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Abstract. We present the a provably secure proof-of-stake protocol
called Snow White. The primary application of Snow White is to be used
as a “green” consensus alternative for a decentralized cryptocurrency sys-
tem with open enrollement. We break down the task of designing Snow
White into the following core challenges:
1. identify a core “permissioned” consensus protocol suitable for proof-

of-stake; specifically the core consensus protocol should offer robust-
ness in an Internet-scale, heterogeneous deployment;

2. propose a robust committee re-election mechanism such that as stake
switches hands in the cryptocurrency system, the consensus commit-
tee can evolve in a timely manner and always reflect the most recent
stake distribution; and

3. relying on the formal security of the underlying consensus protocol,
prove the full end-to-end protocol to be secure—more specifically, we
show that any consensus protocol satisfying the desired robustness
properties can be used to construct proofs-of-stake consensus, as long
as money does not switch hands too quickly.

Snow White was publicly released in September 2016. It provides the
first formal, end-to-end proof of a proof-of-stake system in a truly decen-
tralized, open-participation network, where nodes can join at any time
(not necessarily at the creation of the system). We also give the first for-
mal treatment of a well-known issue called “costless simulation” in our
paper, proving both upper- and lower-bounds that characterize exactly
what setup assumptions are needed to defend against costless simula-
tion attacks. We refer the reader to our detailed chronological notes on
a detailed comparison of Snow White and other prior and concurrent
works, as well as how subsequent works (including Ethereum’s proof-of-
stake design) have since extended and improved our ideas.

1 Introduction

Although consensus protocols have been investigated by the distributed sys-
tems community for 30 years, in the past decade a new breakthrough called
Bitcoin established a new, blockchain-based paradigm for reaching consensus in
a distributed system. Relying on proof-of-work, Bitcoin’s consensus protocol
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(often called Nakamoto consensus), for the first time, enabled consensus in
an open, unauthenticated environment where nodes do not share any pre-
established public keys [11,17,18,22]. One commonly known painpoint with this
approach is the enormous energy waste. Motivated by the need for a green alter-
native, the community searched for a paradigm shift, and hoped to obtain a con-
sensus paradigm, commonly called “proof-of-stake”, that is based on the idea of
“one vote per unit of stake” (as opposed to “one vote per unit of hash-power”).

The design of proof-of-stake protocols was first initiated in online forums and
blog-posts and subsequently considered by the academic community [2,3,7,14–
16,24–26]. Prior to our work, we were not aware of any candidate protocol that
offered provable guarantees.

Snow White is the first work to provide end-to-end, formal proofs of security
of a full proof-of-stake protocol. Security is proven in a truly decentralized, open-
participation environment where honest nodes can join the protocol late in time
(and not necessarily at the system’s creation). We give the first formal treatment
of the well-known “costless simulation” problem (also called posterior corruption
in this paper) pertaining to proof-of-stake, proving upper- and lower-bounds that
precisely characterize under what assumptions it is possible to defend against
costless simulation.

In the remainder of the introduction, we first present an informal technical
overview of our results. We then provide detailed chronological notes that posi-
tion our work in light of other concurrent and subsequent works, and summarize
our work’s contributions and impact.

1.1 Robustly Reconfigurable Consensus

We ask the question: what is a suitable consensus protocol for a proof-of-stake
system? In a proof-of-stake system, at any point of time, we would like the present
stake-holders to have voting rights that are weighed by their respective stake
amount. Thus if we examine any single snapshot in the system, proof-of-stake in
fact requires a “permissioned” core consensus protocol, since the set of public-
keys owning stake is publicly known. However, proof-of-stake systems aim to
support open participation—and this can be enabled through periodic committee
reconfiguration. Suppose that the system starts with a well-known set of stake-
holders who form the initial consensus committee. As stake switches hands in
the system, the consensus committee should be updated in a timely manner to
track the present (and not the past) stake distribution. This is important for the
security of a proof-of-stake system, since users who no longer hold stake in the
system may be incentivized to deviate, e.g., to launch a double-spending attack.

We formulate the task of designing “a consensus protocol suitable for proof-
of-stake” as “robustly reconfigurable consensus”. A robustly reconfiguration con-
sensus protocol should have the following desirable properties.

Robustness in the Presence of Sporadic Participation. In a large-scale,
decentralized environment, users tend to have sporadic participation, and it may
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be difficult to anticipate how many users will be online at any point of time.
Almost all classical-style consensus protocols rely on tallying sufficiently many
votes to make progress. If fewer than the anticipated number of users actually
show up to vote, the consensus protocol may get stuck.

To address this challenge, Snow White employs the recently proposed “sleepy
consensus” [21] paradigm as its core permissioned consensus building block.
Sleepy consensus [21] is inspired by the beautiful “longest-chain” idea behind
Nakamoto’s consensus [17], but the idea is instead applied to a non-proof-of-
work, permissioned setting with a public-key infrastructure (PKI). Pass and Shi
prove that the resulting consensus protocol is robust in the presence of sporadic
participation: concretely, the protocol need not be parametrized with an a-priori
fixed number of players that are expected to show up. As long as the majority
of online players are honest, the protocol guarantees consistency and liveness.

Robust Committee Reconfiguration. Roughly speaking, our system pro-
ceeds in epochs. In each epoch, a most recent set of stake-holders are elected
as committee and may be randomly chosen to generate blocks. We argue that
committee reconfiguration and random block-proposer selection are challenging
and subtle due to the following two possible attacks.

