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Nomenclature

Sets

t  Time period

Parameters

CBatt, Ch> CBatt, Dch
CUea CExe

CWT’ CPV» CFC

Emax

L,
Batt,limit

Pl‘

Batt,dch,limit pBatt,ch,limit
Pl ? Pt

WT.limit pPV,limit pFC,limit
Pt ? P t ? PI

Charging and discharging costs of the battery

Cost of undelivered energy and excess generated
energy

Cost of produced power by the wind turbine,
photovoltaic panel, and fuel cell unit

Maximum allowed shifted load in the DRP

Electricity demand

Limitation of stored energy in the battery

Discharging and charging limitations of the battery
Limitation of produced power by the wind turbine,
photovoltaic panel, and fuel cell unit
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Variables

Exe, Excess generated power

LNew New electricity demand after implementation of DRP

[shiftable Amount of shifted load by DRP

pBat State of charge of the battery

Batt,ch Batt,dch
P; , P,

P?VT , PfV , PFC

Charging and discharging power of the battery
Produced power by the wind turbine, photovoltaic panel, and fuel
cell unit

Ue, Undelivered energy

X; Binary variable: Equal to 1 if the battery be in charging mode,
otherwise 0

Y; Binary variable: Equal to 1 if the battery be in discharging mode,

otherwise 0

9.1 Introduction

Recently, some new concepts such as microgrid have been appeared with the aim of
handling various issues related to integration of renewable energy sources and
increased demand of reliable electricity supply. So, some studies should be done
not only to make such concepts technically feasible but also to be commercially
attractive and viable.

9.1.1 Literature Review

Literature review about deterministic-based model of microgrid energy management
has been provided as follows: to fairly distribute the bill costs among buildings, a
novel residential microgrid model has been provided in [1]. Total operation cost of a
residential microgrid has been minimized in the presence of solar thermal storage
system in [2]. Performance of an islanded microgrid has been optimized in [3] which
consists of wind turbine, photovoltaic panel, fuel cell, and battery. Compressed air
energy storage-based model of a microgrid has been optimized under various
uncertainties in [4].

Literature review about uncertainty-based model of microgrid energy manage-
ment has been provided as follows: A novel robust load frequency control strategy
has been provided in [5] for analyzing the operation of the islanded microgrid
considering vehicle-to-grid constraints. Information gap decision theory approach-
based model of a residential microgrid has been analyzed under market price
uncertainty in [6]. The particle swarm optimization algorithm has been presented
in [7] to optimize the microgrid performance in a real-time operation mode. Solar
thermal storage-based model of a residential microgrid has been analyzed under
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market price uncertainty in [8]. In order to investigate the charging effects of plug-in
hybrid electric vehicles on the optimal operation of microgrid, a novel stochastic
approach has been provided in [9]. Robust optimization approach has been utilized
in [10] to minimize the operation cost of a compressed air energy storage-based
microgrid under market price uncertainty. ROA-based residential model has been
optimized under market price uncertainty in [11]. With the aim of optimizing the
microgrid’s operation cost in the presence of renewable energy sources, an additive
and integrated net load forecast model has been presented in [12]. Short-term risk-
based model of a smart residential microgrid has been analyzed under market price
uncertainty in [13]. Market price uncertainty-based model of a hub system has been
optimized using robust optimization approach in [14]. A genetic algorithm-based
model of the hydrothermal model has been optimized in [15]. A novel robust
optimization approach-based model of a novel microgrid has been studied under
market price uncertainty in [16].

Literature review about microgrid energy management considering various
objective functions has been provided as follows: with the aim of decreasing the
operation cost and emission of microgrid, a multi-objective uniform water cycle
approach has been provided in [17]. A renewable energy-based microgrid model has
been studied from economic and environmental viewpoints considering compressed
energy storage system and demand response program in [18]. A multi-objective
framework has been presented in [19] to minimize the emission and the cost of a
microgrid using normal boundary intersection technique. In order to mitigate the
fluctuation of power flow, decrease energy cost, and reduce the emission of green-
house gases, a novel multi-objective-based model of microgrid has been provided in
[20]. A e-constraint approach has been used in [21] for optimal scheduling of a novel
hybrid energy system under economic and environmental factors. A multi-objective-
based cost-emission model of a residential apartment building has been optimized
using e-constraint and weighted sum approaches in [22]. Finally, a multi-objective-
based cost-emission model of a hybrid system is optimized utilizing weighted sum
approach in [23].

9.1.2 Novelty of This Chapter

1. Minimizing the operation and energy not supplied costs at the same time under
DRP constraints.

2. Using e-constraint and fuzzy satisfying approaches to solve the proposed multi-
objective problem and select the best compromise solution.
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9.1.3 Chapter Organization

The chapter is structured as follows: The proposed multi-objective optimization
model is formulated in Sect. 9.2. In Sect. 9.3, two different scenarios have been
investigated with and without considering the effects of DRP. Finally, the conclu-
sion is presented in Sect. 9.4.

