
VeriSolid: Correct-by-Design Smart
Contracts for Ethereum

Anastasia Mavridou1, Aron Laszka2(B), Emmanouela Stachtiari3,
and Abhishek Dubey1

1 Vanderbilt University, Nashville, USA
2 University of Houston, Houston, USA

alaszka@uh.edu
3 Aristotle University of Thessaloniki, Thessaloniki, Greece

Abstract. The adoption of blockchain based distributed ledgers is grow-
ing fast due to their ability to provide reliability, integrity, and auditabil-
ity without trusted entities. One of the key capabilities of these emerging
platforms is the ability to create self-enforcing smart contracts. How-
ever, the development of smart contracts has proven to be error-prone
in practice, and as a result, contracts deployed on public platforms are
often riddled with security vulnerabilities. This issue is exacerbated by
the design of these platforms, which forbids updating contract code and
rolling back malicious transactions. In light of this, it is crucial to ensure
that a smart contract is secure before deploying it and trusting it with
significant amounts of cryptocurrency. To this end, we introduce the
VeriSolid framework for the formal verification of contracts that are
specified using a transition-system based model with rigorous operational
semantics. Our model-based approach allows developers to reason about
and verify contract behavior at a high level of abstraction. VeriSolid
allows the generation of Solidity code from the verified models, which
enables the correct-by-design development of smart contracts.

1 Introduction

The adoption of blockchain based platforms is rising rapidly. Their popularity
is explained by their ability to maintain a distributed public ledger, providing
reliability, integrity, and auditability without a trusted entity. Early blockchain
platforms, e.g., Bitcoin, focused solely on creating cryptocurrencies and payment
systems. However, more recent platforms, e.g., Ethereum, also act as distributed
computing platforms [43,45] and enable the creation of smart contracts, i.e., soft-
ware code that runs on the platform and automatically executes and enforces the
terms of a contract [10]. Since smart contracts can perform any computation1,
they allow the development of decentralized applications, whose execution is
safeguarded by the security properties of the underlying platform. Due to their

1 While the virtual machine executing a contract may be Turing-complete, the amount
of computation that it can perform is actually limited in practice.

c© International Financial Cryptography Association 2019
I. Goldberg and T. Moore (Eds.): FC 2019, LNCS 11598, pp. 446–465, 2019.
https://doi.org/10.1007/978-3-030-32101-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32101-7_27&domain=pdf
https://doi.org/10.1007/978-3-030-32101-7_27

VeriSolid: Correct-by-Design Smart Contracts for Ethereum 447

unique advantages, blockchain based platforms are envisioned to have a wide
range of applications, ranging from financial to the Internet-of-Things [9].

However, the trustworthiness of the platform guarantees only that a smart
contract is executed correctly, not that the code of the contract is correct. In
fact, a large number of contracts deployed in practice suffer from software vul-
nerabilities, which are often introduced due to the semantic gap between the
assumptions that contract writers make about the underlying execution seman-
tics and the actual semantics of smart contracts [25]. A recent automated anal-
ysis of 19,336 contracts deployed on the public Ethereum blockchain found that
8,333 contracts suffered from at least one security issue [25]. While not all of
these issues lead to security vulnerabilities, many of them enable stealing digital
assets, such as cryptocurrencies. Smart-contract vulnerabilities have resulted in
serious security incidents, such as the “DAO attack,” in which $50 million worth
of cryptocurrency was stolen [14], and the 2017 hack of the multisignature Parity
Wallet library [32], which lost $280 million worth of cryptocurrency.

The risk posed by smart-contract vulnerabilities is exacerbated by the typical
design of blockchain based platforms, which does not allow the code of a contract
to be updated (e.g., to fix a vulnerability) or a malicious transaction to be
reverted. Developers may circumvent the immutability of code by separating
the “backend” code of a contract into a library contract that is referenced and
used by a “frontend” contract, and updating the backend code by deploying a
new instance of the library and updating the reference held by the frontend.
However, the mutability of contract terms introduces security and trust issues
(e.g., there might be no guarantee that a mutable contract will enforce any
of its original terms). In extreme circumstances, it is also possible to revert a
transaction by performing a hard fork of the blockchain. However, a hard fork
requires consensus among the stakeholders of the entire platform, undermines
the trustworthiness of the entire platform, and may introduce security issues
(e.g., replay attacks between the original and forked chains).

In light of this, it is crucial to ensure that a smart contract is secure before
deploying it and trusting it with significant amounts of cryptocurrency. Three
main approaches have been considered for securing smart contracts, including
secure programming practices and patterns (e.g., Checks–Effects–Interactions
pattern [40]), automated vulnerability-discovery tools (e.g., Oyente [25,42]),
and formal verification of correctness (e.g., [17,21]). Following secure program-
ming practices and using common patterns can decrease the occurrence of vulner-
abilities. However, their effectiveness is limited for multiple reasons. First, they
rely on a programmer following and implementing them, which is error prone
due to human nature. Second, they can prevent a set of typical vulnerabilities,
but they are not effective against vulnerabilities that are atypical or belong
to types which have not been identified yet. Third, they cannot provide for-
mal security and safety guarantees. Similarly, automated vulnerability-discovery
tools consider generic properties that usually do not capture contract-specific
requirements and thus, are effective in detecting typical errors but ineffective in
detecting atypical vulnerabilities. These tools typically require security proper-
ties and patterns to be specified at a low level (usually bytecode) by security

448 A. Mavridou et al.

experts. Additionally, automated vulnerability-discovery tools are not precise;
they often produce false positives.

On the contrary, formal verification tools are based on formal operational
semantics and provide strong verification guarantees. They enable the formal
specification and verification of properties and can detect both typical and atyp-
ical vulnerabilities that could lead to the violation of some security property.
However, these tools are harder to automate.

Our approach falls in the category of formal verification tools, but it also pro-
vides an end-to-end design framework, which combined with a code generator,
allows the correctness-by-design development of Ethereum smart contracts. We
focus on providing usable tools for helping developers to eliminate errors early
at design time by raising the abstraction level and employing graphical repre-
sentations. Our approach does not produce false positives for safety properties
and deadlock-freedom.

