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Abstract. We are increasingly surrounded by numerous embedded sys-
tems which collect, exchange, and process sensitive and safety-critical
information. The Internet of Things (IoT) allows a large number of inter-
connected devices to be accessed and controlled remotely, across exist-
ing network infrastructure. Consequently, a remote attacker can exploit
security vulnerabilities and compromise these systems. In this context,
remote attestation is a very useful security service that allows to remotely
and securely verify the integrity of devices’ software state, thus allow-
ing the detection of potential malware on the device. However, current
attestation schemes focus on detecting whether a device is infected by
malware but not on disinfecting it and restoring its software to a benign
state.

In this paper we present HEALED – the first remote attestation
scheme for embedded devices that allows both detection of software com-
promise and disinfection of compromised devices. HEALED uses Merkle
Hash Trees (MHTs) for measurement of software state, which allows
restoring a device to a benign state in a secure and efficient manner.

1 Introduction

Embedded devices are being increasingly deployed in various settings providing
distributed sensing and actuation, and enabling a broad range of applications.
This proliferation of computing power into every aspect of our daily lives is
referred to as the Internet of Things (IoT). Examples of IoT settings range from
small deployments such as smart homes and building automation, to very large
installations, e.g., smart factories. Similarly, an embedded or (IoT device) may
constitute a low-end smart bulb in a smart home or a sophisticated high-end
Cyber-Physical System (CPS) in a smart factory.

Increasing deployment and connectivity combined with the collection of sen-
sitive information and execution of safety-critical (physical) operations has made
embedded devices an attractive target for attacks. Prominent examples include:
the Stuxnet worm [36], the Mirai botnet [10], the HVAC attack [1] and the
Jeep hack [2]. One common feature of such attacks is that they usually involve
modifying the software state of target devices. This is referred to as malware
infestation.
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Remote attestation has evolved as a security service for detecting malware
infestation on remote devices. It typically involves a standalone (or network
of) prover device(s) securely reporting its software state to a trusted party
denoted by verifier. Several attestation protocols have been proposed based on
trusted software for securing the measurement and reporting of a prover’s soft-
ware state [14,17,20,32–34], on trusted hardware [19,21,22,27,29,31,35], or on
software/hardware co-design [12,13,18]. In the recent years, several collective
attestation schemes have been proposed that enable efficient attestation of large
networks of devices [5,8,15,16].

While prior remote attestation schemes focus on detection of malware infes-
tation on prover devices, the problem of disinfecting a prover, i.e., restoring its
software to a benign state, has been totally overlooked. Prior remote attestation
schemes usually focus on malware presence detection and consider the reaction
policy to their presence to be out of scope. In this paper we present HEALED
– HEaling & Attestation for Low-end Embedded Devices – which is the first
attestation scheme that provides both detection and healing of compromised
embedded devices. HEALED is applicable in both standalone and network set-
tings. It allows measuring the software state of a device based on a novel Merkle
Hash Tree (MHT) construction.

Main contributions of this paper are:

– Software Measurement: HEALED presents a novel measurement of prover’s
software state based on MHT which allows the verifier to pinpoint the exact
software blocks that were modified.

– Device Healing: HEALED enables disinfecting compromised provers by
restoring their software to a genuine benign state.

– Proof-of-concept Implementation: We implemented HEALED on two recent
security architectures for low-end embedded devices as well as on our small
network testbed composed of 6 Raspberry Pi-based drones.

– Performance Evaluation: We provide a thorough performance and security
evaluation of HEALED based on our implementations and on network simu-
lations.

2 HEALED

In this section, we present the system model, protocol goals, and a high-level
overview of HEALED.

2.1 System Model

Our system model involves a group of two or more devices with a communication
path between any two of them. A device class refers to the set of devices with
the same software configuration. We denote by s be the number of devices in the
smallest class. A device (regardless of its class) is denoted by Di. Whenever a
device Dv wants to attest another device Dp, we refer to the former as prover, and
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to the latter as verifier. As common to all current attestation schemes, we assume
that Dv has prior knowledge of the expected benign software configuration of
Dp. We also assume that Dv and Dp share a unique symmetric key kvp.1 Devices
can be heterogeneous, i.e., have different software and hardware. However, all
devices satisfy the minimal hardware requirements for secure remote attestation
(see Sect. 2.2). Moreover, each device Dc can always find a similar device Dh

with the same software/hardware configuration.
The goal of HEALED is to detect and eliminate malware on a device.