9.2 Problem Formulation

9.2.1 Objective Function 1

The first objective function of the proposed chapter is minimization of the
microgrid’s operation cost:

24
MinOF, = Z (Pf"T x Cwr + P];V x Cpy + Pfc

t=1

Batt,ch Batt,dch
xCrc — P, X Cga,ch + P, X Cgapen) (9.1)

The first term of the proposed objective function (9.1) is related to the cost of
produced power by the wind turbine. The second and third terms are related to the
cost of produced power by the photovoltaic panel and the fuel cell unit. The cost of
consumed power with the aim of charging the battery is presented in the fourth term.
Finally, the cost of produced power through the discharge process of the battery is
provided in the last term.

9.2.2 Objective Function 2

The second objective function is presented to minimize the energy not supplied cost
in the microgrid.

24
MinOF; =) " (Ue, x Cue) (9.2)

t=1
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9.2.3 Constraints of the Wind Turbine, Photovoltaic Panel,
and Fuel Cell

Produced power by the wind turbine, photovoltaic panel, and fuel cell are provided
as follows:

PIWT < PIWT,limit (93)
Pll‘)V S PFV,limit (94)
PFC S PFC,limit (95)

9.2.4 Constraints of the Battery

The technical constraints of the battery are formulated by Eqgs. (9.6)—(9.12) [3]. The
state of charge, charge and discharge limitations of the battery are expressed by
Egs. (9.6)—(9.8).

Batt Batt,limit
Pt al S Pt att, lma (96)
P?att,dch S P?all,dch,limit X Xl (97)
P?att,ch S P?att,ch,limil X Yt (98)

Equation (9.9) is presented to control the charge and discharge mode of the
battery.

X +Y =1 (9.9)

Maximum limits of discharging and charging of the battery are presented in
Egs. (9.10) and (9.11), respectively.

P?att,dch _ P?jtlt < 0 (910)

PBall,ch + PBatl < PBatt,limit (9 11)
t t—1 ="t :
Finally, Eq. (9.12) is presented to update the state of charge of battery.

P?att _ P?ftlt 4 P?atl,ch _ P:Batt,dch (912)
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9.2.5 Demand Response Program

The time-of-use (TOU) rates of demand response program are used in the chapter.
TOU shifts the electricity demand from peak periods to flatten the load curve,
improve the performance of microgrid, and decrease the operation cost of the
microgrid. The utilized DRP can be formulated as follows:

L?Iew — L+ L;hiftable (9_13)

|shifsble| < pmax g, (9.14)
T .o p

Z Lehifiale _ (9.15)

t=1

It is noteworthy that it is assumed only 20% of the base load can be shifted at each
period.

9.2.6 Power Balance Constraints

Power balance limitation can be formulated as follows:
PYT 4 pPV 4 pFC y pBatdeh 4 {Je, — [, 4 PBAeh | Exe, (9.16)

It should be mentioned that on the right side of Eq. (9.16), LN*¥ should be
replaced with L, to consider the effects of the proposed DRP.

9.2.7 e-Constraint Method

In this chapter, the proposed multi-objective optimization model is solved using the
e-constraint method. In order to create Pareto front, objective function (9.1) is
minimized, while the second objective function is considered as a constraint. The
mathematical formulation of mentioned statements can be expressed as follows [24]:

OF = max (@)
S.t.

®, < ¢ (9.17)
{Eqs.(9.3) — (9.20)
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Fig. 9.1 Description of &- Y |
constraint method '

;él ___________

Pareto front

¢ [

It can be observed from the Eq. (9.17) and Fig. 9.1 that the ¢ is limited by ®,. In
this section, by increasing & from <I>I§ to CDIZJ, the modified single objective function is
solved. With comparing the obtained results for each value of ¢, the optimal
solutions like point C in Fig. 9.1 are obtained.

9.2.8 Fuzzy Satisfying Method

Min-max fuzzy method is one of the best methods for selecting the optimal solution
from the obtained Pareto solutions. The linear membership function can be described
as follows:

1 fisne
P i
e e S SN i (9.18)
"

In this equation, f} is limited with minimum and maximum values of the kth
objective function in Pareto optimal set. uj shows the optimality degree of nth
solution of kth objective function. It should be mentioned that nth solution can be
calculated as follows:

1" = min (,u’l’, ...,yf‘v)

9.19
I’lzl,...,Np ( )

The maximum weakest membership function can be considered as the best
strategy. Thus, the corresponding membership of solution (¢™**) can be calculated
as follows:

u™ = max (/41, .. .,ﬂN") (9.20)

The general flow chart of the utilized approaches is illustrated in Fig. 9.2.
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Fig. 9.2 Flow chart of the _
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9.3 Numerical Simulation

In the proposed chapter, an isolated microgrid in the Budapest Tech [25] is evaluated
as a case study. As shown in Fig. 9.3, the proposed sample microgrid comprises of
renewable energy sources such as wind turbine, photovoltaic panel, fuel cell, and
battery storage.

