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Nomenclature

AMI Advanced metering infrastructure
AP Access point
BS Base station
CR Cognitive radio
D2D Device to device
DR Demand response
DSM Demand-side management
EE Energy efficiency
EH Energy harvesting
FQL Fuzzy Q-learning
FSL Fuzzy SARSA learning
GA Genetic algorithm
GHG Greenhouse gas
HetNet Heterogeneous network
HPPP Homogeneous Poisson point process
ICT Information and communications technology
IoT Internet of things
LTE-A Long-term evolution advanced
M2M Machine to machine
MNO Mobile network operator
NE Nash equilibrium
OPEX Operational expenditure
PLC Power line communications
PSM Power saving mode
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QoS Quality of service
RES Renewable energy source
RPS Renewable power supplier
SEP Smart energy profile
SG Smart grid
SGFAN Smart grid field area network
SGHAN Smart grid home area network
SGNAN Smart grid neighborhood area network
SGWAN Smart grid wide area network
SINR Signal to interference and noise ratio
UDN Ultradense network
UE User equipment
UMTS Universal mobile telecommunications system
WSN Wireless sensor network

1.1 Introduction

In a traditional electric grid, the main causes of power inefficiency are high-voltage,
long-distance transmission, and large-scale centralized electricity generation [1]. To
improve the power efficiency and reliability of the grid, the concept of smart grids
(SGs) has been proposed by using information and communications technology
(ICT). Demand response (DR), decentralized power generation, demand-side man-
agement (DSM), and price signaling are the key characteristics of a SG associated
with green wireless communications. With DR and DSM, both power generators and
consumers can interact to optimize the process of power supply and consumption.
The power generation may be performed by small distributed power plants (e.g.,
small wind turbines and solar panels) and consumers using decentralized design.
Therefore, this could help consumers to be less dependent on the main electrical grid.
With price signaling, the consumers will know about the present power price.
Moreover, the generators can encourage consumers to consume electrical energy
when the demand is low, i.e., during the off-peak period, by giving them a lower
price for electricity during those times. This will result in a lower investment for the
infrastructure as the peak load will be reduced.

In recent years, the integration of wireless communications and SGs has attracted
a significant research attention [2]. On one hand, wireless communication technol-
ogies will play an essential role in the revolution of SGs by communicating a variety
of data and measurement over all nodes of the electrical grid. On the other hand, for a
better power usage when providing a wireless service to mobile units, SGs can be
used to support green wireless communications. In wireless networks, each wireless
base station (BS) powered by a SG might be selfish in optimizing its own operation
in terms of capacity or quality of service (QoS). In this chapter, how to design
energy-efficient communication infrastructures without negative effects on the
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performance is one of the main concerns. Indeed, the problems of power manage-
ment, cost-function analysis, optimal network design, energy-harvesting (EH), and
energy-efficient strategies are considered for green-powered communication net-
works in a SG environment and, in particular, we attempt to focus on efficient
interaction between the RPS’s random green power generations and the BS’s
dynamic of energy consumption via minimization of an energy-based cost function,
considering the D2D and M2M impacts on efficient utilization of energy and
bandwidth. In general, due to the unlimited growth of service demands and high
load traffic, a green wireless communication system is considered with the aim of
decreasing energy consumption of heterogeneous networks (HetNets). This system
provides a proportion of required energy of BSs by employing some renewable
power suppliers (RPSs), while user equipment (UE) and sensor nodes especially
benefit from short device-to-device (D2D) and machine-to-machine (M2M) links as
a promising technique to design energy-efficient HetNets.

1.2 Demand-Response Power Consumption Model

To meet today’s rapid proliferation of data traffic, the cellular network operators are
recently installing more and more BSs. As a result, the daily power cost adds up to a
huge bit of the operational expenditure (OPEX). Therefore, the need for cellular
operators to implement new energy-efficient solutions is critical in order to lower
their energy costs [3–6]. In general, energy-efficient solutions can be employed by
managing either the power supply or the data-traffic demand. On the supply side,
energy-harvesting technologies, such as wind turbines and solar panels, at the BSs
are considered as one of the most commonly adopted solutions. Using energy-
harvesting devices, BSs can consume clean and affordable renewable energy to
decrease or even substitute the energy purchased from the grid. It is clear that the
power grid, as a reliable energy source to BSs, is still required. This is because the
renewable energy is not always available when needed, and it is mainly distributed in
both time and space in a random way. As a result, different BSs are hard to solely
rely on the uncertain supply to power their units.

Power grid, in addition to being a reliable energy supply, can offer new capabil-
ities for the BSs’ cost-saving with its ongoing transformation from conventional grid
to SG. A SG differs from the conventional grid in that it allows two-way data and
energy flows between the grid and end users by deploying smart meters at end users,
rather than a one-way flow. Energy cooperation in cellular networks, which allows
the BSs to trade and share their harvested energy to support the nonuniform data
traffic in a cost-effective way, will then be possible through the two-way delivery of
energy-information flow in SG. On the demand side, to lower the energy consump-
tion, different methods have been proposed across various layers of protocols for
data transmission. Among these methods, communication cooperation, which
enables the BSs to share the wireless resources and shift the traffic loads with each
other, is the most appealing. However, the use of renewable energy sources at BSs
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would lead to a variety of new problems and challenges in the current communica-
tion cooperation design: the conventional design to save energy may no longer be
cost-effective. In fact, although renewable energy is unreliable in supplying energy,
in general it is way cheaper than the energy purchased from the grid and thus BSs
should maximally harvest renewable energy to lower cost. However, under the
energy-saving design, the harvested energy at BSs may not be efficiently exploited
when serving a time-variant traffic load. To tackle this issue, the design of novel
cost-aware communication cooperation schemes is desirable. This can be done by
taking into consideration the cost differences between conventional and renewable
energy sources [3]. In Fig. 1.1, we can see the general energy and communication
cooperation model for cellular networks at the power supply and the communication
demand layers, respectively.
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Fig. 1.1 A general model for integrated smart grids and green wireless communications [3]
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1.3 Energy-Efficient Communication Infrastructures

