more demanding than DSFLP from a computational point of view (the pricing
subproblem must be solved repeatedly to generate all the needed columns), but it
can be very well integrated within a branch-and-price scheme. For this reason, the
next section studies the pricing problem for generating columns for SPSFLP, which
is the main component of an exact branch-and-price algorithm for the SFLP based
on this formulation (Díaz and Fernández 2002).

4.3.2 The Pricing Problem for SPSFLP

Suppose we have solved the LP relaxation of the subproblem of SPSFLP associated
with a subset of columns K = (Ki)i∈I . Let π , and λ denote the optimal values of
dual variables associated with constraints (4.21) and (4.20), respectively. Then in
order to know whether there exists a z variable of the overall formulation which, if
added to the current set of columns, would improve the current LP solution, we must
find the column of the coefficient matrix of SPSFLP with the smallest reduced
cost. The reduced cost of variable zki , i ∈ I, k ∈ Ki , is given by rki = pki −∑

j∈J πjaijk −λi . Thus, in order to find the column that yields the smallest reduced
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cost we must solve the following pricing problem:

(PP) min
i∈I, k∈Ki

rki = pki − ∑

j∈J
πjaijk − λi .

Since pki = fi + ∑
j∈Tk cij , then rki = fi +∑

j∈J
(
cij − πj

)
aijk − λi . Note

also that feasible columns aik , k ∈ Ki, i ∈ I , are characterized by the condition∑
j∈J djaijk ≤ qi . Therefore, the solution to PP can be obtained by solving a

series of independent problems, one for each i ∈ I . Since, for a given i ∈ I , the
value fi − λi is fixed, then the corresponding problem reduces to

PPi minimize
∑

j∈J

(
cij − πj

)
aijk

subject to
∑

j∈J
djaijk ≤ qi

aijk ∈ {0, 1} j ∈ J.

4.4 The Uncapacitated Facility Location Problem

An important particular case of the FLP arises under the assumption that the
capacity of any open facility is sufficient to satisfy the demand of all customers,
i.e. qi ≥ ∑

j∈J dj , i ∈ I , so that the capacity constraints (4.3) are not needed. This
particular case is known as the Uncapacitated Facility Location Problem (UFLP)
and has received a considerable amount of attention. Next we focus on the UFLP
and study some of its properties. The interested reader is addressed to Cornuéjols et
al. (1990) for a deeper analysis and further details.

A first observation is that the UFLP basically involves one main decision: finding
the set of facilities to open. Note that an optimal allocation of customers within a
given set of open facilities, say S, is trivial, and consists of serving all the demand of
each customer from a facility in S with minimum allocation cost, with ties broken
arbitrarily. That is, for j ∈ J , let i(j) ∈ arg min{cij | i ∈ S} be arbitrarily chosen,
then xi(j)j = 1, xij = 0, i ∈ I \ i(j) is an optimal allocation of customers within
the set of facilities S. Thus, a closed expression for the objective function value for a
set of facilities S ⊆ I is z(S) = ∑

i∈S fi +∑
j∈J mini∈S cij . The main implication

of this observation is that the UFLP can be stated as the minimization of a known
set function. Before addressing this issue, we study some properties and algorithmic
alternatives, derived from a standard MIP formulation for the UFLP.

Indeed a MIP formulation for the UFLP can be obtained with the y and x decision
variables of the previous sections. Now it is no longer necessary to impose the
binary condition on the allocation variables, even if single allocation is imposed.
The argument is simple: if some customer is allocated to more than one facility in
an optimal solution, the allocation costs of that customer to all its allocated facilities
must be equal (otherwise the solution would not be optimal). Thus the customer can
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be fully served from any arbitrarily selected open facility of minimum allocation
cost. On the other hand, even if capacity constraints are no longer needed, it is still
necessary to impose that no customer is assigned to a non-open facility. Hence, by
replacing constraints (4.3) by (4.7) we obtain the following valid formulation for the
UFLP:

UFLP minimize
∑

i∈I
fiyi +

∑

i∈I

∑

j∈J
cij xij (4.36)

subject to
∑

i∈I
xij = 1 j ∈ J (4.37)

xij ≤ yi i ∈ I, j ∈ J (4.38)

0 ≤ xij i ∈ I, j ∈ J (4.39)

yi ∈ {0, 1} i ∈ I. (4.40)

A broad literature exists on the UFLP. From seminal papers (Kuehn and
Hamburger 1963; Stollsteimer 1963; Manne 1964; Balinski 1966; Efroymson 1966;
Spielberg 1969a,b; Khumawala 1972; Bilde and Krarup 1977; Cornuéjols et al.
1977; Guignard and Spielberg 1977; Nemhauser et al. 1978) and other early
contributions (Guignard 1980; Cornuéjols and Thizy 1982; Guignard 1988; Beasley
1988; Körkel 1989; Beasley 1993; Aardal 1998), to more recent works (Goldengorin
et al. 2004; Klose and Drexl 2005; Mladenović et al. 2006; Janacek and Buzna 2008;
Beltran-Royo et al. 2012; Letchford and Miller 2012, 2014), virtually any type of
solution algorithm has been proposed for it. As with the general facility location
problem, an extensive literature review is outside the scope of this chapter. The
interested reader is referred to Krarup and Pruzan (1983), Cornuéjols et al. (1990),
Labbé et al. (1995), ReVelle and Laporte (1996) or Verter (2011) for overviews of
the main contributions, and to Posta (2014) or Fischetti et al. (2017) for insight on
the difficulty of the benchmark instances in the UFL library UflLib, some of which
remain unsolved.

4.4.1 Bounds for UFLP Derived from LP Duality

Consider the LP relaxation of UFLP expressed in standard form, for which
constraints (4.38) have been written as yi −xij ≥ 0, and the upper bound constraints
on the y variables as −yi ≥ −1, i ∈ I . Let u, w and t denote the vectors of dual
variables of appropriate dimensions associated with constraints (4.37), (4.38) and
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the upper bound constraints, respectively. Then, the dual of the LP relaxation of
UFLP is

DUFLP maximize
∑

j∈J
uj −

∑

i∈I
ti (4.41)

subject to
∑

j∈J
wij − ti ≤ fi i ∈ I (4.42)

uj − wij ≤ cij i ∈ I, j ∈ J (4.43)

wij ≥ 0 i ∈ I, j ∈ J (4.44)

ti ≥ 0 i ∈ I. (4.45)

The optimal values for the t variables can be determined from the optimal w

values as ti =
(∑

j∈J wij − fi

)+
, i ∈ I , where (a)+ = max{0, a}.

In turn, the optimal w values can be determined from the optimal u values as
wij = (

uj − cij
)+, i ∈ I, j ∈ J . Therefore, DUFLP can be expressed in terms of

only u variables as

DUFLP max D(u) =
∑

j∈J
uj −

∑

i∈I

⎛

⎝
∑

j∈J

(
uj − cij

)+ − fi

⎞

⎠

+
.

Furthermore, the following optimality conditions hold:

(a) There exists an optimal DUFLP solution where uj ≥ mini∈I cij for all j ∈ J .
If uj < mini∈I cij for some j ∈ J , then we can increase the value of uj

without decreasing the objective function value.
(b) There exists an optimal DUFLP solution where

∑
j∈J

(
uj − cij

)+ −fi ≤ 0 for
all i ∈ I .

If
∑

j∈J
(
uj − cij

)+ − fi > 0 for some i ∈ I , we can decrease the value of
some component uj (with uj > cij ) without decreasing the objective function
value.

Condition (b) means that the objective function value of an optimal dual solution
reduces to

∑
j∈J uj . In other words, an optimal dual solution exists with ti = 0 for

all i ∈ I . Hence, the complementarity slackness conditions for constraints (4.42)
are

(fi −
∑

j∈J

(
uj − cij

)+
)yi = 0 i ∈ I. (4.46)

These conditions, which apply to any primal-dual optimal pair to the LP
relaxation of UFLP, hold trivially for all i ∈ I with yi = 0. When yi > 0,
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(4.46) holds provided that
∑

j∈J
(
uj − cij

)+ = fi . For the integer UFLP the
complementarity slackness conditions (4.46) give the guidelines for primal-dual
heuristics. Two alternative strategies may be applied: (i) the primal solution is
obtained first and then a vector u is built to satisfy

∑
j∈J

(
uj − cij

)+ = fi for
all i ∈ I with yi = 1; or (ii) the dual solution u is first obtained and then the primal
solution sets yi = 1 for all i ∈ I with

∑
j∈J

(
uj − cij

)+ = fi . The first strategy
can be applied starting from any set of open facilities S (which can be obtained, for
instance, with a greedy heuristic). The associated dual solution u(S) can be obtained
by setting uj (S) = mini∈S cij for all j ∈ J (note that this solution need not satisfy
condition (b)). The DUFLP objective function value for uj (S) is

D(u(S)) = ∑

j∈J
uj (S) − ∑

i∈I

(
∑

j∈J
(
uj (S) − cij

)+ − fi

)+
=

∑

j∈J
mini′∈S ci′j − ∑

i∈I

(
∑

j∈J
(
mini′∈S ci′j − cij

)+ − fi

)+
=

∑

j∈J
mini′∈S ci′j − ∑

i /∈S

(
∑

j∈J
(
mini′∈S ci′j − cij

)+ − fi

)+
.

Since the value of the primal solution associated with S is Z(S) = ∑
i∈S fi +∑

j∈J mini∈S cij , the deviation between the primal/dual values of S and u(S) is

Z(S) − D(u(S)) =
∑

i∈S
fi +

∑

i /∈S

⎛

⎝
∑

j∈J

(

min
i′∈S

ci′j − cij

)+
− fi

⎞

⎠

+
.

The above expression for the deviation suggests choosing S in order to satisfy
∑

j∈J
(
mini′∈S ci′j − cij

)+ − fi ≤ 0 for all i /∈ S, since in this case the above
deviation reduces to

∑
i∈S fi .

To illustrate the second strategy let u be a dual solution satisfying the optimality
condition (b) above and define I (u) = {i ∈ I | ∑j∈J (cij − uj )

+ − fi = 0}.
Assume further that uj ≥ mini∈I (u)cij . Consider now a set of facilities S(u) ⊆ I (u)

satisfying maxi∈I (u) cij = maxi∈S(u) cij , for all i ∈ I and let sj = {i ∈ S(u) | cij <

uj }, j ∈ J . Then, D(u) = Z(S(u)) (see Proposition 3.2. in Cornuéjols et al. 1990).
This means that under the above assumptions, S(u) is an optimal UFLP solution.

Note that D(u) = Z(S(u)) means that the optimal UFLP value coincides with
that of its LP relaxation. Thus, in general, one should not expect to find a solution u

that together with S(u) satisfies the conditions stated above. However the DUALOC
heuristic (see Erlenkotter 1978; Bilde and Krarup 1977), which follows this spirit
has proved to be extremely effective for finding optimal or near-optimal solutions
for the UFLP. The basic idea is to start with u = (uj )j∈J = (min

i∈I cij )j∈J , and then
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progressively attempt to increase each component uj while satisfying condition (b).
If uj can be increased, then its next value is min{cij | cij > uj }, provided that this
value satisfies (b). If not, uj is increased to the maximum possible value. Indeed,
the outcome of the above heuristic depends on the order in which the indices in
j ∈ J are considered. Necessary and sufficient conditions for the duality LP gap to
be zero, which may lead to tighter bounds have been proposed in Mladenović et al.
(2006). Heuristics in the same spirit have been proposed for other discrete facility
location problems, like the one for the stochastic version of the FLP proposed in
Louveaux and Peeters (1992).

4.4.2 The UFLP as the Optimization of a Supermodular Set
Function

As mentioned, the UFLP can be stated as the minimization of a set function. In
this section we see that an alternative formulation for the UFLP can be obtained
by exploiting the supermodularity property of this set function, which has been
observed by several authors, namely Spielberg (1969a), Frieze (1974), Babayev
(1974), Fisher et al. (1978), and we relate such a formulation with a radius based
formulation. We start by recalling some well-known results on supermodular set
functions (see, e.g., Sect. III.3.1 in Nemhauser and Wolsey 1988) and introduce
some additional notation.

Definition 4.1 Let N be a finite set, and Z a real-valued function on the subsets
of N . The function Z is supermodular if Z(S) + Z(T ) ≤ Z(S ∪ T ) + Z(S ∩ T ),

∀S, T ⊆ N .

For i ∈ N let ρi(S) = Z(S∪{i})−Z(S) be the incremental value of adding element
i to the set S.

Lemma 4.1 Each of the following statements is equivalent and defines a super-
modular set function.

(a) Z(S) + Z(T ) ≤ Z(S ∪ T ) + Z(S ∩ T ), ∀S, T ⊆ N .
(b) Z(S ∪ {i})− Z(S) ≤ Z(T ∪ {i})− Z(T ), ∀S ⊂ T ⊂ N and i ∈ N .
(c) If, in addition, Z is non-increasing, then Z(T ) ≥ Z(S) + ∑

i∈T \S
ρi(S),

∀S, T ⊂ I .

In the following we suppose that N is the set of potential facilities, i.e. N = I ,
and we consider as set function Z the cost function of UFLP solutions. That
is Z(S) = ∑

i∈S fi + ∑
j∈J mini∈I cij . To see that Z(.) is supermodular we

recall that a positive linear combination of supermodular functions is supermodular
and we observe that Z(S) = f (S) + c(S) with f (S) = ∑

i∈S fi and c(S) =∑
j∈J mini∈I cij . Thus, it is enough to see that both f (.) and c(.) are supermodular.

Because f (S) is linear, it is clear that it is supermodular. We next see that c(.) is
also supermodular.
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Proposition 4.2 c(.) is supermodular and non-increasing.

Proof We will use the characterization of supermodular functions of Lemma 4.1(b).
For S ⊂ T ⊂ I , and i ∈ I \ T ,

c(S ∪ {i}) − c(S) =
∑

j∈J

[

min
i ′∈S∪{i}

ci ′j − min
i ′∈S

ci ′j

]

=
∑

j∈J
min

{

0, cij − min
i ′∈S

ci ′j

}

≤

∑

j∈J
min

{

0, cij − min
i ′∈T

ci ′j

}

=
∑

j∈J

[

min
i ′∈T∪{i}

ci ′j − min
i ′∈T

ci ′j

]

=

c(T ∪ {i}) − c(T ),

where the inequality follows since mini′∈S ci′j ≥ mini′∈T ci′j for all j ∈ J .
Furthermore, c is non-increasing since c(S ∪ {i}) − c(S) = ∑

j∈J
[
mini′∈S∪{i} ci′j −

mini′∈S ci′j
] ≤ 0. �

For the function c(.) the incremental value of adding element i to the set S is
c(S ∪ {i}) − c(S). Hence, statement (b) of Lemma 4.1 can be rewritten as

c(T ) ≥ c(S)+
∑

i∈T \S
[c(S ∪ {i}) − c(S)] = c(S)+

∑

i∈T \S
[c(S ∪ {i}) − c(S)] ,∀S, T ⊂ I.

(4.47)

The UFLP formulation below exploits the supermodular property of z(.) and c(.)

as well as the non-increasing property of c(.). Consider the polyhedron

PSF =
{

(η, x, y) ∈ R × B
|I |×|J | × B |I | : η ≥

∑

i∈S
fiyi + c(S) +

∑

i /∈S
ρi(S)yi,∀S ⊆ I

}

,

where η is a continuous variable and B
|I |×|J | and B

|J | are the domains of the binary
vectors associated with the location and allocation variables x and y, respectively.

Theorem 4.1 Let T ⊂ I and (η, xT , yT ) ∈ R × B
|I |×|J | × B

|I |, with x and
y the incidence vectors of the UFLP solution associated with subset T . Then,
(η, xT , yT ) ∈ PSF if and only if η ≥ Z(T ).

Proof If (η, xT , yT ) ∈ PSF then

η ≥
∑

i∈T
fiy

T
i + c(T ) +

∑

i /∈T
ρi(T )yT

i =
∑

i∈T
fi + c(T ) = Z(T ).

Suppose now that η ≥ Z(T ). We have

f (T ) =
∑

i∈T
fiy

T
i =

∑

i∈T∩S

fiy
T
i +

∑

i∈T \S
fiy

T
i =

∑

i∈S
fiy

T
i +

∑

i∈T \S
fiy

T
i , for all S ⊆ I.
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Since c is non-increasing supermodular, by (4.47), we also have

c(T ) ≥ c(S)+
∑

i∈T \S
[c(S ∪ {i}) − c(S)] = c(S)+

∑

i /∈S
[c(S ∪ {i}) − c(S)] yT

i , for all S ⊆ I.

Thus, for all S ⊆ I

Z(T ) = f (T ) + c(T ) ≥
∑

i∈S
fiy

T
i +

∑

i∈T \S
fiy

T
i + c(S) +

∑

i /∈S
[c(S ∪ {i}) − c(S)] yTi .

Hence, η ≥ Z(T ) ≥ ∑

i∈S
fiy

T
i + c(S) + ∑

i /∈S
ρi(S)y

T
i , for all S ⊆ I .

Therefore, (η, yT , xT ) ∈ PSF and the result follows. �
As a consequence of Theorem 4.1, the UFLP can be stated as the following MIP

(see Nemhauser and Wolsey 1981):

minimize η (4.48)

subject to η ≥
∑

i∈I
fiyi + c(S) +

∑

e/∈S
ρi(S)yi ∀S ⊆ I∗ (4.49)

η ≥ 0 (4.50)

yi ∈ {0, 1} i ∈ I, (4.51)

where I∗ = I ∪ {i∗} and i∗ is a fictitious facility such that (i) ci∗k > maxi∈I cij ,
for all j ∈ J ; and (ii)

∑
j∈J ci∗j > maxi∈I (fi + ∑

j∈J cij ). This assumption
guarantees that at least one variable yi is at value one in any optimal solution to the
above formulation.

Taking into account the supermodularity of c(.) we can obtain a tighter formu-
lation by substituting objective (4.48) and constraints (4.49) by (4.52) and (4.53),
respectively, where

minimize
∑

i∈I
fiyi +

∑

j∈J
ηj , (4.52)

and ηj ≥ min
i∈S cij +

∑

i /∈S

[

min
i′∈S∪{i}

ci′j − min
i′∈S

ci′j

]

yi, ∀S ⊆ I∗, j ∈ J.

(4.53)
The following observation indicates that only a polynomial number of con-

straints (4.53) is required to obtain a valid formulation for the UFLP.

Remark 4.1 For S ⊂ I and j ∈ J given, the right-hand side of their associated
constraint (4.53) does not change if the summation is taken over all i ∈ I , since
mini′∈S∪{i} ci′j − mini′∈S ci′j = 0, for i ∈ S. Moreover, for any S ⊂ I , the value of
mini∈S cij will be one of the values cij , with i ∈ S. That is, for any S its associated
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constraint (4.53) can be written as

ηj ≥ csj +
∑

i∈I
(cij − csj )

−yi, for some s ∈ S.

To apply the above remark and obtain a formulation with a polynomial number of
constraints, for each j ∈ J , we order the elements of I in non-decreasing values of
their coefficients cij , and we denote by irj the r-th index according to that ordering.
That is, ci1j ≤ ci2j ≤ · · · ≤ cimj ≤ cim+1j , where cim+1j = ci∗j is the allocation
cost of customer j to the fictitious facility i∗. For simplicity, when the index j is
clear from the context we just write ir to denote the r-th ordered element.

Theorem 4.2 The UFLP can be formulated as

(SUFLP) vS = minimize
∑

i∈I
fiyi +

∑

j∈J
ηj (4.54)

subject to ηj ≥ cir j +
∑

i∈I
(cij − cir j )̄ yi r = 1, . . . ,m + 1, j ∈ J

(4.55)

ηj ≥ 0 j ∈ J (4.56)

yi ∈ {0, 1} i ∈ I. (4.57)

The proof which is based on Remark 4.1 is left to the reader. Formulation (4.54)–
(4.57) involves |m| binary variables y and |J | continuous variables η. Its total
number of constraints is (m + 1)|J |.

The reader familiar with Benders type reformulations (Benders 1962) will
immediately observe that constraints (4.55) are nothing but Benders cuts. Thus
formulation (4.54)–(4.57) admits an alternative interpretation in terms of a Benders
type reformulation. The interested reader is addressed to Magnanti and Wong
(1990) for an extensive description of the application of Benders reformulations
to the UFLP.

Modern implementations of Benders decomposition, in which Benders cuts
are embedded within branch-and-cut enumeration methods, have been recently
developed for the UFLP and some extensions. In particular, Fischetti et al. (2016)
deals with the UFLP and its extension to separable quadratic allocation costs. The
reformulation is particularly successful for large scale instances of the classical
UFLP with linear costs, since the huge number of allocation variables is replaced
with a linear number of continuous variables that model the customer allocation cost
directly. Fischetti et al. (2017) have addressed the multiple allocation capacitated
case, both for the classical objective with linear costs (MFLP) and when the
objective includes convex but non-separable quadratic terms.

We close this section by interpreting SUFLP as a radius-based formulation. Such
formulations have been broadly used in recent years for different types of location
and hub location problems, after the work by Elloumi et al. (2004). Their main
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characteristic is the use of decision variables to model the service cost for customers.
Using the above notation, in which, for j ∈ J , cir j denotes the r-th smallest
allocation cost for customer j , we define a new set of binary decision variables
zrj , r = 1, . . . ,m, where zrj = 1 if and only if the allocation cost of customer j is
at least cirj . With these decision variables, the allocation cost of customer j can be
written as the telescopic sum ci1j + ∑m

r=2(cir j − cir−1j )zrj , so that an alternative
UFLP formulation is

(RUFLP ) vR = minimize
∑

i∈I
fiyi +

∑

j∈J
(ci1j +

m∑

r=2

(cir j − cir−1j )zrj ) (4.58)

subject to zrj +
∑

i∈I
cij<cir j

yi ≥ 1 r = 1, . . . ,m + 1, j ∈ J (4.59)

zrj ∈ {0, 1} j ∈ J, r = 1, . . . ,m + 1 (4.60)

yi ∈ {0, 1} i ∈ I. (4.61)

The equivalence between both formulations can be established by observing that
feasible solutions to SUFLP define feasible solutions to RUFLP and vice versa.
Indeed, if (η, y) is feasible for SUFLP we obtain a feasible RUFLP solution by
setting, for each j ∈ J , zrj = 0 for all r with cir j ≥ ηj , and zero otherwise.
Constraints (4.55) guarantee that (z, y) satisfies constraints (4.59) and is feasible
for RUFLP. Conversely, we can also check that a feasible SUFLP solution can be
obtained from a feasible RUFLP solution by setting for, j ∈ J , ηj = cir∗j with
r∗ = arg min{cir j : yir = 1}.

4.5 Polyhedral Analysis of the UFLP

This section concentrates on the polyhedral analysis of the UFLP. We assume the
reader is familiar with the basic polyhedral concepts (an exposition can be found, for
instance in Nemhauser and Wolsey 1988). Although any UFLP formulation can be
analyzed from a polyhedral perspective, we focus on the set packing formulation for
the UFLP, because it is the one that has received more attention from a polyhedral
point of view. An alternative analysis to the one we develop next, based on a set
partitioning UFLP formulation, can be found in Guignard (1980).

As indicated in Sect. 4.2 facility location problems can also be modeled as
maximization problems in which the expression of the objective function is (4.17).
In the case of the UFLP such a formulation can be easily transformed into a set
packing one by doing the change of variables ȳi = 1 − yi , i ∈ I ; i.e. ȳi = 1
if and only if facility i is not opened. The objective function can be rewritten in
terms of the new variables as −∑i∈I fi +∑

i∈I fi ȳi +
∑

i∈I
∑

j∈J pij xij , whose
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maximization reduces to maximizing the objective
∑

i∈I fi ȳi +
∑

i∈I
∑

j∈J pij xij
within the appropriate domain. Hence, a set packing formulation for the UFLP is

(KUFLP) maximize z =
∑

i∈I
fi ȳi +

∑

i∈I

∑

j∈J
pij xij (4.62)

subject to
∑

i∈I
xij ≤ 1 j ∈ J (4.63)

xij + ȳi ≤ 1 i ∈ I, j ∈ J (4.64)

xij ∈ {0, 1} i ∈ I, j ∈ J (4.65)

yi ∈ {0, 1} i ∈ I. (4.66)

Formulation KUFLP can be viewed as a set packing formulation and thus its set
packing properties are inherited. For this we will consider the intersection graph,
that we denote by G(m, n), with a node for each variable of KUFLP and with an
edge for each pair of variables sharing a constraint in KUFLP.

In the following Pmn and Fmn denote the convex hull of the feasible solutions
of KUFLP and its LP relaxation, LKUFLP, respectively. For m∗ ≤ m and n∗ ≤ n,
we call m∗ × n∗ adjacency matrix S to any m∗ × n∗, 0–1 matrix with no zero row
and no zero column. Given an adjacency matrix S and two ordered sets IS ⊆ I

and J S ⊆ J , we denote by GS = (V S,ES) the subgraph of G(m, n) given by
V S = {xij : i ∈ IS, j ∈ J S, sij 
= 0} ∪ {ȳi : i ∈ IS}, ES = {(xij , xkj ) : i, k ∈
IS, i < k, j ∈ J S, sij = skj = 1} ∪ {(ȳi , xij ) : i ∈ IS, j ∈ J S, sij = 1}. Finally,
α(G) denotes the independence number of graph G, i.e., the maximal cardinality of
a packing of nodes in G, and B denotes a cyclic matrix of type (k, t), i.e. its size is
k × k and its rows are 0–1 vectors with t adjacent 1’s, which move one position to
the right in each row.

Some relevant contributions on the polyhedral analysis of KUFLP are (in
chronological order): Cornuéjols et al. (1977), Guignard (1980), Cornuéjols and
Thizy (1982), Cho et al. (1983a,b), Myung and Tcha (1996), Cánovas et al. (2000,
2001, 2002), Baiou and Barahona (2009a) and Chen et al. (2012). New trends in this
area relate to the study of how to adapt the known polyhedral properties of the UFLP
to problems generalizing it. Nice examples are the papers by Hamacher et al. (2004)
and by Baiou and Barahona (2009b). In both cases the authors give results allowing
to directly adapt any valid inequality of the UFLP to the Hub Location Problem
and the Two-Level Facility Location Problem, respectively. Next we summarize the
main results in this area.

First of all, Pmn is full-dimensional, i.e., dim(Pmn) = mn + p. Thus, two
different facets of Pmn always define two different sets of feasible solutions for
KUFLP.

Cho et al. (1983a) have proven that for m ≤ 2 or n ≤ 2 the coefficient matrix
of KUFLP is totally unimodular, so the polyhedral analysis is of little interest. They
have also given a complete description of the facets of Pmn when m = 3 or n = 3.
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Recently, Baiou and Barahona (2009a) and Chen et al. (2012) have presented new
conditions for Fmn to be integral, i.e., to have all its extreme points integral. Both
papers define a particular type of odd cycles in the intersection graph of KUFLP
without which the extreme points of the polyhedron Fmn are integral.

The remainder of this section is divided in three parts: extreme points of Fmn,
valid inequalities and facets of Pmn, and lifting procedures.

4.5.1 Extreme Points

We are aware of two papers dealing with the characterization of the fractional
extreme points. Cornuéjols et al. (1977) give a characterization for the extreme
points of Fmn. Let If = {i ∈ I : 0 < ȳi < 1}, J0 = {j ∈ J : xij ∈ {0, 1 − ȳi}
for all i and xij non-integer for some i} and let U be the |If | × |J0| matrix whose
elements are

uij =
{

1 if xij > 0,
0 if xij = 0.

Theorem 4.3 (Cornuéjols et al. 1977) The fractional feasible solution (x, ȳ) of
LKUFLP is an extreme point of Fmn if and only if

(a) 1 − ȳi = maxj {xij } for all i ∈ If ,

(b) for each j ∈ J, there is at most one i with 0 < xij < 1 − ȳi ,

(c) the rank of U equals |If |.
Cánovas et al. (2001) have later provided a characterization for the extreme points
of a more general polyhedron and prove that condition (a) of Theorem 4.3 follows
from conditions (b) and (c). Cho et al. (1983a) make use of this characterization
to prove that a certain family of valid inequalities can cut fractional solutions of
LKUFLP. The results of Cánovas et al. (2001) also characterize the extreme points
of the polyhedra associated with the FLP formulation in Leung and Magnanti (1989)
and of other related problems.

4.5.2 Valid Inequalities and Facets

Next we present several families of valid inequalities of Pmn. Further details and
results can be found in Cho et al. (1983a) and Cánovas et al. (2002).



4 Fixed-Charge Facility Location Problems 89

Cornuéjols et al. (1977) presented the first polyhedral study of the KUFLP. They
proposed, without proof, the following family of valid inequalities of Pmn

∑

i∈IC
bij xij +

∑

i∈IC
ȳi ≤ 2k − �k/t�, (4.67)

where k and t are integers such that k = tp + 1 for some integer p, B is a cyclic
matrix of type (k, t) and IB ⊆ I, J B ⊆ J are subsets of cardinality k. Later,
Cornuéjols and Thizy (1982) proved that (4.67) is a facet.

Several well-known families of facets for the KUFLP with binary coefficients are
discussed below:

Theorem 4.4 (Cho et al. 1983b) Consider IS ⊆ I and J S ⊆ J . Then, the
inequality

∑

i∈IS

∑

j∈J S

sij xij +
∑

i∈IS
ȳi ≤ α(GS),

where sij = 0 or 1, is facet-defining for Pmn (and different from a clique facet) if
and only if S is a |IS | × |J S |, maximal m × n-adjacency matrix.

A characterization of maximal m × n-adjacency matrices can be found in Cho
et al. (1983b). A special case of maximal m × n-adjacency matrix gives rise to a
concrete family of facet-defining inequalities of Pmn:

Theorem 4.5 (Cornuéjols and Thizy 1982 ) Consider � and t such that 2 ≤ t <

� ≤ m and subsets P ⊆ I , D ⊆ J , such that |D| = ( �t), |P | = �. Let A�t be the
matrix whose columns are all vectors 0–1 with t ones and � − t zeros. Then,

∑

i∈P

∑

j∈D
a�t
ij xij +

∑

i∈P
ȳi ≤ ( �t ) + t − 1

is a facet-defining inequality of Pmn.

By exploiting the set packing structure of KUFLP, the odd holes in the intersec-
tion graph of KUFLP allow to define two new families of valid inequalities.

Theorem 4.6 (Cornuéjols and Thizy 1982) The inequality

x21 + x32 + x13 +
3∑

i=1

xii +
3∑

i=1

ȳi ≤ 4

is facet-defining for P 33.
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Theorem 4.7 (Cornuéjols and Thizy 1982) The inequality

x15 + x13 + x41 +
5∑

i=1

xii +
4∑

i=1

x(i+1)i +
5∑

i=1

ȳi ≤ 7

is facet-defining for P 55.

Families of facet defining inequalities for KUFLP with general integer coeffi-
cients are also known.

Theorem 4.8 (Cánovas et al. 2000) Let S be an r×c adjacency matrix satisfying

(i) ∀i1, i2 ∈ IS ∃j ∈ J S such that si1j si2j = 1 and
(ii) ∀(i, j) ∈ IS × J S with sij = 1 ∃� ∈ IS , � 
= i, such that s�j = 1 and

sihs�h = 0 ∀h 
= j .

Then,

∑

i∈IS

∑

j∈J S

sij xij +
∑

i∈IS
(
∑

j∈J S

sij − 1)ȳi ≤
∑

i∈IS

∑

j∈J S

sij − |IS | + 1

is a facet-defining inequality of P rc.

Theorem 4.9 (Cánovas et al. 2002) Let S be the k × k adjacency matrix, k ≥ 3,
given by

S =
(

0 11×(k−1)

1(k−1)×1 I(k−1)×(k−1)

)

Then,

∑

i∈IS

∑

j∈J S

sij xij + (k − 2)ȳ1 +
k∑

i=2

ȳi ≤ 2k − 2

is a facet-defining inequality of Pkk .

Theorem 4.10 (Cánovas et al. 2002) Consider three numbers, k ≥ 5, 1 ≤ a <

k − 3 and b = k − 3 − a and let S be the k × k adjacency matrix given by

S =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Ia×a 0a×b 0a×1 0a×1 1a×1

0b×a Ib×b 1b×1 0b×1 1b×1

11×a 01×b 1 0 0
01×a 11×b 0 1 0
01×a 01×b 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.
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Then,
∑

i∈IS

∑

j∈J S

sij xij +
∑

i∈IS−{k−2,k−1}
ȳi + aȳk−2 + bȳk−1 ≤ 2k − 3

is a facet-defining inequality of Pkk .

Theorem 4.11 (Cánovas et al. 2002) Let B be the cyclic (2k+1, 2) matrix, k ≥ 1,
and let S be the (2k + 2) × (4k + 2) adjacency matrix given by

S =
(
B(2k+1)×(2k+1) I(2k+1)×(2k+1)

01×(2k+1) 11×(2k+1)

)

.

Then,

∑

i∈IS

∑

j∈J S

sij xij +
2k+1∑

i=1

2ȳi + (k + 1)ȳ2k+2 ≤ 6k + 3

is a facet-defining inequality of P (2k+2)(4k+2).

Other types of inequalities have been suggested. For instance, Myung and Tcha
(1996) develop a family of inequalities that may cutoff feasible solutions but not
optimal ones. In particular, they propose a method for generating inequalities for a
constrained KUFLP which considers its feasible domain and the objective function
value, as well. For the sake of brevity, details are omitted here.

Recently an exponentially large family of valid inequalities called homogeneous
inequalities has been introduced in Galli (2018). Homogeneous inequities gener-
alize the valid inequalities in Theorems 4.4–4.8, namely, those whose coefficients
are binary. Necessary and sufficient conditions for homogeneous inequalities to be
facet-defining for Pmn are given in the mentioned paper.

4.5.3 Lifting Procedures

The procedures that transform a valid inequality (facet) of a polyhedron Pm∗n∗

into a valid inequality (facet) of a higher dimensional polyhedron Pmn, m ≥ m∗
and n ≥ n∗, are called lifting procedures. Such results invite the study of smaller
polyhedra. The following result indicates how to lift all the facets in the previous
section. Apart from the results in this section, other lifting procedures for general
set packing models can be found in Cánovas et al. (2003).

Theorem 4.12 (Cho et al. 1983b) Let
∑

i∈P

∑

j∈D
πij xij +

∑

i∈P
μi ȳi ≤ π0 (4.68)
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be a facet-defining inequality of Pm∗n∗
. Then, (4.68) is also a facet-defining

inequality of Pmn for m ≥ m∗, n ≥ n∗.

Cho et al. (1983b) also give a constructive procedure for obtaining facets of Pmn

from cyclic adjacency matrices which do not define facets themselves.

Theorem 4.13 (Cho et al. 1983b) Consider P ⊆ I , D ⊆ J , such that |P | =
|D| = q , q ≥ 3. Consider the facet-defining inequality of Pqq given by

∑

i∈P

∑

j∈Di

xij +
∑

i∈P
ȳi ≤ 2q − 2

where the sets Di are all the different subsets of D with |Di | = q − 1. Suppose we
add |S| + |T | facilities of I to P in such a way that each facility in S covers q − 1
destinations and each facility in T covers all the q destinations. Let |S| = s and
|T | = t . Then,

∑

i∈I∪S∪T

∑

j∈Di

πij xij +
∑

i∈I∪S∪T

μiȳi ≤ (2q + s − 2)(q − 1) + t (q − 2)

is a facet-defining inequality of P (q+s+t )q , where

I. πij = μi = q − 1, i ∈ P ∪ S, j ∈ Di ,
II. πij = μi = q − 2, i ∈ T , j ∈ Di .

Theorem 4.14 (Galli 2018) Let

∑

i∈I

∑

j∈J
πij xij +

∑

i∈P
μiȳi ≤ π0

be a valid inequality of Pmn. Let P be an arbitrary subset of I and π+
j (P ) =

maxi∈P {πij }. The augmented inequality

∑

i∈I

∑

j∈J
πij xij +

∑

j∈J
π+
j (P )x(m+1)j +

∑

i∈I
μiȳi + (

∑

i∈I
μi)ym+1 ≤ π0

is valid of P (m+1)n.

4.6 Conclusions

Fixed-Charge Facility Location Problems capture the main issues arising in fixed-
charge location, so they are an excellent workbench for reviewing relevant aspects
in this field. This was the aim of this chapter where we have covered a broad range
of possibilities related to the modeling and the solution process of FLPs. Indeed
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the problems studied in this chapter can be seen as simplifications of more realistic
models that take into account additional issues. We have studied deterministic static
problems, without taking uncertainty into account (see, for instance, Lin 2009;
Albareda-Sambola et al. 2011; Gao 2012; Albareda-Sambola et al. 2013, 2017),
or temporal aspects (see, for instance, Albareda-Sambola et al. 2009a, 2010, 2012).
Also, the way we have considered capacity constraints on the facilities may seem
simplistic, since modular capacities (incurring their corresponding costs) can be
more realistic (see, for instance, Gouveia and Saldanha-da-Gama 2006; Gourdin and
Klopfenstein 2008; Correia et al. 2010). FLPs can be extended in various ways: One
can consider more involved objective functions or multiple objectives (Fernández
and Puerto 2003; Boland et al. 2006; Wu et al. 2006; Zanjirani Farahani et al. 2010),
problems combining FLP decisions with network design (Melkote and Daskin
2011; Contreras et al. 2012), additional constraints (Albareda-Sambola et al. 2009b;
Gendron and Semet 2009; Marín 2011), or the possibility of installing several
facilities at the same site (Ghiani et al. 2002), just to mention a few possibilities.
Some of these extensions are addressed in other chapters of this book.

A wider view of FLPs is provided from the perspective of Multilevel Facility
Location (MFL), which defines a large class of problems that is receiving increasing
attention and generalizes FLPs. In MFL the set of potential facilities is partitioned
in several levels and the goal is to determine the facilities to open at each level, and
the assignment of customers to possible multiple sequences of open facilities, so as
to optimize a given objective function. The interested reader is referred to Contreras
et al. (2018) for a comprehensive overview on MFL, and to Contreras et al. (2017,
2019) for recent approaches to solving some problems of this class.
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Chapter 5
Covering Location Problems

Sergio García and Alfredo Marín

Abstract When deciding where to locate facilities (e.g., emergency points where
an ambulance will wait for a call) that provide a service, it happens quite often
that a customer (e.g., a person) can receive this service only if she is located less
than a certain distance from the nearest facility (e.g., the ambulance can arrive
in less than 7 min at this person’s home). The problems that share this property
receive the name of covering problems and have many applications. (analysis
of markets, archaeology, crew scheduling, emergency services, metallurgy, nature
reserve selection, etc.). This chapter surveys the most relevant problems in this
field: the Set Covering Problem, the Maximal Covering Location Problem, and
related problems, In addition, it is introduced a general model that has as particular
cases the main covering location models. The most important theoretical results
in this topic as well as exact and heuristic algorithms are reviewed. A Lagrangian
approach to solve the general model is detailed, and, although the emphasis is on
discrete models, some information on continuous covering is provided at the end of
the chapter.

5.1 Introduction

When deciding where to locate facilities (e.g., emergency points where an ambu-
lance will wait for a call) that provide a service, it happens quite often that a
customer (e.g., a person) can receive this service only if she is located less than
a certain distance from the nearest facility (e.g., the ambulance can arrive in less
than 7 min at this person’s home). The problems that have this property receive the
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name of covering location problems and, when the previous condition holds, it is
said that the customer is covered. In this chapter, we will refer to them simply as
covering problems.

The first mentions to covering problems in the literature can be found in two
papers. One is Berge (1957), where the problem of finding a minimum cover on a
graph is introduced, and a theorem that provides an algorithm to find a minimum
cover using a matching is stated. The other is Hakimi (1965), where it must be
decided the minimum number of police patrols required to protect a highway
network. The problem was mathematically formulated for the first time in the
location area in Toregas et al. (1971), although out of a location context it had
already been formulated in Roth (1969).

In general, there exist two types of covering problems: set covering and maximal
covering. In a set covering problem (Toregas et al. 1971), the total cost of locating
a set of facilities so that every customer is covered must be minimized. Particularly,
if all the facilities have the same location cost, this is equivalent to minimizing the
number of facilities to be located. A quick analysis of a solution to the set covering
problem will usually show that it is possible to cover an important percentage of the
demand with just a few facilities, and that full coverage can be achieved only by
locating a large number of them. Since locating as many facilities as needed may
not be possible (e.g., due to budget constraints), a natural variant is to maximize
the number of customers that are covered (or, equivalently, minimize the number of
non-covered customers) by locating a fixed number of facilities. This problem is the
maximal covering problem which was introduced in Church and ReVelle (1974).

According to Balas and Padberg (1976), the set covering problem is one of
the three special structures in pure integer programming with the most widespread
applications, together with set partitioning and the traveling salesman problem. Just
to mention a few, set covering models have been applied in the following areas:
analysis of markets (Storbeck 1988), archaeology (Bell and Church 1985), crew
scheduling (Ceria et al. 1998), deployment of emergency services (Toregas et al.
1971; Eaton et al. 1986), mail advertising (Dwyer and Evans 1981), metallurgy
(Vasko et al. 1989), nature reserve selection (Church et al. 1996), Steiner matrices
(Feo and Resende 1989), and humanitarian logistics (Li et al. 2018).

Due to its importance and the rich literature on this topic, it is not surprising that
reviews have been published regularly. The first one is Christofides and Korman
(1975), a comparison of five computational methods for the set covering problem.
Later, Chung (1986) examined several applications of the maximal covering model
to problems that do not belong to the location field, and ReVelle (1989), a review
focused on emergency service. Broader reviews are Schilling et al. (1993), an
exhaustive survey on covering models in location reviewing 96 papers, and Caprara
et al. (2000), a comparison of algorithms (exact and heuristic) for the set covering
problem. Plastria (2002) provides an exhaustive review of continuous covering
models, and it is a perfect complement to this chapter. More recently, Berman et
al. (2010) considered some of the latest trends by reviewing gradual coverage,
cooperative coverage, and variable radius coverage models, and Snyder (2011)
who reviewed the seminal covering models plus some extensions. The most recent
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general survey is that of Farahani et al. (2012), which contains an exhaustive list
of models and reviews more than 150 papers on covering problems in the area of
facility location. Murray (2016) is a more recent survey that focuses on maximal
covering problems. More a tutorial than a survey, Daskin (2013) constitutes an
excellent introduction to the basic properties of covering models.

At this point, it must be said that there exist many different models involving
covering, and that the goal of this chapter is not to review them all but to provide
an insight on the main models and results on the topic. Particularly, we focus
on discrete models because they have received most of the attention. The rest of
this chapter is organized as follows: the main models are presented in Sect. 5.2 as
particular cases of a general model. Section 5.3 summarizes the main theoretical
results on two of the main models (Set Covering and Maximal Covering Location).
Then, we survey exact (Sect. 5.4) and heuristic (Sect. 5.5) solution methods. Since
Lagrangian relaxation is widely used for covering models, we extend it to the
general model described in Sect. 5.6. Finally, although the focus of this chapter is on
discrete models, some information on continuous covering is provided in Sect. 5.7
for the sake of completeness.

5.2 Models

We will use a general covering model to present as particular cases the main
covering location problems as well as several other basic location problems that
can be also considered sophisticated extensions of covering models.

Let J = {1, . . . , n} be the set of customers (also called demand points), and let
I = {1, . . . ,m} be the set of potential centers (facilities). Since many applications of
covering models come from the field of location, we will use indistinctively “sites”
for customers and potential centers. For each pair (i, j) ∈ I × J a known constant
aij ∈ {0, 1} represents whether demand point j can be covered (value one) or not
(value zero) by a center installed at site i. These constants can be obtained through
different procedures depending on the model under consideration, as we will see
later.

Associated to each i ∈ I , a fixed cost fi ≥ 0 has to be paid for opening a center
at site i. In some models it is possible to open more than one center at the same site.
In this case we assume that the costs of the centers to be opened in i ∈ I are the
same (i.e., fi is the opening cost for all centers to be opened at site i). Each demand
point j ∈ J must be covered by at least bj ∈ Z

+
0 facilities, where bj = 0 if site j

does not need to be covered. Besides, a maximum number of p ∈ Z
+ facilities can

be opened (note that when the fixed costs of the centers are zero, this maximum
number is always reached by some optimal solution).

Non-negative integer variables yi represent the number of facilities to be opened
at site i ∈ I . These are the main location variables, and they will be explicitly
present in all the particular cases that are obtained from the general model. The
maximum number of facilities that can be opened at site i is given by constant ei ∈
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Z
+. Particularly, if ei = 1, then yi is a binary variable that takes value one if and

only if a facility is located at site i.
A second family of binary variables is wjk . Here, j belongs to the set of demand

points J while k belongs to an index set K = {1, . . . , h} that can be different
depending on the particular model that is considered. Associated to variables wjk

are fixed costs gjk ∈ R. These costs gjk can be negative, representing in this case
the profit from wjk taking value one. In order to avoid unnecessary complicating
constraints in the basic model, without loss of generality, we assume that gj1 ≤
gj2 ≤ . . . ≤ gjh for each j ∈ J . Whenever this condition does not hold, it will be
explicitly stated.

The mathematical integer programming formulation for our general covering
model is:

(COV) Minimize
∑

i∈I
fiyi +

∑

j∈J

∑

k∈K
gjkwjk (5.1)

subject to
∑

i∈I
yi ≤ p, (5.2)

∑

i∈I
aij yi = bj +

∑

k∈K
wjk ∀j ∈ J, (5.3)

yi ∈ {0, 1, . . . , ei} ∀i ∈ I, (5.4)

wjk ∈ {0, 1} ∀j ∈ J,∀k ∈ K. (5.5)

The objective function (5.1) contains two terms. The first sum is the total fixed
cost of opening yi facilities at site i ∈ I . The second sum is the total cost (or profit, if
negative) provided by the w-variables that take value one. Constraint (5.2) limits the
number of centers to p. Note that all the centers installed at the same site contribute
to the sum.

The main constraints in the model are (5.3). For each demand point j ∈ J ,
the left-hand side of (5.3) counts the number of open facilities that cover j . This
number must be at least equal to the lower bound bj on the right-hand side, while
the sum of wjk variables measures the slack in the coverage of j , i.e., the number
of centers that are covering j beyond the minimum number bj . Due to the condition
that we imposed on the g-values, the w-variables that take value one will be in the
first positions, that is, constraints wjk ≥ wj,k+1, j ∈ J , k ∈ {1, . . . , h − 1} are
satisfied without including them explicitly in the formulation. A cost gj1 will be
paid if demand point j is covered by at least bj + 1 centers; an additional cost gj2
will be paid if demand point j is covered by at least bj + 2 centers, and so on.
Constraints (5.4) are the integrality constraints for the y-variables and impose that
at most ei centers can be installed at site i. Constraints (5.5) state that the variablesw
are binary.

Model (COV) forces to cover each demand point j with a minimum of
bj facilities by using at most p facilities while minimizing the location cost of the
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facilities plus an additional cost (or, instead, minus an additional benefit) associated
with the number of facilities that over-cover customers. By giving particular values
to the constants in (COV), different existing models are obtained. The details are
given next.

Set Covering Problem: In the Set Covering Problem (SCP) we have that, under
the context of emergency center location of Toregas et al. (1971), aij = 1 if the
response time or distance dij from a center located at i ∈ I when an emergency
happens at j ∈ J is less than a certain given threshold s (i.e., aij = 1 if and only
if dij ≤ s). There is no maximum number of centers to be located (i.e., p = m)
and all demand points must be covered at least once (bj = 1 ∀j ∈ J ). The only
costs in the objective function are fi = 1 ∀i ∈ I because the goal is to minimize
the number of open centers. Therefore, the variables wjk can be removed from
the model by replacing the equalities in (5.3) with inequalities “≥” (equivalently,
take h = m − 1 and gjk = 0 for all j ∈ J , k ∈ K in (COV)). In the SCP,
opening more than one facility at the same site is not optimal. Therefore, ei = 1
∀i ∈ I . Given the importance of this model, its classical formulation is explicitly
provided:

(SCP) Minimize
∑

i∈I
yi

subject to
∑

i∈I
aij yi ≥ 1 ∀j ∈ J, (5.6)

yi ∈ {0, 1} ∀i ∈ I.

As an optimization problem, the SCP is a classical problem. The particular case
where I = J is the set of nodes of an undirected graph and aij = 1 if and only if
edge (i, j) exists, usually called Node Covering Problem, has been extensively
studied. The interested reader can consult the survey by Balinski (1965). Other
interesting seminal papers are those of Norman and Rabin (1959) and Hohn
(1955), where the mathematical problem is identified in the context of electronic
circuits when analyzing a general way of designing a contact network satisfying
given requirements and employing a minimum number of contacts.
Surprisingly, although the SCP is an NP-complete problem (Garey and Johnson
1979), it often happens that the linear relaxation already provides an integer
solution. Another important property that must be remarked is that the SCP
has usually many different optimal solutions, i.e., sets of centers with the same
minimum cardinality that cover all the demand points.

Weighted Set Covering Problem: The Weighted SCP (WSCP) is a generalization
of the SCP where the opening costs fi can be different from 1.

Redundant Covering Location Problem: The Redundant Covering Location
Problem (RCLP) was studied by Daskin and Stern (1981) as an extension of
the SCP where the aim is to choose, among the optimal solutions to the SCP, the
one that maximizes the number of demand points covered at least twice. Each
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site can only shelter one center. Again, aij = 1 if and only if dij ≤ s, p = m,
bj = 1 ∀j ∈ J (because the demand points must be covered at least once), and
ei = 1 ∀i ∈ I . Since we are also interested in knowing whether each demand
point j ∈ J is covered or not by a second center (disregarding the number
of additional facilities that cover j ), only variables wj1 would be necessary if
equalities (5.3) were replaced with inequalities (5.6) as in the SCP discussed
above. Alternatively, the RCLP can be obtained as a particular case of (COV) by
taking h = m − 1, gjk = 0 ∀j ∈ J , k ≥ 2, and gj1 = −1 ∀j ∈ J . In order to
prioritize the minimization of the number of open facilities, we define fi = n+1
∀i ∈ I as a sufficiently large cost.

Hierarchical Covering Location Problem (HCLP): An objective function that
allows the simultaneous minimization of the number of opened facilities and
the maximization of the number of previously existing facilities that are kept
(within the minimum total number of facilities) was introduced by Plane and
Hendrick (1977) to study the location of fire stations. The coefficients aij are
equal to one if and only if focal point i can be served by a pumper company at
location j within less than the response time specified for site i. They found a
major difficulty when using the SCP: this model does not differentiate between
those sites that have existing fire stations and those that require the construction
of a station. This drawback was fixed by modifying the objective function of the
SCP as follows: consider a partition of the set of facilities I = I0 ∪ I1, where
I0 is the set of existing facilities, and I1 is the set of potential new facilities.
Then, define fi = 1 ∀i ∈ I1 and fi = 1 − ε > 0 ∀i ∈ I0, with ε a small positive
amount. This way, the slightly lower cost of the already existing centers makes
them more interesting when minimizing the total cost.

Maximal Covering Location Problem: The Maximal (or Maximum) Covering
Location Problem (MCLP) was introduced in Church and ReVelle (1974) and,
as was explained in the previous section, it entails an important change with
regard to the goal of the previous models listed in this section because, since
the number of facilities to be located is now limited to a given value p < m,
we do not require to cover all the demand but to maximize the covered demand.
Then, h = p and bj = 0 ∀j ∈ J . Again, ei = 1 ∀i ∈ I and values aij are
defined as usual. Since we need to know whether a demand point is covered or
not without minding about the number of different facilities that cover it, we
avoid that variables yi and variables wjk with k 
= 1 contribute to the objective
function (5.1) by fixing their corresponding coefficients to zero, i.e., fi = 0
∀i ∈ I and gjk = 0 ∀j ∈ J , ∀k ≥ 2. Besides, we set gj1 = −1 in order to
maximize the number of demand points covered by the open facilities.
An alternative to this model, proposed in Church and ReVelle (1974), is to
combine mandatory covering of some demand points (assume that these points
are indexed by means of J1 ⊂ J ) and maximization of the coverage of the
remaining points (those in J \ J1). This situation can also be handled by means
of model (COV) by taking h = p, bj = 1 ∀j ∈ J1, bj = 0∀j ∈ J \ J1, ei = 1
∀i ∈ I , and fi = 0 ∀i ∈ I . The g-coefficients are defined as follows: gj1 = −1
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∀j ∈ J \ J1, gjk = 0 ∀j ∈ J \ J1, ∀k ≥ 2, and gjk = 0 ∀j ∈ J1, ∀k ∈ K . We
call this model MCLP’.

Backup Set Covering Problems: Several models can be grouped under this name.
The common idea is to cover the demand points with more than one facility
in order to guarantee the coverage in case of either failure or overflow in one
or more of the centers (in this sense, the RCLP can be considered a backup
problem). There are two natural goals: minimization of the number of open
facilities and maximization of the backup coverage. Sometimes this problem
has been approached from the point of view of multiobjective optimization as,
for example, in Storbeck and Vohra (1988) and model BACOP1 in Hogan and
ReVelle (1986). Some other times both objectives are combined into a unique
function as in model BACOP2 in Hogan and ReVelle (1986). Details are provided
next.
Coverage of all demand points is not mandatory, and each site can host several
facilities. Demands tj are associated to points j ∈ J . A maximum number of
p facilities can be opened (h = p). Values aij are obtained as in most of the
previous models. A parameter 0 < β < 1 measures the relative importance of
covering once or twice each demand point: the smaller β is, the more importance
is given to cover each point twice. The goal here is to maximize the demand
covered by the facilities and also the demand covered twice, using β to give each
objective its relative importance. Taking this into account, we define fi = 0
∀i ∈ I , ei = p ∀i ∈ I , gjk = 0 ∀j ∈ J , ∀k ≥ 3 and bj = 0 ∀j ∈ J .
Variables wj1 are used to indicate whether customer j is covered or not, and
variables wj2 are used to check whether j is covered twice or not. We define
gj1 = −βtj and gj2 = −(1 − β)tj . Model (COV) is valid when β ≥ 1/2.
When β < 1/2, constraints wj1 ≥ wj2 ∀j ∈ J must be included to preserve the
correct definition of the w-variables.
Batta and Mannur (1990) proposed a different criterion for coverage which
can also be viewed as a particular case of (COV). More recently, Curtin et al.
(2010) developed a backup coverage model in order to locate police patrols,
where a priority tj of crime incident in j ∈ J is known, the number of police
patrols is limited to p, and aij takes value one if and only if a patrol located
at i can cover a crime incident located at j . The model is called PPAC and is a
particular case of (COV) obtained by defining fi = 0 ∀i ∈ I , h = p, gjk = −tj
∀k, bj = 0 ∀j ∈ J , and ei = 1 ∀i ∈ I .

Maximum Expected Covering Location Problem: Several covering location
models are based on probabilistic principles. One of the most important is the
Maximum Expected Covering Location Problem (MECLP) described in Daskin
(1983), where each facility has a probability of 0 < q < 1 of being busy or
failing, independently of any circumstance of the system. Therefore, a demand
point covered by � facilities has a probability 1 − q� of receiving service. In
this model, demands tj associated to the demand points are also known, and
the goal is to locate at most p facilities in such a way that the total expected
demand (the sum of the demands of the points times their probability of being
serviced) is maximized. Apart from PPAC, this is the first model considered
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here where all the w-variables really make sense, since it is necessary to know
how many facilities are covering each demand point in a given feasible solution.
When variable wjk takes value one, this can be then be re-interpreted as demand
point j is covered at least k times. Thus, in order to obtain the right total in the
objective function (5.1), we define gjk = −tj (1 − q)qk−1 ∀j ∈ J, ∀k ∈ K .
This way,

∑�
k=1 gjk = −tj (1 − q�), which is the correct contribution of j to

the objective function when j is covered by � facilities and wjk ≤ wj,k+1 ∀k.
Note that this last inequality is satisfied implicitly because qk ≥ qk+1 means that
coefficients {gjk}k are sorted in non-decreasing order for every demand point j .
Finally, we define fi = 0 ∀i ∈ I and bj = 0 ∀j ∈ J . It is also natural in this
problem to assume that a site can host more than one facility because it could
lead to better solutions, which is why we define ei = p ∀i ∈ I .
Some of the strong assumptions of this model (e.g., the servers are independent
or they have the same failure probabilities) have been relaxed, for example, by
Batta et al. (1989) and Galvão et al. (2005).

Probabilistic Location Set Covering Problem: In order to examine the relation-
ships between the number of facilities being located and their reliability, ReVelle
and Hogan (1989a) proposed a Probabilistic Location Set Covering Problem
(PLSCP) whose main (and almost unique) difference with the SCP is that
values bj can be greater than one and they are obtained in such a way that the
reliability of coverage of each point j ∈ J is guaranteed to be at least equal to a
threshold value α. Particularly, bj is calculated as the minimum integer number
such that

(
Fj

bj

)bj

≤ 1 − α,

where Fj is the fraction of the day that the service is needed at point j .
Optionally, in this model ei can take values greater than one since this can lead
to better solutions.

Maximum Availability Location Problem: Suppose now that a profit uj associ-
ated with each demand point j ∈ J is obtained only if at least �j facilities
cover it. The total number of facilities is limited, a site can host more than
one facility, and there is no facility opening cost. The Maximum Availability
Location Problem (MALP), first described in ReVelle and Hogan (1989b), is a
particular case of (COV) obtained by defining fi = 0 ∀i ∈ I , ei = p ∀i ∈ I ,
bj = 0 ∀j ∈ J , and gjk = 0 ∀j ∈ J , ∀k 
= �j , whereas gj�j = −uj

∀j ∈ J . Since now the g-values are not sorted in increasing order, constraints
wjk ≥ wj,k+1 ∀j ∈ J, ∀k < h, must be included.

Covering Problem: The so-called Covering Problem (CP) in Kolen and Tamir
(1990) is that of minimizing the costs of opening some facilities plus the penalty
costs associated to uncovered demand points. It is obtained from (COV) by
defining p = m, ei = 1 ∀i ∈ I , bj = 0 ∀j ∈ J , gjk = 0 ∀j ∈ J , ∀k ≥ 2, and
gj1 = −uj ∀j ∈ J , where uj is the penalty for not covering demand point j .
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A constant −∑j∈J gj1 must be added to the objective to obtain the right optimal
value. This way, when variable wj1 takes value one, j is covered and the penalty
cost −gj1 is removed from the objective function.

Minimum Cost Maximal Covering Problem (MCMCP): This is the name for the
model introduced in Broin and Lowe (1986) whose only difference with regard
to CP is that the total number of facilities is limited. They gave a dynamic
programming algorithm for solving the MCMCP in O(p2nmin{m2, n2}) time
when the matrix A = (aij ) is totally balanced.

p-Median Problem: Studied in detail in Chap. 2, the p-Median Problem (pMP)
consists in, given a set of n demand points, choosing p of them to locate facilities
and allocating each demand point to one of these facilities (which receive the
name of medians) in such a way that the total cost be minimum, where the cost
of allocating j to i is the distance dij between the two points (assuming dii = 0
∀i and dij > 0 in all other cases).
Instead of using the classical formulation for pMP, an artificial set J can be
designed in order to obtain it as a particular case of (COV): for each demand
point j , a vector Dj = (D1j , . . . ,DGj j ) is obtained by sorting in increasing
order the values in {d1j , . . . , dnj } (removing multiplicities):

0 = D1j < D2j < . . . < DGjj = max
1≤i≤n

{dij }.

Then define J = {(�, j) : j ∈ {1, . . . , n}, � ∈ {2, . . . ,Gj }} and ai,(�,j) = 1
if and only if dij <D�j . Besides, we set fi = 0 ∀i ∈ I , ei = 1 ∀i ∈ I , b(j,�) = 0
∀(�, j) ∈ J , and h = p. Coefficients g(�,j)1 are defined with value D�−1,j −D�j

and g(�,j)k = 0 ∀k ≥ 2.
With this approach, constraints (5.3) force variables w(j,�)1 to take value zero
if there is no open facility at a distance less than D�j from demand point j

and the allocation cost of j is increased from D�−1,j to D�j , as desired.
A constant

∑n
j=1 DGjj must be added to the objective function to obtain the

right optimal value. This formulation has been successfully used in García et al.
(2011), where a column-and-row generation algorithm is developed to solve very
large instances.

Uncapacitated Facility Location Problem: The problem considered in Chap. 4
(UFLP) and pMP differ in the number of centers, which in UFLP is not fixed
beforehand but there is a fixed cost fi for opening a facility at site i. Therefore,
a straightforward modification of these parameters will allow to obtain UFLP
as a particular case of (COV). This particular formulation was first proposed
in Cornuéjols et al. (1980) and later in Kolen and Tamir (1990).

Table 5.1 summarizes the information about covering models in the literature
which have been shown in this chapter to be particular cases of (COV).
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Table 5.1 Covering location models derived from (COV)

Model f h g p b e

SCP 1 m − 1 0 m 1 1

WSCP f m − 1 0 m 1 1

RCLP n + 1 m − 1 (−1, 0, . . . , 0) m 1 1

HCLP (1, . . . , 1, 1 − ε, . . . , 1 − ε) m − 1 0 m 1 1

MCLP 0 p (−1, 0, . . . , 0) p 0 1

MCLP’ 0 p (−1, . . . ,−1, 0, . . . , 0) p 0 1

BACOP2a 0 p (−βtj ,−(1 − β)tj , 0, . . . , 0) p 0 p

PPAC 0 p −tj p 0 1

MECLP 0 p −tj (1 − q)qk−1 p 0 p

PLSCP 1 m − bj 0 m δc 1

MALPb 0 p (0, . . . , 0,−uj , 0, . . . , 0) p 0 p

CP f m (−uj , 0, . . . , 0) m 0 1

MCMCP f p (−uj , 0, . . . , 0) p 0 1

pMP 0 p (D�−1,j − D�j , 0, . . . , 0) p 0 1

UFLP f m (D�−1,j − D�j , 0, . . . , 0) m 0 1
aConstraint (5.5) must be added if β < 1/2
bConstraint (5.5) must be added
cδ := min{bj ∈ Z /

(
Fj

bj

)bj ≤ 1 − α}

5.3 Theoretical Results

The Set Covering Problem is NP-hard (Garey and Johnson 1979). As a consequence,
much effort has been put into understanding better the structure of this model in
order to develop solving algorithms (which are reviewed later in this chapter). This
knowledge can be divided mainly into three categories: preprocessing, polyhedral
analysis, and relation to other problems.

When solving the SCP, all the setup costs fi can be assumed to be positive
because if fi ≤ 0 for a certain facility i, then we can fix yi = 1, remove this variable
from the model and delete any inequality (5.6) that includes yi . As explained in some
early papers (Roth 1969; Lemke et al. 1971; Toregas and ReVelle 1972, 1973), it
is trivial that if a demand point j can be covered only by a certain facility i1 (that
is, {i ∈ I : aij = 1} = {i1}), then we can fix yi1 = 1. We have also some
dominance rules: constraint (5.6) for a demand point j1 can be removed if there is
another demand point j2 such that {i ∈ I : aij2 = 1} ⊆ {i ∈ I : aij1 = 1}, that is,
if all the facilities covering demand point j2 can also cover j1. Similarly, a facility i1
that covers a set of demand points that can be all covered by a cheaper facility i2 will
never be used: if fi1 ≥ fi2 and {j ∈ J : ai1j = 1} ⊆ {j ∈ J : ai2j = 1}, then
we can fix yi1 = 0. Sometimes, it is possible to use several facilities to cover all the
demand points covered by another facility (Lorena and Lopes 1994): if we assume
that the y-columns are sorted in increasing order of cost (with those columns with
equal cost sorted in decreasing order of the number of rows that they cover), and we
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define βj = min{i ∈ I : aij = 1} ∀j and Hi = ∪j∈J {βj : aij = 1} ∀i, then
we can fix yi = 0 if

∑
�∈Hi

f� < fi . Applying these tests iteratively can lead to
substantial reductions in the size of the formulation.

The SCP formulation can be further improved by studying the polyhedral
structure of its polytope. Balas (1980) uses disjunctions based on conditional bounds
to obtain strong cuts in the form of cover constraints. Particularly, the inequalities
introduced in Bellmore and Ratliff (1971) are generalized. Given an inequality of
the form

∑
j∈J αjyj ≥ β, with αj ∈ {0, 1} ∀j and β a positive integer, some

necessary and sufficient conditions using the bipartite incidence graph of the matrix
defining the SCP polytope are given in Cornuéjols and Sassano (1989) for this
inequality to be a facet. Sassano (1989) studies the properties of this polytope and
presents two sequential lifting procedures to obtain valid inequalities and facets.
More specifically, it is shown that the SCP polytope is full dimensional if and only
if every demand point can be covered by at least two different facilities. It is also
characterized when an inequality of the form

∑
i∈J0

yi ≥ 1 with J0 ⊂ J is a facet.
When the polytope is full-dimensional, then the trivial inequality yj ≤ 1 is shown
to be always a facet, and the trivial inequality yj ≥ 0 is a facet if and only if every
demand point can be covered by at least two different facilities different from j .

Some deeper results on facets and lifting can be found in Nobili and Sassano
(1989). Balas and Ng (1989a) characterize facet-defining inequalities for the
SCP polytope with right-hand side 2 and coefficients 0,1, or 2. In Balas and Ng
(1989b) it is shown that each of these facets can be obtained by using a lifting
procedure from an inequality with only three non-zero coefficients that is valid
in a lower dimensional polytope. Sánchez-García et al. (1998) perform a similar
study for the case of facets with coefficients in {0, 1, 2, 3} and right-hand side equal
to 3. The polyhedral structure of a problem that includes simultaneously covering,
partitioning and packing constraints is studied in Kuo and Leung (2016). Finally,
a different type of result can be found in Aguilera et al. (2017), where vertex
adjacencies for the polyhedron of the SCP are described, including a sufficient
condition for adjacency.

The connection of the SCP to other classical problems has also been studied.
Balas and Padberg (1976) show how to turn a set partitioning problem into a
set covering. In Krarup and Pruzan (1983) it is discussed how the SCP can be
transformed into a set packing, set partitioning or simple plant location problem.
Reciprocal results are given to turn a set partitioning, or simple plant location
problem into a set covering problem.

Fewer theoretical results can be found for the Maximal Covering Location
Problem, which is known to be NP-hard (Megiddo et al. 1983). The MCLP has
been formulated using other classical models. For example, Church and ReVelle
(1976) show the equivalence between MCLP and a certain p-median problem where
the distances in this second problem are defined as

d ′
ij =

{
0, dij ≤ s,

1, if dij > s,
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with dij the distances from the original problem and s the maximum distance that a
demand point can be from the facility that covers it. Another different reformulation
is given in Klastorin (1979), where the problem is formulated as a generalized
assignment problem by adding some artificial variables.

The Maximal Expected Coverage Location Problem and the Backup Coverage
Location Problem are shown in Church and Weaver (1986) to be special cases
of the vector assignment p-median problem. Techniques developed for this latter
model are used to solve instances of the first two problems. The Capacitated Set
Covering Problem and the Capacitated Maximal Covering Location Problem are
formulated in Current and Storbeck (1988) as a capacitated plant location problem
and a capacitated p-median problem, respectively.

Several technical results on covering problems with special emphasis on trees
and matrices in standard greedy form can be found in Kolen and Tamir (1990).

5.4 Solution Methods

The first exact algorithms for the Set Covering Problem were almost purely enu-
merative: Lemke et al. (1971) developed a branch-and-bound method that exploits
the structure of the SCP formulation and solutions. Later, Etcheberry (1977) used
a branch-and-bound strategy where the branching is done on constraints and not
on variables. The lower bounds of the tree are calculated by using Lagrangian
relaxation instead of the simplex method.

Using cutting planes from conditional bounds, the algorithm proposed in Balas
(1980) is exploited in Balas and Ho (1980). This method uses two sets of heuristics:
one to find good upper bounds (primal heuristics) and another to obtain lower
bounds and cutting planes (dual heuristics). Subgradient optimization is applied
to find better lower bounds. This last technique is also used in Beasley (1987),
who proposed a branch-and-bound method whose main elements are a dual
ascent procedure and subgradient optimization. This algorithm was latter improved
in Beasley and Jørnsten (1992) by incorporating the heuristic published in Beasley
(1990) along with some other enhancements.

Of special interest is Neebe (1988) which solves the problem of calculating for
every possible maximum distance the minimum number of facilities that cover
all the nodes (instead of solving the set covering problem for a single maximum
distance). This approach uses a chain of linear programming relaxations and, after
every linear model, some tests are used to obtain an integer solution. Although
these tests do not guarantee that an optimal integer solution will be found, the
author claims to solve to optimality almost all the instances he considers (up to
100 nodes). Each of the auxiliary problems is solved with a modification of the
procedure suggested in Lemke et al. (1971).

Fisher and Kedia (1990) proposed an algorithm for a model which includes
both set covering and set partitioning constraints. It is an exact branch-and-bound
algorithm that uses greedy and 3-opt heuristics applied to the dual problem.
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Exploiting the use of bounds, Mannino and Sassano (1995) developed a lower
bounding procedure and a branch-and-bound scheme to solve set covering problems
that appear in Steiner triple systems (a certain matrix structure). Balas and Carrera
(1996) developed a procedure applied to a Lagrangian dual problem at each node
that combines subgradient optimization with primal and dual heuristics that tighten
the upper and lower bounds. These strengthened bounds allow to fix some variables.
In general, Lagrangian methods are the most extended and effective algorithms
in the literature for these problems. More recently, Avella et al. (2009) proposed
a cutting plane algorithm where the separation algorithm is solved exactly on a
subproblem defined by a subset of the original constraints and variables of the set
covering problem formulation. In Haddadi (2017) Benders decomposition is used to
solve to optimality set covering problems that “almost” satisfy a certain consecutive
ones property.

On the contrary, not many exact algorithms have been developed for the
Maximal Covering Location Problem. Downs and Camm (1996) obtained a primal
solution by using the greedy heuristic of Church and ReVelle (1974). They used
complementary slackness conditions for the maximal covering problem formulation
to obtain a dual feasible solution. This solution is the starting vector of multipliers
for the Lagrangian dual problem of MCLP which is solved through subgradient
optimization. If an integer solution is not obtained, branch-and-bound is applied.

5.5 Approximate Algorithms

As it happens with any hard optimization problem, heuristic algorithms are more
frequently used than exact methods. Roth (1969), the first paper to formulate the
Set Covering Problem, already proposes a probabilistic heuristic. A random initial
solution is selected and then refined by using a set of predefined rules based on
the concept of λ-optimal cover. This procedure is repeated many times with the
hope of finding a good solution. Chvátal (1979) proposes a basic greedy heuristic
that selects iteratively the facility with the largest number of nodes covered per unit
cost. A bound is established for the worst value of the solution provided by the
heuristic. Feo and Resende (1989) develop a probabilistic heuristic for set covering
problems arising in Steiner triple systems. It is a non-deterministic variation of a
previous deterministic heuristic where randomization is introduced to escape from
local minima.

Many more different metaheuristic techniques have been applied to the SCP:
surrogate relaxation (Lorena and Lopes 1994), simulated annealing (Jacobs and
Brusco 1995; Brusco et al. 1999), genetic algorithms (Al-Sultan et al. 1996;
Beasley and Chu 1996). However, as with the exact case, subgradient methods are
the most effective. Ceria et al. (1998) use a primal-dual subgradient Lagrangian
algorithm to provide information for a later greedy heuristic to decide which
variables to fix to one. Caprara et al. (1999) use variable pricing to update the subset
of columns that define a core problem in their subgradient optimization heuristic.
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This is a difference with respect to Ceria et al. (1998), where the core set is not
modified. They also improve the way in which the step size and ascent direction
definitions are usually implemented in subgradient optimization in order to speed
up convergence.

For the Maximal Covering Location Problem and similar problems, we can
find several heuristics. Already in Church and ReVelle (1974) where the problem
is introduced, a greedy heuristic was provided. Later, Daskin (1983) described a
heuristic for the Maximum Expected Covering Location Problem that finds good
solutions for all values of q (the probability of a facility not working). It starts
with all the facilities located at the node that covers the maximum demand and
then considers single node substitutions. For each of the new solutions, the heuristic
determines whether there exists an interval in which the current best solution is
improved. By iterating this procedure, the interval [0,1] is partitioned, and a heuristic
solution is given for each of the resulting subintervals. In MCLP, Galvão and
ReVelle (1996) developed a Lagrangian heuristic that uses a vertex interchange
heuristic to improve upper bounds. In Galvão et al. (2000), heuristics based on
Lagrangian and surrogate relaxations are compared. Here, the relaxed surrogate
problem is a binary knapsack problem whose linear relaxation is solved in the
heuristic. The authors show that, when the initial set of multipliers is obtained using
a dual descent procedure, the performance of the two methods is similar.

Eaton et al. (1986) deal with a hierarchical covering problem where sites with
multiple cover are maximized while the number of vehicles is minimized in an
application to ambulance deployment in Santo Domingo. Although they proposed
two formulations, no solver was available at that moment in the Ministry of Health
of Dominican Republic, and they then developed a heuristic that minimizes the
number of facilities, maximizes multiple coverage and minimizes response time.
In their algorithm, they create a cover matrix, then order coverage zones in a list and
remove dominated sites iteratively.

A further reason for using heuristics is that aggregation is used to reduce the
size of the problem so that larger size instances can be tackled. Daskin et al.
(1989) study the effect of node aggregation for the MCLP. Three aggregation
schemes are tested based on relative demands on the disaggregate nodes, distances
between the disaggregate nodes, and a mix of both. The first and the third methods
are shown to perform much better than the second. In Current and Schilling (1990)
three rules are proposed to reduce the aggregation error in the SCP and the MCLP.

5.6 Lagrangian Relaxation

Among the many different methods that have been developed for covering models,
here we highlight Lagrangian Relaxation (LR) for several reasons. First, LR can be
used as a heuristic method but additionally can also provide good lower bounds,
which can be embedded within a branch-and-bound framework to yield an exact
method. Second, as shown in Sects. 5.4 and 5.5, LR has been widely used in
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covering problems. Third, it can be designed for the general model (COV) and then
used on any particular case without loss of accuracy. Finally, LR usually produces
very good results within a reasonable computational time. Readers not familiarized
with this technique are referred to Guignard (2003).

In what follows, we apply LR to model (COV) by making the natural choice of
relaxing constraints (5.3). Since the non-relaxed linear constraints (5.2) and yi ≤ ei
∀i ∈ I give rise to a totally unimodular coefficients matrix, lower bounds produced
by means of LR will not be greater than lower bounds produced by the usual linear
relaxation. A Lagrangian multiplier vj ∈ R associated to each constraint in (5.3),
unrestricted in sign, will be used. So, a family of Lagrangian relaxed subproblems
is obtained with objective functions

∑

i∈I
fiyi +

∑

j∈J

∑

k∈K
gjkwjk +

∑

j∈J
vj

(
∑

i∈I
aij yi − bj −

∑

k∈K
wjk

)

=

∑

i∈I

⎛

⎝fi +
∑

j∈J
vjaij

⎞

⎠ yi +
∑

j∈J

∑

k∈K

(
gjk − vj

)
wjk −

∑

j∈J
vj bj .

By solving

(COVLR(v)) Minimize
∑

i∈I
(
fi +∑

j∈J vj aij

)
yi +∑

j∈J
∑

k∈K
(
gjk − vj

)
wjk

subject to (5.2), (5.4), and (5.5),

and then adding constant −∑j∈J vj bj , we will obtain a lower bound on the
objective value of (COV) when the set of multipliers is v = (v1, . . . , vn).

Let now (y∗(v),w∗(v)) be an optimal solution to (COVLR(v)). Prob-
lem (COVLR(v)) splits into

(COVLRy(v)) Minimize
∑

i∈I
(
fi +∑

j∈J vj aij

)
yi

subject to (5.2), (5.4),

and

(COVLRw(v)) Minimize
∑

j∈J
∑

k∈K
(
gjk − vj

)
wjk

subject to (5.5).

(COVLRw(v)) can be easily solved by inspection:

w∗
jk(v) = 1 ⇔ gjk ≤ vj ∀j ∈ J,∀k ∈ K.
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If, as in most of the models that we considered, the gjk-values are sorted in non-
decreasing order for each j ∈ J , and assuming that vj ∈ (gj�j , gj,�j+1], then the
optimal solution to (COVLRw(v)) will be:

w∗
j1(v) = . . . = w∗

j�j
(v) = 1, w∗

j,�j+1(v) = . . . = w∗
jh(v) = 0.

The corresponding optimal value will be v(COVLRw(v)) = ∑
j∈J (

∑�j
k=1 gjk −

�jvj ).
Regarding (COVLRy(v)), we define f ′

i := fi +∑
j∈J vjaij ∀i ∈ I , and we sort

these values in non-decreasing order:

f ′
(1) ≤ . . . ≤ f ′

(t) ≤ 0 ≤ f ′
(t+1) ≤ . . . ≤ f ′

(n).

An optimal solution to (COVLRy(v)) is recursively obtained by taking

y∗
(i)(v) =

{
e(i) if

∑i−1
�=1 y

∗
(�)(v) ≤ p − e(i),

p −∑i−1
�=1 y

∗
(�)(v) if

∑i−1
�=1 y

∗
(�)(v) > p − e(i),

i = 1, . . . t, and y∗
(i)(v) = 0, i = t + 1, . . . , n. Assuming that

∑i′
�=1 e(�) ≤ p <

∑i′+1
�=1 e(�), with i ′ ≤ t , then

v(COVLRy(v)) =
i′−1∑

i=1

e(i)

⎛

⎝f(i) +
∑

j∈J
vj a(i)j

⎞

⎠+
⎛

⎝p −
i′∑

i=1

e(i)

⎞

⎠

⎛

⎝f(i′) +
∑

j∈J
vj a(i′)j

⎞

⎠ .

A suitable set of Lagrangian multipliers v must be chosen so that v(COVLR(v)) pro-
vides a good lower bound on the optimal value of (COV). This can be achieved by
means of ascent procedures that iteratively modify v, like subgradient algorithms
or tailored dual ascent algorithms. Good feasible solutions (and the corresponding
upper bounds) can be generated from good sets of multipliers as follows. Consider
any optimal solution to the relaxed problem given by (y∗(v),w∗(v)). We relax the
notation by calling simply y∗ the optimal values of the y-variables. Once these have
been determined, the best values which the w-variables can take are obtained by
solving for each j ∈ J the subproblem

(COV)j Minimize
∑

k∈K
gjkwjk

subject to
∑

k∈K
wjk =

∑

i∈I
aij y

∗
i − bj ,

wjk ∈ {0, 1} ∀k ∈ K.
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If
∑

i∈I aij y∗
i − bj < 0, the subproblem is infeasible. Otherwise, assuming that∑

i∈I aij y∗
i − bj ≤ h (note that in general h is taken large enough) and sorting

g-values in non-decreasing order, the optimal solution to (COV)j can be obtained
just by making the first

∑
i∈I aij y∗

i − bj w-variables equal to one, that is,

v(COV)j =
∑

i∈I aij y
∗
i −bj∑

k=1

gjk.

5.7 Continuous Covering Location Problems

When speaking about continuous covering, the set of candidates where facilities can
be located is not discrete but a full continuous space. Because of the nature of these
problems, most of them are in the plane or, if height or depth is relevant, in the
3D-space. Besides, most of the applications locate one single facility because these
models are already difficult enough.

Analogous to the discrete Set Covering Problem, the continuous Minimal
Covering Circle Problem (MCCP) consists of finding the smallest circle in the plane
that contains all the points of a given set that need to be covered. The center of this
circle is the optimal site. This is a very old problem which, according to Plastria
(2002), was studied in the nineteenth century, but may have been introduced even
earlier. One of the main properties of the solution to MCCP is that there are always
at least two demand points on the border of the minimal circle. Although several
algorithms to solve this problem have been proposed over time, the best known is the
method published in Elzinga and Hearn (1972) for the case of Euclidean distances.

When the radius of the circle is fixed, it may not be large enough to cover all
the demand points and, as in the discrete Maximal Covering Location Problem,
the objective is now to cover as much demand as possible. These maximal covering
problems have usually multiple solutions, maybe even a region of optimal solutions,
and this region may not even be convex (see Plastria 2002). However, it can
be proved that there is an optimal solution that is either a demand point or an
intersection point of two circles centered at demand points (see Drezner (1981)
and Chazelle and Lee (1986) for details on algorithms). There exists a similar
property when the facilities can be located on any part of a network (Church and
Meadows 1979). Church (1984) shows an analogous result for planar maximal
covering problems with Euclidean or rectilinear distances.

More recently, Drezner et al. (2004) studied a gradual covering problem with
Euclidean distances where a finite set of points needs to be covered with one single
facility. If the facility can be located anywhere on the plane, and the total cost of non-
covered points is minimized, then the solution is in the convex hull of the demand
points.
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5.8 Conclusions

We have provided an overview on covering problems with a special emphasis on
discrete models. Instead of providing a list of the many covering models that can
be found in the literature, we have focused on detailing those that are considered to
be more relevant because of the attention they have received. Moreover, we show
that many of the models discussed in this review can be seen as particular cases of a
general covering model that we have introduced. As far as we know, this is the first
attempt to develop such an unified approach for the study of set covering problems.

Set covering problems having received so much attention, it seems that the
number of theoretical results is relatively small. These results reduce basically to
some preprocessing rules and to the study of some facets. None of them has been
used to develop an algorithm that can be considered to be a major breakthrough in
the area. Therefore, future research should try to make better use of these results or
obtain new theoretical properties for these problems. Particularly, developing exact
methods for covering models that are not the SCP seems highly desirable.
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Chapter 6
Anti-covering Problems

Emilio Carrizosa and Boglárka G.-Tóth

Abstract In covering location models, one seeks the location of facilities opti-
mizing the weight of individuals covered, i.e., those at the distance from the
facilities below a threshold value. Attractive facilities are wished to be close to the
individuals, and thus the covering is to be maximized, while for repulsive facilities
the covering is to be minimized. On top of such individual-facility interactions,
facility-facility interactions are relevant, since they may repel each other. This
chapter is focused on models for locating facilities using covering criteria, taking
into account that facilities are repulsive from each other. Contrary to the usual
approach, in which individuals are assumed to be concentrated at a finite set of
points, we assume the individuals to be continuously distributed in a planar region.
The problem is formulated as a global optimization problem, and a branch and
bound algorithm is proposed.

6.1 Introduction

Locational Analysis addresses decision problems involving the location of facilities
which interact with a set of individuals, and, eventually interact among them. For
attractive facilities, such as schools, libraries, emergency services or supermarkets,
individuals wish the facilities to be as close as possible to them. Such pull models
(facilities are pulled towards demand) do not properly model repulsive facility
location problems (Alonso et al. 1998; Carrizosa and Plastria 1998; Erkut and
Neuman 1989; Fliege 2001; Plastria and Carrizosa 1999), like, for instance, the
location of a polluting plant, wished to be as far as possible from the individuals.

E. Carrizosa
Instituto de Matemáticas de la Universidad de Sevilla, Universidad de Sevilla, Sevilla, Spain
e-mail: ecarrizosa@us.es

B. G.-Tóth (�)
Department of Computational Optimization, Institute of Informatics, University of Szeged,
Szeged, Hungary
e-mail: boglarka@inf.szte.hu

© Springer Nature Switzerland AG 2019
G. Laporte et al. (eds.), Location Science,
https://doi.org/10.1007/978-3-030-32177-2_6

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32177-2_6&domain=pdf
mailto:ecarrizosa@us.es
mailto:boglarka@inf.szte.hu
https://doi.org/10.1007/978-3-030-32177-2_6


124 E. Carrizosa and B. G.-Tóth

For such undesirable facilities, a push model, pushing facilities away from the sites
affected by facilities nearness, is more suitable: the location for the facilities is
then sought maximizing a certain non-increasing function of the distances from the
individuals to the facilities. For both desirable and undesirable facilities, interactions
may be measured as a function of the individual-facility distance (or time), or, as
studied here, via coverage; see e.g. Kolen and Tamir (1990), Li et al. (2011), Murray
et al. (2009), Schilling and Barkhi (1993) for extensive reviews on covering models
and solution approaches. It is important to stress here that, independently of the
nature of the facility, either attractive or repulsive, the very same models for covering
function apply (Farhan and Murray 2006), the difference being algorithmic: such
covering is to be maximized for desirable facilities and minimized for undesirable
facilities.

On top of individual-facility interactions, facility-facility interactions are also
likely to be relevant. Such interactions may be critical when facilities are obnoxious,
and risk or damage to population scales nonlinearly (e.g., with hazadarous materials
deposits or dangerous plants which may suffer chain reactions) and thus negative
impacts are to be dispersed. Facility-facility interactions are also important in
models for locating facilities which, although they are perceived as attractive by
the users, they are perceived as repelling by other facilities competing for the very
same market. In these models, locating the facilities far away from each other
avoids cannibalization and optimizes competitive market advantage (Christaller
1966; Curtin and Church 2006; Lei and Church 2013).

Although the models described are general, the algorithmic approach presented
here is restricted to the planar case (Drezner and Wesolowsky 1994; Plastria 2002;
Plastria and Carrizosa 1999): facilities are identified with points in the plane, and
interact with the remaining facilities and with individuals, also identified with points
in the plane. Interactions are measured via distances in the plane. See Plastria (1992)
for an excellent review of planar distances and planar location models. For covering
models for which interactions are not measured via planar distances, but network
distances instead (typically shortest-path distances) the works (Berman et al. 1996;
Berman and Huang 2008; Berman and Wang 2011; Colebrook and Sicilia 2013)
give a good overview.

Contrary to most papers in the literature, affected individuals are not assumed
here to be concentrated at a finite number of points, and, instead, an arbitrary
distribution (in particular, a continuous distribution) on their location is given. This
way we can directly address models in which affected individuals are densely spread
on a region, but we also address models in which uncertainties exist about the exact
location of the individuals, due to their mobility (Carrizosa et al. 1998b).

Regional models are not so common in the location literature, since, even when
individuals are assumed to be continuously distributed, a discretization process is
usually done, and such continuous distribution is replaced by a discrete one, by e.g.
replacing all points in each district by its centroid, or other central point, see e.g.
Francis and Lowe (2011), Francis et al. (2000, 2002, 2008), Murray and O’Kelly
(2002), Plastria (2001), Tong and Church (2012). Nevertheless, discretization is well
known not to perform well in applications, this issue being especially relevant in
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covering models, since significant discrepancies may exist between what is modeled
as covered and what is actually covered, see e.g. Current and Schilling (1990),
Daskin et al. (1989), Kim and Murray (2008), Murray (2005), Murray and Wei
(2013), Tong (2012), Tong and Murray (2009). For this reason, some papers are
found in which the regional aspect is directly handled. See for instance (Blanquero
and Carrizosa 2013; Carrizosa et al. 1995, 1998c; Fekete et al. 2005; Yao and
Murray 2014) for single-facility Weber problems with regional demand (Murat et al.
2010) for a heuristic method for the extension to p facilities, and Tong (2012), Tong
and Murray (2009) for discrete covering problems, in which the individuals are
identified with objects (polygons) in the plane, which can be considered as fully or
partially covered.

The remainder of the chapter is structured as follows. In Sect. 6.2, a rather general
p-facility covering model for continuously distributed demand is described; how
to address the optimization problem is presented in Sect. 6.3, and illustrated in
Sect. 6.4. Conclusions and future lines of research are outlined in Sect. 6.5.

6.2 Regional Covering Model

Location models are specific in the way the interactions are modeled. Two types of
interactions take place, namely, individual-facility interactions and facility-facility
interactions. Depending on the specific problem, just one or the two types of
interactions may be relevant; see e.g. Erkut and Neuman (1989).

Since these two types of interactions have different nature, they are discussed
separately in what follows.

6.2.1 Individual-Facility Interactions

For a given individual location a and any facility location x, let c(a, x) ∈ [0, 1]
denote how much a is covered (affected) by the facility at x. In its general form,
c(·, ·) may be any function ϕ : R

+ −→ [0, 1], which is non-increasing in the
(Euclidean) distance ‖x − a‖ separating a and x,

c(a, x) = ϕ(‖x − a‖), (6.1)

so that, the lower the distance, the higher the coverage. This assumption, yet
sensible, may not be sound for specific problems of locating undesirable facilities;
for instance (Karkazis and Papadimitriou 1992) addresses the problem of locating
a polluting plant whose pollutant is discharged by means of high stacks, and thus
maximal interaction (damage) takes place at a non-negligible distance of the facility.

We remark that we are using the Euclidean distance, but this is not the only
choice of distance function ‖ · ‖ found in the literature in covering models: see e.g.
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Fernández et al. (2000) for a proposal of (weighted) �p norms and Plastria (2002)
for a thorough discussion on planar distances.

The basic form of ϕ is an all-or-nothing function, already suggested in Church
and ReVelle (1974), see also e.g. Drezner and Wesolowsky (1994),

c(a, x) = ϕ(‖x − a‖) =
{

1, if ‖x − a‖ ≤ R

0, otherwise,
(6.2)

where the threshold value R is called the range (Christaller 1966) or coverage
standard. For an attractive facility, R represents the highest distance a user is willing
to overcome to utilize a facility, whereas for undesirable facilities, R represents the
distance of the boundary of the zone within which the facility would have a negative
impact (Farhan and Murray 2006). Extensions of (6.2) abound in the literature,
leading to so-called gradual covering models (Berman et al. 2009c, 2003; Drezner
et al. 2004). For instance the all-or-nothing function above is replaced by a piecewise
constant function modeling different levels of coverage in Berman and Krass (2002),
by a piecewise linear function in Berman et al. (2003), Berman and Wang (2011),
Drezner et al. (2004), or by more general nonlinear functions, such as the logistic
model

c(a, x) = ϕ(‖x − a‖) = 1

1 + exp(αa + βa‖x − a‖) , (6.3)

in Fernández et al. (2000), see also Berman et al. (2003, 2010), Karasakal and
Karasakal (2004), Brimberg et al. (2015). Observe that in some of the papers cited
above the coverage functions c are introduced for attractive facilities, and thus
maximization, instead of minimization, is pursued. However, the models for c are
the very same.

Expressions above for c, as (6.2), are adequate just for the single-facility case.
When several facilities are to be located, the covering model (6.1) can be extended
in several ways, by first defining, for each facility i = 1, 2, . . . , p, the function
ϕi converting distances into coverage. In the simplest and most popular model in
the literature, for a p-tuple of facility locations x = (x1, . . . , xp), covering c of an
individual location a by x is given by

c(a, x) = max
1≤i≤p

ci(a, xi). (6.4)

In the particular form of individual covering ci given by (6.2) using ϕi instead of ϕ
and Ri instead of R, one considers the individual location a to be covered by the
p-tuple of facility locations x = (x1, . . . , xp) if it is covered by at least one of the p

facilities, i.e., if at least one facility i is at a distance smaller than its threshold value
Ri.

Multifacility covering functions other than (6.4) can be found in the literature,
see Berman et al. (2010) for an updated review. One may consider fuzzy operators
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to aggregate the covering functions ci, yielding, for example, the proposal of Hwang
et al. (2004),

c(a, x) = 1 −
∏

1≤i≤p

(1 − ci(a, xi)) , (6.5)

which, if each ci has the form (6.2) is identical to (6.4). Alternatively, realizing that
the max operator used in (6.4) is nothing but taking one of the ordered values of
ci(a, xi), further extensions are natural:

c(a, x) = max
(λ1,...,λp)∈�

p∑

i=1

λici(a, xi) (6.6)

for a given �. Taking as � the set

� =
{

(λ1, . . . , λp) :
p∑

i=1

λi = 1, λi ≥ 0 ∀i
}

,

one recovers (6.4); taking

� =
{

(λ1, . . . , λp) :
p∑

i=1

λi = 1,
1

r
≥ λi ≥ 0 ∀i

}

,

for some integer r ∈ {1, 2, . . . , p}, one obtains as coverage the weighted sum of
the r highest covers. These covering models belong to the class of so-called ordered
covering models (Berman et al. 2009c), in which a weighted sum of the ordered
values of the covers are considered.

Another class of models is given by the so-called cooperative cover model,
discussed in Berman et al. (2009a):

c(a, x) =
{

1, if
∑p

i=1 λici(a, xi) ≥ τ

0, otherwise
(6.7)

for some positive fixed scalars λi and threshold value τ. Assuming that each facility
covering function ci follows the all-or-nothing model (6.2), model (6.7) means that
we may consider an individual to be covered if the weighted sum of 1-facility covers
yields a value above a threshold limit τ.

Summing up, the different proposals in the literature can be considered as
particular cases of a general model of the form

c(a, x) = �
(
c1(a, x1), c2(a, x2), . . . , cp(a, xp)

)
, (6.8)
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where � should take values in [0, 1] and should be componentwise non-decreasing,
so that the higher each individual-facility cover, the higher the cover of individual
location a by the p facilities.

So far we have modeled the interaction between an affected individual at a and
the facilities at x = (x1, . . . , xp). Now we address the problem of defining a global
individuals-facilities covering measure C(x).

If the main concern is how much the highest coverage is, a worst-case perfor-
mance measure is suitable:

C(x) = sup
a∈A

c(a, x). (6.9)

Under (6.9) as criterion, searching locations x for the facilities such that C(x) ≤ α

means that no individual at all suffers a coverage of more than α.

The (safe) worst-case approach (6.9) may be unfeasible for densely populated
regions, and, instead of searching locations not affecting individuals, the average
coverage may be a suitable choice. Formally, assume that affected individuals are
distributed along the plane, following a distribution given by a probability measure
μ on a set A ⊂ R

2, and the individuals-facilities coverages are aggregated into one
single measure, namely, the expected coverage, given by

C(x) =
∫

A

c(a, x) dμ(a). (6.10)

Assuming, as in (6.10), an arbitrary probability measure μ for the distribution
of affected individual locations gives us full freedom to accommodate different
important models. Obviously, for a finite set A of affected individual locations,
A = {a1, . . . , an}, denoting μa = μ({a}), we recover the basic covering model,

C(x) =
∑

a∈A
μac(a, x), (6.11)

in which the covering is given by the weighted sum of the covers of the different
points a. However, we can consider absolutely continuous distributions, in which μ

has associated a probability density function f in the plane, and now (6.10) becomes

C(x) =
∫

A

c(a, x)f (a) da. (6.12)

Several types of density functions f are worthy to be considered. One can take,
for instance, f as the uniform density on a region A ⊂ R

2 (a polygon, a disc), and
thus f is given as

f (a) =
{

1
ar(A)

, if a ∈ A

0, otherwise,
(6.13)
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where ar(A) denotes the area of the region A; assuming a uniform density of
individuals along the full region A under study seems to be rather unrealistic;
instead, one may better split the region A into smaller and more homogeneous
subregions Aj (e.g. polygons), give a weight ωj to each Aj , and assume a uniform
distribution fj for each Aj :

f (a) =
r∑

j=1

ωjfj (a), (6.14)

where each fj is uniform on Aj , and thus its expression is given in (6.13).
Let us particularize (6.14) for the all-or-nothing case in which the covering

function is given by (6.4), and each ci is given by (6.2), i.e., c(a, x) takes the value
1 if at least one facility i is at a distance from a below the threshold Ri, and takes
the value 0 otherwise. Then, for any x, C(x) takes the form

C(x) =
∫

c(a, x)f (a)da

=
r∑

j=1

ωj
1

ar(Aj)

∫

Aj

c(a, x)da (6.15)

=
r∑

j=1

ωj

1

ar(Aj)
ar(Aj ∩ ∪r

i=1Bi(xi)),

where, for each i = 1, . . . , p, Bi(xi) gives the set of points covered by facility i, i.e.,
the disc centered at xi and radius Ri. Hence, the problem is reduced to calculating
areas of intersections of discs Bi(xi) with the subregions Aj . Such calculation,
although cumbersome in general, are supported in GIS, see Kim and Murray (2008),
Murray et al. (2009), Tong and Murray (2009).

Needless to say, the density f does not need to be piecewise constant, and one can
take, for instance, a mixture of bivariate gaussians, f (a) = ∑r

j=1 ωjfj (a), where
each fj is a bivariate gaussian density centered at some uj and with covariance
matrix Sj ,

fj (a) = 1

2π
√|Sj |

e
− 1

2 (a−uj )
�S−1

j (a−uj ), (6.16)

or, more generally, a radial basis function (RBF) density,

fj (a) = gj (‖a − uj‖) (6.17)

for some decreasing function gj , so that the density is the highest at some knot point
uj and decreasing in all directions.
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Fig. 6.1 Pdf of a mixture of 50 bivariate gaussians

A model like (6.16), or in general (6.17), may be rather promising when the only
information provided for the region is just a set u1, . . . , ur of points, aggregating
the actual coordinates of affected individuals around, and then a kernel density
estimation process (Bowman and Foster 1993; Wand and Jones 1993, 1995) is done.
For instance, Fig. 6.1 represents the probability density function (pdf) of the form
(6.16) with 50 knots.

6.2.2 Facility-Facility Interactions

The facility-facility interactions may be defined similarly. As in (6.1), the effect
caused by facility at xi on facility at xj is measured by the scalar cFij (xi, xj ),

cFij (xi, xj ) = ϕF
ij (‖xi − xj‖) (6.18)

for some non-increasing function ϕF
ij . All pairwise facility-facility effects are

aggregated into one single facility-facility interactions measure CF (x), which,
similarly to (6.8), is assumed to take the form

CF (x) = �F
(
(cFij (xi, xj ))i 
=j

)
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for some componentwise non-decreasing �F . The simplest case is given by

�F
(
(cFij (xi, xj ))i 
=j

)
= max

i 
=j
cFij (xi, xj ), (6.19)

and thus CF (x) is calculated as the highest facility-facility interaction, i.e., the one
of the closest pairs of facilities. Hence, under (6.19),

CF (x) ≤ δ ifandonlyif

cFij (xi, xj ) ≤ δ ∀i, j, i 
= j, ifandonlyif

‖xi − xj‖ ≥ (ϕF
ij )

−1(δ) ∀i, j, i 
= j.

Assuming all cFij in (6.18) are modeled by means of the same ϕF
ij function, ϕF

ij = ϕF ,
we have

CF (x) ≤ δ if and only if min
i,j
i 
=j

‖xi − xj‖ ≥ γ, (6.20)

with γ = (
ϕF
)−1

(δ). See Lei and Church (2013) for a discussion and extension of
(6.19) to so-called partial-sum criteria.

6.2.3 The Anti-covering Model

Depending on the specific problem under consideration, either one or the two
covering criteria C, CF are to be optimized. Pure repulsion among facilities
naturally leads to a dispersion criterion (Erkut and Neuman 1991; Kuby 1987; Lei
and Church 2013; Saboonchi et al. 2014; Sayyady and Fathi 2016), that has been
combined with the p-center, p-median and Max-Sum diversity objectives into a bi-
objective problem in Tutunchi and Fathi (2019), Sayyady et al. (2015), Colmenar
et al. (2018), respectively. By (6.20), minimizing CF amounts to maximizing the
minimal distance among facilities. This criterion alone yields a simple geometrical
interpretation: a set of p non-overlapping circles (the location of the facilities) is
sought so that their (common) radius is maximized (Mladenović et al. 2005).

When both C and CF are relevant, one naturally faces a biobjective optimization
problem in which both C and CF are to be minimized,

min
x∈S

(
C(x), CF (x)

)
, (6.21)
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where S ⊂ (R2)p is the feasible region, which is assumed to be a compact subset,
and thus embedded in a box. Sensible examples for S may be S = Sp, where S

is a polygon in the plane, or S = {ξ1} × {ξ2} × . . . × {ξk} × Sp−k, where S is a
polygon in the plane, and ξ1, . . . , ξk are fixed points in the plane, corresponding to
facilities already located.

One can address the problem of finding (an approximation to) the set of Pareto-
optimal solutions to (6.21), as done for other problems in Blanquero and Carrizosa
(2002), Romero-Morales et al. (1997). Alternatively, one can consider one of the
criteria as constraint, and address instead the problem of minimizing the covering
C(x) keeping the facility-facility cover CF (x) below a threshold limit δ:

minimize C(x)
subject to CF (x) ≤ δ

x ∈ S .

(6.22)

Assuming for CF the model given by (6.18), problem (6.22) amounts to finding p

points x1, . . . , xp so that they are at a distance at least
(
ϕF
)−1

(δ) from each other
and the covering C is minimized. This is the approach proposed e.g. in Berman and
Huang (2008), in which undesirable facilities are located (on a network) so as no
facilities are allowed to be closer than a pre-specified distance. In Drezner et al.
(2019) the same problem on the plane was solved by a Voronoi based heuristic.

6.3 Computational Approach

While nowadays computational tools allow one to address discrete p-facility
problems with a very large p, e.g. Avella and Boccia (2007), Avella et al. (2006),
nonconvex continuous location problems, as those addressed here, can only be
solved exactly for a very small number of facilities to be located. The most popular
and most effective technique is a geometric branch and bound, which can already be
found under the name of Big Square Small Square (BSSS) (Hansen et al. 1985), and
later modified by a number of authors (Blanquero and Carrizosa 2008; Drezner and
Suzuki 2004; Plastria 1992; Schöbel and Scholz 2010), coining names such as BTST
(Big Triangle Small Triangle) or Big Cube Small Cube. See Drezner (2012) for a
recent review of such variants. In our case the search space is the set of p rectangles
for the p facilities, that gives a multi-dimensional interval, also called a box. The
main steps of the branch and bound are as usual: a list of boxes is handled, each box
being associated with a subproblem, namely, the covering location problem in which
facilities are to be located within such box; at each step one box is selected from
the list and divided into smaller boxes. Bounds on the optimum over the subboxes
are calculated, so that boxes which are found not to contain the global optimum are
removed, while the rest is saved for further processing. The branching and bounding
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rules are iterated until the gap between the underestimation and underestimation of
the optimal value is smaller than the prescribed accuracy.

In our implementation, selection of the next box is done by the smallest lower
bound, and the division rule is defined by halving both sides of the largest rectangle
into four equal sized rectangles. An upper bound on the minimum is calculated
evaluating the objective function at the midpoint of the selected box. In what
follows, a bounding procedure, valid for arbitrary probability density functions
(pdf), is discussed.

A branch and bound can only be used as soon as increasingly tight bounds
are built for C(x) on a box X = (X1, . . . , Xp). Each Xi is a rectangle Xi =
([ai, bi ], [ci, di ]) where the i-th facility is allowed to be located. One has then on a
given box X

min
x∈X

C(x) = min
x∈X

∫

A

c(a, x)dμ(a) ≥
∫

A

min
x∈X

c(a, x)dμ(a).

For the general function c(a, x) = �(c1(a, x1), c2(a, x2), . . . , cp(a, xp)), as in
(6.8), with � non-decreasing function of ci(a, xi) ∀i, it can be derived further to

∫

A

min
x∈X

c(a, x)dμ(a) =
∫

A

�

(

min
x1∈X1

c1(a, x1), . . . , min
xp∈Xp

cp(a, xp)

)

dμ(a)

=
∫

A

�

(

min
x1∈X1

ϕ1(‖a − x1‖), . . . , min
xp∈Xp

ϕp(‖a − xp‖)
)

dμ(a),

where, as in (6.1), ci(a, xi) = ϕi(‖a − xi‖) for a non-increasing function ϕi of the
distance for all i. This leads to

min
x∈X

C(x) ≥
∫

A

�

(

ϕ1( max
x1∈X1

‖a − x1‖), . . . , ϕp( max
xp∈Xp

‖a − xp‖)
)

dμ(a)

=
∫

A

�

(

ϕ1( max
x1∈ext(X1)

‖a − x1‖), . . . , ϕp( max
xp∈ext(Xp)

‖a − xp‖)
)

dμ(a),

where ext(Xi) denotes the set of vertices of the box Xi . For the particular case of an
all-or-nothing covering function as given in (6.2), the above integral simplifies to

∫

I (X)

dμ(a),

where the set I (X) = ⋃p

i=1 Ii(Xi) with Ii(Xi) = {a ∈ A|ci(a, xi) = 1 ∀xi ∈
ext(Xi)}, i.e. Ii(Xi) is the set of points a such that, for facility i, all points in Xi

cover a (the gray region in Fig. 6.2). For an easier description of the set Ii(Xi) one
can consider its inscribed circle, I∗

i (Xi) as shown in Fig. 6.2.
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Fig. 6.2 Intersection of
covered areas from ext(Xi)

giving the region which is
covered by all points in the
box. The integral is computed
over the inscribed circle of
this region, I∗

i (Xi)

Xi

i i

i i

I (X

I (X* )

)

This leads to

min
x∈X

C(x) ≥
∫

⋃p
i=1 Ii (Xi)

dμ(a) ≥
p∑

i=1

∫

I ∗
i (Xi)

dμ(a)−
p∑

i,j=1
i<j

∫

I ∗
i (Xi)

⋂
I ∗
j (Xj )

dμ(a).

In what follows, the so obtained lower bound will be denoted by LB(X),

LB(X) =
p∑

i=1

∫

I ∗
i (Xi)

dμ(a)−
p∑

i,j=1
i<j

∫

I ∗
i (Xi)

⋂
I ∗
j (Xj )

dμ(a).

Notice, that the integral could be computed directly as
∫
A
f (a)minx∈X c(a, x)da,

but that is not practical for the all-or-nothing covering function. Numerical
integrators take many sample points around discontinuities, that are introduced
with c(a, x), therefore taking a very long time for a single integration.

6.4 Numerical Examples

The branch and bound method outlined above was implemented in Fortran 90
(Intel©Fortran Compiler XE 12.0), using the integration tools of the IMSL Fortran
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Numerical Library. Executions were carried out on an Intel Core i7 computer with
8.00 Gb of RAM memory at 2.8 GHz, running Windows 7.

Two types of experiments were performed. First, a series of problems with
randomly generated demand functions were solved for p = 1 and p = 2. The
demand function was generated as a mixture of r bivariate gaussian distribution
functions (6.16) with centers and weights uniformly generated in [0, 10]2 and
[0.1, 0.1 + 1/(10r)], respectively. We set the covariance matrix to wiE, that is
the identity matrix scaled by the knot weight. The location of the facilities were
sought in the square [2, 8]2. Three parameters were considered, leading to different
problems: the radius R, the minimal distance γ in (6.20), and the number of knots r .
As stopping criterion, the algorithm, stopped when the gap was smaller than 10−2.

In order to reduce the random variability of the results, for each choice of radius
R, minimal distance γ and number of knots r, three independent instances were
generated and solved. The results presented in the tables correspond to the median
out of the three values obtained.

In Table 6.1 running times in seconds are shown for the problem of locating one
facility with a smaller and a larger radius (R = 1.8 and R = 2.4). It is not surprising
that the computational time grows with the number of knots, as for all knots we need
to do at least one integration.

Running times in seconds are reported in Table 6.2 for the problem of locating
two facilities. Again, the values presented are the median value of the three runs

Table 6.1 Results for
single-facility problems
(p = 1) with different
minimal distances

r R = 1.8 R = 2.4

10 3.6 1.9

20 11.8 38.0

50 143.7 244.0

100 675.5 897.6

Table 6.2 Results for
two-facility problems (p = 2)
with different minimal
distances

r Minimal
distance R = 1.2 R = 1.8

R 110.5 186.1

10 1.5R 182.8 124.7

2R 178.1 83.4

R 114.0 2714.5

20 1.5R 95.7 2593.5

2R 86.4 2543.9

R 3926.2 12,282.9

50 1.5R 3754.7 18,167.5

2R 3675.1 >8 h

R 20,026.1 >8 h

100 1.5R >8 h >8 h

2R >8 h >8 h
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Fig. 6.3 Pareto frontier of the problem of maximizing the radius and minimizing covering

performed. When at least two out of the three instances could not reach the desired
accuracy in 8 h, the message “>8 h” is reported. The results clearly show that,
the higher the number of knots or the radius, the higher the running times. The
connection between the elapsed time and the minimal distance is not so evident.
One can find cases where either smaller or higher minimal distance can be solved
faster, so it looks rather problem dependent.

A second experiment was done in order to analyze the impact of the radius,
displaying the Pareto frontier if one maximizes the radius and minimizes the
coverage. In Fig. 6.3 the Pareto front is displayed for a problem with a mixture
of 50 bivariate gaussian distributions setting minimal distance γ = R, and radii
R = 0.45, 0.6, . . . , 1.65, 1.8. The pdf of such mixture of gaussians was shown in
Fig. 6.1, while the solutions for the different radii are drawn in Fig. 6.4. In the latter,
the demand function contours as well as the knots (with small crosses) are shown.
On the left, we focus on the optimal solution of the two extreme radii (R = 0.45
and R = 1.8). The optimal covered regions, i.e., the disc centered at the optimal
facilities and radius R, are plotted. On the right, the optimal covered regions for all
radii addressed are given.
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Fig. 6.4 Optimal covering for extreme radii (left) and all radii (right)

6.5 Conclusions

While we have focused on purely repulsive facilities, the approach described here
can be used to address location problems of semi-desirable facilities (Carrizosa
and Plastria 1999; Blanquero and Carrizosa 2002; Romero-Morales et al. 1997;
Plastria et al. 2013), in which, instead of having a set A of affected individuals,
all negatively affected and wishing to have the facilities as far as possible, one
has two separated sets, A+ and A−, identifying respectively the individuals feeling
the facilities attractive, and thus want them as close as possible, and those feeling
the facilities repulsive, and thus want them as far as possible. This would imply
replacing the expected coverage function (6.10) by

C(x) = −
∫

A+
c+(a, x) dμ+(a)+

∫

A−
c−(a, x) dμ−(a), (6.23)

where c+ and c− are the covering models respectively for positively and negatively
affected individuals. For finite probability measures μ+ and μ−, this model corre-
sponds to minimizing a weighted sum of the points covered, where now the points
in A+ have a negative weight, already studied in Berman et al. (2009b) in a discrete
setting. The planar version, including the regional case, remains unexplored. It calls
for deriving new bounds for the branch and bound; but, as done here in the repulsive
case, on can construct bounds after obtaining bounds for the covering functions
c(a, x). Whilst for c− the key is that c− is nonincreasing, monotonicity (in this
case, decreasingness) can be used to bound −c+. This approach is not new, since it
already dates back to the seminal branch and bound BSSS (Hansen et al. 1985), but
it deserves being tested.
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The basic all-or-nothing cover function c in (6.2) is built assuming R fixed, and
given R, the cover C is minimized. A dual problem consists of maximizing R so that
the cover C remains below a threshold value. This so-called maxquantile problem
(Plastria and Carrizosa 1999), would be solved by doing a binary search in the space
of the values R, and solving, for each R, one problem as those solved in this chapter.

While affected individuals have been assumed to be (continuously) distributed
in a planar region, facilities are considered here to have negligible size, so they are
properly modeled as points. Adapting the branch and bound (in particular, the design
of bounds) for the case of extensive facilities, e.g. Carrizosa et al. (1998a), deserves
further study.

We have considered from the beginning the number of facilities p to be fixed.
A related, somehow dual, problem is the problem of locating as many facilities
as possible so that the coverage function C (or CF , or both) remain(s) within a
given interval. Such is the case of the so-called anticovering location problem, e.g.
Chaudhry (2006), Moon and Chaudhry (1984), Murray and Church (1997), which,
in its simplest version, seeks the highest number p∗ of facilities such that no two are
at a distance smaller than a threshold value R. To mention a few extensions (Wei and
Murray 2014, 2017), include spatial uncertainty minimization (Niblett and Church
2015), introduce the disruptive anti-covering location problem.

Aggregation of the individual-facility cover functions c(a, x) to C(x) by any of
the procedures described in Sect. 6.2 is easily shown to be monotonic in the number
p of facilities. The same holds for the aggregation of the facility-facility cover
cFjk(xj , xk) to CF (x). Hence, in order to find the highest p∗ for which such covers
remain within a given interval, one only needs to solve sequentially the problem for
different values of p. The design of more direct and efficient procedures is definitely
a promising research line.

Acknowledgements Research partially supported by research grants and projects ICT COST
Action TD1207 (EU), the Hungarian National Research, Development and Innovation Office—
NKFIH (OTKA grant PD115554), MTM2012-36163 (Ministerio de Ciencia e Innovación, Spain),
P11-FQM-7603, FQM329 (Junta de Andalucía, Spain), all with EU ERDF funds.

References

Alonso I, Carrizosa E, Conde E (1998) Maximin location: discretization not always works. Top
6:313–319

Avella P, Boccia M (2007) A cutting plane algorithm for the capacitated facility location problem.
Comput Optim Appl 43:39–65

Avella P, Sassano A, Vasil’ev I (2006) Computational study of large-scale p-median problems.
Math Program 109:89–114

Berman O, Huang R (2008) The minimum weighted covering location problem with distance
constraints. Comput Oper Res 35:356–372

Berman O, Krass D (2002) The generalized maximal covering location problem. Comput Oper
Res 29:563–581



6 Anti-covering Problems 139

Berman O, Wang J (2011) The minmax regret gradual covering location problem on a network
with incomplete information of demand weights. Eur J Oper Res 208:233–238

Berman O, Drezner Z, Wesolowsky GO (1996) Minimum covering criterion for obnoxious facility
location on a network. Networks 28:1–5

Berman O, Krass D, Drezner Z (2003) The gradual covering decay location problem on a network.
Eur J Oper Res 151:474–480

Berman O, Drezner Z, Krass D (2009a) Cooperative cover location problems: the planar case. IIE
Trans 42:232–246

Berman O, Drezner Z, Wesolowsky GO (2009b) The maximal covering problem with some
negative weights. Geogr Anal 41:30–42

Berman O, Kalcsics J, Krass D, Nickel S (2009c) The ordered gradual covering location problem
on a network. Discret Appl Math 157:3689–3707

Berman O, Drezner Z, Krass D (2010) Generalized coverage: new developments in covering
location models. Comput Oper Res 37:1675–1687

Blanquero R, Carrizosa E (2002) A DC biobjective location model. J Glob Optim 23:139–154
Blanquero R, Carrizosa E (2008) Continuous location problems and big triangle small triangle:

constructing better bounds. J Glob Optim 45:389–402
Blanquero R, Carrizosa E (2013) Solving the median problem with continuous demand on a

network. Comput Optim Appl 56:723–734
Bowman A, Foster P (1993) Density based exploration of bivariate data. Stat Comput 3:171–177
Brimberg J, Juel H, Körner MC, Shöbel A (2015) On models for continuous facility location with

partial coverage. J Oper Res Soc 66:33–43
Carrizosa E, Plastria F (1998) Locating an undesirable facility by generalized cutting planes. Math

Oper Res 23:680–694
Carrizosa E, Plastria F (1999) Location of semi-obnoxious facilities. Stud Locat Anal 12:1–27
Carrizosa E, Conde E, Muñoz-Márquez M, Puerto J (1995) The generalized Weber problem with

expected distances. RAIRO- Oper Res 29:35–57
Carrizosa E, Muñoz-Márquez M, Puerto J (1998a) Location and shape of a rectangular facility in

�n. Convexity properties. Math Program 83:277–290
Carrizosa E, Muñoz-Márquez M, Puerto J (1998b) A note on the optimal positioning of service

units. Oper Res 46:155–156
Carrizosa E, Muñoz-Márquez M, Puerto J (1998c) The Weber problem with regional demand. Eur

J Oper Res 104:358–365
Chaudhry SS (2006) A genetic algorithm approach to solving the anti-covering location problem.

Expert Syst 23:251–257
Christaller W (1966) Central places in Southern Germany. Prentice-Hall, London
Church R, ReVelle C (1974) The maximal covering location problem. Pap Reg Sci 32:101–118
Colebrook M, Sicilia J (2013) Hazardous facility location models on networks. In: Batta R, Kwon

C (eds) Handbook of OR/MS models in Hazardous materials transportation. Springer, New
York, pp 155–186

Colmenar JM, Martí R, Duarte A (2018) Heuristics for the bi-objective diversity problem. Expert
Sys Appl 108:193–205

Current JR, Schilling DA (1990) Analysis of errors due to demand data aggregation in the set
covering and maximal covering location problems. Geogr Anal 22:116–126

Curtin KM, Church RL (2006) A family of location models for multiple-type discrete dispersion.
Geogr Anal 38:248–270

Daskin MS, Haghani AE, Khanal M, Malandraki C (1989) Aggregation effects in maximum
covering models. Ann Oper Res 18:113–139

Drezner Z (2012) Solving planar location problems by global optimization. Logist Res 6:17–23
Drezner Z, Suzuki A (2004) The big triangle small triangle method for the solution of nonconvex

facility location problems. Oper Res 52:128–135
Drezner Z, Wesolowsky G (1994) Finding the circle or rectangle containing the minimum weight

of points. Locat Sci 2:83–90



140 E. Carrizosa and B. G.-Tóth

Drezner Z, Wesolowsky GO, Drezner T (2004) The gradual covering problem. Nav Res Logist
51:841–855

Drezner Z, Kalczynski P, Salhi S (2019) The planar multiple obnoxious facilities location problem:
a Voronoi based heuristic. Omega 87:105–116. https://doi.org/10.1016/j.omega.2018.08.013

Erkut E, Neuman S (1989) Analytical models for locating undesirable facilities. Eur J Oper Res
40:275–291

Erkut E, Neuman S (1991) Comparison of four models for dispersing facilities. Inf Syst Oper Res
29:68–86

Farhan B, Murray AT (2006) Distance decay and coverage in facility location planning. Ann Reg
Sci 40:279–295

Fekete SP, Mitchell JSB, Beurer K (2005) On the continuous Fermat-Weber problem. Oper Res
53:61–76

Fernández J, Fernández P, Pelegrín B (2000) A continuous location model for siting a non-noxious
undesirable facility within a geographical region. Eur J Oper Res 121:259–274

Fliege J (2001) OLAF—a general modeling system to evaluate and optimize the location of an air
polluting facility. OR Spectr 23:117–136

Francis RL, Lowe TJ (2011) Comparative error bound theory for three location models: continuous
demand versus discrete demand. Top 22:144–169

Francis RL, Lowe TJ, Tamir A (2000) Aggregation error bounds for a class of location models.
Oper Res 48:294–307

Francis RL, Lowe TJ, Tamir A (2002) Demand point aggregation for location models. In: Drezner
Z, Hamacher HW (eds) Facility location. Springer, Berlin, pp 207–232

Francis RL, Lowe TJ, Rayco MB, Tamir A (2008) Aggregation error for location models: survey
and analysis. Ann Oper Res 167:171–208

Hansen P, Peeters D, Richard D, Thisse JF (1985) The minisum and minimax location problems
revisited. Oper Res 33:1251–1265

Hwang M, Chiang C, Liu Y (2004) Solving a fuzzy set-covering problem. Math Comput Model
40:861–865

Karasakal O, Karasakal EK (2004) A maximal covering location model in the presence of partial
coverage. Comput Oper Res 31:1515–1526

Karkazis J, Papadimitriou C (1992) A branch-and-bound algorithm for the location of facilities
causing atmospheric pollution. Eur J Oper Res 58:363–373

Kim K, Murray AT (2008) Enhancing spatial representation in primary and secondary coverage
location modeling. J Reg Sci 48:745–768

Kolen A, Tamir A (1990) Covering problems. In: Mirchandani P, Francis R (eds) Discrete location
theory. Wiley, New York

Kuby MJ (1987) Programming models for facility dispersion: the p-dispersion and maxisum
dispersion problems. Geogr Anal 19:315–329

Lei TL, Church RL (2013) A unified model for dispersing facilities. Geogr Anal 45:401–418
Li X, Zhao Z, Zhu X, Wyatt T (2011) Covering models and optimization techniques for emergency

response facility location and planning: a review. Math Meth Oper Res 74:281–310
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Chapter 7
Locating Dimensional Facilities
in a Continuous Space

Anita Schöbel

Abstract Many applications in data analysis such as regression, projective cluster-
ing, or support vector machines can be modeled as location problems in which the
facilities to be located are not represented by points but as dimensional structures.
Examples for one-dimensional facilities are straight lines, line segments, or circles
while boxes, strips, or balls are two-dimensional facilities. In this chapter we
discuss the location of lines and circles in the plane, the location of hyperplanes
and hyperspheres in higher dimensional spaces and the location of some other
dimensional facilities. We formulate the resulting location problems and point
out applications in statistics, operations research and data analysis. We identify
important properties and review the basic solution techniques and algorithmic
approaches. Our focus lies on presenting a unified understanding of the common
characteristics these problems have, and on reviewing the new findings obtained in
this field within the last years.

7.1 Introduction

Within the locational context, the problem of locating a dimensional facility was first
posed in Wesolowsky (1972, 1975) where the location of a line minimizing the sum
of rectangular or Euclidean distances to a set of data points was introduced. Since
this time, the subject of locating lines and hyperplanes, circles, spheres, and other
dimensional facilities has been intensively studied. Surveys are given in Martini and
Schöbel (1998), Díaz-Bánez et al. (2004), an extensive list of papers dealing with
the location of dimensional structures is also given in Blanquero et al. (2009).

Within the last 10 years, the topic has received new focus in the field of data
science leading to new results and approaches. In this chapter, we review the new
findings and present a unified understanding of the subject which is now possible
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since the field has become more mature. We hence not only present a list of problems
treated in the literature, but point out common characteristics and common solution
techniques which are used for many different types of such location problems.

Applications in the location of dimensional facilities are various: These range
from real-world applications in location theory and operations research to appli-
cations in robust statistics, computational geometry, and data science. Particular
applications are mentioned at the beginning of the respective sections.

The chapter is organized as follows. We start with a general introduction into
the topic in Sect. 7.2 where we introduce the basic notation, define the problems
to be considered and mention the properties on which we will focus later on. We
then discuss the two most extensively researched structures in dimensional facility
location: The location of lines and hyperplanes in Sect. 7.3 and the location of circles
and hyperspheres in Sect. 7.4. We finally review other interesting extensions and
problem variations in Sect. 7.5. The chapter is ended by some conclusion in Sect. 7.6
summarizing the findings and pointing out lines for further research.

7.2 Location of Dimensional Facilities

In classical facility location one looks for a point-shaped new facility. In our case we
look for a dimensional facility X such as a line, a hyperplane, a circle or a square.
The location of a dimensional facility is a natural generalization of locating a point.
As in classical location problems we have given

• a finite set V = {v1, . . . , vn} ⊆ RD of data points (also called existing facilities)
with positive weights wj > 0, j = 1, . . . , n, and

• a distance measure d : RD × RD → R evaluating the distance for each pair of
points in RD . The distance measure is used for determining the residuals, i.e.,
the distances from the data points to the new facility X. Finally, we need

• a globalizing function g : Rn → R combining the weighted residuals to one
global number.

We look for a new facility X which minimizes the globalizing function g of the
weighted distances to the data points.

minimize f (X) = g

⎛

⎜
⎜
⎜
⎝

w1d(X, v1)

w2d(X, v2)
...

wnd(X, vn)

⎞

⎟
⎟
⎟
⎠

, (7.1)

where the most common globalizing functions g are the sum, i.e., g1(y1, . . . , yn) =∑n
j=1 yj or the maximum gmax(y1, . . . , yn) = maxj=1,...,n yj . The resulting

problems are called minsum (or median) location problem and minmax (or cen-
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ter) location problem, respectively. Also, other globalizing functions such as the
centdian, or more general, ordered median functions gλ (see Chap. 10) are possible.

If the new facility X is required to be a point, or a set of points, we are in the
situation of classical continuous facility location, see Drezner et al. (2001). In this
chapter, however, we assume that X is not a point but a dimensional structure such
as a line, a circle, a hyperplane, a hypersphere, a polygonal line, etc. This, in turn,
means that the distance d(X, v) in (7.1) is the distance between a set X (which
represents the dimensional facility) and a (data) point v. As common in the literature
the distance between a point v and a set X is determined by projecting the point v
on the set X and then taking the distance from v to the projected point, i.e.,

d(X, v) = min
x∈X d(x, v). (7.2)

Note that in some applications d(X, v) is defined as maxx∈X d(x, v), and that the
average distance to all points in the set also is a reasonable definition; however, (7.2)
is the most common model in this context.

We now specify the distances d which have mostly been studied in the literature.
The most common distances in location theory are norm distances. A norm distance
is derived from a norm, i.e., d : RD × RD → R is given as d(x, y) := ‖x − y‖
for some norm ‖ · ‖. Moreover, gauge distances which are derived from a gauge
γ : RD → R given through d(x, y) = γ (y −x) have also been used in the location
of dimensional facilities. Note that gauge distances are no metrics since they are in
general not symmetric, and that norms are special gauges. In particular in statistics,
the vertical distance is used which is neither a norm nor a gauge. We will see that
it gives nevertheless insight into the problem, in particular for the location of lines
and hyperplanes. For two points x = (x1, . . . , xD), y = (y1, . . . , yD) ∈ RD the
vertical distance is given as

dver(x, y) =
{ |xD − yD| if xi = yi, i = 1, . . . ,D − 1

∞ otherwise.
(7.3)

This distance leads to trivial location problems if X is required to be a point but
constitutes the most common definition of residuals in regression.

Figure 7.1 presents two examples on how distances are computed, and optimal
dimensional structures may look like. In both examples we have given six data
points, all of them with unit weights. The left part of Fig. 7.1 shows a line
minimizing the maximum vertical distance to the set of data points. In the right part
a circle minimizing the sum of Euclidean distances to the data points is depicted.
The lengths of the thin lines in both examples correspond to the residuals, i.e., to the
distances from the data points to the line (or to the circle, respectively). Note that
the distance between v ∈ X and X is zero—this happens twice in the right part of
the figure where the minsum circle passes through two of the data points.

In the following sections we discuss different types of dimensional facilities
to be located. Most of the resulting optimization problems are multi-modal and
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Fig. 7.1 Two illustrations for locating dimensional facilities, both with six demand points. Left: A
line minimizing the maximum vertical distance. Right: A circle minimizing the sum of Euclidean
distances

neither convex nor concave. Hence, methods of global optimization are required.
However, in many of these location problems it is possible to exploit one or more
of the following properties showing that they have much more structure than just an
arbitrary global optimization problem.

LP properties: Some of the problems become piecewise linear, sometimes
even resulting in linear programming (LP) approaches which
can be solved highly efficiently.

FDS properties: A finite dominating set (FDS) is a finite set of possible
solutions from which it is known that it contains an optimal
solution to the problem. This allows an enumeration approach
by evaluating all possible elements of the FDS.

Halving properties: In many cases, any optimal facility to be located splits the
data points into two sets of nearly equal weights. This allows
to enhance enumeration approaches.

In our conclusion we provide a summary on these properties and give some general
hints when they hold and why they are algorithmically useful.

7.3 Locating Lines and Hyperplanes

Given a set of data points V ⊆ RD the hyperplane location problem is to find
a hyperplane H minimizing the distances to the data points in V . In this section
we consider such hyperplane location problems for different types of distances and
different globalizing functions.

Note that line location deals with finding a line in R2 minimizing the distances to
a set of two-dimensional data points and is included in our discussion as the special
case D = 2.
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7.3.1 Applications

The location of lines and hyperplanes has many applications in different fields:
Operations research, computational geometry, and in statistics and data science.
Applications in operations research are various. The new facility to be located
may be, e.g., a highway (see Díaz-Bánez et al. 2013), a train line (see Espejo and
Rodríguez-Chía 2011), a conveyor belt, or a mining shaft (e.g., Brimberg et al.
2002). Line location has also been mentioned in connection with the planning of
pipelines, drainage or irrigation ditches, or in the field of plant layout (see Morris
and Norback 1980).

In computational geometry, the width of a set is defined as the smallest possible
distance between two parallel hyperplanes enclosing the set (Houle and Toussaint
1985). If the set is a polyhedron with extreme points V = {v1, . . . , vn} determining
the width of this set is equivalent to finding a hyperplane minimizing the maximum
distance to V . The relation between hyperplane location and transversal theory
is mentioned in Sect. 7.3.4.1. In machine learning, a support vector machine is a
hyperplane (if it exists) separating red from blue data points and maximizing the
minimal distance to these points (see Bennet and Mangasarian 1992; Mangasarian
1999; Baldomero-Naranjo et al. 2018). If the set of red and blue data points are not
linearly separable, one may look for a hyperplane which minimizes the maximum
distance to the data points on the wrong side. This problem can be solved as a
restricted hyperplane location problem (see Carrizosa and Plastria 2008; Plastria
and Carrizosa 2012).

In statistics, classical linear regression asks for a hyperplane which minimizes
the residuals of a set of data points, usually the sum of squared vertical distances
between the data points and the hyperplane. Orthogonal regression (also called total
least squares, see Golub and van Loan 1980) calls for a hyperplane minimizing the
sum of squared Euclidean distances as residuals.

However, these estimators are usually not considered as robust. This gives a
reason for computing L1-estimators minimizing the sum of absolute vertical (or
orthogonal) differences, since the median of a set is considered more robust than
its mean. We refer to Narula and Wellington (1982) for a survey on absolute
errors regression. More general, many robust estimators can be found as optimal
solutions to ordered hyperplane location problems, i.e., hyperplane location prob-
lems minimizing an ordered median function (see Chap. 10 for the definition of
ordered median functions). Such problems are treated in Sect. 7.3.6. An example
are trimmed estimators which neglect the k largest distances assuming that these
belong to outliers, or the least quantiles of squares, introduced in Bertsimas and
Shioda (2007). We list some of the most popular estimators and their corresponding
hyperplane location problems in Table 7.1. For each of them we specify the distance
function d which is used to define the residuals, i.e., which is used to measure
the distance from the data points to the hyperplane. The vector λ ∈ Rn specifies
the ordered median function gλ used for modeling the respective estimator. The
meaning of the λ notation is extensively discussed in Nickel and Puerto (2005) or in
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Table 7.1 Correspondence between line and hyperplane location problems and robust estimators

Estimator Distance Weights of ordered median function

Least squares d = d2
ver λ = (1, . . . , 1)

Total least squares d = �2
2 λ = (1, . . . , 1)

Least trimmed squares d = d2
ver λ = (1, . . . , 1, 0, . . . , 0)

Least absolute deviation d = dver λ = (1, . . . , 1)

Least trimmed absolute deviation d = dver λ = (1, . . . , 1, 0, . . . , 0)

Least median of squares d = d2
ver λ = (0, . . . , 0, 1, 0, . . . , 0) (n odd)

λ = (0, . . . , 0, 1, 1, 0, . . . , 0) (n even)

Least r-quantile of squares d = d2
ver λ = (0, . . . , 0

︸ ︷︷ ︸
r−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

n−1

)

Chap. 10 of this book. More applications to classification and regression are pointed
out in Bertsimas and Shioda (2007), Blanco et al. (2018).

7.3.2 Ingredients for Analyzing Hyperplane Location Problems

7.3.2.1 Distances Between Points and Hyperplanes

A hyperplane is given by its normal vector a = (a1, . . . , aD) ∈ RD and a real
number b ∈ R:

Ha,b = {x ∈ RD : atx + b = 0}.

Given a distance d : RD × RD → R, the distance between a point v ∈ RD and a
hyperplane Ha,b is given as d(Ha,b, v) = min{d(x, v) : atx + b = 0, x ∈ RD}. For
the vertical distance (see again the left part of Fig. 7.1) the following formula can
easily be computed:

Lemma 7.1 (Schöbel 1999a)

dver(Ha,b, v) =

⎧
⎪⎨

⎪⎩

|at v+b|
aD

if aD 
= 0

0 if aD = 0 and atv + b = 0
∞ if aD = 0 and atv + b 
= 0

The second and the third case comprise the case of a hyperplane which is vertical
itself. Its distance to a point v is infinity unless the hyperplane passes through v. If
not all data points lie in one common vertical hyperplane, this means that a vertical
hyperplane can never be an optimal solution to the hyperplane location problem.
Hence, without loss of generality we can assume the hyperplane Ha,b to be non-
vertical if the vertical distance is used. We remark that the vertical distance is the
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most commonly used measure for determining the size of the residuals in regression
theory and in statistics.

If d is derived from a norm or a gauge γ : RD → R, the following formula for
computing d(Ha,b, v) has been presented in Plastria and Carrizosa (2001).

Lemma 7.2 (Plastria and Carrizosa 2001)

d(Ha,b, v) =
{

at v+b
γ ◦(a) if atv + b ≥ 0
−at v−b
γ ◦(−a)

if atv + b < 0,

where γ ◦ : RD → R is the dual (polar) norm common in convex analysis (e.g.,
Rockafellar 1970), i.e.,

γ ◦(v) = sup{vtx : γ (x) ≤ 1, x ∈ RD}.

Note that d(Ha,b, v) = |at v+b|
γ ◦(a) if γ is a norm.

7.3.2.2 Dual Interpretation

The following geometric interpretation is helpful when dealing with hyperplane
location problems: A non-vertical hyperplane Ha,b (with aD = 1) may be inter-
preted as point (a1, . . . , aD−1, b) in RD . Vice versa, any point v = (v1, . . . , vD)

may be interpreted as a hyperplane. Formally, we use the following transformation.

Definition 7.1

Transforming a point to a hyperplane: TH (v1, . . . , vD) := Hv1,...,vD−1,1,vD

Transforming a hyperplane to a point: TP (Ha1,...,aD−1,1,b) := (a1, . . . , aD−1, b)

It can easily be verified that

dver(Ha,b, v) = dver(TH (v), TP (Ha,b))

for non-vertical hyperplanes with aD = 1. In particular, we obtain the following
result.

Lemma 7.3 Let H be a non-vertical hyperplane and v ∈ RD be a point. Then

v ∈ H ⇐⇒ TP (H) ∈ TH (v).

This means that Ha,b passes through a point v if and only if TH (v) passes through
(a1, . . . , aD−1, b).
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Fig. 7.2 Left: Five data points and a line in primal space. Right: The same situation in dual space
corresponds to five lines and one point

In the resulting dual space the goal is to locate a point which minimizes the sum
of distances to a set of given hyperplanes {TH (v) : v ∈ V }. In the results of the next
sections it will become clear that this is a helpful interpretation.

Figure 7.2 shows an example of the dual interpretation in R2. We consider five
data points (depicted in the left part of the figure), namely v1 = (0, 1

2 ), v2 = (0, 1),
v3 = (−1, 0), v4 = (−2,−1) and v5 = (1,− 1

2 ). In the dual interpretation the data
points are transferred to the five lines in the right part of the figure.

L1 = H0,1, 1
2

= {(x1, x2) : x2 = −1

2
}

L2 = H0,1,1 = {(x1, x2) : x2 = −1}
L3 = H−1,1,0 = {(x1, x2) : x2 = x1}

L4 = H−2,1,−1 = {(x1, x2) : x2 = 2x1 + 1}

L5 = H1,1,− 1
2

= {(x1, x2) : x2 = −x1 + 1

2
}

It can also be seen that the line H− 1
2 ,1,− 1

2
through the two data points v1 and v3 is

transformed to the point v = (− 1
2 ,− 1

2 ) in dual space which lies on the intersection
of L1 and L3. Furthermore, note that in the point (−1,−1) in dual space three of
the lines meet, namely, L2, L3, and L4. Hence, this point corresponds to the line
H−1,1,−1 = {(x1, x2) : x2 = x1 + 1, x ∈ RD} which passes through the three data
points v2, v3, and v4.
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7.3.3 The Minsum Hyperplane Location Problem

Let us now start with the minsum hyperplane location problem in which we use the
sum of all residuals as globalizing function. It is defined as follows: Given a set of
data points V = {v1, . . . , vn} ⊆ RD with positive weights wj > 0, j = 1, . . . , n,
find a hyperplane Ha,b which minimizes

f1(Ha,b) =
n∑

j=1

wjd(Ha,b, vj ).

A hyperplane H minimizing f1(H) is called minsum hyperplane (or median
hyperplane) w.r.t. the distance d . Let us assume throughout this section that there
are n > D affinely independent data points, otherwise an optimal solution is the
hyperplane containing all of them.

7.3.3.1 Minsum Hyperplane Location with Vertical Distance

We first look at the problem with vertical distance dver . As explained after
Lemma 7.1 we may without loss of generality assume that aD = 1. This simplifies
the problem formulation to the question of finding a1, . . . , aD−1, b ∈ R such that

f1(a, b) =
n∑

j=1

wj |vtj a + b| (7.4)

is minimal (with aD = 1). In order to get rid of the absolute values, we define the
following index sets

J>
a,b := {j ∈ {1, . . . , n} : vtj a + b > 0} (7.5)

J<
a,b := {j ∈ {1, . . . , n} : vtj a + b < 0}

J=
a,b := {j ∈ {1, . . . , n} : vtj a + b = 0}.

We furthermore set

W>
a,b :=

∑

j∈J>
a,b

wj , W=
a,b :=

∑

j∈J=
a,b

wj , W<
a,b :=

∑

j∈J<
a,b

wj

and let W := ∑n
j=1 wj be the sum of all weights. Since f1(a, b) is piecewise linear

in b we receive the following property which says that every minsum hyperplane
splits the data points into two sets of almost equal weights.
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Theorem 7.1 (Halving Property for Minsum Hyperplanes) (Schöbel 1999a;
Martini and Schöbel 1998) Let Ha,b be a minsum hyperplane w.r.t. the vertical
distance dver . Then

W>
a,b ≤ W

2
and W<

a,b ≤ W

2
(7.6)

Note that the halving property (7.6) is equivalent to

W>
a,b ≤ W<

a,b + W=
a,b and W<

a,b ≤ W>
a,b + W=

a,b. (7.7)

Looking again at (7.4), note that f1 is not only piecewise linear in b but is also
convex and piecewise linear in the D variables a1, . . . , aD−1, b. The latter yields
the following incidence property: There exists an optimal minsum hyperplane which
passes through at least D of the data points and these points are affinely independent.
Since D affinely independent points uniquely determine a hyperplane, the set of all(

n

D

)

such hyperplanes contains at least one optimal hyperplane and hence is a

finite dominating set.

Theorem 7.2 (FDS for Minsum Hyperplanes with Vertical Distance) Let dver
be the vertical distance and let n ≥ D. Then there exists a minsum hyperplane w.r.t.
dver that passes through D affinely independent data points.

Proof (Sketch of Proof) We can rewrite the objective function f1(Ha,b) to

f1(Ha,b) =
∑

j∈J>
a,b

wj (v
t
j a + b)+

∑

j :∈J<
a,b

wj (−vtj a − b) (7.8)

which is easily seen to be linear as long as the signs of vtj a + b do not change, i.e.,
on any polyhedral cell given by disjoint sets J≥, J≤ ⊆ {1, . . . , n} specifying which
data points should be below (or on) and above (or on) the hyperplane:

R(J≥, J≤) :=
{
(a1, . . . , aD−1, b) : vtj a + b ≥ 0 for all j ∈ J≥

vtj a + b ≤ 0 for all j ∈ J≤} .

Note that these polyhedra can be constructed in dual space by using the arrangement
of hyperplanes TH (vj ), j = 1, . . . , n, i.e., the right hand side of Fig. 7.2 shows
exactly the polyhedra in dual space on which the objective function is linear. The
fundamental theorem of linear programming then yields an optimal solution at a
vertex of some of the cells R(J≥, J≤), i.e., a hyperplane satisfying vtj a + b = 0 for
at least D indices from {1, . . . , n}.
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Note that many papers mention this result. For D = 2, it was shown in Wesolowsky
(1972), Morris and Norback (1983), Megiddo and Tamir (1983) and generalized to
higher dimensions, e.g., in Schöbel (1999a).

In our example of Fig. 7.2 the depicted line is an optimal solution.

7.3.3.2 Minsum Hyperplane Location with Norm Distance

We now turn our attention to the location of hyperplanes with respect to a norm
‖ · ‖, i.e., the residuals are given as d(v,H) = min{‖v − x‖ : x ∈ H }. We can use
Lemma 7.2 for computing the residuals and obtain the following objective function

f1(Ha,b) =
n∑

j=1

wj
|vta + b|

‖a‖◦ (7.9)

where ‖ · ‖◦ denotes the dual norm of ‖ · ‖. Still, the objective function is piecewise
linear in b, hence the halving property holds again:

Theorem 7.3 (Halving Property for Minsum Hyperplanes) (Schöbel 1999a;
Martini and Schöbel 1998) Let d be a norm distance and Ha,b be a minsum
hyperplane w.r.t. the distance d . Then

W+
a,b ≤ W

2
and W−

a,b ≤ W

2

Also the incidence property of Theorem 7.2 still holds.

Theorem 7.4 (FDS for Minsum Hyperplanes) (Schöbel 1999a; Martini and
Schöbel 1998, 1999) Let d be a norm distance derived from norm ‖ · ‖ and let
n ≥ D. Then there exists a minsum hyperplane w.r.t. the distance d that passes
through D affinely independent data points. If and only if ‖ · ‖ is a smooth norm, we
have that all minsum hyperplanes pass through D affinely independent data points.

Proof (Sketch of Proof) Different proofs for this property exist. Here, we use the
cell structure of the proof of Theorem 7.2 for the vertical distance. The idea is to use
piecewise quasiconcavity instead of piecewise linearity on these cells. Neglecting
vertical hyperplanes, we again look at the regions R(J≤, J≥) in dual space. On any
such region we obtain that the objective function (7.9) can be rewritten as

f1(Ha,b) =
∑

j∈J>
a,b

wj

vtj a + b

‖a‖◦ +
∑

j :∈J<
a,b

wj

−vtj a − b

‖a‖◦

= 1

‖a‖◦

⎛

⎝
∑

j∈J>
a,b

wj (v
t
j a + b) +

∑

j :∈J<
a,b

wj (−vtj a − b)

⎞

⎠ ,
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i.e., it is a positive linear function divided by a positive convex function and hence is
quasiconcave. Consequently, it takes its minimum at a vertex of a regionR(J≤, J≥),
i.e., again at a hyperplane passing through D affinely independent data points.

Note that this theorem has been known for a long time for line location problems
(D = 2) in the case of rectangular or Euclidean distances (Wesolowsky 1972,
1975; Morris and Norback 1980, 1983; Megiddo and Tamir 1983), and has been
generalized to line location problems with arbitrary norms in Schöbel (1998, 1999a)
and to D-dimensional hyperplane location problems with Euclidean distance in
Korneenko and Martini (1990, 1993). The extension to hyperplanes with arbitrary
norms is due to Schöbel (1999a) and Martini and Schöbel (1998).

7.3.3.3 Minsum Hyperplane Location with Gauge Distance

In general, the results of Theorems 7.4 and 7.3 do not hold for gauges. There exist
counterexamples showing that optimal hyperplanes need not be halving, see, e.g.
Schöbel (1999a). However, redefining the halving property by taking into account
the non-symmetry on both sides of a hyperplane, the following similar result (based
on formulation (7.7)) may be transferred to gauge distances.

Theorem 7.5 (Halving Property for Minsum Hyperplanes with Gauges) (Plas-
tria and Carrizosa 2001) Let d be a gauge distance and H(a, b) be a minsum
hyperplane w.r.t. the distance d . Then we have

∑

j∈H<
a,b

wj

γ ◦(a)
≤

∑

j∈H>
a,b∪H=

a,b

wj

γ ◦(a)

∑

j∈H>
a,b

wj

γ ◦(−a)
≤

∑

j∈H<
a,b∪H=

a,b

wj

γ ◦(−a)
.

For gauge distances it does also not hold that there always exists an optimal
minsum hyperplane passing through D of the data points, for a counterexample see
again (Schöbel 1999a). However, the following weaker result holds.

Theorem 7.6 (Incidence Property for Minsum Hyperplanes) (Plastria and Car-
rizosa 2001) Let d be a gauge distance and let n ≥ D. Then there exists a minsum
hyperplane w.r.t. the distance d that passes through D−1 affinely independent data
points.

Note that this incidence property does not define an FDS.
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7.3.4 The Minmax Hyperplane Location Problem

We now turn our attention to the minmax hyperplane location problem in which
use the maximum of the residuals as globalizing function. That is, we look for a
hyperplane Ha,b which minimizes

fmax(Ha,b) = max
j=1,...,n

wj d(Ha,b, vj ).

A hyperplane H minimizing fmax(H) is called minmax hyperplane (or center
hyperplane) w.r.t. the distance d . Again, let us assume n > D. Since the main results
for the location of minmax hyperplanes are similar for different types of distance
functions, we do not distinguish between vertical, norm- and gauge distances here.

Minmax point location problems often rely on Helly’s theorem (Helly 1923). For
the location of hyperplanes, this result can only be applied for the vertical distance,
since the sets {(a, b) : d(Ha,b, v) ≤ α} are non-convex in general if d 
= dver .
Instead, relations to transversal theory may be exploited. We hence start with a link
to computational geometry.

7.3.4.1 Relation to Transversal Theory

Definition 7.2 Given a family of sets M in RD , a hyperplane H is called a
hyperplane transversal with respect to M if M ∩ H 
= ∅ for all M ∈ M .

Using this definition it is directly clear that fmax(H) ≤ r if and only if H is a
hyperplane transversal for the set M = {Mj(r), j = 1, . . . , n} with

Mj(r) = {x ∈ RD : wjd(x, vj ) ≤ r}.

Instead of looking for a hyperplane minimizing the maximum distance to a set of
data points, we can hence equivalently look for the smallest possible r ≥ 0 such that
a hyperplane transversal for the sets Mj(r), j = 1, . . . , n exists. As an example, in
Fig. 7.3 we search a line minimizing the maximum rectangular distance to the five
given data points, each of them with unit weight. Since it is a line transversal for the
five sets Mj(r), the depicted line l satisfies fmax(l) ≤ r .

7.3.4.2 The Finite Dominating Set Property

The main result for minmax hyperplane location is the following blockedness
property.

Theorem 7.7 (FDS for Minmax Hyperplanes) (Schöbel 1999a; Martini and
Schöbel 1998, 1999; Plastria and Carrizosa 2012) Let d be derived from a norm
or a gauge and let n ≥ D + 1. Then there exists a minmax hyperplane w.r.t. the
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Fig. 7.3 A line transversal l
to the five sets (each of them
with radius r) exists, hence
the objective function value
of this line satisfies
fmax(l) ≤ r

r r

distance d that is at the same (maximum) distance from D + 1 affinely independent
data points. If and only if the norm or the gauge is smooth, we have that all minmax
hyperplanes are at maximum distance from D + 1 affinely independent data points.

Proof (Sketch of Proof for Norms) Similar to the proof for median hyperplanes we
look at the case for vertical distances first. Here, the objective function is linear as
long as the maximum distance does not change (if n > 1). We hence may use a type
of farthest Voronoi diagram in the dual space, i.e., a partition of the dual space into
(not necessarily connected) polyhedral cells

C(vj ) := {(a, b) : d(Ha,b, vj ) ≥ d(Ha,b, v) for all v ∈ V }
= {(a1, . . . , aD−1, b) : |vtj a + b| ≥ |vti a + b| for all i = 1, . . . , n}

and it can be shown that an extreme point of such a cell is an optimal solution for
the case of the vertical distance. Note that the cell structure does not change when
we replace the vertical distance by a distance d derived from a norm, since we have

C′(vj ) := {(a, b) : d(Ha,b, vj ) ≥ d(Ha,b, v) for all v ∈ V }

= {(a1, . . . , aD−1, b) : |vtj a + b|
γ ◦(a)

≥ |vti a + b|
γ ◦(a)

for all i = 1, . . . , n}
= C(vj ),

and using again that the objective function on these cells is quasiconcave, the result
follows.

Note that in contrast to minsum hyperplane location problems, this result also
holds for gauges. This was shown for D = 2 in Schöbel (1999a) and for arbitrary
finite dimensionsD in Plastria and Carrizosa (2012). Using transversal theory, it can
furthermore be extended to metrics (under some mild conditions of monotonicity),
see Schöbel (1999a) for the case of D = 2.
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A geometric point of view is taken in Nievergelt (2002) for the Euclidean
case. He interprets the minmax hyperplane location problem as follows: locate two
parallel hyperplanes such that the set of data points lies completely between these
two hyperplanes and minimize the distance between these parallel hyperplanes. He
shows that in an optimal solution the two hyperplanes are rigidly supported by the
data points in V , i.e., there does not exist any other pair of parallel hyperplanes
enclosing all data points and passing through the same data points of V . This
property coincides with the blockedness property of Theorem 7.7. The algorithm
proposed in Nievergelt (2002) uses projective shifts to improve a solution in a finite
number of steps.

7.3.5 Algorithms for Minsum and Minmax Hyperplane
Location

We describe the main approaches used for computing minsum hyperplanes.

7.3.5.1 Enumeration

Theorems 7.2, 7.4, and 7.7 specify a finite dominating set for both the minsum and
the minmax hyperplane location problem. The trivial approach is to enumerate all
candidates in the FDS. For the minsum case these are just the hyperplanes passing
through D of the data points. More effort is necessary to determine the hyperplanes
being at maximum distance from D + 1 of the data points for the minmax case. For
D = 2 and norm distances these are parallel to one edge of the convex hull of the
data points (Schöbel 1999a).

7.3.5.2 Linear Programming for Hyperplane Location with Vertical and
Block Norm Distance

For the vertical distance dver the hyperplane location problem can be formulated as
a linear program. To this end, we define additional variables dj ≥ 0 which contain
the distances d(H, vj ), j = 1, . . . , n. For the minsum problem we then obtain

minimize
n∑

j=1

wjdj (7.10)

subject to dj ≥ vTj a + b for j = 1, . . . , n (7.11)

dj ≥ −vTj a − b for j = 1, . . . , n (7.12)

dj ≥ 0 for j = 1, . . . , n (7.13)
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aD = 1 (7.14)

b, ai ∈ R for i = 1, . . . ,D − 1. (7.15)

For the minmax problem, the objective (7.10) has to be replaced by the minmax
function fmax, i.e., by

minimize max
j=1,...,n

wjdj ,

which can be rewritten as linear program by using a bottleneck variable z and then
replacing the objective by minimize z and adding wjdj ≤ z for j = 1, . . . , n
as constraints. It is also possible to use other types of globalizing functions. For
the minsum problem (see Zemel 1984) and for the minmax problem (see Megiddo
1984), the above LP formulation can be solved in O(n) time.

Now consider a block norm γB with unit ball B = conv{e1, . . . , eG}, i.e., eg, g =
1, . . . ,G are the fundamental directions of the block norm. The idea is to solve the
problem for each of the fundamental directions separately. To this end, we extend
the vertical distance dver to a distance dt , t ∈ RD as follows.

dt (u, v) :=
{ |α| if u − v = αt for some α ∈ R

∞ otherwise.

We then know the following result.

Lemma 7.4 (Schöbel 1999a) Let H be a hyperplane and let d be derived from a
block norm γB with fundamental directions e1, . . . , eG. Then for any point v ∈ RD

there exists ḡ ∈ {1, . . . ,G} such that

d(H, v) = deḡ (H, v) = min
g=1,...,G

deg (H, v),

i.e., the fundamental direction eḡ is independent of the point v.

This result allows to solve the problem with block norm distance in O(Gn) time
in the planar case by iteratively solving the minmax hyperplane location problem
with respect to distance deg , g = 1, . . . ,G, and taking the best solution. Note that
the G problems may be solved by transformation to the vertical distance as follows:
Choose a linear (invertible) transformation T with T (eg) = (0, 0, . . . , 0, 1).
Transform all data points v′

j = T (vj ), j = 1, . . . , n. We obtain that

dver(T (H), T (v)) = deg (H, v)

for any hyperplane H and any point v ∈ RD , i.e., we have transformed the problem
with distance deg to a problem with vertical distance which can be solved by linear
programming (in linear time) as above. Transforming an optimal hyperplane H ′ for
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the resulting problem back to T −1(H ′) gives an optimal solution to the problem
with distance deg . Details can be found in Schöbel (1999a, 1996).

The problem of locating a hyperplane with respect to a block norm distance can
also be formulated as one large integer linear program (instead of the mentioned G

linear programs) as done in Blanco et al. (2018).

7.3.5.3 Enhancing the Enumeration for Line Location with Euclidean
Distance

For the Euclidean distance, the minsum straight line problem has received a lot
of attention. Many of the ideas to be described here could be used for other
distance functions (see Schieweck and Schöbel 2012); nevertheless they have been
investigated mainly for the Euclidean case. Algorithms rely on Theorems 7.3 and 7.4
and use the representation of the problem in the dual space.

The Euclidean minsum straight line problem with unit weights can be solved
by sweeping along the so called median trajectory in the dual space (see Yamamoto
et al. 1988). The median trajectory is the point-wise median of the lines TH (vj ), j =
1, . . . , n, see Fig. 7.4 for the median trajectory in our example. The breakpoints on
the median trajectory coincide with lines passing through two of the data points and
satisfying the halving property. Hence, the complexity of the approach depends on
the number h(n) of halving lines. In Yamamoto et al. (1988) the complexity of the
approach is given as O(log2(n)h(n)) which can be improved to O(log(n)h(n)) (see
Schieweck and Schöbel 2012) by substituting the algorithm for dynamic convex
hulls of Overmars and van Leeuwen (1981) by the newer O(log(n)) algorithm of
Brodal and Jacob (2002).

Note that the order of h(n) is not known yet. It has been shown that the number
of halving lines is in O(n4/3) (see Dey 1998) yielding an O(n4/3 log(n)) approach

Fig. 7.4 The median
trajectory for the example of
Fig. 7.2
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4
3

2

1

L

L

L

L

L
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for the line location problem with Euclidean distance. The best known lower bound
for the Euclidean minsum line location problem is �(n logn) using reduction from
the uniform-gap on a circle problem (Yamamoto et al. 1988). That is, the order of
h(n) is at least O(n logn). The question for an optimal algorithm for this problem is
still open.

The Euclidean line location problem with arbitrary weights can be solved in
O(n2), see Lee and Ching (1985).

For the Euclidean minmax line location problem the relation to transversal theory
is exploited leading to an optimal O(n logn) algorithm for the case with arbitrary
weights (Edelsbrunner 1985).

7.3.6 Ordered Median Line and Hyperplane Location Problem

A rather general globalizing function in location theory is the ordered median
function (see Nickel and Puerto 2005, or Chap. 10). For tackling ordered median line
location problems, one can combine the ideas of the preceding results on minsum
and minmax location.

Theorem 7.8 (FDS for Ordered Line Location) (see Lozano and Plastria 2009
for the planar Euclidean case) Let d be a norm distance and let n ≥ 2. Then there
exists a solution l∗ to the ordered line location problem w.r.t. the distance d that
satisfies at least one of the following conditions:

• l∗ passes through two of the data points.
• l∗ passes through one of the data points and is at same weighted distance from

two of the data points.
• l∗ is at the same weighted distance from three of the data points.
• There exist two pairs of data points vj , vj ′ ∈ V and vk, vk′ ∈ V such that

wjd(l
∗, vj ) = wj ′d(l∗, vj ′ ) and wkd(l

∗, vk) = wk′d(l∗, vk′),

i.e., l∗ is at the same weighted distance from both data points of each of the two
pairs.

Proof (Sketch of Proof) The theorem has been shown in Lozano and Plastria
(2009) for the ordered Euclidean line location problem, but also holds for all norm
distances: Again, we look at the regions in dual space in which the order of the
distances from the line to the data points does not change, i.e., in which

d(Ha,b, vj ) = d(Ha,b, vi)



7 Locating Dimensional Facilities in a Continuous Space 161

does not hold for any j 
= i. These regions are hence bounded by the affine linear
sets

{

(a, b) : wj |atvj + b|
γ ◦(a)

= wi |atvi + b|
γ ◦(a)

}

= {(a, b) : wj |atvj + b| = wi |atvi + b|}

in dual space and may be interpreted as the weighted bisectors of the lines TH (vj )

and TH (vi). Taking the intersection of these regions with the regions R(J≥, J≤) of
the proof of Theorem 7.4, we obtain quasiconcavity on the resulting (smaller) cells.
This yields that the data points of these new cells are a finite dominating set.

This FDS allows an algorithm to solve the ordered line location problem in
O(n4), see Lozano and Plastria (2009) for the Euclidean case. The problem of
locating a hyperplane minimizing the Euclidean ordered median function has been
investigated in Kapelushnik (2008) where its equivalence to searching within the
levels of an arrangement is shown. The resulting algorithm runs in O(n2D) where its
complexity is reduced to O(nD+min{D−1,K+1}) if K = |{j = 1, . . . , n : λj 
= 0}|.

Recently, a formulation with second-order cone constraints for ordered hyper-
plane location problems with arbitrary norm distances has been developed in Blanco
et al. (2018). In the same paper, the authors also propose a formulation as mixed-
integer linear program for the special case of ordered median hyperplane location
problems with block norm distances.

A special case concerns the k-centrum line location problem, in which the sum
of distances from the line to the k most distant data points is minimized. It is
also an ordered median problem and has been treated in Lozano et al. (2010). The
methodology is similar to the approach of the general ordered median problem and
exploits quasiconcavity of the objective function in the cells mentioned above. For
smooth norms, it is shown that the resulting finite dominating set consists of lines
either passing through two data points or being at equal weighted distance from three
of them. Based on this, an O((k + logn)n3) algorithm is proposed for computing
all t-centrum lines for 1 ≤ t ≤ k. For unweighted data points (Kapelushnik 2008),
suggests an algorithm that finds a k-centrum line in the plane in time O (n logn+nk).

7.3.7 Some Extensions of Line and Hyperplane Location
Problems

7.3.7.1 Obnoxious Line and Hyperplane Location

Instead of minimizing the distances to the data points, one may also consider an
obnoxious problem in which the new facility should be as far away from the
data points as possible. A rather general approach for obnoxious line location is
presented in Lozano et al. (2015) in which a weighted ordered median function is
maximized. More precisely, the problem treated is the following: Given a connected
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polygonal set S in the plane, the goal is to find a line which intersects S and
maximizes the sum of ordered weighted Euclidean distances to the data points. For
such problems, the authors are again able to derive a finite dominating set which
yields an O(n4) algorithm for the general Euclidean anti-ordered median case, and
an O(n2) algorithm for the case of of the Euclidean anti-median line. The case of
locating an obnoxious plane (i.e., finding the widest empty slab through a set of
data points V ) has been considered in Díaz-Bánez et al. (2006a). Also here, a finite
dominating set could be identified leading to an algorithm in time O(n3).