9.3.1 Input Data

The types of used wind turbine, photovoltaic panel, and fuel cell are “Air-X 401,”
“DS 40,” and “Flexiva” with the nominal power of 400 W at 11.5 m/s, 40 W, and
80 W, respectively. The output of the wind turbine and photovoltaic panel are
provided in Figs. 9.4 and 9.5, respectively. Also, the estimated load profile is
illustrated in Fig. 9.6. Notably the optimization problem is investigated under two
load profiles. Parameters related to the costs of different units and their relevant
limitations are presented in Table 9.1.

9.3.2 Simulation Results in Two Study Cases

In this chapter, two case studies are analyzed with the aim of evaluating the
performance of the proposed model. The proposed model without considering the

Fig. 9.3 Schematic of the

proposed microgrid model
Wind

turbine

Photovoltaic

panel

Central

controller

Battery

storage
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Fig. 9.4 Output power of wind turbine
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Fig. 9.5 Output power of photovoltaic system

DRP constraints has been analyzed in the first scenario and with considering the
DRP constraints has been investigated in the second one.

The state of charge of battery and the charge and discharge rates of battery are
illustrated in Figs. 9.7 and 9.8, respectively.
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Table 9(‘11 thstsl of different  pyrameter | Unit Value |Parameter | Unit | Value
units and their relevant —
FC,limit
limitations Cwr €/kWh | 0.4 ppcm w 80
Cpv €kWh |04 pBattlimit w 200
Cgc €/kWh 09 P?an,dch,limil W 50
Cgay, ch €/kWh |04 pBattch.limit W 200
CBall, Dch €/kWh 06
Cue €kWh |15
CExe €/kWh Free

By analyzing these two figures, it can be understood that without DRP, the state
of charge of battery is 1995 kWh. Meanwhile, with considering the DRP, the state of
charge of battery is 3423.56 kWh, and this means that with considering DRP, the
state of charge of battery increases 1428.5644 kWh. Also amount of charge without
DRP is 175 kWh and with DRP is 167 kWh, which means that the charge of battery
decreases 8 kWh under the DRP. Furthermore, discharge rate without DRP is
275 kWh and with DRP is 98.36 kWh. So, the discharge rate of battery decreases
176.64 kW under the DRP. In general, it can be concluded that with considering the
DRP, the charge and discharge rates of battery are decreased which makes the
battery life to be increased and the operation cost of microgrid decreased.

The excess energy is illustrated in Fig. 9.9. According to the provided figure, it
can be understood that without DRP, the excess energy is 266 kWh and with DRP is
zero. Thus, the excess energy decreases 266 kWh and becomes zero under the DRP.
In general, reduction of excess energy decreases the operation cost of the microgrid.
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The energy not supplied is provided in Fig. 9.10. According to this figure, without
considering DRP the undelivered energy is 163.017 kWh and with considering DRP
is 67.64 kWh, which means that with considering DRP the undelivered energy
decreases 95.377 kWh and this leads to the reduction of the operation cost. It should
be mentioned that the output power of fuel cell without DRP is 1.98 kWh and with
DRP is zero, and this low output power is due to high operation cost of the fuel cell.
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Fig. 9.10 Undelivered energy

Finally, the obtained Pareto solutions with and without DRP are summarized in
Table 9.2. In the first scenario, by using min-max fuzzy method, solution#19 is
selected as the trade-off solution in which the operation cost of microgrid is
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1953.184 € and the unsupplied energy cost is 244.526 €. In the second scenario,
solution#13 is selected as the trade-off solution in which the operation cost of
microgrid is 1848.615 € and unsupplied energy cost is 101.462 €. Consequently,

the

operation cost of the microgrid increases 5.36% and the cost of unsupplied

energy reduces 58.51% under the DRP.

9.4 Conclusion

In this chapter, two conflicted objective functions of an off-grid microgrid, operation
cost and energy not supplied, have been provided. To handle the provided multi-

obj

ective model, e-constraint method is used. Then, fuzzy satisfying approach is

employed to select the best compromise solution from the obtained solutions.
According to the obtained results, the operation cost of microgrid is increased

53

6% and the cost of unsupplied energy is reduced 58.51% in the presence of

DRP. So, it can be concluded that DRP can be employed to provide desired
economic ideals. It should be noted that some new multi-microgrid models can be
analyzed under various conditions as a future work.
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