HEALED consists of two protocols: (1) an attestation protocol between Dv and
Dp, through which a verifier device Dv assesses the software state of a prover
device Dp, and (2) a healing protocol between two similar devices Dh and Dc,
through which a healing device Dh restores the software of a compromised device
Dc to a benign state. Software state of a device refers to its static memory con-
tents and excludes memory locations holding program variables.

2.2 Requirements Analysis

Threat Model. Based on a recent classification [4], we consider two types of
adversaries:

1. Local communication adversary: has full control over all communication chan-
nels, i.e., it can inject, modify, eavesdrop on, and delay all packets exchanged
between any two devices.

2. Remote (software) adversary: exploits software bugs to infect devices, read
their unprotected memory regions, and manipulate their software state (e.g.,
by injecting malware).

We assume that every device is equipped with minimal hardware required for
secure remote attestation, i.e., a read only memory (ROM) and a simple Memory
Protection Unit (MPU) [12]. A remote software adversary cannot alter code pro-
tected by hardware (e.g., modifying code stored in ROM), or extract secrets from
memory regions protected by special rules in the MPU. These memory regions
are used to store cryptographic secrets and protocol intermediate variables.

Key Observation. Let Benign(ta,Dx,Dy) denote “device Dx believes that
device Dy is not compromised at ta, Equal(ta,Dx,Dy) denote “device Dx and
device Dy have the same software state at time ta. We make the following key
observation:

– Healing: if two devices Dx and Dy have the same software state, then either
both are benign or both are compromised.

1 In the case of networks of embedded devices, we rely on the initialization protocol
of existing collective attestation schemes for sharing software configurations and
symmetric keys between devices [8].



630 A. Ibrahim et al.

∀x ∀y ∀y ∀ta Equal(ta,Dy,Dz)

∧ Benign(ta,Dx,Dy) → Benign(ta,Dx,Dz)

Consequently, healing can be supported by letting similar devices (i.e., devices
having the same software configuration) attest and recover each other.

Objectives. A remote attestation protocol should not only detect presence of
malware on a compromised devices, it should also identify exact regions in mem-
ory, where the malware resides in order to eliminate it. Consequently, a remote
attestation protocol should have the following properties:

– Exact measurements: The measurement process on the prover should be capa-
ble of detecting software compromise and determining exact memory regions
that have been manipulated.

– Healing: The protocol should allow secure and efficient disinfection of com-
promised devices, i.e., enable restoring the software of a compromised device
to a benign state with low overhead.

Requirements. A verifier device Dv shares a symmetric key kvp with every
prover device Dp that it needs to attest. Similarly, every healer device Dh shares
a symmetric key khc with every compromised device Dc that it heals, i.e., every
device Di shares a key with some (or all) similar devices. For brevity we assume
that all devices in the group share pairwise symmetric keys. This assumption
applies to small groups of device and is indeed not scalable. To achieve better
scalability, keys and software configurations management might follow the design
of collective attestation [8,16]. Every device that is involved in one of the proto-
cols, i.e., Dv, Dp, Dh, and Dc supports a lightweight trust anchor for attestation,
e.g., devices are equipped with a small amount of ROM and a simple MPU.
During the execution of the attestation and healing protocols there should exist
a communication path (or logical link) between Dv and Dp and between Dh and
Dc respectively.

Fig. 1. HEALED in a group of 5 devices.
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2.3 High Level Protocol Description

We now present a high level description of HEALED based on the example
scenario shown in Fig. 1. The figure shows a group of five devices D1–D5, in
addition to 3 communication nodes that are responsible for relaying messages
between devices, e.g., routers. HEALED incorporates two protocols:

– attest: At predefined intervals, each device (e.g., D1 in Fig. 1) acts as a verifier
device and attests a random prover device (e.g., D2). The prover uses a MHT-
based measurement to report its software state. If a software compromise is
detected by the verifier it initiates the healing protocol heal for the prover.
The output of attest is a bit b1 indicating whether attestation of Dp was
successful.