7.3.7.2 Locating p Lines or Hyperplanes

As in point facility location it is also possible to study the problem of locating p

lines or hyperplanes H1, . . . , HP . In this setting, every data point is served by its
closest line. We may minimize the sum of distances

f1(H1, . . . , Hp) =
n∑

j=1

wj min
q=1,...,p

d(Hq, vj ) (7.16)

or the maximum distance

fmax(H1, . . . , Hp) = max
j=1,...,n

wj min
q=1,...,p

d(Hq, vj ) (7.17)

from the data points to their closest hyperplanes, or we may use any other glob-
alizing function. Minimizing the sum of distances is called p-minsum-hyperplane
location problem and minimizing the maximum distance to a set of p hyper-
planes is called p-minmax-hyperplane location problem. Locating p hyperplanes
has important applications in statistics with latent classes, and also provides an
alternative approach for clustering, called projective clustering (see, e.g., Har-Peled
and Varadarajan 2002; Deshpande et al. 2006).

Both problems are known to be NP-hard for most reasonable distance mea-
sures (see Megiddo and Tamir 1982). However, since each of the p hyperplanes
H1, . . . , Hp to be located is a minsum (or minmax) hyperplane for the set of data
points

Vq = {v ∈ {v1, . . . , vn} : d(Hq, v) ≤ d(Hq ′, v) for all q ′ = 1, . . . , p}

the results on the finite dominating sets of Theorems 7.4 and 7.7 still hold:

Theorem 7.9 Given p ∈ N and a set of data points V . Let d be the vertical distance
or a norm distance.

• If n ≥ D then there exists an optimal solution to the p-minsum-hyperplane
location problem in which each hyperplane passes through D data points.
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• If n ≥ D + 1 then there exists an optimal solution to the p-minmax-hyperplane
location problem in which each of hyperplane is at maximum distance from D+1
data points.

Hence, enumeration approaches based on such an FDS are possible, however, the
number of candidates to be enumerated is of order O(nD).

Based on the FDS, another approach is possible: The problem may be trans-
formed to a p-median or p-center problem on a bipartite graph with O(|FDS|)
nodes. The two node sets of the graph are given by the data points V and by the
potential hyperplanes in the FDS. Every node v from V is connected to every node
H from the FDS where the edge (v,H) is weighted by the distance, the node v has
from the hyperplane H . The goal is to serve all customers in V by installing p new
locations in the FDS.

Another possible approach is to use blockwise coordinate descent similar to
the idea of Cooper’s algorithm (Cooper 1964) and proceed iteratively: Start with
a random set of p hyperplanes, determine the sets Vq for all q = 1, . . . , p, re-
optimize within these sets and repeat. The procedure converges to a local optimum.
For a more detailed analysis of the convergence properties we refer to Jäger and
Schöbel (2018).

Finally, the problem of finding p lines in the plane is studied as classification
problem in Bertsimas and Shioda (2007) where it is formulated as an integer
program. Binary variables xj,q determine to which of the q = 1, . . . , p lines the
data point vj is assigned. Applying their basic formulation to the linear program
(7.10)–(7.15) of Sect. 7.3.5 gives

minimize
n∑

j=1

wjdj

subject to dj ≥ vTj aq + bq − M(1 − xj,q) for j = 1, . . . , n, q = 1, . . . , p

dj ≥ −vTj aq − bq − M(1 − xj,q) for j = 1, . . . , n, q = 1, . . . , p

p∑

q=1

xj,q = 1 for j = 1, . . . , n

xj,q ∈ {0, 1} for j = 1, . . . , n, q = 1, . . . , p

dj ≥ 0 for j = 1, . . . , n

aD
q = 1 for q = 1, . . . , p

bq, a
i
q ∈ R for i = 1, . . . ,D − 1, q = 1, . . . , p.

Solving the integer program in its basic form is not possible in reasonable time; in
Bertsimas and Shioda (2007) clustering algorithms are performed in a preprocessing
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step. The above integer program can also be used for solving the minmax version of
the problem, if

∑
is replaced by max as globalizing function in its objective.

7.3.7.3 Restricted Line Location

Line location problems in which the line is not allowed to pass through a specified
set R ⊆ R2 can be tackled by looking at the dual space and transforming
the restriction to a forbidden set there. Since the problem is convex for vertical
distances, techniques from location theory can be used, e.g., the boundary theorem
saying that there exists a solution on the boundary of the restricted set whenever the
restriction is not redundant (see Hamacher and Nickel 1995). Results of this type
have been generalized to block norms and to arbitrary norms, see Schöbel (1999b).

In some statistical applications it is preferable to restrict the slope of the line
(or the norm of a) as done in types of RLAD approaches (Wang et al. 2006). Such
restrictions on the parameters of the hyperplane can again be treated and solved in
dual space, see Krempasky (2012).

Another type of restriction is to force a subset of data points of V to lie on,
above or below the hyperplane. Also for such problems, finite dominating sets have
been derived, see Schöbel (2003) for hyperplane location problems in which the
hyperplane is forced to pass through a subset of data points. Plastria and Carrizosa
(2012) consider the more general case of requiring a specified subset of data points
below or above the hyperplane with applications in support vector machines.

7.3.7.4 Line Location in RD

Locating a line in RD turns out to be a difficult problem since all of the structure
of line and hyperplane location problems gets lost. In Brimberg et al. (2002, 2003)
some special cases are investigated for the case D = 3, such as locating a vertical
line, or locating a line where the distance measure is given as the lengths of
horizontal paths. If these lengths are measured with the rectangular distance, the
problem can be reduced to two planar line location problems with vertical distance.
For the general case of locating a minsum line in R3, global optimization methods
such as Big-Cube-Small-Cube (Schöbel and Scholz 2010) have been successfully
used, see Blanquero et al. (2011). The case of locating a minmax line in RD is
known in computational geometry as smallest enclosing cylinder problem. It has
been mainly researched in R3 (Schömer et al. 2000; Chan 2000).

7.4 Locating Circles and Spheres

We now turn our attention to the location of hyperspheres. Again, we have given
a set of data points V ⊆ RD with positive weights wj > 0, j = 1, . . . , n. The
hypersphere location problem is to find the center point and the radius of a hyper-
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sphere S which minimizes the distances to the data points in V . The most common
hypersphere is the surface of the Euclidean unit ball (i.e., a classical circle in two
dimensions), but the problem is also interesting for more general hyperspheres
derived from unit balls of other norms. In this section we consider such hypersphere
location problems for different types of norms and different globalizing functions.

Note that circle location deals with finding a circle in R2 minimizing the
distances from its circumference to a set of data points in the plane. For circle
location, more and stronger results are known than for general hypersphere location;
it will hence be treated separately where appropriate.

7.4.1 Applications

Hyperspheres and circles are mathematical objects which are well-known for
hundreds of years. The Rhind Mathematical Papyrus, written around 1650 BC by
Egyptian mathematicians, already contains a method for approximating a circle, see
Robins and Shute (1987). The problem of fitting a circle or a sphere to a set of data
points has also been mentioned in the fourth century BC by notes of Aristotle on the
earth’s sphericity, see Dicks (1985).

Also nowadays, the location of circles and spheres has applications in different
fields. The Euclidean version of the problem is of major interest in measurement
science, where it is used as a model for the out-of-roundness problem which occurs
in quality control and consists of deciding whether or not the roundness of a
manufactured part is in the normal range (see, e.g., Farago and Curtis 1994; Ventura
and Yeralan 1989; Yeralan and Ventura 1988). To this end, measurements are taken
along the boundary of the manufactured part. In order to evaluate the roundness of
the part, a circle is searched which fits the measurements. Mathematical models for
different variants of the out-of-roundness problem are studied for instance in Le and
Lee (1991), Swanson et al. (1995), Sun (2009).

Circle and hypersphere location problems have also applications in other dis-
ciplines, e.g., in particle physics (Moura and Kitney 1992; Crawford 1983) when
fitting a circular trajectory to a large number of electrically charged particles within
uniform magnetic fields, or in archaeology where minmax circles are used to
estimate the diameter of an ancient shard (Chernov and Sapirstein 2008). In Suzuki
(2005), the construction of ring roads is mentioned as an application. Many further
applications are collected in Nievergelt (2010). They include

• the analysis of the design and layout of structures in archaeology,
• the analysis of megalithic monuments in history,
• the identification of the shape of planetary surfaces in astronomy,
• computer graphics and vision,
• calibration of microwave devices in electrical engineering,
• measurement of the efficiency of turbines in mechanical engineering,
• monitoring of deformations in structural engineering, or
• the identification of particles in accelerators in particle physics.
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There is also a relation to equity problems (see Gluchshenko 2008; Drezner
and Drezner 2007) of point facility location and to a problem in computational
geometry which is to find an annulus of smallest width. These relations are specified
in Sect. 7.4.4.1.

In statistics, the problem is also of interest. As Nievergelt (2002) points out,
many attempts have been made of transferring total least squares algorithms from
hyperplane location problems to hypersphere location problems (e.g., Kasa 1976;
Moura and Kitney 1992; Crawford 1983; Rorres and Romano 1997; Späth 1997,
1998; Coope 1993; Gander et al. 1994; Nievergelt 2004).

7.4.2 Distances Between Points and Hyperspheres

Let d be a distance derived from some norm ‖ · ‖, i.e., d(x, y) = ‖y − x‖. A
hypersphere of the norm ‖ · ‖ is given by its center point x = (x1, . . . , xD) ∈ RD

and its radius r > 0:

Sx,r = {y ∈ RD : d(x, y) = r}.

The distance between a sphere S = Sx,r and a point v ∈ RD is defined as the
distance from v to its closest point on S, i.e.,

d(S, v) = min
y∈S d(y, v)

and can be computed as

d(Sx,r , v) = |d(x, v) − r|.

The following properties of the distance can easily be shown.

Lemma 7.5 (Körner et al. 2012; Körner 2011) Given a distance d derived from
a norm, and a point v ∈ RD , the following hold:

• d(Sx,r , v) is convex and piecewise linear in r ,
• d(Sx,r , v) is locally convex in (x, r) if v is a point outside the sphere, and
• d(Sx,r , v) is concave in (x, r) if v is inside the sphere.

Before analyzing minsum or minmax circles or hyperspheres, let us remark
that even the special case with only n = 3 data points in the plane (D = 2)
is a surprisingly interesting problem. Within a wider context it has been studied
in Alonso et al. (2012a,b). Here, the circumcircle of a set of three data points is
investigated (which is the optimal minmax or minsum circle for the three data
points). Dependent on the norm considered, such a circumcircle need not exist,
and need not be unique. Among other results on covering problems, the work
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focuses on a complete description of possible locations of the center points of such
circumcircles.

7.4.3 The Minsum Hypersphere Location Problem

We start with the minsum hypersphere location problem, i.e., we use the sum of
all residuals between the data points and the hypersphere as globalizing function.
Given a distance d derived from norm ‖ · ‖, the goal hence is to find a hypersphere
S = Sx,r of norm ‖ · ‖ which minimizes

f1(Sx,r) =
n∑

j=1

wjd(Sx,r , vj ) =
n∑

j=1

wj |d(x, vj ) − r|. (7.18)

For the Euclidean case in the plane, (7.18) reduces to the location of a circle in
the plane. It has been defined and treated in Drezner et al. (2002). This has then been
generalized to the location of a (norm-)circle in the plane in Brimberg et al. (2009b),
and later to the location of a hypersphere of some norm in RD (Körner et al. 2012).
The Euclidean case in dimension d has been also extensively analyzed in Nievergelt
(2010).

We start by presenting some general properties of minsum hypersphere location
problems. In contrast to hyperplanes, it is not obvious in which cases a minsum
hypersphere exists, since a hypersphere can degenerate to a point (for r = 0) and to
a hyperplane (for r → ∞). The following results are known.

Lemma 7.6 (Brimberg et al. 2011a; Körner et al. 2012) Consider the hyperplane
location problem (7.18) with respect to a norm. Then the following hold.

• No hypersphere with r = 0 can be a minsum hypersphere.
• For any smooth norm there exist instances for which no minsum hypersphere

exists.
• For any elliptic norm and any block norm a minsum hypersphere exists for all

instances with n ≥ D + 1.

Since no optimal solution degenerates to a point, we need not bother with
existence results if we restrict r to an upper bound and solve the problem then.

Let us now discuss the halving property. Similar to the index sets (7.5) used for
hyperplane location, we define index sets to distinguish data points outside, on, and
inside the hypersphere

J>
x,r := {j ∈ {1, . . . , n} : d(x, vj ) > r}

J<
x,r := {j ∈ {1, . . . , n} : d(x, vj ) < r}

J=
x,r := {j ∈ {1, . . . , n} : d(x, vj ) = r}
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and let

W>
x,r :=

∑

j∈J>
x,r

wj , W=
x,r :=

∑

j∈J=
x,r

wj , W<
x,r :=

∑

j∈J<
x,r

wj .

As before, let W = ∑n
j=1 wj be the sum of all weights.

Theorem 7.10 (Halving Property for Minsum Hyperspheres) (Brimberg et al.
2011a; Körner et al. 2012) Let Sx,r be a minsum hypersphere w.r.t. a norm distance.
Then

W>
x,r ≤ W

2
and W<

x,r ≤ W

2
(7.19)

Proof (Sketch of Proof) If we increase the radius from r to r + ε the distance
to data points with indices in J>

x,r decreases by ε, and the distance to data points
with indices in J<

x,r increases by ε. This means, if W>
x,r > W

2 we can improve the
objective function by increasing the radius. (Analogously, if W<

x,r > W
2 we can

improve the objective function by reducing the radius.)

While the halving property can be nicely generalized from hyperplane location
problems to hypersphere location problems, this is unfortunately not true for the
determination of a finite dominating set. This can already bee seen in the Euclidean
case for D = 2, i.e., for locating a circle in the plane: Here, the generalization of
Theorem 7.4 would be that there always exists an optimal Euclidean circle passing
through three of the data points. However, this turns out to be wrong, even in the
unweighted case (see Fig. 7.1 for a counter-example). For most distances it is not
even guaranteed that there exists an optimal circle passing through two of the data
points. The only incidence property that can be shown for arbitrary norms is the
following.

Lemma 7.7 Let d be a norm distance. Then there exists a minsum hypersphere
w.r.t. the distance d which passes through at least one point v ∈ V .

Proof (Sketch of Proof) Let Sx,r be a hypersphere. Fix its center point x and assume
without loss of generality that the data points are ordered such that d(x, v1) ≤
d(x, v2) ≤ . . . ≤ d(x, vn). Then the objective function f ′(r) := f1(Sx,r ) in (7.18)
is piecewise linear in r on the intervals Ij := {r : d(x, vj ) ≤ r ≤ d(x, vj+1},
j = 1, . . . , n − 1, and hence takes a minimum at a boundary point, i.e., there exists
an optimal radius r = d(x, vj ) for some vj ∈ V .

The proof uses that the radius of an optimal circle is the median of the distances
d(x, v1), . . . , d(x, vn) which was already recognized in Drezner et al. (2002).

Not much more can be said in the general case. The only (again, weak) property
into this direction we are aware of is the following:
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Lemma 7.8 (Körner et al. 2012) Let S = Sx,r be a minsum hypersphere with
radius r < ∞. Then S intersects the convex hull of the data points in at least two
data points, i.e., |S ∩ conv(V )| ≥ 2.

Furthermore, if |S ∩ conv(V )| < ∞, then S ∩ conv(V ) ⊆ V .

7.4.3.1 Location of a Euclidean Minsum Circle

For the Euclidean distance and the planar case D = 2 it is possible to strengthen the
incidence property of Lemma 7.7.

Theorem 7.11 (Brimberg et al. 2009b) Let d be the Euclidean distance, and
consider the planar case, i.e., let D = 2. Then there exists a minsum circle which
passes through two data points of V .

The result can be shown by looking at the second derivatives of the objective
function (in an appropriately defined neighborhood) which reveal that a circle
passing through exactly one or none of the data points cannot be a local minimum.

An algorithmic consequence of the Theorem 7.11 is that there exists an optimal
circle with center point x being on a bisector of two of the data points, hence a
line search along the bisectors is possible. Using Theorem 7.10 a large amount of
bisectors may be excluded beforehand. Figure 7.5 shows the Euclidean bisectors
for five data points where the relevant parts (which contain center points of circles
having the halving property) are marked in bold.

Another approach was followed in Drezner and Brimberg (2014): Here the
unweighted case is shown to be an ordered median point location problem with
weights λ = (−1, . . . ,−1, 1, . . . , 1) with equal number of -1’s and 1’s if n is even,
and with weights λ = (−1, . . . ,−1, 0, 1, . . . , 1) with equal number of -1’s and 1’s
if n is odd. The resulting ordered median point location problem was then solved
using the Big-Triangle-Small-Triangle method (Drezner and Suzuki 2004) with the
d.c. bounding technique proposed in Brimberg and Nickel (2009).

7.4.3.2 Location of Minsum Circles and Hyperspheres with Block Norm
Distance

If d is derived from a block norm, a finite dominating set can be constructed for
the center point of the minsum circle. To this end, graph all fundamental directions
{e1, . . . , eG} ⊆ R2 of the block norm through any of the data points v ∈ V and
add the bisectors for all pairs of data points in V . The intersection points of these
lines form a finite dominating set which can be tested within O(n3) time, see Körner
(2011), Brimberg et al. (2011a).
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Fig. 7.5 The Euclidean bisectors for five data points. The notation Bij indicates that the
corresponding line is the bisector for data points vi and vj . The parts of the bisectors which may
contain a center point of a minsum circle are marked in bold

Using that the block norm of a point y is given as

‖y‖ = min{
G∑

g=1

αg : y =
G∑

g=1

αgeg, αg ≥ 0 for g = 1, . . . ,G}

the problem can in the case of block norm distances alternatively be formulated as
the following linear program with nG + 2n + D + 1 variables, see Brimberg et al.
(2011a) for the planar case and (Körner et al. 2012) for the case of hyperspheres.

minimize
n∑

j=1

wj

(
z+j + z−j

)

subject to
G∑

g=1

αg,j = r + z+j − z−j for j = 1, . . . , n

G∑

g=1

αg,j eg = x − vj for j = 1, . . . , n
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z+j , z
−
j ≥ 0 for j = 1, . . . , n

αg,j ≥ 0 for g = 1, . . . ,G, j = 1, . . . , n

r ≥ 0

x ∈ RD.

7.4.4 The Minmax Hypersphere Location Problem

We now turn our attention to the location of a minmax hypersphere using the
maximum of the residuals as globalizing function. That is, we look for a hypersphere
which minimizes the maximum weighted distance to the set V of data points. Given
a norm distance d , the goal hence is to find a hypersphereS = Sx,r which minimizes

fmax(Sx,r) = maxn
j=1wjd(Sx,r , vj ) =

n∑

j=1

wj |d(x, vj ) − r|. (7.20)

Note that the problem of locating a Euclidean minmax circle in the plane is older
than the corresponding Euclidean minsum circle problem; a finite dominating set
has already been identified in Rivlin (1979). Its rectangular version is due to
Gluchshenko et al. (2009). In RD the Euclidean minmax hypersphere location
problem has been analyzed mainly in the Euclidean case, see Nievergelt (2002).

7.4.4.1 Relation to Minimal Covering Annulus Problem and Equity
Problem

The problem of locating a minmax circle has a nice geometric interpretation. For
equally weighted data points it may be interpreted as finding an annulus of minimal
width covering all data points. This problem has been studied in computational
geometry, hence results on minmax circle location have been obtained indepen-
dently in location theory and in computational geometry.

In location science the minmax hypersphere location problem has an interesting
application as a point location problem. Namely, the (unweighted) center point x of
an optimal hypersphere Sx,r minimizes the difference

max
j=1,...,n

d(x, vj ) − min
j=1,...,n

d(x, vj ),

i.e., it minimizes the range to the set V . We conclude that minmax hypersphere
location problems can be interpreted as ordered median point location problems.
The point x may be interpreted as a fair location for a service facility as used in
equity problems, see Gluchshenko (2008) for further results.
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7.4.4.2 Location of a Euclidean Minmax Circle

Let us start with the Euclidean case in dimension D = 2: In this case, the problem
has been discussed extensively in the literature, mainly in computational geometry
under the name of finding an annulus of smallest width. In contrast to the Euclidean
minsum circle problem, where an FDS could not be found, the following result
shows that an FDS for the (Euclidean) minmax hypersphere exists.

Theorem 7.12 (FDS for the Euclidean Minmax Circle) (e.g., Rivlin 1979; Brim-
berg et al. 2009a) Let D = 2 and let C be a minmax circle with finite radius. Let
h := maxj=1,...,n wjd(C, vj ). Then there exist four data points having distance h

to the circle C, two of them inside the circle and two of them outside the circle.

The theorem was shown for the unweighted case independently in many papers,
among others in Rivlin (1979), Ebara et al. (1989), García-López et al. (1998) and
it was generalized to the weighted case in Brimberg et al. (2009a). The result can be
interpreted in different ways:

• In the geometric interpretation, the result means that the annulus of minimal
width covering all data points has two data points on its inner circumference
and two data points on its outer circumference (Rivlin 1979).

• It also shows that the center point of a minimax circle is either a vertex of the
(nearest neighbor) Voronoi diagram or of the farthest neighbor Voronoi diagram
or lies at an intersection point of both diagrams (Le and Lee 1991; García-López
et al. 1998).

For the unweighted problem (Ebara et al. 1989), use this result and present an
enumeration algorithm with runtime in O(n2). If the data points in V are given
in an angular order (García-López et al. 1998), present an algorithm which runs
in O(n logn) and which can even be improved to O(n) if the data points in V

are the vertices of a convex polygon. This is in particular helpful for solving
the out-of-roundness problem (see Sect. 7.4.1), since the measurements are taken
along the manufactured part in angular order in this case. A gradient search
heuristic is provided in Drezner et al. (2002) and global optimization methods
were used in Drezner and Drezner (2007) who use the Big-Triangle-Small-Triangle
method (based on Drezner and Suzuki 2004) for its solution. Randomized and
approximation algorithms are also possible, see Agarwal et al. (2004, 1999).

More references on the computation of Euclidean minmax circles can be found
in García-López et al. (1998) and Brimberg et al. (2009a).

7.4.4.3 Location of a Minmax Circle with Rectangular Distance

Gluchshenko (2008) and Gluchshenko et al. (2009) consider the minimal annulus
problem for the rectangular distance. This means, the circle to be located is a
diamond, and the distances from the given data points to the circle are measured
in the rectangular norm. The following is an important result.
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Theorem 7.13 (FDS for the Rectangular Minmax Circle) (Gluchshenko et al.
2009) Let d be the rectangular distance. Then there exists a minmax circle whose
center point is a center point of a smallest enclosing square of the data points.

This means the set of all center points of smallest enclosing squares (which can
be determined easily) is an FDS. Based on this (Gluchshenko et al. 2009), develop
an optimal O(n logn) algorithm for finding a minmax circle with respect to the
rectangular norm.

More recently, the problem in which the annulus may also be rotated has been
considered in Mukherjee et al. (2013) where an O(n2 logn) algorithm has been
proposed.

7.4.4.4 Location of a Euclidean Minmax Hypersphere

The problem of finding a minmax hypersphere in dimension D ≥ 3 was considered
in García-López et al. (1998). The authors give necessary and sufficient conditions
for a point to be the center point of a locally minimal hypersphere with respect
to fmax. Independently, also Nievergelt (2002) considers the problem of locating
a hypersphere in RD with Euclidean distance. Analogously to his approach for
minmax hyperplanes, he interprets the problem as the location of two concentric
hyperspheres with minimal distance which enclose the set V of data points. This
results in a generalization of Theorem 7.12 to higher dimensions.

Theorem 7.14 (FDS for the Euclidean Minmax Hypersphere) (Nievergelt 2002)
There exists a Euclidean minmax hypersphere S which is rigidly supported by the
point set V , i.e., there does not exist any other pair of concentric hyperspheres
enclosing all data points of V and passing through the same data points of V as S.

Based on this property (Nievergelt 2002), derives a finite algorithm finding a
minmax hypersphere with respect to the Euclidean distance. A linear time (1 +
ε) factor approximation algorithm for finding a Euclidean minmax hypersphere is
given in Chan (2000).

7.4.5 Some Extensions of Circle Location Problems

7.4.5.1 Minimizing the Sum of Squared Distances

An earlier variant of the hypersphere location problem minimizes the sum of
squared residuals as globalizing function, i.e., it considers

f 2
2 (Sx,r) =

n∑

j=1

wj

(
d(Sx,r , vj )

)2
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as objective function. In Drezner et al. (2002) it is shown that the least squares
objective is equivalent to minimizing the variance of the distances. The problem is
(like the minsum and minmax problem) non-convex; heuristic solution approaches
are suggested. In Drezner and Drezner (2007) the Big-Triangle-Small-Triangle
global optimization algorithm is successfully applied.

Minimizing the sum of squared distances from the data points in V to a circle
has been also considered within statistics in Kasa (1976), Crawford (1983), Moura
and Kitney (1992), Coope (1993), Gander et al. (1994), Rorres and Romano (1997),
Späth (1997, 1998), Nievergelt (2004).

7.4.5.2 Locating Euclidean Concentric Circles

In a recent paper (Drezner and Brimberg 2014), introduce the following extension
of the circle location problem: They look for p concentric circles with different radii
r1, . . . , rp which minimize the distances to a given set of data points. In their paper
they assume a partition of V into sets V1, . . . , Vp and require that each point in Vi

is served by the circle with radius ri . This means the variables to be determined
are the center point x ∈ R2 and the radii r1, . . . , rp of the p circles. The model is
considered for the least squares globalizing function, as well as for using minsum
and minmax. Using that

d(Sx,rj , vj ) = |d(x, vj ) − r|

the objective functions which are considered are given as

f 2
2 (x, r1, . . . , rp) =

p∑

q=1

∑

vj∈Vq

wj

(
d(x, vj ) − r

)2

f1(x, r1, . . . , rp) =
p∑

q=1

∑

vj∈Vq

wj |d(x, vj ) − r|

fmax(x, r1, . . . , rp) = max
q=1,...,p

max
vj∈Vq

wj |d(x, vj ) − r|.

Drezner and Brimberg (2014) solve the problem by global optimization methods,
using a reformulation of the circle location problem as an ordered median point
location problem (see the location of a Euclidean minsum circle in Sect. 7.4.3) and
applying the Big-Triangle-Small-Triangle method (Drezner and Suzuki 2004).

7.4.5.3 Location of a Circle with Fixed Radius

The location of a circle with fixed radius is considered in Brimberg et al. (2009a).
In this case, it can be shown that considering every triple of data points separately
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Fig. 7.6 Locating a circle of norm k1 with respect to another norm k2. Left: The unit circle of
the maximum norm is to be located, distances are measured w.r.t. the rectangular norm. Right: The
Euclidean circle is to be located, distances are measured w.r.t. the maximum norm

yields an optimal solution, i.e., a finite dominating set can be derived by solving
(
n
3

)

smaller optimization problems.

7.4.5.4 Locating a Hypersphere of One Norm Measuring Distances
with Respect to Another Norm

In two dimensions, the circle location problem is to translate and scale a circle S =
{x ∈ R2 : ‖x‖ ≤ 1} (derived from norm ‖ · ‖) in such a way that the distances to the
data points in a set V are minimized, where the residuals are measured with respect
to the same norm ‖ · ‖. In Körner et al. (2009, 2011) this problem is studied for two
different norms under the name generalized circle location.

More precisely, given two norms k1 and k2 and a set of data points V in the plane
with positive weights wj > 0, the goal of generalized hypersphere location is to
locate and scale a hypersphere of norm k1 such that the sum of weighted distances
to the data points is minimized, where the distances are measured by the other norm
k2. Figure 7.6 shows two possible situations. In the left part of the figure, the new
facility is the scaled and translated unit circle of the k1 := ‖ · ‖max norm and the
distances to the four given data points are measured by the k2 := ‖ · ‖1 norm. In the
right part, k1 := ‖ · ‖2 and k2 := ‖ · ‖max.

In Körner et al. (2011), properties of minsum generalized circle location in D =
2 dimensions are investigated, and it is shown that not much of the properties for
minsum circle location still hold. There is neither an easy formula for computing the
distance between a point and such a generalized circle, nor does any of the incidence
criteria hold. In fact, there are examples in which no optimal circle passes through
any of the data points. However, if both norms k1 and k2 are block norms, a finite
dominating set can be identified (see Körner et al. 2009). The problem of locating a
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general circle is interesting for many special cases, e.g., if a box should be located.
Such cases have been studied in Brimberg et al. (2011b).

7.5 Locating Other Types of Dimensional Facilities

7.5.1 Locating Line Segments

The line segment location problem looks for a line segment with specified length
which minimizes the distances to the set V of data points.

Location of line segments has been considered in Imai et al. (1992), Agarwal
et al. (1993), Efrat and Sharir (1996) for the Euclidean minmax problem, and in
Schöbel (1997) for the minsum problem with vertical distances. In both the cases it
is possible to determine a finite dominating set; the latter case can be transformed to
a restricted line location problem.

Locating line segments received new interest within the following problem: A
line segment and a point facility are to be located simultaneously. In this setting, the
line segment can be used to speed up traveling in the plane in which a new point
facility should be built. The problem has been treated in the plane, using rectangular
distances in Espejo and Rodríguez-Chía (2011, 2012) where a characterization of
optimal solutions was used to derive an algorithm. This could be improved in Díaz-
Bánez et al. (2013) to an O(n3) approach. These approaches are based on a finite
dominating set which can be obtained by reduction of the location problem to a
finite number of simpler optimization problems.

7.5.2 The Widest Empty 1-Corner Corridor in the Plane

An empty corridor in the plane is an open region bounded by two parallel polygonal
chains that does not contain any of the data points V = {v1, . . . , vn}, and that
partitions the data points into two non-empty parts. This can be interpreted as an
obnoxious dimensional location problem: locate a polygonal chain maximizing the
minimum distance to the data points. Empty corridors have been of interest in
computational geometry (see e.g., Janardan and Preparata 1996). An empty corridor
is called a 1-corner empty corridor if each of the two bounding polygonal chains
has exactly one corner point. The problem in which the angle at the corner point
is given and fixed has been studied in Cheng (1996). Díaz-Bánez et al. (2006b)
considered the problem of locating a widest 1-corner corridor using techniques of
facility location: they were able to derive a finite dominating set consisting of locally
widest 1-corner corridors among which a solution may be chosen. Their approach
needs O(n4 logn) time. It was further improved to O(n3 log2 n) time in Das et al.
(2009).
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7.5.3 Two-Dimensional Facilities

Covering problems are the most common problems in which the location of full-
dimensional facilities is considered. There exist many papers about covering data
points by a circle (i.e., locating one point x such that all data points are in a given
threshold distance from x), by a set of circles, or even by a set of aligned circles
(occurring when the center points of the circles to be located are forced to lie on
a common straight line), or circles satisfying other restrictions. Covering problems
are not reviewed here, we refer to Plastria (2001) or to Chap. 5.

However, also the location of a two-dimensional facility X such that the minsum
or minmax globalizing function is minimized, has been considered in the literature.
If there exists a location for X such that all data points are covered, this location is
clearly an optimal solution with objective value zero both for the minsum and for
the minmax problem. If it is not possible to cover all data points, the minsum and
the minmax problem usually have different solutions.

A paper dealing with the location of a two-dimensional facility is Brimberg
and Wesolowsky (2000) where the rectangular distance is considered and special
cases could be transformed to classical point location problems. In the context
of facility layout the location of a rectangular office with minsum and minmax
globalizing function has been studied in Savas et al. (2002), Kelachankuttu et al.
(2007) and Sarkar et al. (2007). In these papers, existing offices are treated as
barriers. Various problem variations for the location of an axis-parallel rectangle
(with fixed circumference, with fixed area, with fixed aspect ratio, or with fixed
shape and size) have been considered in Brimberg et al. (2011b). For most cases, a
finite dominating set could be derived.

The location of a two-dimensional ball

Bx = {y ∈ R2 : d(x, y) ≤ r}

with given and fixed radius r has been considered in Brimberg et al. (2015a) both for
the minsum and the minmax globalizing function. Note that the distance between
Bx and v

d(Bx, v) = min
y∈Bx

d(y, v)

is measured as the closest distance to any point in B, and not only to data points on
its circumference Sx,r . This means that

d(Bx, v) =
{

0 if v ∈ Bx

d(Sx,r , v) otherwise.

Hence, Lemma 7.5 yields that d(Bx, v) is a convex function and consequently, the
resulting optimization problems are much easier to solve than the circle location
problems of Sects. 7.4.3 and 7.4.4. We remark that the location of a full-dimensional



178 A. Schöbel

ball has the following interesting interpretation as a point location problem with
partial coverage:

Assume that we are looking for a new facility x ∈ R2 for which we know that
little or no service cost (or inconvenience) is associated with data points that are
within an acceptable travel distance r from x. Thus, costs will be associated only to
those data points that are further away from the facility than this threshold distance
r . If we assume that these costs are proportional to the distance in excess of r , the
resulting problem is equivalent to the location of a ball with radius r , and its center
point is the optimal location x we are looking for. This has been pointed out in
Brimberg et al. (2015a) where the behavior of the optimal solution with respect to
the threshold distance r is studied.

Line location with the partial coverage globalizing function is equivalent to
locating a strip of given width and has recently been considered in Brimberg et al.
(2015b).

7.5.4 General Approaches for Locating Dimensional Facilities

Blanquero et al. (2009) and Mallozzi et al. (2019) both deal with the location of a
variety of dimensional facilities such as segments, arcs of circumferences, arbitrary
convex and non-convex sets, their complements, or their boundaries. The idea is to
fix the shape of the dimensional facility and to look for a shift vector and/or an angle
of rotation. The objective they follow is very general, including most globalizing
functions used in location theory.

Blanquero et al. (2009) also allow to model obnoxious or semi-obnoxious
location problems as follows: The set of data points is split into a subset V + for
which the new facility is attractive and a subset V − for which the new facility
has negative effects. The distance from the new facility to a data point should be
small when the point is in V + and large when it is in V−. In order to combine
the distances within the same set V+ and V − Blanquero et al. (2009) propose to
evaluate the norm (or the gauge) of the resulting single distances. Using that the
Euclidean distance d(S, v) between a point and a set can be written as difference
of convex functions (Blanquero et al. 2009), solve the model by d.c.-programming
methods, outer approximation and branch and bound.

Mallozzi et al. (2019) deal with the location of p dimensional facilities of
very general shapes and the allocation of them to some given demand. Instead
of a distance measure, utility functions are used. The resulting location-allocation
problem is discretized and tools from optimal mass transport are used for its
solution.
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7.6 Conclusions

For the location of dimensional facilities we can draw the following conclusions.

• The location of a zero-dimensional facility (i.e., a point) and of a full-dimensional
facility of convex shape with respect to a norm is a convex problem.

• In contrast, the location of a one-dimensional facility with respect to a norm is
a non-convex problem which usually has many locally optimal solutions. Only
the vertical distance leads to convex hyperplane location problems (if also the
globalizing function g is convex).

• However, many of the investigated problems of locating a one-dimensional
facility are piecewise quasiconcave on a cell structure in dual space. This leads to
a finite dominating set. Another possibility for deriving an FDS is via Helly-type
theorems.

• When distances are measured w.r.t. a block norm, hyperplane and hypersphere
location problems with ordered median globalizing function are piecewise linear
and can hence be solved by linear programming methods.

• The halving property holds when the problem is linear with respect to one of its
variables.

The main properties pointed out in this chapter are summarized in Table 7.2.
They have the following algorithmic consequences.

The FDS property gives the straightforward possibility of enumerating the
candidate set. Also for the location of p facilities the FDS property is still helpful,
although the number of candidates increases to O(|FDS|p). As demonstrated for
the p-minsum line location problem in Sect. 7.3.7, an FDS also allows to transfer
the problem of locating p facilities to a p-location problem on a bipartite graph with
O(|FDS|) nodes. It is ongoing work to test such approaches numerically.

Table 7.2 Summary of properties for some of the considered location problems

Problem FDS Halving LP

Minsum hyperplane with d = dver Yes Yes Yes

Minsum hyperplane with norm Yes Yes No

Minsum hyperplane with block norm Yes Yes Yes

Minsum hyperplane with gauges No (Yes) No

Minmax hyperplane with norm Yes No No

Minmax hyperplane with block norm Yes No Yes

Minmax hyperplane with gauges Yes No No

Ordered minsum hyperplane with norm Yes Yes No

Minsum line in R3 No No No

Line may not pass through a polyhedral set Yes No No

Minsum/minmax p-line with norm Yes No No

Minsum hypersphere with norm No Yes No

Minsum hypersphere with block norm Yes Yes Yes

Minmax hypersphere with Euclidean norm Yes No No

Minmax circle with rectangular norm Yes No Yes
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Enumeration may be enhanced by the halving property which can be used to
directly discard candidates of an FDS. Such discarding tests are also useful in other
approaches, even if no FDS is known, since the halving property allows to discard
whole regions when searching for an optimal solution. An example is the search
along bisectors which can be reduced to the relevant parts in the Euclidean minsum
circle location problem. Also in geometric branch & bound approaches such as Big-
Square-Small-Square (Plastria 1992), Big-Triangle-Small-Triangle (Drezner and
Suzuki 2004), Big-Cube-Small-Cube (Schöbel and Scholz 2010) or Big-Arc-Small-
Arc (Drezner et al 2018) discarding tests motivated by the halving property may be
interesting.

Using linear programming methods is an efficient way of solving facility location
problems, in particular if the number of variables is not too large. This is the case
for block norms with not too many fundamental directions.

While many questions in the location of lines and hyperplanes seem to be solved,
there are still questions remaining in the location of hyperspheres. These concern,
on one hand, general properties about the location of hyperspheres with other than
the minsum globalizing function and with arbitrary norms or gauges. On the other
hand, there are also many special cases waiting to be investigated, in particular if
the sphere is defined with respect to another norm as the distance function.

Concerning the location of new types of dimensional structures, researchers
should look for shapes which are of interest for other disciplines or for applications.
Similarly, identifying additional restrictions and particularities arising in applica-
tions in operations research, statistics, and computational geometry and including
them in the models is a future challenge.

Acknowledgements I want to thank Robert Schieweck for providing useful hints on line and
hyperplane location problems.
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Chapter 8
Facility Location Under Uncertainty

Isabel Correia and Francisco Saldanha-da-Gama

Abstract This chapter covers some of the existing knowledge on facility location
under uncertainty. The goal is to provide the reader with essential tools for modeling
and tackling problems in the area. To a large extent, the focus is put on discrete
facility location problems. Several issues related with uncertainty are discussed.
A distinction is made between problems in the areas of robust optimization,
stochastic programming and chance-constrained programming. The presentation is
complemented with several other aspects of relevance such as multi-stage stochastic
programming models, scenario generation, and solution techniques. Several well-
known facility location problems are used throughout the chapter for illustrative
purposes.

8.1 Introduction

Many facility location problems involve strategic decisions that must hold for a
considerable amount of time, during which uncontrolled changes may occur in the
conditions underlying the problem. For example, we may observe an unexpected
disruption in the network due to some failure, or we may realize that the values of
some parameters (e.g., demand levels) vary in an unpredictable manner. In such
cases it may be desirable to account for uncertainty in advance and thus make
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decisions that can somehow anticipate it. This can be accomplished by embedding
uncertainty in mathematical models developed for supporting decision making
processes.

The review papers by Louveaux (1993) and Snyder (2006) show that much
work has been done within the context of facility location under uncertainty. The
different sources of uncertainty we may face in these problems have led to the
development of different research branches. One of them consists of so-called
problems with congestion. In this case, the customers’ requests for service have
a probabilistic behavior. If a facility is busy when a new request arrives then we say
that “congestion” occurs. This is the topic covered by Chap. 17. Another important
research direction regards unexpected disruptions in the network structures, e.g., in
the facilities or in the transportation channels. This is a topic addressed in detail
in Chap. 22. In the current chapter, we focus on a third perspective: we consider
the aspects emerging from uncertainty associated with the parameters of a facility
location problem such as the demand levels or transportation costs. We show
how uncertainty can be embedded in optimization models aiming at supporting
a decision making process. For illustrative purposes, we work with several well-
known problems. We focus on a discrete setting, i.e., we assume that there is a
finite set of candidate locations for the facilities. This is motivated by the practical
relevance that this setting has gained overt time, which stems from many successful
applications of facility location theory to areas such as logistics, transportation and
routing (see Chap. 1).

In the following sections we assume that the reader is familiar with the basic
concepts of robust and stochastic optimization. Important references in these fields
include Birge and Louveaux (2011) and Shapiro et al. (2009) for stochastic program-
ming; Kouvelis and Yu (1997) and Ben-Tal et al. (2009) for robust optimization.

The remainder of this chapter is organized as follows. In the next section, we
discuss general aspects related with uncertainty. In Sect. 8.3, we address robust
facility location problems. In Sect. 8.4, we focus on stochastic programming models.
Section 8.5 is devoted to chance-constrained problems. In Sect. 8.6 we discuss
some challenges and give suggestions for further reading. The chapter ends with
an overview of the contents presented.

8.2 Uncertainty Issues

Basic information underlying a facility location problem often includes demand
levels, travel time, cost for supplying the customers, location of the customers,
presence or absence of the customers, and price for the commodities. Uncertainty
may occur in one or several of these parameters.

One crucial aspect when dealing with uncertainty regards its representation.
First, uncertain parameters may be discrete or continuous. Second, if probabilistic
information is available, the uncertain parameters can be represented through
random variables and thus they are jointly represented by a random vector. In this
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case, using the well-known characterization proposed by Rosenhead et al. (1972),
we say that we are making a decision under risk and we can resort to stochastic
programming models and methods for dealing with the problem. If this is not the
case, we are making a decision under uncertainty and a robustness measure is
usually considered for evaluating the performance of the system. It is important
to note that the existence of a probabilistic description for the uncertainty does not
prevent the use of robustness measures, as will be detailed in the next section.

We call “scenario” a complete realization of all the uncertain parameters. This
notion is independent of whether or not probabilistic information is available.
Nevertheless, if uncertain parameters can be represented by random variables, a
probability can often be associated with each scenario. Depending on the problem,
we may have a finite or an infinite number of scenarios. As will be discussed later,
this impacts the models and techniques that can be used.

One important feature that influences the optimization model to be considered
for a specific problem regards the attitude of the decision maker towards risk. Two
attitudes are usually considered: risk neutral and risk averse. In the first case, the
decision maker does not take risk into account when making a decision and a linear
function is a correct representation of the utility associated with the decision maker.
When a probability can be associated with each scenario, a risk neutral decision
maker looks for a decision that minimizes the expected cost (or maximizes the
expected return or utility). A risk averse decision maker can be associated with a
concave utility function (when utility is measured on the vertical axis and monetary
value is measured on the horizontal axis). In this case, the decision maker wants to
avoid unnecessary risk and the expected value of the future assets is no longer an
appropriate objective. Such a decision maker may look, for instance, for the solution
minimizing the maximum cost across all scenarios.

Finally, in some classes of problems, there is another aspect that influences the
mathematical model to be considered: the identification of the ex ante and ex post
decisions. In the first case, we have the decisions that must be implemented before
uncertainty is revealed—also called the here-and-now decisions; in the second case,
we have the decisions to be implemented after uncertainty is disclosed. The latter
set of decisions is often used as a reaction to the values observed for the uncertain
parameters. In a facility location problem, the location of the facilities is often an
ex ante decision. This is a consequence of the strategic nature of such decisions in
many problems, which imposes their implementation before uncertainty is revealed.
Regarding the allocation or distribution decisions, it will depend on the specific
problem being studied whether they are ex ante or ex post decisions. In the following
sections we refer to both situations.

8.3 Robust Facility Location Problems

We start by assuming that uncertainty is appropriately captured by a finite set of
scenarios. As mentioned above, each scenario fully determines the value of all the
uncertain parameters. If no probabilistic information is available, one possibility for
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measuring the performance of a system is to use a robustness measure. In this case,
two classical objectives are often considered: minmax cost and minmax regret.

For illustrative purposes, we consider the well-known p-median problem. In this
problem, we have a set of demand nodes J each of which to be served by one out
of p new facilities to be located. The potential locations for the facilities coincide
with the locations of the demand nodes. In its discrete version, the problem can be
formulated mathematically as follows:

Minimize
∑

i∈J

∑

j∈J
djaij xij (8.1)

subject to
∑

i∈J
xij = 1, j ∈ J (8.2)

xij ≤ xii, i ∈ J, j ∈ J (8.3)
∑

i∈J
xii = p (8.4)

xij ∈ {0, 1}, i ∈ J, j ∈ J. (8.5)

In this formulation, aij represents the distance or travel time between demand nodes
i and j (i, j ∈ J ) and dj is the demand or weight of node j (j ∈ J ); xij is a binary
variable equal to 1 if node j ∈ J is allocated to node i ∈ J and 0 otherwise; xii = 1
indicates that a facility is located at i. The objective is to minimize the total weighted
distance or travel time.

In a p-median problem, uncertainty can occur in the demands (or weights) or
in the distances (or travel times). Denote by � the finite set of scenarios and by
ω ∈ � one particular scenario (that fully specifies all the uncertain parameters).
Suppose that the location of the facilities is an ex ante decision and the allocation
of the customers to the operating facilities is an ex post decision. In order to capture
uncertainty, we need to consider binary location variables yi indicating whether a
facility is located at i ∈ J , and scenario-indexed binary allocation variables xijω
indicating whether demand node j ∈ J is allocated to facility i ∈ J in scenario
ω ∈ �.The minmax p-median problem can be formulated as follows:

Minimize v (8.6)

subject to
∑

i∈J

∑

j∈J
djωaijωxijω ≤ v, ω ∈ � (8.7)

∑

i∈J
xijω = 1, j ∈ J, ω ∈ � (8.8)

xijω ≤ yi, i ∈ J, j ∈ J, ω ∈ � (8.9)
∑

i∈J
yi = p (8.10)
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xijω ∈ {0, 1}, i ∈ J, j ∈ J, ω ∈ � (8.11)

yi ∈ {0, 1}, i ∈ J. (8.12)

In this model, djω represents the demand of node j ∈ J under scenario ω ∈ �,
and aijω represents the travel time between nodes i ∈ J and j ∈ J under scenario
ω ∈ �. The minmax objective arises from the combination of (8.6) and (8.7).

The solution provided by the previous model tends to be overly conservative.
It reflects a complete aversion of the decision maker towards risk. In fact, by
planning for the worst case scenario (the maximum weighted distance occurring
across all scenarios), the decision maker may be planning for a scenario which turns
out to be very unlikely. A better compromise can be achieved by considering the
minmax regret1 criterion. In this case, the decision maker chooses the decision that
minimizes the maximum regret across all scenarios. The corresponding model is
obtained by replacing (8.7) with

∑

i∈J

∑

j∈J
djωaijωxijω − v∗

ω ≤ v, ω ∈ �, (8.13)

where v∗
ω is the optimal value of problem (8.1)–(8.5) solved for scenario ω ∈ �.

Serra and Marianov (1998) consider the above minmax regret model after scaling
the demands. In particular, for each scenario, they divide each demand by the total
demand under that scenario. The authors also note a very relevant aspect: when the
optimal objective function differs significantly across the different scenarios, the
relative regret is a more appropriate robustness measure (see also Kouvelis and Yu
1997). In this case, (8.13) should be replaced with

∑
i∈J

∑
j∈J djωaijωxijω − v∗

ω

v∗
ω

≤ v, ω ∈ �. (8.14)

Serra and Marianov (1998) developed a heuristic for this problem.
A different problem is studied by Serra et al. (1996). They consider a firm that

wishes to locate p facilities in a competitive environment. The goal is to maximize
the minimum market captured in a region where competitors are already operating.
The criterion considered corresponds to the “maximization” version of the minmax
“cost” criterion discussed above. Uncertainty is assumed for the demand and for the
location of the competitors. Again, a heuristic is proposed for tackling the problem.

If the allocation of customers to facilities is also an ex ante decision, the models
above can be easily adapted. In this case, the scenario index should be removed
from the allocation variables, i.e., the allocation variables become those introduced

1In each scenario, the regret of a solution is the difference between the cost of the solution if the
scenario occurs and the optimal cost that can be achieved under that scenario (see Kouvelis and Yu
(1997) for further details).
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in model (8.1)–(8.5). Furthermore, the location variables yi are no longer necessary,
since the variables xii (i ∈ J ) can play their role.

The above models work with a finite set of scenarios. In practice, however,
this is not always a correct representation for the uncertainty. In many situations,
an uncertain parameter can lie in some infinite set. A popular way of capturing
such uncertainty in these cases is via intervals. In the general context of robust
optimization, two types of uncertainty sets are often considered: box and ellipsoidal
uncertainty sets (see Ben-Tal et al. 2009, for further details). In the first case,
uncertainty is defined by a set of linear constraints; in the second case, quadratic
expressions involving the uncertain parameters are used. We illustrate both cases
considering the uncapacitated facility location problem (UFLP), whose well-known
mathematical formulation is the following:

Minimize
∑

i∈I
fiyi +

∑

i∈I

∑

j∈J
cij djxij (8.15)

subject to
∑

i∈I
xij = 1, j ∈ J (8.16)

xij ≤ yi, i ∈ I, j ∈ J (8.17)

yi ∈ {0, 1}, i ∈ I (8.18)

xij ≥ 0, i ∈ I, j ∈ J. (8.19)

In this model, I denotes the set of potential locations for the facilities, J is the set
of customers, fi represents the setup cost for facility i ∈ I , cij corresponds to the
unit cost for supplying the demand of customer j ∈ J from facility i ∈ I and dj is
the demand of customer j ∈ J . The binary variable yi indicates whether a facility
is installed at i ∈ I , and the continuous variable xij represents the fraction of the
demand of customer j ∈ J that is supplied from facility i ∈ I .

We consider now a common source of uncertainty in a facility location problem:
the demand. Under box uncertainty, each demand level, dj (j ∈ J ), lies in an
interval U B

j = [dj − ε�j, dj + ε�j ], 0 ≤ ε ≤ 1. The parameter ε measures the

uncertainty “magnitude”; dj denotes a reference value for the demand of customer
j ∈ J , and is commonly referred to as the nominal value for the unknown parameter;
�j is a scaling factor.

A particular case of box uncertainty arises when �j = dj (j ∈ J ), which leads
to the intervalsU B

j = [dj (1−ε), dj (1+ε)], j ∈ J . Denote U B = U B
1 ×· · ·×U B|J |

and d the vector of demands, d = (d1, . . . , d|J |)′. We can write

U B = {d ∈ R | −1 ≤ dj − dj

εdj

≤ 1, ∀j ∈ J },

i.e., the multi-dimensional unit box is given by the absolute normalized deviations
(Baron et al. 2011). We can now formulate the so-called robust counterpart of model
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(8.15)–(8.19). To do so, we start by considering an auxiliary variable v, which allows
us to rewrite the objective function of the problem as

Minimize v. (8.20)

The following constraint must now be included in the model:

∑

i∈I
fiyi +

∑

i∈I

∑

j∈J
cij dj xij ≤ v. (8.21)

By considering an augmented constraint for (8.21), namely

∑

i∈I
fiyi + max

d∈U B

⎧
⎨

⎩

∑

i∈I

∑

j∈J
cij dj xij

⎫
⎬

⎭
≤ v, (8.22)

the robust counterpart of (8.21) becomes

∑

i∈I
fiyi +

∑

i∈I

∑

j∈J
cij
[
dj (1 + ε)

]
xij ≤ v. (8.23)

The robust counterpart of (8.15)–(8.19) consists of minimizing (8.20) subject to
(8.16)–(8.19), and (8.23).

A drawback of box uncertainty is that it comprises the possibility of having all
the uncertain parameters taking their worst values simultaneously. This is often not
realistic.

Nikoofal and Sadjadi (2010) avoid the too conservative solutions often arising
from considering box uncertainty by imposing a maximum total scaled variation for
the uncertain parameters. The authors consider a p-median problem with interval
uncertainty associated with the distances (or travel times). In particular, for each pair
(i, j), i, j ∈ J , they assume that aij can take any value within an interval [aij , aij ]
previously defined. Additionally, the choices for the values aij are restricted by the
constraint

∑

i,j∈J, i<j

(aij − aij )/(aij − aij ) ≤ L,

where L denotes a maximum level imposed for the total scaled variation. This
type of constraint avoids the situation in which all or several parameters take their
extreme values simultaneously.

Another alternative for overcoming the above-mentioned drawback when using
box uncertainty is to consider ellipsoidal sets. Baron et al. (2011) apply this idea to
a facility location problem with a time-varying (uncertain) demand. The location of
the facilities and their operating capacity are ex ante decisions and should hold for
the entire planning horizon, during which the demands must be satisfied. The goal is
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to maximize the overall profit. We illustrate the process using the UFLP. Ellipsoidal
uncertainty can be embedded in a model by defining the following uncertainty set

U E = {d ∈ R|J | |
∑

j∈J

[
dj − dj

εdj

]2

≤ L2} =
{
d ∈ R|J | | (d − d)T �−1(d − d) ≤ L2

}
,

with d being the demand vector already presented, L being a parameter and �|J |×|J |
being a diagonal matrix whose generic entry is σj = εdj . Since � is a positive
definite matrix, the set U E defines an ellipsoid. As pointed out by Baron et al.
(2011), the set induced by L = 1 is the largest ellipsoid contained in U B while the
set induced by L = √|J | is the smallest ellipsoid containing U B .

Under ellipsoidal uncertainty the augmented constraint for (8.21) is similar
to (8.22) but replacing U B with U E . Denote Vj = ∑

i∈I cij xij and
V = (V1, . . . , V|J |)′. The augmented constraint can be written as

∑
i∈I fiyi +

maxd∈U E V ′d ≤ v.
The problem that consists of finding a value d ∈ U E maximizing V ′d can be

easily solved by standard optimization techniques. The optimal solution is V ′d +
L
√
V ′�V . This leads to the following robust counterpart of (8.21):

∑

i∈I
fiyi +

∑

j∈J
djVj + L

√∑

j∈J
σ 2
j V

2
j ≤ v, (8.24)

The non-linearity in the above expression is typically handled by introducing a

new variable, W =
√∑

j∈J σ 2
j V

2
j , which allows casting the problem as a conic

programming problem (see Baron et al. (2011) and the references therein for further
details).

In all problems discussed above, no probabilities were associated with the
scenarios. However, in some situations, a probability πω can be associated to
scenario ω ∈ �. A well-known robustness measure in this case, is the expected cost,
which is equivalent to the expected regret (Snyder 2006). Current et al. (1997) study
a facility location problem consisting of locating a set of p facilities here-and-now,
together with the possibility of locating an extra set of facilities (whose cardinality
is endogenously determined) during a planning horizon previously defined. The
authors compare the solutions obtained using the minmax regret and the expected
regret criteria.

When probabilities can be associated with the scenarios, an alternative robustness
measure proposed by Snyder and Daskin (2006) is “α-robustness”. The idea is to
look for a solution minimizing the expected cost/distance but such that the relative
regret in each scenario is less than or equal to a parameter α. In the case of the
p-median problem, assuming ex ante location decisions and ex post allocation of
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customers to the operating facilities, we obtain the following model:

Minimize
∑

ω∈�

∑

i∈J

∑

j∈J
πωdjωaijωxijω (8.25)

subject to (8.8)–(8.12)
∑

i∈J

∑

j∈J
djωaijωxijω ≤ (1 + α)v∗

ω, ω ∈ �. (8.26)

As pointed out by Snyder and Daskin (2006), this model generalizes the well-
known models proposed by Weaver and Church (1983) and Mirchandani et al.
(1985). Snyder and Daskin (2006) also apply these ideas to the UFLP. They analyze
the complexity of both problems (the α-robustness p-median problem and the α-
robustness UFLP) and develop Lagrangean relaxation based procedures in order to
compute lower and upper bounds for the problems. The final gaps are closed using
branch-and-bound procedures.

All the robustness measures discussed and illustrated above involve all scenarios.
When the number of scenarios is too high, the large-scale models obtained may
become intractable. In this case, restricting the scenario set may be unavoidable.
This was done by Daskin et al. (1997) who introduced the α-reliable minmax regret
p-median problem. The authors seek to minimize the maximum regret over a subset
of scenarios. This subset is referred to as the reliability set. It is built from the
original set in such a way that the total probability associated with its scenarios is
equal to at least some pre-specified value α. As pointed out by Baron et al. (2011),
this idea has a purpose similar to the use of ellipsoid uncertainty: the exclusion of
low-probability (typically extreme) scenarios. An extension of the above robustness
measure was introduced by Chen et al. (2006) who introduced the α-reliable mean-
excess regret. This measure weights the maximum regret over the reliability set
and the conditional expectation of the regret over the scenarios not included in the
reliability set.

A different robustness concept was introduced by Carrizosa and Nickel (2003)
within the context of continuous facility location, although the concept can be
extended to network or discrete problems. In that paper, nominal values are assumed
to have been estimated for the (uncertain) weights of a set of nodes. A maximum
value is preset for the weighted distance between a single facility to be located and
the demand nodes. The robustness of a location is then defined as the minimum
deviation of the vector of weights with respect to the nominal vector that turns that
location an infeasible solution. The goal of the problem is to find the most robust
location. This yields a non-linear fractional model that the authors tackle by existing
methods and by ad hoc procedures they propose in the paper.

One final aspect worth mentioning in this section regards the relevance of using
a model like the ones described above, instead of a “simplified” deterministic
model. When probabilities can be associated with the scenarios, we can measure this
relevance by using the expected value of perfect information (EVPI). This is a value



194 I. Correia and F. Saldanha-da-Gama

indicating how much the decision maker would be willing to pay to obtain perfect
information. For an expected cost minimization problem, the EVPI is obtained by
computing the difference between the weighted sum of the optimal values for all
scenarios (using the probabilities as weights) and the minimum expected cost. The
reader can refer to Kouvelis and Yu (1997) for further details.

8.4 Stochastic Facility Location Problems

A facility location problem under uncertainty can often be cast within a stochastic
programming modeling framework if we know the joint probability distribution
of the underlying random vector. In this case, we say that we are dealing with a
stochastic facility location problem.

We start by considering the UFLP (8.15)–(8.19). In practice, several parameters
in this model may be uncertain. This is the case of the distribution costs and of
the demands. Let us assume that uncertainty can be measured probabilistically. In
particular, denote by � the random vector containing all the stochastic parameters
(e.g., � = (

(cij )i∈I, j∈J , (dj )j∈J
)
). Furthermore, suppose that we know the joint

probability distribution of �. Assuming ex ante location decisions, the model to
be adopted will depend on the ex post decisions, namely on the moment in time
at which the allocation or distribution decisions are to be implemented. If we have
ex post allocation decisions, the following stochastic uncapacitated facility location
problem with recourse can be considered:

Minimize
∑

i∈I
fiyi + Q(y) (8.27)

subject to
∑

i∈I
yi ≥ 1 (8.28)

yi ∈ {0, 1}, i ∈ I, (8.29)

with Q(y) = E� [Q(y, ξ)], and Q(y, ξ) denoting the optimal value of the following
problem:

Minimize
∑

i∈I

∑

j∈J
cij dj xij (8.30)

subject to
∑

i∈I
xij = 1, j ∈ J (8.31)

xij ≤ yi, i ∈ I, j ∈ J (8.32)

xij ≥ 0, i ∈ I, j ∈ J. (8.33)
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Model (8.30)–(8.33) is defined for every realization ξ of �, i.e., for every realization
of costs and demands. Accordingly, the allocation decisions xij (i ∈ I , j ∈ J ),
which do not appear in the first-stage problem, can change according to the different
observations of the random vector. For this reason, they are referred to as recourse
decisions. Regarding the variables yi associated with the location of the facilities
they correspond to ex ante (first-stage) decisions and hence they must hold for
all possible realizations of the random variables. The expectation defining the
recourse function Q(y) implicitly conveys a neutral attitude of the decision maker
toward risk. Later in this section, we discuss another possible attitude and the
corresponding consequences from a modeling point of view. Finally, due to the
presence of Constraint (8.28) we are dealing with a problem that has relatively
complete recourse, i.e., for every first-stage feasible solution, yi (i ∈ I ) there is
at least one second-stage feasible solution, xij (i ∈ I , j ∈ J ) for every possible
realization of the random quantities.

If we have a finite set of scenarios, say �, we can go farther with the above
model since we can consider scenario-indexed parameters and variables. Denote by
cijω the unit cost for supplying customer j ∈ J from facility i ∈ I under scenario
ω ∈ �, and let djω be the demand of customer j ∈ J under scenario ω ∈ �. If
xijω is the fraction of the demand of customer j ∈ J satisfied from facility i ∈ I

under scenario ω ∈ �, then we can consider the following extensive form of the
deterministic equivalent:

Minimize
∑

i∈I
fiyi +

∑

ω∈�
πω

⎛

⎝
∑

i∈I

∑

j∈J
cijωdjωxijω

⎞

⎠ (8.34)

subject to (8.28), (8.29)
∑

i∈I
xijω = 1, j ∈ J, ω ∈ � (8.35)

xijω ≤ yi, i ∈ I, j ∈ J, ω ∈ � (8.36)

xijω ≥ 0, i ∈ I, j ∈ J, ω ∈ �. (8.37)

In the above model, the non-anticipativity principle2 is implicitly considered: each
first-stage decision variable has the same value for all scenarios.

So far, facilities are assumed to be uncapacitated. When this is not the case,
several adjustments are required. Denote by qi the capacity of a facility established
at i ∈ I . A model for the capacitated stochastic facility location problem is obtained

2A decision should depend only on the information available at the time it is made (see Rockafellar
and Wets 1991).
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if we replace (8.32) with

∑

j∈J
djxij ≤ qiyi, i ∈ I. (8.38)

With the inclusion of these constraints, it may happen that for some first-stage
feasible solution, no feasible completion exists in the second stage for one or
several realizations of the random vector, i.e., the problem no longer has relatively
complete recourse. This feasibility issue adds an extra difficulty to this stochastic
programming problem. Infeasibility in the second stage is often an indication of
an undesirable first-stage solution. A natural way of dealing with this issue is to
penalize the non-satisfied demand, which makes sense from a practical point of
view. In fact, such a penalty may correspond, for example, to a lost opportunity
cost or to outsourcing. Denote by ψj the demand of customer j ∈ J which is not
supplied from the open facilities and denote by μj the corresponding unit penalty
cost. Note that ψj is also a random variable since it depends on the occurring
realization of the random vector �. We can still consider the first stage problem
(8.27)–(8.29). However, the second stage problem must be rewritten as follows:

Minimize
∑

i∈I

∑

j∈J
cij dj xij +

∑

j∈J
μjψj (8.39)

subject to (8.33), (8.38)

∑

i∈I
xij + ψj

dj
= 1, j ∈ J (8.40)

ψj ≥ 0, j ∈ J. (8.41)

Again, if a finite set of scenarios exists, we can consider scenario-indexed recourse
variables and parameters, and we can write the deterministic equivalent in its
extensive form.

In the capacitated model just described, capacities are exogenous. Louveaux
(1986) considers a stochastic facility location problem with endogenous capacities.
In particular, capacities must be set in advance before uncertainty is disclosed—
they correspond to ex ante decisions. A unit cost gi is assumed for the capacity
to be installed at location i ∈ I . Additionally, the author considers the existence
of variable production costs at the facilities as well as revenues associated with
demand satisfaction. Denote by rj the unit revenue obtained from customer j ∈ J .
Additionally, assume that cij (i ∈ I , j ∈ J ) includes the production costs. A new
decision variable zi (i ∈ I ) must be introduced, representing the capacity to be
installed at location i ∈ I . With the inclusion of revenues, it is no longer necessary
to consider constraint (8.28). Furthermore, it may not be rewarding to satisfy all the
demand; the trade-off between revenues and costs will determine the best service
level for each customer. The capacitated model formulated above, can be easily
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adapted to the new conditions, leading to the model proposed by Louveaux (1986):

Minimize
∑

i∈I
fiyi +

∑

i∈I
gizi + Q(y, z) (8.42)

subject to (8.29)

zi ≥ 0, i ∈ I, (8.43)

with Q(y, z) = E� [Q(y, z, ξ)], and Q(y, z, ξ) denoting the optimal value of the
following problem:

Minimize
∑

i∈I

∑

j∈J

(
cij − rj

)
djxij (8.44)

subject to
∑

i∈I
xij ≤ 1, j ∈ J (8.45)

(8.32), (8.33)
∑

j∈J
djxij ≤ zi , i ∈ I. (8.46)

Considering the above problem, Louveaux and Peeters (1992) assume that stochas-
ticity is captured by a finite number of scenarios and propose a dual-based procedure
for tackling the extensive form of the deterministic equivalent.

A different type of model emerges when the distribution decisions (represented
by x-variables) become first-stage decisions. In this case, penalties are paid in the
second stage for surplus or shortage inventory. In addition to the notation already
presented, we denote by φj the inventory surplus at customer j ∈ J and by λj the
corresponding unit cost. Assuming deterministic distribution costs (they are now
associated with an ex ante decision), we can formulate the stochastic facility location
problem as follows:

Minimize
∑

i∈I
fiyi +

∑

i∈I

∑

j∈J
cij xij + Q(x) (8.47)

subject to (8.29), (8.32), (8.33),

with Q(x) = E� [Q(x, ξ)], and Q(x, ξ) denoting the optimal value of the following
problem:

Minimize
∑

j∈J
λjφj +

∑

j∈J
μjψj (8.48)

subject to ψj − φj = dj

(

1 −
∑

i∈I
xij

)

, j ∈ J (8.49)

ψj , φj ≥ 0, j ∈ J. (8.50)
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Capacities can be easily included in the above model leading to the so-called
stochastic transportation-location problem which has been investigated by several
authors (e.g., França and Luna 1982 and Holmberg and Tuy 1999).

So far in this section, we have assumed that the allocation and distribution
decisions are made simultaneously (the latter determining the former), either after or
before uncertainty is disclosed. Nevertheless, in some problems these decisions are
made separately. Let us assume that the allocation of the customers to the facilities
is a here-and-now decision but the exact quantities to ship from the facilities to the
customers are to be decided after uncertainty is revealed. This situation is motivated,
for instance, by logistics applications, when a contract has to be previously signed,
determining a priori the distribution channels but leaving the shipping quantities
dependent on the observed values of the stochastic parameters. The same type of
situation occurs in service-providing companies that need to segment the customers
a priori by allocating each customer to a server or facility. In this case, we need to
explicitly consider allocation decision variables. In particular, we use the binary
variable wij equal to 1 if and only if customer j ∈ J is allocated to facility
i ∈ I . The single-allocation version of the problem was introduced by Laporte
et al. (1994), who proposed the following optimization model:

Minimize
∑

i∈I
fiyi +

∑

i∈I

∑

j∈J
bijwij + Q(w) (8.51)

subject to wij ≤ yi, i ∈ I, j ∈ J (8.52)
∑

i∈I
wij ≤ 1, j ∈ J (8.53)

yi, wij ∈ {0, 1}, i ∈ I, j ∈ J, (8.54)

with Q(w) = E� [Q(w, ξ)], and Q(w, ξ) denoting the optimal value of the
following problem:

Minimize
∑

i∈I

∑

j∈J

(
cij − rj

)
djxij (8.55)

subject to xij ≤ wij , i ∈ I, j ∈ J (8.56)
∑

j∈J
djxij ≤ qi, i ∈ I (8.57)

xij ≥ 0, i ∈ I, j ∈ J. (8.58)

In the above model, bij is a fixed cost for allocating customer j ∈ J to facility
i ∈ I . The other notation was already introduced before. Note that in this problem,
facilities are capacitated. Moreover, a service level of 100% is not imposed—a
customer may not be served by the system (constraints (8.53)). Laporte et al. (1994)
consider a finite set of scenarios for capturing the stochasticity and solved the
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extensive form of the deterministic equivalent using the integer L-shaped method
previously proposed by Laporte and Louveaux (1993).

In line with the idea of allocating the customers before uncertainty is disclosed,
Albareda-Sambola et al. (2011) consider Bernoulli demands, which represent a
possible request for some service. This is an example of a problem in which the
presence or absence of customers is itself a source of uncertainty. The problem,
which we revisit next, is important to show that deriving a compact model for the
deterministic equivalent problem is not always straightforward (or even possible) as
it could seem at a first glance when considering the contents presented so far in this
section.

In the problem studied by Albareda-Sambola et al. (2011), there is a limited
capacity for the facilities in terms of the number of customers that can be served.
In particular, for each facility i ∈ I , there is a maximum number qi of customers
who can be served from the facility. Due to the uncertainty in the demand, it makes
sense to allocate a priori to some facility more customers than the service capacity.
However, depending on how uncertainty is revealed, it may turn out that a facility
has a number of requests for service above its capacity. In this case, outsourcing is
considered and the corresponding costs is paid. An important assumption in many
logistics systems that the authors also consider is that, for each facility i ∈ I ,
there should be a minimum number �i of customers allocated to it to justify its
establishment. The problem can be conceptually formulated as follows:

Minimize
∑

i∈I
fiyi + E�

[
Service cost + Outsourcing cost

]
(8.59)

subject to
∑

i∈I
xij = 1, j ∈ J (8.60)

xij ≤ yi, i ∈ I, j ∈ J (8.61)

�iyi ≤
∑

j∈J
xij , i ∈ I (8.62)

yi, xij ∈ {0, 1}, i ∈ I, j ∈ J. (8.63)

Denote by ξj the demand of customer j ∈ J , which is assumed to be a random
variable following a Bernoulli distribution with parameter pj . For each first-stage
solution, denote by zi the number of customers assigned to facility i ∈ I (i.e.,
zi = ∑

j∈J xij ) and denote by ηi the random variable representing the number
of customers who request the service (refereed to as demand customers) among
those assigned to facility i ∈ I (i.e., ηi = ∑

j∈J ξj xij ). Note that the probability
distribution of ηi is quite involved since it depends on the actual values of xij (j ∈
J ). Denote by Px(ηi = s) the probability that ηi is equal to s (s = 0, . . . , zi ).

Albareda-Sambola et al. (2011), investigate two possible outsourcing actions.
We focus on the so-called customer outsourcing. In this case, when the number
of customers allocated to some facility i ∈ I requesting the service (demand
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customers) exceeds qi , ηi −qi customers have to be served directly from an external
source. A FIFO policy is assumed for deciding which customers to serve from
the facility and which ones to outsource. The cost for supplying each outsourced
customer is denoted by gi and depends on the facility to which the customer was
originally assigned. Denote by Pi (s) the conditional probability of serving a demand
customer assigned to facility i ∈ I given that the total number of demand customers
assigned to the facility is s (i.e., ηi = s). We have Pi (s) = (1/s) × min{qi, s}.

The recourse function can be written as the sum of the expected service cost plus
the expected outsourcing cost. These terms can be computed as follows:

Eξ (service cost) =
∑

i∈I

zi∑

s=0

Px(ηi = s) × E(Service cost|ηi = s)

=
∑

i∈I

zi∑

s=0

⎡

⎣Px(ηi = s)
∑

j∈J
P(ξj = 1|ηi = s)Pi (s)cij xij

⎤

⎦ ,

(8.64)

Eξ (Outsourcing cost) =
∑

i∈I
Px(ηi = s) × Eξ (outsourcing cost|ηi = s)

=
∑

i∈I
gi

⎛

⎝
zi∑

s=qi+1

Px(ηi = s)(s − qi)

⎞

⎠ . (8.65)

A close look at the above expressions reveals that even for tiny instances of the
problem they are not tractable. In fact, the number of scenarios is huge even
for a small number of customers because a scenario is defined not only by the
set of customers requesting the service but also by the order the requests arrive.
Nevertheless, for the homogeneous case, i.e., pj = p, j ∈ J , it is possible to go
farther and derive a compact formulation for the deterministic equivalent, as we
show next.

When all the customers have the same probability of requesting the service, then
ηi follows a binomial distribution with parameters zi and p. Thus, Px(ηi = s) =(
zi
s

)
ps(1 − p)zi−s , s = 0, . . . , zi . We denote by ζtps the probability that a binomial

random variable with parameters t and p takes the value s. In the homogeneous
case, it is straightforward to show that P(ξj = 1|ηi = s) = s/t and consequently
P(ξj = 1|ηi = s)×Pi (s) = min{qi, s}/t , which does not depend on x. Accordingly,
the expected service cost (8.64) can be written as

∑

i∈I

∑

j∈J

(

cij xij

zi∑

s=0

ζzips
min{qi, s}

t

)

.

A deterministic equivalent can now be obtained by discretizing the location and
allocation variables accounting for the number of customers allocated to a facility.
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In particular, define yt
i as a binary variable equal to 1 if a facility is located at i ∈ I

and t customers in total are allocated to it (t = �i, . . . , |J |) and 0 otherwise. Also
define xt

ij as a binary variable equal to 1 if and only if customer j ∈ J is allocated
to facility i ∈ I which has t customers allocated to it (t = �i , . . . , |J |). Using the
new variables, we can formulate a deterministic equivalent problem:

Minimize
∑

i∈I

|J |∑

t=�i

yt
i gi

⎡

⎣
t∑

s=qi+1

ζtps(s − qi)

⎤

⎦

+
∑

i∈I

∑

j∈J

⎛

⎝cij

|J |∑

t=�i

xt
ij

[
t∑

s=0

ζtps
min{qi, s}

t

]⎞

⎠ (8.66)

subject to
∑

i∈I

|J |∑

t=�i

xt
ij = 1, j ∈ J (8.67)

∑

j∈J
xt
ij = tyt

i , i ∈ I (8.68)

|J |∑

t=�i

yt
i ≤ 1, i ∈ I (8.69)

yt
i ∈ {0, 1}, i ∈ I, t = �i, . . . , |J | (8.70)

xt
ij ∈ {0, 1}, i ∈ I, j ∈ J, t = �i, . . . , |J |. (8.71)

Albareda-Sambola et al. (2011) show that using a general solver, instances of
the problem with a realistic size can be solved within an acceptable CPU time
using this model. The authors also explore the advantages of the homogeneous
case for the alternative outsourcing action they consider. This work would be later
extended in two different ways. Bieniek (2015) showed that tractable expressions
can be obtained for the recourse functions when other probability distributions are
considered (not necessarily discrete) as long as the assumption of homogeneity
among customers is kept. Albareda-Sambola et al. (2017) proposed a heuristic
algorithm for tackling the general problem (heterogeneous demand probabilities).
The procedure consists of two phases. First, a GRASP algorithm is used for building
two pools of solutions—one based upon quality and another upon diversity. Second,
a path relinking procedure is devised for connecting solutions from both pools
hoping that better feasible solutions can be found during the process.

In all of the above models, the recourse function is the expected value of the
second-stage problem. As mentioned before, this conveys a neutral attitude of the
decision maker towards risk. Location decisions are often strategic and involve
significant investments. Accordingly, a risk-averse attitude towards risk cannot be
disregarded as a possibility to be considered. One way of capturing such attitude
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consists of applying a Markowicz type of objective in which the recourse function
is expanded to account for variance. Taking, as an example, model (8.27)–(8.33)
this consists of defining

Q(y) = E� [Q(y, ξ)] − λVar� [Q(y, ξ)] . (8.72)

Such a modeling framework in facility location is far from new (see Jucker and
Carlson 1976). Nevertheless, this type of model has a clear disadvantage: it often
results in a non-linear large-scale mixed-integer model. Different possibilities for
overcoming this difficulty are discussed by Louveaux (1993).

Stochastic programming approaches for discrete facility location problems have
attracted much attention in the recent years. Some papers not mentioned so far
include those by Ravi and Sinha (2004), Lin (2009), Wang et al. (2011), Kiya and
Davoudpour (2012), and Álvarez-Miranda et al. (2015).

Hybridizing between stochastic programming with robust optimization has been
also considered in the context of facility location. Alumur et al. (2012) explored
this possibility by using a robustness measure embedded within a stochastic
programming modeling framework. The authors apply the idea to a hub location
problem. Uncertainty is associated with two sets of parameters. In both cases, it
is captured by a finite set of scenarios. For one set of parameters, probabilistic
information is assumed to be known, which is not the case for the other set. The
authors propose a so-called robust-stochastic model: for each scenario associated
with the parameters that have no probabilistic information associated to them, a
stochastic program is formulated, capturing the uncertainty associated with the
other set of parameters (those for which probabilistic information exists). A minmax
regret formulation is then proposed for the overall problem.

Another work combining the flavor of two-stage stochastic programming with
robust optimization is due to Marques and Dias (2018) who study a multi-period
facility location problem. Uncertainty is associated with fixed and assignment
costs as well as to the customers that exist in each period. The authors seek the
minimization of the total expected cost but impose a constraint on the maximum
regret allowed in each scenario.

In the context of logistics systems with particular emphasis to logistics network
design, we can also observe an increasing attention paid to stochastic facility
location problems (see Chap. 16 for further details). We can refer, among others,
to Aghezzaf (2005), Listeş and Dekker (2005), Mo and Harrison (2005), Romauch
and Hartl (2005), Pan and Nagi (2010), Fonseca et al. (2010), and Nickel et al.
(2012).

One work worth pointing out is that of Hinojosa et al. (2014) who studied a
stochastic facility location problem with location decisions made at an operational
level, i.e., location decisions are ex post decisions. The multi-product problem
considered in that paper arises in the context of logistics systems. Like in some of the
above problems, the available distribution channels correspond to a decision made
before demand is known and result from some contract or option. Furthermore,
due to the limited capacity at the facilities, the distribution channels contracted in
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advance may turn out to be insufficient for covering the demand that occurs. In
this case, a penalty is incurred (corresponding, e.g., to a “last minute” and thus
more expensive contract, to an outsourcing action, or simply to an opportunity loss
cost). The location decisions correspond to the “activation” of existing equipments
or facilities from which the commodities will be shipped to the customers. Accord-
ingly, this becomes a decision that can be made only after demand is revealed. The
authors formulate the extensive form of the deterministic equivalent and solve it
for instances with a realistic size using a general solver. The single-commodity
version of this problem would be investigated by Fernández et al. (2019) from the
perspective of a risk-averse decision maker. In particular, the conditional value at
risk is to be minimized.

As in the preceding section, when using a stochastic programming model, it is
important to evaluate its relevance compared to a more simplified deterministic one.
Although no robust measure exists for asserting such relevance, two measures are
often used to provide an indication of such relevance: the EVPI and the value of the
stochastic solution (VSS). The EVPI is computed as described in Sect. 8.3. To obtain
it, we have to solve the distributional problem (i.e., to find the optimal value of
the single-scenario problem for every scenario). In many cases this is cumbersome,
namely when the number of scenarios is large or even infinite. The VSS emerges
as an alternative and can be obtained in two steps: (1) the expected value problem
is solved. This is the deterministic problem obtained when the random variables
are replaced by their expectation; (2) the stochastic problem is considered and the
difference between its optimal value and the value of the solution obtained in (1)
is computed. This difference gives the VSS (the reader should refer to Birge and
Louveaux 2011, for further details).

8.5 Chance-Constrained Facility Location Problems

One important class of optimization problems under uncertainty includes chance-
constrained problems. The idea is that one or several constraints of the problem are
not required to always hold. Instead, the decision maker is satisfied if they hold with
some given probability. This type of constraints may be of relevance when dealing
with reliability issues.

In the particular case of a facility location problem, if demand is uncertain but
still the decision maker wants to plan for satisfying all the demand whatever it
may turn out to be, the resulting solution may call for an operational capacity
much above the demand level that turns out being observed. In such situation, one
alternative is to plan for ensuring a certain service level, i.e., ensuring that with
some pre-specified probability, the overall demand does not exceed the capacity of
the operating facilities.

In order to exemplify this paradigm, we consider the classical single-source
capacitated facility location problem. Assume that fixed costs are associated with
the location of the facilities and also with the allocation of customers to the facilities.
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Additionally, assume that facility i ∈ I has capacity qi , and that demands dj
(j ∈ J ) are stochastic. We can formulate a capacitated facility location problem
with a service level constraint as follows:

Minimize
∑

i∈I
fiyi +

∑

i∈I

∑

j∈J
cij xij (8.73)

subject to (8.16)–(8.18)

P

⎡

⎣
∑

j∈J
djxij ≤ qiyi

⎤

⎦ ≥ αi, i ∈ I (8.74)

xij ∈ {0, 1}, i ∈ I, j ∈ J. (8.75)

For every i ∈ I , the corresponding chance constraint sets qiyi equal to the αi -
quantile of the distribution of the demand assigned to facility i. In other words,
the constraint stipulates that the probability of observing a demand assigned to the
facility not exceeding the capacity of the facility is at least αi . Typically, high values
are assumed for αi (e.g., 0.90 or 0.95).

One desirable feature of such a model is the possibility of finding a deterministic
equivalent formulation, i.e., replacing the probabilistic constraints by deterministic
(equivalent) ones. Unfortunately, this is not always straightforward. One successful
example for the problem we are considering is due to Lin (2009). The author
assumes independent demands following a Poisson or a Gaussian distribution. For
illustrative purposes, we detail the former case.

If the demands dj are independent and follow a Poisson distribution P(λj ),
j ∈ J , then the total demand assigned to facility i ∈ I , i.e.,

∑
j∈J djxij follows

a Poisson distribution P(μi) with μi = ∑
j∈J λj xij . Accordingly, (8.74) becomes

equivalent to

qiyi∑

�=0

e−μi
μ�
i

�! ≥ αi, i ∈ I (8.76)

which, in turn, has a deterministic equivalent of the form

∑

j∈J
λj xij ≤ νiyi, i ∈ I. (8.77)

In this model, νi = E [ϒ], where ϒ is a random variable following a Poisson
distribution with an expectation equal to the largest value ensuring that P(ϒ ≤ qi) ≥
αi . As detailed by Lin (2009), the value νi can easily be obtained by a search method
in which the mean of ϒ is changed until P(ϒ ≤ qi) is approximately equal to αi

(i ∈ I ). After replacing the probabilistic constraints (8.74) with (8.77) the resulting
problem becomes a single-source capacitated facility location problem which can
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be tackled by any appropriate method (see Chap. 4). Lin (2009) also explore the
possibility of having independent demands following a Gaussian distribution. In
this case, the deterministic equivalent of the probabilistic constraints yields a non-
convex feasible region. The author proposes a relaxation for the problem, which is
used as part of a heuristic.

A well-known facility location problem with chance constraints is the covering-
location problem proposed by ReVelle and Hogan (1989). The authors assume that
a server may be busy when a customer requests to be served. Let us denote by π

the probability that this occurs. In a discrete covering-location problem, we have
a set of potential locations for the facilities (see Chap. 5). A customer is said to
be covered if a facility is established within a maximum distance or travel time
specified in advance. Accordingly, for each customer, we can find the subset of
potential locations for the facilities which cover the customer. The goal is to cover all
the demand minimizing the number of facilities installed. The “classical” covering
constraints are

∑

i∈Ij
yi ≥ 1, j ∈ J, (8.78)

where Ij denotes the set of locations covering customer j ∈ J . The probabilistic
version of these constraints is the following:

P
[
At least one location is available for serving customer j

] ≥ α, j ∈ J. (8.79)

These constraints have as a deterministic equivalent,

∑

i∈Ij
yi ≥ β, (8.80)

with β = �ln(1 − α)/ lnπ�. In fact, the probability that no location among those
covering customer j ∈ J is available to serve the customer immediately is given by

π

∑
i∈Ij yi . Therefore, the probability that at least one location among those covering

customer j ∈ J can serve it immediately is given by 1 − π

∑
i∈Ij yi which, together

with (8.79) leads to the deterministic equivalent just presented.
For other applications of facility location problems with chance constraints we

refer the reader to Kınay et al. (2018, 2019) as well as to the references therein.

8.6 Challenges and Further Readings

Despite all the work we can find focusing on facility location problems under
uncertainty, many challenges still exist. In this section, we provide the reader with
some notes on relevant issues not discussed in the previous pages, and we give
suggestions for further readings.
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8.6.1 Multi-Stage Stochastic Programming Models

In most of the stochastic facility location problems discussed above, a single
moment in time for uncertainty to be disclosed was assumed. In many situations,
this is not the case. Instead, we may observe uncertainty being progressively
revealed in a succession of points in time. When this is the case, the two-stage
stochastic programming modeling framework discussed in Sect. 8.4 is no longer
appropriate, and a multi-stage setting is required. Nickel et al. (2012) address one
such case by considering a multi-period facility location problem with service
level and investment decisions. The demand as well as the rates of return for the
investments are uncertain. Uncertainty is captured via a scenario tree. In addition to
minimizing the overall cost, the problem seeks to minimize the downside risk.3

The deterministic equivalent problem is formulated in its extensive form and
solved using a general solver. Other works addressing multi-stage stochastic facility
location problems include that of Hernández et al. (2012), who consider a multi-
period problem with stochastic demands. The problem consists of (1) determining
the locations and dimensions of a preset number of new jails in Chile; (2) deciding
when and where to expand the existing capacity. The goal is to minimize the
total expected costs of the system. A large-scale model is obtained and solved
approximately using a heuristic that combines branch-and-fix coordination (Alonso-
Ayuso et al. 2003) and branch-and-bound. Albareda-Sambola et al. (2013), propose
a so-called fix-and-relax coordination approximation procedure for tackling a multi-
period facility location problem with uncertainty in the costs and in the customers’
requests for service. This work would be complemented by Escudero et al. (2018),
who developed two matheuristics for the problem. One is based upon cluster
Lagrangean decomposition (Escudero et al. 2016) whereas the other is based upon
a so-called sequential partial linear relaxation which is a scheme that optimizes a
decreasing stage-based relaxation of the integrality constraints of the variables for
obtaining tighter lower bounds to the original problem.

Taking the previous works into account, one might think that a stochastic
multi-period facility location problem necessarily leads to a multi-stage stochastic
programming problem. However, this is not true. In some cases, the strategic
multi-period decisions can be seen as first-stage decisions in a two-stage stochastic
programming modeling framework. For instance, we may decide here-and-now how
the location of the facilities will occur during the entire planning horizon. In the
second stage problem, the operational decisions will be made, which can adapt to
the different realizations of the uncertainty. Works exploring this possibility in the
context of facility location include those by Ahmed and Garcia (2004), Aghezzaf
(2005), Correia et al. (2018), and Marques and Dias (2018).

3The downside risk is a measure of how much the return on investment is below a target initially
imposed.
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8.6.2 Algorithms

Most facility location problems under uncertainty are NP-hard since they generalize
well-known NP-hard problems. In particular, this is true for the discrete problems
that have been discussed in this chapter. In these cases, either the size of an
instance to be solved is such that the resulting model is manageable by a general
solver, or one must resort to techniques from combinatorial optimization and integer
programming, such as heuristics and relaxation-based procedures.

Regarding robust facility location problems, the minmax structure often con-
sidered makes them harder to solve than the corresponding minisum deterministic
problems. The reader can refer to Snyder (2006) for a deeper discussion of this
issue. That paper presents a sketch of the procedure typically followed for tackling
minmax regret problems. Although some general procedures have been proposed
for such problems (e.g., Mausser and Laguna 1998, for minmax regret linear
problems with interval uncertainty) in most cases, tailored procedures, exact or
approximate, must be developed to efficiently tackle the problems. Analytic results
and polynomial time algorithms have also been proposed but only for problems with
an underlying structure, such as a network.

As far as stochastic discrete facility location problems are concerned, again,
they are often difficult to solve to optimality. Even when the number of scenarios
is finite and a compact model can be derived for the extensive form of the
deterministic equivalent, realistic instances often induce a large-scale mixed-integer
linear programming problem not manageable by a general solver. In this case,
specific algorithms, exact or heuristic, have to be developed for tackling the
problems. Laporte et al. (1994) make use of the integer L-shaped method proposed
by Laporte and Louveaux (1993) for solving a two-stage stochastic facility location
problem with first-stage binary variables. Alonso-Ayuso et al. (2003) introduce the
so-called branch-and-fix coordination scheme for tackling a problem in the context
of logistics systems. The proposed technique can be used for solving general two-
stage stochastic programming problems with binary first-stage variables and both
binary and continuous variables in the second stage.

A general procedure for multi-stage stochastic mixed-integer linear program-
ming problems was introduced by Escudero et al. (2009, 2010). In those papers,
the branch-and-fix coordination scheme proposed by Alonso-Ayuso et al. (2003)
was extended to solve multi-stage problems with integer variables. As mentioned
above, Hernández et al. (2012) embed such approach within a heuristic procedure.

When exact algorithms fail to solve the problems, we must resort to approximate
procedures. One particular difficulty in stochastic programming arises when the
number of scenarios is too large or even infinite. In this case, one possibility is
to use a sampling scheme. Sample average approximation (SAA) was introduced
by Kleywegt et al. (2001) and it is one such example which has become quite
popular. Applications of this procedure to stochastic facility location were proposed
by Kiya and Davoudpour (2012), Romauch and Hartl (2005) and Santoso et al.
(2005). Sampling schemes have also been proposed for general chance-constrained
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problems by Luedtke and Ahmed (2008) and Pagnoncelli et al. (2009). The
application to facility location problems is a research direction worth exploring.

Armas et al. (2017) apply a so-called simheuristic to the stochastic UFLP.
Uncertainty is assumed for the transportation costs. The algorithm integrates
simulation and a metaheuristic. In particular, the authors integrate an iterative local
search with Monte Carlo simulation (MCS). This type of procedure may be quite
promising for tackling more complex stochastic facility location problems.

Other algorithms for stochastic programming problems include the generation of
cutting planes introduced by Guan et al. (2009) for multi-stage problems, and the
dual decomposition based algorithms developed by Carrøe and Schultz (1999) and
Escudero et al. (2012). To the best of our knowledge, the first type of algorithm
was never applied to stochastic facility location. However, there are several papers
proposing dual decomposition based algorithms for problems that include location
decisions, namely those by Schütz et al. (2008, 2009). The latter work combines dual
decomposition with SAA. In this type of method, the non-anticipativity constraints
are explicitly considered in the model and dualized, which allows a scenario-
decoupling for the relaxed problem.

8.6.3 Scenario Generation

In this chapter it has often been assumed that uncertainty can be represented by a set
of scenarios. In particular, it has been assumed that each scenario fully determines
all the uncertain parameters. In practice, defining the scenarios is itself a relevant
problem.

In some situations, scenarios are associated with driving forces (e.g., the political
conditions in a specific region, economic trends or some technological develop-
ments) which, in turn, influence the input of the model that supports the decision
making process. In this case, it is up to the decision maker to understand these
driving forces and the way they influence the input of the model. This understanding
leads to a complete definition of the scenarios. In some cases, experts may be
inquired in terms of plausible scenarios as well as their occurrence probabilities.
This may call for the use of subjective probabilities by means of eliciting probability
distributions (O’Hagan 1998; Casement and Kahle 2017; Oakley 2017).

In other situations, namely in the context of stochastic programming, scenario
generation may be important either to instantiate large deterministic equivalent
models or to restrict the set of scenarios in a sampling scheme used within a solution
procedure. The reader should refer to Dupačová et al. (2003), Høyland and Wallace
(2001), Di Domenica et al. (2007) and the references therein for further details.

In the case of facility location problems, a short discussion on scenario generation
is presented by Kouvelis and Yu (1997) who consider a network with uncertain
node weights. Assuming a small set of possible values for the demand of each node,
one possibility is to take as a scenario each element of the Cartesian product of
the sets for all nodes. Nevertheless, this is strongly discouraged since the number
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of scenarios easily leads to intractable models. Instead, the authors highlight that
in many location problems the driving forces mentioned above are the key element
inducing uncertainty and thus should be identified and taken into account. Typically,
these forces induce a high correlation between different parameters. If a small
number of such factors is identified, the number of scenarios associated with them
should be manageable.

8.6.4 Other Notes

One important research topic in facility location under uncertainty regards location-
inventory problems. These are problems in which location decisions are combined
with inventory management: uncertainty can hardly be disregarded in a realistic
modeling framework. This type of problems, which was introduced by Daskin et
al. (2002) and extended by Snyder et al. (2007), is of great relevance in complex
systems such as those arising in logistics. The reader should refer to Chap. 16 for
further details.

Another area with great potential is stochastic location-routing. One such
problem was solved by Albareda-Sambola et al. (2007). This is a complex and
challenging topic.

Finally, this chapter could not come to an end without a brief reference to
continuous and network facility location problems under uncertainty. We did not
focus on this type of problems although some significant work has been done and
much progress has been achieved. The reader can refer to Snyder (2006) for a review
of the fundamental literature addressing these problems. Some recent works on
network facility location under uncertainty include those by Conde (2007), Berman
and Drezner (2008), Berman and Wang (2010), Sonmez and Lim (2012), Lim and
Sonmez (2013), López-de-los-Mozos et al. (2013), Lu (2013), and Lu and Sheu
(2013). Recent references on continuous problems include Blanquero et al. (2011)
and Drezner et al. (2012).

8.7 Conclusions

We have covered several essential aspects related with discrete facility location
under uncertainty. Despite the extensive work reported, the existing literature can
still be considered scarce in comparison with the literature devoted to deterministic
models. However the relevance of facility location in areas where uncertainty
if often unavoidable, such as logistics, routing and transportation, has led to an
increased interest in the topic addressed in this chapter. In order to better support
many decision making processes, it is important to embed uncertainty in the
optimization models and, by doing so, to obtain solutions which can anticipate it.
This keeps being a challenging and promising research field.
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Chapter 9
Location Problems with Multiple Criteria

S. Nickel, J. Puerto, and A. M. Rodríguez-Chía

Abstract This chapter analyzes multicriteria continuous, network, and discrete
location problems. In the continuous framework, we provide a complete description
of the set of weak Pareto, Pareto, and strict Pareto locations for a general Q-criteria
location problem based on the characterization of three criteria problems. In the
network case, the set of Pareto locations is characterized for general networks as
well as for tree networks using the concavity and convexity properties of the distance
function on the edges. In the discrete setting, the entire set of Pareto locations
is characterized using rational generating functions of integer points in polytopes.
Moreover, we describe algorithms to obtain the solutions sets (the different Pareto
locations) using the above characterizations. We also include a detailed complexity
analysis. A number of references has been cited throughout the chapter to avoid the
inclusion of unnecessary technical details and also to be useful for a deeper analysis.

9.1 Introduction

Very often, locational decisions involve the investment of a significant amount of
money. It will be therefore very probable that a locational decision is made by a
group of Q decision makers (DM). In turn, it is very likely that each DM will choose
a median function to evaluate the quality of a new location, but the weights assigned
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to clients may differ a lot. The same scenario occurs if one location for different
types of goods has to be found.

Multicriteria analysis of location problems has received considerable attention
within the scope of continuous, network, and discrete models in the last years. For
an overview of general methods as well as for a more bibliographic overview of
the related location literature the reader is referred to Ehrgott (2005) and Nickel
et al. (2005a). Presently, there are several problems that are accepted as classical
ones: the point-objective problem (see, e.g., Wendell and Hurter 1973, Hansen et al.
1980, Carrizosa et al. 1993), the continuous multicriteria min-sum facility location
problem (see, e.g., Hamacher and Nickel 1996, Puerto and Fernández 1999), the
network multicriteria median location problem (see, for instance, Hamacher et al.
1999, Wendell et al. 1977) and the multicriteria discrete location problem (see, e.g.,
Fernández and Puerto 2003), among others.

In contrast to problems with only one objective, we do not have a natural ordering
in higher dimensional objective spaces. Therefore, in multicriteria optimization one
has to decide which concept of “optimality” to choose.

The goal in a multicriteria location problem is to optimize simultaneously a set
of objective functions (f 1, . . . , f Q). Therefore, the formulation of the problem is:

v − min
x∈X⊆Rd

(f 1(x), . . . , f Q(x)), (9.1)

where v − min stands for vectorial optimization. Observe that we get points in a
Q-dimensional objective space where we no longer have the canonical order of R.
Accordingly, for this type of problems, different concepts of solution have been
proposed in the literature (the reader is referred to Ehrgott (2005) as a general
reference in multicriteria optimization). A point x ∈ Rd is called a Pareto location
(or Pareto-optimal) if there exists no y ∈ Rd such that f q(y) ≤ f q(x) ∀q ∈
Q := {1, . . . ,Q} and f p(y) < f p(x) for some p ∈ Q. We denote the set of
Pareto solutions by X ∗

Par

(
f 1, . . . , f Q

)
or simply by X ∗

Par if this is possible without
causing confusion. If f q(x) ≤ f q(x ′) ∀ q ∈ Q and ∃q ∈ Q : f q(x) < f q(x ′)
we say that x dominates x ′ in the decision space and f (x) dominates f (x ′) in the
objective space.

Alternative solution concepts are weak Pareto-optimality and strict Pareto-opti-
mality. A point x ∈ Rd is called a weak Pareto location (or weakly Pareto-optimal)
if there exists no y ∈ Rd , such that f q(y) < f q(x) ∀ q ∈ Q . We denote the
set of weak Pareto solutions by X ∗

w−Par

(
f 1, . . . , f Q

)
or simply by X ∗

w−Par if this
is possible without causing confusion. A point x ∈ Rd is called a strict Pareto
location (or strictly Pareto-optimal) if there exists no y ∈ Rd , y 
= x, such that
f q(y) ≤ f q(x) ∀ q ∈ Q . Analogously, the set of strict Pareto solutions is denoted
by X ∗

s−Par

(
f 1, . . . , f Q

)
, or simply by X ∗

s−Par if this is possible without causing
confusion. Note that X ∗

s−Par ⊆ X ∗
Par ⊆ X ∗

w−Par and in case we are considering
strictly convex functions these three sets coincide. Finally, we recall that Warburton
(1983) proved the connectedness of the set X ∗

Par when the functions are convex.
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In our proofs we use the concept of level sets. For a function f : Rd → R the
level set for a value ρ ∈ R is given by L≤(f, ρ) := {x ∈ Rd : f (x) ≤ ρ} (the
strict level set is L<(f, ρ) := {x ∈ Rd : f (x) < ρ}) and the level curve for a value
ρ ∈ R is given by L=(f, ρ) := {x ∈ Rd : f (x) = ρ}. For a function f i(·) we use
the notation

X ∗(f i) := arg min
x∈Rd

f i(x).

For two points x and y we denote the segment defined by x and y as xy.
In this chapter we focus on some fundamental results in the continuous,

network and discrete cases. We will describe in some detail a complete geometric
characterization for the planar 1-facility case, an optimal time algorithm for the
1-facility network problem as well as the computation of the entire set of Pareto-
optimal solutions of the discrete multicriteria p-median problem. Although we are
concentrating on the median case we will give some outlook to extensions.

9.2 1-Facility Planar/Continuous Location Problems

In this section we study Problem (9.1) where f 1(·), . . . , f Q(·) are convex, inf-
compact functions, defined in R2, which represent different criteria or scenarios.
Recall that a real function f (·) is said to be inf-compact if its lower level sets
{x : f (x) ≤ ρ} are compact for any ρ ∈ R. The next result states a useful
characterization of the different solution sets defined in the previous section using
level sets and level curves which will be used later.

Theorem 9.1 The following characterizations hold :

x ∈ X ∗
w−Par

(
f 1, . . . , f Q

)
⇔

Q⋂

q=1

L<(f
q, f q(x)) = ∅ (9.2)

x ∈ X ∗
Par

(
f 1, . . . , f Q

)
⇔

Q⋂

q=1

L≤(f q, f q(x)) =
Q⋂

q=1

L=(f q, f q(x)) (9.3)

x ∈ X ∗
s−Par

(
f 1, . . . , f Q

)
⇔

Q⋂

q=1

L≤(f q, f q(x)) = {x}. (9.4)

Proof If x 
∈ X ∗
w−Par

(
f 1, . . . , f Q

)
, there exists z ∈ R2 such that f q(z) < f q(x)

for each q ∈ Q, that means,

z ∈
Q⋂

q=1

L<(f
q, f q(x)).



218 S. Nickel et al.

Hence, we obtain that

Q⋂

q=1

L<(f
q, f q(x)) 
= ∅.

Since the implications above can be reversed the proof is concluded. The
remaining results can be proved analogously. ��
Remark 9.1 For the case Q = 2 the previous result states that the set
X ∗

w−Par(f
1, f 2) coincides with tangential cusps between the level curves of

functions f 1(·) and f 2(·) union with X ∗(f 1) ∪ X ∗(f 2) (see Example 9.1).

Corollary 9.1 If f 1, . . . , f Q are strictly convex functions then

X ∗
w−Par(f

1, . . . , f Q) = X ∗
Par

(
f 1, . . . , f Q

)
= X ∗

s−Par

(
f 1, . . . , f Q

)
.

Example 9.1 (Refer to Fig. 9.1) Let us consider the points a1 = (0, 0), a2 = (8, 3),
a3 = (−3, 5) and the functions f 1(x) = ‖x − a1‖1, f 2(x) = ‖x − a2‖∞, f 3(x) =

a1

a2

a3

X ∗
w−Par(f

1, f3)

X ∗
w−Par(f

1, f2)

Fig. 9.1 Illustration of Remark 9.1
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‖x − a3‖1. By Theorem 9.1, X ∗
w−Par(f

1, f 2) is the rectilinear thick path joining
a1 and a2 and X ∗

w−Par(f
1, f 3) is the filled rectangle with a1 and a3 as opposite

vertices.

In what follows, since we are dealing with general convex, inf-compact func-
tions, we will focus on providing information about the geometrical structure of
X ∗

w−Par(f
1, f 2, f 3). This characterization will allow us to obtain a geometrical

description of X ∗
Par

(
f 1, f 2, f 3

)
and X ∗

s−Par

(
f 1, f 2, f 3

)
in the next section for an

important family of functions. Actually, we will characterize X ∗
w−Par(f

1, f 2, f 3)

as a kind of hull delimited by the chains of bicriteria solutions of any pair
of functions f p, f q p, q = 1, 2, 3. This result enables us to obtain the set
X ∗

w−Par

(
f 1, . . . , f Q

)
by union of 3-criteria solution sets already characterized. In

order to do that, let

C∞(R+
0 ,R2) :=

{
ϕ | ϕ : R+

0 → R2, ϕ continuous, lim
t→∞ ‖ϕ(t)‖2 = ∞

}
,

where ‖x‖2 is the Euclidean norm of the point x. C∞(R+
0 ,R2) is the set of

continuous curves, which map the set of non-negative numbers R+
0 := [0,∞) into

the two-dimensional space R2 and whose image ϕ(R+
0 ) is unbounded in R2. These

curves are introduced to characterize the geometrical locus of the points surrounded
by weak-Pareto and Pareto chains.

For a set S ⊆ R2 we define the enclosure of S by

encl (S) :=
{
x ∈ R2 : ∃ ε > 0 with B(x, ε) ∩ S = ∅ , ∃ tϕ ∈ [0,∞)with

ϕ(tϕ) ∈ S for allϕ ∈ C∞(R+
0 ,R2)withϕ(0) = x

}
,

where B(x, ε) = {y ∈ R2 : ‖y − x‖2 ≤ ε}. Note that S ∩ encl (S) = ∅.
Informally, encl (S) contains all the points which are surrounded by S, but do not
belong themselves to S.

We denote the union of the bicriteria chains of weak-Pareto solutions by

X
gen

w−Par

(
f 1, f 2, f 3

)
:=

2⋃

p=1

3⋃

q=p+1

X ∗
w−Par

(
f p, f q

)
.

We use “gen” since this set will generate the set X ∗
w−Par

(
f 1, f 2, f 3

)
. The next

theorem provides useful geometric information to build X ∗
w−Par

(
f 1, f 2, f 3

)
. Its

proof can be found in Rodríguez-Chía and Puerto (2002).

Theorem 9.2

X ∗
w−Par(f

1, f 2, f 3) = encl
(
X

gen
w−Par

(
f 1, f 2, f 3

))
∪ X

gen
w−Par

(
f 1, f 2, f 3

)
.
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Remark 9.2 It is worth noting that the region encl
(
X

gen
w−Par

(
f 1, f 2, f 3

) )
is well-

defined because the set X gen
w−Par

(
f 1, f 2, f 3

)
is connected (see Warburton 1983).

As an illustration of the above result we present the following example.

Example 9.2 Let us consider three points a1 = (0, 0), a2 = (3,−1) and a3 =
(3, 3), and the functions f 1(·), f 2(·) and f 3(·) such that,

L≤(f 1, 1) =
{

(x1, x2) : x2
1

4
+ x2

2

9
≤ 1

}

L≤(f 2, 1) =
{
(x1, x2) : (x1 − 3)2 + (x2 + 1)2 ≤ 1

}

L≤(f 3, 1) =
{

(x1, x2) : (x1 − 3)2

9
+ (x2 − 3)2

4
≤ 1

}

.

We can see that these three functions are convex functions. Therefore by the previ-
ous result we obtain the geometrical characterization of the set X ∗

w−Par(f
1, f 2, f 3);

this set is the shadowed region in Fig. 9.2.

Fig. 9.2 Illustration of
Theorem 9.2

a1

a2

a3

X ∗
w−Par(f

1, f3)

X ∗
w−Par(f

1, f2)

X ∗
w−Par(f

2, f3)

X ∗
w−Par(f

1, f2, f3)
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Now we are in the right position to show the main result about the geometrical
structure of X ∗

w−Par(f
1, . . . , f Q).

Theorem 9.3

X ∗
w−Par(f

1, . . . , f Q) =
⋃

p,q,r∈Q
p<q<r

X ∗
w−Par(f

p, f q, f r).

Proof By Theorem 9.1, x ∈ X ∗
w−Par(f

1, . . . , f Q) if and only if
⋂

q∈Q
L<(f

q,

f q(x)) = ∅. Furthermore, by Helly’s theorem (see Rockafellar 1970), this
intersection is empty if and only if there exist p, q, r ∈ Q (p < q < r) such
that L<(f

p, f p(x)) ∩ L<(f
q, f q(x)) ∩ L<(f

r , f r (x)) = ∅ and this is equivalent
to x ∈ X ∗

w−Par(f
p, f q, f r ). Since in any case we have that

⋃

p,q,r∈Q
p<q<r

X ∗
w−Par(f

p, f q, f r ) ⊂ X ∗
w−Par(f

1, . . . , f Q),

the result follows. ��
Remark 9.3 This result extends previous characterizations in the literature:

(i) Taking f i(x) = ‖x−ai‖ with ai ∈ R2 for i = 1, . . . ,Q and ‖·‖ being a strictly
convex norm or a norm derived from a scalar product, we get Proposition 1.3,
Theorem 4.3 and Corollary 4.1 in Durier and Michelot (1986). The set of
weakly efficient locations is the convex hull of the points ai with i = 1, . . . ,Q.
In Example 9.3, we illustrate this result.

(ii) Taking f i(x) = ‖x − ai‖ with ai ∈ R2 for i = 1, . . . ,Q and ‖ · ‖ being
a polyhedral gauge we get Theorem 6.1 in Durier (1990), where the set of
weakly efficient locations is the union of elementary convex sets, (see Durier
and Michelot (1985) for a definition). In Example 9.4, we illustrate this result.

(iii) Taking f i(x) = maxj∈M wi
j‖x−aj‖ with aj ∈ R2, wi

j > 0 for i = 1, . . . ,Q,
j ∈ M := {1, . . . ,m} and ‖ · ‖ being the �∞-norm, we get Theorem 6.1 in
Hamacher and Nickel (1996), where the set of weakly efficient locations is
the union of the sets of weakly efficient locations for all pairs of functions. In
Example 9.5, we illustrate this result.

Example 9.3 (See Fig. 9.3) Let us consider the points a1 = (0, 0), a2 = (5,−10),
a3 = (10, 0) and the functions f i(x) = ‖x − ai‖2 for i = 1, 2, 3. By Theorem 9.2,
X ∗

w−Par(f
1, f 2, f 3) is the filled region, which in this case is the convex hull of a1,

a2 and a3.

Example 9.4 (Refer to Fig. 9.4) Let us consider the points a1 = (0, 0), a2 = (8, 3),
a3 = (−3, 5) and the functions f 1(x) = ‖x − a1‖1, f 2(x) = ‖x − a2‖∞ and
f 3(x) = ‖x − a3‖1. By Theorem 9.1, X ∗

w−Par(f
1, f 2) is the thick path joining a1
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a1

a2

a3

X ∗
w−Par(f

1, f2, f3)

Fig. 9.3 Illustration of Remark 9.3.i

a1

a2

a3

X ∗
w−Par(f

1, f3)

X ∗
w−Par(f

1, f2)

X ∗
w−Par(f

2, f3)

X ∗
w−Par(f

1, f2, f3)

Fig. 9.4 Illustration of Remark 9.3.ii

and a2, X ∗
w−Par(f

2, f 3) is the thick path joining a2 and a3, and X ∗
w−Par(f

1, f 3)

is the filled rectangle with a1 and a3 as opposite extreme points. Therefore, by
Theorem 9.2, X ∗

w−Par(f
1, f 2, f 3) is the filled region surrounded by the union of

the three previous sets. Note that this region is the union of two full dimensional
elementary convex sets.

Example 9.5 (Refer to Fig. 9.5) Let us consider the points a1 = (4, 16), a2 =
(10, 5), a3 = (25, 12) and the functions f i(x) = ‖x−ai‖∞ for i = 1, 2, 3. By The-
orem 9.1, X ∗

w−Par(f
1, f 2) = R1, X ∗

w−Par(f
1, f 3) = R2 ∪ R4, X ∗

w−Par(f
2, f 3) =
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Fig. 9.5 Illustration of
Remark 9.3.iii

a1

a2

a3
R4R1

R2

R3

R3 ∪ R4. By Theorem 9.2, X ∗
w−Par(f

1, f 2, f 3) = R1 ∪ R2 ∪ R3 ∪ R4. Note
that in this example X ∗

w−Par(f
1, f 2, f 3) = X ∗

w−Par(f
1, f 2) ∪ X ∗

w−Par(f
1, f 3) ∪

X ∗
w−Par(f

2, f 3).

9.2.1 Polyhedral Planar Minisum Location Problems

Consider a set of demand points A := {a1, . . . , aM} ⊆ R2. For i ∈ M :=
{1, 2, . . . ,M}, let Bi ⊂ R2 be a compact, convex set containing the origin in its
interior. The gauge with respect to Bi is defined as γi : R2 → R, γi(x) := inf{r >

0 : x ∈ rBi}. Taking this definition into account, the planar minisum location
problem is

min
x∈R2

M∑

i=1

wiγi(x − ai),

where wi is a nonnegative weight associated with the demand point ai (i ∈ M ).
In this section we study the particular case where the functions f 1, . . . , f Q

are minisum location objective functions and the distances are measured with
polyhedral gauges, i.e., the unit balls associated with these gauges are convex
polytopes. This type of objective function is not strictly convex and for this reason,
the three solutions sets (Pareto, weak Pareto and strict Pareto locations) may not
coincide. Therefore, in this section we focus on the characterization of the Pareto
locations and how it can be extended to the remaining solution sets.
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p1 +N(B0, p1)

p2 +N(B0, p2)

(0, 0)

(0, 0)

d1

d2

d3

d4

e1

e2

e3

e4

B
B0

p1

p2

Fig. 9.6 Illustration of the unit ball for the �1-norm, its dual ball and two normal cones of this
dual ball

The polar set Bo
i of Bi is given by Bo

i := {p ∈ R2 : 〈p, x〉 ≤ 1 ∀x ∈ Bi} and the
normal cone to Bi at x is given by N(Bi , x) := {p ∈ R2 : 〈p, y − x〉 ≤ 0 ∀y ∈ Bi},
where 〈·, ·〉 denotes the scalar product. In case of polyhedral gauges (i.e., Bi is a
polytope), the set of extreme points of Bi is denoted by Ext(Bi) := {ei1, . . . , eiGi

} .
The maximal number of extreme points is denoted by Gmax := max{Gi : i ∈ M }.
We define fundamental directions di

1, . . . , d
i
Gi

as the half-lines determined by 0 and

ei1, . . . , e
i
Gi

(see Fig. 9.6).

Let π = (pi)i∈M be a family of elements of R2 such that pi ∈ Bo
i for each

i ∈ M and let Cπ = ⋂
i∈M (ai + N(Bo

i , pi)). Adopting the definition introduced
by Durier and Michelot (1985), a nonempty convex set C is called an elementary
convex set if there exists a family π such that Cπ = C. If the unit balls are
polytopes, then we can obtain the elementary convex sets as intersections of cones
generated by fundamental directions of these balls pointed at each demand point
(for details, see Durier and Michelot 1985). The 2-dimensional elementary convex
sets are called cells. Let C denote to the set of these cells. Therefore each cell is
a polyhedron whose vertices are the intersection points, which we denote by IP .
Finally, in the case of R2 there exists an upper bound on the number of cells which
is O((MGmax)

2) (see Durier and Michelot 1985).
In Fig. 9.7 we show an elementary convex set for the �1-norm for two points

a1, a2. In this example the dual norm is the �∞-norm where its unit ball B0 has
the extreme points {(1, 1), (−1, 1), (−1−, 1), (1,−1)}. The normal cones to B0 at
p1 = (1,−1) and p2 = (−1, 1) are given by N(B0, p1) = cone((1, 0), (0,−1))
and N(B0, p2) = cone((−1, 0), (0, 1)), respectively, where cone stands for the
conical hull of its argument. Thus, the elementary convex set Cπ with π = (p1, p2)

is the rectangle defined by a1 and a2 with sides parallel to the coordinates axes.
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Fig. 9.7 Illustration of an
elementary convex set for the
�1-norm

a1

a2

(a1+N(B0, p1)) ∩ (a2+N(B0, p2))

9.2.1.1 Bicriteria Case

In this section we restrict ourselves to the bicriteria case, which, as will be seen later,
is the basis for solving the Q-criteria case. To this end, we are looking for the Pareto
solutions of the vector optimization problem in R2,

min
x∈2

(

f 1(x) :=
M∑

i=1

w1
i γi(x − ai), f

2(x) :=
M∑

i=1

w2
i γi(x − ai)

)

,

where the weights w
q
i are non negative (i = 1, . . . ,M; q = 1, 2). The following

theorem provides a geometric characterization of the set X ∗
Par.

Theorem 9.4 X ∗
Par

(
f 1, f 2

)
is a connected chain from X ∗(f 1) to X ∗(f 2)

consisting of faces or vertices of cells, or complete cells.

Proof First, we note that X ∗(f q) 
= ∅ for q = 1, 2 (see Puerto and Fernández
2000). Moreover, X ∗

Par ∩ X ∗(f q) 
= ∅ for q = 1, 2. Therefore, we know that
X ∗

Par 
= ∅, so we can choose x ∈ X ∗
Par. There exists at least one cell C ∈ C with

x ∈ C. We can assume without loss of generality that C is bounded. We also note
that the functions f 1 and f 2 are linear within each cell (see Rodríguez-Chía et al.
2000). Given a set A, in what follows, conv(A), bd(A) and int(A) will denote the
convex hull, the boundary and the interior of the set A, respectively. Three cases
may occur:

Case 1: x ∈ int(C). Since x ∈ X ∗
Par we obtain

2⋂

q=1

L≤(f q, f q(x)) =
2⋂

q=1

L=(f q, f q(x))
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and by linearity of the median problem in each cell we have

2⋂

q=1

L≤(f q, f q(y)) =
2⋂

q=1

L=(f q, f q(y)) ∀ y ∈ C

which means y ∈ X ∗
Par ∀ y ∈ C, hence C ⊆ X ∗

Par.
Case 2: x ∈ ab := conv({a, b}) ⊂ bd(C) and a, b ∈ Ext(C). We can choose

y ∈ int(C) and two cases can occur:

Case 2.1: y ∈ X ∗
Par. Hence we can continue as in Case 1.

Case 2.2: y /∈ X ∗
Par. Therefore using the linearity we first obtain

2⋂

q=1

L≤(f q, f q(z)) 
=
2⋂

q=1

L=(f q, f q(z)) ∀ z ∈ int(C).

Second, since x ∈ X ∗
Par, we have

2⋂

q=1

L≤(f q, f q(z)) =
2⋂

q=1

L=(f q, f q(z)) ∀ z ∈ ab.

Hence, we have that C 
⊆ X ∗
Par and ab ⊆ X ∗

Par.

Case 3: x ∈ Ext(C). We can choose y ∈ int(C) and two cases can occur

Case 3.1: If y ∈ X ∗
Par, we can continue as in Case 1.

Case 3.2: If y /∈ X ∗
Par, we choose z1, z2 ∈ Ext(C) such that xz1, xz2 are

faces of C,

– If z1 or z2 are in X ∗
Par, we can continue as in Case 2.

– If z1 and z2 are not in X ∗
Par, then using the linearity in the same way as

before we obtain that (C \ {x}) ∩X ∗
Par = ∅.

Hence, we conclude that the set of Pareto solutions consists of complete cells,
complete faces, and vertices of these cells. Since we know that the set X ∗

Par is
connected, the proof is completed. ��

In the following we develop an algorithm to solve the bicriteria planar minisum
location problem. The idea of this algorithm is to start in a vertex x of the cell
structure which belongs to X ∗

Par, say x ∈ X ∗
1,2 := arg minx∈X ∗(f 1) f

2(x) (set of
optimal lexicographical locations, see Nickel 1995). Then, using the connectivity of
X ∗

Par, the algorithm proceeds by moving from vertex x to another Pareto-optimal
vertex y of the cell structure which is connected with the previous one by an
elementary convex set. This procedure is repeated until the end of the chain reaches
X ∗

2,1 := arg minx∈X ∗(f 2) f
1(x).
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Fig. 9.8 Illustration to
y, x, z ∈ Ext(C) in
counterclockwise order

Cy

z

x

Let C be a cell and y, x and z three vertices of C enumerated counterclockwise
(see Fig. 9.8). By the linearity of the level sets in each cell we can distinguish the
following disjoint situations, if x ∈ X ∗

Par :

(S1) C ⊆ X ∗
Par , i.e., C is contained in the chain.

(S2) xy and xz are candidates for X ∗
Par and int(C) 
⊂ X ∗

Par.
(S3) xy is candidate for X ∗

Par and xz is not contained in X ∗
Par.

(S4) xz is candidate for X ∗
Par and xy is not contained in X ∗

Par.
(S5) Neither xy nor xz are contained in X ∗

Par.

We denote by sit(C, x) the situations (S1, S2, S3, S4 or S5) in which the cell
C is classified according to the extreme point x of C. The following lemma, whose
proof is based on an exhaustive case analysis of the different relative positions of x
within C, can be found in Weissler (1999). It states when a given segment belongs
to the Pareto-set in terms of the sit(·, ·) function.

Lemma 9.1 Let C1, . . . ,CPx be the cells containing the intersection point x ,
considered in counterclockwise order, and y1, . . . , yPx the intersection points
adjacent to x , considered in counterclockwise order (see Fig. 9.9). If x ∈ X ∗

Par
and i ∈ {1, . . . , Px}, then the following holds (assume that i + 1 = 1 whenever
i = Px ) :

xyi+1 ⊆ X ∗
Par ⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

sit(Ci , x) = S1
or sit(Ci+1, x) = S1

or

{
sit(Ci , x) ∈ {S2, S3}

sit(Ci+1, x) ∈ {S2, S4}
}

⎫
⎪⎪⎬

⎪⎪⎭

These results validate the following algorithm for finding X ∗
Par

(
f 1, f 2

)
.
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x

y1
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y4
y5

y6
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C3

C4

C5

C6

Fig. 9.9 Illustration to Lemma 9.1 with Px = 6

Algorithm 9.1

Step 1. Compute the planar graph generated by the cells and the two sets of
lexicographical locations X ∗

1,2 , X
∗

2,1 .

Step 2. If X ∗
1,2 ∩X ∗

2,1 
= ∅ then set X ∗
Par := conv(X ∗

1,2) (trivial case X ∗(f 1)∩
X ∗(f 2) 
= ∅). Otherwise set X ∗

Par := X ∗
1,2 ∪ X ∗

2,1 (non trivial case X ∗(f 1) ∩
X ∗(f 2) = ∅)

Step 3. Choose x ∈ X ∗
1,2 ∩ IP .

Step 4. Scan the list of cells adjacent to x until we get situation S1 for a cell
C or two consecutive cells, C, C, in situations C∈ {S2, S3} and C ∈ {S2, S4},
respectively.

Step 5. If situation S1 occurs then X ∗
Par := X ∗

Par ∪ C (we have found a bounded
cell.) Otherwise X ∗

Par := X ∗
Par ∪xy where y is a vertex of C defined in situations

S2 and S4 (we have found a bounded face.)
Step 6. Let C be the last scanned cell. Choose y ∈ IP ∩ C and, such that, y is

connected to x. If y ∈ X ∗
2,1 stop. Otherwise, set x := y and go to Step 4.

Output: X ∗
Par

(
f 1, f 2

)
. �

Edelsbrunner (1987) proved that the computation of a planar graph induced by
n lines in the plane can be done in O(n2) time. This implies that in the case of
the minisum location problem the computation of the planar graph generated by the
fundamental direction lines is doable in O(M2G2

max) time.
The evaluation of the minisum location function needs O(M log(Gmax)) for

one point, therefore we obtain O(M3G2
max log (Gmax)) time for the computation

of lexicographic solutions. At the end, the complexity for computing the chain
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a1 a2

a3

a4 a5

a6

a7 a8

a9

X ∗
1

X ∗
3

X ∗
2

Fig. 9.10 Illustration to Algorithm 9.1

is O(M3G2
max log (Gmax)), since we have to consider at most O(M2G2

max) cells
and the determination of sit( . , . ) can be done in O(M log(Gmax)) time. Hence,
the overall complexity is O(M3G2

max log (Gmax)). Notice that the polynomial
complexity of this algorithm allows an efficient computation of the solution set.

Example 9.6 Consider a problem with 9 facilities A = {a1, . . . , a9} (see Fig. 9.10).
The coordinates ai = (xi, yi) of the existing facilities are given by the set
{(−3, 0), (3, 0), (0,−4), (11,−6), (17,−6), (14,−2), (11, 2), (17, 2), (14, 6)}.
Consider three median objective functions f q , q = 1, 2, 3, namely those induced
by the weights-vectors w1 = (2, 2, 1, 0, 0, 0, 0, 0, 0), w2 = (0, 0, 0, 2, 2, 1, 0, 0, 0)
and w3 = (0, 0, 0, 0, 0, 0, 2, 2, 1).

The optimal solutions of the location problems associated with the median
functions f 1, f 2 and f 3 with f q = ∑M

i=1 w
q
i ‖ x − ai ‖1, q = 1, 2, 3, are unique

and given by X ∗
1 = {(0, 0)}, X ∗

2 = {(14,−6)} and X ∗
3 = {(14, 2)}, respectively,

all of them with the (optimal) objective value 16. The bicriteria chains (consisting
of cells and edges with respect to the fundamental directions drawn in Fig. 9.10) are
given by

X ∗
Par

(
f 1, f 3

)
= (0, 0) (3, 0) ∪ conv({(3, 0) , (3, 2) , (11, 2) , (11, 0)}) ∪ (11, 2) (14, 2),

X ∗
Par

(
f 2, f 3

)
= (14, 2) (14,−6),
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X ∗
Par

(
f 1, f 2

)
= (0, 0) (3, 0) ∪ (3, 0) (3,−2) ∪

conv({(3,−2) , (3,−4) , (11,−4) , (11,−2)}) ∪
(11,−4) (14,−4) ∪ (14,−4) (14,−6).

9.2.1.2 Three-Criteria Case

In this section we consider the 3-criteria case and develop an efficient algorithm for
computing X ∗

Par

(
f 1, f 2, f 3

)
using the results for the bicriteria case. In particular,

we obtain a characterization of the Pareto solution set for the three criteria case
using the region surrounded by the chains of bicriteria Pareto solutions. We denote
the union of the bicriteria chains including the 1-criterion solutions by

X
gen

Par

(
f 1, f 2, f 3

)
:=

3⋃

q=1

X ∗(f q) ∪
2⋃

q=1

3⋃

p=q+1

X ∗
Par

(
f p, f q

)
.

We use “gen” since this set will generate the set X ∗
Par

(
f 1, f 2, f 3

)
(see

Fig. 9.11).
The next lemma provides useful geometric information to build X ∗

Par(
f 1, f 2, f 3

)
. For a set A, let cl(A) denote the topological closure of A.

Lemma 9.2 The following inclusion of sets holds:

cl
(

encl
(
X

gen
Par

(
f 1, f 2, f 3

)))
⊆ X ∗

s-Par

(
f 1, f 2, f 3

)
.

The interested reader is referred to Nickel et al. (2005b) for a detailed proof of this
result.

Fig. 9.11 The enclosure of
X

gen
Par

(
f 1, f 2, f 3

) X ∗
1

X ∗
2

X ∗
3

X ∗
Par f 1, f 2

X ∗
Par f 1, f 3

X ∗
Par f 2, f 3

encl X gen
Par f 1, f 2, f 3
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Remark 9.4 Since X ∗
Par

(
f i, f j

) = X ∗
w−Par

(
f i, f j

)
for any i, j ∈ {1, 2, 3}, we

have that:

encl
(
X

gen
Par

(
f 1, f 2, f 3

))
= encl

(
X

gen
w−Par

(
f 1, f 2, f 3

))
.

Finally we obtain the following theorem which provides a subset as well as a
superset of X ∗

Par

(
f 1, f 2, f 3

)
.

Theorem 9.5 The following inclusions of sets hold:

encl
(
X

gen
Par

(
f 1, f 2, f 3

))
⊆ X ∗

Par

(
f 1, f 2, f 3

)

⊆ X
gen

Par

(
f 1, f 2, f 3

)
∪ encl

(
X

gen
Par

(
f 1, f 2, f 3

))

= X ∗
w−Par

(
f 1, f 2, f 3

)
.

Proof Using Lemma 9.2 and Theorem 9.2 we have the following chain of inclusions
that proves the thesis of the theorem.

encl
(
X

gen
Par

(
f 1, f 2, f 3

))
⊆ X ∗

s−Par

(
f 1, f 2, f 3

)

⊆ X ∗
Par

(
f 1, f 2, f 3

)
⊆ X ∗

w−Par

(
f 1, f 2, f 3

)

⊆ X
gen

Par

(
f 1, f 2, f 3

)
∪ encl

(
X

gen
Par

(
f 1, f 2, f 3

))
.

��
Now it remains to consider the Pareto-optimality of the set X gen

Par

(
f 1, f 2, f 3

)

with respect to the three objective functions f 1, f 2, f 3. For a cell C ∈ C we define
the collapsing and the remaining part of C with respect to Q-criteria optimality by

colQ(C) :=
{
x ∈ C : x /∈ X ∗

Par

(
f 1, . . . , f Q

)}

remQ(C) :=
{
x ∈ C : x ∈ X ∗

Par

(
f 1, . . . , f Q

)}
.

Summing up the preceding results we get a complete geometric characteriza-
tion of the set of Pareto solutions for the three criteria case. For each cell C,
colQ(C) ∪̇ remQ(C) = C and, as shown by Nickel et al. (2005b), determining both
sets can be done with the gradients of the objective functions with a complexity of
O(Q logQ).
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Theorem 9.6 The set of Pareto solutions satisfies:

X ∗
Par

(
f 1, f 2, f 3

)
= (

X
gen

Par

(
f 1, f 2, f 3

) ∪ encl
(
X

gen
Par

(
f 1, f 2, f 3

)) )

\ {x ∈ R2 : ∃C ∈ C , C ⊆ X
gen

Par

(
f 1, f 2, f 3

)
, x ∈ col3(C)}.

Proof Let y ∈ X ∗
Par

(
f 1, f 2, f 3

)
. Then we have, by Theorem 9.5, that

y ∈ X
gen

Par

(
f 1, f 2, f 3

) ∪ encl
(
X

gen
Par

(
f 1, f 2, f 3

))
. Moreover for C ∈ C with

y ∈ C we have y ∈ rem3(C), i.e., y /∈ col3(C) and the inclusion ⊆ is proved.
In order to prove ⊇, we distinguish the following cases :

Case 1: y ∈ encl
(
X

gen
Par

(
f 1, f 2, f 3

))
. Then y ∈ X ∗

Par

(
f 1, f 2, f 3

)
by Theo-

rem 9.5.
Case 2 : y ∈ X

gen
Par

(
f 1, f 2, f 3

)
.

Case 2.1 : ∃C ∈ C , C ⊆ X
gen

Par

(
f 1, f 2, f 3

)
with y ∈ C

⇒ y /∈ col3(C) ⇒ y ∈ rem3(C) ⇒ y ∈ X ∗
Par

(
f 1, f 2, f 3

)
.

Case 2.2 : 
 ∃C ∈ C , C ⊆ X
gen

Par

(
f 1, f 2, f 3

)
with y ∈ C

⇒ L≤(f p, f p(y)) ∩ L≤(f q, f q(y)) = {y} for some p, q ∈ {1, 2, 3}, p < q

⇒ ⋂3
q=1 L≤(f q, f q(y)) = {y} ⇒ y ∈ X ∗

s−Par

(
f 1, f 2, f 3

) ⊆
X ∗

Par

(
f 1, f 2, f 3

)
.

��
In the case of median functions the gradients ∇f q(x), q ∈ {1, 2, 3}, (in

those points where they are well-defined) can be computed in O(M log(Gmax))

time (analogous to the evaluation of the function). Therefore, we can test in
O(M log(Gmax)) time if a cell C ∈ C , C ⊆ X

gen
Par

(
f 1, f 2, f 3

)
collapses.

We obtain the following algorithm for the 3-criteria median problem with time
complexity O(M3G2

max log(Gmax)) (see Nickel et al. (2005b) for more details).

Algorithm 9.2

Step 1. Compute the subdivision of the plane generated C , the family of elemen-
tary convex sets. ComputeX ∗

w−Par

(
f 1, f 2

)
,X ∗

w−Par

(
f 1, f 3

)
,X ∗

w−Par

(
f 2, f 3

)

using Algorithm 9.1.
Step 2. Set X

gen
Par

(
f 1, f 2, f 3

) := X ∗
w−Par

(
f 1, f 2

) ∪ X ∗
w−Par

(
f 1, f 3

) ∪
X ∗

w−Par

(
f 2, f 3

)
and X ∗

Par

(
f 1, f 2, f 3

) := X
gen

Par

(
f 1, f 2, f 3

) ∪ encl
(
X

gen
Par

(
f 1, f 2, f 3

))
.

Step 3. For any C ∈ C with C ⊆ X
gen

Par

(
f 1, f 2, f 3

)
compute col3(C) and set

X ∗
Par

(
f 1, f 2, f 3

) := X ∗
Par

(
f 1, f 2, f 3

) \ col3(C).
Output: X ∗

Par

(
f 1, f 2, f 3

)
. �

Example 9.7 (Refer to Example 9.6) In Fig. 9.12, the dashed path joining X ∗
1 and

X ∗
3 in the picture represents the set X ∗

w−Par

(
f 1, f 3

)
after removing the col3(C).

In the same way, the path joining X ∗
1 and X ∗

2 represents the set X ∗
w−Par

(
f 1, f 2

)



9 Location Problems with Multiple Criteria 233

a1 a2

a3

a4 a5

a6

a7 a8

a9

X ∗
1

X ∗
3

X ∗
2

Fig. 9.12 Illustration of X gen
Par

(
f 1, f 2, f 3

)
and X ∗

Par

(
f 1, f 2, f 3

)
for the problem introduced in

Example 9.6

after removing the col3(C). Finally, the dotted segment joining X ∗
2 and X ∗

3 is
X ∗

w−Par

(
f 2, f 3

)
(in this case there are no cells to be collapsed).

9.2.1.3 Case Where Q > 3

In this section we consider the general Q-Criteria case (Q > 3). We prove that
the Pareto solution set can be obtained from the Pareto solution sets of all the three
criteria problems. This construction requires the removal of the dominated points
from the union of all the three criteria Pareto solution sets. The reader may notice
that all this process reduces to obtaining the bicriteria Pareto chains as proved in
Theorem 9.6.

Theorem 9.7 The following inclusions hold:

I.
⋃

p,q,r∈Q
p<q<r

cl
(
encl

(
X

gen
Par

(
f p, f q, f r

))) ⊆ X ∗
Par

(
f 1, . . . , f Q

)
.

II. X ∗
Par

(
f 1, . . . , f Q

)
⊆

⋃

p,q,r∈Q
p<q<r

X
gen

Par

(
f p, f q, f r

) ∪
⋃

p,q,r∈Q
p<q<r

encl

(
X

gen
Par

(
f p, f q, f r

)) = X ∗
w−Par

(
f 1, . . . , f Q

)
.
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Proof

(1) Let x ∈ ⋃

p,q,r∈Q
p<q<r

cl
(
encl

(
X

gen
Par (f p, f q, f r )

))
. This is equivalent to

x ∈ cl
(
encl

(
X

gen
Par

(
f p, f q, f r

)))
for some p, q, r ∈ Q, p < q < r.

Then, by Lemma 9.2, x ∈ X ∗
s−Par (f

p, f q , f r ) for some p, q, r ∈ Q, p <

q < r . Applying characterization (9.4), this is equivalent to L≤(f p, f p(x)) ∩
L≤(f q, f q(x)) ∩ L≤(f r , f r (x)) = {x} for some p, q, r ∈ Q, p < q < r and
since x ∈ L≤(f q, f q(x)) for all q ∈ Q it follows that

⋂Q
q=1 L≤(f q, f q(x)) =

{x}. Finally, again by (9.4), x ∈ X ∗
s−Par

(
f 1, . . . , f Q

)
, which implies that x ∈

X ∗
Par

(
f 1, . . . , f Q

)
.

(2) Let x ∈ X ∗
Par

(
f 1, . . . , f Q

)
then x ∈ X ∗

w−Par

(
f 1, . . . , f Q

)
and, by (9.2), this

is equivalent to
⋂Q

q=1 L<(f
q, f q(x)) = ∅. By Helly’s theorem, there exists

p, q, r ∈ Q, p < q < r , such that, L<(f
p, f p(x)) ∩ L<(f

q, f q(x)) ∩
L<(f

r, f r (x)) = ∅. By characterization (9.2), this is equivalent to x ∈
X ∗

w−Par (f
p, f q, f r ) for some p, q, r ∈ Q, p < q < r and, by Theorem 3.2 in

Rodríguez-Chía and Puerto (2002), this implies that x ∈ X
gen

Par (f p, f q, f r ) ∪
encl

(
X

gen
Par (f p, f q , f r )

)
for some p, q, r ∈ Q, p < q < r . Finally, this can

be equivalently written as

x ∈
⋃

p,q,r∈Q
p<q<r

X
gen

Par

(
f p, f q, f r

) ∪
⋃

p,q,r∈Q
p<q<r

encl
(
X

gen
Par

(
f p, f q, f r

))
.

��
In the Q-criteria case the crucial region is now given by the cells C ∈ C with

C ⊆
⋃

p,q,r∈Q
p<q<r

X
gen

Par

(
f p, f q, f r

) \
⋃

p,q,r∈Q
p<q<r

encl
(
X

gen
Par

(
f p, f q, f r

))

=
⋃

p,q∈Q
p<q

X ∗
w−Par

(
f p, f q

) \
⋃

p,q,r∈Q
p<q<r

encl
(
X

gen
Par

(
f p, f q, f r

))
.

Similar to the situation in the previous section one can test whether the cell C ∈ C
collapses with respect to f 1, . . . , f Q by comparing the gradients of the objective
functions in int(C). Finally we obtain the following theorem, which can be proven
using the same reasoning as in the 3-criteria case (see proof of Theorem 9.6).
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Theorem 9.8

X ∗
Par

(
f 1, . . . , f Q

) =
⎛

⎝
⋃

p,q,r∈Q
p<q<r

X gen
Par (f p, f q, f r ) ∪ ⋃

p,q,r∈Q
p<q<r

encl
(
X gen

Par (f p, f q, f r )
)
⎞

⎠

\
⎧
⎨

⎩
x ∈ R2 : ∃C ∈ C , C ⊆ ⋃

p,q∈Q
p<q

X ∗
w−Par (f

p, f q) \⋃
p,q,r∈Q
p<q<r

encl
(
X gen

Par (f p, f q , f r )
)
, x ∈ colQ(C)

⎫
⎬

⎭

For the Q-criteria median problem we obtain the following algorithm.

Algorithm 9.3

Step 1. Compute the subdivision of the plane generated by C , the family of
elementary convex sets. Compute X ∗

w−Par (f
p, f q) , p, q ∈ Q, p < q, using

Algorithm 9.1.
Step 2. For every p, q and r with p < q < r set

X
gen

Par (f p, f q, f r ):=X ∗
w−Par (f

p, f q) ∪ X ∗
w−Par (f

p, f r ) ∪ X ∗
w−Par (f

q, f r ),
and
X ∗

Par

(
f 1, . . . , f Q

):= ⋃

p,q,r∈Q
p<q<r

X
gen

Par (f p, f q, f r ) ∪ ⋃
p,q,r∈Q
p<q<r

encl
(
X

gen
Par (f p, f q, f r )

)
.

Step 3. For every cell C ⊆ ⋃

p,q∈Q
p<q

X ∗
w−Par (f

p, f q) \ ⋃

p,q,r∈Q
p<q<r

encl
(
X

gen
Par

(f p, f q, f r )) compute colQ(C) and set X ∗
Par

(
f 1, . . . , f Q

) := X ∗
Par(

f 1, . . . , f Q
) \ colQ(C).

Output: X ∗
Par

(
f 1, . . . , f Q

)
. �

The complexity of Algorithm 9.3 can be determined as follows. For each cell C,
colQ(C) can be computed in O(Q log(Q)) time. Algorithm 9.3 needs to solve
O(Q3) 3-criteria problems which dominates all other elementary operations of the
algorithm. Each one of them has the same complexity as the 2-criteria problem.
Thus, the overall complexity is O(M3G2

maxQ
3(logGmax) + M2G2

maxQ logQ) =
O(M3G2

maxQ
3(logGmax).

We would like to conclude this section pointing that the multi-facility versions
of the problems analyzed in this section have been scarcely studied in the literature,
although an exception is the paper by Nickel (1997).

9.2.2 Other References in Continuous Multicriteria Location
Problems

Along this section we have presented a complete description of the set of weak
Pareto, Pareto, and strict Pareto locations for a general planar Q-criteria location
problem based on the characterization of three criteria problems. The geometrical
description and the characterizations of these sets allow the reader to get a general
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idea of the multicriteria continuous location problem. In addition, one can also
find more references and an overview on other location problems in the survey by
Nickel et al. (2005a). Finally, Farahani et al. (2010) provides a review on results and
developments in multicriteria location problems in three categories including bi-
objective, multi-objective and multi-attribute problems and their solution methods.

In the following we list some interesting recent references in this field: The
planar single-facility multiobjective location problem is also studied using the
maximum norm in Alzorba et al. (2015) and using �1-norm in Alzorba et al. (2017).
A scalarization proximal point method for solving a very general unconstrained
multiobjective problem where the functions are locally Lipschitz and quasiconvex is
studied in Apolinário et al. (2016), this methodology is applied to location problems.
In Elleuch and Frikha (2018), a facility location decision which involves both qual-
itative and quantitative criteria is considered, the authors combined two methods,
preference-ranking organisation method for enrichment evaluation (PROMETHEE)
and a linear programming model, using the stretching and shrinking graphs method.
Bhattacharya (2018) proposes a new mathematical model for locating k-obnoxious
facilities that was solved by a nonlinear programming iterative algorithm.

9.3 Network Location Problems

9.3.1 1-Facility Median Problems

9.3.1.1 Pareto Locations in General Networks

Let G = (V ,E) be a connected graph with node set V = {v1, . . . , vn} and edge
set E = {e1, . . . , em}. Each edge e ∈ E has a positive length �(e), and is assumed
to be rectifiable. Let P(G) denote the continuum set of points on edges of G. We
denote a point x ∈ e = {u, v} as a pair x = (e, t), where t (0 ≤ t ≤ 1) gives
the relative distance of x from node u along edge e. For the sake of readability, we
identify P(G) with G and P(e) with e for e ∈ E. We also define (e, (t1, t2)) :=
{x = (e, t) : t ∈ (t1, t2)}; (e, [t1, t2]), (e, (t1, t2]), and (e, [t1, t2)) are used in an
analogous way.

We denote by d(x, y) the length of the shortest path connecting two points x, y ∈
G. Let vi ∈ V and x = ({vr , vs}, t) ∈ G. The distance from vi to x entering the
edge {vr , vs} through vr (vs ) is given as D+

i (x) = d(vr, x) + d(vr , vi) (D−
i (x) =

d(vs, x) + d(vs, vi )). Hence, the length of a shortest path from vi to x is given by
Di(x) = min{D+

i (x), D−
i (x)}. As d(vr , x) = t · �(e) and d(vs, x) = (1 − t) · �(e),

the functions D+
i (x) and D−

i (x) are linear in x and Di(x) is piecewise linear and
concave in x (cf. Drezner 1995). The distance from vi to a facility located at x is
finally defined as d(vi, x) = Di(x) = min{D+

i (x),D−
i (x)}.
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We consider the objective function f (x) = (f 1(x), . . . , f Q(x)), where each
f q(x), q ∈ Q, is a median function defined as:

f q(x) =
∑

vi∈V
w

q
i d(vi , x) .

More formally, we assign a vector of weights

wi =
⎛

⎜
⎝

w1
i
...

w
Q
i

⎞

⎟
⎠ 
= 0 to every vertex vi ∈ V, with w

q
i ≥ 0, q ∈ Q := {1, . . . ,Q}.

The quality of a point x ∈ P(G) in this multicriteria setting is defined by

f (x) :=
⎛

⎜
⎝

f 1(x)
...

f Q(x)

⎞

⎟
⎠ :=

⎛

⎜
⎝

∑
vi∈V w1

i d(x, vi)

...
∑

vi∈V w
Q
i d(x, vi)

⎞

⎟
⎠

in the undirected case and

f (x) :=
⎛

⎜
⎝

f 1(x)
...

f Q(x)

⎞

⎟
⎠ :=

⎛

⎜
⎝

∑
vi∈V w1

i (d(x, vi) + d(vi , x))
...

∑
vi∈V w

Q
i (d(x, vi) + d(vi , x))

⎞

⎟
⎠

in the directed case.
Let S ⊆ P(G) and W ⊆ RQ. We define Wpar = {f (x) ∈ W : �f (y) ∈ W such

that f (y) dominates f (x) in the objective space} and X ∗
par(S) := {x ∈ S : f (x) ∈

Wpar}. If S = P(G) we simply write X ∗
par . A point x ∈ X ∗

par(S) is called a Pareto
location with respect to S, and the elements of X ∗

par (V ) are called Pareto nodes or
Pareto vertices.

Computing X ∗
par (V ) can simply be done by pairwise comparison of the

nodes. For X ∗
par we first have to check if a multicriteria version of Hakimi’s

node dominance result holds (Hakimi 1964). For the directed case we even have
X ∗

par(V ) = X ∗
par . The proof relies on the concavity of the distance functions

among the edges and also on the fact that in the directed case we have no choice
on which side to exit or enter an edge. This implies that the objective function
is strictly concave and therefore the nodes always dominate the edges. For the
technical details and the proofs the reader is referred to Hamacher et al. (1999). In
the case of undirected networks, this aspect is slightly more complicated as shown
in the next example.
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v1 v2

v3 v4

v5 v6

1

3

3

1

3

3

1

22

Fig. 9.13 Network of Example 9.8

Example 9.8 (See Fig. 9.13) Consider the following network N = (G, �) with n =
6 nodes and a distance matrix D = (dij )i,j=1,...,6 given by

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 4 3 2
1 0 2 3 4 1
1 2 0 3 2 3
4 3 3 0 5 2
3 4 2 5 0 3
2 1 3 2 3 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Assume that the weight vectors are

w1 =
(

1

2

)

, w2 =
(

2

1

)

, w3 =
(

1

2

)

, w4 =
(

2

2

)

, w5 =
(

2

2

)

, w6 =
(

2

1

)

.

Using this information we get

v1 v2 v3 v4 v5 v6

f (·) (21
19

) (19
21

) (21
17

) (27
29

) (29
27

) (17
21

)

By pairwise comparison we get

X ∗
par(V ) = {v3} ∪ {v6} = X ∗ (f 1(V )

)
∪ X ∗ (f 2(V )

)
.

Now we look at the points on the edges and get (by using concavity in the objective
functions):

• v3 dominates all points on the edges {v3, v5}, {v3, v4}, {v3, v1}
• v6 dominates all points on the edges {v6, v2}, {v6, v5}, {v6, v4}
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Fig. 9.14 Objective
functions on the edge {v1, v2}
in Example 9.8

19

20

21

22

19

20

21

22

0 1

f 2

f 1

• v2 dominates all points on the edge {v2, v4}
• v1 dominates all points on the edge {v1, v5}
We also observe that no vertex can dominate a point with both objective functions
smaller than 21. The only edge left is now {v1, v2} (Fig. 9.14).
We see that

I. For all points x ∈ P ({v1, v2}) with x 
= v1, x 
= v2 we have f 1(x) <

21, f 2(x) < 21.
II. No point on {v1, v2} dominates another point on {v1, v2}

⇒ X ∗
par = {v3} ∪ {v6} ∪ ({v1, v2}, (0, 1)) .

We conclude that we have no node dominance and that even on edges with
endnodes not in X ∗

par (V ) we can find elements of X ∗
par .

Since we do not have node dominance in the undirected case, we have to
explicitly solve a multicriteria global optimization problem. First we will identify
local Pareto locations with respect to an edge e = {vi, vj } for all edges of the
network. In a second step we will compare all local Pareto locations to get X ∗

par .
Due to the limited space and a possible overload of technicalities, we will describe
the main ideas which allow the reader to understand the final algorithm. For the
technical details and the proofs the reader is referred to Hamacher et al. (1999).

9.3.1.2 Bi-Criteria Case

We will first deal with the bi-criteria case, since here we can derive a geometrical
solution method. The main property of the objective functions we are using is the
concavity on an edge e = {vi, vj }. In addition we have also piecewise linearity but
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0 1

f 2

f 1

Fig. 9.15 Concavity on an edge with one objective function constant

this is not really needed. Suppose that f (vi) > f (vj ) or f (vj ) > f (vi). In the
first situation we say that vj dominates vi and in the latter vi dominates vj . Both
situations imply that any location on the edge is dominated by an endnode due to
concavity.

Now assume that for an edge e = {vi, vj } with vi and vj not dominating each
other one of the functions f 1 or f 2 is constant. It is easy to see that this is only
the case if f (vi) = f (vj ). If for an edge e only one of the objective functions is
constant then X ∗

par(e) = {vi} ∪ {vj }. If both objective functions are constant then
X ∗

par(e) = ({vi, vj }, [0, 1]). Again this is due to the concavity of the objective
functions and can be seen in Fig. 9.15.

Now we have only one situation left (the most typical one), where the endnodes
do not dominate each other and none of the two objective functions is constant.
Without loss of generality we can assume f 1(vi) > f 1(vj ) and f 2(vi) < f 2(vj )

(otherwise exchange the roles of vi and vj ). The behaviour of the objective functions
can be seen in Fig. 9.16. First, both objectives functions are increasing (maybe for an
interval with a small or null length) and all points are dominated by the left endnode.
Only after the first objective function is already decreasing and smaller than the
left endnode value, the endnode cannot dominate the points of the edge. The same
argument can be applied by starting from the right endnode. More formally we can
define

t1 := max{t ∈ [0, 1] : f 1(vi) = f 1 (({vi, vj }, t
))}

and

t2 := min{t ∈ [0, 1] : f 2(vj ) = f 2 (({vi, vj }, t
))}.
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0 1t1 t2

f 1

f 2

Fig. 9.16 Derivation of t1 and t2

Then

X ∗
par (e) = {vi} ∪ {vj } ∪

(
{vi, vj },

(
t1, t2

))
.

Overall we have that for each e ∈ E in (G, �), X ∗
par(e) is a (possibly empty)

single subedge of e plus one or both endnodes. Now we can combine these results
to get an efficient algorithm for determining X ∗

par (e).

Algorithm 9.4 (Computation of X ∗
par (e) for the bi-criteria median problem on

a network)

Input: edge e = {vi, vj } ∈ E, undirected network (G, l), distance matrix D

Step 1. IF vi dominates vj then X ∗
par (e) := {vi}, go to Step 7

Step 2. IF vj dominates vi then X ∗
par (e) := {vj }, go to Step 7

Step 3. IF f (vi) = f (vj ) then

A. IF f
((

{vi, vj }, 1
2

))
= f (vi) then X ∗

par(e) := P({vi, vj }), go to Step 7

B. IF f
((

{vi, vj }, 1
2

))

= f (vi) then X ∗

par(e) := {vi} ∪ {vj }, go to Step 7

Step 4. IF f 1(vi) < f 1(vj ) and f 2(vi) > f 2(vj ) then exchange vi and vj
Step 5. Compute t1 and t2 as defined above
Step 6. IF t1 < t2

THEN X ∗
par(e) := {vi} ∪ {vj } ∪ ({vi, vj }, (t1, t2)

)

ELSE X ∗
par(e) := {vi} ∪ {vj }

Step 7. STOP.

Output: X ∗
par(e)

To analyze the complexity of this algorithm, we need the following definition: A
point x = ({vi, vj }, t

)
, t ∈ [0, 1] on one edge e = {vi, vj } is called a bottleneck
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point for f q if there exists a vertex vk with w
q
k > 0, such that

d(vk, x) = d(vk, vi) + d(vi , x) = d(vk, vj ) + d(vj , x).

Let Bij denote the set of bottleneck points on the edge {vi, vj }. Note that |Bij | ≤
|V |.

If D is given, the only non constant operation in Algorithm 9.4 is the com-
putation of t1 and t2. To plot f q we have to determine the breakpoints of f q

which is piecewise linear on an edge. Since these breakpoints correspond to the
bottleneck points on this edge we have to compute Bij for e = {vi, vj }, this
can be done in O (|V | log |V |) (see Hansen et al. 1991). Then t1 and t2 can be
determined by exploring the sorted list of bottleneck points two times. The total
complexity for finding X ∗

par (e) is O (|V | log |V |) and the total complexity for
finding

⋃
e∈E X ∗

par (e) is O (|E||V | log |V |).
Example 9.9 Consider the following network (Fig. 9.17):
with distance matrix

D =

⎛

⎜
⎜
⎝

0 1 2 2
1 0 2 1
2 2 0 1
2 1 1 0

⎞

⎟
⎟
⎠ .

We first compute

v1 v2 v3 v4

f 1 10 7 8 6
f 2 7 8 9 9

Fig. 9.17 Network of
Example 9.9 v1 v2

v3 v4

1

1

1

2

1
3

2
1

2
1

2
2
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7

8

9

10

11

8

9

10

11

0 11
3

1
2

f 2

f 1

Fig. 9.18 Computing X ∗
par ({v1, v2})

and obtain X ∗
par (V ) = {v1, v2, v4}. Now we have to determine the set X ∗

par(e) for
every e ∈ E:

• e = {v1, v2}. v1 and v2 do not dominate each other and f 1, f 2 are not constant,
i.e., we need to plot f 1, f 2 and therefore we have to find B12

B12 =
{

b1
12 =

(

{v1, v2}, 1

2

)}

f 1
(
b1

12

)
= 9.5 and f 2

(
b1

12

)
= 8.5

So the objective function can be drawn as shown in Fig. 9.18.

t1 = max
{
t ∈ [0, 1] : f 1(v1) = f 1 ({v1, v2}, t)

}
= 0

t2 = min
{
t ∈ [0, 1] : f 2(v2) = f 2 ({v1, v2}, t)

}
= 1

3

(in [0, 1

2
], f 2(x) ≡ 7 + 3t, 7 + 3t = 8 ⇔ t = 1

3
)

X ∗
par(e) = {v1} ∪ {v2} ∪

(

{v1, v2},
(

0,
1

3

))
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8

9

10

11

8

9

10

11

0 11
2

1
4

3
4

4
5

f 2

f 1 t2 t1

Fig. 9.19 Computing X ∗
par ({v1, v3})

• e = {v2, v4}. f 1(v2) = 7 > f 1(v4) = 6 and f 2(v2) = 8 < f 2(v4) = 9 and
B24 = ∅ ⇒ t1 = 0, t2 = 1 ⇒ X ∗

par(e) = P(e).

• e = {v3, v4}. v4 dominates v3 ⇒ X ∗
par(e) = {v4}.

• e = {v1, v3}. (Fig. 9.19) B13 =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝{v1, v3}︸ ︷︷ ︸

b1
13

, 1
4

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝{v1, v3}︸ ︷︷ ︸

b2
13

, 3
4

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

f
(
b1

13

)
=
(

11.5

8.5

)

, f
(
b2

13

)
=
(

10.5

9.5

)

t1 = 4

5
, t2 = 1

2

X ∗
par(e) = {v1} ∪ {v3}

In a second step we have to compare all local Pareto locations X ∗
par (e), e ∈ E

to get X ∗
par . With two objective functions we can map everything to the objective

space where dominance can easily be computed. In the case of median objective
functions on a network, we know that f 1 and f 2 are piecewise linear with the
same potential breakpoints. This leads to the following mapping in the (z1, z2)-
space (or objective space) as shown in Fig. 9.20. Essentially, this plot shows all
pairs (z1, z2) of the objective function values f1(x) and f2(x) for all points x on
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5

6

7

8

5

6

7

8

t1 t2

f 1

f 2

Xpar(e)\ ({vi}∪{v j})

5

6

7

8

6 7 8 9 z1

z2

Fig. 9.20 Mapping X ∗
par (e) to the objective space

w1

w2

w3

w4

Fig. 9.21 w1 is dominating w2 and w3

the edge. Again we would like to skip the technical details and proofs and refer the
reader to Hamacher et al. (1999).

In the objective space, a point w dominates all other points in w + R2+\{0} :=
{
w + y : y ∈ R2+\{0}} (see Fig. 9.21).

In order to obtain X ∗
par we draw IM(f ) which is defined as the set of all images

of X ∗
par(e) for e ∈ E in the objective space. The lower envelope for a set P of

points in R2 is defined as

⋃{
(x, y) ∈ P : y ≤ y ′ for all (x, y ′) ∈ P

}
.
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Algorithm 9.5 (Combining the local Pareto locations)

Input: X ∗
par (e) for all e ∈ E

Step 1. Let z1
max := max

{
f 1(x) : x ∈ ⋃e∈E X ∗

par (e)
}

Step 2. Build IM(f ) = ⋃
e∈E f

(
X ∗

par(e)
)

Step 3. For each connected component l in IM(f ), let (z1
l , z

2
l ) be the right-most

point (largest z1 value) and add to IM(f ) the horizontal segment going from
(z1

l , z
2
l ) to (z1

max, z
2
l ).

Step 4. Compute the lower envelope L of IM(f ), which is the lower envelope of
O(|E||V |) line segments.

Step 5. Eliminate every horizontal line segment of L, except its left-most point.
Step 6. Set X ∗

par := f−1(L).

Output: X ∗
par

In order to get the same result from the dominance relation we have to add an
artificial line segment and delete it from the solution (see Fig. 9.22).

Steps 1 and 3 are necessary to modify IM(f ) such that we can get X ∗
par

from the lower envelope. These steps as well as Step 2 can be done in linear
time. Step 4 can be done in a naive way in O

(|E|2|V |2) or in optimal time of
O (|E||V | log (max (|E||V |))) by an algorithm of Hershberger (1989). Since Step
5 can be done in linear time the complexity of Step 4 determines the overall
complexity. For easier handling of the segments, note that we may use instead
of an open subedge

({vi, vj }, (t1, t2)
)

the closed subedge
({vi, vj }, [t1, t2]

)
. After

applying the algorithm we then have to test if we deleted a point directly above the
left-most point (Fig. 9.23).

Example 9.10 (Example 9.9 Cont.) We first draw IM(f ) and add the horizontal line

segments. Finally, we get X ∗
par = P ({v2, v4}) ∪

(
{v1, v2},

[
0, 1

3

))
.

X ∗
par

lower
envelope

Fig. 9.22 Using the lower envelope to delete dominated solutions
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Fig. 9.23 Computing X ∗
par

for Example 9.9

6 7 8 9 10

7

8

9

10

z1

z2

v1

v2

v3
v4 {v1, v2}, 13

9.3.1.3 Q-Criteria Case

We will now briefly explain how this approach generalizes to the Q-criteria case.
Also in this situation we easily see that if for an edge e = {vi, vj } one endnode
dominates the other one, there are no Pareto locations in the interior of e. From now
on assume that neither vi dominates vj nor vj dominates vi . Let Q1 and Q2 be a
partition of Q, such that f q(vi) ≥ f q(vj ) for all q ∈ Q1 and f q(vi) < f q(vj ) for
all q ∈ Q2. Of course, Q1 
= ∅, Q1 ∩ Q2 = ∅ and Q1 ∪ Q2 = Q. Also in case
of constant functions we get a similar result as in the bi-criteria case. Accordingly,
assume that f (vi) 
= f (vj ) for an edge e = {vi, vj } and let

t1(f q) := max
{
t ∈ [0, 1] : f q(vi) = f q

(
({vi, vj }, t)

)}
for q ∈ Q1

and

t2(f q) := min
{
t ∈ [0, 1] : f q(vj ) = f q

(
({vi, vj }, t)

)}
for q ∈ Q2.

Then (see Hamacher et al. (1999) for the details)

X ∗
par(e) = {vi} ∪ {vj } ∪

(

{vi, vj },
(

min
q∈Q1

{
t1(f q)

}
, max
q∈Q2

{
t2(f q)

}))

.

For comparing the local Pareto locations, the mapping to the objective space
becomes rather involved especially when we have to compute lower envelopes.