In wireless networks, consisting of battery-powered nodes such as sensor nodes or
mobile phones, energy efficiency (EE) has always been under consideration. How-
ever, until recently, the EE of network equipment powered from mains such as
switches, routers, and BSs has not been caught in the spotlight of attention [7]. With
the growing number of subscribers and their ever-increasing energy demands,
electricity bills of service providers have been skyrocketing. Therefore, to reduce
the energy consumption of core and access network equipment, significant efforts
have been made in both academic and industrial projects. Besides the energy costs,
the high level of greenhouse gas (GHG) emissions coming from the communication
networks is expected to increase the expenses and costs of the operators with the
forthcoming carbon taxes and caps. To lower energy costs and electricity bills, the
communication infrastructure can employ the price-following demand management
of SG. Indeed, on one side, the way energy-efficient communication technologies
are implemented is influenced by SG-driven schemes. On the other side, SG is
impacted from EE techniques as it involves dense communications.

In terms of communication coverage and functionality, we can roughly divide the
SG into three interconnected communication networks: SG home area network
(SGHAN), SG neighborhood area network (SGNAN), and SG wide area network
(SGWAN). SGHAN basically corresponds to a network of signal-controlled appli-
ances, consumer devices, and energy management devices. This will enable
connected devices to send/receive signals from meter, displays, and other home
management devices. Indeed, SGWAN covers home area monitoring, regulation,
control, and management. SGNAN is applicable for distributed generation and
distribution automation, and it is related to a group of houses possibly fed by the
same transformer. SGWAN shelters SGHAN and SGNAN for monitoring and
control of the entire communication network. SGWAN is a gigantic network
covering the management of generation, transmission, distribution, and utilization
of the entire grid. The communication facility for the electricity distribution systems
is also formed by a SG field area network (SGFAN), which operates as a bridge
between customer premises and substations. Since the geographical scale of a
SGFAN is similar to SGNAN, similar communication techniques can be considered
for both of them. A variety of communication technologies can be used to implement
these network domains. For example, because of their wide-coverage fiber-optic,
universal mobile telecommunications system (UMTS), long-term evolution (LTE)/
LTE-advanced (LTE-A) can be more applicable for SGWAN, while IEEE 802.11
and IEEE 802.15.4 power line communications (PLC) could be more appropriate for
SGNAN and SGHAN. The authors in [8] present a profound research on routing
protocols and applications in the related fields. Generally, wireless communications
have a broad range of applications in the SG including demand management,
substation, meter data collection, and power line monitoring and protection. In the
following subsections, wireless technologies that are applied in SGWAN, SGNAN,
and SGHAN are described, respectively.
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1.3.1 Energy-Efficient SGWAN

The EE, in wireless communications, is generally defined as the ratio of the total
achievable data rate to the total power consumption, and it is quantified by the “bits-
per-joule”metric [7]. The EE of OFDMA as the common multiple access scheme for
3G, 4G, and WIMAX networks has been studied in several works. Note that 3G, 4G,
and WIMAX stand as strong candidates for SGWAN. An energy-efficient rate
adaptation and resource allocation approach has been presented in [9]. Multiple
input multiple output (MIMO) is another technique that is common in 3G, 4G, and
WIMAX. In MIMO, higher throughput is often achieved at the cost of using more
antennas and therefore higher circuit power consumption. The authors in [10]
propose a selective model of active antennas in order to improve EE for MIMO
according to the daily profile of traffic loads. In a SG environment, the implications
of adaptively changing the number of antennas have been explored. Note that the
effects of this adaptive approach on the performance of SG applications still remain
as an essential challenge.

Finally, according to the IEEE 802.22 standard, cognitive radio (CR) is a
technology that allows unlicensed users to access the blank frequency bands.
Based on the concept of CR, underutilized resources that are facing scarcity are
being used by unlicensed secondary users opportunistically when the primary users
(licensed user) are idle, i.e., when the channels are not occupied by primary users.
Thus, the spectrum is maximized and the channels are vacated before the primary
users arrive since they have higher priority. The authors in [11] have suggested a CR
network that senses not only the radio-frequency bands but also the SG resources.
Under real-time pricing, the operating cost of the CR network is optimized. More
specifically, BSs manage their power consumptions over the related cells according
to the electricity costs. Although the main focus of those studies has not been energy
conservation, they are providing a combinational model of CR networks and SG
concepts. To this end, EE of CR has been investigated in [12]. The effects of EE
techniques on the QoS of SG data and other related challenges in energy-efficient
communications have been discussed in [7] as well.