– heal: When a compromised prover device (e.g., D2) is detected, a benign healer
device (e.g., D4), which is similar to the prover, is identified. The healer uses
the MHT-based measurement to pinpoint corrupted memory regions on the
prover and restore them to their original state. The result of heal is a bit b2
indicating whether healing by Dh was successful.

Fig. 2. Protocol attest

2.4 Limitations

HEALED has some limitations in terms of system model, adversary, and appli-
cation that we briefly described below:

– System model: HEALED is applicable to a set of devices under the same
administrative control, e.g., devices in a smart home. Extending it to a more
generic model, e.g., across multiple IoT environments, might require involv-
ing public key cryptography and using device manufacturers as certification
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authorities. Moreover, gateways between multiple networks would need to be
configured to exchange protocol messages.

– Adversary model: HEALED assumes that, at all times, at least one device of
each class is not compromised, i.e., at most s−1 devices can be compromised
at the same time.

– Application: HEALED provides secure and efficient detection and disinfec-
tion of compromised devices. However, it neither guarantees successful disin-
fection, nor does it prevent subsequent compromise of these devices.

Fig. 3. Merkle Hash Tree of software configurations

3 Protocol Description

As mentioned earlier, HEALED includes the following protocols executed
between devices acting as verifier Dv, prover Dp, healer Dh, and compromised
device Dc.

Attestation. As shown in Fig. 2, each device Dv periodically acts as a verifier
and attests a random device Dp acting as prover. Specifically, every tA amount of
time, Dv sends Dp an attestation request containing a random nonce Np. Upon
receiving the request Dp measures its software state, and creates a MAC μvp

over the generated measurement c′
p and the received nonce based on the key kvp

shared with Dv. The MAC μvp is then sent back to Dv. Having the reference
benign software configuration cp of Dp and the shared key kvp, Dv can verify
μvp. Successful verification of μvp by Dv implies that Dp is in a benign software
state. In this case attest returns b1 = 1. On the contrary, if μvp’s verification
failed, Dv deduce that Dp is compromised and initiates the healing protocol for
Dp. In this case attest returns b1 = 0.

The measurement of software state on Dp is created as a root of a Merkle
Hash Tree (MHT) [23], as shown in Fig. 3. In particular, Dp divides the code to
be attested into w segments: s1, . . . , sw of equal length, and computes hashes:
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hp[x
2 +1], . . . , hp[x] of each segment. A MHT is then constructed, with hp[x

2 +1],
. . . , hp[x] as leaves and c′

p as the root, where x denotes the number of nodes in
the MHT excluding the root node. Note that, a malware-infected code segment
(e.g., sw−3), leads to generation of false hash values along the path to the root.
attest is formally:

attest
[
Dv : kvp, cp, tA;Dp : kvp; ∗ : −] → [

Dv : b1;Dp : Np

]
.

Based on attest the compromise of any device will be detected.

Healing. Whenever a device Dv detects a compromised device Dc through attest,
it searches for a healer device Dh, whose reference software configuration ch is
identical to that of Dc, i.e., a Dh that has the same version of the same software
of Dc. Note that, if Dv and Dc are similar Dv directly initiates heal with Dc acting
as healer device. Otherwise, Dv broadcasts the reference software configuration
cc of Dc along with a constant (protocol specific) Time-to-Live (TTL), and a
random nonce N . Every device Di that receives this tuple (1) checks TTL, and
(2) compares cc to its reference software configuration ci. If cc and ci do not
match, and TTL is not equal to zero, Di re-broadcasts the tuple after TTL
is decremented. Consequently, this tuple is flooded across devices until TTL is
exceeded or a healer device Dh is found.

When a device Dh, whose reference software configuration ch matches cc,
receives the tuple it sends a reply to Dv, which includes its current software
configuration c′

h, authenticated along with the received nonce N , using a MAC
based on the key kvh shared with Dv.

Fig. 4. Protocol heal
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After proving its software trustworthiness, Dh initiates heal with Dc (as shown
in Fig. 4). Note that, messages between Dh and Dc may go through Dv using
the newly established route between Dh and Dv. Dh may also exploit an existing
routing protocol to find a shorter path to Dc.