1. Adaptive key selection attacks. Since proof-of-stake systems admit open par-
ticipation, anyone can buy up stake in the system and participate. This also
means anyone can (possibly maliciously) choose their public-keys through
which they participate in the consensus. A possible attack, therefore, is to
adaptively choose public-keys, after gathering partial information about the
randomness seed used for block-proposer selection, such that corrupt nodes
are elected more often as block-proposer than their fair chance.

2. Randomness-biasing attacks (commonly known as the “grinding attack”).
Another important question is: how do we obtain the randomness needed
for block proposer selection? A most straightforward idea is to use the hash
of past blocks—but as several works have shown [4], the blocks’ hashes can
be subject to adversarial influence, and it is unclear what security can be
guaranteed when we use such randomness sources with adversarial bias for
block proposer selection. For example, the adversary can bias the randomness
in a way that allows corrupt nodes to be selected more often.

In the worst case, if through possibly a combination of the attacks, the adver-
sary can control the majority of the block-proposer slots, consistency of the
underlying consensus (in our case, sleepy consensus) can be broken.

Snow White proposes a novel “two-lookback” mechanism that addresses the
above two challenges simultaneously1. We determine each epoch’s new consensus
committee and randomness seed in a two-phase process, where each phase spans

1 Subsequent works, including newer versions of Algorand [6] released after our pub-
lication, Ouroboros Praos [9], and the latest Ethereum’s proof-of-stake proposal [1]
incorporated elements of this design and suggested improvements, e.g., for concrete
security. See Sect. 1.3 for more discussions.
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roughly κ blocks of time for some appropriate security parameter2 κ. This two-
phase process is enabled by two look-back parameters as we describe informally
below (a formal description is deferred to the technical sections)—henceforth
suppose that chain is the current longest chain.

1. We look back 2κ blocks, and use the prefix chain[: −2κ] (i.e., the prefix
of chain removing the trailing 2κ blocks) to determine the new consensus
committee.

2. We look back κ blocks, and extract the randomness contained in the blocks
chain[−2κ : −κ] (i.e., the part of chain from 2κ blocks ago to κ blocks ago)
to form a randomness seed—this seed then seeds a random oracle used for
block-proposer selection in the current epoch.

Roughly speaking, we defeat the adaptively chosen key attack by determining
the consensus committee κ blocks earlier than the randomness seed, such that
when corrupt nodes choose their public keys, they cannot predict the random-
ness seed, which will be generated much later in time and with sufficient entropy
contributed by honest nodes as we explain below. We argue that due to chain
quality of the underlying sleepy consensus, the blocks chain[−2κ : −κ] must
contain an honest block. Since honest nodes embed a sufficiently long uniform
random seed in its block, we can extract sufficiently high-entropy randomness
from chain[−2κ : −κ] which is then used to seed the block-proposer-selection
random oracle. Even though the extracted randomness is subject to adversar-
ial bias, as long as it is high-entropy, and importantly, as long as the same
randomness is used to seed the block-proposer selection sufficiently many times,
we can achieve the desired measure concentration properties. More specifically,
although indeed, the adversary can bias the random seed to allow corrupt nodes
to be selected (as block-proposers) quite surely for a few number of slots; the
adversary is not able to consistently gain advantage over a sufficiently large num-
ber of slots, i.e., corrupt nodes cannot own noticeably more block-proposer slots
than its fair share.

We stress that turning the above intuitive argument into a formal proof
requires significant and non-trivial effort which is part our main contributions.
In our technical sections, we formally prove security of this approach under a
mildly adaptive adversary, i.e., when the adversary is subject to a mild cor-
ruption delay and as long as nodes remain honest till shortly after they stop
serving on a consensus committee, our robustly reconfigurable consensus proto-
col is secure. Subsequent works (including newer versions of the Algorand paper
that are published after the release of Snow White, as well as the subsequent
work Ourboros Praos [9]) have suggested approaches for achieving fully adap-
tive security, but relying on the fact that the majority of nodes will erase secret
signing keys from memory after signing a block (and by introducing mild addi-

2 Suppose that except with negligible in κ probability, the underlying sleepy consensus
guarantees consistency by chopping off the trailing κ blocks, and guarantees the
existence of an honest block in every consecutive window of κ blocks.
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tional complexity in the cryptographic schemes employed)—see Sect. 1.3 for a
more detailed comparison.

Understanding Posterior Corruption, i.e., “Costless Simulation” Att-
acks. A oft-cited attack for proof-of-stake systems is the so-called “costless sim-
ulation” attack (also referred to as a posterior corruption attack in this paper).
The idea is that when stake-holders have sold their stake in the system, nothing
prevents them from performing a history-rewrite attack. Specifically, suppose
that a set of nodes denoted C control the majority stake in some past commit-
tee. These nodes can collude to fork the history from the point in the past when
they control majority—and in this alternate history money can transfer in a
way such that C continues to hold majority stake (possibly transferred to other
pseudonyms of the corrupt nodes) such that the attack can be sustained.

In this paper, we formally prove that under a mild setup assumption—when
nodes join the system they can access a set of online nodes the majority of whom
are honest—we can provably defend against such a posterior corruption attack.
This is achieved by having the newly joining user obtain a somewhat recent
checkpoint from the set of nodes it can access upon joining.