1.3.2 Energy-Efficient SGNAN

SGNAN, one of the important fields, carries large volumes of data that come from
heterogeneous data sources and supports a large number of devices. Indeed, 3G, 4G,
and WIMAX can also be exploited in the SGNAN as they are strong candidates for
SGWAN. In addition, promising deployments for urban SGNANs are offered by the
IEEE 802.11 family of standards. Recently, power saving mode (PSM) has been
adopted by several IEEE 802.11 standards in their operations. PSM is utilized by
IEEE 802.11b and IEEE 802.11s to enable sleep mechanisms for wireless nodes
when they are not in active mode, i.e., when they are not transferring data. IEEE
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802.11b is also preferred for SGHANs because it is widely used for residential
premises, while IEEE 802.11s, the mesh standard, is defined as a promising solution
for electric vehicle networks. In [13], the authors consider an admission control
scenario for electric vehicles to study the performance of IEEE 802.11s. In fact, PSM
can be used for SGNAN communications; however, one bottleneck of the PSM is
the extra delay which is the common issue in all sleep/wake-up mechanisms
[14]. Because of this, it is necessary to further explore the impacts of PSM on the
SG operation [7].

1.3.3 Energy-Efficient SGHAN

In general, ZigBee is considered a widely adopted protocol for home automation and
smart energy standards in SGHANs. Recently, there exist different types of ZigBee-
certified products for home automation. Some of the leading smart meter vendors
have manufactured ZigBee-enabled smart meters. In addition, smart energy profile
(SEP) has been developed by ZigBee Alliance to support the needs of smart
metering and advanced metering infrastructure (AMI) and connects utilities and
household devices. Indeed, ZigBee is a new technology of short-range, low com-
plexity, low power consumption, low-cost, and duplex wireless communications that
is based on the IEEE 802.15.4 standard. Initially, ZigBee was defined for power-
constrained sensor networks; thus, EE is an intrinsic property of ZigBee. The authors
in [15] propose to use a ZigBee-based wireless sensor network (WSN) for demand
management in the SGHAN. Another strong candidate for wireless SGHAN com-
munications is Wi-Fi. The use of Wi-Fi-enabled sensors in the SG has been
researched in [16]. Particularly, it is expected that newly emerging ultralow-power
Wi-Fi chips increase the adoption of Wi-Fi for WSNs and increase their interoper-
ability at SGHAN. There is abundant literature relating to energy saving and EE in
WSNs; however, those works are out of the scope of this chapter because they are
independent of SG concepts such as demand management and dynamic pricing.
Besides ZigBee and Wi-Fi, cellular technologies are also able to provide data-
transmission links among residential premises distributed over small cells. To
lower the energy consumption of the transmitters in SGHAN, femtocells and indoor
picocells can be used as they are more energy-efficient than macrocells [17]. It
should be noted that the total power consumption of a cellular network can be
reduced by up to 60% in urban areas using the joint deployment of macro- and
residential picocells. Moreover, the growth of small cell density and ultradense
networks (UDNs) will increase the EE [18]. As a result, implementing small-cell-
based SGHANs provides energy-efficient wireless communications [7].
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1.4 Green Communications Model to Support Smart Grids

As already stated, due to the rapid growth of subscribers and the traffic loads, power
consumption of the networks is rising [19]. Indeed, the main issues in correspon-
dence to the rise in the number of sensors and devices need to be responded through
an improvement in EE. The traditional networks provide capacity enhancement by
focusing on the transmission power. However, such strategy is not always applicable
from the economic perspective of the mobile network operators (MNOs). Therefore,
modernization of cellular networks with green strategies is one of the most important
goals which is realized by the 5G networks and the networks thereafter. This goal is
met by reducing the power consumption which is not related to information trans-
mission directly. The 5G green strategies which allow minimization of power
consumption can be observed in Fig. 1.2.

Since the highest proportion of energy is consumed by the BSs, some practical
strategies should be investigated in order to reduce power consumption and achieve
the desired demand response without ignoring the acceptable QoS [20]. Meanwhile,
employing renewable energy sources (RESs) has been suggested to reduce the
overall grid energy consumption of HetNets, where the user equipment and
machines are respectively allowed to use D2D and M2M communications to
improve the capacity with little amount of energy in the presence of managing the
interference [21]. In D2D communications, UEs are able to transmit information via
direct links not through the BS, which offloads the traffic load of the core network.
D2D users can either utilize different time/frequency resources from cellular ones
(overlay mode) or reuse the same resources with them and transmit simultaneously
(underlay mode) [22]. Considering environmental conditions and dependence on
location and weather, the amount of supplied power of renewable power suppliers
(RPSs) is variable. In addition, the reservation capacity of RPSs is limited. Thus, a
proper controlling mechanism is essential for efficient power allocation. In addition,

Fig. 1.2 Energy-efficient
technologies for green
wireless communications
[19]
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minimizing the cost function of both supply cost of RPSs and energy reservation cost
of BSs is the other main criterion in the system design [23]. This system provides a
proportion of the required energy of BSs by employing some RPSs, while UEs
especially benefit from short D2D links as a promising technique to design energy-
efficient HetNets. Indeed, according to our presented model, BSs are jointly powered
via a renewable energy source and the electric grid (EG).