In details, Dh sends a protocol message begin to Dc. Upon receiving begin,
Dc sends its software configuration c′

c and a fresh nonce Nc to Dh. Dh compares c′
c

to its own software configuration c′
h. If the two configurations did not match, Dh

replies requesting children hc[0] and hc[1] of c′
c in the Merkle Hash Tree (MHT)

rooted at c′
c (protocol message continue). Dh continues recursively requesting

child nodes of every hash that does not match its reference value (i.e., the value
at the same position in Dh’s tree) until leaf nodes are reached. Next, Dh sends a
protocol message end indicating that it has reached leaf nodes. Finally, Dh adds
a code segment l , for each modified leaf node, to the patch L, authenticates L
with a MAC based on khc and sends it back to Dc. A code segment l = {a0 , aε, s}
is identified by its starting address a0 , its end address aε, and its code s. Dc, in
turn verifies L. If the verification was successful, it installs the patch, i.e., replaces
segments indicated by L with the code in L, and outputs b2 = 1. Otherwise, Dc

outputs b2 = 0. heal is formally:

heal
[
Dh : khc, c′

h, {hh[0], . . . , hh[x]};

Dc : khc, cc, c′
c, {hc[0], . . . , hc[x]}; ∗ : −] → [

Dh : Nc;Dc : L, b2
]
.

Device healing allows devices that have the same software configuration to
recover from malware. By refusing to participate in the healing process (e.g.,
not installing the patch), Dc remains malicious and would not be able to prove
its trustworthiness to other devices.

Fig. 5. Implementation of HEALED on SMART [12]

4 Implementation

In order to demonstrate viability and evaluate performance of HEALED we
implemented it on two lightweight security architectures for low-end embed-
ded devices that provide support for secure remote attestation: SMART [12]
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and TrustLite [18]. We also implemented HEALED on a testbed formed of six
autonomous drones in order to demonstrate its practicality. In this section we
present the details of these implementations.

4.1 Security Architectures

SMART [12] and TrustLite [18] are two lightweight security architectures for low-
end embedded devices that enable secure remote attestation based on minimal
hardware requirements. These two architectures mainly require: (1) A Read-
Only Memory (ROM), which provides emutability and ensures integrity of the
code it stores; and (2) A simple Memory Protection Unit (MPU), which controls
access to a small region in memory where secret data is stored. Memory access
control rules of MPU are based on the value of the program counter.

In SMART, the ROM code stores the attestation code and an attestation key,
and the MPU ensures that the attestation code has exclusive access to the attes-
tation key. As a consequence, only unmodified attestation code can generate an
authentic attestation report. TrustLite exploits ROM and MPU to provide iso-
lation of critical software components. In particular, ROM is used to ensure the
integrity of a secure boot code which has exclusive access to a securely stored
platform key. TrustLite enables isolation by initiating critical components via
secure boot, which sets up appropriate memory access rules for each component
in the MPU. We implemented HEALED on SMART replacing the attestation
code in ROM, and on TrustLite as two isolated critical components. Our pro-
totype implementations for SMART and TrustLite are shown in Figs. 5 and 6
respectively.

4.2 Implementation Details

Let Ki denote the set of all symmetric keys shared between a device Di and
any other device, and Vi denote the protocol variables processed and stored by
HEALED. These include all nodes in the Merkle Hash Tree (MHT), including
the root ci. Integrity of HEALED code is protected through ROM of SMART
(see Fig. 5), or secure boot of TrustLite (see Fig. 6). The secrecy of the set Ki

of Di is protected by the MPU of SMART and TrustLite (rule #1 in Fig. 5 and
rule #2 in Fig. 6 respectively). Further, rules #2 in SMART and #3 in TrustLite
ensure that variables processed and produced by HEALED are exclusively read-
and write-accessible to HEALED’s code.

4.3 Autonomous Testbed

In order to test and demonstrate the practicality of HEALED, we implemented
and tested it on our autonomous drones testbed. The testbed is formed of six
Raspberry Pi-based drones forming an ad-hoc network, where four of the drones
are involved in HEALED while the remaining two drones act as relay drones.
The Pi-s are equipped with a 1.2 GHz Quad-core 64-bit CPU and they are
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connected through a 150 MBit/s WiFi link. Our setup is shown in Fig. 7. Our
implementation uses C programming language and is based on mbed TLS [6]
cryptographic library.