In order to compare X ∗
par (e) for all e ∈ E pairwise, we use the following

iterative procedure: Let
({vj , vl}, [tr , tr+1]

)
be a subedge ofX ∗

par (el), el = {vj , vl}
(to have closed subedges we neglect the vertices and handle first only the Pareto
parts in the interior) where (tr , tr+1) are assumed to not include any further
bottleneck points of el (if this is not true we subdivide the subedge further). This
leads to

f q
(
({vj , vl}, t)

) = b
q
r + m

q
r t for all q ∈ Q, t ∈ [tr , tr+1],
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i.e., all f q are affine linear on
({vj , vl}, [tr , tr+1]

)
. Take now a closed linear

subedge from another edge ek = {vk, vm}, then we get
({vk, vm}, [sp, sp+1]

) ⊆
X ∗

par(ek). This leads to

f q (({vk, vm}, s)) = b
q
p + m

q
ps for all q ∈ Q, s ∈ [sp, sp+1],

If we apply the definition of a Pareto location to these two subedges, we get that
a point

({vj , vl}, t
)
, t ∈ [tr , tr+1] is dominated by some point ({vk, vm}, s) , s ∈

[sp, sp+1]

⇔ b
q
p + m

q
ps ≤ b

q
r + m

q
r t for all q ∈ Q,

where at least one inequality is strict. Now we define the polyhedron

F := {
(s, t) : m

q
r t − m

q
ps ≥ b

q
p − b

q
r , ∀q ∈ Q

} ∩ ([sp, sp+1] × [tr , tr+1]
)
.

We have two cases: If F = ∅, then
({vj , vl}, [tr , tr+1]

)
contains no point which is

dominated by a point from
({vk, vm}, [sp, sp+1]

)
. Otherwise, F 
= ∅ is taken as a

feasible solution of the two 2-variable linear programs

LB = min{t : (s, t) ∈ F }, UB = max{t : (s, t) ∈ F }.

Let sLB and sUB be the optimal values for s corresponding to LB and UB,
respectively. Now we still have to check if one inequality is strict: If bqp +m

q
psLB =

b
q
r +m

q
r LB and b

q
p+m

q
psUB = b

q
r +m

q
r UB for all q ∈ Q, then there is no dominance.

Otherwise X ∗
par(el) := X ∗

par(el)\
({vj , vl}, [LB, UB])) . Note that this procedure

works also if tr = tr+1 or sp = sp+1 (in this case, we are testing a single point).

Algorithm 9.6 (Combining local Pareto location in the Q-criteria case)

Input: Network as in Algorithm 9.4

Step 1. Determine X ∗
par (e) for all e ∈ E and set X ∗

par := ⋃
e∈E X ∗

par(e)

Step 2. Compare all vi and all edges, where all f q, q ∈ Q are constant
Step 3. For all Pareto linear subedges do a pairwise comparison as described

above and reduce X ∗
par accordingly.

Output: X ∗
par

The complexity of this algorithm is O(|E|2|V |2Q).

9.3.1.4 Multicriteria Median Problems on a Tree

Many difficult problems on general networks become easier to solve if the under-
lying graph has a tree structure. We will show that this is also true for multicriteria
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problems. We relate our results with the research that has previously been done
on trees and end up with a generalization of Goldman’s algorithm (see Goldman
1971a). The major concept which makes the analysis easier on trees is convexity.
We first introduce this concept based on Dearing et al. (1976).

Let N = (T , �) be a tree network, with T = (V ,E). For two points a, b ∈ P(T )

we define the line segment L[a, b] between a and b as

L[a, b] := {x ∈ P(T ) : d(a, x)+ d(x, b) = d(a, b)} ,

which contains all points on the unique path between a and b. A subset C ⊆ P(T )

is called convex, if and only if for all a, b ∈ C, L[a, b] ⊆ C.
Now let C ⊆ P(T ) be convex and let h : P(T ) → R be a real valued function.

This function h is called convex on C, if and only if for all a, b ∈ C,

h(xλ) ≤ λh(a) + (1 − λ)h(b) , ∀λ ∈ [0, 1] ,

where xλ is uniquely defined by

d(xλ, b) = λd(a, b) and d(xλ, a) = (1 − λ)d(a, b) . (9.5)

A function is called convex on T if it is convex on C = P(T ). Note that it is possible
to define convexity also on general networks. Then one can show that d(x, c) for
c ∈ P(T ) fixed is convex if and only if the underlying graph is a tree. Median and
Center objective functions are convex functions on a tree (see Dearing et al. 1976).

Now let L(a, b) := L[a, b]\{a, b}, L(a, b] := L[a, b]\{a} and L[a, b) :=
L[a, b]\{b}. We have now the following important property (a proof can be found
in Hamacher et al. 1999).

Theorem 9.9 Let a, b ∈ P(T ) and h := (h1, . . . , hQ) be a vector of Q objective
functions, with hq convex on T , for all q ∈ Q = {1, . . . ,Q}. Then the following
holds:

{a, b} ⊆ X ∗
par if and only if L[a, b] ⊆ X ∗

par .

For T = (V ,E) and V ′ ⊆ V let

W(V ′) :=

⎛

⎜
⎜
⎜
⎝

w1(V ′)
w2(V ′)

...

wQ(V ′)

⎞

⎟
⎟
⎟
⎠

,

where wq(V ′) := ∑
vi∈V ′ w

q

i , ∀q ∈ Q.
Using Theorem 9.9 together with two lemmata from Goldman (1971b) and the

above definition of W(V ) we can prove the following result which paves the way
for solving Q-criteria median problems on a tree.
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Proposition 9.1 Let T be partitioned in such a way that T = T1 ∪ T2 ∪ {e} and
T1 ∩ T2 = ∅. Then W(V (T1)) dominates W(V (T2)) if and only if for all x ∈ P(T1)

there exists some y ∈ P(T2) which dominates x.

Now we can state a multicriteria version of Goldman’s dominance algorithm
(see Goldman 1971a). We start with a subtree containing only one leaf of the tree
(check for dominance) and enlarge this subtree until we get a Pareto location using
the criterion established in Proposition 9.1. This procedure is then repeated for all
leaves and we end up with a subtree of all Pareto locations by using Theorem 9.9.

Algorithm 9.7 (Solving Q-criteria median problems on a tree)

Input: T = (V ,E), with length function � and node weight vectors wq , q ∈ Q.

Step 0. Set W := W(V )

Step 1. Choose a leaf vk of T , which was not yet considered and give it the status
“considered”.

Step 2. IF V = {vk}
Set X ∗

par (f (V )) := X ∗
par (f (T )) := {vk} and go to Step 6

Step 3. Let vl be the only node adjacent to vk

IF (w1
k . . . w

Q
k )T < 1

2 W

THEN
• w

q
l := w

q
l + w

q
k , q = 1, . . . ,Q

• T := T \ {vk}
Step 4. IF there are any leaves left in T give them status “not considered”

and go to Step 1
Step 5. Set X ∗

par(f (V )) := V (T ), X ∗
par(f (T )) := T

Step 6. STOP

Output: X ∗
par(f (V )) and X ∗

par(f (T ))

The complexity of this algorithm is O(Q|V |). To illustrate the algorithm consider
the following example:

Example 9.11 Consider the tree depicted in Fig. 9.24. We solve the following
instance of a 3-criteria median problem. Let l(e) := 1, ∀e ∈ E. The weights of
the nodes are given in the following table:

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

w1 14 6 8 4 1 2 1 3 2 2 7

w2 11 3 3 24 5 2 2 3 2 2 5

w3 16 2 1 1 2 3 3 1 6 4 21

Therefore W =
⎛

⎝
50
62
60

⎞

⎠ and 1
2W =

⎛

⎝
25
31
30

⎞

⎠.
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Fig. 9.24 Tree of Example
9.11. The bold edges and
nodes indicate the set of
Pareto locations

v1

v2

v3 v4

v5

v6

v7

v8

v9

v10

v11

The adjacency structure of the tree is also given in Fig. 9.24. Now we check every
leaf till there is none left with status “not considered”.

• Take v1: w1 =
⎛

⎝
14
11
16

⎞

⎠ dominates W
2 =

⎛

⎝
25
31
30

⎞

⎠.

Therefore w2 :=
⎛

⎝
6 + 14
3 + 11
2 + 16

⎞

⎠ =
⎛

⎝
20
14
18

⎞

⎠.

By following the algorithm we delete v8, v7, v6, v5 and v4. The actual value of w3
is ⎛

⎝
13
32
4

⎞

⎠.

• Take v3: w3 =
⎛

⎝
13
32
4

⎞

⎠ does not dominate W
2 .

• Take v11: w11 =
⎛

⎝
7
5

21

⎞

⎠ dominates W
2 . Therefore w9 :=

⎛

⎝
9
7
27

⎞

⎠.
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• Take v10: w10 =
⎛

⎝
2
2
4

⎞

⎠ dominates W
2 . Therefore w9 :=

⎛

⎝
11
9

31

⎞

⎠.

• Take v9: w9 =
⎛

⎝
11
9

31

⎞

⎠ does not dominate W
2 .

Since we delete after every domination step the corresponding node from the tree
according to Algorithm 9.7 and no leaf with status not considered is left we end up
with

X ∗
par = L[v9, v3] .

9.3.2 Other Multicriteria Location Problems on Networks

In the previous two subsections we presented optimal time algorithms for one
facility median problems when looking for Pareto locations. We chose these two
problems because the reader gets some insight into the needed properties. In
addition, the simplification on trees caused by the uniqueness of paths can be seen.
In survey by Nickel et al. (2005a) an overview on other location problems can be
found. In Hamacher et al. (2002) an extension to 1-facility center problems as well
as to positive and negative weight vectors on the nodes is developed. Those ideas
have been further extended to problems with criteria dependent lengths in Skriver
et al. (2004). A unified framework for multicriteria ordered median functions can be
found in Nickel et al. (2005b), Nickel and Puerto (2005). In Colebrook and Sicilia
(2007b) the location of undesirable facilities on multicriteria location problems on
networks is looked into by using convex combinations of two objective functions.
Some complexity analysis for the cent-dian location problem has been developed by
Colebrook and Sicilia (2007a). Most approaches to the (in general NP-hard) multi-
facility case are treated as discrete location problems (see Sect. 9.4). Only Kalcsics
et al. (2015) found polynomial cases of multi-facility multicriteria location problems
on networks. In Kalcsics et al. (2014), the authors discuss the multicriteria p-facility
median location problem on networks with positive and negative weights; providing
an efficient algorithm to solve the bicriteria 2-facility problem and a polynomial
algorithm for the general problem when the number of facilities and criteria is fixed.

9.4 Discrete Location Problems

The previous sections show that planar and network multicriteria location problems
have been widely developed from a methodological point of view so that important
structural results and algorithms are known to determine solution sets. On the
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contrary, multicriteria analysis of discrete location problems has attracted less
attention. In spite of that, several authors have dealt with problems and applications
of multicriteria decision analysis in this field. An annotated bibliography with
many references up to 2005 can be found in Nickel et al. (2005a). In general,
very few papers focus in the complete determination of the whole set of Pareto-
optimal solutions. Nevertheless, there are some exceptions, such as the paper by
Ross and Soland (1980) that gives a theoretical characterization but does not exploit
its algorithmic possibilities, as well as the work by Fernández and Puerto (2003)
that addresses the computation of the entire set of Pareto-optimal solutions of the
multiobjective uncapacitated plant location problem. The methodology developed
was extended to the capacitated version by Arora and Arora (2010).

Nowadays, Multi-Objective Combinatorial Optimization (MOCO) (see Ehrgott
and Gandibleux 2000, Ulungu and Teghem 1994) provides an adequate framework
to tackle various types of discrete multicriteria problems such as the p-Median
Problem (p-MP). Within this emergent research area, several methods are known to
handle different problems. It is worth noting that most of MOCO problems are NP-
hard and intractable (see Ehrgott and Gandibleux 2000, for further details). Even
in most of the cases where the single objective problem is polynomially solvable
the multiobjective version becomes NP-hard. This is the case of spanning tree
problems and min-cost flow problems, among others. In the case of the p-MP, the
single objective version is already NP-hard. This ensures that the multiobjective
formulation is not solvable in polynomial time unless P=NP. In this context,
when time and efficiency become a real issue, different alternatives can be used
to approximate the Pareto-optimal set. One of them is the use of general-purpose
MOCO heuristics (Gandibleux et al. 2000). Another possibility is the design of “ad
hoc” methods based on one of the following strategies: (1) computing supported
non-dominated solutions; and (2) performing partial enumerations of the solutions
space. Obviously, the second strategy does not guarantee the non-dominated
character of all the generated solutions although the reduction in computation time
can be remarkable.

The aim of this section is to present methods to obtain the Pareto-optimal set for
the multiobjective p-median problem (p-MP). In all cases, our approach to solve the
multicriteria p-MP takes advantage of the problem’s structure. The first method is
exact and it determines the whole set of Pareto-optimal solutions based on new tools
borrowed from the theory of short rational generating functions. The second method
is an “ad hoc” approximate method that generates supported Pareto locations.

9.4.1 Model and Notation

Let I = {1, . . . ,M} and J = {1, . . . , N} respectively denote the sets of indices
for demand points and for plants, and Q = {1, . . . ,Q} denote the set of indices
for the considered criteria. For each criterion q ∈ Q , let (cqij )i∈I,j∈J ∈ Q

M×N be
the allocation costs of demand points to plants. The multicriteria p-median location
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problem is:

v-Minimize

⎛

⎝
M∑

i=1

N∑

j=1

c1
ij xij , . . . ,

M∑

i=1

N∑

j=1

c
q
ij xij

⎞

⎠ (9.6)

subject to
N∑

j=1

xij = 1, i ∈ I, (9.7)

xij ≤ yj , i ∈ I, j ∈ J, (9.8)

N∑

j=1

yj = p, (9.9)

xij ∈ {0, 1}, yj ∈ {0, 1}, i ∈ I, j ∈ J. (9.10)

As it is usual, v-min stands for vector minimum of the considered objective
functions. Here variable yj takes the value 1 if plant j is open and 0 otherwise. The
binary variable xij is 1 if the demand point i is assigned to plant j and 0 otherwise.
Constraints (9.7), together with integrality conditions on the x variables, ensure that
each demand point is assigned to exactly one plant, while constraints (9.8) guarantee
that no demand point is assigned to a non-open plant. Finally, constraint (9.9)
ensures that exactly p plants are opened.

Recall that in the single criterion case the integrality conditions on the x variables
need not be explicitly stated. The reason is that when the xij represent the proportion
of demand of client i satisfied by plant j (i.e. 0 ≤ xij ≤ 1), there exists an optimal
solution with xij = 0, 1, i ∈ I , j ∈ J . This property is not necessarily true when
multiple criteria are considered because, in general, there might be non-dominated
solutions with non-integer values and even non-supported non-dominated integer
solutions.

9.4.2 Determining the Entire Set of Pareto-Optimal Solutions

In order to characterize the set of Pareto locations of the p-MP we shall use rational
generating functions. Short rational generating functions were used by Barvinok
(1994) as a tool to develop an algorithm for counting the number of integer points
inside convex polytopes, based on the previous geometrical paper by Brion (1988).
The main idea is to encode those integer points in a rational function of as many
variables as the dimension of the space where the polytope is defined. Let P ⊂ Rn+
be a given convex bounded polyhedron. Its integer points may be expressed in a
formal sum f(P, z) = ∑

α zα with α = (α1, . . . , αn) ∈ P ∩ Z
n, where zα =

z
α1
1 · · · zαn

n Barvinok’s goal was to represent that formal sum of monomials in the
multivariate polynomial ring Z[z1, . . . , zn], as a “short” sum of rational functions



9 Location Problems with Multiple Criteria 255

with the same variables. Actually, Barvinok (1994) developed a polynomial-time
algorithm to compute those functions when the dimension, n, is fixed. A clear
example is the polytope P = [0, T ] ⊂ R with T ∈ N: the long expression of
the generating function of the integer points inside P is f(P, z) = ∑T

i=0 z
i , and it

is easy to see that its representation as sum of rational functions is the well known
formula (1 − zT+1)/(1 − z).

The above approach, apart from counting lattice points, has been used to develop
some algorithms to solve integer programming problems exactly. Specifically,
De Loera et al. (2004, 2005), and Woods and Yoshida (2005) presented different
methods to solve this family of problems using Barvinok’s rational function of the
polytope defined by the feasible set of the given problem.

First of all, for the sake of readability, we recall some results on short rational
functions for polytopes that shall be later used in our presentation. For further details
the interested reader is referred to Barvinok (1994), Barvinok and Woods (2003).

Let P = {x ∈ Rn : Ax ≤ b, x ≥ 0} be a rational polytope in Rn. The main idea
of Barvinok’s Theory was to encode the integer points inside a rational polytope in
a “long” sum of monomials:

f(P, z) =
∑

α∈P∩Zn

zα,

where zα = z
α1
1 · · · zαn

n , and then to re-encode, in polynomial-time for fixed
dimension, these integer points in a “short” sum of rational functions in the form

f(P ; z) =
∑

i∈I
εi

zui

n∏

j=1

(1 − zvij )

,

where I is a polynomial-size indexing set, εi ∈ {1,−1}, and ui, vij ∈ Z
n for all i

and j (Theorem 5.4 in Barvinok and Woods 2003).
It is well-known that enumerating the entire set of Pareto-optimal solutions of

general multiobjective integer linear problems is #P-hard even in fixed dimension
(see, e.g., Ehrgott and Gandibleux 2002 and Chinchuluun and Pardalos 2007).
Therefore listing these solutions, in general, is hopeless. Nevertheless, one can try to
represent these sets in polynomial time using a different strategy by simply encoding
their elements in an efficient way. This strategy has been applied by Blanco and
Puerto (2012). In that paper, it is proved that using short generating functions of
rational polytopes, one can encode the whole set of Pareto-optimal solutions of
MOILP in polynomial time, fixing only the dimension of the space of variables.
As an application of this result we can state the following theorem.

Theorem 9.10 Assume that the number of facilities M and plants N is fixed.
Then, in polynomial time, we can encode the entire set of Pareto-optimal solutions
for (9.6)–(9.10) in a short sum of rational functions.
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Proof Apply Theorem 1 in Blanco and Puerto (2012) to the polytope of Prob-
lem (9.6)–(9.10). ��

The combination of Theorem 9.10 and Theorem 7 in De Loera et al. (2009)
results in the following theorem.

Theorem 9.11 Assume M and N are constant. There exists a polynomial-delay
polynomial-space procedure to enumerate the entire set of Pareto-optimal solutions
of (9.6)–(9.10).

This construction can be implemented for problems of small to medium size
dimension using the open source software barvinok, see Verdoolaege (2008).

9.4.3 Determining Supported Pareto-Optimal Solutions

In some situations it suffices to generate the set of supported Pareto-optimal points.
It is well-known that the set of supported Pareto-optimal solutions to a problem can
be obtained by solving the scalarized problem for all possible values of the scalar
weights in the standard Q-dimensional simplex �Q = {λ ∈ R

Q : ∑Q
q=1 λ

q =
1, λq ≥ 0, ∀q = 1, . . . ,Q}.

In order to describe how to obtain these solutions in problem (9.6)–(9.10) we
need to introduce some additional notation. We denote by B any feasible basis of
the linear relaxation of Problem (9.6)–(9.10); and by N all the columns that are not
in B. Also, abusing notation, as usual in linear programming, we shall refer to the
indices determining the basis B (N ) in the variables and the objective function by
(x, y)B ((x, y)N ) and cB (cN ), respectively.

For any λ ∈ �Q, we shall denote by c(λ) = (cij (λ))ij , where cij (λ) =
∑Q

q=1 λ
qc

q
ij .

For each feasible basis B, consider the subdivision of the space �Q induced by
the hyperplanes:

λqc
q
BB

−1N − λqc
q

N
= 0, q ∈ Q.

Next, let λQB ∈ �Q be a parameter such that it belongs to the relative interior of
one of the elements in the above subdivision and satisfies cB(λQ)B−1N−cN(λQ) ≤
0. This choice of λQ ensures that the problem:

Minimize
M∑

i=1

N∑

j=1

cij (λ
Q
B )xij (9.11)

subject to
N∑

j=1

xij = 1, i ∈ I, (9.12)
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xij ≤ yj , i ∈ I, j ∈ J, (9.13)

N∑

j=1

yj = p, (9.14)

xij ≥ 0, yj ≥ 0, i ∈ I, j ∈ J. (9.15)

will identify supported Pareto-optimal solutions of the linear relaxation of Prob-
lem (9.6)–(9.10). However, these Pareto-optimal solutions may result in fractional
location variables since Problem (9.11)–(9.14) is a scalarization of the continuous
version of our original multiobjective location problem. To avoid this inconvenience
we shall solve the binary version of (9.11)–(9.14), namely

Minimize
M∑

i=1

N∑

j=1

cij (λ
Q
B )xij (9.16)

subject to
N∑

j=1

xij = 1, i ∈ I, (9.17)

xij ≤ yj , i ∈ I, j ∈ J, (9.18)

N∑

j=1

yj = p, (9.19)

xij ∈ {0, 1}, yj ∈ {0, 1}, i ∈ I, j ∈ J. (9.20)

Any optimal binary solution of (9.16)–(9.20) gives a supported Pareto-optimal
solution of our original multiobjective location problem. Repeating the above
process for all feasible basis of Problem (9.6)–(9.10) will result in a set of supported
Pareto-optimal solutions for the problem.

9.4.4 Other References in Discrete Location Problems

In the previous two subsections, the entire set of Pareto locations is characterized
using rational generating functions of integer points in polytopes and supported
Pareto-optimal solutions are identified by solving binary linear problems. These
approaches provide the reader with a general idea of the tools needed to characterize
the set of Pareto optimal solutions in discrete location problems. Some additional
references can be found in Nickel et al. (2005a). Also Farahani et al. (2010) reviews
results and developments in multicriteria location problems.

In the following we list some interesting recent references in this field:
Özpeynirci (2017) introduces new properties that restrict the possible locations
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of the non-dominated points necessary for computing the nadir points and applied
this methodology to multiobjective integer location problems. Pecci et al. (2017)
study the multiobjective co-design problem of optimal valve placement and
operation in water distribution networks. The resulting optimization problem is
a multiobjective mixed integer nonlinear optimization problem. The multi-objective
competitive location problem with distance-based attractiveness for two facilities
is introduced in Wang et al. (2018). The multiobjective version of the obnoxious
p-median problem was studied in Colmenar et al. (2018). That paper obtains
high-quality approximations to the efficient front of the bi-objective case using a
Multi-Objective Memetic Algorithm. Karatas and Yakici (2018) presents a novel
methodology for solving multi-objective facility location problems with the focus
on public emergency service stations, considering the p-median problem, the
maximal coverage location problem and the p-center problem.

9.5 Conclusions

In this chapter we have presented and analyzed some of the most important models
of multicriteria location problems considering three different decision spaces:
continuous, networks and discrete. This material provides a general overview of
the state-of-the-art of the field as well as a number of references that can be used by
the interested readers to go for a further analysis of the topic. Emphasis was put on
an efficient (if possible) description of the whole set of Pareto locations.

Acknowledgements The authors were partially supported by projects MTM2016-74983-C2-
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Chapter 10
Ordered Median Location Problems

Justo Puerto and Antonio M. Rodríguez-Chía

Abstract This chapter analyzes the ordered median location problem in three
different frameworks: continuous, discrete and networks; where some classical but
also new results have been collected. For each solution space we study general
properties that lead to solution algorithms. In the continuous case, we present two
solution approaches for the planar case with polyhedral norms (the most intuitive
case) and a novel approach applicable for the general case based on a hierarchy
of semidefinite programs that can approximate up to any degree of accuracy the
solution of any ordered median problem in finite dimension spaces with polyhedral
or �p-norms. We also cover the problem on networks deriving finite dominating
sets for some particular classes of λ parameters and showing the impossibility of
finding a FDS with polynomial cardinality for general lambdas in the multifacility
case. Finally, we present a covering based formulation for the capacitated discrete
ordered median problem with binary assignment which is rather promising in terms
of gap and CPU time for solving this family of problems.

10.1 Introduction

The Ordered Median location problem, see Nickel and Puerto (2005), has been
recognized as a powerful tool from a modeling point of view within the field of
Location Analysis. Actually, this problem provides a common framework for most
of the classical location problems (median, center, k-centrum, centdian, trimmed-
mean, among others) as well as for others which have not been studied before. As
an illustrative example, in the well-known case of logistics supply chain networks,
this modeling tool allows to distinguish the roles played by the different parties
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in the network inducing new type of distribution patterns, see Kalcsics et al.
(2010a,b). This type of formulation incorporates flexibility through rank dependent
compensation factors, and it allows one to model situations where the driving force
in a distribution problem can fall in any of its different parties.

The goal of the ordered median location problem is to minimize the
ordered weighted average of the distances or transportation costs, between the
clients/demand points and the server, once we have applied rank dependent
compensation factors on them. These rank dependent weights allow us, for instance,
to compensate unfair situations. Indeed, if a solution places a set of facilities so that
the accessibility cost of a demand point at j is in the s-th position in the ordered
sequence of cost between each client and its corresponding server and the cost of a
demand point at j ′ is in the t-th position with s < t , the model tries to favor j ′ with
respect to j by assigning to the demand point in the s-th position a smaller weight
than the one assigned to demand point in the t-th position. (Note that these weights
do not penalize site j but instead they compensate site j ′ because these weights
reduce the dispersion of the costs.) In order to incorporate this ordinal information
in the overall transportation cost, the objective function applies a correction factor
to the transportation cost for each demand point (to reach the facility) which is
dependent on the position of that cost relative to similar costs from other demand
points. For example, a different penalty might be applied if the transportation cost
of a demand point at j was the 5th-most expensive cost rather than the 2nd-most
expensive, see Boland et al. (2006), Marín et al. (2009), Nickel and Puerto (2005),
Puerto and Fernández (2000), Rodríguez-Chía et al. (2000). It is even possible to
neglect some costs by assigning a zero penalty. This adds a “sorting”-problem to the
underlying location problem, making its formulation and solution more challenging.

This type of objective function has been extensively studied and successfully
applied in a variety of problems within the literature of Location Analysis. Puerto
and Fernández (2000) and Papini and Puerto (2004) characterize the structure of
optimal solutions sets. Rodríguez-Chía et al. (2000), Blanco et al. (2013, 2014),
Espejo et al. (2009), Nickel et al. (2005), Drezner (2007), Drezner and Nickel
(2009a,b) and Rodríguez-Chía et al. (2010), among others, develop algorithms
for different continuous ordered median location problems. In addition, there are
nowadays some successful approaches available when the framework space is either
discrete (see Boland et al. 2006; Domínguez-Marín et al. 2005; Espejo et al. 2009;
Labbé et al. 2017; Martínez-Merino et al. 2017; Deleplanque et al. 2018; Marín
et al. 2009, 2010; Puerto et al. 2011, 2014, 2013; Redondo et al. 2016; Turner et al.
2015) or a network (see Berman et al. 2009; Kalcsics et al. 2003, 2002; Nickel and
Puerto 1999; Puerto and Tamir 2005; Puerto and Rodríguez-Chía 2005; Rozanov
and Tamir 2018; Turner and Hamacher 2011). The interested reader is also referred
to Chap. 7 in this book and Blanco et al. (2018) for some applications to the location
of extensive facilities.

The aim of this chapter is to introduce the reader into the field of ordered
median location providing some modeling tools and properties. These elements
will allow one to formulate and solve location problems in different solution
spaces (continuous, networks and discrete) using this unifying tool. To achieve
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this goal, in the next section we formally introduce the family of ordered median
functions (OMf ). Sections 10.3.2, 10.4 and 10.5 are devoted to analyze the ordered
median location problem in three different solution spaces: continuous, networks
and discrete, respectively. The chapter ends with some concluding remarks.

10.2 The Ordered Median Function

As mentioned above, the structure of Ordered Median Functions involves a nonlin-
earity in the form of an ordering operation that introduces a degree of complication
but at the same time gives an extra freedom which allows one a lot of flexibility in
modeling. In this section, we will review interesting properties of these functions in
a first step to understand their behavior and then, we shall give a characterization of
this objective function.

We start defining the ordered median function. This function is a weighted
average of ordered elements. For any x ∈ R

n denote xord = (x(1), . . . , x(n)) where
x(1) ≤ x(2) ≤ . . . ≤ x(n). We consider the function:

sortn : R
n −→ R

n

x −→ xord.
(10.1)

Definition 10.1 The function fλ : R
n −→ R is an ordered median function, for

short fλ ∈ OMf(n), if fλ(x) = 〈λ, sortn(x)〉 for some λ = (λ1, . . . , λn) ∈ R
n,

where 〈, 〉 denotes the usual scalar product in R
n.

It is clear that ordered median functions are nonlinear. Whereas the nonlinearity
is induced by the sorting. One of the consequences of this sorting is that the pseudo-
linear representation given in Definition 10.1 is pointwise defined. Nevertheless,
one can identify its linearity domains. (See Puerto and Fernández 2000; Nickel
and Puerto 2005; Rodríguez-Chía et al. 2000.) The identification of these regions
provides us with a subdivision of the framework space where in each of its cells the
function is linear. Obviously, the topology of these regions depends on the space and
on the lambda vector. A detailed discussion can be found in Puerto and Fernández
(2000). As mentioned in the introduction, different choices of lambda lead also to
different functions within the same family: λ = (1/n, . . . , 1/n) is the mean average,
λ = (0, . . . , 0, 1) is the center, λ = (α, . . . , α, α, 1) is the α-centdian, α ∈ [0, 1],
λ = (0, . . . , 0, 1, k. . ., 1) is the k-centrum or λ = (α, 0, . . . , 0, 1 − α) is Hurwicz’s
criterion, see Chaps. 1, 2 and 4 for further details.

These functions are not new and some operators related to them have been
developed by other authors independently. This is the case of the ordered weighted
operators (OWA) studied by Yager (1988) to aggregate semantic preferences in
the context of artificial intelligence; as well as SAND functions (isotone and
sublinear functions) introduced by Francis et al. (2000) to study aggregation errors
in multifacility location models.
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First, we recall some simple properties and remarks concerning ordered median
functions. Most of them are natural questions that appear when a family of functions
is considered. Partial answers are summarized in the following proposition.

Proposition 10.1 Let fλ(x), fμ(x) ∈ OMf(n).

(1) fλ(x) is a continuous function.
(2) fλ(x) is a symmetric function , i.e., for any x ∈ R

n fλ(x) = fλ(sortn(x)).
(3) fλ(x) is a convex function iff λ1 ≤ . . . ≤ λn.
(4) If c1 and c2 are constants, then the function c1fλ(x) + c2fμ(x) ∈ OMf(n).
(5) If {fλr (x)} is a sequence of ordered median functions that pointwise converges

to a function f , then f ∈ OMf(n).
(6) If {fλr (x)} is a set of ordered median functions, all bounded above in each point

x of Rn, then the pointwise maximum (or sup) function defined at each point x
is in general not an OMf .

(7) Let p < n − 1 and xp = (x1, . . . , xp), x\p = (xp+1, . . . , xr). If fλ(x) ∈
OMf(n) then fλp(x

p) + fλ\p (x\p) � fλ(x).
(8) Every ordered median function OMf(n) is a difference of two positively

homogeneous convex functions and has a representation

fλ(x) =
n∑

i=1

λ1ϕi(x),

where
ϕr(x) = min

{
max{xi1, xi2, . . . , xir }|i1 < i2 < . . . < ir and i1, i2, . . . , ir ∈

{1, . . . , n}} .
Proof The proof of (1) can be found in Rosenbaum (1950). The proof of (3) and (8)
are in Grzybowski et al. (2011). The proofs of items (2) and (4) are straightforward
and therefore are omitted. A proof of (5) and counterexamples for (6) and (7) are
given in Nickel and Puerto (2005, Examples 1.1 and 1.2). ��

In order to continue the analysis of the ordered median function we need to
introduce some notation that will be used in the following. Let P(1 . . . n) be the
set of all the permutations of the first n natural numbers,

P(1 . . . n) = {π : π is a permutation of 1, . . . , n}. (10.2)

We write π = (π(1), . . . , π(n)).
The next result, that we include for the sake of completeness, is well-known and

its proof can be found in the book by Hardy et al. (1952).

Lemma 10.1 Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two vectors in R
n.

Suppose that x ≤ y, then xord = (x(1), . . . , x(n)) ≤ yord = (y(1), . . . , y(n))
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To understand the nature of the OMf we need a precise characterization. This
will be done in the following two results using the concepts of symmetry and
sublinearity.

Theorem 10.1 A function f defined over Rn+ is continuous, symmetric and linear
over {x : 0 ≤ x1 ≤ . . . ≤ xn} if and only if f ∈ OMf(n).

Proof Since f is linear over X≤ := {x ≥ 0 : 0 ≤ x1 ≤ . . . ≤ xn}, there exists
λ = (λ1, . . . , λn) such that for any x ∈ X≤ f (x) = 〈λ, x〉. Now, let us consider
any y 
∈ X≤. There exists a permutation π ∈ P(1 . . . n) such that yπ ∈ X≤. By
the symmetry property it holds f (y) = f (yπ). Moreover, for yπ we have f (yπ) =
〈λ, yπ 〉. Hence, we get that for any x ∈ R

n

f (x) = 〈λ, xord〉.

Finally, the converse is trivially true. ��
There are particular instances of the λ vector that make their analysis interesting.

One of them is the convex case, i.e., λ1 ≤ . . . ≤ λn, where we can obtain a
characterization without the explicit knowledge of a linearity region.

Theorem 10.2 Given λ = (λ1, . . . , λn) with λ1 ≤ λ2 ≤ . . . ≤ λn; and
λπ = (λπ(1), . . . , λπ(n)) with π ∈ P(1 . . . n), a symmetric function f defined over
R

n is the support function of the set Sλ = conv{λπ : π ∈ P(1 . . . n)} if and only if
f is the convex ordered median function

fλ(x) =
n∑

i=1

λix(i). (10.3)

Proof Let us assume that f is symmetric and the support function of Sλ. Then,

f (x) = sup
s∈Sλ

〈s, x〉 = sup
π∈P(1...n)

〈λπ , x〉 = sup
π∈P(1...n)

〈λ, xπ 〉 =
n∑

i=1

λix(i).

Conversely, it suffices to apply Theorem 368 in Hardy et al. (1952) to (10.3). ��
Convexity is an important property within the scope of continuous optimization.

Thus, it is crucial to know the conditions that ensure this property. Nevertheless, in
the context of discrete optimization convexity cannot even be defined. Nevertheless,
in this case submodularity plays a similar role. (The interested reader is referred to
the chapter of the Handbook Discrete Optimization by McCormick 2005.) In the
following, we also recall a submodularity property of the convex ordered median
function, Puerto and Tamir (2005).
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Let x = (xi), y = (yi), be vectors in R
n. Define the meet of x, y to be the vector

x
∧

y = (min{xi, yi}), and the join of x, y by x
∨

y = (max{xi, yi}). The meet
and join operations define a lattice on R

n.

Theorem 10.3 (Submodularity Theorem) Given λ = (λ1, . . . , λn), satisfying
0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn, fλ(x) is submodular over the lattice defined by the
above meet and join operations, i.e.,

fλ(x
∨

y) + fλ(x
∧

y) ≤ fλ(x) + fλ(y), ∀x, y ∈ R
n.

10.3 The Continuous Ordered Median Problem

This section is devoted to the analysis of the Ordered Median Location Problem
in a continuous framework. For the ease of understanding, we have divided this
section in two main parts. In the first one, we restrict ourselves to the polyhedral
gauges emphasizing the planar case. In this setting, one can derive nice geometrical
properties that help to capture the main elements of the problem, namely its
linearity domains, ordered regions and intuitive algorithms for obtaining the optimal
solutions. Second, we address a general case where we shall apply a new global
optimization technique that allows us to handle and solve a wide range of ordered
median location problems.

10.3.1 The Single Facility Polyhedral Ordered Median
Location Problem

Consider a set of demand points A = {a1, a2, . . . , an} ⊂ R
n (representing existing

facilities or clients) and two sets of non negative scalars w = (w1, . . . , wn) and
λ = (λ1, . . . , λn). The element wi is the weight assigned to the existing facility ai
and it represents the importance of this demand point. The elements of λ allow us
to choose between different kinds of objective functions. We also consider a gauge
γ (·) : R

n −→ R to measure distances. Recall that any gauge is defined by the
Minkowski functional of a compact, convex set with the zero in its interior (see
Nickel and Puerto 2005).

The ordered median problem is given by:

min
x∈Rn

F (x) = 〈λ, sortn((w1γ (x − a1), . . . , wnγ (x − an)))〉. (10.4)

Note that the problem is well-defined even if ties occur. In that case any order of the
tied positions gives the same value.
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a1

a2

O12 O21

B(a1, a2)

Fig. 10.1 Two regions where the function of Example 10.1 has different linear representation

Example 10.1 Consider two demand points a1 = (0, 0) and a2 = (10, 5), λ1 =
100 and λ2 = 1 with �1-norm as gauge and w1 = w2 = 1. We obtain only two
optimal solutions to Problem (10.4), lying in each demand point. Observe that a
linear representation of the objective function is regionwise defined and that the
objective function is not convex since we have a nonconvex optimal solution set,
see Fig. 10.1,

F(a1) = 100 × 0 + 1 × 15 = 15

F(a2) = 100 × 0 + 1 × 15 = 15

F(
1

2
(a1 + a2)) = 100 × 7.5 + 1 × 7.5 = 757.5.

In this section, for the sake of presentation, we restrict ourselves to study the
particular case where the distances are measured with polyhedral gauges, i.e., the
unit balls associated with these gauges are convex polytopes. For this reason we
will assume in this subsection that B ⊆ R

n is a bounded polytope whose interior
contains the zero and we denote the set of extreme points of B by Ext(B) = {eg :
g = 1, . . . ,G }. The polar set B0 of B is given by B0 = {x ∈ R

n : 〈x, p〉 ≤
1 ∀p ∈ B}. In the polyhedral case, B0 is also a polytope, see Ward and Wendell
(1985) and Durier and Michelot (1985). The normal cone to B at x is given by
N(B, x) := {p ∈ R

n : 〈p, y−x〉 ≤ 0 ∀ y ∈ B} and the boundary of B is denoted
by bd(B) .
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In what follows, we recall some geometrical properties of the planar formulation
of Problem (10.4) which give us specific insights into the considered model. In this
case we define fundamental directions as the halflines defined by 0 and the extreme
points of B. Let π = (pi)i=1,...,n be a family of elements of Rn such that pi ∈ B0

for each i ∈ {1, . . . , n} and let Cπ = ⋂n
i=1(ai + N(Bo, pi)). A nonempty convex

set C is called an elementary convex set (e.c.s.) if there exists a family π such that
Cπ = C.

It should be noted that if the unit balls are polytopes we can obtain the elementary
convex sets as intersections of cones generated by fundamental directions of these
balls pointed at each demand point. Therefore each elementary convex set is a
polyhedron whose vertices are called intersection points (see Fig. 10.1). Finally, we
recall that in the planar case an upper bound of the number of elementary convex
sets is O(n2G 2) where G is the number of extreme points of B (see Durier and
Michelot (1985) for further details).

Although the objective function of Problem (10.4) may look like the one of the
Weber problem we do not have a unified linear representation of such a function in
the whole space. From the definition of the objective function, it is easy to see, that
the representation may change every time γ (x−ai)−γ (x−aj ) becomes 0 for some
i, j ∈ {1, . . . , n} with i 
= j . Next, we analyze the sets where the representation of
the objective function as a weighted sum stays unchanged.

Definition 10.2 The set Bγ (ai, aj ) consisting of points {x : wiγ (x − ai) =
wjγ (x − aj ), i 
= j } is called bisector of ai and aj with respect to γ .

As an illustration of Definition 10.2 one can see in Fig. 10.1 the bisector line for
the points a1 and a2 with the �1-norm. The set of bisectors builds a subdivision of
the plane (very similar to the well-known order−k Voronoi diagrams, see the book
Okabe et al. 1992). The cells of this subdivision will be called from now on ordered
regions. We formally introduce this concept.

Definition 10.3 Given a permutation σ ∈ P(1, . . . , n), the ordered region Oσ is
the following set

Oσ = {x ∈ R
n : wσ1γ (x − aσ1) ≤ . . . ≤ wσnγ (x − aσn)}.

Observe that these regions need not be convex sets, see Fig. 10.1. The ordered
regions play a very important role in the algorithmic approach developed for solving
the problem. Moreover, under the above hypothesis the overall number of ordered
regions in the planar case is O(n4G 2), see Rodríguez-Chía et al. (2000) for further
details. The importance of these regions is that the ordered median function has a
unique linear representation in the interior of the intersection of any ordered region
with any elementary convex set. The sets resulting of these intersections are called
generalized elementary convex sets and it is known that the entire set of optimal
solutions of Problem (10.4) always coincides with some generalized elementary
convex sets, see Puerto and Fernández (2000) for further details.
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Although the set of optimal solutions of Problem (10.4) always coincides with
a generalized elementary convex set, the large number of these regions and their
intricate geometry requires some kind of good generation and enumeration schemes
to derive an algorithm. This approach is doable in the plane for polyhedral gauges,
where one can easily derive an appealing geometrical algorithm to solve these
problems. Compute the subdivision of the plane induced by the lines defining
the fundamental directions of the gauges and the bisectors. Observe that this con-
struction can be efficiently performed using any algorithm to generate subdivisions
induced by arrangements of hyperplanes, see Edelsbrunner (1987). The complexity
of computing the ordered regions and its number is O(n4G 2). Next, one needs to
evaluate the objective function in each vertex of the subdivision. Each evaluation
can be done in O(nG lognG ). This results in an algorithm that solves the problem
in the plane with a complexity of O(n5G 3 lognG ).

In what follows we present an alternative, intuitive solution approach for the
polyhedral version of the ordered median problem that consists in a enumerative
algorithm that solves a linear program per visited ordered region. In order to do that,
we first obtain some interesting properties of the following linear program where Oσ

is an ordered region defined by the permutation σ :

minimize
∑n

i=1 λizσi
subject to wi〈e0

g, x − ai〉 ≤ zi, e
o
g ∈ Bo, i = 1, 2, . . . , n

zσi ≤ zσi+1 i = 1, 2, . . . , n − 1
(Pσ )

where e0
g are the extreme points of B0.

Lemma 10.2 Let X∗ be an optimal solution of Pσ .

(i) If X∗ ∈ Oσ then X∗ is also an optimal solution to the ordered median problem
constrained to Oσ .

(ii) If X∗ ∈ Oσ ′ 
= Oσ then the optimal solution of the ordered median problem
constrained to Oσ ′ is better than the optimal solution of the ordered median
problem constrained to Oσ .

Proof

(i) At an optimal point X∗ in Oσ we have

wi〈eogi , X∗ − ai〉 = zi, i = 1, 2, . . . , n , for some gi,

which means that zi = wiγ (X
∗ − ai) and the result follows.

(ii) At an optimal point X∗ of Pσ in Oσ ′ we have

〈eog,X∗ − ai〉 < zi for all g

for at least one i. This means that we can decrease the objective function by
moving from Oσ to Oσ ′ and the result follows. ��
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Based on Lemma 10.2 we develop another algorithm for this problem. For each
ordered region we solve the problem as a linear program which geometrically means
either finding the locally best solution in this ordered region or finding out that this
region does not contain the global optimum by Lemma 10.2. In the former case
two situations may occur. First, if the solution lies in the interior of the considered
region (in R

n) then we move to a different one not yet processed and secondly, if
the solution is on the boundary we do a local search in the neighborhood regions
where this point belongs to. It is worth noting that to accomplish this search a list
L containing the already visited neighborhood regions is used in the algorithm.
Besides, it is also important to realize that neither Step 2 nor Step 5 of the next
algorithm need to explicitly construct the corresponding ordered region. It suffices
to evaluate and to sort the distances to the demand points. In addition, this algorithm
can be improved in the interesting, important case where λ1 ≤ . . . ≤ λn. In this
situation the objective function is globally convex and this fact can be exploited to
reduce the enumeration of the entire list of ordered regions. Indeed, if one optimal
solution of any Problem Pσ is interior to the ordered region Oσ or this solution
cannot be improved in adjacent regions then by the global convexity property of the
objective function, it is the global minimum. Otherwise, one can follow a descent
iterative scheme moving from one region to another one not previously visited. The
above arguments justify the validity of the following algorithm for the convex case.
Alternatively, one could simply resort to general randomized subgradient descent
algorithms which, under mild conditions (see Ruszczynski and Syski 1986) will
converge to the global optimal solution due to the finiteness of the linearity regions
of these problems.

Algorithm 10.1

Step 1. Choose xo as an appropriate starting point. Initialize L := ∅, y∗ = xo.
Step 2. Consider Oσo which y∗ belong to, where σo determines the order.
Step 3. Solve the linear program Pσ 0 . Let u0 = (x0

1 , x
0
2 , z

0
σ ) be an optimal

solution. If x0 = (x0
1 , x

0
2 ) 
∈ Oσo then let Oσo be such that x0 ∈ Oσo and go

to Step 3.
Step 4. Let yo = (x0

1 , x
0
2 ).

Step 5. If yo belongs to the interior of Oσo then set y∗ = y0 and go to Step 8.
Step 6. If F(yo) 
= F(y∗) then L := {σ 0}
Step 7. If there exist i and j verifying γ (yo − aσo

i
) = γ (yo − aσo

j
) with i < j

such that (σ o
1 , . . . , σ

o
j , . . . , σ

o
i , . . . , σ

o
n ) 
∈ L then do

(a) y∗ := yo, σo := (σ o
1 , σ

o
2 , . . . , σ

o
j , . . . , σ

o
i , . . . , σ

o
n )

(b) L := L ∪ {σo}
(c) go to Step 3

else go to Step 8 (Optimum found)
Step 8. Output y∗
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The above algorithm is efficient in the sense that it is polynomially bounded
in fixed dimension. Once the dimension of the problem is fixed, its complexity is
dominated by the complexity of solving a linear program for each ordered region.
Since the number of ordered regions is polynomially bounded, Algorithm 10.1 is
polynomial.

The nice geometry of the problem in the plane allows us to derive the two above
algorithms. Nevertheless, this geometry in higher dimension is rather intricate and
the above approach, based on building ordered regions, is very difficult since no
efficient algorithm for computing bisectors is available in dimension greater than 2.

In spite of that, we will present an alternative algorithm for solving the single
facility ordered median problem in any dimension d . For this, we shall introduce
a valid MILP model that provides the optimal solution of the problem. Indeed,
consider the following set of binary variables

zij :=
⎧
⎨

⎩

1 if the distance induced by facility i

goes in sorted position j

0 otherwise.

and the continuous variable

θj = distance between a facility and its server in the j -th position in the ordered

sequence of distances between each facility and its corresponding server.

In order to minimize the ordered median function for a given set of nonnegative
lambda parameters λ1, . . . , λn, we define the following problem.

minimize
n∑

j=1

λj θj (10.5)

subject to (1 − zij )M + θj ≥ wi〈e0
g, x − ai〉, eog ∈ Bo, i, j = 1, 2, . . . , n (10.6)

n∑

i=1

zij = 1, j = 1, . . . , n (10.7)

n∑

j=1

zij = 1, i = 1, . . . , n (10.8)

θj ≤ θj+1, j = 1, . . . , n − 1 (10.9)

θj ≥ 0, j = 1, . . . , n (10.10)

zij ∈ {0, 1}, i, j = 1, . . . , n (10.11)

x ∈ R
d . (10.12)
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Constraints (10.7) and (10.8) define a permutation by placing a single distance to
a facility at each position and each distance to a facility at a single sorted position.
Constraints (10.6) relate distance values with the values placed in a sorted sequence.
Constraint (10.9) imposes that the sorted values are ordered non-increasingly.
Finally, (10.10)–(10.12) define the range of variables of the model.

The above approach solves efficiently the problem in any dimension provided
that the gauges used to measure distances are polyhedral since Problem (10.5)–
(10.12) is a MILP that can be handled with any of the nowadays available MIP
solvers.

We would like to conclude this section with some comments on several exten-
sions of the considered problem. On the one hand, the multicriteria planar version
of the above problem was analyzed in Nickel et al. (2005). On the other hand, the
planar case of the ordered median problem using an �p-norm was also studied
by Drezner and Nickel (2009a,b) where techniques of global optimization were
used for solving it. In addition, Espejo et al. (2009), Rodríguez-Chía et al. (2010)
proposed an adaptation of the Weiszfeld algorithm for the convex version of this
problem, i.e., 0 ≤ λ1 ≤ . . . ≤ λn. Finally, we would like to mention some
references that consider the multifacility version of particular classes of ordered
median problems. These references can be seen as a starting point to dig into this
challenging topic. The interested reader is referred to Blanco et al. (2016), Ben-
Israel and Iyigun (2010), Brimberg et al. (2000), Schöbel and Scholz (2010) for
different approaches to the continuous multifacility location problem.

10.3.2 Generalized Continuous Ordered Median Location
Problems

This section extends the analysis presented above, in Sect. 10.3.1, to the case of non-
polyhedral norms and any dimension d . In doing that we shall cast that problem
within the more general paradigm of polynomial programming. This approach
allows us to apply powerful tools borrowed from the theory of global optimization to
solve our original problem, see Blanco et al. (2013). This section contains advanced
material which is self-contained. For this reason those nonspecialized readers not
interested in global optimization techniques may decide to skip it without losing
continuity with the remaining sections of this chapter.

We are given a set A = {a1, . . . , an} ⊂ R
d endowed with a �τ -norm (here �τ

stands for the norm ‖x‖τ =
(∑d

i=1 |xi |τ
)1/τ

, for all x ∈ R
d ); and a feasible domain

K := {x ∈ R
d : gj (x) ≥ 0, j = 1, . . . , �} ⊂ R

d , assumed to be a closed semi-
algebraic set, i.e., a set defined by a finite number of polynomial inequalities, where
each gj (x) ∈ R[x] is a polynomial, being R[x] the ring of real polynomials in
(x1, . . . , xd). Since we are interested in solving location problems we shall assume
without loss of generality that we wish to solve the problem in a bounded domain so
that K is compact. The goal is to find a point x∗ ∈ K minimizing some globalizing
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function of the distances to the set A. Here, we consider that the globalizing function
is rather general and that it is given as an ordered weighted average of polynomials
(the reader may observe that the same approach also extends to rational functions,
Blanco et al. 2013).

Some well-known examples, that are formulated in the above terms, are the
following (see, e.g., Blanquero and Carrizosa 2009, Drezner 2007, Espejo et al.
2009, Kalcsics et al. 2015, López-de-los-Mozos et al. 2008 or Nickel and Puerto
2005): f (u1, . . . , un) = ∑n

i<j |ui − uj |, is the absolute deviation or envy cri-

terion, f (u1, . . . , un) = ∑n
i=1(ui − 1/n

∑n
j=1 uj )

2, is the variance function,

f (u1, . . . , un) = ∑n
j=1 wj/u

2
j , where wj are scalar weights, is the obnoxious

facility criterion and f (u1, . . . , un) = ∑n
j=1 bj/(1 + hj |uj |λ), with bj and hj

appropriate weights, is the Huff competitive location objective function.
The main feature and what distinguishes location problems from other general

purpose optimization problems, is that the dependence of the decision variables
is given through the norms to the demand points in A, i.e., ‖x − ai‖τ . In this
section, we consider a generalized version of the ordered continuous single facility
location problem over closed semi-algebraic feasible sets, i.e., the Ordered Median
of Polynomial Functions problem:

ρλ := minimize {
m∑

j=1

λj f̃(j)(x) : x ∈ K }, (OMPF)

where:

• λj ∈ R j = 1, . . . ,m are modeling weights.
• fj (u) : Rn &→ R, with fj (u) ∈ R[u1, . . . , un] (the ring of real polynomials in

(u1, . . . , un)), x ∈ K for all j = 1, . . . ,m. We shall define the dependence of
fj to the decision variable x ∈ R

d via u = (u1, . . . , un), where ui : Rd &→ R,
ui(x) := ‖x − ai‖τ , i = 1, . . . , n. Therefore, the j -th component of the ordered
median objective function of our problems reads as:

f̃j (x) : Rd &→ R

x &→ f̃j (x) := fj (‖x − a1‖τ , . . . , ‖x − an‖τ ).

In the classical ordered median problem these functions correspond with the
distances from the demand points to the service facility, i.e. fj (‖x−a1‖τ , . . . , ‖x−
an‖τ ) = ‖x − aj‖τ ; thus, in our application to the ordered median problem we will
always assume to have m = n and functions f̃j (x) := ‖x − aj‖τ .

• K := {x ∈ R
d : gj (x) ≥ 0, j = 1, . . . , �} ⊂ R

d satisfies Archimedean
property. (See Lasserre (2009) for a detail discussion on the Archimedean
property and its implications in real algebraic geometry and global optimization.
In our setting this property is essentially equivalent to assume compact feasible
regions.)

• τ := r/s, r, s ∈ N, r ≥ s and gcd(r, s) = 1.
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First of all, since K is compact there exist M ′ > 0 such that ‖x‖2 ≤ M ′ for all
x ∈ K. Then, we observe that any feasible solution of (OMPF) satisfies ‖x−ai‖2 ≤
M ′ + ‖ai‖2 ≤ M ′ + max1≤i≤n ‖ai‖2 := M. Then, since all norms are equivalent
in R

d , there exists γ > 0 such that ‖x‖2τ /‖x‖2 ≤ γ , for all x ∈ R
d . Hence,

‖x − ai‖2τ ≤ γM =: M̄ . This bound will allow us to derive the constraints (10.21)
of our reformulation of Problem (OMPF). These constraints ensure that the feasible
region is bounded which in our framework is sufficient to imply compactness. For
this reason, we will call them from now on compactness constraints.

Next, our goal is to cast the above problem within the framework of polynomial
optimization. Associated with the above minimization problem we introduce an
equivalent formulation that will be useful to apply the moment tools to solve the
ordered median problem. For each i = 1, . . . ,m, j = 1, . . . ,m consider the
following family of decision variables for each x ∈ K

wij =
{

1 if f̃i (x) = f̃(j)(x),

0 otherwise.
.

However, we observe that �τ -norms are not, in general, polynomials. To avoid this
inconvenience, we introduce the following auxiliary problem. Observe that this
formulation lifts the original problem in a higher dimensional space to represent
the piecewise polynomials that appear in (OMPF) as polynomials in the new set of
variables.

ρλ = minimize
m∑

j=1

λj

m∑

i=1

fi(u)wij := pλ(x, u, v,w) (10.13)

subject to
m∑

j=1

wij = 1, i = 1, . . . ,m, (10.14)

m∑

i=1

wij = 1, j = 1, . . . ,m, (10.15)

m∑

i=1

wij fi(u) ≤
m∑

i=1

wij+1fi(u), j = 1, . . . ,m − 1, (10.16)

w2
ij − wij = 0, i, j = 1, . . . ,m, (10.17)

v2s
k� = (x� − ak�)

2r , k = 1, . . . , n, � = 1, . . . , d, (10.18)

ur
k = (

d∑

�=1

vk�)
s , k = 1, . . . , n, (10.19)
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m∑

j=1

w2
ij ≤ 1, i = 1, . . . ,m, (10.20)

d∑

j=1

v2
ij ≤ M̄2τ , i = 1, . . . , n, (10.21)

wij ∈ R, i, j = 1, . . . ,m, (10.22)

vk� ≥ 0, uk ≥ 0, k = 1, . . . , n, � = 1, . . . , d, (10.23)

x ∈ K. (10.24)

By means of the w variables, the objective function (10.13) is the ordered
weighted sum of the fi polynomials which can be written as the polynomial pλ. The
first set of constraints (10.14) ensures that for each x, f̃i (x) is sorted in a unique
position. The second set (10.15) ensures that the j th position is only assigned to
one polynomial function. The next constraints (10.16) state that f(1)(u) ≤ · · · ≤
f(m)(u). Constraints (10.17) are added to assure that wij ∈ {0, 1}. Next, the two
families of constraints (10.18) and (10.19) set ur

k as the correct value of ‖ak − x‖τ
(recall that τ = r/s). The last set of constraints (10.20) and (10.21) ensure that
Archimedean property holds for the new feasible region K of the above auxiliary
problem. (Note that this last set of constraints are redundant but it is convenient to
add them for a better description of the feasible set.)

We also observe that the above problem simplifies for those cases where r is even.
In these cases, we can replace the constraints (10.18) by the simplest constraints

vsk� = (xk − ak�)
r , ∀ k, �.

This reformulation reduces the degree of the polynomials defining the feasible set.
We illustrate the above formulation with a standard model in location analysis:

the k-centrum problem in the plane.

Example 10.2 Let us assume that we are given a set of demand points
A = {a1, . . . , an} ⊂ R

2, where ai = (ai1, ai2), for i = 1, . . . , n. We wish to
model the k-centrum (k < n) with �3-distance, i.e., r = 3 and s = 1, with respect
to the demand points in A and a feasible region defined by a set K. It is clear that in
this case d = 2, m = n and each function f̃i (x) := ‖x − ai‖3, i = 1, . . . , n.
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According to the model above this problem can be formulated as follows:

minimize
n∑

j=n−k+1

n∑

i=1

uiwij

subject to
n∑

i=1

wij = 1, j = 1, . . . , n,

n∑

i=1

wij = 1, j = 1, . . . , n,

n∑

i=1

wijui ≤
n∑

i=1

wij+1ui, j = 1, . . . , n − 1

w2
ij − wij = 0, i, j = 1, . . . , n,

v2
k� = (x� − ak�)

6, k = 1, . . . , n, � = 1, . . . , 2,

u3
k = (

d∑

�=1

vk�), k = 1, . . . , n,

n∑

j=1

w2
ij ≤ 1, i = 1, . . . , n,

2∑

j=1

v2
ij ≤ M̄6, i = 1, . . . , n,

wij ∈ R, i, j = 1, . . . ,m,

vk� ≥ 0, uk ≥ 0, k = 1, . . . , n, � = 1, . . . , d,
x ∈ K

Next, we get a result that shows the equivalence between the above polynomial
optimization formulation and our location problem (OMPF).

Theorem 10.4 Let x be a feasible solution of (OMPF) then there exists a solution
(x, u, v,w) for (10.13)–(10.24) such that their objective values are equal. Con-
versely, if (x, u, v,w) is a feasible solution for (10.13)–(10.24) then there exists a
solution (x) for (OMPF) having the same objective value. In conclusion, ρλ = ρλ.
Moreover, if K ⊂ R

d satisfies the Archimedean property then K ⊂ R
d+m2+n(d+1)

also satisfies the Archimedean property.

The interested reader is referred to Blanco et al. (2013, Theorem 4) for a detailed
proof.

Now, we can prove a convergence result that allows us to solve, up to any degree
of accuracy, the above class of problems. In order to proceed further we need to
introduce some additional material related to the Theory of Moments, Lasserre
(2009).

Recall that by R[x] we denote the ring of real polynomials in the variables x =
(x1, . . . , xd), for d ∈ N (d ≥ 1), and by R[x]r ⊂ R[x] the space of polynomials
of degree at most r ∈ N (here N denotes the set of non-negative integers). We also
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denote by B = {xα : α ∈ N
d} a canonical basis of monomials for R[x], where

xα = x
α1
1 · · · xαd

d , for any α ∈ N
d . Note that Br = {xα ∈ B : ∑d

i=1 αi ≤ r} is
a basis for R[x]r . For any sequence indexed in the canonical monomial basis B,
y = (yα)α∈Nd ⊂ R, let Ly : R[x] → R be the linear functional defined, for any
f = ∑

α∈Nd fα xα ∈ R[x], as Ly(f ) := ∑
α∈Nd fα yα .

The moment matrix Mr (y) of order r associated with y, has its rows and columns
indexed by (xα) and Mr (y)(α, β) := Ly(x

α+β) = yα+β , for |α|, |β| ≤ r (here
|a| stands for the sum of the coordinates of a ∈ N

d ). For g = ∑
γ∈Nd gγ x

γ ∈ R[x],
the localizing matrix Mr (gy) of order r associated with y and g, has its rows and
columns indexed by (xα) and Mr (gy)(α, β) := Ly(x

α+βg(x)) = ∑
γ gγ yγ+α+β ,

for |α|, |β| ≤ r . Let y = (yα) be a real sequence indexed in the monomial basis
(xβuγ vδwζ ) of R[x, u, v,w] (with α = (β, γ, δ, ζ ) ∈ N

d × N
n × N

nd × N
m2

).
Let h0(x, u, v,w) := pλ(x, u, v,w), and denote ξj := �(deggj )/2� and νj :=
�(deghj )/2�, where {g1, . . . , g�}, and {h1, . . . , h3m+m2+n(d+3)} are the polynomial

constraints that define K and K \ K in (10.13)–(10.24), respectively. For

r ≥ r0 := max{ max
k=1,...,�

ξk, max
j=0,...,3m+m2+n(d+3)

νj },

we introduce the hierarchy of semidefinite programs:

minimizey Ly(pλ)

subject to Mr (y) ' 0,
Mr−ξk (gk, y) ' 0, k = 1, . . . , �,
Mr−νj (hj , y) ' 0, j = 1, . . . , 3m + m2 + n(d + 3),

(Qr )

with optimal value denoted min Qr .

Theorem 10.5 Let K ⊂ R
d+m2+n(d+1) be the feasible domain of Problem (10.13)–

(10.24). Then, with the notation above:

(a) min Qr ↑ ρλ as r → ∞.
(b) Let yr be an optimal solution of the SDP relaxation (Qr ). If

rank Mr (yr ) = rank Mr−r0(y
r ) = t

then min Qr = ρλ and one may extract t points (x∗(k), u∗(k), v∗(k),w∗(k))tk=1 ⊂
K, all global minimizers of Problem (OMPF).

Proof The convergence of the semidefinite relaxation (Qr ) follows from a result
by Jibetean and de Klerk (2006, Theorem 9) that is applied here to the polynomial
function in (10.13) and the closed semi-algebraic set K. The second assertion on the
rank condition, for extracting optimal solutions, follows from applying (Lasserre
2009, Theorem 5.7) to the SDP relaxation (Qr ). ��
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We also observe that one can exploit the block diagonal structure of the prob-
lem (10.13)–(10.21) since the only monomials that appear in that formulation are of
the form xαu

β
i

∏m
j=1 v

γj
ij for all i = 1, . . . ,m. Hence, a result similar to Theorem 12

in Blanco et al. (2013) about a sparse reformulation also holds for this problem.
Tables 10.1 and 10.2 present some computational results obtained applying the

above technique for different planar ordered median problems. Programs were
coded in MATLAB R2010b and executed in a PC with an Intel Core i7 processor
at 2 × 2.93 GHz and 8 GB of RAM. The semidefinite programs were solved
by calling SDPT3 4.0, Kim-Chuan et al. (2006). We report the CPU times for
computing solutions as well as the gap, εobj, with respect to upper bounds obtained
with the battery of functions in optimset of MATLAB, which only provide
approximations on the exact solutions (optimality cannot be certified). In order to
compute the accuracy of an obtained solution, we use the following measure for the
error (see Blanco et al. 2013):

εobj = |the optimal value of the SDP − fopt|
max{1, fopt} , (10.25)

where fopt is the approximated optimal value obtained with the functions in
optimset. The interested reader is referred to Blanco et al. (2013, Section 5)
for further details and computational results using the tools in this section applied
to location problems.

10.4 The Ordered Median Problem on Networks

Let N = (G, �) denote a network with underlying graph G = (V ,E), with node
set V = {v1, . . . , vn} and edge set E = {e1, . . . , em}. We restrict ourselves to
undirected graphs. Therefore, we write every edge e ∈ E as {i, j }, vi , vj ∈ V .

Each edge e ∈ E is associated with a positive length by means of the function
� : E → R+. By d(vi , vj ), we denote the length of the shortest path between vi
and vj measured by �. Through w : V → R+ ∪ {0}, every vertex is assigned to
a nonnegative weight. A point x on an edge e = {i, j } is defined as a pair x =
(e, t), t ∈ [0, 1], with

d(vk, x) := d(x, vk) := min{d(vk, vi) + t�(e), d(vk, vj ) + (1 − t)�(e)}. (10.26)

The set of all the points of a network (G, �) is denoted by P(G). It should be noted
that this set also contains the nodes V .
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10.4.1 The Single Facility Ordered Median Problem

In this section we deal with the simplest version of the ordered median problem on
networks where just a single location is to be placed. In order to do that, we consider
the following notation. Let

d(x) := (w1d(v1, x), . . . , wnd(vn, x))

and

d≤(x) := (w(1)d(v(1), x), . . . , w(n)d(v(n), x))

a permutation of the elements of d(x), verifying

w(1)d(v(1), x) ≤ w(2)d(v(2), x) ≤ . . . ≤ w(n)d(v(n), x).

For the sake of simplicity, let d(i)(x) := w(i)d(v(i), x). The ordered median
problem on N is defined as

fλ(d(x)) :=
n∑

i=1

λid(i)(x) with λ = (λ1, . . . , λn) ≥ 0 , (10.27)

and

M(λ) := min
x∈P(G)

fλ(d(x)). (10.28)

In this section we state the fundamental properties of Problem (10.28). We
will present a localization result which generalizes the well-known results by
Hakimi on finite dominating sets for the center and median problems on networks
(Hakimi 1964) and gives some insight in the connection between median and center
problems.

For all vi, vj ∈ V, i 
= j define

EQij := {x ∈ P(G) : wid(vi , x) = wjd(vj , x)} (10.29)

and let EQ := ⋃{EQij : i, j with i 
= j }.
The points in EQ are called equilibria points of N . Two points a, b ∈ EQ are

called consecutive, if there is no other c ∈ EQ on the shortest path between a

and b. The points in EQ establish a partition on N with the property that for two
consecutive elements a, b ∈ EQ the permutation which gives the order of the vector
d≤(x) is the same for all x ∈ [a, b].

Now we will give a finite dominating set (FDS) for the optimal locations of
Problem (10.28), see Nickel and Puerto (1999) for further details.
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Theorem 10.6 An optimal solution for Problem (10.28) can always be found in the
set Cand := EQ ∪ V .

Proof Starting from the original graph G, build a set of new graphs G1, . . . ,GK

by inserting all points of EQ as new nodes. Now every subgraph Gi is defined by
either

I. Two consecutive elements of EQ on an edge or
II. An element vi ∈ V \EQ and the adjacent elements of EQ

and the corresponding edges. In this situation for every subgraph Gi the permutation
of d≤(x) is constant (by definition of EQ). Therefore for all x ∈ P(Gi) we have

n∑

i=1

λid(i)(x) =
n∑

i=1

λiwπ(i)d(vπ(i), x) ,

where π ∈ P(1, . . . , n), and P(1, . . . , n) is defined as the set of all permutations of
{1, . . . , n}. Therefore we can replace the objective by a classical median-objective.
Now we can apply Hakimi’s node dominance result in every Gi and the result
follows. ��

Theorem 10.6 also gives rise to some geometrical subdivision of the network
N . Like indicated in the proof of Theorem 10.6 we can assign to every subgraph
Gi, i = 1, . . . , k a n-tuple giving in the i-th position the i-th nearest vertex to all
points in Gi . As an example we have in Fig. 10.2 a graph with 3 nodes and all
weights wi and all lengths are 1.

This partition can be seen as a kind of higher order Voronoi diagram of N quite
related to the Voronoi partition of networks introduced in Hakimi et al. (1992).

For algorithmic purposes one should note that the set EQ can be computed by
intersection of all distance functions, see (10.26), on all edges. Since a distance
function has maximally one breakpoint on every edge we can use a line sweep

Fig. 10.2 A 3-node network
with EQ = {EQ12, EQ13,

EQ23, v1, v2, v3} and the
geometrical subdivision
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technique to determine EQ on one edge in O((n + k) logn), where k ≤ n2 is
the number of intersection points. Therefore we can compute EQ for the whole
network in O(m(n+k) logn) time. Of course, this is a worst-case bound and the set
of candidates can be further reduced by some domination arguments: Take for two
candidates x, y the corresponding weighted (and sorted) distance vectors d≤(x),
d≤(y). If d≤(x) is in every component strictly smaller than d≤(y) then there is
no positive λ with which fλ(d(y)) ≤ fλ(d(x)). This domination argument can
be integrated in any line sweep technique reducing, in most cases, the number of
candidates.

Example 10.3 Consider the network given in Fig. 10.3 with w1 = w2 = w5 = 1
and w3 = w4 = w6 = 2. Table 10.3 lists the set EQ, where the labels of the rows
EQij indicate that i, j are the vertices under consideration and the columns indicate

Fig. 10.3 A 6-node network
used in Example 10.3 where
the numbers on the edges
represent their length
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v4 v5

v63
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Table 10.3 List of the set EQ for Example 10.3

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {2, 5} {3, 5} {3, 6} {4, 5} {5, 6}
EQ12

1
2

2
3

5
6

2
3

1
2

EQ13
2
3

4
9

2
3

1
2

EQ14 1 2
3 0 0 8

9
8
9

1
6

EQ15
5
6

1
2

1
6

1
6

1
2

EQ16 1 1 8
9

8
9 0 5

6

EQ23
1
3

2
3

2
3

1
2

EQ24
2
3

2
3

1
2

EQ25 [ 3
4 , 1] 1 1

2 0 0 1
4

EQ26
2
3

8
9

1
3

1
6

EQ34
1
4

1
6

1
3

5
6

1
4

EQ35
1
6

1
9

1
3

1
3 1 1

EQ36 [ 5
6 , 1] 1 1

3
5
6

1
2 0

EQ45
1
2

1
3

1
3

1
9

1
3

EQ46 0 0 0 1
2 [ 2

3 , 1] [ 2
3 , 1] 1 0

EQ56
1
2

2
3

1
9

2
3
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the edge e = {r, s}. The entry in the table gives for a point x = (e, t) the value of t
(if t is not unique an interval of values is shown).

Now we only have to evaluate the objective function with a given set of λ-values
for EQ and determine the optima. Table 10.4 gives the solutions for some specific
choices for λ. To describe the solution set we use the notation EQ

ij
kl to denote the

part of EQkl which lies on the edge {i, j }.
Kalcsics et al. (2002) gives an FDS for the single facility ordered median problem
with general node weights, i.e., the w-weights can be negative. Moreover, for the
case of a directed network with non-negative w-weights, they prove that there is
always an optimal solution in V .

10.4.2 The p-Facility Ordered Median Problem

In this section we deal with the multi-facility extension of the ordered median
problem. The p-facility ordered median problem consists of finding a set Xp =
{x1, . . . , xp} that minimizes the following objective function

minimizeXp

n∑

i=1

λid(i)(Xp) (10.30)

where d(v,Xp) := mini=1,...,p d(v, xi) for all v ∈ V ; d(Xp) := (w1d(v1,Xp), . . . ,

wnd(vn,Xp)) and d≤(Xp) := (w(1)d(v(1), Xp), . . . , w(n)d(v(n),Xp)) a permuta-
tion of the elements of d(Xp), verifying:

w(1)d(v(1), Xp) ≤ . . . ≤ w(n)d(v(n),Xp).

The main result of this section establishes a generalization of the well-known
theorem of Hakimi which states that always exists an optimal solution in V .

Theorem 10.7 If λ1 ≥ λ2 ≥ . . . ≥ λn then Problem (10.30) has always an optimal
solution X∗

p contained in V .

Proof Since by hypothesis λ1 ≥ λ2 ≥ . . . ≥ λn we have that

dλ(d(Xp)) =
n∑

i=1

λid(i)(Xp) = minimize{
n∑

i=1

λidπ(i)(Xp) : π ∈ �({1, . . . , n})}.

Assume that Xp 
⊂ V . Then there must exist xi ∈ Xp with xi 
∈ V . Let e = {v,w}
be the edge containing xi and �(e) its length. Denote by Xp(s) = Xp \ {xi}∪ {x(s)}
where x(s) is the point on e with d(v, x(s)) = s, s ∈ [0, l(e)].
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The function g defined as g(s) = ∑n
i=1 λid(i)(Xp(s)) is concave for all s ∈

[0, �(e)] because it is the composition of a concave and a linear function, i.e.,

g(s) = min
π∈�({1,...,n})

{
n∑

i=1

λidπ(i)(Xp(s))

}

and each

dπ(j)(Xp(s)) = min{d(vπ(j), x1), . . . ,min{d(vπ(j), a) + s, d(vπ(j), b) + �(e) − s}, . . . ,
d(vπ(j), xn)}

is concave. Hence, g(s) = F(Xp(s)) ≥ min{F(Xp(0)), F (Xp(�(e))} and the new
solution set Xp(s) contains one vertex of V instead of xi . Repeating this scheme a
finite number of times the result follows. ��

In the previous section we proved that the set V ∪EQ always contains the set of
optimal solutions of the single facility problem (independent of the structure of λ).
It may seem natural to expect that the same result holds for the p-facility case as it
happens for the p-center problem. However, Example 10.4 shows that this property
fails to be true.

This easy example shows the limit for the set Cand = V ∪EQ to be a FDS (finite
dominating set) for the multifacility extension of our model. In the literature we
can find some characterizations of FDS for particular cases of the p-facility ordered
median problem. For instance, Kalcsics et al. (2003) studies the multifacility ordered
median problem where the λ-weights are defined as:

a = λ1 = . . . = λk 
= λk+1 = . . . = λn = b,

for a fixed k, such that, 1 ≤ k < n. They prove that the set Y , defined by (10.31), is
a FDS for this problem.

However, none of these papers deals with the general case of the multifacility
ordered median problem. In fact, these papers impose very restrictive hypotheses
such that their respective results can not be extended further, see Puerto et al. (2018)
for an updated review. In the following section we characterize a FDS for the general
2-facility ordered median problem.

10.4.2.1 A Finite Set of Candidates for the Two Facility Case

In this section we identify a finite set of candidates to be optimal solutions of the
2-facility ordered median problem. In order to consider the set of equilibrium points
as a finite set we will assume that EQ only contains the equilibrium points that are
isolated and the extreme points of the subedges in equilibrium, see Rodríguez-Chía
et al. (2005) for further details.
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Theorem 10.8 Consider the following sets:

R = {r : r = wid(vi , y), vi ∈ V, y ∈ V ∪ EQ},
Y (r) = {y ∈ P(G) : wid(vi , y) = r, vi ∈ V } with r ∈ R,

Y =
⋃

r∈R
Y (r), (10.31)

T = {X2 = (x1, x2) ∈ P(G) × P(G) : ∃vr , vs served by x1 and vr ′ , vs ′ served
by x2, such that wrd(vr , x1) = wr ′d(vr ′, x2) and wsd(vs, x1) = ws ′d(vs ′, x2).
Moreover, if wr = wr ′ and ws = ws ′ , then the slopes of the functions d(vr , ·) and
d(vs, ·), in the edge that x1 belongs to, must have the same (different) signs at x1
and the slopes of the functions d(vr ′, ·) and d(vs ′, ·), in the edge that x2 belongs to,
must have different (the same) signs at x2 }.

F = ((EQ ∪ V ) × Y ) ∪ T ⊂ P(G) × P(G). (10.32)

The set F is a finite set of candidates to be optimal solutions of the 2-facility ordered
median problem in the network N .

Remark 10.1 The structure of the set F is different from previous FDS which
appeared in the literature. Indeed, the set F is itself a set of candidates for optimal
solutions because it is a set of pairs of points. That means that we do not have to
choose the elements of this set by pairs to enumerate the whole set of candidates.
The candidate solutions may be either a pair of points belonging to (EQ ∪ V ) × Y

or a pair belonging to T , but they never can be one point of Y and another point of
any pair in T .

The following examples show that the set F can not be shrunk because even in
easy cases on the real line all the points are needed. The first example shows a graph
where the optimal solution X2 = (x1, x2) verifies that x1 is an equilibrium point
and x2 is not an equilibrium point which belongs to Y (r) \ (EQ∪ V ) for a given r .
In the second example the optimal solution X2 = (x1, x2) belongs to the set T .

Example 10.4 Let N = (G, �) be a network with underlying graph G = (V ,E)

where V = {v1, v2, v3, v4} and E = {{1, 2}, {2, 3}, {3, 4}}. The length function is
given by �({1, 2}) = 3, �({2, 3}) = 20, �({3, 4}) = 6. The w-weights are all equal
to one and the λ-weights are λ1 = 0.1, λ2 = 0.2, λ3 = 0.4, λ4 = 0.3, see Fig. 10.4.

It should be noted that this example can not have optimal solutions on the edge
{2, 3} because any point of this edge is dominated by v2 or v3. In addition, using the
symmetry of the problem we have omitted the evaluation of some of the elements
of Y .

In this example the optimal solution is given by x1 = p({1, 2}, 1.5) and x2 =
p({3, 4}, 1.5) (see Table 10.5). It is easy to check that x1 is an equilibrium point
between v1 and v2, and x2 ∈ Y (1.5). It is worth noting that the radius 1.5 is given
by the distance from the equilibrium point, p({1, 2}, 1.5), generated by v1 and v2 to
any of these nodes.
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| |
3 20 6

| |

v1 v2 v3 v4

Fig. 10.4 Network of Example 10.4 where the dots, the ticks and the small ticks are the nodes,
the equilibrium points and the elements of Y, respectively. Observe that in this case there are no
pairs in T

Table 10.5 Evaluation of the candidate pairs of Example 10.4

Candidate pair X2 Value Candidate pair X2 Value

p({1, 2}, 0), p({3, 4}, 0) 3 p({1, 2}, 1.5), p({3, 4}, 0) 2.7

p({1, 2}, 0), p({3, 4}, 1.5) 2.85 p({1, 2}, 1.5), p({3, 4}, 1.5) 2.4

p({1, 2}, 0), p({3, 4}, 3) 2.7 p({1, 2}, 1.5), p({3, 4}, 3) 2.55

| | |
5 20 5.1 1

| | | | | |
v1 v2 v3 v4 v5

Fig. 10.5 Network of Example 10.5 where the dots, the ticks, the small ticks and the stars are the
nodes, the equilibrium points, the elements of Y and T , respectively. By domination and symmetry
arguments not all the candidates are necessary and therefore, they are not depicted

Table 10.6 Evaluation of the candidate pairs of Example 10.5

Candidate pair X2 Value Candidate pair X2 Value

p({1, 2}, 0), p({3, 4}, 0) 11.81 p({1, 2}, 2.05), p({3, 4}, 3.05) 8.455

p({1, 2}, 0), p({3, 4}, 2.55) 11.6 p({1, 2}, 2.45), p({3, 4}, 2.55) 9.005

p({1, 2}, 0), p({3, 4}, 3.05) 10.6 p({1, 2}, 2.5), p({3, 4}, 0) 14.31

p({1, 2}, 0), p({4, 5}, 0) 10.61 p({1, 2}, 2.5), p({3, 4}, 2.5) 9.06

p({1, 2}, 0), p({4, 5}, 0.5) 11.66 p({1, 2}, 2.5), p({3, 4}, 2.55) 8.955

p({1, 2}, 0), p({4, 5}, 1) 11.71 p({1, 2}, 2.5), p({3, 4}, 2.6) 8.95

p({1, 2}, 0.5), p({4, 5}, 0.5) 11.16 p({1, 2}, 2.5), p({3, 4}, 3.05) 8.905

p({1, 2}, 1), p({4, 5}, 0) 10.61 p({1, 2}, 2.5), p({3, 4}, 3.6) 8.96

p({1, 2}, 1), p({4, 5}, 1) 11.71 p({1, 2}, 2.5), p({4, 5}, 0) 9.11

p({1, 2}, 1.45), p({3, 4}, 2.55) 10.005 p({1, 2}, 2.5), p({4, 5}, 0.5) 9.16

p({1, 2}, 1.95), p({3, 4}, 3.05) 8.455 p({1, 2}, 2.5), p({4, 5}, 1) 10.21

p({1, 2}, 2), p({3, 4}, 3.1) 8.41

Example 10.5 Let N = (G, �) be a network with underlying graph G = (V ,E)

where V = {v1, v2, v3, v4, v5} and E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}}. The length
function is given by �({1, 2}) = 5, �({2, 3}) = 20, �({3, 4}) = 5.1, �({4, 5}) = 1.
The w-weights are all equal to one and the λ-weights are λ1 = 0, λ2 = 1, λ3 =
0, λ4 = 1, λ5 = 1.1, see Fig. 10.5.

In this example the optimal solution is given by x1 = p({1, 2}, 2) and x2 =
p({3, 4}, 3.1) (see Table 10.6). Therefore the optimal pair (x1, x2) belongs to the
set T . Indeed, d(v1, x1) = d(v4, x2) and d(v2, x1) = d(v5, x2) and the slopes of
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d(v1, ·), d(v2, ·) in the edge {1, 2} at x1 are 1,−1 respectively; and the slopes of
d(v4, ·), d(v5, ·) in the edge {3, 4} at x2 are −1,−1 respectively.

Once we have proved that F is an essential set to describe the set of optimal
solutions of the 2-facility ordered median problem we want to know its cardinality.

Proposition 10.2 The cardinality of F is O(m3n6).

Proof In each edge there are at most two equilibrium points associated with each
pair of nodes. Thus |EQ| = O(mn2) and |R| = O(mn3). The maximum degree of
a node vi ∈ V is m (the star network) so |Y (r)| = O(mn) with r ∈ R. Thus, |Y | =
O(m2n4). On the second hand, on each edge, each pair of nodes may determine
an element of a pair in T . Therefore, the set T has a cardinality O((n2m)2). In
conclusion |F | = O(m3n6 + m2n4) = O(m3n6). ��

It is worth noting that F is an actual set of finite elements to be optimal solutions
of Problem (10.30). The difference with previous approaches is that this set is not a
set of candidates for each individual facility but it is the set of candidate pairs to be
optimal solutions.

10.4.2.2 A Discouraging Result for the p-Facility Case

It is well-known that FDS of polynomial size exist for the classical p-median, p-
center,p-centdian and p-k-centrum problems (see Hooker et al. 1991; Kalcsics et al.
2003). In addition, our previous section has shown a finite set of candidates to be
optimal solutions of the 2-facility ordered median problem in a network. However,
despite the similarity existing between those problems and the general p-facility
ordered median problem, these results can not be extended to our model.

The reason for this is the following. For the 1-facility ordered median problem
we have that the set of candidates to be optimal solutions is EQ, that means, the
equilibrium points (see Nickel and Puerto 1999). For the 2-facility ordered median
problem we have obtained that the set of candidates to be optimal solutions is EQ×
Y ∪T , that means, the points generated by the distances between each node and each
equilibrium point and the set T. It should be noted that in this case we have added
these points because there may exist ties which do not allow to move the service
facility improving the objective function. In the 3-facility ordered median problem,
the previous candidate set is not enough because if x1 ∈ EQ and x2 ∈ Y \ EQ, the
distances between each node and x2 do not need to be included in the set of radius,
R. Therefore, it may occur that there exists a tie between two nodes and the service
facilities x2 and x3 respectively, so that there is no movement of the facilities at x2
and x3 which improves the objective function (see Example 10.6).

Example 10.6 Let N = (G, �) be a network with underlying graph G = (V ,E)

where V = {v1, v2, v3, v4, v5, v6} and E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}}.
The length function is given by �({1, 2}) = 3, �({2, 3}) = 50, �({3, 4}) =
6, �({4, 5}) = 50, �({5, 6}) = 10. The w-weights are all equal to one and the λ-
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| | |
3 50 6 50 10

| | |||
v1 v2 v3 v4 v5 v6

Fig. 10.6 Network of Example 10.6, using the same notation as in Fig. 10.4

modeling weights are λ1 = 0.1, λ2 = 0.2, λ3 = 0.4, λ4 = 0.3, λ5 = 0.6, λ6 =
0.55, see Fig. 10.6.

In this example the optimal solution is given by x1 = p({1, 2}, 1.5), x2 =
p({3, 4}, 1.5) and x3 = p({4, 5}, 4.5) (see Table 10.7). It can be seen that x1 is
an equilibrium point, x2 ∈ Y (1.5) and x3 neither belongs to Y nor is a component
of a pair of T .

This example illustrates that in order to obtain the optimal solution for the 3-
facility problem new points have to be added. Our conjecture is that these points can
be generated using recursively the construction of the set of radii but now regarding
the distances from the points in π2(F ) := {x2 : (x1, x2) ∈ F }, that is, the points in
P(G) which correspond to the second candidate of any pair in F , and the node set:

R1 = {r : r = wid(vi , y), vi ∈ V, y ∈ π2(F )},
Y1(r) = {y : y ∈ P(G),wid(vi, y) = r, vi ∈ V },

Y1 =
⋃

r∈R1

Y1(r).

The same situation occurs in the p-facility case, so that in general this construc-
tion must be repeated p-times in order to obtain a finite candidate set to be optimal
solutions for that problem. Therefore the structure of the candidate set defined in
the previous section depends on the number of facilities to be located. Actually,
Puerto and Rodríguez-Chía (2005) prove that there is no polynomial size FDS for
the general ordered p-median problem even on path networks. The proof consists
of building a family of O(nn) problems on the same graph with different solutions
(each solution contains at least one point not included in the remaining), n being the
number of nodes.

For the case of locating extensive facilities on the line, in Rozanov and Tamir
(2018), it is proved a nestedness property (given any two facility lengths t1, t2, 0 ≤
t1 < t2, there is an optimal solution with length t1 which lies within some optimal
solution with length t2). In addition, in Schnepper (2017), Schnepper et al. (2019),
it is analyzed the p-k-max problem on networks, a particular case of the ordered
median problem. The reader is referred to Puerto et al. (2018) for an updated review
of results on location of extensive facilities on networks.
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10.5 The Capacitated Discrete Ordered Median Problem

In this section our goal is to introduce the family of discrete ordered median location
problems. As we have seen in previous sections, the main feature of these models
is their flexibility to generalize the most popular objective functions studied in the
location analysis literature and to allow modeling a wide variety of new problems
appearing in logistics and manufacturing.

The uncapacitated version of the discrete ordered median location problem has
been analyzed in several papers, Boland et al. (2006), Nickel (2001), Nickel and
Puerto (2005), Marín et al. (2009, 2010), Puerto et al. (2011, 2013), Labbé et al.
(2017), Deleplanque et al. (2018), and different formulations and algorithms to
solve medium sized problems have been developed. Recently, these models were
extended to deal with capacities in Kalcsics et al. (2010a,b). However, although the
approach in the initial papers leads to satisfactory results concerning motivations,
applications and interpretations the solution times of larger problem instances need
further improvements.

The goal of this section is to present, first, an intuitive formulation of the
problem based on three-indexed variables, see Boland et al. (2006); and second,
a formulation which makes use of the coverage ideas in Marín et al. (2009,
2010), applied to the capacitated version of the Discrete Ordered Median Problem,
CDOMP, with binary assignment, see Puerto (2008), Puerto et al. (2011, 2013).
To perform this task, first we introduce the Capacitated Discrete Ordered Median
Problem formally and give these two mathematical programming formulations.
Then, the last part of this section is devoted to test the efficiency of the last approach
by providing some preliminary numerical experiments.

10.5.1 A Three-Index Formulation

In order to introduce this formulation let A denote the given set of n sites and
identify these with the integers 1, . . . , n, i.e., A = {1, . . . , n}. We assume without
loss of generality that the set of candidate sites for new facilities is identical to the set
of clients. Let C = (cij )i,j=1,...,n be the given non-negative n×n cost matrix, where
cij denotes the cost of satisfying the demand of client i from a facility located at site
j . Let p ≤ n be the number of facilities to be located. Each client i has a demand ai
that must be served and each server j has an upper bound bj on the capacity that it
can fulfill. We assume further that assignment is binary, that is, the demand of each
client must be served by a unique server.

A solution to the location problem is given by a set of p sites; we use X ⊆ A,
with |X| = p, to denote a solution. Then, the problem consists of finding the set of
sites X with |X| = p, which can supply the overall demand at a minimum cost with
respect to the ordered median objective function.
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A natural way to attack the formulation of the discrete ordered median problem
is to use variables that keep track of the order of the transportation costs from each
client and its server. This approach gives rise to a formulation with three-index
variables, one for the order and the remaining two indices, for the client-server
allocation. In order to formulate this model we consider a set of λ-weights, where λi
can be seen as a correction factor to the ith-position with i = 1, . . . , n. In addition,
we define the following set of variables:

xk
ij =

⎧
⎨

⎩

1, if client i is supplied by server j and is the k-th
cheapest cost allocation

0, otherwise,
i, j, k = 1, . . . , n,

yj =
{

1, if the server at j is open
0, otherwise,

j = 1, . . . , n.

Hence, the formulation of the model is:

minimize
n∑

i=1

n∑

j=1

n∑

k=1

λkcij x
k
ij (10.33)

subject to
n∑

j=1

n∑

k=1

xk
ij = 1, i = 1, . . . , n (10.34)

n∑

i=1

n∑

j=1

xk
ij = 1, k = 1, . . . , n (10.35)

n∑

i=1

n∑

k=1

aix
k
ij ≤ bjyj , j = 1, . . . , n, (10.36)

n∑

j=1

yj = p, (10.37)

n∑

i=1

n∑

j=1

cij x
k
ij ≤

n∑

i=1

n∑

j=1

cij x
k+1
ij , k = 1, . . . , n − 1. (10.38)

xk
ij ∈ {0, 1}, i, j, k = 1, . . . , n; (10.39)

yj ∈ {0, 1}, j = 1, . . . , n . (10.40)

The objective function accounts for the weighted sum of the transportation
cost using the lambda parameters. Constraints (10.34) ensure that each origin
site i is allocated exactly to one server j . Constraints (10.35) guarantee that any
position in the sorted vector of client-server costs is allocated to just one pair.
Constraints (10.36) are the capacity constraints and also ensure that one origin
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may be allocated to a specific server only if it is open. Constraint (10.37) fixes
the number of facilities to be located. Finally, constraints (10.38) ensure that the
transportation cost assigned to the k-position is smaller than the one assigned to the
(k + 1)-position.

10.5.2 A Covering Formulation and Some Properties

In this subsection, we introduce a formulation for the binary assignment capacitated
discrete ordered median problem based on covering variables. This formulation was
first presented in Puerto (2008).

We first define H as the number of different non–zero elements of the cost matrix
C. Hence, we can order the different values of C in non–decreasing sequence:
c(0) := 0 < c(1) < c(2) < · · · < c(H) := max1≤i,j≤n{cij }.

Given a feasible solution, we can use this ordering to perform the sorting process
of the allocation costs. This can be done by the following variables (j = 1, . . . , n
and k = 1, . . . , H ):

ujk :=
{

1, if the j–th smallest allocation cost is at least c(k),

0, otherwise.
(10.41)

With respect to this definition the j–th smallest cost element is equal to c(k) if
and only if ujk = 1 and uj,k+1 = 0. Therefore, we can reformulate the objective
function of the CDOMP (i.e., the capacitated ordered median problem), using the
variables ujk , as

∑n
j=1

∑H
k=1 λj · (c(k) − c(k−1)) · ujk.

First of all, we need to impose the following group of sorting constraints on the
ujk–variables: uj+1,k ≥ ujk, j = 1, . . . , n − 1; k = 1, . . . , H . To guarantee
that exactly p servers will be opened among the n possibilities, we consider
constraint (10.37) defined in the previous formulation.

Then, we need to ensure that demand and capacities are satisfied. For these
reasons we introduce: (1) the variables xij (binary allocation) :

xij =
{

1, if the client i is allocated to server j
0, otherwise

(10.42)

and (2) the constraints
∑n

j=1 xij = 1, i = 1, . . . , n (each client is just assigned to
one server) and

∑n
i=1 aixij ≤ bjyj , j = 1, . . . , n (all the demand and capacity

requirements must be satisfied and clients can only be assigned to servers which are
open).

In addition, the relationship that links the variables u and x is:
∑n

j=1 ujk =
∑n

i=1
∑

j :cij≥c(k)
xij . The meaning being clear. The number of allocations with a

cost at least c(k) must be equal to the number of servers that support demand from
facilities at a cost greater than or equal to c(k).
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Summing up all these constraints and the objective function, the CDOMP can be
formulated as

minimize
n∑

j=1

H∑

k=1

λj (c(k) − c(k−1))ujk (10.43)

subject to
n∑

j=1

xij = 1, i = 1, . . . , n (10.44)

n∑

i=1

aixij ≤ bjyj , j = 1, . . . , n, (10.45)

xij ≤ yj i, j = 1, . . . , n (10.46)

n∑

j=1

yj = p (10.47)

n∑

j=1

ujk =
n∑

i=1

∑

j=1...,n
cij≥c(k)

xij , k = 1, . . . , H (10.48)

uj+1k ≥ ujk, j = 1, . . . , n − 1; k = 1, . . . , H (10.49)

ujk ∈ {0, 1}, j = 1, . . . , n; k = 1, . . . , H (10.50)

xij , yj ∈ {0, 1}, i, j = 1, . . . , n; (10.51)

Since the proposed formulation contains O(nH) binary variables and O(nH)

constraints, fast solution times for larger problem instances, using standard software
tools, are very unlikely. In this sense, the following proposition states that we can
relax the yj variables to be continuous and the solution will not change.

Proposition 10.3 (CDOMP) admits a formulation with yj ∈ [0, 1] and for each
optimal solution of the relaxed problem one can obtain an optimal solution of the
original problem.

Proof Use (10.46) and (10.47) to ensure that any fractional y solution can be
modified to be binary and feasible without increasing the objective value.

��
The above formulation admits some valid inequalities that, at times, reinforce the

linear relaxation improving the lower bound and reducing the computation time to
solve the problem. In the following, we list three families of them.

The first one are the natural inequalities ujk ≥ ujk+1, j = 1, . . . , n, k =
1, . . . , H − 1. They come from the fact that the rows of the u-matrix are sorted. We
have observed in our experiments that these constraints are not always satisfied by
the optimal solution of the linear relaxation and thus they are useful in improving the
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formulation. This family of inequalities were introduced in Marín et al. (2009) for
tightening the formulation of the Uncapacitated Discrete Ordered Median Problem.

Our next set of inequalities state that the number of assignments done by the
x-variables at a cost at least c(j) for clients in S cannot exceed the number of
ones in the last |S| = r rows of the j -th column of the u-matrix. Then, if there
are r allocations of demand points in S at a costs at least c(j), since the columns
in the u-matrix are ordered in non-decreasing sequence, we get the following:∑

i∈S
∑

k:cik≥c(j)
xik ≤ ∑n

i=n−r+1 uij , ∀ S ⊆ {1, . . . , n}, |S| = r, r =
1, . . . , n, j = 1, . . . , H. Note that there is an exponential number of inequalities
in this family.

Another set of valid inequalities are those stating that either client i is allocated
at a cost at least c(k) or there must exist an open server j such that the allocation
cost of client i is smaller than c(k). This results in:

∑
j :cij≥c(k)

xij +∑j :cij<c(k)
yj ≥

1, i = 1, . . . , n.
In addition, we mention the staircase inequalities introduced by Labbé et al.

(2017), where several new formulations for the Uncapacitated Discrete Ordered
Median Problem (DOMP) based on its similarity with some scheduling problems
are presented (some of them with a considerably smaller number of constraints ).

The rest of this section presents some computational results for this formulation
of the capacitated discrete ordered problem. We restrict ourselves to consider just
the second formulation, because although the first one is very intuitive and good
to have a better understanding of the problem, its running times are much bigger
than those obtained by the second one, see e.g., Puerto (2008). In order to test the
performance of the considered formulation, we report on an experimental design
that consists of the following factors: (1) Size of the problem: The number of sites,
n, determines the dimensions of the cost matrix and the λ vectors. Moreover, it is an
upper bound of the number of suppliers (p) to be located. We consider five different
levels of n = 10, 20, 30, 40, 60. (2) Number of suppliers: p is the second factor
with three levels for each choice of n: p = )n/5*+1, )n/2*, 4×)n/5*. (3) Type of
problem: Each λ-vector is associated with a different objective function. Its levels
are designed depending on the value of n as follows: (a) λ-vector corresponding
to the p-median problem, i.e., λ = (1, . . . , 1) ∈ R

n; (b) λ-vector corresponding
to the p-center problem, i.e., λ = (0, . . . , 0, 1) ∈ R

n; (c) λ-vector corresponding
with the )n/4*-centrum problems; and (d) λ-vector corresponding to the (k1, k2)-
trimmed mean problem, i.e., λ = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0) ∈ R

n where
k1 = )0.2n*, k2 = )0.2n*. (4) Demand of facilities: Each demand is considered
integer and uniformly drawn from [10, 20]. (5) Capacity of suppliers: We con-
sider that the capacities are uniformly discrete random variables in the interval
[1.1∑n

i=1 ai/p, 1.4
∑n

i=1 ai/p]. This choice ensures feasibility of the considered
problems. (6) Transportation cost: We assume free self service and integer costs.
The values cij , i 
= j , are drawn uniformly in [0, 200].

We solve five instances for each possible combination of levels and we report
the average and maximum: running time, gap at the root node and number of nodes
in the branch-and-bound tree for this formulation. All computational studies were
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performed on a PC with a Genuine Intel(R) CPU U4100 with two processors at
1.30 GHz and 4 GB of RAM. To solve the different instances of the problems
we used XPRESS-IVE solver version 7.5, with a code implemented in XPRESS-
MOSEL version 3.4.2.

The information of our computational test is reported in Table 10.8 that sum-
marizes the results for the four considered problems types. The organization of
the table is the following: columns show the results for the different sizes of n

and p. A superindex in some values of p states the number of instances for the
corresponding combination of n and p exceeding the CPU time limit (1 h). Each
block of rows reports the results of the instances based on the formulation (10.43)–
(10.51). Within each block of rows we report on the gap at the root node [average
(Ag) and maximum (Mg)], CPU time to solve the integer problems [average (At)
and maximum (Mt)] and number of nodes in the branch-and-bound tree [average
(An) and maximum (Mn)].

We observe, from the results in Table 10.8 that we could solve most of the
instances, even medium sized n = 60, within 1 h of CPU time. This fact shows a
good performance of the formulation. In addition, it is worth noting that the quality
of the lower bounds provided by this formulation depends on the type of problem.
In general, the lower bounds are rather poor for larger values of p relative to n. On
the other hand, for small to medium values of p relative to n the performance of
the lower bounds are good for median and trimmed mean problems, reasonable for
k-centrum (less than 50%) and poor for the center problem. These results show that
there is room for further investigation on the polyhedral structure of this formulation
in order to develop valid inequalities that could be integrated in a Branch and Cut
algorithm to solve faster and hence larger problem sizes.

In conclusion, the formulation of the CDOMP based on covering, (10.43)–
(10.51), is a promising approach. Moreover, it can be also strengthen with known
valid inequalities, as for instance in Puerto et al. (2011), leading to solve larger
problem sizes of capacitated discrete ordered median problems.

Finally, we would like to mention that two ad-hoc solution procedures have
been developed for the uncapacitated DOMP, the first one based on a parallelized
Lagrangian relaxation approach, see Redondo et al. (2016) and the second one
is a Branch-Price-and-Cut procedure, see Deleplanque et al. (2018). These two
approaches could also be adapted to tackle the capacitated version of this problem.

10.6 Conclusions

This chapter provides an overview of the ordered median function and its corre-
sponding Ordered Median Location Problem as a powerful tool from a modeling
point of view within the area of Location Analysis. We have included some of their
most important insights considering three different solution spaces: continuous,
networks and discrete. Our goal has been to structure this chapter as an useful tool
for those readers that wish to start the study of the ordered functions and their related
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ordered median location problems. Moreover, the extensive list of references that
have been included may result in an interesting source, for expert readers, to carry
out a deeper study of this topic.

Acknowledgements The authors were partially supported by projects MTM2016-74983-C2-
01/02-R (Ministry of Economy and Competitiveness\FEDER, Spain).

References

Ben-Israel A, Iyigun C (2010) A generalized Weiszfeld method for the multi-facility location
problem. Oper Res Lett 38:207–214

Berman O, Kalcsics J, Krass D, Nickel S (2009) The ordered gradual covering location problem
on a network. Discrete Appl Math 157:3689–3707

Blanco V, Ben Ali SEH, Puerto J (2013) Minimizing ordered weighted averaging of rational
functions with applications to continuous location. Comput Oper Res 40:1448–1460

Blanco V, Ben Ali SEH, Puerto J (2014) Revisiting several problems and algorithms in continuous
location with lp norms. Comput Optim Appl 58:563–595

Blanco V, Puerto J, Ben-Ali SEH (2016) Continuous multifacility ordered median location
problems. Eur J Oper Res 250(1):56–64

Blanco V, Puerto J, Salmerón, R (2018) A general framework for locating hyperplanes to fitting
set of points. Comput Oper Res 95:172–193

Blanquero R, Carrizosa E (2009) Continuous location problems and big triangle small triangle:
constructing better bounds. J Global Optim 45:389–402

Boland N, Domínguez-Marín P, Nickel S, Puerto J (2006) Exact procedures for solving the discrete
ordered median problem. Comput Oper Res 33:3270–3300

Brimberg J, Hansen P, Mladenovic N, Taillard ED (2000) Improvement and comparison of
heuristics for solving the uncapacitated multisource Weber problem. Oper Res 48:444–460

Deleplanque S, Labbé M, Ponce D, Puerto J (2019) An extended version of a branch-price-and-cut
procedure for the discrete ordered median problem. Informs J Comput. https://doi.org/10.1287/
ijoc.2019.0915

Domínguez-Marín P, Nickel S, Hansen P, Mladenović N (2005) Heuristic procedures for solving
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Chapter 11
Multi-Period Facility Location

Stefan Nickel and Francisco Saldanha-da-Gama

Abstract This chapter covers different aspects related with facility location prob-
lems involving time-dependent parameters. The emphasis is put on problems
defined over a multi-period finite planning horizon. An overview of continuous and
network problems is presented, although most of the chapter focuses on a discrete
setting. Basic modeling aspects and solution techniques are discussed. Additionally,
some features of practical relevance are considered. The value of the multi-period
solution is introduced as a measure for the relevance of considering a multi-period
modeling framework instead of a time-invariant one. Current challenges and future
trends on the topic are discussed.

11.1 Introduction

Facility location decisions are usually made taking into account the values of some
parameters, such as the setup costs for the facilities and the demand levels. If
variations are predictable for such values, it may be desirable to plan for future
adjustments in the location of facilities and in other related decisions (e.g., shipment
decisions). In this case, locating a set of facilities becomes a question not only of
“where” but also of “when”. A new dimension is introduced in the decision space:
the time. This is the topic of the current chapter.

In order to capture predictable variations in the parameters of a facility location
problem, we often have to consider a so-called dynamic or time-dependent model.
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From a practical point of view, this type of model can be quite relevant because
it allows for embedding other decisions, such as those related to (1) inventory
management, (2) opening new facilities and removing existing ones, and (3)
adjustment of the operating capacities (which, from a cost point of view is often
better than opening new facilities). Even when the underlying parameters do not
induce a dynamic model, some other conditions may do so. For instance, if a budget
constraint exists say, per year, for installing new facilities, then locating the facilities
over time may be unavoidable.

When facility location decisions are to be made over time, it is important to define
the planning horizon beforehand. This is the time frame over which the decision
maker wishes to plan. Only a few papers have investigated facility location problems
over an infinite planning horizon. In this case, a static or a finite-horizon decision is
usually sought that is “the best” for an infinitely long planning horizon. Some works
in this direction include Chand (1988) and Daskin et al. (1992). Nevertheless, in
most cases, decision makers assume a finite planning horizon (Arabani and Zanjirani
Farahani 2012). This is the case we consider in this chapter.

When working with dynamic models, we can make a distinction between
continuous and discrete-time models. In the first case, there are no specific moments
for implementing the decisions; the best timing for performing changes in the
system is itself a decision to make. Some works exploring this feature include
Drezner and Wesolowsky (1991), Orda and Rom (1991), Puerto and Rodríguez-Chía
(1999), and Zanjirani Farahani et al. (2009). In our opinion, continuous-time facility
location problems are better addressed in the context of optimal control. Therefore,
in this chapter we do not focus on this type of problems. Instead, we consider a
discrete-time setting in which there are several moments in time for implementing
the decisions. These moments induce a partition of the planning horizon into several
time periods.

Facility location problems are often classified, according to the location space,
as being continuous, on a network, or discrete (Hamacher and Nickel 1998). In
recent years, due to successful applications of location theory to many areas, discrete
models have increasingly played a major role. For this reason, in this chapter, special
emphasis is given to this type of problems.

The remainder of the chapter is organized as follows: in Sects. 11.2 and 11.3 we
present a brief overview of continuous and network multi-period facility location
problems, respectively. In Sects. 11.4 and 11.5 we focus on discrete problems.
Section 11.6 is used for introducing the value of the multi-period solution. Finally,
in Sect. 11.7, we discuss some challenges and future trends.

11.2 Continuous Problems

One of the best-known facility location problems is the Weber problem: given a
set of weighted nodes in the Euclidean plane, where to locate a single facility
minimizing the weighted sum of the distances to the points? A multi-period
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extension of this problem was first proposed by Wesolowsky (1973). A finite
planning horizon T , divided into several time periods, is assumed. In each period
t ∈ T , a set of weighted nodes Jt is considered. The goal is to find the optimal
location for the single facility in each period. When the facility changes from one
location to another (in consecutive periods), a relocation cost is paid. The conceptual
model devised by Wesolowsky (1973) is the following:

Minimize
∑

t∈T

∑

j∈Jt
ctj (xt , yt ) +

|T |∑

t=2

ft zt (11.1)

subject to zt = 0 if dt−1,t = 0; zt = 1, otherwise, t ∈ T (11.2)

zt ∈ {0, 1}, t ∈ T . (11.3)

In this model, ctj (xt , yt ) represents the present value of the cost for shipping from
a facility located at (xt , yt ) to demand point j ∈ Jt in period t ∈ T ; ft denotes the
cost for relocating the facility at the beginning of period t ∈ T ; dt−1,t is the distance
by which the facility is moved at the beginning of period t ∈ T \ {1}. All the
costs are assumed to be forecasted in advance and therefore known to the model.
For tackling this problem, Wesolowsky (1973) proposed an incomplete dynamic
programming algorithm. The stages are associated with the time periods, the states
correspond to a set of possible locations for the facility and the decisions correspond
to the possible changes in the location of the facility. The relevance of this work
arises from the fact that it represents the first attempt to extend the Weber problem
to a multi-period setting. Nevertheless, the first work investigating the location
and relocation of a single facility in the plane over a multi-period finite planning
horizon is due to Ballou (1968). The goal is to maximize the total profit generated
by a distribution system involving factories, markets and the single warehouse to
be located and relocated. In that paper, a restricted set of potential locations for
the warehouse is defined considering the optimal location for the facility in the
different periods. These locations define the possible sates for all periods (stages).
Incomplete dynamic programming is then applied. The method was later converted
into an exact one by Sweeney and Tatham (1976) who enlarged the restricted set
just mentioned. In fact, a set of potential locations for the warehouse can be found
in each time period, thus ensuring that the optimal solution of the problem is not lost
when dynamic programming is applied. It is worth noting that the methodologies
proposed by Ballou (1968) and Sweeney and Tatham (1976) can be applied to
problems defined in a discrete setting.

Drezner and Wesolowsky (1991), investigated a different type of problem. Like
in all of the above works, a single facility is considered, which can be relocated over
time as a reaction to predictable changes in the demand. The set J of demand nodes
is the same throughout the planning horizon. The demand of each node j ∈ J , is
represented by a continuous function of time wj(.). A planning horizon T divided
into several time periods is assumed. The following optimization model can be
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considered for each period t ∈ T :

Ct = min
xt ,yt

⎧
⎨

⎩

∑

j∈J
Wjtdj (xt , yt )

⎫
⎬

⎭
. (11.4)

In this expression, (xt , yt ) denotes the coordinates of the facility in period t ∈ T ;
Wjt = ∫ at

at−1
wj (τ)dτ ; at−1 and at are the lower and upper time limits for period t ,

respectively; dj (xt , yt ) denotes the distance between demand point j ∈ J and point
(xt , yt ). The cost for the entire planning horizon is given by

∑
t∈T Ct . Drezner and

Wesolowsky (1991) made use of the above model to solve a more general problem
which consists of making a decision about the division of the planning horizon into
time periods. In this case, the number of time periods and the “break points” are
decisions to make. This work was later extended by Zanjirani Farahani et al. (2009)
who included a cost for relocating the facility.

Scott (1971) studied a multi-facility, multi-period continuous location problem,
assuming a finite planning horizon T divided into several time periods, and a set of
demand nodes, J . In each time period, a single facility is to be located and must
remain operating until the end of the planning horizon. A sequence of |T | problems
can be considered. In particular, the following mathematical model holds for period
t ∈ T (the coordinates (xτ , yτ ), τ = 1, . . . , t − 1, were already determined):

Minimize
∑

j∈J

t−1∑

τ=1

ujτ dj (xτ , yτ ) +
∑

j∈J
ujtdj (xt , yt ) (11.5)

subject to
t∑

τ=1

ujτ = 1, j ∈ J (11.6)

ujτ ∈ {0, 1}, τ = 1, . . . , t, j ∈ J. (11.7)

In this model, (xt , yt ) are the coordinates (to be determined) of the facility to install
at the beginning of period t ∈ T ; ujt is a binary variable equal to 1 if demand point
j ∈ J is allocated to the facility installed in period t ∈ T (such allocation can only
occur in periods t, . . . , |T |), and 0 otherwise; dj (xt , yt ) is the Euclidean distance
between demand node j ∈ J and the facility to be installed in period t ∈ T . By
solving the full sequence of problems (one for each t ∈ T ), a solution is obtained for
the multi-period problem. Nevertheless, using such a myopic procedure, optimality
cannot be guaranteed for the whole planning horizon.

A multi-period extension of the planar p-median problem was proposed by
Drezner (1995) who considered a finite planning horizon divided into |T | = p

time periods. The set of demand nodes is denoted by J and demand changes over
time. The demand of node j ∈ J is represented by a continuous function of time
wj(.) as in Drezner and Wesolowsky (1991). At the beginning of each time period
t ∈ T , exactly one facility is to be installed. The decision variables represent the
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coordinates of the p locations for the facilities, (xt , yt ), t ∈ T . The problem can be
formulated as follows:

Minimize
∑

t∈T

∑

j∈J
Wjt min

τ=1,...,t

{
dj (xτ , yτ )

}
, (11.8)

where dj (xt , yt ), t ∈ T , represents the distance between demand node j ∈ J and
the facility established at the beginning of period t ∈ T ; Wjt = ∫ at

at−1
wj(τ)dτ ; at−1

and at are, respectively, the lower and upper time limits for period t . The function to
be minimized in (11.8) results from adding the costs for all periods. Drezner (1995)
proposed a specially tailored algorithm for the two-facility problem and suggested
the use of a standard non-linear solver for the general case.

11.3 Network Problems

One of the earliest works on multi-period facility location problems on networks
is due to Cavalier and Sherali (1985). The problems under consideration consist of
progressively installing a set of facilities on a chain or on a tree considering a multi-
period finite planning horizon. In each period, at most one facility can be installed.
Demand occurs continuously on the edges, according to a uniform distribution.
Different strategies were analyzed for obtaining solutions to the problems.

Considering a general network, Mesa (1991) studied several multi-period facility
location problems. Different concepts were introduced in that paper, such as the
vertex |T |-period p-median, the vertex multi-period (α1, . . . , α|T |)-median and
the absolute multi-period (α1, . . . , α|T |)-median. Among the different problems
studied, the absolute multi-period (α1, . . . , α|T |)-median problem was, at the time,
the one that was closer to what could be refereed to as an extension of the
p-median problem to a multi-period setting. In that problem, αt represents the
number of points that must be located in each period t ∈ T . Such values must
satisfy

∑
t∈T αt = p. The author proved that the initial infinite set of possible

choices for facilities can be reduced to a discrete set of nodes. This is due to the
vertex-optimality property (Hakimi 1964, 1965), which holds for this multi-period
problem.

The extension of the network p-median problem to a multi-period setting was
proposed by Hakimi et al. (1999). Considering a time varying network, N =
(V ,E, T ), with T representing the planning horizon, it is assumed that the weight of
each vertex vj ∈ V and the length of each edge e ∈ E are functions of time and are
invariant in each period. Assuming moving costs for the facilities, the multi-period,
1-median problem on network N can be formulated as follows:

Minimize
∑

t∈T

⎛

⎝
∑

j∈V
wjtdt (vj , xt ) + g(t)dt (xt , xt+1)

⎞

⎠ . (11.9)
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In this model, wjt denotes the weight of vertex vj ∈ V in period t ∈ T ; xt represents
the location of the median in period t ∈ T . The authors define the exact location
xt as the distance between the median and one of the extreme vertices of the edge
that contains the median; dt (vj , xt ) is the length of the shortest path between vj and
xt in period t ∈ T ; g(t) is a function representing the unit cost for relocating the
facility in the end of period t moving it from location xt in that period to location
xt+1 in period t +1 (t ∈ T , x|T |+1 = x|T |). Hakimi et al. (1999) also proved that the
vertex-optimality property holds for the problem. The above model and this result
can be easily extended to the p-facility case. The formulation is the following:

Minimize
∑

t∈T

⎛

⎝
∑

j∈V
wjtdt (vj ,Xt ) + g(t)dt (Xt ,Xt+1)

⎞

⎠ . (11.10)

In this case, X1, . . . , X|T | are the sets of locations for the p facilities during the
planning horizon with X|T |+1 = X|T |; dt (vj ,Xt ) = min{dt(vj , xk) | xk ∈ Xt };
dt (Xt ,X,t+1) is defined by the minimum weight of a perfect matching in the
complete bipartite graph Gt(Xt ,Xt+1) defined as follows: Xt and Xt+1 define the
partition; for every node x ′ in Xt and for every node x ′′ in Xt+1 the weight of the
edge (x ′, x ′′) is set equal to dt (x

′, x ′′). In (11.10), g(t) denotes the unitary cost for
relocating a facility in (the end of) time period t ∈ T . This problem is NP-hard since
it has the static network p-median problem as a particular case. For this reason, the
authors developed a heuristic procedure.

One important class of facility location problems on networks are center
problems. The multi-period extension of the one-center problem on a network was
proposed also by Hakimi et al. (1999). The model is the following (the notation is
the same as above):

Minimize
x1,x2,...,x|T |

∑

t∈T
max
j∈V

{
wjtdt (vj , xt ) + g(t)dt (xt , xt+1)

}
. (11.11)

Again, X|T |+1 = X|T |. If the choice for xt is restricted to a finite number of points
in the network, the problem can be handled using a technique similar to the one
presented in the same paper for the multi-period p-median problem.

The existing literature reveals that for most of the multi-period extensions
proposed so far for well-known minsum facility location problems, the vertex-
optimality property holds. This reduces the location space to a discrete set.
Accordingly, models and techniques from integer programming and combinatorial
optimization emerge as a possibility for tackling these problems. Multi-period
minmax facility location problems on networks have been scarcely investigated.
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11.4 Discrete Problems

We start with one of the best-known discrete facility location problems, the p-
median problem (see Chap. 2), which can be easily extended to a multi-period
setting. Assume a set of nodes J whose demand must be supplied during a finite
multi-period planning horizon, T . Let I ⊆ J be the set of nodes where the facilities
can be located and assume that p facilities have to be operating in every period. The
problem of deciding the best location for the facilities in each period, minimizing
the total cost for satisfying the demand can be formulated as follows:

Minimize
∑

t∈T

∑

i∈I

∑

j∈J
cij t xij t (11.12)

subject to
∑

i∈I
xij t = 1, t ∈ T , j ∈ J (11.13)

∑

j∈J
xij t ≤ |J |xiit , t ∈ T , i ∈ I (11.14)

∑

i∈I
xiit = p, t ∈ T (11.15)

xijt ∈ {0, 1}, t ∈ T , i ∈ I, j ∈ J. (11.16)

In this formulation, cij t represents the cost of allocating demand node j ∈ J to
facility i ∈ I in period t ∈ T ; xijt is a binary variable equal to 1 if demand node
j ∈ J is allocated to facility i ∈ I in period t ∈ T and 0 otherwise; xiit = 1
indicates that a facility is operating at i ∈ I in period t ∈ T (i is allocated to itself).
When I = J we have a multi-period p-median problem.

The above model still has little “multi-period flavor” because it can be decoupled,
leading to |T | single-period problems. Nevertheless, it represents a good starting
point for what we discuss next. In fact, a more interesting problem emerges if
we account for opening and closing costs for the facilities. This was first done
by Wesolowsky and Truscott (1975), who proposed the following model for the
extended problem:

Minimize
∑

t∈T

∑

i∈I

∑

j∈J
cij t xij t +

∑

t∈T

∑

i∈I
git z

′
it +

∑

t∈T

∑

i∈I
hit z

′′
it (11.17)

subject to (11.13)–(11.16)
∑

i∈I
z′it ≤ mt, t ∈ T (11.18)

xiit − xii,t−1 + z′′i,t−1 − z′it = 0, t ∈ T \ {1}, i ∈ I (11.19)

z′it , z′′it ∈ {0, 1}, t ∈ T , i ∈ I. (11.20)
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In this model, facilities can be opened (closed) at the beginning (end) of a time
period; mt is the maximum number of facilities that can be opened in each period
t ∈ T . Binary variable z′it (z′′it ) is equal to 1 if a facility is opened (closed) at i ∈ I in
period t ∈ T and 0 otherwise. The parameters git and hit (i ∈ I , t ∈ T ) denote the
opening and closing costs, respectively. Wesolowsky and Truscott (1975) solved the
above problem using dynamic programming. However, the dimension of the state
space is exponential in the number of potential locations for the facilities and thus
the procedure can only be applied to small instances.

Galvão and Santibañez-Gonzalez (1992) do not consider closing decisions and
assume that the number of operating facilities does not have to be the same in all
periods. Their formulation can be obtained from the above model by ignoring the
variables and costs associated with closing the facilities and by replacing p with pt

in (11.15). For each period t ∈ T , pt denotes the number of facilities to be operating
in that period. Furthermore, in their model constraints (11.18) are redundant (mt =
|I |, t ∈ T ) and constraints (11.14) are disaggregated, yielding

xijt ≤ xiit , t ∈ T , i ∈ I, j ∈ J. (11.21)

Without closing decisions, constraints (11.19) can be written as

z′it ≥ xiit − xii,t−1, t ∈ T , i ∈ I, (11.22)

with xii0 = 0, i ∈ I . For this problem, Galvão and Santibañez-Gonzalez (1992)
proposed two Lagrangian relaxation based procedures for computing lower and
upper bounds: in the first one, constraints (11.13) and (11.22) are dualized; in the
second, the choice involves constraints (11.21) and (11.22).

In the problems presented so far in this section, facilities can be opened and
closed more than once during the planning horizon. However, in many applications
this is not realistic. We discuss this aspect by considering another well-known
problem: the uncapacitated facility location problem (UFLP)—see Chap. 4. Like
for the p-median problem, the extension of the UFLP to a multi-period setting is
straightforward. Again we consider a finite multi-period planning horizon, T . The
set of potential locations for the facilities is denoted by I = {1, . . . ,m} and the set
of demand nodes by J = {1, . . . , n}. Additionally, let fit be the cost for operating
facility i ∈ I in period t ∈ T , and cij t the cost for satisfying all the demand of
customer j ∈ J in period t ∈ T from facility i ∈ I . A multi-period uncapacitated
facility location problem can be formulated as follows:

Minimize
∑

t∈T

∑

i∈I
fit yit +

∑

t∈T

∑

i∈I

∑

j∈J
cij t xij t (11.23)

subject to
∑

i∈I
xij t = 1, t ∈ T , j ∈ J (11.24)
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∑

j∈J
xij t ≤ nyit , t ∈ T , i ∈ I (11.25)

xijt ≥ 0, t ∈ T , i ∈ I, j ∈ J (11.26)

yit ∈ {0, 1}, t ∈ T , i ∈ I. (11.27)

In this formulation, xijt represents the fraction of the demand of customer j ∈ J in
period t ∈ T that is supplied by facility i ∈ I ; yit is a binary variable equal to 1 if
a facility is operating at i ∈ I in period t ∈ T and 0 otherwise. Again, this problem
can be decomposed into |T | single-period problems. Nevertheless, it contains the
basic ingredients for building more interesting models. In fact, one extension of this
problem was proposed by Warszawski (1973), who included opening costs for the
facilities. These costs are incurred whenever a facility is opened (even if the same
facility was operating in some past period and then closed). Denoting by git the cost
for opening a facility at i ∈ I in the beginning of period t ∈ T , the model proposed
by Warszawski (1973) differs from (11.23)–(11.27) by considering the following
quadratic objective function:

∑

t∈T

∑

i∈I
git yit

(
1 − yi,t−1

)+
∑

t∈T

∑

i∈I
fit yit +

∑

t∈T

∑

i∈I

∑

j∈J
cij t xij t , (11.28)

with yi0 = 0, i ∈ I . Warszawski (1973) proposed a dynamic programming
algorithm for instances with a small number of potential locations for the facilities,
|I |, and a local search heuristic for larger instances. Chardaire et al. (1996) studied
the same problem starting by disaggregating constraints (11.25). They developed a
Lagrangian relaxation based algorithm for computing lower and upper bounds. A
linearized model was also proposed and compared with the quadratic one in terms
of the quality of the lower bounds produced.

Another extension of model (11.23)–(11.27) was suggested by Canel and Khu-
mawala (1997), who explicitly considered binary decision variables zit indicating
whether or not a new facility is opened at i ∈ I in period t ∈ T . They introduced a
profit maximization objective. The problem was formulated as follows:

Maximize
∑

t∈T

∑

i∈I

∑

j∈J
rij t xij t −

∑

t∈T

∑

i∈I
fit yit −

∑

t∈T

∑

i∈I
git zit (11.29)

subject to (11.24), (11.26), (11.27)
∑

j∈Pit

xij t ≤ nit yit , t ∈ T , i ∈ I, (11.30)

zit ≥ yit − yi,t−1, t ∈ T , i ∈ I (11.31)

zit ∈ {0, 1}, t ∈ T , i ∈ I, (11.32)
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with yi0 = 0, i ∈ I . In this model, rij t represents the revenue obtained when
supplying all the demand of customer j ∈ J in period t ∈ T from facility i ∈ I . For
each facility i ∈ I there is a maximum number of customers, nit , it can supply in
period t ∈ T . Furthermore, not all facilities can supply all customers. In particular,
Pit represents the set of customers that can be served from facility i ∈ I in period
t ∈ T . We will see below that constraints (11.30) had been proposed before but
for another problem. Canel and Khumawala (1997) developed a branch-and-bound
procedure for this problem, adapting the algorithm proposed by Khumawala (1972).

In all of the above problems, facilities can be opened and closed more than once
during the planning horizon. Dias et al. (2007) point out that these models ignore
the fact that re-opening a facility has in general a smaller cost than opening it for the
first time (for instance, land acquisition costs are incurred only once). They propose
a model taking this aspect into account. Additional decision variables are required
to distinguish whether a facility is being opened for the first time or is being re-
opened. A primal-dual heuristic is applied to obtain lower and upper bounds. The
gap is closed by using a branch-and-bound procedure.

11.5 Modular Construction of Intrinsic Multi-Period Facility
Location Models

In many practical situations it is not acceptable to install and remove a facility more
than once during the planning horizon. This may make sense for seasonal facilities,
such as warehouses that can often be rented for short time intervals but it cannot be
assumed in general. Accordingly, the models presented in the previous section may
be short for capturing some real-world problems. Early, researchers have noticed
this fact and have considered models involving constraints that impose a limit on the
number of changes performed in each location during the planning horizon. Often,
such constraints state that once a facility is installed (removed), it must remain open
(closed) until the end of the planning horizon.

We consider again the multi-period p-median problem, i.e., we assume that a
plan is to be made for locating exactly p facilities in a finite multi-period planning
horizon T . Let us assume that removing facilities is not allowed. One additional
feature that may be worth considering for this type of problem is the speed at which
p changes. The adequate model is the following (the notation was introduced in
Sect. 11.4):

Minimize
∑

t∈T

∑

i∈I

∑

j∈J
cij t xij t (11.33)

subject to
∑

i∈J
xij t = 1, t ∈ T , j ∈ J (11.34)
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∑

j∈J
xij t ≤ nxiit , t ∈ T , i ∈ J (11.35)

∑

i∈J
xiit = pt , t ∈ T (11.36)

xiit ≥ xii,t−1, t = 2, . . . , |T |, i ∈ J (11.37)

xijt ≥ 0, t ∈ T , i ∈ J, j ∈ J, (11.38)

where 1 ≤ p1 ≤ p2 ≤ . . . ≤ p|T | = p.
Constraints of type (11.37) were first proposed for a multi-period facility location

problem by Roodman and Schwarz (1975, 1977). The latter paper was pioneering
in the assumption that a set of facilities may be operating before the beginning
of the planning horizon. These are the facilities that can be removed. Therefore,
the possibility of adapting an existing system to predictable changes in some
parameters, becomes explicitly considered in the models. The set of locations I can
now be partitioned into two subsets: I c and Io. The former represents the facilities
that are operating before the beginning of the planning horizon; the latter represents
the set of locations for new facilities. A more comprehensive model for the multi-
period facility location problem emerges:

Minimize (11.23)

subject to (11.24)–(11.27)

yit ≤ yi,t−1, t = 2, . . . , |T |, i ∈ I c (11.39)

yit ≥ yi,t−1, t = 2, . . . , |T |, i ∈ Io. (11.40)

The above model contains the pure phase-in problem (facilities can only be opened)
and the pure phase-out problem (facilities can only be closed) as particular cases. In
fact, Roodman and Schwarz (1977) extended the work presented by Roodman and
Schwarz (1975) in which a pure phase-out problem had been considered.

Roodman and Schwarz (1977) were also pioneering by considering a maximum
number of customers that can be served by each facility in each period and assumed
that not all facilities can serve all customers. These aspects are easily accommodated
in the above model if we replace (11.25) by (11.30). As mentioned before, the latter
constraints would be later used by Canel and Khumawala (1997).

The above models allow the removal of an existing facility before the beginning
of period 1 with no costs imputed to the planning horizon. Imposing that the existing
facilities must operate in at least one period, can be easily done by setting yi1 = 1,
i ∈ I c.

Van Roy and Erlenkotter (1982) reformulated model (11.23)–(11.27), (11.39)
and (11.40). The idea, which can be extended to every multi-period facility location
problem, consists of considering binary decision variables representing a change in
a location instead of considering the traditional location variables. In particular, for
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an existing facility i ∈ I c, a binary variable zit , is defined that is equal to 1 if the
facility is removed at the end of period t (i.e., it operates in periods 1, . . . , t) and
0 otherwise. For facility i ∈ I c, zi|T | = 1, indicates that the facility is operating
during the entire planning horizon. For a potential new facility i ∈ Io, the binary
variable, zit , is equal to 1 if the facility is installed at the beginning of period t (i.e.,
it operates in periods t, . . . , |T |) and 0 otherwise. Using the new set of variables, we
obtain the following model:

Minimize
∑

t∈T

∑

i∈I
Fit zit +

∑

t∈T

∑

i∈I

∑

j∈J
cij t xij t (11.41)

subject to
∑

i∈I
xij t = 1, t ∈ T , j ∈ J (11.42)

xijt ≤
∑

τ∈T it

ziτ , t ∈ T , i ∈ I, j ∈ J (11.43)

xijt ≥ 0, t ∈ T , i ∈ I, j ∈ J (11.44)

zit ∈ {0, 1}, t ∈ T , i ∈ I. (11.45)

In this model, Fit (i ∈ I , t ∈ T ) represents the total operation cost for facility i if
zit = 1, i.e., Fit = fi1 + . . . + fit for i ∈ I c, t ∈ T and Fit = fit + . . . + fi|T |
for i ∈ Io, t ∈ T . The set T it contains the periods in which it is possible to remove
(install) a facility at i ∈ I c (i ∈ Io) if we want to have it operating in period t ∈ T .
More formally, T it = {t, . . . , |T |} if i ∈ I c and T it = {1, . . . , t} if i ∈ Io. It
is important to note that the aggregated costs Fit can be easily extended to more
general situations, such as the one in which we have fixed setup and removal costs
for the facilities. In fact, suppose that a fixed cost git is incurred when removing
(installing) a facility i ∈ I c (i ∈ Io) in period t . We can simply set Fit = git +
fi1 + . . .+ fit for i ∈ I c, t ∈ T and Fit = git + fit + . . .+ fi|T | for i ∈ Io, t ∈ T .

The relation between the previous y-variables and the new z-variables is
straightforward:

zi|T | = yi|T |, i ∈ I c

zit = yit − yi,t+1, t ∈ {1, . . . , |T | − 1}, i ∈ I c

zi1 = yi1, i ∈ Io

zit = yit − yi,t−1, t ∈ {2, . . . , |T |}, i ∈ Io.

Using these relations, it is straightforward to prove that models (11.23)–
(11.27), (11.39), (11.40) and (11.41)–(11.45) are equivalent. The relevance of
the latter arises from the fact that it is particularly suited for the application of a
dual-based heuristic, which is a popular method for obtaining sharp lower and upper
bounds for discrete facility location problems. This fact was exploited by Van Roy
and Erlenkotter (1982). By multiplying constraints (11.43) by −1 we obtain the
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following dual of the linear relaxation of model (11.41)–(11.45):

Maximize
∑

t∈T

∑

j∈J
vjt (11.46)

subject to vjt − wijt ≤ cij t , t ∈ T , i ∈ I, j ∈ J (11.47)
∑

j∈J

∑

τ∈Tit
wijτ ≤ Fit , t ∈ T , i ∈ I (11.48)

wijt ≥ 0, t ∈ T , i ∈ I, j ∈ J. (11.49)

The dual variables vjt and wijt (t ∈ T , i ∈ I , j ∈ J ) are associated with
constraints (11.42) and (11.43), respectively (with the latter multiplied by −1).
The set Tit (i ∈ I , t ∈ T ) contains the operating periods for facility i if a
change (installation or removal) occurs in this location in period t . In particular,
Tit = {1, . . . , t} if i ∈ I c and Tit = {t, . . . , |T |} if i ∈ Io.

From (11.47) and (11.49) we may set

wijt = max{0, vjt − cij t }, t ∈ T , i ∈ I, j ∈ J,

which yields the following condensed dual:

Maximize (11.46)

subject to
∑

j∈J

∑

τ∈Tit
max{0, vjt − cij t } ≤ Fit , t ∈ T , i ∈ I. (11.50)

The complementary slackness conditions for the linear relaxation of
model (11.41)–(11.45) become:

vjt

(
∑

i∈I
xij t − 1

)

= 0 t ∈ T , j ∈ J

wijt

⎛

⎝
∑

τ∈T it

ziτ − xijt

⎞

⎠ = 0, t ∈ T , i ∈ I, j ∈ J

xijt
(
vjt − cij t − wijt

) = 0, t ∈ T , i ∈ I, j ∈ J

zitSit = 0, t ∈ T , i ∈ I,

where Sit represent the slack variables for constraints (11.50).
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Van Roy and Erlenkotter (1982) proposed a heuristic for the condensed dual
just presented. Starting from a trivial dual feasible solution (vjt = mini∈I {cij t },
t ∈ T , j ∈ J ) an ascent procedure is performed for increasing the values of
the dual variables vjt , thus increasing the value of the dual objective function.
When this procedure does not lead to further improvements, a primal solution is
constructed using the slackness conditions. Finally, a primal-dual adjustment phase
is performed in order to reduce the gap between the values of the primal and dual
objective functions. When no further gap reduction is achieved, a branch-and-bound
procedure is applied to complete the search for an optimal solution for the problem.
The reader should refer to Van Roy and Erlenkotter (1982) for further details.

The procedure developed by Van Roy and Erlenkotter (1982) is quite efficient to
solve instances of moderate size. Nevertheless, this multi-period facility location
problem includes the UFLP as a special case and thus, it is NP-hard. For this
reason, Saldanha-da-Gama and Captivo (1998) developed a two-phase heuristic
procedure for the problem. The first phase is a drop procedure which starts with
all facilities operating in all periods, and progressively removes operating periods
to the facilities. This is done while a reduction in the total cost is observed. Losing
feasibility is never allowed during the process. The second phase consists of a local
search procedure.

Although representing an important basis for describing real problems, the above
models miss one important feature found in many applications: capacity constraints.
Suppose that the capacity of a facility located at i ∈ I is limited and denote it
by Qi . Capacity constraints can be easily embedded in model (11.23), (11.24)–
(11.27), (11.39), (11.40) by replacing (11.25) with

∑

j∈J
djtxij t ≤ Qi yit , i ∈ I, t ∈ T . (11.51)

Castro et al. (2017) studied the pure phase-in version of this problem (facilities
cannot be closed) and enriched the model in two ways: first, by considering the
limits p1, . . . , p|T | above introduced representing the maximum number of facilities
that can be operating in each period t ∈ T ; second, by assuming that a service level
below 100% is acceptable given that an opportunity cost is paid.

Let us denote by djt the demand of customer j ∈ J in period t ∈ T , by ojt the
cost per unit of demand of customer j ∈ J in period t ∈ T that is not supplied and
by vjt the proportion of the demand of customer j ∈ J in period t ∈ T that is not
supplied (or that is outsourced). The problem studied by Castro et al. (2017) is the
following:

Minimize
∑

t∈T

∑

i∈I
fit yit +

∑

t∈T

∑

j∈J

(
∑

i∈I
cij t xij t + ojtdjtvjt

)

(11.52)

subject to
∑

i∈I
xij t + vjt = 1, t ∈ T , j ∈ J (11.53)
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∑

i∈I
yit ≤ pt , t ∈ T (11.54)

(11.26), (11.27), (11.40), (11.51)

vjt ≥ 0, j ∈ J, t ∈ T . (11.55)

This problem contains as particular case the “standard” multi-period pure phase-
in location problem as described above, as well as the well-known capacitated
facility location problem. Nevertheless, it covers features not included in those two
cases. For the above problem, the authors developed a Benders decomposition. By
using a specialized interior-point method for solving the Benders subproblems, the
authors were able to solve instances of a size never attempted for capacitated static
and multi-period facility location problems (up to 200 locations and one million
customers).

The inclusion of capacity constraints in model (11.41)–(11.45) can be accom-
plished by replacing (11.43) with

∑

j∈J
djtxij t ≤ Qi

∑

τ∈T it

ziτ , t ∈ T , i ∈ I. (11.56)

The resulting model was adopted by Saldanha-da-Gama (2002) who developed
a dual-based procedure for obtaining lower and upper bounds. The model was
previously enhanced with (11.43) and

∑

t∈T

∑

i∈I
Rkit zit ≤ rk, k ∈ K. (11.57)

By choosing appropriate values for Rkit and rk , these generic constraints can
accommodate every inequality involving the binary variables. This is important
because the linear relaxation of capacitated facility location problems can often
be strengthened through the inclusion of valid inequalities involving the location
variables. For instance, a set of constraints often used in (static) capacitated facility
location problems, states that the operational capacity must be at least equal to the
total demand. In the multi-period case, these constraints are written as

∑

i∈I

⎛

⎝Qi

∑

τ∈T it

ziτ

⎞

⎠ ≥
∑

j∈J
djt , t ∈ T , (11.58)

which can be easily accommodated in (11.57).
For the linear relaxation of model (11.41)–(11.45), (11.56) and (11.57),

Saldanha-da-Gama (2002) extended the dual-based procedure proposed by Van
Roy and Erlenkotter (1982), thus obtaining sharp lower and upper bounds for the
problem.
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When considering capacity constraints in multi-period facility location models,
we can envisage the possibility of making adjustments in the capacity of the
facilities throughout the planning horizon. This aspect was also taken into account
by Van Roy and Erlenkotter (1982) who considered exogenous time-dependent
capacities Qit (i ∈ I , t ∈ T ). Nevertheless, for some applications this may still be
insufficient because no connection is established between the capacities in different
periods.

The problem of planning for the capacity expansion of existing facilities was very
popular in the 1970s and in the 1980s (see, for instance, Erlenkotter 1981, and Lee
and Luss 1987). However, at that time, the focus was put mainly on the expansion
of existing facilities. In many cases, the location of facilities was not even a decision
to make. Furthermore, many of these works considered continuous adjustments in
the capacities, which is often not adequate from a practical point of view. In fact, if
we think of production or sorting lines, we immediately realize that changes in the
capacities should be modular, or at least discrete.

One paper that clearly interconnects multi-period facility location decisions with
discrete capacity expansion is due to Shulman (1991). A set of facility types P

is considered. In each location, facilities of different types can be progressively
established during the planning horizon as a way of adjusting the operating capacity
of the system. In each period, at most one facility of each type can be installed in
each location but several facilities can be installed if they are of different types. For
each location i ∈ I , a set Pi ⊆ P is considered for representing the facility types
that can be located at i. Denote by cijpt the cost of supplying all the demand of
customer j ∈ J in period t ∈ T from a facility operating at i ∈ I that is of type
p ∈ Pi . Let fipt be the cost for installing a facility of type p ∈ Pi at i ∈ I in period
t ∈ T . Additionally, let Qp be the capacity of a facility of type p ∈ P . Finally,
let nip0 denote the number of facilities of type p ∈ Pi operating at location i ∈ I

before the beginning of the planning horizon (i.e., the problem captures the situation
in which the system is not built from scratch but is to be adapted to future changes
in demands). The demand of customer j ∈ J in period t ∈ T is denoted by djt . Two
sets of decision variables were proposed by Shulman (1991): xijpt , representing the
fraction of the demand of customer j ∈ J in period t ∈ T that is satisfied from a
facility operating at i ∈ I that is of type p ∈ Pi , and yipt denoting a binary variable
that is equal to 1 if in period t ∈ T a facility of type p ∈ Pi is installed at i ∈ I

and 0 otherwise. Assuming that the capacity expansions occur at the beginning of
the time periods, the problem can be formulated as follows:

Minimize
∑

t∈T

∑

i∈I

∑

p∈Pi

fipt yipt +
∑

t∈T

∑

i∈I

∑

j∈J

∑

p∈Pi

cijpt xijpt (11.59)

subject to
∑

i∈I

∑

p∈Pi

xijpt = 1, t ∈ T , j ∈ J (11.60)
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∑

j∈J
djtxijpt ≤ nip0Qp +

t∑

τ=1

Qpyipτ , t ∈ T , i ∈ I, p ∈ Pi

(11.61)

xijpt ≥ 0 t ∈ T , i ∈ I, j ∈ J, p ∈ Pi (11.62)

yipt ∈ {0, 1}, t ∈ T , i ∈ I, p ∈ Pi. (11.63)

The coefficients cijpt may include the transportation costs between facilities and
customers as well as handling costs at the facilities. Shulman (1991) proposed a
Lagrangian relaxation based procedure for obtaining lower and upper bounds for the
problem. Constraints (11.60) are dualized. The relaxed problem can be decomposed
into |I | problems, each of which to be solved exactly by dynamic programming.
However, the complexity of this algorithm is exponential in the number of facilities.
Therefore, it can only be used when |I | is small. Nevertheless, for the particular
case where it is not possible to mix different facility types in the same location (i.e.,
|Pi | = 1, i ∈ I ), a polynomial algorithm for the relaxed problem was proposed in
the same paper.

The need for more comprehensive multi-period facility location models suited
for being applied to real-world problems has led to further important developments.
Hinojosa et al. (2000) proposed the first multi-period, multi-echelon, multi-product
discrete facility location problem, setting one important foundation for the strong
link that we observe nowadays between multi-period facility location and logistics
network design (see Chap. 16). Two-facility echelons are considered in that work:
plants and warehouses. Location decisions are to be made for both. That paper
extends the models proposed by Roodman and Schwarz (1977) by considering more
than one-facility echelon and multiple commodities. Existing facilities are assumed
to be operating before period 1 and can be removed during the planning horizon.
Additionally, a set of potential locations for establishing new facilities during the
planning horizon is considered. Once removed, a facility cannot be re-opened, and
once installed, a facility must remain open until the end of the planning horizon.
Hinojosa et al. (2000) proposed a Lagrangian relaxation based procedure in order to
compute lower and upper bounds. The problem would be later extended by Hinojosa
et al. (2008) to include inventory decisions. The new model proposed extends
the reformulation proposed by Van Roy and Erlenkotter (1982) (i.e., the decision
variables represent the changes in the locations—installation of new facilities and
removal of existing ones—in the different periods of the planning horizon). A
Lagrangian relaxation based procedure was also developed.

A multi-period discrete facility location problem was investigated by Gour-
din and Klopfenstein (2008). The problem is motivated within the context of
telecommunications network design and consists of planning for the location of
modular equipment over a finite planning horizon. Operating capacity constraints
are considered for the nodes and for the links. The goal is to progressively expand
the capacity of the equipment as well as the capacity of its links to the demand
nodes. In that paper, the mathematical programming model initially proposed for
the problem is enhanced via polyhedral analysis.
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Albareda-Sambola et al. (2009) have extended the model proposed by Roodman
and Schwarz (1977) for handling the so-called multi-period incremental service
facility location problem. In each time period, a minimum number of facilities is
to be established that should be kept operating until the end of the planning horizon.
All the customers must start being served in some period and must remain served
until the end of the planning horizon. The problem is motivated by some practical
problems requiring a multi-period plan for progressively extending some service
to the population in some region. Accordingly, the service level is progressively
increased over time until all customers are being served. A Lagrangian relaxation
based procedure was proposed in that paper for obtaining lower and upper bounds.
A particular case of this problem was studied by Albareda-Sambola et al. (2010),
assuming that each customer requires service only in a subset of periods. It is
possible not to fulfil the request in one or several of those periods, but in this case a
penalty cost is paid. Several mathematical programming formulations were applied
to this problem, which were compared computationally.

Correia and Melo (2016, 2017) focus on multi-period facility location problems
with so-called demand satisfaction delay. In both works, two types of customers
are considered: those who impose a strict timing for demand satisfaction and those
whose demand can be fulfilled with delay. In both works existing facilities at the
beginning of the planning horizon may be closed and new facilities may be opened
in potential locations considered for that purpose. For new facilities, the capacity
level at which they will operate is also a decision to make. In the first paper,
such level is chosen from a finite set of possibilities previously identified for each
location. In the second case, modular capacities are considered (with a maximum
number of modules allowed at each location). Several optimization models are
proposed and compared both theoretically (in terms of the lower bounds provided
by linear relaxation) and computationally.

Jena et al. (2015a) studied a so-called logging camp location problem. This is
a multi-period facility location problem with multiple commodities and modular
capacities for the facilities. The real application underlying the problem calls for
the possibility of making partial closing or reopening of facilities throughout the
planning horizon. To the best or our knowledge, this is the first work considering
such a possibility. Additionally, due to the nature of the facilities involved in the
problem, the total demands assigned to a certain location is rounded up to the next
integer value—the so-called round up capacity constraints are introduced. These
are capacity constraints that instead of considering explicitly the total demand
assigned to some location consider binary variables that help account for the number
of (discrete) units of each commodity supplied from a facility of a certain size
located in some location at some time period. Such capacity constrains are useful
when, for instance, a facility cannot produce any arbitrary amount of a product
but only modular sized packages of products. Jena et al. (2015a) introduce and
compare several optimization models for the problem. This problem would be later
complemented by the introduction of a stronger formulation and a hybrid heuristic
that first applies a Lagrangian relaxation and afterwards constructs a restricted MIP
problem using the previously obtained Lagrangian solutions (Jena et al. 2016).
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Jena et al. (2015b) investigate the single-commodity version of the problem
introduced in Jena et al. (2015a). Nevertheless, modular capacities are considered
as well as a very general cost structure. In particular, the costs for capacity changes
are given by a matrix that is an input to the problem. The new problem extends two
cases of practical relevance: first, facility closing and reopening; second, capacity
expansion and reduction. Different models are introduced and compared. This work
would be later extended to the multi-commodity case (Jena et al. 2017) and the
methodology introduced in Jena et al. (2016) successfully adapted to the extended
problem.

Other contributions to the study of multi-period facility location problems
include the work by Escudero and Pizarro Romero (2017), who consider a pure
phase-in multi-period facility location problem for unit demand customers (demand
is satisfied by means of a service that is provided and not by some quantity of a
commodity). The set of customers is partitioned into different categories. In each
period, some customers need to be served while some others do not. A service level
of 100% is not imposed. Two decisions must be made in each period: new facilities
to set operating and the assignment of customers to available operating. The costs
involved in the problem include setup and maintenance for the facilities, assignment
of customers to facilities, interaction costs incurred when customers of any two
categories are assigned to the same facility in the same period, and penalty costs for
unsatisfied service requests. A MILP formulation is derived for the problem and so-
called fix-and-relax procedure is proposed for finding high quality feasible solutions
to the problem. The proposed algorithm is a matheuristic introduced by Dillenberger
et al. (1994) for general mixed 0–1 deterministic optimization problems.

11.6 The Value of the Multi-Period Solution

Multi-period modeling frameworks like those described in the previous sections,
involve one extra dimension in the decision space: the time. The models tend to be of
large scale and therefore more difficult to tackle, even for instances of moderate size.
Hence, one may ask whether it is worth considering this extra dimension. In other
words, let us consider a situation in which it is possible to make a time-invariant
decision even with costs, demands (and possibly other parameters) varying over
time. Is it still worth considering a multi-period modeling framework? An answer
to this question can be given by the value of the multi-period solution, which is a
concept first introduced by Alumur et al. (2012) in the context of a multi-period
reverse logistics network design problem.

The value of the multi-period solution compares the optimal value of the multi-
period problem and the value of a solution found by solving a static counterpart.
A static counterpart is a problem that takes into account the information available
for the planning horizon and looks for a static (time invariant) solution. Given the
optimal solution to a static counterpart, one can again consider the original multi-
period problem and set such solution for all periods of the planning horizon. If, by
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doing so, we obtain a feasible solution to the multi-period problem, the difference
between its value and the optimal value of the multi-period problem gives the value
of the multi-period solution. In general, several static counterparts can be associated
with a multi-period problem. Depending on the one that is considered, a different
static solution may be obtained, i.e., the value of the multi-period solution is not
necessarily unique.

In a multi-period facility location problem, costs, demands, and possibly other
parameters are assumed to change over the planning horizon. A static counterpart
is a problem that looks for a static location for the facilities, i.e., that can be
implemented at the beginning of period 1, remaining unchanged until the end of the
planning horizon. One possibility for building a static counterpart is to somehow
aggregate the information available for all periods, for instance, consider time
varying demands. If facilities are uncapacitated, then several possibilities emerge
for aggregating this information: (1) the demands can be averaged over the planning
horizon, or (2) a reference value can be determined (e.g., the maximum value
observed throughout the planning horizon). If additional constraints exist (e.g.,
capacity constraints) then, choosing a reference value may render the resulting static
solution infeasible in some periods. In this case, one possibility for building a static
counterpart is to define the (time-invariant) demand of each customer according
to the maximum value observed across all periods. In any case, the adequate
aggregation of multi-period data is very much problem-dependent.

In order to clarify the above explanation, we consider problem (11.23)–
(11.27), (11.39) and (11.40). A static counterpart can be obtained by simply
considering the UFLP with operation costs fi , i ∈ I , equal to the average of
the values fit , t ∈ T and distribution costs cij , i ∈ I , j ∈ J , given by the average
of the values cij t , t ∈ T .

When the value of the multi-period solution is obtained by aggregating the data
for all periods we refer to it as a weak value of the multi-period solution. On the other
hand, we obtain a strong value of the multi-period solution when no aggregation is
performed in the data. This is a possibility in some cases, namely when we can
add a set of constraints to the problem stating that some or all decisions should
remain unchanged during the planning horizon. In the case of a multi-period facility
location problem, a static counterpart must define a static location, i.e., a solution in
which the location of the facilities is the same for all periods of the planning horizon.
Consider, for instance, problem (11.41), (11.42), (11.44), (11.45) and (11.56). A
static counterpart yielding a strong value of the multi-period solution is obtained by
setting

zit = 0 t = 1, . . . , |T | − 1, i ∈ I c,

zit = 0 t = 2, . . . , |T |, , i ∈ Io.

These conditions simply impose that the status of each location does not change
during the planning horizon. Therefore, the set of operating facilities will be the
same across all periods.
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To the best of our knowledge, the only papers within the context of facility
location, in which the relevance of using a multi-period modeling framework is
measured, are those by Alumur et al. (2012) and Marín et al. (2018).

11.7 Conclusions

In this chapter, we have presented and discussed several essential aspects related
with multi-period facility location problems. The existing literature reveals that the
topic has achieved a significant level of maturity. From a modeling point of view, it
is now clear how to capture several features of practical relevance and how to tackle
the resulting models. We discussed the weak and strong values of the multi-period
solution as measures for the relevance of using a multi-period modeling framework.

Nowadays, one can find much work focusing on facility location problems
arising in the context of logistics systems. As it will be discussed in Chap. 16, an
adequate modeling framework can hardly neglect the multi-period nature of such
problems. Some papers within this context that somehow extend some multi-period
models discussed in the previous sections are those by Melo et al. (2006) and
Manzini and Gebennini (2008). The strong relation between facility location and
logistics network design is also made clear by Melo et al. (2009).

Another aspect of relevance in many applications regards the uncertain nature
of the data underlying the problems. Aghezzaf (2005) tackle a multi-period
facility location problem under uncertainty through a robust optimization modeling
framework. Multi-period stochastic facility location problems were investigated by
Nickel et al. (2012), Albareda-Sambola et al. (2013), and Marín et al. (2018). These
works show that embedding uncertainty in multi-period facility location problems
is still a challenge.

Another challenging area in multi-period facility location concerns the location
of public facilities. One first work in this direction is due to Antunes and Peeters
(2001). Although static models for public facilities location have attracted much
attention in the past, the same does not happen with multi-period problems.

One class of problems that is still much unexplored regards multi-criteria, multi-
period facility location problems. To the best of our knowledge only a few papers
exist within this context. Dias et al. (2008) proposed a memetic algorithm for multi-
period problems when it is possible to install and remove a facility more than once
during the planning horizon. Hugo and Pistikopoulos (2005) and Melachrinoudis
and Min (2007) studied multi-criteria, multi-period facility location problems in the
context of logistics network design.

Most of the content in this chapter constitutes a basis for investigating more
complex real-world problems. In fact, several models presented in the previous
sections have already been extended to problems arising in other areas such as Hub
Location (Chap. 12), Location-routing and Location-arc routing (Chap. 15), and
Supply Chain Management and Logistics (Chap. 16). Nevertheless, some challenges
still exist. The research done so far is scarce when it comes to some classes of
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multi-period facility location problems, namely those just mentioned above. These
correspond to research directions worth exploring namely for better tackling real-
world systems.
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Chapter 12
Hub Location Problems

Ivan Contreras and Morton O’Kelly

Abstract Hub Location Problems (HLPs) lie at the heart of network design
planning in transportation and telecommunication systems. They constitute a chal-
lenging class of optimization problems that focus on the location of hub facilities
and on the design of hub networks. This chapter overviews the key distinguishing
features, assumptions and properties commonly considered in HLPs. We highlight
the role location and network design decisions play in the formulation and solution
of HLPs. We also provide a concise overview of the main developments and most
recent trends in hub location research. We cover various topics such as hub net-
work topologies, flow dependent discounted costs, capacitated models, uncertainty,
dynamic and multi-modal models, and competition and collaboration. We also
include a summary of the most successful integer programming formulations and
efficient algorithms that have been recently developed for the solution of HLPs.

12.1 Introduction

Transportation, telecommunications and computer networks frequently employ
hub-and-spoke architectures efficiently to route flows between many origins and
destinations. Their key feature lies in the use of transshipment, consolidation, or
sorting points, called hub facilities, to connect a large number of origin/destination
(O/D) pairs by using a small number of links. Flows having the same origin
but different destinations are consolidated when routed to the hubs and are then
combined with other flows having different origins but the same destination. This
helps reduce setup costs, centralize commodity handling and sorting operations,
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and achieve economies of scale on routing costs through the consolidation of flows.
Broadly speaking, Hub Location Problems (HLPs) consist of locating hub facilities
and of designing hub networks so as to optimize a cost-based (or service-based)
objective.

HLPs constitute a challenging class of NP-hard problems involving joint location
and network design decisions. Their main difficulty stems from the inherent
interrelation between two levels of the decision process. The first level considers
the selection of a set of nodes to locate hub facilities, whereas the second level
deals with the design of the hub network, by selecting the links to connect origins,
destinations and hubs, as well as the routing of flows through the network.

HLPs lie at the heart of network design planning in transportation and telecom-
munication systems. Application areas of HLPs in transportation are abundant.
These include express package delivery, air freight and passenger travel, postal
delivery, trucking, and rapid transit systems. Demand corresponds to commodities
(i.e. express packages, passengers, mail, goods) carried by vehicles (i.e. trucks,
trains, airplanes, vessels) moved on physical networks such as roads and railways or
through the air or water. Hub facilities correspond to sorting centers or transportation
terminals in which one or more transportation modes interact. Consolidation of
flows at hubs enables economies of scale on the transportation costs, not only on
the routing of flows between hubs, but also between O/D nodes and hubs.

Applications of HLPS in telecommunications arise in the design of various
distributed data networks, where demand corresponds to electronic data that are
routed over a variety of physical links (i.e. fiber optic links and co-axial cables)
or through the air (i.e. satellite channels and microwave links). Hub facilities are
hardware such as switches, concentrators, multiplexors, and routers. Economies of
scale in data transmission and network utilization, in combination with large setup
costs for hub facilities and communication links, motivate the use of hub-and-spoke
architectures.

The study of HLPs began with the work of O’Kelly (1986a), for continuous
models, and O’Kelly (1986b, 1987), for discrete models, and has since evolved into
a rich research area. Over the last three decades hub location has been studied by
researchers around the globe from different disciplines such as location science,
geography, regional science, network optimization, transportation, telecommunica-
tions, and computer science. There exist several reviews and surveys on HLPs, each
one focusing on different aspects of these problems. The early reviews dealing with
HLPs, by O’Kelly and Miller (1994) and Campbell (1994a), contain classification
schemes for fundamental models and for the topological structures applicable to
hub networks. Klincewicz (1998) concentrates on the design of hub networks in
the context of telecommunication networks, and Bryan and O’Kelly (1999) present
a survey focused on air transportation networks. Campbell et al. (2001) wrote a
comprehensive survey of HLPs in which the location of hubs is the key decision.
Alumur and Kara (2008) provide a classification scheme and review of the growing
literature on network hub location models before 2008. Campbell and O’Kelly
(2012) provide an insight into early motivations for analyzing HLPs and highlight
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recent research directions. Zanjirani Farahani et al. (2013) review solution methods
and applications for several classes of HLPs.

This chapter focuses on the role location and network design decisions play in the
formulation and solution of HLPs. It overviews features and assumptions commonly
considered in discrete HLPs, and provides insights on their modeling implications.
We point out how these assumptions simplify network design decisions by creating a
first generation of HLPs that focuses mostly on the location and allocation decisions.
We also show how network decisions become more involved when relaxing some
of these assumptions.

We start with an introduction to the fundamentals of HLPs, including their
distinguishing features, assumptions, properties, as well as commonly used objec-
tives. A review of the most interesting and useful mixed integer programming
(MIP) formulations for fundamental HLPs considering cost-based objectives is then
presented. We also highlight some of the main developments and most recent trends
in hub location. We would like to clarify that, due to space limitations, this is not
intended to be a comprehensive survey of all diverse topics associated with hub
location research (Campbell and O’Kelly 2012), but rather our personal treatment
on some of the most interesting research on this field. In particular, we include hub
network topologies, flow dependent discounted cost models, capacitated models,
models dealing with uncertainty, dynamic and multi-modal models, and competition
and collaboration. A summary of successful integer programming methods that have
given rise to efficient approximate and exact solution algorithms for solving HLPs
is also presented.

This chapter does not cover continuous HLPs or models in which locational
decisions are not present. The reader is referred to O’Kelly (1986a), O’Kelly
and Miller (1991), Aykin (1988), Campbell (1990, 2013), Saberi and Mahmassani
(2013), and references therein for continuous variants of HLPs, and to Klincewicz
(1998), Gendron et al. (1999), Wieberneit (2008), and Saito et al. (2009) for hub-
and-spoke network design models in which the set of hub facilities is given a priori.
The reader is also referred to Contreras and Fernández (2012) for a survey of other
general network design problems that also combine location and network design
decisions.

12.2 Fundamentals

HLPs are closely related to classical Facility Location Problems (FLPs). As a result,
for several classical facility location problems such as p-median, uncapacitated
facility location, p-center, and covering problems, analogous HLPs have been
studied: p-hub median, uncapacitated hub location, p-hub center, and hub covering
problems. Due to their multiple applications, inside these classes of HLPs there
exist several variants that differ with respect to a number of assumptions like their
topological structure, the allocation pattern of O/D nodes to hubs, and capacity
constraints on the hub network, among others.
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The key difference between FLPs and HLPs lies in the type of service demand
required by the users and on the function the facilities provide. In the case of
FLPs, service is given at the facilities and flows thus originate at demand nodes and
their destination are the facilities. Network design and routing decisions are usually
determined by the assignment pattern of demand nodes to their allocated facilities.
In HLPs, service demand is between O/D nodes and hub facilities are intermediate
nodes in the O/D paths which act as transshipment and consolidation points. When
a hub serves as transshipment (switching or sorting) point, it allows flows to be
processed and redirected to other hubs or O/D nodes with many fewer links than
would be needed with direct connections. As a consolidation (concentration or
breakbulk) point, a hub allows flows to be aggregated and disaggregated, creating
economies of scale in the transportation or communication cost between hubs and
between O/D nodes and hubs. The interaction of hub facilities and O/D nodes
increases the complexity of network design and routing decisions since these are
not necessarily determined by the assignment pattern of O/D nodes to hubs.

Another difference between FLPs and HLPs is that when dealing with unca-
pacitated hub location models, a single assignment pattern of non-hub nodes to
hubs is not necessarily an optimal allocation strategy. In most uncapacitated FLPs,
once the facility locations are known the flow cost is minimized by assigning
each demand node to its nearest (or least costly) open facility. In the case of
HLPs, once the hub locations are known, the flow cost is minimized by finding
the shortest path on the network induced by the selected hubs for each O/D pair,
resulting in a multiple allocation pattern of O/D nodes to hubs. For this reason,
both single and multiple assignments versions of HLPs exist. In a hub location
problem with single assignments, O/D nodes must be assigned to exactly one hub
facility which is more difficult. All demand flows from the same origin or to the
same destination, are thus routed via the same hub. In a hub location problem with
multiple assignments, each O/D node can be allocated to more than one hub facility.
Multiple assignment patterns simplify the routing decisions and provide greater
flexibility on hub networks, allowing lower flow cost solutions. However, they can
considerably increase the network design cost as a larger number of links must be
activated on the hub network.