As stated, the factor of EE is critical to obtain the maximum performance of
cellular networks, according to power consumption of the whole system. Prior
researches have considered various conditions and applied different technologies
to get a desirable level for EE. Due to the high power consumption of BSs, [20]
presents an online algorithm where a BS is able to switch between on and off states
based on traffic load. In order to manage and minimize power consumption of the
BS, employing RPSs has been developed and some of the famous operators like
Huawei and Ericson have started exploiting this technology to provide energy for the
BS via these sources [24]. Some beneficial optimal strategies for BS’s transmission
were considered to reduce the amount of energy demand while considering the QoS
requirements [25]. Due to the time-variant energy demands of a BS, article [5]
showed that BSs are able to determine the amount of both used and reserved
energies. Considering undeniable cost, the recent research in [26] presented a
stochastic programming approach in order to minimize energy cost regarding BS’s
storage and utilizing RPSs. Ref. [23] proposes a new noncooperative game model to
achieve an optimal strategy for decentralized allocating energy and minimize the
cost of BS for reservation and RPS for supply based on the interaction between them.
Indeed, using an M/M/G make-to-stock queue model, the impact of QoS on the
energy supply rate of RPS and energy storage level was discussed. On the other
hand, D2D communications in wireless cellular networks have attracted researcher’s
attention. D2D communication is a promising technique for improving the system
performance with respect to reducing power consumption of BSs and increasing the
whole network throughput. To get this aim, in [27] D2D communications and
HetNets have been presented together for designing a future generation of systems
in order to maximize the amount of spectrum reusing. Mobile association, as an
important factor in choosing access points (APs) with the aim of balancing load
distribution and providing the best performance, has been analyzed in [28]. Some
practical strategies have also been investigated to provide energy-efficient resource
allocation for D2D-aided networks. In [29], authors introduce a method for manag-
ing resources by employing a novel model called coalition game. A resource
allocation technique based on the game and matching theory has also emerged to
get maximum EE of users [30]. Energy harvesting (EH), as an efficient solution to
overcome the limitation problem of battery capacity and lifetime, has been promoted
recently which enables users to get the required energy from RPSs [31]. This will
reduce the amount of power consumption of BSs. In [21], to perform the joint
optimization of power control and resource allocation problem in a D2D-aided
network using EH technology, authors provided an energy-efficient stable matching
algorithm. In [32], an energy-efficient mobile association has been investigated to
maximize the EE of networks by solving a joint optimization problem of AP
selection, switching mode, and power control.
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Moreover, we provide a green cellular model in which the BSs are jointly
powered via RES and EG power sources. Indeed, we present the efficient interaction
between the RPS’s green power generations and the BSs’ dynamic of power
consumption via minimization of an energy-based cost function, considering the
cache-enabled D2D impacts on efficient utilization of energy and bandwidth. The
network performance takes into consideration the downlink (DL) connections as
well. In this scenario, the system components are described in detail that refer to the
renewable-energy-powered BSs and the power supplier consisting of EG and RPS
(Fig. 1.3). The output power of the supplier is considered as random variable with
mean η0s (energy per time). Considering the finite capacity of the RPS, ηs is defined as
the amount of supply rate of the RPS based on the RPS’s production model in the
BS’s point of view ηs < η0s

� �
. Indeed, we analyze the power consumption of the BS

in a wireless system that involves both static and dynamic parts such that it is related
to the type of BS. In addition, estimation of the connection demands over a cell is
possible due to the usage history. The connection demand is modeled as a stochastic
homogeneous Poisson point process (HPPP) with rate λc (the number of connection
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Fig. 1.3 Green-powered communication base stations
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demands/unit time). Providing connection demand is due to the order of arrival
connections that follows the first-come-first-served model, and E is defined as a unit
of consuming energy of a BS in each connection in the DL mode. The energy storage
unit of the BS should be charged by the green energy in order to respond to the
D2D-aided network demands and provide mobile services. Thus, if the stored energy
of the BS is not enough to achieve a desired QoS, the BS will compensate this
shortage by requesting and reserving power from the RPS and consequently paying a
specific price for each unit energy. The methods of reserving energy from RPS
depend on the condition of renewable power production. As a result, the BSs are
responsible for paying the cost Cr per unit time due to the holding energy in storage
unit according to the desired energy level α.

Users in the HetNet can request popular contents from neighboring users through
D2D communication, whereas they can also request contents from the BSs by the
traditional cellular communication [33, 34]. Users may request files from a set of
m files, named “library.” We assume the BSs are aware of the stored files and
channel state information of the users and control the D2D communications. For
example, a user node u establishes a link with a certain BS when the user node
u requests a file from the “library” of size m. Then, BS searches the requested file in
the certain area where the user is located at the center point. If the file is found, BS
allocates a frequency sub-band fD2D for the D2D link between the user u and the user
storing the file. Otherwise, user u receives the file through the traditional cellular
network. Here, we also assume that users follow PPP with average intensity λU; that
is, the probability that l users exist in the area S is

f l;Sð Þ ¼ Sj jλUð Þl
l!

e� Sj jλU ð1:1Þ

where|S| means the area of district S. Denote the probability that a user stores the file i
as pi. Therefore, the file i is distributed with the PPP model with average intensity
λUDpi. Also, let rd be a random variable representing the distance between the
reference user requesting file i and the nearest user storing the file i. When rd > d,
there exists no user with file i in the area S (|S| ¼ πd2). Thus, the probability of the
reference user successfully establishing a D2D link to deliver the desired file is

Pr rd � dð Þ ¼ 1� Pr rd > dð Þ ¼ 1� f 0;Sð Þ ¼ 1� e�πd2λUDpi ð1:2Þ

Obviously, only users without file i try to send the request to get file i. As a result,
averagely, there are λU �S