We also prove a corresponding lower bound, that absent this setup assump-
tion, defense against such posterior corruption attacks is impossible—to the best
of our knowledge, ours is the first formal treatment of this well-known costless
simulation attack in the context of proof-of-stake.

1.2 From Robustly Reconfigurable Consensus to Proof-of-Stake

Application to Proof-of-Stake and Achieving Incentive Compatibility.
We show how to apply such a “robustly reconfigurable consensus” protocol to
realize proof-of-stake (the resulting protocol called Snow White), such that nodes
obtain voting power roughly proportional to their stake in the cryptocurrency
system. As long as money does not switch hands too fast (which is enforceable by
the cryptocurrency layer), we show that the resulting proof-of-stake protocol can
attain security when the adversary controls only a minority of the stake in the
system. Further, borrowing ideas from the recent Fruitchain work [19], we suggest
incentive compatible mechanisms for distributing rewards and transaction fees,
such that the resulting protocol achieves a coalition-resistant ε-Nash equilibrium,
i.e., roughly speaking, as long as the adversary controls a minority of the stake,
it cannot obtain more than ε fraction more than its fair share of payout, even
when it has full control of network transmission and can deviate arbitrarily from
the protocol specification.

Preventing Nothing-at-Stake Attacks. Later in Sect. 3, we will also discuss
how to leverage guarantees provided by our core consensus protocol, and build
additional mechanisms that not only discourage nothing-at-stake attackers, but
in fact penalize them.
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1.3 Chronological Notes, Closely Related, and Subsequent Works

Comparison with Algorand. The first manuscript of Algorand [6] was pub-
lished prior to our work. Algorand also proposes a proof-of-stake system. Their
core consensus protocol is a newly designed classical-style consensus protocol,
and therefore they cannot guarantee progress under sporadic participation—
instead, Algorand proposes a notion of “lazy participation”, where users know
when they are needed to vote in the consensus and they only need to be online
when they are needed. However, if many users who are anticipated to show
up failed to do so, progress will be hampered. Algorand employs a Verifiable
Random Function (VRF) to perform random leader/committee election.

Algorand’s algorithm has been improved for several iterations. The version of
Algorand that existed before the publication of Snow White gave proofs of their
core consensus protocol but did not provide end-to-end proofs for the full proof-
of-stake system. In particular, the version of Algorand that existed prior to Snow
White’s publication did not discuss the well-known issue of costless simulation or
clearly state the implicit assumptions they make to circumvent the lower bound
we prove in this paper.

In their subsequent versions, they adopted the erasure model and rely on
honest nodes’ capability to safely erase secrets from memory to achieve adaptive
security (and implicitly, by adopting erasures one could defend against the cost-
less simulation). The newer versions of Algorand (released after the Snow White)
also started to adopt a similar look-back idea (first described by Snow White)
to secure against the adaptive chosen-key attack mentioned earlier. The recent
versions also provided more thorough mathematical proofs of this approach.

Comparison with Ouroboros and Ouroboros Praos. Snow White was pub-
licly released in September 2016. A closely related work (independent and con-
current from our effort) known as Ouroboros [13] was release about 10 days prior
to Snow White. Ouroboros Praos is an improvement over Ouroboros published
in 2017 [9].

The Ouroboros version that was released around the same time as Snow
White focused on proving the underlying permissioned consensus building block
secure, and there is only a short paragraph containing a proof sketch of their full
proof-of-stake system (and this proof sketch has been somewhat expanded to a
few paragraphs in later versions). In comparison, our Snow White paper adopts a
permissioned consensus building block whose security was formally proven secure
in a related paper [21]—the full-length of our technical sections are dedicated to
a thorough treatment of the security of the end-to-end proof-of-stake system.

A notable difference between Snow White and Ouroboros seems to be that
their formal treatment does not seem to capture a truly decentralized environ-
ment (necessary for decentralized cryptocurrency applications) where nodes may
join the system late and not from the very start—had they done so, they would
have encountered the well-known costless simulation issue, which, as we show, is
impossible to defend against without extra setup assumptions (and indeed, we
introduce a reasonable setup assumption to circumvent this lower bound).
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A subsequently improved work, called Ouroboros Praos [9], extends the VRF
approach described first by Algorand [6] and Dfinity [12] for random block-
proposer election. Similar to the newer versions of Algorand, Ouroboros Praos [9]
also started adopting an erasure model to achieve adaptive security (and implic-
itly, defend against costless simulation3).

Neither Ouroboros nor Ouroboros Praos adopts an underlying consensus
mechanism that provably provides support for sporadic participation. Finally,
the improved version Ouroboros Praos [9] started adopting a look-back mecha-
nism that appears to be inspired by Snow White to for committee rotation and
random block-proposer selection.

Comparison with Ethereum’s Proof-of-Stake Design. Ethereum began
proof-of-stake explorations several years ago. Their design has undergone several
versions. At the time of the writing, Ethereum was aiming to do “hybrid proof-of-
stake”, i.e., use Casper as a finality gadget on top of their existing proof-of-work
blockchain.