In principle, a contract vulnerability is a programming error that enables an
attacker to use a contract in a way that was not intended by the developer. To
detect vulnerabilities that do not fall into common types, developers must spec-
ify the intended behavior of a contract. Our framework enables developers to
specify intended behavior in the form of liveness, deadlock-freedom, and safety
properties, which capture important security concerns and vulnerabilities. One
of the key advantages of our model-based verification approach is that it allows
developers to specify desired properties with respect to high-level models instead
of, e.g., bytecode. Our tool can then automatically verify whether the behavior
of the contract satisfies these properties. If a contract does not satisfy some
of these properties, our tool notifies the developers, explaining the execution
sequence that leads to the property violation. The sequence can help the devel-
oper to identify and correct the design errors that lead to the erroneous behavior.
Since the verification output provides guarantees to the developer regarding the
actual execution semantics of the contract, it helps eliminating the semantic
gap. Additionally, our verification and code generation approach fits smart con-
tracts well because contract code cannot be updated after deployment. Thus,
code generation needs to be performed only once before deployment.

Contributions. We build on the FSolidM [27,28] framework, which provides a
graphical editor for specifying Ethereum smart contracts as transitions systems
and a Solidity code generator.2 We present the VeriSolid framework, which
introduces formal verification capabilities, thereby providing an approach for
correct-by-design development of smart contracts. Our contributions are:

– We extend the syntax of FSolidM models (Definition 1), provide formal opera-
tional semantics (FSolidM has no formal operational semantics) for our model
(Sect. 3.3) and for supported Solidity statements ([29, Appendix A.3]), and
extend the Solidity code generator ([29, Appendix E]).

2 Solidity is the high-level language for developing Ethereum contracts. Solidity code
can be compiled into bytecode, which can be executed on the Ethereum platform.

VeriSolid: Correct-by-Design Smart Contracts for Ethereum 449

Fig. 1. Design and verification workflow.

– We design and implement developer-friendly natural-language like templates
for specifying safety and liveness properties (Sect. 3.4).

– The developer input of VeriSolid is a transition system, in which each tran-
sition action is specified using Solidity code. We provide an automatic trans-
formation from the initial system into an augmented transition system, which
extends the initial system with the control flow of the Solidity action of each
transition (Sect. 4). We prove that the initial and augmented transition sys-
tems are observationally equivalent (Sect. 4.1); thus, the verified properties of
the augmented model are also guaranteed in the initial model.

– We use an overapproximation approach for the meaningful and efficient verifi-
cation of smart-contract models (Sect. 5). We integrate verification tools (i.e.,
nuXmv and BIP) and present verification results.

2 VeriSolid: Design and Verification WorkFlow

VeriSolid is an open-source3 and web-based framework that is built on top of
WebGME [26] and FSolidM [27,28]. VeriSolid allows the collaborative develop-
ment of Ethereum contracts with built-in version control, which enables branch-
ing, merging, and history viewing. Figure 1 shows the steps of the VeriSolid
design flow. Mandatory steps are represented by solid arrows, while optional
steps are represented by dashed arrows. In step 1 , the developer input is given,
which consists of:

– A contract specification containing (1) a graphically specified transition sys-
tem and (2) variable declarations, actions, and guards specified in Solidity.

3 https://github.com/anmavrid/smart-contracts.

https://github.com/anmavrid/smart-contracts

450 A. Mavridou et al.

– A list of properties to be verified, which can be expressed using predefined
natural-language like templates.

The verification loop starts at the next step. Optionally, step 2 is automatically
executed if the verification of the specified properties requires the generation
of an augmented contract model4. Next, in step 3 , the Behavior-Interaction-
Priority (BIP) model of the contract (augmented or not) is automatically gener-
ated. Similarly, in step 4 , the specified properties are automatically translated
to Computational Tree Logic (CTL). The model can then be verified for deadlock
freedom or other properties using tools from the BIP tool-chain [5] or nuXmv [7]
(step 5). If the required properties are not satisfied by the model (depending
on the output of the verification tools), the specification can be refined by the
developer (step 6) and analyzed anew. Finally, when the developers are sat-
isfied with the design, i.e., all specified properties are satisfied, the equivalent
Solidity code of the contract is automatically generated in step 7 . The follow-
ing sections describe the steps from Fig. 1 in detail. Due to space limitations, we
present the Solidity code generation (step 7) in [29, Appendix E].

3 Developer Input: Transition Systems and Properties

3.1 Smart Contracts as Transition Systems

To illustrate how to represent smart contracts as transition systems, we use the
Blind Auction example from prior work [27], which is based on an example from
the Solidity documentation [38].

In a blind auction, each bidder first makes a deposit and submits a blinded
bid, which is a hash of its actual bid, and then reveals its actual bid after all
bidders have committed to their bids. After revealing, each bid is considered
valid if it is higher than the accompanying deposit, and the bidder with the
highest valid bid is declared winner. A blind auction contract has four main
states:

1. AcceptingBlindedBids: bidders submit blinded bids and make deposits;
2. RevealingBids: bidders reveal their actual bids by submitting them to the

contract, and the contract checks for each bid that its hash is equal to the
blinded bid and that it is less than or equal to the deposit made earlier;

3. Finished: winning bidder (i.e., the bidder with the highest valid bid) with-
draws the difference between her deposit and her bid; other bidders withdraw
their entire deposits;

4. Canceled: all bidders withdraw their deposits (without declaring a winner).

This example illustrates that smart contracts have states (e.g., Finished).
Further, contracts provide functions, which allow other entities (e.g., users or
contracts) to invoke actions and change the states of the contracts. Hence, we can
represent a smart contract naturally as a transition system [39], which comprises

4 We give the definition of an augmented smart contract in Sect. 4.

VeriSolid: Correct-by-Design Smart Contracts for Ethereum 451

a set of states and a set of transitions between those states. Invoking a transition
forces the contract to execute the action of the transition if the guard condition
of the transition is satisfied. Since such states and transitions have intuitive
meanings for developers, representing contracts as transition systems provides
an adequate level of abstraction for reasoning about their behavior.

Fig. 2. Blind auction example as a transition system.