�� �� 1� pið Þ users who may request file i in the network. �S
�� �� is

the area of the cellular system. The probability that users cache the ith ranked file can
be expressed as (Zipf distributions) [35]
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pi ¼
1=ið ÞrcPm

j¼1 1= jð Þrc i ¼ 1, 2, . . . ,m ð1:3Þ

where rc� 0 is a parameter named skew coefficient and characterizes the distribution
by controlling the relative popularity. Let qi denote the probability that file i is
requested by a user; the user request probability also follows the Zipf distribution
[35]. Based on the above explanations, the number of activated D2D links for
delivering file i is

ni ¼ λU �S
�� �� 1� pið Þqi 1� e�πd2λUDpi

� �
ð1:4Þ

and the expected number of active D2D links for all files can be given by

ND2D ¼
Xm

i¼1
λU �S

�� �� 1� pið Þqi 1� e�πd2λUDpi
� �

ð1:5Þ

A cellular link with the reference user is set up if establishing a D2D communication
link is a failure. It implies that a traditional cellular link has to be established if the
reference receiver cannot find the corresponding user who stores the desired file
within the maximum transmission range of D2D links (d ). Thus, the expected
number of cellular links for all files (or the expected number of users who obtain
their desired files from the cellular network) is

NCellular ¼
Xm
i¼1

λU �S
�� �� 1� pið Þqi e�πd2λUDpi

� �
ð1:6Þ

1.5 Energy-Cost Analysis

Considering one time unit for each connection with one unit energy consumption, in
the presence of a backlogged access where the BS is not able to provide the desired
energy level α for the UE’s demand, the BS energy storage should be charged to α
units via RPS. Thus, the process of reserving energy follows the energy inventory
strategy [23] in order to avoid placing energy replenishment by the BS without
paying attention to connection arriving. Scheduling the process of a queuing system
has impressive effects on improving QoS. In our model, where the backlogged
access occurs, the UE has to wait for a while and this leads to QoS deterioration.
As a result, a cost δ will be assigned to the system. This cost is divided into two parts
and is devoted to the BS and RPS with a fraction δ 2 [0, 1]. We define parameter Cb

as the average number of backlogged accesses, Cr as the average energy reservation
level, and Cη as the operation cost for the RPS which is considered because of load
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factor variation of the RPS (i.e., the relation of the service demand rate and the
service supply rate as ρ ¼ λc/ηs < 1). Indeed, the RPS is able to distribute energy
among several BSs. The mean cost per unit time for both the BS and RPS is
respectively formulated as

CBS α, ηsð Þ ¼ ε � Cr � ERD2D þ δCb ð1:7Þ

and

CRPS α, ηsð Þ ¼ 1� δð ÞCb þ ξCη ð1:8Þ

where ε, E, and ξ are the cost coefficients, and RD2D is defined as a saving energy
reward for D2D communications over a cell which may lead to data traffic offloading
from the BSs. In order to analyze and optimize the cost functions of the RPS and the
BS, we will utilize an M/M/G queue to determine Cr and Cb with the help of α and ηs.
Thus, we investigate a model based on the noncooperative strategic game [36] with
predefined assumptions, in a way that the BS and the RPS are the players of this
game with the strategies α and ηs, respectively. A queuing policy will be followed in
our model which is based on the BS that is considered as a single-server queue with
specified demand rate λc and service rate ηs. Here we assume Nc as a continuous
random variable that is geometrically distributed with mean ρ/(1 � ρ) or exponen-
tially distributed with parameter β ¼ (1 � ρ)/ρ ¼ (ηs � λc)/λc and shows the
stationary number of waiting connections. It is straightforward to express the
average cost functions as Cr ¼ E[α > Nc], Cb ¼ E[α < Nc] and also the average
D2D reward function as RD2D ¼ E[ND2D < α < Nc].

A wireless network based on a queuing system with heavy traffic condition has a
large ρ, meaning that there is a shortage of green energy production. Since there are
several entities (i.e., BSs) with rate λb which request power from the RPS, the load
factor can be defined as Cη ¼ λb= η0s � ηs

� �� λb=η0s ¼ λbηs=η
0
s η0s � ηs
� �

that repre-
sents the operation cost (the average power supply cost) of the RPS. Recall that η0s is
the maximum power generation rate of the RPS and ηs is the provided power for the
BS by the RPS. Thus, a Poisson process is introduced with rate η0s � ηs that defines
the rest of the supply capacity of the RPS. Load factor is an important parameter for a
queuing system in order to determine the average queue length. When load factor
arrives 1, it means that the average queue length will get to infinity and finally leads
to loss QoS totally. Here, we attempt to express average cost of the BS and the RPS
while they are normalized and investigated in terms of the α and β (normalized
energy supply rate). Therefore, the average cost of the BS and the RPS are respec-
tively given as follows:

CBS α, βð Þ ¼ α� 1� e�αβ

β
� ERD2D þ δ

e�αβ

β
ð1:9Þ
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CRPS α, βð Þ ¼ 1� δð Þ e
�αβ