In the past year 2018, conversations with Ethereum core researchers suggest
that Ethereum is considering replacing their proof-of-work blockchain with a
proof-of-stake blockchain similar to Snow White. Their committee election and
random block proposer selection algorithm seems to be improvement of Snow
White. Specifically, they would like to adopt an economically secure coin toss
protocol for randomness generation (commonly known as RANDAO). This spe-
cific protocol is also subject to adversarial bias much like our randomness seed
generation (although biasing attacks may lead to economic loss). Thus they rely
on exactly the same observation that was proposed in our paper: although the
adversary can bias the randomness sufficiently to control a few block proposer
slots, he cannot consistently get an advantage over a large number of slots. Inter-
estingly, Ethereum has several practical optimizations that improve the concrete
security parameters of the above analysis [1].

2 Snow White’s Core Consensus Protocol

We focus on an intuitive exposition of our scheme in the main body. In the
online full version [8], we present formal definitions, a formal description of the
protocol, as well as the full proofs. We stress that formalizing the end-to-end
security of a proof-of-stake system is a significant effort and this leads to our
choice of presentation.

2.1 Background: Sleepy Consensus and Sleepy Execution Model

Sleepy Execution Model and Terminology. We would like to adopt an
execution model that captures a decentralized environment where nodes can
3 Snow White’s approach of combining checkpointing and “bootstrapping through

social consensus” to defend against costless simulation is simpler and more practical
in real-world implementations (than relying on VRFs and erasure [6,9]). Notably,
our usage of checkpointing and “bootstrapping through social consensus” already
exists in real-world cryptocurrencies.
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spawn late in time, and can go to sleep and later wake up. In such a model, the
protocol may not have a way to anticipate the number of players at any time.

We thus adopt the sleepy model of execution proposed by Pass and Shi [21].
Nodes are either sleepy (i.e., offline) or awake (i.e., online and actively partici-
pating). For simplicity, we also refer to nodes that are awake and honest as alert;
and all corrupt nodes are assumed to be awake by convention.

Messages delivered by an alert node is guaranteed to arrive at all other alert
nodes within a maximum delay of Δ, where Δ is an input parameter to the
protocol. A sleepy node captures any node that is either offline or suffering a
slower than Δ network connection. A sleepy node can later wake up, and upon
waking at time t, all pending messages sent by alert nodes before t − Δ will be
immediately delivered to the waking node.

We allow the adversary to dynamically spawn new nodes, and newly spawned
nodes can either be honest or corrupt. Further, as we discuss later, we allow the
adversary to declare corruptions and put alert nodes to sleep in a mildly adaptive
fashion.

For readability, we defer a detailed presentation of the formal model to our
online full version [8].

The Sleepy Protocol as a Starting Point. Classical consensus protocols must
count sufficiently many votes to make progress and thus the protocol must know
a-priori roughly how many nodes will show up to vote. Since Pass and Shi’s
Sleepy consensus protocol is the only protocol known to provide consensus under
sporadic participation, i.e., the protocol need not have a-priori knowledge of the
number of players at any time. We thus consider Sleepy as a starting point for
constructing our notion of robustly reconfigurable consensus. We now briefly
review the Sleepy consensus protocol as necessary background.

Sleepy is a blockchain-style protocol but without proof-of-work. For practical
considerations, below we describe the version of Sleepy instantiated with a ran-
dom oracle (although Pass and Shi [21] also describe techniques for removing the
random oracle). Sleepy relies on a random oracle to elect a leader in every time
step. The elected leader is allowed to extend a blockchain with a new block, by
signing a tuple that includes its own identity, the transactions to be confirm, the
current time, and the previous block’s hash. Like in the Nakamoto consensus,
nodes always choose the longest chain if they receive multiple different ones. To
make this protocol fully work, Sleepy [21] proposes new techniques to timestamp
blocks to constrain the possible behaviors of an adversary. Specifically, there are
two important blockchain timestamp rules:

1. a valid blockchain must have strictly increasing timestamps; and
2. honest nodes always reject a chain with future timestamps.

All aforementioned timestamps can be adjusted to account for possible clock
offsets among nodes by applying a generic protocol transformation [21].
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2.2 Handling Committee Reconfiguration

As mentioned, our starting point is the Sleepy consensus protocol, which assumes
that all consensus nodes know each other’s public keys; although it may not be
known a-priori how many consensus nodes will show up and participate.

We now discuss how to perform committee reconfiguration such that the con-
sensus committee tracks the latest stake distribution. To support a wide range of
applications, our Snow White protocol does not stipulate how applications should
select the committee over time. Roughly speaking, we wish to guarantee secu-
rity as long as the application-specific committee selection algorithm respects
the constraint that there is honest majority among all awake nodes. Therefore,
we assume that there is some application-specific function elect cmt(chain) that
examines the state of the blockchain and outputs a new committee over time. In
a proof-of-stake context, for example, this function can roughly speaking, output
one public key for each currency unit owned by the user. In Sect. 3, we discuss
in a proof-of-stake context, how one might possibly translate assumptions on
the distribution of stake to the formal requirements expected by the consensus
protocol.

Strawman Scheme: Epoch-Based Committee Selection. Snow White pro-
vides an epoch-based protocol for committee reconfiguration. To aid understand-
ing, we begin by describing a strawman solution. Each Tepoch time, a new epoch
starts, and the beginning of each epoch provides a committee reconfiguration
opportunity. Let start(e) and end(e) denote the beginning and ending times of
the e-th committee. Every block in a valid blockchain whose time stamp is
between [start(e), end(e)) is associated with the e-th committee.