Fig. 6. Implementation of HEALED on TrustLite [18]

5 Performance Evaluation

HEALED was evaluated on SMART [12], TrustLite [18], and on the drones
testbed. The results of evaluation on TrustLite and the runtimes on our drones
testbed are presented in this section. Results for SMART are very similar to
those of TrustLite and will therefore be omitted.

Hardware Costs. A comparison between the hardware costs of our implemen-
tation of HEALED and that of the existing implementation of TrustLite [18] is
shown in Table 1. As shown in the table, HEALED requires 15324 LUTs and 6154
registers in comparison to 15142 LUTs and 6038 registers required by TrustLite.
In other words, HEALED incurs a negligible additional increase of 1.20% and

Fig. 7. Testbed setup
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1.92% on the original hardware costs of TrustLite in terms of number of LUTs
and registers respectively.

Memory Requirements. TrustLite already includes all the cryptographic
operation that are involved in HEALED. Implementing HEALED on TrustLite
required incorporating the code that is responsible for handling protocol mes-
sages and generating the Merkle Hash Tree (MHT). Further, every device Di

needs to securely store gi symmetric keys (20 bytes each), where gi corresponds
to the number of devices Di is expected to attest or heal. For every device Di, gi

is upper bounded by the total number n of devices involved in HEALED. Fur-
thermore, Di should store the entire MHT that represents its benign software
configuration. MHT size depends on the size of the code and the number of code
segments. Each hash value is represented by 20 bytes.

Table 1. Hardware cost of HEALED

Look-up Tables Registers

TrustLite 15142 6038

HEALED 15324 6154

% of increase 1.20% 1.92%

Energy Costs. We estimated the energy consumption of HEALED based on
reported energy consumption for MICAz and TelosB sensor nodes [24].2 Note
that, SMART [12] and TrustLite [18] support the same class of low-end devices
that these sensor nodes belong to. Figure 8 shows the estimated energy consump-
tion of attest and heal as function of the number of attested and healed devices
respectively. We assume 100 KB of code divided into 128 segments.

Fig. 8. Energy consumption of HEALED

2 It is not possible to provide accurate measurements of the energy consumption of
HEALED since our FPGA implementations of SMART and TrustLite tend to con-
sume considerably more energy than manufactured chips.
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Energy consumption of both the healing and attestation protocols increases
linearly with the number of attested/healed devices. Moreover, this consumption
can be as low as 21 mJ for attesting then healing 4 devices.

Fig. 9. Runtime of HEALED

Simulation Results. In order to measure the runtime of HEALED we used net-
work simulation. We based our simulation on OMNeT++ [25] network simulator,
where we emulated cryptographic operations as delays based on measurements
we made for these operations on SMART [12] and TrustLite [18]. We measured
the runtime of attest and heal for different number of attested/healed devices.
We also varied the number of hops between the compromised device and the
healer, as well as the number w of segments the attested code is divided into.
The results of our simulation are shown in Figs. 9, 10, and 11.

As shown in Fig. 9 runtimes of attest and heal increase linearly with the
number of attested and healed devices respectively. Further, these runtimes can
be as low as 0.6 s for attesting then healing 4 devices.

Figure 10 shows the runtime of heal when the attested code is divided into
128 segments. As can be seen in the figure, the runtime of heal increases linearly
with the number of hops between the healer Dh and the compromised device
Dc. Finally, Fig. 11 shows the run-time of heal and getConfig (i.e., time needed
to create the Merkle Hash Tree) when Dh and Dc are 10 hops away. As shown in
the figure, the runtime of heal is logarithmic in the number of segments, while
getConfig has a low run-time which is linear in the number of segments.

Note that, runtime of heal decreases with the number of segments, due to
consequent decrease in code that should be transferred to Dc. Increasing the
number of segments indeed increases the number of rounds of heal by increasing
the size of MHT. However, the effect of this increase on the performance of heal
is overshadowed by the huge reduction in the communication overhead.

Our simulation results also show that the runtimes of heal and attest are
constant in the size of the network. These results are omitted due to space
constraints. On the other hand, increasing the size of the network while keeping
the number of similar devices constant could increase the expected number of
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hops between a healer Dh and a compromised device Dc. This would indeed lead
to an increase in the runtime of heal (see Fig. 10).