Figure 2 shows the blind auction example in the form of a transition
system. For ease of presentation, we abbreviate AcceptingBlindedBids,
RevealingBids, Finished, and Canceled to ABB, RB, F, and C, respectively.
The initial state of the transition system is ABB. To differentiate between tran-
sition names and guards, we use square brackets for the latter. Each transition
(e.g., close, withdraw) corresponds to an action that a user may perform dur-
ing the auction. For example, a bidding user may execute transition reveal
in state RB to reveal its blinded bid. As another example, a user may exe-
cute transition finish in state RB, which ends the revealing phase and declares
the winner, if the guard condition now >= creationTime + 10 days is true.
A user can submit a blinded bid using transition bid, close the bidding phase
using transition close, and withdraw her deposit (minus her bid if she won)
using transitions unbid and withdraw. Finally, the user who created the auc-
tion may cancel it using transitions cancelABB and cancelRB. For clarity of
presentation, we omitted from Fig. 2 the specific actions that the transitions
take (e.g., transition bid executes—among others—the following statement:
pendingReturns[msg.sender] += msg.value;).

3.2 Formal Definition of a Smart Contract

We formally define a contract as a transition system. To do that, we consider a
subset of Solidity statements, which are described in detail in [29, Appendix A.1].
We chose this subset of Solidity statements because it includes all the essential

452 A. Mavridou et al.

control structures: loops, selection, and return statements. Thus, it is a Turing-
complete subset, and can be extended in a straightforward manner to capture all
other Solidity statements. Our Solidity code notation is summarized in Table 1.

Table 1. Summary of notation for Solidity code

Symbol Meaning

T Set of Solidity types

I Set of valid Solidity identifiers

D Set of Solidity event and custom-type definitions

E Set of Solidity expressions

C Set of Solidity expressions without side effects

S Set of supported Solidity statements

Definition 1. A transition-system initial smart contract is a tuple (D,S, SF ,
s0, a0, aF , V, T), where

– D ⊂ D is a set of custom event and type definitions;
– S ⊂ I is a finite set of states;
– SF ⊂ S is a set of final states;
– s0 ∈ S, a0 ∈ S are the initial state and action;
– aF ∈ S is the fallback action;
– V ⊂ I × T contract variables (i.e., variable names and types);
– T ⊂ I × S × 2I×T × C × (T ∪ ∅) × S × S is a transition relation, where each

transition ∈ T includes: transition name tname ∈ I; source state tfrom ∈ S;
parameter variables (i.e., arguments) tinput ⊆ I × T; transition guard gt ∈ C;
return type toutput ∈ (T ∪ ∅); action at ∈ S; destination state tto ∈ S.

The initial action a0 represents the constructor of the smart contract. A con-
tract can have at most one constructor. In the case that the initial action a0 is
empty (i.e., there is no constructor), a0 may be omitted from the transition sys-
tem. A constructor is graphically represented in VeriSolid as an incoming arrow
to the initial state. The fallback action aF represents the fallback function of the
contract. Similar to the constructor, a contract can have at most one fallback
function. Solidity fallback functions are further discussed in [29, Appendix C.1].

Lack of the Re-entrancy Vulnerability. VeriSolid allows specifying con-
tracts such that the re-entrancy vulnerability is prevented by design. In particu-
lar, after a transition begins but before the execution of the transition action, the
contract changes its state to a temporary one (see [29, Appendix E]). This pre-
vents re-entrancy since none of the contract functions5 can be called in this state.
5 Our framework implements transitions as functions, see [29, Appendix E].

VeriSolid: Correct-by-Design Smart Contracts for Ethereum 453

One might question this design decision since re-entrancy is not always harm-
ful. However, we consider that it can pose significant challenges for providing
security. First, supporting re-entrancy substantially increases the complexity of
verification. Our framework allows the efficient verification—within seconds—of
a broad range of properties, which is essential for iterative development. Second,
re-entrancy often leads to vulnerabilities since it significantly complicates con-
tract behavior. We believe that prohibiting re-entrancy is a small price to pay
for security.

3.3 Smart-Contract Operational Semantics

We define the operational semantics of our transition-system based smart con-
tracts in the form of Structural Operational Semantics (SOS) rules [37]. We let
Ψ denote the state of the ledger, which includes account balances, values of state
variables in all contracts, number and timestamp of the last block, etc. During
the execution of a transition, the execution state σ = {Ψ,M} also includes the
memory and stack state M . To handle return statements and exceptions, we also
introduce an execution status, which is E when an exception has been raised,
R[v] when a return statement has been executed with value v (i.e., return v),
and N otherwise. Finally, we let Eval(σ,Exp) → 〈(σ̂, x), v〉 signify that the eval-
uation of a Solidity expression Exp in execution state σ yields value v and—as
a side effect—changes the execution state to σ̂ and the execution status to x.6

A transition is triggered by providing a transition (i.e., function) name ∈ I

and a list of parameter values v1, v2, The normal execution of a transition
without returning any value, which takes the ledger from state Ψ to Ψ ′ and the
contract from state s ∈ S to s′ ∈ S, is captured by the TRANSITION rule:

t ∈ T,name = tname, s = tfrom

M = Params(t, v1, v2, . . .), σ = (Ψ,M)
Eval(σ, gt) → 〈(σ̂, N), true〉
〈(σ̂, N), at〉 → 〈(σ̂′, N), ·〉

σ̂′ = (Ψ ′,M ′), s′ = tto
TRANSITION 〈(Ψ, s),name (v1, v2, . . .)〉 → 〈(Ψ ′, s′, ·)〉

This rule is applied if there exists a transition t whose name tname is name and
whose source state tfrom is the current contract state s (first line). The execution
state σ is initialized by taking the parameter values Params(t, v1, v2, . . .) and
the current ledger state Ψ (second line). If the guard condition gt evaluates
Eval(σ, gt) in the current state σ to true (third line), then the action statement at

of the transition is executed (fourth line), which results in an updated execution
state σ̂′ (see statement rules in [29, Appendix A.3]). Finally, if the resulting
execution status is normal N (i.e., no exception was thrown), then the updated
ledger state Ψ ′ and updated contract state s′ (fifth line) are made permanent.