It is important that all honest nodes agree on what the committee is for
each epoch. To achieve this, our idea is for honest nodes to determine the new
committee by looking at a stabilized part of the chain. Therefore, a straightfor-
ward idea is to make the following modifications to the basic Sleepy consensus
protocol:

– Let 2ω be a look-back parameter.
– At any time t ∈ [start(e), end(e)) that is in the e-th epoch, an alert node

determines the e-th committee in the following manner: find the latest block
in its local chain whose timestamp is no greater than start(e) − 2ω, and
suppose this block resides at index �.

– Now, output extractpks(chain[: �]) as the new committee.

In general, the look-back parameter 2ω must be sufficiently large such that all
alert nodes have the same prefix chain[: �] in their local chains by time start(e).
On the other hand, from an application’s perspective, 2ω should also be recent
enough such that the committee composition does not lag significantly behind.

Preventing an Adaptive Key Selection Attack. Unfortunately, the above
scheme is prone to an adaptive key selection attack where an adversary can
break consistency with constant probability. Specifically, as the random oracle
H is chosen prior to protocol start, the adversary can make arbitrary queries
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to H. Therefore, the adversary can spawn corrupt nodes and seed them with
public keys that causes them to be elected leader at desirable points of time. For
example, since the adversary can query H, it is able to infer exactly in which
time steps honest nodes are elected leader. Now, the adversary can pick corrupt
nodes’ public keys, such that every time an honest node is leader, a corrupt node
is leader too—and he can sustain this attack till he runs out of corrupt nodes.
Since the adversary may control up to Θ(n) nodes, he can thus break consistency
for Ω(n) number of blocks.

Our idea is to have nodes determine the next epoch’s committee first, and
then select the next epoch’s hash—in this way, the adversary will be unaware
of next epoch’s hash until well after the next committee is determined. More
specifically, we can make the following changes to the Sleepy protocol:

– Let 2ω and ω be two look-back parameters, for determining the next com-
mittee and next hash respectively.

– At any time t ∈ [start(e), end(e)) that is in the e-th epoch, an alert node
determines the e-th committee in the following manner: find the latest block
its local chain whose timestamp is no greater than start(e)−2ω, and suppose
this block resides at index �0. Now, output extractpks(chain[: �0]) as the new
committee.

– At any time t ∈ [start(e), end(e)) an alert node determines the e-th hash in
the following manner: find the latest block its local chain whose timestamp is
no greater than start(e)−ω, and suppose this block resides at index �1. Now,
output extractnonce(chain[: �1]) as a nonce to seed the new hash.

– We augment the protocol such that alert nodes always embed a random seed
in any block they mine, and extractnonce(chain[: �1]) can simply use the seeds
in the prefix of the chain as a nonce to seed the random oracle H.

For security, we require that

1. The two look-back parameters 2ω and ω are both sufficiently long ago, such
that all alert nodes will have agreement on chain[: �0] and chain[: �1] by the
time start(e); and

2. The two look-back parameters 2ω and ω must be sufficiently far part, such
that the adversary cannot predict extractnonce(chain[: �1]) until well after the
next committee is determined.

Achieving Security Under Adversarially Biased Hashes. It is not hard
to see that the adversary can bias the nonce used to seed the hash, since the
adversary can place arbitrary seeds in the blocks it contributes. In particular,
suppose that the nonce is extracted from the prefix chain[: �1]. Obviously, with
at least constant probability, the adversary may control the ending block in this
prefix. By querying H polynomially many times, the adversary can influence the
seed in the last block chain[�1] of the prefix, until it finds one that it likes.

Indeed, if each nonce is used only to select the leader in a small number of
time steps (say, O(1) time steps), such adversarial bias would indeed have been
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detrimental—in particular, by enumerating polynomially many possibilities, the
adversary can cause itself to be elected with probability almost 1 (assuming that
the adversary controls the last block of the prefix).

However, we observe that as long as the same nonce is used sufficiently many
times, the adversary cannot consistently cause corrupt nodes to be elected in
many time steps. Specifically, suppose each nonce is used to elect at least Ω(κ)
leaders, then except with negl(κ) probability, the adversary cannot increase its
share by more than an ε fraction—for an arbitrarily small constant ε > 0. There-
fore, to prove our scheme secure, it is important that each epoch’s length (hence-
forth denoted Tepoch) be sufficiently long, such that once a new nonce is deter-
mined, it is used to elect sufficiently many leaders.

Reasoning About Security Under Adversarially Biased Hashes. For-
malizing this above intuition is somewhat more involved. Specifically, our proof
needs to reason about the probability of bad events (related to chain growth,
chain quality, and consistency) over medium-sized windows such that the bad
events depend only on O(1) number of hashes (determined by the nonces used
to seed them). This way, we can apply a union bound that results in polynomial
security loss. If the window size is too small, it would not be enough to make
the failure probability negligible; on the other hand, if the window were too big,
the blowup of the union bound would be exponential. Finally, we argue if no
bad events occur for every medium-sized window, then no bad events happen
for every window (as long as the window is not too small). We defer the detailed
discussions and formal proofs to our online full version [8].