12.2.1 Features, Assumptions and Properties

The key distinguishing features of HLPs can be summarized as follows: (1)
service demand is associated with flows between O/D pairs, (2) hub facilities are
intermediate nodes in the O/D paths which act as transshipment or consolidation
points, (3) there is a benefit (or requirement) of routing flows via hubs, (4) there
is a cost-based (or service-based) objective that depends on the design of the hub
network (location of hubs and selection of links) and the routing of flows.

We can provide a description of a generic hub location problem as follows.
Consider a complete graph G = (N,E), where N is the set of nodes representing
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the origins and destinations of flows, and E is the set of edges. Let N be the set of
potential hub locations as well. For each node pair (i, j), let Wij ≥ 0 and dij ≥ 0
denote the amount of flow to be routed and the distance, respectively, from the origin
i ∈ N to the destination j ∈ N . For each node i ∈ N , fi is the fixed setup cost for
locating a hub, whereas for each e ∈ E, ge denotes the fixed setup cost for locating a
hub arc. A hub arc e = (i, j) ∈ E connects two different hub nodes i and j and has
a unit flow cost of αdij . The parameter α (0 ≤ α ≤ 1) is used as a discount factor to
provide reduced unit flow costs on hub arcs to reflect economies of scale resulting
from consolidation of flows between hubs. The unit flow cost between O/D pairs
is given by the length of the path between the origin and destination nodes in the
solution network. Each O/D path has a collection leg from the origin node to the first
hub, possibly a transfer leg between the first and the last hubs, and a distribution leg
from the last hub to the destination node. A generic hub location problem consists of
locating a set of hub facilities and a set of hub arcs, and of determining the routing
of flows through the hub network, with the objective of minimizing the total setup
and flow cost.

Most of the hub location literature has focused on Hub Node Location Problems
(HNLPs), which consider the location of a set of hub facilities and the assignment
of O/D nodes to these facilities. Arc selection and routing decisions are usually
determined by the assumptions made on the cost structure and the assignment
pattern. The network induced by the solution of a HNLP consists of three types of
arcs: (1) hub arcs connecting two hubs, (2) access arcs connecting non-hub nodes
and hubs, and (3) direct arcs connecting two non-hub nodes. A more general class of
hub location models, known as Hub Arc Location Problems (HALPs), have received
less attention in the literature. HALPs consider the location of a set of hub arcs, that
induce a set of hub nodes, and the assignment of O/D nodes to these hub arcs. In
HALPs, the possibility of connecting two hub nodes with a fourth type of arc arises.
A bridge arc is an arc that connects two different hub nodes, without benefiting from
the reduced unit flow cost of a hub arc. HNLPs can be seen as particular cases of
HALPs in which additional conditions are imposed.

Four common assumptions underlie most HLPs:

1. Flows have to be routed via a set of hubs.
2. Access arcs and bridge arcs have no setup cost.
3. The discount factor α is the same for all hub arcs and does not depend on the

amount of flow that is actually routed on each hub arc.
4. Distances dij satisfy the triangle inequality.

A consequence of Assumption 1 is that direct connections between O/D nodes
which are not hubs are not allowed and thus, O/D paths must include at least one
hub node. In most HNLPs an additional fifth assumption stating that the setup cost
of hub arcs is equal to zero (i.e., ge = 0 for each e ∈ E) is also considered. This
allows hubs to be interconnected at no extra cost and, together with Assumptions 3
and 4, an important resulting property in solution networks of HNLPs is that the set
of hub arcs define a complete subgraph on the set of hub nodes (i.e. hubs are fully
interconnected). As a consequence, hub arc selection decisions become trivial once
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the location of hub nodes is known. Another important property, obtained when
combining all assumptions, is that paths between O/D pairs will contain at least one
and at most two hubs. However, it is important to note that whenever Assumption 4
is not satisfied, paths may contain more than two hubs and more than one hub arc.

The above properties simplify the network design decisions and characterize
the structure of O/D paths. In HNLPs, all O/D paths include either a single hub
node and no hub arc, or two hub nodes and a single hub arc. Moreover, because of
Assumptions 2 and 4, each collection and distribution leg, if present, contains only
one access arc. O/D paths are thus of the form (i, k,m, j), where (k,m) ∈ N ×N is
the ordered pair of hubs to which i and j are allocated, respectively. Note that these
paths contain one, two or at most three arcs, depending on the number of visited
hubs and on the function of origins and destinations (i.e. hub or non-hub nodes).
For each O/D pair, the flow cost of routing Wij along the path (i, k,m, j) is then
given by Fijkm = Wij

(
χdik + αdkm + δdmj

)
, where χ, α, and δ represent the

collection, transfer and distribution costs along the path. To reflect economies of
scale between hubs, we assume that τ < χ and τ < δ. We note that in the literature,
the path (i, k,m, j) is sometimes written with the alternative order (i, j, k,m).

Figure 12.1a shows an example of a solution network of a HNLP in which
different structures on O/D paths arise (squares represent hub nodes and circles
represent non-hub nodes). The path (1, 2, 9, 10) is a two-hub path formed by the
access arcs (1, 2), (9, 10) and the hub arc (2, 9). The path (2, 2, 9, 6) is also a two-
hub path but containing only the access arc (9, 6) and the hub arc (2, 9). The path
(3, 3, 9, 9) is yet another two-hub path formed only by the hub arc (3, 9). The path
(1, 2, 2, 8) is a one-hub path containing only the access arcs (1, 2) and (2, 8). The
path (7, 8, 8, 8) is also a one-hub path containing the single access arc (7, 8).

In HALPs, hubs are not necessarily fully interconnected due to the set up cost on
the hub arcs or because additional conditions on the network topology are imposed.
This causes O/D paths to become more involved, since they may use more than three
arcs and visit more than two hub nodes. Similar to HNLPs, because of Assumptions
2 and 4, each collection and distribution leg, if present, employs either one access
arc or one bridge arc. However, the transfer leg can now use several bridge and hub
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Fig. 12.1 Solution network of a hub node location problem (a) and a hub arc location problem (b)
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arcs, depending on the particular assumptions considered on the structure of O/D
paths.

To simplify the routing decisions in HALPs, an additional assumption stating
that O/D paths contain at most one hub arc can be imposed. This limits paths
to have at most three arcs, being the first and last ones either access or bridge
arcs and the intermediate arc, if it exists, a hub arc. As mentioned in Campbell
et al. (2005a), this assumption is used to increase service level in classical HLPs
and is also consistent with practice. In air transportation, for example, it ensures
that a passenger will never have to change flights more than twice. In ground
transportation, it is convenient to restrict the number of hub facilities that each route
has to pass through so as to reduce handling and congestion at hubs and to provide
a form of performance guarantee. O/D paths are once more of the form (i, k,m, j),
and thus, defining their flow cost as Fijkm.

Figure 12.1b shows an example of a solution network of a HALP in which
different structures on O/D paths arise (dashed lines represent bridge arcs). The
path (5, 8, 2, 3) is a four-hub path formed by the bridge arcs (5, 8), (2, 3) and the
hub arc (8, 2). The path (5, 8, 9, 10) is a three-hub path containing the bridge arc
(5, 8), the hub arc (8, 9) and the access arc (9, 10).

12.2.2 Supermodular Properties

We next show how a general class of HLPs can be stated as the minimization of
a real-valued supermodular set function. This fundamental property, which is also
known for other types of classical facility location problems (p-median, uncapac-
itated and capacitated facility location), can be exploited to develop mathematical
formulations and solution algorithms with worst case bounds.

This class of HLPs, referred to as Supermodular Hub Location Problems
(SHLPs), considers Assumptions 1–4 and the additional assumption that limits O/D
paths to contain at most one hub arc. SHLPs consist of locating a set of at most
q hub arcs (q ≥ 1), that induce a set of at most p hub nodes (p ≥ 2), and of
determining the routing of commodity flows through the hub network, with the
objective of minimizing the total setup and flow cost. We can state SHLPs as the
following combinatorial problem. Let U = N ∪E be a finite set containing both the
set of nodes N and the set of edges E of G. For each non-empty subset (S,R) ⊆ U ,
where S ⊆ E and R ⊆ N , define

c(S,R) =
∑

i∈R
ci ; g(S,R) =

∑

e∈S
ge; h(S,R) =

∑

i,j∈N
hij (S) =

∑

i,j∈N
min

(k,m)∈S
Fijkm,

and

f (S, R) = c(S,R) + g(S, R) + h(S, R) =
∑

i∈R
ci +

∑

e∈S
ge +

∑

i,j∈N
min

(k,m)∈S Fijkm,

(12.1)
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and f (∅) = 0. For nonempty sets of hub nodes R ⊆ N and hub arcs S ⊆ E, c(S,R)

is the total setup costs for setting hub nodes, g(S,R) is the total setup cost of the
hub arcs, and h(S,R) is the total cost for routing the flows when the set of hub arcs
S is chosen. Thus, f (S,R) is the objective function value associated with the set
of hub nodes R and the set of hub arcs S. Therefore, SHLPs can be stated as the
problem of finding a set of arcs S ⊆ E of cardinality at most q (q ≤ |E|) and R of
cardinality at most p (p ≤ |N |) such that f (S,R) is minimum, i.e.,

min
(S,R)⊆U

{f (S,R) : |S| ≤ q, |R| ≤ p, N(S) = R} , (12.2)

where N(S) = {i ∈ N : (i, j) ∈ Sor(j, i) ∈ S} is the set of nodes incident with
some edge in S. In order to deal only with feasible problems, we assume that p ≥
� q

2 �. When p ≥ min{|N |, 2q} the maximum cardinality constraint on the number
of hub nodes becomes redundant. Similarly, if q ≥ min{|E|, (p2

)} the maximum
cardinality constraint on the number of hub arcs becomes redundant. A fundamental
property of f is that, for (S,R) ⊂ (T ,Q) and e ∈ E\T , adding e to T will decrease
f by no more than by adding e to S. A real-valued set function with such property
is called supermodular set function.

Proposition 12.1

(a) h(S,R) = ∑

i,j∈N
hij (S,R) is supermodular and nonincreasing.

(b) f (S,R) = c(S,R) + g(S,R) + h(S,R) is supermodular.

Problem (12.2) can thus be stated as the minimization of a supermodular set
function, which is known to be in the class of NP -hard problems. We use SHLP to
describe any problem that can be formulated as (12.2). SHLPs are a quite general
class of HLPs and include several special cases which are of particular interest
such as p-hub median, uncapacitated hub location, and q-hub arc location. Other
classical facility location problems, such as the p-median or the uncapacitated
facility location problem, are also relevant special cases of SHLPs. However, we
note that not every HLP can be stated as problem (12.2). For instance, when a
single assignment pattern is imposed the flow cost associated with a given set of
hub arcs S is no longer h(S,R), since all flow with the same origin (destination)
must be routed through the same collection (transfer) leg. That is, HLPs with single
assignments cannot be formulated as SHLPs. Moreover, even if multiple allocation
is allowed, the addition of capacity constraints also preclude the supermodularity
property when commodities cannot be split.

12.2.3 Objectives

Most of the hub location research has focused on HLPs that consider either a cost-
based or a service-based objective. Transportation applications tend to focus on the
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flow transportation costs and travel times, whereas telecommunication applications
focus more on the setup costs of the hub network. Analogously to facility location,
HLPs can be classified based on the type of objective they use.

• p-Hub Median Problems O’Kelly (1987), Campbell (1996) assume that the
number of hubs to locate is given as an input of the problem. They consist of
locating a set of p hub facilities with the objective of minimizing the total flow
cost for routing the flows through the hub network.

• Hub Location Problems O’Kelly (1992), Campbell (1994b) consider that the
number of hubs to locate is not known a priori, but a fixed setup cost for each
hub is considered. The objective is to minimize the sum of hub fixed costs and of
demand flow costs over the hub network.

• p-Hub Center Problems Campbell (1994b), Kara and Tansel (2000) are minimax
problems that focus on the minimization of a maximum service or cost measure
between O/D pairs. Some of these measures are: (1) the maximum flow cost (or
travel time) of all O/D pairs, (2) the maximum flow cost (or travel time) of all arcs
of the hub network, and (3) the maximum flow cost (or travel time) associated
with an access arc.

• Hub Covering Problems Campbell (1994b), Kara and Tansel (2003) impose a
maximum threshold value on the service level (travel time) and focus on the
minimization of the setup cost of the hub network. They assume demand is
covered if both origin and destination nodes are within a specified distance of
a hub node. They differ on their considered coverage criteria. An O/D pair (i, j)
is covered by hubs k and m if: (1) the length of the path (i, k,m, j) is within a
specified value, (2) the length of each arc in the path (i, k,m, j) does not exceed
a specified value, or (3) each of the access arcs meet different specified values.

Both single and multiple assignment models, as well as uncapacitated and
capacitated models have been considered in the literature for most of these classical
objectives. We refer to Campbell (1994a), Campbell et al. (2001), and Alumur and
Kara (2008) for a detailed overview of these models.

HLPs with more complex classes of objective functions have also been studied.
Costa et al. (2008) and Köksalan and Soylu (2010) consider HLPS with multiple
objectives. Puerto et al. (2011, 2016) study a general class of HLPs that consider an
ordered median function (see Chap. 10) for which the above mentioned objectives
(and others) are particular cases. O’Kelly (2012) considers objectives related to the
fuel burn and environmental impact in airline hub networks. Campbell and O’Kelly
(2012) review some HLPs that integrate both cost and service objectives. Alibeyg
et al. (2016, 2018) introduce hub location problems with profit-oriented objectives
that measure the tradeoff between the revenue derived from served commodities and
the overall network design and flow costs.
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12.3 Formulating Hub Location Problems

One of the major modeling challenges in HLPs is due to the fact that knowing
the hub network structure is not necessarily sufficient to evaluate the objective
function. Formulations must be able to model the path used for routing each flow to
determine the flow cost. Significant progress has been made toward the development
of MIP formulations for fundamental HLPs. These exploit the structure of the
solution network obtained when considering the modeling assumptions presented
in Sect. 12.2.1. We next introduce the most important families of MIP formulations
for both single and multiple assignment variants of p-hub median and hub location
problems. These have been successfully used in combination with sophisticated
solution algorithms to obtain optimal solutions for large-scale instances. They have
also been extended to model more complex variants of HLPs including additional
features of real applications. We refer to Campbell et al. (2007), Alumur and Kara
(2008), Wagner (2008a), Ernst et al. (2009), Hwang and Lee (2013), and Lowe and
Sim (2013) for formulations of p-hub center and hub covering problems.

12.3.1 Single Assignments

A natural way of formulating HLPs with single assignments is to consider them
as facility location problems with additional quadratic costs associated with the
interaction between hub facilities. For each pair i, k ∈ N , we define location-
allocation variables zik , equal to one if and only if node i is assigned to hub k.
When i = k, variable zkk represents the establishment or not of a hub at node k. The
Uncapacitated Hub Location Problem with Single Assignments (UHLPSA) can be
stated as the following quadratic mixed integer program (O’Kelly 1987):

minimize
∑

k∈N
fkzkk +

∑

i,k∈N
(χOi + δDi) dikzik +

∑

i,j,k,m∈N
αWij dkmzikzjm

(12.3)

subject to
∑

k∈N
zik = 1 i ∈ N (12.4)

zik ≤ zkk i, k ∈ N (12.5)

zik ∈ {0, 1} i, k ∈ N, (12.6)

where Oi = ∑
j∈N Wij and Di = ∑

j∈N Wji . The first term of the objective
function represents the total setup cost of the hub facilities, whereas the second
and third terms are the flow cost on the access and hub arcs, respectively. Con-
straints (12.4) guarantee that every O/D node is assigned to exactly one hub, whereas
constraints (12.5) impose that they can only be assigned to open hubs. Note that
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constraints (12.4)–(12.6) define the set of feasible solutions of the Uncapacitated
Facility Location Problem (see Chap. 2). However, objective (12.3) contains an
additional quadratic term associated with the inter-hub flow cost. Several linearized
formulations have been proposed to overcome this added difficulty of UHLPSAs.

An important family of formulations, referred to as path-based formulations, use
decision variables to characterize O/D paths visiting either one or two hub nodes.
We introduce binary routing variables xijkm, i, j, k,m ∈ N , equal to 1 if and only if
the flow originated at i and destination j transits via a first hub node k and a second
hub node m. The UHLPSA can be stated as follows (Skorin-Kapov et al. 1997):

minimize
∑

k∈N
fkzkk +

∑

i,j,k,m∈N
Fijkmxijkm

subject to (12.4)–(12.6)
∑

m∈N
xijkm = zik i, j, k ∈ N (12.7)

∑

k∈N
xijkm = zjm i, j,m ∈ N (12.8)

xijkm ≥ 0 i, j, k,m ∈ N. (12.9)

Constraints (12.7) state that if node i is assigned to hub k then all the flow from
node i to any other node j must go through some other hub m. Constraints (12.8)
have a similar interpretation relative to the flow arriving at a node j assigned to
hub m from some node i. There is no need to state explicitly the integrality on
the xijkm variables given that constraints (12.7)–(12.8), in combination with (12.6),
ensure that for each node pair i, j ∈ N exactly one variable xijkm equals to one and
the rest of them to zero. One of the attractive features of this formulation is that it
usually provides tight linear programming (LP) relaxation bounds, at the expense
of requiring O(n4) variables and O(n3) constraints. Saito et al. (2009) study the
polyhedral structure of the quadratic semi-assignment polytope, a relaxation of this
formulation, and provides strong valid inequalities to further improve its LP bound.

It is possible to project out the path-based variables xijkm to obtain a formulation
with fewer variables (see Labbé and Yaman 2004; Labbé et al. 2005). We define
continuous variables ykm, k,m ∈ N , equal to the amount of flow routed on hub arc
(k,m). The UHLPSA can be formulated as

minimize
∑

k∈N
fkZk +

∑

i,k∈N
(χOi + δDi)dikzik +

∑

k,m∈N
αdkmykm

subject to (12.4)–(12.6)

ykm ≥
∑

(i,j)∈K
Wij

(
zik + zjm − 1

)
k,m ∈ N,K ⊆ N × N

(12.10)

ykm ≥ 0 k,m ∈ N. (12.11)
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For each arc (k,m), constraints (12.10) and (12.11) imply

ykm = max
K⊆N×N

∑

(i,j)∈K
Wij

(
zik + zjm − 1

) =
∑

(i,j)∈Kkm

Wij

(
zik + zjm − 1

)
,

where Kkm is the set of all demands which are routed on hub arc (k,m). This
formulation contains only O(n2) variables but an exponential number of constraints.
Labbé and Yaman (2004) show that constraints (12.10) are a particular case of
a more general class of facet defining inequalities which can be separated in
polynomial time.

Another important family of formulations, referred to as flow-based formula-
tions, use continuous variables to compute the amount of flow routed on a particular
arc originated at a given node. In the case of single assignments, we only need to
use one set of flow variables associated with the hub arcs. We thus define continuous
variables Yikm, i, j, k ∈ N , equal to the amount of flow originated at node i and
passing through hub arc (k,m). The UHLPSA can be formulated as follows (Ernst
and Krishnamoorthy 1996):

minimize
∑

k∈N
fkzkk +

∑

i,k∈N
(χOi + δDi)dikzik +

∑

i,k,m∈N
αdkmYikm

subject to (12.4)–(12.6)
∑

j∈N
Wij zjk +

∑

m∈N
Yikm =

∑

m∈N
Yimk + Oizik i, k ∈ N

(12.12)

Yikm ≥ 0 i, k,m ∈ N. (12.13)

Constraints (12.12) are the well-known flow conservation constraints for each
O/D node i at each (potential) hub node k, where the supply and demand at
each node is determined by the allocation pattern. The above formulation contains
O(n3) variables and O(n2) constraints and thus, fewer variables and constraints
as compared with the path-base formulation. However, it usually produces weaker
LP bounds. Contreras et al. (2010, 2017) present some families of extended cut-set
inequalities that can help improve the LP bounds.

12.3.2 Multiple Assignments

Given that in HLPs with multiple assignments O/D nodes can be connected to more
than one hub facility, we can exploit the properties on the structure of O/D paths
to obtain path-based formulations with less variables than the ones required for
single assignment models. In particular, it is known that every flow uses at most
one direction of a hub arc, the one with lower flow cost (Hamacher et al. 2004).
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Hence we define an undirected flow cost Fije for each e = (k,m) ∈ E and i, j ∈ N

as Fije = min{Fijkm, Fijmk}. We also define binary location variables Zi , i ∈ N ,
equal to 1 if and only if a hub is located at node i. The Uncapacitated Hub Location
Problem with Multiple Assignments (UHLPMA) can be stated as follows (Hamacher
et al. 2004; Marín 2005a):

minimize
∑

k∈N
fkZk +

∑

i,j∈N

∑

e∈E
Fijexije

subject to
∑

e∈E
xije = 1 i, j ∈ N (12.14)

∑

e∈E:k∈e
xije ≤ zk i, j, k ∈ N (12.15)

xije ≥ 0 i, j, k ∈ N (12.16)

Zi ∈ {0, 1} i ∈ N. (12.17)

Constraints (12.14) guarantee that there exists a single path connecting the
origin and destination nodes of every commodity. Constraints (12.15) prohibit
commodities from being routed via a non-hub node. Similar to UHLPSA, there is
no need to explicitly state the integrality on the xije variables because there always
exists an optimal solution of (12.14)–(12.17) in which all xije variables are integer.
When solving this formulation, it may be possible to find an optimal solution in
which, for a subset of node pairs i, j ∈ N , more than one xije variable is strictly
positive (i.e., two or more paths are used to route flow between i and j ). This would
imply that there is more than one OD path with the same route cost. In that case,
one can recover an integer solution by arbitrarily selecting one of such paths for each
node pair i, j ∈ N with multiple paths and making the associated xije variable equal
to one and the others equal to zero. This path-based formulation has O(n4) variables
and O(n3) constraints and usually provides tight LP bounds. Hamacher et al. (2004)
and Marín (2005a) independently prove that constraints (12.15) are indeed facet-
defining inequalities. Marín (2005a) provide other classes of inequalities associated
with the set-packing polytope which also define facets.

The number of routing variables xije can be further reduced by defining a set
of candidate hub arcs for each O/D pair (see Contreras et al. 2011b). This is done
by using the property that no flow will be routed through a hub arc containing two
different hubs whenever it is cheaper to route it through only one of them (Boland
et al. 2004; Marín 2005a).

In HLPs with multiple assignments it is also possible to completely eliminate
the undirected routing variables xije by exploiting the supermodular properties
presented in Sect. 12.2.2. We define binary hub arc location variables ye, e ∈ E,
equal to 1 if and only if a hub arc is located at e. For each i, j ∈ N , we
order the elements of E by non-decreasing values of their coefficients Fije , and
we denote eijr to the r-th element according to that ordering. That is, Fije1 ≤
Fije2 ≤ · · · ≤ Fije|E| ≤ Feij |E|+1 , where Feij |E|+1 = Fije∗ is the cost for the
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fictitious edge e∗ such that (1) Fije∗ > maxe∈E Fije , for all i, j ∈ N ; and (2)∑
i,j∈N Fije∗ > maxe∈E(fe + ∑

i,j∈N Fije). This assumption guarantees that at
least one hub variable ye is at value one in any optimal solution. The UHLPMA can
be stated as the following MIP (see Contreras and Fernández 2014):

minimize
∑

k∈N
fkZk +

∑

i,j∈N
ηij

subject to ηij ≥ Fijer +
∑

e∈E
(Fije − Fijer )̄ ye r = 1, . . . , |E| + 1, i, j ∈ N

(12.18)

ye ≤ zk e = (k,m) ∈ E (12.19)

ye ≤ zm e = (k,m) ∈ E (12.20)

ye, zi ∈ {0, 1} e ∈ E, i ∈ N, (12.21)

where ηij are continuous decision variables used to evaluate the flow cost of O/D
pair (i, j) and (x)̄ = min {0, x}. This new formulation has O(n2) variables and
O(n4) constraints. It is interesting to note that, for the particular case of the p-hub
median problem, the above supermodular formulation coincides with the radius-
based formulation of García et al. (2012).

As in the case of single assignments, we can also use flow-based formulations
to model the UHLPMA. However, we now need additional flow variables for the
collection and distribution legs. We define continuous variables Xijm, i, j,m ∈ N ,
equal to the amount of flow from hub m to destination j that originates at node i.
We also define continuous variables Zik , i, k ∈ N equal to the amount of flow from
origin node i to hub k. Using these sets of decision variables, we can formulate the
UHLPMA as follows (Ernst and Krishnamoorthy 1998b):

minimize
∑

k∈N
fkZk +

∑

i,k∈N
χdikZik +

∑

i,k,m∈N
αdkmYikm +

∑

ijm

δdjmXijm

subject to (12.17)–(12.13)
∑

k∈N
Zik = Oi i ∈ N (12.22)

∑

m

Xijm = Wij i, j ∈ N (12.23)

Zik +
∑

m∈N
Yikm =

∑

m∈N
Yimk +

∑

j

Xijm i, k ∈ N (12.24)

Zik,Xijm ≥ 0 i, j,m ∈ N. (12.25)

Constraints (12.22) ensure that all flow from each origin is sent to a subset of
hubs. Constraints (12.23) forces the flow of each O/D pair to arrive at its destination.
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Constraints (12.24) are the flow conservation constraints at hub facilities. The above
formulation contains O(n3) variables and O(n2) constraints. Boland et al. (2004)
presents some preprocessing procedures that can be used to reduce the number of
variables and constraints, and some valid inequalities to improve the LP bounds of
capacitated variants.

12.4 Main Developments and Recent Trends

Early hub location research focused mostly on a first generation of HLPs which
consider the assumptions introduced in Sect. 12.2.1. In this section we present
some research areas that have attracted most attention in the literature over the last
decade, leading to more realistic models that relax some of these assumptions and
incorporate additional features of real applications. We focus on six particular areas:
hub network topologies, flow dependent discounted costs, capacitated models,
models dealing with uncertainty, dynamic and multi-modal models, and competition
and collaboration.

12.4.1 Hub Network Topologies

Full interconnection between hub nodes may be prohibitive in applications where
there is a considerable setup cost associated with the hub arcs (see O’Kelly and
Miller 1994; Klincewicz 1998; O’Kelly et al. 2015a). To overcome this difficulty,
several models considering incomplete hub networks have been studied. HALPs,
originally introduced in Campbell et al. (2005a,b), relax the assumption of full
interconnection between hubs and consider the location of a set of hub arcs that
may (or may not) require a particular topological structure of their induced network.
Some of these models do not even require the hub arcs to define a single connected
component. Alumur et al. (2009), Tanash et al. (2017), O’Kelly et al. (2015a),
Miranda et al. (2017), and Martins de Sá et al. (2018a,b), among others, study
the design of incomplete hub networks in which no network structure other than
connectivity is imposed on the backbone network. Miranda et al. (2017) also
consider a variant in which hop constraints are used to limit the number of arcs
in OD paths. Other works study models that do not consider a complete backbone
network but rather, a particular topological structure. Figure 12.2 shows some
examples of different hub network structures.

Kim and Tcha (1992), Contreras et al. (2009b, 2010) and Martins de Sá et al.
(2013), study the design of tree-star hub networks in which the hubs are connected
by means of a tree and the O/D nodes are assigned to exactly one hub. Labbé and
Yaman (2008) and Yaman (2008) consider the design of star-star networks in which
hub nodes are directly connected to a central node (i.e. star backbone network) and
the O/D nodes are assigned to exactly one hub node. Martins de Sá et al. (2015)
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Fig. 12.2 Structure of a cycle-star (a), star-star (b), tree-star (c), and line-star (d) hub network

study the problem of designing a hub-line network in which hubs are connected by
means of a line and the aim is to minimize the total service time between pairs of
nodes. Martins de Sá et al. (2014b) present and extension of this problem to the case
in which multiple hub-lines are to be located. Lee et al. (1993) and Contreras et al.
(2017) focus on the design of cycle-star networks in which the hubs are connected
by means of a cycle. O’Kelly et al. (2015a) analyze the role of setup costs for
link activation decisions in the design of hub networks. The proposed model allows
particular versions of hub networks to emerge from the cost structure, rather than
assuming a predefined network structure.

Some papers focus on the design of more complex access networks that are no
longer determined by a single or multiple assignment pattern of O/D nodes to hubs.
Figure 12.3 depicts some examples of various access network structures. Aykin
(1994, 1995) and Sung and Jin (2001) present models that explicitly consider direct
connections between non-hub nodes (i.e. they relax Assumption 1). Klincewicz
(1998) and Yaman et al. (2007) consider multi-stop access paths that may visit more
than one O/D nodes on the way to a hub node. Nagi and Salhi (1998), Camargo et al.
(2013), Rodríguez-Martín et al. (2014), and Rieck et al. (2014) study problems in
which collection and distribution tours have to be designed. Thomadsen and Larsen
(2007) and Saboury et al. (2013) describe HLPs in which both the backbone and
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Fig. 12.3 Access network with direct connections (a), multi-stops (b), tours (c), and complete
subgraphs (d)

access networks are fully interconnected. Finally, we refer to Chap. 14 for references
considering hub network topologies arranged in a hierarchical structure.

12.4.2 Modeling Flow Costs

The assumption of flow-independent discounted costs (Assumption 3) is most
appropriate in applications where hub arcs are associated with faster transportation
modes. However, this can be an oversimplification in applications where the costs
represent the economies of scale due to the bundling of flows on the hub arcs.
For instance, this assumption could lead to solution networks where hub arcs send
considerable less flow than access arcs, yet the flow cost is only discounted on the
hub arcs. It may also happen that the amount of flow that is actually routed on each
hub arc is quite variable, yet the same discount factor is always applied. For these
reasons, the use of flow-independent costs may not only miscalculate the overall
flow cost of the hub network, but could also erroneously select the optimal set of
hub nodes and the assignment pattern of O/D nodes to hubs.
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Several authors have pointed out these anomalies and different hub location
models able to capture the flow-dependency of discounted costs have been proposed.
The first hub location model that explicitly accounts for economies of scale by
allowing discount factors on hub arcs to be a function of flows was introduced
in O’Kelly and Bryan (1998). This model, referred to as FLOWLOC, uses a non-
linear cost function, in which costs increase at a decreasing rate as flows increase, to
compute the flow cost in each hub arc. For any amount of flow, the cost is assumed
to be always less than the linear cost associated with a constant discount factor. This
function is approximated with a piecewise linear function to obtain a linear integer
programming formulation for the problem. Bryan (1998) provides some extensions
of the FLOWLOC model that relax the assumption of full interconnection between
hubs, by using a minimum threshold value to activate a hub arc, and that incorporate
a flow-dependent cost function for both the hub and access arcs. Klincewicz (2002)
shows that, once the location of the hubs is known, the FLOWLOC model can be
reduced to a classical UFLP. Horner and O’Kelly (2001) present a different non-
linear flow cost function based on link performance functions commonly used in
urban transportation planning. This function is used to model flow-dependent costs
in both hub and access arcs.

Racunica and Wynter (2005) study an extension of HLPs arising in the design of
intermodal transportation networks for freight rail. Their model uses another type of
non-linear concave function to model flow-dependent discounted costs only on the
transfer and distribution legs. In contrast to the FLOWLOC model, this function is
based on an efficiency threshold that considers that discounted flow costs should be
higher than the linear cost up to a threshold, and less costly thereafter. Cunha and
Silva (2007) and Lüer-Villagra and Marianov (2019) consider an alternative linear
flow cost function in which a threshold for switching cost lines is used. In this case,
the flow-independent discount rate applies only when the amount of flow on a link
exceeds the threshold.

Kimms (2006) introduces a different approach for modeling flow-dependent
discounted costs in all the arcs of the network, which is based on fixed-charge
cost functions commonly used in other network design problems. This function
consists of a fixed flow-independent setup cost and of a variable flow-dependent
(or marginal) cost. This paper presents three different models: an uncapacitated
model, a capacitated model, and a multimodal model with different capacities for
each mode of transportation. O’Kelly et al. (2015a) study a similar uncapacitated
problem in which fixed and variables flow costs for arcs are incorporated to provide
a flow-dependent cost rate. Yaman and Carello (2005), Tanash et al. (2017), and Hoff
et al. (2017) study modular hub location problems with single assignments in which
a stepwise function is used to model flow-dependent costs on hub arcs. Contrary
to fixed-charge cost functions, stepwise functions do not consider a variable cost
component and are frequently used to model transportation costs in vehicle routing
and pick-up and delivery problems (see Laporte 2009).
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12.4.3 Capacitated Models

Similar to FLPs, an important extension to HLPs is the incorporation of capacity
considerations when designing hub networks. However, in the case of HLPs the
capacity constraints may arise not only at the hub facilities but also on the arcs of the
network. Moreover, when considering capacitated models with multiple assignment
patterns, commodities may be split over several paths and thus, splittable and non-
splittable commodity variants arise. In the former case, commodities are allowed to
be split over several paths between their origins and destinations. However, in the
latter case the commodities cannot be split, meaning that each commodity will be
routed through the network from its origin to its destination through a unique path.
Note that a multiple assignment pattern that allows splitting is highly desirable when
minimizing the total flow cost. However, splitting commodities may not be feasible
in some applications.

Capacitated versions of HLPs with multiple assignments are studied by Campbell
(1994b), Ebery et al. (2000), Boland et al. (2004), and Puerto et al. (2016)
with capacity constraints on the incoming or outgoing flow at the hubs. Bryan
(1998) introduces a model in which capacities are associated with the hub arcs
rather than with the hub nodes. Marín (2005b) studies a capacitated model in
which commodities are splittable. Rodríguez-Martín and Salazar-González (2008)
study another model where commodities can be split into several routes. Capacity
constraints are imposed on the incoming flow of each hub, whether it originated
from non-hub nodes or from hub nodes. In addition, an upper limit is imposed on
the flow traversing any link of the network.

Capacitated versions of HLPs with single assignment have also been studied by
Campbell (1994b), Ernst and Krishnamoorthy (1999), Labbé et al. (2005), Correia
et al. (2010), Contreras et al. (2009a, 2011d). All these models only consider
capacity constraints on the incoming or outgoing flow at the hub nodes. Aykin
(1994, 1995) have considered HLPs with capacity constraints on the incoming
flow at the hubs as well as on direct O/D links. Carello et al. (2004), Yaman and
Carello (2005) and Yaman (2008) have studied capacitated HLPs with modular link
capacities. They considered capacity constraints on the incoming and outgoing flow
at hubs.

All of the above mentioned capacitated models consider that both hub and
arc capacities are exogenous, i.e. capacity levels for potential hub nodes and hub
arcs are determined a priori. Given that capacities can have a determining impact
on locational and routing decisions, some researchers have started studying more
realistic capacitated models in which the amount of installed capacity is part of the
decision process. Correia et al. (2010) studied an extension of capacitated HLPs with
single assignment in which the hub capacity is a decision variable. Elhedhli and Wu
(2010) introduced a capacitated model in which hub capacity is also a decision
variable. Contreras et al. (2012) presented models with multiple assignments in
which the amount of capacity installed at the hubs is part of the decision process,
for both splittable and non-splittable commodity cases.
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Alumur et al. (2016) introduced models with single and multiple assignments
in which capacities at hub nodes can be gradually expanded over a finite planning
horizon. Serper and Alumur (2016) presented a more comprehensive capacitated
model in which capacities have to be determined in both hubs and arcs of the
network. Given that alternative transportation modes and different types of vehicles
are considered, the design of the hub network is done by explicitly determining the
number of vehicles of each type to operate on each link of the network.

12.4.4 Uncertainty in Hub Location

The design of hub networks corresponds to long-term strategic decisions which are
typically made within an uncertain environment. That is, costs, demands, distances,
and other parameters may change after location and network design decisions have
been made. Nevertheless, most HLPs treat data as known and deterministic. This
can result in highly sub-optimal solutions given the inherent uncertainty surrounding
future conditions. Some researchers have studied how different uncertainty aspects
can be taken into account when designing hub networks.

Marianov and Serra (2003) is probably the first paper dealing with uncertainty,
focusing on stochasticity at the hub nodes by representing hub airports as M/D/c

queues and limiting through chance constraints the number of airplanes that can
queue at an airport. Sim et al. (2009) introduce the stochastic p-hub center problem
and employ a chance-constrained formulation to model the minimum service-level
requirement. This model takes into account the variability in travel times when
designing the hub network so that the maximum travel time through the network
is minimized.

Contreras et al. (2011a) study how the classical UHLPMA can be modeled as a
two-stage integer stochastic program with recourse in the presence of uncertainty
on demands and flow costs. In particular, three different stochastic versions are
introduced. The first considers the flow between O/D nodes to be stochastic. The
second assumes that uncertainty is given by a single parameter equally influencing
the flow cost for all links of the network. The third considers the more general
case in which the uncertainty of transportation costs is independent for each link
of the network. The authors show that the first to variants are equivalent to their
associated expected value problem in which uncertain amount of flows and flow
costs are replaced with their expected value. However, this equivalence does not
hold for the third case. Alumur et al. (2012b) consider HLPs under uncertainty in
the setup cost for the location of hubs and in the demand flows for both single
and multiple assignments models. The first class of models deals with uncertainty
on the setup costs in the absence of a known probability distribution for these
random parameters. The authors propose the use of a minimax regret model in
which the objective is to minimize the worst-case regret over a finite set of scenarios.
The second class considers uncertainty on the demand flows and uses a two-stage
stochastic program with recourse. However, as shown in Contreras et al. (2011a)
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these problems are equivalent to their associated expected value problem. The third
class considers uncertainty in both setup costs and demand flows and are modeled
as two-stage minimax regret programs with recourse. Correia et al. (2018) introduce
a more general two-stage stochastic multi-period capacitated hub location problem
in which uncertainty is assumed for the demands. The first-stage decisions deal with
the location of the hubs over the planning horizon and their initial installed capacity.
The second-stage decisions concern the assignment of non-hubs to hubs, the routing
of flows, and the capacity expansion for existing hubs.

Merakli and Yaman (2016) introduce robust uncapacitated p-hub median prob-
lems with multiple assignments under polyhedral demand uncertainty. They employ
a hose model and a hybrid model to characterize demand uncertainty. The former
assumes that the only available information is an upper bound on the total flow
adjacent to each node, while the latter incorporates in addition lower and upper
bounds on each OD flow. Merakli and Yaman (2017) extends the hose uncertainty
model to a more challenging scenario in which capacities at hubs are considered,
impacting the feasibility of solutions. Zetina et al. (2017) present robust counterparts
for UHLPMAs in which the level of conservatism is controlled with a budget
of uncertainty. The proposed models incorporate both independently and jointly
demand and flow costs uncertainties when the only available information is an
interval of uncertainty. The considered objectives aim at a minimizing the sum of
the hub setup costs and of demand flow costs in the worst-case scenario.

Martins de Sá et al. (2018a) study a robust counterpart of an incomplete hub
location problem with multiple assignments in which link activation decisions are
taken into account. The model considers uncertainty in setup costs for hub nodes
and hub arcs as well as demand and uses a budget of uncertainty to control the level
of conservatism. Martins de Sá et al. (2018b) address another robust incomplete
hub location problem in which service time constraints for each demand flow are
incorporated. In this case, the uncertainty is related to travel times between nodes
and the goal is to obtain cost-effective solutions with a high probability of being
feasible with respect to the service time constraints.

Demand uncertainty has also been studied in hub location from a congestion
perspective. When demand flows increase unexpectedly within a short time, they
are likely to congest the hub network. This causes an increase in the operational
cost of the network due to delays at hub facilities. Elhedhli and Hu (2005) present
a single allocation hub location model that considers hub congestion-related costs
as an exponential function of the hub flow. Camargo et al. (2009) propose the
multiple allocation analogue of the previous model. Elhedhli and Wu (2010) study
a different approach in which the hub network is modeled as a network of M/M/1
queues where each hub behaves as a single server with a given exponential service
rate determined by its capacity. The congestion cost is modeled using a Kleinrock
average delay function. Camargo and Miranda (2012) provide extensions to the
previous single allocation models by considering two different perspectives: a
network owner perspective in which the goal is to design a hub network with the
least congestion cost, and a user perspective in which the goal is to minimize the
maximum congestion effect. Aziz et al. (2018) consider the design of hub networks
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under stochastic demand and congestion. Hubs are modeled as spatially distributed
M/G/1 queues and congestion is captured using the expected queue lengths at hubs.

An important uncertainty aspect neglected until recently is the reliability of hub
networks. Kim and O’Kelly (2009) present a reliable p-hub location problem arising
in the design of telecommunication networks. This problem considers the reliability
of O/D paths by taking into account the probability of successful communication
to deliver traffic without congestion or loss between O/D pairs. It focuses on
maximizing the total network flow that can be routed when incorporating the
reliability of O/D paths. An et al. (2015), Aziz et al. (2016), and Rostami et al.
(2018) study models in which disruptions at hub nodes are taken into account
when designing the hub network. The proposed models mitigate the resulting hub
unavailability (one at a time) by using backup hubs and alternative routes for
demand flows. The objective of these models is to minimize the total expected flow
cost considering both the regular and the disruptive situation. Tran et al. (2016)
assume that more than one hub can simultaneously fail, each of which can fail with a
site-specific probability. Ramamoorthy et al. (2018) present multiple allocation hub
interdiction and hub protection problems. In the hub interdiction problem, the goal
is to determine a set of r critical hubs from an existing set of p hubs such that when
interdicted results in the maximum post-interdiction flow cost. In the hub protection
problem, the decision maker seeks to fortify a set of u hubs from an existing set
of p hubs against interdiction. These models lead to complex bi-level and tri-level
optimization problems which are known to be extremely difficult to solve.

12.4.5 Dynamic and Multi-Modal Models

One common feature of real applications is the dynamic nature of the problem.
Parameters such as costs, demand, and resources often vary over the planning
horizon. From the location point of view this gives rise to different types of multi-
period, or dynamic problems. In this type of problems, not only a routing plan has to
be made, but the times at which facilities are opened or closed must be determined.

Campbell (1990) develops a continuous approximation model to locate trans-
portation terminals (hubs) for a general freight carrier serving an increasing demand
in a fixed region. It can be seen as a continuous dynamic hub location model in
which it is assumed that the O/D points are scattered randomly over the service
region. Contreras et al. (2011c) study a dynamic model with multiple assignments
which includes strategic decisions related to the location, operation and closing of
hub facilities over time. It is assumed that the forecast demand between O/D pairs
is known with certainty but varies over the time horizon. Moreover, the proposed
model allows hubs to be opened and closed at different time periods to provide
a flexible hub network. Gelareh et al. (2015) presents another multi-period hub
location model arising in the design of public transportation networks in which the
full interconnection assumption is relaxed and thus, additional hub arc selection are
considered. Alumur et al. (2016) study multi-period models with single and multiple
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assignments in which capacities at hub facilities can be gradually expanded over a
planning horizon.

Another important feature in some applications is the presence of strategic
decisions related to the choice for mode of transportation. Most HLPs consider that
only one mode of transportation is available and hence there is only one type of
hub facility. However, global hub networks usually employ a mixture of air, ground
and water transportation modes. In a multi-modal hub network, each mode can be
characterized by its flow cost structure, modal connectivity, availability of transfer
points, and service time performance.

Racunica and Wynter (2005) address the design of hub networks for inter-modal
freight transport on dedicated or semi-dedicated freight rail lines which could make
use of shuttle trains on the hub arcs. Groothedde et al. (2005) develop a multi-modal
hub location model that focus on the design of a collaborative hub network for the
distribution of fast moving consumer goods using a combination of trucking and
inland barges. Ishfaq and Sox (2011) present a multiple allocation model to design
a rail-road inter-modal network. It considers the location of two different types
of hubs with different modal connectivity costs and the incorporation of service
time requirements. Meng and Wang (2011) study the design of an inter-modal
hub network for multi-type container transportation with multiple stakeholders: the
network planner, carriers, hub operations and inter-modal operators. The proposed
model incorporates the user equilibrium behavior of inter-modal operators in route
choice. Alumur et al. (2012a) introduce a more general hub network design problem
in which the full interconnection of hubs assumption is relaxed and hub arc
location decisions, that include the selection of the type of transportation mode, are
considered. This model incorporates setup costs, transportation costs and service
levels when designing the multi-modal hub network. Alumur et al. (2012c) study
a related hub covering problem to locate two types of hub nodes and hub arcs
associated with ground and air transportation. The model uses a cost-oriented
objective while ensuring time-definite deliveries. Serper and Alumur (2016) present
capacitated models considering alternative transportation modes and different types
of vehicles. The models select an optimal number of vehicles of each type to operate
on each link of the network. Dukkanci and Kara (2017) study a hub covering
problem with service time constraints. They propose a hierarchical multimodal hub
network structure in which different types of vehicles can be used in each layer.

12.4.6 Competition and Collaboration

Most HLPs studies assume that the decision maker is a monopolist firm in a
market and thus can capture all demand flow in the market, regardless of the
design of the hub network. As a result, location and network design decisions
are usually determined by the firm’s cost-based objective without taking into
account customer preferences. However, in practice many telecommunication and
transportation networks operate in a competitive environment where several firms
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exist in a market and compete to provide service to customers. Customers must
determine which competing firm to use based on several criteria such as the travel
time and the costs charged. Competitive hub location models focus on the design
of hub networks so as to maximize the market share of competing firms. In these
models, customers (or demand flows) are captured from competitor’s hub networks
whenever the new hub network offers a reduction of the travel time or distance
needed by the customers to go from their origins to their destinations.

Most competitive hub location models use a sequential location approach, in
which an existing company (the leader) serves the demand flow in a region, and a
new company (the follower) wants to enter the market and will attempt to capture
the maximum possible demand and thus, maximize its market share. Marianov et al.
(1999) introduce competitive hub location models in which the follower wants to
locate a set of hub nodes so as to maximize the captured demand flow. In the
first proposed model it is assumed that demand is fully captured when the flow
cost does not exceed the current competitor’s cost. The second model considers
a more realistic version in which a stepwise linear function is used to model the
proportion of demand captured depending on the new flow cost as compared to the
competitor’s cost. In both models, at most one path is used to route flow between
each O/D pair. Wagner (2008b) points out that if the new company is assumed to
capture demand flow when its flow cost is equal to the current competitor’s cost,
then the optimal solution is always to locate a hub node in each location where
the leader has one, making the new company capture all demand. Therefore, the
author suggests modifying the definition of the problem so that demand is captured
by the follower if and only if the new cost is strictly smaller than the competitor’s
cost. Eiselt and Marianov (2009) provide an extension to the models presented in
Marianov et al. (1999), in which each competitor can have more than one path
between O/D pairs. The proportion of flow captured on a particular path is modeled
through a gravity-like attraction function that does not only depend on the flow
cost but also on the travel time. Gelareh et al. (2010) present a competitive model
arising in liner shipping networks, where a new liner service provider wants to
design a hub network to maximize its market share, using an stepwise attraction
function which depends on the service time and flow cost. This model allows O/D
paths to contain more than one hub arc or to have direct connections between
origins and destinations. Lüer-Villagra and Marianov (2013) study a competitive
model in which an existing firm uses a hub network and charges its flow costs
plus a fixed additional percentage to their customers. A new company wants to
enter into the same market using an incomplete hub network and to determine
prices so as to maximize its profit, rather than its market share. The profit comes
from the revenues derived from captured flows, minus the a fixed and variable
costs. Customer preferences on selected firm and route are modeled using a logit
model. Mahmutogullari and Kara (2016) propose other competitive models in which
two decision-makers sequentially determine the location of their hubs and then
customers choose one firm with respect to provided service levels. The goal of each
firm is to maximize its own market share. O’Kelly et al. (2015b) introduce a model
with price-sensitive demands. It considers three different service levels for routing
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flow between OD pairs that use either two-hub OD paths, on-hub OD paths or direct
connections. The authors model the problem as an economic equilibrium problem
that maximizes a nonlinear concave utility function, minus the flow cost and setup
cost for the location of the hubs.

Using a game theoretic framework, Sasaki and Fukushima (2001) introduce a
continuous Stackelberg hub location model where a large company competes with
several medium-size companies to maximize its profit. The large company first
locates a new hub on a plane as a leader, and the other companies then locate
their new hubs. The authors use a nonlinear logit function to model the level of
captured customers and formulate the leader’s problem as a bilevel program and the
follower’s problems as lower level programs. Sasaki (2005) provides an extension
to the discrete case assuming there is a leader and only one follower. The proposed
model considers that companies cannot provide any service whose captured market
share does not reach to a threshold lower limit value. Sasaki et al. (2009) study a
more general model in which the full interconnection assumption is relaxed and a set
of hub arcs must be located. As in Sasaki (2005), two firms compete for customers
in a Stackelberg framework, where the leader firm locates hub arcs to maximize
its market share, knowing that the follower will later locate its own hub arcs to
maximize its market share.

Instead of considering a pure competitive environment, some studies have looked
at hub network alliances and mergers, as well as user cooperation employing a
game theoretic approach. In Skorin-Kapov (1998) a cooperative game theory is used
to analyze several cost allocation problems referred to as hub network games. In
particular, the flow routing cost is distributed among the hub network users with
possibly conflicting interests, but their cooperation is essential for the exploitation
of economies of scale on the routing of flows. Lin and Lee (2010) propose a non-
cooperative game theoretic model to study the competition hub network design
in an oligopolistic market with few dominant firms. In this model, each firm will
first observe the hub network and demand flows of other firms and will then
simultaneously determine its hub network, demand, and routing plan in order to
maximize its profits. The firms’ decisions jointly determine the market prices, which
include the reassessment and redesign of hub networks of all other firms. The
process of observation, design and reassessment will continue until a long-term
Cournot-Nash equilibrium is established.

Adler and Smilowitz (2007) present hub location models to analyze global
alliances and mergers in the airline industry under competition. In particular, the
authors develop a game theoretic approach in which merger and hub location
decisions are considered to evaluate hub networks under competition. The proposed
problems are modeled as games played among multiple airlines, consisting of
selecting the optimal hubs to develop, expand or remove in the newly merged hub
network. Asgari et al. (2013) study a game theoretic hub network design model that
investigates the competition and cooperation amongst two major hub ports and the
shipping companies, with the objective of minimizing the shipping companies’ cost
and maximizing the hub ports’ revenue.
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12.5 Solving Hub Location Problems

The interrelation of location and network design decisions make HLPs particularly
difficult to solve. A considerable effort has thus been made over the past two
decades to develop algorithms capable of obtaining high quality solutions of various
classes of HLPs, particularly when considering more realistic, large-scale instances.
Some of these algorithms are able to provide an estimation of the quality of the
obtained solutions and some them are able to prove that the obtained solution is
optimal. In this section, we point out recent papers describing the most effective
solution algorithms for various classes of HLPs. The interested reader is referred to
Alumur and Kara (2008) and Zanjirani Farahani et al. (2013) for a detailed survey
of approximate and exact algorithms for HLPs.

12.5.1 Complexity Results

Most HLPs are known to be NP-hard. However, very little research has been done to
analyze the complexity and polynomial-time approximability of particular classes
of HLPs. In the case of fundamental HLPs with single assignments, in which the
full interconnection assumption is used, even if the location of the hub nodes is
given the remaining subproblem is still NP-hard. This problem is known as the
quadratic semi-assignment problem or the single allocation problem (see Saito et al.
(2009), Sohn and Park (2000), and references therein). Sohn and Park (1997) show
that for the particular case of the uncapacitated p-hub median problem with single
assignments (UpHLPSA), when p = 2 the problem can be polynomially solved
by reducing it to n(n − 1)/2 independent minimum cut problems. Sohn and Park
(2000) prove that the single allocation problem becomes NP-hard as soon as the
number of hubs is three and hence, the UpHLPSA is NP-hard for p ≥ 3. Iwasa et al.
(2009) describe a deterministic 3-approximation algorithm and a randomized 2-
approximation algorithm for the single allocation problem. Moreover, they provide
a (5/4)-approximation algorithm for the particular case in which the number of hubs
is three.

When considering HLPs with incomplete hub networks, even if the location of
hubs and the assignment of O/D nodes to hubs is given, the subproblem associated
with the location of hub arcs remains challenging. For instance, when considering
tree-star topologies the design of a tree spanning the set of hub nodes is equivalent
to the so-called optimum communication spanning tree problem, known to be NP-
hard (Contreras et al. 2010). In the case of cycle-star topologies, connecting the hub
nodes by means of a cycle is equivalent to the minimum flow cost Hamiltonian cycle
problem, known to be NP-hard (Contreras et al. 2017).

In the case of uncapacitated HLPs with multiple assignments, in which the
full interconnection assumption is used, once the location of the hubs is known
the allocation subproblem is equivalent to an all pairs shortest path problem and
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thus, can be solved in polynomial time (Ernst and Krishnamoorthy 1998a). When
considering capacities on the hub nodes and commodities can be split, Contreras
et al. (2012) show that the allocation subproblem remains polynomially solvable as
it is equivalent to a classical transportation problem. However, when commodities
cannot be split the subproblem is equivalent to a generalized assignment problem
and thus becomes NP-hard.

Contreras and Fernández (2014) show that a general class of HLPs with multiple
assignments, known as supermodular hub location problems (Sect. 12.2.2), is NP-
hard. We recall that SHLPs include several special cases such as p-hub median,
uncapacitated hub location, and q-hub arc location. The authors also present worst-
case performance results for simple greedy and local improvement heuristics for
particular classes of SHLPs in which the objective functions are also non-increasing,
as in p-hub median and q-hub arc location problems.

Kara and Tansel (2003) show that hub set-covering problems with single
assignments are NP-hard. Kara and Tansel (2000) prove that the uncapacitated p-
hub center problem with single assignments is also NP-hard for p < n − 1. Ernst
et al. (2009) show that the multiple assignments version of this problem is also
NP-hard. They also prove that the single allocation subproblem with respect to a
given set of hubs is already NP-hard, whereas for the multiple assignment case is
not. Liang (2013) considers the star p-hub center problem and shows that is strongly
NP-hard and that there is no (5/4−ε)-approximation algorithm for it for any ε > 0,
unless P = NP. This paper also provides a 7/2-approximation algorithm for this
problem.

12.5.2 Heuristic Algorithms

A considerable amount of hub location research on heuristic algorithms has focused
on fundamental HLPs. To the best of our knowledge, the best heuristic for the
uncapacitated p-hub location problem with single assignments is the variable
neighborhood search algorithm of Ilić et al. (2010). It outperforms all previous
heuristics and yields solutions for very large-scale instances with up to 1000 nodes
and p = 20 within reasonable CPU times. The best results for the UHLPSA seem
to be obtained using the learning-based probabilistic tabu search recently designed
by Guan et al. (2018). This heuristic has the best performance when compared
with other heuristics, especially on large instances with up to 900 nodes. Contreras
et al. (2011d) provide GRASP heuristics for capacitated versions of this problem.
Contreras et al. (2011b) design a GRASP heuristic for the UHLPMA capable of
obtaining high quality solutions for instances with up to 500 nodes within reasonable
CPU times. Meyer et al. (2009) present an ant colony optimization algorithm for the
p-hub center problem with single assignments which is able to obtain high quality
solutions for large-scale instances with up to 400 nodes.

Some researchers have recently focused on the development of efficient heuristic
algorithms for more realistic extensions of HLPs. Calık et al. (2009) describe a tabu
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search to solve hub covering problems over incomplete hub networks. Köksalan
and Soylu (2010) study evolutionary algorithms for two bicriteria uncapacitated p-
hub location problems considering congestion-related costs. Contreras et al. (2017)
describe a GRASP algorithm for the design of incomplete hub networks with a
cycle-star topology. Saboury et al. (2013) present two hybrid heuristics to design
of hub networks with fully interconnected backbone and access networks. Martins
de Sá et al. (2014b) propose an adaptive large neighborhood search and GRASP
algorithms to design hub networks with multiple hub lines. Tran et al. (2016)
develop a parallel tabu search to solve reliable hub location problems. Hoff et al.
(2017) present a metaheuristic based on adaptive memory programming and path-
relinking to solve a capacitated modular hub location problem.

12.5.3 Lower Bounding Procedures and Exact Algorithms

Dual ascent and dual adjustments techniques have been used to efficiently obtain
the LP bound of MIP formulations for various HLPs. Yoon and Current (2008) use
dual based heuristics to solve HLPs with additional arc selection decisions. Cánovas
et al. (2007) present a branch-and-bound (BB) algorithm based on dual techniques to
obtain optimal solutions to uncapacitated HLPs with multiple assignments. Meyer
et al. (2009) develop a two-phase exact algorithm for the p-hub center problem
with single assignments. In this algorithm the BB method presented in Ernst and
Krishnamoorthy (1998a) is used during the first phase to obtain a set of potential
optimal hub locations. This algorithm seems to be the best exact algorithm for hub
center problems, being able to solve to optimality large-scale instances with up to
400 nodes.

Lagrangian relaxation (LR) has been successfully used to obtain tight lower
and upper bounds on the value of the optimal solution of several classes of HLPs.
Pirkul and Schilling (1998) present efficient LR heuristics to approximately solve
uncapacitated HLPs with single assignments, whereas Yaman (2008), Contreras
et al. (2009a,b), and Elhedhli and Wu (2010) propose LR heuristics to solve various
capacitated HLPs. Exact BB methods based on LR have also been developed to
optimally solve HLPs. Marín (2005a) propose a relax-and-cut algorithm for the
UHLPMA, which adds violated facet-defining inequalities to a LR of the path-
based formulation presented in Sect. 12.3.2, to optimally solve instances with up
to 50 nodes. Contreras et al. (2011c) present an exact BB method, that uses a LR
of an extension of the path-based formulation presented in Sect. 12.3.2, to obtain
optimal solutions for uncapacitated dynamic hub location problems with up to 100
nodes and 10 time periods. Alibeyg et al. (2018) develop an exact BB algorithm that
uses a LR to solve hub location problems with profits involving up to 100 nodes.

Benders decomposition (BD) is another successful method used to optimally
solve several classes of HLPs. Camargo et al. (2009) use a BD algorithm to solve
large-scale instances of the challenging flow-dependent cost (FLOWLOC) model.
Contreras et al. (2011b) describe an exact algorithm for the UHLPMA which applies
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an enhanced BD to the path-based formulation presented in Sect. 12.3.2, to obtain
optimal solutions for large-scale instances with up to 500 nodes. Contreras et al.
(2012) provide an extension of the previous BD to solve multi-capacity HLPs with
multiple assignments, with splittable and non-splittable commodities, for instances
with up to 300 nodes. Contreras et al. (2011a) develops a Monte Carlo simulation-
based algorithm that integrates a BD to solve uncapacitated HLPs having stochastic
flow costs. Camargo et al. (2013) describe a BD algorithm to solve hub location-
routing problems, in which additional routing decisions to serve O/D nodes are
considered. This algorithm can solve instances with up to 100 nodes. Several BD
algorithms have also been implemented for HLPs with congestion costs for both
multiple (Camargo et al. 2009) and single (Camargo et al. 2011; Camargo and
Miranda 2012) assignments versions, HALPs with particular topological structures
such as tree-start networks (Martins de Sá et al. 2013) and hub-line networks
(Martins de Sá et al. 2015, 2014b), HLPs arising in public transportation networks
(Gelareh and Nickel 2011), liner shipping applications (Gelareh and Nickel 2011;
Gelareh and Pisinger 2011), and incomplete hub networks (Miranda et al. 2017;
Martins de Sá et al. 2018a,b).

Branch-and-cut (BC) methods have also been developed to optimally solve
various HLPs. Labbé et al. (2005) develop a BC algorithm based on the two-index
formulation presented in Sect. 12.3.1 for various classes of capacitated HLPs with
single assignments. This method is able to solve to optimality instances with up
to 50 nodes. García et al. (2012) presents a BC algorithm for the uncapacitated p-
hub median problem with multiple assignments. This algorithm uses an extension
of the two-index formulation presented in Sect. 12.3.2 and is able to optimally
solve large-scale instances with up to 200 nodes with very large values of p.
Contreras and Fernández (2014) also introduce a BC algorithm based on the two-
index formulation for the general class of supermodular hub location problems
presented in Sect. 12.2.2. This method is able to solve q-hub arc location problems
with up to 125 nodes. Contreras et al. (2010, 2017) use an adaptation of the flow-
based formulation introduced in Sect. 12.3.1 to develop BC algorithms to solve
HLPs with tree-star and cycle-star topologies, respectively. Contreras et al. (2017)
is able to solve to optimality instances with up to 100 nodes. Catanzaro et al. (2011)
study a incomplete hub network design problem with additional graph partitioning
and routing decisions. Rodríguez-Martín et al. (2014) introduce a BC algorithm
for a hub location-routing problem, which is able to solve instances with up to 50
nodes. Meier and Clausen (2018) present a novel linearization technique together
with a cutting plane algorithm to solve uncapacitated and capacitated hub location
problems with single assignments. This linearization, requiring only two-index
variables, is applicable in the case of Euclidean data and can be used to solve
instances with up to 200 nodes.

Column generation (CG) is the method that has received the least attention in the
hub location literature. Thomadsen and Larsen (2007) present a branch-and-price
method for solving a HLP with fully interconnected access networks. Contreras
et al. (2011d) develop an exact algorithm, that combines LR and CG methods as
a bounding procedure, to obtain optimal solutions of large-scale capacitated HLPs
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with single assignments with up to 200 nodes. Rothenbcher et al. (2016) propose an
exact branch-and-price-and-cut algorithm for the service network design and hub
location problem. It uses a path-based formulation solved via column generation as
a bounding procedure at the nodes of the tree. It also uses several families of valid
inequalities to strengthen the LP bounds.

12.6 Conclusions

We have provided an overview of hub location problems in which both the location
of hubs and the design of the hub network are key decisions. We have highlighted
how the commonly used assumptions presented in Sect. 12.2.1 simplify network
design decisions, which have created a first generation of idealized hub location
models focusing mostly on location and allocation decisions. Several researchers
have exploited the rich structure of these models and as a consequence, significant
progress has been made on the development of strong MIP formulations and
efficient algorithms for their solution.

Strong path-based formulations, used in combination with sophisticated decom-
position methods, have proven to be among the most effective formulations to solve
to optimality large-scale instances (with hundreds of nodes) for several classes
of hub location problems. Flow-based formulations, having fewer variables and
constraints, have been particularly useful when used with general purpose MIP
solvers to solve small to medium-size instances (containing usually no more than
50 nodes) for a wide range of problems without having to develop ad hoc solution
algorithms. These formulations have also been strengthened with the addition of
valid inequalities and have been used within a cutting plane framework to solve
challenging hub location variants. Over the past few years, promising two-index
(integer linear) formulations have started to arise. However, a substantial amount
of work still needs to be done to analyze how these can be used as a basis for
sophisticated algorithms.

We have also pointed out how location and network design decisions become
more involved when relaxing some of the simplifying assumptions presented in
Sect. 12.2.1. In particular, Sect. 12.4.1 described several classes of hub network
topologies, arising from different areas of application, which have started to be
studied. The resulting hub location problems contain additional hub arc and access
arc selection decisions, making them substantially more difficult to model and solve
than first generation problems considering full interconnection between hubs and
access networks characterized by single or multiple assignment patterns. Section
12.4.2 focused on more realistic models with discounting levels that depend on
the amount of flow passing through each arc to better model the flow cost.
Although some flow-dependent models have already been presented in the literature,
alternative modeling approaches need to be studied to represent more accurately
flow costs, specially on transportation applications. Section 12.4.3 reviewed several
capacitated hub location models, most of which focus on capacity restrictions on the
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hub nodes and only a few of them on the links. More complex problems combining
both types of capacities need to be studied. Section 12.4.4 described some models
in which specific sources of uncertainty were considered, mostly from a stochastic
programming perspective. However, additional aspects such as congestion on hubs
and arcs, reliability, and disruptions, among other things, need to be further studied.
Very few models considering dynamic and multi-modal features have been proposed
(Sect. 12.4.5). Additional models need to be developed to better represent the
optimal evolution of hub networks and the choice for mode of transportation. Given
that most companies using hub networks are not monopolists in a market and are
also not redesigning their network from scratch, competition and collaboration are
very important aspects in most hub location applications (Sect. 12.4.6). For this
reason, additional models that consider a competitive environment, collaborations,
mergers, acquisitions, and divestments of companies, need to be further studied.
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Chapter 13
Hierarchical Facility Location Problems

Ivan Contreras and Camilo Ortiz-Astorquiza

Abstract Hierarchical facility location problems (HFLPs) are an important class of
problems arising in numerous contexts such as in the design of health care, telecom-
munications and transportation systems. HFLPs deal with the location of interacting
facilities at different levels of a hierarchical system. This chapter describes the
distinguishing features and main areas of application of HFLPs and provides a
comprehensive classification scheme based on several attributes. It also presents
a concise overview of four classes of HFLPs that have received the most attention in
the literature: multi-level facility location, median and covering hierarchical facility
location, multi-echelon location-routing problems, and hierarchical hub location
problems. For these classes of HFLPs, we highlight their main characteristics and
point out to some of the integer programming formulations and efficient algorithms
that have been developed.

13.1 Introduction

Health care, telecommunications, and transportation systems are examples where
hierarchical structures arise having different types of interacting facilities that
collectively provide services or products to a set of customers. There are three key
features of such hierarchical systems which are crucial for their design. The first
one is that the different types of facilities in the system are characterized by the
services they provide. The second one is that there exists either an inherent hierarchy
given by the nature of the system or a ranking mechanism that allows the complete
ordering of the different types of facilities into levels, each of which contains only
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facilities of the same type. The third feature is that there is an implicit or explicit
relationship between facilities among them.

This chapter focuses on a general class of discrete location problems arising in
the design of hierarchical systems. Given the wide variety of applications in which a
hierarchical structure is present, several variants of this class of problems have been
studied, usually under different names. Depending on the application, as well as
authors’ discipline and fields of expertise, the terms hierarchical, multi-level, multi-
echelon, multi-stage, multi-tier, and multi-layer have been used to refer to different
facility location problems with an underlying hierarchical structure. Therefore, the
main goal of this chapter is to present a unified view of such problems that fit
under one umbrella: hierarchical facility location. Broadly speaking, given a set of
customers that demand one or multiple services and a set of facilities of k different
types associated with the various services, hierarchical facility location problems
(HFLPs) consist of selecting a set of facilities to open so that each customer receives
the requested service(s) from facilities of one or multiple types, while optimizing an
objective function.

HFLPs are closely related to classical facility location problems such as p-
median, uncapacitated facility location, p-center, and covering problems. In these
problems, there is the implicit assumption that all customers request one and the
same type of service, which is offered by any candidate facility. In contrast, HFLPs
extend these problems to deal with more realistic situations in which facilities are
arranged in a hierarchical structure determined by the bundle of services that each
of them provides or by other natural order inherited from the considered system. In
this sense, classical facility location problems are single-level variants of the more
general class of HFLPs.

Applications of HFLPs are abundant. These include supply chains and
production-distribution systems, where manufacturing facilities, warehouses,
distribution centers, and retail stores interact to provide cost-effective production,
storage and transportation services to customers. Health care systems are another
common example, where patients seeking health related services travel to different
facilities such as local clinics, community and regional hospitals, each of them
providing a variety of services. Other examples of applications of HFLPs arise
in solid waste management, education systems, emergency medical services, air
freight and passenger travel, postal delivery, telecommunication networks, and
urban transportation planning.

The study of hierarchical systems in location science has its origins in the area of
health care planning with the works by Schultz (1970) and Dökmeci (1973, 1977),
for continuous location models, and those by Calvo and Marks (1973), Schilling
et al. (1979), and Moore and ReVelle (1982), for discrete models. Hierarchical dis-
crete location models were initially studied in the context of production-distribution
systems by Kaufam et al. (1977), where the so-called plant and warehouse location
problem was introduced. Narula (1984) provided the first classification scheme for
HFLPs based on the relationship between the different types of facilities and the
flow pattern. Narula (1986) and Church and Eaton (1987) are early reviews on
HFLPs focusing on median and covering-based models, respectively. Şahin and
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Süral (2007) provide a more comprehensive classification scheme and review of the
growing literature on HFLPs before 2007. Daskin (2013) discusses the basic notions
of hierarchical facilities and applications and describes some of the fundamental
median and covering HFLPs. Zanjirani Farahani et al. (2014) review applications,
models and solution algorithms mainly for median and covering-based HFLPs.
Ortiz-Astorquiza et al. (2018) present a comprehensive review of a special case
of HFLPs, denoted multi-level facility location problems, and propose a unified
framework to classify them based on the types of strategic and tactical decisions
involved.

This chapter is organized as follows. In Sect. 13.2 we first discuss the fundamen-
tals of discrete HFLPs, including their distinguishing features and key concepts.
We also provide a comprehensive classification scheme based on several attributes
such as nature of customer demand, service availability, flow pattern, and decisions
and objectives. A review of classical and more recent applications areas is then
given in Sect. 13.3. Finally, in Sect. 13.4 we provide a concise overview of four
classes of HFLPs that have received the most attention in the literature: multi-level
facility location, median and covering hierarchical facility location, multi-echelon
location-routing, and hierarchical hub location. In particular, we highlight their
main characteristics and point out to the some integer programming formulations
and efficient algorithms to solve some variants of them. We note that our intention
is neither to pose a disjoint partition of the set of HFLPs nor to offer an exhaustive
survey on the topic but rather to clarify the most relevant features of HFLPs.

13.2 Fundamentals

The distinguishing features and key concepts arising in hierarchical systems need to
be introduced in order to have a better understanding of the structure and inherent
complexity of modeling and solving HFLPs. We next discuss the following aspects:
(1) nature of customer demand, (2) service availability, (3) flow pattern and spatial
configuration, and (4) decisions and objectives.

13.2.1 Nature of Demand

When referring to the nature of demand in the context of a hierarchical system we
must identify who the customers are, which services they may request, and how
these services will be offered by the facilities.

The most common setting consists of a set of customers represented as demand
points in a graph with service given at or from a facility. Depending on the context,
customers may correspond to patients, retail stores, patrons, students, geographical
zones, etcetera. These customers can have one or more types of demand. In other
words, each customer may have different service requirements to be offered by
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facilities. For instance, a patient that requires a specialized test offered at regional
hospitals has a type of demand different from one whose requirement is an annual
control visit offered at local clinics. Other patients could request both diagnostic
and out-patient surgery services offered at regional hospitals. Note that in this
context, service is given at facilities and thus customers have to travel to them to
receive service. We denote as single demand and multiple demand customers to
distinguish cases in which one or more types of demand are requested by customers,
respectively.

In some other situations, customers may request several types of service as well
as multiple products. For example, in the fashion industry, retail stores sell hundreds
of products produced in dozens of manufacturing facilities. Customers (i.e. retail
stores) continuously request production, transportation and storage services of
various products such as clothes, shoes, accessories, etcetera. Note that in this
context, service is provided by facilities and thus products are eventually delivered
to the customers. We note that in this context, each customer demands both products
and services, and these may be different from one customer to the other. For
instance, one customer may request production and transportation services for
clothes and shoes whereas another customer may request production, transportation,
and storage services only for accessories. We denote as single product and multiple
product customers to differentiate cases in which one or more types of product are
requested by customers, respectively.

Another class of customers arising in hierarchical systems are those in which
service demand corresponds to the movement of commodities, people, or infor-
mation between an origin and a destination point. Each origin/destination (O/D)
pair represents one or more customers requesting transportation or communication
services between two specific points. Facilities provide such services by acting as
transshipment and consolidation points in the paths of many O/D pairs. For instance,
in express package delivery, a package is usually picked-up directly at its origin
by a small vehicle and then moved to a branch office in order to be consolidated
with other packages. It is then moved forward using larger vehicles to regional
and possible central hub facilities where the package is sorted and rerouted to its
destination.

Except from the hierarchical hub location models discussed in Sect. 13.4.4, in
this chapter we focus on models in which customers are represented as demand
points.

13.2.2 Service Availability

The nature of the customers demand is intimately related to the services that
facilities can offer. This has been referred to as service availability or service
varieties criterion in classifications of HFLPs (see, Narula 1986; Şahin and Süral
2007).
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According to Narula (1986), a successively inclusive facility hierarchy is one in
which a facility at level r provides all services offered by a facility at level r − 1
plus one or more additional services. A successively exclusive facility hierarchy is
one in which the set of services offered by a facility at level r are not offered by any
other facility at levels q 
= r . We note that there is a third category, denoted as mixed
facility hierarchy, in which the set of services offered by a facility at level r has a
non-empty intersection with the set of services offered by facilities at other levels
q 
= r , without necessarily offering all services of lower-level facilities. Şahin and
Süral (2007) refer to the first category as nested and the last two as non-nested.

Additional categories can be considered in more complex settings in which
services offered by the facilities also depend on geographical considerations. For
example, one can refer to locally inclusive service hierarchies. These make use of
a measure such as distance to determine whether or not a service is offered to a
particular customer. For instance, suppose that facility of type r located at node i

offers services 1 through r to demands from node i, but does not offer services 1 to
r − 1 to demands from nodes j 
= i. That is, only service r is available for demands
whose origin is not i. For example, a regional hospital located in a given district
may provide basic care to patients living is such district but not to other patients
living in other districts. However, it may provide out-patient surgical services to any
patient when needed. In contrast, globally inclusive service hierarchies consider
that a facility at level r located at node i can offer services 1 to r to all customers
requesting any of such services. Some examples of problems in which these service
hierarchies arise can be found in Tien et al. (1983), Mirchandani (1987), and Daskin
(2013).

13.2.3 Flow Pattern and Spatial Configuration

The flow pattern refers to the way in which network flows are routed through
the various levels of a hierarchical system. Şahin and Süral (2007) propose two
possible patterns: single-flow or multi-flow. In a single-flow pattern, flow can start at
a demand point at the customers level and visit facilities in each of the levels until it
reaches the highest level k. Similarly, flow can start in a facility at the highest level k
and pass through all levels until it arrives to its demand point at the customer levels.
On the other hand, in a multi-flow pattern, flow can start at a demand point and visit
facilities in a subset of levels, possibly skipping some levels. Alternatively, the flow
can start at a facility in any level r and pass through a subset of levels until arriving
to its demand point. A third type of pattern, denoted as bidirectional-flow, arises
whenever demand flow is routed in both directions. That is, in a bidirectional-flow
pattern, flow starts at the customer level and visit some or all higher-levels and then
is routed back to lower-levels until it arrives to a demand point at the customer level.

In some applications, regardless of the considered flow pattern, a portion of
customer demand served at a given level is eventually referred for additional
services to a higher level. This is denoted as referral systems. Alternatively, when
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referrals are not considered between levels, this can be denoted as non-referral
systems.

Şahin and Süral (2007) describes another relevant concept, denoted as coherency,
which relates to the spatial configuration of levels in the hierarchy. A coherent
system is one in which all demand flow entering to a particular facility at a lower-
level is assigned to exactly one facility at a higher-level. Some authors refer to this
concept as single assignment due to its resemblance with single-sourcing in single-
level discrete location problems. A non-coherent system is one in which facilities at
lower-levels can send demand flows to more than one facility at a higher level.

13.2.4 Decisions and Objectives

We now discuss the types of decisions and objectives commonly involved in HFLPs.
For this purpose, we introduce the main notation used throughout this chapter. Let
G = (V ,E) be a graph with node set V = I ∪ J and edge set E. The set I

corresponds to the sites of potential facilities and J to the customers. We consider
facilities of types 1 to k. An HFLP involves some of the following decisions.

• Design Decisions: Facility Location and Edge Activation The location deci-
sions determine where to open the facilities. Given an underlying network G,
facilities may be located at both the nodes or the edges of the network. Here we
focus on discrete location problems, where it is assumed that facilities can only
be located at the nodes of G. The network design decisions select the edges to
be activated. These edges are used to provide transportation or communication
services between demand points and facilities, and between facilities of the same
or different levels. We concentrate on those problems where the facility location
decisions are non-trivial.

• Tactical Decisions: Allocation and Routing The allocation decisions determine
which facilities will be used to serve each demand point. In FLPs, two types of
allocation strategies have been considered. In single allocation, each customer
is assigned to exactly one facility, whereas in multiple allocation each customer
is allowed to be assigned to more than one facility, if beneficial. The routing
decisions indicate the routes (or paths) on G that will be used to satisfy the
customer demands. We use the term route to indicate the sequence of edges used
to send flows between pairs of nodes. These types of decisions commonly appear
in network flow problems which have been widely studied (Ahuja et al. 1993).
In the general case of an HFLP the term routing could also be used in the sense
of location-routing models (see Chap. 15) where tours or paths between nodes of
the same level in the hierarchy are considered. Finally, observe that the network
design and routing decisions are interrelated, since the edges that can be used in
the paths are determined by the network design decisions.

Both of the above types of decisions are directly related to the fixed and variable
costs. For example, when a node i ∈ I is selected to locate a facility, a setup cost fi
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may be incurred. However, note that these costs in the context of HFLPs typically
depend on the type of facility. Analogously, when an edge {a, b} ∈ E is activated
a setup cost hab may be paid. On the other hand, the tactical decisions are affected
by variable costs. A common example are transportation costs which are generally
related to the distances between the nodes. Assuming that customers are at level 0,
transportation costs (or distances) cir is , for r and s in {0, · · · , k} are variable since
they typically depend on the flow passing through the corresponding edge {ir , is}
which is dependent on customers demands.

In any case, we note that in an HFLP there must be location decisions involved
for one or more types of facilities. Depending on the application, network design
and routing decisions may be explicitly considered or not, that is, the activation
of edges and flow patterns are not necessarily non-trivial decisions in this context.
These types of decisions will help us define differentiating features for families of
HFLPs in the following sections.

Analogously to single-level facility location, HFLPs can be classified based on
the type of objective function.

• fixed-charge models: consider that the number of facilities to locate at each level
is not known a priori, but a fixed setup cost fi for each facility at each level is
considered. The objective is to minimize the sum of facilities fixed costs and of
demand-weighted distance.

• median models: consist of selecting a set of facilities to open, such that no more
than a given number of facilities is opened with the objective of minimizing
the total demand-weighted distance (or transportation cost). In this case, the
maximum number of facilities to open can be given by type r , as pr , or in total.
Moreover, it can be generalized to one or multiple budget constraints that limit
either the total setup cost incurred in locating facilities at each level or for all of
the facilities.

• coverage-based models: assume that a customer is covered if its demand point
is within a specified distance of facilities offering the requested service(s). Set-
covering models assume that all service demand must be covered and the goal is
to minimize the setup cost for the facilities. Maximum covering models consider
that the number of facilities to locate is given as an input and the objective is
to maximize the total number of demands of all types that are covered. Some
variants of maximum covering models assume that each demand point can only
be considered as being covered if all the requested services at such point are
satisfied.

13.2.5 Classification Scheme

The classification scheme takes into account the attributes mentioned above, namely
flow pattern and spatial configuration, service availability, nature of customers
demand and decisions and objective. The classification criteria for HFLPs is
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Table 13.1 Classification criteria

Criterion Description

Nature of the demand Single demand/multiple demand, single product/multiple product

Flow pattern Single-flow/multi-flow/bidirectional-flow

Service availability Nested/non-nested/locally inclusive/globally inclusive

Spatial configuration Coherent (single assignment)/non-coherent

Decisions Network design/tactical/network design and tactical

Objective function Median/fixed-charge/covering

summarized in Table 13.1. This classification generalizes the scheme proposed by
Şahin and Süral (2007) which in turn extends that of Narula (1986). Note that
additional attributes may be considered such as capacities at facilities and edges as
well as the interaction between facilities of the same type or between customers.
However, we focus on those that we consider to have the most impact on the
hierarchical structure.

13.3 Applications

We next review some of the most relevant areas of application of HFLPs. These
range from heath care and production-distribution systems, which are arguably
among the oldest and most studied hierarchical systems in location science, to
telecommunication and transportation systems which have given rise to new variants
of HFLPs.

13.3.1 Health Care Systems

Given the wide variety of services that health care systems must provide within a
specific region, these services are naturally governed by a hierarchical structure.
Although the number of levels may vary by country and region, three-level systems
are commonly found. Patients in a geographical region (i.e. neighborhood, district,
or county) requesting a variety of services are modeled with a demand point at
level 0. Local clinics (level 1) may provide basic care and diagnostic services.
Community hospitals (level 2) could offer, in addition to basic care and diagnostic
services, other services such as out-patient surgery and specialized clinical tests.
Regional hospitals provide a wide variety of in-patient services and may or may not
provide basic care and diagnostic services. Successively inclusive facility and mixed
facility hierarchies as well as multi-flow patterns are predominant in health care
systems. It is also somehow common to observe systems with a locally inclusive
service hierarchy, specially in countries with a public health care system (Rahman
and Smith 2000; Smith et al. 2013). In this case, a regional hospital may provide
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basic care and diagnostic services but only to patients living in the proximity of the
hospital. The interaction between facilities of different levels arises when patients
are referred to community or regional hospitals after being diagnosed at a local
clinic. Thus, it is important for health authorities to jointly determine the location
of various health care facilities and how these will be interconnected to provide the
best possible service to patients. We refer to Ahmadi-Javid et al. (2017) for a recent
survey on the topic and to Chap. 23 for other facility location problems in health
care.

13.3.2 Production-Distribution Systems

The design of production-distribution systems plays a central role in supply chain
management. In particular, for companies that produce and deliver their goods. In
such cases, a variety of products are produced in manufacturing facilities (level
3) and shipped to distributions centers (level 2), in which products are sorted,
consolidated, and rerouted to regional warehouses (level 1) in order to be stored for a
period of time (days, weeks, months) before being finally distributed to retail stores
(level 0) for sale. This is a common example of a single-flow pattern on a multiple
product environment. The interaction between facilities arises naturally due to the
routing of products through the supply chain (from the highest level to its lowest
level). Sometimes a multi-flow pattern may arise whenever products are directly
shipped from manufacturing facilities to regional warehouses or retail stores. Both
coherent and non-coherent structures have been reported in the literature (see, for
instance Şahin and Süral 2007; Gendron et al. 2016). Locational and network design
decision arising in supply chain management have been extensively studied in the
literature. We refer to Melo et al. (2006) and Chap. 16 for an in-depth discussion of
facility location problems in the context of supply chain and logistics.

13.3.3 Telecommunications Systems

Telecommunication networks are frequently built with a hierarchical structure
having two or three levels. A classical example is the so-called hub-and-spoke
architecture used in various distributed data networks. In those cases, service
demand corresponds to electronic data transmissions between O/D pairs that are
routed over a variety of links in the access-level and backbone-level networks. Hub
facilities correspond to electronic equipment such as concentrators, multiplexors,
and routers. An example of a three-level hub network arises in an intra-local access
transport area network architecture (see, Wu et al. 1988; Yaman 2009). O/D nodes
are the central offices and each central office is served by a regional hub. A group
of central offices served by the same hub is referred to as a cluster. Each hub is
then connected to a central hub (gateway). A group of clusters served by the same
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central hub is a sector. Central hubs are connected by a complete fiber network.
Communication services between O/D pairs are offered by using O/D paths in which
data transmissions first visit the regional hub of its cluster, then one or two central
hubs, and finally the regional hub of the cluster where the destination point belongs
to. That is, demand flows move from lower-levels to higher-levels and back to lower-
levels of the hierarchy (i.e. a bidirectional-flow pattern). Catanzaro et al. (2011)
provide another example of a two-level hub network arising in the deployment of an
Internet routing protocol called Intermediate System-Intermediate System (ISIS).
We refer to Chap. 12 for a description of hub location problems arising in the design
of hub-and-spoke networks and to Fortz (2015) for an overview of other location
problems arising in telecommunications.

13.3.4 Urban Transportation Systems

Hierarchical structures of interacting facilities have recently appeared in the area
of city logistics, in which consolidation activities can take place at different levels
of an urban supply chain (Mancini et al. 2014; Savelsbergh and Van Woensel
2016). Many logistics companies deliver goods destined for an urban area by
using long-haul transportation vehicles that arrive at consolidation facilities (level
2). These facilities are referred to as urban consolidation centers and are usually
located in the boundaries of the urban zone. Commodities are then unloaded,
sorted, consolidated, and loaded into smaller vehicles which are then routed to other
intermediate logistics facilities (level 1), usually referred as cross-dock satellites.
From these facilities commodities are shipped to retail stores (level 0) using different
vehicle fleets to avoid the presence of large vehicles in the city center. Contrary to
urban consolidation centers, cross-dock satellites can be located within the urban
zone, even in dense populated areas. These may correspond to basic rendezvous
points such as parking lots, rail stations or bus exchanges, where commodities are
transferred from one vehicle to another. Cross-dock satellites can also be small
warehousing facilities with limited storage capabilities. In any case, transshipment
of flows is done in a highly synchronized fashion. The use of these consolidation-
distribution strategies can follow a single-flow or multi-flow pattern and all flows
are clearly routed form top to bottom.

13.3.5 Air Transportation Systems

Hub-and-spoke architectures are also widely used in air freight and passenger
travel systems. In the case of the airline industry, global alliances and mergers
have given rise to complex global air transportation systems (Adler and Smilowitz
2007; Bernardes Real et al. 2018). Some alliances operate extensive three-level hub
networks, in which local airports (level 0), regional hubs (level 1), and international
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gateways (level 3) interact among them to route millions of passengers each year.
Regional hubs allow passengers to make connections along their routes, while
gateways are necessary for connecting continents and for performing immigration,
customs and security checks. Passengers traveling within the same continent or
geographical region are routed via regional hubs, whereas transcontinental pas-
sengers are frequently routed via a combination of regional hubs and gateways to
reach their destinations. Local airports are connected to one or more regional hubs
and maybe a gateway. International gateways are connected (indirectly or directly)
to all regional hubs in its geographical region. All international gateways are
interconnected across continents. Similar to telecommunications systems, demand
flow follows a bidirectional-flow pattern.

13.3.6 Cargo and Postal Delivery Systems

Other transportation systems, such as cargo and postal delivery, employ a hierarchi-
cal structure in their facilities and a mix of air and ground transportation services.
In the case of postal services, customers deliver mail or small parcels at post boxes
(level 0) in a city. At branch offices (level 1) customers can deposit mail and obtain
other services such as buying stamps and envelopes, among other things. Postal
flow is then routed to central post offices (level 2) to be sorted and rerouted to other
central post offices and branch offices for delivery.

A similar situation arises in the case of cargo delivery systems where branch
offices (level 1) collect and distribute cargoes from/to customers (level 0) directly
using small trucks. Operations centers (level 2) collect and distribute cargoes on
different geographical regions, which are connected with a central hub facility
(level 3). This means that all flow must pass through a central hub facility. In some
applications (see, for instance, Dukkanci and Kara 2017), operation centers and a
central hub facility are connected with a set of tours performed by airplanes.

In both cargo and postal delivery systems the time aspect plays a major role.
Thus, it is usually integrated in the design of the system with location and link
activation decisions. In particular, these hierarchical networks must be designed
in such as way that transportation services between O/D demand points can
be performed within a predefined service time limit (i.e. same-day or next-day
delivery). Operational scheduling decisions, such as release times at branch offices
and operations centers need to be taken into account while designing the network to
ensure demand flows can be delivered on time (Yaman et al. 2012).

13.4 Families of Hierarchical Facility Location Problems

Several variants of HFLPs have been studied under various names. We recall that
when referring to different types of facilities numerous terms have been used such
as level, layer, echelon, stage, tier, among others. We next discuss four classes
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of HFLPs: multi-level facility location, median and covering hierarchical facility
location, multi-echelon location-routing, and hierarchical hub location. The first two
families are those HFLPs that were first studied since the early 1970’s and also
the ones that have received the most attention in the literature. On the other hand,
the last two families of HFLPs have emerged over the last two decades and fewer
references can be found. We would like to clarify that these four classes of HFLPs do
not constitute a partition of the general field of HFLPs. That is, there could also be
some overlapping between them and also some HFLPs may not necessarily belong
to any of these classes of problems.

13.4.1 Multi-Level Facility Location Problems

Multi-level facility location problems (MLFLPs) are typically found in the context
of supply chains and production-distribution systems. There are two main dis-
tinguishing features underlying most MLFLPs: there exist an inherent hierarchy
given by the nature of the system and a successively exclusive facility hierarchy is
usually considered. For example, in the case of production-distribution systems, the
products need to be first produced in order to be shipped to regional warehouses for
temporary storage. Once the products are requested with a given due date, they are
routed to retail stores. In this case, the hierarchy of the different types of facilities
is implicitly given by the nature of the system, i.e one cannot store a product which
has not yet been produced. Moreover, production services offered at manufacturing
facilities are not available at warehouses. Similarly, warehousing services such as
sorting, labeling and consolidation operations as well as storage space are usually
not available at manufacturing facilities.

Another distinguishing feature of MLFLPs is that non-trivial facility location
decisions are taken at every level of the hierarchy, simultaneously. Other problems
involve two or more types of facilities but only in one of them is the selection of
facilities considered (see for instance Sect. 13.4.3). Moreover, in a MLFLP, there
is no direct interaction between customers, and no horizontal interactions between
facilities of the same level. Typically, the edges between facilities of different
types are defined sequentially. Thus, a sequence of exactly one opened facility at
each level is required which corresponds to what we called a single-flow pattern.
Nevertheless, some problems with multi-flow patterns could also be considered as
MLFLPs when demand flows are allowed to skip levels in the hierarchy (i.e some
services may not be requested by some customers). Most of these multi-flow pattern
problems can be modeled as single-flow-patterns by simply adding dummy nodes
in the corresponding missing levels, at the expense of increasing the instance size.
Also, when flow directions are considered, the flow between levels of an MLFLP
must go in one direction and there ought to be only one type of arc available. Some
HFLPs, especially those that arise in the framework of waste management systems,
consider bidirectional-flows or more than one type of arc (see, for instance Barros
et al. 1998; Mitropoulos et al. 2009). In terms of the coherency criterion both cases
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have been studied for MLFLPs. Finally, we note that fixed-charge and median-based
objective functions are more common for this class of problems.

As an example of an MIP formulation for an uncapacitated MLFLP that extends
the uncapacitated facility location problem (UFLP) and the p-median problem (p-
MP), we consider the following so-called path-based formulation (Tcha and Lee
1984; Aardal et al. 1999). Let G = (I ∪ J,E) be a graph with vertex set I ∪ J

partitioned into k+1 levels, where J represents the set of customers, I is partitioned
into {I1, · · · , Ik}, corresponding to the sets of potential facilities at levels 1 to k, and
E is the set of edges. Let S be the set of all possible simple paths having exactly
one node from each level, starting from some node i1 ∈ I1, finishing at some node
ik ∈ Ik . Also, consider cjs to be the cost associated with the allocation of customer
j ∈ J to the sequence of facilities in path s ∈ S. Now, let p = (p1, · · · , pk) be a
vector of positive integers corresponding to the maximum number of facilities that
can be opened at each level, and let fir be the non-negative fixed cost associated
with opening facility ir at level r . We define the binary variables xjs equal to one if
and only if customer j ∈ J is assigned to path s = i1, · · · , ik ∈ S. Also, we define
the binary variables yir equal to one if and only if facility ir of level r is open. The
formulation is the following:

minimize
∑

j∈J
∑

s∈S
cjsxjs+

k∑

r=1

∑

ir∈Ir
fir yir (13.1)

subject to
∑

s∈S
xjs = 1 ∀ j ∈ J (13.2)

∑

s∈S:ir∈s
xjs ≤ yir ∀ j ∈ J, ir ∈ Ir , r = 1, · · · , k (13.3)

∑

ir∈Ir
yir ≤ pr r = 1, · · · , k (13.4)

xjs ≥ 0 ∀ j ∈ J, s ∈ S (13.5)

yir ∈ {0, 1} ∀ ir ∈ Ir , r = 1, · · · , k. (13.6)

The objective (13.1) is to minimize the sum of the assignment costs and the setup
cost for opening facilities at different levels. Constraints (13.2) ensure that exactly
one path is assigned to every customer, while constraints (13.3) are the linking
constraints which ensure that if a path is assigned to a customer, then all the facilities
in such path must be open. Constraints (13.4) are the cardinality restrictions. Finally,
note that the variables xjs can be relaxed from binary to continuous variables, as for
the UFLP (see Chap. 4).

Some properties and characteristics of classical FLPs have been extended for
the more general case of MLFLPs. For instance, Aardal et al. (1996) showed that
all non-trivial facet defining inequalities for the UFLP also define facets for the
two-level uncapacitated facility location problem. Aardal et al. (1999), Bumn and
Kern (2001), and Zhang (2006) use ideas previously developed for the UFLP,
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such as dual ascent and adjustment techniques (Erlenkotter 1978), in order to
develop approximation algorithms for the multi-level UFLP. In this context, it is
important to note that most research efforts towards the development of algorithms
for MLFLPs have focused on heuristics. In particular, we can differentiate two
main research streams in this field: heuristics without a performance guarantee,
and ρ-approximation algorithms i.e., polynomial-time heuristics that yield a feasible
solution with an objective function value lying within a factor of ρ of the optimal
value. Most of the work has focused on the latter stream. A more recent example is
the work of Krishnaswamy and Sviridenko (2016) who presented inapproximability
results for the multi-level UFLP and showed that in the general case, the two-level
UFLP is computationally harder than the single-level UFLP.

Most of the early works on MLFLPs introduced exact algorithms for different
variants of the problem. For example, Kaufam et al. (1977) presented a branch-and-
bound method that extended from the single-level case. Barros and Labbé (1994a)
introduced a general version of an MLFLP including design and tactical decisions
and developed a branch-and-bound procedure using the corresponding upper and
lower bounds obtained from different Lagrangian relaxations of two formulations,
and those obtained from an extension of the greedy heuristic proposed for the
UFLP. More recently (Gendron et al. 2016; Ortiz-Astorquiza et al. 2019), developed
efficient exact methods for MLFLPs based on Lagrangian relaxation and Benders
decomposition, respectively.

As mentioned before, most of the techniques used to solve MLFLPs are espe-
cially modified from successful algorithms developed for single-level FLPs. One
very important property in discrete optimization that has led to the development of
algorithms for FLPs is submodularity. This property somehow resembles convexity
for continuous functions on set functions. For the single-level case (Cornuéjols
et al. 1977), presented worst-case bounds for greedy and local improvement
heuristics for the maximization version of an FLP which includes as special
cases the UFLP and the p-MP (see Chap. 4 for details on supermodularity and
supermodular reformulations for the minimization version of the UFLP). Some
of the first articles discussing MLFLPs assumed that the submodularity property
extends directly from the single-level cases (Ro and Tcha 1984; Tcha and Lee
1984). Later (Barros and Labbé 1994b), showed that the set function associated with
the natural combinatorial representation of the multi-level UFLP does not satisfy
submodularity. However, other equivalent combinatorial optimization problems
modeling the multi-level UFLP have an objective function that actually satisfies
submodularity, as was shown in Ortiz-Astorquiza et al. (2015). This observation
allowed to provide sufficient conditions to extend the results on worst-case bounds
for greedy heuristics and submodular reformulations of single-level UFLP and pMP
to MLFLPs (Ortiz-Astorquiza et al. 2017).

Similarly, the case of having capacities in the facilities has also received impor-
tant attention. From the early works, we note that of Aardal (1992), who presented
an MILP formulation for the two-level capacitated FLP and a polyhedral study.
Aardal (1998) later introduced a reformulation along with computational results.
Marín and Pelegrín (1999) compared two-index and a three-index formulations for
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the development of an exact algorithm for the two-level capacitated FLP based
on Lagrangian relaxations. As for the uncapacitated case (Bumn and Kern 2001;
Ageev 2002; Du et al. 2009), developed ρ-approximation algorithms for capacitated
MLFLPs with values of ρ equal to 12, 9 and k+2+√

k2 + 2k + 5+ε, respectively.
Finally, multi-period (or dynamic) extensions of MLFLPs have also been studied in
Hinojosa et al. (2000, 2008). For more details on classification, models, properties
and solution methods for MLFLPs we refer to Ortiz-Astorquiza et al. (2018).

13.4.2 Median and Covering Hierarchical Location Problems

HFLPs that are referred to as median-based hierarchical location problems
(MHLPs) and covering-based hierarchical location problems (CHLPs) in the
literature are those which are frequently found in the context of health care
systems, educational systems, and emergency medical services. One of the main
distinguishing features of MHLPs and CHLPs is that either a successively inclusive
facility hierarchy or a mixed facility hierarchy is considered. Similar to MLFPLs,
there exist an inherent hierarchy given by the nature of the system. For instance,
regional hospitals are clearly in a higher level of the hierarchy as compared to
community hospitals and local clinics. The service availability may be successively
inclusive or not but the hierarchy of the hospitals is implicitly given by the level of
urgency or criticality of the offered services.

The objective function has been one of the most important factors when
categorizing FLPs in general. The modeling and solution structures might change
drastically when different objectives are considered (e.g. p-median, p-center, fixed
charged and covering). One stream of research has focused on MHLPs in which a
median objective is considered. An example of a nested multiple demand MFLPs
can be formulated as follows. Let ds

j denote the demand of service s at node j

and cji denote the cost associated with the allocation of customer j to facility i.
Additionally, consider the decision variables yir equal to one if and only if facility
of type r is located at node i and variables xj

is equal to one if and only if demand of
service s at node j is satisfied with facility at node i. Then, we obtain

minimize
∑

i∈I
∑

j∈J

k∑

s=1
ds
j cjix

j

is (13.7)

subject to
∑

i∈I
x
j
is = 1 ∀j ∈ J s = 1, · · · , k (13.8)

∑

i∈I
yir ≤ pr r = 1, · · · , k (13.9)

x
j
is ≤ ∑k

l=s yil ∀ j ∈ J, i ∈ I s = 1, · · · , k (13.10)
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x
j
is ∈ {0, 1} ∀i ∈ I j ∈ J, s = 1, · · · , k (13.11)

yir ∈ {0, 1} ∀ i ∈ I, r = 1, · · · , k. (13.12)

The objective (13.7) is to minimize the total assignment cost. Constraints (13.8)
ensure that the demand of each service of every node is met. Constraints (13.9) limit
the number of open facilities of each type, while inequalities (13.10) are linking
constraints which in this case define a successively (globally) inclusive HFLP. Note
that replacing constraints (13.10) with x

j

is ≤ yis modifies the problem into a non-
nested HFLP. Then, we would have a successively exclusive formulation. Some of
the early works on the subject are precisely those that identified the differences
between a successively exclusive, successively inclusive or locally inclusive HFLP
(Tien et al. 1983; Mirchandani 1987).

Later Weaver and Church (1991), formulated a nested MHLP with two types
of facilities minimizing an objective function similar to that of Narula and Ogbu
(1985). They proposed a Lagrangian procedure and a primal exchange substitution
heuristic. Other examples where hierarchical p-median models have been studied
are those of Galvão et al. (2002), Yasenovskiy and Hodgson (2007) and Hodgson
and Jacobsen (2009). Also (Serra and ReVelle 1993; Alminyana et al. 1998), present
solution methods for a nested and coherent hierarchical structure combining two p-
median problems referred to as the pq-median problem.

On the other hand, when referring to covering objectives, an important notion is
that of a demand point being covered (see Chaps. 3 and 5). In the context of HFLPs
the three most common types of covering found in single-level FLPs have also been
studied, namely the hierarchical extensions of the set covering location problem,
the p-center problem, and the maximum covering problem (Toregas et al. 1971;
Church and ReVelle 1974). Note that in these cases because we are considering
different types of facilities, it is more intuitive to talk about different types of
demand. However, defining a critical distance is also more challenging than in the
single-level case. For example, one may be interested in covering a demand point
by each type of facility. Another case would be, for instance, when each customer
must be covered by a first level facility, first level facilities in turn are covered by
second level facilities and so on. In the context of health care systems for example,
this is referred to as bottom-up referral system (Church and Eaton 1987; Gerrard
and Church 1994). In such cases the facilities are typically service-nested and thus
a second level facility can also cover customers. Therefore, covering type objectives
are more commonly found with multiple demand type of customers.

For example, let αjs

ir be a parameter whose value is equal to one if and only if
demand at node j of service s can be covered by facility of type r from node i.
Also, let zjs be the binary variables equal to one if and only if demand of service s



13 Hierarchical Facility Location Problems 381

from node j is covered. A hierarchical maximum coverage location problem can be
formulated as

maximize
∑

j∈J

k∑

s=1
ds
j zjs (13.13)

subject to
∑

i∈I
yir ≤ pr r = 1, · · · , k (13.14)

zjs ≤ ∑

i∈I

k∑

r=1
α
js
ir yir ∀ j ∈ J, s = 1, · · · , k (13.15)

0 ≤ zjs ≤ 1 ∀ j ∈ J, s = 1, · · · , k (13.16)

yir ∈ {0, 1} ∀ i ∈ I, r = 1, · · · , k. (13.17)

The objective (13.13) is to maximize the sum of covered demand of each type
of service. Constraints (13.14) limit the number of open facilities of each type,
whereas constraints (13.15) ensure that demand at each node j for each service s is
considered to be covered if and only if there exist at least one open facility which
can provide such service to that node. The integrality restrictions on the zjs variables
can be relaxed due to the sense of the objective function and constraints (13.17).

Note that in this formulation we may count as covered some demand points that
are only partially covered. That is, customers with multiple demands which are
covered for only some services still add value to the objective function. Another
case is to impose that only complete covered customers add value to the objective
function of total coverage.

Given the applicability of CHLPs several different variants have been presented
focusing on case studies and analysis of solutions. One of the first works on
CHLPs is that of Moore and ReVelle (1982) who proposed an IP formulation for
a hierarchical problem with two types of facilities. Later (Gerrard and Church
1994), discussed and compared three additional CHLPs to the one proposed by
Moore and ReVelle (1982). Marianov and Serra (1998, 2001) studied a CHLP
in the context of congested systems. Espejo et al. (2003) developed dual based
heuristics using Lagrangian relaxation to solve instances of a CHLP with two types
of facilities. More recently (Lee and Lee 2010), proposed tabu-based heuristics for
a generalization of the model introduced by Moore and ReVelle (1982). For more
examples, formulations and solution methods on this family of HFLPs we refer the
reader to Şahin and Süral (2007), Daskin (2013) and references therein.

13.4.3 Multi-Echelon Location-Routing Problems

The term echelon is generally associated with distribution networks where products
are transported between each pair of levels. Such pairs are called echelons (Aiken
1985; Gao and Robinson 1992). Multi-echelon FLPs are thus very similar to
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MLFLPs. In fact, many studies use both terms indistinctly. However, we note two
main differences. The first one is that although all of the multi-echelon problems
involve a multi-level environment, not all of them require facility location decisions
at every level as in an MLFLP. For example, in one of the early works on the
topic Geoffrion (1974) studied two-echelon FLPs in which facilities to be opened
are only selected at one of the levels. This is partially because the predominant
decisions are made at the echelons, and these typically involve routing decisions.
Routing decisions in both senses, i.e., the flow between types of facilities and
customers as well as the routes or tours in the same level of the hierarchy. Indeed, the
second differentiating feature lies precisely in these routing patterns. MLFLPs are
concerned with problems where facility, and sometimes network design decisions,
are predominant with no routing decisions between nodes of the same level
involved. The paper of Cuda et al. (2015) on two-echelon routing problems reviews
a more general class of problems in which locational decisions are optional at all
levels. That is, they include problems that may have no location decisions involved.

Another term that is generally related to echelons is the word tier, which has
mainly been used in the context of freight transportation systems and city logistics
(Crainic et al. 2009; Mancini et al. 2014). These HFLPs typically involve vehicle
routing decisions extending those FLPs studied in Chap. 15. The term stage has
also been used in this context and is possibly the most elusive one when trying to
associate it to something in particular. In some references (e.g. Marín 2007) the term
stage is used when referring to what we denote as levels. However, in other papers
it has been used in the sense of what we identified as echelons (e.g. Klose 1999).

One example of a route-based formulation (Cuda et al. 2015) for a two-echelon
capacitated location-routing problem is as follows. Let T 1 be the set of routes
where each t ∈ T 1 starts from a facility of level 1 (e.g. warehouses) and visits
one or several customers. Similarly, define the set of routes T 2 for the second
echelon starting at a facility of the second level (e.g. plants) and visiting a group
of warehouses. The binary parameters αti1 and βtj indicate whether facility i1 or
customer j are in route t or not. Finally, given a route t ∈ T 1, let dt = ∑

j∈t dj be
the total demand for customers visited. Additionally to the fixed costs for setting up
facilities fi , consider the fixed costs paid for each vehicle used in each echelon gr
and the cost per route bt . Now, let the binary decision variables yir equal to one if
and only if facility ir ∈ Ir of level r = 1, 2 is opened. Also, let variables xt equal
to one if and only if the route t ∈ T 1 ∪ T 2 is in the solution, and let wti1 be a flow
variable for route t ∈ T 2 that must be delivered to facility i1. Then we have the
following MIP formulation:

minimize
2∑

r=1

(
∑

ir∈Ir
fir yir + ∑

t∈T r

(gr + bt )xt

)

(13.18)

subject to
∑

i1∈I1

wti1 ≤ c2xt ∀t ∈ T 2 (13.19)
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∑

t∈T 2:i2∈t

∑

i1∈I1

wti1 ≤ q2yi2 ∀i2 ∈ I2 (13.20)

∑

t∈T 2
wti1 ≤ q1yi1 ∀i1 ∈ I1 (13.21)

∑

t∈T 2
αti1xt = yi1 ∀i1 ∈ I1 (13.22)

∑

t∈T 2
wti1 = ∑

t∈T 1:i1∈t
dtxt ∀i1 ∈ I1 (13.23)

∑

t∈T 1
βtj xt = 1 ∀j ∈ J (13.24)

yir ∈ {0, 1} ∀ ir ∈ Ir , r = 1, 2

(13.25)

xt ∈ {0, 1} ∀ t ∈ T 1 ∪ T 2 (13.26)

wti1 ≥ 0 ∀ t ∈ T 2 i1 ∈ I1, (13.27)

where cr is the capacity of the vehicles in echelon r and qr is the capacity of facilities
in level r . Constraints (13.19) ensure that if a route t ∈ T 2 is selected, then the total
load delivered to all the satellites visited in that route must not exceed the vehicle
capacity. Constraints (13.20) and (13.21) correspond to the capacity limits for each
opened facility at both levels. Constraints (13.22) impose that if the first level facility
is opened then it must be visited by one vehicle. Constraints (13.23) represent flow
balance equations for each first level facility and constraints (13.24) ensure that each
customer is served by one vehicle.

One of the first papers in this family of HFLPs is the one of Jacobsen and
Madsen (1980) in which the problem considers location decisions at only one
level of the hierarchy. More recent articles have focused on two-echelon location-
routing problems having location decisions at both levels. For example, Boccia et al.
(2010) and Contardo et al. (2012) present various formulations and solution methods
extended from location-routing and vehicle routing problems. In general, as in the
more global view of HFLPs, most of the related papers propose heuristic algorithms.
In this particular family of HFLPs, perhaps one of the few exceptions where a
specialized exact solution algorithm is developed is the branch-and-cut proposed
in Contardo et al. (2012).

13.4.4 Hierarchical Hub Location Problems

All previously described HFLPs consider that customers, regardless if they are
single/multiple demand or single/multiple product, can be represented with demand
points. We now turn our attention to a different class of problems in which
service demands correspond to the routing of commodities between O/D pairs
over a hierarchical network. We refer to this class of HFLPs as hierarchical hub
location problems (HHLPs). HHLPs arise in the design of hub-and-spoke networks
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in telecommunications, air transportation, cargo, and postal delivery systems.
Even though standard hub-and-spoke networks involving two-levels (access and
backbone levels) have already a hierarchical structure, in this section we limit
our study to hub networks involving two (or more) levels and in which location
decisions arise. We refer to Chap. 12 for an in-depth analysis of hub-and-spoke
networks involving locational decisions in one level.

An important feature of HHLPs is that, given the nature of their demand,
most of these problems consider a bidirectional-flow pattern. That is, demand flow
originates in an O/D node (level 0) and is routed to the highest level via one or more
facilities of each intermediate level and then is routed back to an O/D node in the
lowest level visiting once more one or more facilities of each level. Another feature
of HHLPs is that facilities of the same level are connected and thus, additional link
activation decisions are usually present (unless full interconnection between them is
assumed). Yet another interesting characteristic of HHLPs is that in some situations
the hierarchy of the different types of hub facilities is given by the nature of the
system, such as the case of telecommunication networks in which the role of the
electronic equipment determines the sequence in which the flow must be routed.
However, in some other situations the hierarchy is given by a ranking mechanism
that allows the ordering of the facilities into levels. For example, in the case of
passenger airline networks there exist multiple levels of hubs. According to the
Federal Aviation Administration (FAA), air traffic hubs are classified based on the
percentage of total passengers enplaned in the area into one of four types of hubs:
large hubs, medium hubs, small hubs, and non-hubs (Shaw 1993). This means that
the hierarchy of facilities (hub airports), is determined by such metric.

We now provide a brief overview of the HHLPs that have been studied in the
last decade. In the context of telecommunications networks (Yaman 2009), studies
the problem of designing a three-level hub network, where the top layer consists
of a complete network connecting the central hubs, and the second and third layers
are unions of star networks connecting the remaining hubs to central hubs and the
O/D nodes to hubs, respectively. The objective is to minimize the total routing cost
while taking into account a cardinality constraint on the number of open hubs at
each level. The author also studies an extension incorporating the same delivery
time restriction for all O/D pairs. Yaman and Elloumi (2012) focus on two variants
of HHLPs with covering-based objectives: the star p-hub center problem and the
star p-median problem. These problems consist of locating p hubs (level 1) and
connect them at central hub (level 2) via a star topology. Each O/D node is assigned
to one hub in level 1. The objective of the former problem is to minimize the length
of the longest path between O/D pairs. The objective of the latter is to minimize the
total routing cost, while taking into consideration the service quality in terms of the
length of paths between pairs of O/D nodes.

In the context of cargo delivery systems (Alumur et al. 2012), introduce a
multimodal HHLP in which a three-level hub network is considered. O/D nodes
are connected to ground hubs (level 1), which in turn are connected to airport hubs
(level 2). A central airport hub (level 3) is connected with a star topology to all
airport hubs. Depending on the O/D pairs, demand flow may visit ground hubs, or
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a combination of ground and airport hubs. The objective is to minimize the sum of
setup costs for link activation decisions and routing costs, while taking into account
service time constraints on O/D paths. Dukkanci and Kara (2017) study a variant
of the previous problem in which a ring-star-star topology is assumed. In particular,
the airport hubs are connected with the central airport hub with a set of rings (or
routes) performed by the aircrafts. The objective is to minimize the setup cost for
the activation of the links between airport hubs while taking into account service
time constraints on O/D paths.

For the case of air transportation systems (Adler and Smilowitz 2007), focus on
the design of global three-layer hub networks in which two types of hub facilities
are considered: international gateways and regional hubs. The backbone network
associated with each hub-layer is assumed to be complete. The authors develop a
game theoretic approach in which merger and location decisions are considered.
Bernardes Real et al. (2018) introduce a more comprehensive model in which
gateways (level 2) and regional hubs (level 1) need to be located on a tree-level
hub network. Backbone networks are no longer assumed to be complete. Unlike
previous models, local and global flows are differentiated as the structure of OD
paths associated with each type of flow is different. In particular, global flows can
only leave or enter a geographic region via a gateway hub, while local flows can
only use domestic hubs within their region.

Zhong et al. (2018) present a HHLPs arising in the design of public transport
systems in which a three-level hub network is considered. O/D nodes correspond
to traffic districts (level 0) in urban and rural areas. Hubs in central towns (level
1) provide service to rural areas, which are connected to urban public transport
hubs (level 2) located inside the city or on the rural-urban boundary. These urban
transportation networks are used to satisfy demand generated by urban and rural
residents moving into and out of the city each day. The authors consider a fixed
charge objective that minimizes the sum of setup costs for the installation of hubs at
both levels and transportation costs.

13.5 Conclusions

In this chapter we presented a unified view of hierarchical facility location problems.
They constitute a general class of discrete location problems arising in the design
of hierarchical systems, in which different types of facilities interact to collectively
provide services or products to a set of customers. We discussed the fundamentals
of these problems, including their distinguishing features and key concepts. We also
provided a comprehensive classification scheme that combines and extends previous
schemes. We provided a review on applications areas, focusing on classical and
new applications that have recently emerged. We also presented a concise overview
of four classes of HFLPs that have received the most attention in the literature:
multi-level facility location, median and covering hierarchical facility location,
multi-echelon location-routing, and hierarchical hub location.



386 I. Contreras and C. Ortiz-Astorquiza

Although a substantial progress has been done by researches and practitioners in
the area of hierarchical facility location, there is still significant work to be done.
Identifying new areas of application will give rise to more realistic and complex
models capable of capturing features of real-life. For instance, the recent work
of Smith et al. (2017) focusing on the location of IV/AIDS test laboratories in
South Africa and of Teixeira et al. (2019) dealing with the location of courts of
justice in Portugal, provide good examples of the innovative applications of HFLPs.
Moreover, although some recent progress has been done in the solution of HFLPs
of realistic size (Ortiz-Astorquiza et al. 2019), sophisticated solution algorithms
capable of exploiting the network flow structure of hierarchical models still need
to be investigated to solve large-scale instances of more realistic variants. Other
aspects of HFLPs that have received limited attention include the uncertainty in
demand and travel times, as well as the multi-period nature of decision problems
involving strategic decisions. Finally, another aspect that has been rarely discussed
in HFLPs is that of incorporating into the decision making process the allocation
of services to facilities and to exogenously determine the number of levels in the
hierarchy (see, Narasimhan and Pirkul 1992).
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Chapter 14
Competitive Location Models

H. A. Eiselt, Vladimir Marianov, and Tammy Drezner

Abstract This chapter first provides a review of the foundations of competitive
location models. It then traces subsequent developments through time under special
consideration of customer behavior. After developing a general framework for
customers’ decision making, the main results are cast within this framework. The
conclusion outlines a number of areas, in which existing models can be refined and
made more realistic.

14.1 The Basic Model: The First 50 Years

Competitive location models were first discussed by Hotelling (1929) in his seminal
paper. It has spawned hundreds of contributions (for a summary until the early
1990s, see Eiselt et al. 1993) that investigate many different aspects of the basic
model. A recent summary of Hotelling-style models was provided by Eiselt (2011),
for details we refer to that work. This chapter will first introduce the basic model,
followed by an outline of some of the main components of competitive location
models. We then discuss the main aspects and types of consumer behavior, and
then review the work on competitive location models under special consideration of
customer behavior.

The basic model is easy to describe: consider a line segment, a so-called “linear
market,” which Hotelling referred to as “main street,” along which customers are
uniformly distributed. (The often-mentioned “ice cream vendors on the beach” were
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actually introduced by Lösch 1954). Each customer has a fixed and inelastic demand
for a given homogeneous good. Duopolists are now attempting to independently
enter the market, offering identical products. The competitors are profit maximizers,
and they attempt to achieve their objective by determining their respective locations
and prices; first both competitors choose their respective locations, followed by
the simultaneous choice of prices. It is assumed that both competitors employ
mill (or f.o.b.) pricing (a pricing policy in which customers pay a price set by the
facility and take care of the transportation themselves) and that transportation costs
between customers and facilities are linear. Customers will patronize the facility
that offers the good for the lowest full price, i.e., the smallest sum of mill price and
transportation costs. For simplicity, it is commonly assumed that the costs of the
firms have been normalized to zero.

Already in his original paper, Hotelling did not restrict himself to the aforemen-
tioned “main street” with customers in search for inexpensive physical goods from
brick-and-mortar retailers. One of the nonphysical applications he mentioned was
what we today refer to as brand positioning, viz., the location of a brand in some
feature space. More specifically, Hotelling used the example of ciders offered by
two firms, whose single distinguishing characteristic is their respective sweetness.
Given that a brand is sweeter (more sour) if it is located more to the right (left) side
of the market segment, the two firms will determine optimal locations and prices so
as to maximize their respective profits.

Similar, albeit with a marked difference, is the political positioning model that
was also mentioned in Hotelling’s original paper. The idea was very simply for
each of two political parties to each locate their own candidate, so as to maximize
the number of votes (i.e., the number of customers, or the market share) that the
candidate would obtain. The line segment was used to mimic the traditional left-
right scale in politics, voters (i.e., their “ideal points,” which symbolize their most
favored position on the line) were again assumed to be uniformly distributed on the
line segment, and the candidates would not have any inherent stand on the issues,
they would simply position themselves at a point, where it would win them the
largest number of votes. However, in contrast to all other previously mentioned
applications, there are no prices in this model.

The main focus of Hotelling’s original paper is the existence (or the lack) of a
stable solution, i.e., an equilibrium. Hotelling asserts that an equilibrium would exist
with both firms locating next to each other at the center of the market. This result
is often dubbed the “principle of minimum differentiation,” in reference to products
or political candidates being very similar to each other. Even though in a footnote,
Hotelling cautions that his result would not hold in highly competitive situation
(which is precisely what occurs when the two firms locate very close to each other),
he presented his agglomeration result as his major finding. Other authors, such as
Lerner and Singer (1937) and Eaton and Lipsey (1975) obtained different results, but
their contributions were based on Hotelling-style models albeit with fixed and equal
prices. Hotelling’s original result was not disputed until d’Aspremont et al. (1979)
demonstrated 50 years later that no equilibrium exists in Hotelling’s model. In
order to follow the argument, first consider a graphical representation of Hotelling’s
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Fig. 14.1 Hotelling’s duopoly on a linear market

scenario as shown in Fig. 14.1. Here, the linear market extends from 0 to 1, and the
locations of the two competitors are shown as A and B, respectively. They charge
mill prices pA and pB, respectively, and transportation costs are linear, resulting
in full prices to the customers shown in the two “V” shaped functions. The two
functions intersect at some point X, which is usually referred to as the marginal
customer, i.e., the customer who pays the same full price (i.e., the mill price plus
transportation costs) purchasing from firm A as he does purchasing from firm B. As
a matter of fact, the function that describes the full price for all customers on the
line segment is the lower envelope of the two “V”-shaped functions. Furthermore,
the market can now be subdivided into the following parts: The first piece of length
a is firm A’s hinterland, which A captures in its entirety. Similarly, the stretch b on
the right is firm B’s hinterland, which is captured by B. The remaining area is the
competitive region between firms A and B. (The terms “hinterland” and “competitive
region” appear to have been introduced by Smithies 1941). This is subdivided into
parts x and y, such that x is the part in which customers can purchase more cheaply
from firm A, while in y, customers can purchase the good more cheaply from firm B.

This allows us to determine the market shares of the two firms simply as
M(A) = a + x for firm A and M(B) = b + y for firm B. This depiction of the scenario
also permits us to examine the two forces that govern the process. The market share
force pushes the two facilities towards each other. The reason is that—given that
his opponent does not react, at least temporarily—a facility can move towards its
competitor and, in doing so, not lose market in its own hinterland, while gaining in
the competitive region. This force applies, as long as customers do not have finite
(and reasonably low) reservation prices, i.e., an upper bound on the full price they
are able or willing to pay for the good. On the other hand, there is the competitive
pricing force that pushes the two facilities apart. The reason is that if the two firms
locate very close to each other, whatever price one of them sets, his competitor can
undercut him slightly and thus capture the entire market. This results in facilities
moving apart so as to position themselves in a region with less competitive pressure.
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Fig. 14.2 Competitor A’s profit functions with linear transportation costs. (a) A and B are close to
each other and (b) A and B are far apart

The obvious question is whether or not there exists a locational arrangement
and a price structure, which represents a stable solution, i.e., an equilibrium.
Temporarily holding the location of both and the price of one of the competitors,
say, B, constant, Fig. 14.2a, b show competitor A’s profit function π in the case of
firms A and B locating close to each other (Fig. 14.2a) or a significant distance apart
(Fig. 14.2b).

First consider Fig. 14.2a. From left to right, A’s profit function is linearly
increasing for low prices pA (as firm B is cut out and A’s profit increases proportional
to the price); then, as pA increases, at some point, B is no longer cut out, there is a
marginal customer in the competitive region, and A’s profit function is an inverted
ellipse. As pA increases further, there exists a point, at which it is sufficiently high so
that firm B cuts out firm A, and thus A’s profit drops to zero. Note that there are two
local maxima, one at the first breakpoint from the left, and the second in the domain
of the quadratic piece of the function. In Fig. 14.2b, the linearly increasing part is
valid only for negative prices, which are nonsensical in this application. Other than
that, the function is similar to that in Fig. 14.2a, but with a single maximum.

d’Aspremont et al. (1979) first demonstrated that Hotelling’s model does not
possess an equilibrium in pure strategies, i.e., as long as each player chooses exactly
one strategy, rather than randomize. They then demonstrated that an equilibrium
was restored in the model if we were to use a quadratic, rather than a linear,
transportation cost function. Later, Gabszewicz et al. (1986) pointed out that the
lack of the existence of equilibria in Hotelling’s model is due to the lack of
quasiconcavity of the profit functions of the duopolists (see again Fig. 14.2a). Fig.
14.3a, b show again competitor A’s profit π, given a quadratic, rather than linear
transportation cost function: Fig. 14.3a for competitors’ locations that are close to
each other, and Fig. 14.3b for locations far apart. Note that the functions are both
quasiconcave.

In general, many competitive location models have shown major signs of
instability: Hotelling’s original model with variable prices and linear cost functions
has no equilibrium, the same model with quadratic transportation costs has one—
with firms located at opposite ends of the market. Hotelling’s model with a
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Fig. 14.3 Competitor A’s profit functions with quadratic transportation costs. (a) A and B are close
to each other and (b) A and B are far apart

linear-quadratic cost function (see, e.g., Gabszewicz and Thisse 1986, or Anderson
1988) does not have equilibria, as long as the linear part, no matter how small, exists.
Hotelling’s model with fixed and equal prices (see, e.g., Lerner and Singer 1937 or
Eaton and Lipsey 1975) has an equilibrium with minimal differentiation, while the
same model with three firms has no equilibrium; the duopoly with fixed and unequal
prices, regardless how small the difference between the prices, has no equilibrium.

Consider now the locational arrangement that minimizes the total transportation
costs to the customers. Using the notational convention in Fig. 14.1 and unit
transportation costs t, the total transportation costs to all customers can be written as

T C = t

⎡

⎣

A∫

�=0

(A − �) d� +
X∫

�=A

(� − A) d� +
B∫

�=X

(B − �)d� +
1∫

�=B

(� − B) d�

⎤

⎦

= t
[
3A2/4 + 3B2/4 − AB/2 − B + 1

2

]

Partial differentiation ∂T C
∂A

= 0 and ∂T C
∂B

= 0 results in the optimal points A = ¼
and B = ¾, a configuration at which the total transportation costs are t/8. In contrast,
central agglomeration results in transportation costs of t/4, i.e., costs that are twice as
high. As the point (A, B) = (¼, ¾) minimizes the total transportation costs (which
are, given mill pricing, borne by the customers), this point is often referred to as
social optimum.

Before investigating the key elements of competitive location models, we would
like to draw attention to some surveys of the subject. Brown (1989) provides a
critique of Hotelling’s work and points out various directions, which would make
the original model more realistic. Eiselt et al. (1993) provide a taxonomy and a short
evaluation of the literature up to that point. Plastria (2001) looks at the optimization
aspect of the subject, while Drezner and Eiselt (2002) focus on customer behavior
and its consequences on the solution. Kress and Pesch (2012) surveyed the subject,
but concentrate on problems on networks, while Drezner (2014) surveys problems
in the plane. Similar to the aforementioned contribution by Eiselt et al. (1993),
Ashtiani (2016) first outlines some of the main characteristics of competitive
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location problems and then reviews individual papers published in 2000–2014.
While Karakitsiou and Migdalas (2017) survey competitive location problems with
respect to Nash equilibria, Aras and Küçükaydın (2017) review contributions that
focus on von Stackelberg solutions. Finally, Marianov and Eiselt (2016) investigate
existing competitive location models with respect to the tendencies of facilities to
agglomerate or disperse.

14.2 Elements of Competitive Location Models

The subject of competitive location models, as pioneered by Hotelling, has become
a rich research area. Since research has moved into many different directions, it
is useful to classify models, e.g., by using the taxonomy proposed by Eiselt et al.
(1993). Rather than describe it in detail, we will outline its major components here.

One aspect of all location models, competitive or not, is the choice of space. In
contrast to regular, noncompetitive, location models, many authors have used much
simplified spaces in their models: starting with Hotelling’s original linear market,
they have also investigated circular markets, which may appear rather contrived at
first glance, but are designed to avoid the “end-of-line effects” of bounded linear
markets.

Measures of distances are no issue when devising models in a single dimension,
but they are, as soon as models in two or more dimensions are investigated. While
some authors favor gauges in noncompetitive location models (see, e.g., Durier and
Michelot 1985, or Plastria 1992) most contributions that look at continuous location
models in the plane have used Minkowski distances, most prominently Manhattan,
Euclidean, and Chebyshev distances.

A similar situation prevails in networks. Measures of distances in trees are not
an issue, as, by definition, there is only one path between each pair of points.
However, in general networks one could, at least theoretically, use any distance that
best models reality. Assuming not only rational, but also cost-minimizing behavior,
virtually all authors in the field have chosen shortest path distances. Assuming
complete information, one could choose traffic choice models and assume that
customers take not the shortest route with respect to distances but the shortest route
with respect to time; or that not all customers use the same route selection strategy
all the time. This would suggest itself particularly in highly congested (urban) areas.
One concept that is used extensively by authors who deal with network models is
known as node property or Hakimi property. It is based on Hakimi’s work Hakimi
(1964) on network location properties, in which he proved that in some classes of
models, at least one optimal solution locates all facilities at the nodes of a network.

The second component concerns the number of players and facilities that are to
be located. Traditionally, papers included duopolists who locate a single facility
each, so that the terms “firm” and “facility” (the entity to be located) were
synonymous. This is, of course, no longer the case once we include multiple firms
or multiple facilities to be located by each of the planners. Here, we will use the
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game-theoretic term players for the (independently operating) firms, and “facilities”
for what they are locating. The number of facilities that one or more of the players
wish to locate may be preselected or unspecified. In the latter case, the cost or profit
function of a player includes fixed costs for opening a facility at a site.

The third component of competitive location models concerns the pricing policy.
One important feature of Hotelling’s original model was that he investigated
competition in location and prices. A more general model would let players also
choose their pricing policy. In particular, we typically distinguish between a variety
of different pricing policies. Among the most prominent such policies is mill
pricing, where players set prices at the source, which are not necessarily the same
at all of their facilities. Customers will then purchase the product at the facility they
have chosen to patronize and pay for the transport costs. Almost all retail facilities
use this principle. A special case of mill pricing is uniform pricing, a policy, in
which the facility planner sets the same price at all of his facilities. This policy was
used by the “Motel 6” chain in the 1980s, until they chose to charge different prices
at different locales to better reflect their own cost structure.

Another principle is uniform delivered pricing. In this pricing policy, facility
planners will deliver the goods to their customers for a fixed “full price” regardless
of customers’ locations. Domestic mail is a typical example of this type of pricing
policy. Clearly, in such a policy, customers that are located close to the facility
from which they receive the goods, will subsidize those who are located farther
away. A special case of this policy is zone pricing, a policy, in which the firm
has subdivided their market area into zones, such that a uniform delivered price
is charged in each zone. Typical examples are the outdoor store L.L. Bean that sells
canoes for one delivered price east of the Mississippi, and another price west of
the river, or postal services that typically charge one rate for domestic mail and
(at least) one for international mail. Spatial price discrimination is a policy that
charges customers a full price according to the customer’s location. Its applications
have been severely limited by the Robinson-Patman Act of 1936, even though it
does provide some benefits to the customers; see, e.g., Anderson et al. (1992). Note
that uniform delivered prices and spatial price discrimination are boundary cases
of zone pricing; the former in case there is only one zone, and the latter in case
each point in space represents its own zone. Many contributions, especially those
from the operations research community, assume that prices are universal and fixed,
which is the case in legislated pricing or producer-administered mandatory prices.

The fourth component concerns the rules of the game the players adhere to.
In essence, this feature describes how individual players act or react. Consider
the simple case of pure location competition. In such a case, players could
simultaneously choose their strategies, i.e., decide on the locations of their facilities.
If at this point, none of the players has an incentive to unilaterally change his
position, we say that a Nash (or Cournot-Nash) equilibrium has been obtained. Such
a situation indicates some stability. Note that all players have, at least potentially, the
same information available to them, even though perceptions may differ, indicating
some asymmetry among players.
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Things are getting somewhat more involved, if players have not only locations,
but also prices as variables. In such a case, we can employ a refinement of Nash
equilibria, viz., Selten’s (1975) subgame perfection. Loosely speaking, a subgame
perfect equilibrium exists, if every subgame of a given game has a Nash equilibrium.
Applied to our type of problem, players may choose a “first location, then price”
strategy (see, e.g., Anderson and Palma 1992), i.e., all payers simultaneously choose
their locations, and in a second phase, they simultaneously choose their prices. Many
authors have chosen this route. At this point, we need to define the concepts of pure
and mixed strategies. A pure strategy prescribes a certain course of action (i.e., a
decision) for a decision maker, while a mixed strategy will provide a schedule of
decision, associated with probabilities that indicate with what likelihood a decision
maker should use this strategy. The work by Caplin and Nalebuff (1991) outlines
conditions under which a pure-strategy price equilibrium exists in a locational game,
while Dasgupta and Maskin (1986), who deal with discontinuous payoff functions,
describe conditions for the existence of mixed strategies.

A full sequential strategy has one player, the so-called leader, locate first,
followed by all other players, the followers, which locate later. This asymmetric
situation has originally been described by the economist von Stackelberg (1943).
The leader, when choosing his locations, will have to guard against the followers. If
all players have the same objective and the same perception of the demand structure,
this means that the leader will use a strategy to maximize the minimal market
share or profit he will obtain. On the other hand, the followers will have a chance
to observe the action of the leader and then react accordingly, meaning that they
solve a conditional optimization problem, in which they maximize their own market
share or profit, given that the leader has already located. Note that the problem of
the follower is much easier to solve mathematically, as it is a simple optimization
problem. The problem of the leader, however, is a bilevel optimization problem, as
it requires the solution of the follower’s problem as an input parameter.

The last major descriptor of competitive location models concerns customer
behavior. As a matter of fact, this aspect is the main leitmotif of this paper. The
first major distinction between different classes of models is between demand
allocation models and customer choice models. As the name suggests, in allocation
models the firm decides which facility is allocated to a customer. A typical example
would be the delivery of furniture to customers, who will receive the goods from
whatever warehouse the firm decides to deliver from. (Note that, strictly speaking,
the purchase of, say, a sofa, typically involves a mix of allocation and choice models:
when customers drive to a store to purchase the sofa is a choice model, while the
actual delivery of the sofa is an allocation model). In scenarios of customer choice,
on the other hand, customers choose which facility or firm they want to deal with.
Often, the two models are referred to shipping and shopping. We would like to point
out, though, that there are a number of instances, in which allocation and customer
choice models are quite similar. If a firm delivers goods to customers, it may ship
from the facility closest to the customer. Similarly, the same customer, in case he
purchases the good from a facility and transports it home, may also choose the
closest facility. The main difference between the two cases is that in the former,
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transportation costs appear explicitly in the firm’s objective function, whereas they
do not in the latter, where proximity enters in the form of which facility is chosen by
a customer, but not in the form of transportation costs. This paper deals exclusively
with customer choice models.

The manner in which customers choose which facility they patronize, is the
main subject of this contribution. The next section will provide a framework for
this decision. At this point, suffice it to say that while many, or even most, papers
use the “patronize the closest facility” (or cheapest, in case prices are different and
mill pricing is assumed), other models have been suggested. For instance, some
models include a (single-dimensional) parameter that measures the attractiveness of
a facility in contrast to other, competing facilities. Furthermore, an important and
fairly recent strand of research uses probabilistic choice rules, according to which
customers at the same location do not all behave in the same way. Similarly, it is
able to capture the fact that a customer, even if he and all of the competing facilities
remain in the same positions, will not always patronize the same facility.

14.3 Consumer Behavior in Competitive Location Models

Consumer behavior is one of the most important aspects in any user-focused models,
yet it is crucial to many such models. Some references are Raiport and Sviokla
(1994), who identified content, context, and infrastructure as major determinants
of customer behavior, Song et al. (2001) and Giudici and Passerone (2002), who
use data mining in their analyses of identifying changes in consumer behavior, and
Liou (2009), who presents decision rules that foster customer retention in the airline
industry.

The three-stage process below presents a decision-making framework that
customers use when making their choices. We will discuss the individual stages and
demonstrate how they encompass the rules and assumptions made in the literature.

Stage 1 is the evaluation stage. In it, customers determine utilities to each of
the stores. For the purpose of this paper, we assume that customers actually have
complete and correct information, an assumption that may be justified by Internet
searches or similar fact-finding processes, together with past experience with the
facilities. The utilities created in this stage will be based on all components that
typical customers deem important. In the retail context, this may include, but not be
restricted to, the price charged at the facility, the distance to the facility, the parking
at the facility, the friendliness of the staff, and others. Formally, we can define uij

as the utility a customer located at site i (for simplicity, we will refer to “customer
i”) associates with goods or services at a facility at site j (called “facility j” for
short). Furthermore, we define dij as the distance between customer i and facility
j, while t denotes the unit transportation cost, i.e., the conversion from distance to
money. We also need to define pj as the price charged by facility j, and the basic
attractiveness Aj of facility j. The basic attractiveness is a composite parameter that
includes different measures, such as floor space of a retail establishment (as a proxy
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expression for variety), the quality of service, and other features. It is not important
to find an exact aggregate measure, it is only important to find an expression that
captures the differences between facilities. For simplicity, we will restrict ourselves
to a single homogeneous product, such as a brand that can easily be compared
between facilities. As an aside, some firms make such comparisons difficult by
assigning different model numbers to the same product, one for department stores,
and a different one when it is sold through specialty retail outlets.

The simplest (deterministic) utility function is

UD1a : uij = −tdij ,

i.e., the utility of customer i regarding facility j equals the negative distance between
them. Hence, maximizing the utility, such a customer will patronize the facility
closest to him. Such a utility function has been used by early contributors, such
as Lerner and Singer (1937), Eaton and Lipsey (1975), and later by operations
researchers such as Hakimi (1983), ReVelle (1986), Serra et al. (1999a, b).

An extension is the utility function

UD1b : uij = −pj − tdij .

Maximizing such a utility is equivalent to minimizing the full price of the good,
i.e., the mill price plus the transportation costs. Hotelling’s own contribution falls
into this category, and so do the papers by Serra and ReVelle (1999) and Pelegrín et
al. (2006). Note that the utility UD1a is a special case of the utility UD1b with zero
prices (or prices that are equal at all existing facilities).

Consider now the utility function

UD1 : uij = Ri − pj − tdij ,

where Ri denotes the reservation price customer i assigns to one unit of the good
in question, an upper bound customers are prepared to pay for one unit of the good.
Given that, the utility is an expression of the amount of money that the customer
“saved,” i.e., the amount that he was prepared to, but did not have to, spend on a unit
of the product. Some authors refer to Ri as the valuation of the product, other refer
to it as income, while still others think of it as the budget. In all cases, Ri − pj − tdij

is an expression of the money that was available for the purpose, but did not have to
be paid for the product. It is apparent that the utility functions UD1a and UD1b are
special cases of the function UD1: Given equal reservation prices Ri = Rk, i 
= k,
maximizing the utility UD1 reduces to UD1b, which, in turn, reduces to UD1a for
fixed and equal prices pj. One important feature of the utility function UD1 is that
when the utility uij is nonpositive, it allows customer i to refrain from making any
purchases.

Finally, there exists a variety of other deterministic utility functions used by some
authors. Among them is Lane (1980), who uses a Cobb-Douglas-style function
that expresses the utility as the product of three components: a measure of a
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characteristic raised to a power, another measure of the facility raised to some power,
and the available income of the individual. Neven (1987) frames his discussion in
the context of brand positioning, and his utility function is the difference between a
(very high) reservation price, and the price plus the square of the customer-facility
distance (which, in this context, is actually the difference between the customer’s
ideal point and the actual feature of the product). Finally, Kohlberg (1983) uses a
utility function that includes the sum of travel time and waiting time, a utility that
is important in the context of facilities that feature congestion, such as health-care
facilities. Such a utility function can be written as

UD1c : uij = Ri − pj − tdij − Wi,

where Wi denotes the waiting time. One pertinent example in the context of health
services is found in Marianov et al. (2008).

Another utility function incorporates not only distances, which are present in
all spatial models—after all, they are what makes a model “spatial”—but also
the “attractiveness” of the facilities. As already briefly alluded to above, this one-
dimensional measure attempts to capture differences between facilities the way they
are perceived by customers: floor space as a proxy for selection (even though the
models under consideration just deal with a single homogeneous good), friendliness
of staff, parking, lighting, temperature, cleanliness of the facility, and many others.
A simple utility function that incorporates the basic attractiveness of facility j as the
parameter Aj is

UD2a : uij = Aj

dλ
ij

with some decay parameter λ. For λ = 2, the relation reverts to the well-known
gravity model, first proposed by Reilly (1931) for the determination of trading areas.
This function has been used by authors, such as Aboolian et al. (2007), Drezner
and Drezner (1997), Eiselt and Laporte (1991), and Suárez-Vega et al. (2014), the
last using the slightly more general function “basic attractiveness divided by some
increasing continuous function of distance.” Clearly, given the absence of prices,
these models assume that prices are fixed and equal among facilities.

An alternative treatment that involves an attractiveness parameter is

UD2b : uij = Aje
−βdij

with some parameter β > 0 that indicates the customers’ sensitivity to differences in
distances. Aboolian et al. (2008) use a function of this type, but go one step beyond:
their base attraction Aj is a negative exponential function of the price charged at the
facility.
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Consider now utility functions that include probabilistic components. There
are considerably fewer probabilistic location models than there are deterministic
models. The probabilistic counterpart of the above deterministic function UD1 is

UP1 : uij = Ri − pj − tdij + εiμ,

where εi is, usually, a Weibull-distributed random variable, while μ is typically
interpreted as a coefficient of heterogeneity of customer tastes.

On the other hand, a probabilistic version of the utility function UD2a is

UP2 : uijk,

defined as the utility a customer at site i has for feature k of facility j. This multidi-
mensional version of the attraction function leads to the probabilistic allocation rule
AP1 defined below.

Stage 2 in the decision-making process involves the allocation of a customer’s
demand. The most natural thing to use would be the deterministic allocation rule

AD1 : winner − take − all,

which allocates all of customer’s demand to the facility he is most attracted to.
Most of the contributions in the literature follow this rule. Actually, if the utility
function is assumed to include all of a customer’s wishes, this rule would be the
only logical choice. However, even when considering a single customer, he may opt
logically for a facility that is second-best or has an even lower ranking based on its
utility. The reason could be that the customer, having patronized on facility, wants
some variety, even though it is probably not as good. Alternatively, if a customer
point represents actually a group of customers (meaning that customer i is actually
an aggregate, typically of a census tract or some other group of customers), some
members among the group may have different rankings and prefer what, on average,
is a higher-ranking facility.

This heterogeneity of customer tastes can be dealt with in different ways. One
such possibility is to use a

AD2 : proportional allocation.

This allocation rule will allocate a customer’s demand according to the relative
utility a customer has for a facility. For instance, the proportion of customer
i’s demand to facility j according to Hakimi’s (1990) “proportional” rule equals
uij /

∑

k

uik . As an example, if a customer faces a duopoly, for whose facilities he has

computed utilities of 3 and 7, respectively, he will satisfy 30% and 70% of his total
demand at the two respective facilities. Hakimi (1990) also designed a hybrid rule
based on AD1 and AD2. He refers to it as a “partially binary” allocation. According
to this rule, customers consider only the closest facility or branch of each of the
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competing firms, and they then distribute their demand proportionally among those
branches. Suárez-Vega et al. (2004) investigated AD1, AD2, and the aforementioned
hybrid in detail.

Consider now probabilistic allocation functions. A natural extension of Reilly’s
(1931) argument of attraction functions was Huff’s (1964) allocation function,
which allocates a proportion of a customer’s demand to a firm based on the firm’s
attractiveness and its distance to the customer,

AP1a : pij = Aj/d
λ
ij

∑

k

Ak/d
λ
ik

Huff suggested the selection of a location from a pre-specified set of locations,
whereas Drezner (1994a, 1995) proposed a model for finding the best location any-
where in the plane. A multidimensional generalization of this idea was proposed by
Nakashani and Cooper (1974), the so-called multiplicative competitive interaction
model, or MCI for short. Assuming that uijk denotes the utility customer i has for
feature k of store j, let pij denote the probability that a customer at site i makes a
purchase at store j. The parameter α reflects how sensitive is pij to feature k. The
MCI model then asserts that

AP1 : pij =
∏

k

u
αk

ijk

∑

j

∏

�

u
α�

ij�

.

Following the arguments of McFadden (1974), the use of the probabilistic utility
function UP1 leads to the demand allocation rule

AP2 : pij = e(Ri−pj−tdij )/μ
∑

k

e(Ri−pk−tdik)/μ
.

Note that whereas any of the deterministic utility function could be followed by
any of the allocation functions, the allocation function AP2 is a direct consequence
of the utility function UP1.

Finally, in the third stage in the decision-making process, customers determine
the quantity that they are going to purchase from the chosen facility/facilities. Most
authors opt for the quantity choice rule

Q1 : fixed,

in which the quantity customers purchase is fixed. This is typically justified by
asserting that the good in question is essential. While such an assumption is
convenient, there are actually relatively few essential goods in real life: butter can
be replaced by margarine, private transportation can—at least within reason—be
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replaced by public transportation; potatoes could be replaced by pasta, and so forth.
Yet, true essential goods exist, such as electric power (which cannot be replaced in
the short run), or medical care. Typical examples for the use of this rule include
almost all contributions in the literature, starting with Hotelling (1929), Eaton and
Lipsey (1975), and d’Aspremont et al. (1979) to Drezner and Drezner (1997),
Fernández et al. (2007), Braid (2013), and others.

A very general alternative rule is

Q2 : qij = f
(
pj + tdij , uij

)
,

where qij denotes the quantity customer i purchases at facility j. This rule states that
the quantity that customer i purchases from facility j is a function of the full price
to be paid for purchases at that facility and of the utility customer i achieves from
purchases at facility j. While a customer’s utility is likely to include the full price
as one of its components, the quantity purchased by a customer is often assumed
to depend on the (full) price of the product, rather than on a customer’s utility.
The early contribution by Rothschild (1979) uses a negative exponential distribution
to relate a customer’s demand and the customer-facility distance, while Aboolian
et al.’s (2008) work includes not only distance, but also price, in their negative
exponential relation. The contributions by Penn and Kariv (1989) and Matsumura
and Shimizu (2006) assume respectively that the demand at a point is the difference
between a constant and the travel distance, and the difference between a constant
and the price paid for the product. Both cases are designed so as to express the
amount of money a customer has left over after his purchase.

Once customers have gone through the three stages of their decision-making
process, they have decided how much to purchase and whom to purchase it from.
This can then be used as input by the competing planners of the facilities. Drezner
et al. (1996) analyzed an anomaly in the decision making process that occurs if
customers reevaluate their purchasing decision along the way to the chosen facility.
The authors also delineated areas in which this phenomenon occurs.

14.4 Results for Different Behavioral Assumptions

This section is organized along the lines of customer choice rules outlined in the
previous section. Each subsection will examine one customer choice rule, given
a specific space in which customers and facilities are (going to be) located in,
and the type of solutions that are investigated, viz., followed by results in the
literature regarding Nash equilibria, and von Stackelberg solutions. To avoid too
much fragmentation, we will list those contributions that deal with some discrete
space under the header “plane.”
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14.4.1 UD1a, Linear Market, Nash Equilibria

Stevens (1961) appears to have been the first to use game theory to reestablish
Hotelling result of minimal differentiation for fixed and equal prices. Recognizing
the complexity of the problem described in Hotelling’s (1929) paper, some contrib-
utors decided to simplify matters. Eaton and Lipsey (1975) used fixed and equal
prices. While this assumption appears somewhat contrived, it is usually justified
by legislated pricing for essential goods. With this assumption, customer choice
rule UD1a (the “closest” rule) is applied. Given this assumption, Hotelling’s result
of minimal differentiation is reestablished, as by moving towards its opponent, a
firm gains customers in the competitive region and does not lose customers in
its hinterland. The authors also extend the analysis to more than two firms. In
particular, they determine that for more than five firms, multiple equilibria exist,
and the only case without equilibria is the instance with three facilities. In particular,
the two outside facilities will push inwards so as to gain additional market shares,
thus squeezing the market of the inside firm to zero. This firm will counteract by
“leapfrogging” to the outside, become an outside facility itself, and start moving
inwards. Teitz (1968) referred to this behavior as “dancing equilibria.” Shaked
(1975) investigates the usual Hotelling model with fixed and equal prices, but three
facilities that employ mixed strategies. It turns out that an equilibrium exists, in
which all facilities randomize their strategies in the central half of the market.

In a follow-up paper, Shaked (1982) investigates the Hotelling model with
three firms locating one facility each, with fixed and equal prices, allowing mixed
strategies. It turns out that all firms will chose locations in the central half of the
market with equal probability. Cancian et al. (1995) consider a Hotelling model
with directional constraints, i.e., customers can only walk in one direction towards
the firm they want to patronize. The authors determine that with random arrival
times of the customers and two or more facilities, no equilibrium exists.

14.4.2 UD1a, Linear Market, von Stackelberg Solution

The first author to introduce sequential (and final) location decisions into the discus-
sion appears to have been Hay (1976). However, it was the contribution of Prescott
and Visscher (1977) that popularized the methodology and the results. In one of their
examples, the authors look at a duopoly on a linear market—the simplest possible
case—and determine that the leader will locate at the center of the market, while the
follower will locate next to the leader, thus resulting in central agglomeration. The
authors then extend their analysis to the case of three firms. After considering many
cases and subcases (see, e.g., Younies and Eiselt 2011), it is determined that one
of the outcomes (arguable the most likely one) is that the three facilities locate at
1
/
4 , 3

/
4 and 1

/
2 of the market, capturing 3

/
8 , 3

/
8 , and1

/
4 of the market,

respectively. The fact that the first two facilities to locate earn 50% more than the
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last entrant into the market is, however, troublesome: having established that it takes
capability and incentive to be a leader (see, e.g., Younies and Eiselt 2011), we can
consider the second and third firms to enter the market as followers. However, why
would any follower accept being the third rather than the second entrant, if the
latter course of action is much more profitable? A similar result had already been
obtained by Teitz (1968), who considered duopolists, so that the location leader
would locate two facilities, while the location follower would locate a single facility.
He suggested “conservative optimization,” i.e., a minimax strategy. While the leader
locates his two facilities at ¼ and ¾ of the market, the follower will locate his single
facility anywhere between the leader’s facilities.

An interesting extension is provided by Thisse and Wildasin (1995), who locate
private facilities alongside a centrally located public facility. Households have
incomes, which they spend on trips to the facilities and paying land rent. In the
first stage of the game, all firms locate, followed by stage two, in which customers
locate. The result is that high travel costs yield maximal differentiation, while low
travel costs result in minimal differentiation. Bhadury (1996) considers a Hotelling
model on the line with fixed and equal mill prices, in which the leader does not have
perfect information regarding the follower’s variable costs. For a general demand
distribution, the author shows that market failure is possible (i.e., the leader may not
wish to locate any facilities) and that a greedy strategy is not bad (optimal for an
atomistic leader, i.e., one who wishes to locate only a small number of facilities).
Osborne and Pitchik (1986) allow the demand distribution to be not necessarily
uniform. Allowing mixed strategies, the result for a three-firm problem has all three
firms randomize over the central half of the market. Dasci and Laporte (2005) allow
facilities to have different cost functions. The paper is novel in that it does not deal
with exact facility locations, but with the density of retails branches that are located.

14.4.3 UD1a, Plane, Nash Equilibrium

In two-dimensional space, Okabe and Aoyagi (1991) attempt to prove a conjecture
by Eaton and Lipsey (1975) in the two-dimensional plane. With fixed demand
and equal mill prices, customers patronize the closest facility. In the infinite two-
dimensional plane with Euclidean distances and an infinite number of independent
firms, the market area of each of the firms is a cell in a Voronoi diagram. Each
firm attempts to maximize the area of its Voronoi cell. The global equilibrium
is reached when Voronoi cells form a regular hexagonal pattern. It is noted that
results in one-and two-dimensional spaces are markedly different: the pairing in
one dimension does not carry over to the two-dimensional plane. Another attempt
in the two dimensional plane was reported by Okabe and Suzuki (1987). The authors
use the same concept as in the previous paper, but locate finite numbers of facilities
(32–256) in a bounded market the shape of a square. Global optimization techniques
are sequentially and repeatedly applied. The result is a honeycomb-type pattern that,
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however, self-destructs again and rebuilds. The instability is likely to be the result
of “boundary effects” that distort the results.

Aoyagi and Okabe (1993) consider a Hotelling model in the plane with totally
inelastic demand, identical facilities, and customers who purchase the good from the
closest facility. Customers are assumed to be located in a compact and convex subset
Z of the two-dimensional Euclidean plane. The authors demonstrate that for n = 2,
an equilibrium exists if and only if the market is point-wise symmetric with respect
to some point in Z. The firms will then locate at that point. For three facilities, no
global equilibrium exists, except maybe in the case of a equilateral triangle.

14.4.4 UD1a, Plane, von Stackelberg Solution

The first author to discuss competitive location problems in the plane given location
leaders and followers appears to have been Drezner (1981, 1982). His contribution
first considers the simple case, in which each firm locates a single facility in the
presence of n demand points. The follower’s best location is arbitrarily close to
that of the leader. The sorting of angles from the leader’s point to the demand
points yields an O(n log n) algorithm for the follower’s problem. The leader’s
problem (given he locates one facility and expects the follower to do the same)
is shown to be solvable in O(n4 log n) time. In case a minimum separation of some
prespecified distance R is required between leader and follower, the complexity of
the two problems is still O(n log n) and O(n5 log n), respectively. Other cases include
the problem in which the leader locates one facility, and the follower locates r > 1
facilities. This problem is easy: the leader is wedged in and his optimal strategy is
to locate right on the point with the largest demand, as that is all he will get. If the
leader locates p > 1 facilities and the follower locates one facility, then the follower’s
problem can be solved in O(n2 log n) time.

Shigehiro et al. (1995) consider a duopoly with firms A and B in a bounded
subset of the two-dimensional plane. Given fixed and equal prices, both firms are
market share maximizers. Given demand at grid points and the one of A’s two
facilities being already located, firm B locates a single facility, followed by firm A
locating its second facility. It turns out that firm A will locate its second facility next
to it competitor’s facility, thus re-establishing the pairing of facilities known from
one-dimensional markets. An algorithm for the centroid problem is also described.
Infante-Macias and Muñoz-Perez (1995) discuss medianoid locations in the plane
with customer demand occurring at discrete points, and Manhattan distances are
used. A given parameter specifies how much closer a new facility must be to a
customer to be considered comparable, i.e., equally desirable. For the location of
a single new facility, the paper describes an O(n3) algorithm, for a given number
p of new facilities, an O(n5) algorithm is suggested. Following the asymmetry of
objectives already mentioned by Eiselt and Marianov (2017), Gentile et al. (2018)
consider three scenarios, each with a specific combination of objectives by leader
and followers, in a discrete space. Pelegrín et al. (2015) explore the effects of tie-
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breaking rules in customer choice on the solutions, while Santos-Peñate et al. (2017)
suggest a heuristic for the solution of the centroid problem. Seyhan et al. (2018)
consider the leader-follower problem in a discrete space and, in order to make the
reaction function of the follower more tractable, suggest a greedy heuristic for that
purpose. Xue et al. (2017) have the follower maximize his revenue, but allow the
total demand to increase in case additional facilities locate. Zhang et al. (2016)
study the usual leader-follower model, but include the possibility of disruptions
of service. Finally in this category, a number of authors study competitive hub
location problems, as there are Sasaki et al. (2014), Mahmutogullari and Kara
(2015), Niknamfar et al. (2017), and Ghaffarinasab et al. (2018).

14.4.5 UD1a, Networks, Nash Equilibria

Bhadury and Eiselt (1995) investigate duopoly models with fixed and equal prices
on tree networks. They describe locational Nash equilibria for the cases where co-
location (i.e., the location of both facilities at the same node) is permitted or not,
and they describe a measure of stability of the equilibrium, rather than applying
the usual equilibrium-no equilibrium dichotomy. In another paper, the same authors
(Eiselt and Bhadury 1998) discuss the reachability of Nash equilibria (assuming
that at least one such equilibrium exists) on trees. Starting with arbitrary locations
of the duopolists, they apply sequential and repeated short-term optimization to
investigate whether or not an equilibrium will be reached. The answer is that it
will, provided an appropriate tie-breaking rule is employed. Eiselt and Laporte
(1993) describe conditions, under which a three-facility problem on a tree has
agglomerated, dispersed, and no equilibria.

14.4.6 UD1a, Networks, von Stackelberg Solution

Among the early contributions, Slater’s (1975) work stands out. The author
introduces leader and follower, respectively, but does not make the connection
to von Stackelberg’s work. The paper proves that on a tree network, the leader
will locate at the median. In his contribution, Hakimi (1983) first introduces von
Stackelberg games by referring to the locations of the leader(s) of the sequential
game as centroids (based on their maximin objective), while the locations of the
follower(s) are termed medianoids (as their objective is of the “minisum” type). In
particular, if the leader has already located p facilities in a pattern denoted by Xp, and
if the follower is poised to locate r facilities, the follower’s problems is an (r|Xp)
medianoid. On the other hand, if a leader wants to locate p facilities, assuming
that the follower will locate r facilities, we talk about an (r|p) centroid. Hakimi
discusses a number of results of special cases regarding the node property, i.e., the
question whether or not at least one optimal location pattern naturally has locations
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at the nodes of the given network. In addition, he proves the NP-hardness of (r|X1)
medianoid of general networks as well as the NP-hardness of the (1|p) centroid.
In the same year, Megiddo et al. (1983) show a polynomial O(n2r) algorithm for
the (r|Xp) medianoid problem on trees. Benati and Laporte (1994) devise a tabu
search algorithm for the solution of these difficult problems. Penn and Kariv (1989)
require facilities to be located at the nodes of the tree, but allow a customer’s
demand to be linearly decreasing in the distance to the closest facility. Both firms are
assumed to locate a single facility. Characterizations of the solutions, especially with
respect to the median(s) of the tree are described. Hansen and Labbé (1988) present
a polynomial algorithm for the (1|1) centroid problem on tree networks. García
Pérez and Pelegrín (2003) follow the analysis of Eiselt (1992) and determine all von
Stackelberg solutions on a tree with parametric, but possibly different, prices. They
also discuss the “first entry paradox” (see Ghosh and Buchanan 1988), according to
which the leader in a von Stackelberg game would typically have the advantage.

ReVelle (1986) was the first to formulate the highly influential MAXCAP
problem on networks, i.e., the problem, in which the follower locates facilities.
By modifying the objective, he reduced the formulation to a p-median problem. In
follow-up papers, Serra and ReVelle (1994, 1995) present the PRECAP problem that
solves the leader’s (r|p) centroid problems. The authors design heuristic algorithms
for the (bilevel) problem of the leader, and report computational experience.
The main contribution in the Hakimi (1990) book chapter is the introduction of
three allocation rules: binary (i.e., winner-take-all), partially binary (a customer
distributes his demand proportional to the inverse distances to the closest facilities
of the two firms), and the (fully) proportional rules, in which customers allocate
their demand inversely proportional to the distances to the facilities. The author
also presents results with these allocation rules with respect to the node property.
Suárez-Vega et al. (2004) expand on Hakimi’s discussion of the three allocation
rules for essential and unessential demand at the nodes of the network. The authors
also derive finite dominating sets, including those for concave capture functions.
The work by Serra et al. (1999a, b) discusses the MAXCAP problem with different
rules for the location of the entering firm. The rules, both of which belong to the
class of proportion models, are based on different assumption concerning customer
behavior.

Serra et al. (1999a, b) discuss the usual MAXCAP problem, but with an
additional constraint that ensures that each facility has at least a market share of
a certain size. This is done so as to guarantee the viability of the firm. Some
computational testing is provided; the rule checks viability first and then locates
and reallocates demand; if any store is not viable at this point, the one with least
demand is deleted. This process is repeated until it converges. To solve the problem,
heuristic concentration is the method of choice.

Spoerhase and Wirth (2008) tackle the notoriously difficult problem of (r|p)
centroids. In order to obtain any results (as Beckmann 1972 stated: “As everyone
knows, in location theory one is forced to work with simple assumptions in order
to get any results at all”), they restrict themselves to paths and trees. Along similar
lines, Eiselt (1998) investigates a von Stackelberg problem on a tree, given that the
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perceptions of leader and follower regarding the demands at the nodes are different.
Solutions to the bimatrix game (in which each player has full knowledge about the
perception of his opponent) and the hypergame (in which neither competitor knows
about the perception of his competitor) are characterized. In general, if a firm can
assume that its competitor has researched the demand diligently, it can gain little
by finding out about the exact perception of its competitor. Marianov et al. (1999)
extend the MAXCAP to the location of hubs by a follower firm, assuming that
passengers choose the airline which offers the shortest route (distance) between
their origin and destination. Marianov and Taborga (2001) address the problem of
locating public health centers competing with private ones for affluent customers,
assuming that the closest center captures the demand. Marianov et al. (2004) extend
these results to facilities with waiting lines. Ruiz-Hernández et al. (2017) discuss
the case of delocation, “i.e., the possibility of optimally closing facilities. The
usual customer choice is applied, except with some degree of loyalty. The authors
investigate whether or not the first mover advantage occurs, and also study Nash
equilibria.