We also define SOS rules for all cases of erroneous transition execution
(e.g., exception is raised during guard evaluation, transition is reverted, etc.)
6 Note that the correctness of our transformations does not depend on the exact

semantics of Eval.

454 A. Mavridou et al.

and for returning values. Due to space limitations, we include these rules in
[29, Appendix A.2]. We also define SOS rules for supported statements in [29,
Appendix A.3].

3.4 Safety, Liveness, and Deadlock Freedom

A VeriSolid model is automatically verified for deadlock freedom. A developer
may additionally verify safety and liveness properties. To facilitate the specifica-
tion of properties, VeriSolid offers a set of predefined natural-language like tem-
plates, which correspond to properties in CTL. Alternatively, properties can be
specified directly in CTL. Let us go through some of these predefined templates.
Due to space limitations, the full template list, as well as the CTL property
correspondence is provided in [29, Appendix B].

uint amount = pendingReturns[msg.sender];
if (amount > 0) {

if (msg.sender != highestBidder)
msg.sender.transfer(amount);

else
msg.sender.transfer(amount - highestBid);

pendingReturns[msg.sender] = 0;
}

Fig. 3. Action of transition withdraw in Blind Auction, specified using Solidity.

〈Transitions ∪ Statements〉 cannot happen after
〈Transitions ∪ Statements〉.

The above template expresses a safety property type. Transitions is a sub-
set of the transitions of the model (i.e., Transitions ⊆ T). A statement from
Statements is a specific inner statement from the action of a specific transition
(i.e., Statements ⊆ T × S). For instance, we can specify the following safety
properties for the Blind Auction example:

– bid cannot happen after close.
– cancelABB; cancelRB cannot happen after finish,

where cancelABB; cancelRB means cancelABB ∪ cancelRB.

If 〈Transitions ∪ Statements〉 happens, 〈Transitions ∪ Statements〉 can
happen only after 〈Transitions ∪ Statements〉 happens.

The above template expresses a safety property type. A typical vulnerability
is that currency withdrawal functions, e.g., transfer, allow an attacker to with-
draw currency again before updating her balance (similar to “The DAO” attack).
To check this vulnerability type for the Blind Auction example, we can specify
the following property. The statements in the action of transition withdraw are
shown in Fig. 3.

VeriSolid: Correct-by-Design Smart Contracts for Ethereum 455

– if withdraw.msg.sender.transfer(amount); happens,
withdraw.msg.sender.transfer(amount); can happen only after
withdraw.pendingReturns[msg.sender]=0; happens.

As shown in the example above, a statement is written in the following form:
Transition.Statement to refer to a statement of a specific transition. If there
are multiple identical statements in the same transition, then all of them are
checked for the same property. To verify properties with statements, we need to
transform the input model into an augmented model, as presented in Sect. 4.

〈Transitions ∪ Statements〉 will eventually happen after
〈Transitions ∪ Statements〉.

Finally, the above template expresses a liveness property type. For instance,
with this template we can write the following liveness property for the Blind Auc-
tion example to check the Denial-of-Service vulnerability ([29, Appendix C.2]):

– withdraw.pendingReturns[msg.sender]=0; will eventually happen after
withdraw.msg.sender.transfer(amount);.

4 Augmented Transition System Transformation

To verify a model with Solidity actions, we transform it to a functionally equiv-
alent model that can be input into our verification tools. We perform two trans-
formations: First, we replace the initial action a0 and the fallback action aF

with transitions. Second, we replace transitions that have complex statements
as actions with a series of transitions that have only simple statements (i.e., vari-
able declaration and expression statements). After these two transformations, the
entire behavior of the contract is captured using only transitions. The transfor-
mation algorithms are discussed in detail in [29, Appendices D.1 and D.2]. The
input of the transformation is a smart contract defined as a transition system (see
Definition 1). The output of the transformation is an augmented smart contract :

Definition 2. An augmented contract is a tuple (D,S, SF , s0, V, T), where

– D ⊂ D is a set of custom event and type definitions;
– S ⊂ I is a finite set of states;
– SF ⊂ S is a set of final states;
– s0 ∈ S, is the initial state;
– V ⊂ I × T contract variables (i.e., variable names and types);
– T ⊂ I × S × 2I×T × C × (T ∪ ∅) × S × S is a transition relation (i.e., transi-

tion name, source state, parameter variables, guard, return type, action, and
destination state).

Figure 4 shows the augmented withdraw transition of the Blind Auction
model. We present the complete augmented model in [29, Appendix F]. The
action of the original withdraw transition is shown by Fig. 3. Notice the added
state withdraw, which avoids re-entrancy by design, as explained in Sect. 3.2.

456 A. Mavridou et al.

Fig. 4. Augmented model of transition withdraw.

4.1 Observational Equivalence

We study sufficient conditions for augmented models to be behaviorally equiv-
alent to initial models. To do that, we use observational equivalence [30] by
considering non-observable β−transitions. We denote by SI and SE the set of
states of the smart contract transition system and its augmented derivative,
respectively. We show that R = {(q, r) ∈ SI × SE} is a weak bi-simulation by
considering as observable transitions A, those that affect the ledger state, while
the remaining transitions B are considered non-observable transitions. Accord-
ing to this definition, the set of transitions in the smart contract system, which
represent the execution semantics of a Solidity named function or the fallback,
are all observable. On the other hand, the augmented system represents each
Solidity function using paths of multiple transitions. We assume that final tran-
sition of each such path is an α transition, while the rest are β transitions. Our
weak bi-simulation is based on the fact the effect of each α ∈ A on the ledger
state is equal for the states of SI and SE . Therefore, if σI = σE at the initial
state of α, then σ′

I = σ′
E at the resulting state.

A weak simulation over I and E is a relation R ⊆ SI ×SE such that we have:

Property 1. For all (q, r) ∈ R and for each α ∈ A, such that q
α→ q′, there is r′

such that r
β�αβ�

→ r′ where (q′, r′) ∈ R
For each observable transition α of a state in SI , it should be proved that (i)
a path that consists of α and other non-observable transitions exists in all its
equivalent states in SE , and (ii) the resulting states are equivalent.