β
þ λc β þ 1ð Þ
η0s � λc β þ 1ð Þ ð1:10Þ

The mentioned demand-response system operates over periodic intervals during
which network parameters such as the power production capacity and connection
demand rate can be estimated. However, smart grid monitoring systems are able to
extract the required network characteristics from history record and atmospheric
parameters [23]. It should be noted that fixed power prices are assumed in this
model. Therefore, no matter whether the RPS has storage or not, it should respond to
the power demands from the BS rather than storing the energy. Indeed, the BSs’
action to choose a strategy α corresponds to set a power replenish order to the RPS.
Therefore, at the start of the game, the BS should have charged its energy storage to
an inventory of α energy units through the existing EG or the RPS. Once the game
starts, the RPS attempts to supply the energy with the service rate β and the BS
serves the users with the renewable energy, thereby striking a balance between the
power consumption and maintaining the QoS. Generally, in a distributed game-
theoretic formulation, both BS and RPS attempt to select their individual strategies α
and β so that their own cost functions are minimized. It means that the BS will opt α
to reach a minimum value for CBS(α, β), assuming that the RPS selects β to minimize
CRPS(α, β); similarly, the RPS will simultaneously assign a value for β to minimize
CRPS(α, β), assuming the BS uses α to minimize CBS(α, β). Thus, a pair of strategies
(α�, β�) is a Nash equilibrium (NE) if neither the BS nor the RPS can gain from a
one-sided deviation from their strategies, i.e.,

α� ¼ argmin
α

CBS α, β�ð Þ ð1:11Þ

and

β� ¼ argmin
β

CRPS α�, βð Þ ð1:12Þ

Since the existence of the NE is guaranteed as [23], the conventional best
response dynamics [36, 37] can be exploited to converge to the NE. Therefore, the
RPS and the BS can adopt a plan about the strategies at the start of the game. Further,
the performance of the demand-response strategies is evaluated for the RPS and BSs
over a HetNet with a specific power consumption profile. Indeed, a model based on
the noncooperative strategic game is considered with predefined assumptions, in a
way that the BS and the RPS are the players of this game with the strategies α and β,
respectively. Then, the D2D communication is exploited to reduce the cost values
for the RPS and BSs formulated in this section in order to determine the D2D
impacts on efficient utilization of energy.

In the first set of results (Figs. 1.4, 1.5, and 1.6) presented here, the power demand
and related cost values for the RPS and N ¼ 20 BSs are evaluated according to the
specific network power-consumption profile. Later (in Fig. 1.7), the D2D impacts on
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efficient utilization of energy are analyzed. Here, the energy threshold is defined as
krps � EReq to indicate the maximum service capacity provided by the RPS. Note that
EReq is assumed to be the average energy demand ordered by the BSs. Moreover, krps
is the service coefficient (0 < krps <1). Clearly, lower values for krps mean that the
RPS has finite capacity in response to the received energy demands. Furthermore, in
the case of krps ! 1, there is no energy constraint (i.e., infinite capacity); thus
maximum cost values can be expected in the RPS side. Indeed, the RPS should
acquire the exact energy demand information from the BSs. Meanwhile, the traffic
offloading effects of the D2D communication can be observed in Fig. 1.7, where the
cost values are reduced for the D2D-enabled network compared to the conventional
demand-response system.

1.6 Energy-Optimized Wireless Communications

1.6.1 Wireless Cellular Networks

In the literature—see, e.g., [38–45]—the EE of single-tier (macro-tier) cellular
networks has been widely discussed and researched. The authors in [40, 45] suggest
using the dynamic BS operation, i.e., adopting a dynamic off/on switching for BSs
based on a real network traffic profile. However, both the randomness and the
spatial distribution of the network traffic have been ignored. More recently, the
cellular network has become multitiered with cells providing overlapping coverage
[46, 47]. This is due to the emergence of low-cost small cells. Because of the
increased overlapping areas and high fluctuations of traffic demand (both in time
and over space) in cellular networks, optimal sleep/wake-up schemes can be
designed either for small cells or for the coverage-overlapped macro-BSs (MBSs)
[48, 49].

The studies mentioned above consider models such as hexagonal and Manhattan
model network [50]. In other words, they only focus on ideal and non-tractable
network deployment models. Here, the non-tractability issue is in accordance with
signal to interference and noise ratio (SINR) distribution. However, dense and
unplanned deployment of small cells over space have called for more tractable
models. Using tractable models, key performance metrics can be evaluated quickly
without the need to perform complex and time-consuming ray tracing and simula-
tions. A tractable network deployment is modeled by the authors in [51, 52] with the
aid of stochastic geometry [53–56]. More specifically, they propose to independently
switch off each BS with a fixed probability. However, the HetNet deployment has
not been considered in their work. Authors in [35, 57, 58] have studied sleep/wake-
up schemes in stochastic geometry-based HetNets. Both dynamic (i.e., traffic load-
based) and random sleeping strategies for MBSs have been presented in [35]. To
design the optimal sleeping mechanism for MBSs, they consider EE maximization.
The authors in [57, 58] also study random sleep/wake-up schemes for BSs. In [57],
based on minimizing BS energy consumption, the optimal switch-off probability for
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MBSs is determined. Also, in [58], based on maximizing EE with the constraint for
coverage probability, the optimal switch-off probability for small cell BSs is derived.