14.4.7 UD1b, Linear Market, Nash Equilibria

Consider now models that employ the customer choice rule UD1b, i.e., models
in which customers patronize the least expensive facility. Hotelling’s original
model belongs to this group, which, with its linear transportation costs, does
not exhibit an equilibrium. This was pointed out by d’Aspremont et al. (1979)
who also demonstrated that as soon as quadratic transportation costs are used, an
equilibrium does exist with maximum differentiation, i.e., the two facilities locate
at opposite ends of the market. Anderson (1988) provided further insight into
the case: he demonstrated that for linear-quadratic transportation cost functions,
i.e., cost functions that have a quadratic and a linear component, equilibria only
exist if there is no linear component and the cost function is purely quadratic.
Hamoudi and Moral (2005) extend the analysis and investigate linear-quadratic
transportation cost functions with different parameters, which result in convex and
concave transportation cost functions, respectively. The authors then define profit
functions for the two cases. Because a price equilibrium does not exist for all pairs
of locations, the authors delineate pairs of locations for which such an equilibrium
does exist. It turns out that the region in which price equilibria exist in the concave
case is complete enclosed in the region, in which equilibria exist in the convex case.

Tabuchi and Thisse (1995) analyze Hotelling’s model with a quadratic transport
cost function and triangular customer density. Again, a subgame-perfect equilibrium
is sought. It turns out that no symmetric location equilibrium exists. Instead,

asymmetric equilibria exist at
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(0, 0.3736) and (0.2527, 1), given that we restrict facility locations to the inside
of the market. Cremer et al. (1991) locate n facilities on a linear market. Given
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quadratic transportation costs and the usual Hotelling assumptions (including the
“first simultaneous choice of location, then simultaneous choice of mill prices”), the
model includes m public and n—m private firms. While private firms maximize their
individual profits, public firms maximize the social surplus that, with the assumption
of inelastic demand, reduces to the minimization of transportation costs. For n = 2,
one public and one private firm perform best. The two facilities will locate at the
social optimum of ¼ and ¾, respectively. For n = 3 and one public facility, profits
of the private firms are higher and general welfare is lower than in the all-private
case. With two public facilities, the social optimum is reached. Some additional
combinations of public and private facilities are also investigated.

An important strand of research considers the original Hotelling model, but
allows mixed strategies on prices and pure strategies for the location subgame.
Among the earlier attempts is the contribution by Osborne and Pitchik (1987), who
determine that facilities will locate at about 0.27 away from the ends of the market
of unit length. Matsumura and Matsushima (2009) use heterogeneity in the form
of different production costs, and if those result in pure strategy equilibria not to
exist, then mixed strategy equilibria are used. Location equilibria with minimal and
maximal differentiation appear each with probability of ½.

Anderson (1987) showed that in the “first location, then price” two-stage game
if facility A were to lead in the first-stage location game, then it would be best
for its opponent B to be a leader in the second-stage pricing game. As a result,
firm A would locate at the center at the market, while firm B will locate at 0.131
(or, symmetrically, at 0.869). Anderson and Neven (1989) use the usual Hotelling
assumptions, including duopolists on a linear market, mill pricing and “first location,
then price” competition, but allow customers to purchase goods from both firms
according to some loss function and the use of a quadratic transportation cost
function. The result is maximal differentiation with the duopolists locating at the
two ends of the market. In another contribution, the same authors (Anderson and
Neven 1991) employ spatial price discrimination in a two stage “first location, than
quantity” procedure. The result is an equilibrium with minimum differentiation. The
authors also demonstrate that for more than two firms, given linear transportation
costs and a regularity condition, all firms will locate at the center of the market. Such
agglomeration is often observed in practice, see, e.g., Marianov and Eiselt (2016).
Hamilton et al. (1989) describe a Hotelling model with spatial price discrimination
and a linear price-quantity relation. The authors compare the results of Cournot
(i.e., quantity) and Bertrand (i.e., price) competition. Throughout, Cournot prices
are higher than those in Bertrand competition, and aggregate welfare (i.e., total
surplus—total transport costs) is higher under Bertrand than under Cournot.

Anderson et al. (1997) drop the assumption of uniform demand and consider
logconcave demand functions, coupled with quadratic transportation costs. It turns
out that if customers are more spread out, prices are higher, and that symmetric
demand densities lead to symmetric locations of firms. Bester et al. (1996)
reexamine d’Aspremont et al.’s (1979) Hotelling game without coordination (firm
A is assumed to locate to the left of firm B) and allow mixed strategies. An infinite
number of mixed-strategy Nash equilibria exist, and without coordination, the result
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of maximum differentiation is invalidated. Eaton (1972) follows Smithies (1941) by
considering a model that includes a linearly sloping price-demand function. The
author also uses a modified zero conjectural variation assumption, according to
which a firm will react unless undercut. In case of a short market, the result will
be agglomeration of the firms, as the length of the market grows, duopoly locations
approach the social optimum. Behavior in case of a triopoly is similar: as the length
of the market grows, agglomeration forces get weaker. The paper by Kohlberg and
Novshek (1982) examines a similar model. Eiselt and Marianov (2017) determine
the line between existence and nonexistence of locational Nash equilibria for
location problems with asymmetries, such as those with different transportation
costs, different production costs, and those that have different objective functions.
The reference also investigates von Stackelberg solutions for these problems. While
the work by Eiselt and Marianov (2017) focuses on asymmetric competitive location
models, Colombo (2016) investigates equilibria on a linear market in the presence
of three cities given Cournot (i.e., quantity) and Bertrand (i.e., price) competition.

There are a few contributions that examine spaces similar to a line: Eaton’s
(1976) model allows free entry on a circle, Kats’s (1995) model locates duopolists
on a circular market, whereas Tsai and Lai (2005) investigate the case of a market,
in which customers are distributed along the sides of a triangle, and Braid (1989,
2013) looks at the case of intersecting roadways, i.e., intersecting lines.

14.4.8 UD1b, Plane, Nash Equilibria

Hurter Jr. and Lederer (1985) appear to have been among the few investigators
to look at the subgame-perfect Nash equilibrium on the plane. Their contribution
includes different cost functions for the firms and transportation costs that are
proportional to Euclidean distances. Firms are supposed to locate in a given convex
set. The authors show that there are no peripheral equilibrium locations. They also
demonstrate that the locations that minimize the social costs for serving the entire
market are a proper subset of equilibrium locations. Similarly, Tabuchi (1994)
locates two firms in the two-dimensional space and uses quadratic transportation
costs. The paper determines that for any convex set, there are no interior locational
Nash equilibria. The author then shows that in a rectangle, Nash equilibrium has the
facilities locate on opposite sides of the rectangle at their respective midpoints. If
the rectangle is very long, the Nash equilibrium is unique.

This is not the same as d’Aspremont et al. (1979) result. While this result
shows maximum differentiation in one direction, it has minimum differentiation
in the other. Lederer and Hurter Jr. (1986) consider customers located in a
subset of the two-dimensional plane with some typically nonuniform demand
distribution and firms facing different production and transportation costs. Firms use
spatial price discrimination and customer purchase goods from the cheapest source
(a number of tie-breaking rules are specified). The resulting “location, then price”
game has an equilibrium, and it is shown that identical firms (i.e., those with
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different production and transportation costs) do not co-locate. The analysis is then
extended to nonidentical forms that locate on a disk, and again, there is no co-
location. The model by Fernández et al. (2014) is the usual two-phase “first location,
then price” game with delivered pricing, for which the authors demonstrate that
a price equilibrium exists, which reduces the game to a pure location game. The
paper then describes a branch-and-bound approach for small to medium problems
and a heuristic for larger problems. Rohaninejad et al. (2017) present two models,
in which firms maximize profits, and minimize the maximum deviation from the
highest possible profit, respectively. Computational evidence is provided.

14.4.9 UD1b, Networks, Nash Equilibria

Lederer and Thisse (1990) examine a competitive network location model, in
which firms determine their respective locations and chosen technologies in stage
1, and the prices in stage 2. The authors use spatial price discrimination. In
the usual backward recursion, the paper proves that for all first stage location
and technology choices, the second stage pricing game has an equilibrium. The
socially optimal location and technology choices of the first stage are also a Nash
equilibrium. However, locational Nash equilibria may exist that are not socially
optimal. An important feature is that if the transport cost function is concave, then
the equilibrium locations will satisfy the node property. Labbé and Hakimi (1991)
also use delivered pricing and, in addition, a linear price-quantity relation. The two-
stage game locates facilities in stage 1, and determined quantities in stage 2. It turns
out that for any fixed pair of locations, the quantity game has an equilibrium. If it is
required that it is always profitable to supply any market of the graph with a positive
quantity of goods, then a location equilibrium exists at the nodes of the graph. If this
condition is not satisfied, then either a locational Nash equilibrium does not exist,
or it exists on the edges of the graph. The paper by Berglund and Kwon (2014) has
a von Stackelberg firm competing with Cournot-Nash firms given capacities at the
facilities. Equilibrium results are presented and the computational method of choice
is a simulated annealing heuristic.

14.4.10 UD1, Linear Market, Nash Equilibria

Among the earliest papers to follow Hotelling’s lead is the work by Lerner and
Singer (1937). The authors keep Hotelling’s linear market and the assumption on
linear transportation costs, but introduced a finite reservation price, and assert that
each firm assumes that its competitor’s location and price is fixed, and a firm only
reacts if undercut. In such a case, equilibria do exist. The authors also extend
their analysis to spatial price discrimination, which results in social optima. The
contribution by Economides (1986) is most interesting, as it includes Hotelling’s
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(1929) and d’Aspremont et al.’s (1979) results as special cases. The utility function
includes a budget and the utility inherent in the product. The transportation costs
are the facility—customer distance raised to some power α. The main result is that
for α less than about 1.26 (which includes Hotelling’s original case with α = 1), no
subgame-perfect Nash equilibrium exists, whereas for α greater than about 1.26, it
does exist (which includes d’Aspremont et al.’s case of α = 2). More specifically,
for α ∈ [1.26, 1.6667], the equilibrium locations are strictly interior, while for
α ≥ 1.6667, they are at the endpoints of the market.

Zhang (1995) discusses the case of a duopoly with quadratic transportation costs
and reservation prices, in which decision makers make their decisions in three
phases: locate first, then decide whether or not to adopt a price-matching policy, and
then determine the price. The paper shows that if both players use price matching,
high reservation prices lead to a unique Nash equilibrium “with tacit collusion on
prices.” Equilibrium locations for high reservation prices lie at the center of the
market (minimum differentiation). Not surprisingly, they find that price matching
reduces price competition. The paper of Smithies (1941), which has spawned many
followers, discusses a Hotelling model with elastic demand and reservation prices.
The author appears to have been the first to use “push” and “pull” forces (see also
Eiselt and Laporte 1995). He also found that higher transportation costs lead to
less competition, and as unit transportation costs increase, firm will move farther
apart. Finally, the interesting contribution by Guo and Lai (2014) adds an online
dealer to the brick-and-mortar duopolists. While customers purchasing from the
latter, face the usual transportation costs, consumers who deal with the online firm
have a waiting inconvenience cost. The authors demonstrate that an equilibrium
does indeed exist given a relation between the unit transportation costs and the
unit inconvenience cost. In Guo and Lai’s (2017) simultaneous location-and-price
game on a linear market, firms face a non-uniform distribution of demand. Another
feature is the inclusion of an online e-tailer. The long run will see the brick-and-
mortar retailers more densely agglomerated than without the online competition,
and they will serve with urban population, while the e-tailer will specialize in the
rural population.

14.4.11 UD1, Linear Market, von Stackelberg Solution

Bonanno’s (1987) model examines location, which an incumbent can use to deter
future entry of competitors. His model uses quadratic transportation costs, fixed
setup costs for new stores and finite reservation prices. The proposed three-stage
procedure has the incumbent decide how many stores to open, followed by the
potential entrant who must decide whether or not to enter and, if so, where to locate
his store (the choices of the follower are limited to zero or one store as to ensure
tractability), followed by price competition. Given high setup costs, the leader is a
monopolist and further entry is blocked. For moderate setup costs, the incumbent
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locates two stores at the social optimum, and entry is deterred. For even lower setup
costs, entry can no longer be deterred by the incumbent.

Meza and Tombak’s (2009) model uses uniform distribution, “sufficiently
high” reservation prices, quadratic transportation costs, and potentially different
production costs. The paper suggests a three-stage model, in which timing (of
entry), location, and price are determined. The low-cost firm is the leader. It is
possible for a higher-priced firm that is driven from the market, to re-enter at a later
stage. With a small difference in costs, firms enter the market immediately with
maximal differentiation. For a somewhat larger cost difference, the low-cost leader
enters immediately, soon followed by the higher-cost firm, still maintaining maximal
differentiation. For an even larger cost difference, the low-cost leader locates at an
interior point, followed by its competitor that locates as far away as possible from
the leader. With a very high cost difference, the low-cost leader locates at the center
of the market and effective blocks all further entry.

14.4.12 UD1, Plane, Nash Equilibria

The paper by Irmen and Thisse (1998) considers a duopoly in d-dimensional real
space with weighted squared Euclidean distances. Customers have a utility function
that includes a reservation price, the product’s price, and the sum of weighted
distances between customer and the firm (the customer’s ideal point and the product
features, as this model is discussed in feature space). The key result is that if there
is a main characteristic of the product, then there is a unique equilibrium in the
location game, in which the two products exhibit maximum differentiation in that
feature, while otherwise being identical. The authors cite an interesting application
of their result in the news magazines Time and Newsweek, whose main difference
is in the cover story. The similarity of this result and that by Tabuchi (1994) should
also be noted.

14.4.13 UD1, Plane, von Stackelberg Solution

Panin et al. (2014) uses price discrimination in a sequential “first location, then
price” game. Customers in their model have reservation prices and firms are
assumed to have budget constraints. While the Phase 1 location competition uses
the standard leader-follower concept, the Phase 2 pricing game searches for Nash
equilibria. The work formulates the problem as a bilevel optimization problem
and devises heuristic algorithms of the “alternating” type to solve the problem.
Customers in Kononov et al. (2018) have a budget and finite demand. The study
concentrates on complexity results and solvable cases.
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14.4.14 UD2a, Linear Market, Nash Equilibria

The contribution by Eiselt (1991) appears to have been the first to use attraction
function of the type “facility attractiveness divided by an increasing function of
distance” for the purpose of locating competitive facilities. It is shown that as long
as the weights are unequal, no equilibrium exists. The author then allows repeated
sequential relocation. It turn out that facilities shuttle but converge towards fixed
points whose location depends exclusively on the weights: if weights are similar,
the fixed points are close to center, otherwise they are close to the boundaries of
the market. The paper then introduces fixed and variable relocation costs, which are
subsequently used to force an equilibrium.

14.4.15 UD2a, Plane, von Stackelberg Solution

This special field has been very active in the last few years. Earlier work by Drezner
(1994b) locates a single new facility in the Euclidean plane with a winner-take-
all allocation rule. For each customer, the paper determines a circle around the
customer location, so that any facility located inside that circle will capture the
customer. Such circles are then constructed for all customer points. This is then
used to optimally locate a new facility with given attraction. The contributions by
Fernández et al. (2017a, b) both investigate the effects of different choice rules
have on locational patterns. In particular, they “rediscover” Hakimi’s (1983) binary
and partially binary choice rules and solve the resulting problems with branch-and-
bound methods and heuristics, respectively. Hendrix (2016) includes different costs
for leader and follower as he determines optimal locations and qualities. It turns
out that there is no equilibrium in qualities, so that a von Stackelberg solution for
qualities is determined. Qi et al. (2017) apply the usual leader-follower concept,
but will serve only customers, if they are within a prespecified distance from the
facility. The work by Bagherinejad and Niknam (2018) follows similar lines in that
the competitors do not just locate their facilities, but choose qualities of the facilities
as well. The model under consideration allows the closing of facilities. Similarly, the
contribution by Arrondo et al. (2014) choose locations and qualities and investigates
exact and heuristic solution techniques. The papers by Rahmani (2016) and Sadjadi
et al. (2016) both allow adjustments of a facility’s attractiveness in addition to its
location. The former contribution relaxes part of the problem and uses an exact
algorithm to solve the problem, while the latter work uses a methheuristic, which is
then applied to some real data.
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14.4.16 UD2a, Network, Nash Equilibria

Eiselt and Laporte (1991) investigate the existence of locational Nash equilibria on a
tree, given an attraction function of the type facility attraction divided by distance to
some power greater than or equal to one. When the base attractions of the facilities
are equal, equilibria always exist with either both facilities at the median of the
tree (in case co-location is permitted) or with one facility at the median and the
other adjacent to it in the largest subtree spanned by the median. For unequal base
attractions, if co-location is permitted and the winner-take-all allocation rule applies,
then an equilibrium never exists; otherwise (i.e., with co-location permitted and an
allocation proportional to the attractions and in case location at the same vertex is
prohibited), equilibria may or may not exist.

14.4.17 UD2a, Network, von Stackelberg Solution

von Stackelberg problems in networks enjoy quite some popularity among oper-
ations researchers. The main reasons are their relative tractability (the problems
can, at least in their basic form, be formulated as integer linear programming
problems). This is very much in contrast to the leader’s problem, which is a bilevel
integer programming problem. Suárez-Vega et al. (2007) employ an attraction
function, defined as facility weight divided by an increasing concave function of
the distance. Customers purchase proportionally from the facilities they are most
attracted to, provided they are attracted to them by a measure that exceeds a
minimally acceptable threshold. The authors describe a finite dominating set. They
deal with the case of a single new facility, but the results generalize to multiple
facilities (even though the computations will be more complex). Benati (2003)
does not fix the number of facilities the follower is going to locate. Customer
behavior is modeled by a function that relates a customer’s attraction to a facility
to the sum of this customer’s attractions to all facilities. This leads to a concave
fractional problem, which is solved by a branch-and-bound method and heuristic
concentration techniques.

14.4.18 UD2b, Plane, von Stackelberg Solution

Drezner et al. (2015) discuss a model, in which facilities attract customers that
are located within a “sphere of influence.” Given that the follower will react by
maximizing its market share, the leader’s objective is to maximize his own market
share after the follower has reacted. A summary of leader-follower models in the
plane is provided by Drezner and Drezner (2017). Levanova and Gnusarev (2018)
consider the follower’s problem, in which the follower has a limited budget, which
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can be used to locate a facility with a given attractiveness. The authors develop
an ant colony algorithm (the main piece of this paper), which they use to solve
randomly generated instances of the problem.

14.4.19 UD2b, Network, von Stackelberg Solution

Aboolian et al. (2008) investigate a follower problem on a network with an
exponential attraction function. In order to capture a customer’s demand, the
follower must be more attractive than the incumbent by a positive constant. The
variable production costs are the same everywhere, and the fixed location costs are
location-dependent. Co-location is not permitted. The model is loosely based on
work by Serra and ReVelle (1999). The node property does not hold. The authors
conjecture that there is a finite dominating set, but are unable to determine it in
this nonlinear integer program. Marianov et al. (2008) replace the distance with
travel time, and add waiting time as a competitive factor. Shan et al. (2017) consider
the follower’s location-pricing game with mill pricing and a budget that limits the
construction of stores. The lower-level pricing game represents a Nash equilibrium.
The proposed algorithm for the follower problem is tabu search, and a numerical
example concludes the paper.

Consider now results relating to the probabilistic choice rules introduced in the
previous section. Most papers are written by economists, who are mainly interested
in the existence of Nash equilibria on a linear market.

14.4.20 UP1, Linear Market, Nash Equilibria

In all of these contributions, the parameter μ can be interpreted as the heterogeneity
of the customer tastes with respect to the product under consideration. de Palma
et al. (1987a) use fixed and equal prices and unit transportation costs t (in a
linear cost function) in their triopoly model. Their main result is that for small
values of μ/t, there are no symmetric equilibria. As the value of μ/t increases,
there are symmetric dispersed equilibria, a further increase results in dispersed and
agglomerated equilibria, while for large values of μ/t, only agglomerated equilibria
exist. de Palma et al. (1985) consider the usual “first location, then price” game
with a linear transport cost function, and n facilities located on a linear market of
length L. The key result is that for large values of μ/tL, there is clustering of the
facilities at equilibrium, while small values of μ/tL lead to dispersion. Braid (1988)
locates n firms on a line segment, on which the demand occurs at five even spaced
the facilities. de Palma et al. (1987b) discuss a duopoly under delivered pricing
in their model with linear transportation costs with parameter t. Under sufficient
heterogeneity (i.e., μ > t/8), a centrally agglomerated location-price equilibrium
exists. The result generalizes to n firms.



14 Competitive Location Models 419

Finally in this category, we find the contribution by Anderson et al. (1992), which
compares the three main pricing strategies in a duopoly setting. Transportation costs
are assumed to be linear, and social surplus is defined as the sum of customer
surplus and the profits of both firms. Starting with small values of the heterogeneity
factor μ, there is no equilibrium for mill pricing, and as μ increases, there are first
symmetric dispersed equilibria, and finally, for large values of μ, there is a unique
centrally agglomerated equilibrium. The case of uniform delivered demand just has
no equilibrium for small μ, and centrally agglomerated equilibria for larger values of
μ, and spatial discriminatory pricing has equilibria everywhere: outside the quartiles
for very small values of μ that move towards a central agglomeration for sufficiently
large values of μ.

14.4.21 UP1, Plane, Nash Equilibria and von Stackelberg
Solutions

Choi et al. (1990) frame their discussion in the context of product positioning.
Customers have a stochastic utility function that results in a logit model, and
firms maximize their profit. It is known that as long as the profit functions are
pseudoconcave, the game possesses a Nash equilibrium. The paper uses variational
inequalities to analyze computational aspects. The key contribution is a von
Stackelberg game with one leader and multiple followers. The solution of a von
Stackelberg game in continuous space cannot be a Nash equilibrium, as is often the
case in discrete spaces. The thesis by Tuan (2017) considers the follower problem
in a discrete setting and evaluates different probabilistic choice rules.

14.4.22 UP1, Network, Nash Equilibria

de Palma et al. (1989) investigate a very general model, in which n firms compete
with each other, and each locates ni facilities. Customers first choose a firm they
want to patronize, and then they patronize the closest facility of that firm. (Note the
similarity of this rule and Hakimi’s “partially binary” choice rule). The main result is
that if consumer tastes are “sufficiently heterogeneous,” then firm i will locate its ni

facilities at the ni-median. If a stronger condition on taste heterogeneity is satisfied,
then the resulting pattern—all firms locate their facilities at the ni-medians—is the
unique noncooperative Nash equilibrium. A special case is when all firms have the
same number of facilities to locate, in which case all firms will locate their facilities
at the same nodes, a case of minimum differentiation.
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14.4.23 UP1, Network, von Stackelberg Solution

Benati (1999) discusses a maximum capture problem in the presence of heteroge-
neous customers. Given fixed demand, fixed and equal prices, as well as p leaders on
the market whose locations are known, The paper demonstrates that the follower’s
objective function is submodular, and that, given appropriate redefining of the
problem’s parameters, the problem can be formulated as an r-median model. Čvokić
et al. (2016) considers leader and follower, who locate their respective hubs. Both
firms are profit maximizers. The problem is formulated, and the follower part of the
formulation is solved by way of an “alternate” heuristic. Kress and Pesch (2016)
also consider the follower’s problem. Their formulation of the problem includes
conditions for a price equilibrium. The authors then state conditions for the existence
of a price equilibrium, followed by NP-hardness results, and a method to compute
equilibrium prices, and some computational experiments.

14.4.24 UP2, Plane, von Stackelberg Solution

Drezner et al. (2002) discuss a medianoid problem in the plane, in which customers’
choices are modeled in probabilistic fashion and are based on attraction functions.
The follower’s objective is to minimize the probability that the new facility’s
revenue falls short of a given threshold. The optimal locations tend to markedly
differ from those that are the result of the maximization of the expected market
share, especially in those cases, in which the probability of failure is relatively small.

14.4.25 UP2, Network, von Stackelberg Solution

The main contribution of the work by Serra and Colomé (2001) is the comparison
of various customer choice models. The basic setting includes fixed demand at the
nodes of a network, one homogeneous good, and two profit-maximizing firms with
identical cost structures. There are presently q facilities on the market. One new
firm enters the market and attempts to locate p new facilities. Customer behavior is
modeled as follows. Model 1 is the usual all-or-nothing assumption based on the
closest facility, while Model 2 is a multiplicative competitive interaction Model
Nakashani and Cooper 1974, which assumes that the proportion of demand of
customer i captured by facility j equals 1/(customer-facility distance) raised to the
power of a parameter that indicates a customer’s sensitivity with respect to distance,
divided by the sum of such expressions, taken over all facilities. Model 3 is the
standard proportional model, and Model 4 assumes partially binary preferences. It
turns out that the simple Model 1 appears to be most robust, meaning that it has
never more than an 8% deviation from the solution that is based on the correct
customer behavior.
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14.5 Summary, Extensions, and Outlook

This chapter has described the basic Hotelling model, outlined its major compo-
nents, described a three-stage procedure that models customer behavior, and has
surveyed the literature regarding results of different models. While many different
features have been included, most models, which have some explanatory power,
lack many facets of customer decision-making.

The most prominent difference between actual and assumed customer behavior
involves the customers’ trips to the chosen facility. In particular, all competitive
models assume that customers make their individual purchases on a special-single-
purpose trip, while this type of trip appears fairly rare in practice (with the exception
of those trips related to work or emergency). However, a significant proportion of
trips are multistop or multipurpose, since for some types of products consumers
perform comparison shopping, visiting more than one facility selling the same item;
or use the same trip to purchase more than one type or good. This is particularly true
in a situation with high costs of fuel or long commuting distances.

One alternative is a planned multipurpose trip with full information. In such a
case, a customer has set out with a plan, full knowledge about what to purchase
at the individual stores (based, e.g., on advertisements or on-line information) and
the distances between home base and individual stores (based on past experience).
Typically, such a trip resembles a traveling salesman tour, see, e.g., Applegate et
al. (2007), or a traveling purchaser problem, as described in Laporte et al. (2003).
Planning multi-purpose shopping trips has been shown to foster the agglomeration
of facilities; see, e.g., Marianov et al. (2018).

A much more difficult extension concerns trips without full information. The
main aspect of this single- or multi-purpose trip involves feature search. On such
a trip, a customer will first patronize a store, obtain information about the features
of the desired product (often, but not exclusively, its price), and will then decide,
whether to purchase the product, or continue to some other store in order to
potentially obtain a better deal. Such a search will incur certain costs (in terms
of transportation costs and time), while expecting potential advantages in terms of
better features, such as a lower price, better quality, or additional features. How long
such searches will be will certainly depend, at least in part, on the amount of money
involved and on the expected utility of a continued search, as compared to that of
an immediate purchase on the basis of the information gathered up to this point.
Houses, vehicles, furniture and similar high-priced items are typically purchased
in this manner. Narula et al. (1983) present a model that includes price search,
while Braid’s (1996) noncompetitive location model that locates a main facility that
has the desired product, and branch facilities, which have the product with a given
probability. Customers can obtain information by means of phone search, Internet
search, and visit search, respectively.

An interesting strand of research involves flow capturing, or flow interception
models has been developed by Hodgson (1990), Berman et al. (1995), and Berman
and Krass (1998). These models replace the assumption of customers making single
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trips to the chosen facility by assuming that they make purchases on their way
to work. Considering work as one part of shopping, this model is a multipurpose
shopping model with one fixed stop (work). Competing facilities will attempt to
maximize their capture of the flow of customers to work. One of the main issues in
these models involves the avoidance of double counting, i.e., customers who have
made a purchase at one facility, have their demand drop to zero and they will not
make another purchase on their trip. Typical applications for this type of behavior
include child care facilities and gas stations.

Additional behavioral patterns involve window shopping and showrooming (the
practice of getting advice and information about a product at local stores and the
subsequent purchase at a presumably cheaper no-frills Internet dealer). The latter
behavior has already caused some problems among local stores, even though the
aforementioned detrimental effects may be, at least partially, offset by the fact
that customers typically obtain detailed technical information online, alleviating
the local store from having (expensive) specialized sales staff. This webrooming
effect, i.e., the practice of obtaining information online and then shopping locally,
counteracts the effects of showrooming, at least to some extent.

A different aspect that appears to be very promising deals not with the devel-
opment of more realistic models, but with their visualization, which may provide
insight and increase acceptability by decision makers. A good survey of the use of
geographical information systems in location analysis is provided in Chap. 19 of
this volume.
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Chapter 15
Location-Routing and Location-Arc
Routing

Maria Albareda-Sambola and Jessica Rodríguez-Pereira

Abstract This chapter overviews the most relevant contributions on location-
routing problems. Although there exist several models where location and routing
decisions must be made in an integrated way, the chapter focuses on the so-called
classical location-routing problems without entering into the details of other related
problems that might be included in the location-routing area from a more general
point of view. Reflecting the imbalance in the existing literature and available
approaches, the case of problems with node routing is treated in detail throughout
the chapter, while results concerning arc routing problems are concentrated in a
single section.

15.1 Introduction

Combined location-routing problems (LRPs) are location problems in which the
service to customers is provided by a fleet of vehicles in less-than-truckload routes.
That is, more than one customer can be served in one vehicle route from a facility.
Therefore, the cost of servicing a customer in a solution of a location-routing
problem does not only depend on the facility it is assigned to, but also on the
route followed by the vehicle that services it. As happens with pure vehicle routing
problems, a basic distinction needs to be made when referring to LRPs, depending
on whether the customers are associated with nodes or links of the underlying
network. In the first case, in order to provide service to a customer, a vehicle has to
visit the corresponding node, whereas in the second case, the vehicle has to traverse
the corresponding link. Most of the literature on LRPs is in fact devoted to node
routing LRPs and only a few references are concerned with solving some variant
with arc routing. For this reason, the name location-routing problem is commonly
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used to refer to problems where customers are located at the nodes, whereas the
term location-arc routing problem (LARP) is used when customers are located on
the links of the network. In both cases, the need to design vehicle routes to evaluate
the cost of a set of facilities adds an extra level of difficulty to these problems which
are, in general, N P-hard.

The first works addressing LRPs date back to the 1960s (e.g. Von Boventer 1961
and Maranzana 1964). However, it was not until the end of the 1980s, when a solid
knowledge on both pure location and routing problems was achieved, that location-
routing became a really active field of research. The most common approach in the
first references addressing this type of problems was to make locational and routing
decisions in two separate steps, although it is well known that this is most likely
to yield suboptimal solutions, as shown in Salhi and Rand (1989). For this reason,
more recent references address both decisions simultaneously.

LRPs arise as a natural extension of both, location and vehicle routing problems.
Moreover, there are several settings where LRPs appear naturally. For example,
Schittekat and Sörensen (2009) study the optimization problem arising in some
automotive companies that use third-party logistics partners for the distribution of
spare parts and model it as a large scale LRP. Other examples of real applications
where extensions of the LRP need to be solved are given in Ahn et al. (2012), where
the authors present a LRP with profits faced by NASA while planning planetary
surface exploration, or in Samanlioglu (2013) where hazardous waste management
of a Turkish region is dealt with by solving a multiobjective LRP.

Although there exist papers dealing with planar LRPs (see, for instance, al Ajdad
et al. 2012 or Salhi and Nagy 2009), most of the studies concerning LRPs deal with
discrete location problems. As a consequence, this chapter will only consider this
type of LRPs. Moreover, it does not pretend to be a complete survey of all available
works addressing discrete LRPs, and only presents the state of the art methods and
the tools that have proven to be the most suitable ones to tackle LRPs. For a complete
recent survey on works concerned with LRPs the reader is referred to Prodhon and
Prins (2014). The reader can also find a taxonomy of location-routing models and
the related literature in Borges Lopes et al. (2013). Earlier works are surveyed in
Nagy and Salhi (2007).

In the last years, several LRP extensions and variants have been considered. To
mention just a few some, authors have considered problems with time windows
(Farham et al 2018), heterogeneous fleets (Koç et al 2016), uncertain data (Caunhye
et al 2016) or environmental effects (Koç et al 2016b). Other works concerning LRP
extensions are surveyed in Drexl and Schneider (2015).

Given the little attention that LARPs have received, this chapter focuses on
LRPs with node routing, and the most relevant issues concerning LARPs are
gathered in a single section. The remainder of this chapter is organized as follows.
Section 15.2 provides a formal definition of the considered problems, together with
the notation that will be used throughout the chapter. The next two sections describe
the main scientific contributions on LRPs; Sect. 15.3 explores the different types
of LRP formulations, together with the most relevant valid inequalities used in
exact methods, whereas Sect. 15.4 is concerned with heuristic algorithms. The main
findings regarding LARPs are outlined in Sects. 15.5 and 15.6 concludes the chapter.
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15.2 Problem Definition and Notation

Let J be a set of customers and I a set of locations where facilities can be placed.
For each candidate location i ∈ I , let fi be the cost of setting up a facility at i, and
for each arc (i, j) with i, j ∈ I ∪ J , let �ij be its length or cost. The basic variant
of the LRP consists of choosing a set of locations from I and defining closed routes
starting and ending at one of these facilities such that each customer is visited by
exactly one of the routes, subject to side constraints. The goal is to minimize the total
cost, which typically includes the sum of facility set-up costs plus a traveling cost.
We also denote by G the underlying graph of an LRP instance formed by the set of
vertices V = I ∪J and the set of links E = EIJ ∪EI , where EIJ contains all links
connecting one facility with one customer, and EJ contains all links connecting two
different customers. In what follows, both, directed and undirected formulations will
be presented. For ease of notation, E will be used indistinctly to denote the set of
(directed) arcs (i, j) or the set of (undirected) edges {i, j }. For any set of nodes
S ⊆ V , ES will denote the set of links with both endpoints in S.

If a weight wj is associated with each customer j ∈ J , capacity constraints
can be considered by imposing a maximum weight Q delivered by a vehicle or a
maximum weight qi delivered from each facility i ∈ I . From now on, Q will be
referred to as the vehicle capacity, and qj as the facility capacity and, for each set
of customers S ⊆ J , w(S) will denote the total weight of customers in S: w(S) =∑

j∈S wj . LRPs considering either type of constraint, or both of them, are referred
to as Capacitated LRPs (CLRPs). Additionally, many papers consider fixed vehicle
utilization costs, g, and a limited size fleet indexed in set K . Figure 15.1 depicts an
LRP solution.
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Fig. 15.1 Example of an LRP solution
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Fig. 15.2 Influence of facility location on the routing costs

Further considerations and characteristics of the main elements of the problem
(number of facilities to locate, types of customers, size and characteristics of the
vehicle fleet, time horizon, etc.) give rise to a large variety of LRPs. A comprehen-
sive recent classification, following the ideas already presented in Laporte (1988)
can be found in Borges Lopes et al. (2013).

The main difficulty when modeling LRPs through mathematical programming
formulations is to ensure that each vehicle tour is connected to exactly one
facility; that is, there are no closed tours visiting only customers, and there are
no paths connecting two different facilities. Therefore, incorporating the design of
vehicle routes within facility location problems entails a relevant additional level
of difficulty. Furthermore, as some authors argue, facility location is most often a
strategic decision, while vehicle routing is operational. These facts have discouraged
many researchers from considering combined LRPs. However, although routing
decisions can be readjusted relatively often once the facilities are established, the
possible configurations of the routes are strongly conditioned by these locations.
Therefore, if locations are chosen without taking into account the routing component
of the final system, initial savings in the facilities set up costs may not compensate
for large losses in distribution in the long run. Consider, for instance, the extreme
situation depicted in Fig. 15.2. In this example, assume that the capacity of any
of the two candidate facilities (black squares) is sufficient to serve all customers
(white circles), and there is only one vehicle available at each location, also with
a large enough capacity. If one single location is to be chosen and routing costs
are ignored (i.e. if an uncapacitated facility location problem is considered in this
setting) obviously, the facility will be located at 2. However, if a tour needs to
be defined to serve all the customers once this facility is set, its cost will be
2M + (10πM)/6 , 7.24M . On the other hand, if the facility is set at node 1, a
better route, with cost 2πM , 6.28M can be defined. Since distribution is most
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often a repetitive activity, this extra routing cost for having chosen facility location
2 will be incurred regularly and, after some time, these accumulated extra costs can
be larger than the initial possible savings in set up costs.

15.3 Formulations and Exact Algorithms

The available exact algorithms for solving LRPs rely on mathematical programming
formulations of the problem. Most of these formulations have been developed
around the existing formulations for discrete facility location problems and multi-
depot vehicle routing problems. Since the early formulations of Golden et al. (1977)
and of Perl and Daskin (1985), several LRP formulations have been studied. CLRPs
have received particular attention, since they are amongst the most basic LRPs. This
section will concentrate on these problems.

As mentioned above, the main difficulty when developing a formulation for an
LRP model is to guarantee that each route will start and end at one facility and
neither closed loops visiting only customers, nor paths connecting two different
facilities will be formed. For this reason, to a large extent, the developments
concerning formulations for LRP models are strongly related with the literature
on capacitated vehicle routing problems, especially, on multi-depots problems. As
happens in these problems, one can assume, without loss of generality, that an
optimal solution exists in which no edge of EI is used more than twice and the
only edges used twice, if any, belong to EIJ . This is actually the case of problem
instances in which the edge lengths satisfy the triangle inequality. Any instance
can in fact be easily transformed into an equivalent one satisfying this property, by
replacing the actual length of each edge with the length of a shortest path connecting
its endpoints.

Broadly speaking, the existing formulations for the LRP can be classified
in either of two families. On the one hand, one can find the so-called flow
formulations, where different sets of variables are used to determine the set of
located facilities and to describe the vehicle routes. On the other hand, one can
find set covering formulations, where one single variable is defined associated with
each feasible vehicle route. To a large extent, the appropriate solution method
depends on the formulation employed; while branch-and-cut approaches are the
most suitable for flow formulations, set covering formulations are in general better
suited for algorithms based on column generation, especially if they are tightly
constrained. The most recently presented algorithms combine column generation
and cut generation methods.
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15.3.1 Flow Formulations

Within the flow formulations, different models can be distinguished according to
two criteria: the number of indices of the variables used to define the vehicle routes
(including or not a third index to identify which vehicle uses a given link), and the
nature of these variables, known as commodity flow variables when they consider
the quantity of goods traveling on every link and as vehicle flow variables when they
only indicate whether it is used or not.

An early example of a three-index vehicle flow formulation is that of Perl and
Daskin (1985). In fact, this reference defines a three-layer problem with suppliers,
distribution centers and customers where, in addition to the characteristics of the
basic LRP, the authors consider variable costs associated with the throughput at
each distribution center, and extra constraints limiting the length of the routes.
The proposed formulation, simplified by excluding these extra considerations, is
described next. To this end, the following binary variables will be used:

• For each i ∈ I , yi indicates whether a facility is established at i.
• For each i ∈ I, j ∈ J , xij indicates whether customer j is served from facility i.
• For each (i, j) ∈ E and k ∈ K , zijk indicates whether vehicle k uses arc (i, j).

Using the above variables, a three index vehicle flow formulation for the LRP is
detailed next:

(LRP1) minimize
∑

i∈I
fiyi +

∑

k∈K

∑

(i,j)∈E
�ij zijk (15.1)

subject to
∑

k∈K

∑

i∈V
zijk = 1 j ∈ J (15.2)

∑

j∈J
wj

∑

i∈V
zijk ≤ Q k ∈ K (15.3)

∑

j∈J
wjxij − qiyi ≤ 0 i ∈ I (15.4)

∑

k∈K

∑

i∈S

∑

j∈V \S
zijk ≥ 1 I ⊆ S ⊂ V (15.5)

∑

j∈V
zijk −

∑

j∈V
zjik = 0 k ∈ K, i ∈ V (15.6)

∑

i∈I

∑

j∈J
xijk ≤ 1 k ∈ K (15.7)

∑

t∈J
zitk +

∑

t∈V
zjtk − xij ≤ 1 i ∈ I, j ∈ J, k ∈ K (15.8)
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yi ∈ {0, 1} i ∈ I (15.9)

xij ∈ {0, 1} i ∈ I, j ∈ J (15.10)

zijk ∈ {0, 1} (i, j) ∈ E, k ∈ K. (15.11)

Constraints (15.2) mean that each customer is reached by one vehicle route, while
constraints (15.3) and (15.4) are vehicle and plant capacity constraints, respectively.
Additionally, constraints (15.4) guarantee that customers will be served from opened
facilities. Connectivity constraints (15.5) ensure that each vehicle route includes a
facility, while flow conservation constraints (15.6) ensure that z variables do indeed
define routes, and constraints (15.7) mean that these routes visit one single facility.
Finally, constraints (15.8) force the x and z variables to take consistent values.

Formulations of this type tend to be rather large because they have an exponential
number of connectivity constraints and because they contain O(|V |3) variables.
Connectivity constraints, as well as additional valid inequalities, have traditionally
been dealt with by using cutting plane procedures, such as branch-and-cut. However,
even after relaxing connectivity constraints, the size of the formulations remains too
large for solving realistic size instances.

As an alternative, several authors have worked on formulations where vehicle
flow variables z do not include the third index to identify which vehicle uses each
arc. In fact, early works addressing the particular cases of the LRP with one single
depot or one single route per depot, such as Laporte and Nobert (1981) or Laporte
et al. (1983) already used this type of approach.

A very successful example of this type of formulations is presented in Belenguer
et al. (2011). In this case, the authors propose an undirected formulation that uses
the following variables:

• For each i ∈ I , yi indicates whether a facility is established at i.
• For each edge {i, j } ∈ E, z1

ij indicates whether edge {i, j } is used exactly once
in the solution.

• For each edge {i, j } ∈ EIJ , z2
ij indicates whether edge {i, j } is used twice in the

solution.

Note that, as mentioned above, it can be assumed that the only edges that can be
traversed twice in an optimal solution belong to EIJ and, therefore, variables z2 are
only defined for those edges.

Additionally to the above variables, the following notation is used. For each set
of customers S ⊆ J , κ(S) is a lower bound on the minimum number of vehicles
needed to serve the aggregate demand of all customers in set S. The most commonly
used bound in this type of formulations is

κ1(S) =
⎡

⎢
⎢
⎢

1

Q

∑

j∈S
wj

⎤

⎥
⎥
⎥
.
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However, instead of κ1(S) some authors have used the optimal value of the bin
packing problem defined by the weights of the customers in S, and bin size equal
to the vehicle capacity, Q. In what follows, this second bound will be referred to as
κ2(S).

The formulation proposed in Belenguer et al. (2011) is

(LRP2) minimize
∑

i∈I
fiyi +

∑

{i,j}∈E
�ij z

1
ij +

∑

{i,j}∈EIJ

2�ij z
2
ij (15.12)

subject to
∑

i∈I
2z2

ij +
∑

i∈V \{j}
z1
ij = 2 j ∈ J (15.13)

z1
ij + z2

ij ≤ yi i ∈ I, j ∈ J (15.14)
∑

i,j∈S
z1
ij ≤ |S| − κ(S) S ⊆ J (15.15)

∑

s∈S

∑

j∈J \S
z1
sj +

∑

t∈I\{i}

∑

s∈S
(z1

ts + 2z2
ts) ≥ 2 i ∈ I, S ⊂ J ;w(S) > qi

(15.16)

z1
j t +

∑

s∈S
(z1

sj + z1
st ) +

∑

s,u∈S
z1
su

+
∑

i∈I ′
z1
ij +

∑

i∈I\I ′
z1
it ≤ |S| + 2 S ⊂ J, I ′ ⊂ I ; j, t ∈ J \ S

(15.17)
∑

i∈I
(z1

ij + z2
ij ) ≤ 1 j ∈ J (15.18)

yi ∈ {0, 1} i ∈ I (15.19)

z1
ij ∈ {0, 1} {i, j} ∈ E (15.20)

z2
ij ∈ {0, 1} {i, j} ∈ EIJ . (15.21)

The original formulation includes an extra term in the objective function to
account for fixed costs for the use of vehicles. Although this term has not been
included here, these costs can be easily included in the above formulation by
suitably modifying the lengths �ij for each {i, j } ∈ EIJ .

In this formulation, constraints (15.13) are the degree constraints, which force
each customer to be visited by some route. Constraints (15.14) are imposed in order
to ensure that no route is rooted at a closed facility. Constraints (15.15) play two
major roles. On the one hand, they forbid solutions with subtours which are not
linked to any facility. On the other hand, they ensure that the vehicle capacities are
not exceeded. Note that only z1 variables are involved in these constraints since
each z2 variable is associated with one complete facility-customer-facility tour,
which will not violate the vehicle capacity constraints in any feasible LRP instance.
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Facility capacities are imposed through constraints (15.16): if a set of customers S

cannot be fully served from a given facility i because of its capacity, then at least
one customer in S must be visited by a vehicle route rooted at a different facility
and, therefore, at least two edges must be used that link set S with customers
outside it, or to some facility different from i. Additionally, since individual
routes are not identified using 2-index variables, it is necessary to explicitly forbid
tours connecting two different facilities. This is done by means of the so-called
path elimination constraints (15.17). Additionally, constraints (15.18) are needed
to forbid paths connecting two facilities through one single customer. The path
elimination constraints are similar to the chain-barring constraints introduced by
Laporte et al. (1988).

Using this formulation enriched with some families of valid inequalities,
Belenguer et al. (2011) were able to solve within less than 2 h instances of up
to 50 customers and five potential facilities.

15.3.2 Set-Partitioning Formulations

Set partitioning formulations for the LRP were introduced much later than flow
formulations. Indeed, papers addressing this type of formulations have appeared
relatively recently, in parallel with similar formulations for vehicle routing prob-
lems. The first such formulation was presented in Berger et al. (2007); the slightly
different formulation presented in Akca et al. (2009) was later used in Baldacci et al.
(2011) and further strengthened by Contardo et al. (2014a).

In order to present this type of formulations, some extra notation is required.
Variables now correspond to the possible vehicle routes that are feasible with respect
to the vehicle capacity and serve more than one customer. These routes will be
indexed in " = ∪i∈I"i , where "i gathers the routes starting from facility i. The
return trips from a facility to a single customer will be dealt with separately. For
each route r ∈ ", we will denote by �r the total length of the route, by wr its total
demand and, for each edge {i, j } ∈ E, the coefficient aijr will denote the number
of times edge {i, j } is used in route r . Note that coefficients aijr are binary if route
r is elementary, but can take larger values if non-elementary routes are allowed.

The formulation exploited by Contardo et al. (2014a) uses the following binary
variables:

• For each i ∈ I , yi indicates whether a facility is established at i.
• For each i ∈ I and j ∈ J , z2

ij indicates whether a return trip from facility i to
customer j is part of the solution.

• For each route r ∈ ", λr indicates whether route r is used.
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(LRP3) minimize
∑

i∈I
fiyi +

∑

r∈"
�rλr +

∑

{i,j}∈EIJ

2�ij z2
ij (15.22)

subject to
∑

r∈"

∑

i∈V
aijrλr +

∑

i∈I
2z2

ij = 2 j ∈ J

(15.23)
∑

r∈"i

∑

{j,s}∈E
(wj + ws)ajsrλr +

∑

j∈J
2wjz

2
ij ≤ 2qiyi i ∈ I

(15.24)

yi ∈ {0, 1} i ∈ I

(15.25)

z2
ij ∈ {0, 1} {i, j } ∈ E

(15.26)

λr ∈ {0, 1} r ∈ ".

(15.27)

Here, constraints (15.23) ensure that each customer is either visited once by one
of the selected routes, or in a round trip from a facility. Facility capacities are stated
by constraints (15.24). For ease of notation, in these constraints, an artificial demand
wi = 0 is defined for each facility i.

Of course, in order to take advantage of this formulation it is essential to use a
method based on column generation since the number of λ variables is exponential.
Therefore, a crucial issue when developing exact solution methods based upon this
formulation is the pricing problem. Here, the pricing problem consists of finding
negative cost vehicle routes in ". It belongs to the family of resource constrained
shortest path problems, which have been the focus of an abundant literature, mostly
because they appear as pricing problems in many column generation algorithms
where vehicle routes are involved (see, for instance, Desrochers et al. 1992; Feillet
et al. 2007; Righini and Salani 2008).

In Contardo et al. (2014a), which has been the most successful work so far, the
authors allow for solutions that contain cycles, as long as they contain at least three
nodes. For this case, to guarantee that even if " contains non-elementary routes,
these routes will not be part of a solution of LRP3, the authors replace the degree
constraints (15.23) with their following stronger variant, the strengthened degree
constraints:

∑

r∈"

∑

k:{j,k}∈E
ajkrλr +

∑

i∈I
z2
ij ≥ 1 j ∈ J. (15.28)

On top of the efficiency of the algorithm used in the pricing problem, most
set partitioning based exact algorithms for the LRP also rely on the addition of
valid inequalities to tighten the bounds obtained during the branching process. In
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particular, Baldacci et al. (2011) proved that all valid inequalities developed for
flow formulations can be transformed into valid inequalities for the set partitioning
formulation presented above, since, thanks to the distinction between routes visiting
one or more customers made in the variables definition, the following equalities
hold:

z1
ij =

∑

r∈"
aijrλr ∀{i, j } ∈ E. (15.29)

Additionally to this equivalence, when adapting valid inequalities originally
stated for flow formulations to set-partitioning formulations, some authors have used
the following result, first established in Laporte et al. (1985) in the context of vehicle
routing problems. Many of the valid inequalities derived for two-index formulations
for vehicle routing problems are concerned with a combination of connectivity and
capacity issues. In these cases, arguments of the type “at least κ vehicles are needed
to satisfy the demand of all customers in S ⊂ J ” result in constraints of the form
“the border of S is crossed, at least, 2κ times”, that is, the sum of flows on edges
with a single endpoint in S must be at least 2κ . In these constraints, the number of
routes visiting S is overestimated using the flow in the cut-set of S, since there is
no way to compute the exact number of routes that visit S using the flow variables.
When equivalence (15.29) is used to derive valid inequalities for LRP3 from these
valid inequalities, the coefficient of each λr variable for a given set S is the number
of times route r traverses the border of S. Bearing in mind the rationale behind the
constraints, one can see that, actually, these coefficients can be changed to take value
2 if route r visits at least one customer in S, and 0 otherwise. In general, this results
in stronger valid inequalities.

15.3.3 Valid Inequalities

It is impractical to list all the valid inequalities that have been more or less
successfully used for LRPs. Actually, most of the valid inequalities that have been
developed for vehicle routing problems have been adapted later for the case of LRPs
and in many cases, families of inequalities have been gradually strengthened or
extended. In what follows, we present a selection of the most recent families. For
more detailed information on these cuts and their evolution, the reader is referred
to Belenguer et al. (2011) and Contardo et al. (2013) for flow formulations, and to
Baldacci et al. (2011) and Contardo et al. (2014a) for set partitioning formulations.

y-Strengthened Capacity Cuts (y-SCC)
For S ⊂ J , and r ∈ ", let the binary parameter ξrS take value 1 if route r visits at
least one customer in S, and 0 otherwise. Given S′ ⊂ S such that κ1(S

′) = κ1(S),
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the following inequalities are valid:

∑

r∈"
ξrSλr +

∑

i∈I

∑

j∈S\S ′
z2
ij ≥ κ1(S).

This family of constraints is a strengthening proposed in Contardo et al. (2014a)
of the previous y-capacity cuts derived in Belenguer et al. (2011).

Set Partitioning Effective Strengthened Facility Capacity Inequalities (SP-
ESFCI)
As mentioned above, the main difficulty when modeling vehicle routes is to ensure
the connectivity of the solutions, especially in capacitated problems. When loca-
tional decisions must also be made, ensuring connectivity and capacity satisfaction
entails an extra degree of complexity. Most of the known valid inequalities focus on
vehicle capacities and rarely take facility capacities into account. SP-ESFCI aim at
putting facility capacity constraints in relation with the locational variables.

To this end, we need to extend the definition of κ1 to take into account a set of
facilities. Given a set of customers S ⊂ J and a set of facilities H ⊂ I , we define

κ1(S,H) = max
{

0,
⌈
w(S)−∑i∈H qi

Q

⌉}
as a lower bound on the number of vehicle

routes rooted at facilities outside H , needed to serve all customers in S, even if all
facilities in H provided their service to customers in S. Then, for S′ ⊂ S ⊂ J , and
i ∈ H ⊂ I with κ1(S \ S′,H) = κ1(S,H), the following inequality is valid:

∑

i∈I\H

∑

r∈"i

ξrSλr +
∑

i∈I\H

∑

j∈S\S ′
z2
ij ≥ κ1(S,H \{i}) + yi

(
κ1(S,H) − κ1(S,H \{i})

)
.

(15.30)

The main idea behind these constraints is similar to that of the y-SCC inequali-
ties, but now, the constraint takes two different shapes depending on whether facility
i is opened or not.

Strengthened Framed Capacity Inequalities (SFrCI)
Moving back to vehicle capacities, we find the following valid inequalities, which
have been successively improved since some early papers on vehicle routing.

Given a subset of customers S ⊂ J , partitioned into disjoint subsets S =
{S1, . . . , St } (S = ∪t

s=1Ss ), we denote by κ3(S|S ) the optimal value of the bin
packing problem defined as follows. For each set Ss in S , we define κ1(Ss) items of
size Q, except for the last one, which will have a size equal to w(S)−(κ1(S)−1)Q,
and we define bin capacities equal to Q. Then, the SFrCI corresponding to frame
(S,S ) is

∑

r∈"
ξrSλr +

t∑

s=1

∑

r∈"
ξrSs λr ≥ κ3(S|S ) +

t∑

s=1

κ1(Ss). (15.31)
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These inequalities generalize and reinforce the capacity inequalities, which
force that the number of routes that visit a given set of customers S is at least
κ1(S). Note that when no location decisions have to be made, in the presence
of degree constraints, capacity constraints are equivalent to subtour elimination
constraints (15.15). Indeed, when for a given set S ⊂ J , S only contains one
set, the corresponding SFrCI constraint is indeed a capacity constraint (in this case,
κ3(S|S ) = κ1(S)). So, the two terms in the left-hand side of (15.31) are identical,
the two terms in the right-hand side are also equal, and the inequality becomes

∑

r∈"
ξrSλr ≥ κ1(S),

which is the basic expression of the capacity constraint.
As is the case for other sets of inequalities, the framed capacity inequalities

(FrCI) where originally developed for two-index flow formulations and later
adapted to the set-partitioning formulation by using Eq. (15.29), and reinforced by
modifying the coefficients of the λr variables as explained in the last section. The
FrCI for formulation LRP2 corresponding to (S,S ) is

∑

j∈S

∑

k∈V \S
z1
jk + 2

∑

i∈I

∑

j∈S
z2
ij +

t∑

s=1

∑

j∈Ss

⎛

⎝
∑

k∈V \Ss
z1
jk + 2

∑

i∈I
z2
ij

⎞

⎠ ≥ 2

(

κ3(S|S ) +
t∑

s=1

κ1(Ss)

)

.

(15.32)

To illustrate that FrCI (and, therefore, SFrCI) is a broader set of inequalities that
can be stronger than the combination of capacity constraints for the individual sets
Ss , Fig. 15.3 gives an example of a fractional solution with S = {S1, · · · , S4},
where the capacity constraints for each of the Ss sets are satisfied, but the overall
FrCI constraint is violated. In this figure, customers are numbered from 1 to 7 and
wi is given inside each customer. Note that, in this example, we have S = ∪4

s=1Ss ,

Fig. 15.3 Example of
unsatisfied FrCI
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w(S) = 20 and Q = 7, so that κ1(S) = 3. Therefore, the capacity constraint for set
S is satisfied, since the total flow in edges with one endpoint in S equals its lower
bound, 2 · 3 = 6. Also, for each set in the partition, w(Ss) < Q, so that κ1(Ss) = 1
and the z−degree of Ss is 2 or larger in all cases. In contrast, the evaluation of
constraint (15.32) gives

6 + (2 + 2 + 3 + 2) ≥ 2(4 + 1 + 1 + 1 + 1),

which is clearly not satisfied. Here, note that in the computation of κ3(S|S ), four
items were defined, with sizes 6, 6, 2 and 6, respectively, and the bin capacity was
set to 7.

The example of Fig. 15.3 also provides some insight in the way how the variable
definition in set partitioning formulations such as LRP3 forbids some fractional
solutions that are sometimes encountered when using flow formulations. Indeed,
the solution of the figure can be obtained in a relaxation of formulation LRP2, but it
is impossible to obtain it from formulation LRP3, since it cannot be decomposed as
the (fractional) combination of vehicle routes which are feasible with respect to the
vehicle capacity constraint.

15.4 Heuristic Algorithms

Many heuristics have been devised for different variants of LRPs. It is not the
goal of this chapter to enumerate and explore all these contributions. Instead, we
concentrate on the tools that have been most useful in those heuristics.

In the design of heuristics for LRPs it is very difficult to ignore the fact that the
problem combines decisions of two completely different natures: the location of
the facilities and the design of vehicle routes. Indeed, even solution methods based
on the use of neighborhoods tend to distinguish between the neighborhoods that
affect the set of facilities (add, drop or swap) and those that are typically used in
vehicle routing problems. A clear example of this fact is the variable neighborhood
search (VNS) heuristic recently proposed in Jarboui et al. (2013) for an LRP with
capacitated facilities and uncapacitated vehicles or the granular tabu search heuristic
presented in Escobar et al (2014) for an LRP where both vehicles and depots are
capacitated. Possible exceptions are some algorithms based on the construction of
giant tours that encode both types of decisions, so that tour modifications can alter
both, facility locations and vehicle routes. Examples of this type of algorithm are
those of Yu et al. (2010) or Contardo et al. (2014b).

A commonly accepted classification for heuristic methods for LRPs, due to
Nagy and Salhi (2007), includes four categories, depending on how the interaction
between these decisions is taken into account in the design of heuristics.

• Sequential methods split the problem into its subproblems. First they solve the
location problem, using estimates of the routing costs that only take into account
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the distances between customers and facilities and, they then solve the routing
problems defined at each opened facility with its assigned customers. Although
Srivastava and Benton (1990) show that this type of methods, that are typically
quite fast, can produce pretty good solutions for some types of instances, in
general, they tend to have a rather poor behavior, and most authors moved fast to
other types of heuristics.

• Clustering-based methods partition the set of customers into clusters and then
they either locate a depot for each cluster and solve a vehicle routing problem
afterwards, or solve an auxiliary traveling salesman problem for each cluster
before locating the depots. Barreto et al. (2007) present a method of this type and
also analyze different clustering criteria in this context. A more recent example
of this type of method is the constructive procedure considered in the two-phase
method of Escobar et al. (2013) for the capacitated LRP. With their algorithm,
the authors have provided the currently best known solutions for many of the
existing benchmark instances (with up to 200 customers and 20 facilities) taking
an average CPU time of about 4 min, although this average is about 10 min for
the most demanding set of instances.

• Iterative methods can be seen as an evolution of sequential methods, where
several iterations of a sequential method are performed, and the information
obtained at each iteration is used to guide the methods used for choosing the
locations and designing the vehicle routes built at the next one. The algorithm
proposed in Prins et al. (2007) falls in this category. Using their algorithm, the
authors could find very good solutions (proven to be optimal in several cases) for
instances with up to 200 customers and 20 facilities, and the CPU time exceeded
1 min in only a reduced subset of the considered instances.

• In hierarchical methods the problem is considered in a more integrated way,
without splitting its components. However, the two decisions are not considered
to be equally important; facilities location is regarded as the main problem
decision and vehicle routes design as a secondary one. Many contributions fit
in this category (Albareda-Sambola et al. 2005; Ting and Chen 2013; Escobar
et al 2014; Ferreira and de Queiroz 2018). Actually, this is the usual category for
the most recent works, since they tend to yield better results. Indeed, the results
obtained in Ferreira and de Queiroz (2018) are superior to those of previous
heuristics in terms of solution quality, although at a high computational cost,
whereas Escobar et al (2014) provides an excellent tradeoff between solution
quality and computing time.

Finally, one can also find in the literature one approximation algorithm for the
LRP in Harks et al. (2013). The proposed algorithm builds a solution by combining
the solutions to two auxiliary problems: and uncapacitated facility location problem,
and a minimum spanning tree. For this algorithm, they prove an approximation
factor of 4.38.
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15.5 Location-Arc Routing

LARPs are typically defined on graphs G = (V ,E) that can be either directed,
undirected or, in the most general case, mixed. In G, a set I ⊂ V of selected
nodes where facilities may be established is given, together with a selected subset
of links R ⊆ E, known as required arcs or edges, which must be traversed to
receive some service. Common applications of LARPs include garbage collection,
road maintenance and postal delivery. For details on these applications, the reader
is referred to Ghiani and Laporte (2001).

In contrast to the volume of the literature on LRPs with node routing, LARPs
have been addressed only in a few references. This is due in part, to the difficulty
of these problems, but also to the fact that several strategies have been devised to
transform arc routing problems into node routing problems by suitably modifying
the underlying graph (see, for instance Pearn et al. 1987; Baldacci and Maniezzo
2006; Longo et al. 2006). However, significant differences exist between the
structures of the routes depending on whether service is provided at the nodes or
on the links. These differences suggest that, as happens with pure routing problems,
specific approaches for either type of problem may yield more efficient algorithms.

The most relevant difference between routes in node and arc routing is that in
node routing problems one can assume, without loss of generality, that no node
will be visited more than once, and the only links that may be traversed twice are
those connecting one facility with one customer, allowing thus for routes visiting
one single customer. In contrast, in arc routing problems, even required links may
be traversed more than once in optimal solutions. Also, the set of required arcs
induces a family of connected components of G which, as happens in pure arc
routing problems, play an important role in determining which links are susceptible
of being used more than once.

The first paper addressing a LARP is probably that of Levy and Bodin (1989)
in which a problem with uncapacitated vehicles arising in the USA postal services
was solved. To this end, the authors split the problem into its components and solve
them sequentially, following the scheme (1) location of facilities, (2) allocation of
required edges to facilities, and (3) route design.

Uncapacitated LARPs were also studied in Ghiani and Laporte (1998). One of
the first consequences of having uncapacitated vehicles is that, when the triangle
inequality holds, only one route needs to be built for each open facility. Moreover,
the authors show that, in this case, optimal solutions exist where all the required
edges belonging to the same connected component are served in the same route,
which allows to transform this particular LARP into different arc routing problems,
depending on whether the number of depots to locate is bounded or not. Applying a
branch-and-cut algorithm to these problems, the authors solve uncapacitated LARP
instances on graphs with up to 200 nodes. Since then, no exact algorithm for any
LARP variant was proposed before the recent work Rodríguez-Pereira (2017), and
only heuristic algorithms for different variants could be found in the literature.
Actually, two mixed integer programming formulations for capacitated LARPs were
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proposed by Doulabi and Seifi (2013): one for the general case, and a second one for
the particular case where one single depot has to be located. Another formulation is
also presented in Borges Lopes et al. (2014). However, these papers do not explore
the possibility of solving these formulations exactly, possibly because they all use
flow variables, with up to four indices in some cases, and therefore, they are rather
large.

Rodríguez-Pereira (2017), after studying the multi-depot rural postman problem
as an intermediate step, propose two alternative formulations for different uncapac-
itated LARPs which are solved through branch-and-cut algorithms. The first one is
a natural formulation with flow variables with three-indices. These indices associate
each variable with an edge and the facility where the route traversing it starts. The
second one uses twice-indexed variables; now, indices are associated with edges but
not with facilities, which requires a new set of constraints to guarantee that the routes
are consistent and return to the original depot. The second formulation allowed to
solve instances with almost 200 nodes, over 300 edges and between 100 and about
200 required edges in small CPU times. These results can be found in Fernández
et al. (2019).

Bearing in mind the evolution of the formulations for the capacitated arc routing
problem (CARP), one might expect set partitioning formulations to yield more
efficient solution methods. Indeed, the most successful algorithms for the CARP
so far, proposed by Bode and Irnich (2012) and Bartolini et al. (2013), both rely
on set partitioning formulations for this problem. In any case, further research is
still needed on exact methods for solving general LARPs. Although it is true that
research on the CARP has been very fruitful in the past years, the subproblem
obtained from a LARP when the set of facilities to open is fixed is a CARP
with multiple depots, which has hardly been studied, and for which only heuristic
algorithms exist (see, for instance, Amberg et al. 2000).

In the case of heuristic methods, the original approaches relying on the sequential
solution of the different subproblems of a LARP have evolved with a recent
focus on the use of metaheuristics. Doulabi and Seifi (2013) propose a simulated
annealing heuristic which, at each iteration, proceeds following an allocation-
routing-location scheme: it first builds a routing solution then tries to improve the
depot locations. More recently, Borges Lopes et al. (2014) have developed and
compared several heuristics combining tabu search, variable neighborhood search,
and GRASP for which they also tested several constructive heuristics. According
to their computational experiments, the combination of tabu search and GRASP
provides the best results. With this combination, they find optimal or near optimal
solutions in less than 1 min, for instances with up to 140 nodes and 190 required
edges. They also propose a set of benchmark instances for future comparisons.

In contrast to the scarce literature available on the LARP, a relatively large
variety of related problems have been studied. This is the case, for instance, of
the capacitated arc routing problem with intermediate facilities presented in Ghiani
et al. (2001). In this case, no location decisions need to be made, and a single depot
is considered, like in the CARP, but several facilities are available in the network
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where a vehicle can unload the demand collected at the required edges before the
loaded demand exceeds the vehicle capacity.

Other examples are the capacitated arc routing problem with refill points or the
synchronized arc and node routing problem, presented in Amaya et al. (2007) and
Salazar-Aguilar et al. (2013), respectively. In these cases, an additional fleet of
vehicles is available to refill the main fleet, and the locations where these vehicles
meet each other need to be determined when designing their respective routes. These
problems differ in the types of routes performed by the vehicles used to replenish
the service vehicles.

A multiperiod LARP extension where inventories are considered is addressed
in Riquelme-Rodríguez et al (2016). The work is motivated by a road watering
application in open-pit mines and inventories are used to model road dust retention.
Depots are located to provide service for the whose time horizon, whereas different
routes must be designed for the different time periods.

A recent paper on the directed profitable location rural postman problem (Arbib
et al. 2014) also deserves a mention. This is an uncapacitated LARP where required
arcs have associated profits and the decision maker can choose whether or not to
serve any of them, taking into account the differences between the profit generated
and the cost of reaching the arcs. Using a branch-and-cut algorithm, the authors can
solve to optimality instances involving up to 140 nodes and 190 required arcs.

15.6 Conclusions

This chapter has summarised some the most relevant research contributions on LRPs
and LARPs. As it has been shown, the different research directions followed in the
study of formulations and exact algorithms for LRPs have finally converged to one
single proposal, which has been able to incorporate most of the relevant contribu-
tions in the field so far. In the case of heuristic algorithms, the research activity has
recently been reactivated, giving rise to several competitive algorithms in the last
years. The most successful approaches involve one or several metaheuristics, and the
current activity in this area gives the impression that relevant further improvements
can be expected in the near future.

In contrast, research on LARPs is still in its early stages. Exact algorithms have
only been proposed for very particular cases, and even in the case of heuristics the
literature is rather scarce. Keeping in mind the evolution followed by the research on
LRPs, especially in what concerns exact algorithms, further research is still required
on arc routing problems with multiple depots before it is possible to devise efficient
algorithms for solving LARPs.
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Jarboui B, Houda D, Hanafi S, Mladenović N (2013) Variable neighborhood search for location

routing. Comput Oper Res 40:47–57
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Chapter 16
Location Logistics in Supply Chain
Management

Iris Heckmann and Stefan Nickel

Abstract Location decisions play a key role in strategic logistics and supply chain
management. In this chapter, we place the emphasis on the interaction of logistics
activities and long-term supply chain decision-making on location logistics models.
We cover modeling formulations of logistics core activities related to different
industrial supply chain settings. In particular, we relate current challenges in supply
chain management and their implications on relevant logistics activities. Finally,
new research directions and areas of interest are provided.

16.1 Introduction

Since the 1960s many models developed in the context of location theory incorpo-
rate logistics aspects. For this reason they are also applicable for logistics and supply
chain problems (see for example Melo et al. 2008). However, these inclusions have
not always been systematic. In this chapter, we approach location decisions by
starting from a logistics point of view and problem description. In particular we
discuss logistics settings and their suitability for location models.

It is worth-noting that the terminology and the definitions in logistics are not as
consistent and unified as in operations research. Many terms are used in practice
before they are introduced into the academic literature. Therefore, we sometimes
give our own or refine existing definitions. Whenever a specific reference is useful,
we provide it. Nevertheless, we can directly list some sources where definitions and
terms in logistics can be found: CSCMP (2013), Zijm et al. (2019) and Web Finance
Inc. (2019).
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Location decisions in an industrial context imply the opening, the closing or
the positioning of facilities. While the first and the second type of decisions focus
on whether or not to open or close facilities such as production sites, distribution
centers, or warehouses, positioning decisions refer to the location of suppliers,
customers or facilities of similar or successive functions among each other. Those
decisions have to be made whenever companies need to expand their capacities
because they enter new markets or grow into new product segments. The ultimate
reason for making these decisions, however, arises from the fact that facilities are
not autonomous entities, but they have to interact with each other as well as with
their environment. Due to this interaction, facility location problems are often cast
as network design problems.

The activities that take place within a set of facilities include, for example, the
shipment of raw material or finished goods from suppliers to production sites or
from production sites to storage facilities or end-customers. The manufacturing
or production, the storage and the handling of raw material and finished goods,
take place within one facility. Nevertheless, they have to be coordinated among
several locations. Generally, these activities are referred to as logistics and more
precisely described as procurement and distribution, production or manufacturing,
transportation, storage and handling, respectively (CSCMP 2013; Zijm et al. 2019;
Web Finance Inc. 2019). Logistics activities that take place at a single location such
as materials handling, forklift transportation and inventory management are referred
to as site logistics or on-site-logistics (Logistik-Lexikon 2019). We define logistics
activities that interact with other locations or that have to be coordinated among
several locations as location logistics.

Facility location and allocation represent a core link between supply chain and
logistics management. In the supply chain management literature it is also often
referred to as supply chain network design. When considering a single location
instead of a set of interacting locations that have to be coordinated, location selection
is often referred to as plant location.

In order to leverage the efficiency of the resulting set of facilities, e.g. respect
capacities, costs and availabilities, activities are subject to an overall logistics
management, which is part of modern supply chain management.

We follow the Council of Supply Chain Management Professionals (CSCMP
2013) that defines Logistics Management as

that part of supply chain management that plans, implements, and controls the efficient,
effective forward and reverses flow and storage of goods, services and related information
between the point of origin and the point of consumption in order to meet customers’
requirements.

For a definition of supply chain management we refer to CSCMP (2013) and for
an in-depth discussion on the topic we refer to the review papers by Lummus and
Vokurka (1999) and Mentzer et al. (2001). It is important to note that supply chain
management differs from logistics management by important aspects: In addition
to the planning and management of logistics activities supply chain management
includes coordination and collaboration of business partners as well as integration
of major business functions and business processes.



16 Location Logistics in Supply Chain Management 455

Table 16.1 Common terms used in supply chain management

Geographic Granularity Modeling Management

Site Site logistics Plant location Site management

(Supply chain)
Locations

Location logistics Facility location and
allocation/supply chain
network design

Logistics management

Supply chain Supply chain logistics Supply chain management

Due to the increased complexity of today’s businesses supply chains should be
called supply networks. For the remainder of this chapter we use the term supply
chain and supply network interchangeably.

The terms used to refer to geographical entities, type of logistics granularities,
strategic location selection modeling frameworks, and management paradigms are
summarized in Table 16.1.

In this chapter, we discuss the interaction of logistics activities and challenges
for supply chain management as well as the consequences when building a facility
location model. The focus is on modeling aspects rather than on solution methods.
Therefore we only consider literature relevant for such aspects.

The remainder of the chapter is organized as follows. Section 16.2 introduces
logistics activities and their inclusion in location models. Section 16.3 provides a
first integrated location model capturing relevant logistics aspects. In Sect. 16.4,
some challenges of modern supply chain management are discussed and a mapping
between each such challenges and the corresponding logistics activity is presented.
Section 16.5 discusses extensions of the first integrated location model with respect
to logistics activities and relevant challenges for supply chain management. Finally,
in Sect. 16.6 further research directions are discussed.

16.2 From Logistics to Location Models

An adequate model for a facility location problem emerging in the context of
logistics systems calls for a clear understanding of the fact that logistics activities
and processes affect location decisions. Consequently, we must answer to some
major questions prior to modeling and analyzing a problem, namely:

• Which logistics activities are to be considered?
• Which logistics activities must be integrated in a model?
• Which modeling paradigm is the most adequate given the nature of the underly-

ing data?

We start this section by briefly discussing the aforementioned questions. Next, we
present logistics elements for a facility location model in the context of supply chain
management. We offer models and discuss the importance of each element.The last
Paragraph is dedicated to the presentation of a first integrated location logistics
model.
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16.2.1 Why Logistics Matters in Location Modeling

Historically, researchers have focused relatively early on the design of distribution
systems (Geoffrion and Powers 1995), but missed to consider logistics processes as
interacting functions over the whole supply chain (Melo et al. 2009) as well as to
analyze the importance of logistics activities for location models.

Somehow, it seems to be an unwritten rule that strategic decision making
only considers those activities and processes that are either associated with high
investments or not flexible enough to change when new circumstances demand
for modifications. In the context of logistics, Daskin et al. (2005) among others,
discussed how decisions on transportation and inventory may change within a short-
to mid-term time frame, when relevant characteristics of the underlying supply chain
indicate the necessity of such modifications. Production quantities can be modified
in a mid-term time horizon, when material shortages or customers demands make
it necessary. However, decisions on production capacities are typically fixed for
longer time periods and they are less flexible. Consequently, they are considered in
strategic decision making. The investments associated with the installation of new
production plants are usually high compared to those of transportation or inventory.
It seems natural, though, that investments on production facilities are included
in strategic location models. In fact, the relocation of a production plant due to
changes in customer demands, transportation costs, or component prices is hardly
acceptable (Daskin et al. 2005). Moreover, the relocation of production facilities is
often expensive and nearly impossible except in the long-term. Finally, modern dis-
tribution centers containing highly technologized–thus expensive–material handling
equipment or transportation hubs such as airports are difficult or even impossible
to relocate (Daskin et al. 2005). General aspects of logistics planning with time
dependent decisions are discussed in Dunke et al. (2018).

The main conclusion to be derived from this discussion is that making location
decisions ignoring primary logistics activities like production or distribution, may
result in excessive costs incurred throughout the lifetime of the facilities supporting
the logistics system. Inefficiencies and excessive costs, however, may be a conse-
quence of other aspects. For instance, transportation costs may raise or labor costs
may evolve differently from what was expected. Additionally, inventory holding
costs may increase due to unexpected changes of interest or exchange rates. Overall,
a logistics planning ignoring relevant logistics activities may lead to bad location
decisions. In fact, apart from production, the location decisions made for a logistics
network carry out all logistics activities in one way or another. Decisive for facility
location modeling, however, is the way logistics activities are taken into account.

The logistics tasks of a facility in a supply chain can be manifold. It can be
a raw material plant, a production plant, a warehouse, a transshipment center, a
hub, or even a retailer. Despite its major logistics function each location often
fulfills a number of additional logistics activities, which need to be respected and
sometimes integrated in location models (Cordeau et al. 2006). Before formulating
a location decision model, it is necessary to analyze the industrial setting in which
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the underlying supply chain is or will be operated as well as the business objectives
the supply chain is exposed to. Sometimes it is not necessary to integrate all existing
logistics activities—at least not in every detail.

Consider as an example a set of production sites engaged in the chemical
industry. In this case, raw material and finished products are often stored in silos,
whose capacities can vary over time since whenever a silo becomes empty it can
be used for another product. However, when a silo is not empty it can only be
used for the product it is already filled with. It is very complex to model this
type of inventory management. Nevertheless, this may not be relevant if decision
makers conclude, that silo capacities are not determinant for an opening, closing
or positioning decision. Silos may be assumed to be at any production site with
the necessary capacity. In other words, a decision maker might decide to leave the
inventory management aspects out of the location model.

This motivates another important aspect when modeling location logistics for
supply chain management: the appropriate way for modeling logistics activities.
Facilities as elements of the supply chain are often globally dispersed with separated
data bases and different logistics operation modes. This complicates the availability,
accuracy, and thus the reliability of information and data needed for building
a facility location model. Additionally, globally spread facilities are exposed to
numerous environmental, cultural and infrastructural uncertainties that provoke
changes in information that often is assumed to be deterministic. In order to avoid
that a set of efficient sites suddenly becomes inefficient, uncertainty influencing
logistics activities should be taken into account in advance. The nature and type of
data uncertainty is however in itself uncertain and decisively affects the modeling
paradigm that should be considered. Uncertainty in data can be tackled using
different tools such as stochastic programming, chance-constrained programming,
or robust optimization (see Chap. 8). The paradigm to consider strongly depends on
the nature of the uncertainty.

16.2.2 Building Blocks of Logistics

From the discussion presented so far we conclude that the traditional hierarchical
planning sequence starting with the strategic decisions, then tactical and finally
operational may lead to low quality, conflicting or even infeasible decisions. The
challenge lies in the integration of the three planning levels in order to find feasible
and good decisions for logistics execution.

Integrated facility location problems may turn into large-scale complex opti-
mization problems that call for sophisticated solution methods. In the light of
location problems, a common approach to overcome such difficulties is to split
larger problems into smaller sub-problems (Stadtler 2008). Unfortunately, such
approaches may lead to sub-optimal solutions. However, while technology is further
developing and new solution techniques for nonlinear and large-scale linear math-
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ematical models evolve, increasingly larger integrated planning problems become
more tractable (Zanjirani Farahani et al. 2015).

Next we take a close look on prominent logistics activities, namely: procurement
(or inbound logistics), production (or assembly or manufacturing), inventory (and
handling), routing and distribution (or transport), as well as layout.

In what follows we assume that we have a finite planning horizon divided into
several time periods. Additionally, we consider a set of customers whose demand
(known for all periods) is to be supplied throughout the planning horizon. We
consider the possibility of having a service level below 100%. This may be due to
high costs associated to some demand satisfaction, shortage of production capacity
or service times impossible to fulfill. In an optimization model, unsatisfied demand
is often accounted for by introducing a penalty in the objective function. Finally,
we note the multi-commodity nature of many logistics systems. Hence, production
capacity and resource availability must be balanced across the different products or
commodities.

16.2.2.1 Procurement

Procurement or inbound logistics, is an activity that focuses on the acquisition of
goods needed for production, assembly or manufacturing. Typically the amount
acquired from suppliers as well as related variable costs and fixed costs describe the
procurement activity. Nevertheless, before procurement activities can even begin,
strategic decisions such as the selection of suppliers based on their solvency as well
as quality and availability of goods have to be made.

Supplier selection represents often, by itself, a decision to make. However, some
qualitative aspects should also be integrated in models tailored for location logistics
in supply chain management. Solvency and product quality can be integrated by
including supplier-dependent penalty costs or reward terms in the objective function.
Nevertheless, the availability of goods is often captured via a capacity constraint that
limits the amount that a location can purchase from a specific supplier.

From a supply chain management perspective, the type of product and the
company-specific logistics requirements are important aspects to analyze up-front,
because they can have an impact when modeling the aforementioned aspects. For
instance, if the products involved in a supply chain require a sparse bill-of-materials
(BOM), or if only a few suppliers exist, it becomes relevant to consider supplier
shortages in a model. Accordingly, attention should be given to product type,
technology knowledge, available capacity, initial investment required, and specific
logistics requirements before integrating procurement relevant formulations in the
location model (Simchi-Levi et al. 2007).

Although capturing procurement is recognized as a vital element in supply chain
management (Kraljic 1983), it is rarely present in the facility location literature (see
Melo et al. 2009; Zijm et al. 2019).
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16.2.2.2 Production

Production activities transform one or several materials or components into one or
several products. They include the production from raw materials as well as the
assembly of several products to one final product. Note that we consider production
as part of logistics without the special aspects of production technology. Similarly
to procurement, production activities are described by an amount produced as well
as related variable and fixed costs. Often specific limits for the production capacities
are given. In addition, the production process itself can be further described by
consumption factors provided by the BOM. They represent the amount of materials
needed for the production of one unit of a product. Resource capacities such as
those induced by production lines in a discrete production setting or capacities of
converters in a continuous setting and occasionally surplus capacity provide a more
detailed description of the necessary production infrastructure. Typically, a capacity
constraint has to be considered limiting the production. For further reading we refer
to Esmaeilian et al. (2016).

16.2.2.3 Inventory

The main functionality of storing materials, components, semi-finished or finished
products is the decoupling of precedent or successive logistics activities such as
sourcing, production and distribution facilitating the planning of such activities.
During the decoupling period, material, goods and products have to be stored at
production sites, warehouses, or distribution centers resulting in inventory costs.
The consumption of stored products is generally formulated as inventory balancing
constraints. In the light of industrial (and even civil or public) supply chain
management, inventory models have to include decisions on safety stocks, re-order
points, turnovers, and service levels. A relevant issue when developing a model for
supporting decision making, is to describe centralized and decentralized inventory
systems, to capture lead times or safety stocks, and to integrate multi-layer supply
chains in a multi-period setting.

For a deeper discussion of logistics activities related to inventory as well as model
formulations tailored for location-inventory problems, we refer to Melo et al. (2009)
and Zanjirani Farahani et al. (2015).

16.2.2.4 Routing and Distribution

Routing and distribution—transportation in general—can take place between all
entities within a supply chain. Material and products are transported from one
location to another in distinct time periods and at certain costs. Besides distance,
the level of transportation costs depend on the type of product and on the trans-
portation mode. In the facility location literature, most often trucks or airplanes are
considered. In the particular case of road transportation, two possibilities exist: full-
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truck-load (FTL) and less-than-full-truck-load (LTL). Decision-makers often favor
FTL. However, when delivery becomes urgent (production may stop or customer
service level is at risk) LTL may be necessary. At an operational level (e.g. short-
term decisions) discounts for larger volumes play an important role. In this case,
the cost curve is often non-linear (concave). However, in a strategic setting, a linear
approximation is in most cases sufficient. The shipping from and the entrance of
transported products at a facility is generally formulated using balancing constraints.

While transportation is a concept describing the movement of goods in general,
distribution refers to the allocation of material or goods to the end user of material
or goods and routing refers to the determination of the optimal path to serve a group
of customers. Routing and distribution decisions have been extensively discussed
in location theory because they integrate two major decisions: location and routing.
For more details we refer to Nagy and Salhi (2007) as well as to Chap. 15.

16.3 A Basic Integrated Logistics Location Model

Following the aforementioned logistics activities we introduce a basic integrated
logistics location model, BILL, as a mixed-integer linear program. The BILL

model considers capacities of different logistics activities as well as multiple
products. It assumes that there is an underlying planning horizon divided into several
time periods. Additionally, several general non-hierarchical levels are considered.
The model includes decisions about location, procurement and production, inven-
tory and distribution as well as customer demand fulfillment. It takes into account
costs for procurement and production, inventory (stock-level and stock-turnover),
installation and closing of facilities, transportation and non-fulfillment of customer
demand. The overall objective of the model is to minimize the total cost. All entities
of a supply chain—whether they belong to the same organization or not—can be
divided into so-called selectable and non-selectable facilities (see e.g. Melo et al.
2006). Selectable facilities are those that may have their status changed. Non-
selectable facilities cannot have their status changed.

The mathematical formulation is presented in Sect. 16.3.2 and captures the
aforementioned features. The required notation is first introduced in Sect. 16.3.1.

16.3.1 Notation

Table 16.2 presents the sets used in the BILL model.
Table 16.3 introduces the parameters related to both tactical logistics activities

and strategic location decisions. Besides the demand requirements, we need input
for capacity resources. Each product consumes a certain share of the overall resource
capacities. Similarly, handling capacities are taken into account. we assume that
resource capacities can be expanded at additional costs. Extra handling capacity
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Table 16.2 Sets used for the
BILL model

Set Description

L Locations

S Selectable locations

So Selectable facilities that can be opened

Sc Existing selectable facilities that can be closed

T Time periods

P Products

Rp Production resources

Rh Handling resources

Table 16.3 General parameters for the BILL model

Symbol Description

dipt Demand of location i ∈ L for product p ∈ P in period t ∈ T

aiqp Number of units of product q ∈ P required to produce one unit of product p ∈ P

(q 
= p) at facility i ∈ L

μirp Amount of resource r ∈ Rp required to produce one unit of product p ∈ P in
facility i ∈ L

λin
irp, λout

irp Amount of resource r ∈ Rh required to handle one unit of product p ∈ P upon its
entrance at and its shipment from facility i ∈ L, respectively

Krt Initial capacity of resource r ∈ Rp ∪ Rh in period t ∈ T

Ke
rt Maximum capacity expansion of resource r ∈ Rp ∪ Rh in period t ∈ T

can be made available through overtime work or outsourcing (e.g. via external
service providers). Additional storage or production capacities can be acquired by
purchasing or leasing additional space or production lines.

There are three different ways of modeling the relationship between facilities
and resources. In a one-to-many relationship, the same resource is used at several
facilities. This is the case, for instance when a production manager is responsible for
several production lines in different facilities. A one-to-one relationship represents
the situation where the same resource is used by all the products of a facility.
Typical examples include a foiling machine or a storage place. In a many-to-one
relationship, several resources are used at the same facility. A set of resources can be
product-specific and a different set of resources can be used for multiple products.
The former is the case, for instance when a machine is dedicated to a particular
product; the latter refers for example to a production manager or a picking system.

In Table 16.4 cost parameters are introduced. Finally, Table 16.5 presents the
decision variables of the problem.

16.3.2 The BILL Model

The objective function to be minimized includes the total cost for procurement and
production, distribution, inventory, penalty for unsatisfied demand, opening for new
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Table 16.4 Cost parameters for the BILL model

Symbol Description

OCit Fixed cost for opening a facility in location i ∈ So at the beginning of period t ∈ T .
This parameter includes the operation costs until the end of the planning horizon

CCit Fixed costs for closing a facility in location i ∈ Sc at the end of period t ∈ T . This
parameter includes the operation costs until the end of t

XCipt Unit penalty cost for not serving demand of facility i ∈ L for product p ∈ P in
period t ∈ T

BCipt Unit cost for buying/procuring product p ∈ P at facility i ∈ L from an external
source in period t ∈ T

PCipt Unit cost for producing product p ∈ P at facility i ∈ L in period t ∈ T

HCipt Unit cost for holding/storing product p ∈ P at facility i ∈ L in period t ∈ T

T Cijpt Unit cost for shipping product p ∈ P from facility i ∈ L to facility j ∈ L in period
t ∈ T

ECrt Unit cost of expanding resource r ∈ Rp or handling resource r ∈ Rp ∪ Rh in period
t ∈ T

Table 16.5 Decision variables for the BILL model

Symbol Description

yit Binary variable equal to 1 if facility i ∈ So is opened at the beginning of period t ∈ T

and 0 otherwise

yit Binary variable equal to 1 if facility i ∈ Sc is closed at the end of period t ∈ T \ |T |
and 0 otherwise

yi|T | Binary variable equal to 1 if facility i ∈ Sc is kept open during the entire planning
horizon, 0 otherwise

ϕipt Quantity of unsatisfied demand of location i ∈ L for product p ∈ P in period t ∈ T

bipt Quantity of product p ∈ P procured from facility i ∈ L from an external source in
period t ∈ T

Xipt Quantity of product p ∈ P produced at facility i ∈ L in period t ∈ T

hipt Quantity of product p ∈ P stored at facility i ∈ L in period t ∈ T

xijpt Quantity of product p ∈ P shipped from facility i ∈ L to facility j ∈ L in period
t ∈ T

wrt Extra capacity to acquire of production resource r ∈ Rp or handling resource r ∈ Rh

in period t ∈ T

facilities and removal of existing ones.

min
∑

t∈T

∑

i∈L

∑

p∈P
(BCiptbipt + PCiptXipt ) +

∑

t∈T

∑

i,j∈L,i 
=j

∑

p∈P
T Cijpt xijpt +

∑

t∈T

∑

r∈Rh∪Rp

ECrtwrt +
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∑

t∈T

∑

i∈L

∑

p∈P
HCipthipt + (16.1)

∑

t∈T

∑

i∈L

∑

p∈P
XCiptϕipt +

∑

t∈T

∑

i∈So

OCityit +
∑

t∈T

∑

i∈Sc

CCityit

The flow conservation constraints balance incoming amounts with the outgoing
amounts of each logistics activity, production and procurement, transportation,
inventory and demand. They can be written as follows:

bipt +
∑

j∈L,i 
=j

xjipt + Xipt + hipt−1 =
∑

j∈L,i 
=j

xijpt +
∑

q∈P
aiqpXiqt + hipt + dipt − ϕipt i ∈ L,p ∈ P, t ∈ T (16.2)

Capacity constraints are necessary for limiting the resources consumption of
different logistics activities, namely for production and handling as well as their
expansions. Mathematically we can write:

∑

i∈L

∑

p∈P
μirpXipt ≤ Krt + wrt r ∈ Rp, t ∈ T (16.3)

∑

p∈P

⎛

⎝
∑

i,j∈L,i 
=j

(λinjrp + λoutjrp)xijpt +
∑

i∈L
λinirpbipt

⎞

⎠ ≤ Krt + wrt r ∈ Rh, t ∈ T (16.4)

0 ≤ wrt ≤ Ke
rt r ∈ Rp ∪ Rh, t ∈ T (16.5)

The selectable facilities can have their status changed at most once during the
planning horizon. Formally we have:

∑

t∈T
yit ≤ 1 i ∈ So (16.6)

∑

t∈T
yit = 1 i ∈ Sc (16.7)

Furthermore, for i ∈ S and t ∈ T we define:

T t
i =

{
{1, . . . , t}, if i ∈ So.

{t, . . . , T }, if i ∈ Sc.
(16.8)
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This helps writing constraints ensuring that the logistics activities are limited by
their capacities but in those facilities that are operating:

bipt ≤ M
∑

τ∈T t
i
yiτ i ∈ L,p ∈ P, t ∈ T (16.9)

Xipt ≤ M
∑

τ∈T t
i
yiτ i ∈ L,p ∈ P, t ∈ T (16.10)

hipt ≤ M
∑

τ∈T t
i
yiτ i ∈ L,p ∈ P, t ∈ T (16.11)

xijpt ≤ M
∑

τ∈T t
i
yiτ i, j ∈ L,p ∈ P, t ∈ T (16.12)

xjipt ≤ M
∑

τ∈T t
i
yiτ i ∈ L, j ∈ L \ {S}, p ∈ P, t ∈ T (16.13)

The model is concluded by the domain constraints:

hip0 = 0 i ∈ L,p ∈ P (16.14)

bipt , hipt , hipt ≥ 0 i ∈ L,p ∈ P, t ∈ T (16.15)

0 ≤ ϕipt ≤ dit i ∈ L,p ∈ P, t ∈ T (16.16)

xijpt ≥ 0 i, j ∈ L,p ∈ P, t ∈ T (16.17)

yit ∈ {0, 1} i ∈ L, t ∈ T (16.18)

Computationally, the above problem is NP-hard since it generalizes the capac-
itated plant location problem (see Chap. 4). Nevertheless, the existing literature
shows that it can be tackled within an acceptable CPU time using a general purpose
solver for small- and medium-sized instances. For larger instance we may have to
resort to heuristic algorithms (see Melo et al. 2008, 2012, 2014).

16.4 Challenges in Industrial Logistics

The management of logistics activities operates in an environment that is usually
set by corporate supply chain strategies. The latter follow business strategies
that nowadays are influenced by upcoming new information and production tech-
nologies, new business opportunities, and new political as well as environmental
changes. Consequently, supply chain management has become a major strategic
issue for every company involved in the efficient processing of value creation—be it
through products or services. Trends in the economy and society resulting from
computerization, increased complexity and uncertainty of trade flows, increased
competition. These facts together with the need for sustainable developments, has
resulted in major big structural as well as organizational effects on supply chain
designs (Eskandarpour et al. 2015).

It turns out that currently the major challenges in supply chain management are
sustainability, uncertainty and the digital transformation of the supply chain (Garcia
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and You 2015; Kache and Seuring 2017). The aim of this section is to discuss these
major research streams. It is not the goal in this chapter to discuss in detail every
obstacle that hinders efficient supply chain management in general and location
logistics in specific.

16.4.1 Sustainability

One of the current trends and challenges in supply chain management is the design
and operation of sustainable supply chains. In this context, three dimensions can
be considered: economic aspects, environmental (green) performance and social
responsibility (Eskandarpour et al. 2015). The increasing interest in sustainable
development has pushed supply chains to be sustainable as well: Nowadays, they
have to be socio-political aware, ecologically sensitive, and green.

Until some time ago, repair and container logistics stood in the foreground when
it came to plan and manage a supply chain. More recently, reverse logistics and
reusable logistics have started playing a greater role due to the increase in customer
expectations.

We do not go further into that topic since there is a complete chapter in this book
devoted to green logistics (see Chap. 20). Nevertheless, in the following sections we
provide another model related to sustainability.

16.4.2 Uncertainty, Risk and Disaster Events

Decision-making in industrial supply chain management calls for information
about future developments (e.g. demand and lead-time forecast, spot prices for
transportation and inventory). A major concern for the achievement of any business
goal, including that of a supply chain system or a logistics task, is the treatment
of uncertainty. Usually a decision maker has a certain amount of information about
future developments. Customers demands for example most often slightly deviate
from the initial outlook. In an industrial context, modern supply chains have evolved
into transnational systems and since then they are often caught in a crossfire of
influences (e.g., political, environmental) that are hardly predictable. Additionally,
in the presence of the continuously increasing fierce competition for customers
and their profitable satisfaction, supply chain management needs to account for
numerous optimization criteria and different information sources that are all subject
to uncertainty. This evolution has led to a wider range of uncertainty to be dealt
with. The lack of a good uncertainty management becomes visible when unexpected
incidents interfere with the normal operation of the supply chain. For instance,
natural disasters such as earthquakes, can destroy production facilities or roads, and
impede the possibility to satisfy customer’s needs as promised. Similarly, effects are
triggered by socio-economic or socio-political turmoils. Unpredictable and slightly
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aggravating deviations, e.g. lead time increase, exchange rate fluctuations or oil
price variability, may also affect supply chain’s goal achievement.

Unknown deviations, supply chain disruptions and disasters as well as the supply
chain risk impede the availability of resources, the realization of the plan, and
ultimately, the satisfaction of demand. For an in depth discussion of the different
concepts we refer to Heckmann et al. (2015) and Heckmann (2016). In order
to anticipate these perils, supply chain models need to be endowed with the
information about uncertain developments. Different types of models, capturing
both different types of decisions and uncertainty, exist (Melo et al. 2009).

The consideration of uncertainty, risk, or disasters that have the potential to
impede a supply chain goal achievement is carried out within different research
streams. One such stream emerges in the context of facility location and focuses
on disaster prevention and management (see Chap. 22). For general uncertainty
extensions the reader is referred to Chap. 8. Instead of going into detail concerning
these extensions we concentrate in Sect. 16.5.2 on capturing and quantifying supply
chain risk in facility location models.

16.4.3 Digital Supply Chain Transformation and Supply Chain
Integration

Contemporary supply chains evolved into highly stretched and interdependent
systems (Christopher 2016). The variety of products, suppliers and customers,
who constantly emerge with new and demanding expectations, has increased
tremendously. The possibility to integrate logistics as well as other supply chain
related activities has reached its limits—as stated at the annual meeting of the
World Economic Forum (WEF) by global chief executives WEF (2017). Influences
of Industry 4.0 and IoT on supply chain planning are starting to be considered in
scientific papers. See for example Manavalan and Jayakrishna (2019), Müller et al.
(2019) and references therein. The new aspects emerging increase immensely the
complexity of the systems and limit most of the originally laid-out infrastructures.
Accordingly, the WEF asks for new forms of structural and organizational agility
that offers better supply chain visibility. Instruments for automated data identifi-
cation (Auto-ID/RFID) and the intelligent integration of systems, assemblies, and
sensors into higher-level value networks, allow to continuously acquire and process
data. In turn, this provides data and information for the decision making process on
different scales: online, operational, tactical and strategic. Note, however, that these
technologies could not yet be leveraged to the fullest possible extent. Once this is
accomplished, supply chain integration will also change.

The best way for integrating a network is still an ongoing discussion. For
instance, it can be done by acquiring new supply chain entities, activities or products
(e.g. through direct acquisitions or joint ventures). Alternatively, in the case of many
enterprises, outsourcing emerges as a possibility to consider. Since this discussion
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is still evolving many concepts and methodological approaches are still to be
adequately framed.

Network integration approaches including outsourcing and joint ventures are
very specific and depend on the circumstances as well as the current environ-
ment. Nevertheless, we can find several authors discussing these aspects such as
Babazadeh et al. (2013), Johansson and Olhager (2018), Wilhelm et al. (2013) and
Dou and Sarkis (2010).

16.5 Modeling Formulations for Industrial Location
Decisions

There is no one-to-one solution, in terms of modeling formulation capturing the
emerging challenges faced by supply chain management. However, there are facility
location models available that address some well-framed sub-problems in this
context. In Table 16.6 we present some of these challenges and some related aspects.

In the following we give two examples for location models addressing each one
of the challenges in sustainability and uncertainty. Of course we are not able to
provide in a book chapter all the details, but we decided to state always a complete
model, which can be used in courses or for learning by the example. For a deeper
understanding we cite the respective references.

16.5.1 Reverse Logistics

Reverse logistics and closed-loop supply chain have become a major area of supply
chain management. Contrary to forward or traditional logistics which considers
material flows from upstream to downstream of a value chain, reverse logistics refers
to all operations related to the reuse of products.

According to Srivastava (2007) most often the model formulation relies on
single economic objectives and miss to explicitly address environmental and social
dimensions. The resolution of this mismatch can lead to sustainable supply chains.
In this section we revisit a general facility location logistics model for reverse

Table 16.6 Some challenges faced by supply chain management and related topics

Sustainability Uncertainty Digital transformation

Reverse logistics Interdiction and fortification Collaboration

Supply sourcing Supply chain risk Network integration

Carbon footprint Multi-period decision making “Infinite” labor

Green supply chain Multiple-criteria decision making Organizational agility
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logistics. This is a model fist introduced by Alumur et al. (2012) (see also Alumur
et al. 2015).

Reverse logistics focuses on one of the first and still important objectives of
sustainable supply chains: waste disposal. Additionally, it also includes what we can
call return logistics and repair logistics as well as container and returnable container
logistics (pallets, lattice boxes, small load carriers and reusable containers).

Following the Council of Supply Chain Management Professionals, reverse
logistics is the process of moving goods from their typical final destination for the
purpose of capturing value, or proper disposal (CSCMP 2013).

Before discussing an optimization model for reverse logistics (RLND) we
introduce some notation. We make use of notation introduced in the context of the
BILL model presented in Sect. 16.3.1. Note, that the latter is introduced as a multi-
period model and the RLND model presented below as a single-period one.

We consider multiple products which include used, inspected, repaired or
refurbished products, components, or raw materials. In order to take different states
into account (inspected, repaired, refurbished, etc.), different product states need to
be defined.

A recovery option describes an activity that transfers a product from one state
to another. It includes all options related to real-life reverse logistics networks
such as returns, recalls, repair, refurbishment, and recycle as well as non-recovery
alternatives such as inspection, disassembly, repackaging for restock or resale,
selling to suppliers, to the secondary market or to external (re)manufacturing
facilities, and disposal. The latter alternative is operated by third-party logistics
providers, which are external and therefore represent non-selectable facilities (see
Alumur et al. 2015). Table 16.7 introduces the sets underlying the RLND model.

Table 16.8 describes the parameters underlying the model. We highlight, in
particular, parameters that represent the reverse BOM structure. For example, a
damaged product can be converted into a repaired product through the recovery
option repair. Another possibility is to have a used product disassembled into its
components at a disassembly facility. Each recovery option has a given capacity
which can be expanded at selectable facilities. Revenues may be obtained through
some recovery options, e.g., by selling products or components to recycling
facilities, to the secondary market, or to external (re)manufacturing facilities. Some

Table 16.7 Sets considered for the RLND model is addition to those already presented for the
BILL model

Set Description

R Recovery options

Ir Selectable facilities with recovery option r ∈ R

Er Existing facilities with recovery option r ∈ R

Nr Potential locations for installing recovery option r ∈ R

Jr Non-selectable location with recovery option r ∈ R (secondary market, disposal)

L All locations, L = ∪r∈R (Ir ∪ Jr)
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Table 16.8 New general parameters used for the RLND model

Symbols Description

gip Amount of product p ∈ P generated at location i ∈ L

arqp Number of units of product q ∈ P required to produce one unit of product
p ∈ P (q 
= p) using recovery option r ∈ R

Kri Capacity of recovery option r ∈ R at location i ∈ L

Ke
ri Maximum increase in capacity for recovery option r ∈ R at location i ∈ Ir

RT rp Target amount of products p ∈ P with recovery option r ∈ R

Table 16.9 New cost parameters used for the RLND model

Symbols Description

RErip Revenue from recovering one unit of product p ∈ P with recovery option
r ∈ R at location i ∈ L

RCrip Cost of recovering one unit of product p ∈ P with recovery option r ∈ R

at location i ∈ L

FCri Fixed setup cost of establishing recovery option r ∈ R at location i ∈ Nr

CCri Fixed cost of closing recovery option r ∈ R at existing facility i ∈ Er

OCri Fixed cost of operating recovery option r ∈ R at location i ∈ L

ECri Unit cost of expanding capacity of recovery option r ∈ R at location
i ∈ Ir

Table 16.10 New decision variables used for the reverse logistics model

Description

yri Binary variable equal to 1 if recovery option r ∈ R is operated at the
selectable facility i ∈ Ir and 0 otherwise

vrip Amount of product p ∈ P recovered with recovery option r ∈ R or
collected at location i ∈ L

wri Extra capacity established for recovery option r ∈ R at location i ∈ Ir

recovery options may also incur costs as in the case of product disposal (see Alumur
et al. 2015).

Table 16.9 introduces the cost parameters for the RLND Model.
In Table 16.10 we present the decision variables. While in the BILL model the

decision variable y refers to the opening or closing of a location, in the RLND

model it refers to the selection of a recovery option. Similarly, decision variable w

defines extra capacity for a production resource in the BILL model and it defines
extra capacity for the recovery option in the RLND model.
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The RLND model can be formulated as a MILP. Its objective function (16.20)
maximizes the total profit, which sums up the revenues of various recovery options
and subtracts the costs involved in the system.

max
∑

r∈R

∑

i∈L

∑

p∈P
REripvrip

−
∑

r∈R

∑

i∈L

∑

p∈P
RCripvrip −

∑

r∈R

∑

i∈Nr

FCriyri

−
∑

r∈R

∑

i∈Er

CCri(1 − yri) −
∑

r∈R

∑

i∈Ir
OCriyri (16.19)

−
∑

r∈R

∑

j∈Jr
OCrj

−
∑

i∈L

∑

j∈L\{i}

∑

p∈P
T Cijpxjip −

∑

r∈R

∑

i∈Ir
ECriwri

The flow balance equalities (16.20) relate incoming flows like products shipped
to a location and the amount of product obtained after processing at a location
with outgoing flows like products recovered at a location and products shipped
to other locations. The recovery target for each product category and recovery
option should be achieved due to constraint (16.21). Inequalities (16.22)–(16.24)
restrict capacities. The former guarantees that the amount of recovered products
at selectable facilities does not exceed the available capacity. Inequality (16.23)
formulates a similar conditions for non-selectable facilities. Constraints (16.24)
limit the level of capacity expansions at selectable facilities. Constraints (16.25)
and (16.26) ensure that products can only be shipped from operating facilities.
Conditions (16.27)–(16.29) set the domains of the decision variables.

s.t. gip +
∑

r∈R

∑

q∈P
arqpvriq +

∑

j∈L\{i}
xjip =

∑

r∈R
vrip +

∑

j∈L\{i}
xijp i ∈ L,p ∈ P (16.20)

∑

i∈L
vrip ≥ RT rp r ∈ R,p ∈ P (16.21)

∑

p∈P
vrip ≤ Kriyri + wri r ∈ R, i ∈ Ir (16.22)

∑

p∈P
vrjp ≤ Kri r ∈ R, i ∈ Jr (16.23)

0 ≤ wri ≤ Ke
riyri r ∈ R, i ∈ Ir (16.24)
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0 ≤ xijp ≤ M
∑

r∈R
yri i ∪r∈R Ir , j ∈ L \ {i}, p ∈ P (16.25)

0 ≤ xjip ≤ M
∑

r∈R
yri j ∈ L \ {i}, i ∪r∈R Ir , p ∈ P (16.26)

xijp ≥ 0 i, j ∈ ∪r∈RJr(i 
= j), p ∈ P (16.27)

vrip ≥ 0 r ∈ R, i ∈ L,p ∈ P (16.28)

yri ∈ 0, 1 r ∈ R, i ∈ Ir (16.29)

Again, this problem contains as a special case the CFLP. For more details and
solution approaches concerning this and related problems we refer the reader to
Alumur et al. (2012), Alshamsi and Diabat (2015), Chen et al. (2015), Govindan et
al (2015), Khatami et al. (2015).

16.5.2 Supply Chain Risk

While uncertainty definitely is an important topic also in reverse logistics, we show
in this section how to explicitly model uncertainty in a location model by addressing
the notion of supply chain risk.

Over the last decade supply chain risk became increasingly relevant, although
the notion of risk or more precisely supply chain risk was not clearly defined. An
extensive literature review on the topic concluded that supply chain risk can be
defined by three elementary characteristics, namely: risk objective, risk exposition,
and risk attitude (Heckmann et al. 2015). A risk-aware capacitated plant location
model (CPLPRisk) aims at overcoming systematic definitional inconsistencies and
offers a risk-aware location formulation founded on the general capacitated plant
location problem (CPLP ) (Heckmann 2016).

If uncertainty can be captured by a joint CDF, a model incorporating uncertainty
and risk can often be formulated as a two-stage stochastic program (see Chap. 8).
The decisions consist of first stage and recourse decisions. Initially, the opening
and capacity extension decisions are made for each facility, while minimizing the
expected costs of the consequences of these decisions. When uncertain parameters
are disclosed, the recourse or second-stage decisions lean on, improve or correct the
decisions made at the first stage. The selection of the type of expansion level for
every period depicts the second stage decision. It follows that the overall objective
function minimizes the costs of the first plus the expected costs of the second stage
decision. In what follows we assume that uncertainty can be captured by a finite
number of scenarios each of which occurring with some probability that we also
assume to be known in advance.
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Table 16.11 introduces the sets underlying the CPLPRisk model.
Table 16.12 contains the deterministic and stochastic parameters underlying the

model.
Table 16.13 presents the cost parameters.
In Table 16.14 we present the decision variables, which are similar to those

introduced in the context of the BILL model.

Table 16.11 Sets used for
the CPLPRisk model

Set symbol Description

I Facilities

J Customers

T Time periods

H Expansion levels

S Scenarios

Table 16.12 General deterministic and stochastic parameters for the CPLPRisk model

Symbol Description

djts Demand of customer j in period t under scenario s

βo Level of targeted service level

Ki Capacity of facility i

Ke
h Extra capacity of expansion level h

γits Relative capacity reduction within facility i in time period t and scenario s

πs Probability associated with scenario s

Table 16.13 Cost parameters for the CPLPRisk model

Symbol Description

OCi Fixed cost of opening a facility in location i ∈ I

ECo
i Fixed cost of installing optional extra-capacity at facility i

T Cij Unit transportation cost between facility i and customer j

Rj Unit revenue provided by customer j

XC Unit penalty cost for not reaching target service level

ECh Unit cost of extra-capacity of expansion level h

Table 16.14 Decision variables for the CPLPRisk model

Symbol Description

yi Binary variable equal to 1 iff facility i is opened

zi Binary variable equal to 1 iff expansion options are installed at facility i

xij ts Amount transported from facility i to customer j in time period t under
scenario s

ϕjts Unsatisfied demand of customer j in time period t under scenario s

ωiths Binary variable equal to 1 iff in scenario s expansion level h is installed at
facility i at time period t

βs Service level in scenario s

�s Service level reduction in scenario s
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The CPLPRisk model can be formulated as a MILP. Its objective func-
tion (16.30) minimizes the total costs, which sums up the costs related to the
first-stage decision and costs associated to the recourse decision which are offset
or decreased by the revenue.

min
∑

i∈I

(
OCiyi + ECo

i zi
)+ (16.30)

∑

s∈S
πs

⎛

⎝XC�s +
∑

i∈I

∑

h∈H
EChK

e
h

∑

t∈T
ωiths +

∑

t∈T

∑

i∈I

∑

j∈J

(
T Cij − Rj

)
djtsxijts

⎞

⎠

s.t.
∑

i∈I
djtsxij ts + ϕjts = djts j ∈ J, t ∈ T , s ∈ S (16.31)

∑

j∈J
djtsxij ts ≤ γitsKiyi +

∑

h∈H
Ke

hωiths i ∈ I, t ∈ T , s ∈ S (16.32)

∑

h∈H
ωiths ≤ zi i ∈ I, t ∈ T , s ∈ S (16.33)

zi ≤ yi i ∈ I (16.34)

βs = 1 −
∑

j

∑
t ϕjts

∑
j

∑
t djts

s ∈ S (16.35)

�s = βo − βs s ∈ S (16.36)

0 ≤ �s ≤ 1 s ∈ S (16.37)

xijts ≥ 0 i ∈ I, j ∈ J, t ∈ T , s ∈ S (16.38)

ϕits ≥ 0 i ∈ I, t ∈ T , s ∈ S (16.39)

zi ∈ {0, 1} i ∈ I (16.40)

yi ∈ {0, 1} i ∈ I (16.41)

ωiths ∈ {0, 1} i ∈ I, t ∈ T , h ∈ H, s ∈ S (16.42)

Demand constraint (16.31) equalizes demand fulfillment and unsatisfied demand
with customer demand. Capacity constraints (16.32) restrict the ratio of demand
fulfillment of each facility to the available capacity at the facility considered.
Facility-related capacity sums to the reduced capacity and the capacity extension
units. For each time period and facility only one extension level is allowed to be
executed, constraint (16.33), if and only if a capacity extension option has been
allotted to the facility, constraint (16.34). The amount of service level deterioration
is calculated by constraints (16.35)–(16.37). Additionally, variables are limited to
appropriately accomplish the aforementioned requirements by constraints (16.38)–
(16.42).
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Equivalent to the RLND model this problem contains as a special case the CFLP.
For more details and solution approaches concerning the CPLPRisk model we refer
the reader to Heckmann (2016) and Heckmann et al. (2016).

16.6 Conclusions

In this chapter we have put an emphasis on the importance of logistics activities,
their strong presence in supply chain management and their necessary integration
into location modeling. Although several models and approaches have been pub-
lished addressing logistics activities in location problems, the focus is mostly on
some technical details missing the holistic point of view of logistics. Summing up
the insights of this chapter, a location modeler has three main tasks to accomplish
in order to adequately address these hurdles:

• to identify logistics activities that are relevant to the underlying industrial supply
chain problem,

• to integrate relevant logistics activities in location decision models,
• to frame industrial challenges to smaller and well-defined problems of location

modeling.

We presented a basic integrated logistics location (BILL) model that captures
logistics activities for location decision making. In addition to a good integration of
relevant logistics activities into location models, location modelers are confronted
with several emerging challenges in the context of supply chain management which
nowadays especially demand for effective location decisions. Three main challenges
were discussed. We introduced two location models that address some well-framed
sub-problems of the aforementioned supply chain challenges. In accordance to the
discussion presented, we offered some further well-framed sub-problems to specific
supply chain challenges in Table 16.15.

The need for future research directions emerges from the discussion within this
chapter. In addition to new modeling approaches that integrate logistics activities
and align to current challenges in supply chain management, we want to put an
emphasis on dovetailing location decision with production structure. Operational
production decisions are modeled through the inclusion of the BOM in the BILL
model. Structural production decisions are modeled through facility layout decisions
and should also be included in a holistic location logistics point of view. However,

Table 16.15 Supply chain challenges, corresponding location models and related chapters in this
book

Challenge Location Model Reference

Uncertainty in supply chains Facility location under uncertainty See Chap. 8

Location models with multiple-criteria See Chap. 9

Transformation of supply chains Multi-period facility location See Chap. 11

Disaster events Location problems under disaster events See Chap. 22
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we could not find models integrating strategic in-house decisions (layout) and inter-
facility decisions (Supply Chain Design). Nevertheless, this might be an interesting
research direction. We therefore recommend the interested reader to have a look
at current reviews on facility layout, such as those by Briskorn and Dienstknecht
(2017) and Anjos and Vieira (2017). However, the current view of facility layout
problems is rather limited and models miss to include the general logistics per-
spective. Industrial supply chains continue to evolve demanding decision makers to
adopt and to apply sophisticated decision support systems. This implies that locators
as well have to follow closely the developments in industrial supply chains.
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Chapter 17
Stochastic Location Models
with Congestion

Oded Berman and Dmitry Krass

Abstract In this chapter we describe facility location models where consumers
generate streams of stochastic demands for service, and service times are stochastic.
This combination leads to congestion, where some of the arriving demands cannot
be served immediately and must either wait in queue or be lost to the system.
These models have applications that range from emergency service systems (fire,
ambulance, police) to networks of public and private facilities. One key issue is
whether customers travel to facilities to obtain service, or mobile servers travel to
customer locations (e.g., in case of police cars). For the most part, we focus on
models with static (fixed) servers, as the underlying queueing systems are more
tractable and thus a richer set of analytical results is available. After describing the
main components of the system (customers, facilities, and the objective function),
we focus on the customer-facility interaction, developing a classification of models
based on the how customer demand is allocated to facilities and whether the demand
is elastic or not. We use our description of system components and customer-
response classification to organize the rich variety of models considered in the
literature into four thematic groups that share common assumptions and structural
properties. For each group we review the solution approaches and outline the main
difficulties. We conclude with a review of some important open problems. We
specifically outline the advances and new approaches that have been developed since
the previous edition of this volume.

17.1 Introduction

The class of facility location models that is the main focus of the current chapter
make the following key assumptions:

1. Customers generate a stochastic stream of demands, typically assumed to be a
Poisson process, or, more generally a renewal process.
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2. Facilities, contain resources (often called “servers”) that have limited capacity
and stochastic service times.

3. Customer-facility interactions happen as the result of customers traveling to
facilities to seek service, i.e., our primary focus is on the “fixed” or “immobile”
server models (in the “mobile server” case, servers travel to customers to provide
service).

4. Due to stochastic arrivals of customer demands at the facilities, stochastic service
times, and limited capacities, facilities will experience periods of congestion
where not all arriving demands can be served immediately. Customers that arrive
when the system is busy may either enter a queue or leave without getting service.
This behavior will result in either queues, or lost demands, or both.

Applications of these models range from public service facilities such as hospitals,
medical clinics and government offices, to private facilities such as retail stores or
repair shops.

We note that these assumptions specifically exclude a number of interesting and
important classes of related location models, some of these are treated in other
chapters in the current volume; we refer the reader specifically to Chap. 8 for an
in-depth discussion of the issues outlined below.

First, there are many models that incorporate capacity limitations in a determinis-
tic, rather than stochastic, manner. These include models seeking to ensure that there
is sufficient average capacity to provide adequate service, models that try to design
a system that should perform well even under stochastic conditions by equalizing
loads between facilities, and models that handle possible congestion indirectly by
requiring certain reserve capacity at the facilities. All of these can be regarded
as deterministic approximations of the underlying stochastic system. While this
deterministic approach leads to large technical simplifications and, as a result, much
easier computations, the roughness of the approximation is usually impossible to
estimate a priori. This may lead to systems with poor levels of customer service (at
some of the facilities), and is typically not appropriate in cases where understanding
and controlling potential congestion is important.

Second, there are some models where facilities are modeled as reliability,
rather than queueing, systems, i.e., a facility may “fail” with certain probability
in some periods, at which point it cannot provide service to customers (who are
typically assumed to try to seek service from non-failed facilities)—these and
related models are discussed in Chap. 22. Such models do incorporate stochastic
demands explicitly. Moreover, “failure” periods may be regarded as representing
periods of congestion at the facilities when new customer arrivals are blocked. Thus,
these models are closer to the systems we study. However, the key difference is
that “reliability” models treat the blockage probability as exogenous to the system
(a typical assumption is that each facility may fail with certain probability at any
time, where such probability is a system parameter), while models where facilities
are represented as queues treat the probability of blockage as endogenous, i.e., a
direct outcome of other decisions such as capacity allocation and customer-facility
interactions. Thus, reliability models can only be regarded as approximations for
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the systems we are interested in. We refer to Snyder (2006) as well as to Chaps. 8
and 22 in this volume for a review of reliability and related models.

Third, there is an important class of models where servers are assumed to
be “mobile”, i.e., servers travel to customers rather than customers traveling to
facilities. Examples of the underlying systems include emergency services (fire,
ambulance, police) as well as repairmen making house calls. These models are
close “cousins” of the fixed-server models we are interested in as they include
most of the same components: stochastic demand streams, stochastic service
times, congestion/queuing behavior. However, these models also include additional
significant levels of complexity, such as dynamic dispatching and routing of servers,
repositioning servers between facilities, re-routing a sever before completion of
the call, etc. The underlying queuing models are analytically intractable, even if
the facility locations are assumed fixed, leading to various approximation-based
approaches. In contrast, the queuing systems underlying models with fixed servers
are often (though not always) analytically tractable, allowing for, theoretically, more
precise solutions in many cases. We refer the reader to a survey by Berman and
Krass (2002) and to a more recent survey on emergency systems planning by
Ignolfsson (2013) for more details on models with mobile servers. We note that
the technical distinction between models with fixed and mobile servers does not lie
in the server mobility per se, but rather in how the underlying queuing network is
modeled (in fact, some of the models described in this chapter have been applied in
mobile server contexts). We will provide more precision for this distinction below,
once the underlying technical framework is properly introduced.

The field of Stochastic Location models with Congestion and Immobile Servers
(SLCIS), the main focus of this chapter, has seen a rather explosive growth over a
relatively recent time period. As noted in Berman and Krass (2002), by the early
2000s, only a handful of papers on SLCIS could be found. However, by 2006 over
20 contributions were listed in the comprehensive review by Boffey et al. (2006) (we
are only counting the papers that meet the assumptions for SLCIS models discussed
earlier). In the last 8 years, this number has roughly doubled. It is our intent to
review the current state of the field, as well as to systematize the many variants of
SLCIS models that have been proposed.

We note that much of the recent work has been on models with elastic demand—
i.e., where the intensity of customer demands depends on the quality of the service
provided by the facilities. In this regard it is important to mention a review by
Brandeau et al. (1995) that describes early foundation for much of this work.

As with most other location models, one could focus on cost minimization or on
net revenue (profit) maximization. Cost minimization is more appropriate when the
revenues are either not well-defined (e.g., in the case of public health facilities), or
are assumed to be exogenous to the model (e.g., when customer demand levels and
prices are fixed). While most SLCIS models in the literature are formulated with the
cost minimization objective, profit optimization is more general and is much more
natural when demand is elastic. Therefore, we will assume this objective type in our
general formulation in the following section.
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Several interesting new ideas have been introduced to SLCIS models since the
previous edition of this volume. These are highlighted in the present version.

The remainder of this chapter is organized as follows. We start by describing the
main model components in Sect. 17.2. A crucial part of any SLCIS model is the
set of assumptions made about how customers and facilities interact, specifically
how customer demand is “allocated” to facilities and how much of the potentially
available demand is “captured”. These issues are explored in detail in Sect. 17.3,
where we also introduce a classification of SLCIS models based on the types of
customer response. All model components come together in Sect. 17.4 where we
formulate a “general” SLCIS model and review the main features that are typically
included in various sub-classes. In Sect. 17.5 we provide an overview of SLCIS
models discussed in the literature, providing a unifying structure organized around
four main “themes”. We also discuss the key challenges that arise for different model
classes and computational approaches that have been developed. In the last section
we discuss conclusions and suggestions for future research.

17.2 Key Model Components

In this section we specify the key model components that allow us to identify the
main classes of SLCIS models. These classes and the relevant solution approaches
will be described in the following sections. As noted earlier, SLCIS models describe
the system consisting of customers, facilities and their interactions. We start by
describing each of these components in more detail.

17.2.1 Customers

Customers are assumed to be located in a set J , with customer location j ∈ J

capable of generating a demand stream with maximum intensity of λmax
j per unit

time. In the vast majority of models described in the literature, J is assumed to be
a discrete set, often conceptualized as the set of nodes of some underlying network
G = (J,A), where A is the set of links. Other common alternatives in location
(but not in SLCIS) literature include J being a sub-region of the real plane R2, or
consisting of both links and nodes of a network G. The most general SLCIS setting
we are aware of is given in Baron et al. (2008), where J is a bounded sub-space of
RN and can contain a mixture of discrete points and continuous regions. To keep
the presentation as transparent as possible, we will retain the common assumption
that J is discrete and n = |J | is the number of customer demand points, which we
will frequently refer to as “nodes”.

Let uj represents the utility derived by customers at node j ∈ J from the services
offered by the facilities. The demand stream generated by j is assumed to be a
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Poisson process with rate λ(uj ) ∈ [0, λmax
j ]. We will postpone the description of

utility functions until Sect. 17.3.1, since other system components need to be defined
first. However, we can already identify two different classes of SLCIS models: the
elastic demand models, where λ(uj ) is a non-constant function, i.e., λ(uj ) 
= λmax

j

for some values of uj , and the inelastic demand models where the demand rate is
assumed to be constant and equal to λmax

j . As a shorthand, we will use λj = λ(uj )

to represent the demand rate of customer node j ∈ J . The inter-arrival times of
the demand processes generated by different customer locations are assumed to be
independent.

We should also note that while it is tempting to relax the Poisson assumption
for the demand process, this must be done with care as the facilities see aggregate
demands from different customer locations, i.e., a superposition of the demand
processes. In order to apply standard queueing results to the facilities, the demand
process seen by each facility must be a renewal process. While the superposition
of Poisson processes is Poisson, which is obviously a renewal process, in general,
the superposition of renewal processes is not a renewal process. This quickly leads
to a loss of tractability for the models. Thus, except for some trivial extensions,
the Poisson assumption for demand streams appears unavoidable; one interesting
exception occurs when customer demand space is continuous, rather than finite, in
which case facilities see Poisson arrivals under much looser conditions—see Baron
et al. (2008) for the development and required assumptions. However, there is no
problem (at least from the analytical point of view) in assuming that the demand
process at each node j ∈ J is not time-homogenous, i.e., that the demand rate
is a function of time. To simplify the presentation, we will stick with the time-
homogenous assumption.

An important implicit assumption in all SLCIS models we are aware of is that
all customer nodes generate “identical” demands (possibly, within certain priority
classes), i.e., that the streams of demand are indistinguishable with respect to the
originating node once they reach the facility.

17.2.2 Facilities

Customer demands are serviced by the facilities that contain service resources (or
“servers”). All aspects related to the facilities, including their number, locations,
and the amount/ types of resources allocated to them can potentially be treated as
decision variables in the model. In describing the system dynamics below we will
initially treat the values of these variables as given, but will relax this assumption
when describing model formulations later.

We will assume that facility locations must belong to some set I and that at
most m ≥ 0 facilities can be located; we will use i ∈ I, to represent the location
(site) of facility i. By far, the most common assumption in SLCIS literature is that
set I is discrete, i.e., that all potential locations for the facilities have already been
enumerated. In this case, we can assume without loss of generality that I ⊂ J
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(since any point in I not containing customers can be treated as a customer demand
point with the maximum demand rate equal to 0). Other options, include I ⊂ R2,
leading to continuous SLCIS models (see, for example, Brimberg and Mehrez 1997
and Brimberg et al. 1997), or I ⊂ J ∪ A for a network G = (J,A), leading to
network SLCIS models (see, e.g., Berman et al. 2014). Unless stated otherwise, we
will generally assume I to be discrete.

To take advantage of the discreteness of I we will follow the typical convention
in location modeling and define yi ∈ {0, 1} to be a binary indicator variable with
the value 1 if a facility is open at site i ∈ I , and 0 otherwise. To ensure that the total
number of open facilities does not exceed m we require:

∑

i∈I
yi ≤ m. (17.1)

If a facility is opened at i ∈ I (i.e. yi = 1), it must be allocated some service
capacity μi > 0, which can be thought of as the average processing rate. We will
assume that μi = 0 whenever yi = 0, which can be enforced by

μi ≤ μmaxyi, i ∈ I, (17.2)

where μmax is the maximum possible processing capacity that can be assigned to a
facility.

As noted in Baron et al. (2008), there are two standard approaches to represent
facility capacity in queuing environment: as a “single-server” facility where the
capacity level can take on any value in some interval μi ∈ [0, μmax], or as a “multi-
server” facility housing κi ≥ 0 parallel servers each with fixed capacity μ0, where
κi ∈ {0, . . . , k} is an integer, μi = κiμ

0 is the processing capacity of facility i,
and k is the maximum number of servers that can be stationed at a facility (with
μmax = kμ0).

While there are some important differences between the single-server and multi-
server models (these will be touched on later) our bias is to favor the single-server
representation. It is more transparent, typically leads to cleaner analytical results,
and seems more practical as well: a typical facility will house a variety of processing
resources and discrete “servers” may be hard to identify. For example, a medical
clinic will often house doctors, nurses, examination rooms, X-ray machines, etc.
While it is sensible for a planner to think of processing capacity of a clinic in
terms of patients per hour (and how this processing capacity changes when certain
resources are added or removed), it is harder to think of the clinic containing κ

distinct servers (are these doctors? nurses? rooms?). Thus, unless stated otherwise,
each facility will be assumed to house a single “server” with capacity μ.

We note that even in settings where μ is a continuous decision variable, it is
sometimes useful to discretize it. This is because, as will be seen shortly, μ appears
in many non-linear expressions for service levels and waiting times; discretization
is a common trick used to linearize the corresponding expressions—this idea was
first explored in Vidyarthi and Jayaswal (2014). When discretization is used, it is
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assumed that the capacity μi of each facility i must satisfy

μi ∈ {μ1, . . . , μL},

where μl, l = 1, . . . , L represent a discrete set of options for service levels.
Defining binary decision variables zil which take on a value of 1 is μi = μl and 0
otherwise, we can now write:

μi =
L∑

l=1

zilμ
l, i ∈ I (17.3)

L∑

l=1

zil = 1, i ∈ I, (17.4)

The service times at each facility are assumed to be stochastic. More specifically,
following Baron et al. (2008), we assume First Come First Serve (FCFS) service
discipline and that service requirements (which can be thought of as the amount
of work required to process one customer request) are independent and identically
distributed random variables with a cumulative distribution function (CDF) FS(w),
and a well-defined moment generating function (MGF) GS(η). We also assume that
the mean service time E[S] = 1. This assumption is made with no loss of generality
as it simply rescales service times. Note that in this framework, since μi represents
the service rate of facility i, the mean service time is 1/μi and it is not hard to show
that the distribution of service times is given by FS(μiw) with MGF GS(η/μi).

We define xij to be the demand allocation decision variables, specifying what
portion of demand from customer node j ∈ J is directed to facility i ∈ I . The
key underlying assumption is that once the decisions about the number of facilities,
their locations yi and the service capacities μi for i ∈ I are made, the demand
allocations xij can be determined; the exact mechanism for determining demand
allocations depends on the underlying assumptions about system dynamics and is
described later. Mathematically, we assume that xij satisfies the following set of
constraints

∑

i∈I
xij ≤ 1, j ∈ J (17.5)

xij ≤ yi, i ∈ I, j ∈ J (17.6)

xij ∈ {0, 1}, i ∈ I, j ∈ J (17.7)

These constraints are quite standard in location models: (17.5) ensures that at most
100% of customer demand from j is allocated to the facilities, (17.6) prevents
allocating a customer to an unopened facility. Constraint (17.7) enforces the binary
assumption for the allocation variables xij , with the value of 1 if the demand
stream generated by customer node j is directed to facility i, and 0 otherwise.
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The integrality of xij reflects the “single sourcing” assumption made in most
SLCIS models, requiring each customer point to be assigned to at most one
facility. An alternative is to allow “multi-sourcing”, in which case xij is allowed
to be continuous, by replacing (17.7) with its linear relaxation. We also note that
constraints (17.5)–(17.7) represent “minimal” requirements on xij ; they are often
supplemented by other constraints describing the mechanisms by which allocation
of customers to facilities is made.

We allow for the possibility that the demand from j is not assigned to any facility,
i.e.,

∑
i∈I xij = 0, which we interpret as the case of lost demand, i.e. demand that

could have been captured but was lost, usually due to insufficient system capacity.
The amount of lost demand is typically controlled via a penalty cost or constraints—
we will return to these when we discuss specific model formulations below.

For each facility i we define the set Ni = {j ∈ J |xij = 1}, which represents the
service region of facility i (clearly Ni = ∅ when yi = 0). Observe that once λi and
xij are known, the demand rate facing an open facility i is a Poisson process with
rate

�i =
∑

j∈Ni

λj =
∑

j∈J
λj xij . (17.8)

As mentioned earlier, the Poisson property results from the fact that superposition
of Poisson processes is also a Poisson process. Moreover, the demand streams faced
by different facilities are independent of each other. Thus, each facility i ∈ I acts as
a stand-alone queueing system with Poisson arrivals and general service times, i.e.,
a M/G/1 (or M/G/κi) queue with service rate μi .

System stability (i.e., ensuring that queue lengths are finite) requires that

�i ≤ μi, i ∈ I, (17.9)

which acts as a constraint on capacity assignment decisions. In addition, the
framework defined above allows us to express the key performance characteristics
of the facilities, such as the steady-state system waiting time Wi = W(�i,μi)

(this includes both queueing and service times), and the steady-state number of
customers in the system Li = Li(�i, μi), both of which are random variables
whose distributions can, in principle, be obtained. We will come back to these
quantities when we discuss system costs and service-level constraints in the next
section.

It may be also useful to require that each facility face some minimum demand
rate �min in order to ensure that it can be operated economically; sometimes these
minimum demand rates are imposed by regulators for public service facilities (see,
e.g., Zhang et al. 2010). These constraints take the form

�i ≥ �minyi, i ∈ I. (17.10)
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We note that many models make additional assumptions regarding the operations
of facilities. For example, the assumption that the distribution of service times is
exponential is quite common (though likely not very realistic in many real-life
systems; e.g., see the discussion in Boffey et al. 2006). Some authors (e.g., Boffey
et al. 2010) assume limited buffer space at the facilities. We will delay the discussion
of these additional aspects until Sect. 17.5. For the moment we regard each facility
as an infinite-buffer M/G/1 or M/G/κ queue.

Remark The fact that each facility (once location, capacity and customer allocation
decisions are made) can be viewed as an independent queueing system is the main
characteristic distinguishing immobile from mobile server models; in mobile server
models the systems operated by different facilities cannot be decoupled. This is
because in these models the typical assumption is that server assignments are
dynamic, i.e., depend on the state of the system: a server from a given facility may
service demands from customers at point j under some conditions, but not under
others. This leads to a system which is not, in general, separable, and where servers
located at different facilities must be treated as distinguishable. Such queueing
networks are analytically intractable even when all location, capacity and allocation
decisions are made. Thus, all modeling approaches involve strong approximations
and/or descriptive/simulation components (e.g., the Hypercube model proposed by
Larson (1974) is frequently used as the modeling foundation).

In contrast, SLCIS models decompose into a set of queues with Poisson
arrivals—systems for which strong analytical results (both exact and approximate)
are available. We emphasize that this tractability relies on the static nature of
customer-to-facility allocations: the demand allocations are determined once and
then remain in force for all states of the system. Thus, SLCIS models where
customers decide which facility to visit based on the current state of the system
(e.g., based on posted information about current waiting times), or where other
dynamic customer allocation mechanisms may be present, are likely to be closer
(in terms of tractability and solution approaches) to models with mobile servers.
On the other hand, models with mobile servers where static and non-intersecting
service regions are assumed for all facilities (effectively assuming away dynamic
customer reallocation) are quite similar to SLCIS models; many of the mobile server
models reviewed in Berman and Krass (2002) fall into this group. Thus, instead of
differentiating stochastic location models with mobile vs. immobile servers, it is
more useful to differentiate models with dynamic vs. static assignments.

17.2.3 Costs, Revenues, and Constraints

To complete the description of the system it remains to specify two components: (1)
the mechanisms by which customers are “allocated” to the facilities, expressed by
the variables xij (which would also determine the actual demand rates λj , j ∈ J ),
and (2) the overall system costs and constraints assuring acceptable service levels.
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We will postpone the discussion of (1) until Sect. 17.3, focusing on the costs and
constraints in the current section and treating values of the key location, allocation,
capacity assignment and demand level decisions {yi, xij , μi, λi}, i ∈ I, j ∈ J as
fixed. Following the common modeling practice, all costs below are assumed to be
per unit time.

17.2.3.1 Travel Cost and Coverage Constraints

We assume that for each customer j ∈ J and potential facility location i ∈ I a
distance metric d(i, j) is defined, satisfying the regular properties of distance. The
travel cost function TC(d), d ≥ 0, representing the cost of traveling distance d is
assumed to be non-decreasing and non-negative. This yields the System Travel Cost
per time unit of

ST C =
∑

j∈J

∑

i∈I
T C(d(i, j))λj xij , (17.11)

where we assume that constraint (17.6) ensures that customers are only assigned to
open facilities. This expression merely states that the system travel cost is the sum
of travel costs of all customers to their assigned facilities. We note that a frequent
assumption is that the travel cost is a linear function of distance. More generally,
since both J and I are discrete, one could simply redefine the distance measure
to be d ′(i, j) = TC(d(i, j)) for all j ∈ J, i ∈ I and use this new measure in
place of the original one. Thus, after suitably redefining distances and without loss
of generality, we can write

ST C = β
∑

j∈J

∑

i∈I
d(i, j)λj xij , (17.12)

where β > 0 is a parameter relating the travel cost to other terms in the objective
function (the meaning of this parameter is discussed in Sect. 17.3). We will use this
linear form in place of (17.11) from this point on.

A possible concern with the previous expression is that the short travel cost
of one customer will be added to the long travel cost of another, resulting in the
total quantity that may look reasonable, but will still provide poor service to some
customers. To assure that no customer faces an unreasonably long travel distance,
one can impose coverage constraints:

∑

i∈I
d(i, j)xij ≤ R for all j ∈ J, (17.13)

where R > 0 is the “coverage radius”, i.e., the maximum allowed travel distance
for a customer to be “covered” by a facility (this constraint should be interpreted
as referring to the “adjusted” distance measure that incorporates the travel cost,
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as discussed above). We note that most SLCIS models will include either (17.12)
or (17.13); while, in principle, both can be used in the same model, such usage is
rare.

17.2.3.2 Congestion Costs and Service Level Constraints

While travel-related costs are present in all classes of location models covered in
the current volume, the congestion-related costs and constraints are, of course, a
defining feature of the stochastic location models with congestion, in particular of
SLCIS models. As discussed earlier, the two common performance measures in
a queueing system operated by each open facility i ∈ I are the system waiting
time Wi (recall that this includes the service time; a closely related measure is W

q
i

which only covers the waiting time in queue) and the number of customers in the
system Li , which are random variables with certain steady-state distributions. The
most common way to define congestion costs is in terms of expectations of these
quantities, Wi and L̄i , respectively. Since the two are related by Little’s Law, we will
focus on the former (which is also more commonly used). For an M/G/1 queue, the
expression for the mean waiting time in the system W can be found in any standard
reference on queuing (see, e.g., Gross and Harris 1985, p. 255):

W = W
q + 1

μ
= 1 + γ 2

2

ρ

1 − ρ

1

μ
+ 1

μ
(17.14)

where W
q

is the expected time in queue, ρ = λ/μ is the utilization ratio and γ 2 is
the squared coefficient of variation for service times, given by γ 2 = σ 2μ2, where
σ 2 is the variance of service times. Each term in the expression for W

q
has an

intuitive interpretation. Recall that we are assuming Poisson arrivals, which have

coefficient of variation equal to 1, and thus the term 1+γ 2

2 represents the average
squared coefficient of variation for arrival and service processes, often called the
“variability factor” (for exponential service this term equals to 1). The second term,
ρ

1−ρ
can be interpreted by recalling that ρ is the probability that the server is busy

and thus (1−ρ) is the probability that an arriving demand goes straight into service.
The ratio can thus be interpreted as the length of the busy period measured in units
of the length of the free period. The last term is simply the average service time per
customer, sometimes known as the “scale effect” to recognize that as more capacity
is assigned to the system, the average service time per customer declines. Thus

W
q = [Variability Factor]

[
Prob system busy

Prob system free

]

[Scale Effect]. (17.15)

The expression for W simply adds the expected service time to the above.

Remark As noted earlier, two popular ways to represent the queueing system at a
given facility are as either single-server M/G/1 queue with capacity μ, where μ is
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a decision variable, or as a multi-server M/G/κ system where each of the κ servers
has capacity μ0 and κ is the decision variable. If we set κμ0 = μ, i.e., require both
systems to have the same processing capacity, we can ask to what extent are these
systems “equivalent”? Can the simpler M/G/1 system be used as an approximation
of harder-to-analyze M/G/κ one?

First note that the coefficient of utilization ρ is the same when μ = κμ0. While
no closed-form expression for W is known for the multi-server M/G/κ case, a
popular approximation (see e.g., Hopp and Spearman 2000, p. 273) is:

W = W
q + 1

μ0 = 1 + γ 2

2

ρ
√

2(κ+1)−1

1 − ρ

1

κμ0 + 1

μ0 , (17.16)

which is very similar to (17.14): focusing on the expression for W
q
, we see that the

only difference is that ρ in the numerator of (17.14) is replaced with ρ
√

2(κ+1)−1

in (17.16). In fact, the latter approximates the probability that all servers are busy in
the M/G/κ system. Thus, each term in the intuitive interpretation (17.15) of W

q
has

the same interpretation for both systems. The only difference in the expected waiting
times is that M/G/1 system is busy more frequently (since 1 > ρ > ρ

√
2(κ+1)−1),

thus yielding larger values of W
q
. On one hand, the relative difference in W

q
can be

quite large (it approaches 100% as ρ → 0). On the other hand, this difference should
be small when ρ is close to 1 and waiting times in both systems are significant,
while when ρ is small, the waiting times in both systems are quite small and the
large relative difference may not be of practical significance. Thus, as a rough
approximation, M/G/1 system can be used in place of M/G/κ when the expected
waiting times are of primary interest.

However, when the primary measure of interest is the expected total time in the
system W , one has to be more careful. When the system is highly utilized, i.e., ρ is
close to 1, the main determinant of W is the waiting time and the previous argument
applies. However, when the system utilization is lower, the expected service time
will play a large role. Since it is 1/μ0 for M/G/κ and 1/μ = κ/μ0 for M/G/1,
the former system will process customers κ times faster than the latter, and the
approximation is no longer appropriate. Thus, with respect to W , the approximation
can only be justified in the heavy utilization case.

Turning our attention back to the M/G/1 system, we would like to
rewrite (17.14) in terms of decision variables in our model. This is not difficult
to do, and with a little algebraic manipulation we obtain the following expression
for the expected waiting time at an open facility i ∈ I :

Wi = W
q

i + 1

μi

= (1 + γ 2)�i

2μi(μi − �i)
+ 1

μi

(17.17)

with �i given by (17.8). We assume that Wi = 0 if there is no facility at i.
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One important question is how to treat the term γ 2 in the preceding expression.
The “traditional” approach, adopted by all models described in the previous edition
of the current text, has been to treat γ 2 as an intrinsic model parameter, rather than
a decision variable, i.e., to assume that the coefficient of variation of service times
is fixed in advance. While this is certainly the case when a specific distribution of
service times is assumed (e.g., in M/M/1 queues γ 2 = 1), there is, in principle, no
reason why this should not be a decision parameter in the system. For example, if
the decision on how much capacity to install in facility i also deals with what kind of
capacity to install, then the coefficient of variation γ could well be affected: service
systems with higher level of automation may have lower γ , while more manual
processes may have higher γ (of course the resulting values may be different at
different facilities, so γi notation would have to be used). Another case where γ may
be a decision variable is when customers at different nodes have different service
time variabilities, in which case the allocation decisions xij may well influence not
only �i , but also the variability of service times γi . Nevertheless, the treatment
of this parameter as exogenous, rather than a decision variable is quite common
in SLCIS models; moreover its value is typically assumed to be identical at all
facilities, which is reflected in our usage of γ without a subscript.

Several recent papers have relaxed the assumption that γ 2 is a fixed model
parameter. One approach is to assume a one-to-one relationship between coefficient
of variation of service times γi and service capacity μi at facility i, replacing γ 2

with γ 2(μi) in the previous expression. This idea is explored in Ahmadi-Javid et al.
(2018), where γi is assumed to be a linear function of μi .

If the discretization of service times described by (17.3) and (17.4) is used, a very
general relationship between μ and γ can be modeled. Recall that this approach
assumes there are L discrete choices of capacity level. It is quite natural to assume
that each choice l ∈ L defines a pair (μl, γ l) (in fact, two different choices could
have identical capacity but different variability values). The coefficient of variation
at facility i can now be written as

γi =
L∑

l=1

zilγ
l, (17.18)

where the decision variables zil, i ∈ I, l ∈ {1, . . . , L} represent the choice of
capacity level, as before. Now, for each fixed arrival rate �i and capacity level l

at facility i we can pre-compute the values of W
l

i(�i) and write

Wi(�i) =
L∑

l=1

W
l

i(�i)zil,

which is linear in the decision variable. If, in addition we assume that �i is discrete
(which is natural in many contexts), we can further simplify the previous expression,
while allowing for different coefficients of variation at different facilities (at the cost,
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of course, of the approximation inherent in the discretization approach). Variations
of this approach are used in Ahmadi-Javid and Hoisenpour (2018), Azizi et al.
(2017), and Schön and Saini (2018).

Another observation regarding (17.17) is that Wi (and W
q

i ) is decreasing in μi ,
increasing in �i and convex with respect to both μi and �i whenever system
stability conditions (17.9) hold. These properties are exploited in several SLCIS
models that follow.

Let WC(w) represent the “waiting cost”, i.e. the cost incurred by customers
waiting w units of time in the system (here, and hereafter, we assume that waits
include service times; an equivalent treatment can be developed by focusing on
waiting times in queue only, i.e. Wq ). As with the travel costs, we assume that
WC(w) is non-negative and non-decreasing, noting that many models make the
simplifying assumption that the waiting cost is proportional to w. The total expected
waiting cost in the system can now be expressed as

SWC =
∑

j∈J

∑

i∈I
WC(W i)xij . (17.19)

In view of non-linear dependence of the expected waiting time Wi on the decision
variables, SWC is a non-linear function even when the waiting cost is assumed to
be linear.

We note that since the waiting cost is only incurred by customers who are
assigned to some facility, we should also add a penalty term for customers that
are not assigned to any facility (i.e., not served)—otherwise the model may have
an incentive to not assign customers even if service capacity is available. The “lost
demand” customers may be represented in the revenue term described later (i.e.,
they are treated as an opportunity cost of lost revenue). Alternatively they can be
represented by a term p

∑
j∈J

(
1 −∑

i∈I xij
)

which may be added to the SWC

expression above, where p represents the penalty for not servicing a customer.
There are two potential issues with using (17.19) as the sole measure of service

quality (in terms of waiting times) at the facilities. First, as with the system travel
cost, a small value of SWC does not necessarily ensure that all customers are
receiving adequate service—a small expected waiting time at one facility may
“hide” a large expected waiting time at another. Thus, one may want to add the
constraints (these are traditionally stated in terms of waiting time, rather than system
time; we follow this tradition):

W
q

i ≤ EW, i ∈ I, (17.20)

where EW represents the acceptable maximum waiting time at any facility.
Second, the expected waiting time may not be sufficient to express the desired

service quality; we may wish to ensure that most customers experience no waiting
at all or that the probability of “long” waits is sufficiently low. For this we need to
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consider a constraint of the form

P(W
q

i > T ) ≤ αT , i ∈ I, (17.21)

where P(·) is the steady-state distribution of Wq
i , T > 0 is the specified threshold

for the waiting times, and αT ∈ (0, 1) is the maximum acceptable probability
of waits longer than T at any facility. For example, α0 represents the maximum
acceptable proportion of customers that must wait for service at any facility.

Both (17.20) and (17.21) above are examples of Service level Constraints (SCs)
that are quite common in SLCIS models. Since (17.20) refers to the expected
behavior of the system, while (17.21) refers to the probability of occurrence of
certain (undesirable) events, we will refer to the former as the “Mean SC” and the
latter as the “Probabilistic SC”. While the Mean SC is easily expressed in terms
of the decision variables by substituting (17.17) into (17.20), the Probabilistic SC
requires an expression for the steady-state distribution of the waiting time, which
is not generally available. One option is to make additional assumptions about
the distribution of service times (e.g., assuming M/M/1 or M/Ek/1 queues at
the facilities) since steady-state distributions of waiting times have been derived
for many common systems. Another option is to use an approximation. The
one we follow here is based on Baron et al. (2008). Assume that the service
constraints (17.21) are specified and let

V (T , αT ) = − ln(αT )

T
;

observe that since ln(αT ) < 0, this is a positive constant that is decreasing in αT and
in T . Then (under certain mild technical assumptions), constraint (17.21) is satisfied
whenever

GS(
V (T , αT )

μi

)(�i − 1) ≤ V (T , αT ), (17.22)

where GS(·) is the MGF of service times defined earlier. Recall that GS(η) is
an increasing function for η > 0, implying that the left-hand side of (17.22)
is decreasing in μi . This is quite intuitive: when T or αT are decreased, the
probabilistic SC becomes tighter, requiring more capacity at the facility. In fact,
as V (T , αT ) becomes larger, satisfying (17.22) requires more capacity μi .

This leads to a general view of service constraints: for any arrival rate �i at
facility i ∈ I one can define a minimum capacity level μ̄(�i) such that SC holds if
and only if

μi ≥ μ̄(�i), (17.23)

where μ̄(�i) is computed (perhaps numerically) from (17.20), (17.21), or (17.22).
Of course, an equivalent view is to specify a function �̄(μ), which is just an inverse
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of μ̄(�), so that SC holds whenever

�i ≤ �̄(μi), (17.24)

i.e., for a given capacity level μi there is a maximal arrival rate �̄(μi) for which
an adequate service level can be provided by facility i. This view extends to other
definitions of SCs (e.g., instead of using waiting time one could use L or another
service level measure)—the only thing that changes is the way functions μ̄(�) and
�̄(μ) are computed.

We note that system stability conditions imply that μ̄(�) > � (equivalently
�̄(μ) < μ) and the difference μ̄(�) − � may be interpreted as the amount of
the “capacity cushion” (capacity in excess of the minimal possible level) needed
to ensure adequate service given the arrival rate �. For many systems and many
specifications of service level constraints it has been shown that this amount grows
proportionately to

√
�, i.e.

μ̄(�) ≈ � + Q
√
� (17.25)

for some constant Q (see, e.g., the discussion in Castillo et al. 2009). The derivations
in Whitt (1992) suggest that, under many conditions, a good approximation for Q
is provided by

√
2Q ≈

√

γ 2 + 1P(W > 0).

Thus,
√

2Q/
√
γ 2 + 1 is approximately equal to the probability of waiting, a natural

service level measure. To summarize, when the probability of waiting is used as the
service-level measure, the constraint

P(Wi > 0) ≤ α0, i ∈ I

holds if

μi ≥ μ̄(�i) ≈ �i +
⎡

⎣

√

γ 2 + 1

2
α0

⎤

⎦
√
�i, i ∈ I. (17.26)

Similar expressions can be derived with for service level measures where the
threshold for waiting time is set above 0.

As noted earlier, incidence of long waits can be controlled through service level
constraints and/or explicit waiting cost terms in the objective function. While, in
principle, both can be used in the same SLCIS model, it is far more common
to use one or the other. In models where only service level constraints are used,
these constraints will be tight in an optimal solution (since capacity is costly). If,
in addition, the demand is assumed to be inelastic, �i is a linear function of the
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decision variables xij . In this case a significant simplification is achieved by using
the previous expression: setting the SC as an equality, we can eliminate decision
variables μi from the model, replacing them with the right-hand side of (17.26).

17.2.3.3 Facility Costs

We assume that the decision to open a facility at i ∈ I incurs two types of costs:
the fixed cost FCi , which depends on the characteristics of the location i, and the
variable cost VC(μi), which depends on the amount of capacity μi allocated to
the facility. The function VC(μ) is assumed to be non-decreasing and non-negative
with VC(0) = 0; concavity of VC(μ) is a frequently made assumption, reflecting
economies of scale. With these definitions, the System Facility Cost is defined as
follows:

SFC =
∑

i∈I
FCiyi +

∑

i∈I
V C(μi) (17.27)

17.2.3.4 Revenues and Overall Objectives

We assume that each customer that is served brings in a revenue r to the system (for
public service applications, we can treat r as a “system benefit” parameter). The
total expected revenue can now be expressed as

SR = r
∑

i∈I
�i = r

∑

j∈J
λj
∑

i∈I
xij . (17.28)

In principle, parameter r can be treated as a decision variable—the price charged
by the decision-maker for service. However, in the majority of SLCIS literature this
term is treated as an exogenous parameter (Tong 2011 and Berman et al. 2014 being
the exceptions). Since treating prices as decision variables introduces significant
new complications, we will generally treat r as constant in the model.

We also observe that when demand is inelastic (i.e., λj = λmax
j for all j ∈ J )

and when the constraints require that all customers must be served (i.e.,
∑

i∈I xij =
1, j ∈ J ), it is easy to see that SR = r

∑
j∈J λmax

j , which is a constant. In this case,
the revenue term in the objective can be dropped, leading to a pure cost minimization
case. Even in models where some customers may not be served, but the demand is
inelastic, it is common to use cost minimization with a penalty term, which can be
interpreted as opportunity cost for unserved customers.

To summarize, the overall objective for a general SLCIC model is given by

maximize [SR − ST C − SWC − SFC] ,
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where the respective components are defined by (17.28), (17.12), (17.19),
and (17.27). We note that in most specific models described in the literature,
only a subset of the terms above is present, the rest being implicitly controlled by
constraints (e.g., in the presence of service level constraints, the SWC term is often
dropped).

Most of the terms above depend on demand allocations xij and demand rates λj ,
which have not yet been described. This is the subject of the following section.

17.3 Customer Response: Demand Levels and Allocations

In this section we discuss the mechanism determining the allocation of customer
demand to facilities, represented by xij variables, and the amount of demand λj
generated by customers at j ∈ J .

In location modeling two approaches for allocating customer demand to facilities
are generally considered: directed choice, where the same decision-maker determin-
ing the number and locations of the facilities also has the power to assign customers
to the facilities in a way that will optimize the model objective, and user choice
where customers self-assign to facilities based on maximization of their own utility
functions which may not be aligned with the overall model objective. For example,
a common customer utility function is the travel distance. Thus, in a user choice
environment, each customer will select the closest facility, while in the directed
choice case a customer may be assigned to a further facility even when a closer one
is open (if such assignment reduces the overall facility cost).

The same framework can be applied to the SLCIS models. However it may be
more useful to also classify the models in terms of the assumed customer reaction
to the service offered by the facilities. We differentiate four classes of models:

Type NR: Models with no customer reaction: customers do not control the
demand allocations and the demand rates are fixed (directed choice with inelastic
demand)
Type AR: Models with allocation-only reaction: customers select utility-
maximizing facilities, but the demand rates are fixed (user choice with inelastic
demand)
Type DR: Models with demand rate-only reaction: customer do not control the
demand allocations but do determine the demand rates (directed choice with
elastic demand)
Type FR: Models with full customer reaction: customers control both, the
allocation of demand (by selecting the utility-maximizing facilities) and the
demand rates (user choice with elastic demand).

This classification is summarized on Table 17.1.
The NR models correspond to the standard directed choice assumptions in the

literature: the values of the assignment variables xij are entirely controlled by the
decision-maker and must only satisfy the basic constraints (17.5)–(17.7). One may



17 Stochastic Location Models with Congestion 495

Table 17.1 Model
classification by customer
response

Demand allocation

Decision-maker Customer

Inelastic demand NR AR

Elastic demand DR FR

also interpret such models as describing a “social optimum” (also known as “first
best solution” in economics)—the customers will accept whatever assignments are
needed to optimize the overall system objective, even if that means that some of
them may have to travel to more distant and more congested facilities than the ones
available in their immediate neighborhood. On the other hand, since the objective
function combines the costs borne by the decision-maker (facility costs SFC) with
those borne by the customers (travel cost ST C and waiting cost SWC), the interests
of both parties should be “balanced” in the solution. Customer demand is assumed
to be inelastic, with λj = λmax

j for all j ∈ J . Since customer utility has no effect
in this model, there is no need to define it. We note that xij are usually assumed
to be binary in NR models (though it is easy to construct examples showing that
higher objective values may be possible with fractional assignments). This is due
to the concern that enforcing fractional demand allocations is likely impractical in
most contexts. Thus, in NR models only the “minimal” constraints (17.5)–(17.7)
need to be imposed on demand allocations: the decision-maker is free to choose any
allocation that satisfies these constraints.

The other three model types assume some form of customer reaction in the form
of utility-maximizing behavior. The description of the utility mechanism is provided
next.

17.3.1 Customer Utility Functions

Recall that uj is the utility derived by customer j ∈ J from the service provided
by the facilities. Note that there are two costs borne by the customer: travel and
waiting. Suppose a customer experiences travel distance d (as before we assume
that distances have been redefined to represent travel costs) and expected system
waiting time. Let the utility U(d,w) be a non-increasing function of d and w. To
relate uj to U(d,w) we assume that the total utility derived by customer j is only
affected by the facility this customer actually visits. Since

∑
j xij ≤ 1, xij ∈ {0, 1},

this leads to

uj =
∑

i∈I
U(d(i, j),W i)xij , (17.29)

Note that this definition remains valid even when the single-sourcing assumption is
relaxed. In this case, xij ∈ [0, 1] represents the proportion of time facility i is used
by customer j , and uj can be interpreted as the resulting expected utility. Observe
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also that if a customer does not receive service from any facility, xij = 0 for all
i ∈ I and uj = 0.

Perhaps the most natural specification for the utility function U(d,w) is the
linear form

UL(d,w) = −(τdd + τww), (17.30)

where τd , τw > 0 are the relative weights on travel distance and waiting time,
respectively. When τw = 1, the parameter τd can be interpreted as the average
travel speed, so that τdd is the average travel time, and the right-hand side of (17.30)
represents the negative of the total expected time spent by the customer in the system
(until the end of service).

There are two other common specifications of U(d,w). The simpler one is

UD(d,w) = −τdd, (17.31)

i.e., customer’s utility is simply proportional to the traveling distance (representing
the travel cost) and is independent of the waiting time. This is a very popular
specification form appearing (often implicitly) in numerous SLCIS models. While
the lack of dependence on w may seem counterintuitive, it is usually justified by
assuming that customers do not have advance knowledge of waiting times at the
facilities and thus must make their decisions based on travel times only (though in a
steady-state system some learning about expected waiting times should, presumably,
occur). Alternative justification is that the waiting costs are dominated by the travel
costs. Perhaps more importantly, as will be seen below, specification (17.31) avoids
many technical complications that occur when a more general utility structure is
used and can thus be treated as an approximation.

Another natural specification is the log-linear form

UE(d,w) = exp(−τdd − τww), (17.32)

which is quite similar to (17.30) with the advantage of the utility being non-negative,
convex and bounded by 1. Note that UE(d,w) = 1 when d = w = 0, i.e., when
the customer incurs neither travel nor waiting cost, and UE(d,w) → 0 as d,w →
∞. This makes it convenient to interpret UE(d,w) as the proportion of maximum
available demand realized from customer j if this customer is faced with travel
distance d and expected wait w. This interpretation will be useful when describing
elastic demand models below.

Finally, we note that a utility function can be defined in terms of service measures
other than the expected waiting time—one can use the probability of waiting
P(Wq > 0), or any other performance measure of the queuing system operated at
the facilities. The specifications of the utility can also be generalized to incorporate
other decision variables, such as the price charged by the facility operator for service
(see Berman et al. (2014) for an example).
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17.3.2 SLCIS Models with Customer Reaction

Once a utility function is specified, it should be possible to specify the customer
reaction as well. At a first glance, this seems fairly straightforward: a SLCIS model
with customer reaction can be viewed as a Stackelberg Game, where the decision-
maker first specifies the number, locations and capacities of the facilities (i.e., values
of m, yi and μi for i ∈ I ) and then each customer selects a utility-maximizing
strategy, i.e. allocates their demand to the utility-maximizing facility. Unfortunately,
as we will see shortly, this may lead to situations where no equilibrium solution (i.e.,
set of choices for all customers) exists.

One fundamental issue is the implicit assumption that faced with the same set of
alternatives (here, set of open facilities and processing capacities) customers always
make the same choice. There is a rich body of research in marketing and economics
that suggests that this may not be the case. A related question is how well can
the customers measure their own utility? After all, if the utility function includes
waiting times, a stochastic element is automatically present in measuring U(d,w).
Other stochastic elements, including uncertainties about travel times or even the
non-waiting time aspects of the quality of the service interaction at the facility may
also be present. Game Theory and Marketing literature have defined two notions
of utility: deterministic and stochastic, with the associated large bodies of research.
SLCIS literature have also adopted these two different notions of utility, leading to
distinct classes of models.

As discussed below, in order to ensure the existence of equilibrium in deter-
ministic utility models one has to allow for fractional choice, where the customers
allocate their purchases among many (possibly all) facilities. Thus, the random
choice element naturally enters in the deterministic utility setting, with the allocation
vector derived from the equilibrium conditions. This set of models is discussed next.

An alternative approach, discussed in Sect. 17.3.2.4 is to assume a Proportional
Allocation (PA) mechanism, where customers allocate their demand among the
available facilities proportionally to the utility derived from each facility. The main
advantage of this approach is that the allocation vector is specified from the start in
closed form, leading to a simpler structure. Moreover, if one assumes a stochastic
utility setting together with some additional assumptions, the (PA) mechanism
naturally arises, providing additional axiomatic justification to this model class.

17.3.2.1 Customer Reaction Models with Deterministic Utility 1: Models
with Allocation-Only Reaction (AR)

Here we assume that, once the facility locations and service capacities are deter-
mined by the decision-maker, the customer allocates their demand so as to maximize
their deterministic utility function U(d,w). Moreover, AR models assume that the
demand rate of each customer node is fixed a priori, with λj = λmax

j for all j ∈ J .
For concreteness, we will assume the linear specification of the utility function
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UL(d,w) given by (17.30), though much of the discussion extends to alternative
specifications as well.