Property 2. For all (q, r) ∈ R and α ∈ A, such that r
α→ r′, there is q′ such

that q
α→ q′ where (q′, r′) ∈ R.

VeriSolid: Correct-by-Design Smart Contracts for Ethereum 457

For each observable outgoing transition in a state in SE , it should be proved
that (i) there is an outgoing observable transition in all its equivalent states
in SI , and (ii) the resulting states are equivalent.

Property 3. For all (q, r) ∈ R and β ∈ B such that r
β→ r′, (q, r′) ∈ R

For each non observable transition, it should be proved that the the resulting
state is equivalent with all the states that are equivalent with the initial state.

Theorem 1. For each initial smart contract I and its corresponding augmented
smart contract E, it holds that I ∼ E.

The proof of Theorem 1 is presented in the [29, Appendix D.3].

5 Verification Process

Our verification approach checks whether contract behavior satisfies properties
that are required by the developer. To check this, we must take into account the
effect of data and time. However, smart contracts use environmental input as
control data, e.g., in guards. Such input data can be infinite, leading to infinitely
many possible contract states. Exploring every such state is highly inefficient [11]
and hence, appropriate data and time abstractions must be employed.

We apply data abstraction to ignore variables that depend on (e.g., are
updated by) environmental input. Thus, an overapproximation of the contract
behavior is caused by the fact that transition guards with such variables are
not evaluated; instead, both their values are assumed possible and state space
exploration includes execution traces with and without each guarded transition.
In essence, we analyze a more abstract model of the contract, with a set of reach-
able states and traces that is a superset of the set of states (respectively, traces)
of the actual contract. As an example, let us consider the function in Fig. 5.

void fn(int x) {
if (x < 0) {

... (1)
}
if (x > 0) {

... (2)
}

}

Fig. 5. Code example.

An overapproximation of the function’s execution includes traces where both
lines (1) and (2) are visited, even though they cannot both be satisfied by the
same values of x. Note that abstraction is not necessary for variables that are
independent of environment input (e.g. iteration counters of known range). These
are updated in the model as they are calculated by contract statements.

458 A. Mavridou et al.

We also apply abstraction to time variables (e.g. the now variable in the Blind
Auction) using a slightly different approach. Although we need to know which
transitions get invalidated as time increases, we do not represent the time spent
in each state, as this time can be arbitrarily high. Therefore, for a time-guarded
transition in the model, say from a state sx, one of the following applies:

– if the guard is of type t ≤ tmax, checking that a time variable does not exceed
a threshold, a loop transition is added to sx, with an action t = tmax + 1
that invalidates the guard. A deadlock may be found in traces where this
invalidating loop is executed (e.g., if no other transitions are offered in sx).

– if the guard is of type t > tmin, checking that a time variable exceeds a
threshold, an action t=tmin+1 is added to the guarded transition. This sets
the time to the earliest point that next state can be reached (e.g., useful for
checking bounded liveness properties.)

This overapproximation has the following implications.
Safety Properties: Safety properties that are fulfilled in the abstract model

are also guaranteed in the actual system. Each safety property checks the non-
reachability of a set of erroneous states. If these states are unreachable in the
abstract model, they will be unreachable in the concrete model, which contains
a subset of the abstract model’s states. This property type is useful for checking
vulnerabilities in currency withdrawal functions (e.g., the “DAO attack”).

Liveness Properties: Liveness properties that are violated in the abstract
model are also violated in the actual system. Each liveness property checks that
a set of states are reachable. If they are found unreachable (i.e., liveness vio-
lation) in the abstract model, they will also be unreachable in the concrete
model. This property type is useful for “Denial-of-Service” vulnerabilities ([29,
Appendix C.2]).

Deadlock Freedom: States without enabled outgoing transitions are identi-
fied as deadlock states. If no deadlock states are reachable in the abstract model,
they will not be reachable in the actual system.

5.1 VeriSolid-to-BIP Mapping

Since both VeriSolid and BIP model contract behavior as transition systems, the
transformation is a simple mapping between the transitions, states, guards, and
actions of VeriSolid to the transitions, states, guards, and actions of BIP (see [29,
Appendix C.3] for background on BIP). Because this is an one-to-one mapping,
we do not provide a proof. Our translation algorithm performs a single-pass
syntax-directed parsing of the user’s VeriSolid input and collects values that are
appended to the attributes list of the templates. Specifically, the following values
are collected:

– variables v ∈ V , where type(v) is the data type of v and name(v) is the
variable name (i.e., identifier);

– states s ∈ S;

VeriSolid: Correct-by-Design Smart Contracts for Ethereum 459

– transitions t ∈ T , where tname is the transition (and corresponding port)
name, tfrom and tto are the outgoing and incoming states, at and gt are
invocations to functions that implement the associated actions and guards.

Figure 6 shows the BIP code template. We use fixed-width font for the gen-
erated output, and italic font for elements that are replaced with input.

atom type Contract()

∀v ∈ V : data type(v) name(v)

∀t ∈ T : export port synPort tname
()

places s0, . . . , s|S|−1

initial to s0

∀t ∈ T : on tname
from tfrom to tto

provided (gt) do {at}
end

Fig. 6. BIP code generation template.

Table 2. Analyzed properties and verification results for the case study models.

Case Study Properties Type Result

BlindAuction
(initial) states: 54

(i) bid cannot happen after close:
AG

(
close → AG¬bid) Safety Verified

(ii) cancelABB or cancelRB cannot happen
after finish:
AG

(
finish → AG¬(

cancelRB ∨ cancelABB
))

Safety Verified

(iii) withdraw can happen only after finish:
A
[¬withdraw W finish

] Safety Verified

(iv) finish can happen only after close:
A
[¬finish W close

] Safety Verified

BlindAuction
(augmented)
states: 161

(v) 23 cannot happen after 18:
AG

(
18 → AG¬23) Safety Verified

(vi) if 21 happens, 21 can happen only after
24:
AG

(
21 → AX A

[¬21 W
(
24

)])

Safety Verified

DAO attack
states: 9

if call happens, call can happen only after
subtract:
AG

(
call → AX A

[¬call W subtract
])

Safety Verified

King of Ether 1
states: 10

7 will eventually happen after 4:
AG

(
4 → AF 7

) Liveness Violated

King of Ether 2
states: 10

8 will eventually happen after fallback:
AG

(
fallback → AF 8

) Liveness Violated

460 A. Mavridou et al.

5.2 Verification Results

Table 2 summarizes the properties and verification results. For ease of presen-
tation, when properties include statements, we replace statements with the
augmented-transition numbers that we have added to [29, Figures 9, 10, and 12].
The number of states represents the reachable state space as evaluated by
nuXmv.