2.3 Handling Mildly Adaptive and Posterior Corruptions

We now consider how to defend against an adversary that can adaptively corrupt
nodes after they are spawned. In this paper, we will aim to achieve security
against a mildly adaptive adversary. Specifically, a mildly adaptive adversary is
allowed to dynamically corrupt nodes or make them sleep, but such corrupt
or sleep instructions take a while to be effective. For example, in practice, it
may take some time to infect a machine with malware. Such a “mildly adaptive”
corruption model has been formally defined in earlier works [20], where they
call it the τ -agile corruption model, where τ denotes the delay parameter till
corrupt or sleep instructions take effect. Intuitively, as long as τ is sufficiently
large, it will be too late for an adversary to corrupt a node or make the node
sleep upon seeing the next epoch’s hash. By the time the corrupt or sleep
instruction takes effect, it will already be well past the epoch.

The main challenge in handling mildly adaptive corruptions is the threat of
a history rewriting attack when posterior corruption is possible: members of past
committees may, at some point, have sold their stake in the system, and thus
they have nothing to lose to create an alternative version of history.

We rely on a checkpointing idea to provide resilience to such posterior
corruption—as long as there is no late joining or rejoining (we will discuss how
to handle late joining or rejoining later). Checkpointing is a technique that has
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been explored in the classical distributed systems literature [5] but typically for
different purposes, e.g., in the case of PBFT [5] it was used as an efficiency
mechanism. Suppose that we can already prove the consistency property as long
as there is no majority posterior corruption. Now, to additionally handle major-
ity posterior corruption, we can have alert nodes always reject any chain that
diverges from its current longest chain at a point sufficiently far back in the past
(say, at least W time steps ago). In this way, old committee members that have
since become corrupt cannot convince alert nodes to revise history that is too
far back—in other words, the confirmed transaction log stabilizes and becomes
immutable after a while.

2.4 Late Joining in the Presence of Posterior Corruption

Indeed, the above approach almost would work, if there are no late spawning
nodes, and if there are no nodes who wake up after sleeping for a long time. How-
ever, as mentioned earlier, handling late joining is important for a decentralized
network.

Recall that we described a history revision attack earlier, where if the major-
ity of an old committee become corrupt at a later point of time, they can simulate
an alternate past, and convince a newly joining node believe in the alternate past.
Therefore, it seems that the crux is the following question:

How can a node joining the protocol correctly identify the true version of
history?

Unfortunately, it turns out that this is impossible without additional trust—
in fact, we can formalize the aforementioned attack and prove a lower bound
(see our online full version [8]) which essentially shows that in the presence of
majority posterior corruption, a newly joining node has no means of discerning
a real history from a simulated one:

[Lower bound for posterior corruption]: Absent any additional trust, it is
impossible to achieve consensus under sporadic participation, if the majority
of an old committee can become corrupt later in time.

We therefore ask the following question: what minimal, additional trust
assumptions can we make such that we can defend against majority posterior
corruption? Informally speaking, we show that all we need is a secure bootstrap-
ping process for newly joining nodes as described below. We assume that a newly
joining node is provided with a list of nodes L the majority of whom must be
alert—if so, the new node can ask the list of nodes in L to vote on the current
state of the system, and thus it will not be mislead to choose a “simulated”
version of the history.

2.5 Putting It Altogether: Informal Overview of Snow White

In summary, our protocol, roughly speaking, works as follows. A formal descrip-
tion of the protocol, the parameter choices and their relations, and proofs of
security are deferred to our online full version [8].



Snow White: Provably Secure Proof of Stake 35

– First, there is a random oracle H that determines if a member of the
present committee is a leader in each time step. If a node is leader in
a time step t, he can extend the blockchain with a block of the format
(h−1, txs, time, nonce, pk, σ), where h−1 is the previous block’s hash, txs is
a set of transactions to be confirmed, nonce is a random seed that will be
useful later, pk is the node’s public key, and σ is a signature under pk on the
entire contents of the block. A node can verify the validity of the block by
checking that (1) Hnoncee(pk, time) < Dp where Dp is a difficulty parameter4

such that the hash outcome is smaller than Dp with probability p, and noncee

is a nonce that is reselected every epoch (we will describe how the nonce is
selected later); (2) the signature σ verifies under pk; and (3) pk is a member
of the present committee as defined by the prefix of the blockchain.

– A valid blockchain’s timestamps must respect two constraints: (1) all times-
tamps must strictly increase; and (2) any timestamp in the future will cause
a chain to be rejected.

– Next, to defend against old committees that have since become corrupt from
rewriting history, whenever an alert node receives a valid chain that is longer
than his own, he only accepts the incoming chain if the incoming chain does
not modify blocks too far in the past, where “too far back” is defined by the
parameter κ0.

– Next, a newly joining node or a node waking up from long sleep must invoke
a secure bootstrapping mechanism such that it can identify the correct ver-
sion of the history to believe in. One mechanism to achieve this is for the
(re)spawning node to contact a list of nodes the majority of whom are alert.

– Finally, our protocol defines each contiguous Tepoch time steps to be an epoch.
At the beginning of each epoch, committee reconfiguration is performed in
the following manner. First, nodes find the latest prefix (henceforth denoted
chain−2ω) in their local chain whose timestamp is at least 2ω steps ago. This
prefix chain−2ω will be used to determine the next committee—and Snow
White defers to the application-layer to define how specifically to extract the
next committee from the state defined by chain−2ω. Next, nodes find the
latest prefix (denoted chain−ω) in their local chain whose timestamp is at
least ω steps ago. Given this prefix chain−ω, we extract the nonces contained
in all blocks, the resulting concatenated nonce will be used to seed the hash
function H for the next epoch.