Compared with the dynamic BS sleep/wake-up strategies, the random sleep/
wake-up schemes have the advantages of less operational cost and low computa-
tional complexity. However, they are not adaptable to the dynamic nature of realistic
cellular networks. The basic concepts about dynamic BS operation issues have also
been summarized in [42]. They, however, lack the ability to learn the uncertain
wireless network environment. Many factors such as intracell and intercell interfer-
ence, location uncertainty, SINR requirements, and traffic load can be considered for
characterizing uncertainty. The use of learning-based mechanisms in wireless net-
works is not new. For example, in [59–62], in order to optimize range expansion
bias, sleep/wake-up scheduling, and transmit power, two learning-based techniques
known as regret-based learning and Q-learning have been applied. Another learning-
based technique developed in [63] plays a key role for BS energy conservation in
cellular radio access networks (RANs). More specifically, they use Markov decision
processes with knowledge transferring to formulate and model the BS operations
under a variant traffic load. Note that the state of the surrounding environment and
available actions to the agents are commonly represented by discrete sets in all
lookup-table-based learning-based approaches (such as Q-learning and state-action-
reward-state-action [SARSA]). This may lead to inaccuracies and subjectivity in the
agent’s behavior and consequently the system performance, particularly when the
input variables are continuous or the number of state-action pairs is large. To deal
with this issue, a fuzzy logic controller is usually combined with Q-learning and
SARSA. The combination of the fuzzy logic controller with Q-learning and SARSA
is known as fuzzy Q-learning (FQL) and fuzzy SARSA-learning (FSL) [64], respec-
tively. This will help agents (BSs) to better and faster adjust their actions bringing in
a considerable benefit in terms of precision and the learning period. Nevertheless,
FSL might be somewhat faster than FQL. This is because FQL does not learn the
same policy as it follows, i.e., in FQL, the policy is updated dependent on the best
possible future scenario, rather than what actually happens after an action is taken
(as is the case in FSL) [64, 65]. However, this will lead to a better performance of
FQL, while FSL appears to be not flexible enough for uncertain and changing
environments and to get stuck in local maxima. Therefore, in general and particularly
for uncertain wireless environments, it is believed that the policy learnt by FQL is
able not only to satisfy the system constraints, but also to achieve a higher level of
system performance in terms of EE.

The unavoidable coverage holes caused by switching some BSs off is one of the
key bottlenecks of applying sleep/wake-up mechanisms. Because of this reason,
several schemes, such as user association [38, 43, 52] and power control [20, 35, 39,
40, 45], have been suggested to counter the coverage voids. For instance, a fixed
power control policy is proposed in [35], where it is assumed that the power of all
active BSs is increased equally without considering the channel conditions of the
switched off cell users. A perfect power control strategy taking into account power
levels at other cells is considered by the authors in [20], which can consequently
manage the interference between neighboring cells. Different from these studies, in
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[32], a D2D-enabled FQL scheme is used to fill the coverage holes resulting from
switching some BSs off (see Fig. 1.8).

1.6.2 Wireless Sensor Networks

Here, a hierarchical sensor network is considered that means some fusion centers
collect reports from the neighboring sensors in the area and send the information to
the BS [15, 16, 62]. Indeed, the network is cluster-based in which the cluster heads
(CHs) or sinks have a more prominent role than the other sensors. It should be noted
that each cluster consists of several nodes and a head node. Generally, the WSN
architecture is n-tier (n > 1), and WSNs are widely used in a two-tier network
format. Thus, we consider a two-tier heterogeneous WSN that includes a number of
clusters and several BSs. In this two-tier network, the lower tier consists of nodes of
different clusters, while the CHs and the BSs compose the upper tier (see Fig. 1.9).

Sensors, which form the network’s lower tier, are responsible for sensing and
sending the collected data to the CHs or sinks in their own area. CHs have the ability
to collect and transmit the received data to the BS. The BS receives the data from
the sinks and, according to its analysis, obtains the full sense of the network. In the
defined network model, the cluster can also play the role of the relay and transfer the
messages to the BS in multiple hopes. As mentioned before, the energy of BSs is
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considered limited. Therefore, the energy consumption of the BSs is our concern and
it is clear that in order to decrease power consumption and prolong the lifetime of the
two-tier WSN, power management mechanisms should be exploited more precisely.
In order to understand the sleep and wake-up mechanisms, it is first necessary to
recognize the differences between the different modes of power saving that can be
given by a small cell. We describe this concept in terms of “depth.” The greater the
depth, the higher the power saving, and the deeper the sleep, the more time it takes to

Fig. 1.9 Wireless sensor
network with BSs, sinks,
and mobile sensors
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wake up. Power consumption is considered as a percentage of total power consump-
tion in each mode. It is assumed that a BS is the most energy consuming when it is
turned on. In addition, BS power consumption varies according to different traffic,
but we consider the average of the network performance. Therefore, the instanta-
neous power changes have not been considered for traffic variations in the BS power
consumption model. It should be noted that, in this section, sleep/wake-up mecha-
nisms are simply used to control the power consumption of BSs by putting them in
different operation modes (see Table 1.1). Indeed, this section addresses the problem
of designing of a smart sleep and wake-up mechanism using the genetic algorithm
(GA), as a nature-inspired optimization approach, to manage the operation modes of
the BSs according to the time-variant profile for the daily traffic load.