Blind Auction. We analyzed both the initial and augmented models of the
Blind Auction contract. On the initial model, we checked four safety properties
(see Properties (i)–(iv) in Table 2). On the augmented model, which allows for
more fine-grained analysis, we checked two additional safety properties. All prop-
erties were verified to hold. The models were found to be deadlock-free and their
state space was evaluated to 54 and 161 states, respectively. The augmented
model and generated code can be found in [29, Appendix F].

The DAO Attack. We modeled a simplified version of the DAO contract. Atzei
et al. [2] discuss two different vulnerabilities exploited on DAO and present dif-
ferent attack scenarios. Our verified safety property (Table 2) excludes the possi-
bility of both attacks. The augmented model can be found in [29, Appendix G.1].

King of the Ether Throne. For checking Denial-of-Service vulnerabilities, we
created models of two versions of the King of the Ether contract [2], which are
provided in [29, Appendix G.2]. On “King of Ether 1,” we checked a liveness
property stating that crowning (transition 7) will happen at some time after the
compensation calculation (transition 4). The property is violated by the following
counterexample: fallback → 4 → 5 . A second liveness property, which states that
the crowning will happen at some time after fallback fails in “King of Ether 2.”
A counterexample of the property violation is the following: fallback → 4 . Note
that usually many counterexamples may exist for the same violation.

Resource Allocation. We have additionally verified a larger smart contract
that acts as the core of a blockchain-based platform for transactive energy sys-
tems. The reachable state space, as evaluated by nuXmv, is 3, 487. Properties
were verified or shown to be violated within seconds. Due to space limitations,
we present the verification results in [29, Appendix G.3].

6 Related Work

Here, we present a brief overview of related work. We provide a more detailed
discussion in [29, Appendix H].

Motivated by the large number of smart-contract vulnerabilities in practice,
researchers have investigated and established taxonomies for common types of
contract vulnerabilities [2,25]. To find vulnerabilities in existing contracts, both

VeriSolid: Correct-by-Design Smart Contracts for Ethereum 461

verification and vulnerability discovery are considered in the literature [36]. In
comparison, the main advantage of our model-based approach is that it allows
developers to specify desired properties with respect to a high-level model instead
of, e.g., EVM bytecode, and also provides verification results and counterexam-
ples in a developer-friendly, easy to understand, high-level form. Further, our
approach allows verifying whether a contract satisfies all desired security prop-
erties instead of detecting certain types of vulnerabilities; hence, it can detect
atypical vulnerabilities.

Hirai performs a formal verification of a smart contract used by the Ethereum
Name Service [20] and defines the complete instruction set of the Ethereum Vir-
tual Machine (EVM) in Lem, a language that can be compiled for interactive
theorem provers, which enables proving certain safety properties for existing
contracts [21]. Bhargavan et al. outline a framework for verifying the safety
and correctness of Ethereum contracts based on translating Solidity and EVM
bytecode contracts into F ∗ [6]. Tsankov et al. introduce a security analyzer for
Ethereum contracts, called Securify, which symbolically encodes the depen-
dence graph of a contract in stratified Datalog [23] and then uses off-the-shelf
solvers to check the satisfaction of properties [42]. Atzei et al. prove the well-
formedness properties of the Bitcoin blockchain have also been proven using a
formal model [3]. Techniques from runtime verification are used to detect and
recover from violations at runtime [12,13].

Luu et al. provide a tool called Oyente, which can analyze contracts and
detect certain typical security vulnerabilities [25]. Building on Oyente, Albert
et al. introduce the EthIR framework, which can produce a rule-based repre-
sentation of bytecode, enabling the application of existing analysis to infer prop-
erties of the EVM code [1]. Nikolic et al. present the MAIAN tool for detecting
three types of vulnerable contracts, called prodigal, suicidal and greedy [33].
Fröwis and Böhme define a heuristic indicator of control flow immutability to
quantify the prevalence of contractual loopholes based on modifying the control
flow of Ethereum contracts [16]. Brent et al. introduce a security analysis frame-
work for Ethereum contracts, called Vandal, which converts EVM bytecode to
semantic relations, which are then analyzed to detect vulnerabilities described
in the Soufflé language [8]. Mueller presents Mythril, a security analysis tool
for Ethereum smart contracts with a symbolic execution backend [31]. Stortz
introduces Rattle, a static analysis framework for EVM bytecode [41].

Researchers also focus on providing formal operational semantics for EVM
bytecode and Solidity language [17–19,24,46]. Common design patterns in
Ethereum smart contracts are also identified and studied by multiple research
efforts [4,44]. Finally, to facilitate development, researchers have also introduced
a functional smart-contract language [35], an approach for semi-automated trans-
lation of human-readable contract representations into computational equiva-
lents [15], a logic-based smart-contract model [22].

462 A. Mavridou et al.

7 Conclusion

We presented an end-to-end framework that allows the generation of correct-by-
design contracts by performing a set of equivalent transformations. First, we gen-
erate an augmented transition system from an initial transition system, based on
the operational semantics of supported Solidity statements ([29, Appendix A.3]).
We have proven that the two transition systems are observationally equivalent
(Sect. 4.1). Second, we generate the BIP transition system from the augmented
transition system through a direct one-to-one mapping. Third, we generate the
NuSMV transition system from the BIP system (shown to be observationally
equivalent in [34]). Finally, we generate functionally equivalent Solidity code,
based on the operational semantics of the transition system ([29, Appendix A.2]).