4 As we discuss in our online full version [8], in practice, the next committee is read
from a stabilized prefix of the blockchain and we know its total size a-priori. There-
fore, assuming that an upper bound on the fraction of awake nodes (out of each
committee) is known a-priori, we can set the difficulty parameter Dp accordingly to
ensure that the expected block interval is sufficiently large w.r.t. to the maximum
network delay (and if the upper bound is loose, then the confirmation time is pro-
portionally slower). Although on the surface our analysis assumes a fixed expected
block interval throughout, it easily generalizes to the case when the expected block
interval varies by a known constant factor throughout (and is sufficiently large w.r.t.
to the maximum network delay).
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Resilience Condition. In the online full version [8], we will give a formal
presentation of our protocol and prove it secure under the following resilience
condition. We require that the majority of the committee remain honest not
only during the time it is active, but also for a short duration (e.g., a handoff
period) afterwards. In particular, even if the entire committee becomes corrupt
after this handoff period, it should not matter to security.

In other words, we require that for any committee, the number of alert com-
mittee members that remain honest for a window of W outnumber the number of
committee members that become corrupt during the same window. In particular,
we will parametrize the window W such that it incorporates this short hand-
off period after the committee becomes inactive. Somewhat more formally, we
require that there exists a constant ψ > 0 such that for every possible execution
trace view, for every t ≤ |view|, let r = min(t + W, |view|),

alertt(cmtt(view), view) ∩ honestr(cmtt(view), view)
corruptr(cmtt(view), view)

≥ 1 + ψ (1)

where alertt(cmts(view), view), honestt(cmts(view), view), and corruptt(cmts

(view), view) output the number of nodes in the committee of time s that are
alert (or honest, corrupt, resp.) at time t.

3 From Robustly Reconfigurable Consensus to PoS

We now discuss how to apply our core consensus protocol in a proof-of-stake
(PoS) application. There are two challenges: (1) in a system where money can
switch hands, how to make the committee composition closely track the stake
distribution over time; and (2) how to distribute fees and rewards to ensure
incentive compatibility.

3.1 Base Security on Distribution of Stake

Roughly speaking, our core consensus protocol expects the following assumption
for security: at any point of time, there are more alert committee members that
will remain honest sufficiently long than there are corrupt committee members.
In a proof-of-stake setting, we would like to articulate assumptions regarding
the distribution of stake among stake-holders, and state the protocol’s security
in terms of such assumptions.

Since our core consensus protocol allows a committee reelection opportunity
once every epoch, it is possible that the distribution of the stake in the system
lags behind the committee election. However, suppose that this is not the case,
e.g., pretend for now that there is no money transfer, then it is simple to translate
the assumptions to distribution on stake. Imagine that the application-defined
elect cmt(chain) function will output one public key for each unit of currency as
expressed by the state of chain. If a public key has many units of coin, one could
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simply output the public key pk along with its multiplicity m—and the strings
pk||1, . . . , pk||m may be used in the hash query for determining the leader. Snow
White’s core consensus protocol does not care about the implementation details
of elect cmt(chain), and in fact that is an advantage of our modular composition
approach. In this way, our Snow White protocol retains security as long as the
at any point of time, more stake is alert and will remain honest sufficiently long
than the stake that is corrupt. Here when we say “a unit of stake is alert (or
honest, corrupt, resp.)”, we mean that the node that owns this unit of stake is
alert (or honest, corrupt, resp.).

In the real world, however, there is money transfer—after all that is the entire
point of having cryptocurrencies—therefore the committee election lags behind
the redistribution of stake. This may give rise to the following attack: once a
next committee is elected, the majority of the stake in the committee can now
sell their currency units and perform an attack on the cryptocurrency (since
they now no longer have stake). For example, the corrupt coalition can perform
a double-spending attack where they spend their stake but attempt to fork a
history where they did not spend the money.

The Limited Liquidity Assumption. One approach to thwart such an attack
is to limit the liquidity in the system—in fact, Snow White expects that the
cryptocurrency layer enforces that money will not switch hands too quickly.
For example, imagine that at any point of time, a = 30% of the stake is alert
and will remain honest sufficiently long, c = 20% is corrupt, and the rest are
sleepy. We can have the cryptocurrency layer enforce the following rule: only
a−c
2 − ε = 5% − ε of the stake can switch hands during every window of size

2ω + Tepoch + W . In other words, if in any appropriately long window, only l
fraction of money in the system can move, it holds that as long as at any time,
2l + ε more stake is alert and remain honest sufficiently long than the stake
that is corrupt, we can guarantee that the conditions expected by the consensus
protocol, that is, at any time, more committee members are alert and remain
honest sufficiently long, than the committee members that are corrupt.

4 Achieving Incentive Compatibility

4.1 Fair Reward Scheme

In a practical deployment, an important desideratum is incentive compatibility.
Roughly speaking, we hope that each node will earn a “fair share” of rewards and
transaction fees—and in a proof-of-stake system, fairness is defined as being pro-
portional to the amount of stake a node has. In particular, any minority coalition
of nodes should not be able to obtain an unfair share of the rewards by deviat-
ing from the protocol—in this way, rational nodes should not be incentivized to
deviate.