In addition, simulation results are presented to analyze the performance of the
smart sleep and wake-up mechanism. The impact of network topology and param-
eters (e.g., density of BSs, CHs, and the related locations) can be investigated
according to the comprehensive network simulations (Fig. 1.10). All simulations
are performed using Monte Carlo runs. Here, as mentioned before, GA, as a nature-
inspired optimization approach, makes the opportunity to design optimal and prac-
tical solutions for WSNs. Therefore, the GA-based optimization is performed in the
simulations that focuses on a centralized management process to adopt the operation
modes of BSs according to the time-variant profile for the daily traffic load. By
controlling the operation modes of the densely deployed BSs over the WSN, EE of
the network converges to the optimal level as can be observed in Fig. 1.11. Here,
L2-norm of the operation modes for the BSs also converges versus iterations that
verify the network stability in the steady phase of the GA (Fig. 1.12). In addition, the
optimal operation modes for the BSs can be finally considered to form the optimal
network configurations as in Fig. 1.13

Indeed, a practical GA-based strategy can also be adopted to obtain the optimal
BSs’ positions for the two-tiered HetNet. Then, we demonstrate the L2-norm of BSs’
positions (Fig. 1.14) and the network EE curve (Fig. 1.15) versus a sufficient number
of iterations. We then show the optimal network topology obtained according to the
optimal numerical results for the BSs’ positions (Fig. 1.16). As mentioned before,
the GA-based optimization executes over several generations in order to determine
the best set of solutions (i.e., the optimal BS positions) and generally finishes at the
best convergence, that is, when the best fit occurs according to the convergence
criteria. Results show that convergence can be obtained for the network EE as the
number of iterations increase, and this clearly confirms the network stability in the
steady phase of the GA.

Table 1.1 Different
operation modes

Operation mode Power consumption

On/wake-up 100%

Standby 50%

Sleep 10%

Off 0
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1.7 Energy Harvesting and Self-Powered Technologies

Generally, the EH has been utilized for quite a long time for bike dynamos or solar
panels. Today, it is widely applied to application fields, such as smart cities,
automotive vehicles, and security systems. Development inside the areas of big
data and IoT and thus the spread of battery-based sensor systems are real power-
driving advances in EH and self-powered systems [66, 67]. The most well-known
power sources utilized for EH are mechanical and thermal energy and sunlight-based
radiations. Recent advances in ultralow-power technologies have accelerated the
improvement of self-powered monitoring gadgets for a wide scope of utilizations
consisting of SGs, structural health monitoring, and biomedical telemetry [68–71]. A
self-powered wireless sensor, which gains surrounding energy for driving its hard-
ware, is among the promising techniques for supporting a maintenance-free sensor
network in SGs. The worldwide EH market demonstrates a stunning development:
somewhere in the range of 2015 and 2019, it could sum at 21.9% and peak at 28% in
2019 (Fig. 1.17). Governments and public initiatives are the main drivers for EH
market development. Public actors utilize EH as a key apparatus for gathering the
rising energy request and saving power. The imperative to confront the issue of
climate change as a worldwide challenge will fuel the development of the market
amid the coming 5 years.
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In fact, EH supports SGs by powering WSNs that are fundamental to provide
connectivity between devices. A huge number of sensors are required to monitor and
manage SG processes and the sensors should be powered. Ordinarily, batteries were
utilized to enable the sensing nodes but they have a restricted lifetime, and in a
network with a huge number of wireless sensors, replacement of the batteries will not
be applicable. It should be noted that EH-powered sensors need less maintenance
and are easier to arrange than batteries and also more comfortable to manage in
mobile sensing strategies. To sum up, development of IoT and energy-efficient
communication infrastructures for SGs is driving interest for wireless and battery-
less sensors which will be increasingly more powered by EH. Indeed, EH wireless
solutions find increasing applications in SGs due to their low-cost installation and
maintenance. In addition, EH-based wireless technology is the reliable communica-
tion strategy to provide connectivity among thousands of nodes in SGs.

Here, a practical smart scenario for mobile sensors is considered to investigate the
power-saving impacts of EH on wireless sensor networks. In addition, to evaluate
whether this strategy can help to accelerate the EH process in mobile sensors, we
conduct a series of simulations. It should be noted that the simulated environment is
configured according to the conventional WSN parameters, and then we present the
simulation results corresponding to the conventional EH model (Fig. 1.18a) and a
FQL-based EH model (Fig. 1.18b), respectively. After that, a simple definition to
evaluate the EH effectiveness over the network is presented. Here, the EH rate
(EHR) is formulated as kEH � d0EH=d

t
EH

� �2
to indicate any improvement in accelera-

tion of the charging process for all mobile sensors deployed over the network. Note
that dtEH is assumed to be the mean distance between mobile sensors and power
stations (PSs) at the time of t. Moreover, kEH is the EH coefficient (1 � kEH). From
the results (Fig. 1.19), one can observe the performance degradation in the case of
partial PS-state information (where the mobile sensors are moving toward PSs based
on partial location information of PSs obtained via M2M communications), for
average EHR, as expected. It is assumed that the exact information of PS locations
can be accessible for all mobile sensors when the perfect case is performed.
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(a) Conventional EH Model

(b) FQL-based EH Model
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1.8 Conclusion

The electric power grid is experiencing extraordinary changes that have changed it
from a hierarchical system to a distributed, user-based SG. Realizing the vision of
the SG is dependent upon energy-efficient communication infrastructures that can
empower rapid and reliable data transmission in the grid. Undoubtedly, wireless
communication systems play a key role in realizing a lot of the SG features, for
example, DR, AMI, electric vehicle, storage units, and microgrid control. Thus, a
plenty of strategies for SG communications have been proposed that rely on wireless
communications and PLC technologies. The incorporation of ICTs in the grid clearly
raises security hazards that must be controlled based on cyber-physical protocols.
Indeed, this chapter presented profound contributions in the broad area of SG
communications along with various scenarios through computer simulation.
Table 1.2 summarizes the general topics to prepare a comprehensive perspective
on the recent studies in this area.
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