Fig. 10. Runtime of heal as function of number of hops

Drones Testbed. We also measured the runtime of HEALED on our drones
testbed shown in Fig. 7. These runtimes are smaller than those of TrustLite since
our Raspberry Pi-s utilize a much more powerful processor. The runtime of attest
on drone D2 attesting drones D1 and D3 is 11 ms, and the runtime of heal on
drone D1 healing drone D4 through one relay node is 34 ms. Note that, the
attested code is 100 KB in size and is divided into 128 segments. Further, these
runtimes are averaged over 100 executions.

6 Security Consideration

Recall that the goal of HEALED is to allow secure detection and disinfection
of compromised devices. We formalize this goal as a security experiment ExpA,
where the adversary A interacts with involved devices. In this experiment A
compromises the software of two similar devices Dc and Dh. Then, after a poly-
nomial number (in �mac, �hash, and �N ) of steps by A, one verifier device Dv

outputs its decision b1 signifying whether Dc is benign. The compromised device
Dh executes heal with Dc which outputs b2 signifying whether healing was suc-
cessful. The result of the experiment is defined as the OR of outputs b1 and b2
of Dv and Dc respectively, i.e., ExpA = b | b = b1 ∨ b2. A secure attestation &
healing scheme is defined as follows:

Definition 1 (Secure attestation & healing). An attestation & healing scheme
is secure if Pr

[
b = 1|ExpA(1�) = b

]
is negligible in � = f(�mac, �hash, �N ), where

function f is polynomial in �mac, �hash, and �N .
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Fig. 11. Runtime of heal vs. getConfig

Theorem 1 (Security of HEALED). HEALED is a secure attestation & healing
scheme (Definition 1) if the underlying MAC scheme is selective forgery resistant,
and the underlying hash function is collision resistant.

Proof sketch of Theorem 1. A can undermine the security HEALED by either
tricking Dv into returning b1 = 1 or tricking Dc into returning b2 = 1 We
distinguish among the following two cases:

– A attacks attest: In order for Dv to return b1 = 1 it should receive an attes-
tation report containing a MAC μvc = mac(kvc;Nc‖cc), where kvc is the sym-
metric key shared between Dv and Dc, Nc is the fresh random nonce sent from
Dv to Dc, and cc is a benign software configuration of Dc. Consequently, A can
try to: (1) extract the symmetric kvc and generate such a MAC, (2) modify the
measurement process on Dc to return a MAC over benign software configura-
tion regardless of the software state on Dc, (3) replay an old attestation report
containing a MAC μold = mac(kvc;Nold‖cc) over a benign software configura-
tion cc and an old nonce Nold, (4) forge a MAC μvc = mac(kvc;Nc‖cc) over a
benign software configuration cc and the current nonce Nc, or (5) modify the
code on Dc in a way that is not detectable by the measurement process. How-
ever, the adversary is not capable of performing (1) and (2) since the secrecy
of the key kvc and the integrity of the measurement code are protected by the
hardware of the underlying lightweight security architecture. Moreover, since
Dv is always sending a fresh random nonce, the probability of success of (3) is
negligible in �N . Furthermore, the probability of A being able to forge a MAC
as in (4) is negligible in �mac. Finally, modifying the value of one bit of Dc’s
code would change the hash value of the segment containing this bit. This
will change the hash value on the higher level in the Merkle Hash Tree and
so on leading to a different root value, i.e., a different software configuration.
Consequently, in order to perform (5) A should find at least on collision of
the hash function that is used for constructing the MHT which is negligible
in �hash.

– A attacks heal: In order for Dc to return b2 = 1 it should receive a healing
message containing a patch L and a MAC μhc = mac(khc;Nc‖L‖cc), where khc



HEALED: HEaling & Attestation for Low-End Embedded Devices 641

is the symmetric key shared between Dh and Dc, Nc is the fresh random nonce
sent from Dc to Dh, and cc is a benign software configuration of Dc. Similar to
attest A may try to extract khc, modify the code responsible for generating the
healing message, replay an old healing message, forge μhc, or compromise Dh

in a way that is not detectable by the measurement process. However, because
of the security of the underlying hardware and cryptographic primitives the
success probabilities of these attacks are negligible in �mac, �hash, and �N .
Indeed Dc may refuse to execute the healing protocol or install the patch, thus
remaining compromised. However, the compromise of Dc will be detected by
any subsequent attestation. One remedy for this problem could incorporate
performing a subsequent attestation for healed devices and reporting devices
that do not comply to the healing protocol.