Even in this relatively simple setting complications quickly arise. This has to do,
primarily, with the fact that customer utility is a function of the waiting time Wi ,
which is not directly controlled by the decision-maker, but rather arises as a result
of joint actions of the decision-maker and all customers: the former determines
facility locations and capacities μi , while the latter determine the demand rates �i .
This gives rise to traffic equilibrium conditions, where the actions of one customer
(adjusting their demand rate λj and/or demand allocation xij ) change the waiting
times at the facilities and thus affect the utilities of all other customers. Thus, not
only is there a bi-level game being played between the decision-maker and the
customers, but there is also a simultaneous non-cooperative game being played
between the customers themselves. Moreover, the response functions in the latter are
rather complicated, which may lead to lack of equilibria (if customers are restricted
to simple strategies), or to multiple equilibria, not to mention serious difficulties
in computing these equilibria. We discuss these issues briefly below, referring the
interested reader to more general references on spatial equilibria, e.g., Nagurney
(1999).

Consider first the original “single-sourcing” assumption, i.e. that a customer will
only patronize a single facility. Utility maximization implies that if xij = 1 for some
i ∈ I and j ∈ J , then

UL
(
d(i, j),W i

) ≥ UL
(
d(k, j),Wk

)
for all k ∈ I with yk = 1,

which, assuming for simplicity that τw = τd = 1 in (17.30), is equivalent to

d(i, j) + Wi ≤ d(k, j) + Wk if yk = 1, k ∈ I.

Recalling that �i is given by (17.8) and Wi by (17.17), this leads to the following
equilibrium conditions that must be satisfied by allocations xij :

d(i, j) + Wi ≤ [d(k, j) + Wk]yk + M(1 − xij ), i, k ∈ I, j ∈ J (17.33)

Wi = (1 + γ 2)�i

2μi(μi − �i)
+ yi

μi + M(1 − yi)
, i ∈ I (17.34)

�i =
∑

j∈J
λmax
j xij , j ∈ J (17.35)

∑

i∈I
xij ≤ 1, j ∈ J (17.36)

xij ≤ yi, i ∈ I, j ∈ J (17.37)

xij ∈ {0, 1}, (17.38)
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where M is a suitably large constant. We assume that some finite limit can be
imposed on the expected waiting time Wi at any facility and that M ≥ d(i, j)+Wi

for all j and i.
Of course a trivial solution to this system is to have xij = 0 for j ∈ J, i ∈ I

(which also implies Wi = 0 for all i ∈ I ), i.e., to have complete loss of all customer
demand. Clearly, we are interested in non-trivial solutions where at least some
customers choose to obtain service. On the other hand, the system may not have
enough capacity to serve all customers. We therefore make the following definition.

Definition 17.1 A subset of customer nodes J ′ ⊂ J is serviceable if

∑

j∈J ′
λmax
j ≤

∑

i∈I
μi.

A subset J ′ is fully served if
∑

i∈I xij = 1 for all j ∈ J ′, i.e. if (17.36) holds as
equality for all j ∈ J ′.

This definition simply assures that there is sufficient capacity to serve any service-
able subset. We are interested solutions where at least some serviceable subsets of
J are fully served. Unfortunately, the system (17.33)–(17.38) may have no such
solutions.

Example 17.1 Consider a network with one customer node j and two facility nodes
0, 1 both of which contain facilities, i.e., y0 = y1 = 1. Assume further that
μ0 = μ1 > λmax

j , and thus J = {j } is serviceable. Assume d(j, 0) = d(j, 1).
Then, since Wi = 0 if xij = 0 and Wi > 0 when xij = 1 for i = 0, 1, there is
no feasible solution to the system (17.33)–(17.38). Indeed, if customers at j select
facility i, it creates non-zero waiting time at that facility, making the other facility
a utility-maximizing choice. Other similar examples of non-existence of equilibria
with binary allocation vectors are easy to construct. �

The underlying reason for the phenomena illustrated above is that single-sourcing
strategies create discontinuities (a facility receives either all of customer’s demand,
or none of it), while the existence of equilibria typically requires continuity of the
underlying functions. Indeed, intuitively it is clear that in the previous example
equilibrium allocations are achieved if the customers at j visit each facility with
equal frequency. This, of course, requires the relaxation of the single-sourcing
assumption, allowing xij to take on fractional values, which are interpreted as
visit frequencies. In addition to replacing (17.38) with its linear relaxation, the
equilibrium-defining inequality (17.33) has to be adjusted as follows.

Recall the definition of uj given by (17.29), which is now interpreted as the
expected utility for customers at j ∈ J given a fractional allocations vector xij , j ∈
J, i ∈ I (we emphasize that the waiting times are affected by the allocations of all
customers, not just the ones at j ). We seek allocations under which no customer can
improve their utility by making unilateral changes. It follows that the equilibrium



500 O. Berman and D. Krass

utilities u∗
j , j ∈ J must satisfy

d(i, j) + Wi

{
= −u∗

j if xij > 0;
≥ −u∗

j if xij = 0
(17.39)

(recall that we are assuming linear utilities which are equal to the negative of total
travel and waiting times). These conditions can be represented by replacing (17.33)
with the following complementarity conditions:

d(i, j) + Wi ≥ vj , j ∈ J, i ∈ I (17.40)

(d(i, j) + Wi − vj )xij = 0, j ∈ J, i ∈ I (17.41)

vj ≥ 0. (17.42)

Note that for a feasible solution we must have vj = −u∗
j , indicating that the new

decision variable represents the equilibrium “disutility” for customers at j ∈ J . We
will refer to a solution of the system (17.34)–(17.42) as Customer Flow Equilibrium.

The following result follows directly from Theorem 5.4 of Ashtiani and Magnanti
(1981) by continuity of U

(
d(i, j),W i(x)

)
for all j ∈ J, i ∈ I , where x is a

fractional allocation vector with components xij .

Theorem 17.1 For any values of yi ∈ {0, 1} and μi ≥ 0 such that μi ≤ Myi , if a
subset J ′ ⊂ J is serviceable, then there exists at least one customer flow equilibrium
xij , j ∈ J, i ∈ I under which J ′ is fully served.

In particular, if the system has the capacity to service all of customer demand,
i.e., J is serviceable, at least one customer flow equilibrium must exist under which
all customers are served.

The discussion and the result above is quite general: in particular, they extend
models with elastic demand (i.e., models of type FR discussed below). Additionally,
in place of the expected waiting time for an M/G/1 queue, a general measure of
“congestion” can be used with the only requirements that it is strictly increasing,
twice differentiable, non-negative and convex (recall that all capacity decisions are
considered to be fixed in this section). These requirements are clearly satisfied
by most performance measures for queueing systems, including multi-server and
limited-buffer queues. We refer the reader to Brandeau et al. (1995) for a discussion
of these more general settings.

It is important to realize that the customer flow equilibrium may not be unique.
In fact, as illustrated in the following example, there may be multiple allocation
vectors satisfying the equilibrium conditions for a particular fully served subset of
customer nodes.

Example 17.2 Consider adding a second identical customer node j ′ to the system in
Example 17.1. Now, if customers at both nodes are assigned to different facilities:
xij = 1, x(1−i)j = 0, xij ′ = 0, x(1−i)j ′ = 1 for j = 0, 1, we have two different
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equilibria. In fact, there may be infinitely many equilibria: any assignment satisfying

xij = α, x(1−i)j = 1 − α, xij ′ = 1 − α, xij ′ = α, α ∈ [0, 1]

is also an equilibrium. �
In principle, different equilibrium allocation vectors may lead to different values

of the objective function in the underlying SLCIS model, creating uncertainty as to
which solution will actually arise. However, all equilibria are “similar” in certain
key aspects, as shown in the following theorem based on the result in Brandeau and
Chiu (1994):

Theorem 17.2 For any two customer flow equilibria under which the same subset
J ′ ⊂ J is fully served, the values of Λi i ∈ I (total demand seen at each facility)
and uj , j ∈ J (equilibrium utility of each customer) are the same.

This theorem implies that, under a sensible specification of the objective function,
where the total travel and waiting cost for each customer node is a function of uj ,
all equilibria will give rise to the same values of the objective.

While the previous results show that AR models with multi-sourcing demand
allocations are well-posed, there is an important issue concerning computational
tractability of system (17.34)–(17.42). Even for fixed facility locations and capac-
ities, solving the customer flow equilibrium conditions is far from easy. While the
system is a linear complementarity problem with respect to variables vj ,Wi and xij ,
the waiting time is, in general, non-linear with respect to the capacity decision μi ,
resulting in a non-linear complementarity problem, which is often computationally
challenging.

While certain numerical approaches (described in Nagurney 1999) do exist, they
are computationally heavy even for moderate-size problems (see Tong 2011). Often,
to get reasonable algorithmic efficiency one has to make simplifying assumptions
about the system. For example, assuming M/M/1 allows for a variable substitution
μi = λi+1/Wi , where the waiting times, rather than capacities, are used as decision
variables. This turns the equilibrium conditions into a linear complementarity
problem, making the system much more solvable. Zhang et al. (2010) were able
to compute equilibria for such a system with |J | ≈ 500 and |I | ≈ 40 (note that their
model also had elastic demands, which likely increased computational complexity).
However, computing the equilibrium is only a subproblem of an SLCIS model. Thus
embedding even a simplified computation in an overall exact optimization procedure
is very computationally challenging. Hence both of the papers cited above resort to
search heuristics for the upper level (location and capacity allocation decisions).

An interesting recent development was presented in Aboolian et al. (2016) who
show that for the M/M/1 system traffic equilibrium constraints can be linearized
through the introduction of additional binary variables zij = 1 if xij > 0 (i.e.
customer j makes some use of facility i) and zij = 0 if xij = 0. It is not clear if this
approach can be extended to non-M/M/1 settings.
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In view of the difficulties involved in using the customer flow equilibrium
approach above, it is natural to think of model simplifications. We mention two
such approaches. One is to keep the single-sourcing assumption in spite of the
possible non-existence of equilibria (see Zhang et al. 2009). The reason this may be
reasonable is that, as mentioned earlier, non-existence is a result of discontinuity—
when re-assignment of a single customer alters the waiting times at the facility
for the remaining customers. It is reasonable to assume that for realistic problem
instances, this should not be an issue: as the number of customers and customer
nodes grows, no single assignment should exert a significant impact on waiting
times at the facilities. Thus, asymptotically, single-sourcing equilibria should
emerge. Indeed, Zhang et al. (2009) did not report issues with non-existence of
equilibria when solving realistic-size problem instances for mammography clinics
in Montreal, Canada. The obvious advantage of the single-sourcing approach is that
the system (17.33)–(17.38) is much easier to solve and can be embedded as part of
constraints in a larger SLCIS model.

The second approach is to use distance-only utilities UD(d) given by (17.31).
Since these are independent of waiting times, the existence of customer flow
equilibria is no longer an issue; utility-maximizing behavior by customers merely
implies that once facility locations are specified, each customer travels to the closest
facility, replacing (17.33) with

d(i, j) ≤ d(k, j)yk + M(1 − xij ), i, k ∈ I, j ∈ J, (17.43)

which leads to significant simplifications (obviously, single-sourcing assumption
can be retained here as well).

Another alternative, which bypasses some of the difficulties discussed above, is
to use stochastic utility model, which is discussed in Sect. 17.3.2.4.

17.3.2.2 Customer Reaction Models with Deterministic Utility 2: Models
with Demand-Only Reaction (DR)

In this model class, the decision-maker has the control of the demand allocation
vector x, however, the demand λj = λ(uj ) for customer node j ∈ J is assumed to
be a function of the utility uj realized by customers at j . Following Brandeau et al.
(1995) we assume that

λj = λmax
j h(uj ),

where, as defined earlier, λmax
j is the maximum possible demand rate at node j and

h(u) ∈ [0, 1] is a strictly decreasing, twice differentiable function with h(0) = 1 and
h(u) → 0 as u → umin

j , where umin
j is the lower bound on the utility for customers

at j (e.g., if utilities are scaled to be non-negative, then we can set umin
j = 0). Thus,
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h(uj ) can be interpreted as the percentage of the maximum available demand at j
that is “captured” by the system; it is often called the “participation rate”.

Recall that by (17.29), the utility uj is a function of the waiting time and
travel distance faced by customers at j . As in the case of NR models, we will
assume that xij is binary, motivated by the same considerations: when customer
demand allocations are dictated by the decision-maker, rather than by an equilibrium
condition of the previous section, enforcing fractional assignments is typically
unrealistic. Thus, assuming all customers at j will be served (as will be shown
below, this assumption holds automatically in DR models), xij = 1 for exactly one
i = i(j) ∈ I . Then, the demand from customer j that is captured in response
to the offered travel distance of d(i(j), j) and waiting time Wi(j) is given by the
composition of the decay function and the utility functions by:

λj (d(i(j), j),Wi(j)) = λmax
j h(U(d(i(j), j),Wi(j))), j ∈ J. (17.44)

One example of a functional forms that satisfy the required assumptions is the
identity function h(u) = u together with the exponential utility UE given
by (17.32), leading to the popular “exponential decay” demand specification:

λj (d(i(j), j),Wi(j)) = λmax
j exp(−τdd(i(j), j) − τwWi(j)), j ∈ J. (17.45)

While this expression is assumed in several published DR models, most of the
results below apply to more general functional forms as well. Observe that (17.44)
implicitly defines an equilibrium condition: the left-hand side depends on the
waiting time Wi(j) at facility i(j), which is a function of demand �i(j) =∑

j∈J λjxi(j),j seen by this facility. Thus, (17.44) should be seen as a system of |J |
equations that must be solved to yield the actual demand rates; this system decouples
into subsystems consisting of all customers j ∈ J assigned to facility i (i.e., with
i(j) = i) for each open facility (i.e., yi = 1). Thus, even though the allocation
variables xij are fixed (or, rather, set by the decision-maker) for DR models, the
issues related to existence and uniqueness of equilibria must be dealt with. The
following result is based on Berman et al. (2014), where it is established for the
case where price r is also a decision variable.

Theorem 17.3 For any given facility location, capacity, and demand allocations
yi, μi, xij for i ∈ I, j ∈ J , there exist a unique equilibrium arrival rates
λj (d(i(j), j),W i(j)) and waiting times Wi .

Note that, unlike the case for AR models, this result holds with binary demand
allocations xij (it obviously extends to the fractional allocations as well). As
illustrated in Aboolian et al. (2012), as well as in Berman and Kaplan (1987),
computation of the equilibrium demand is relatively simple in this case, based on
the fixed-point iteration approach.

An interesting feature of the DR model is that it is self-regulating: as waiting
times become longer at the facilities, customer demand is automatically reduced.
Thus, the system stability is assured by (17.44) without the need for explicit
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constraints (17.9). Moreover, even though customer assignments are “dictated” by
the decision-maker through the specification of xij , assigning a customer to a more
distant or more congested facility leads to a lower demand λj , with the resulting
loss of revenue. Thus, the model assures that the objectives of the decision-maker
and customers are aligned, while avoiding the complexities of full traffic equilibrium
treatment (another way to interpret the DR model is that the hard constraint requiring
each customer to be assigned to their utility-maximizing facility is replaced with a
soft constraint, allowing violations of such assignments at a cost). In fact, Aboolian
et al. (2012) report (based on computational experiments) that at optimum all
customers are almost always assigned to their utility-maximizing facility, though
rare exceptions do occur.

The behavior of DR model involves an interesting feedback loop: as the service
offered by the facilities is improved (by locating the facilities closer to customer
nodes, or allocating more capacities to the facilities), the customers respond by
generating more demand (positive feedback), which leads to increased congestion
at the facilities, leading to reduced demand (negative feedback). Thus one could
legitimately ask whether models with elastic demand may lead to counter-intuitive
results where service improvements result in a net loss of demand. Fortunately, this
is not the case as shown in the following result from Berman et al. (2014):

Theorem 17.4 For j ∈ J , let λj (dj ,wj ) be the equilibrium demand rate when the
travel time is dj and the expected waiting time is wj . Then λj is non-increasing in
dj and wj (strictly decreasing when the utility function is strictly decreasing in the
corresponding parameter).

Thus, with a reasonably behaved utility function, when the service offered to
customers at j ∈ J is improved in terms of either travel distance or waiting time,
or both, the demand rate increases, leading to higher revenue for the decision-
maker (for this customer node). Since nodes that are currently not served (i.e., with∑

i xij = 0) can be treated as having the travel distance that is so high that the
demand rate is negligibly close to 0, the decision to serve these nodes by assigning
them to any open facility can be treated as reducing the travel distance. This leads
to the following result:

Corollary 17.1 In the elastic demand case, there exists an optimal solution to
SLCIS where every demand node is served.

17.3.2.3 Customer Reaction Models with Deterministic Utility 3: Full
Response Models (FR)

In this model class, the customer response to facility location and capacity allocation
decisions includes both the level and the allocation of demand. Thus, the equilibrium
values of xij and λj are described by a system that includes flow equilibrium
conditions (17.40)–(17.42), as well as the elastic demand equilibrium (17.44). The
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existence and uniqueness of equilibria are assured by the following corollary:

Corollary 17.2 The equilibrium existence and uniqueness results of Theorems 17.1
and 17.2 extend to the FR model class.

The reader can refer to Brandeau et al. (1995) for further details; note that the
uniqueness result has the same limitations as for the AR models (i.e., uniqueness
can only be guaranteed with respect to the values of the objective, provided the
objective function is suitably defined). Also, just as in AR models, this corollary
requires fractional allocation vectors xij .

The computation of equilibrium solutions presents even more challenges than
for AR models. One approach to deal with this complexity is by using the DR
model as an approximation—as noted above, computational experiments suggest
that optimal solutions to DR and AR models often coincide. Another approach,
which is becoming more popular, is to use an alternative specification of demand
allocation vectors described in the following section.

17.3.2.4 Proportional Allocation (PA) Models

As discussed above, the PA modelling framework is based on the assumption that
customers allocate their demand among many (possibly all) facilities in proportion
to the utility derived from these facilities. Essentially, each customer node j ∈ J is
viewed as a “market” with facilities competing for shares of this market.

The simplified structure, where customer demand allocations appear in closed
form and can be analyzed for additional insights, together with several attractive
mathematical properties have attracted significant recent interest to this model class,
with several new approaches appearing since the first edition of this book.

These models have their theoretical origins in the MCI model of Cooper and
Nakanishi (1988). As discussed below, they are also closely linked to stochastic
utility theory. In the competitive location literature these models have appeared
under many names, including “competitive interaction models”, “Huff-type mod-
els”, “gravity models”, “multinomial logit models”, “market-share models”. While
there are minor specification differences between these, the basic structure remains
the same; we refer the reader to Chap. 14, as well as the review by Berman et al.
(2009a).

Since SLCIS models of AR and FR type can be regarded as bi-level games played
between the decision-maker and the customers, proportional allocation mechanism
can be applied to the SLCIS context as well. This mechanism specifies the solution
to the non-cooperative game played between customers once the decision-maker’s
strategy is specified as follows: for customers at j ∈ J and (open) facility at i ∈ I ,
the demand allocations are given by

xij = U(d(i, j),W i)yi
∑

k∈I U(d(k, j),Wk)yk
, (17.46)
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where the numerator represents the utility derived from facility i by customers at
j , and the denominator is the total utility derived by customers at j from all open
facilities. Note that if there are any pre-existing competitive facilities that may attract
customer demand, they should be included as additional term

∑
k∈C U(d(k, j),Wk)

in the denominator, where C is the set of competitive facilities. To simplify the
exposition, we will assume no competitive facilities in the remainder of the current
section.

Note that with the specification (17.46), it is easy to see that
∑

k∈I xkj = 1 for
all customers j , implying that all of customer’s visits will be captured by the open
facilities. In case where none of the open facilities provide adequate service (e.g., all
are too far away to be considered), this may be unrealistic. A common modification
is the inclusion of “outside option”, i.e., the option for the consumer not to use the
service offered by the facilities at all. Suppose the utility of this option for customers
at j is given by U0j . Then by adding this term to the denominator of the expression
above we obtain

xij = U(d(i, j),W i)yi

U0j +∑
k∈I U(d(k, j),Wk)yk

, (17.47)

where the outside option is modeled as a pre-existing competitive facility providing
utility constant U0j . Observe that in this case

∑
k∈I xij < 1.

In both cases, the demand allocations are fractional, and the demand rate from j

attracted by facility i is given by λj xij . For deterministic utility models we drew a
distinction between FR and AR models depending on whether λj is elastic or not.
A similar distinction can, in principle, be drawn for PA models, with λj = λmax

j

for AR models and λj being elastic with respect total utility derived by customer j
from all facilities: Uj = ∑

i U(d(i, j),W i)xij . While PA-FR models of this type
have been considered in deterministic location literature (see, e.g., Aboolian et al.
2007, 2012), we are not aware of any SLCIS models of this type. Thus, all current
PA models follow the AR assumption that available customer demand at each node
is equal to λmax

j .
Note, however, that when specification (17.47) is used, the resulting model

automatically retains some aspects of elastic demand. This because the total
captured demand from customers j is given by λmax

j (1 − 1
U0j+Uj (I )

), where

Uj(I) = ∑
k∈I U(d(k, j),Wk)yk is the total utility derived by customers at j

from the service offered by all open facilities. Thus, as the value of offered service
declines, the amount of captured demand declines as well—exhibiting similar
behavior as when the demand is specified explicitly. The fact that this elasticity
of demand is represented by a single model parameter U0j makes the model
(as well as the parameter estimation) simpler, accounting for the popularity of
this representation. On the other hand, it should be obvious that explicit demand
specification via (17.45) provides much more modeling flexibility.

To complete the specification of the proportional allocation model one needs
to select a particular utility function. The popular Multinomial Logit (MNL)
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specification (McFadden 1974) employs exponential utilities, leading to

xij = exp(−τdd(i, j) − τwWi)yi

U0j +∑
k∈I exp(−τdd(k, j) − τwWk)yk

, (17.48)

where weights τd , τw, as well as the outside option parameter U0j can be estimated
from the available consumer demand allocation data using the MNL methodology.

Two interesting observations can be made with respect to the MNL model. First,
it can be derived axiomatically from the stochastic utility theory. The following
discussion is based on McFadden (2005)—please refer there for further details. If
one assumes that customer utility is given by

Us
ij = UL(d(i, j),W i) + εij ,

where UL(d,w) is the linear utility function given by (17.30) and εij is a Gumbel
random variable, then under further assumption that Independence of Irrelevant
Alternatives holds, Eq. (17.48) can be shown to be a unique equilibrium demand
allocation vector. This important result, due to McFadden (1974), provides a link
between stochastic utility and proportional allocation models. Indeed, the (MNL)
model is extremely popular in econometrics and marketing literature, being the
dominant model in brand choice and related fields. On the other hand, Independence
of Irrelevant Alternatives assumption is routinely observed to be broken, leading to
many generalizations of stochastic utility models; see McFadden (2005) for further
discussion.

The second observation for the (MNL) model is that, under very mild conditions,
the user equilibrium conditions (17.33) can be regarded as the limiting case of the
(MNL) model above. Assume that the weights τd, τw are scaled by same parameter
θ . It is shown in Fisk (1980) that the (MNL) allocation (17.48) approaches the user
equilibrium solution (17.39) as θ → ∞. This result holds as long as the waiting
times at the facility are continuous and non-decreasing in the total demand seen by
the facility. Thus, the (MNL) model can be viewed as a proper generalization of the
user equilibrium model with exponential utilities. This, together with its attractive
analytical properties described below, accounts for the popularity of this model in
some of the recent SLCIS papers.

The key advantage of the proportional allocation approach is that the values of
xij are directly computable from (17.46) or (17.48) without having to solve the
cumbersome flow equilibrium equations. Nevertheless, it is important to recognize
that an equilibrium condition is implicit in the definition above, even in the case of
models with inelastic demand: the expressions for xij above are functions of waiting
times Wi , which, in turn, are functions of xij . Thus, (17.46) together with waiting
time specification (17.17) and facility-level demand specification (17.8) form a
system of non-linear equations. A solution to this system represents the equilibrium
demand allocations and waiting times. The issues of existence and uniqueness of the
equilibrium were examined in some detail by Lee and Cohen (1985). The existence
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follows directly from standard fixed-point results and the continuity of xij in (17.46)
and is based on Theorem 1 in Lee and Cohen (1985):

Theorem 17.5 There exists an equilibrium solution (xij ,W i, λj ), i ∈ I, j ∈ J to
the proportional allocation model.

Lee and Cohen (1985) also examine uniqueness and stability of equilibria, where
stability refers to whether a system where customers start with some arbitrary
demand allocations, evaluate their utilities and then re-allocate according to (17.46)
will naturally reach an equilibrium. They derive sufficient conditions for both
uniqueness and stability.

Theorem 17.6 For proportional allocation models the equilibrium is unique and
stable

Some of the key results stated above also extend to PA models of FR type
(i.e., elastic demand), though sometimes certain additional conditions are required.
However, as noted earlier, no SLCIS models of this type have been described in the
literature (though AR models with outside option partially fill this gap).

17.4 General SLCIS Model Specification

In this section we summarize the discussion in the preceding sections. Putting all
the modeling components together allows us to provide the following formulation
for the General SLCIS with M/G/1 queues at facilities:

maximize Z =
r
∑

j∈J
λj
∑

i∈I
xij (17.49)

−
∑

j∈J

∑

i∈I
βd(i, j)λjxij (17.50)

−
∑

j∈J

∑

i∈I
WC(W i)xij (17.51)

−
∑

i∈I
FCiyi −

∑

i∈I
V C(μi) (17.52)

Wi = (1 + γ 2)�i

2μi(μi − �i)
+ yi

μi + M(1 − yi)
, i ∈ I

(17.53)

[ λj specification for DR and FR models ] (17.54)

[ xij specification for AR, FR, and PA models ] (17.55)
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[ Coverage Constraints ] (17.56)

[ SC Constraints ] (17.57)
∑

i∈I
yi ≤ m (17.58)

�i =
∑

j∈J
λjxij , i ∈ I

(17.59)
∑

i∈I
xij ≤ 1, j ∈ J

(17.60)

xij ≤ yi, i ∈ I, j ∈ J

(17.61)

μi ≥ �i i ∈ I, j ∈ J

(17.62)

xij ≥ 0; μi ≥ 0; yi ∈ {0, 1}. (17.63)

The objective function (17.49)–(17.52) represents the total profit which includes
the revenue, travel, congestion, and facility fixed and capacity costs, respectively.
Constraints (17.53) define the expected waiting time for M/G/1 queues. These
can be substituted with constraints defining other relevant congestion measures,
different queueing mechanisms or both. Specifications (17.54) are only relevant
for elastic demand models of type DR and FR type; when the demand rate is
assumed to be inelastic, one should omit these and set λj = λmax

j . Similarly,
specifications (17.55) are only relevant for user-choice models of AR and FR
type. Constraints (17.58)–(17.62) enforce the basic interconnections between the
decisions variables and are typically present in some form in all models.

To the best of our knowledge, no published work contains all components listed
in the general formulation above. The specific SLCIS models considered in the
literature typically include only some of the terms in the objective function, differ in
terms of the queueing assumptions and performance measures, as well as in which
(if any) of the specifications (17.54)–(17.57) to include. The models also differ in
terms of the decision variables. While variables yi and xij are present in all models
we are familiar with (though xij may be restricted to binary values only), most
models will assume that the number of facilities is m and not a decision variable.
Many models also assume that all facilities have identical capacity μ, thus dropping
the decision variables μi as well.

It is clear that the variety of SLCIS models one can define by mixing and
matching different parts of the general formulation above is almost unlimited. In the
next section we try to bring some structure to the models considered in the literature
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by grouping them around some common themes and describing the key challenges
and solution techniques that have been developed for them.

17.5 SLCIS Models in the Literature: Overview and
Classification

Our primary focus (with a few exceptions) is on relatively recent SLCIS models that
have appeared since the survey of Boffey et al. (2006).

As noted earlier, the published SLCIS models constitute a rather bewildering
pattern of different assumptions, constraints and response mechanisms. However,
several common themes do emerge, allowing us to identify five common types of
models: Coverage-Type (CT), Service-Objective (SO), Balanced-objective (BO),
Explicit Customer Response (ECR), and Proportional Allocation (PA) models.
These are described in more detail in the following sections. The relevant references
are summarized on Tables 17.2–17.6. These tables have the following format: the
first column identifies the reference by the list of authors/year of publication; the
next two columns identify the Model Class by customer response type, as well as
by the utility function used, if applicable. The following three columns indicate
the main underlying system assumptions: the nature of the queuing system, and
whether the number of facilities and the number of servers are flexible or not. The
next two columns identify the presence of coverage and service level constrains.
The following five columns indicate the presence of the corresponding terms in the
objective function. The last two columns briefly describe the solution approach and
any additional comments.

17.5.1 Coverage-Type (CT) Models

These models, listed on Table 17.2, aim to design the system that provides adequate
service to customers, where adequacy is usually defined through travel distance
and congestion delays, which are controlled through coverage and service level
constraints, respectively. The defining feature of this model class is the presence
of general coverage constraints (17.56), for instance constraints (17.13). The CT
models include Baron et al. (2008), Berman et al. (2006), Kakhki and Moghadas
(2010), Marianov and Serra (1998). These models were among the very first SLCIS
models to be considered, dating back to Marianov and Serra (1998), and stem
directly from similar models for systems with mobile servers (see Berman and Krass
(2002) for an extensive discussion).

CT models usually assume that it may not be possible to provide adequate
service to all customers and thus demand losses may occur. The objective is
typically to maximize the “captured” demand, i.e., the total demand of customers
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who get adequate service. The travel and congestion costs are not included in
the objective as these are controlled through the corresponding constraints. Earlier
models were of type NR (directed choice); later models tended to be of type AR,
but customer allocations were assumed to be only a function of travel distance,
i.e., the underlying utility is given by (17.31), avoiding all complications related to
equilibrium behaviors. It is interesting to note that even though demand is assumed
to be inelastic, the assumption of demand losses can be viewed as (a rather crude)
form of demand elasticity—corresponding to an implicit stepwise utility function,
with customers using service only if coverage and service level constraints are met.

The typical formulation maximizes the objective consisting of (17.49) with
revenue r = 1, reflecting the maximization of captured demand, subject to
constraints (17.56)–(17.61). For models of type AR, one also adds constraints
specifying the allocations. These enforce each customer to travel to the closest
available facility. These constraints can be specified in various forms; see Berman
et al. (2006) for a discussion.

It can be seen that this leads to a formulation which is a linear mixed-integer
program (MIP), except for the service level constraints. However, as discussed in
Sect. 17.2.3.2, under some conditions, the latter can be linearized. Recall that a
general service level constraint can be recast as either (17.23), requiring adequate
service capacity at each facility, or (17.24), placing an upper limit on the allowed
arrival rate at each facility. When the capacities μi are decision variables, these
reformulations remain non-linear. However, if one makes a simplifying assumption
that all facilities have identical service rate μ (for multi-server facilities, this implies
assuming identical number of servers at all facilities), non-linearities disappear. This
is a common assumption in CT (and some other SLCIS) models: Berman et al.
(2006), Kakhki and Moghadas (2010), Marianov and Serra (1998) assume identical
and pre-specified service rates at the facilities. Under this assumption, (17.24) takes
the form

�i ≤ �̄,

where the right-hand side is a constant which depends on the desired service level
and is computable in advance. This shows the equivalence of a CT model with fixed
service rates to the capacitated location problems. Such connection is discussed at
length in Boffey et al. (2006).

The resulting linear MIP may, in principle, be solved exactly using off-the-shelf
software, such as CPLEX. However, as pointed out in Berman et al. (2006), the
formulation resulting from the addition of linearized service level constraints and
the “closest assignment” constraints tends to be large and not very tight, causing
computational difficulties for even moderately-sized instances. This has led Berman
et al. (2006) and other authors to develop heuristic approaches.

We note an important result from Baron et al. (2008), who studied a very general
version of the CT model, where both the number and the capacities of facilities are
decision variables and the facility-related costs are quite general (in their version,
all customer demand must be served and the objective is to minimize fixed and
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variable location costs). They show that, under quite general conditions, the optimal
facility configuration is one that ensures that each facility sees (approximately) the
same demand, i.e., ideally, �i = �k should hold for all open facilities i, k ∈ I

(identical demand may not be possible to achieve when customer demand originates
from discrete nodes and single-sourcing assumption is made). Once the facility
locations are decided, the optimal capacities μi can be computed through a separate
optimization model.

This result provides an important insight for CT models: when the goal is to
ensure “satisfactory” service experience, the optimal design should equalize loads
on the facilities. This leads to an “Equitable Location Problem”—a deterministic
problem where one seeks to locate a set of facilities so that the attracted demand
is distributed as evenly as possible. Such problem was addressed in Baron et al.
(2007), Berman et al. (2009b), and Suzuki and Drezner (2009).

While traditional applications of CT models (with or without congestion) is in
emergency services, an interesting new theme is the location of recharging stations
for electrical vehicles. Due to limited battery range, coverage constraints are crucial.
On the other hand, user choice behavior must be taken into account as well. An AR-
type SLCIS model with these features is developed in Yang (2018), where each
station is modeled as an M/M/K queue, with the number of stations and the number
of servers at each station being decision variables. A service constraint limiting the
probability of long waits is assumed. Users select facilities based on travel distance
and capacities, not waits, which eschews the issues related to traffic equilibria (but
the assumption does seem questionable). Due to non-equal capacities at the facilities
and non-linearities inherent in the M/M/K system, a heuristic approximation is
developed to linearize the SC constraints.

17.5.2 Service-Objective (SO) Models

These models, listed on Table 17.3, seek to design a system that optimizes “customer
service” using limited resources. Here “limited resources” means that the number of
facilities to be located and the total available service capacity are specified through
constraints, rather than through the objective function term (17.52). “Customer
service” is typically defined as the combination of travel and congestion costs;
thus the objective function typically includes terms (17.50) and (17.51). Since the
congestion cost term (17.51) only measures the aggregate congestion, some authors
(e.g., Boffey et al. 2010; Marianov et al. 2009; Marianov and Serra 2011; Wang
et al. 2002) impose service level constraints to ensure that congestion is controlled
at each facility. SO models assume inelastic demand, so the revenue term is missing
in the objective as all available customer demand is assumed to be “covered” (even
though some models do allow for demand losses due to congestion, these losses are
controlled through service level constraints). Thus, all customers must be assigned
to facilities and constraint (17.60) is specified as equality.
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The models of this class are either of NR or AR type with distance-based utility
function (customers travel to the closest open facility). An interesting exception is
the use of AR model with proportional allocation and exponential utility (17.32)
by Drezner and Drezner (2011) (though they do not comment on the existence
and uniqueness of the equilibrium solution, it is in fact assured by the results cited
earlier).

While the constraint set for SO models is quite similar to that of CT models
(in fact, it is somewhat simpler since the coverage constraints and, in some
cases, service level constraints are missing), inclusion of the congestion term in
the objective leads to a non-linear model for which finding exact solutions is
problematic. This difficulty is further compounded when the queues at the facilities
are of multi-server type and/or have non-Markovian service times: in these cases
exact closed-form expressions for the congestion-related performance measures are
either not available, or are quite complex, requiring a separate procedure to evaluate
the congestion levels for a each set of values of the facility location and customer
allocation decision variables. For this reason, the proposed solution methods are all
heuristic-based, typically employing meta-heuristic approaches such as tabu search,
simulated annealing, and genetic algorithms.

SO models become significantly more complicated when capacities of facilities
are allowed to be flexible (i.e., when μi are not assumed to be identical at all
facilities). Most of the published models assume identical capacities, with Aboolian
et al. (2009) and Berman and Drezner (2007) being notable exceptions.

17.5.3 Balanced-Objective (BO) Models

These models seek to design a system that “balances” the costs incurred by the
two main “players” in the system: customers, who bear the travel and congestion
costs, and the decision-maker who bears facility-related costs. They are listed on
Table 17.4.

One may view BO models as seeking to achieve a “social optimum”; the
objective functions in these models are similar to social welfare functions in
economics, with the resulting models being similar to the “first best” models. Since
the objective incorporates customer concerns, the models are typically of NR type:
customers accept the directed assignments to optimize “social welfare”, even if this
leads to assignments that are suboptimal from individual customers’ point of view
(two references that incorporate customer response are Aboolian et al. 2008 and
Abouee-Mehrizi et al. 2011). The demand is assumed to be inelastic. The coverage
and service level constraints are typically absent, as service adequacy is addressed
by the objective; the one exception appears to be Aboolian et al. (2018) where
service constraint is present in one of the three proposed models.

The objective function typically includes the “customer-borne” cost terms
(17.50)–(17.51) representing travel and congestion costs, as well as the “operator-
borne” facility costs (17.52). Since most models do not assume any demand losses,
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the revenue term (17.49) is not included; the exception being Abouee-Mehrizi et al.
(2011), who model revenue losses due to balking and thus optimize the net profit.
Two of the models in Aboolian et al. (2018) include penalty terms for late deliveries
(i.e., delayed service), where the penalty is charged per instance or per amount of
delay.

Most models in this class assume relatively simple queuing systems at the
facilities with the two recent exceptions being Hoisenpour and Ahmadi-Javid
(2016) who study a system with random service interruptions, and Azizi et al.
(2017) who assume M/G/1-based hub-and-spoke system.

Other distinguishing features of most BO models are typically simple constraint
sets and the inclusion of flexible capacity at the facilities as the decision variables.
The main solution difficulty stems from the non-linearities inherent in the conges-
tion (third) term of the objective function (17.51). There are several approaches for
either making these terms less complex or linearizing them, leading to interesting
exact algorithms. We describe two such approaches below.

The first is based on Castillo et al. (2009). They assume an M/M/1 queuing
system at the facilities and use the average number of customers in the system
Li(�i, μi) as the performance measure at facility i. For M/M/1 queue, this can
be written as

Li(�i, μi) = �i

μi − �i

. (17.64)

All costs are assumed to be linear and uniform (i.e., identical for all facilities),
leading to the following objective function:

minimize Z = β
∑

j∈J

∑

i∈I
d(i, j)λj xij + WC

∑

i∈I
Li(�i, μi) + FC

∑

i∈I
yi + VC

∑

i∈I
μi,

(17.65)

where WC,FC,V C are the waiting cost, fixed cost and variable cost parameters
respectively. This function is minimized subject to constraints (17.58), (17.60)
specified as equality, as well as (17.59), (17.61) and (17.62).

Note that for any specified values of xij and yi , the optimal capacity μ∗
i can be

determined separately for each facility. Indeed, it is not difficult to show that

μ∗
i = �i +

√
WC

VC
�i.

Observe the similarity of this expression to (17.25) discussed earlier. It also has
the same interpretation: the optimal capacity at facility i consists of the minimal
level �i , necessary to ensure system stability, and “capacity cushion” which grows
with the square root of �i and whose size depends on the ratio of waiting and
capacity costs. Substituting the last expression into (17.65) and performing some
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algebraic manipulations and noting that for NR models the total customer demand
is an exogenous parameter, allows us to re-state the objective function as

mininize Z = β
∑

j∈J

∑

i∈I
d(i, j)λjxij + 2

√
WC · VC

∑

i∈I

√∑

j∈J
λj xij + FC

∑

i∈I
yi,

subject to constraints (17.58), (17.61), and (17.60) specified as equality; the
variables �i and μi are no longer required.

This is a MIP with a single concave term in the objective. Several methods
are available to obtain exact solutions for models of this type, which also arise
in location-inventory models, competitive location models and other contexts. One
approach, based on Lagrangian Relaxation, is described in Shen (2005); a variant
of this is used in Castillo et al. (2009). Another approach, based on tangent-
line approximation (TLA) of the concave term, is presented in Aboolian et al.
(2007). The TLA leads to an ε−optimal solution, where the maximum relative
error from the exact solution is bounded by ε, with the value of this parameter
set by the user (the smaller the ε, the higher the computational effort required;
ε = 10%, 5%, 1% are typical choices). Recently, Hoisenpour and Ahmadi-Javid
(2016) apply Lagrangian Relaxation to a model with random service interruptions
at the facilities.

It should be noted that in view of the discussion preceding (17.25), a similar
“trick” for replacing the congestion cost term with a concave form should work for
more general queueing systems as well, at least as an approximation.

The second approach for obtaining exact solutions to BO models is based on
capacity discretization ideas described earlier. The following discussion follows
Elhedhli (2006). Once again we start with the model whose objective function
is given by (17.65) and assume an M/M/1 queue at each facility. Assume the
processing capacity must be equal to one of H + 1 discrete values, i.e., that
μi ∈ {0, μ1, μ2, . . . , μH } for all i ∈ I , where μ1 < μ2 < . . . < μH .

Treating the expected queue length Li as a decision variable, we rewrite (17.64)
as

�i = Li

1 + Li

H∑

h=1

μhzih, i ∈ I, (17.66)

where zih, as defined in (17.3 and 17.4) is a binary decision variable taking the
value of 1 if μi = μh and 0 otherwise. Now consider the function f (L) = L

1+L
. It

is concave, and can thus be represented as the minimum of tangent lines, yielding
a linear form. This can be used to represent the expression (17.66) as an infinite
set of linear constraints (note that the objective is already linear, in terms of the
new variable Li ). The resulting MIP can be solved through a column generation
approach. The reader should refer to Elhedhli (2006) for details. A similar approach
is applied to hub-and-spoke SLCIS system in Azizi et al. (2017).
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The capacity discretization approach with the resulting MIP with concave
objective naturally lands itself to the TLA methodology mentioned above. This
approach is applied, with promising computational results, to a set of balanced
objective models with explicit (per occurrence or per delay length) penalties on
service delays in Aboolian et al. (2018).

An interesting recent development in MIP literature is the efficient treatment
of conic functions (particularly conic constraints)—see Atamtürk and Vishnu
Narayanan (2011) for a general treatment and Atamtürk et al. (2012) for an
application to a location-inventory problem. Some standard solvers, e.g., CPLEX,
now provide automatic treatment of conic inequalities. The resulting methodology
has seen recent applications in the SLCIS literature as well. Ahmadi-Javid and
Hoisenpour (2018) consider a BO model with M/G/1 queues at the facilities,
where capacity is discretized and each choice leads to a certain μi, γi pair. The
initial MIP with non-linear objective is re-formulated as a conic program with a
linear objective and conic constraint to which CPLEX solver can be directly applied.
A further development along this lines is presented in Ahmadi-Javid et al. (2018)
where instead of using discretization, an affine relationship is assumed between the
coefficient of variation γi and facility capacity μi . Once again an original non-
linear MIP is recast as a conic program, but in addition to now-standard CPLEX
treatment, a number of additional valid cuts are developed. The latter lead to a strong
improvement in computational efficiency.

In summary, the simpler structure of BO SLCIS models allows for effective exact
approaches to be developed. Another interesting observation is that the “location-
allocation” and “capacity determination” sub-problems often separate. As noted
earlier, these models, being of type NR, may assign individual customers to rather
distant facilities. However, since the travel cost is in the objective function, these
“undesirable” assignments can be controlled by increasing the corresponding cost
coefficients. The computational results in Castillo et al. (2009) suggest that when
travel costs are “reasonably” high, the overwhelming majority of customers (over
99% in the instances solved) are assigned to the closest open facility in the optimal
solution.

17.5.4 Explicit Customer Response (ECR) Models

ECR models specify an “explicit” customer response mechanism, i.e., they are of
types AR, DR, or FR. These models are listed on Table 17.5. The demand in these
models is generally elastic, though in a few cases elasticity is specified implicitly
through demand losses due to blockages. The objective always includes the revenue
term (17.49), and may also include the facility cost terms (17.52), unless the number
of facilities and servers is given.

While this class of models has received much recent attention, the earliest
publications date back to the very beginning of the SLCIS modeling: see Berman
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and Kaplan (1987). Some of the seminal early work is described in Brandeau et al.
(1995).

Many of the technical issues related to ECR models have been covered in
Sect. 17.3.2. The problem of determining the optimal location for a single facility
(Berman and Drezner 2006; Berman and Kaplan 1987; Tong 2011; Berman et al.
2014) can be solved exactly. However, the treatment of the multi-facility case
is generally quite difficult since, as noted earlier, in addition to the non-linear
objective function the underlying models include the feedback loop between the
customer demand and congestion and/or the equilibrium conditions for facility-
client allocations, or both. Thus, heuristic approaches are almost always employed
for multi-facility models. These heuristics are usually two-level: at the lower level
they incorporate subroutines for computing the equilibrium solutions (using non-
linear optimization techniques) for a given location set. At the upper level they try
improvement strategies to determine a good set of open facilities, often using meta-
heuristics. As in the case of BO models, the determination of the optimal capacity
at a facility can often be done through a separate exact optimization procedure, for
a given location and customer-allocation scheme.

We illustrate the foregoing discussion with the approach loosely based on
Aboolian et al. (2012), who proposed one of the few exact approaches available for
ECR models (in fact, the approach outlined below is an improvement on the original
methodology). The model is of DR type, i.e., customers accept directed assignments
to facilities, responding by reducing their demand when travel and congestion costs
increase. Both M/M/K and M/M/1 queueing systems can be considered; we will
focus on the latter for simplicity. The primary queuing performance measure is the
expected waiting time Wi at each facility i. While a general concave utility function
may be used, we employ the exponential utility (17.32) for transparency, with the
elastic demand given by (17.45). The fixed and variable costs are assumed to be
uniform, i.e., identical for all locations.

We start by observing that if customers at node j ∈ J are assigned to facility i,
the maximum demand is given by

λmax
ij = λmax

j exp(−τdd(i, j)),

quantities that can be pre-computed. The resulting model can be formulated as
follows:

maximize Z =r
∑

i∈I
�i − FC

∑

i∈I
yi − VC

∑

i∈I
μi (17.67)

s.t. W i = yi

μi − �i

i ∈ I (17.68)

�i =
∑

j∈J
λmax
ij exp(−τwWi)xij i ∈ I (17.69)

(17.60), (17.61).
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This reflects the typical structure of DR models: explicit specification of the waiting
time and demand, in addition to regular constraints for location models. Note that
system stability constraints (17.62) are omitted, since the demand automatically
adjusts to the offered capacities.

The next observation is that once customer allocation variables xij are specified,
both the optimal capacities at the facilities and the actual realized customer demands
are easy to determine. In fact, the latter only depend on xij through the total maximal
demand allocated to each facility:

�max
i =

∑

j∈J
λmax
ij xij . (17.70)

For each facility i we now solve the following univariate “capacity optimization”
model:

maximize r�i − VCμi

s.t. �i = �max
i exp(−τw

�i

μi − �i

)

μi ≥ 0.

Aboolian et al. (2012) show that the solution to this model is unique and can
be found through a simple univariate search. Note that the solution yields both,
the optimal capacity μi and the corresponding demand level �i . It is convenient
to represent these quantities as functions of the allocated maximum demand:
μ(�max

i ),�(�max
i ). Substituting these quantities into the original model (17.67)–

(17.69) we obtain

maximize Z =r
∑

i∈I
�(�max

i ) − FC
∑

i∈I
yi − VC

∑

i∈I
μ(�max

i )

(17.60), (17.61), (17.70),

where the only non-linearities occur in the objective function. By solving the
capacity optimization model repeatedly over a range of possible values of �max

i ,
we can construct a piecewise linear approximation of the functions �(�max

i ) and
μ(�max

i ) to any desired level of tolerance. Using these approximations in the model
above yields a linear MIP which can be solved using standard off-the-shelf software.

As noted earlier, the separation of capacity optimization and customer allocation
problems is a common feature of ECR models and has been used by a number of
authors. However, an important driver of the exact approach outlined above is that
the model in Aboolian et al. (2012) is of DR type, i.e., directed assignment and
single-sourcing are both assumed. The computational results presented in Aboolian
et al. (2012) suggest that neither of these assumptions is very restrictive (echoing
the results in Castillo et al. (2009) discussed earlier). It was observed that in the
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vast majority of instances solved, customers were, in fact, assigned to facilities that
minimize their sum of waiting and travel times, i.e., the facilities they would have
selected under an FR model. Also, by splitting the original customer nodes into
k copies each containing 1/k of the original demand, and allowing each of these
new nodes to be assigned to a different facility, the impact of the single-sourcing
assumption was examined. Again, it turned out that for the instances solved, the
violation of this assumption was rare (all copies of the original node were assigned
to the same facility in the vast majority of the cases) and when split assignments
occurred, they did not have a large impact on the objective function. Intuitively, both
effects can be explained by the fact that in DR models the incentives of customers
and the decision-maker, while not identical, are well-aligned: by forcing customers
to use a less convenient facility, the realized demand (and the revenue) are reduced.
Thus, when designing the system, a design that maximizes customer utilities is often
optimal, even though such maximization is not explicitly enforced in the model.

A notable recent advance for ECR models was made in Aboolian et al. (2016).
They assumed M/M/1 system with the fixed costs and budget constraint replaced
by the requirement that any open facility must have the capacity of at least μmin

and at most μmax (a reasonable assumption in case of public service facilities).
As described earlier, using waiting times Wj in place of capacities μj as decision
variables and adding additional binary variables zij to represent whether customer i
makes any use of facility j , they derive an MIP with the only non-linearity limited to
1/Wj terms. Since this is convex in Wj , the TLA methodology can be used to obtain
a linear MIP which is ε-optimal for the original problem. They were able to solve
fairly large problem instances (up to 900 customer nodes and up to 40 potential
locations) to within (at most) 0.1% of optimality. However, as noted earlier, the
approach may be quite fragile with respect to the M/M/1 assumption.

17.5.5 Proportional Allocation (PA) Models

As discussed earlier, these models incorporate explicit customer response to the
service offered by the decision-maker; however the form of this response (allocation
of customer’s demand amongst the facilities) is pre-specified via Eq. (17.47). In
the first edition of this volume these models were classified under the ECR type.
However, with several interesting recent developments, these models now merit a
separate category; they are listed on Table 17.6.

There are well-established methods for linearizing the fractional market share
equation (17.47) when customer decisions are decoupled. However, as observed in
Sect. 17.3.2.4, when customer’s utility includes waiting time (or another measure
of congestion at the facilities), the decisions become coupled and (17.47) defines a
system of non-linear equations that make the resulting SLCIS computationally very
challenging.

The M/M/1 system offers significant simplifications since it is possible to treat
the waiting time, rather than capacity, as the decision variable. Zhang et al. (2012)
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uses this approach to linearize the customer-level problem in their Model 1, while
optimizing the decision-maker’s level via heuristics.

A more general approach (at the cost of discretizing some key decisions) is
developed in Schön and Saini (2018). For an M/G/1 system they use capacity
discretization (which also allows them to model coefficients of variation as part
of decision variables). In addition, they discretize offered service levels, i.e., wait
times, at the facilities. All non-linearities in the model, such as both the numerator
and denominator in (17.47), can now be discretized, and thus linearized through the
introduction of additional integer variables. The resulting model is quite general—it
can incorporate a variety of utility functions, as well as revenue and cost terms in
the objective—is formulated as a linear MIP. However, the formulation is very large,
and thus even relatively small instances cannot be solved to optimality by CPLEX.
This leads to the development of several heuristic approaches.

A different approach, heavily rooted in economics literature, is taken by Dan
and Marcotte (2017). Their starting point is the model of Marianov et al. (2008),
the first published SLCIS model with PA mechanism. The facilities are modeled as
limited buffer M/M/1/b queues where b is the buffer size; customers are blocked
from entering the facility when the queue size reaches b. The objective is to locate
m facilities to maximize total captured demand, where customers have an option to
choose either new or pre-existing “competitive” facilities. The model employs linear
utilities (17.30) and MNL structure (17.48). A metaheuristic procedure, combining
GRASP and Tabu Search, is proposed.

Dan and Marcotte (2017) point out and correct several deficiencies in this model:
(1) the “captured demand” does not account for demand lost to blockages, (2)
customer’s utility function does not account for dis-utility due to blockages, leading
to a perverse situation where a customer who obtains service after experiencing
some waiting time has a lower utility than a customer who traveled the same distance
but was then blocked from joining the queue, (3) the capacity μj was assumed to be
identical at all facilities and was treated as an exogenous parameter. In addition, the
new model of Dan and Marcotte (2017) introduces a budget constraint:

∑

i

(FCyi + VCμi) ≤ B,

where B is the available budget, and other notation is consistent with the general
model in Sect. 17.4. Note that the capacity decision is treated as a continuous
variable (though the buffer size b is treated as an exogenous parameter with an
identical value for all facilities).

The problem is first formulated as a bilevel model, with the upper level (leader)
specifying the facility locations and capacities, with the objective of maximizing
captured demand (both the objective and the constraints are linear), while the lower
level (follower) allocating customer demand according to MNL mechanism and
constraints relating wait times and blockage probabilities. In this initial form, the
lower level is a fixed point equation, rather than an optimization problem. However,
using the standard results from Fisk (1980), the lower level is converted to an
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non-linear optimization problem, whose objective is shown to be convex. Next,
a “semi-exact” solution procedure is developed, based on a similar procedure in
Gilbert et al. (2015), using the following steps: (1) the lower-level objective is
approximated with piecewise linear function and re-cast as an LP, (2) the optimality
(i.e. duality) conditions for the LP are added as complementarity constraints to
the upper level, resulting in a single-level integer program with complementarity
constraints, (3) finally, similarly to Aboolian et al. (2016), the complementarity
conditions are linearized through the addition of binary decision variables, resulting
in a linear MIP. The resulting model yields an approximate solution to the
original model due to the piece-wise linear approximation in step (1), however
this approximation can be made arbitrarily precise by increasing the number of
segments, hence the “semi-exact” nature of the algorithm. It should be noted that
the resulting model tends to be quite large even when the original instance is of
relatively small size, leading to computational difficulties. Thus a heuristic approach
is proposed as well.

While these results may be quite fragile with respect to the M/M/1 assumption,
they do indicate that capacity discretization is not the only way to approach PA-
type models. They also point out that many methods developed in the transportation
economics literature may be applicable to SLCIS models as well.

We finish the previous two sections with an important message from Zhang
et al. (2012). In much of the literature, the difference between deterministic utility
optimization of Sect. 17.3.2 and the proportional allocation is considered mainly
on theoretical grounds, focusing on the difference between utility specifications,
choice axioms, etc. Theoretical arguments can be made in favor of either approach.
However, as shown in Zhang et al. (2012), these different mechanisms for modeling
customer response may lead to very different optimal facility network designs,
with wide-ranging implications: for example, it is shown that if PA choice model
is assumed, while customers are actually following the utility optimization model
(or vice-versa), many of the facilities will be over/ under-used, resulting in very
different congestion patterns and network performance than what is predicted by
the model. Thus, the choice of customer reaction model must be made based on
empirical evidence of customer behavior in a given setting, rather than theoretical
arguments for one or the other model.

17.6 Conclusions

In this chapter we have focused on a rather specialized sub-field of stochastic loca-
tion models: problems with congestion and static customer assignments. However,
as discussed above, this is a very active and growing field of research. We believe
that the key drivers of this growth are that, on the one hand, SLCIS models do
capture very important trade-offs and stochastic effects that must be taken into
account when designing many real-life systems. On the other hand, these models
retain enough structure to enable exact algorithmic approaches and managerial
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insights that may not be available when more complex models (e.g., models with
mobile servers or dynamic customer assignments) are considered.

The variety of SLCIS models considered in the literature is quite bewildering.
We have systematized the models along two dimensions: by customer response and
demand elasticity (leading to our NR/AR/DR/FR types), and by the key structural
elements of the models (leading to our CT/SO/BO/ECR/PA model classes), as
described in Sect. 17.5. We believe that this classification should be useful to future
researchers in this field, both with respect to the importance of clearly spelling out
the assumptions with respect to customer behavior and key model objectives, and
with regards to realizing what key difficulties may arise for a given model type. We
are pleased to note that several papers that were published after the first edition of
this volume have adopted this classification.

We also hope that the proposed systematization will motivate the authors to
ensure internal consistency of implicit assumptions in their models. This should help
to avoid models where customer utilities are affected by travel times, but not waiting
times, or by waiting times but not by blockages, etc. Of course, such simplifications
may be necessary to make the model computationally tractable, but they should be
explicitly spelled out and discussed.

Many open questions remain, as should be clear from the preceding sections.
The assumptions made with respect to queueing behavior in many models are
quite restrictive and could likely be generalized using the approximation approaches
described in Sect. 17.2.3.2. The assumptions underlying NR models or AR models
with distance-only utility are questionable and could lead to under-performance of
the resulting system (especially with respect to the realized demand). The reliance of
many authors on heuristic approaches without the ability to benchmark the resulting
solutions versus the optimal ones is not comforting given the strategic nature of
decisions underlying SLCIS models.

Some important strides towards deriving exact or semi-exact solution algorithms
for models with realistic customer response mechanisms have been made since
the first edition and are described above. These include (1) leveraging capacity
discretization to incorporate variability of service times as endogenous parameter of
the model, and also to develop clever linearization schemes; (2) adapting advances
in conic programming to SLCIS models, and (3) pushing the boundary on the PA-
type models. However, many ways to improve on the existing models remain to
be explored. We hope that some of these improvements will be investigated in the
next generation of SLCIS models. The importance of basing modeling choices on
empirical evidence of customer behavior must also be emphasized.

Finally we would like to mention that many of the issues that have been
explored in the SLCIS context (customer response, elastics demand) are still
waiting to be addressed in the models with mobile servers/dynamic customer
assignments. As noted earlier, these models involve a different level of complexity,
with the underlying queueing systems being much less tractable. Nevertheless,
the assumptions regarding customer behavior and response are very important and
deserve further study.
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Chapter 18
Aggregation in Location

Richard L. Francis and Timothy J. Lowe

Abstract Location problems occurring in urban or regional settings may involve
many tens of thousands of “demand points,” usually individual residences. In
modeling such problems it is common to aggregate demand points to obtain
tractable models. We discuss aggregation approaches to a large class of location
models, consider various aggregation error measures, and identify some effective
measures. In particular, we focus on an upper bounding methodology for the error
associated with aggregation. The chapter includes an example application.

18.1 Introduction

Many location problems involve locating services (called servers) with respect to
customers of some sort (called demand points, and abbreviated as DPs). Usually
there is travel between servers and DPs, so that travel distances, or (more generally)
travel costs, are of interest. Location models represent these travel costs, and
solutions to the models can provide locations of the servers of (nearly) minimal cost.
For books on location models and modeling, see Daskin (2013), Drezner (1995),
Drezner and Hamacher (2002), Eiselt and Marianov (2011), Francis et al. (1992),
Handler and Mirchandani (1979), Love et al. (1988), Mirchandani and Francis
(1990), and Nickel and Puerto (2005).

A common difficulty with modeling location problems that occur in urban or
regional areas is that the number of DPs may be quite large, since each private
residence might be a DP. In this case it may be impossible, and also unnecessary, to
include every DP in the corresponding model. Further, the corresponding problems
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may be NP-hard to optimize (Kariv and Hakimi 1979). For problems as diverse as
those including the location of branch banks (Chelst et al. 1998), tax offices (Domich
et al. 1991), network traffic flow (Sheffi 1985), and vehicle exhaust emission
inspection stations (Francis and Lowe 1992) a popular aggregation approach is used:
to suppose every DP in each postal code area or zone of the larger urban area is at
the centroid of the postal code area or zone, and to compute distances accordingly.
The result is a smaller model to deal with, but one with an intrinsic error. If the
modeler wishes to aggregate to have a small number of aggregate demand points
(abbreviated as ADPs), and also desires a small error, then aggregation becomes a
nontrivial matter.

It is tempting to ask the following question: How many ADPs are enough?
There are no general answers to this question. This is because there are important
tradeoffs in doing aggregation. Aggregation often decreases: (1) data collection cost,
(2) modeling cost, (3) computing cost, (4) confidentiality concerns and (5) data
statistical uncertainty. The first four items seem self-explanatory; item (5) occurs
because aggregation leads to pooled data, which provides larger samples and thus
smaller sample standard deviations. The price paid for aggregation is increased
model error: instead of working with the actual location model we work with some
approximate location model. How to trade off the benefits and costs of aggregation
is still an open question. The question is open in part because there is no general
agreement on how to measure the aggregation error, and also because there is
no accepted way to attach a cost to model aggregation error. To the best of our
knowledge, professional judgment is generally used to do the tradeoffs. Francis et
al. (2009) provide a survey of various demand point aggregation error measures and
an extensive literature discussion. In fact, much of the early material in this chapter,
and Table 18.4, is from that paper.

One can categorize location models as strategic, tactical, or operational in scope.
As pointed out by Bender et al. (2001), planar distances are often used for strategic-
level location models, and network distances for tactical-level location models. Such
models are often converted to equivalent mixed integer programming (MIP) models
for solution purposes, using some finite dominating set principle to reduce the set
of possible locations of interest to a finite set (Hooker et al. 1991). Thus, results to
follow for these planar and network models also apply to their MIP representations,
including those for the p-median, p-center, and covering location models. These
models are the subject matter of Chaps. 2, 3, and 5 respectively. Operational-level
location models are not too common (mobile servers are one example), but for
such models no aggregation may be best. Note that the scope of the location model
may well indicate the degree of aggregation; a more detailed scope requires a more
detailed aggregation.

http://dx.doi.org/10.1007/978-3-030-32177-2_2
http://dx.doi.org/10.1007/978-3-030-32177-2_3
http://dx.doi.org/10.1007/978-3-030-32177-2_5
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18.2 Terminology and Examples

We suppose that servers and DPs are all either points in the plane, or on some travel
network. In either case, there is some well-defined set of server points and DPs,
say Ω , and a distance d(x,y) between any two points x, y in Ω . If Ω is a travel
network (assumed undirected) then d(x,y) is usually the length of a shortest path
between x and y. For planar problems when Ω =R2, with x = (χ1, χ2), y = (ψ1,
ψ2), d(x,y) is often the �p-distance: ||x – y||p = [|χ1 – ψ1|p + | χ2 – ψ2|p]1/p, with
p ≥ 1. Taking p = 1 or 2 gives the well-known rectilinear or Euclidean distance,
respectively. The limiting case of the �p-distance as p goes to infinity, denoted by
||x – y||∞, is given by ||x – y||∞ = max{| χ1 – ψ1|, | χ2 – ψ2|}, and is called
the Tchebyshev distance. The Tchebyshev distance in R2 is sometimes analytically
convenient because it is known (Francis et al. 1992) to be equivalent to the planar
rectilinear distance under a 45-degree rotation of the axes. We define the diameter
of Ω by diam(Ω) = sup{d(x,y): x, y ∈ Ω}, with the understanding that possibly
diam(Ω) = +∞. More generally, Ω can be a metric space (Goldberg 1976) with
metric d, but no loss of insight occurs by considering the network and planar cases
for Ω .

Suppose we have n DPs, vj ∈ Ω , j = 1, . . . , n. Denote the list (or vector) of
DPs by V = (v1, . . . ,vn). When we aggregate, we replace each DP vj by some ADP
vj

′ in Ω , obtaining an ADP list V′ = (v1
′, . . . , vn

′). While the DPs are usually
distinct, the ADPs are not, since otherwise there is no computational advantage to
the aggregation. When we wish to model q distinct ADPs, we let Γ denote the set
of q distinct ADPs, say Γ = {γ 1, . . . , γ q}. We use the former (latter) ADP notation
when the correspondence between DPs and ADPs is (is not) of interest. Usually we
have q << n.

For any positive integer p, let S = {sk,...,sp} denote any p-server, the set of
locations of the p servers, S ⊂ Ω . (This symbol p is a different symbol from the
one defining the �p-distance.) Denote the location model with the given original
DPs by f(S:V), and the one with the aggregate DPs by f(S:V′). The notation f(S:V)
and f(S:V′) captures a key idea that an aggregation is a replacement of V by V′, with
the entries of V′ not all distinct.

For the large class of location models with similar or indistinguishable servers,
with only the closest one to each DP assumed to serve the DP, for any p-server S ⊂Ω

and DP v ∈ Ω we denote by D(S,v) ≡ min{d(sk,v): k = 1, . . . , p} the distance
between v and a closest element in S. We then define the closest-distance vectors
D(S,V) ≡ (D(S,vj): j = 1,...n), D(S,V′) ≡ (D(S,vj

′): j = 1,...n) ∈ Rn+. Suppose g is
some “costing” function with domain Rn+ attaching a cost to D(S,V) and D(S,V′).
This gives original and approximating location models f(S:V) ≡ g(D(S,V)) and
f(S:V′) ≡ g(D(S,V′)), respectively. Important and perhaps best-known instances of
g are the p-median and p-center costing functions, g(U) = w1 u1 + . . . + wn un,
and g(U) = max{w1 u1, . . . , wn un} respectively; the wj are positive constants, often
called weights, and may be proportional to the number of trips between servers and
DPs. Thus f(S:V) is either the p-median model, w1 D(S,v1) + . . . + wn D(S,vn),
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or the p-center model, max{w1 D(S,v1), . . . , wn D(S,vn)}. These models originate
from Hakimi (1965) (each is called unweighted if all wj = 1: j = 1,...n). They are
perhaps the two best-known models in location theory. The covering model, a model
related to the center model, will be described later in this chapter. Subsequently, we
refer to the p-center, p-median, and covering location model as PCM, PMM, and
CLM respectively. These models are NP-hard to minimize (Kariv and Hakimi 1979;
Megiddo and Supowit 1984).

Consider several aggregation examples which serve to illustrate our notation and
basic aggregation ideas. Let J = {1, . . . , n} denote the set of all DP indices. We
suppose, for these examples, that the DPs will be aggregated into two postal code
area centroids. Let Ji denote the subset of indices of the DPs in postal area i = 1, 2.
Let γ i denote the centroid of postal area i = 1, 2. Clearly, the Ji form a partition of
J. To aggregate the DPs in the postal code areas into the centroids we replace each
vj with j ∈ Ji, by γ i for i = 1, 2. Thus vj

′ = γ i for j ∈ Ji and i = 1, 2. Hence V′ is
now the n-vector of ADPs, and Γ = {γ 1,γ 2} is the ADP set.

Example Aggregation 1, PMM

f (S : V ) = Σ
{
wj D

(
S, vj

) : j ∈ J
}
.

Let ω1 = Σ{wj: j ∈ J1}, ω2 = Σ{wj: j ∈ J2}. We then have f(S:V′) = Σ

{wj D(S,vj
′): j ∈ J} = Σ{wj D(S,γ 1): j ∈ J1} + Σ{wj D(S,γ 2): j ∈ J2} = ω1

D(S,γ 1) + ω2 D(S,γ 2).
This example illustrates how aggregation error can occur. If only p-servers are of

interest (with p ≥ 2), then taking S to be {γ 1,γ 2} minimizes f(S:V′) with minimal
value of 0, giving a useless underestimation of min{f(S:V):S}.

If there is only one server, S = {s}, and the �p-distance is used, then it is known
that this 1-median under-approximation is valid for all s. Letting ω = Σ{wj: j∈ J},
and γ = Σ{(wj/ω) vj: j ∈ J} be the centroid of the DPs, so that f(s:V′) = ω ||s–
γ ||p, it is known (Francis and White 1974) that f(s:V) ≥ f(s:V′) for all s. This is an
important reason why underestimation can occur for PMM aggregation when few
centroid ADPs are used. It is also known that for �p distances (Plastria 2001) the
difference f(s:V) – f(s:V′) goes to zero as s gets farther from γ along an infinite ray
with one end point at γ . There are good theoretical reasons due to self-canceling
error (Plastria 2000, 2001; Francis et al. 2003) for using centroids as ADPs for the
PMM, but none that we know of for the PCM and CLM. Indeed, better choices than
centroids are available for the latter two models.

Example Aggregation 2, PCM

f (S : V ) = max
{
wj D

(
S, vj

) : j ∈ J
}
.

Let w1
+ = max{wj: j ∈ J1}, w2

+ = max{wj: j ∈ J2}. We then have
f(S:V′) = max{wj D(S,vj

′): j ∈ J} = max{max{wj D(S,vj
′): j ∈ J1}, max{wj D(S,vj

′):
j ∈ J2}} = max{max{wj D(S,γ 1): j ∈ J1}, max{wj D(S,γ 2): j ∈ J2}} = max{w1

+
D(S,γ 1), w2

+ D(S,γ 2)}. Again, if only p-servers (p ≥ 2) are of interest, then taking
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S to be {γ 1,γ 2} minimizes f(S:V′) with minimal value of 0, giving an underestimate
of f(S:V).

Example Aggregation 3, CLM Minimize |S| subject to D(S,vj) ≤ rj, j ∈ J, S ⊂ Ω ,
where rj is a “covering radius” associated with vj. All but two covering constraints
for the aggregated model are redundant. Define ρ1 = min{rj: j ∈ J1}, ρ2 = min{rj:
j ∈ J2}. Thus, the aggregated model has constraints D(S,γ 1) ≤ ρ1, D(S,γ 2) ≤ ρ2,
S ⊂Ω . This means it takes at most two servers to solve the aggregated model. CLMs
and PCMs are known to be closely related (Kolen and Tamir 1990). We shall see
that aggregation results developed for one model often also apply to the other.

These examples of models illustrate two equivalent approaches for representing
n DPs with an aggregation of q ADPs. Either we have a partition of the DP index set
J into q sets J1, . . . , Jq with one ADP per set, or for each vj there is a replacing ADP
vj

′, with each vj
′ in the set Γ of q distinct ADPs. In either case, three aggregation

decisions (Francis et al. 1999) must be made: (1) the number of ADPs, (2) the
location of ADPs, (3) the replacement rule: for each vj, what is vj

′? The (reasonable)
replacement rule often used is to replace each DP by a closest ADP. Further, for the
aggregation to be computationally useful we require the number of ADPs, q, to be
less (usually much less) than the number of DPs, n; also it is reasonable to have
p . q. The authors note that versions of these three aggregation decisions occur in
location modeling. Hence results in location theory help in doing DP aggregation,
so DP aggregation is a sort of “second-order” location problem to solve prior to
solving the original or “first-order” problem.

These three examples may suggest that as more ADPs are used the aggregation
error decreases – ideally, if we could use q = n ADPs, we have no aggregation error
at all. In fact there are classes of location models where the law of diminishing
returns applies: aggregation error decreases at a decreasing rate as q increases
(Francis et al. 2004b). Thus a very small value of q may cause a very high
aggregation error, while a large value of q might give little less error than an
appreciably smaller value of q.

18.3 Case Study

This section is based on the work by Dekle et al. (2005), where supplemental
information may be found. We refer to the authors of this study as the “team”.

FEMA is an acronym for Federal Emergency Management Agency, a national
U.S. agency that deals with disasters such as fires, floods, hurricanes, tornadoes, and
terrorist attacks. This work stems from a FEMA request to all counties in Florida to
identify possible locations for disaster recovery centers (DRCs). FEMA describes a
DRC as “a facility established in or nearby the community affected by the disaster,
where people can meet face-to-face with representatives from Federal, State, local
and volunteer agencies to obtain assistance.” For the county this study deals with,
Alachua County, FEMA required the identification of at least three DRCs, which
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could be called upon at very short notice for use in a local disaster. Alachua County
had a population of about 219,000 at the time of the study. The east-west and
north-south dimensions of the county are about 32 and 30 miles (51.5, 48.3 km)
respectively; the land area is about 874 square miles (2266 km2).

FEMA provided seven DRC requirements/evaluation criteria. The County
accepted all of these requirements, but added four more, including that the proposed
DRC locations should be buildings allowing reasonable travel distances to them by
potential users. This criterion was the most challenging to satisfy, and led to the
principal objective of the study. The team spent a substantial effort discussing with
their Alachua County sponsor possible principal objectives for the study; eventually
they agreed upon the following idealized one: minimize the total number of DRCs
needed, subject to each county resident being within a specified distance r (called
the radius) of a closest DRC. Thus if B(s,r) denotes the set of all points in the plane
whose distance from a given point s is at most r, a requirement meaning that each
county resident location must be in at least one B(s,r) for some DRC location s;
that is, each resident point in the county must be “covered” by at least one B(s,r)
for some DRC location s. Hence the location requirement specifies a “covering”
problem (see Chap. 5). It was the belief of the team (eventually confirmed) that if
they could solve this idealized problem meeting the location requirement, then they
could find nearby locations that would meet all the other requirements.

A natural and important question was how to measure distances between points.
Ideally, shortest path distances on the existing road network would have been used,
but these were unavailable due to the very limited study budget. Since the county had
a largely rectilinear/right-angle road network, the team, with the agreement of its
sponsor, settled on the use of rectilinear distances: for any planar points s = (s1,s2),
t = (t1,t2), d(s,t) = |s1 - t1| + |s2 - t2| defines the rectilinear distance between s
and t.

We refer to resident locations as “demand points”, abbreviated as DPs. For any
real aggregation location problem, obtaining and dealing with DP data will probably
be a major part of the problem-solving effort. Interaction with the county property
appraiser’s office elicited the information that principal DP data sources could
be obtained from GIS data available in a library, and from the county property
appraiser’s office. The county DP data was arranged by “parcels” of land. There
were about 6600 parcels, and for each parcel the following information was known:
x and y coordinates of the parcel center, the total heated square footage of the parcel
buildings, and whether parcel buildings were residential or commercial. The parcel
locations were used as residential location/DPs, and as possible DRC sites. As many
as 3900 of the parcels seemed possibly usable for DRC sites, as they had public or
commercial buildings whose total usable footage exceeded 2000 ft2. Figure 18.1
shows a plot of all the DPs, as well as the aggregated DPs (yet to be discussed).

Covering models are discussed in Chap. 5; they provide a way to compute, for a
specified covering radius r, a minimal set of locations, say S = {s1,...,sk}, so that each
DP is contained in at least one B(si,r). To formulate the covering problem using all
the available data as an integer program model would give a constraint matrix with
about 6600 rows and 3900 columns. The size of this model was beyond the resources

http://dx.doi.org/10.1007/978-3-030-32177-2_5
http://dx.doi.org/10.1007/978-3-030-32177-2_5
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Fig. 18.1 Plot of demand
points and aggregate demand
points
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available to the team to deal with. The covering algorithm readily available to the
team was one in Excel, which could deal with at most 200 variables/columns. The
need to somehow aggregate the DP data and the potential site data thus became quite
evident.

In a later section we discuss a useful error bound for covering location problems,

max
{
d
(
vj , vj

′) : j = 1, . . . , n
}
,

where vj is the location of DP j, and vj
′ is the ADP that replaces vj; the vj are

distinct while the vj
′ are not. Choosing the vj

′ to keep this error bound small keeps
the covering error small. Note, if there are n distinct vj

′, that max{d(vj,vj
′): j = 1,

. . . , n} may be viewed as the objective function of an n-center problem with DPs vj

and facility locations defined by the vj
′. This observation indicated that it would be

reasonable to modify some p-center algorithm to locate the ADPs. As discussed
in Dekle et al. (2005), the team used a variation of a Dyer and Frieze (1985)
pick-the-farthest (PTF) algorithm to pick the ADPs. Possible center locations were
also similarly aggregated. Figure 18.1 illustrates that the algorithm chooses well-
dispersed locations. A number of runs of the PTF algorithm were made, and finally
solutions were chosen that reduced the number of DPs from 6600 to 198 and the
number of potential DRC sites from 3900 to 162.

The team’s version of the Dyer-Frieze algorithm works as follows. First, an
arbitrary DP is chosen as an ADP. Next, a DP whose closest-distance to an ADP
is farthest is then chosen to be an ADP. Continuing, at each iteration a DP is chosen
as an ADP whose closest-distance to the collection of ADPs is farthest. This process
continues until the closest-distance of every remaining DP to the collection of ADPs
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Table 18.1 (a) Shows how some DRC performance measures changed with various r values for
the idealized stage 1; (b) Shows similar results for the actual stage 2 results

a b
Idealized Actual

Travel limit r (miles) 10 15 20 10 15 20
Maximum travel distance (miles) 10.9 15.1 20.3 14.0 25.8 26.94
Average travel distance (miles) 4.9 9.1 7.6 4.86 6.76 7.36
% Parcels covered 99.78 99.96 99.92 97.7 89.8 97.4
Average covering violation (miles) 0.184 0.84 0.184 1.05 2.80 2.55

is no more than a “control parameter” b. This parameter may be adjusted to provide
a computationally manageable number of ADPs. Dyer and Frieze give a low-order
implementation of this approach.

Subsequently, the covering location model is solved using the ADPs as DPs; the
model formulation guarantees that each ADP will be within the radius r of at least
one center. However, original DPs not chosen as ADPs may possibly not be within
such a radius r; supposing that v is any such unchosen DP, the algorithm guarantees
that some ADP, say v′, satisfies d(v′,v) ≤ b. Thus for any center s that covers v′,
d(s,v) ≤ d(s,v′) + d(v′,v) ≤ r + b. Hence if b can be kept small then the uncovered
DPs will be nearly covered, as was true in this application (see Table 18.1).

Note that max{d(vi,vi
′): all unchosen DPs vj} ≤ b when the algorithm terminates,

so keeping b small guarantees a small aggregation error. Aggregation error is
discussed in the next section.

Once the DPs were aggregated and the potential DRC sites were also similarly
aggregated, the covering location problem could be solved. We call the covering
location problem the idealized problem, while we call the one that considers all
11 criteria the actual problem. The team solved the idealized problem first, and
then sought good solutions to the actual problem that were “close” to those of
the idealized problem. This approach greatly simplified the problem and worked
acceptably.

Because of initial uncertainty about an appropriate value of r, the greatest
distance any resident should need to travel to a closest DRC, it was decided to treat
r as a parameter of the study, try various r values, and then evaluate the resultant
solutions. The team eventually chose r values of 10, 15 and 20 miles (16.1, 24.2 and
32.3 km respectively). By solving the idealized covering model with these three r
values, solutions were found requiring 8, 4 and 3 DRCs respectively; see Fig. 18.2
for the case of three DRCs; note Fig. 18.2 illustrates three B(s,20) regions. The team
then proceeded to solve the actual problem by finding potential DRC locations near
the idealized solutions which would meet the other evaluation requirements. To aid
in this effort, they and the sponsor developed a score card, much like a grade card,
on which they could score each potential location considered; most of the buildings
considered were schools, churches, recreation centers, or government buildings.
Table 18.1a illustrates some DRC performance measures for the solutions to the
idealized problem. Discrepancies between Table 18.1a performance measures and
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Fig. 18.2 The set of points
within 20 miles of three
Disaster Recovery Centers
(DRCs)

-10

0

10

20

30

40

50

-20 -10 0 10 20 30 40 50

)SELI
M(

ETA
NI

D
R

O
O

C
Y

X COORDINATE (MILES)

Customers Centers

the three different radius measures are due to aggregation effects, and can be seen
to be quite small. Table 18.1b shows performance measures for the actual problem.
There are some bigger discrepancies than in Table 18.1a, but these locations scored
well on all the other criteria. Also it was recognized that the proper choice of a
radius value r was somewhat subjective.

A number of modeling insights were gained in the course of this study, including
the following. (1) Sponsors may not have a principal objective. (2) The choice of
a model may be somewhat subjective. (3) Getting and working with all the data
can be most of the work in an aggregation/location study. (4) Data aggregation can
be essential and helpful. (5) The covering location model solutions were easy to
explain to the sponsor, in part due to the figures. (6) The well-dispersed locations of
the covering model also had political and geographic redundancy advantages.

The three-location solution to the actual location model for r = 20, which covered
97.4% of the parcels, was accepted by the sponsor. The following is a quote from a
letter the sponsor provided to the team.

The Florida Division of Emergency Management has requested that all county emergency
management offices provide at least three sites preidentified as potential DRCs. With
completion of this project, Alachua County is now able to comply with this request . . .

Overall, this was an outstanding project which has provided the Office of Emergency
Management with tangible results. When DRCs must be opened in the future, it will be
based upon careful research and problem solving rather than guesses on which locations
would be best.

In closing, we remark that this approach easily generalizes to covering problems
using network distances, given adequate network data. The approach worked well,
and controls the covering error. We recommend its use for aggregating covering
location problems, as well as unweighted p-center problems.
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18.4 Aggregation Error Measures

While there can be other types of error in location models, the one we focus on
is demand point aggregation error, which result from replacing DPs by ADPs.
Thus, instead of actual distances we obtain approximating ones. The use of these
approximating ADPs creates error. It is thus important for the location modeler
who does the aggregation to be aware of the aggregation error being created. The
modeler who does DP aggregation intentionally introduces error into the model.
The use of ADPs is the cause of the aggregation error, but there are error effects—
including inaccurate values of the objective function and of server locations, due
to using the approximating distances. It is important to consider both cause and
effects in order to get the whole picture. There are a number of ways to measure
error effects; further, the magnitude of aggregation effects can depend on the model
structure—for the same aggregation, some models can have more error than others.
What is clear, in any case, is that the way to minimize DP aggregation error is to not
aggregate DPs—certainly this is what we recommend when it is feasible. The ideal
way to aggregate DP data is to not aggregate it.

If DP data must be aggregated, then we need to consider aggregation error
measures. We list and summarize ten such measures in Table 18.2. Some of these
error measures are discussed in NaimiSadigh and Fallah (2009), as well as in Irawan
and Salhi (2015a). All of the error measures in Table 18.2 have an ideal value
of zero. One simple way to measure aggregation error is to consider ADP-DP
distances. If these distance values are all zero then ADPs and DPs are identical,
so there is no error. Later we establish a relationship between ADP-DP distances
and other error measures, including the distance difference error. For the PMM,

Table 18.2 Various demand point aggregation error measures for a location model f(S:V). Ideal
error measures have value zero for all j and all S

No. Error name Error definition

1 ADP-DP distances d(vj
′,vj), j ∈ J

2 Distance difference error D(S,vj
′) – D(S,vj), j ∈ J, all S

3 DP error, PMM ej(S) = wj [D(S,vj
′) – D(S,vj)], j ∈ J, all S

4 Total DP error, PMM e(S) = Σ{ej(S): j ∈ J}, all S

5 ABC error for PMM: J1, . . . , Jq is a partition
of J = {1, . . . , n}; ωi ≡ Σ{wj: j ∈ Ji} for
i = 1, . . . , q

abci(S) = ωiD(S,γ i) – Σ{wjD(S,vj): j ∈
Ji}, all S

6 Absolute error, any location model ae(S) = |f(S:V′) – f(S:V)|, all S

7 Relative error, for all S with f(S:V) > 0 rel(S) = ae(S)/f(S:V), all S

8 Maximum absolute error mae(f′, f) = max{ae(S):S, S ⊂ Ω , |S| = p}
9 Error bound eb A number eb with ae(S) ≤ eb for all S

Ratio error bounds (when f(S:V), f(S:V′) > 0) |f(S:V′)/f(S:V) – 1| ≤ eb/f(S:V),
|f(S:V)/f(S:V′) – 1| ≤ eb/f(S:V′) for all S

10 Location error a measure, diff(S′,S∗), of the “difference”
between p-servers S′ and S∗
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this distance difference error leads to an error we call DP error. Like the difference
error, the DP error can be negative or positive. Still considering the PMM, note that
the total DP error e(S) in Table 18.2 satisfies e(S) = f(S:V′) − f(S:V), the difference
between the aggregated PMM and the original model. Even though no DP error is
zero, the total DP error can be zero or nearly zero, since negative errors can cancel
out positive errors—this is the concept of self-canceling error. Unfortunately self-
canceling error only applies to models with an additive cost structure.

Next, consider ABC errors for the PMM, due to Hillsman and Rhoda (1978),
pioneering aggregation researchers. Note that ABC errors are sums of the DP errors
which are organized by the ADPs. Suppose we represent an aggregation by a
partition of J = {1, . . . , n}, say J1, . . . , Jq, such that for i = 1, . . . , q, every DP
vj with j ∈ Ji is aggregated into the ADP γ i; that is, vj

′ = γ i for j ∈ Ji. Thus
∑ {wj

D(S,vj): j ∈ Ji} is replaced in the aggregate model by
∑{wj D(S, γ i): j ∈ Ji} = ωi

D(S,γ i), where ωi ≡ ∑ {wj: j ∈ Ji}. In the parlance of Hillsman and Rhoda, the
ABC error illustrates their Source A error, which they define actually as ωi D(S,γ i).
Using ωi D(S,γ i) instead of

∑{wjD(S,vj): j ∈ Ji} is a source of error. The special
case of Source A error when γ i ∈ S, so that ωi D(S,γ i) = 0, is their Source B error. If
ωi D(S,γ i) = 0, then it is useless as an estimate of

∑{wj D(S,vj): j ∈ Ji}. The Source
C error is a related sort of allocation error involving closest-distance definitions.
Suppose sk ∈ S is closest to γ i; we might then assume that every vj ∈ Ji will be
closest to sk. However, in reality, some vj ∈ Ji may be closer to another element of
S than sk. In effect, we would allocate some DPs to a wrong server location that is
not closest to them. Note abci(S) = ∑ {ej(S): j ∈ Ji} for all i, so total ABC error
is e(S) = f(S:V′) – f(S:V). ABC error can be negative or positive, again resulting in
possible self-cancellation effects. Hillsman and Rhoda recognize and discuss both
total error and error self-cancellation.

Now consider any location model f(S:V) with p-server S and its approximation
f(S:V′). A difficulty with error measures that can be negative or positive is that a
smaller error (e.g., −3000) can be worse than a bigger error (e.g., +3). We can avoid
this difficulty by using the (nonnegative) absolute error, ae(S) ≡ |e(S)| = |f(S:V′) –
f(S:V)| defined for all S. This measure is familiar from the calculus for measuring
how well one function approximates another. Related to ae(S) is the idea of an
error bound: a number eb for which ae(S) ≤ eb for all S. An equivalent way to
define an error bound, using f ′ and f to denote the functions f(S:V′) and f(S:V)
respectively, is based on the maximum absolute error, mae(f ′,f), a number which
may very well be quite difficult to compute. Any error bound is then an upper bound
on the maximum absolute error. Good error bounds may be much easier to compute
than the maximum absolute error. A relative error can be defined when f(S:V) is
always positive: rel(S) ≡ ae(S)/f(S:V), perhaps converted to percent. Depending on
the model structure, ae(S) may be large but rel(S) may still be small due to the
magnitude of f(S:V). Relative error is not affected by the measurement scale chosen,
whereas the preceding error measures are.
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Assuming f(S:V) > 0 and f(S:V′) > 0 for all S ⊂ Ω , the relative error idea gives
other equivalent ways of expressing the error bound, for all S ⊂ Ω:

∣
∣
∣
∣
∣

f
(
S : V ′)

f (S : V )
− 1

∣
∣
∣
∣
∣
≤ eb

f (S : V )
⇐⇒

∣
∣
∣
∣
∣
∣

f (S : V )

f
(
S : V ’

) − 1

∣
∣
∣
∣
∣
∣
≤ eb

f
(
S : V ’

) .

If the model f(S:V) is on a national scale, but aggregation is done on a city/town
scale (e.g., eb = 10 miles, f(S:V) = 500 miles), we could have relatively small ratios
eb/f(S:V) and eb/f(S:V′), in which case the model ratios would be nearly one and we
would have a good aggregation. By contrast, if the model is on a city/town scale
and the aggregation is also on a city/town scale, we might have a poor aggregation.
We need the aggregation scale to be substantially smaller than the model scale in
order to have a good aggregation. This is one reason that aggregation may be of
more interest for problems of city/town/regional scope than those of national or
international scope.

There is another way to view the use of an aggregation error bound. The error
bound allows us to draw conclusions about a family of original models, instead
of just one. If the actual location model is F(S:V) instead of f(S:V), but the error
bound applies to both, that is |f(S:V′) – F(S:V)| ≤ eb and |f(S:V′) – f(S:V)| ≤ eb
for all S, then whatever conclusions we draw about the function f using the error
bound inequality also apply to the function F. While we lose accuracy when we
aggregate, we gain the ability to draw approximate conclusions about a family of
original functions. As a general example of the function F, suppose instead of the
DP set {vj: j ∈ J} we have a different DP set, say {bj: j ∈ J}, defining F, while
all other model data is the same as for f(S:V). If each DP bj is aggregated into vj

′,
then each of the functions F and f will be aggregated into the same approximating
model, denoted by f′. Further, if also d(vj,vj

′) = d(bj,vj
′) for j ∈ J, then the methods

we present later would provide both F and f′, and f and f′, with the same error bound.
The data for F and f differ, but are sufficiently similar that the aggregation does not
detect the differences.

Denote (globally) minimizing solutions to any original and approximating
location models f(S:V) and f(S:V′) by S∗ and S′ respectively. While we usually
cannot expect to find S∗ if we must aggregate DPs, we can still obtain some
information about S∗ if we know an error bound eb and S′. Geoffrion (1977) proves
that if |f(S′:V′) – f(S∗:V)| ≤ eb, then |f(S′:V) – f(S∗:V)| ≤ 2eb. Supposing f(S′:V) > 0,
we thus have |1 – f(S∗:V)/f(S′:V)| ≤ 2eb/f(S′:V). Hence, if 2eb is small relative
to f(S′:V), we may reasonably accept S′ as a good substitute for S∗. We assume
henceforth that we can compute S′ but not S∗. Note that if we wish to use S′ to
approximate S∗, then it makes no sense to allow p ≥ q, for then we can place a new
facility at every ADP and may achieve a minimal approximating function value of
f(S′:V′) = 0. Certainly it is desirable to have p << q.
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Table 18.3 Various types of
optimality errors for any
location model f(S:V). Ideal
error measures are zero

No. Error name Error definition

1 Total error at S′ e(S′) = f(S′:V′) – f(S′:V)

2 Opportunity cost error f(S∗:V) – f(S′:V′)
3 Optimality error f(S∗:V) – f(S′:V)

Various authors, cited in Francis et al. (2009), have proposed different types of
optimality errors which we list in Table 18.3. The first error can be computed, and
indicates how well the approximating function estimates the original function at S′.
For large models, the second two errors cannot be computed without knowing S∗.
They can be computed for smaller models where S∗ can be found without the need
to aggregate, or for larger models if one assumes the algorithm used to solve the
original problem provides S∗. Unless one can be certain that S∗ is known, or that
some properties of S∗ are known, the latter two measures do not seem useful.

Although it is reasonable to use some measure of the difference between f(S:V′)
and f(S:V) to represent aggregation error, doing so results in what may well be called
the paradox of aggregation (Francis and Lowe 1992). Often our principal reason to
aggregate is because we cannot afford, computationally, to make many function
evaluations of f(S:V). We want to aggregate to make the error small; however,
algorithms to do this typically require numerous function evaluations of f(S:V) and
thus cannot be used for this purpose. Usually it is practical, however, to compute
error measures for at least a few S, and we certainly recommend doing so whenever
possible. For example, given we know V and V′, we can use a sampling approach to
compute a random sample of size K of p-servers, say S1, . . . ., SK , compute f(Sk:V′)
and f(Sk:V) for each sample element Sk, and then compute a sample error estimate
of any error measure of interest.

Location error (Casillas 1987; Daskin et al. 1989) involves some comparison
of the p-server locations S∗ and S′. There are several difficulties with using this
concept. First, if we really knew S∗ we would not need to do the aggregation.
Second, when |S∗| ≥ 2, there appears to be no accepted way to define the difference
between S∗ and S′. Third (assuming we do know S∗), the function f(S:V), particularly
if it is the PMM function, may well be relatively flat in the neighborhood of S∗, as
pointed out by Erkut and Bozkaya (1999). This means we could have some S′ with
f(S′:V) only a little larger than f(S∗:V), but S′ is “far” from S∗. Fourth, S′ and S∗
may not be unique global minima. Why are comparisons made between S′ and S∗?
We speculate they are made in part due to unstated subjective evaluation criteria, or
known but unstated supplementary evaluation criteria. As another possible example
of the use of location error, we might solve the approximating model with three
different levels of aggregation (numbers of ADPs), obtaining three corresponding
optimal p-servers say S′, S′′ and S′′′. In this case, differences between successive
pairs of these p-servers might be of interest; we might want to know how stable
the optimal server locations are as we change the level of aggregation (Murray and
Gottsegen 1997).
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Subjective or unstated aggregation error criteria may well be important, but are
not well-defined. Thus, two analysts can study the same DP aggregation and not
agree on whether it is good or not. Further, if a subjective evaluation derives from
some visual representation of DPs and ADPs, such an analysis may single out
some relatively simple visual error feature that is inappropriate for the actual model
structure. For example, a visual analysis could not evaluate the (computationally
intense) absolute error for the PMM. Some generally accepted way to measure
location error is desirable.

How should we measure the location error diff(S,Y), the “difference” between
any two p-servers S and Y? The answer is not simple, because the numbering
of the elements of S and of Y is arbitrary, and we must find a way to match up
corresponding elements. Further, S and Y are not vectors, but sets. We propose the
use of a method discussed by Francis and Lowe (1992). For motivation, consider
the case where for each element sk of S there is only one “nearby” element of Y, say
ykˆ. In this case we might use either max{d(sk,ykˆ): k = 1, . . . , p} or

∑{d(sk,ykˆ):
k = 1, . . . , p} as diff(S,Y). More generally, define the p × p matrix C = (cij)
with cij = d(xi,yj). Define an assignment (permutation matrix) to be any 0/1 p
x p matrix Z = (zij) having a single nonzero entry of one in each row, and a
single nonzero entry of one in each column, and let P denote the set of all such
p! assignments (permutation matrices). Define the objective function value v(Z) for
every assignment Z ∈ P by v(Z) ≡ max{cij zij: Z ∈ P}, so that v(Z) is the largest
entry in C for which the corresponding entry in Z is one. Define Δ(S,Y) = min{v(Z):
Z ∈ P}, so that Δ(S,Y) is the minimal objective function value of the min-max
assignment problem with cost matrix C. We propose using Δ(S,Y) for diff(S,Y).
There are several good reasons for using Δ(S,Y). One reason is that it has all
the properties of a distance (see Goldberg 1976): symmetry: Δ(S,Y) = Δ(Y,S);
nonnegativity: Δ(S,Y) ≥ 0 and Δ(S,Y) = 0 ⇐⇒ S = Y; triangle inequality:
Δ(S,Y) ≤ Δ(S,Z) + Δ(Z,Y) for any p-servers S, Y and Z. Another reason, further
explored in Francis et al. (2009), is that it is related to the absolute error. (We
could also use the optimal value of the conventional min-sum assignment model
for diff(S,Y). This optimal value also has all the properties of a distance, but we
know of no useful relationship between it and absolute error.) We call the distance
Δ the min-max distance. Note, for any two p-servers S, Y ⊂ Ω , Δ(S,Y) ≤ diam(Ω).
Further, when p = 1 the min-max distance is just the usual distance, d(x1,y1).

Both min-max and min-sum assignment models are well-studied and are effi-
ciently solvable in low polynomial order for any set of real coefficients (Ahuja et
al. 1993). In the assignment models we study, the coefficients typically correspond
to distances between points in some geometric spaces, e.g., planar Euclidean or
rectilinear cases. For these geometric models significantly more efficient algorithms
have become available (Agarwal et al. 1999; Agarwal and Varadarajan 1999; Efrat
et al. 2001, and Varadarajan 1998).

There are a number of relationships between the error measures of Table 18.2.
These relationships, some of which may not be obvious, are a subject of discussion
in Francis et al. (2009), where there are also numerical examples of many of the
error measures. It also seems worth pointing out that error measures 2 through 7 of
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Table 18.2 are local error measures, since they depend on S. By contrast, measures
1, 8 and 9 may be considered global error measures.

There is no general agreement on which aggregation error measure is best.
Until the research community agrees on one or more error measures, progress in
comparing various aggregation approaches, and in building a cumulative body of
knowledge, will necessarily be limited. The lack of agreement on error measures
also limits progress in trading off aggregation advantages and disadvantages.
Further, because comparisons of various aggregation algorithm results should all
be based on the same error measures, there is currently little point in developing a
data base of DPs that can be used by the profession to test their aggregation methods.
We personally recommend the uses of relative error based on absolute error and/or
error bounds, together with ADP-DP distances. The bound in the inequality |1 –
f(S∗:V)/f(S′:V)| ≤ 2 eb/f(S′:V) seems particularly promising.

An alternative to using some low computational order approach to aggregate
the original demand point set, and then solving the resulting aggregated location
model to optimality, is to use some low computational order metaheuristic approach
(Pardalos and Resende 2002; Reeves 1993; Resende and de Sousa 2004) to approxi-
mately minimize the original, unaggregated location model. The first approach gives
bounds on optimality to the original model. Remove space The second approach
introduces an additional source of error, since a heuristic is used, but may possibly
result in a better solution. Promising examples of this second approach include the
work of Avella et al. (2012), Irawan and Salhi (2015b), and Irawan et al. (2014).
Given the current state of the art, which approach is best is not known. Indeed,
“best” may not even be well-defined, since there is no generally accepted measure
of aggregation error.

18.5 Error Bounds

We have argued that an upper bound on the absolute error is among the best
representations and measures of the error associated with an aggregation. We have
used the symbol eb to represent this upper bound so that with f(S,V) a general
location model, |f(S:V′) – f(S:V)| ≤ eb.

Consider now obtaining error bounds for the PMM and PCM, say ebpmm and
ebpcm, with these two models defined in Examples 1 and 2 respectively. Both error
bounds are direct consequences of the triangle inequality for shortest distances,
which holds for all j ∈ J and all S ⊂ Ω:
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vj

′, vj
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(
S, vj
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(
S, vj

) ≤ d
(
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′, vj
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(18.1)
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The p-median and the p-center models have the following error bounds respec-
tively:

ebpmm = Σ
{
wj d

(
vj

′, vj
) : j ∈ J

}
, ebpcm = max

{
wj d

(
vj

′, vj
) : j ∈ J

}
.

The error bounds themselves can be viewed as location models; if vj
′ is the closest

ADP to vj (which is reasonable), then we have

ebpmm = Σ
{
wj D

(
", vj

) : j ∈ J
}
, ebpcm = max

{
wj D

(
", vj

) : j ∈ J
}
.

Since it is of interest to have small error bounds when doing aggregation, we can
view each of the latter two error bound expressions as a location model, and use
heuristic location minimization algorithms to compute Γ . Thus, doing aggregation
may be viewed as solving a location problem.

We remark for PMM, if S is restricted to being in a finite set of possible sites, and
there are fixed site costs but the sites are not aggregated, then the site fixed costs can
be added to the objective function without affecting the error bound.

Francis et al. (2009) give an extensive discussion of the use of the above error
bounds for aggregation. The conditions for the PMM error bound to be tight are
much stronger than for the PCM error bound to be tight, and this is reflected by better
computational experience for the PCM than the PMM. However, computational
experience does show that the PMM error bound is well correlated with sample
absolute error measures, and that it makes sense to locate ADPs so as to keep the
PMM error bound small.

Another location problem of interest is the covering location model, defined by
Example 3. Since D(S,vj) ≤ rj is equivalent to D(S,vj)/rj ≤ 1, from (18.1) we obtain.

| D (
S, vj

′) /rj–D
(
S, vj

)
/rj |≤ d

(
vj

′, vj
)
/rj, for all j ∈ J and all S ⊂ Ω.

(18.2)

Thus we obtain n error bounds, one for each original constraint. Clearly, it makes
sense to aggregate so as to keep these error bounds small.

Let us now build on (18.2), the basic error bound idea for constraints. Generally,
we have location constraints of the form fj(S) ≤ rj, j ∈ J, S ⊂ Ω . Suppose each
function fj(S) is replaced by some approximating function, say fj′(S), resulting in
some constraints that are not distinct for the aggregated model of fj′(S) ≤ rj, j ∈
J, S ⊂ Ω . If we now define functions f(S) and f′(S) by f(S) ≡ max{(1/rj) fj(S): j
∈ J}, f′(S) ≡ max{(1/rj) fj′(S): j ∈ J}, then the constraints for the two models are
equivalent to f(S) ≤ 1 and f′(S) ≤ 1 respectively. Hence, we can view f′(S) as an
aggregated version of the function f(S), and apply whatever function error measures
are of interest. It is known (Francis et al. 2004a) for example, that if fj′(S) and fj(S)
have error bound bj (= d(vj

′,vj) /rj for the CLM) for j ∈ J, then f(S) and f′(S) have the
(unitless) error bound eb = max{bj: j ∈ J}. For the CLM, the resulting error bound
is identical in form to that for the PCM; hence aggregation methods providing small
PCM error bounds also can provide small CLM error bounds, and vice-versa.
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When f(S) and f′(S) are any original and aggregated functions with some error
bound eb, it follows directly that f′(S) ≤ 1-eb ⇒ f(S) ≤ 1; f(S) ≤ 1 ⇒ f′(S) ≤ 1+ eb.
Thus, the constraint f′(S) ≤ 1-eb gives a restriction of the original constraint, while
f′(S) ≤ 1 + eb gives a relaxation. Each can be easier to deal with than the original
constraint and may be used to compute lower and upper bounds on the optimal
objective function value of the original model. Supposing eb << 1 (which is clearly
desirable), feasibility conclusions about one model thus allow us to draw feasibility
or “near-feasibility” conclusions about the other model.

Following Francis et al. (2004c), Table 16.4 illustrates the use of error bounds as
discussed to obtain a relaxation and restriction of the aggregated CLM as well as a
relaxation and restriction of the original model.

Francis et al. (2004c) used the approach of Table 18.4. They solved to optimality
a CLM with almost 70,000 original CLM constraints by solving several aggregated
CLMs each with less than 1000 covering constraints. Their computational experi-
ence was usually that the minimal objective function value of the original model
was underestimated when solving the approximating model without enough ADPs,
which is consistent with the discussion in Sect. 18.2. The case study of Sect. 18.3
uses some of these aggregation ideas.

The error bound max{wj d(vj
′,vj): j ∈ J} for the PCM and CLM for some choice of

the wj including wj = 1/rj is quite robust. It applies to an obnoxious facility location
model (Francis et al. 2000); Erkut and Neuman 1989) and, when doubled, to a p-
center hub location model (Gavriliouk 2003; Ernst et al. 2002a, b). Although most
of the error bound results were developed for the case of discrete demand, Francis
and Lowe (2014) study the relationship between error bounds for the discrete and
the continuous demand cases.

Table 18.4 Relaxation and restriction of both the original and aggregated covering location
models assuming all δj < rj

Constructing Aggregated CLM

1 Definitions γ 1, . . . , γ q: the q distinct ADPs
δj ≡ d(vj

′,vj), j ∈ J; δj < rj, j ∈ J
β i ≡ min{rj- δj: vi

′ = vj}, i = 1, . . . , q
ρi ≡ min{rj + δj: vi

′ = vj}, i = 1, . . . , q

2 Original covering constraints D(S,vj) ≤ rj, j ∈ J, all S

3 Aggregate constraints D(S,vj
′) ≤ rj, j ∈ J, all S

4 Restrictions of both original and aggregate
constraints

D(S,vj
′) ≤ rj- δj, j ∈ J, all S ⇐⇒

D(S,γ i) ≤ β i, i = 1, . . . , q, all S

5 Relaxations of both original and aggregate
constraints

D(S,vj
′) ≤ rj + δj, j ∈ J, all S ⇐⇒

D(S,γ i) ≤ ρi , i = 1, . . . , q, all S

http://dx.doi.org/10.1007/978-3-030-32177-2_16
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18.6 Conclusions

For location problems with many thousands of demand points, aggregation is often
essential. This chapter has dealt with the topic of demand point aggregation for
location models. We have pointed out that demand point aggregation causes error
and presented some possible ways of measuring this error. Our focus has been on
the concept of an error bound, an upper bound on the maximum absolute error
due to aggregation. Error bounds are given for three key location models: the p-
median model (PMM), the p-center model (PCM) and covering location model
(CLM). We have shown that minimizing the error bounds for (PMM) or (PCM)
results in a location problem. This is a concept that we have called “the paradox
of aggregation”. We have also presented an application of the covering location
model to a real public sector location problem in the state of Florida, and have
demonstrated error bound analysis for this problem.

Difficulties in computing actual errors lead to the concept of an error bound, and
this error bound can be used as a surrogate for the maximum absolute error. In fact,
error bounds can be computed for many other location models since many of these
models share properties with (PMM), (PCM), or (CLM). In addition, error bound
analysis can be extended to more general costing functions g if f(S) = g(D(S,V)) and
the costing function g is subadditive and nondecreasing (SAND) (see Francis et al.
2000, 2009).

Based on our work on demand point aggregation for location modeling, we offer
the following observations:

1. The work of Hillsman and Rhoda (1978) is widely recognized and influential;
in particular, self-canceling error is a helpful concept for models with additive
structure;

2. There is little average-case analysis of aggregation error;
3. Much more research on aggregation for the median problem has been done than

for center, covering and other models;
4. Progress is definitely being made in understanding aggregation error;
5. Aggregation error bounds can be useful, particularly for center and covering

models;
6. Aggregation error measures used vary greatly, and there is no agreement on how

to measure error; hence it is pointless to ask which aggregation algorithm is best,
since “best” is not defined.
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Chapter 19
Location and Geographic Information
Systems

Burcin Bozkaya, Giuseppe Bruno, and Ioannis Giannikos

Abstract Since their early stages of development, Geographic Information Sys-
tems (GIS) were utilized in a variety of ways to support analytical models in the
field of location science. The interactions between the two disciplines soon became
so evident that one can safely argue that GIS and location science are influencing
each other in multiple ways. The rapid technological advances in the field of GIS
and the ever increasing availability of geographically referenced information create
even more possibilities for interconnections between GIS and location science. This
chapter highlights these new possibilities and the new directions that emerge within
academic research as well as in practical applications. We also attempt to point out
further possibilities that may emerge in the future for linking these two disciplines.

19.1 Introduction

The realization that it is vital to take into account the locations where certain events
or phenomena took place in order to fully analyze them, is not new. In fact, one of the
earliest documented examples of spatial analysis is the study by Picquet in 1832 in
which he represented the 48 districts of the city of Paris by half-tone color gradient
according to the percentage of deaths by cholera per 1000 inhabitants. Perhaps the
most celebrated application in the nineteenth century was the representation by John
Snow in 1854 of a cholera outbreak in London using points to represent the locations
of some individual cases. It was this representation which played a major role in
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the effort by the authorities to identify the source of the disease, a contaminated
water pump, whose handle was disconnected, thus terminating the outbreak. The
term Geographic Information Systems (GIS) initially appeared following the work
by Roger Tomlinson and his colleagues who developed a digital natural resources
inventory system for Canada in the 1960s. This system provided capabilities for
measurement, digitizing, scanning and overlay, thus enabling the spatial analysis
of stored data. The rapid advances in ICT opened the way for the development of
modern GIS which have now become accessible to a wide variety of users ranging
from large corporations to individuals.

Academics and practitioners dealing with location science models were quick
to recognize the possibilities for interaction between location science and GIS.
Initially, GIS were loosely coupled with location models and were mainly used for
handling data and visualizing results. As GIS developed further, the two domains
inevitably came closer together in the sense that each of them has influenced the
other in a variety of ways. Apart from suitability analysis and data generation, the
linkages include topics such as formulation of new models, analysis of uncertainty
and error propagation and development of new solution methods for location science
problems. These aspects were discussed in the earlier version of this chapter that
was an attempt to evaluate how these linkages had evolved over time in comparison
to the earlier reviews by Church (1999, 2002) and Murray (2010). In the last
few years significant technological developments have certainly occurred such as
the proliferation of smartphones and wearable devices, the massive availability
of location data made accessible through platforms such as Google Earth or
OpenStreetMap. In this new version of the chapter we intend to highlight the
new directions that have been initiated both in terms of research and in terms of
applications as a result of these transformations. In this work we will also avoid
making extensive references to specific software tools mainly because we still
expect that GIS technology will continue to evolve and will most probably make
any reference to particular packages obsolete.

The rest of the chapter is organized as follows. In the following section we give
an overview of Geographic Information Systems and their functionality, as it has
advanced over the recent period. We then present the main ingredients of location
analysis models and discuss the most common classes of problems where GIS have
been successfully utilized. Finally, we comment on some recent applications where
GIS have been employed to address realistic problems in location science and finish
with some conclusions and directions for further research.

19.2 Overview of GIS

Generally speaking, GIS are information systems that integrate, store, edit, analyze,
share and display geographic information as well as non-spatial information for
supporting decision making. Over the years, the term GIS came to indicate a
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technology as well as a tool or a way of data acquisition, management, manipulation,
analysis and display.

Typically, GIS store information as a collection of thematic layers that are linked
together by geography. In practical terms, GIS combine spatial data, that is in
some way referenced to locations on the earth and attribute data that provides
additional information about each of the spatial features and is typically represented
in tabular format. As GIS technology developed, other types of data such as image
or multimedia also became relevant. Documentation of GIS datasets is known as
metadata and may concern the coordinate system, the date and time when the data
was created or last updated, etc.

Spatial data is represented using a vector or raster/image format. The vector data
model implies the use of discrete line segments (vectors) and points to represent
geographic features. It can represent points, lines and areas. Each point or vertex
consists of an X coordinate and a Y coordinate. The raster data model divides
the study area into a regular grid of cells with each cell containing a single value
reflecting the dominant property or attribute within the cell. Each of these two spatial
data models is characterized by certain advantages and disadvantages (see Church
and Murray 2009).

Image data may also be used to store remotely sensed imagery, such as satellite
scenes or aerial photos and it is typically stored in a variety of formats (e.g., .TIFF,
.PNG, .JIF, etc.). Most GIS software packages allow the inputs and display of such
formats, typically through conversion into a raster format (and perhaps vector) to be
used analytically with the GIS.

Finally, attribute data is typically represented through relational database models
where data is organized in tables containing rows and columns. Each row corre-
sponds to a record and each column stores the values of a specific attribute. Most
GIS packages offer an internal relational data model as well as support for external
relational databases thus enabling the use of large existing datasets.

Most of the early GIS implementations gave greater emphasis on spatial data
and tended to ignore the time dimension. However, the existence of a huge volume
of spatial-temporal data and the ever advancing technology have necessitated the
extension of traditional models to cater for the temporal dimension as well. The
inclusion of time often results in complex, large, and highly varied datasets. At the
moment there does not seem to be a standard database model or analytical approach
to handle these complex datasets. As reported by de Smith et al. (2013), specialized
techniques have been developed for specific cases. Typical examples include the
approach employed to capture land use change (see IDRISI’s Land Change Modeler
package), the modeling of coastline advance and retreat (see Ahmad 2011) and
the extension of spatial scan statistical procedures to spatio-temporal point data for
crime analysis (see Cheng and Adepeju 2013).

Since their early stages of development all GIS tools offered a set of basic
functions which characterized their primary purposes and objectives. This set of
functions included the management, transformation, analysis and visual presen-
tation of spatially referenced information. For a more detailed description of the
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functionality of early GIS, see Chang (2018) and https://gisgeography.com/history-
of-gis/.

The rapid advances in technology resulted in an almost simultaneous increase
in GIS functional requirements. As a result, the basic functions mentioned above
were rapidly enhanced by incorporating an ever increasing number of capabilities.
For instance, off the shelf as well as open source GIS employ a series of machine
learning algorithms in order to predict, cluster or classify spatial data.

The development which probably caused the most dramatic changes in GIS
functionality is the fact that nowadays millions of users are sending and receiving
information from mobile devices such as smartphones or tablets all over the world.
The rapid shift towards a digitized society has totally changed the way people
access and utilize location data. Whereas GIS technology and location data were
previously available only to experts, the digital transformation of modern societies
has made it possible for small enterprises as well as individuals to require access
to location data anytime and on any device. GIS developers were quick to adapt to
the new reality. As a result, Web based GIS applications are becoming increasingly
popular as they offer a much broader range of functions and capabilities. In turn,
this trend leads to the need for standardization, interoperability and sharing of data.
Along these lines the Open Geospatial Consortium (OGC) initiated the Open Web
Service (OWS) program based on service-oriented architectures and web service
and proposed several geospatial specifications to support geospatial data sharing
and interoperation, such as Web Map Service (WMS), Web Feature Service (WFS),
and Web Processing Service (WPS) (see Verma et al. 2012). WMS offers the ability
to produce maps rather than access specific data holdings and generates spatially
referenced maps dynamically. WFS defines the interfaces for the access and manipu-
lation of geographical features and elements through Geography Markup Language
(GML) whereas WPS provides standardized interfaces to facilitate publishing,
discovering and binding geospatial services that enable spatial processing functions
across a network.

In general, rather than specific hardware and software implementations, modern
GIS are portrayed as services where the underlying technology is less visible or even
less important to the users (see Miller 2018). Hence, although the traditional GIS
functions such as management, analysis etc. of spatial data have not been neglected,
emphasis is now placed on accessibility, ease of configuration, user friendliness and
integration of multiple data sources and formats.

19.2.1 GIS Software

The basic functions described above can be performed by a large variety of GIS
packages that have become available to both academic and commercial users over
the years. The list is long and rapidly changing. Many of these packages are free
while others are available for a small fee to all or selected groups of users. Special
reference must be made to the development of open source GIS, which has become

https://gisgeography.com/history-of-gis/
https://gisgeography.com/history-of-gis/
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a long tradition in the history of GIS, with the appearance of the first package in
1978. In open source applications users may freely access and modify the source
code, thus providing the package with an ever increasing range of capabilities. Such
projects typically involve a large number of volunteer programmers. This trend
has evolved at an accelerating pace over the years with a lot of GIS applications,
developing within the framework of Free and Open Source Software (FOSS). The
advantages of this approach include decreased software costs, protection of privacy,
increased security etc. Finally, there exist numerous GIS commercial products that
are licensed at varying per user prices, from a few hundred to over a thousand US
dollars.

Access to spatial data as well as advanced mapping and spatial analysis over
the Internet is becoming more common. As a result, a wide range of web-based or
web-deployed tools has been developed, enabling data collection and representation,
as well as real time analysis for supporting decision making, without the need
for local GIS software installation. Following the advances in cloud computing,
several collaborative platforms have been developed for creating, publishing and
sharing maps, data and services over the internet. See https://www.giscloud.com/,
https://mangomap.com/ and http://www.qgiscloud.com/ for examples of such plat-
forms. Detailed lists and reviews of GIS products can be found in Wikipedia
and in specialist magazines and websites such as CapTerra (https://www.capterra.
com/gis-software/) and GIS-Geography (https://gisgeography.com/mapping-out-
gis-software-landscape/).

According to de Smith et al. (2013), a frequent criticism of GIS software was
that it was over-complicated, resource-hungry and required specialist expertise to
understand and use. Indeed, in many applications, only a handful of the capabilities
provided by GIS was exploited. As a result, many users preferred to utilize
specialized tools for their required analytical work and draw on the strengths of
GIS in data management and mapping to provide input/output and visualization
functionality. However, the emergence of a vast number of web-based tools and the
availability of spatial data on the internet have enabled small businesses or even
individuals to exploit a significant range of GIS capabilities with minimum training
and expertise.

The complexity of GIS implementations and the huge variety of applications
imply that it is not easy to develop benchmarks for testing the quality, speed and
accuracy of GIS products. As a result, it is up to the user to carefully assess their
particular current and future needs and to consider the features of each package
(cost, maintainability, transparency, flexibility, etc.) before he adopts a specific
product. Relevant criteria may be the availability of plug-ins that perform specific
functions, the support of remote sensing tools, the ability to create web maps, the
availability of documentation and examples etc.

Since their appearance in the late 1960s, GIS have evolved tremendously both in
terms of the related technology and with respect to the underlying methodology.
Their ever increasing use has raised several research questions concerning the
development of theories, techniques, data and technology for interpreting the
relationships and patterns involving spatial data. In fact, this realization resulted

https://www.giscloud.com/
https://mangomap.com/
http://www.qgiscloud.com/
https://www.capterra.com/gis-software/
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in the introduction of the term “Geographic Information Science” (GIScience) to
signify that the systematic study of these issues constitutes a science in its own
right (Goodchild 2010). The need to address these issues systematically inspired
the establishment of the US University Consortium for Geographic Information
Science (www.ucgis.org) which involves more than 60 institutions and defines
GIScience as “the development and use of theories, methods, technology, and data
for understanding geographic processes, relationships and patterns.” Hence, GIS are
not merely a tool for decision support but a rapidly changing domain which poses
significant challenges for academics and practitioners alike.

19.3 Generalities on Facility Location Problems

In general, the essence of facility location problems (FLPs) is to determine the
position of a set of facilities in a given location space in order to provide some
service to a set of actors which are supposed to patronize some of the available
facilities. These actors correspond to the demand (actual or potential) that must be
satisfied. This definition implies the following fundamental ingredients of a FLP
(see also Eiselt and Laporte 1995; ReVelle and Eiselt 2005).

Location Space It represents the space where demand points are present and
facilities are to be located. It can be a physical space (e.g., a region or a city) or
not (e.g., a market or any multi-dimensional space defined by a set of variables).
Typically, the dimension of the space is assumed to be sufficiently large to consider
facilities dimensionless in such a way that they can be represented as points.

The location space can be considered continuous, discrete or it may be repre-
sented by a network. In a continuous space, facilities are allowed to be located at
any point except within potential “forbidden zones.” Continuous space models are
sometimes referred to as site-generation models since the generation of appropriate
sites is left to the model in hand. On the other hand, in a discrete space, facilities may
only be located at some predefined points. For this reason, discrete space models can
also be referred to as site-selection models since the choice is limited within a set
of known candidates. Using network based models the choice may be restricted to
nodes or to any point of the network (node and/or arc). When a simultaneous choice
of nodes and arcs is required, the problem is usually referred to as a network design
problem. An example of this class is the so-called corridor location problem where
routes of arcs connecting two points have to be located. The characteristics of the
location space and the specific application generally drive the adoption of a metric
that is used to measure distances between elements of the space (facilities and/or
demand points).

Facilities The term facility is used to denote an object to be located in order
to optimize the interaction with other pre-existing objects. Classical examples of
facilities are industrial or commercial structures (e.g., retail outlets, plants, ware-
houses, bank branches), public services sites (e.g., schools, hospitals, fire stations,

www.ucgis.org
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waste disposal sites), transportation and logistics infrastructures (e.g., terminals,
cross-dockings, metro stations, parking lots). Facilities are usually characterized by
attributes such as the number and the type of services they provide, their capacity,
their attractiveness, the costs associated with their establishment and operation.
Depending on the “intensity” of these attributes, facilities may produce certain
“effects” on a set of actors. If these effects are judged as positive, then facilities
are defined as “desirable.” For instance, this is the case of schools, public service
sites or metro stations where users generally wish to be as close to them as possible.
Otherwise they are considered “undesirable” as in the case of nuclear or chemical
plants, waste disposal sites or incinerators, airport or military installations and so on.
There also exist situations where facilities are partly desirable, partly undesirable
(e.g., commercial stores) as they produce some positive effects (i.e. accessibility to
services) as well as some negative ones (i.e. traffic congestion) on the surrounding
area.

A fundamental characteristic of a FLP is the number of new facilities to be
located. The simplest case is the single-facility problem when the position of only
one facility has to be determined, while the more general one is the multi-facility
problem in which the aim is to simultaneously locate more than one facility. The
number of facilities can be either pre-specified or a decision variable of the problem.
In the latter case, there may be restrictions on the minimum or the maximum number
of facilities to be located. The decision problem can also consider the possibility to
shut down existing facilities or to reposition some of the existing ones.

Demand It represents the actors involved in the FLP. Depending on the kind of
service provided, they can be defined as customers, users, residents, population
centers and so on. Demand can be represented in continuous or in discrete fashion.
In the first case the demand area may be partitioned into sub-areas such that
within each sub-area it may be assumed that the demand is uniformly distributed.
Otherwise demand may be assumed to be concentrated on discrete points. In any
case, it is always possible to transform continuous into discrete demand and vice
versa through appropriate procedures. However, during these operations particular
attention should be paid to approximations and errors introduced in the model
(Current and Schilling 1990; Francis et al. 2002).

When facilities provide different types of services, demand should concern
several kinds of services and the corresponding FLPs are referred to as multi-
commodity problems. Depending on each particular application, demand can be
deterministic or stochastic. In both these cases, it can be estimated either by
combining current data and/or attributes or by using appropriate forecasting tools.

Interactions Between Elements of a Problem In a FLP mainly two kinds of
interactions have to be taken into account: customer-facility interactions and
facility-facility interactions. In some applications customer-facility interactions
concern how customers patronize their own facilities or how they are “allocated”
to facilities. In some cases, customers are free to decide on the basis of a utility
function which, in general, combines attributes of facilities and distances between
customers-facilities while, in other cases, customers are obliged to patronize certain
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facilities according to given rules. Facility-customer interactions may also concern
the determination of the intensity of the effects produced by facilities to the
customers. This is typical, for instance, in problems where risks and/or damage
generated by obnoxious activities have to be evaluated on the population living in
the area around the facility position.

Facility-facility interactions take into account how facilities interact with each
other to capture the available demand. In some cases, there is competition in order
to capture as much of the demand as possible (i.e. commercial stores of different
companies). This aspect is also known as cannibalization effect (see Chap. 14 for
further coverage on competitive location problems). On the other hand, in some
applications facilities are located in such a way that they cooperate in order to assure
a certain level of accessibility to the users (i.e. bank offices, public service sites,
franchising stores).

Objective Function(s) Location decisions can be made according to different
criteria or objective functions whose choice mainly depends on the nature of
facilities (desirable or undesirable). In the case of desirable facilities, efficiency is
the most commonly used criterion. Efficiency is typically associated with costs, and
distance is the most common proxy for costs. For this reason, objective functions are
in most cases expressed as functions of distances between customers and facilities,
possibly weighted by the demand associated with each customer.

Denoting with p the number of facilities to be located, problems differ according
to whether p is pre-defined or a decision variable. In the first case, the minimization
of the sum of the weighted distances between demand points and facilities to be
located (minisum objective) is the typical objective of the well-known class of p-
median problems (Cooper 1963; Hakimi 1964; ReVelle and Swain 1970). When
p is a decision variable, the objective to be adopted is usually the minimization
of the sum of the fixed setup costs and the variable costs to serve customers
from the facilities. This problem is known as uncapacitated or simple facility
location problem (Erlenkotter 1978). However, if efficiency is mainly viewed from
the customers’ point of view, an alternative measure to be minimized can be
represented by the maximum distance between customers and their patronized
facilities. In practice this so called minmax objective, typical of the class of center
problems (continuous or discrete), is focused on customers in the worst condition
(Hakimi 1964; Minieka 1970; Goldman 1971; Elzinga and Hearn 1972; Drezner and
Wesolosky 1980). The interested reader is referred to Chaps. 2 and 3, respectively,
for further details and background on p-median and p-center problems.

Another classical concept used to measure efficiency is related to the ability of
facilities to “cover” demand. More precisely a facility is said to cover a demand
point if their mutual distance does not exceed a given “coverage radius” which can
be evaluated depending on the specific application. In this context when the number
of facilities is specified a priori, the objective consists in positioning them in such a
way that they are able to cover as much demand as possible (Maximal Coverage
Location Problem) (Church and ReVelle 1974). When the number of facilities
represents a decision variable, the problem is to determine the minimum number of
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facilities whose location ensures the coverage of the overall demand (Set Covering
Location Problem) (Hakimi 1965; Toregas et al. 1971). Further information on
covering-type problems is available in Chap. 5.

In the case of undesirable facilities, customers wish that facilities be located as
far away from them as possible and objectives may be defined accordingly. More
specifically, instead of minisum and minmax objectives used for desirable facility
problems, maxsum and maxmin objectives are usually employed to formulate
undesirable facilities location problems (Church and Garfinkel 1978; Dasarathy and
White 1980; Drezner and Wesolosky 1980). However, as the adoption in the model
of such objectives (maxsum, maxmin) can lead to very poor solutions from the
efficiency point of view, constraints regarding minimum levels of efficiency should
also be included.

Another class of interesting problems is based on the so called equality measures.
Either in the case of desirable or undesirable facilities, the decision maker may
be interested in finding solutions that assure a certain “fairness” in the access
to facilities. In order to describe this objective, various expressions have been
proposed, based on the minimization of measures related to the distribution of
distances between customers and facilities. Examples of such measures include the
variance, the mean absolute deviation or the Gini coefficient. For more details, see
Marsh and Schilling (1994), Eiselt and Laporte (1995), Barbati and Piccolo (2016),
Barbati and Bruno (2017).

However, it should be underlined that locational decision problems in practice
can involve multiple, conflicting and incommensurate evaluation criteria and, in this
sense, they are multiobjective in nature. Hence, in order to tackle FLPs formulated
using multiple conflicting objectives, appropriate multiobjective techniques are
needed, some of which have been reviewed by Current et al. (1990) and Farahani et
al. (2010).

Depending on the combinations of the elements characterizing FLPs, a wide
range of mathematical models can be defined. Due to this variety, different classi-
fication schemes have been proposed in the literature such as the ones suggested
by Francis et al. (1983), Brandeau and Chiu (1989), Eiselt and Laporte (1995),
Hamacher and Nickel (1998), ReVelle and Eiselt (2005) and ReVelle et al. (2008).

19.4 Interconnections Between Location Science and GIS:
Emerging Trends

As GIS began to evolve, the initial trend was to utilize them as a tool for data
generation and visualization of results in various location science problems. In
fact, GIS were combined with analytical models in a loosely coupled manner in
the sense that data was obtained from the GIS and was then imported into an
already defined model which was then solved either by an exact or by a heuristic
approach. The results were then imported back to the GIS for visual representation.
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The recent technological developments have rapidly increased the possibilities for
capturing, storing and managing spatial data. This data is now captured by various
different platforms ranging from GPS, satellites, aircraft and drones to stationary
and mobile videos, road counters or other sensors. Moreover, another class of spatial
data includes user generated data either intentionally or unknowingly provided by
individuals through the use of smartphones or other electronic equipment. Through
platforms such as WikiMapia or OpenStreetMap individual users can create, collect
and disseminate spatial data. However, this data may be biased, inconsistent, or
subjective and must be treated with caution. Nevertheless, one can safely argue
that as far as availability of spatial data is concerned, we are in the age of big
data where there is a wealth of information available linking certain phenomena
to location and thus creating opportunities for associated analytical models. For
instance, Al-Marwani (2014) combines GIS with socio-economic factors to analyze
causal relationships that can be used to forecast real estate prices.

Following the continual development of GIS, it became evident that the links
between GIS and location science could progress far beyond the concept of loose
coupling described above. Consequently, apart from suitability analysis and data
generation, GIS have inspired the formulation of new location science models,
taking into account the wide range of spatial information that was readily available.
Moreover, the extended capabilities of GIS were utilized to analyze uncertainty
and error propagation in a variety of location science models. Finally, GIS were
even used to develop new solution methods for challenging location science
problems (Bruno and Giannikos 2015). A clear demonstration of the way GIS has
affected the solution of location science problems concerns the Maximal Coverage
Location Problem whose continuous version is computationally challenging while
the number of its applications was relatively small in comparison to the discrete
version. However, as noted by Murray (2016), certain GIS functions including
overlay, finite dominating set (FDS) and skeleton have facilitated the solution of
special cases of the continuous version thanks to the development of both exact and
heuristic techniques.

The range and volume of spatial data that is currently available in various sources
and formats has created further possibilities for developing and solving analytical
models. Hence, it is evident that the two fields are rapidly converging in a number
of ways, some of which are analyzed below.

19.4.1 Location Modeling with Spatio-Temporal Big Data

The term “big data” is loosely used to describe large and complicated data sets
that far exceed the capacity of modern computing systems. What constitutes big
data largely depends on the capabilities of the users and the available tools. These
expanding capabilities have made big data a moving target ranging from few dozen
terabytes to many exabytes of data (Everts 2016). The real value in big data lies
not so much in the data itself but in the analysis that reveals the information hidden
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within it. As pointed out by Lee and Kang (2015), geospatial data has always been
big data. Geospatial big data is collected by a large variety of diverse sources such
as GPS and GPS-enabled devices, satellite remote sensors, aerial surveys, radar,
sensor networks, digital cameras, etc. The emergence of geospatial big data and its
significance for developing national and global policies have led to the creation
of the United Nations Initiative on Global Geospatial Information Management
(UNGGIM), which seeks to guide the development of joint decisions and set
directions on the production and use of geospatial information within national and
global policy frameworks (http://ggim.un.org/).

According to Percivall (2013), big data analytics is an effective way to enhance
the power of location. This has been stated very succinctly by Tobler (1970):
“Everything is related to everything else, but near things are more related than
distant things”. Hence, human behavior is highly predictable as it is unlikely
to deviate significantly over time and the future location of individuals can be
accurately predicted by a careful analysis of their previous movements. This
realization has inspired several successful applications in direct marketing, supply
chain management (Provost and Fawcett 2013), vehicle routing (Valdes-Dapena
2011) and other domains.

The increasing availability of such big data has necessitated the development of
new methods for modeling and structuring data. More specifically, greater emphasis
has been placed on parallel and distributed programming for handling geo-spatial
big data sets (Lee et al. 2014; Shekhar et al. 2014) while functional programming
concepts or languages such as Haskell Domain-Specific Language (Mintchev 2014)
and Map-reduce (Mohammed et al. 2014) have been utilized for managing such
data.

The rise of big data has also set the pathway towards location optimization
modeling approaches exploiting large spatial datasets. For instance, Cai et al. (2014)
analyze travel patterns of a taxi fleet in Beijing to determine the best locations
for electric vehicle charging stations. They analyze the trajectories of 10.000+
taxis, determine most common routes and hotspots, and use this information in site
selection.

Facility location models in the presence of competitors commonly employ grav-
ity models where customers or demand centers are gravitated towards competing
facilities (e.g. stores, shops) based on distance and facility attractiveness. An empiri-
cal study is conducted by Suhara et al. (2019) that attempt to validate gravity models
using transactional big data with millions of credit card purchasing records obtained
from a private bank in Turkey. They show that the real-world transaction activity
of consumers indeed confirms gravity models under certain regional parameters
and various shopping categories including groceries, gas stations, restaurants and
clothing stores. In a recently published study, Ting et al. (2018) analyze geo-spatial
and socio-economic and demographic features that are most relevant in predicting
the sales performance at a candidate retail site location. They analyze data from
various sources and identify feature sets that vary over time as well as the retail
location set. They use these findings to develop and evaluate similarity measures to
predict sales for a new location.

http://ggim.un.org/
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19.4.2 GIS Tools Integration to Data Analytics Libraries

One of the “traditional” ways of fully exploiting GIS capabilities is the integration
of GIS software with data analytics libraries or high level programming languages in
order to write scripts or programs that automatically combine a series of GIS tools
or utilities to accomplish certain tasks. There are several programming languages
such as Python, Jscript or Perl that are particularly suited for writing short scripts
since they have more basic syntax and are easier to learn than other languages such
as C, Visual Basic or Java. In particular, the introduction into Python of many
new programming features, have made the language much easier to deploy. As a
result, Python has been combined with commercial GIS software, notably products
developed by Esri, as well as open source platforms such as QGIS and GRASS.
As noted by Altaweel (2017), most GIS users employ Python for developing short
scripts rather than exploit its object oriented or imperative programming style
features. Despite its simplicity, Python offers access to a wide range of libraries and
facilitates the development of various applications such as GIS for mobile devices,
integration of mapping features with web programs, and other tools that require
server and cloud based services. Furthermore, Python allows easy access to well
known libraries such as Google Maps and other popular Google software. Hence,
Python has enabled programmers to more easily develop GIS and mapping tools
that are integrated with other popular tools and devices (Altaweel 2017). Although
Python is slower compared to other languages since it is an interpreted language,
its simplicity and flexibility make it very popular when it comes to developing GIS
applications, to the extent that special relevant conferences are organized across the
world (http://2018.geopython.net/).

Of the major GIS libraries mentioned above that are available to programmers via
Python, Esri’s proprietary ArcObjects object library allows users to carry out basic
as well as advanced GIS tasks, accessible via the company’s suite of products and
Python interface arcpy. The GIS library is typically executed as a geo-processing
script or batch job where a great variety of spatial tools can be used. Particularly
interesting and useful is the Network Analyst extension that encompasses location-
allocation modeling and related solution tools, includingp-median, p-center models
and their variants as well as gravity-based competitive facility location models
(www.esri.com/en-us/arcgis/products/arcgis-network-analyst).

Another major GIS library that is accessible via Python is the Geopandas
(geopandas.org), an open-source library that offers an extensive set of tools for
spatial data processing, geocoding and mapping. Users can apply this library in
conjunction with many other supporting libraries for GIS basic functionality (see
http://www.data-analysis-in-python.org/t_gis.html). Unfortunately, none of these
libraries offer location modeling and optimization functionality.

Finally, open source applications QGIS and GRASS allow access to their
underlying GIS function library via Python. They offer a command-line console
that allows users to execute Python statements and perform location-based queries

http://2018.geopython.net/
www.esri.com/en-us/arcgis/products/arcgis-network-analyst
http://www.data-analysis-in-python.org/t_gis.html
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and produce visualizations; they also allow execution of Python scripts against a
spatial data source using the underlying libraries.

In addition to Python, the R statistical package has also been integrated with
GIS software such as QGIS. Although R was traditionally known as a statistical
package, it also has strong spatial analytical tools including point pattern analysis
and Bayesian geostatistical modeling. It can read and handle a variety of vector and
raster data, including shapefiles, NetCDF, and GDAL supported formats. As a result,
its use has recently expanded to applications including natural language processing
and web scrapping. By employing R, many popular statistical procedures and more
advanced analyses can be implemented directly within GIS tools such as QGIS,
thus expanding the statistical capabilities of conventional GIS software packages.
Although R and QGIS are both not commonly used in industry, increasingly there
are more research applications that integrate these tools. Examples include the
papers by Pfeifer et al. (2016) on mapping Borneo’s tropical rainforests where a
beta-logistic regression was used to assess structural changes evident and Fortelius
et al. (2016) on the mammalian fossil records. R itself also supports a library of
spatial functions, working with both raster and vector data. These allow users to
access various data formats as well as projection types, and manipulate them. Users
can also create map visualizations, conduct spatial analysis including spatial joins,
spatial queries, spatial statistics and network analysis (www.r-project.org).

Finally, the SAS software for statistical analysis also includes a GIS module for
creating and managing spatial data. It also enables the user to interact with the data
by selecting features and performing actions that are based on their selections. SAS
also offers an extension application that integrates its statistical analysis libraries
with Esri’s GIS product suite. This extension, called SAS Bridge for Esri, provides
a connection between the two systems where users can retrieve data from SAS in
GIS analysis and mapping, as well as work in the reverse direction and export GIS
data as SAS data sets for statistical analyses using SAS libraries (support.sas.com/
rnd/datavisualization/BridgeForESRI/V2/).

The recent developments in storage, processing and analysis of Big Data have
also offered profound opportunities for dealing with large geo-spatial datasets. A
commonly used open-source cluster-computing framework called Apache Spark
(spark.apache.org) has been extended in several ways to perform analyses on
such datasets, including Magellan (magellan.ghost.io), GeoPySpark (geopyspark.
readthedocs.io), GeoMesa (www.geomesa.org) and Databricks (databricks.com).
These platforms offer storage, indexing, querying, transforming and analyzing
spatial datasets at scale and are considered as the foundation for the next generation
of geo-spatial data handling infrastructures.

In general, it has become obvious that geospatial data is crucial in many
situations. As a result, programming languages for developing applications as well
as conventional statistical packages have been equipped with plugins and tools for
managing spatial data in order to fully exploit their potential.

www.r-project.org
support.sas.com/rnd/datavisualization/BridgeForESRI/V2/
support.sas.com/rnd/datavisualization/BridgeForESRI/V2/
spark.apache.org
magellan.ghost.io
geopyspark.readthedocs.io
geopyspark.readthedocs.io
www.geomesa.org
http://databricks.com
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19.4.3 GIS as Interactive DSS

Given the availability of modern GIS and their capabilities to store, manage and
analyze spatial data, it is not surprising that their combination with Decision
Support Systems (DSS) was an obvious expectation. In fact, some authors regard
GIS as a form of Spatial DSS. However, as stated by Silva et al. (2014) and
Ferretti and Montibeller (2016), GIS themselves are limited in terms of decision
modeling capabilities which implies that their ability to support realistic decision
making processes, involving conflicting objectives, is somewhat limited. Hence, the
integration of GIS with decision making methodologies and in particular Multi-
Criteria Decision Analysis has been recognized as a growing need by academics and
practitioners alike, giving rise to a set of systems termed MC-SDSS (Multi-Criteria
Spatial Decision Support Systems) that combine methods and tools for managing
spatial data with decision making methodologies for modeling users’ preferences
and priorities. In fact, several applications have appeared in the literature concerning
the development of MC-SDSS to support decisions in various domains including
territorial development, urban planning, housing policies, bank branch closures
and location of undesirable facilities. An interesting trend is the development of
Web based SDSS where GIS information implemented in the World Wide Web
(e.g. in Google Maps or similar environment) is exploited by Open Source GIS
software and combined by MC Decision Analysis methods (see Malczewski (2004),
Ferretti and Montibeller (2016) and the references therein for a detailed review).
Although it is practically impossible to enumerate all published SDSS projects,
we briefly discuss some typical ones to illustrate the variety of disciplines and the
different types of decisions involved. For instance, Wenkel et al. (2013) present
an interactive SDSS which supports interactive spatial scenario simulations, multi-
ensemble and multi-model simulations at regional scale, as well as the complex
impact assessment of potential land use adaptation strategies at local scale. Its main
objective is to provide information on the complex long-term impacts of climate
change and on potential management options for adaptation by answering “what-
if” type questions. In another typical application, Silva et al. (2014) discuss the
development of a Web MC-SDSS combining the ELECTRE TRI method of multi-
criteria analysis within ArcGIS for analyzing the sustainability of dairy farms in
Portugal. In another recent work, Yao et al. (2017) describe a web-based DSS
integrated with GIS for preventing and controlling locusts efficiently, accurately,
and rapidly. The locust prevention and control DSS is developed to assist farmers
and local government agencies in Chinese provinces with high incidence of locust
by providing spatial decision-making information. The system offers online access
to county, city, provincial and national level data queries and is capable of storing,
spatial analyzing, and displaying geographically referenced information of locust
data. It can also provide the real-time tracking of GPS location, as well as goods
scheduling of locust plagues prevention.

Apart from the applications described in academic papers, several interesting
SDSS projects were developed for commercial clients or as part of research projects.
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A typical example is the ELVIS (Environmental Values Interrogation System), built
using QGIS. This system relies on data concerning locally identified features, along
with regionally available GIS datasets. This data can be queried using ELVIS to
investigate locations for new developments or activities. The user is able to draw
in the “footprint” of a project and get a simple report listing the resource values
that will be impacted. According to its developers, in this manner, ELVIS addresses
the needs and capabilities of land use planners and upper level decision makers,
whilst providing them with information that is relative to local communities (https://
research.csiro.au/bismarcksea/step-3-decision-support-tools/). Along these lines, a
Web-based GIS, called BDSS, has been developed which assembles data concerning
oil production in North Dakota, USA, enabling users to visualize geologic and
production information. Analytical tools support the evaluation and interpretation
of geological properties such as thickness, depth, structure, and organic content.
Production data can be utilized to provide development history and identify areas
of low or high production and support relevant decisions (https://www.undeerc.org/
Bakken/interactivemap.aspx). Similarly, the INDICATE (Indicator-based Interac-
tive Decision Support and Information Exchange) is a European project whose
objective was to develop an innovative city-wide decision support system to assist
the transition towards smart cities. The system supports stakeholders by providing
an interactive decision support tool for urban planning and design. The tool assesses
the interactions between urban objects and spaces, buildings, the electricity grid,
renewable technologies and information and communications technology (ICT)
and recommends options for optimizing infrastructure, installing technology, and
providing cost-effective utility services (http://indicate-smartcities.eu/).

Given the rapidly growing interest in MC-SDSS, Ferretti and Montibeller (2016)
pointed out that the field was still somewhat fragmented and described the process of
developing such a system as a procedure consisting of five steps: (1) Designing the
decision process, (2) Structuring the MC-SDSS, (3) Eliciting spatial standardization
functions, (4) Aggregation of partial performances and (5) Analysis of results and
recommendations. For each of these steps they then stated a number of challenges
or issues that need to be addressed. In short, these challenges concern who should
participate in the whole process, which MCA method should be selected, what
sources should be used to define objectives, etc. It is our belief that these challenges
must indeed be faced in a systematic way, perhaps incorporating into the MC-SDSS
structure more elements from the theoretical framework of Multi-Criteria Decision
Making (MCDM). We anticipate research in this direction to continue within the
next few years.

19.5 Using GIS in Location Science Applications

Given the volume and range of spatial information available and the methodological
and technological advances, it is no wonder that spatial information is critical
to a much wider range of applications than ever before (Chandel 2017). As a

https://research.csiro.au/bismarcksea/step-3-decision-support-tools/
https://research.csiro.au/bismarcksea/step-3-decision-support-tools/
https://www.undeerc.org/Bakken/interactivemap.aspx
https://www.undeerc.org/Bakken/interactivemap.aspx
http://indicate-smartcities.eu/
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result, geospatial and location technologies are now available across a number of
industries, including retail, transportation, government and banking. Consequently,
the applications where GIS have been combined with location analysis models for
the solution of practical problems have increased rapidly over the last few years
and are expected to continue increasing at an even higher rate in the future. As
mentioned above, very often GIS are used as MC-SDSS in order to help decision
makers in selecting feasible locations and then in choosing the most appropriate
ones.

It is practically impossible to enumerate all the domains of applications as new
possibilities for combining GIS with location models are constantly emerging.
Various sources list literally hundreds of successful applications from the private
as well as the public sector (see https://grindgis.com/blog/gis-applications-uses or
https://gisgeography.com/gis-applications-uses/). In order to demonstrate the range
of applications and the possibilities of expanding across diverse domains, we briefly
present some key categories of applications and case studies where GIS and location
models have been successfully combined to assist decision makers in practical
problems. The objective of this section then is not to present a detailed list of
all different applications but to highlight their diversity, flexibility and dynamic
evolution and also to demonstrate the certain prospects of even more realistic
applications in the immediate future. We also underline that the included examples
of applications are not exhaustive of the papers developed in each category.

Emergency Services
Since the early development stages of GIS and their combination with location
models, an area with a lot of applications has been the location of emergency
services. This trend has continued in recent years as the ability to manage spatial
data, perform queries and investigate alternatives is crucial for the location of
facilities or servers that need to respond to emergencies. As far as location analysis
models are concerned, most approaches rely on some type of covering models to
identify the preferred locations. More specifically, Church and Li (2015) develop
an integrative approach that uses cyber search, GIS, and spatial optimization to
estimate the spatial efficiency of fire protection services in Los Angeles (LA)
County, USA. The cyber search tool effectively conducts Web crawling to discover
the exact locations for fire stations. The information is handled by means of GIS
and the Set Covering Problem is solved to obtain the optimal locations of the
fire stations. In another application concerning fire stations, Adesina et al. (2017)
determined the optimal locations by solving the Maximum Covering Location
Problem with a time and a distance range criterion. They apply their methodology
to the city of Minna, Nigeria and conclude that under the time standard constraint,
certain parts of the city are not appropriately covered. Similarly, Tali et al. (2017)
employ a location-allocation model for the urban area in the city of Karnataka,
India. A GIS was used to estimate the served as well as the unserved area of each
fire station and to suggest a new configuration of stations that offer better coverage
without excessive cost.

https://grindgis.com/blog/gis-applications-uses
https://gisgeography.com/gis-applications-uses/
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In a different type of service, Maghfiroh et al. (2017) investigate the current
practices in the Emergency Medical Service (EMS) system of Dhaka, Bangladesh.
They formulate the problem of locating EMS facilities and in particular ambulances,
as a location-allocation problem. The response time and service coverage are
optimized using ArcGIS location-allocation tools and modified K-means clustering.
Their study highlights the peculiarities of EMS services location within a still
developing city along with the inevitable resource constraints. McCormack and
Coates (2015) propose a simulation model to optimize ambulance fleet allocation
and use GIS to model response times along the arcs of the transportation network
while focusing on increasing patient survival rates. They conduct their analysis on a
dataset with millions of EMS call records provided by London Ambulance Services
and analyze a variety of scenarios with different resource configurations. Dibene et
al. (2016) use geo-spatial tools to model the demand for EMS in Tijuana, Mexico,
and use integer linear programming to solve an ambulance location problem. They
consider over 10.000 EMS calls, but use hierarchical clustering to simplify the
demand model for optimization purposes. Esmaelian et al. (2015) also consider the
EMS station location problem and propose a spatial DSS which is an integration of
GIS with PROMETHEE IV. Finally, Lei et al. (2016) consider a generalized version
of the problem known as Vector Assignment Ordered Median Problem (VAOMP),
and propose a Tabu Search based heuristic approach to solve it. They discuss many
dimensions of implementing the solution as a generalized tool in a GIS framework,
replacing existing p-median based solution approaches in GIS software.

A different type of service is discussed in Fraser et al. (2018) who present a
method for the siting of official cooling center facilities that offer protection in cases
of extreme heat waves. Methods related to the Maximal Covering Location Problem
are utilized to addresses various issues. In particular they show how disparate and
large datasets, describing neighborhood level heat vulnerability and residential level
access to public air-conditioned spaces, may be used to locate cooling centers
more effectively. In addition, they evaluate the efficiency of the current network,
indicating which facilities should be expanded in each count. The method is applied
in Los Angeles County, CA and Maricopa County, AZ, USA.

Another active research and practice area in emergency services is disaster
relief and humanitarian logistics. For instance, Xu et al. (2016) propose a multi-
criteria location model for locating earthquake evacuation shelters. They use GIS to
calculate spatial coverages of each candidate shelter location using a road network
as well as the population capacity of the shelter. Similarly, Kılcı et al. (2015) also
consider locating earthquake evacuation shelters and propose a mixed integer linear
programming based methodology to select their locations. They obtain road network
distances from ArcGIS using the Network Analyst extension and use GIS to also
visualize solutions they produce.

Energy and Environment
Due to a wider policy recognition about the role of renewable energy to reduce
greenhouse gas emission, in the recent years researchers have paid much attention
to methodologies for identifying suitable locations for these sources of energy.
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With this aim in view, GIS can support decision makers considering its ability to
combine and to integrate different kinds of data and information. Of the various
renewable energy resources, wind is highly favored as a result of the competitive
cost of produced energy and availability of wind resources in almost every region.
For this reason, applications on wind farm location and design have been gaining
a significant interest. The suitability of locations for siting wind farms is mainly
based on the presence of wind speeds that should be adequately mapped on a given
study area. To this end, GIS can represent an important tool in combination with
various MCDM methods, especially to generate criteria scores, to select potential
sites and to generate constraints to extract suitable sites. For instance, Ayodele
et al. (2018) propose an interval type-2 fuzzy Analytic Hierarchy Process (AHP)
method, Gigovic et al. (2017) and Villacreses et al. (2017) combine different
MCDM methodologies while Sanchez-Lozano et al. (2016) adopt a fuzzy TOPSIS
approaches. Bina et al. (2018) and Noorollahi et al. (2016) show the capability of
GIS to cross a numerous set of information appropriately organized into layers,
to provide support for the site selections. Shaheen and Khan (2016) analyze large
datasets originating from potential sites for wind turbines in their search for the
best site in Pakistan. Due to the number of features and the magnitude of the data
collected, they apply a principal component approach for finding the most relevant
set of attributes, and use the resulting input variables in a multiple regression
model. In a related study, Vasileiou et al. (2017) propose a GIS-based decision
analysis approach for conducting site selection of offshore wind and wave energy
systems in Greece. They develop a GIS database with the relevant data collected
for geographical areas where these systems can be installed, and evaluate these
areas using AHP. The approach is very similar even when the problem concerns
the selection and the ranking of candidate areas for solar farms deployment (Tahri
et al. 2015; Watson and Hudson 2015; Sindhu et al. 2017).

Besides these most popular applications, other proposals are provided in which
GIS represent the fundamental support to locate renewable facilities. For instance,
Franco et al. (2015) illustrate a multi-criteria decision problem to identify the most
suitable facility locations for biogas plants on the basis of the positions of a set of
farms considered as sources of biomass. In this case GIS is used for measuring the
attributes of the alternatives according to a given set of criteria that are aggregated
through a combined AHP-Fuzzy methodology. The same problem is addressed by
Hohn et al. (2014) that use GIS to elaborate and provide data needed to solve a
p-median problem.

Mohib-Ul-Haque Khan et al. (2018) present a methodology for determining
suitable locations for waste conversion facilities considering waste availability as
well as environmental and social constraints. A GIS allows to identify the most
suitable areas and to screen out unsuitable lands while AHP is used for a multi-
criteria evaluation of the relative preferences of different environmental and social
factors. A case study is conducted for Alberta, Canada, by performing a province-
wide waste availability assessment. The selection of appropriate areas to build an
incinerator to serve healthcare facilities located in Kenya is the objective of an
MCDM approach combining AHP, VIKOR and PROMETHEE methodologies (Ali
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Hariz et al. 2017) in which GIS is exploited to eliminate unsuitable land that do not
satisfy given criteria.

Gwak et al. (2017) present a framework for the selection of optimal locations
for green roofs to achieve a sustainable urban ecosystem. The proposed framework
selects building sites that can maximize the benefits of green roofs, based not only
on the socio-economic and environmental benefits to urban residents, but also on
the provision of urban foraging sites for honeybees. The final building sites are
selected by solving the maximal covering location problem to determine the optimal
locations for green roofs as urban honeybee foraging sites.

Finally, Hsieh et al. (2015) consider the problem of determining new air quality
monitoring station locations by collecting and analyzing data from a sparse set
of stations. They propose an entropy minimization model to determine the best
locations for the new stations and evaluate their approach with data from Beijing.

Financial Services
According to de Villiers et al. (2016), Financial Service Providers (FSPs) use a
variety of GIS layers to decide where to locate new branches or agents. GIS data
allows an FSP to identify locations for investment based on existing infrastructure,
mobile coverage and the socio economic conditions in the area. The decision to
determine new locations also involves other information such as the distance to other
branches or agents and the concentration of similar services in the catchment area.
The analysis takes into account customer travel elasticity (which basically expresses
how many branches the customer is willing to pass before arriving at their preferred
bank branch) and potential physical barriers (rivers, highways, etc.) that prevent cus-
tomers who appear close to a service point from accessing it. In another application,
a South African bank uses the locations of bus or minibus-taxi ranks as a leading
indicator for the placement of ATMs. Moreover, network optimization analysis is
performed periodically to determine areas that were once profitable but now no
longer require as many service points or perhaps different types of service points
(e.g. Bank vs ATM). Bozkaya (2017) reports a GIS-based implementation by a pri-
vate bank in Turkey, where the bank uses its underlying datasets for existing private
and corporate customers, their home and work locations, merchants with its POS
(point-of-sale) devices and certain other population statistics to forecast demand
spatially for its branch and ATM services. They then use the gravity-based models
implemented within the GIS application in conjunction with spatial regression mod-
els to select the best locations from a grid overlay to locate new ATMs and branches.
Figure 19.1 reflects the two visualizations of this analysis, where the left image
reflects a grid-based ATM suitability heatmap (red= more revenue-generating
locations) and the right image represents a district-based branch suitability map.

In another implementation, Bozkaya (2018) proposes a clustering application
for insurance agent segmentation for a major insurance company in Turkey, which
takes into account spatial distribution of existing agents, the points of interest (POI)
around them and the general economic indicators to assess the business potential of
agents. Recommendations are then made as to which out-of-network agents located
in what parts of the city, province and country should be pursued as new agents. As
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Fig. 19.1 Visualizations for ATM suitability (left) and branch suitability (right) analysis

already mentioned, Suhara et al. (2019) use GIS in a gravity model to analyze data
concerning an application for a private bank.

Health Care
Another domain where the combination of GIS with location analysis models results
in numerous applications is the location of health care facilities. As an indication,
we refer to the study by Dodson et al. (2017) who examine the initial deployment
of antiretroviral therapy in a particularly hard-hit region of Mozambique. Their
analysis employs GIS with location-allocation modeling to examine alternative
definitions of need for rural populations and how they might impact the allocation
of this vital health service. The main conclusion is the fact that the definition of
need matters when allocating limited healthcare resources and the use of need-
based metrics can help ensure a significantly better distribution of services. Luis
and Cabral (2016) also study healthcare accessibility in Mozambique and with the
help of GIS identify accessibility problems across the country on various modes of
transportation, On a similar note, Jankowski and Brown (2014) examine the effects
of aggregating population demand for primary health care, ranging from census
tract to aggregated census block, on estimates of primary health care accessibility.
They employ GIS to manage different spatial representations of aggregated demand
and incorporate them into a location-allocation model in order to determine a
measure of accessibility represented by the unmet demand for primary health care
services. The model is implemented for the U.S. State of Idaho, based on the
allocation of Idaho residents’ demand for primary health care to the state’s existing
primary health care facilities. Another application concerning accessibility to health
care facilities is the work by Polo et al. (2015) who integrated location-allocation
and spatial accessibility models in GIS to develop a comprehensive strategy
proposal for assisting in the spatial planning of public health care services and
for facilitating the population’s accessibility to different public health interventions.
The proposed methodology is evaluated using the data from the public sterilization
program for the dogs and cats of Bogota, Colombia. Zhu et al. (2016) consider
the problem of optimally locating trauma centers in Shenzen, China, on the basis
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of a hierarchical location-allocation model. They analyze the spatial distribution
of trauma demand and apply an ant-colony approach to determine the proposed
solutions in combination with ArcGIS network analyst extension tools. Kim et
al. (2018) use QGIS for conducting spatial analysis to determine accessibility of
healthcare service locations to citizens in the city of Seoul, Korea. They propose
accessibility measures and with the help of GIS identify vulnerable regions of
low accessibility. They also conduct regression analysis to explore the relationship
between accessibility and demographic indicators such as income. A similar study
is performed for the city of Jeddah, Saudi Arabia by Murad (2018), who uses
ArcGIS to assess the variations in healthcare accessibility. Using a geodatabase
with a transportation network, the locations of service facilities and the population
distribution, Murad (2007, 2018) reports the relative imbalance throughout the
city between locations of facilities and potential demand for service. Bruno et al.
(2018) exploit QGIS capabilities to support decisions related to the reorganization
of regional Blood Management systems in Italy. In particular, they solve a version
of the covering model to identify the potential catchment areas of blood stations and
blood centers, in terms of attracted donors. GIS is also used to generate different
scenarios according to various calibration parameters.

Public Services
Different types of applications involve the use of GIS to support decision mak-
ing process in the field of provision and organization of services in the public
sector. For instance, through the Bureau of Geographic Information (MassGIS),
the Commonwealth of Massachusetts has created a comprehensive, statewide
database of geospatial information that have been used in a large variety of
applications concerning the merging of State offices in underused facilities, school
re-districting decisions, etc. For an overview of MassGIS and a detailed list
of the implemented projects, see https://www.mass.gov/orgs/massgis-bureau-of-
geographic-information.

Many problems related to public service organization in various sectors (school,
hospitals, justice, waste) are formulated in terms of districting models (Caro et al.
2004; Kalcsics et al. 2005). As this class of problems has a strong spatial component,
it is natural to integrate models and algorithms in a GIS. In particular, in this context
they can be used to generate and/or analyze instances, to represent produced districts
maps, to verify the contiguity property, that is a distinguishing feature in this class of
problems. A typical application of districting models is represented by the political
districting, i.e. the formation of districts for the election of political representatives.
Solutions to this problem are often characterized by partisan distortion with the
aim of building districts with peculiar racial and socio-economic characteristics that
can offer political advantage in a vis-a-vis competition. This phenomenon is known
as “gerrymandering” from the name of Governor Elbridge Gerry which, in earlier
nineteenth century, notoriously manipulated the shape of the political district of
Boston to secure victory. With reference to this problem, Shapiro and Bliss (2016)
use GIS to examine the remapping of Chicago from early 2012 to assess how
potentially gerrymandered districts were formed in relation to the distribution of

https://www.mass.gov/orgs/massgis-bureau-of-geographic-information
https://www.mass.gov/orgs/massgis-bureau-of-geographic-information
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racially homogeneous groups. In this context GIS is used to measure the extent
and intensity of gerrymandering, focusing not only on the irregularity of a district
but also on the changes occurred over the time. Bruno et al. (2017a,b) address a
problem of the territorial reorganization aimed at redefining boundaries of Italian
administrative districts, with the aim of reducing the administrative sites, in a
general context of spending review. These studies are performed in order to show
how the application of various kinds of models can lead to different scenarios.
In particular GIS are fundamental to measure appropriate indicators to compare
solutions provided by different models.

Masron et al. (2016) present the conceptual design and application of a web-
based tourism decision support system concerning the Langkawi Island, Malaysia.
The system offers online interactive maps that provide information on hotels,
restaurants, shopping places, public facilities and others tourist attractions in the
island. It can also assist local retailers to reach potential customers and at the same
time help customers to plan their trip or visit that meets their preferences.

In fact, the ability to efficiently handle spatial data and use it for supporting
decisions has been recognized by some educational authorities as an essential skill
for pupils in primary and secondary education. For instance, Kolvoord et al. (2017)
present a program in Virginia, USA that provides opportunities for high school
students to become deeply immersed in geospatial technologies and spatial thinking
and problem-solving. This program features mobile technologies and location-based
services (LBS) in students’ coursework and projects and helps them build their
spatial thinking and problem-solving skills.

Another interesting field of application in which the use of GIS is strongly
increasing concerns the security sector. A first aspect is related to the crime mapping
in which GIS is a fundamental tool to cross data in order to detect crime hotspots,
i.e. spatial locations that are good targets for police. Jefferson (2017) describes the
evolution of the development of GIS in US police departments and, in particular,
focuses on the Chicago police’s digital mapping application, CLEARmap. In the
same field Bunch et al. (2017) underline the importance of GIS in techniques
of searching for missing persons as tool for the spatial connections between the
location where the victim was last seen (VLS) and the body recovery site (BR).
Khalid et al. (2018) show a method, based on spatial statistics provided by a GIS, for
spatio-temporal hotspots mapping of crime events distributed over the road network
(network constrained crimes) to discover high-density road segments. The methods
are applied to the city of Faisalabad, Pakistan.