To the best of our knowledge, VeriSolid is the first framework to promote
a model-based, correctness-by-design approach for blockchain-based smart con-
tracts. Properties established at any step of the VeriSolid design flow are pre-
served in the resulting smart contracts, guaranteeing their correctness. VeriSolid
fully automates the process of verification and code generation, while enhanc-
ing usability by providing easy-to-use graphical editors for the specification of
transition systems and natural-like language templates for the specification of
formal properties. By performing verification early at design time, we provide
a cost-effective approach; fixing bugs later in the development process can be
very expensive. Our verification approach can detect typical vulnerabilities, but
it may also detect any violation of required properties. Since our tool applies
verification at a high-level, it can provide meaningful feedback to the developer
when a property is not satisfied, which would be much harder to do at byte-
code level. Future work includes extending the approach to model and generate
correct-by-design systems of interacting smart contracts.

References

1. Albert, E., Gordillo, P., Livshits, B., Rubio, A., Sergey, I.: EthIR: a framework for
high-level analysis of Ethereum bytecode. In: Lahiri, S.K., Wang, C. (eds.) ATVA
2018. LNCS, vol. 11138, pp. 513–520. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01090-4 30

2. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6 8

3. Atzei, N., Bartoletti, M., Lande, S., Zunino, R.: A formal model of Bitcoin trans-
actions. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol. 10957. Springer,
Berlin (2018). https://doi.org/10.1007/978-3-662-58387-6 29

4. Bartoletti, M., Pompianu, L.: An empirical analysis of smart contracts: platforms,
applications, and design patterns. In: Brenner, M., et al. (eds.) FC 2017. LNCS,
vol. 10323, pp. 494–509. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70278-0 31

5. Basu, A., et al.: Rigorous component-based system design using the BIP frame-
work. IEEE Softw. 28(3), 41–48 (2011)

https://doi.org/10.1007/978-3-030-01090-4_30
https://doi.org/10.1007/978-3-030-01090-4_30
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-58387-6_29
https://doi.org/10.1007/978-3-319-70278-0_31
https://doi.org/10.1007/978-3-319-70278-0_31

VeriSolid: Correct-by-Design Smart Contracts for Ethereum 463

6. Bhargavan, K., et al.: Short paper: formal verification of smart contracts. In: Pro-
ceedings of the 11th ACM Workshop on Programming Languages and Analysis for
Security (PLAS), in Conjunction with ACM CCS 2016, pp. 91–96, October 2016

7. Bliudze, S., et al.: Formal verification of infinite-state BIP models. In: Finkbeiner,
B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 326–343. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24953-7 25

8. Brent, L., et al.: Vandal: a scalable security analysis framework for smart contracts.
arXiv preprint arXiv:1809.03981 (2018)

9. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the Internet
of Things. IEEE Access 4, 2292–2303 (2016)

10. Clack, C.D., Bakshi, V.A., Braine, L.: Smart contract templates: foundations,
design landscape and research directions. arXiv preprint arXiv:1608.00771 (2016)

11. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)

12. Colombo, C., Ellul, J., Pace, G.J.: Contracts over smart contracts: recovering from
violations dynamically. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol.
11247, pp. 300–315. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03427-6 23

13. Ellul, J., Pace, G.: Runtime verification of Ethereum smart contracts. In: Work-
shop on Blockchain Dependability (WBD), in Conjunction with 14th European
Dependable Computing Conference (EDCC) (2018)

14. Finley, K.: A $50 million hack just showed that the DAO was all too
human. Wired. https://www.wired.com/2016/06/50-million-hack-just-showed-
dao-human/ (2016)

15. Frantz, C.K., Nowostawski, M.: From institutions to code: towards automated gen-
eration of smart contracts. In: 1st IEEE International Workshops on Foundations
and Applications of Self* Systems (FAS*W), pp. 210–215. IEEE (2016)

16. Fröwis, M., Böhme, R.: In code we trust? In: Garcia-Alfaro, J., Navarro-Arribas,
G., Hartenstein, H., Herrera-Joancomart́ı, J. (eds.) ESORICS/DPM/CBT -2017.
LNCS, vol. 10436, pp. 357–372. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-67816-0 20

17. Grishchenko, I., Maffei, M., Schneidewind, C.: A semantic framework for the secu-
rity analysis of Ethereum smart contracts. In: Bauer, L., Küsters, R. (eds.) POST
2018. LNCS, vol. 10804, pp. 243–269. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89722-6 10

18. Grishchenko, I., Maffei, M., Schneidewind, C.: A semantic framework for the secu-
rity analysis of Ethereum smart contracts. Technical report, TU Wien (2018)

19. Hildenbrandt, E., et al.: KEVM: a complete semantics of the Ethereum virtual
machine. Technical report, UIUC (2017)

20. Hirai, Y.: Formal verification of deed contract in Ethereum name service, November
2016. https://yoichihirai.com/deed.pdf

21. Hirai, Y.: Defining the Ethereum virtual machine for interactive theorem provers.
In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 520–535. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 33

22. Hu, J., Zhong, Y.: A method of logic-based smart contracts for blockchain sys-
tem. In: Proceedings of the 4th International Conference on Data Processing and
Applications (ICPDA), pp. 58–61. ACM (2018)

23. Jeffrey, D.U.: Principles of Database and Knowledge-base Systems. Computer Sci-
ence Press, New york (1989)

24. Jiao, J., Kan, S., Lin, S.W., Sanan, D., Liu, Y., Sun, J.: Executable operational
semantics of Solidity. arXiv preprint arXiv:1804.01295 (2018)

https://doi.org/10.1007/978-3-319-24953-7_25
http://arxiv.org/abs/1809.03981
http://arxiv.org/abs/1608.00771
https://doi.org/10.1007/978-3-030-03427-6_23
https://doi.org/10.1007/978-3-030-03427-6_23
https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/
https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/
https://doi.org/10.1007/978-3-319-67816-0_20
https://doi.org/10.1007/978-3-319-67816-0_20
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-89722-6_10
https://yoichihirai.com/deed.pdf
https://doi.org/10.1007/978-3-319-70278-0_33
http://arxiv.org/abs/1804.01295

464 A. Mavridou et al.

25. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 23rd ACM SIGSAC Conference on Computer and
Communications Security (CCS), pp. 254–269. ACM, October 2016