This means that the probability of A bypassing the attestation protocol or infect-
ing a benign device through the healing protocol is negligible in �mac, �hash, and
�N . Consequently, HEALED is capable of securely detecting and disinfecting
compromised devices. �	

7 Related Work

Attestation. Attestation is a security service that aims at the detection of
(malicious) unintended modifications to the software state of a device. Attes-
tation is typically realized as an interactive protocol involving two entities:
a verifier and a prover. Through this protocol the prover sends the verifier
an attestation report indicating its current software state. Existing attestation
schemes can be categorized into their main classes: (1) software-based attesta-
tion [14,17,20,32–34] which does not requires hardware support, but is based on
strong assumptions and provides weak security guarantees; (2) hardware-based
attestation [19,21,22,27,29,31,35] which provides stronger security guarantees
based on complex and expensive security hardware; and (3) hybrid attesta-
tion [12,13,18] which aims at providing strong security guarantees while impos-
ing minimal hardware costs. Additionally, recent advances have lead to the
development of attestation schemes for verifying the intergrity of networks of
embedded devices – collective attestation [5,8,15], and for detecting runtime
attacks – control-flow attestation [3,11,37]. All existing attestation schemes,
regardless of the type, aim at the detection of software compromise and overlook
the problem of disinfecting compromised devices. These schemes usually consider
the reaction policy to malware detection to be out of scope. HEALED is, to the
best of our knowledge, the first attestation scheme that allows the detection and
elimination of software compromise in both single-device and group settings.

Software Update and Healing. There is not much of prior work on attesta-
tion that allows the disinfection of compromised devices. SCUBA [33] leverages
verifiable code execution based on software-based attestation to guarantee an
untampered execution of a software update protocol. While SCUBA is built on
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top of a software-based attestation scheme that is based on unrealistic assump-
tions [7] to perform software update, HEALED leverages a lightweight secu-
rity architecture to provide security guarantees regarding efficient disinfection of
compromised devices. POSH [28] is a self-healing protocol for sensor networks
which enables collective recovery of sensor nodes from compromise. The core idea
of POSH is to enable sensor nodes to continuously compute new keys that are
unknown to the adversary based on randomness provided by other sensors. Con-
sequently, an adversary that compromises a device and extracts its current key
would not be capable of extracting its future keys. TUF [30] is a software update
for embedded systems that aims at reducing the impact of key compromise on
the security of software update. TUF is based on role separation and multisig-
natures, where particular signatures using distinct private keys ensure different
properties of the software update, e.g., timeliness or authenticity. ASSURED [9]
enables applying secure update techniques, such as TUF, to the IoT setting
while providing end-to-end security and allowing the verification of successful
updates. In HEALED, we rely on a lightweight security architecture for pro-
tecting the secrecy of the keys and leverage MHT to restore the software state
of compromised devices. Finally, PoSE [26] presents a secure remote software
update for embedded devices via proof of secure erasure. The protocol allows
restoring a device to its benign software state by ensuring the erasure of all code
on that device. However, PoSE imposes a high communication overhead which
is linear in the size of the genuine software. Moreover, similar to all existing
software-based attestation protocols, PoSE assumes adversarial silence during
the execution of the update protocol.

8 Conclusion

Most of the prominent attacks on embedded devices are at least started through
malware infestation [1,2,10,36]. Remote attestation aims at tackling the prob-
lem of malware infestation by detecting device software compromise. However,
current attestation schemes focus on the detection of malware, and ignore the
problem of malware removal. These schemes usually consider the reaction to
software compromise to be an orthogonal problem. In this paper, we present
HEALED – the first attestation scheme for embedded devices which is capable
of disinfecting compromised devices in a secure and efficient manner. The core of
HEALED is a software measurement process based on Merkle Hash Tree (MHT)
which allows identifying infected memory regions, and a healing protocol that
efficiently restores these regions to their benign state. We implemented HEALED
on two lightweight security architectures that support remote attestation and
on an autonomous drones testbed. Moreover, we evaluated the energy, runtime,
and hardware costs of HEALED based on measurements of real execution and
on network simulation.
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