Smart Cities Organization
Given that the majority of residents in big cities own smartphones, several municipal
authorities exploit the huge amount of location related data generated by these
devices in order to offer a variety of services to their citizens. The potential for such
applications is virtually endless, given the capabilities of smartphones and wearable
devices. It is interesting to note that the Ash Center for Democratic Governance
and Innovation at Harvard Kennedy School launched the Data-Smart City Solutions
project which seeks to promote the combination of integrated, cross-agency data
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with community data to better discover and preemptively address civic problems.
The project web site lists several cases where location data has been used by cities to
solve a wide spectrum of location problems ranging from crime prevention to public
works. For instance, the police department in Huntington Beach, CA, is monitoring
real-time social media activity and uses this data to identify locations where trouble
might start. If they anticipate a problem, they can deploy officers or contact on-site
security at the location thus making more effective use of their limited resources.
In Boston, the authorities make use of data generated by an app called Street Bump
that residents can install on their phones. The app collects vibration data to identify
patterns associated with potholes. The phone geo-tags possible potholes and uploads
these sites to an aggregation system, thus providing the authorities with an updated
map of the city’s roadways. For a more detailed description of such applications,
see https://datasmart.ash.harvard.edu/news/article/learning-from-location-806.

There are other public initiatives and commercial applications where the
location-based information is collected or contributed by the citizens for the
improvement of public services. The smart citizen initiative (https://smartcitizen.
me), which is launched in various locations around the globe, helps cities and
communities contribute to data collection and environmental monitoring via smart
sensor-based devices. The resulting data about pollution, noise and traffic levels
are shared with the community for taking necessary actions for improving the
environment. Another research group at MIT Media Lab (https://www.media.
mit.edu/groups/city-science) aims to formulate strategies that make cities more
livable by analyzing extensive datasets on people’s mobility, telecommunication and
commercial activities at various levels of resolution. The spatio-temporal databases
collected by this group are analyzed to conduct simulations for determining more
efficient configurations for workplaces, communities and even entire cities, and
offering incentives to their respective inhabitants. Apps with citizen-contributed
location-based data also play a role in achieving better efficiencies in day-to-day
life. One such application Waze (https://www.waze.com) provides up-to-date traffic
and journey information via data shared by its users on congestions, road closures,
one-time events, or even “police traps”, all through a mobile mapping interface. For
further applications and services, see http://geoawesomeness.com/lbs-and-smart-
city-initiatives-on-a-global-scale/.

Supply Chain Management
Since today’s supply chains tend to be global and automated, the availability of
accurate date and the ability to process it effectively can have a significant impact
on the performance of a firm’s supply chain. This has been long recognized by a
lot of firms that operate GIS modules in order to design, monitor and improve their
supply chains. For instance, S Group is the largest retailer in Finland, with business
sectors that include grocery stores, service stations, utility goods, hotels, restaurants,
tourism, car dealerships, and agricultural trade stores. S Group’s development and
support organization, SOK Corporation, adopts Esri ArcGIS and Business Analyst
to automate profiling reports for each of its 1600 business locations. These reports
are then analyzed using the ArcGIS system. SOK can assess the area of influence

https://datasmart.ash.harvard.edu/news/article/learning-from-location-806
https://smartcitizen.me
https://smartcitizen.me
https://www.media.mit.edu/groups/city-science
https://www.media.mit.edu/groups/city-science
https://www.waze.com
http://geoawesomeness.com/lbs-and-smart-city-initiatives-on-a-global-scale/
http://geoawesomeness.com/lbs-and-smart-city-initiatives-on-a-global-scale/
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of any business location; forecast annual sales volumes; and improve network
planning, including both opening and closing stores. ArcGIS also helps SOK’s
marketing division understand its customer base and better target its distribution of
catalogs. Similarly, GIS technology from Esri helps Werner Enterprises keep track
of its fleet of more than 9000 trucks. Using ArcGIS and a tractor tracking device
traditionally used by long-haul trucking companies, Werner can now bill mileage to
customers more accurately and route its fleet more efficiently. Werner implemented
Esri ArcGIS for Server, which integrates geographic location into business data
to better manage information. Werner uses the software to keep track of its very
large fleet and outfits its trucks with transmitters that provide two-way text and
data communications between the vehicles and Werner’s headquarters in Omaha,
Nebraska, USA. For more GIS applications along these lines, see the relevant
documentation at esri.com/retail.

Transportation
Due to the need of using and integrating socio-economic spatial data, transportation
planning is one of the most traditional fields of application of GIS. GIS functional-
ities, indeed, are useful tools for data collection which is a fundamental activity
to obtain reliable measures to support planning and management decisions. In
particular, composite indicators of accessibility and/or efficiency are usual metrics
to evaluate transportation facility or network. In this context Chen et al. (2018)
propose the introduction of an index system built for quantifying public transport
supply from multiple dimensions (i.e., service coverage, service level, and service
accessibility) through GIS. Saghapour et al. (2016) present a conceptual framework
for the definition of a Public Transport Accessibility Index (PTAI) in which
GIS plays the central role to provide and integrate data of different categories.
The proposed index is compared to others available in literature considering the
case of Melbourne, Australia. Similarly, Magalhaes (2016) develops a spatial
coverage index for assessing national and regional transportation infrastructures
which can be applied to different modes and geographical aggregations (countries,
states, municipalities, or any other area), whose calculations require various GIS
functionalities.

However, as accessibility is essentially a dynamic concept characterized by
dramatic variations throughout the day and/or week, this opens up a growing field of
research in which new data sources (satellite navigations, websites, social networks)
may be dynamically combined and elaborated through GIS (see for instance, Gomez
et al. 2018).

The role of GIS within transportation facility location models is essential when
detailed information should be used at urban level, especially in the context of
innovative and sustainable transportation modes. Terh and Cao (2018) propose
a GIS based path planning support framework incorporating multiple criteria to
address the location of new cycling paths. They use GIS to build a composite
indicator to rank the areas where these additional cycling paths are prioritized and
apply the model to the case of Singapore. In the same context MCDM methods
supported by GIS are also used to tackle the problem of bike-share station site

http://esri.com/retail
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selection. In particular Kabak et al. (2018) attempt to evaluate the present status
of Iran’s Mashhad City bike-share stations ranking potential sites applying AHP
in combination with GIS. Similarly, Guerreiro et al. (2018) develop a three-step
method to design and compare cycling networks. Wang et al. (2016) make use of
biking rental and trajectory data in the city of Taipei to identify, through a spatio-
temporal hot spot analysis, bike-lacking and bike rack-lacking locations. They then
use this information to assess the locations of existing bike rental stations and
determine most suitable locations for additional installation of rental stations.

Other interesting applications concern the proposal of a GIS-based fuzzy MCDA
approach to determine the optimal site of electric vehicle charging stations from
environmental/geographical, economic and urbanity perspectives (Erbas et al. 2018)
and the solution of a relocation optimization problem of electric cars in one-way
car-sharing systems by a bi-level tabu search algorithm, where GIS tools are used to
estimate station catchment areas (see Ait-Ouahmed et al. 2018).

Finally, Burciu et al. (2015) locate a hub terminal linking producers of cereals
to be exported by naval transportation with the Romanian fluvial-maritime ports of
Galati and Braila. A GIS environment is used to integrate and analyze the relevant
data and a location-allocation model is implemented to determine the optimal
location of the hub terminal.

19.6 Conclusions

In the previous edition of this chapter, we had anticipated that advancements in the
technology of GIS and the prospects of linking them with location science would
be rapid. Looking back over the years, it can be argued that developments have
been even more accelerated than our predictions. Indeed, GIS are no longer viewed
as a simple input-output tool in location science but are recognized as a domain
which is closely related to certain types of location analysis models and which offers
opportunities for enhancing and further advancing these models.

The technological advances in GIS caused significant changes in their function-
ality and user requirements. What used to be the privilege of large corporations
or well-trained specialists is rapidly becoming available to a much wider range of
users. As a result, GIS are perceived as services and issues such as accessibility and
integration of multiple data sources and formats are becoming critical.

The development with the biggest impact in the capabilities of GIS and their
connection with location science, has been the explosive growth in the use of
smartphones and mobile devices and the resulting huge availability of spatial data.
In connection with the emerging methodologies and techniques for handling big
data, this development has inspired a multitude of applications involving location
science models utilizing large spatial datasets. The transition towards a digitized
society implies that a large part of these location-based data is contributed by the
users themselves. In turn, this evolution will probably increase the popularity of GIS
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even further as more and more people wish to take advantage of their capabilities
and benefit from the available services.

The integration of GIS with high level programming languages and environments
such as Python or R has enabled developers to customize GIS tools and employ
them to perform a variety of tasks in different location science settings. As these
programming environments become more accessible to non-experts, we expect this
trend to continue in the future and expect that more sophisticated techniques will
be incorporated into commercial as well as open source GIS software for solving
particular location science problems.

The class of location science problems where the linkages with GIS are most
evident is probably the class of coverage problems. The expanding capabilities
of GIS have contributed significantly to the formulation of new models and the
solution of problems that are challenging from a computational point of view such
as the continuous version of the Maximal Coverage Location Problem (MCLP). It is
not surprising that a large part of location science applications involving the use of
GIS fall within the general class of coverage problems. Such applications typically
include the location of emergency services or health care facilities. A particular
class of applications that is becoming more evident refers to the location of disaster
relief facilities or the configuration of humanitarian logistics networks. The use of
GIS tools for assessing accessibility, estimating coverage or exploring paths has
facilitated the development of methods that produce robust solutions which may
perform well under different scenarios. As such natural or man-made disasters (e.g.
forest or urban fires) cannot be avoided, we expect research in this area to continue
as modern societies attempt to minimize the effects of these disasters.

The expansion of smartphones and wearable devices and the availability of
spatial data virtually worldwide have also brought a proliferation of applications
aiming to offer better services to citizens in the context of smart cities. Various
public initiatives and commercial applications have been developed that make use of
location-based information and analyze it in order to improve certain aspects of city
life such as the reduction in noise and pollution levels, balancing of traffic flows,
prevention of crime etc. In this setting, it has become desirable if not necessary
for different agencies to be able to seamlessly share and integrate geographically
referenced data. We expect applications along these lines to continue growing as
citizens expect a better quality of life within modern digitized societies.

In order to exploit the full potential of GIS as a DSS, it is important to success-
fully combine them with decision making methodologies and in particular MCDA
techniques that consider multiple conflicting criteria. Since the technical capabilities
of GIS have evolved considerably over the last few years, the development of several
such methods is to be expected. Given that programming environments such as
Python or R can be used to develop systems that employ GIS tools, we expect this
trend to continue at an accelerating pace in the future.

In the concluding section of the previous edition of this chapter, one of the main
questions posed was whether or not it would be beneficial for location analysts to
invest time and effort in GIS. As far as the theoretical aspects of location science
are concerned, some advancements have been recorded mainly in the class of
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coverage problems. However, in terms of practical approaches, the vast number of
applications that have appeared since the publication of that chapter conclusively
confirms that the investment is worthwhile. It remains a challenge to exploit the
ever expanding capabilities of GIS to enhance existing models or develop new ones
that reflect more realistic aspects of location science.
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Chapter 20
Green Location Problems

Sibel A. Alumur and Tolga Bektaş

Abstract This chapter discusses aspects of sustainability and “green” that are
relevant to and arise within location problems. More specifically, it describes ways
in which some environmental criteria, in particular emissions, can be quantified and
integrated with location models. The chapter also presents design problems in which
location decisions arise as one of the key ingredients in improving the environmental
performance of distribution systems.

20.1 Sustainability and “Green” in Location Problems

Facility location problems arise in the broader context of logistics network design,
where the primary aim is to move freight from points of origin to points of
destination. The activities relevant to production, transportation and distribution of
the goods over a logistics network inevitably results in undesirable effects on the
environment, generally referred to as externalities, which include the following:

• Logistics operations deplete natural resources that are needed for the underlying
infrastructure and the various activities run on the network. The former includes
construction of facilities such as hubs, depots or ports, as well as highways and
railway tracks, relying on the extraction and the use of various materials needed
for the construction, use of land on which they are built, and potential change or
damage to the ecosystem around them. The activities themselves require energy
for the movement of goods, primarily fuel.

• Most logistics activities induce some form of noise that is detrimental to human
health and well-being. In addition, the vibration caused by the movement of
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goods, e.g., freight trains passing through cities, lorries operating in urban areas,
may damage the buildings around them in the long run.

• Pollution is perhaps the most prominent of all externalities, not least for their
direct and indirect impacts on the environment, but also the role they are deemed
to play in climate change. Air pollution is caused by various types of gases,
including greenhouse gases such as methane, ozone, carbon dioxide and nitrous
oxide, others such as carbon monoxide, nitrogen oxide and sulphur oxide, and
particulate matter, emitted by production and transportation activities. They
are responsible for environmental impacts such as the greenhouse gas effect,
acidification, summer smog and other toxic effects.

• Accidents occur predominantly within transportation, but also manufacturing and
production environments, and are responsible for injury and death for all forms
of life. Their severity could be far more significant in the context of obnoxious
facilities and hazardous materials, with potentially disastrous consequences.

There are various ways to mitigate or lessen the externalities above within the
broader context of logistics management, including technological solutions and
management strategies, which is beyond the remit of this chapter. The interested
reader is referred to McKinnon et al. (2015) and Psaraftis (2016) for a broader and
a more in-depth treatment of the topic.

To achieve greener ways of operation in the particular context of facility location,
it is pertinent at this point to differentiate between the two types of research
directions listed below:

• Reducing externalities from a logistics network by locating facilities, caused by
the amount of inbound and outbound of goods and the way in which they are
moved within the network.

• Reducing externalities from located facilities that appear within a logistics
networks, mainly from energy consumption (lighting, heating, cooling, use of
equipment for production and handling of goods), water consumption, and use
of land.

The rest of this chapter will focus on the first research direction above, namely
those that concern decisions around facility location and the impact thereof on the
environmental performance of the logistics networks within which the facilities are
to be installed and used. The second research direction will not be covered within
this chapter for two reasons. First, some of the decisions to reduce the externalities
from facilities requires adopting new technologies, including improving energy
efficiency (e.g., use of eco-friendly lighting), switching to energy-efficient mechan-
ical equipment, harnessing green energy sources and incorporating sustainability
considerations into building design (Baker and Marchant 2015). Second, even if
non-technological solutions were to be adopted, the issues relate to the interior
design, as opposed to the location of a facility, and involve decisions ranging from
the type and shape of the construction, to optimizing layouts within facilities.
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It is important at this point to stress on the fact that this chapter does not concern
itself directly with the broader issues around sustainability apart from those that
are indirectly linked with the green agenda. From an environmental perspective, our
understanding of the former term following Jaehn (2016) revolves around the ability
of the environment around a logistics system that allows the system to maintain its
operations ad infinitum, or, in practical terms, for very long periods of time. It is
obvious that, in the long run, the scarcity of the resources involved in running a
logistics system makes it unsustainable ipso facto, in the strict sense of the word.
Improving sustainability of a system may be achieved through novel solutions,
including the use of unconventional technologies (such as use of alternative fuels
or harnessing and using new sources of energy), and we will indeed touch on these
aspects later in the chapter when discussing location problems in the context of
alternative fuel vehicles. In contrast, greening of a given system, at least in the
way that we interpret and treat in this chapter, will be to lessen or mitigate the
environmental externalities of that system through better planning, and one that does
not necessarily involve a fundamental change in the way that the operations are set
up and run. One example in the context of facility location may simply be to change
the number and location of facilities to improve the environmental performance of
a distribution system.

20.2 Environmental Considerations in Location Problems

An explicit consideration of externalities within location problems is possible to
the extent that their impacts are quantifiable, and that it is possible to estimate the
quantity of the amount through analytical models as a function of decisions made
within location problems. If such analytical models exist, then they can generally be
integrated within existing models of various facility location problems. In the rest
of this section, we will focus on emissions as the main environmental impact, not
least given their prominence within environmental externalities, but also the relative
easiness with which they can be quantified.

Emissions are, in most cases, proportional to the amount of energy consumed by
a given logistics operation. In conventional road transport, for example, the amount
of pollutants emitted is dependent on the amount of fuel consumed. This makes
it easier to estimate the amount of emissions from a given operation, if the level
of activity is known and there exist emission factors. This is the main principle
behind what is known as emission factor models, for which there exist two types of
models:

• The first type is used when the actual amount of energy or fuel α is known (e.g., in
kWh or litres), which is then multiplied by the emission factor φ (e.g., in grams
per kWh), yielding the total emissions E = α × φ for a given activity. This
actual energy consumed can be calculated using historical data, such as readings
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from storage tanks for lorries or electricity bills for facilities, and is therefore
calculated retrospectively.

• If the actual amount of energy consumed cannot be calculated, or is not available,
then one can resort to the second type of emissions model that uses average
conversion factors that are pre-defined depending on the type of activity. The UK
Government’s Department for Business, Energy & Industrial Strategy defines the
emission factors separately for fuel, electricity, heat, steam, passenger transport,
freight land transport, sea transport and air transport, and for various types of
gases such as carbon dioxide (CO2), methane (CH4) and nitrogen oxide (N2O),
and for different types of vehicles and for various load levels. For road transport,
the emission factors are defined for one kg of CO2 per vehicle kilometers
traveled, or one kg of CO2 per tonne.kilometer. For air freight, rail transport
or sea transport, the emissions factors are defined for one kg of CO2, CH4 or
N2O per tonne.kilometer. The reader is referred to Hill et al. (2017) for further
details.1 For illustrative purposes, Fig. 20.1 shows the resulting amount of CO2
emissions for two different types of vehicles under different load levels estimated
by using the factors given by Hill et al. (2017) traveling from 10 to 100 km.

There exist other types of analytical models to estimate emissions that are more
detailed as compared to emission factor models. One such type that is used within
road transportation is the macroscopic or average speed models, a class of models
that are primarily regression based, and use average speed v of a vehicle as a
primary determinant to estimate emissions. One such model appears in an emissions
inventory guidebook by the European Environment Agency (Ntziachristos et al.
2017), where hot emissions E(v) (g/km) are calculated on the basis of average speed
v (km/h) using the following generic expression,

E(v) =
(
a1v

2 + a2v + a3 + a4/v

a5v2 + a6v + a7

)

β, (20.1)

where a1–a7 are coefficients that differ by fuel, vehicle class and engine technol-
ogy,2 and β is a correction factor applied, if necessary, to account for different types
of road (i.e., urban, rural and highway). Figures 20.2 and 20.3 show the resulting
CO emissions output by the average speed model (20.1) for different types of goods
vehicles.

At a micro-level, a more detailed class of models is available that generally
named as microscopic or instantaneous emissions models. These models are derived
from mechanical physics of automobile engines, and take a significant number
and range of parameters into account, such as vehicle characteristics (mass, drag
force, rolling resistance, engine efficiency) as well as external factors (air density,

1For the full set of factors, see https://www.gov.uk/government/publications/greenhouse-gas-
reporting-conversion-factors-2017.
2For the full set of parameters, see https://www.eea.europa.eu/publications/emep-eea-guidebook-
2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i-1/at_download/file.

https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2017
https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2017
https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i-1/at_download/file
https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i-1/at_download/file
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Fig. 20.1 CO2 emissions for various goods vehicles estimated using the factor model

gravitational constant), in order to estimate emissions, often on a second-by-second
basis. Further details on microscopic models can be found in Demir et al. (2014).
However, as facility location problems typically involve strategic (and sometimes
tactical) decisions made to last over relatively long time-spans, micro-level models
may be too detailed a representation of vehicle dynamics to influence such long-
term decisions and may not necessarily be the most suitable types of models to use.
There may, however, be exceptions to this situation if location problems arise at an
operational level of decision making, in which case an integration of facility location
and micro-level emission models may be appropriate.

20.2.1 Accounting for Emissions in Facility Location Problems

Location problems almost always involve decisions pertaining to installation of
facilities that are typically modeled by a vector y of binary variables, which induces
a fixed cost f (y) that generally, but not always, linearly increases with the number
and type of facilities. The second set of decisions relate to the assignment of
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Fig. 20.2 Emissions calculated using the average speed model for vehicles with conventional and
older engine technology

customers to installed facilities, represented by the vector x, which induces an
operational cost c(x) that may include, amongst others, shipment costs, including
drivers, fuel and vehicle acquisition. The assignment decisions x also dictate the
volume of products that flow between a facility and a customer, which affects both
fuel consumption and emissions, either through choice of vehicle or load, or both.
If g(x) denotes the amount of emissions arising from the shipment of products, then
a simplified representation of a facility location model that captures the trade-off
between operational costs and emissions can be presented as follows:

ψ1 = minimize f (y) + c(x)

ψ2 = minimize g(x)

subject to

Ax = 1

Bx ≤ Dy

y ∈ B

x ≥ 0,
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where A, B and D are matrices of suitable proportions. The model above is a bi-
objective formulation, with the first objective ψ1 reflecting the operational costs
and the second objective ψ2 denoting the emissions. The first set of constraints are
relevant to the assignment of customers to facilities and the second set of constraints
ensure that each customer is assigned to a facility that is installed. If there is a
suitable weighting γ of emissions (e.g., cost) to make it commensurate with c(x),
then the two objectives can be re-written as follows,

ψ ′
1 = minimize f (y)

ψ ′
2 = minimize c(x) + γg(x),

particularly as, in most cases, the amount of emissions from a vehicle is proportional
to fuel consumption. One extreme solution to the model above is to reduce the
number of facilities to the minimum possible (e.g., only one if there are no
capacity restrictions), which will achieve objective ψ ′

1 but significantly increase the
transportation costs c(x) and emissions g(x). In the other extreme, increasing the
number of facilities (e.g., one at the site of each customer) will maximize the facility
costs f (y) but simply drive ψ ′

2 equal to 0. The two extremes show that the problem
is truly bi-objective, i.e., the two objectives ψ ′

1 and ψ ′
2 are contradictory, and the
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solution highly depends on the relative importance of the operational costs and the
weight of the environmental factors.

The approach adopted by Tricoire and Parragh (2017) is along the lines of
the general model introduced above in formulating a bi-objective hub location
routing problem, where one objective is related to minimization of operational costs
that include that of establishing hubs and space acquisition costs, and the other
minimizes CO2 emissions induced by the empty and loaded running of the vehicles.
This study treats the emissions as being fixed per unit of distance and per unit load
of weight, and derives insights on the trade-offs between the number of hubs used
and the resulting emissions, with an overall conclusion that “investing in facilities
does reduce future pollution”.

The studies by Koç et al. (2014) and Toro et al. (2017) investigate similar
problems in that they integrate facility location decisions with those of fleet size
and mix and routing (in the former) and vehicle routing (in the latter). In contrast
to the work of Tricoire and Parragh (2017), however, they both use a more detailed
representation of fuel consumption and emissions that is minimized as part of the
overall problem. In Koç et al. (2014), this entails the use of a comprehensive modal
emissions model as part of the (single) objective for estimating fuel consumption
from heavy-good vehicles operating in urban areas, part of which requires to
optimize speeds of the vehicles. The authors conclude by stating that it is preferable
to locate depots outside the city centre and to use heterogeneous fleets over
homogeneous fleets. This study shows the impact choice of the location of the
facilities can have on the overall choice of a distribution strategy within urban areas.
In Toro et al. (2017), vehicle speed is not part of the decision problem whereby
the vehicles are assumed to travel at constant speed, and that fuel consumption is
estimated on the basis of the distance traversed and the load carried by a vehicle. The
latter work treats the problem as being bi-objective, with one objective minimizing
operational costs, and the other minimizing fuel and emissions. One interesting
finding of Toro et al. (2017) is that increasing the number of vehicles used results
in improved fuel economy and hence less emissions, mainly due to the shorter trips
that the vehicles will have to perform.

Studies that look at the integration of facility location problems with considera-
tion of externalities are few and far between, some of which are described above, but
more research is required in this area, not only for development of methodological
approaches to solve such problems but perhaps more importantly, understanding
the trade-offs involved in making strategic and operational decisions to improve
economical and environmental performance of distribution systems.

20.3 Reverse Logistics Network Design

Reverse logistics refers to all operations involved in the return of products and
materials from a point of use to a point of recovery or proper disposal. The
purpose of recovery is to recapture value through options such as reusing, repair-



20 Green Location Problems 599

ing, refurbishing, re-manufacturing, and recycling. Reverse logistics includes the
management of the return of end-of-use or end-of-life products as well as defective
and damaged items, or packaging materials, containers, and pallets.

Reverse logistics activities aim to lessen or mitigate the environmental exter-
nalities as such operation of reverse logistics networks lead to reduced use of
natural resources as well as pollution prevention through the reduction of waste.
Major driving forces behind reverse logistics include not only environmental
consciousness but also economic factors and government legislations. As stated
by De Brito and Dekker (2004), companies become active in reverse logistics
because they can make a profit and/or because they are forced to focus on such
functions, and/or because they feel socially motivated. These factors are usually
intertwined. For example, a company can be compelled to reuse a certain percentage
of components in order to achieve a recovery target set by the legislation. This will
lead to a decrease in the cost of purchasing components and in waste generation.
Jayaraman and Luo (2007) suggest that proper management of reverse logistics
operations can lead to greater profitability and customer satisfaction, and at the same
time be beneficial to the environment.

In a reverse logistics network, end-of-life or end-of-use products can be gener-
ated at private households and at commercial, industrial, and institutional sources,
which are referred to as generation points. Products are usually collected at special
storage facilities called collection or inspection centers. Products are then sent
for proper recovery through reusing, repairing, refurbishing, remanufacturing, or
recycling. Inspected or recovered products and components can then be sold to
suppliers, to (re)manufacturing facilities, or to customers in the secondary market.
A generic reverse logistics network is depicted in Fig. 20.4.

The design of a reverse logistics network is a complex problem comprising
the determination of the optimal locations of different types of facilities as well
as the integration between these facilities. The facilities to be located include but
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Fig. 20.4 A generic reverse logistics network
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not limited to collection, inspection, recovery, (re)manufacturing, recycling, and
disposal centers. The decisions to be made include determining the number, size,
and capacities of the facilities to be located, the amount of products to be recovered
at each facility, and the amount of products and/or components to be sent in-between
these facilities.

In the next sub-section, we present a generic reverse logistics network design
model and in the following section we discuss its possible extensions.

20.3.1 A Generic Reverse Logistics Network Design Model

Multiple commodities need to be considered in the configuration of a reverse logis-
tics network. These commodities include used, inspected, repaired, or refurbished
products, components, or raw materials and are represented by the set P . In order to
represent a different state (inspected, repaired, refurbished, etc.) of a certain item, a
different product type needs to be defined within this set.

Let R represent the set of available recovery options. This may include conven-
tional options, such as repair, refurbish, and recycle as well as other options such as
inspection, disassembly, selling to suppliers, to the secondary market or to external
(re)manufacturing facilities, and disposal. Even though the latter options may not be
regarded as recovery alternatives, in order to provide a generic model incorporating
all the decisions plausible in real-life reverse logistics networks, we include these in
the set R.

Other sets of parameters include Nr the set of potential locations for recovery
option r ∈ R; Er the set of existing facilities with recovery option r ∈ R; Ir the set
of selectable facilities with recovery option r ∈ R, Ir = Nr ∪Er ; Jr the set of non-
selectable locations with recovery option r ∈ R (e.g. secondary market, disposal);
and L the set of all locations, L = ∪r∈R (Ir ∪ Jr). Some recovery options may
be operated by third-party logistics providers. Such external facilities belong to the
set Jr . Moreover, it is assumed that generation points are also included in this set of
non-selectable facilities.

The parameters required for the mathematical model are as follows:

g�p Amount of product p ∈ P generated at location � ∈ L

βrqp Number of units of product p ∈ P obtained by processing one unit of product q ∈ P

using recovery option r ∈ R

Kr� Capacity of recovery option r ∈ R at location � ∈ L

Trp Recovery target for product p ∈ P with recovery option r ∈ R

Hr�p Revenue from recovering one unit of product p ∈ P with recovery option r ∈ R at
location � ∈ L (e.g., revenue from recycling or from the secondary market)

Sr�p Cost of recovering one unit of product p ∈ P with recovery option r ∈ R at location
� ∈ L

Fri Fixed setup cost of establishing recovery option r ∈ R in location i ∈ Nr

C��′p Unit cost of transporting product p ∈ P from location � ∈ L to location �′ ∈ L
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Transitions between the stages of products and reverse bills-of-materials (BOMs)
are taken into account by the parameter β. For example, a damaged product can
be converted into a repaired product through the recovery option repair, or a used
product can be disassembled into its components at a disassembly facility. There
are recovery targets, usually set by the legislations, for each type of product and
recovery option. Revenues may be obtained through some recovery options, e.g., by
selling products or components to recycling facilities, to the secondary market or to
external (re)manufacturing facilities. Some recovery options may also incur costs as
in the case of product disposal.

The decision variables of the model are:

yri =
{

1, if recovery option r ∈ R is operated at the selectable facility i ∈ Ir ,

0, otherwise.

x��′p = Quantity of product p ∈ P shipped from location � ∈ L to location �′ ∈ L.

vr�p = Amount of product p ∈ P recovered with recovery option r ∈ R at location � ∈ L.

The reverse logistics network design problem can be formulated as a mixed-
integer linear program as follows:

Maximize
∑

r∈R

∑

�∈L

∑

p∈P
(Hr�p − Sr�p) vr�p −

∑

r∈R

∑

i∈Nr

Fri yri

−
∑

�∈L

∑

�′∈L\{�}

∑

p∈P
C��′p x��′p (20.2)

subject to g�p +
∑

r∈R

∑

q∈P
βrqp vr�q +

∑

�′∈L\{�}
x�′�p =

∑

r∈R
vr�p +

∑

�′∈L\{�}
x��′p, � ∈ L, p ∈ P (20.3)

∑

�∈L
vr�p ≥ Trp, r ∈ R, p ∈ P (20.4)

∑

p∈P
vrip ≤ Kri yri, r ∈ R, i ∈ Ir (20.5)

∑

p∈P
vrjp ≤ Krj , r ∈ R, j ∈ Jr (20.6)

xi�p ≤
∑

r∈R
Kri yri, i ∈ ∪r∈R Ir , � ∈ L \ {i}, p ∈ P (20.7)

x�ip ≤
∑

r∈R
Kri yri, � ∈ L \ {i}, i ∈ ∪r∈R Ir , p ∈ P (20.8)
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yri ∈ {0, 1}, r ∈ R, i ∈ Ir (20.9)

x��′p ≥ 0, �, �′ ∈ L (� 
= �′), p ∈ P (20.10)

vr�p ≥ 0, r ∈ R, � ∈ L, p ∈ P. (20.11)

The objective function (20.2) maximizes the total profit. It sums the revenues
obtained from various recovery options (e.g., by sending products to recycling
facilities, by selling products to the secondary market) and subtracts the total cost
of establishing and operating the reverse logistics network. The latter comprises the
cost of recovery (e.g. disposal), setting up new recovery options at facilities, and
transporting products.

Equalities (20.3) are the flow balance constraints. For each location and product,
the total inflow comprises the amount of product generated at that location, the total
amount of product obtained after processing various items, and the total amount of
product shipped to this location from other locations. The total inflow is equal to the
total outflow, which includes the total amount of product recovered at that location
and the total amount of product shipped to other locations. Constraints (20.4)
ensure that the recovery target for each product category and recovery option is
met. Recovery targets are usually stipulated by legislations for different types of
recovery options. Inequalities (20.5) and (20.6) are the capacity constraints for new
and existing recovery options, respectively. Constraints (20.7)–(20.8) impose that
products can only be shipped from operated facilities. Lastly, conditions (20.9)–
(20.11) set the domains of the decision variables.

The proposed model is generic in the sense that it includes multiple types of
products and components at different stages (inspected, repaired, refurbished, etc.).
Moreover, it considers reverse BOMs and transitions between the stages of products
through various recovery options. The problem is modeled with a profit oriented
objective function accounting for the revenues from different recovery options in
addition to costs.

In terms of problem complexity, the above model is NP-hard, being a gen-
eralization of the simple plant location problem (see Chap. 3). General purpose
optimization software (e.g., CPLEX or Gurobi) can however be used to solve
small to medium-sized instances of this model within reasonable times. For large-
sized instances there may be a need for customized algorithms and heuristics. The
following section discusses some extensions of the above model.

20.3.2 Extensions

The reverse logistics network design model introduced in the previous section can
be extended in manifold ways. Analogous with the traditional facility location
models, the above formulation can be generalized to include capacity selection and
extension decisions, a multi-period/dynamic setting, uncertainty associated with the
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problem parameters, multiple objectives, etc. These extensions are already well-
discussed within the other chapters of this book. We briefly discuss some of such
extensions within the context of reverse logistics network design below to provide
some exemplary references.

The design of a reverse logistics network can be embedded in a multi-period
planning horizon. Such a setting is meaningful since the establishment of new
facilities is typically a long-term project involving time-consuming activities and
requiring the commitment of substantial capital resources. In this case, strategic
decisions can be constrained by the budget available in each time period. A multi-
period setting is also appropriate for planning the re-design of a reverse logistics
network that is already in place. In this context, existing facilities may have their
capacities expanded, reduced or even moved to new sites over several time periods.
In turn, new facilities can be established through successive sizing. Multi-period
models in reverse logistics network design were proposed, for example, by Lee and
Dong (2009), Salema et al. (2010), and Alumur et al. (2012).

A distinguishing feature of reverse logistics network design problems is that
there are various sources of uncertainty for the supply arising at the upper echelon
facilities (e.g., uncertainty in the amount and in the quality of returned products).
Studies addressing uncertainty issues in the context of reverse logistics network
design include Realff et al. (2004), Listeş and Dekker (2005), Listeş (2007), Salema
et al. (2007), El-Sayed et al. (2010), and Fonseca et al. (2010).

Many actors are involved in the design and operation of a reverse logistics
network. Even though extended producer responsibilities defined in the legislations
of various countries give the responsibility of recovering used products to original
equipment manufacturers, governments need to establish the necessary infra-
structure. Responsibilities can be shared among different parties, such as producers,
distributors, third-party logistics providers, or municipalities, in designing and
operating the reverse logistics networks. Multiple actors lead to decision problems
with multiple objectives. Although there are some studies that consider the multi-
objective nature of this design problem (e.g., Pati et al. 2008, Fonseca et al. 2010,
Tari and Alumur 2014), this issue can certainly require further attention.

A major extension of reverse logistics network design is to integrate reverse flows
with forward flows of the supply chain. The term closed-loop supply chain refers
to a network comprising both forward and reverse flows. Figure 20.5 depicts the
structure of such a network. The cost of processing a return flow in a supply chain
designed by considering only forward flows can be much higher than processing
a flow in the forward direction. Thus, supply chain networks that include flows in
the reverse direction should ideally be designed by integrating forward and reverse
logistics activities. The generic model introduced above for the reverse logistics
network design problem can certainly be extended to the design of closed-loop
supply chains. The interested reader is referred to Krikke et al. (2003), Easwaran and
Üster (2009), and Salema et al. (2010) presenting models determining the locations
of facilities within closed-loop supply chain networks.
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Fig. 20.5 A closed-loop supply chain network

For other extensions and special cases on reverse logistics network design, the
interested reader is referred to the reviews by Fleischmann et al. (2004), Bostel
et al. (2005), Akçalı et al. (2009), and Aras et al. (2010).

20.4 Location Problems Related to Alternative Fuel Vehicles

One recent class of problems within which location arise as part of the planning
decisions is relevant to alternative fuel vehicles (AFVs), which either run on fuel
as opposed to traditional petroleum-based fuels (petrol or Diesel fuel) or alternative
technologies to power an engine that does not involve solely petroleum (Wikipedia
2017). The types of AFVs include those running on biofuel, natural gas, hydrogen
(fuel cell electric), hybrid electric, plug-in hybrid electric (PHE), and battery electric
(BE), also known as Zero Emission Vehicles (ZEVs) (Hackbarth and Madlener
2013; Guerra at al. 2016). AFVs are readily used in various applications including
goods distribution and public transportation as well as personal transport (e.g.,
Pelletier et al. 2016, Tzeng et al. 2005). This section briefly discusses location
problems that arise within the context of AFVs.

Similar to the conventional vehicles that are powered by petroleum fuels,
refueling is also important for AFVs, if not more critical, to ensure continuity of
operation without disruption. Location analysis therefore plays a significant role
for installing refueling or recharging stations, in particular for PHEVs and BEVs
where the refueling (charging) times can be significant. Basic location models like
the p-median problem (see Chap. 2) can certainly be employed for determining the
optimal locations of refueling stations (e.g., Goodchild and Noronha 1987, Nicholas
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et al. 2004). The motivation behind using the p-median model is the assumption
that the consumers generally prefer to refuel near their homes (Upchurch and Kuby
2010).

In traditional location problems, demand is generated at nodes of the network. In
contrast, the demand arising from the need to refuel AFVs does not originate from
the fixed nodes but from traffic flows. Hodgson (1990) describes a so-called flow
capturing location model (FCLM) to model the flow-based demand, where the aim
is to locate p facilities to maximize the total demand captured (covered), and where
a unit of demand to be covered is defined as the fixed path from a given origin to a
destination. It is assumed that a facility placed at a node in the network covers all the
flow which passes through that node; it suffices therefore to locate one facility on
a path. Location problems that assume flow-based demand have later been named
as flow interception problems (see, e.g., Berman et al. 1995). Kuby and Lim (2005)
introduced the flow refueling location model (FRLM) by extending the FCLM to the
context of generic range-limited AFVs. The FRLM defined by Kuby and Lim (2005)
optimally locates p refueling stations on a network so as to maximize the total flow
volume refueled for predetermined origin-destination paths. The FRLM recognizes
the fact that it may be necessary to stop at more than one facility for refueling and,
thus, unlike the FCLM, it allows for locating more than one facility on a path. Kuby
and Lim (2005) also describe a mixed-integer programming model for the problem
which assumes that all feasible facility combinations that can be used to refuel
vehicles on each given origin-destination path are exogenously determined. Since
generation of all these feasible combinations requires significant computational
memory and time, different solution methods are proposed in the literature to
overcome the difficulty (see Capar and Kuby 2012; Capar et al. 2013; Kim and
Kuby 2012; Lim and Kuby 2010; MirHassani and Ebrazi 2012). In particular, Capar
et al. (2013) and MirHassani and Ebrazi (2012) provide alternative formulations for
the FRLM both of which drastically increase the computational efficiency.

Variations of the FRLM include those that allow locating refueling stations along
arcs as well as on nodes of the network (Kuby and Lim 2007), imposing capacity
constraints that limit the number of vehicles refueled at each station (Upchurch et al.
2009), incorporating locomotive refueling scheduling decisions in railroad networks
(Nourbakhsh and Ouyand 2010), allowing deviation from the shortest path up to a
tolerance that the drivers are willing to accept (Yıldız et al. 2016), generalizing
it to account for plug-in hybrid electric vehicles (Arslan and Karaşan 2016), and
assuming a probabilistic travel range for the vehicle (Lee and Han 2017).

The FRLM is a maximal covering type model (see Chap. 5 for more information
on the covering location problems). An alternative way to approach the AFV
refueling station location problem is through a flow-based set covering model, as
was done by Wang and Lin (2009). The objective of this problem is to minimize
the total cost of locating refueling stations where all flow-refueling demand is to
be covered by the stations within a specific coverage distance for fixed origin-
destination paths. Other studies using a flow-based set covering model for the
location of refueling stations include Wang and Wang (2010), Wang and Lin (2013),
MirHassani and Ebrazi (2012) and Li and Huang (2014).
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The refueling station location problem can also be formulated within location-
routing type models, referred as location-routing problem with intermediary facil-
ities (see Chap. 15), more specifically, by extending such models to include
additional considerations specific to AFVs (see, e.g., Kand and Recker 2014;
Schiffer and Walther 2017).

In addition to determining the locations of refueling stations, one other relevant
problem arising within the context of AFVs is to determine the locations of battery
swapping or switching stations, where depleted batteries can be exchanged for
recharged ones during a journey. Mak et al. (2013) introduced this problem and
developed robust optimization models that aid the planning process for deploying
battery-swapping infrastructure. Variants of this problem can be found in Yang and
Sun (2015) and Hof et al. (2017).

The particular characteristics of AFVs can be incorporated within any of the
location models as additional constraints, for example, considering multiple types
of charging facilities with varying charging rates (Liu and Wang 2017), partial or
full charging options (Keskin and Çatay 2016; Schiffer and Walther 2017), battery
life-span or battery degradation concepts (Kong et al. 2017).

Finally, and although not necessarily a location problem in the traditional sense,
it is worth mentioning a study by Chen et al. (2016) that introduces a network design
problem related to AFVs, which consists of determining an optimal deployment of
charging lanes for electric vehicles in transportation networks. This follows a recent
development in the ‘charging-while-driving’ technology, which envisages deploying
charging lanes in regional or even urban road networks of the future which electric
vehicles can use. In this case, the lanes themselves may be seen as facilities. It is
clear that technologies that are fast developing for AFVs will give rise to other such
interesting problems in the near future.

20.5 Research Prospects

Environmental issues arising within location problems are broad and complex,
but need to be captured and addressed nevertheless. Green location problems
necessitates an explicit consideration of micro-level and firm-based environmental
performance measures, such as internal consumption of resources including energy,
water, land and building materials, as well as the wider macro-level impacts
that extend beyond a facility, such as “land use, atmospheric emissions, waste
management, traffic and congestion, public transport, visual intrusion and ecology”
as highlighted by Baker and Marchant (2015) and captured within the environmental
assessment framework proposed by the same authors. In terms of modeling, the
difficulties reside in (1) being able to represent the impact of internal and external
externalities in quantifiable terms, (2) their integration within existing or new
models of facility location, and (3) the ability to bring together the impact of long-
term decisions along with those of day-to-day operations on the environment. This
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brief chapter has touched upon some of these issues and described ways in which
they can be addressed from the point of view of location analysis.

Other relevant problems for which location decisions are integral, which were not
discussed in this chapter due to space limitations, offer further research prospects.
At this point, we suffice to briefly mention three research directions below, but also
recognize that they are inherently related (and possibly overlapping):

• Waste management, which includes determining the locations of waste disposal
sites (landfills, incinerators, etc). Such problems can be regarded as part of
reverse logistics networks, but with their own challenges in relation to location
decisions, including the location of treatment sites and landfills as well as
allocation decisions. For further information, the reader is referred to the review
by Ghiani et al. (2014).

• Undesirable facility location, which involves locating semi-obnoxious facilities,
such as a garbage dump, a chemical plant or a nuclear reactor, that may have
adverse effects on people or the environment. Locating such facilities within
close proximity to people or other forms of life is undesirable, for which the
aim of such problems is to minimize the nuisance and the adverse effects
on existing facilities or population centers (see e.g., Erkut and Neuman 1989,
Melachrinoudis 2011).

• Hazardous materials logistics which entails determining the location, size, and
the technology type of potentially hazardous facilities as well transportation
of hazardous materials. These problems typically involve multiple objectives,
the most prominent ones being minimization of cost and of risk, and equitable
distribution of risk. The interested reader may refer to the book chapter by Erkut
and Verter (1995).
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Chapter 21
Location Problems in Humanitarian
Supply Chains

Bahar Y. Kara and Marie-Ève Rancourt

Abstract In this chapter, we first present a general description of humanitarian
supply chains. This includes the main purpose and components (facilities and
transportation flow) of humanitarian supply chains within different contexts. This
description also aims to classify the types of facilities that need to be located for
supporting disaster relief operations as well as development programs. We then
describe the location decisions that need to be made and some important metrics
to consider. We also present a general model to solve location problems, which
is a formulation that serves as a base for humanitarian network design problems
involving location decisions. Finally, we discuss some extensions of this basic
location problem.

21.1 General Description of Humanitarian Supply Chains

The objective of deploying humanitarian supply chains is to provide assistance
in order to maintain life, improve health and support the population affected by
a disaster or a crisis. This is true when responding to disasters and when setting
up long-term development programs—both require the management of complex
supply chains to achieve their aid objectives. The level of response and extent of
the programs depends on several factors, including the scale of the disaster, the
socio-economic conditions of the affected area, the vulnerability of the population,
the state of the critical infrastructures, the situational awareness of the different
stakeholders, and the available funding and resources. In this chapter, we use the
term humanitarian supply chains to describe the logistics networks designed and
managed to support disaster relief as well as development programs; see Kara and
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Savaser (2017), Çelik et al. (2012) and Kovács and Spens (2007) for distinctions
between logistics operations to support disaster response and development pro-
grams.

The main logistics activities conducted following a disaster are (1) the assess-
ment of needs and damage, (2) the rescue and evacuation of people, (3) the
transport of resources (staff and equipment) and supplies to and from several
facilities, (4) the provision of assistance services, and (5) the distribution of relief
supplies. Nevertheless, successful responses are planned, not improvised. Indeed,
mitigation and preparedness are crucial phases in reducing the negative impacts of
a forthcoming disaster and in facilitating efficient response and recovery phases.
Relief operations and the issues related to each of these phases are different, leading
to phase-specific types of supply chain decisions (Çelik et al. 2012).

Affected states, the governments of territories in which the disaster occurred,
play a leading role in disaster management and are supported through the efforts
of several domestic actors (national disaster management agencies, NGOs, the
military, etc.). Yet some disasters require the involvement of the international com-
munity. Indeed, international support must be solicited when the national response
capacity is insufficient or overwhelmed in the face of a major disaster (International
Federation of Red Cross and Red Crescent Societies 2017). The international
community is also heavily involved in various development programs implemented
in multiple countries to address important challenges, usually related to one or
several of the 17 sustainable development goals set by the United Nations (United
Nations 2018). Consequently, several actors are involved within humanitarian
supply chains (donors, governments, local and international NGOs, United Nations
agencies, private companies, media, beneficiaries, etc.), and different organizations
assist the population in need according to their main sectors of activity (e.g. health,
food security, logistics, telecommunications, protection, shelter, education, water,
sanitation, and hygiene).

To provide humanitarian assistance, the effective deployment of supply chains
is crucial to move the necessary resources and supplies and to set up dispensing
facilities. Figure 21.1 depicts the general structure of a humanitarian supply chain
and its main transportation flows to reach people in need located in underserved
areas (i.e., areas affected by a disaster, remote areas, or areas where living
conditions need to be improved). In this figure, the main physical infrastructures
are represented by black boxes, and the main transportation flows are represented
by dashed blue arrows and symbols. Alternative transportation flows are represented
by dashed grey arrows and symbols.

21.1.1 International and Regional Distribution Centers

International distribution centers (depots) are strategically located to ensure that
worldwide coverage is available within only short delays following a disaster (the
first response). This is usually accomplished by means of air transportation. In the
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Fig. 21.1 Humanitarian supply chain

case of a major disaster, some of the relief supplies and equipment required for
the longer-term response (the second response) can sometimes be shipped by sea
to reduce the transportation costs. International distribution centers also serve as
storage facilities for stockpiling resources in anticipation of sudden needs, which
is known as prepositioning in the humanitarian sector. Humanitarian organizations
implement prepositioning strategies to eliminate procurement delays and ensure the
relief supplies are available when they need them, thus enhancing their preparedness
and emergency-response capacity, particularly for sudden-onset disasters (Duran
et al. 2011). For example, the United Nations Humanitarian Response Depot
(UNHRD) provides various logistics services related to prepositioning to its partners
throughout its network of depots located in Brindisi (Italy), Dubai (UAE), Panama
City (Panama), Accra (Ghana), Kuala Lumpur (Malaysia) and Las Palmas (Spain)
(Dufour et al. 2018). Thus, international distribution centers are usually located in
relatively stable areas from a political point of view, which are not prone to disaster
and have well-developed logistics infrastructures, often close to an airport or a port.

Local organizations, such as civil societies, NGOs, local government authorities,
and community organizations, also preposition relief supplies and equipment
in regional distribution centers to strengthen local capacities. For example, the
Federal Emergency Management Agency (FEMA), an agency of the United States
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Department of Homeland Security that coordinates responses to major disasters
occurring in the US, maintains its inventory of relief supplies in nine distribution
centers located across the country and its territories (US Department of Homeland
Security 2009). Local capacities depends on several factors, including the organi-
zation of the local governments, the presence of any international organizations in
the country (e.g., UN entities), local and regional economic resources and logistics
infrastructures, predisposition to disasters, and the availability of human and
technological resources. Regional distribution centers can be owned and managed
by a local organization, or warehouse space can be rented from a third-party logistics
provider. These centers usually receive supplies from both international and local
suppliers.

21.1.2 Dispensing Points

Dispensing points consist mainly of points of distribution or services, where
beneficiaries can receive relief supplies or where various services (e.g., healthcare
and shelter) can be provided to them during a disaster response or a development
program. Points of distribution are usually deployed to distribute life-sustaining
commodities, such as water, food, tarps, and other resources, to the public within the
first 72 h following a disaster, whereas points of dispensing are designed to quickly
distribute medications, vaccines, and medical supplies to a large number of people
within a short time frame during a public health emergency. Note that dispensing
points can also be set up for long-term development programs. For example,
Rancourt et al. (2015) conducted a field study in the region of Garissa (Kenya),
in collaboration with the World Food Programme and the Kenya Red Cross, to
determine a set of distribution points where food aid has been directly handed out
to beneficiaries for several years in order to alleviate severe food insecurity. They
present location models, considering the welfare of the different stakeholders, and
analyze the results obtained using real data. GIS data were processed to determine
the parameters of the last-mile distribution network, see Chap. 18 for an overview
of location and GIS.

Following a disaster, portable and temporary medical facilities (field hospitals)
can also be deployed by different organizations (e.g., IRFC, Doctors Without Bor-
ders, and military bodies) to replace or supplement the destroyed local healthcare
capacity and to support relief efforts. In an urban setting, field hospitals can be
installed in accessible and visible buildings, such as schools, town halls, and
stadiums. Dispensing points are also used for similar purposes in the context of
development programs lasting for longer periods of time than disaster responses.

Relief shelters are used to provide protection, safety, security and privacy to
people who have left or lost their housing as a result of a disaster. Shelters are used
until displaced people can be rehoused in either their restored dwellings or new,
permanent houses, which means that shelter locations may be required for several
months or even years following a disaster (Abdulrahman et al. 2014). Refugee



21 Location Problems in Humanitarian Supply Chains 615

camps are temporary settlements built to receive internally or internationally
displaced people, and they can host thousands of people for several years (e.g.,
Suruc in Turkey, Bidi Bidi in Uganda, Dadaab and Kakuma in Kenya). In general,
refugees seek asylum to escape hostile conflicts in their home countries, but
some camps also house migrants because of difficult environmental or economic
conditions. The United Nations High Commissioner for Refugees reported that, at
the end of 2017, 71.1 million people worldwide had been forcibly displaced because
of conflict and persecution. Among them, 19.9 million people were classified as
refugees, whereas 39.1 million people were classified as internally displaced persons
(UNHCR 2018). These numbers provide an idea of the scale of the operations
required to support refugee crises, which combine relief and development forms of
aid (e.g., medical relief and food aid distribution as well as children’s education and
micro-enterprise programs). There exists a wide range of shelter types, and several
factors (environmental, economic, technical, and sociocultural) must be taken into
account when planning and designing shelters to ensure they are appropriate for the
situation, i.e., they meet the needs and conditions of the beneficiaries (Jahre et al.
2018).

In the remainder of this chapter, we will use the term dispensing points to account
for the different types of locations where beneficiaries can receive various forms of
humanitarian aid. In most cases, the beneficiaries have to walk or use another mode
of transportation to reach the dispensing points. The aid is either directly distributed
or provided at the household level, depending on the context.

21.1.3 Transportation Flows

International suppliers or distribution centers send the relief items to an entry port
or airport of an affected country (known as a gateway) by sea or air depending on
the time sensitivity of demand. Often, air transportation is the only possible means
of transportation to ensure the relief resources reach the affected area within a short
enough time frame, i.e., usually less than 72 h for the first response. When feasible,
for the second response or the recovery operations, relief items can be shipped by
sea, which is less costly.

Once the relief items have reached the affected area, they are usually shipped by
road from the gateway to regional distribution centers (warehouses). Local suppliers
can transport items to regional distribution centers or directly to the dispensing
points, where beneficiaries can collect their relief supplies. Airlifts can also be
used to provide assistance in remote regions in a timely manner. This allows for
enhanced transportation response capacities in hostile or inaccessible zones, where
infrastructure has been severely damaged or destroyed. Although prohibitively
expensive compared to other modes of transportation, airlift is sometimes the only
possible means to quickly support humanitarian response efforts in difficult-to-reach
areas. For example, helicopters were used to reach remote communities located
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in mountainous areas after the 2015 Nepal earthquake, as well as in the conflict-
affected areas of South Sudan. Airdrop is a last resort for aid organizations because
it is expensive and inefficient compared to road transportation. Most of the time,
beneficiaries must go to the dispensing points, either through their own means or
in some organized fashion to receive health or shelter services or to collect their
relief supplies. In some specific cases, such as community health care programs
(Cherkesly et al. 2017; VonAchen et al. 2016; McCoy and Lee 2014) or food
airdrops, aid is delivered at the household level or closer to the beneficiaries.

21.2 Humanitarian Facility Location Problems

Designing humanitarian supply chains involve a number of location decision prob-
lems. Indeed, determining the locations of the international and regional distribution
centers and the locations of the dispensing points can have a major impact on
response effectiveness in terms of service quality and logistics costs. Depending
on the purpose of these storage and distribution locations, different criteria and
metrics must be taken into consideration. For example, international and regional
distribution centers have to be located in areas where logistics infrastructure is well
developed and connected, whereas dispensing points need to be easily accessible
for the beneficiaries.

The extent to which location problems are encountered in humanitarian supply
chains differ depending on the decision level (strategic, tactical or operational) and
the scope of the problem. For example, the location decision for an international
distribution center for a large-scale NGO is a strategic decision based on the
global service network of the NGO. Likewise, the location decision for NGOs
mostly serving beneficiaries on a local level is also strategic, except that regional
distribution centers are located based on the potential locations of the beneficiaries.
Dispensing points, however, can be temporarily set up after a disaster and modified
depending on the evolution of the situation. These are tactical decisions.

The dynamics of a supply chain and the performance measures depend on
the intended scope of the operations. Again, for a local NGO, the last-mile
performance—the timing of the distribution or the equity in aid provided to
beneficiaries—can be more of a concern, whereas for an internationally active large-
scale NGO, the resilience or the agility of its supply chain may be a more important
issue. Thus, the specifics of the location decisions at the international level and
within an underserved area can differ considerably. There can also be important
differences among the various stakeholders, who may not have the same objectives
(Gralla et al. 2014; Holguín-Veras et al. 2013).
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Fig. 21.2 The general structure of the global supply chain

21.2.1 Locations in Global Humanitarian Supply Chains

At the global level, the main location decisions involve the international distribution
centers (DCs). As explained earlier, these DCs are mainly used for prepositioning
inventory in order to reach an underserved area on time. They are also used
to support long-term development programs. For these systems, every potential
underserved area will be aggregated into a demand node, and the location decision
will be based on the network, where the nodes are these aggregated points.
Figure 21.2 depicts such a structure and the overall flow. The supplies will either
flow through the DCs or will move from suppliers directly to affected areas. At this
global level, the main criteria in determining the locations of DCs are the travel
times and costs to bring the resources from the suppliers to the affected areas. In
Fig. 21.2. γ1 represents the value of the metric being used (typical metrics are cost,
distance, time, or any combination of these) between the suppliers and the DC, and
γ2 represents the value of the metric between the DC and the underserved areas.

21.2.2 Locations in Local Humanitarian Supply Chains

At the local level, determining the best site for a regional distribution center
(RDC) is an important location problem. Moreover, one of the crucial decisions
is to establish where services or supplies need to be distributed to beneficiaries.
These facilities (dispensing points) can be categorized as (1) shelter sites, (2) field
hospitals, or (3) points of distribution (PoDs). Depending on the decision maker and
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Fig. 21.3 The details of the affected area

the problem at hand, the location decision can be for the RDC or for the dispensing
points. Figure 21.3 depicts in more detail the underserved area.

Figure 21.3 focuses on the underserved area, and hence the decisions are mainly
made at the local level. The location decision of the RDC is mostly affected by
β2, β3 and β4 in the figure. As in the global supply chain shown in Fig. 21.2, βi

may represent several possible metrics depending on the preferences of the decision
maker. At the local level, time and distance are among the typical metrics used.
Customarily, the sum of all metrics is used to determine the optimal RDC location.
However, it is possible to determine other values in these decisions (e.g., summing
some of the βi metrics and imposing upper bounds on the remaining ones). For
example, it could be decided that minimizing the total cost or distance from the
suppliers and from the gateway, while keeping the travel time or distance to the
shelter sites below a certain value, is the most efficient way to make a location
decision.

Although the facilities in the underserved area are grouped together in Fig. 21.3
for visual purposes, the location decisions of shelter sites, field hospitals, and
PoDs are usually assessed through different performance measures and metrics.
For example, in determining the optimal shelter site locations, the main decision
maker—the NGO responsible for the shelter sites or the municipalities—may wish
to minimize the total cost or distance to local suppliers and the RDC (β1 + β2).
At the same time, the walking distance α of the beneficiaries cannot exceed a
predetermined value (Kinay et al. 2018; Kinay et al. 2019). On the other hand,
the distance to beneficiaries is more important in determining the optimal location
of PoDs since the beneficiaries will come and collect supplies on a regular basis.
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Thus, a typical performance measure in locating PoDs is the sum of α’s. For these
problems, the distance to local suppliers and the RDC (β1 and β2) can also be
controlled by forcing predetermined upper bounds.

In sum, depending on the decision maker and the location problem considered,
any combination or function of the values of the metrics given as α, β1, β2, β3, and
β4 can appear as a performance measure or as a constraint. From the beneficiaries
perspective,α is always important. For some applications, the sum of those distances
may appear as an objective (Rancourt et al. 2015). The maximum value among the
α’s is usually considered to measure equity.

21.2.3 General Overview

As detailed in Sects. 21.2.1 and 21.2.2, the dynamics of the facility location
problems encountered in global and local humanitarian supply chains may be
different. Table 21.1 summarizes potential measures and the relationships among
the metrics given in Figs. 21.2 and 21.3. In Table 21.1, f (.) represents a general
function of the different metrics, and studies typically used a weighted sum. For
some applications, one echelon (either from the supply side or the demand side)
may have more impact on the overall performance, and the decision maker may
wish to distinguish that effect. For these applications, weighted sum is the most
widely used function. For example, for international DC locations, if both echelons
have the same effect, a typical objective function could be min γ1 + γ2. However,
if the distance from suppliers has more effect on the overall decision, then a typical
objective function would be min aγ1 + bγ2, where 0 ≤ b < a ≤ 1.

Table 21.1 Overview of location decisions

Location
decisions

Potential
metrics

Potential performance
measures

Sources of
inbound flow

Destination of
outbound
flow/potential user

International
DCs

Distance,
cost

min f (γ1, γ2) International
suppliers

Affected areas

Regional
DCs

Distance,
cost, time

min f (β2, β3, β4),
min f (β3, β4)

while f (β2) < threshold

Gateway, local
suppliers

Locations of
facilities

Shelter sites Distance,
cost, time

min f (β1, β2)

while f (α) < threshold
Regional DC,
local suppliers

People

Field
hospitals

Distance,
cost, time

min f (β1, β2)

while f (α) < threshold
Regional DC,
local suppliers

People

PoDs Distance,
cost, time

min f (α)

while f (β1) and
f (β2) < thresholds

Regional DC,
local suppliers

People
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As can be seen from Table 21.1, the location decisions of the shelter sites, field
hospitals, and PoDs are customarily based on the values of the metrics between the
facilities and the RDCs or local suppliers. The function f is usually a weighted
sum. The prominent factor is the value of the metrics from and to the RDC, β2,
but depending on the contribution of local suppliers, the value of that metric, β1,
can also be a measure in determining the optimal locations of the shelter sites, field
hospitals, or PoDs. The walking distance of the beneficiaries to the facilities, which
is a typical metric for α, can also be a factor in determining the locations of these
facilities. In particular, for the location of PoDs, the sum of the values of α is a
typical performance measure.

A critical look at Table 21.1 immediately indicates the complexity encountered
in humanitarian location problems based on the multiple criteria that need to be
considered. As can be seen from the table, for some applications some of the criteria
are naturally handled within the constraints, while others remain in the objective
function. Even though a weighted sum is often used to handle the multiple criteria
of the objective functions, recent studies have also used epsilon constraint methods
for this purpose (Kinay et al. 2019).

21.3 A Generic Location Model for Humanitarian Supply
Chains

As detailed in Sect. 21.2, there exist different types of facility location problems
encountered in humanitarian supply chains. We will provide a generic mathematical
model with appropriate definitions for sets, parameters, and variables depending on
the scope and type of the problem. We will consider the weighted sum of the metrics
for the performance measure.

21.3.1 Notation

Table 21.2 provides the set declarations for each type of facility location problem.
Generically, K represents the set of suppliers, I the set of demand points, and J

the set of alternative locations. Since alternative locations will be determined by
the decision maker depending on availability in the local area, there is no need for
distinction between the facility types.

Observe from the table that shelter sites act as demand points for field hospital
and PoD location problems. Table 21.3 provides the parameter definitions and links
these to the metrics given in Figs. 21.2 and 21.3. Table 21.4 provides the variable
declarations.
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Table 21.2 Set definitions for each type of location problem

Sets

Facility types

Distribution centers Dispensing points

International Regional Shelter site Field hospital PoD

K: set of
suppliers

International
suppliers

Gateway, local
suppliers

Regional DC and local suppliers

I : set of demand
points

Underserved
areas

Dispensing
points

Homes,
gathering
points

Shelter sites, homes

J : set of
alternative
locations

Alternative
locations,
globally

Alternative locations in the region

Table 21.3 Set definitions for each type of location problem

Facility type

Distribution centers Dispensing points

Parameters Definition Index sets International Regional
Shelter
site

Field
hospital PoD

c1
kj Value of the

metric between
k ∈ K

j ∈ J
γ1 β3, β4 β1, β2

c2
ij i ∈ I γ2 β2 α

Table 21.4 Variable definitions

Variables Definition Index sets

yj Binary variable being

{
1 if j is selected

0 otherwise.
j ∈ M

xij Binary variable being

{
1 if i is assigned toj

0 otherwise.
i ∈ I , j ∈ J

21.3.2 Basic Mathematical Model

As in many location problems introduced in Chaps. 2–5, the first decisions to be
made are the locations of the facilities and how to allocate demand points to the
opened facilities. These two decisions are modelled via the base model P1 presented
below. Observe that the variable declaration and the provided model is for a single
assignment problem where each demand node receives service from exactly one
facility. However, by declaring the allocation variable as xij ≥ 0, one can easily
allow a demand node to be served by more than one facility, namely the multi-
allocation versions:

(P1) Minimize
∑

k∈K, j∈J
c1
kj yj +

∑

i∈I, j∈J
c2
ij xij (21.1)
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subject to xij ≤ yj ∀ i ∈ I, j ∈ J (21.2)
∑

j∈J
xij = 1 ∀ i ∈ I (21.3)

xij , yj ∈ {0; 1} ∀ i ∈ I, j ∈ J. (21.4)

The above model only considers the total sum of the metrics as the performance
measure and has no additional requirement. Of course, depending on the appli-
cation area, there will be many additional constraints to represent the operational
dynamics.

An immediate additional restriction is capacity. To consider capacity issues, we
also need to define the amount of demand as a parameter for each demand point in
addition to the capacity value for node j ∈ J . Let di , i ∈ I denote the amount of
demand at a node and Qj as the capacity of alternative location j . Then, updating
constraint (21.2) to the following constraint, (21.5), would suffice to consider the
capacity issues:

∑

i∈I
dixij ≤ Qjyj ∀ j ∈ J. (21.5)

This model is just one example of a location problem based on capacity with
no apparent specialization in terms of humanitarian supply chains other than the
intended meaning of the facility types. This is intentional and managed thanks to the
conceptualization of the problem as depicted in Figs. 21.2 and 21.3, and Table 21.1.

On the other hand, one distinguishing feature of humanitarian supply chains is
the importance of equity, which usually comes to light at the regional level when we
consider the α metric regarding the beneficiaries. The current version of the model
P1 considers the total unweighted sum as the objective function, and thus equity is
not recognized separately. One common way of dealing with such equity measures
is by forcing the α metric to take values below a predetermined threshold value.
Constraint (21.6) is such an example, where T is the threshold:

c2
ij xij ≤ T ∀ i ∈ I, j ∈ J. (21.6)

Of course including constraint (21.6) may lead to questioning the validity of the
second term in the objective function of the model P1. However, as also observed
in Kinay et al. (2019), in order to ensure that the closest possible assignments are
attained, this term is still required. For some applications, the performance measure
can solely depend on the metric between the suppliers and the facilities, namely
the first term in the objective function of P1 (Kılcı et al. 2015). For such cases, in
order to ensure meaningful assignments, one needs to include closest assignment
constraints in the model.

Apart from multiple criteria, another distinguishing feature of humanitarian
supply chains is the uncertainty that may arise in all aspects of the supply chain,
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including the supply, demand, and transportation infrastructure (Kovács and Spens
2007). Most of the studies conducted on humanitarian supply chains focus on
demand uncertainty. The uncertainty in supply is usually considered in terms of
possible damage to the prepositioned items. Finally, the transportation infrastructure
can also be damaged during a disaster, which may lead to uncertainty in travel times,
distances, and costs. The studies concerning uncertainty in humanitarian supply
chains do not focus solely on location decisions but also consider other paired
decisions that will be detailed in the next section.

21.4 Location Problems with Additional Considerations

Both in humanitarian and commercial supply chains, strategic location decisions
are often taken considering tactical and, sometimes, operational decisions, such
as inventory prepositioning and distribution planning. In this section, we present
examples of integrated location problems arising in humanitarian logistics.

21.4.1 Location and Prepositioning

Prepositioning is a distinctive practice used in humanitarian supply chains, where
the stockpile levels for the equipment and relief supplies have to be determined
based on the anticipated needs and available funding (tactical decisions). In terms of
location decisions, organizations have to select where to open the storage facilities,
such as international and regional distribution centers, in order to ensure an effective
response depending on multiple factors (Richardson et al. 2016). These are usually
strategic decisions, but in some cases temporary regional distribution centers can be
installed using large relocatable tent-like structures to satisfy a significant surge in
demand during a crisis.

The nature of prepositioning requires that the strategic location decisions and
the stockpile levels be determined during the pre-disaster phase. Moreover, because
future demand, among others, is unknown, solving problems related to prepo-
sitioning decisions usually implies stochastic optimization. Balcik and Beamon
(2008), Mete and Zabinsky (2010), Rawls and Turnquist (2010) and Salmerón and
Apte (2010) are among the pioneering works in stochastic inventory prepositioning
and location problems. Two-stage stochastic programming is the most widely
used method because it can take into account multiple uncertain parameters, such
as demand, supply, and facility and transportation network damages. First-stage
decisions take place prior to a disaster (facility locations and stockpile levels),
while second-stage decisions are made in the aftermath of a disaster (distribution
flow). For an extensive review of literature about two-stage stochastic programming
in disaster management, see Grass and Fischer (2016). Some authors, such as
Görmez et al. (2011) and Rodriguez-Espindola et al. (2018), have proposed solution
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approaches that do not consider uncertainty, and Verma and Gaukler (2015) compare
two location models, where the second model extends the first by considering
damage intensity as a random variable.

Interesting real-life applications, through studies made in collaboration with
different organizations, have been presented in the literature. For example, Duran
et al. (2011) have studied the prepositioning network design of CARE International
and evaluated the effect of gradually expanding its network based on the average
response time, this by means of scenario-based stochastic programming. Acimovic
and Goentzel (2016) and Dufour et al. (2018) have studied the prepositioning
network of the UNHRD, whereas Jahre et al. (2016) have examined one of the
networks of the United Nations High Commissioner for Refugees (UNHCR).
Tofighi et al. (2016) provide an extension of the classic prepositioning problem.
They consider the location and inventory prepositioning decisions in a two-echelon
setting and compare their solutions with the existing relief network for Tehran.

In the following, we present a two-stage stochastic programming model, P2, for
the prepositioning network design problem. Given a set of suppliers and a set of
candidate locations for the distribution centers where to preposition different relief
items (e.g., blankets, mosquito nets, tarpaulins, family and hygiene kits), the first
stage decisions of the model determine the locations of the DCs and the number
of relief items shipped from suppliers to the opened DCs. Given a set of demand
points and a set of possible demand scenarios, the second stage decisions determine
the number of relief items shipped from the opened DCs to the demand points. We
next present the notation to formulate the problem.

Sets

R set of relief items; r ∈ R

Kr set of suppliers of relief item r; k ∈ Kr

J set of candidate locations for the DCs; j ∈ J

I set of demand points; i ∈ I

S set of demand scenarios; s ∈ S.

Parameters

lj fixed location cost for a DC at location j ∈ J

c1r
kj cost of acquiring and shipping a relief item of type r ∈ R from supplier

k ∈ Kr to DC j ∈ J

c2r
ij cost of shipping a relief item of type r ∈ R from DC j ∈ J to demand point

i ∈ I

qr volume of relief item r ∈ R

Qj capacity of a DC (measured in volume) at location j ∈ J
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dsr
i estimated demand of relief items of type r ∈ R at demand point i ∈ I in

scenario s ∈ S.

First-Stage Decision Variables

yj a binary variable equal to 1 if a DC is located in j ∈ J , 0 otherwise

zrkj amount of relief item of type r ∈ R delivered to candidate DC location j ∈ J

from supplier k ∈ Kr .

Second-Stage Decision Variables

xsr
ij amount of relief item of type r ∈ R delivered to demand point i ∈ I from

candidate DC location j ∈ J in scenario s ∈ S.

The two-stage stochastic programming model for the prepositioning network
design problem is as follows:

(P2) Minimize
∑

j∈J
lj yj +

∑

r∈R

∑

k∈Kr

∑

j∈J
c1r
kj z

r
kj +

∑

s∈S
ps

∑

r∈R

∑

k∈Kr

∑

j∈J
c2r
ij x

sr
ij

(21.7)

subject to
∑

r∈R

∑

k∈Kr

qrz
r
kj ≤ Qjyj ∀ j ∈ J (21.8)

∑

r∈R

∑

j∈J
xsr
ij ≥ dsr

i ∀ i ∈ I, s ∈ S, r ∈ R (21.9)

∑

i∈I
xsr
ij ≤

∑

k∈Kr

zrkj ∀ j ∈ J, r ∈ R (21.10)

yj ∈ {0; 1} ∀ j ∈ J (21.11)

zrkj ∈ Z
+ ∀ r ∈ R, j ∈ J, k ∈ Kr (21.12)

xsr
ij ∈ Z

+ ∀ i ∈ I, j ∈ J, s ∈ S, r ∈ R. (21.13)

The first and second terms of the objective function (21.7) represent the sum of
the fixed location costs associated with DCs, and the cost associated with acquiring
and shipping relief items from suppliers to DC locations, respectively. The last
term in (21.7) is the expected shipping costs associated with transportation of relief
items after a disaster occurs. Constraints (21.8) ensure that the amount of relief
supplies to preposition at each opened DC does not exceed its capacity. Constraints
(21.10) limit the amount of relief items of type r that can be shipped from a DC
by the amount of available relief items. Constraints (21.9) ensure that the estimated
demand is fully met. Finally, constraints (21.11)–(21.13) define the domains of the
variables.
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21.4.2 Location-Routing Problems

Routing decisions can be integrated into facility location problems to account for
transportation activities when designing and planning humanitarian supply chains,
especially for locating both international and regional DCs or PoDs. Afshar and
Haghani (2012) proposed a location-routing model to control the flow of relief items
after a disaster in which several layers of temporary facilities are located based
on storage and transportation capacity constraints. Apart from relief distribution,
routing decisions can also be considered for evacuation purposes. In this case,
emergency facilities where evacuees are transferred must be located, and the flow
of people between affected households must be considered for the routing decisions
(see An et al. 2013, Bayram and Yaman 2015 and Yi and Özdamar 2007). When
location decisions are integrated with routing decisions, on-time deliveries or pick-
ups and demand coverage often appear in the objective function because of resource
limitations. For example, Abounacer et al. (2014) and Rath and Gutjahr (2014) have
conducted studies that aim to minimize the unmet demand while maximizing the
demand coverage.

VonAchen et al. (2016) and Cherkesly et al. (2017) addressed a location-routing
covering problem that arose in a community healthcare program servicing under-
served areas of Liberia. Designing a network in such a context implies determining
the locations and density of community healthcare workers (CHWs) and of their
supervisors, as well as the routes supervisors need to travel to provide continuous
in-service training to CHWs. In this problem, the objective is to minimize the annual
program costs (salaries, medical supplies, motorcycle routing, etc.) while ensuring
specific coverages. There are two levels of location decisions: the supervisors who
train the CHWs, and the CHWs who cover the communities. Thus, as opposed to
the classic location problems, the location decisions here involve staff (CHWs and
supervisors) not facilities, and the routing decisions also involve staff (supervisors)
not vehicles. VonAchen et al. (2016) proposed a two-step heuristic to solve the
problem and Cherkesly et al. (2017) solved the problem exactly by integrating all
decisions and features into one optimization model. Other applications of healthcare
delivery services and relief distribution have been presented where the underlying
optimization problem is a coverage problem. For example, Nolz et al. (2010) and
Naji-Azimi et al. (2012) adapted the coverage problem for relief distribution in areas
affected by a disaster, while Doerner et al. (2007) and Hodgson et al. (1998) adapted
it for planning mobile clinics in developing countries.

Uncertainty in the transportation infrastructure is one of the major challenges
in humanitarian supply chains. Rawls and Turnquist (2010) conducted one of the
first study to consider uncertainty in the network availability due to possible road
damages. The authors developed a scenario-based solution approach to determine
the location and capacity of the emergency supply storage facilities, as well as the
amount of supplies to be prepositioned. Ahmadi et al. (2015) proposed a two-stage
stochastic location-routing problem under disrupted networks. Salman and Yucel
(2015) also considered random transportation network link failures and proposed a
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tabu search heuristics for finding a surviving supply chain under many scenarios.
Moreno et al. (2016) and Vahdani et al. (2018) developed a three-echelon location
and routing problem under demand uncertainty, whereas Bozorgi-Amiri and Khorsi
(2016) considered a prepositioning problem for a two-echelon network structure.

21.5 Conclusion

Humanitarian supply chains are complex systems with features that are specific
to each context. Indeed, they are subjected to multiple sources of uncertainty
(location and magnitude of the aid needs and available supplies, capacity of the
logistics network, impacts of the potential aftershocks, etc.) and some security
issues. Multiple stakeholders with different objectives and incentives are involved in
humanitarian operations (international organizations, NGOs, government agencies,
media, beneficiaries, etc.), which makes humanitarian supply chain management
especially challenging. There are also specific considerations in the humanitarian
sector that do not apply to their for-profit counterparts. This leads to various
location problems at different levels of the supply chain, including international
and regional DCs as well as dispensing points. Integrating other considerations with
location problems, including routing and coverage decisions as well as sources of
uncertainty, offers interesting contributions and opens the door to future research in
the field of humanitarian logistics.
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Chapter 22
Location Problems Under Disaster
Events

Maria Paola Scaparra and Richard L. Church

Abstract Facility systems may be vulnerable to a disaster, whether caused by
intention, an accident, or by an act of nature. When disrupting events do occur,
services may be degraded or even destroyed. This chapter addresses problems of
disruption associated with facility based service systems. Three main questions
often arise when dealing with a possible disaster: (1) how bad can it get? (2) is
there a way in which we can protect our system from such an outcome? and (3) is
there a way in which we can incorporate such issues in our future designs and plans?
The chapter addresses each of these main questions with respect to several classic
location problems. Specifically, it discusses recent location models under disaster
events along three main streams of research: facility interdiction, facility protection,
and resilient design.

22.1 Introduction

Although Murphy’s law (if anything can go wrong, it will) does not always come
true, it seems at least important to address what might go wrong when designing
and operating infrastructures, such as service systems and supply chains. Whether
intentional or accidental, disasters can render a system inoperable or inefficient for
quite some time. For example, in 2011, flooding in Thailand was considered to be
the worst in 50 years. This event disrupted supply chains around the world from
computer storage disk manufacturing to cars. In that flood, a production facility
for Honda was closed for more than 3 months, and a financial analyst estimated
that floods would reduce profits at Toyota, Nissan, and Honda by more than a
combined Y35bn (Soble 2011). Other examples of natural disruption include the
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hit of Hurricane Harvey on Texas in 2017. Included in that disaster was a chemical
plant that was flooded in Crosby, TX, which lost power as well as backup power.
The chemicals stored at the plant needed refrigeration, and without power there
were significant destructive fires. Harm can also be intentional and simple. For
example, in 2015 a cyber-attack shut down three power distribution companies in
the Ukraine resulting in loss of electricity to 225,000 customers in winter (Lemos
2018). In another incident, a terrorist was able to drive a vehicle into an Air Products
& Chemical plant near Lyon, France, in 2015 that caused an explosion (CEN
2015). Of equal concern is that attackers used phishing emails to gain passwords
and compromising information. By doing so, they were able to launch a cyber-
attack on a steel mill in Germany in 2014. The attackers had enough familiarity
with the system that they caused the plant’s control network to fail. In response,
plant operators had to perform an emergency shutdown which resulted in significant
damage (Lemos 2018). As a final example of intentional disruption, snipers in April
2013 opened fire on a substation supplying power to Silicon Valley, California, and
knocked out 17 giant transformers, nearly bringing the entire area to a complete
blackout. U.S. Officials have stated that this was the most significant incident in
domestic terrorism involving the grid that has ever occurred. In an unreported U.S.
government analysis, researchers found that knocking nine key substations out of
55,000 substations on a scorching summer day could result in a coast-to-coast
blackout (Smith 2014) and it is believed that protecting 100 key substations would
be enough to mitigate such an attack. This gives credence to addressing the question
of what is critical to protect. Overall, addressing such potential risks when designing
and operating a system of facilities may lead to more resilient and efficient systems.

Facilities and associated transportation networks are key elements in any pro-
duction, supply, and service system. Traditional modeling approaches for facility
location problems are based upon the assumption that systems will operate as
designed. Virtually all modern textbooks on modeling production and supply
systems ignore the problem of disruption when optimizing the location of a set
of facilities. Church et al. (2004) demonstrated that a given deployment of facility
resources, although optimal, could be significantly disrupted in service efficiency,
while other close-to-optimal configurations were relatively resilient when subject
to the same level of disruption. This work and the work of Snyder and Daskin
(2005) were instrumental in establishing a need to handle facility reliability and
vulnerability explicitly. Since then there has been an increased interest in modeling
the fragility of networks and facility systems over a wide range of possible events
from natural disasters to intentional strikes.

Research in facility disruption is new and evolving. There are three major
problems of interest. The first one is: how much impact can be expected? This
problem involves the search for the most critical elements of a system, that is,
those facilities which when removed from operation impact the system the most.
The second important question is: how can such impacts be averted? One way
of averting a crisis may be to fortify facilities against disaster. This may call for
something simple like providing backup generators for power or providing enough
security that it will ward off a would-be attacker. Another possibility is to move the
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facility to a nearby site that is less vulnerable to something like flooding. The third
main question is: how might facilities be configured so that the resulting system is
both efficient in service delivery and resilient when disrupted? This last question
deals with the design of a new system, whereas the first two questions deal with an
existing system. All of these are major issues and are addressed in this chapter.

The main optimization models developed to answer these questions can be
classified as follows:

1. Interdiction models. These models identify vulnerabilities of service/supply
systems and quantify the impacts of potential losses of key components on a
system ability to provide efficient service.

2. Protection models. These models optimize the allocation of protective resources
among the facilities of already existent systems.

3. Design models. These models are used for planning new service and supply
systems which are secure and resilient to disruptions.

In this chapter, we provide a description of the seminal models in each class and
outline how these models have then been further developed and extended to capture
the additional complexities and interdependencies characterizing real service and
supply systems. The description of the models is paralleled by a brief description of
the solution methodologies which have been proposed for solving them.

The remainder of this chapter is organized as follows. Section 22.2 introduces
the notation used throughout the chapter. Interdiction, protection and design models
are described in Sects. 22.3, 22.4 and 22.5, respectively. In Sect. 22.6, we highlight
future trends in modeling location problems under disaster events. Some conclusive
remarks are finally provided in Sect. 22.7.

22.2 Notation

In the following description of location models under disruption, we assume that
the reader is already familiar with the classic location problems introduced in the
previous chapters (e.g., median, covering, fixed-charge and hub location problems).
Here we briefly summarize the main notation used throughout the chapter.

Inputs
I = Set of potential locations for the facilities, indexed by i

J = Set of customers, indexed by j

F = Set of facilities in an existing system
dj = Demand of customer j
cij = Unit cost for serving customer j from facility i

Nj = Set of facilities covering customer j (Nj ⊆ I )
p = Number of facilities to be located
r = Number of facilities to be interdicted
b = Number of facilities to be protected
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Decision Variables

yi =
{

1 if a facility is located at site i

0 otherwise

si =
{

1 if a facility located at i is interdicted
0 otherwise

zi =
{

1 if a facility located at i is protected
0 otherwise

xij =
{

1 if the demand of customer j is supplied from facility i

0 otherwise

uj =
{

1 if customer j is covered before disruption
0 otherwise

vj =
{

1 if customer j is covered after disruption
0 otherwise

In the models described in this chapter, single-sourcing is assumed. For some
uncapacitated problems, such as the p-median problem, single-sourcing occurs
naturally (without imposing binary restrictions on the xij variables) as customer
demands are served by their nearest open facility, unless a customer has the same
minimum cost from two or more open facilities (see Chap. 2). The multi-source
counterpart of location models under disruption can be easily formulated by relaxing
the integrality constraints on the xij variables.

22.3 Identifying Critical Facilities: Interdiction Models

Interdiction models date back a few decades and were originally designed to assess
the impact of losing critical links in transportation networks for military applications
(see, for example, Wollmer 1964 and Wood 1993). The first interdiction models
within the facility location literature were introduced by Church et al. (2004) to
identify the most critical facility assets in systems that are designed with an objective
that is either based on minimizing total weighted distance of service or maximizing
coverage. The first problem, called the r-Interdiction Median Problem (r-IMP), can
be seen as the antithesis of the p-median problem and aims at identifying the best set
of r facilities to remove, among the existing ones, in order to maximize the overall
demand-weighted cost for serving the customers from the remaining facilities (these
are referred to as non-interdicted facilities). Similarly, the r-Interdiction Covering
Problem (r-ICP) can be seen as the antithesis of the maximal covering problem and
involves finding the subset of r facilities, which when removed, minimizes the total
demand that can be covered within a specified distance or travel time. In essence,
both models identify the subset of facilities whose loss has the greatest impact on
service delivery, where the impact is measured either in terms of cost increase or in
terms of lost coverage to mirror two different service protocols.
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The r-Interdiction Median Problem
In addition to the notation introduced in Sect. 22.2, the mathematical formulation

of r-IMP requires the definition of the set Tij = {k ∈ F |dkj > dij } defined for each
facility i ∈ I and customer j ∈ J . Tij represents the set of existing sites that are
farther than i is from demand j . The r-IMP can be formulated in the following
manner:

maximize
∑

i∈F

∑

j∈J
dj cij xij (22.1)

subject to
∑

i∈F
xij = 1 ∀j ∈ J (22.2)

∑

i∈F
si = r (22.3)

∑

k∈Tij
xkj ≤ si ∀i ∈ F, j ∈ J (22.4)

xij ∈ {0, 1} ∀i ∈ F, j ∈ J (22.5)

si ∈ {0, 1} ∀i ∈ F. (22.6)

The objective function (22.1) maximizes the demand-weighted total cost after the
interdiction of r facilities. Constraints (22.2) ensure that each customer is assigned
to a facility after interdiction. Constraints (22.3) stipulate that exactly r facilities
are to be interdicted. Constraints (22.4) force each customer j to be assigned to its
closest non-interdicted facility. In particular, this set of constraints prevents each
customer j from being assigned to facilities which are further than facility i, unless
facility i is interdicted. Finally, constraints (22.5) and (22.6) represent the binary
restrictions on the assignment and interdiction variables, respectively. Note that the
structure of the problem guarantees that there is always one optimal solution in
which all the xij variables are binary, so that the integrality restrictions on these
variables can be relaxed.

In the above model the parameter r , i.e., the number of facilities that are lost
simultaneously in a particular event, is chosen as a metric of possible disruption.
In other words, r is used to capture the possible extent of a disruptive event: small
values are usually associated with low-impact but possibly frequent events, whereas
larger values are associated with disruptions which may affect a large number of
assets. Given the difficulty of estimating this parameter precisely, an analyst would
normally solve each model over a range of facility losses, r , in order to capture
the range of possible impacts to system operations. Using a loss parameter r makes
sense in modeling worst case disruptive scenarios due to natural events; however, in
a case of intentional disruption one may want to consider the fact that each facility
may require different amounts of resources to be completely disabled. For this type
of case, one might want to cast disruption as a budget-constrained process (see
for example Losada et al. 2012b). However using an interdiction budget requires
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information that may be completely hidden from the system operator, including the
costs of striking and the available budget itself. The use of cardinality constraints
such as (22.3) can be seen as a surrogate to knowing exact budget values of the
interdictor.

The r-IMP can be cast as an integer linear programming model which can be
solved with general-purpose integer programming software. The above formulation
of the r-IMP can be streamlined by consolidating redundant assignment variables
under special proximity conditions. The resulting variable reduction of this consoli-
dation mechanism, which was initially proposed by Church (2003) for the p-median
problem, can be substantial. Scaparra and Church (2008a) report reductions of up to
80% of the initial number of variables. The same authors also analyze and compare
different formulations of the closest assignment constraints (22.4) to identify the
most efficient formulation for the r-IMP. Although other approaches could be
devised to solve the r-IMP, including decomposition methods or heuristics, solving
the streamlined model by commercial software is usually quite effective, even for
problem instances of significant size.

Clearly, the r-IMP makes some simplifying assumptions which may limit its
practical applicability. For instance, it assumes that every strike or disruption is
successful and always results in a complete impairment of the affected facility. In
reality, the chances of losing a facility following a natural disaster or a man-made
attack are based upon some probability. Church and Scaparra (2007a) introduced
a probabilistic version of r-IMP where an attempted interdiction is successful only
with a given probability. The same authors also show how to build a reliability
envelope for identifying the range of possible impacts associated with losing one
or more facilities. Losada et al. (2012b) further extended this probabilistic r-IMP
by assuming that the probability of impairing a facility depends on the intensity
of the disruption or on the amount of offensive resources used in the attack. In a
further extension, Lei and Church (2011) address the issue of interdiction when not
all demands are served by their closest facility after a disruption.

The r-IMP also assumes no restrictions on the facilities capacity, thus implying
that after a disruption, the unaffected facilities have enough combined capacity to
supply all the demand. This may not be a realistic assumption as most real supply
systems usually operate with capacity limits. The capacitated version of the r-
IMP can be found in Scaparra and Church (2012). Another interesting variation of
the r-IMP which considers capacity restrictions is the partial interdiction problem
introduced by Aksen et al. (2014). In this model, an interdicted facility may preserve
part of its capacity; the capacity loss due to interdiction is commensurate to the
intensity of the attack and the unmet demand after interdiction can be outsourced at
some cost. A similar problem was considered by Zhang et al. (2016).
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The r-Interdiction Covering Problem
The r-Interdiction Covering Problem (r-ICP) can be stated mathematically as

follows:

minimize
∑

j∈J
djvj (22.7)

subject to vj ≥ 1 − si ∀j ∈ J, i ∈ Nj ∩ F (22.8)
∑

i∈F
si = r (22.9)

vj ∈ {0, 1} ∀j ∈ J (22.10)

si ∈ {0, 1} ∀i ∈ F. (22.11)

The objective function (22.7) minimizes the amount of customer demand which
is covered after interdiction. Constraints (22.8) stipulate that a customer j must be
covered unless all the facilities that currently cover it (i.e., the facilities in Nj ∩ F )
are interdicted. Constraints (22.9) force the number of facilities to be eliminated to
equal r . The last two sets of constraints (22.10) and (22.11) are binary restrictions
on the coverage and interdiction variables. Note that the binary integer restrictions
are only needed for the si variables whereas the vj variables automatically take on
binary integer values in any optimal solution.

r-ICP instances of considerable size can generally be solved by commercial opti-
mization packages without the need of resorting to more sophisticated approaches
or heuristic techniques (Sevaux et al. 2015). Clearly, the same problem variations
that have been considered for the r-IMP may be developed for the r-ICP so as to
capture additional features such as probabilistic failures, capacity restrictions, and
partial interdiction.

Other Interdiction Models
Although our focus so far has been on interdiction models for median and

covering systems, an interdiction model counterpart can be devised for virtually
every facility location problem proposed in the literature. As an example, Lei (2013)
proposed the Hub Interdiction Median Problem which identifies the most critical
hub facilities in hub–and–spoke systems.

22.4 Hardening Facilities: Protection Models

Interdiction models are a valuable tool for assessing facility criticality and worst-
case scenario losses in case of disruption. However, it can be easily demonstrated
that securing those facilities that are identified as the most critical in an optimal
interdiction solution does not necessarily result in the most effective protection
strategy (Church and Scaparra 2007b). Interdiction is a function of what is protected
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and this interdependency must be captured explicitly into a modeling framework
to guarantee that limited protective resources are allocated in an optimal way.
Most of the facility protection models existing in the literature incorporate an
interdiction model as a tool for evaluating worst-case losses in response to protection
plans. These models are expressed mathematically as bilevel optimization programs
(Dempe 2002) which emulate a game played between a system defender (the leader)
and a system attacker or interdictor (the follower). In this bilevel structure, the upper
level problem involves decisions on which facilities to harden, whereas the lower
level problem identifies which unprotected facilities to attack to inflict maximum
damage.

In the following, we show how the model presented for the r-IMP in the previous
section can be embedded within a protection model to optimize security investments
in systems which are designed using the p-median problem (Scaparra and Church
2008a).

The r-Interdiction Median Problem with Fortification
The bilevel formulation of the r-IMP with Fortification (r-IMPF) is as follows.

minimize H(z) (22.12)

subject to
∑

i∈F
zi = b (22.13)

zi ∈ {0, 1} ∀i ∈ F, (22.14)

where

H(z) = max
∑

i∈F

∑

j∈J
dj cij xij (22.15)

s.t. si ≤ 1 − zi (22.16)

(22.2) − (22.6).

The leader objective (22.12) is to minimize the highest possible level of demand-
weighted service cost, H , following the disruption on r facilities by allocating b

protective resources (22.13). The worst-case cost H is computed in the follower
problem, which is simply the r-IMP problem defined in Sect. 22.3 with the addi-
tional constraints (22.16). These constraints, which link the upper level protection
variables and the lower level interdiction variables, prevent the interdiction of any
protected facility.

It is important to note that in the above model protection resources can be cast
with a budget constraint and facility varying protection costs (Aksen et al. 2010). It
is also possible to add the costs of protection as a an additional term in the objective,
where the costs of protection and costs of worst case operation are simultaneously
minimized. In either case (as formulated or as an added objective term), one would
generally want to solve a series of such problems in order to determine tradeoff
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curves of system impacts versus protection resources. The above form can be used
to identify both supported and unsupported non-dominated solutions whereas the
latter will be effective in solving for only supported non-dominated solution. In any
case, one would want to understand exactly the benefits of protection in terms of
reducing impacts of interdiction as compared to the added costs of protection.

Bilevel programs are generally very difficult to solve (Moore and Bard 1990),
especially when integer variables appear in both levels and when the upper level
variables parametrize the feasible region of the lower level problem, as it is the
case in r-IMPF. Common approaches to solve bilevel integer programs include
reformulation into single level problems and decomposition methods. Examples of
casting r-IMPF as a single level problem can be found in Church and Scaparra
(2007b) and Scaparra and Church (2008b). However, these single level models
require a complete enumeration of all the possible ways of interdicting r out of the
|F | existing facilities and therefore become quickly intractable as the value of the
parameters |F | and r increases. Scaparra and Church (2008a) propose an implicit
enumeration (IE) algorithm to solve the bilevel r-IMPF. The approach is based
upon the observation that an optimal protection plan must include at least one of
the critical facilities identified by solving a simple r-IMP. The recursive use of this
property allows a significant reduction of the number of protection strategies that
must be evaluated in an enumeration scheme. To date, this algorithm remains one
of the most effective methods for solving this type of protection/interdiciton models
to optimality and has been successfully applied to problems in different settings as
well (e.g., the network protection models in Cappanera and Scaparra 2011).

Note that in the presence of other complicating aspects, such as capacity
constraints on the facilities, interdiction problems may require a bilevel formulation.
Consequently, the addition of the protection layer results in trilevel models, which
are even more challenging to solve. In these cases, the trilevel models are typically
solved by using IE for the outer protection level, while other methods, such as
decomposition or reformulation, are used for the interdiction bilevel model. Some
examples of this are discussed later in this section.

The use of metaheuristics for solving r-IMPF has been recently explored by
Cheng et al. (2016), who developed several hybrid approaches where Tabu Search,
Simulated Annealing and Genetic Algorithms are used for solving the upper
problem, whereas the lower interdiction problem is solved to optimality by a
commercial solver. These metaheuristics are more versatile than exact methods
based on implicit enumeration, as they do not make any assumption about the
follower’s problem. As a result, they can be applied to other settings (e.g., problems
where a facility may be damaged partially or a facility may be lost only with certain
probability).

Since its appearance, the r-IMPF has spurred a significant amount of research
and several different variants to the original problem have been proposed in the
literature. As an example, Liberatore et al. (2010) introduced a stochastic version
of r-IMPF where the number of possible losses r is uncertain, to reflect the fact
that the extent of a disruption is usually not known with certainty. In a follow
up paper, Liberatore and Scaparra (2011) compared the model proposed for the
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above stochastic problem with two regret-based models to identify robust protection
strategies in uncertain environments.

Aksen et al. (2010) proposed a budget-constrained version of the r-IMPF with
flexible capacity expansion. In particular, they replaced the cardinality constraint
(22.13) with a budget constraint and assume that the facilities have different protec-
tion costs and flexible capacity (i.e., the capacity can be expanded to accommodate
the demand of customers previously assigned to interdicted facilities). A variation
of this model can be found in Parajuli et al. (2017) who introduced the notion
of gradual capacity backup to hedge against disruption risk in capacitated supply
networks. Namely, facilities can be protected at different levels. Protection implies
that a facility acquires contingent additional production capacity, and the amount of
additional capacity is commensurate to the level of protection investment.

Another interesting variation of the r-IMPF is the problem investigated by
Liberatore et al. (2012), which optimizes protection plans in the face of large
area disruptions. The problem includes capacitated facilities, partial interdiction
(interdiction reduces the amount of demand that can be served by a facility) and
correlated disruptions (when a facility is hit, nearby facilities are affected as well).
The problem was formulated as a trilevel program, and solved by dualization
integrated in the implicit enumeration algorithm devised by Scaparra and Church
(2008a) for the r-IMPF.

All the problems cited so far are static which means that they do not consider
the effect of disruptions over time. In reality, disrupted facilities may have different
recovery times and the duration over which system operations are degraded should
be considered when modeling worst-case disruption scenarios. To redress this
shortcoming, Losada et al. (2012a) proposed a different protection model for a
system which is based upon a p-median problem design. In this model, protection
does not necessarily prevent facility failure altogether, but speeds up recovery
time following a potential disruption. The resulting model also incorporates the
possibility of multiple disruptions over time and is solved using three different
decomposition approaches.

An underlying assumption of the r-IMPF and all its variations is that protection
is always successful and, therefore, protected facilities are never interdicted in a
worst-case scenario. Bricha and Nourelfath (2013) relaxed this assumption and
proposed a model where a protected facility is immune to disruption only with a
given probability. The initial model was then extended to consider protection against
concerted attacks by multiple interdictors.

Whereas most of the focus has been on protection models for systems based
upon a p-median design, Zhu et al. (2013) proposed a game theoretical model to
identify optimal defense strategies for an uncapacitated fixed-charge location model.
In this model, the defender has several investment strategies (or levels of investment)
available and aims at minimizing the expected damage to the systems along with the
protection expenditure. Similarly, the interdictor can choose different attack levels
on each facility and aims at maximizing a utility function, which combines damage
and attack expenditures.
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Recently, considerable attention has been paid to the protection of hub networks
(Ghaffarinasab and Atayi 2018; Quadros et al. 2018; Ramamoorthy et al. 2018).
These papers built upon the protection model for the multiple allocation hub
interdiction median problem introduced by Lei (2013) and proposed different exact
solution methodologies for solving it. Ghaffarinasab and Atayi (2018) introduced a
two-level implicit enumeration algorithm based on Scaparra and Church (2008a)
(one level of IE for protection and one for interdiction); Quadros et al. (2018)
proposed a single level integer linear programming formulation for the problem and
solved it through a branch-and-cut algorithm; Ramamoorthy et al. (2018) combined
IE for the protection model with Benders decomposition for the interdiction model,
after improving the lower level using novel closest assignment constraints.

Protection models have also been developed for location problems with hier-
archical facilities (Aliakbarian et al. 2015) and for decentralized supply systems
(Zhang and Zheng 2018).

22.5 Planning Robust Systems: Design Models

Hardening existing facilities can be an effective way of mitigating the impact of
facility failures. An alternative approach is to incorporate the risks of potential
failures in the initial design of a system by identifying location strategies which
are both cost-efficient and robust to external disruptions. Several studies have
demonstrated that significant improvements in reliability can often be obtained
without significant increases in operating costs (Snyder and Daskin 2005).

Location models for planning reliable systems can be broadly grouped into two
main categories which reflect different risk attitudes of the decision maker: risk-
averse and risk-neutral.

22.5.1 Planning Against Worst-Case Disruptions

The models in this category identify location strategies for coping with the worst
case in terms of facility loss or disruption. They therefore capture the perspective
of a risk-averse decision maker and are suitable for hedging against deliberate
disruptions and strategic risks. These models typically embed an interdiction model
in a multi-level structure where the upper-level model identifies the optimal location
of the facilities, whereas the lower-level model endogenously generates worse-case
scenario losses.

We illustrate how such location-interdiction models can be formulated by
presenting the Maximal Covering Location-Interdiction Problem (MCLIP). The
idea is to couple the classical Maximal Covering Location problem with the r-ICP
presented in Sect. 22.3 to identify the location of p facilities which maximizes a
weighted combination of i) the initial coverage and ii) the minimum coverage level
following the loss of the most critical r facilities (O’Hanley and Church 2011).
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The MCLIP model can be formulated as follows:

maximize α
∑

j∈J
djuj + (1 − α)H(y) (22.17)

subject to
∑

i∈I
yi = p (22.18)

∑

i∈Nj

yi ≥ uj ∀j ∈ J (22.19)

yi ∈ {0, 1} ∀i ∈ I (22.20)

uj ∈ {0, 1} ∀j ∈ J, (22.21)

where

H(y) = min
∑

j∈J
djvj (22.22)

subject to
∑

i∈I
si = r (22.23)

vj ≥ yi − si ∀j ∈ J, i ∈ Nj (22.24)

si ∈ {0, 1} ∀i ∈ I (22.25)

vj ∈ {0, 1} ∀j ∈ J. (22.26)

The upper-level objective (22.17) is to maximize the weighted sum of covered
demand before and after interdiction by locating p facilities (22.18). Initial and post-
disruption coverage are weighted in the objective by using a weight α, with 0 ≤ α ≤
1. The demand covered before interdiction is determined by constraints (22.19),
whereas the worst-case demand-weighted coverage after interdiction, H(y), is
computed in the lower level problem (22.22)–(22.26). This is a simple modification
of the r-ICP problem (22.7)–(22.11), where constraints (22.8) are replaced by
(22.24). These constraints state that customer j must be covered after disruption
(vj = 1) unless all the open facilities covering customer j are interdicted.

Bilevel location-interdiction problems such as the MCLIP are even more difficult
to solve than the protection-interdiction problems discussed in Sect. 22.4 and some
efficient approaches devised for protection models, such as the implicit enumeration
algorithm for r-IMPF, are not applicable to them. In O’Hanley and Church (2011),
the MCLIP is solved by a decomposition method using so-called supervalid
inequalities.1

1Supervalid inequalities can be seen as a generalization to bilevel decomposition methods of the
standard valid inequalities inside a cutting plane algorithm.
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Another example of location-interdiction models can be found in Parvaresh et
al. (2014) for p-hub median problems. In this case, the bilevel model is solved
heuristically via Simulated Annealing and Tabu Search. Ghaffarinasab and Motalle-
bzadeh (2018) extended this work by introducing the hub interdiction problem under
covering and center objectives. A worst-case model for the uncapacitated facility
location problem can be found in Hernandez et al. (2014), where a multi-objective
optimization approach is used to identify trade-off solutions with respect to the total
weighted traveling distance before and after disruptions.

Note that design and protection decisions may be coupled within the same mod-
eling framework. Risk-averse design problems including the option of hardening
some of the facilities to be located have received considerable attention. See for
example Keçici et al. (2012), Aksen and Aras (2012), Aksen et al. (2013), Shishebori
and Jabalameli (2013), Medal et al. (2014), Akbari-Jafarabadi et al. (2017), Zhang
et al. (2018) and Jalali et al. (2018). These problems have introduced several novel
aspects into the facility protection and robust design literature. For instance, Zhang
et al. (2018) considered for the first time the case where the interdictor has no
information about the protection resource allocation. Jalali et al. (2018) assumed
that facilities fail with some probability which depends on the combined effect
of protection and interdiction efforts and used a conditional value-at-risk (CVaR)
measure to capture the risk-averse attitude of the system designer.

Design decisions can also be used to identify efficient ways of protecting existing
service facilities, as in the problem introduced by Mahmoodjanloo et al. (2016). This
problem aims at locating defence facilities at minimum cost, so that each service
facility is covered by at least one defence facility. The problem is modeled as a
trilevel program, where the bilevel partial interdiction median model introduced by
Aksen et al. (2014) is embedded into an outer coverage location model.

Although bilevel location-interdiction models are the most common way of
capturing worst-case scenario disruptions, the use of two-stage Robust Optimization
(RO) has recently been proposed as an alternative risk-averse approach to hedge
against disruptions. RO-based location models use uncertainty sets to capture data
uncertainty and seek to determine locations that are robust to any perturbations
in the uncertainty sets, including worst-case scenario values. To model situations
where some decisions can be made after the uncertainty is revealed, the RO
framework can be extended to include second stage recourse decisions. An et al.
(2014) proposed the first two-stage RO model to design reliable facility location
networks subject to disruptions. Their models, designed for the reliable p-median
problem, minimize the weighted sum of the operation costs in normal situations
and in the worst disruptive scenario. They also considered two important practical
features: facility capacities and demand change due to disruption. The proposed
models are solved exactly by Benders decomposition and column-and-constraint
generation methods. In recent years, two-stage RO approaches have been used
to solve other more complex location problems under disruptions. For example,
Zarrinpoor et al. (2017) proposed a hierarchical location-allocation model for health
service network design which concurrently addresses several key issues, such as
service quality, changes in demand patterns, hierarchical structure of networks,
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disruption risk and uncertainty associated with demand and service within a queuing
theory framework. Cheng et al. (2018) introduced a two-stage RO approach for the
reliable logistics network design problem, which includes multiple echelons and
facility capacities. To test different levels of conservativeness and study the price
of robustness, the authors extended the basic RO scheme and proposed two model
variants: the expanded two-stage RO model, which uses multiple uncertainty sets,
and the risk-constrained two-stage RO model, where upper bounds are imposed
on the worst-case performance. The application of the models indicates that a
considerable decrease in the cost of the worst disruptive situation can be achieved
for only a small increase in the normal cost.

22.5.2 Planning Against Random Disruptions

In this class of models, facilities are assumed to fail at random and the objectives
typically deal with expected costs or performances.

Although the first paper to consider unreliable facilities which fail with a given
probability appeared more than a couple of decades ago (Drezner 1987), a renewed
interest in this type of problems has only emerged more recently with the reliability
problems investigated by Snyder and Daskin (2005): the Reliability p-Median
Problem (RPMP) and the Reliability Fixed-Charge Location Problem (RFLP). Both
problems aim at locating a set of facilities so as to minimize the costs incurred by
the system when all the facilities are operational and the expected transportation
costs after facilities failures.

In the RPMP model, each open facility may fail with the same fixed probability
π , failures are independent and several facilities can fail simultaneously. If customer
j is not served by any facility, either because all open facilities fail or because
it is too costly to receive service by the closest operational facility, the system
incurs a lost-sale cost per unit of demand. To model this situation, the set I of
potential locations for the facilities is augmented with a dummy facility. Let m

be the cardinality of the augmented set |I | and the index of the dummy facility.
The dummy facility m never fails and has unit service cost cmj to customer j ,
which represents the lost-sale cost per unit of demand. As facility m is forced
to open, p + 1 facilities must be located instead of p as in standard p-median
problems. Each customer is assigned to facilities depending upon their operational
status. Accordingly, several assignment levels can be associated with each customer.
Level-0 assignments are those made to primary facilities that serve the customers
under normal circumstances. Level-l assignments (0 < l ≤ p) are those made to
alternative facilities that can serve a customer if the l closer facilities have failed.

To formulate RPMP, the following assignment variables are defined:

xijl =
{

1 if customer j is assigned to facility i at level l
0 otherwise
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The RPMP model is as follows.

minimize
∑

j∈J
dj

p∑

l=0

⎡

⎣
∑

i∈I\m
cij π

l(1 − π)xijl + cmjπ
lxmjl

⎤

⎦ (22.27)

subject to
∑

i∈I
xij l +

l−1∑

t=0

xmjt = 1 ∀j ∈ J, l = 0, . . . , p (22.28)

p∑

l=0

xijl ≤ 1 ∀i ∈ I, j ∈ J (22.29)

xijl ≤ yi ∀i ∈ I, j ∈ J, l = 0, . . . , p (22.30)
∑

i∈I
yi = p + 1 (22.31)

ym = 1 (22.32)

yi ∈ {0, 1} ∀i ∈ I (22.33)

xijl ∈ {0, 1} ∀i ∈ I, j ∈ J, l = 0, . . . , p. (22.34)

The objective function (22.27) minimizes the demand-weighted expected trans-
portation and lost-sales costs. These are computed as a function of the assignment
variables by taking into account that each customer j is served by its level-l facility
i if the l closer facilities have failed, which occurs with probability πl , and facility
i has not failed, which occurs with probability 1 − π for each i ∈ I \ m and with
probability 1 if i = m. Constraints (22.28) state that each customer j must be
assigned to some facility at each level l, unless j has been assigned to the dummy
facility at level t < l. Constraints (22.29) prevent the assignment of a customer to a
given facility at more than one level. Constraints (22.30) prohibit the assignment
to facilities which are not open, whereas constraint (22.31) state that exactly p

facilities must be opened in addition to the dummy facility, which is forced to be
open by constraint (22.32). Constraints (22.33) and (22.34) are standard integrality
constraints (note that the integrality constraints on the assignment variables xijl can
be relaxed).

The original RPMP model presented in Snyder and Daskin (2005) is slightly
more general than model (22.27)–(22.34) in two aspects: i) some of the facilities
may be considered completely reliable and ii) the objective is to minimize the
weighted sum of normal costs and expected failure costs. The authors show that
by varying the weights of the resulting bi-objective model, one can generate a
trade-off curve for identifying good compromise solutions. This type of analysis
demonstrates that large reductions in failure costs can often be attained with only
minor increases in operation costs.

The Reliability Fixed-Charge Location Problem (RFLP), which we do not report
for the sake of brevity, can be formulated in a similar way to RPMP. Both problems
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can be tackled by Lagrangian relaxation (Snyder and Daskin 2005). Efficient
metaheuristic approaches have also been devised for RPMP by Alcaraz et al. (2012),
which report very good results for large-scale instances.

One of the major limitations of this structure for reliability models is that it
relies on the assumption that all facilities fail with the same probability. Without
this assumption, calculating expected transportation costs becomes significantly
more complicated due to the need of expressing probability products using high-
degree polynomials. Site-dependent probabilities were considered for the first time
by Berman et al. (2007) but the resulting model is highly non-linear and is only
solved heuristically. Several attempts at modelling heterogeneous facility failure
probabilities using a linear mixed-integer program have appeared in recent years
(see for example Cui et al. 2010 and Lei and Tong 2013). Particularly noteworthy
is the probability chains linearization technique proposed by O’Hanley et al. (2013)
for solving the RPMP with site-dependent probabilities. The technique, which is
general and can be extended to other model classes as well, is based on the idea
of using a specialized network flow structure for evaluating compound probability
terms. Empirical experiments indicate that this technique is quite effective in
solving reliability models of significant size. Tran et al. (2017) further extended the
concepts of probability chains and introduced a novel network flow structure called
a probability lattice to solve the reliable single-allocation p-hub median problem.

Other important issues in modeling location problems with unreliable facilities
are correlation and informational uncertainty. Correlation concerns the extent to
which the failure of one facility affects the operational status of other facilities. In
many real situations neighboring facilities may be exposed to similar hazards and,
therefore, fail simultaneously. Examples of models with correlated disruptions can
be found in Li and Ouyang (2010), Berman et al. (2013), Li et al. (2013) and Lu et al.
(2015). Informational uncertainty relates to the information available to customers
about the operational state of the facilities. It is clear that optimal location patterns
and optimal service costs may differ if customers do not have prior information
about the state of the facilities and must travel to different facilities before they
can receive service. The role of information in reliable facility design is analyzed
in Berman et al. (2009), Berman et al. (2013), Albareda-Sambola et al. (2015) and
Yun et al. (2015).

An issue that has been largely neglected in the reliability location literature is the
capacity of the facilities. Most existing reliability models assume that the facilities
are uncapacitated and able to absorb the demand of disrupted facilities. As a conse-
quence of this assumption, even the issue of partial facility failure has been mostly
ignored. An exception is the study by Azad et al. (2013) which considers capacitated
facilities, partial capacity loss due to disruption and goods sharing between non-
disrupted and partially disrupted facilities. This problem was subsequently extended
by Jabbarzadeh et al. (2016) who proposed a hybrid stochastic-robust optimization
model, where a robust optimization approach was applied to the stochastic reliable
capacitated facility location problem so as to capture additional uncertainties
(i.e. demand fluctuations, probability of a disruption occurrence, supply capacity
variations). An alternative way of dealing with potentially excessive demand at
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non-failing, backup facilities has been considered by Madani et al. (2018) within
the context of the reliable p-hub maximal covering problem. In this study, a bi-
objective model is introduced, where the primary objective is to maximize the
expected covered flow, whereas the secondary objective is to minimize congestion
by balancing the flows passing through each hub.

Most existing reliability location models use expected costs or performances in
the objective function, thus implicitly assuming that the decision maker is risk-
neutral. Yu et al. (2017) argued that risk-averse approaches can provide more robust
solutions compared to the risk-neutral approach and proposed two variants of RFLP
which use risk-averse measures: conditional value-at-risk (CVaR) and absolute-
semideviation (ASD). This study shows that different facility locations are selected
under risk-averse measures and that the resulting systems are more reliable than the
ones obtained with traditional risk-neutral objectives, but less conservative that the
ones obtained with worst-case models.

Finally, as for the bilevel design models discussed in the previous section,
location and hardening decisions can be combined into a probabilistic design model
for identifying reliable and cost-efficient configurations of hardened and unhardened
facilities (see, for example, Lim et al. 2010, Li and Savachkin 2013, Li et al. 2013
and Jabbarzadeh et al. 2016).

22.5.3 Planning Against Specific Disruption Scenarios

When the uncertainty associated with disruptions can be captured by a finite set of
scenarios, we can resort to scenario-indexed models. Within the context discussed in
this chapter, such models are an alternative for writing two-stage stochastic mixed-
integer programs. The non-anticipative first-stage decisions concern the location
of the facilities and are made in the presence of uncertainty about the realization
of future disruption scenarios. The second-stage (recourse) decisions, which are
conditional to the first-stage decisions, involve the assignment of customers to
facilities in response to specific disruption scenarios.

Below we show a scenario-indexed model for the p-median problem, where the
objective is to minimize the expected service cost over all failure scenarios. Let �
be the set of disruption scenarios such that aiω = 1 if facility i fails in scenario ω.
The probability that scenario ω occurs is denoted by πω. The assignment decision
variables are defined for each scenario as follows:

xijω =
{

1 if customer j is assigned to facility i in scenario ω

0 otherwise
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The scenario-indexed model is then:

minimize
∑

ω∈�
πω

∑

i∈I

∑

j∈J
dj cij xijω (22.35)

subject to
∑

j∈J
xijω ≤ (1 − aiω)yi ∀i ∈ I, ω ∈ � (22.36)

∑

i∈I
xijω = 1 ∀j ∈ J, ω ∈ � (22.37)

∑

i∈I
yi = P (22.38)

yi ∈ {0, 1} ∀i ∈ I (22.39)

xijω ∈ {0, 1} ∀i ∈ I, j ∈ J, ω ∈ �. (22.40)

The objective function (22.35) minimizes the demand-weighted expected cost
across all scenarios. Constraints (22.36) prevent the assignment of customer j to
facility i in scenario ω if either i is not open or if it is open but not available in
scenario ω. Constraints (22.37) guarantee that each customer is assigned to some
facility in every scenario. The remaining constraints are standard cardinality and
integrality constraints.

The expected performance criterion used in problem (22.35)–(22.40) yields
solutions that may perform poorly in certain scenarios. Solutions which are effective
no matter what scenario is realized can be obtained by incorporating robustness
measures into the model (see also Chap. 8). An example is the β-robustness measure
introduced by Snyder and Daskin (2006). Let z∗ω be the optimal cost for scenario ω.
By adding the following constraint

∑

i∈I

∑

j∈J
dj cij xijω ≤ (1 + β)z∗ω ∀ω ∈ �, (22.41)

it is possible to generate least-cost solutions whose relative regret in each scenario
is no more than β, for a given β ≥ 0.

The β-robustness measure has been used in Peng et al. (2011) to design reliable
multi-echelon supply chain networks. Other risk measures to generate robust
solutions in scenario planning models include the α-reliable minimax regret (Daskin
et al. 1997) and the α-reliable mean-excess regret (Chen et al. 2006). In α-reliable
minimax models, the maximum regret is computed only over a subset of scenarios,
called the reliability set, whose total probability is at least α. The α-reliable
mean-excess regret, which is closely related to the CVaR objective of portfolio
optimization (Rockafellar and Uryasev 2000), further extends the α-reliable concept
by ensuring that solutions perform reasonably well even in the scenarios which
are not included in the reliability set. Typically, the objective function of these
models minimizes a weighted sum of the maximum regret over the reliability set
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and the conditional expectation of the regret over the scenarios excluded from the
reliability set. Although these measures have not been explicitly used in facility
location problems with disruptions, their application is quite straightforward and
certainly deserves future investigation.

When uncertainty can be captured by a finite set of scenarios and a scenario-
indexed model can be considered, it is easy to modify the model in a way that the
models discussed in Sect. 22.5.2 cannot. As an example, capacity restrictions can be
easily modeled by replacing constraints (22.36) with

∑

j∈J
djxijω ≤ (1 − aiω)qiyi ∀i ∈ I, ω ∈ �, (22.42)

where qi is the capacity of facility i.
Partial disruptions can also be captured by simply redefining aiω as the pro-

portion of facility i capacity which is lost in scenario ω to model the case where
disruptions only reduce the capacity but do not completely disable a facility. An
example of partial disruption in scenario-indexed models can be found in Fattahi et
al. (2017) for a supply chain network (SCN) design problem. The SCN is composed
of customers, warehouses and factories and involves multiple products and multiple
periods. Lead times are based upon which facility/warehouse combination serves a
given customer. Because of possible disruptions, some customers may not be served,
which incurs a penalty cost. Although the factories are already located and fixed in
number, warehouses are to be located over the planning horizon. Warehouses can
be protected at selected fortification levels which limits disruption to certain levels
of capacity. Single source delivery is assumed and demands at customers depend
on the facilities serving them based on their delivery lead times. The objective
is to minimize supply chain costs, including lead times in product delivery and
warehouse recovery costs, by locating warehouses, selecting protection levels and
assigning factory/customer supply chains to each demand.

Another scenario-based model which considers the effects of disruption on
facility capacities is the risk-aware capacitated plant location problem (CPLP-RISK)
introduced by Heckmann (2016). CPLP-RISK is a two-stage stochastic model,
where the first-stage decisions include which facilities to open and whether to equip
them with the option of capacity expansion that can be used when a disruption
occurs; the recourse or second-stage decisions involve the selection of the capacity
expansion’s level and duration. A finite set of scenarios is used to model facility
capacity reductions and customer demand fluctuations over time. The objective is
to minimize the overall system costs (i.e., facility opening costs, capacity expansion
costs and service costs) and the service deterioration level due to unmet demand in
case of disruption.

Very recently scenario-indexed models have been studied for hub-and-spoke
networks by Rostami et al. (2018) and Zhalechian et al. (2018). Particularly
noteworthy is the comprehensive model introduced in the latter paper, which
integrates several interesting issues such as: operational risks (i.e. fluctuations in
input data) and disruption risks; proactive (mitigation) and reactive (recovery)
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strategies to increase resilience; and three different measures of network design
quality (network density, network complexity and node criticality).

One major drawback of scenario-indexed models is that they can become very
large if there are many scenarios (consider for example all the possible combinations
of facilities that can fail). To obviate this difficulty, the scenario space can be
approximated using sampling techniques such as Sample Average Approximation
(SAA) (Kleywegt et al. 2002). An innovative application of this method can be
found in Aydin and Murat (2013) for the capacitated reliable facility location
problem. In this study, Particle Swarm Optimization is integrated within the SAA
methodology to improve the computational efficiency and solution quality of
traditional SAA implementations. Another alternative is to construct the scenario
set empirically by using historical data or expert judgement. As an example, Rawls
and Turnquist (2010) use a scenario planning approach to optimize facility locations
and emergency resource stockings in the face of natural disasters. In their case study,
the scenarios of concern are constructed by using historical records from a sample
of fifteen hurricanes.

Note that in standard two-stage stochastic optimization, first-stage decisions must
ensure that the solution feasibility is maintained for each scenario realization. A
new paradigm, called Recoverable Robust Optimisation, has recently been proposed
by Liebchen et al. (2009), where first-stage decisions can be revisited once the
uncertainty is resolved in the second stage. In particular, the solution built in the first
stage can be recovered through a limited set of recovery actions. This paradigm has
been used by Álvarez-Miranda et al. (2015) for the uncapacitated facility location
problem under disruptions. The objective of the recoverable robust location problem
is to minimize the sum of the first-stage cost (i.e. the cost of the initial facility
location and customer allocation), plus the second-stage recovery cost (i.e. the
worst-case cost to recover the solution over all possible scenarios). The second-
stage recovery actions include the opening of new facilities and the re-allocation of
customers that were allocated in the first-stage to facilities which are unavailable in
the realized scenario.

22.6 Future Trends

The research to date on facility location problems with disruption, although
groundbreaking, is still evolving. The impetus for such work has come from
disasters such as 9/11, the Fukushima nuclear power plant destruction in Japan,
and the more recent power disruption in Michoacan, Mexico. As such problems
are often represented as a two person game (defender-attacker) or a three person
game (defender-attacker-defender), they can be quite mathematically complex and
difficult to solve. Because of this, work is needed to expand the range of problem
sizes that can be addressed by such model structures.

The work discussed here is based upon the simplest of service systems involving
the p-median and maximal covering problems. Work has also involved systems that
do not rely on single-source service assignment, like the defender-attacker-defender
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model of Scaparra and Church (2012). Their model dealt with the protection of a
system of capacitated facilities, with an embedded classical transportation problem.
Although these problems and extensions can be used in many system designs,
lifeline systems such as electrical generation and transmission, water supply and
distribution, and communication networks of switches and lines, all present a level
of complexity that has yet to be addressed in an efficient and comprehensive way.

Systems are interconnected in many ways. A failure (or an attack) of one
system component may lead to the failure of another. Such cascading failures
have been documented in electrical and communication systems. In addition, the
failure of an electrical system component may render a portion of a communication
system inoperable. Connections between such systems have still to be adequately
modeled as well. In addition, most models capturing disruption ignore the temporal
component. Few (see for example Heckmann 2016) have addressed the possible
duration of a disrupting event as well as how best to cope with it and restore the
initial operational level (Heckmann 2016). This too, is an area where more research
is needed.

Facilities are but one component in a production and distribution system.
Flooding in Thailand in 2011 demonstrated that inventories for key parts, like
those for computer disk drives, could be disrupted to the extent that the retail
price for storage drives almost doubled for a short period of time. Fully addressing
such vulnerabilities requires the modeling of facility production and inventory
levels simultaneously. Hurricane Harvey, which hit Texas in 2017, affected more
than 13,000 business entities in the flood envelope, including oil refineries, plastic
molding facilities, and chemical plants (Chang 2017). Petroleum and coal products
manufacturing, chemical manufacturing, and oil and gas extraction suffered the
greatest impact. These three critical subsectors provide raw materials for other
industries, and their disruption had a ripple effect on the raw materials supply
chain. The disruption propagated to other industries and countries that rely on
these or related exports from the Port of Houston. Although recent studies have
attempted to consider multi-echelon distribution systems, the design of robust risk-
optimized supply chain networks and the development of improved supply chain
risk management strategies still require additional research to fully capture cross-
sector and cross-country business interruption risk.

There are three principal ways in which resilient design has been approached:
robust, stochastic and bilevel optimization. Work is needed to test the efficacy of
each approach. For example, can a small number of scenarios be used to adequately
define and couch possible outcomes as compared to the use of a bilevel optimization
problem involving a defender-attacker approach? In addition, can simulation models
be used in an efficient manner to identify system vulnerabilities? Further, it is
important to develop better models to estimate risk.

Finally, the models developed to date to handle interdiction, fortification and
reliable design are far more complex than their base-level counterparts, adding a
level of computational difficulty that is a new research area. But, one must ask
the question: can simpler models be developed which adequately address such
uncertainties?
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22.7 Conclusions

This chapter has reviewed the research that has evolved over the last 15 years
concerning facility disruption. Disruptions can be thought as arising out of intention
(e.g., terrorism), by accident, or by a natural disaster. It has covered three main
areas of related research: models of facility interdiction, combined models of
facility interdiction and protection, and models of resilient design. These models
are designed to address the three basic questions that concern systems planners
and operators when facing reality: (1) how much can a service system be degraded
in its efficiency when disrupted; (2) how might resources be allocated to protect
against such possible events; (3) how might a new system be designed so that it is
naturally resilient? Although past work has been based principally on the application
of such models using hypothetical data, they have demonstrated that small changes
in levels of protection can be effective at improving a system’s ability to cope with
a disaster. Further, it has been shown that equal if not better facility deployment
results when taking into account possible levels of disruption (whether intentional
or natural). Ignoring disaster may come at a cost that is too high when compared to
addressing such possibilities in operation (interdiction/fortification) and design. In
fact, the value in modeling for disruption is that one can capture levels of impact
and determine whether to ignore them or make system adjustments. This area of
research is still evolving and future work is needed in applying such concepts to a
wide range of lifeline systems, including power generation and distribution, food
production and distribution, and water supply systems.
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Álvarez-Miranda E, Fernández E, Ljubić I (2015) The recoverable robust facility location problem.
Transp Res B Meth 79:93–120



22 Location Problems Under Disaster Events 653

An Y, Zeng B, Zhang Y, Zhao L (2014) Reliable p-median facility location problem: two-stage
robust models and algorithms. Transp Res B Meth 64:54–72

Aydin N, Murat A (2013) A swarm intelligence based sample average approximation algorithm for
the capacitated reliable facility location problem. Int J Prod Econ 145:173–183

Azad N, Saharidis GKD, Davoudpour H, Malekly H, Yektamaram, SA (2013) Strategies for
protecting supply chain networks against facility and transportation disruptions: an improved
Benders decomposition approach. Ann Oper Res 210: 125–163

Berman O, Krass D, Menezes MBC (2007) Facility reliability issues in network p-median
problems: strategic centralization and co-location effects. Oper Res 55:332–350

Berman O, Krass D, Menezes MBC (2009) Locating facilities in the presence of disruptions and
incomplete information. Decis Sci 40:845–868

Berman O, Krass D, Menezes MBC (2013) Location and reliability problems on a line: impact of
objectives and correlated failures on optimal location patterns. Omega 41:766–779

Bricha N, Nourelfath M (2013) Critical supply network protection against intentional attacks: a
game-theoretical model. Reliab Eng Syst Safe 119:1–10

Cappanera P, Scaparra MP (2011) Optimal allocation of protective resources in shortest-path
networks. Transp Sci 45:64–80

CEN, Terrorist attack hits U.S.-owned chemical plant in France (2015). Chemical & Engineering
News. https://bit.ly/2NC0DwS

Chang B (2017) Potential supply chain disruptions from hurricane Harvey, AIR. https://airww.co/
2xuGm7R

Chen G, Daskin MS, Shen Z-JM, Uryasev S (2006) The α-reliable mean-excess regret model for
stochastic facility location modeling. Nav Res Log 53:617–626

Cheng CH, Lai TW, Yang DY, Zhu Y (2016) Metaheuristics for protecting critical components in
a service system: a computational study. Expert Syst Appl 54:251–264

Cheng C, Qi M, Zhang Y, Rousseau L-M (2018) A two-stage robust approach for the reliable
logistics network design problem. Transp Res B Meth 111:185–202

Church RL (2003) COBRA: a new formulation of the classic p-median location problem. Ann
Oper Res 122:103–120

Church RL, Scaparra MP (2007a) Analysis of facility systems’ reliability when subject to attack
or a natural disaster. In: Murray AT, Grubesic TH (eds) Critical infrastructure. Springer, Berlin,
pp 221–241

Church RL, Scaparra MP (2007b) Protecting critical assets: the r-interdiction median problem with
fortification. Geogr Anal 39:129–146

Church RL, Scaparra MP, Middleton RS (2004) Identifying critical infrastructure: the median and
covering facility interdiction problems. Ann Assoc Am Geogr 94:491–502

Cui T, Ouyang Y, Shen Z-M (2010) Reliable facility location design under the risk of disruptions.
Oper Res 58:998–1011

Daskin MS, Hesse SM, Revelle CS (1997) α-reliable p-minimax regret: a new model for strategic
facility location modeling. Loc Sci 5:227–246

Dempe S (2002) Foundations of bilevel programming. Kluwer Academic Publisher, Dordrecht
Drezner Z (1987) Heuristic solution methods for two location problems with unreliable facilities.

J Oper Res Soc 38:509–514
Fattahi M, Govindan K, Keyvanshokooh E (2017) Responsive and resilient supply chain network

design under operational and disruption risks with delivery lead-time sensitive customers.
Transp Res E-Log 101:176–200

Ghaffarinasab N, Atayi R (2018) An implicit enumeration algorithm for the hub interdiction
median problem with fortification. Eur J Oper Res 267:23–39

Ghaffarinasab N, Motallebzadeh A (2018) Hub interdiction problem variants: models and meta-
heuristic solution algorithms. Eur J Oper Res 267:496–512

Heckmann I (2016) Towards supply chain risk analytics: fundamentals, simulation, optimization.
Springer, Wiesbaden

Hernandez I, Ramirez-Marquez JE, Rainwater C, Pohl E, Medal H (2014) Robust facility location:
hedging against failures. Reliab Eng Syst Safe 123:73–80

https://bit.ly/2NC0DwS
https://airww.co/2xuGm7R
https://airww.co/2xuGm7R


654 M. P. Scaparra and R. L. Church

Jabbarzadeh A, Fahimnia B, Sheu J-B, Moghadam HS (2016) Designing a supply chain resilient
to major disruptions and supply/demand interruptions. Transp Res B-Meth 94:121–149

Jalali S, Seifbarghy M, Niaki STA (2018) A risk-averse location-protection problem under
intentional facility disruptions: a modified hybrid decomposition algorithm. Transp Res E-Log
114:196–219

Keçici S, Aras N, Verter V (2012) Incorporating the threat of terrorist attacks in the design of
public service facility networks. Optim Lett 6:1101–1121

Kleywegt AJ, Shapiro A, Homem-de-Mello T (2002) The sample average approximation method
for stochastic discrete optimization. SIAM J Optim 12:479–502

Lei TL (2013) Identifying critical facilities in hub-and-spoke networks: a hub interdiction median
problem. Geogr Anal 45:105–122

Lei TL, Church RL (2011) Constructs for multilevel closest assignment in location modeling. Int
Reg Sci Rev 34:339–367

Lei TL, Tong D (2013) Hedging against service disruptions: an expected median location problem
with site-dependent failure probabilities. J Geogr Syst 15:491–512

Lemos R (2018) Concern rises about cyber-attacks physically damaging industries. eWeek (April
26, 2018). https://bit.ly/2KfefNH

Li X, Ouyang Y (2010) A continuum approximation approach to reliable facility location design
under correlated probabilistic disruptions. Transp Res B-Meth 44:535–548

Li Q, Savachkin A (2013) A heuristic approach to the design of fortified distribution networks.
Transp Res E-Log 50:138–148

Li Q, Zeng B, Savachkin A (2013) Reliable facility location design under disruptions. Comput
Oper Res 40:901–909

Li X, Ouyang Y, Peng F (2013) A supporting station model for reliable infrastructure location
design under interdependent disruptions. Transp Res E-Log 60:80–93

Liberatore F, Scaparra MP (2011) Optimizing protection strategies for supply chains: comparing
classic decision-making criteria in an uncertain environment. Ann Assoc Am Geogr 101:1241–
1258

Liberatore F, Scaparra MP, Daskin MS (2010) Analysis of facility protection strategies against an
uncertain number of attacks: the stochastic R-interdiction median problem with fortification.
Comput Oper Res 38:357–366

Liberatore F, Scaparra MP, Daskin MS (2012) Hedging against disruptions with ripple effects in
location analysis. Omega 40:21–30

Liebchen C, Lübbecke M, Möhring R, Stiller S (2009) The concept of recoverable robustness,
linear programming recovery, and railway applications. In: Ahuja RK, Möhring RH, Zaroliagis
CD (eds) Robust and online large-scale optimization. Lecture Notes in Computer Science, vol
5868. Springer, Berlin, pp 1–27

Lim M, Daskin MS, Bassamboo A, Chopra S (2010) A facility reliability problem: formulation,
properties, and algorithm. Nav Res Log 57:58–70

Losada C, Scaparra MP, O’Hanley JR (2012a) Optimizing system resilience: a facility protection
model with recovery time. Eur J Oper Res 217:519–530

Losada C, Scaparra MP, Church RL, Daskin MS (2012b) The stochastic interdiction median
problem with disruption intensity levels. Ann Oper Res 201:345–365

Lu M, Ran L, Shen Z-JM (2015) Reliable facility location design under uncertain correlated
disruptions. Manuf Serv Oper Manag 17:445–455

Madani SR, Nookabadi AS, Hejazi SR (2018) A bi-objective, reliable single allocation p-hub
maximal covering location problem: mathematical formulation and solution approach. J Air
Transp Manag 68:118–136

Mahmoodjanloo M, Parsa Parvasi S, Ramezanian R (2016) A tri-level covering fortification model
for facility protection against disturbance in r-interdiction median problem. Comput Ind Eng
102:219–232

Medal HR, Pohl EA, Rossetti MD (2014) A multi-objective integrated facility location-hardening
model: analyzing the pre- and post-disruption tradeoff. Eur J Oper Res 237:257–270

https://bit.ly/2KfefNH


22 Location Problems Under Disaster Events 655

Moore J, Bard J (1990) The mixed integer linear bilevel programming problem. Oper Res 38:911–
921

O’Hanley JR, Church RL (2011) Designing robust coverage networks to hedge against worst-case
facility losses. Eur J Oper Res 209:23–36.

O’Hanley JR, Scaparra MP, Garcia S (2013) Probability chains: a general linearization technique
for modeling reliability in facility location and related problems. Eur J Oper Res 230:63–75

Parajuli A, Kuzgunkaya O, Vidyarthi N (2017) Responsive contingency planning of capacitated
supply networks under disruption risks. Transp Res E-Log 102:13–37

Parvaresh F, Husseini SMM, Golpayegany SAH, Karimi B (2014) Hub network design problem in
the presence of disruptions. J Intell Manuf 25:755–774

Peng P, Snyder LV, Lim A, Liu Z (2011) Reliable logistics networks design with facility
disruptions. Transp Res B-Meth 45:1190–1211

Quadros H, Costa Roboredo M, Alves Pessoa A (2018) A branch-and-cut algorithm for the
multiple allocation r-hub interdiction median problem with fortification. Expert Syst Appl
110:311–322

Ramamoorthy P, Jayaswal S, Sinha A, Vidyarthi N (2018) Multiple allocation hub interdiction and
protection problems: Model formulations and solution approaches. Eur J Oper Res 270:230–
245

Rawls CG, Turnquist MA (2010) Pre-positioning of emergency supplies for disaster response.
Transp Res B-Meth 44:521–534

Rockafellar RT, Uryasev S (2000) Optimization of Conditional Value-at-Risk. J Risk 2:21–41
Rostami B, Kämmerling N, Buchheim C, Clausen U (2018) Reliable single allocation hub location

problem under hub breakdowns. Comput Oper Res 96:15-29
Scaparra MP, Church RL (2008a) A bilevel mixed-integer program for critical infrastructure

protection planning. Comput Oper Res 35:1905–1923
Scaparra MP, Church RL (2008b) An exact solution approach for the interdiction median problem

with fortification. Eur J Oper Res 189:76–92
Scaparra MP, Church RL (2012) Protecting supply systems to mitigate potential disaster: a model

to fortify capacitated facilities. Int Reg Sci Rev 35:188–210
Sevaux M, Sörensen K, Martí R (2015) Metaheuristics: a comprehensive guide to the design and

implementation of effective optimisation strategies. Springer, New York
Shishebori D, Jabalameli MS (2013) A new integrated mathematical model for optimizing facility

location and network design policies with facility disruptions. Life Sci J 10:1896–1906
Smith R (2014) Nation’s power grid vulnerable to sabotage. Wall Str J 263:1–6
Snyder LV, Daskin MS (2005) Reliability models for facility location: the expected failure cost

case. Transp Sci 39:400–416
Snyder LV, Daskin MS (2006) Stochastic p-robust location problems. IIE Trans 38:971–985
Soble J (2011) Honda suffers as Thai floods shut plant. Financial Times, October 21, 2011
Tran TH, O’Hanley J, Scaparra MP (2017) Reliable hub network design. Transp Sci 51:358–375
Wollmer R (1964) Removing arcs from a network. Oper Res 12:934–940
Wood RK (1993) Deterministic network interdiction. Math Comput Model 17:1–18
Yu G, Haskell WB, Liu Y (2017) Resilient facility location against the risk of disruptions. Transp

Res B-Meth 104:82–105
Yun L, Qin Y, Fan H, Ji C, Li X, Jia L (2015) A reliability model for facility location design under

imperfect information. Transp Res B-Meth 81:596–615
Zarrinpoor N, Fallahnezhad MS, Pishvaee MS (2017) Design of a reliable hierarchical location-

allocation model under disruptions for health service networks: a two-stage robust approach.
Comput Ind Eng 109:130–150

Zhalechian M, Ali Torabi S, Mohammadi M (2018) Hub-and-spoke network design under
operational and disruption risks. Transp Res E-Log 109:20–43

Zhang XY, Zheng Z (2018) A fortification model for decentralized supply systems and its solution
algorithms. IEEE T Reliab 67:381–400



656 M. P. Scaparra and R. L. Church

Zhang X, Zheng Z, Zhang S, Du W (2016) Partial interdiction median models for multi-sourcing
supply systems. Int J Adv Manuf Technol 84:165–181

Zhang C, Ramirez-Marquez JE, Li Q (2018) Locating and protecting facilities from intentional
attacks using secrecy. Reliab Eng Syst Safe 169:51–62

Zhu Y, Zheng Z, Zhang X, Cai K (2013) The r-interdiction median problem with probabilistic
protection and its solution algorithm. Comput Oper Res 40:451–462



Chapter 23
Location Problems in Healthcare

Evrim Didem Güneş, Teresa Melo, and Stefan Nickel

Abstract In this chapter, we discuss facility location problems arising in the
context of healthcare. We concentrate on three main areas. The most classical one
is healthcare facility location which is closely related to public facility location.
Secondly, we look at ambulance planning which includes ambulance location
and relocation problems. In the last part, we give an overview of hospital layout
problems. For all three parts, we state some important models and give an overview
of relevant literature as well as current research directions. A comprehensive
reference list is included at the end of the chapter.

23.1 Introduction

The ageing society together with a high cost pressure on the healthcare sector brings
methods from Operations Research in a quite prominent place. From the perspective
of facility location, healthcare applications bring together different models from
location theory and moreover, they give rise to new models as we will see in this
chapter.

One of the most discussed topics in healthcare is the equal access to healthcare
services and a high level of healthcare protection at the same time which is a
universal and ageless problem. This leads to the first topic that we deal with in
this chapter: Sect. 23.2 is devoted to healthcare facility location; we review the
literature and present some classical models in that area. The reader needs some
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basic knowledge on discrete facility location problems as discussed in Chaps. 2–5 of
Part I of this book. Another crucial issue in healthcare is the time interval between
an emergency call and the delivery of the patient to an appropriate health service
provider. We devote Sect. 23.3 to ambulance location problems which integrate
aspects from covering location models, multi-period location models, and location
problems under uncertainty. In these problems, the influence of local law regulation
on constraints and objective functions is quite remarkable as well. The third and last
topic we deal with in this chapter concerns layout problems in hospitals. As a result
of a good layout, hospitals prepare themselves for changes in the structure of patient
groups and the mix of medical cases as well as for a trend from surgery-centered
care to chronic disease care. In Sect. 23.4, basic models are presented and modern
trends are discussed, such as the inclusion of multiple floors, multiple objectives or
uncertainty. At the end of the chapter, the reader will find some conclusions and a
comprehensive list of references.

23.2 Healthcare Facility Location

In this section, we focus on applications of discrete network location problems
to healthcare facilities. Such facilities involve community health clinics, primary
care centers, public and private hospitals, or specialized clinics. The problems are
therefore closely related to public facility location, a topic that is addressed in
Chap. 26. We do not discuss continuous location models. In the literature, there are
only a few papers applying such models; see, e.g., Dökmeci (1977, 1979).

The location of healthcare facilities can be a critical decision for developing
countries since they have scarce resources and the majority of their population lives
in rural areas. The low population density in these regions makes the provision of
healthcare services a challenge. Within this context, location-allocation models can
therefore be successfully applied for the design of healthcare facility networks. One
of the earliest applications is due to Gould and Leinbach (1966) who considered
locating hospitals and determining their capacities in Western Guatemala. For an
extensive review of such applications, see Rahman and Smith (2000); for a review
on healthcare facility location problems, see Daskin and Dean (2005) and Ahmadi-
Javid et al. (2017).

In the following, we give an overview of healthcare facility location applications
by first discussing the relevant objective functions and then presenting important
aspects of these problems with examples from the literature.

23.2.1 Objective Functions in Healthcare Facility Location

Healthcare facility location problems are inherently multi-objective since there are
different stakeholders and the facilities are predominantly public. The decisions
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affect healthcare consumers and healthcare providers as well as the public com-
munity. These three sectors can have different priorities and utility functions. For
example, consumers are influenced by the travel cost and time, quality of service,
comfort and convenience of the facility, waiting time at the facility, and the cost
of service. On the other hand, providers are influenced by setup and operating
costs, travel costs for the staff, and availability of supporting facilities (Calvo and
Marks 1973). From the community perspective, equity in access among different
districts is an important issue. Moreover, workload equity can be a concern for
healthcare staff. Notice also that some of these factors are very difficult to quantify
and measure. Consequently, the literature focuses on a few of these criteria. Relevant
objectives most commonly applied in the healthcare facility location literature are
the following:

• Minimize access cost for healthcare consumers. This cost type can be defined
as travel cost, distance, or travel time from a population district to a healthcare
facility, weighted by the population size of that district. When this is the only
objective, the standard formulation for the p-median model is commonly used
for deciding where to locate a set of healthcare facilities. The following function
may represent access cost:

∑

i∈I

∑

j∈J
dj cij xij , (23.1)

where I is the set of potential locations for the facilities, J is the set of
populations or districts to serve, dj corresponds to the population size in district
j ∈ J , cij represents the distance between location i ∈ I and district j ∈ J , and
xij is a binary decision variable that is equal to 1 if the population in district j is
served from a facility at location i and 0 otherwise.

• Maximize population with access to a healthcare facility, or maximize covered
demand. A covering type objective assumes that a population in a district is
covered (has access) only if it can be assigned to a facility within a pre-
determined maximum distance, and aims at maximizing the covered population.
Such a type of objective is appropriate to locate emergency medical services or
primary care centers for under-served populations. In fact, when the objective is
to minimize the total access cost some districts may end up with too high access
costs. A covering objective overcomes this drawback.

Some healthcare services, such as preventive care, are not perceived as
essential by the consumers. However, providing these services is an important
public health goal. Therefore, maximizing the utilization of healthcare facilities
is another coverage related objective that was first defined by Calvo and Marks
(1973). There are several socio-economical factors that affect service utilization,
such as income, age, insurance coverage of the population, and convenience and
proximity of the facilities (Institute of Medicine 1993). Location models are
best suited to account for the “proximity of the facilities” among these factors.
Zhang et al. (2009) introduced the concept of “participation” which they measure
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using a decreasing function of travel time plus waiting time. In that paper, the
goal was to maximize participation as opposed to coverage. Güneş et al. (2014)
defined participation as a decreasing function of distance, and solved models
aiming at maximizing coverage and participation for a primary care network
design problem. A simple participation function can be defined as follows:
σij = 1 − cij /cmax if cij is less than or equal to cmax and σij = 0 otherwise,
where cmax is the predetermined maximum distance between a facility i ∈ i

and a district j ∈ J that can be covered by that facility. The total weighted
participation function is the following:

∑

i∈I

∑

j∈J
dj σij xij . (23.2)

• Maximize equity in access. There is an increasing interest in incorporating equity
in healthcare facility location applications. Nevertheless, there is no agreement
on how to define equity, and various definitions have been used in the literature.
For a review of these definitions, see Marsh and Schilling (1994). Commonly
used equity objectives are: minimize the maximum distance that patients must
travel (Mitropoulos et al. 2006; Güneş et al. 2014), minimize deviations from a
standard distance (Smith et al. 2009, 2013), minimize differences of utilization
from a national norm (Oliveira and Bevan 2006), or minimize standard deviation
of the distribution of the allocated populations to healthcare facilities (Güneş
et al. 2014).

All of these objectives are important, and it may be difficult to choose one
in realistic applications. Therefore, multi-criteria models have gained popularity
in recent years. We note that the equity criterion is commonly considered in
combination with the efficiency (access) criterion since the equity objective alone
can produce undesirable solutions (Smith et al. 2013). The reader is referred to
Mayhew and Leonardi (1982), Cho (1998), Mitropoulos et al. (2006), and Smith
et al. (2009, 2013) for examples on applications with bi-criteria equity-efficiency
objectives. Stummer et al. (2004) developed a multi-objective model to determine
the size and location of departments in facilities within a given network of hospitals.
The objectives considered were: minimize total access cost for patients, minimize
total cost of the network, minimize number of patients rejected due to low capacity,
and minimize total number of changes required in the network. The model proposed
by Mitropoulos et al. (2013) encompasses three objectives: minimize total distance
traveled by patients to their designated facilities, minimize underutilization of
capacity of open facilities, and maximize mean efficiency of operating healthcare
units. The latter criterion uses efficiency scores that are estimated with data envel-
opment analysis. Güneş et al. (2014) considered the objectives of minimizing access
cost for patients, maximizing coverage, maximizing participation, and maximizing
equity among physicians.
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A common solution approach in multi-criteria problems is to construct efficient
solution sets (cf. Stummer et al. 2004; Smith et al. 2013; Güneş et al. 2014). In bi-
criteria problems, the efficient frontier can be found by solving the problem with
one of the objectives and then including the obtained result for the objective value
as a constraint while solving for the second objective (cf. Ehrgott 2005; Smith et al.
2013). Another approach, which is not restricted to the bi-criteria case, is to include
all criteria in the objective function with different weights. For example, Bruni
et al. (2006) modeled the location of organ transplant centers considering distance,
waiting list, and maximum waiting list (as a proxy for equity) with different weights
in the objective function.

23.2.2 An Overview of Healthcare Facility Location Models

The classical p-median problem seeks for the optimal location of p facilities to
minimize a demand-weighted cost of access (or equivalently distance, or time) for
the population residing at the nodes of the network (see Chap. 2 for a detailed
discussion of this problem). Therefore, the problem that consists of deciding where
to locate a set of primary care facilities, such as community clinics or family centers,
or hospitals, is often casted as a p-median problem. Assuming, as before, that I
denotes the set of potential locations for the facilities and J the set of districts or
populations to serve, the basic formulation is as follows:

minimize
∑

i∈I

∑

j∈J
dj cij xij (23.3)

subject to
∑

i∈I
xij = 1 ∀j ∈ J (23.4)

xij ≤ yi ∀i ∈ I, j ∈ J (23.5)
∑

i∈I
yi = p (23.6)

yi ∈ {0, 1} ∀i ∈ I (23.7)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J, (23.8)

where dj is the population in district j , cij is the distance between location i and
district j , xij is a binary variable equal to 1 if the population in district j is served
from the facility at location i and 0 otherwise, yi is a binary variable equal to 1 if a
facility is opened at location i and 0 otherwise, and p is the total number of facilities
to open.



662 E. D. Güneş et al.

The formulation assumes an unlimited capacity for each facility which is
rarely the case in practice. Therefore, most practical applications use a capacitated
formulation by adding the following set of constraints:

∑

j∈J
dj xij ≤ qi ∀i ∈ I, (23.9)

where qi is the exogenous capacity of the facility at node i. In some situations,
decisions regarding the capacities of facilities may also be considered. This case
can be modeled by incorporating the corresponding decision variables and the cost
associated with building capacity in the objective function.

23.2.2.1 Modeling Capacity

Explicit modeling of capacity decisions is facilitated by a resource-based view
of facilities. For example, the capacity of a health center is determined by the
number of physicians assigned to that clinic. Similarly, the number of beds is
a significant determinant for hospital capacity. Many healthcare facility location
models consider the amount of resources in facilities also as decision variables. For
example, Güneş and Yaman (2010) modeled the resource re-allocation problem for
a hospital network with beds as resources. Oliveira and Bevan (2006), Griffin et al.
(2008), Zhang et al. (2009, 2010) and Güneş et al. (2014) modeled the staff in each
facility as a decision variable. In addition, these models can incorporate the decision
about the services to offer in each facility (cf. Oliveira and Bevan 2006; Griffin et al.
2008). With R denoting the set of resource types and S the set of service types, such
a model can be built by defining resource sets Rs ⊆ R required to serve demand for
service s ∈ S. To this end, let κsr be the amount of resource r that is utilized to serve
a patient requiring service s. Then, the decisions concerning the capacity (number
of patients that can be served) for service s in location i, qis , and the amount of
resource r in location i, wri , are modeled by the following constraints:

∑

s∈S:r∈Rs

κsr qis ≤ wri ∀i ∈ I, r ∈ R (23.10)

∑

j∈J
djs xijs ≤ qis ∀i ∈ I, s ∈ S (23.11)

∑

i∈I
xijs = 1 ∀j ∈ J, s ∈ S, (23.12)
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where xijs is a binary variable defining the assignment of patients for service s

from district j to the facility at location i, and djs is the demand from district j for
service s. In this case, the objective function given in (23.3) should also be changed
as follows:

minimize
∑

i∈I

∑

j∈J

∑

s∈S
djs cij xijs (23.13)

In some cases, there may be restrictions on the minimum number of patients
assigned to a facility. In general, such restrictions are motivated by economies of
scale arguments. For healthcare services, there may also be regulations on minimum
number of patients assigned to a physician because for some specialties (such as
image interpretation or surgery), having a high service volume is important to
maintain high service quality. See Verter and Lapierre (2002), Güneş and Yaman
(2010), Mestre et al. (2012, 2015), and Güneş et al. (2014) for examples on how to
incorporate such type of constraints.

23.2.2.2 Assumptions on Allocation

The classical p-median formulation assumes that when xijs = 1, all the population
in district j is served from the facility at location i for service s. This single
assignment assumption may be appropriate when it is desired to provide the same
service for all patients in a location. However, in case of capacity-constrained
systems, this may not be a reasonable assumption since the capacity of a facility may
not be sufficient to serve large population centers. In that case, multiple assignment
can be modeled by redefining the variable xijs as the number of patients from district
j assigned to location i for service s. In addition, djs is removed from (23.11) and
(23.13), and the assignment constraints (23.12) are changed as follows:

∑

i∈I
xijs = djs ∀j ∈ J, s ∈ S. (23.14)

Notice that these models do not account for preferences of patients in different
locations, while healthcare facilities are utilized by consumers who may have
discretion on which one to patronize. A common approach to incorporate these
preferences is to use closest assignment constraints in order to ensure that each
population will patronize its assigned facility, assuming that the closest facility is the
most preferred one (cf. Verter and Lapierre 2002). The following set of constraints
can be added to model (23.3)–(23.8) (see, e.g., Canovas et al. 2007; Güneş et al.
2014):

∑

k∈I :ckj>cij

xkj + yi ≤ 1 ∀i ∈ I, j ∈ J. (23.15)
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These constraints ensure that for a given district j ∈ J , if a facility at location
i ∈ I is open then j is not assigned to any facility whose distance to j is more than
the distance between j and i. For other examples of closest assignment constraints
in a healthcare context see Verter and Lapierre (2002) and Smith et al. (2009, 2013).

23.2.2.3 Assumptions on Demand and Patient Choice

The problem of locating healthcare facilities is characterized by various complex-
ities due to the central presence of the human element in the system. In particular,
the demand for healthcare services is uncertain and its estimation is not trivial
since there are various relevant factors influencing it, such as disease prevalence,
insurance coverage, demographics, and accessibility of the facilities. Therefore,
there is a need for a better understanding of the patient behavior and preferences,
and for incorporating them in location models.

Parker and Srinivasan (1976) were the first authors to capture consumer prefer-
ences. Their model was built for expanding a rural primary care facility network.
They estimated the benefit of a patient when getting service from a facility as a
function of several attributes, such as distance, waiting time, time to get an appoint-
ment, and the type of facility. In that paper, the total benefit was maximized using
an iterative procedure which finds the equilibrium allocation. Kim and Kim (2013)
considered a different form of consumer preference that depends on the income level
of patients. Low-income patients are allocated to a public healthcare facility within
a given predefined distance, whereas high-income patients may use their preferred
public or private facility. Some papers investigate models that include demand
estimation. For example, Griffin et al. (2008) embedded statistical estimation of
demand for community health clinics. Cardoso et al. (2012) proposed a simulation
model based on a short-term decision tree and a long-term Markov model in order
to predict annual demand for long-term care services over the next few years.

Location-allocation models are commonly used for healthcare facility planning.
In some applications, the assumption that some patients will patronize the desig-
nated facility may be realistic. This may be forced by regulations dictating that
patients must be served from the facilities they are assigned to. However, in many
healthcare service systems, patients have free choice of where to get service from. If
this is the case, a user-choice model defining patient behavior should be considered.
One approach is to assume that patients patronize each facility with a certain
probability that depends on its location as well as on other relevant factors. For
example, Oliveira and Bevan (2006) used a gravity model to define the probability
that patients in some district or region choose some hospital.

An alternative approach is to assume that patients patronize their first choice
given by an optimization model. It is common to assume that patients patronize
the closest facility, i.e., to use the closest assignment constraints (23.15). However,
although the distance to a facility is very important, it is not the only factor
influencing the choice of users. In fact, the waiting time at a facility is another
important factor that can be considered. Capturing congestion and its effects on
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patient preferences is an interesting aspect to improve realism in healthcare facility
location models. In this case, the number of people using a facility determines
the waiting time at the facility. Since waiting time, in turn, affects the number of
people using the facility, models should incorporate equilibrium constraints. In the
equilibrium, allocation should ensure that patients are assigned to their best choice
and do not want to switch facilities. One such example was proposed by Chao et al.
(2003) where resource allocation decisions for a public hospital network are made
in order to minimize the waiting time at the facilities. The resulting allocation is
incentive compatible, i.e., it is also optimal from the perspective of the patients.
Zhang et al. (2009) modeled the location of preventive healthcare facilities where
patients choose the facility with minimum total service time. The latter is defined
as the sum of travel time and waiting time at the facility. In turn, the waiting time
at a facility can be modeled using steady-state equations found in queuing theory.
The resulting formulation proposed by Zhang et al. (2009) is highly nonlinear and
a heuristic approach was suggested in that paper. A related problem was addressed
by Vidyarthi and Kuzgunkaya (2015), but in addition to determining the optimal
location of preventive healthcare facilities also their capacities are chosen from a set
of discrete options using a piecewise linear approximation of the objective function
for a network of M/G/1 queues. Zhang et al. (2010) proposed a bi-level model with
equilibrium constraints for a preventive healthcare facility network design problem.
The solution approach uses a gradient projection method and a tabu search heuristic.
Aboolian et al. (2015) investigated a similar problem but assumed that service
capacity at facilities is continuous. An ε-optimal solution method was developed
for the problem.

23.2.2.4 Assumptions on Facility Types and Patient Flows: Hierarchical
Models

In most countries, healthcare systems are organized in hierarchical structures. There
are different types of facilities, such as physicians’ offices, community health
centers, specialty clinics, and general hospitals. Notice that there is a hierarchy
in the services offered by these facilities. For instance, a hospital can usually
provide all the services offered by a clinic. Moreover, some health systems require a
referral from a general practitioner before a patient can ask for service at a hospital.
Hierarchical location models can incorporate such characteristics. Şahin and Süral
(2007) provide a comprehensive review on hierarchical systems with a discussion
of modeling approaches and applications. The interested reader is further referred
to Chap. 13.

Recall also from Chap. 13 that hierarchical systems are commonly classified as
successively inclusive or exclusive: in a successively inclusive hierarchy, a facility
at some level provides all the services offered by lower level facilities (e.g. Calvo
and Marks 1973; Narula 1984). This is a typical structure for healthcare facilities.
Conversely, a successively exclusive hierarchy implies that facilities at each level
offer a service that is unique to that level (e.g. Tien et al. 1983). This is the case
for specialized service facilities. We now assume that I = J = {1, . . . , n}, i.e.,
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in each district j ∈ J there is exactly one potential location i ∈ I for a facility.
The formulation provided by Calvo and Marks (1973) for a successively inclusive
hierarchy is an assignment based p-median type of model with an objective function
that quantifies the total distance traveled:

minimize
∑

i∈I

∑

j∈J
cij
∑

s∈S
djs xijs (23.16)

subject to
∑

i∈I
xijs = 1 ∀j ∈ J, s ∈ S (23.17)

xiis ≥ xijs ∀i ∈ I, j ∈ J, s ∈ S (23.18)
∑

i∈I
xiik =

∑

s∈S:s≥k

ps ∀k ∈ S (23.19)

xijs ∈ {0, 1} ∀i ∈ I, j ∈ J, s ∈ S, (23.20)

where cij is the distance between location i and district j , xijs is a binary variable
equal to 1 if individuals residing in district j that require service type s are assigned
to location i and 0 otherwise, djs is the number of individuals residing in district
j and requiring service type s, and ps is the number of facilities offering type s

services to be located. Constraints (23.17) ensure that all districts are assigned to
a facility for all services. Constraints (23.18) ensure that assignments are done to
open facilities only, and constraints (23.19) specify the possible number of self-
assignments (i.e., the assignment of the groups of individuals residing at a location
to the facility at that location). Finally, constraints (23.20) are the variable domain
constraints.

Narula and Ogbu (1979) developed a two-level hierarchical model with an
approach based on network flows where p1 health centers (level s = 1) and p2
hospitals (level s = 2) are to be located among the population centers, and a
proportion of patients, θ , at health centers are transferred to hospitals. In each
location, at most one facility type can be located. yis is a binary variable equal
to 1 if a facility of service type s is located in location i and 0 otherwise. x0s

ij is the

number of patients from district j allocated to a facility of type s located at i; x12
ij

is the number of patients that are transferred from a health center in location i to a
hospital in location j . Finally, qs is the exogenous capacity of a facility with service
type s, cij is the minimum distance between locations i and j , and dj is the number
of patients of population j . A mixed-integer programming formulation to minimize
total distance traveled is as follows:

minimize
∑

i∈I

∑

j∈J
cij (x

01
ij + x02

ij + x12
ij ) (23.21)

subject to
∑

i∈I
(x01

ij + x02
ij ) = dj ∀j ∈ J (23.22)
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∑

i∈I
x12
ij = θ

∑

i∈I
x01
ij ∀j ∈ J (23.23)

∑

j∈J
x01
ij ≤ q1yi1 ∀i ∈ I (23.24)

∑

j∈J
(x02

ij + x12
ij ) ≤ q2yi2 ∀i ∈ I (23.25)

∑

i∈I
yis = ps s ∈ S (23.26)

yi1 + yi2 ≤ 1 ∀i ∈ I (23.27)

0 ≤ x01
ij ≤ dj ∀i ∈ I, j ∈ J (23.28)

0 ≤ x02
ij ≤ dj ∀i ∈ I, j ∈ J (23.29)

0 ≤ x12
ij ≤ θ q1 ∀i ∈ I, j ∈ J (23.30)

yis ∈ {0, 1} ∀i ∈ I, s ∈ S. (23.31)

Narula and Ogbu (1979) proposed heuristic procedures for tackling this model.
Some examples of hierarchical facility location models include Hodgson (1988)

for primary care facilities, Smith et al. (2009, 2013) for community health facilities,
and Mestre et al. (2012, 2015) for regional and central hospitals. Typically, these
models can be solved by commercial optimization solvers. Galvão et al. (2002)
applied a tri-level hierarchical model for the delivery of perinatal care in the munic-
ipality of Rio de Janeiro (Brazil) with service referrals, and Galvão et al. (2006)
extended this model to include capacitated facilities. The increased complexity of
the models motivated the use of Lagrangian relaxation-based procedures.