26. Maróti, M., et al.: Next generation (meta) modeling: web-and cloud-based col-
laborative tool infrastructure. In: Proceedings of the MPM@ MoDELS, pp. 41–60
(2014)

27. Mavridou, A., Laszka, A.: Designing secure Ethereum smart contracts: a finite
state machine based approach. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS,
vol. 10957. Springer, Berlin (2018). https://doi.org/10.1007/978-3-662-58387-6 28

28. Mavridou, A., Laszka, A.: Tool demonstration: FSolidM for designing secure
ethereum smart contracts. In: Bauer, L., Küsters, R. (eds.) POST 2018. LNCS,
vol. 10804, pp. 270–277. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89722-6 11

29. Mavridou, A., Laszka, A., Stachtiari, E., Dubey, A.: Verisolid: correct-by-design
smart contracts for Ethereum. arXiv preprint arXiv:1901.01292 (2019). https://
arxiv.org/pdf/1901.01292.pdf

30. Milner, R.: Communication and Concurrency, vol. 84. Prentice Hall, New York
(1989)

31. Mueller, B.: Smashing Ethereum smart contracts for fun and real profit. In: 9th
Annual HITB Security Conference (HITBSecConf) (2018)

32. Newman, L.H.: Security news this week: $280m worth of Ethereum is trapped
thanks to a dumb bug. Wired, November 2017. https://www.wired.com/story/
280m-worth-of-ethereum-is-trapped-for-a-pretty-dumb-reason/

33. Nikolic, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding the greedy, prodi-
gal, and suicidal contracts at scale. In: 34th Annual Computer Security Applica-
tions Conference (ACSAC) (2018)

34. Noureddine, M., Jaber, M., Bliudze, S., Zaraket, F.A.: Reduction and abstrac-
tion techniques for BIP. In: Lanese, I., Madelaine, E. (eds.) FACS 2014. LNCS,
vol. 8997, pp. 288–305. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
15317-9 18

35. O’Connor, R.: Simplicity: a new language for blockchains. In: Proceedings of the
2017 Workshop on Programming Languages and Analysis for Security, PLAS 2017,
pp. 107–120. ACM, New York (2017). https://doi.org/10.1145/3139337.3139340

36. Parizi, R.M., Dehghantanha, A., Choo, K.K.R., Singh, A.: Empirical vulnerability
analysis of automated smart contracts security testing on blockchains. In: 28th
Annual International Conference on Computer Science and Software Engineering
(CASCON) (2018)

37. Plotkin, G.D.: A structural approach to operational semantics. Computer Science
Department, Aarhus University, Denmark (1981)

38. Solidity by example: blind auction (2018). https://solidity.readthedocs.io/en/
develop/solidity-by-example.html#blind-auction. Accessed 25 Sept 2018

39. Solidity documentation: common patterns (2018). http://solidity.readthedocs.io/
en/develop/common-patterns.html#state-machine. Accessed 25 Sept 2018

40. Solidity documentation: security considerations - use the checks-effects-interactions
pattern (2018). http://solidity.readthedocs.io/en/develop/security-considerations.
html#use-the-checks-effects-interactions-pattern. Accessed 25 Sept 2018

41. Stortz, R.: Rattle - an Ethereum EVM binary analysis framework. In: REcon,
Montreal (2018)

42. Tsankov, P., Dan, A., Cohen, D.D., Gervais, A., Buenzli, F., Vechev, M.: Secu-
rify: practical security analysis of smart contracts. In: 25th ACM Conference on
Computer and Communications Security (CCS) (2018)

https://doi.org/10.1007/978-3-662-58387-6_28
https://doi.org/10.1007/978-3-319-89722-6_11
https://doi.org/10.1007/978-3-319-89722-6_11
http://arxiv.org/abs/1901.01292
https://arxiv.org/pdf/1901.01292.pdf
https://arxiv.org/pdf/1901.01292.pdf
https://www.wired.com/story/280m-worth-of-ethereum-is-trapped-for-a-pretty-dumb-reason/
https://www.wired.com/story/280m-worth-of-ethereum-is-trapped-for-a-pretty-dumb-reason/
https://doi.org/10.1007/978-3-319-15317-9_18
https://doi.org/10.1007/978-3-319-15317-9_18
https://doi.org/10.1145/3139337.3139340
https://solidity.readthedocs.io/en/develop/solidity-by-example.html#blind-auction
https://solidity.readthedocs.io/en/develop/solidity-by-example.html#blind-auction
http://solidity.readthedocs.io/en/develop/common-patterns.html#state-machine
http://solidity.readthedocs.io/en/develop/common-patterns.html#state-machine
http://solidity.readthedocs.io/en/develop/security-considerations.html#use-the-checks-effects-interactions-pattern
http://solidity.readthedocs.io/en/develop/security-considerations.html#use-the-checks-effects-interactions-pattern

VeriSolid: Correct-by-Design Smart Contracts for Ethereum 465

43. Underwood, S.: Blockchain beyond Bitcoin. Commun. ACM 59(11), 15–17 (2016)
44. Wöhrer, M., Zdun, U.: Design patterns for smart contracts in the Ethereum ecosys-

tem. In: Proceedings of the 2018 IEEE Conference on Blockchain, pp. 1513–1520
(2018)

45. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Tech-
nical report, EIP-150, Ethereum Project - Yellow Paper, April 2014

46. Yang, Z., Lei, H.: Lolisa: formal syntax and semantics for a subset of the solidity
programming language. arXiv preprint arXiv:1803.09885 (2018)

http://arxiv.org/abs/1803.09885

	VeriSolid: Correct-by-Design Smart Contracts for Ethereum
	1 Introduction
	2 VeriSolid: Design and Verification WorkFlow
	3 Developer Input: Transition Systems and Properties
	3.1 Smart Contracts as Transition Systems
	3.2 Formal Definition of a Smart Contract
	3.3 Smart-Contract Operational Semantics
	3.4 Safety, Liveness, and Deadlock Freedom

	4 Augmented Transition System Transformation
	4.1 Observational Equivalence

	5 Verification Process
	5.1 VeriSolid-to-BIP Mapping
	5.2 Verification Results

	6 Related Work
	7 Conclusion
	References