Since Snow White is a blockchain-style protocol, we also inherit the well-
known selfish mining attack [10,18] where a minority coalition can increase its
rewards by a factor of nearly 2 in the worst case. Fortunately, inspired by the
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recent work Fruitchains [19] we provide a solution to provably defend against
any form of selfish mining attacks, and ensure that the honest protocol is a
coalition-safe ε-Nash equilibrium. At a high level, Fruitchains provides a mech-
anism to transform any (possibly unfair) blockchain that achieves consistency
and liveness into an approximately fair blockchain in a blackbox manner. Our
key observation is that this transformation is also applicable to our non-proof-
of-work blockchain—since we realize the same abstraction as a proof-of-work
blockchain. Since we apply the essentially same techniques below as Fruitchains,
we give an overview of the mechanisms below for completeness and refer the
reader to Fruitchains [19] for full details.

Two Mining Processes. Like in Fruitchains [19], we propose to have two
“mining” processes piggybacked atop each other. Recall that earlier each node
invokes the hash function H in every time step to determine whether it is a leader
in this time step. Now, we will use the first half of H to determine leadership,
and use the second half to determine if the user mines a “fruit” in this time step.
Additionally, we will add to the input of H the digest of a recently stablized block
such that any fruit mined will “hang” from a recently stablized block—which
block a fruit hangs from indicates the roughly when the fruit was “mined”, i.e.,
the freshness of the fruit. Whenever an honest node finds a fruit, it broadcasts
the fruit to all peers, and honest nodes will incorporate all outstanding and
fresh fruits in any block that it “mines”. Note that fruits incorporated in blocks
are only considered valid if they are sufficiently fresh. Finally, all valid fruits
contained in the blockchain can be linearized, resulting in an ordered “fruit
chain”.

The formal analysis conducted in Fruitchains [19] can be adapted to our
setting in a straightforward manner, giving rise to the following informal claim:

Claim (Approximate fairness [19]). Assume appropriate parameters. Then for
any (arbitrarily small) constant ε, in any κ

ε number of consecutive fruits, the
fraction of fruits belonging to an adversarial coalition is at most ε fraction more
than its fair share, as long as, informally speaking, in any committee, alert
committee members that remain honest by the posterior corruption window
outnumber members that become corrupt by the same window.

We refer the reader to Fruitchains [19] for a formal proof of this claim. Intu-
itively, this claim holds because the underlying blockchain’s liveness property
ensures that no honest fruits will ever be lost (i.e., the adversary cannot “erase”
honest nodes’ work in mining fruits like what happens in a selfish mining attack);
and moreover, in any sufficiently long window, the adversary can incorporate
only legitimate fruits belonging to this window (and not any fruits ε-far into the
past or future).

Payout Distribution. Based on the above claim of approximate fairness, we
devise the following payout mechanism following the approach of Fruitchain [19].
We will distribute all forms of payout, including mining rewards and transaction
fees to fruits rather than blocks. Furthermore, every time payout is issued, it



Snow White: Provably Secure Proof of Stake 39

will be distributed equally among a recent segment of roughly Ω(κ
ε ) fruits. Like

in Fruitchains, this guarantees that as long as at any time, there are more alert
committee members that remain honest sufficiently long than corrupt committee
members, the corrupt coalition cannot increase its share by more than ε no
matter how it deviates from the prescribed protocol—in other words, the honest
protocol is a coalition-safe ε-Nash equilibrium.

4.2 Thwarting Nothing-at-Stake Attacks

Nothing-at-stake refers to a class of well-known attacks in the proof-of-stake
context [23], where participants have nothing to lose for signing multiple forked
histories. We describe how Snow White defends against such attacks. Nothing-
at-stake attacks apply to both signing forked chains in the past and in the
present—since the former refers to posterior corruption style attacks which we
already addressed earlier, in the discussion below, we focus on signing forked
chains in the present.

First, as long as the adversary does not control the majority, our core con-
sensus protocol formally guarantees that signing forked chains does not break
consistency. In fact, we incentivize honest behavior by proving that the adver-
sary cannot increase its rewards by an arbitrarily small ε fraction, no matter
how it deviates from honest behavior which includes signing forked chains.

With ε-Nash equilibrium, one limitation is that players can still do a small
ε fraction better by deviating, and it would be desirable to enforce a stronger
notion where players do strictly worse by deviating. We can make sure that
nothing-at-stake attackers do strictly worse by introducing a penalty mechanism
in the cryptocurrency layer: by having players that sign multiple blocks with the
same timestamp lose an appropriate amount of collateral—to achieve this we
need that the underlying core consensus protocol achieves consistency, when
roughly speaking, the adversary controls only the minority. Even absent such a
penalty mechanism, players currently serving on a committee likely care about
the overall health of the cryptocurrency system where they still hold stake due to
the limited liquidity assumption—this also provides disincentives for deviating.

The holy grail, of course, is to design a provably secure protocol where any
deviation, not just nothing-at-stake attacks, cause the player to do strictly worse.
We leave this as an exciting open question. It would also be interesting to consider
security when the attack controls the majority—however, if such a majority
attacker can behave arbitrarily, consistency was shown to be impossible [21].
Therefore, it thus remains an open question even what meaningful notions of
security one can hope for under possibly majority corruption.

Additional Materials in Online Full Version

In our online full version [8], we present full formalism including definitions,
proofs, and lower bound results. We also present simulation and experimental
results, and discuss concrete parameters in the online full version.
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