23.2.2.5 Modeling Dynamic Aspects of Location Decisions

A majority of healthcare facility location applications discussed in this section
assume a static environment: demand is known and fixed, and facilities are static.
These assumptions may be realistic for short-term planning problems. However,
facility location decisions are often made at a strategic level with a long-term
impact. Therefore, if changes in the demand or in other relevant parameters are
expected in the long term then multi-period models may be more appropriate.
For instance, we may observe seasonal effects in demand because of nomadic
population groups or because of tourism. Ndiaye and Alfares (2008) developed a
multi-period integer programming model to minimize the total cost for locating
primary health centers where the populations to be served occupy different locations
in different seasons. Benneyan et al. (2012) considered a multi-period model for the
location of specialty care clinics for veteran administration to minimize the total
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cost subject to access constraints where the demand changes over time. The model
proposed by Cardoso et al. (2016) supports the reorganization of an existing network
of long-term nursing care centers over a multi-period planning horizon. Three equity
objectives are pursued: minimization of total travel time that includes a penalty for
the unserved demand, minimization of the maximum level of unsatisfied demand
in a geographical area, and minimization of the total level of unsatisfied demand
for low-income users. Demand uncertainty in the context of multi-period planning
was captured by Cardoso et al. (2015) via a two-stage stochastic model. Harper
et al. (2005) developed a discrete event geographical simulation model incorporating
changes over time in many aspects of the system, such as demand, services offered,
and facilities opened. Such changes can be used for a scenario analysis in the context
of simulation models. Recently, Intrevado et al. (2019) addressed the problem of
adjusting the capacity of an existing network to respond to varying demand for
long-term care services. To this end, at each time period, capacity can be added to
or removed from service regions.

Mobile healthcare facilities are commonly used in rural areas to improve access.
Hodgson et al. (1998) developed an integer programming formulation for the
problem of covering tour planning for mobile healthcare facilities in Ghana. The
objective is to minimize the total travel time of the facility while serving all
population centers within a range of the feasible stops. Notice that this problem
is different from ambulance location problems since mobile facilities here serve for
primary care needs as opposed to emergency care situations.

23.2.2.6 Further Reading

In the context of non-emergency healthcare services, facility location problems also
arise in other settings than those presented in the previous sections. This includes,
for example, the location of blood service facilities and organ transplant centers.

Şahin et al. (2007) developed three mathematical models that together help
establish a hierarchical network to collect, process, store, and distribute blood
products. Specifically, the decisions to be made involve the location of regional
blood centers (RBCs), the determination of service areas for intermediate blood
centers, the location of supporting facilities (i.e., blood stations), the calculation
of the number of mobile units required to collect and deliver blood, and the
homogeneous distribution of mobile units to RBCs among the demand areas.
Chaiwuttisaka et al. (2016) addressed the problem of expanding a network of blood
centers through the location of two types of service facilities: (1) donation rooms
and (2) donation rooms with blood distribution capabilities. The objective function
of the proposed binary linear programming model (to be minimized) is a weighted
sum of three criteria: total travel distance from the new facilities to RBCs, total
demand-weighted distance from RBCs and type 2 facilities to demand points, and
total expected amount of blood donations. The location of blood service facilities
has also been studied in the context of disaster relief, see e.g., Jabbarzadeh et al.
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(2014) and Fahimnia et al. (2017). The interested reader is referred to Chap. 21 for a
discussion of facility location models for humanitarian aid, including disaster relief.

Travel time plays a critical role in the location of organ transplant centers. This is
due to the fact that there is a maximum allowed time (called ischemia time) between
the moment an organ becomes available and its transplant into the recipient’s body.
Bruni et al. (2006) and Beliën et al. (2013) developed p-median based formulations
to find the locations of organ transplant centers, ensuring that the ischemia time
is not exceeded. The location-queuing model developed by Zahiri et al. (2014)
accounts for alternative transportation modes and uncertainty in demand and supply
of organs.

23.3 Ambulance Location

A usual goal of ambulance location problems is to find locations for ambulances
(or ambulance bases) minimizing the number of ambulances (or ambulance bases)
needed, while fulfilling a certain level of demand. Another possibility is to maximize
the coverage having a fixed number of ambulances (or ambulance bases) available.
The main aspect of the corresponding coverage models is that the demand points
must be reachable from the determined locations within a given time interval.
Concerning ambulance planning, a large variety of literature exists. Reviews can be
found in Marianov and ReVelle (1995), Owen and Daskin (1998), Brotcorne et al.
(2003), Galvão et al. (2005), Li et al. (2011), and Reuter-Oppermann et al. (2017).

In general, ambulance planning can be done at three different levels, the strategic,
tactical, and the operational level. At the strategic level, decisions concerning the
locations of ambulance bases are made. These decisions often have a long-term
effect and last for several decades. The number of ambulances per base and potential
movable locations are determined at the tactical level. The operational level includes
the dispatching of ambulances to emergencies and the relocation of ambulances
to different bases. In the next two sections, exemplary models for the planning
problems at the three levels are presented. Section 23.3.1 looks at strategic and
tactical models, while Sect. 23.3.2 concentrates on operational aspects.

23.3.1 The Strategic and Tactical Level: Finding Ambulance
Base Locations and Assigning Ambulances

One possibility for determining ambulance base locations is to use the location set
covering model (LSCM) that has been first introduced by Toregas et al. (1971). The
objective is to find the minimum number of ambulance bases needed to cover all
demand points.
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For the LSCM, a set J of demand nodes is given, and these nodes are also
the potential locations for the ambulances. Moreover, as usually done in covering
problems in ambulance planning, a maximum response time T is defined. Therefore,
a node i can cover an emergency in node j if and only if the driving time tij between
the two nodes is less than or equal to T . The set of all nodes i that fulfill this
condition is denoted by Jj = {i ∈ J | tij ≤ T }, ∀j ∈ J . For each node j ∈ J ,
a binary decision variable xj is considered, which is equal to 1 if an ambulance is
located at site j and 0 otherwise. The objective function represents the number of
ambulances, which is to be minimized. The constraints ensure that each demand
node can be served within the given response time by at least one ambulance. The
LSCM therefore is as follows:

minimize
∑

j∈J
xj (23.32)

subject to
∑

i∈Jj
xi ≥ 1 ∀j ∈ J (23.33)

xj ∈ {0, 1} ∀j ∈ J. (23.34)

23.3.1.1 A Double Coverage Model

The model by Toregas et al. (1971) only ensures that all demand points can be
reached within a given time interval, but it does not consider the possibility of
covering demands from multiple nodes. Therefore, Gendreau et al. (1997) presented
a so-called double standard model (DSM) that includes what is referred to as
double coverage for the demand points. Compared to LSCM, DSM includes several
additional features. First, the number of ambulances to be located is fixed and equal
to p. Second, for demand and potential ambulance locations, two node sets I and J

are considered, respectively, which may be distinct. Third, for each node i ∈ I , up to
pi ambulances can be placed. Additionally, instead of a single maximum response
time, two values, t1 and t2, are considered with t2 ≥ t1. Notice that t2 is equivalent to
T since all demand must be covered by an ambulance located within time t2. Finally,
a proportion α is defined for which the demand must also be fulfilled within t1 time
units by some of the ambulances (which can be the same ambulances or different
ones). Consider now a complete graph whose nodes correspond to the elements in
I ∪ J , and whose edges {i, j } with i ∈ I and j ∈ J are weighted with the travel
time tij between these two nodes. Furthermore, let dj denote the demand at node
j ∈ J , and define the following two coefficients for i ∈ I and j ∈ J :

γ 1
ij =

{
1 if tij ≤ t1 (j is covered by location i within time t1)

0 otherwise
(23.35)
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and

γ 2
ij =

{
1 if tij ≤ t2 (j is covered by location i within time t2)

0 otherwise
(23.36)

Two sets of decision variables can be considered: yi denotes the (integer) number
of ambulances to locate at i ∈ I (bounded by pi), and xjk is a binary variable equal
to 1 if j is covered at least k times within t1 for k ∈ {1, 2}, and 0 otherwise. The
double standard model (DSM) proposed by Gendreau et al. (1997) is the following:

maximize
∑

j∈J
dj xj2 (23.37)

subject to
∑

i∈I
γ 2
ij yi ≥ 1 ∀j ∈ J (23.38)

∑

j∈J
dj xj1 ≥ α

∑

j∈J
dj (23.39)

∑

i∈I
γ 1
ij yi ≥ xj1 + xj2 ∀j ∈ J (23.40)

xj2 ≤ xj1 ∀j ∈ J (23.41)
∑

i∈I
yi = p (23.42)

yi ≤ pi ∀i ∈ I (23.43)

xj1, xj2 ∈ {0, 1} ∀j ∈ J (23.44)

yi ∈ Z
+
0 ∀i ∈ I. (23.45)

The objective function (23.37) maximizes the amount of demand that is covered
twice within t1. Each node must be covered at least once within time t2 as imposed
by constraints (23.38). Constraint (23.39) states that a proportion α of the demand
must be covered within time t1. A location can only be covered twice within time
t1 if it is covered once, as expressed by constraints (23.40) and (23.41). Exactly
p ambulances must be located in total (23.42), and only pi can be located at
node i (23.43). Constraints (23.44) and (23.45) define the domains of the decision
variables. The model (23.37)–(23.45) has been tackled in Gendreau et al. (1997) by
a tabu search heuristic.
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23.3.1.2 Considering Ambulance Utilization

In practice, ambulances are not always available when they are needed. Therefore,
the strategic and tactical planning levels should take into account the utilization
of ambulances as aggregated data from the operational level. Then, the expected
coverage of a region can be determined. When the number of ambulances to be
placed is fixed and the expected coverage is to be maximized, the problem can
be formulated as the maximum expected location covering problem (MEXCLP)
proposed by Daskin (1983).

The set of demand nodes is denoted by J , and each node has a demand dj . I is
the set of possible ambulance locations, and the maximum number of ambulances
that can be located is bounded by p. In the original model, we have I = J =
{1, . . . , n}. The probability that an ambulance is occupied is defined by P ; Pk is the
probability that k ambulances are busy at the same time. If node j ∈ J is covered by
k ambulances, Ej

k = dj (1−Pk) gives the corresponding expected covered demand

and E
j
k −E

j

k−1 = dj (1−P)P k−1 is the marginal contribution of the kth ambulance
to this expected value. A decision variable yi is considered representing the number
of ambulances to locate at node i. Moreover, we use set K = {1, . . . , n} in order to
refer to the number of times that a node is covered by an ambulance. The decision
variable xjk is equal to 1 if node j is covered at least k times and 0 otherwise. In
addition, γij is a binary parameter with:

γij =
{

1 if tij ≤ T (an ambulance at i covers demand at j)

0 otherwise
(23.46)

Here, tij states the driving time from node i to node j and T expresses the
maximal allowed driving time. The MEXCLP can be written as follows:

maximize
∑

k∈K

∑

j∈J
dj (1 − P)P k−1 xjk (23.47)

subject to
∑

k∈K
xjk ≤

∑

i∈I
γij yi ∀j ∈ J (23.48)

∑

i∈I
yi ≤ p (23.49)

yi ∈ {0, 1, . . . , p} ∀i ∈ I (23.50)

xjk ∈ {0, 1} ∀j ∈ J, k ∈ K. (23.51)

The objective function (23.47) maximizes the expected demand that is covered.
Notice that this expression adds the expected coverage over all possible numbers
of ambulances. Constraints (23.48) ensure that the number of ambulances used to
cover j is bounded by the number of ambulances located not farther away than time
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T from j . Constraints (23.49) impose that in total at most p ambulances are located.
Constraints (23.50) and (23.51) are the variable domain constraints. A heuristic for
the problem has also been devised by Daskin (1983).

23.3.1.3 Further Reading

In addition to the models presented in the previous sections, several more can be
found in the literature. Chapman and White (1974) proposed the first probabilistic
approach by considering a probabilistic set covering model in which servers are
not always available. Nowadays, different kinds of probabilistic approaches can
be found for ambulance location planning. They use, for example, reliability
constraints and busy fractions for servers. The same probabilistic approach is used in
the maximal covering location problem investigated by ReVelle and Hogan (1988).
The maximum availability location problem by ReVelle and Hogan (1989) is also
worth mentioning. Overall, we can identify two main approaches for including
stochasticity into the ambulance location problem, namely hypercube queuing
models and stochastic programming. Larson (1974) introduced the first hypercube
queuing model which represents a general planning approach where a set of states
is considered as well as the transition probabilities between them. Based on that,
different variations can be found, such as in Geroliminis et al. (2009), Iannoni and
Morabito (2007), Iannoni et al. (2011), Silva and Serra (2008), and Takeda et al.
(2007). Stochastic programming approaches have also been proposed as it is the case
with the works by Beraldi et al. (2004), Beraldi and Bruni (2009), Noyan (2010),
and Nickel et al. (2016).

23.3.2 The Operational Level: Ambulance Relocation

At the operational level, decisions usually concern the allocation of ambulances
to emergencies and the reassignment of ambulances to bases after having finished
a service. In addition, relocations of ambulances during some time period (e.g.,
1 day) are possible, and they can either be predefined or dynamically determined
throughout the period. A review on relocation models can be found in Brotcorne
et al. (2003) and Bélanger et al. (2019).

Early relocation approaches are based on Markov chain models (Alanis et al.
2013) or on approximate dynamic programming (Maxwell et al. 2009, 2013;
Schmid 2012). Gendreau et al. (2001) use a parallel tabu search heuristic for solving
the dynamic relocation problem. Further approaches were presented by Rajagopalan
et al. (2008) and Schmid and Doerner (2010).
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23.3.2.1 Ambulance Preparedness

Because of real-time requirements encountered in practical settings, literature on
ambulance relocation focuses mainly on heuristic solution methods. One such
heuristic was proposed by Andersson and Värbrand (2007). The main idea is to
include a so-called preparedness of ambulances. For this purpose, the area to serve
is divided into a number of zones. Denote by I the set of ambulances and by J the set
of zones which have a demand for ambulances. A weight dj is assigned to each zone
j which states the demand for ambulances in the zone. pj is the (exogenous) number
of ambulances that contribute to the preparedness in zone j and tij represents the
driving time from ambulance location i to zone j . Moreover, let t[i]j denote the
travel time of the i-th closest ambulance to zone j and let x be the matrix form of
the decision variables xij , which are equal to 1 if ambulance i is relocated to zone j

and 0 otherwise. Clearly, t[i]j (x) is a function of the x-variables since the travel time
depends on where the ambulances are located currently as decided by the values in
x. In addition, let γ [i] be the contribution factor of the i-th closest ambulance and
let the following two properties be fulfilled:

t[1]j ≤ t[2]j ≤ . . . ≤ t[i]pj , (23.52)

γ [1] > γ [2] > ... > γ [pj ]. (23.53)

The contribution factor γ [i] is a user-defined value aiming to describe the
influence of the i-th closest ambulance. Therefore γ [1] > γ [2] > ... > γ [pj ]
is a decreasing sequence. In Andersson and Värbrand (2007), γ [i] = 1

2[i−1] for
i = 1 . . . pj is used.

The preparedness in zone j is then defined as

1

dj

pj∑

i=1

γ [i]

t[i]j
. (23.54)

Preparedness is a way of evaluating the ability to serve potential patients with
ambulances now and in the future. Preparedness in a zone increases if an ambulance
moves closer, since the travel time (denominator) decreases. If dj (the demand)
increases then the preparedness decreases.

Andersson and Värbrand (2007) proposed a tree search algorithm for tackling
the following relocation model in order to minimize the maximum travel time for
the ambulances:

minimize z (23.55)

subject to z ≥
∑

j∈Ji
tij xij ∀i ∈ I (23.56)
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1

dj

pj∑

i=1

γ [i]

t[i]j (x)
≥ �min ∀j ∈ J (23.57)

∑

j∈Ji
xij ≤ 1 ∀i ∈ I (23.58)

∑

i∈I

∑

j∈J
xij ≤ p (23.59)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J. (23.60)

In this formulation, Ji (see (23.56) and (23.58)) is the set of zones that can be
reached by ambulance i within a given time frame. The objective function (23.55) in
conjunction with constraints (23.56) (which ensure that z must not be smaller than
any of the driving times tij ) defines the maximum travel time (to be minimized).
The preparedness in each zone is at least a value �min as prescribed in constraints
(23.57). In particular, the left-hand side of these constraints can be interpreted as
the preparedness for zone j that must be greater than or equal to a minimum value
�min. Constraints (23.58) ensure that each ambulance can only be relocated to at
most one zone in Ji . Constraints (23.59) guarantee that at most p ambulances are
relocated in total. Finally, constraints (23.60) are the variable domain constraints.

23.3.2.2 Further Reading

In recent years, more and more attention has been given to ambulance relocation
problems. Several different types of approaches and strategies have been proposed
and tested for different countries and different Emergency Medical Systems (EMS),
for example, the Netherlands, the U.S., and Canada. Papers give more emphasis to
the effectiveness of relocation approaches and the trade-off between response time
improvement and additional driving times. Van Barnefeld et al. (2016), for example,
studied the effect of the number of relocations on the response time performance
for a set of scenarios that originated from a Dutch EMS region. Enayati et al.
(2018) proposed a relocation approach that maximizes the expected coverage while
minimizing the total travel time and also considering workload restrictions for staff
in a shift. A comparison of several relocation and fleet management strategies is
presented in Bélanger et al. (2016). Finally, Van Buuren et al. (2018) evaluated two
dynamic relocation policies that have been implemented by a Dutch EMS provider.

23.4 Hospital Layout Planning

A special class of location problems are layout planning problems which aim
at minimizing in-house travel distances or costs associated with the positions
of organizational units (OUs) inside a building. This class of problems mainly
originates from applications for layout planning of industrial buildings.
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Layout planning problems in healthcare were first introduced by Elshafei (1977).
The author modeled a hospital layout problem as a quadratic assignment problem
and developed heuristics to solve it. In the framework of hospital planning and
control, the hospital layout planning problem is classified as a resource capacity
planning problem on a strategic level (Hans et al. 2011). Although it is a long-term
decision, the spatial organization within hospitals directly influences the quality and
efficiency of healthcare and secondary services of the daily routine (Choudhary
et al. 2010; Hignett and Lu 2010) as well as patient satisfaction (Chaudhury et al.
2005). The challenge lies in developing a holistic approach in order to combine the
architectural and legal aspects with logistics, i.e., patient, personnel, and material
flows inside the future hospital building.

In the next section, the quadratic assignment problem (QAP) is presented.
Section 23.4.2 details a mixed-integer programming (MIP) formulation. Thereafter,
in Sect. 23.4.3, suggestions for further reading are provided in order to show some
extensions of the presented QAP and MIP models with respect to the underlying
assumptions.

23.4.1 The Quadratic Assignment Problem

The well-known QAP (see Burkard et al. 2009; Drezner 2015), as introduced by
Koopmans and Beckmann (1957), has been first applied to hospital layout planning
by Elshafei (1977) who developed heuristics to solve large instances of the problem
since it is NP-hard. A solution to the QAP determines the assignment of each OU
j ∈ J to a predefined location (e.g., a room) i ∈ I inside a building. It is assumed
that each OU can be assigned to each location. The solution of a QAP instance is an
assignment of |J | OUs to |I | locations.

Denote by fjk the flow between each pair of OUs j, k ∈ J . The distance
between each pair of locations h, i ∈ I is given by dhi . For i ∈ I and j ∈ J ,
the binary decision variable xij is equal to 1 if OU j is assigned to location i and 0
otherwise. Moreover, we now assume that I = J = {1, . . . , n} in order to obtain a
mathematical formulation of the QAP as follows:

minimize
∑

h∈I

∑

i∈I

∑

j∈J

∑

k∈J
fjk dhi xhj xik (23.61)

subject to
∑

i∈I
xij = 1 ∀j ∈ J (23.62)

∑

j∈J
xij = 1 ∀i ∈ I (23.63)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J. (23.64)
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The objective function (23.61) minimizes the sum of all flows multiplied by
distances which results in the sum of all traveled distances. Constraints (23.62)
ensure that each OU is assigned to exactly one room, whereas constraints (23.63)
guarantee that each room is only occupied by one OU. Constraints (23.64) define
the domain of the decision variables.

In this basic formulation of the QAP, the area and shapes of the OUs and locations
are not regarded explicitly. This means that each OU is assumed to fit to each
location. This is a very strong assumption which is not realistic in many applications,
such as hospital layout planning, since the dimensions (area, length, width) of the
OUs to be assigned can vary in a wide range. In the next section, a MIP formulation
is presented which overcomes this drawback.

23.4.2 A Mixed-Integer Programming Formulation

In contrast to the discrete layout representation by the QAP formulation, the MIP
formulation presented next allows for a continuous representation of the layout.
Thus, the length and width of each OU can be modeled explicitly as decision
variables considering the defined area of the OU. Furthermore, the location of each
OU can be chosen in a more flexible way within a given floor area, i.e., not only by
predefined locations as in the QAP model. Again, the objective is to minimize the
total travel distance. The model presented here goes back to Montreuil (1991) and
has been linearized and explained in detail by Tompkins et al. (2010).

The following parameters are given: BL and BW represent the length and width
of the building, respectively. The lower and upper limits on the length and width
of OU j are given by Ll

j , L
u
j ,W

l
j , and Wu

j , respectively. P l
j and Pu

j are lower and
upper limits on the perimeter of OU j , respectively. M represents a sufficiently large
number (Big M). Again, fjk is the flow between two OUs j and k. Furthermore,
the decision variables αj define the x-coordinates of the centroid of OU j , whereas
its y-coordinates are defined by βj . The x-coordinates of the left and right sides of
OU j are defined by a′

j and a′′
j , respectively. The y-coordinates of the bottom and

top of OU j are represented by b′
j and b′′

j , respectively. Furthermore, the binary

variables zajk (zbjk) are considered which are equal to 1 if OU j is strictly to the right

(top) of OU k and 0 otherwise. The auxiliary decision variable α+
jk (α−

jk) defines the
horizontal distance between the centroids of OU j and k if OU j is to the right (left)
of OU k, otherwise it is 0. Similarly, β+

jk (β−
jk) defines the vertical distance between

the centroids of OU j and k if OU j is to the top (bottom) of OU k, otherwise it is
0. These auxiliary decision variables enable the linearization of the model given by
Montreuil (1991).
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The layout problem can be formulated as follows:

minimize
∑

j∈J

∑

k∈J
fjk

(
α+
jk + α−

jk + β+
jk + β−

jk

)
(23.65)

subject to αj − αk = α+
jk − α−

jk ∀j, k ∈ J, j 
= k (23.66)

βj − βk = β+
jk − β−

jk ∀j, k ∈ J, j 
= k (23.67)

Ll
j ≤

(
a′′
j − a′

j

)
≤ Lu

j ∀j ∈ J (23.68)

Wl
j ≤

(
b′′
j − b′

j

)
≤ Wu

j ∀j ∈ J (23.69)

P l
j ≤ 2

(
a′′
j − a′

j + b′′
j − b′

j

)
≤ Pu

j ∀j ∈ J (23.70)

0 ≤ a′
j ≤ a′′

j ≤ BL ∀j ∈ J (23.71)

0 ≤ b′
j ≤ b′′

j ≤ BW ∀j ∈ J (23.72)

αj = 0.5
(
a′
j + a′′

j

)
∀j ∈ J (23.73)

βj = 0.5
(
b′
j + b′′

j

)
∀j ∈ J (23.74)

a′′
k ≤ a′

j + M
(

1 − zajk

)
∀j, k ∈ J, j 
= k (23.75)

b′′
k ≤ b′

j + M
(

1 − zbjk

)
∀j, k ∈ J, j 
= k (23.76)

zajk + zakj + zbjk + zbkj ≥ 1 ∀j, k ∈ J, j < k (23.77)

αj , βj , a
′
j , a

′′
j , b

′
j , b

′′
j ≥ 0 ∀j ∈ J (23.78)

α+
jk, α

−
jk, β

+
jk, β

−
jk ≥ 0 ∀j, k ∈ J, j 
= k (23.79)

zajk, z
b
jk ∈ {0, 1} ∀j, k ∈ J, j 
= k. (23.80)

The objective function (23.65) minimizes the sum of the rectilinear distances of
all the flows between the centroids of the OUs. Constraints (23.66) and (23.67) are
needed in order to linearize the model given by Montreuil (1991) such that we have∣
∣αj − αk

∣
∣ = α+

jk + α−
jk and

∣
∣βj − βk

∣
∣ = β+

jk + β−
jk .

Constraints (23.68)–(23.70) control the lower and upper limits of the length,
width, and perimeter of the OUs, respectively. The correct definition of the sides
of the OUs as well as their location inside the building are ensured by constraints
(23.71) and (23.72). The centroid of each OU is defined by constraints (23.73)
and (23.74). The non-overlapping requirements for the OUs are formulated by
constraints (23.75)–(23.77). Inequalities (23.75) state that if OU j is to the right
of OU k then the x-coordinate of the left side of OU j must be greater than the



23 Location Problems in Healthcare 679

x-coordinate of the right side of OU k. Similarly, (23.76) states that if OU j is to
the top of OU k then the y-coordinate of the bottom side of OU j must be greater
than the y-coordinate of the top side of OU k. Finally, (23.77) ensures that OUs
j and k may not overlap since at least one of the z-variables needs to switch on
to the value 1. This means that one of the OUs j and k must be either strictly
to the right side or above of the other. The domains of the decision variables are
given in constraints (23.78)–(23.80). We finally remark that the model has been first
used by Montreuil (1991) in order to devise a comprehensive modeling framework
which aims at integrating layout design and material flow network design in material
handling and logistics systems.

23.4.3 Further Reading

In this section, some possible extensions to the two models discussed in Sects. 23.4.1
and 23.4.2 are presented. Important characteristics which were not considered
above, but which are also of importance for hospital layout planning problems,
comprise the consideration of multiple time periods, multiple floors, multiple
objectives as well as uncertainty in patient, personnel, and material flows. Overall,
there are very few publications considering the application of layout planning
problems in hospitals from a mathematical perspective. General surveys on layout
planning have been conducted, among others, by Singh and Sharma (2006) and
Drira et al. (2007). Textbooks on facility layout planning and design are given by
Heragu (2008) and Tompkins et al. (2010).

A general review on dynamic layout problems which takes into account multiple
time periods and, thus, changing process flows, is given by Balakrishnan and Cheng
(1998). A recent approach for a multi-period ward layout planning problem for
hospitals was proposed by Arnolds and Nickel (2013).

Since hospital buildings usually have more than one floor, another extension
comprises multiple floors. In this respect, the planning of elevators such as their
location, number, capacity, and control is a quite new and challenging field that has
been addressed, for example, by Matsuzaki et al. (1999), Goetschalckx and Irohara
(2007a,b), and Krishnan et al. (2009). Further modeling and solution approaches
for multi-floor layout problems can be found in Bozer et al. (1994), Patsiatzis and
Papageorgiou (2002), and Meller and Bozer (1997). A graph-theoretical approach
for a real-world problem where 25 organizational units have to be located on 6 levels
of a hospital building is presented in Arnolds and Nickel (2015).

In the last years, a number of papers have been published with respect to multiple
objectives (cf. Chen 1999; Sha and Chen 2001; Tenfelde-Podehl 2002; Chen and
Sha 2005; Aiello et al. 2006; Chen and Rogers 2009a,b; Bashiri and Dehghan 2010).
This is a very important issue for hospital layout planning problems since, for
example, walking distances or times of patients, personnel and materials somehow
have to be regarded and balanced.
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Two further research directions of hospital layout planning problems are the
consideration of multiple connected hospital buildings as well as the possibility
to share resources amongst different hospital departments and wards. The former
has been tackled by Helber et al. (2016) who developed a hierarchical layout
planning approach to find locations for departments and wards in a given system of
buildings, while minimizing the consumption of transportation resources. The latter
aspect has been approached by Hübner et al. (2018) with respect to bed capacities
which can be shared across clinical departments. The aim is to improve bed
availability via pooling effects. The authors develop an integer linear programming
formulation based on a generalized set partitioning problem to find the cost-minimal
combination of departments and wards, while satisfying maximum walking distance
thresholds for patients and personnel.

One additional aspect worth discussing is the uncertainty that can impact data.
For example, future patient figures for certain diseases are unknown. Accordingly,
processes, i.e., the flow of patients, personnel, and materials, depend on outcomes
and reconvalescence and, thus, are not deterministic. This uncertainty should be
reflected in the design process. Some works taking into account different sources of
uncertainty in general layout planning problems include Liu et al. (2006), Norman
and Smith (2006), Kulturel-Konak (2007), and Tavakkoli-Moghaddam et al. (2007).
Another approach has been developed by Arnolds and Nickel (2018) who applied
a simulation-optimization approach in order to take into account the uncertainty in
patient, personnel, and material flows: while solving a mathematical layout model
results in optimal solutions under deterministic data, discrete-event simulation
scenarios help to create a robust layout which will show high performance even
when patient, personnel, and material flows are uncertain. Furthermore, Arnolds
and Gartner (2018) connected clinical pathway mining with layout planning. The
approach identifies significant pathways that have been observed in the past. Using
a generalization threshold, possible future pathways may be inferred from the data.
On the other hand, non-significant pathways can be filtered out. The authors present
a case study with real-world data which demonstrates the applicability of their
approach.

23.5 Conclusions

In this chapter, we have seen that mathematical models of facility location can be
applied to the healthcare sector at all planning levels. Considering the challenge
of an ageing population on the one hand and the increased significance of an
efficient resource management in the medical sector on the other hand, the topic will
receive even more attention over the next decades. Future research directions could
integrate planning problems at different levels with the goal of developing advanced
planning instruments focused on healthcare applications. Likewise, advancements
in solution methods for current problems as discussed in this chapter, as well as
the identification of future problems along with the development of corresponding
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solution methodologies represent interesting challenges for future research on
location problems in healthcare.
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Tien JM, El-Tell K, Simons GR (1983) Improved formulations of the hierarchical health facility
location-allocation problem. IEEE Trans Syst Man Cybern 13:1128–1132

Tompkins JA, White JA, Bozer YA, Tanchoco JMA (2010) Facilities planning, 4th edn. Wiley,
Hoboken

Toregas C, Swain R, ReVelle C, Bergman L (1971) The location of emergency service facilities.
Oper Res 19:1363–1373

Van Barneveld TC, Bhulai S, van der Mei RD (2016) The effect of ambulance relocations on the
performance of ambulance service providers. Eur J Oper Res 252:257–269

Van Buuren M, Jagtenberg C, van Barneveld T, van der Mei R, Bhulai S (2018) Ambulance
dispatch center pilots proactive relocation policies to enhance effectiveness. Interfaces 48:235–
246

Verter V, Lapierre SD (2002) Location of preventive health care facilities. Ann Oper Res 110:123–
132

Vidyarthi N, Kuzgunkaya O (2015) The impact of directed choice on the design of preventive
healthcare facility network under congestion. Health Care Manag Sci 18:459–474

Zahiri B, Tavakkoli-Moghaddam R, Mohammadi M, Jula P (2014) Multi-objective design of an
organ transplant network under uncertainty. Transp Res E Logist 72:101–124

Zhang Y, Berman O, Verter V (2009) Incorporating congestion in preventive healthcare facility
network design. Eur J Oper Res 198:922–935

Zhang Y, Berman O, Marcotte P, Verter V (2010) A bilevel model for preventive healthcare facility
network design with congestion. IIE Trans 42:865–880



Chapter 24
The Design of Rapid Transit Networks

Gilbert Laporte and Juan A. Mesa

Abstract Metros and other rapid transit systems increase the mobility of urban
populations while decreasing congestion and pollution. There are now over 210
cities with a metro system in the world. The design of a rapid transit system is a
hard problem involving several players, multiple objectives, sizeable costs and a
high level of uncertainty. Operational research techniques cannot fully solve the
problem, but they can generate alternative solutions among which the decision
makers can choose, and they can be employed to solve some specific subproblems.
The scientific literature on rapid transit location planning has grown at a fast rate
over the past 25 years. This chapter provides an account of some of the most
important results. It first describes the main objectives and indices used in the
assessment of rapid transit systems. It then reviews the main models and algorithms
used to design such systems. The cases of a single alignment and of a full network
are treated separately. Then follows a section on the location of stations on an
already existing network.

24.1 Introduction

Due to the increasing population and the spread of urbanized zones, many cities
and metropolitan areas around the world are planning, constructing or extending
their transit systems. Among these, metro systems are the most efficient because
they consume less energy and are able to transport more passengers per surface
unit than any other form of public transport. Metro systems help decrease private
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car traffic, hence reducing congestion and pollution. The term metro is sometimes
used synonymously with rapid transit but the latter has a wider acceptance. In the
technical literature, rapid transit usually covers not only metro but also commuter
train, light metro, light rail, monorail and others urban mass rapid public transport
systems. A metro system is independent from other traffic, even though some light
metros or German stadtbahn are underground in city centers, but at grade with
preference level crossings in suburban areas. There are now more than 210 cities
with a metro system and this number keeps growing.1 Bus rapid transit (BRT)
systems are sometimes considered as rapid transit systems. They share several
characteristics with those using rails but they exhibit several differences, such
as slower vehicles, level crossings, and less capacity. They are usually treated
separately in planning processes and in academic research, and they will not be
covered in this chapter.

In practice, rapid transit planning is a very complex task involving agents with
different backgrounds and loyalties (politicians, urban planners, transit agencies,
engineers, construction companies, citizen groups, etc.). These players may there-
fore have different and sometimes conflicting goals. The planning process usually
starts by analyzing the area under consideration and the main travel patterns. Then,
based on travel patterns codified by origin-destination flow matrices, some broad
traffic corridors are identified and combined, giving rise to several network scenarios
which can be evaluated from different points of view, often using finite multi-criteria
analysis. Since the problem is inherently strategic, this process usually takes a long
time.

Rapid transit planning can be broadly classified depending on whether the
network is to be constructed from scratch or whether it is to be extended by adding
new lines or extending some existing ones. Rail rapid transit planning lies within
the broader field of rail network planning. The sequential process of rail planning
is based on the knowledge of the travel patterns and starts with network design.
Line planning, timetabling and resource scheduling are the subsequent stages in
this process. Other related important issues are reliability, robustness, timetabling
information, shunting, platforming, etc. However, due to its special characteristics
rapid transit planning deserves a particular study. Usually, the tracks of metro lines
are not interconnected. There are exceptions to this rule, for example the cases
where there is a common trunk for several lines (Los Angeles, Brussels and Bilbao
metros), or the case of a line working as a set of lines but most of the lines work
independently. This is the case of the London Underground Northern line with three
northern termini and two different routes in the city center, see Fig. 24.1. Some lines
in commuter systems also share the railway system in the city centre. This implies
that network design and line planning (except frequency setting) are considered
jointly in the modeling process. A second specific characteristic of metros in that
they carry a large number of passengers traveling over short distances compared
with medium and long distance railways. This implies that headways are very short

1http://mic-ro.com/metro/table.html.

http://mic-ro.com/metro/table.html
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Fig. 24.1 Northern Line,
London Underground

(with the new telecommunication technologies, in some cases these are reduced to
one minute and a half). Another distinguishing feature is the importance of mode
selection due to the fact that in most metropolitan areas where such systems are
planned, several competing modes of transportation (bus, private car) are available.

Rapid transit network design is made up of two intertwined problems: the
determination of alignments and the location of stations. There exist other related
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location problems such as those of locating park-and-ride facilities and depots, but
usually their corresponding feasible sets are limited to very few possibilities and
thus do not give rise to interesting location problems. The location of stations is a
typical attractive facility location problem for which several criteria can be applied
depending on the goals of the decision maker. However, a station located in a high
density area could be non-efficient because of the direction of the line to which
it belongs. For example, if the line goes north-south but the people located close
to the station work east or west of the station, this station will not be useful for
their working trips. Therefore, it is crucial to concentrate on the location of the
alignments and not only on that of the stations. Since the facility to be located is a
network, and therefore very large with respect to its environment, the problem under
consideration is an extensive or multi-dimensional facility location problem (Mesa
and Boffey 1996).

Our aim is to review some of the main aspects of rapid transit location. For the
sake of readability, we have avoided the use of lengthy formulations and formulas as
much as possible, as well as algorithmic details. These can be found in the original
sources. We will first describe in Sect. 24.2 the main indicators used to assess the
quality of a rapid transit network. Models and algorithms used for rapid transit
network design will be described in Sect. 24.3. In Sect. 24.4 we focus on the location
of stations. Conclusions follow in Sect. 24.5.

24.2 Objectives and Network Assessment

The main objective of a collective transit system is to improve the population
mobility. Since rapid transit systems usually have a high capacity, they extensively
reduce traffic congestion, airborne pollution and energy consumption, thus provid-
ing sustainable mobility. Moreover, these systems are among the quickest collective
mode of ground transportation, and therefore they usually provide the shortest travel
times. Another important feature is their structuring influence on cities since they
provide the backbone for the development of residential, business and commercial
areas. Rapid transit systems require high-level investments, both for construction
and maintenance. The initial investment is related to the construction of tunnels,
elevated or at grade right-of-ways, communication systems, and the purchase of
rolling stocks. Operating cost include fixed and variable costs on a daily basis.

The agents interested in the planning processes can be broadly classified into
three groups: the society in general, which is represented by transportation agencies
and government sections, the potential riders, and the companies involved in the
planning and construction processes, and offering the service. The first group is
mainly interested in global advantages such as those mentioned above. A measure
frequently used at the planning stage is the population covered by the system, often
defined as the population living within a certain distance threshold from stations.
This limit has been fixed to 400 m or 5 min walk in dense areas (Vuchic 2005),
but it can grow to one km in less populated regions. Moreover, the catchment
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areas of stations are not always limited to pedestrian traffic but also to combined
modes (Mesa and Ortega 2001). However, ridership is not only a function of
the distance to the line, but also of the design of the network (Gendreau et al.
1995). A better measure is the predicted trip coverage which can be measured by
origin-destination surveys, coupled with traffic equilibrium models. Potential users
are mainly interested in reducing their travel time. A secondary objective of the
passengers is to transfer between lines as little as possible. Of course this can be
included into a more general and difficult to measure concept of comfort. Finally,
the third group, that of construction and operating companies, is mainly concerned
with fixed and variable construction and operating costs and revenues.

An existing rapid transit network can be evaluated by means of network measures
and indicators, but the same measures can also be used to evaluate potential
networks, in particular those resulting from the process of combining corridors.
To this end graph theory is a useful tool. Furthermore, these measures can be
used as objective functions or as constraints in mathematical programming models.
Musso and Vuchic (1988) have developed some network topology indicators
such as circle availability, network complexity and connectivity. They have also
considered service measures and utilization indicators. Laporte et al. (1997) have
also measured the efficiency of rapid transit networks via the passengers/network
and passengers/plane measures. For example, these authors have shown that in a
circular city, triangle and cartwheel designs are preferable to star designs (Fig. 24.2)
in terms of connectivity and travel directness. Saidi et al. (2016) developed an
analytical model to determine the optimal number of radial lines in a ring-radial
configuration, which can be viewed as a generalization of a cartwheel in which the
radial lines do not necessarily intersect at a unique point.

Gattuso and Miriello (2005) provide a comparative analysis of 13 existing metro
networks with respect to 10 indicators. Lee et al. (2008) analyzed the Seoul metro
network with respect to characteristic path length, radius, diameter, clustering coef-
ficient, network efficiency, weight of edges, strength of nodes, and maximum flows
spanning tree. Other indicators such as regularity, service availability, punctuality

b) c)a) 

Fig. 24.2 Three basic metro designs. (a) Triangle. (b) Cartwheel. (c) Star
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and reliability can be found in UITP (2011). Nowadays, the values of some of these
indicators are often presented in the technical reports of operating companies.

Whereas most of the early research on indicators and measures concerns the
description and efficiency of the networks with respect to different topological
indicators, in recent years we have witnessed the emergence of new indices based on
the assessment of transportation networks from the angle of complex network theory
and robustness. In accordance with the glossary of IEEE (1990), robustness can be
defined as the degree to which a system or component can function correctly in the
presence of invalid inputs or stressful environmental conditions. In the case of rapid
transit networks planning, future ridership is an uncertainty input variable which
also depends on the travel times of alternative transportation modes. As noted by
Yang et al. (2017), metro systems that offer a large diversity of routes to passengers,
such as the Beijing metro, are also more robust in the presence of disruptions. In a
study of the Shanghai metro system, Sun and Guan (2016) found that the metro lines
carrying large volumes of passengers have more impact on the system vulnerability,
and lines with a circular topological form have a high impact on passenger flow
redistribution in the event of disruptions.

Another issue affecting robustness lies in the disturbances of normal operations.
The paper of De-Los-Santos et al. (2012) considers robustness from the angle of
passengers in the presence of disruptions. The auxiliary function applied to define
robustness measures is the total transit time of passengers. Two cases are considered.
In the first case, passengers affected by the disruption have to wait for the failure
to be repaired or have to take an alternative route in the same network. In the
second case, the operator provides a bus-bridge service. An example for the Madrid
commuter system illustrates the applicability of the robustness indices developed by
the authors.

Several researchers have analyzed rapid transit networks in terms of reliability
and robustness in the presence of random failures or deliberate attacks. Thus Zhang
et al. (2011) analyzed the effect of attacks on nodes or edges of a network: largest
degree node based attacks, highest betweenness node based attacks, and random
attacks. In this context, the betweenness of a node or of an edge is the number of
shortest paths (defined in number of edges) passing through the edge. They found
that the Shanghai subway network is robust against random attacks but vulnerable
to highest betweenness node-based attacks. Similar conclusions were later found by
Sun et al. (2015) and by Xing et al. (2017) who also studied the Shanghai metro
network. Jin et al. (2015) considered the problem of allocating protective resources,
such as screening detectors at the entrance of some stations, under the threat of
deliberate attacks. They cast this problem in a game theoretical framework and
illustrated their methodology on the Singapore network. Yang et al. (2015) assessed
the robustness of the Beijing subway system. A related research stream is the study
of the resilience of a system, i.e., the speed at which it recovers from a failure.
D’Lima and Medda (2015) conducted such a study for the London Underground.
For an overview of papers on the vulnerability and resilience of transport system,
see the paper of Mattson and Jenelius (2015) which contains a section devoted to
rail and public transport networks.
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Over the past 20 years there has been an increased research interest in the
structural properties of the networks representing complex systems, which is
interesting for understanding their functioning. One of the most cited examples in
the scientific literature is that of transportation networks and, in particular, metro
networks. The concept of small-world phenomenon comes from sociology. The
corresponding networks are an intermediate class between regular networks (with
equal-degree nodes) and random networks (edge-generated by a given probability).
Small-world networks are highly clustered, like regular networks, but they have a
low average shortest path length between pairs of nodes (Watts and Strogatz 1998).
Let G = (V ,E) a graph and let dij , vi , vj ∈ V be the topological distance between
vi and vj (the minimum number of edges in a path between vi and vj ). Then the
clustering coefficient C and the characteristic path length L are defined as

C = 3 × number of triangles

number of connected triples
and L = 1

|V |(|V | − 1)

∑

i 
=j

dij ,

where triangles are triples of vertices in which each node is connected to each of
the other two nodes, and connected triples are sets of three vertices linked to one
or two of the other two. In order to adapt these concepts to metric networks and to
overcome some indetermination, the average length of shortest paths and clustering
coefficients were substituted by global and local efficiency (Latora and Marchiori
2001):

Eglob(G) = 2

|V |(|V | − 1)

∑

i<j

1

dij
, and Eloc(G) = 1

|V |
∑

vi∈V
Eglob(Gi, ),

where Gi is the subgraph of the neighbors of vi .
In small-world networks it is easy to travel both at the local and at the

global levels. Since such networks are tolerant against disruptions, they are robust.
However, metro networks have been shown not to be robust at the local level.
Nevertheless, networks of direct connections, where there exists an edge between
all pairs of stations for which passengers do not need to transfer to another line,
may be seen as small-world networks (Sen et al. 2002; Seaton and Hackett 2004).
Other papers dealing with efficiency, robustness, vulnerability and small-world
phenomenon of metro networks are those of Latora and Marchiori (2002), Criado et
al. (2007), Derrible and Kennedy (2010), Barbadillo and Saldaña (2011) and Zhang
et al. (2013). The paper by Roth et al. (2012) also deserves a mention. These authors
consider the dynamics of the largest metro networks and prove that they converge
to a unique network shape. Xing et al. (2016) studied the connectivity, robustness
and reliability of the Shanghai RTS from the viewpoint of complex network theory.
Zhang et al. (2016) found that the Minsk and Shanghai metro networks possess the
small-world and scale-free properties. They also showed that the hub network is
a hierarchical one with a root (the station with the most transfers) which plays an
important role controlling some characteristics of the hub network.
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A new approach to the study of the connectivity of metro networks and thus
their robustness is grounded in the concept of hypergraphs and their associated
line graphs. Given a collective transportation network made up of a set of lines
{L1, . . . , Ll}, where Li = {si1, . . . , sili } is the set of stations of line Li , the associated
hypergraph is the pair H = (V (H),E(H)), where V (H) is the set of all stations,
and the hyperedge set E(H) = {L1, . . . , Ll} consists of the network lines. The
associated line graphs is L(H) = ({L1, . . . , Ll}, E(L(H))), where the edge set
E(L(H)) is the set representing the transfer stations. In Barrena et al. (2013)
the indices defined above are extended to collective transportation networks in
order to allow them to extract information on the ease of transfer and to compare
different metro networks from this viewpoint. In that paper, the notions of clustering,
characteristic path length, local efficiency and global efficiency are extended
to hypergraphs and are applied to the comparison of several metro networks.
Barrena et al. (2015) explore the transfer system of a collective transportation line
network taking into account the passenger level by using hypergraphs and their
corresponding line graphs. Finally, Criado et al. (2016) define different line graphs
for a multiplex network. This concept is useful to study relationships between the
edges of a metro network in which each layer of a multiplex network corresponds to
a line. It was applied to the computation of local and global efficiency for the light
metro of Calgary.

24.3 Location of Rapid Transit Networks: Models
and Algorithms

Construction projects for rapid transit networks can be classified into three groups:
those in which a single line is planned from scratch (Metro de Granada 2013),
those in which several lines are planned from scratch and simultaneously (for
example, Sociedad del Metro de Sevilla 2001), and those in which an existing
network is to be extended, which corresponds to a conditional network design
problem. These problems belong to the class of extensive facility location problems
on networks (Puerto et al. 2018).

24.3.1 Location of a Single Alignment

The problem of locating an alignment for a rapid transit system lies within the area
of location of one-dimensional structures either in a discrete or in a continuous
space (Mesa and Boffey 1996; Díaz et al. 2004), more precisely that of locating
paths and networks. Cast in the framework of graph theory, the problem is to select
a path between two nodes (which could be fixed a priori fixed) and some of the
intermediate nodes to be stations, in order to optimize an objective function subject
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to certain constraints. In the continuous setting, the problem is that of selecting a
straight line, a broken line (a polygonal segment) or a curved segment and some
points on it. If the rapid transit line is planned to be at grade, it is almost always
necessary to work with a discrete setting, but if the network is to be constructed
underground, then a mixed network-continuous space fits better. Here we consider
the problem of locating a path and the points on it, leaving the case of locating the
stations on a given alignment to Sect. 24.4. Therefore, the decision variables of the
problems considered in this section are those of the coordinates of the stations and
of the links connecting adjacent stations.

In order to realistically model the problem of locating an alignment, it is
necessary to consider several features in addition to those encountered in covering-
path problems (Current et al. 1985). These include interstation spacing constraints,
competition or intermodality with other means of transportation, demand allocated
to pairs of points instead of single point, etc. The early paper of Gendreau et al.
(1995) proposes a simple algorithmic approach to the problem of locating a transit
line, but without any computational implementation. To our knowledge, Dufourd et
al. (1996) provided the first real attempt to solve the problem of locating a transit line
taking into account maximum and minimum station interspacing and the number
of allowed stations to be located. In this paper, the objective is to maximize the
population covered by the stations. This is computed by using several levels of
catchment with the use of the Manhattan or �1 metric. The authors designed a greedy
construction procedure to generate an initial solution which was then provided
by tabu search. The paper by Bruno et al. (1998) incorporates the more realistic
criterion of maximizing trip coverage, as opposed to population coverage. In order
to introduce real-world features into their model, the authors consider a private mode
of transportation competing with the bimodal pedestrian-public transit mode. Each
mode uses its respective network and the demand is assigned to the mode with the
least travel cost. The problem consists of computing non-dominated solutions with
respect to cost and trip coverage objectives. Bruno et al. (2002) considered the same
model as in Dufourd et al. (1996), except for the use of the �2 metric instead of
the �1 metric for interstation distances. They developed a heuristic consisting of
two phases: the construction of the path and the iterative improvement of it. This
heuristic was shown to produce better solutions in less time than the tabu search
approach of Dufourd et al. (1996).

A similar approach was used in Laporte et al. (2005) to solve the more complex
problem of maximizing trip coverage in the presence of an alternative mode of
transportation. Instead of considering a binary variable to decide to which mode the
demand pair should be allocated, the authors used a continuous variable representing
the distribution of the demand of the pair between each mode, according to a logit
function which depends on the difference between travel times (or costs) of both
modes.

Other objectives have also been employed. For example, in order to avoid
possible damage to historical building a modified anticenter path location problem
is used in Laporte et al. (2009) to design a metro line as far away as possible from
some patrimonial buildings to be protected. The problem was solved with the help of
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a Voronoi diagram constructed around the protected sites. More recently, Ortega et
al. (2018) considered the problem of locating a single alignment in a sprawled city in
order to maximize the functional diversity of the districts covered by the alignment
and, indirectly, to reduce the need to travel by car in order to satisfy one’s current
needs. The authors maximized an objective function defined as an entropy measure.
They solved the problem by means of a greedy heuristic akin to the construction
phase of the Dufourd et al. (1996) heuristic.

24.3.2 Rapid Transit Network Design

We now consider the problem of locating a rapid transit network from scratch, as
well as the problem of extending an already located network. The first attempt
at modeling and solving the general rapid transit network design problem was
presented in the paper of Laporte et al. (2007), which provides a computationally
tractable approach consisting of three stages. The first is the selection of key stations,
which are the main attraction points: railway or bus stations and airports, hospitals,
university campuses, large stores and commercial centers and densely populated
areas far away from the central area of the city, etc. The second stage is to connect
the key stations to form a core network. Finally, the intermediate stations are located
on the alignment resulting from the second stage. In the same paper, a linear integer
programming model aiming at maximizing the trip coverage was used in order
to solve the core network design problem in presence of an alternative mode of
transportation. Later, Marín (2007) relaxed some restrictions on the lines. In his
model the number of lines and the extremes of them are not fixed. Cadarso and
Marín (2017) later considered transfer effects in rapid transit network design.

With the aim of modeling the user’s behavior, Marín and García-Ródenas (2009)
introduced a logit function in order to distribute the travelers between the rapid
transit and private modes. In order to maintain the linear character of the program,
they considered a piecewise linear interpolation of the logit function. In the paper
of Escudero and Muñoz (2009) the problem is decomposed into two stages. The
first one consists of determining the infrastructure network, and the second one
determines the lines. This work was later extended to account for the number of
transfers (Escudero and Muñoz 2014, 2016).

A recent methodological contribution to modeling and solving the transit net-
work design problem can be found in Gutiérrez-Jarpa et al. (2013, 2018). These
authors take into account the fact that the rapid transit networks are composed of
line segments which often have to be constructed within broad corridors defining
preassigned configurations. These segments are later assembled into lines. The
authors applied two criteria: minimizing construction cost, and maximizing origin-
destination traffic capture, and computed Pareto-optimal solutions. Gutiérrez-Jarpa
et al. (2017) solved a related problem incorporating three objectives: infrastructure
cost, travel time saving yielded by the use of the metro system, and patronage. They
performed a study of the trade-offs between these objectives. Laporte and Pascoal
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(2015) described a metaheuristic for the solution of a metro network design problem
under two objectives: population coverage and construction cost. As in the previous
studies, they worked with a predefined configuration defined as a star, a triangle
or a cartwheel. They first constructed non-dominated paths corresponding to the
segments of the configuration and then assembled them optimally by solving an
integer linear programming problem.

Marín and Jaramillo (2008) studied a multi-period capacity expansion problem.
In their paper the lines to be opened in each period are determined by taking into
account an objective function which is a combination of community, passenger and
operator oriented objectives. Since the general problem cannot be solved exactly, a
heuristic procedure is designed to solve it. Other approaches to solve the mathemat-
ical programming model for the rapid transit network design problems are based on
Benders decomposition (Marín and Jaramillo 2009), genetic algorithms (Wang and
Lin 2010) and simulated annealing (Fan and Machemehl 2006; Kemanshani et al.
2010). Line configuration with assignment of passengers is studied in Guan et al.
(2006).

A recent line of research deals with network robustness aspects. Several ways
of treating robustness have been studied: through the application of game theory
(Laporte et al. 2010), by providing alternative routes to be used in case of a
disruption (Laporte et al. 2011), through the concept of robustness (Cadarso and
Marín 2012, 2016; García-Archilla et al. 2013), and of risk aversion (Cadarso and
Marín 2016).

Finally, a number of papers now combine two levels of planning in rapid transit
network design. The first one, which is strategic, is the location of lines and
stations, while the second, which is tactical, is the determination of train capacities
and frequencies. These two problems are interrelated because the profitability
of a system is a function of the construction and operating costs, and of the
revenue related to ridership, which partly depends on travel time and therefore on
capacity and frequency. An and Lo (2016) integrate these two planning levels in
the framework of stochastic programming. Here the alignments and frequencies are
determined in a first phase, and flexible services are offered in a second phase to
handle demand overflow. López-Ramos (2014) provides a survey of this line of
research. Recent contributions are those of Canca et al. (2016, 2017) and López-
Ramos et al. (2017).

24.4 Location of Stations

The problem of locating stations is different in the case of locating a network from
scratch than in the case of extending an already existing network. In the first case,
several locations attract large volume of passengers and are obvious candidates for
stations. The remaining stations must then be located with the help of analytical
tools. Assuming that the alignments of the network are given, the problem of
efficiently locating the stations arises. The first objective for the community and
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Fig. 24.3 Concentric
catchment areas around a
station intersecting with a
census tract

alignment

census tract

one of the most important ones for the operating company is to attract as many
travelers as possible. To this end, in technical projects the population living in a
circle centered at each station is used as an approximation. However, since walking
distances are not Euclidean, this is a rough measure for the station attractiveness.
In their paper, Laporte et al. (2002) used census tracts coupled with information
on population density to estimate the actual walking distances. Different level of
attraction were applied in order to obtain a better estimation of the population
covered (see Fig. 24.3). For each given location of the stations in a corridor, line
coverage was subsequently defined. In that paper, given a discrete set of potential
sites for stations, optimal locations are obtained by maximizing the line coverage
with the help of an ad hoc defined acyclic graph and a longest-path algorithm.

However, the estimation of future ridership cannot only be based on line coverage
since it depends not only on the location of the stations of the line, but also on the
overall location of the network. In their paper, De Cea et al. (1986) used origin-
destination pairs for computing the total population affected by an improvement of
a transportation network. In Laporte et al. (2005), trip coverage was analytically
defined and used to compute the network coverage as a good estimate of future
ridership. The objective of minimizing the total travel time of passengers was
introduced in Vuchic and Newell (1968). These authors considered the case of a
population concentrated in a specified area and commuting to a central point. Their
aim was to determine an optimal interstation spacing, while taking access time,
kinematics of trains, dwell times and intermodal transfer times into account.

There exist a number of papers dealing with the location of new stations on
general railway lines. Here we will highlight some of them. Hamacher et al.
(2001) studied a problem in which the objective is to maximize the saving in
passenger travel time when introducing new stations. Schöbel (2005) considered
the maximization of coverage and the minimization of the number of new stations
as bicriteria problems. Gross et al. (2009) presented two models combining the
number of stations and the distances to them. In the first one, the objective was to
minimize the number of new stations assuming that each of these covers a demand
located within a predefined distance. The second problem is NP-hard and consists of
minimizing the sum of distances from the demand points to the closest (old or new)
station under the constraint that the number of new stations is bounded above. The
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authors have considered two environments for each problem (a planar space with an
�1 metric, and a network), thus giving rise to four cases. For each case, they have
identified a polynomial complexity dominating set for the new stations. Körner et al.
(2014) have dealt with the problem of locating two new facilities in a mixed planar-
network space so that the number of trips between each pair of demand points is
maximized. In this paper it is assumed that an alternative mode of transportation
exists. The authors have analyzed the cases of segments and tree-networks and have
also designed polynomial time algorithms. For the case of more than two facilities
to be located on a segment, the big-cube-small-cube method has been shown to be
efficient. In a recent paper by Carrizosa et al. (2016), the kinematics of the trains are
taken into account in order to minimize the total travel time when a given number of
new stops are located, as well as the total travel time of the passengers subject to the
coverage of all demand points. Finally, López-de-los-Mozos et al. (2017) recently
solved the problem of locating one or two transfer points in a network in such a
way that, under various objective functions, the traffic captured by the network is
maximized.

24.5 Conclusions

The design of rapid transit systems is a complex process that involves the partici-
pation of many players. These projects are fraught with high costs and uncertainty.
Formulating models and designing algorithms for such problems is difficult since
the objectives and constraints are not as well defined as in many operational research
problems. Analytical techniques can be employed to assist decision making or to
solve some specific subproblems, but human judgment and intervention remain
critical in the planning process. Over the past 25 years we have witnessed a number
of important methodological advances in the area of rapid transit location planning.
Several quality indices have been developed and mathematical models of increasing
realism have been proposed, some of which can be solved directly by off-the-
shelf solvers or by powerful heuristics. We expect to see in the near future models
and algorithms capable of integrating operational and tactical considerations when
solving the problem at the strategic planning level.
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Chapter 25
Districting Problems

Jörg Kalcsics and Roger Z. Ríos-Mercado

Abstract Districting is the problem of grouping small geographic areas, called
basic units, into larger geographic clusters, called districts, such that the latter are
balanced, contiguous, and compact. Balance describes the desire for districts of
equitable size, for example with respect to workload, sales potential, or number of
eligible voters. A district is said to be geographically compact if it is somewhat
round-shaped and undistorted. Typical examples for basic units are customers,
streets, or zip code areas. Districting problems are motivated by very diverse
applications, ranging from political districting over the design of districts for
schools, social facilities, waste collection, or winter services, to sales and service
territory design. Despite the considerable number of publications on districting
problems, there is no consensus on which criteria are eligible and important and,
moreover, on how to measure them appropriately. Thus, one aim of this chapter is to
give a broad overview of typical criteria and restrictions that can be found in various
districting applications as well as ways and means to quantify and model these
criteria. In addition, an overview of the different areas of application for districting
problems is given and the various solution approaches for districting problems that
have been used are reviewed.

25.1 Introduction

Most problems discussed in this book focus on the location of facilities: where to
locate, how many to locate, when to locate, which type to locate, etc. However,
although the driving force is the location of facilities, equally important is the second
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aspect of location problems that is usually not mentioned explicitly: the allocation
of customers to facilities. Even if this task is trivial in many classical location
problems such as the p-median or the p-center problem (see Chaps. 2 and 3),
only after deciding about allocations can we evaluate a given facility configuration
and, thus, try to find the optimal one. Hence, the allocations have a fundamental
impact on the location of facilities and different rules of allocation will result in
different evaluations of the same facility configuration. The focus of districting
problems is now the other way around: we first find allocations—or, more generally,
determine which customers should be served together—and then, if necessary, we
find locations for the facilities serving the customers.

In general, districting is the problem of grouping small geographic areas,
called basic units or basic areas, into larger geographic clusters, called districts or
territories, in a way that the latter are acceptable according to relevant planning
criteria. Typical examples for basic units are customers, streets, or zip code areas.
Depending on the practical context, districting is also called territory design,
territory alignment, zone design, or sector design. Three important criteria are
balance, contiguity, and compactness. Balance describes the desire for districts
of equitable size with respect to some performance measure for the districts.
Depending on the context, this criterion can either be economically motivated,
for example, equal sales potentials, workload, or number of customers, or have a
demographic background, for example, the same number of inhabitants or eligible
voters. A district is called contiguous if it is possible to travel between the basic
units of the district without having to leave the district. Finally, a district is said
to be geographically compact if it is somewhat round-shaped, undistorted, and
without holes. Contiguous and compact districts usually reduce the travel time of
the person responsible for servicing the district. Unfortunately, a rigid and concise
mathematical definition of contiguity and compactness is often difficult and strongly
depends on the available data. In addition, for each district often the location of a
“facility” is either given or should be sought. This facility can be a branch office,
a depot, or the home address of a sales person. Figure 25.1 shows an example of a
districting plan for streets and for zip code areas.

Fig. 25.1 An example of a districting plan for streets and for zip-code areas
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Districting problems are motivated by very diverse applications, ranging from
political districting over the design of districts for schools, social facilities, waste
collection, or winter services, to sales and service territory design. Looking at the
literature, it is striking that only a few authors consider the districting problem
independently from a practical background. Therefore, the aim of this chapter is
to give a broad overview of typical criteria and restrictions that can be found in the
various districting applications as well as ways and means to quantify and model
these criteria. As most districting applications have a strong spatial component, it is
natural to integrate the algorithms into a Geographic Information System (GIS).
In a modern GIS, users can access and utilize the rich variety of maps, spatial
databases, and geographical objects available to appropriately mark out the problem
and display the solutions, see also Chap. 19.

The rest of the chapter is organized as follows. Section 25.2 reviews the broad
range of districting applications and identifies and motivates the different planning
restrictions. In Sect. 25.3, basic notations are introduced. This is followed by
Sect. 25.4 that discusses the most common criteria found in districting applications
and discusses possible approaches to quantify these criteria and to incorporate them
into districting models. Finally, Sect. 25.5 presents an overview of the different
solution techniques for solving districting problems.

25.2 Applications

There are four major areas of application for districting problems: political dis-
tricting, sales territory design, service districting, and distribution districting, and
this section provides a comprehensive but non-exhaustive overview. While sales
is also a type of service, due to its dominant role in the literature, sales territory
design will be discussed separately from service districting. But before we start,
we mention a first “application” in the context of facility location that derives from
the problem of aggregating demand points for location problems with the aim of
reducing the complexity of the problem. Simchi-Levi et al. (2003) formulate the
following guidelines (among others): aggregate demand points for 150–200 zones,
make sure each zone has an approximately equal amount of total demand, and place
aggregated points at the center of the zone. These guidelines read as a classical
districting problem.

25.2.1 Political Districting

Political districting is the problem of dividing a governmental area, such as a city or
a state, into constituencies from which political candidates are elected. Basic units
typically correspond to census tracts, which are given as polygons, and the districts
to the electoral constituencies. In general, the process of redistricting has to be



708 J. Kalcsics and R. Z. Ríos-Mercado

periodically undertaken to account for population shifts. The length of these periods
varies from country to country, e.g., in New Zealand every 5 years, in Canada and
the U.S. every decade (after each census). In the past, political districting has often
been flawed by manipulation aiming to favor some particular party or to discriminate
against social or ethnic minorities. Since the responsibility for approving state and
local districting plans usually falls to elected representatives, plans are likely to be
shaped implicitly, if not overly, by political considerations, e.g., to keep them in
power. A famous case arose in Massachusetts in the early nineteenth century when
the state legislature proposed a salamander-shaped electoral district in order to gain
electoral advantage. The governor of the state at that time was Elbridge Gerry, and
this practice became known as gerrymandering. See Lewyn (1993) for an interesting
description of gerrymandering cases.

To avoid political interference, many states have set up a neutral commission
to determine political boundaries satisfying a number of legislative and common
sense criteria. Depending on the country or jurisdiction involved, these criteria
may be enforced by legislative directive, judicial mandate, or historical precedent.
However, there is no consensus in political science, law, or geography on which
criteria are legitimate for the districting process, i.e., satisfy the neutrality condition.
Moreover, it is often unclear how they should be measured (Williams 1995). One
important issue at stake is population equality. To respect the principle of “one
man-one vote”, i.e., every vote has the same power, all districts should contain
approximately the same number of voters, i.e., be balanced. In the U.S., population
equality has been deemed by the courts to be very important, and as a result,
the total deviation of congressional districts from perfect balance was less than
1% after the last census in 2000 (Webster 2013). In other countries, the allowed
deviations are usually higher (Handley and Grofmann 2008). Two other important
criteria always being mentioned are contiguity and compactness which both aim
at preventing gerrymandering. While contiguity is generally undisputed and easy
to verify, this is not the case for compactness. There is a broad discussion on how
to quantify this criterion adequately (Horn et al. 1993), and whether it is relevant
in the first place since an algorithm will never gerrymander on purpose as long
as it is does not use political data (Garfinkel and Nemhauser 1970). Moreover, if an
adequate minority representation is sought for, this may sometimes only be achieved
through non-compact districts (Dixon 1968). Other—often disputed—criteria are
the conformity to administrative boundaries, e.g., cities or counties, the preservation
of communities of interest, socio-economic homogeneity or a fair representation
of minority voters across the districts, the similarity with the previous electoral
districts, or the consideration of topological obstacles such as mountain ranges,
lakes, or rivers (cf. George et al. 1997; Parker 1990; Bozkaya et al. 2011). An
excellent review on typical criteria for political districting and their eligibility is
given in Webster (2013).

When discussing automated procedures in the literature, it is always noted that
they are non-partisan and neutral as long as they do not use political data and, hence,
prevent gerrymandering. However, even if the computer does not gerrymander on
purpose, it may still do it accidentally, precisely because no political data is taken
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into account. Therefore, Puppe and Tasnádi (2008) recently introduced the notion
of an (ex post) unbiased districting plan. In such a plan the number of districts won
by each party respects the relative strength of the party in the population as close
as possible. They focus on game theoretical aspects of the problem; see also Nagel
(1965). However, one has to do a careful weighing up to avoid forthright politically
biased criteria that lead, in spirit, to gerrymandering.

25.2.2 Sales Territory Design

The important but expensive task of designing sales territories is common to
all companies that operate a sales force and need to subdivide the market area
into regions of responsibility that are each attended to by one or more sales
representatives. According to Zoltners and Sinha (2005), approximately every tenth
full-time employee in the U.S. is working as a field and retail sales person and
the expenditure for them is more than three trillion dollars every year. Territories
with low sales potential, intense competition, or too many small accounts lead to
low morale, poor performance, a high turnover rate, and an inability to assess the
productivity of individual territories. Therefore, well-planned decisions enable an
efficient market penetration and lead to decreased costs and improved customer
service and sales. Zoltners and Sinha (2005) “guestimate” that a good territory
alignment can increase sales by 2–7% compared to an average alignment. In the
related literature, districts are predominantly called territories and districting is
termed territory alignment or territory design.

In the classical problem, the task is to assign a given set of (prospective) customer
accounts, each with a fixed market potential, to the individual members of the sales
force such that each customer has a unique representative and each sales person
faces equitable workload and travel time and has an equal income opportunity in
terms of incentive pay (Zoltners and Sinha 2005). Thus, basic units correspond to
accounts and are usually given as points. Concerning the travel time, if a sales person
visits each customer every day, then the travel time is proportional to the length
of a traveling salesman problem (TSP) tour. However, the workload of districts is
usually balanced over 3–6 months and some customers may have to be visited only
once during this time whereas others require weekly service. Moreover, customers
may have time windows, tours may include overnight stays, and so on, which makes
the actual computation of the travel times almost impossible. Hence, in most cases
one has to rely on estimates. Typically, a sales person is exclusively responsible
for all customers within a specific geographic region. However, in large companies
sometimes a sales person is only responsible for a certain product segment or
accounts of a particular size within his region. In such cases, sales territories
may overlap. For practical examples of sales territory design see Fleischmann and
Paraschis (1988), Zoltners and Sinha (2005), and López-Pérez and Ríos-Mercado
(2013).
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Three classical sales districting criteria are again balance, contiguity, and com-
pactness. In contrast to political districting, typically more than one performance
measure has to be balanced, for example workload and sales potential. A district
with comparatively many small accounts or customers with low sales potential will
yield lower sales and, hence, lower incentives for the responsible sales person than a
district with an equitable workload but only high potential accounts. This disparity
will lead to discontent among the sales persons and, in the long run, lower sales
for the company. Having said that, only a few authors consider more than one
balancing criterion: Deckro (1977), Zoltners and Sinha (1983), and Ríos-Mercado
and Fernández (2009). Contiguous districts are desired to obtain clearly defined
geographic areas of responsibility for each sales person, which should prevent them
from competing for customers with a high sales potential. Unfortunately, customers
are typically represented by their addresses, i.e., points on the map, and it is not clear
how to assess contiguity in this case. Compactness describes the desire for districts
that are geographically closely packed. Apart from the visual appeal of compact
districts, the criterion often serves, together with contiguity, as a proxy for reducing
the unproductive travel time of the sales force. The hope is that geographically
compact and contiguous districts result in smaller travel times on a day-to-day basis
than non-compact and/or non-contiguous districts.

As the main goal of most companies is to maximize profit, several authors
relax the assumption that the sales potential of customers is fixed. Instead, they
propose an integration of time-effort allocation and territory design methods to
increase profit while maintaining the equitable workload criterion (cf. Lodish 1975;
Glaze and Weinberg 1979; Zoltners and Sinha 1983). These models not only assign
customers to sales people but also determine how much time should be invested
in the customer. Some authors even object that equity is not the primary goal for
most companies. Instead, the aim should be to maximize profits, regardless of any
balancing aspect (Drexl and Haase 1999). However, in practice sales persons are
typically reluctant to implement such detailed call plans resulting from pure profit
maximizing approaches (Zoltners and Sinha 2005). Moreover, designing territories
is a mid- or even long-term decision whereas time-effort allocation is an operational
problem that is influenced by weather (especially in the beverage industry), sales
promotions, etc. Thus, these two problems should be addressed separately.

Often, the number of districts to be designed is predetermined by the designated
sales force size (Fleischmann and Paraschis 1988). If the size is not self-evident,
methods based on the total workload involved in covering the entire market
compared to the available time per sales person can be used. Another possibility
is to follow the “decreasing returns” principle and add sales persons to the sales
force as long as the expected increase in profit exceeds the expected increase in
costs (Howick and Pidd 1990; Zoltners and Sinha 2005).

As sales persons have to visit their territories regularly, their home-base, e.g.,
office or residence, is an important factor to be considered in the alignment process.
However, there is no consensus as to whether predetermined locations should be
kept or be subject to the planning process. On the one hand, most sales persons have
strong preferences for home-base cities. Hence, such locations should be respected
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or determined prior to the alignment to socialize them with the sales management
(Zoltners and Sinha 2005). On the other hand, addresses and sales personnel
frequently change and the management often does not want sales persons residences
to overly influence the definition of territories (Fleischmann and Paraschis 1988).

One important, but only recently addressed aspect of sales territory design is
that customers often require service with different frequencies. Some customers
have to be visited weekly, while others require service only once per month. As
a result, planners not only have to design the districts, but also schedule visits to
customers within the planning horizon. For example, if the planning horizon is
divided into weeks and days, then we also have to decide which customers should
be visited in which week and on which day of that week. The criteria for scheduling
customer visits are very similar to the ones for designing the sales territories. The
total workload incurred by all customers served in each time period should be the
same across all periods and the set of all customers visited in the same time period
should be as compact as possible to reduce travel times during each period. While
contiguity is still desirable, differing visiting frequencies will make it very difficult,
or even impossible, to obtain contiguous sets of customers for each period. For more
details, see Bender et al. (2016, 2018).

25.2.3 Service Districting

The problem of designing service districts appears in various contexts. One area
of applications focuses on social facilities such as hospitals or public utilities.
Sometimes districts are needed to define for each inhabitant which facility he
should visit to obtain service, for example for preventive medical examinations,
or to determine areas of responsibility of home-care visits by health-care personnel
such as nurses or physiotherapists. The goal is to determine contiguous districts that
have a good accessibility with respect to public transportation and have an equitable
workload based on service and travel time or account for a high capacity utilization
of the social facility (cf. Minciardi et al. 1981; Blais et al. 2003; Benzarti et al.
2013).

A second field of applications deals with providing service to streets. A classical
problem concerns the design of districts for postal or leaflet delivery. Instead of
considering each household separately, districts are composed of whole streets.
Thus, basic units correspond to streets and each basic unit typically has two
attributes: the times required to traverse the street with and without providing
service. The task is to partition the streets into a given number of districts such
that the required delivery time is approximately the same for all districts and
does not exceed the working time restriction of the deliverer. The delivery time
is proportional to the length of a Chinese postman tour through the district, which
can be computed efficiently. Moreover, the delivery districts should be contiguous,
incur little deadheading, and should not overlap, i.e., be geographically compact
(Bodin and Levy 1991; Butsch et al. 2014; García-Ayala et al. 2016). A common
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characteristic of these applications is that the deliverer either walks through his
district on foot or goes by bike so that one-way streets are no hindrance. If a street is
too wide or has too much traffic to serve it in a zig-zag pattern, then each side of the
street is modeled as a separate basic unit. A similar problem arises in the context of
meter reading in power distribution networks (de Assis et al. 2014). Closely related
are districting problems for solid waste disposal, salt spreading, and winter gritting
(Hanafi et al. 1999; Muyldermans et al. 2002; Lin and Kao 2008). The criteria are
almost identical to postal delivery. The only differences are that vehicles typically
have to respect one-way streets and have difficulties making U-turns, and that their
tours have to include a depot, e.g., to drop off the waste or refill salt. All these
aspects make the computation of the travel times more difficult. Other applications
deal with the design of patrol districts for police cars and primary response areas for
ambulances, where the districts additionally should have an average response time
and/or incident arrival rate below a given threshold (Baker et al. 1989; D’Amico
et al. 2002; Camacho-Collados et al. 2015).

Other applications deal with the problem of assigning residential areas to schools
(Ferland and Guénette 1990; Schoepfle and Church 1991). Criteria to be taken into
account are capacity limitations and an equal utilization of the schools, maximal or
average travel distances for students, good accessibility, and ethnic balance. Another
aspect is to decide which students should walk to school and which should take the
school bus. Districting problems also occur in electric power networks. According
to Bergey et al. (2003), the World Bank regularly faces the challenge of helping
developing countries to move from state owned, monopolistic electric utilities to a
more competitive environment with multiple electricity service providers. At that,
they face the task of partitioning the physical power grid into economically viable
districts (distribution companies). The main aim is to determine non-overlapping
and contiguous districts with approximately equal revenue potential (to foster
competition) which are compact over a geographic region (to be easier to manage
and more economical to maintain).

Fernández et al. (2010) study a very unique districting problem arising in the
context of collection of waste electric and electronic equipment (WEEE) in Europe.
The problem was motivated by a recycling directive adopted in the European Union
which states, among other things, that each company selling electrical or electronic
equipment in a European country has the responsibility to collect and recycle an
amount of returned items proportional to the firm’s market share. A districting
plan assigns basic units to companies; however, in contrast to classical districting
problems, the territories should be as geographically dispersed as possible to avoid
regional monopolies. The problem also involves particular balancing constraints and
allows splitting basic units to balance territories with respect to different product
types. They termed this the maximum dispersion territory design problem. In a
related work, Fernández et al. (2013) introduce the maximum dispersion problem
which is essentially a partition problem seeking to maximize a dispersion function.
In this new problem, no split basic units are allowed, so it can be seen as a special
case of the maximum dispersion territory design problem.
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25.2.4 Distribution Districting

Another important field of applications is the design of pickup and delivery districts
in logistics. Typically, such problems are modeled and solved as vehicle routing
problems. However, if there exists considerable uncertainty in the demand of
customers, several authors propose a two-phase approach. In the first phase, pickup
and delivery districts are created based on uncertain demands. Once the districts
are given, the uncertainty is revealed and the routing is done in the second phase
on a day-to-day basis (Haugland et al. 2007). This conforms with the well-known
“cluster first–route second” paradigm for vehicle routing problems. Hence, basic
units correspond to potential customers, given as points, and the task is to partition
the set of customers into districts, one for each driver, such that the districts satisfy
certain planning criteria. A first advantage of these fixed customer assignments is
that the driver becomes familiar with his district. This, in turn, increases the driver’s
performance since he becomes quicker at finding customer addresses, localizing
offices within buildings as well as organizing his routes (Zhong et al. 2007).
A second advantage is that customers become familiar with their drivers, which
increases customer satisfaction (Jarrah and Bard 2012). These advantages however
have to be carefully weighed against flexible customer assignments on a daily basis
which enable the planner to maximize the driver utilization and minimize the routing
costs (Zhong et al. 2007).

Concerning the criteria for the districting process, districts should be contiguous
and compact, and the workload should either be balanced or at least not exceed a
given upper bound, e.g., the driver working time. The workload includes the service
time at the customers and typically also an estimate of the average travel time within
the district and to a centralized depot (Galvão et al. 2006; Zhong et al. 2007; Jarrah
and Bard 2012; Lei et al. 2012, 2015).

A final application concerns the establishment of a distribution center which
involves a considerable level of risk due to its enormous start-up investment and
volatile customer demand patterns. One way of reducing this risk is to avoid both
overcrowding and, especially, underutilization of centers by balancing the allocation
of customers to them (Zhou et al. 2002).

25.3 Notations

This section introduces notations for the main components of districting problems.

25.3.1 Basic Units

A districting problem comprises a set J = {1, . . . , n} of basic units, sometimes
also called sales coverage units, basic areas, or geographical units. Each basic unit
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represents a geometric object in the plane: a point, e.g., a geo-coded address, a
line segment, e.g., a street, or a polygonal area, e.g., a zip-code area, county, or
predefined company trading area. The distance between two basic units i, j ∈ J is
denoted as dij = d(i, j). Typical examples for dij are Euclidean (cf. Fleischmann
and Paraschis 1988) or road distances (cf. Ríos-Mercado and Salazar-Acosta 2011).
The latter have the advantage that they can properly reflect obstacles such as rivers
or mountain ranges. For non-point objects, distances are either computed between
representative points, e.g., the midpoint of a street or the centroid of a polygon, or
as the surface-to-surface distance.

Moreover, one or more quantifiable attributes, called activity measures, are
associated with each basic unit. Typical examples are service times, estimated sales
potential, or number of voters. Sometimes, they also include an estimate of the travel
time for visiting the basic unit (Jarrah and Bard 2012). The activity measures are all
assumed to be deterministic. Let wq

j denote the q-th activity measure of basic unit
j ∈ J , 1 ≤ q ≤ Q, where Q is the number of different attributes to be considered.
If Q = 1, the superscript is usually omitted.

If explicit neighborhood information is given for the basic units, then G =
(V ,E) denotes the neighborhood or contiguity graph where vj ∈ V corresponds
to j ∈ J and {vi, vj } ∈ E if and only if basic units i and j are neighboring. The
length of edge {vi, vj } is dij . Finally, N(j) ⊆ V denotes the set of basic units
adjacent to vj ∈ V .

25.3.2 Districts

A district Dk , 1 ≤ k ≤ p, is a subset of basic units, where p is the total number
of districts. The number of districts can either be fixed in advance, e.g., the number
of political districts to create or the number of available nurses for elderly care, or
be subject to planning, e.g., the minimal number of salespersons required to service
all customers or the minimal number of patrol cars to ensure a certain response
time. The q-th activity measure of a district is the sum of the activity measures of
its basic units, i.e., wq(Dk) = ∑

j∈Dk
w

q

j . For Q = 1, w1(Dk) is simply called
the size of the district. Note that sometimes the size also includes an estimate of
the (expected) travel time. However, as travel times are represented through the
compactness criterion, we refrain from including them and just mention when this
may change things.

In some applications the location ck of a facility is associated with each district
Dk . This may be some predefined site, e.g., a hospital providing preventive medical
care, or be an outcome of the districting process, e.g., the optimal location of a sales
office. In districting, this location is called the center of the district. One has to
be aware of the ambiguity with the notion of a center in location theory, which is
something different, see Chap. 4. Typically, the center coincides with a basic unit,
i.e., ck ∈ J . A predetermined set of centers is denoted by Jc.

Finally, a districting plan D is defined as a set of p districts D = {D1, . . . ,Dp}.
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25.3.3 Problem Formulation

The districting problem can now informally be described as follows: Partition all
basic units J into a number of p districts that satisfy the planning criteria of balance,
compactness, and contiguity and, if required, locate a center within each district.
Unfortunately, in contrast to many other optimization problems, there does not
exist the mathematical model for districting problems. This is mainly due to the
considerable ambiguity on how to quantify the different planning criteria and in the
motivation and relevance of some of them.

25.4 Districting Criteria

This section presents an overview over typical criteria employed in districting
problems and various ways and means to quantify them. In the following, a measure
for a criterion applied to a single district (the whole districting plan) is termed a local
(global) measure. Moreover, if not explicitly stated otherwise, let Q = 1.

25.4.1 Complete and Exclusive Assignment

In most cases, each basic unit is assigned to exactly one district, i.e., the districts
define a partition of the set J of basic units:

D1 ∪ · · · ∪ Dp = J and Dl ∩ Dk = ∅, l 
= k, 1 ≤ l, k ≤ p.

The requirement of exclusive assignment is sometimes also termed integrity. For
political districting, these criteria are obvious. In sales territory design, unique allo-
cations result in transparent responsibilities for the sales force avoiding contentions
and allowing the establishment of long-term customer relations.

25.4.2 Balance

This criterion is one of the trademarks of districting problems. It expresses the desire
for districts of equitable size with respect to the activity measure(s). In political
districting, this criterion is employed to ensure the “one man–one vote” principle,
and in sales territory design to avoid districting plans with large discrepancies in
terms of workload, sales potential, or travel time.

Due to the discrete structure of the problem and the integrity assumption,
perfectly balanced districts can generally not be accomplished. There exist different
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approaches in the literature to quantify imbalance and to incorporate the criterion
into the districting process. The most common local measure is based on the relative
deviation of the district size w(Dk) from the mean district size μ = w(J )/p:

bal(Dk) =
∣
∣
∣
∣
w(Dk) − μ

μ

∣
∣
∣
∣ , 1 ≤ k ≤ p

(cf. Forman and Yue 2003; Ríos-Mercado and Fernández 2009; de Assis et al.
2014). The larger this deviation is, the worse is the balance. A district Dk is
perfectly balanced, if bal(Dk) = 0. If district sizes also include a solution dependent
performance measure—in addition to the activity measure—, then this affects μ and
the balance of one and the same district may be different for different districting
plans. For example, in sales and service territory design, districts often have to be
balanced with respect to workload; workload, in turn, usually consists of service
times plus travel times. While the total sum of the former is solution independent,
the latter depend on the actual district layout. Another approach concedes a priori
a certain relative deviation α > 0 from perfect balance and only measures the
imbalance exceeding this threshold (Bodin and Levy 1991; Bozkaya et al. 2011)

bal(Dk) = 1

μ
max{w(Dk) − (1 + α)μ, (1 − α)μ − w(Dk), 0},

i.e., the district is balanced if its size is between this lower and upper bound. Instead
of determining the bounds based on the mean district size, they are sometimes
directly motivated by the application, e.g., the working time restrictions of the
mailman or the sales potential required to ensure a decent living for the sales person.

Using these local measures, the global balance of a districting plan is then
typically computed as the maximal balance of a district

balmax(D) = max
k=1,...,p

bal(Dk).

Less common are the sum over all districts (Bozkaya et al. 2003; Bodin and Levy
1991) or a convex combination of both (Butsch et al. 2014):

balsum(D) =
p∑

k=1

bal(Dk) and balcv(D) = λ balsum(D)+(1−λ) balmax(D),

with λ ∈ (0, 1). The convex combination alleviates some of the weaknesses of
balsum and balmax. The latter does not take into account the balance of all districts
and sometimes yields rather poor solutions on average whereas the former allows a
few highly unbalanced districts to be compensated by some well-balanced districts.
A different global approach computes the range of district sizes (Tavares-Pereira
et al. 2007)

balrng(D) = max
k=1,...,p

w(Dk) − min
k=1,...,p

w(Dk).
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Mathematical Modelling
In districting models, there is no clear trend on whether to treat balance as a hard
constraint (Hess et al. 1965; Fleischmann and Paraschis 1988; Zoltners and Sinha
2005) or to include it in the objective function (Blais et al. 2003; Ricca and Simeone
2008; de Assis et al. 2014). In the former case, the size of each district is required
to lie between a given lower and upper bound. Some authors even do both (Bergey
et al. 2003; Salazar-Aguilar et al. 2013b). All of the above measures easily give rise
to linear expressions. While several different activity measures have been discussed
in the literature, only a few authors consider more than one criterion simultaneously
(Deckro 1977; Zoltners and Sinha 1983). In a recent series of papers, two activity
measures have been considered simultaneously: the number of customers and the
total demand per district (Salazar-Aguilar et al. 2011b, 2012, 2013b; Ríos-Mercado
and Escalante 2016).

Concerning solution dependent performance measures, the most common addi-
tion is to include travel times in the district size. Due to the scale of realistic
data sets, calculating the exact travel times within each district is usually too
costly during optimization. Instead, most authors rely on estimates. A common
way to approximate the total travel time (or distance) within a district is to use
the Beardwood-Halton-Hammersley formula (Lei et al. 2012, 2015). This formula,
however, has the downside that it is non-linear and therefore does not easily admit
linear programming formulations. As an alternative, some authors propose to add
to the service time of each basic unit a fixed estimate of the travel time to the “next
basic unit in the district”. This estimate can, for example, be the average (expected)
travel time to the k closest basic units, where k is a parameter that has to be tuned
for each (set of) data instance(s) (Bard and Jarrah 2009; Jarrah and Bard 2012).

25.4.3 Contiguity

Almost all districting approaches require districts to be contiguous. In political
districting, this criterion should prevent gerrymandering. For the other types of
applications, contiguous districts reduce the day-to-day travel distances for sales
persons, delivery vans, snow ploughs, mailmen, etc. Unfortunately, a rigid and con-
cise mathematical formulation of contiguity is difficult for basic units representing
points.

25.4.3.1 Graph-Based Measures

If basic units are lines or polygons, it is easy to derive explicit neighborhood
information. For example, two zip-code areas are neighboring if they share a
common border, or two streets if they meet in a crossroad. In the former case,
sometimes an additional requirement is the existence of a direct road connection
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between the two basic units. In general, two basic units are called neighboring, if
their geometric representations have a nonempty intersection. This information is
stored in the neighborhood graph G = (V ,E), and a district is contiguous if the
basic units of the district induce a connected subgraph in G.

If basic units are represented by points, e.g., customer addresses, it is not
clear how to assess contiguity. Over the years, different surrogate definitions for
contiguity have been proposed. One approach is based on proximity graphs to
estimate the adjacency of points. One such graph is the Gabriel graph, in which
two nodes vi and vj are connected by an edge if and only if the disc with antipodal
points vi and vj does not contain any other node in its interior (Gross and Yellen
2003). A second approach to construct a contiguity graph is based on the Voronoi
diagram (Lei et al. 2012). Two basic units are defined to be adjacent, iff their Voronoi
cells have a common link within the smallest axis-parallel rectangle enclosing all
basic units (for a definition of Voronoi diagrams and cells, see Aurenhammar et al.
2013). A third construction of the proximity graph is to start with a complete graph
and then sequentially go over all edges and delete for two intersecting edges in the
planar representation of the graph the longer or more costly one (Haugland et al.
2007). All three graphs are planar. Moreover, by definition the Gabriel graph is a
subset of the Voronoi-based graph.

Example 25.1 An example for these three proximity graphs for a point set with
26 basic units is depicted in Fig. 25.2. The Gabriel graph defines the most strict
neighborhood relation. The graphs obtained by Lei et al. (2012) and Haugland et al.
(2007) are fairly similar. The main difference is that the latter typically establishes
more adjacencies along the boundary of the convex hull of the point set. Just by
looking at the graphs it is difficult to decide which one is more suitable.

Finally, if the underlying road network is given, yet another possibility is to define
two basic units as being adjacent, if the shortest path between the two does not
contain another basic unit.

25.4.3.2 Geometric Measures

If no neighborhood information for basic units is given or can reasonably be derived,
an alternative is to determine the overlap between the districts. For example, by
computing the convex hull ch(Dk) around each district Dk and defining a district to
be contiguous if no basic unit of another district lies in its convex hull, i.e., ch(Dk)∩
ch(Dl) = ∅, ∀ l 
= k (Kalcsics et al. 2005; Jarrah and Bard 2012). One advantage
of this approach is that convex districts usually prevent the crossing of routes of
different districts, a characteristic that typically implies inefficient routes.
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(a) (b)

(c) (d)

Fig. 25.2 Three different approximate contiguity graphs. (a) Point set of basic units. (b) Gabriel
graph. (c) Voronoi-based graph. (d) Non-crossing edges graph

25.4.3.3 Mathematical Modelling

In districting models, contiguity is always treated as a hard constraint (except in
Hanafi et al. 1999). One possibility to include it in a mathematical programming
formulation is due to Drexl and Haase (1999): Let ck ∈ Jc be the predetermined
center of district k and S ⊆ J \ {N(ck)∪ {ck}} be a subset of basic units that are not
adjacent to basic unit ck . If all elements of S are assigned to district k (with center
in unit ck), i.e., S ⊂ Dk , then at least one basic unit not in S that is adjacent to an
element of S must also be assigned to district k:

∑

j∈⋃i∈S N(i)\S
xck,j −

∑

j∈S
xck,j ≥ 1 − |S| ∀ S ⊆ J \ {N(ck) ∪ {ck}},

where xck,j is 1 if j ∈ J is assigned to the district with center ck and 0 otherwise.
A clear drawback of this formulation is that it requires an exponential number of
constraints. Nevertheless, this gives naturally rise to cut generation approaches, see
Salazar-Aguilar et al. (2011a) and Ríos-Mercado and López-Pérez (2013). A second
possibility that only needs a linear number of constraints is based on network flow



720 J. Kalcsics and R. Z. Ríos-Mercado

constraints (Shirabe 2009). Each basic unit has one unit of supply, and the district
centers act as sinks. District k is contiguous if and only if there exists a flow from
each of its basic units to ck that only passes through basic units in Dk:

∑

i∈N(j)

fji −
∑

i∈N(j)

fij = xck,j ∀ j ∈ J \ {ck}
∑

i∈N(j)

fij ≤ (n − 2) xck,j ∀ j ∈ J \ {ck}
∑

i∈N(ck)

fi,ck ≤ n − 1,

where fij is the flow from basic unit i to j and fck,j = 0, ∀ j ∈ N(ck).
A simpler approach is to require that each district is a subtree of a shortest

path tree T (ck) rooted at the district center ck , where the edge lengths typically
correspond to road distances or are all assumed to be 1. Then, for each basic unit
j of district k, at least one of the adjacent basic units i ∈ N(j) that immediately
precedes j on some shortest path to the center ck also has to be included in the
district:

xck,j ≤
∑

i∈Sj
xck,i ∀j ∈ J \ {ck},

where Sj = {i ∈ N(j) | i immediately precedes j on some shortest path from
j to ck} (Zoltners and Sinha 1983; Mehrotra et al. 1998). Although this excludes
some contiguous districts, these are unlikely to be compact, as they typically have
large protrusions or indentations, or contain enclaves.

It is straightforward to extend all of the above constraints to the case where
the choice of district centers is part of the optimization. For geometric contiguity
measures obviously only informal mathematical formulations can be derived.

Remark 25.1 Only a few authors try to derive approximate neighborhood graphs
for point-like basic units. The majority simply does not consider contiguity at all
and tries to obtain districts with little overlap through an appropriate compactness
measure, see also Example 25.2 (Fig. 25.3).

Remark 25.2 It is much easier to ensure strict contiguity if heuristics are used to
solve the districting problem. Given a district Dk and the corresponding subgraph
of G, it is possible to check in O(|Dk|) time whether Dk is connected or not. If
the heuristic is based on local search, then adding a basic unit to a connected district
will preserve connectivity. Likewise, removing a basic unit from a connected district
will preserve connectivity if the removed basic unit does not coincide with a cut-
vertex of the subgraph (Ricca et al. 2013). To reduce the computational effort in the
latter case, King et al. (2012) have introduced the concept of geo-graphs for two-
dimensional basic units that utilizes information from the planar dual graph of G.
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Fig. 25.3 Districting plans
for two center-based
compactness measures
without contiguity.
(a) Districts for cmpud(·).
(b) Districts for cmpwd2(·)

(a)

(b)

25.4.4 Compactness

A district is said to be geographically compact if it is somewhat round-shaped and
undistorted. The motivation for compact districts is almost identical to ensuring
contiguity: to prevent gerrymandering or to reduce the day-to-day travel distances
within the districts. Although being a very intuitive concept, a rigorous definition
of compactness does not exist and, moreover, strongly depends on the geometric
representation of basic units. In the context of political districting, typically mea-
sures based on the shape of districts are employed whereas in sales and distribution
districting, distance-based measures are predominant. In the following, the most
common ones for both approaches are presented.

25.4.4.1 Geometric Measures

If basic units are given as polygons, geometric approaches based on the area or
perimeter of a district can be used to quantify compactness. Two common local
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measures are the Reock and Schwartzberg tests. The former calculates the ratio
of the district area to the area of the smallest enclosing circle, while the latter
determines the ratio of the districts perimeter length to the circumference of a circle
with equal area

cmp(Dk) = A(Dk)

πr2
enc

and cmp(Dk) = P(Dk)

2
√
π A(Dk)

,

where A(·) and P(·) denote the area and the length of the perimeter, respectively,
of a district and renc the radius of the smallest enclosing circle (Young 1988). For
the Reock (Schwartzberg) test, larger (smaller) ratios indicate greater compactness.
Other measures relate the activity of a district with the total activity of all basic
units within the smallest enclosing circle (Ricca and Simeone 2008) or determine
the ratio of the squared diameter of a district and its area (Garfinkel and Nemhauser
1970). A common global measure for the compactness of a districting plan is based
on the length of the boundary between districts, i.e., the total length of the perimeter
of the districts in the interior (Bozkaya et al. 2003; Lei et al. 2012)

cmp(D) =
p∑

k=1

P(Dk) − P(J ).

Short inter-district boundaries typically result in compact districts. Numerous other
measures have been discussed in the literature. Unfortunately, none of them is
comprehensive; some fail to detect districts that are obviously noncompact, others
assign a low rating to visibly compact districts (Niemi et al. 1990; Horn et al. 1993;
Williams 1995).

To use geometric measures for basic units representing points or lines, one can try
to give “shape” to the districts, for example through the smallest enclosing rectangle
or circle, or through the convex hull. Instead of the convex hull, one can also use χ-
shapes, which are polygons enclosing the point set that can provide a better fit to the
points than the convex hull (Duckham et al. 2008). However, much more common
are the following, distance-based measures:

25.4.4.2 Distance-Based Measures

Distance-based measures are used predominantly in applications where people have
to travel within the districts, e.g., salesmen or mailmen. This confers with the
motivation of compact districts in these applications: to reduce the day-to-day travel
times. Moreover, in these applications basic units typically represent points or lines,
making geometric measures unapplicable in the first place. The most common group
of local measures is based on the sum of distances between the center of a district
and its basic units. Variations exist in whether the distances are weighted with
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activity measures or not (w/u) and whether distances are squared or not (d2/d)

cmpud(Dk) =
∑

j∈Dk

dck,j cmpud2(Dk) =
∑

j∈Dk

d2
ck,j

cmpwd(Dk) =
∑

j∈Dk

wj dck,j cmpwd2(Dk) =
∑

j∈Dk

wj d
2
ck,j

(Bard and Jarrah 2009; Bergey et al. 2003; Hess and Samuels 1971; Zoltners and
Sinha 2005). The second and fourth measure are also known as the (weighted)
moment of inertia (Hess et al. 1965). Although the four local compactness measures
follow the same idea, the resulting districts may look considerably different as the
following example shows.

Example 25.2 Consider a point set of n = 75 basic units that has to be partitioned
into p = 5 districts, each having a predetermined center. The allowed relative
deviation in terms of balance from the mean district size μ is 5%, and contiguity
is not explicitly imposed. Figure 25.3 shows the resulting districting plans that
minimize the sum of the two center-based compactness measures cmpud(·) and
cmpwd2(·) over all districts. The enlarged icons represent the district centers.

Having in mind that compactness acts as a proxy for travel times, the most natural
measure is cmpud(·). However, we observe that there is a considerable overlap in
the districts for this measure, especially between the districts represented by the
diamond and pentagon shaped basic units. A much better visual separation is instead
obtained for the weighted squared distance, cmpwd2(·), even if some district centers
now lie outside their actual district (again, diamonds and pentagons). A large overlap
between districts typically yields less efficient routes for sales persons. To underline
this observation, we determine for each district the TSP tour through all basic units,
including the center. The total lengths of the TSP tours for the two districting plans
are: 92.78 and 73.56. The travel distances for the weighted squared distance are
20 % smaller than for cmpud(·). The results for cmpwd(·) and cmpud2(·) in terms of
overlap and travel distances are between the other two measures, with the former
being slightly better.

The situation is different if we try to enforce contiguity. Assume that an approxi-
mate neighborhood graph has been computed using the approach in Haugland et al.
(2007). Using the contiguity constraints of Shirabe (2009), the resulting districting
plans for cmpud(·) and cmpwd2(·) are shown in Fig. 25.4. The separation between
the districts for cmpud(·) is clearer than before. However, even if the total length of
the TSP tours reduces considerably (from 92.78 to 81.15), the districts consisting
of the diamond, pentagon, and square shaped basic units are still distorted and will
receive little approval from planners. (The square shaped district is connected since
there exists an edge along the top of the point set.) For cmpwd2(·) the overlap is
not much different from the previous plan, and the total travel distance even slightly
decreased to 72.97. The main difference is that the centers are now all included in
their districts, if only at the boundary.
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Fig. 25.4 Districting plans
for two center-based
compactness measures with
contiguity. (a) Districts for
cmpud(·). (b) Districts for
cmpwd2 (·)

(a)

(b)

This example illustrates the considerable differences between districting plans
for different compactness measures and the influence of contiguity constraints.
However, this is just a single example, and the observations cannot be generalized
without further testing. Also, the length of a TSP tour is just an indicator for travel
distances, as a sales person may not visit all customers on a single day.

The fact that squared distances produce compact but non-contiguous districts
for fixed centers has been observed several times in the past (Hojati 1996;
Schröder 2001). An important factor influencing the shape of districts is the spatial
distribution of the district centers. If they are spread evenly, the differences between
the measures in terms of district overlap will decrease, see Example 25.3. However,
this uneven distribution is not unusual as sales force residences often concentrate
in certain areas, e.g., larger cities, and sometimes even have the same address. Also
the threshold for the allowed balance deviation has an impact on the compactness of
solutions. The smaller the threshold value is, the larger the overlap between districts
will get.
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Instead of taking the sum, one could also take the maximum for each of
the center-based measures (cf. Elizondo-Amaya et al. 2014; Ríos-Mercado and
Fernández 2009; Muyldermans et al. 2003). However, this leaves considerable
freedom for assignments below the maximal distance and typically increases the
overlap. A slightly different approach is based on the maximal pairwise distance
and the weighted sum of pairwise distances

cmpmpw(Dk) = max
i,j∈Dk, i 
=j

dij cmpspw(Dk) =
∑

i,j∈Dk, i 
=j

wi wj dij

(see Ríos-Mercado and Salazar-Acosta (2011), Ríos-Mercado and Escalante (2016)
for the former and Blais et al. (2003) for the latter).

In case of measures based on the sum (maximum) of distances, the global
compactness of a districting plan is then usually also computed as the sum
(maximum) over all districts. But sometimes also a sum-max combination is used
or a convex combination of sum and max (Muyldermans et al. 2003; de Assis et al.
2014; Butsch et al. 2014).

25.4.4.3 Mathematical Modelling

The majority of districting models has compactness as an objective function to
be optimized. In addition, sometimes the maximal distance between a basic unit
and its district center or between two basic unit of the same district is restricted
(Benzarti et al. 2013). The appeal of distance-based measures is that they easily
give rise to linear or, in case of pairwise distances, quadratic expressions. Therefore,
these measures are sometimes also used for polygonal basic units, even if geometric
measures could have been applied (Ríos-Mercado and Fernández 2009).

25.4.5 District Center

Strictly speaking, determining district centers is in most cases not an optimization
criterion in itself. However, several measures for contiguity and compactness rely on
district centers. Thus, if no centers are predefined for the districts, seeking district
centers is part of the optimization process. Typically, a district center is the basic
unit of the district that minimizes the respective compactness measure. But also the
(weighted) center of gravity can be used to determine a district center. Note however
that this center usually does not coincide with a basic unit, which is problematic if
distance computations are based on road networks.
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25.4.6 Other Criteria

There are a few other criteria for districting problems that are included from time
to time in districting models. For example, for redistricting problems the changes
in allocation from the old to the new districting plan should be kept small (de
Assis et al. 2014). Especially in sales territory design, customers often have a
preferred sales representative by whom they want to be serviced or vice-versa, i.e.,
customers have banned salesmen (Ríos-Mercado and López-Pérez 2013). Another
criterion concerns the number of districts. Typically, p is predetermined such that,
for example, the expected workload in a district neither exceeds the working time
restriction of a deliverer nor renders him underutilized. If however travel times
within a district account for a large portion of the total working time, then it is
not always possible to fix p a priori since travel times strongly depend on the shape
of districts, i.e., their compactness. Therefore, sometimes p is a design criterion
(cf. Muyldermans et al. 2003). For instance, some applications in healthcare, in
particular on the redistricting of liver allocation, attempt to minimize the disparity
in liver availability among districts (Gentry et al. 2015). In other areas such as
the location of Emergency Medical Service (EMS) the focus is to save lives and
to minimize the effects of emergency health incidents. In that context, districting,
or designing pre-determined response areas, allows an EMS system to reduce the
response time of paramedic support to the incident. An important criterion for these
applications is the patient survival probability. Thus, developing both dispatching
and districting policies under uncertainty to improve the performance of EMS
systems becomes very a very important issue (Mayorga et al. 2013).

25.5 Solution Approaches

As with most optimization problems also for districting many different solution
approaches have been proposed in the literature over the years. These approaches
can roughly be divided in those that utilize a mathematical programming model and
those that depend merely upon heuristics. Among the former, location-allocation
and set partitioning methods have been discussed. The latter mainly focus on
geometric algorithms, simple construction methods, and classical metaheuristics
such as GRASP, Tabu Search, Scatter Search, and Simulated Annealing. This
section will present only a rough overview and description of the most common
approaches. Detailed reviews can be found in Kalcsics et al. (2005) and Ricca et al.
(2013).
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25.5.1 Location-Allocation Methods

The first mathematical programming approach was proposed by Hess et al. (1965)
for political districting. They had the idea to model the problem as a capacitated
p-median facility location problem (see also Chap. 3). Basic units correspond to
customers and their activity measure to their demand. The facilities to be located
are the district centers, and the capacity of the facilities is chosen in such a way that
the districts obtained by solving the problem are well balanced. Candidate locations
for the facilities are all basic units. For an allowed relative deviation α > 0 of the
district size from the mean district size μ, the formulation of Hess et al. (1965) is

minimize
∑

i,j∈J
wj d

2
ij xij (25.1)

subject to
∑

i∈J
xij = 1 ∀ j ∈ J (25.2)

∑

j∈J
wj xij ≥ (1 − α)μ yi ∀ i ∈ J (25.3)

∑

j∈J
wj xij ≤ (1 + α)μ yi ∀ i ∈ J (25.4)

∑

i∈J
yi = p (25.5)

yi, xij ∈ {0, 1} ∀ i, j ∈ J, (25.6)

where xij = 1 if basic unit j is assigned to district center i, 0 otherwise,
and yi = 1 if basic unit i is selected as district center, 0 otherwise. The
objective function (25.1) maximizes the compactness of the districts using the
center-based measure cmpwd2(·). Constraints (25.2), together with the integrality
constraints on the xij -variables, model the unique and exclusive assignment cri-
terion. Constraints (25.3) and (25.4) restrict the balance of the districts. Finally,
Constraints (25.5) ensure that exactly p basic units are selected as district centers.
As a result, all basic units allocated to the same basic unit i constitute a district with
the basic unit as its center, i.e., there is a one-to-one correspondence between centers
and districts. Note that the centers are just required to evaluate district compactness
and have no meaning in itself.

Unfortunately, due to its NP-hardness, the practical use of this formulation is
limited to instances with a few hundred basic units, which is rather small for
typical sales districting problems. To this end, Hess et al. (1965) propose to use
Cooper’s location-allocation heuristic to solve the problem. In this heuristic, the
simultaneous location and allocation decisions of the underlying facility location
problem are decomposed into two independent phases, a location and an allocation
phase, which are alternatingly performed until a satisfactory result is obtained. In
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the location phase, a set Jc of district centers is determined. A fairly simple and
commonly used method is to solve in each district resulting from the last allocation
phase a single facility location problem with the respective compactness measure
as objective function (cf. Fleischmann and Paraschis 1988; George et al. 1997).
To obtain an initial set of centers, one can determine new centers based on the
solution of a Lagrangian subproblem (Hojati 1996). Alternatively, one can use any
of the heuristics for the (uncapacitated) p-median problem or one of the heuristics
mentioned below.

Once the centers have been fixed, the allocation phase determines a balanced
assignment of basic units to district centers. This can be done by fixing yi = 1 for
all i ∈ Jc in the above formulation. With present-day computers and mixed-integer
linear programming (MILP) solvers, the resulting problem can be solved optimally
even for large instances with 10,000 basic units or more within a short time.
Even in the presence of contiguity constraints, several thousand basic units can be
assigned in reasonable time (Ríos-Mercado and López-Pérez 2013). Alternatively,
the allocation problem can be modeled as a minimum cost network flow problem
allowing more flexibility for measuring and optimizing the balance and compactness
of districts (George et al. 1997).

Example 25.3 Consider again the example depicted in Fig. 25.3, but assume now
that the district centers are flexible and the current ones are just a starting point.
Based on the districting plan for the measure cmpwd2(·), the new centers that
minimize cmpwd2(·) over each district are shown on the left-hand side in Fig. 25.5.
The subsequent allocation phase yields the new districts shown on the right-hand
side. The districts are visually much more compact and there is no overlap between
the convex hulls of the districts.

In former times, when the exact solution of the allocation problem was unattain-
able for larger instances, the assignment problem was solved heuristically. Setting
the tolerance α to zero and relaxing the integrality constraints on the assignment
variables, i.e., xij ∈ [0, 1], the resulting linear program is a classical transportation
problem that can be solved efficiently using specialized network algorithms.
However, solving the relaxed problem yields districts that are perfectly balanced
but usually assign portions of basic units to more than one district, i.e., ∃ i, i ′ ∈ Jc,
i 
= i ′, j ∈ J , such that xij , xi′j > 0. Such basic units are called splits. For an
optimal basic feasible solution of the transportation problem, it is easy to prove that
there are at most p − 1 splits (Hojati 1996). To restore the integrity of basic units,
it is necessary to round for every split its fractional variables to one (one variable)
or zero (the other variables). This yields disjoint districts but destroys their perfect
balance. A simple split resolution rule is to assign a split to the district (center) that
“owns” the largest share of the split (Hess and Samuels 1971). However, if there are
just a few basic units per district, this rule may produce very unbalanced districts.
An optimal split allocation with a minimal maximal percentage deviation can be
obtained in polynomial time by using tree partitioning methods; unfortunately, the
problem of finding a split resolution with a minimal total deviation is NP-hard; see
Schröder (2001) for details.
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Fig. 25.5 Illustration of one
iteration of the
location-allocation procedure.
(a) Location phase: new
districts centers. (b)
Allocation phase: new
districts

(a)

(b)

25.5.2 Exact Methods

As districting is essentially a partitioning problem, classical set-partitioning
approaches can be used to solve the problem. In a first step, balanced, contiguous,
and compact candidate districts are generated in a heuristic fashion. In a second step,
districts are selected from the set of candidates to optimize the overall balance of the
district plan (Garfinkel and Nemhauser 1970; Mehrotra et al. 1998). Unfortunately,
only small instances can be solved optimally with this approach. An advantage
compared to location-allocation methods is however that almost any criterion can
be applied on the generation of candidate districts.

More recently, Salazar-Aguilar et al. (2011a) introduced an exact method for
handling districting problems subject to the connectivity constraints proposed by
Drexl and Haase (1999). The authors present an exact solution framework based
on a branch-and-bound algorithm combined with a cut generation strategy. First,
the (exponentially many) connectivity constraints are relaxed and then the integer
relaxation is solved by branch-and-bound. Afterwards, an easy separation problem
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is solved to find unconnected districts. The corresponding violated constraints
are then added to the formulation and the iterative process starts again. When
no more violated cuts are found, the algorithm stops with an optimal solution.
Extensive empirical evidence is presented for several classes of districting models
that include multiple balancing constraints and various compactness measures. Two
MILP models are assessed: one based on a p-center compactness measure and the
other based on a p-median function. The latter turns out to have a stronger linear
programming relaxation and results in fewer violated connectivity constraints. The
authors also propose two integer quadratic programming formulations for the center
and median based compactness measure that result in a smaller number of variables
than the linear formulations. These formulations are also solved within the same
exact optimization framework. The empirical results show that the quadratic models
allow solving larger instances than their linear counterparts. The former also require
fewer iterations of the exact method to converge.

Ríos-Mercado and Bard (2019) present an exact optimization scheme for the
maximum dispersion territory design problem introduced in Fernández et al. (2010).
The exact algorithm takes full advantage of a tighter dual bound and a new
reformulation embedded into a biased binary search scheme. Extensive testing
indicates that the proposed exact algorithm is able to find optimal solutions to
instances with up to 800 basic units and 12 companies and to instances with up
to 1400 basic units and 8 companies. Previous to this research, the largest instances
optimally solved with off-the-shelf branch-and-bound solvers had between 40 to 100
basic units and 4 companies. This work also extends the results for the maximum
dispersion problem introduced by Fernández et al. (2013).

In the context of multi-objective districting, Salazar-Aguilar et al. (2011b)
address a commercial districting problem. The authors propose a bi-objective
programming model where compactness and balancing with respect to the number
of customers are used as performance criteria. Constraints such as connectivity
and balancing with respect to product demand are also considered in the model.
They propose an improved epsilon-constraint method for generating the optimal
Pareto front. Empirical evidence over a variety of instances shows that the improved
method is well suited for finding optimal Pareto fronts with no more computational
effort than the traditional method. Instances of up to 150 units and 6 territories
are solved in relatively short amount of time. For this problem, the improved
method finds practically the same fronts than those found by the traditional epsilon-
constraint method. This is, to the best of our knowledge, the only exact method for
multi-objective districting developed up to date.

25.5.3 Computational Geometry Methods

A very simple but efficient solution approach for basic units representing points
is the successive dichotomies strategy (Kalcsics et al. 2005). The main idea is to
recursively subdivide the problem geometrically using lines into smaller and smaller
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subproblems until an elementary level is reached, where the problem can be solved
efficiently. Hence, the basic operation is to partition a subset J ′ of basic units into
two subsets J ′

l and J ′
r by drawing a line within this set of points. Given a number

of line directions, for each direction the position of the line is determined in such
a way that the two resulting subproblems are best balanced. For every direction,
the line is evaluated by a convex combination of its balance and its compactness
(evaluated through the length of inter-district boundaries), and the best line is then
used to divide the problem into two subproblems. This procedure is repeated until
every subset corresponds to a single district. The strategy quickly determines a well-
balanced districting plan with no overlap between districts. However, as it does
not explicitly account for (road) distances, the resulting districts sometimes lack
compactness. Moreover, it is difficult to include neighborhood information. Instead
of using lines, other geometric concepts can be used. Alternatively, the process of
subdividing a point set J ′ can be modeled and solved as a 2-facility location problem
(Salazar-Aguilar et al. 2013a).

Example 25.4 Consider again the example in Fig. 25.3 and assume that the district
centers are flexible. Figure 25.6 shows the districting plan obtained with the
successive dichotomies algorithm using horizontal, vertical, and diagonal lines.

Another approach is based on weighted Voronoi diagrams on networks (for a
definition of weighted Voronoi diagrams, see Aurenhammar et al. 2013). Assume
that the neighborhood graph G is given. For center-based measures the most
compact solution is obtained by assigning each basic unit to the closest center. If
the distances {dck,j | ck ∈ Jc} are unique for each j ∈ J , then each district
will also be connected. However, the resulting districts are often far from being
balanced. To overcome this drawback, the idea is to modify the distances dck,j
between basic units and centers in such a way that assignments to overly large
districts are “penalized” and allocations to too small districts are “stipulated”. There
are basically two options to modify distances. The first adds a real-valued weight
rk ∈ R to each distance dck,j (Zoltners and Sinha 1983) and the second multiplies
dck,j by a positive weight rk ∈ R

+ (Ricca et al. 2008). Hence, basic unit j ∈ J

is closer to center ck than to center cl ∈ Jc if dck,j + wk < dcl,j + wl or

Fig. 25.6 Districting plan
with the successive
dichotomies algorithm
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wk dck,j < wl dcl,j , respectively. Increasing (decreasing) the weight for a specific
center ck while keeping the other weights unchanged, will reduce (increase) the
number of basic units assigned to ck under the closest assignment rule and thus
reduce (increase) the size of the district. To obtain balanced districts, the weights
have to be updated iteratively until a satisfactory result is obtained. During the
update, care has to be taken since some districts may turn out empty under additive
weights or become disconnected for multiplicative weights if the weights are too
uneven. For details on the update procedures see Zoltners and Sinha (1983) and
Ricca et al. (2008). The partitions of the graph induced by these weights are the
so-called additively and multiplicatively weighted Voronoi diagrams. Note that
the approach using additive weights is in fact a Lagrangian relaxation where the
balancing constraints have been relaxed.

Most districting problems are solved using discrete models. However, these
problems (and a number of other logistics problems as well) can be converted into
problems with continuous demand functions. Continuous demand approximations
models are based on the spatial density and distribution of demand rather than on
precise information on every demand point. Given continuous approximations, one
can for example use Voronoi diagrams to compute or to smooth existing districts
(Galvão et al. 2006), or determine perfectly balanced districts (Carlsson and Delage
2013).

25.5.4 Construction Methods

There exist several easy approaches for constructing a districting plan from scratch.
One of the most popular ones is based on the multi-kernel growth methodology first
introduced in Vickrey (1961). The general idea of this methodology is to select
a certain number of basic units as “seed centers” and then assign to each seed
neighboring basic units in order of decreasing distance until the desired district size
is reached. Variations exist with respect to the selection of seeds, whether districts
grow simultaneously or sequentially around the seeds, and how to deal with enclaves
of unassigned basic units which typically occur at the end of this greedy process
(Bodin and Levy 1991; Williams 1995; Mehrotra et al. 1998; Bozkaya et al. 2003).
The resulting districting plans are not always connected or balanced and typically
serve as a starting point for a metaheuristic.

A different approach treats each basic unit initially as a single district and then
merges iteratively pairs of districts until the prescribed number of districts is reached
(Deckro 1977).
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25.5.5 Metaheuristics

Given the NP-hardness of most of the districting problems, it is not surprising that
moderate to large scale instances are intractable by exact optimization algorithms.
The development of structured heuristic or metaheuristics has been a very important
area of research over the past few years. Many interesting ideas and schemes have
been developed with great success. A major advantage of these methods is their
flexibility to include almost any practical criterion and measure for the design of
districts and handle complex constraints. In this subsection we review some of the
most relevant works on metaheuristics applied to districting problems in general.

25.5.5.1 Greedy Randomized Adaptive Search Procedure (GRASP)

In recent years, GRASP has been one of the most popular approaches to solve
districting problems. An important reason for this is its flexibility to successfully
handle connectivity constraints when constructing solutions from scratch.

The first GRASP implementation applied to a districting problem is due to Ríos-
Mercado and Fernández (2009). In that work, the authors address a commercial
districting problem with connectivity and multiple balancing constraints. They
develop a reactive GRASP, where territories are built one at a time during the
construction phase and reinsertion and swapping neighborhoods are explored during
the improvement phase. The method is enhanced by a reactivity feature that auto-
matically self-tunes the GRASP quality threshold parameter for accepting solutions
from the restricted candidate list. The algorithm is tested on data sets coming from
a commercial firm that range from 500 to 2000 basic units. It was observed that the
algorithm was very robust under many different scenarios, providing solutions of
significantly better quality than those from existing practice. In a follow-up work,
Ríos-Mercado (2016) provides further experiments by applying the reactive GRASP
for solving large scale instances ranging from 1000 to 2000 to basic units under
different settings. An interesting finding is that the metaheuristic is able to obtain
feasible designs with less than 3% balance deviation.

Fernández et al. (2010) present a GRASP approach for the maximum dispersion
territory design problem with three different construction heuristics and several dif-
ferent neighbourhood topologies in its local search phase. Extensive computational
testing shows the effectiveness of the proposed algorithm.

Ríos-Mercado and Salazar-Acosta (2011) address a commercial districting prob-
lem arising in the bottled beverage distribution industry where a set of city blocks
has to be grouped into territories. As planning requirements, the grouping seeks to
balance both the number of customers and the product demand across territories,
maintain connectivity of territories, and limit the total cost of routing. This work
addresses both district design and routing decisions simultaneously by considering
a budget constraint on the total routing cost. A GRASP that incorporates advanced
features such as adaptive memory and strategic oscillation is presented. Empirical



734 J. Kalcsics and R. Z. Ríos-Mercado

evidence over a wide set of randomly generated test instances based on real-world
data shows a very positive impact of these advanced components, significantly
improving the solution quality.

Salazar-Aguilar et al. (2013b) study a commercial districting problem. Each ter-
ritory must be compact, connected, and balanced according to two activity measures
(number of costumers and product demand). Two GRASP heuristics (BGRASP
and TGRASP) are proposed for this problem. For each of them two variants are
studied: (1) keeping connectivity as a hard constraint during construction and post-
processing phases and, (2) ignoring connectivity during the construction phase and
adding this as a minimizing objective function during the post-processing phase.
The main difference between BGRASP and TGRASP is the way they consider
the planning criteria during the construction phase. In BGRASP, the construction
attempts to find high quality solutions based on the optimization of two criteria:
compactness and balance of the number of customers (product demand balance
is treated as a constraint). The construction phase in TGRASP considers three
objectives to be optimized: compactness and balance with respect to both activity
measures. The proposed procedures are evaluated on a variety of problem instances,
with 500 and 1000 basic units. An analysis of these procedures is carried out using
different performance measures such as the number of non-dominated points, the
k-distance, the size of the space cover (SSC), the coverage of two sets measure,
and time. It is observed that SSC, coverage of two sets measure, and time exhibit
significant variation depending on the GRASP procedure used. In contrast to that
the number of points and k-distance measures did not show any significant variation
over all evaluated procedures. BGRASP-I provides good frontiers in short time
and BGRASP-II has the best coverage of the efficient points given by the others
procedures.

A multi-objective capacitated redistricting problem (MCRP) arising from power
meter reading is addressed by de Assis et al. (2014). Two objective functions
are considered (compactness and homogeneity of districts) within a bi-objective
optimization framework. The redistricting relies on the existence of an original set
of districts. The goal of the problem is to partition power utility customers into
new districts. The expansion of cities with new developments, population migration,
and uneven changes of power demand in the suburbs are examples of forces that
pressure the re-definition of districts. Each district refers to the working zone of
a group of meter readers that perform readings of power consumption from the
customers of that same district. The readings are performed in situ and feed the
monthly invoice sent to each customer. The proposed solution method is based on a
GRASP and multi-criteria scalarization technique to approximate the Pareto front.
The approximate Pareto front is obtained iteratively by solving mono-objective
problems in which the objective function is a weighted sum expression of the two
criteria under consideration. The GRASP construction phase generates districts, one
at a time, by using a greedy function that penalizes both a dispersion measure
and district imbalance in weighted manner. If the resulting plan has more than p

territories, a repair phase consisting of merging the smallest territories is carried
out to ensure p territories are designed. As an improvement phase they use the
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reinsertion neighborhood. Computational tests are performed with a diverse set of
24 randomly generated instances with different sizes, demands and densities. A real-
life network extracted from the city of São Paulo, Brazil, is also included in the
tests. The results demonstrate the effectiveness of GRASP in producing high quality
districts with respect to compactness and homogeneity. The results indicate the
impact of conformity on the resulting trade-off curve, clearly showing a compromise
between attaining compact solutions and maintaining allocations of customers to
their current district. The authors conclude that the conformity is thus a relevant
criterion and should be included in the optimization and decision making process
regarding redistricting problems.

The existing literature reveals that practically all the works on commercial
districting use center or median based compactness measures. While these measures
yield mixed-integer programming models with some nice properties, they have
the disadvantage of being very costly to be evaluated when used within heuristic
frameworks. This is due to the center updating operations frequently needed
throughout the heuristic search. Ríos-Mercado and Escalante (2016) propose a
more robust dispersion measure based on the diameter of the formed territories,
allowing for a more efficient heuristic search. For solving this particular territory
design problem, they propose a GRASP that incorporates a novel construction
procedure where territories are formed simultaneously in two main stages using
different criteria. This also differs from previous literature where GRASP was
used to build only one territory at a time. The procedure is further enhanced with
two variants of forward-backward path relinking, namely static and dynamic. Path
relinking is a sophisticated and very successful search mechanism. This idea is
novel in any districting or territory design application to the best of our knowledge.
The proposed algorithm and its components are extensively evaluated over a wide
set of data instances. Experimental results reveal that the construction mechanism
produces feasible solutions of acceptable quality, which are improved by an effective
local search procedure. In addition, empirical evidence indicate that the two path
relinking strategies have a significant impact on solution quality when incorporated
within GRASP. The ideas and components of the developed method can be further
extended to other districting problems under balancing and connectivity constraints.

25.5.5.2 Tabu Search (TS)

Blais et al. (2003) study a districting problem arising in a local community health
clinic in Montreal, Canada, in which five districting criteria must be respected:
indivisibility of basic units, respect for borough boundaries, connectivity, visiting
personnel mobility, and workload balance. The last two criteria are combined into a
single objective function. The authors present a tabu search heuristic considering
two different neighborhood topologies. For the case study at hand, the design
obtained by the heuristic was able to improve the then current solution in terms
of workload balance and personnel mobility.
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Bozkaya et al. (2003) propose a tabu search for a districting problem that
considers the optimization of four different criteria in a single weighted objective
function: population equality, territory compactness, socio-economic homogeneity,
and similarity to the existing districting plan. Moreover, connectivity is treated as a
hard constraint. The local search is based on a reinsertion and swap neighborhood.
Concerning the tabu list, when a given basic unit is used in a move, it remains tabu
for the next θ iterations, where θ is chosen randomly. Moreover, an adaptive memory
procedure is employed. This procedure is based on the idea that components of high
quality solutions can be used to construct other high quality solutions. The method
therefore stores in a constantly updated pool a set of districts belonging to some of
the best-known solutions. Then, disjoint districts can be extracted from the pool to
serve as a basis for a new solution. Each district of the pool, or adaptive memory, is
given a larger probability of being selected if it belongs to a better solution. In their
empirical work, it was found that the proposed method is robust and powerful since
it can easily incorporate a large number of criteria and produces feasible and high
quality solutions. When tested on a real-world case study from Edmonton, Canada,
the test results indicate that the algorithm can produce maps that dominate the
existing districting map of Edmonton with respect to compactness and integrity of
communities. It can also reduce the amount of deviation around the average district
population from the current 25% to much lower levels (such as 1%), improving on
the equality of representation.

Haugland et al. (2007) develop tabu search and multi-start metaheuristics for
the problem of designing districts for vehicle routing problems with stochastic
demands. In particular, demands are assumed to be uncertain at the time when the
districts are made, and these are revealed only after the districting decisions are
determined. They use the same neighbourhoods for the local search phase and the
same tabu list implementation as in Bozkaya et al. (2003). The authors compare the
two heuristics, finding out that tabu search outperforms multi-start.

Ríos-Mercado et al. (2017) present a tabu search metaheuristic as a follow-up to
the work on the maximum dispersion territory design problem, first addressed by
Fernández et al. (2010). In this paper, the authors significantly improve the previous
GRASP approach by incorporating a strategic oscillation component within the tabu
search.

25.5.5.3 Simulated Annealing (SA)

D’Amico et al. (2002) address the problem of re-drawing police command bound-
aries. They model this problem as a constrained graph-partitioning problem involv-
ing the partitioning of a police jurisdiction into command districts subject to
constraints of contiguity, compactness, convexity and size. Since the districting
affects urban emergency services, they also include quality-of-service constraints,
which limit the response time (queue time plus travel time) to calls for service.
Given the size of the problem, they propose a simulated annealing heuristic to search
for good partitions of the police jurisdiction. At each iteration of the algorithm,
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they employ a variant of the well-known public domain software tool Patrol Car
Allocation Model (PCAM) to optimally assign patrol cars to districts and assess
the “goodness” of a particular district design with respect to some prescribed
performance measures. For the neighbour topology, they consider moves that
reassign a basic unit from a given district to an adjacent district. A computational
case study using data from the Buffalo, NY, Police Department (BPD) is carried out
revealing the merits of this approach. Among their main findings it was observed
that under optimal car allocations, they are able to find an improved district design
that lowers the disparity among officer workloads from 30% to only 14%. Also,
the proportion of small workloads under 36% is greatly reduced. Hence, officer
workloads are better balanced (primarily between 36% and 42%) across all districts
and work shifts. At the same time, the response time feasibility constraints ensured
no increase in the maximum response time of 29 min under current BPD operations.

25.5.5.4 Genetic Algorithm (GA)

Bação et al. (2005) solve a political districting problem using a genetic algorithm
and apply it to a case study in Portugal. Their results indicate that the GA obtains
better results when compared to the current practice.

Tavares-Pereira et al. (2007) study a multi-objective districting problem arising
for Paris public transportation. The goal is to partition a territory into “homo-
geneous” zones without inclusions, where each zone is composed of a set of
elementary territorial units. They propose a genetic algorithm to approximate the
Pareto front based on an evolutionary algorithm with local search. The algorithm
presents a new solution representation and new crossover/mutation operators. The
algorithm can deal with multiple criteria, allows to solve large-size instances in a
reasonable time, and generates high quality solutions. The algorithm is applied to
the Paris region public transportation.

Steiner et al. (2015) address a health-care districting problem arising in Parana
State, Brazil. The motivation for the problem is to develop a better system for
patients by aggregating various health services offered in the municipalities of
Parana into micro regions. The problem is formulated as a multi-objective graph
partitioning problem, where the municipalities are represented by nodes, and
roads connecting them are represented by edges. Their three-objective optimization
problem considers maximizing the population homogeneity in the micro regions,
maximizing the variety of medical procedures offered in the micro regions, and
minimizing the inter-micro region distances to be traveled by patients. They develop
a multi-objective genetic algorithm, which yields a significant improvement over the
existing health-care system map of Parana State.

Forman and Yue (2003) present a genetic algorithm for a political districting
problem, where the encoding of solutions and the genetic operators are based on
the ones for Traveling Salesman Problems. This encoding forces near equality of
district population and uses the fitness function to promote district contiguity and
compactness. A post-processing step further refines district population equality.
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Results are provided for three states (North Carolina, South Carolina, and Iowa)
using the 2000 census data.

25.5.5.5 Hybrid and Miscellaneous Approaches

Bergey et al. (2003) address an electrical power districting problem arising in the
Republic of Ghana. Due to a variety of political, economic, and technological
factors, many national electricity industries around the globe are transforming from
non-competitive monopolies with centralized systems to decentralized operations
with competitive business units. A key challenge faced by energy restructuring
specialists at the World Bank is trying to simultaneously optimize the various
criteria one can use to judge the fairness and commercial viability of a particular
power districting plan. The authors propose a simulated annealing genetic algorithm
for this problem. In their empirical work, they observe that the proposed method
outperformed a well-known parallel simulated annealing heuristic.

Wei and Chai (2004) present a hybrid approach combining tabu search and
scatter search for solving a multi-objective spatial zoning model. The problem
considers a scalar function with three objectives: population unbalance, territory
compactness, and socioeconomic homogeneity. The model also includes resource
capacity constraints, but no connectivity constraints. Later, Bong and Wang (2006)
tackle another multi-objective zoning model that optimizes four criteria: population
equality, territory compactness, socio-economic homogeneity, and similarity of
a solution with the existing plan. The model also includes resource capacity
constraints. The authors propose a hybrid algorithm with elements from tabu search,
scatter search, and path relinking. A comparative study between the results of multi-
objective decision-making and single objective decision-making is conducted for
the proposed multi-objective method with a selected single objective method called
WAMCF. The empirical results show concrete evidence on two aspects that the
proposed method can produce better results for the problem with lower values in
the objectives achieved for the minimization problem. It was also observed that a
more consistent result for the individual solution was delivered compared to the
single objective approach because there is a big difference between the generated
maximum and minimum best values.

Ricca and Simeone (2008) present a comparison of several local search meta-
heuristics for political districting considering territory connectivity, minimizing
measures of population inequality, noncompactness, and nonconformity to admin-
istrative boundaries. Experiments on a set of medium to large real-life instances is
carried out using descent search, tabu search, simulated annealing, and old bachelor
acceptance algorithms. Except for descent, all local search methods show a very
good performance. In particular, old bachelor acceptance produces the best results
in the majority of the cases, especially when the objective function is focussing on
compactness.

Salazar-Aguilar et al. (2012) propose a multi-objective scatter search heuristic for
a bi-objective territory design problem. They consider a problem where compact-
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ness and balance with respect to product demand are sought. The problem includes
also balancing territories with respect to workload and territory connectivity. The
proposed scatter search-based framework contains a diversification step based on
a greedy randomized adaptive search procedure, an improvement step based on
a relinked local search strategy, and a combination step based on a solution of
an assignment problem. The proposed metaheuristic is evaluated over a variety
of instances taken from literature. This includes a comparison with two of the
most successful multi-objective heuristics from literature such as the scatter tabu
search procedure for multi-objective optimization by Molina et al. (2007), and
the non-dominated sorting genetic algorithm by Deb et al. (2002). Experimental
work reveals that the proposed procedure consistently outperforms both existing
heuristics from literature on all instances tested.

25.5.6 Lower Bounding Schemes

To the best of our knowledge, the only work on lower bounds for districting
problems is due to Elizondo-Amaya et al. (2014). In their work, the authors study
a commercial districting problem that minimizes territory dispersion based on a
p-center type of function subject to multiple balance constraints. Lower bounds are
obtained using a binary search over a range of coverage distances. For each coverage
distance a Lagrangian relaxation of a maximal covering model is effectively used.
Their computational results indicate that the bounding scheme provides tighter
lower bounds than those obtained by the linear programming relaxation.

25.6 Conclusions

In this chapter, we have given a broad overview of typical criteria and restrictions
that can be found in various districting applications as well as ways and means to
quantify and model these criteria. In addition, an overview of the different areas of
application for districting problems was given and the various solution approaches
for them that have been used were highlighted.

Despite the large number of publications, it is striking that only few authors con-
sider the districting problem independently from a practical background. Moreover,
there is no consensus on which criteria are eligible and important and, on how to
measure them appropriately. Thus, instead of devising yet another (variant of a)
metaheuristic for a districting model with yet another measure for compactness or
additional constraint, research should first and foremost concentrate on a common
and generic framework for districting problems. And it should try to categorize the
suitability of criteria and measures based on the availability of data, the geometric
representation of the basic units, and the different types of applications.
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Chapter 26
Facility Location in the Public Sector

Knut Haase, Lukas Knörr, Ralf Krohn, Sven Müller, and Michael Wagner

Abstract In this chapter we focus on facility location problems that arise in
the public sector. In particular, we consider selected problems in transportation,
health care, and education—important sectors of public service. The adequate
consideration of demand in these models is of core interest in this chapter. Besides a
discussion of selected model formulations we provide a quantitative and qualitative
overview of recent publications in the field.

26.1 Introduction

In this chapter, we discuss recent work related to public sector facility location
planning. Of course, a location of a public service does not necessarily strictly
belong to the public sector. For example, healthcare facilities may also be owned
by a private firm while being regulated by a public health agency. The main
difference between the planning of public and private facility locations are the
objectives that are considered by decision makers. The optimization criteria in
private applications are mainly profit and market capture maximization, whereas
in public applications social cost minimization, access, efficiency, and equity are
the primary goals. Since the measurement of these objectives is relatively difficult,
they are frequently simplified by minimizing the locational and operational costs
needed for full coverage, or the search for maximal coverage under a given amount
of available resources (Marianov and Serra 2002).
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Most of the public facility location models proposed in the selected papers rely
on covering problems, p-median problems or a combination of both. They are
benchmarks in the development of location models. The public sector applications
of covering models are based on the concept of acceptable proximity. If a service
is provided by a facility located within a maximum distance or travel time, the
service is considered adequate – the client demand is covered. Two major types
of formulations can be distinguished in such covering models. Set covering models
seek to minimize the number of facilities needed for full coverage of the population.
In contrast, maximum covering models are limited by the number of facilities or
services and maximize the covered population share. Furthermore, a distinction can
be made between fixed servers (e.g., schools, hospitals) and systems with mobile
servers (e.g., ambulances, see Nickel et al. (2016)). Additionally, a server can be
classified as capacitated or uncapacitated. An example of a capacitated service is
a primary school that has a limit on the number of students who can enroll in a
particular year (Marianov and Serra 2002; Müller et al. 2009). In the following, we
discuss selected areas of application of public facility location planning approaches:
Bike sharing systems, simultaneous bus scheduling and depot location planning,
electric vehicle charging station planning, healthcare facility location planning, and
school location planning. The presented models are classified as discrete location-
allocation models as well as location choice models.

26.2 Bike Sharing

Since the political interest in the promotion of cyclists continues to increase, it is
important to create enough hubs and parking areas for bicycles. People who do not
have a bicycle on their own should have an appropriate possibility to use bicycles
within cities. Thus, bike sharing models are becoming more and more popular. Bike
sharing is often linked to transport hubs, but there are also stand-alone models for
rental stations and also station-less approaches.

With the proposal of Sayarshad et al. (2012), an optimization formula to design
a bike-sharing system for small communities is presented. This formula can also
be used to extend the public transport with incoming and outgoing bike traffic.
They try to find a minimum required bike fleet size that also minimizes the unmet
demand, non-utilized bikes, and the need to transport bikes between the stations. The
mathematical model maximizes the considered company’s total benefit where the
objective function consists of six terms: (1) the revenue from rented bikes traveling
between network nodes, (2) the cost of moving empty bikes within the network,
(3) the cost of processing and maintenance of bikes, (4) the bike holding cost at
a station, (5) the bikes’ capital cost per period, and (6) the penalty cost of unmet
demand.

By combining the models for private cars and public bicycles, in Romero et al.
(2012) the goal is to achieve an efficient and sustainable transport system that is
also economically and socially efficient at the same time. The choice between motor
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vehicle and bicycle and route selection is simulated by a user behavior model. Thus,
in turn, a combined vehicle-bicycle transport network was created on which a modal
split model can be matched. The goal is then to optimize the location of bike stations.
The study in Lin and Yang (2011) deals with strategic planning of bike sharing
taking into account both the interests of users and investors. Considering those
interests, the model attempts to determine the number and location of bike sharing
stations, the network structure as well as the travel paths between the stations.
Lin et al. (2013) continue expanding this approach by considering the number and
location of bicycle stations in the system, the creation of bicycle lanes, and selection
of paths between the stations and the inventory levels of the bike sharing facilities.
Decisions are made under consideration of total costs and service. An approach to
maximize the coverage of a bike sharing facility by also using the available budget
as a constraint is proposed by Frade and Ribeiro (2015). They combine the strategic
decision for a bike sharing facility and the dimension of the stations with operational
decisions. The result is an optimal location as well as the capacity of each station
and the number of bikes needed while staying within the budget.

26.3 Location Decisions in Public Transport

Traffic planners face the trade-off between improving accessibility with addi-
tional bus stops while simultaneously increasing efficiency so that traffic reach
destinations in a reasonable time. Delmelle et al. (2012) address this specific
problem with an optimization framework that builds upon facility location coverage
models. In contrast to the p-median and maximal covering location problem, the
demand can partially be assigned to more than one facility. Furthermore, facility
attraction is explicitly integrated. The modeling approach considers the impact of
walking distance from a residential location to a stop as well as the transit facility
attractiveness (the number of destinations served, for example). Cipriani et al.
(2012) deal with the bus network design problem in a multimodal transit context.
The approach determines the (near) optimal network configuration regarding bus
routes and service frequencies. It aims to minimize the total costs involved in the
transport system. A similar method is used by Ciaffi et al. (2012) to solve the feeder-
bus network design problem. Their results show that the design procedure could lead
to a reduction of the total travel time, an increase in the number of transfers, in a
more efficient way.

The locations of bus stops affect travel times and therefore also the expected
demand. By using a random utility model (RUM) we can measure the expected
impact of travel time and other factors on demand. Klier and Haase (2015) integrate
a RUM in line planning that results in a difficult optimization problem. If we assume
that distance to the departure stop is the only relevant factor influencing the choice
behavior over a given set of potential stop locations, RUM approaches as defined
in Haase and Müller (2013, 2014), Müller and Haase (2014) or Ljubić and Moreno
(2018) might be appropriate.
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Another topic in public transport is the location of bus depots. The depot
locations determine the vehicle costs. Therefore, we combine vehicle scheduling
and bus-depot location in one integrated approach.

Defining the sets

N set of nodes representing line trips and potential bus depot nodes,
M set of potential bus depot nodes,
I set of nodes representing line trips,
A set of arcs representing feasible idle trips (compatible with the timetable),

the parameters

cij costs of idle trip (i, j) ∈ A ,
fm fixed costs per day of depot m,
km maximum number of vehicles in depot m,

and the binary variables

Xmij = 1 if a vehicle from depot m serves idle trip (i, j) ∈ A (0, otherwise),
Ym = 1 if depot m is to be established (0, otherwise)

then we formulate the depot location and vehicle scheduling model as follows:

Minimize F =
∑

m∈M

∑

(i,j)∈A
cijXmij +

∑

m∈M
fmYm (26.1)

subject to

∑

m∈M

∑

(i,j)∈A
Xmij = 1 ∀ i ∈ I (26.2)

∑

(i,j)∈A
Xmij −

∑

(j,i)∈A
Xmji = 0 ∀ m ∈ M ; j ∈ N (26.3)

∑

(m,j)∈A
Xmmj ≤ kmYm ∀ m ∈ M (26.4)

Xmij ∈ {0, 1} ∀ m ∈ M ; (i, j) ∈ A (26.5)

Ym ∈ {0, 1} ∀ m ∈ M (26.6)

The objective function (26.1) minimizes the total costs per day. Equation (26.2)
ensure that each line trip is operated exactly once. Equation (26.3) are flow
conservation constraints and Eq. (26.4) ensure that trips can only start from a depot
if it is established and the depot capacity is considered.
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26.4 Electric Vehicle Charging Station Location

In the application of electric vehicle (EV) charging station location, we find plenty
of recent work attributed to the technical developments in the EV industry and to
the rising importance of eco-friendly transport modes in times of climate change
(Müller and He 2018). With the increasing demand for vehicles with alternative
fuel usage, the demand for their charging or refueling stations is also increasing.
The papers in Table 26.1 discuss this topic in several approaches by maximizing
the coverage, maximizing the traffic flow, minimizing the costs or by combining of
these objectives.

Frade et al. (2011) present a charging location problem for parked cars. For
this study area, a slow-charging model is suitable, because parked cars are parked
for several hours. The proposed model is based on a maximum coverage location
model (MCLP) to optimize the demand coverage by simultaneously keeping an
acceptable level of service. They optimize the number of stations and the scale of
each station. As input parameters, an estimated refueling demand for the day and
nighttime is needed. The approach of Giménez-Gaydou et al. (2016) also covers
urban areas. Their models consist of a location-allocation model with detailed
analysis of charging needs, charging coverage, and adoption potential. Zheng et al.
(2017) investigate a network-design-like problem with a bi-level structure. While
the upper level aims for optimal locations with minimized general costs calculated
from travel time and energy consumption, the lower level aims at minimized
individual costs with traffic equilibrium. By adding the lower level to the upper level,
those two levels are then combined to a single level model. The hybrid model from
Mozafar et al. (2017) handles the optimal allocation and sizing of either renewable
energy sources or electric vehicle charging stations. A multi-objective problem is
created to obtain several objective variables such as reducing power losses, voltage
fluctuations, charging and demand-supply costs, and battery costs. The location and
the dimension of the charging stations are handled as decision variables.

In contrast to public charging stations for private vehicles, Yang et al. (2017)
introduce a location model for electric powered taxis. With the goal to minimizing
the infrastructure costs, an integer linear program (ILP) is formulated. Their key
findings include positioning of the charging stations matching the dwell pattern of
the taxis, with the combination of charging and waiting spots, fewer chargers are
needed and this compromise can be qualified by the cost of charging spots versus
parking spots. Another taxi-based approach is proposed by Tu et al. (2016). In
contrast to the approach of Yang et al. (2017), their model’s goal is to maximize the
charging station service within the taxi network. To achieve this, a spatial-temporal
demand coverage location model is proposed and the results are analyzed with
respect to spatial coverage, temporal demand availability, and waiting and loading
behavior. A bus charging model is proposed by Xiang and Zhang (2017). In contrast
to the taxi models, for buses with electric drive it is common to replace the battery
instead of charging it. A particle swarm optimization algorithm (PSO) is used to
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calculate the optimal location for the replacement facilities with a minimum of total
costs (transport costs, construction costs, and operating costs).

Another approach is presented by Ghamami et al. (2016a) with the goal to
minimize the total system cost. Their idea is to use existing parking lots to install
charging facilities. The model becomes complex by introducing costs for uncovered
demand and also considering the drivers’ preferences for familiar parking lots.
Ghamami et al. (2016b) aim to configure charging stations to support long distance
intercity travel by using a general corridor model minimizing the total system costs
including infrastructure, battery, and user costs. Using a mixed-integer program with
non-linear constraints, it is possible to use realistic patterns of origin-destination
demands and also considering flow-dependent charging delay caused by traffic jam.
With this model, a strategic design of charging stations along highways is possible.

Different to the parking-and-charging models, a wireless-charging model is
investigated by Riemann et al. (2015). Based on a mixed-integer non-linear program
(MINLP), a method is formulated to find a number of charging facility locations
out of a set of candidates and to maximize the total captured flow. Similar to this,
a flow refueling location problem for both electric and plug-in hybrid vehicles is
introduced by Arslan and Karaşan (2016). With the goal of maximizing the vehicle
miles that can be traveled and minimizing the total cost, the presented exact solution
is an arc-cover formulation and makes use of a Benders decomposition approach.

To propose a model for locating refueling stations in a transport network,
Miralinaghi et al. (2017a) assume that a central planner such as a hydrogen
manufacturer or a government agency is planning the locations for refueling stations
with alternative fuel type, especially hydrogen. Considering a multi-period travel
demand, both the non-linear refueling station operational cost and the deviation of
travelers from their shortest routes to refuel are taken into account. The proposed
capacitated facility location problem (CFLP) is solved with a combination of
Branch-and-Bound and Lagrangian relaxation. Another approach, presented by
Miralinaghi et al. (2017b), considers the refueling demand uncertainty with the
effect of the deviation of travelers to refuel. A cutting plane algorithm is used
to solve the robust centralized planning model (RCPM). The uncertainty model
from Hosseini and MirHassani (2015) provides a two-stage stochastic refueling
station model for permanent stations in the first stage and portable stations in the
second stage. Portable refueling stations are an innovative feature that can be used to
close temporary gaps in supply. A business-driven model for charging infrastructure
planning is introduced by Guo et al. (2016) by using a multi-agent optimization
problem with equilibrium constraint (MOPEC). The goal is to maximize providers’
profit. An approach in which a charging network can be planned without existing
facilities comes from Jeong (2017). They also provide a dynamic-programming-
based algorithm for the case where facilities already exist. The goal is to minimize
the total construction costs of the charging network by minimizing the cost of
charging stations. In particular, the model underlies the following assumptions:
(1) multiple origin-destination round trips along the shortest paths, (2) a single
type of alternative fuel vehicle with a constant driving range, (3) uncapacitated
stations, (4) possible refueling station locations that are only nodes in the traffic
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network (i.e., vertex restricted refueling stations), (5) a linear relationship between
fuel consumption and driving distance, and (6) fully fueled vehicles at the point of
origin.

Defining the sets

N nodes of the network,
E existing refueling stations E ⊂ N ,
K considered alternative fuel vehicles,
Pk sequence of arcs (i, j) along path of vehicle k, and

the parameters

dij (Euclidean) distance from node i to node j ,
ci cost of refueling station at node i,
S maximum vehicle range, and

the variables

Xi = 1 if a refueling station is set up at node i (0, otherwise),
Yik = 1 if vehicle k is recharged at node i (0, otherwise),
Zik remaining driving range of vehicle k at node i, and
Wik additional driving range of vehicle k if refueled at node i,

the refueling station location problem is to

minimize F =
∑

i∈N \E
ciXi (26.7)

subject to

Yik ≤ Xi ∀ i ∈ N \E , k ∈ K (26.8)

Wik = SYik ∀ k ∈ K , i ∈ N (26.9)

Wik ≤ S − Zik ∀ k ∈ K , i ∈ N (26.10)

Zjk = Zik + Wik − dij ∀ k ∈ K , (i, j) ∈ Pk (26.11)

Xi ≥ 0 ∀ i ∈ N \E (26.12)

Yik ∈ {0, 1} ∀ i ∈ N , k ∈ K (26.13)

Zik,Wik ≥ 0 ∀ i ∈ N , k ∈ K . (26.14)

The objective (26.7) is the minimization of the total set up cost of refueling stations.
If there is no refueling station at node i, refueling cannot occur at i by constraint
(26.8). The refueling amount at node i is S by constraint (26.9), and this amount
must not exceed S − Zik by constraint (26.10) if the vehicle refuels at node i.
Constraint (26.11) defines the remaining distance using the remaining fuel at each
node i. Considering arc (i, j) the remaining fuel at node j is the sum of the
remaining fuel at node i and the fueled amount at node i minus distance between
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node i and node j . The authors show that the problem is N P-complete and
propose several procedures for its solution. The approach is used to analyze the
diffusion of alternative fuel recharging stations in a given market.

26.5 Spatial Planning for Health Care Facilities

One of the key factors to achieve a high standard in healthcare is a systematic and
efficient system planning (Shariff et al. 2012). See Chap. 23 for a more detailed
discussion. Therefore, it is important to develop methods to facilitate the planners’
decision making process in the locating of new healthcare facilities (Zhang et al.
2016) (Table 26.2).

To find a more systematic and efficient way of locating healthcare facilities,
Shariff et al. (2012) use a MCLP with capacitated facilities. Zhang et al. (2016)
investigate the location problem of healthcare facilities to maximize the equity of
accessibility and the total accessibility and to minimize the population outside the
coverage range, and minimize the cost of new buildings.

Two location-allocation models to handle the uncertainty in the strategic hospital
network planning are proposed by Mestre et al. (2015). The models aim to
inform about the (re-) organization of hospital networking systems by improving
geographical access (minimize expected travel time) while minimizing costs.

The problem of determining locations for long-term care facilities is investigated
in Djenić et al. (2017), where the objective is to minimize the maximum number of
patients that are assigned to a single installed facility.

Kim and Kim (2013) focus on public healthcare facilities that can be used by
low-income patients. They examine the problem of determining locations of public
healthcare facilities within a given budget and allocating the patients to the facilities.
The objective is to maximize the number of served patients while considering the
patients’ preferences of the for the public and private facilities. Basu et al. (2018)
focus on socio-economically weaker patients. They aim to quantify the gap in
affordable healthcare facilities access. The optimization model shows where new
public facilities are required, and the positive impact of the proposed model with
increasing coverage is detected.

Besides operations research applications in healthcare operation management,
the design of blood supply networks also is important. Hospitals and clinics as
demand centers are dependent on blood products and an efficient procurement
system is needed. Arvan et al. (2015) intend to locate blood bank components
in a network and to determine the allocations among these network components
(donation sites, testing and processing labs, blood banks, and demand points). The
main objectives are to identify the locations of donation points and central blood
banks as well as to decide about the product quantity that is shipped among the
facilities. To model the problem a bi-objective approach is proposed not only to
minimize the cost but also to minimize the time period in which blood products
remain in the network.
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In contrast to immediate medical support, there are also studies regarding pre-
ventive healthcare. In this case, clients choose whether to participate in preventive
care programs or not. To maximize the total participation in these programs, Zhang
et al. (2012) investigate the impact of clients’ choice behavior on the preventive care
facility network design and the resulting level of participation. They present two
alternative models: the probabilistic-choice model and the so-called optimal-choice
model. Solving large instances (with CPLEX) can take days. Enhancing the model
of Haase (2009), Haase and Müller (2015) show that an alternative formulation
of the presented problem can be useful to solve problems considerably faster with
commercial solvers. An approach to derive a lower bound to the problem is also
presented to accelerate computation time. In the following, we present an extension
of this model, which includes variables in patients’ utility functions (Krohn et al.
2018).

The locations of client nodes (demand points), the number of eligible patients
per node, candidate locations for preventive healthcare facilities and a set of feasible
facility modes are given. Different modes represent waiting time for an appointment
and quality of care. The problem is to determine the locations and modes of
established facilities in a way that maximizes the target population’s expected
participation in the preventive healthcare program. We integrate quality and waiting
time into a deterministic mixed-integer linear problem via discretization of the
clients’ utility function and consider each combination of a facility’s location and its
mode as a separate choice alternative, e.g., a single facility with two possible modes
results in two alternatives within the client’s choice set. The two virtual facilities
cannot be established simultaneously, because only exactly one mode is assigned to
the facility. Hence, in the solution for this example, only one alternative (the facility
located in a specific mode) remains in addition to the no-choice alternative, which
is always present. Our approach makes use of the MNL’s IIA property (Haase 2009;
Aros-Vera et al. 2013; Haase and Müller 2015): The basic idea is to provide in
advance calculated choice probabilities as input parameters and to take advantage
of their constant ratios.

Defining the sets

I set of demand nodes,
J set of candidate facility location nodes J ⊆ I ,
M set of modes in which a facility can be established (quality of care and waiting

time for an appointment), (might also contain capacity levels), and

the parameters

gi number of clients in node i that are eligible to require health service,
pijm MNL choice probability of clients in i to access service at a facility located

at j being in mode m given that (j,m) is the only facility established, i.e.
the choice set consists of the two alternatives {(j,m); no}, which results in
pijm = evijm

evi,no +evijm
where vijm is the deterministic utility of clients in i going

to a facility located at j being in mode m and vi,no is the deterministic utility
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for demand node i of not attending any facility (“no-choice” or “opt-out”
alternative)

lm lower threshold for mode m measured in number of clients
l̄m upper threshold for mode m measured in number of clients,
p total number of available facilities, and

the variables

Xijm choice probability of clients in i to access service at a facility located at j
being in mode m,

Zi cumulative choice probability of clients in i to refuse to access any facility
(“no-choice”),

Yjm = 1 if location j is specified to offer healthcare service in mode m (0,
otherwise),

we formulate the healthcare facility location problems as follows:

Maximize F =
∑

i∈I

∑

j∈J

∑

m∈M
giXijm (26.15)

subject to

Zi +
∑

j∈J

∑

m∈M
Xijm ≤ 1 ∀ i ∈ I (26.16)

Xijm ≤ pijmYjm ∀ i ∈ I ; j ∈ J ;m ∈ M (26.17)

Xijm ≤ pijm

1 − pijm

Zi ∀ i ∈ I ; j ∈ J ;m ∈ M (26.18)

∑

i∈I
giXijm ≥ lmYjm ∀ j ∈ J ;m ∈ M (26.19)

∑

i∈I
giXijm ≤ l̄mYjm ∀ j ∈ J ;m ∈ M (26.20)

∑

m∈M
Yjm ≤ 1 ∀ j ∈ J (26.21)

∑

j∈J

∑

m∈M
Yjm = p (26.22)

Xijm ≥ 0 ∀ i ∈ I ; j ∈ J ;m ∈ M (26.23)

Zi > 0 ∀ i ∈ I (26.24)

Yjm ∈ {0; 1} ∀ j ∈ J ;m ∈ M (26.25)
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The objective function (26.15) maximizes the expected participation (measured
as the number of patients that are expected to access preventive healthcare service).
Equations (26.16)–(26.18) in combination with the objective function (26.15) are
a linear reformulation of the MNL choice probabilities. Equation (26.16) ensure
that a demand node i’s final choice probabilities to go to service facilities as well
as non-attendance sum up to at most 1. The case where the sum is less than
one can be interpreted as rejecting patients at certain facilities. This formulation
guarantees feasible solutions if mismatches between mode thresholds and mode
demand exist. As an alternative, we might consider a finer mode structure with
much more mode levels instead of only a few coarse ones to avoid infeasibility.
This is also a possibility to approximate continuous waiting times.

The linking constraints (26.17) allow choice probabilities for a facility to be
greater than 0 only if the facility is established. Using pijm yields a tighter upper
bound by the LP-relaxation than just using Xijm ≤ Yjm and tighter bounds
for Xijm (Haase and Müller 2015), because pijm is distinctly smaller than 1.
Equation (26.18) ensure that the pre-calculated constant substitution ratios between
the choice probabilities for any two alternatives are obeyed. They are derived from
Xijm

Zi
= pijm

1−pijm
. However, Xijm 
= pijm and Zi 
= (1 − pijm) (unless j is the only

established facility).
The correct mode in which a facility is established is selected by (26.19) (lower

mode interval threshold) and (26.20) (upper threshold). If a certain facility j is
established in mode m,

∑
i∈I giXijm has to be between the lower and the upper

mode thresholds.
Equation (26.21) ensure that a facility can either only be established in exactly

one mode or not at all. Equation (26.22) provides that p facilities are established. We
might use a budget constraint instead, with a parameter denoting fixed establishing
costs per facility and mode on the left-hand side and replacing the number of desired
facilities p with a budget.

26.6 School Location

School networks are expanded or consolidated to meet expected student demand.
Müller et al. (2009), Müller (2008) and Delmelle et al. (2014) introduce multi-period
capacitated models for school network planning. Müller et al. (2009) consider free
school choice and substitution effects between school locations (Müller et al. 2012)
whereby school choice probabilities are determined by a mixed multinomial logit
model considering scenarios of opened schools. While minimizing total costs, one
scenario is selected for each period. Assuming that the students attend the nearest
school, the approach of Delmelle et al. (2014) minimizes student travel costs and
has the flexibility to modify the maximum capacity of each school, to integrate the
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minimum facility age closure, and to reflect the uncertainty of demand projections.
Considering free school choice, capacity constraints, a budget, and simulated
utility values, Haase and Müller (2013) maximize all students’ expected utility.
To reduce inefficiencies in school facility location such as travel times, Castillo-
López and López-Ospina (2015) present a model of location and modification of
school capacity, with the objective to maximize utility (minimize operating costs,
minimize travel times, maximize average amount of enrolled students per school,
minimize number of schools with multi-grade classes). The process of school choice
is modeled by including time and income constraints, and the decisions made by
other students (segregation).

Now we discuss a school location model that can be used by private school
organizations that want to enter a market or to expand their network. Without loss
of generality, we assume that there is one private school provider that competes
with public schools. Given already existing own and competing public schools, our
objective is to find the optimal location for the establishment of new additional
private schools to maximize our market share (number of first-year students that
apply for our private schools). We propose to utilize the simulation-based approach
introduced in Haase and Müller (2013). We generate a spatial representative
(location, numbers) sample of first-year students. We simulate their utility values
for all schools by applying a random utility model (e.g., multinomial logit model
or mixed-logit model). A student chooses a private school if we establish at least
one private school with a utility value larger than the utility values for the public
schools.

Defining the sets

I set of simulated first-year students (spatial representative sample),
J set of candidate private schools, and
Ji set of candidate private schools of first-year student i, i.e., for student i, the

simulated utility value of school j ∈ Ji is larger than the largest utility value
of all public schools,

the parameters

n number of expected first-year students, and
r number of private schools to be established, and

the variables

Xi = 1 if simulated first-year student i chooses a private school (0, otherwise),
and

Yj = 1 if a private school is to be established at location j (0, otherwise),
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we define the following mathematical model:

Maximize F = n

|I |
∑

i∈I
Xi (26.26)

subject to

Xi ≤
∑

j∈Ji

Yj ∀ i ∈ I (26.27)

∑

j∈J
Yj ≤ r (26.28)

Yj ∈ {0, 1} ∀ j ∈ J (26.29)

Xi ∈ [0, 1] ∀ i ∈ I | Ji 
= ∅ (26.30)

The objective function (26.26) maximizes the expected number of all students
applying for a private school. Equation (26.27) satisfies that student i selects a
private school if at least one of her preferred candidate private schools is available.
Equation (26.28) limits the number of private schools to be established. Haase et al.
(2018) show that instances with large sample sizes can be solved by this (equivalent)
approach within reasonable time.

26.7 Summary

We briefly discussed recent developments in the literature on the public sector
facility location planning (2010–2018). They show that a remarkable part of the
applications aim at satisfying the needs of the population, minimizing social costs,
or ensuring equity. The current focus of the literature particularly lies on topics
such as emergency/disaster management and healthcare facility location as well
as on transport-related topics like the location of electric vehicle charging stations
or bike sharing systems design (Table 26.3). The evolution of approaches enables
practitioners to include more and more relevant planning decision factors to build
more realistic models. Especially the consideration of stochastic demand modeled
with state of the art methods based on behavioral theory is a promising extension of
existing facility location proposals.
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Table 26.3 Summary of references in public facility location planning 2010–2018

Number of papers per year

Application area 2010 2011 2012 2013 2014 2015 2016 2017 2018 Total

General 4 1 2 1 2 10

Hub location 1 2 1 4

Bike sharing 1 2 1 1 5

Bus network design 3 3

Charging and
refueling stations

1 2 2 4 7 16

Waste management 1 1 1 2 5

Emergency shelter
location

1 1 1 1 1 3 8

Disaster
management

2 1 3

Emergency medical
services

1 3 2 1 2 1 10

Healthcare facility
location

2 1 3 2 1 9

School location 1 1 1 3

Other applications 1 2 3

Totala 6 5 15 8 5 10 10 18 2 79
a Not all references listed here are discussed in the text
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