
Universally Verifiable MPC and IRV
Ballot Counting

Kim Ramchen1,3(B), Chris Culnane1, Olivier Pereira1,2,
and Vanessa Teague1(B)

1 Department of Computing and Information Systems, The University of Melbourne,
Melbourne, Australia

kramchen@gmail.com, {christopher.culnane,vjteague}@unimelb.edu.au
2 ICTEAM, UCLouvain, 1348 Louvain-la-Neuve, Belgium

olivier.pereira@uclouvain.be
3 Faculty of Information Technology, Monash University, Clayton, Australia

Abstract. We present a very simple universally verifiable MPC proto-
col. The first component is a threshold somewhat homomorphic cryp-
tosystem that permits an arbitrary number of additions (in the source
group), followed by a single multiplication, followed by an arbitrary num-
ber of additions in the target group. The second component is a black-
box construction of universally verifiable distributed encryption switch-
ing between any public key encryption schemes supporting shared setup
and key generation phases, as long as the schemes satisfy some natural
additive-homomorphic properties. This allows us to switch back from the
target group to the source group, and hence perform an arbitrary num-
ber of multiplications. The key generation algorithm of our prototypical
cryptosystem, which is based upon concurrent verifiable secret sharing,
permits robust re-construction of powers of a shared secret.

Keywords: Multiparty computation · Elections · Voting · Instant
runoff voting · Verifiable computation · Verifiability

1 Introduction

We explore the design of efficient universally verifiable MPC protocols, motivated
by applications to the counting of complex ballots in an election. Universal veri-
fiability means that the computation should be verifiably correct, even to people
who do not participate, and even if all parties involved in the computation are
misbehaving. Apart from verifiability, we also require privacy to be guaranteed
as long as the number of trustees behaving honestly is above a certain threshold.
As trustees must be able to compute the result of the computation, and there-
fore jointly have access to the inputs, this appears to be the best we can hope
for, at least in the absence of extra setup assumptions. (anonymous channel,
tamper-proof devices, etc.).

Achieving these goals is particularly important in elections: we need the
correctness of the tally to be guaranteed, even if all the people in charge of
c© International Financial Cryptography Association 2019
I. Goldberg and T. Moore (Eds.): FC 2019, LNCS 11598, pp. 301–319, 2019.
https://doi.org/10.1007/978-3-030-32101-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32101-7_19&domain=pdf
https://doi.org/10.1007/978-3-030-32101-7_19

302 K. Ramchen et al.

running the election are corrupted – or if all of their computing devices have been
hacked – and ballots need to remain secret. Of course, this setting is meaninful in
a lot of other contexts: secret bid auctions in which the winning bid is determined
by the organisers and, more generally, any cloud application in which a group
of users outsource their secret data to one or more cloud service providers, and
expect correct computation while maintaining the confidentiality of their data.

Homomorphic encryption lends itself naturally to universally verifiable com-
putation, because the computation itself can be performed by anyone. The pri-
vate key can be shared among several trustees, who need only prove that they
decrypted the final result correctly. For simple elections in which tallying consists
only of addition, efficient solutions exist based on additive-homomorphic encryp-
tion [1,5,14]. We are interested in complex election schemes in which more than a
simple sum is needed. Our particular application is Instant runoff voting (IRV),
also called alternative voting, which is used in verious places around the globe,
either in general public elections (e.g., Australia, Ireland, San Francisco), or in
internal consitutencies or political party elections (e.g., Canada, India, U.K.).
In IRV, each voter lists some or all the candidates in their order of preference.
At each iteration, each ballot is credited towards its highest uneliminated can-
didate. The candidate with the lowest tally is then eliminated (so each ballot
is then credited to its next uneliminated candidate). This terminates when one
candidate has a strict majority. This elimination process requires multiplications
on top of addition, which cannot be homomorphically achived with traditional
efficient schemes like ElGamal or Paillier. For this case, leveled homomorphic
encryption [9] would work, but would need to be parameterized in advance for
the maximum depth of multiplications that might possibly be needed, and pay
an efficiency cost on that basis. In our setting, that depth would be the total
number of candidates (minus 2), which might be a lot more than the actual
number of eliminations.

1.1 Summary of Our Contribution

We build a simple universally verifiable MPC protocol from two components.

1. A somewhat homomorphic encryption scheme with threshold key generation
in the malicious static adversary setting. It is similar to [11] in allowing
arbitrary additions in a source space, then one multiplication. Our threshold
key generation protocol allows efficient proofs of correct decryption.

2. A multiparty encryption switching protocol that transforms a ciphertext from
the target space, i.e., resulting from a homomorphic multiplication, into a
ciphertext in the source space, hence making it possible to perform more mul-
tiplications. This protocol is universally verifiable in the setting of [28].

Our scheme only requires computation in standard prime order groups and
relies on standard computational assumptions (e.g., SXDH). The availability
of addition and multiplication is sufficient to perform arbitrary computation
(Fig. 1). It supports threshold key generation in the malicious setting with static
corruption.

Universally Verifiable MPC and IRV Ballot Counting 303

Src Tgt

“+” “×” “+”

“Identity”

Fig. 1. Operations supported by our encryption scheme. Continuous (resp. dashed)
arrows refer to non-interactive (resp. interactive) operations.

As a demonstration for our example application, we present a privacy-
preserving universally verifiable implementation of the tallying phase of Instant
Runoff Voting, based on our universally verifiable computation protocol. Our
sample implementation was run on real-world data from public elections in Aus-
tralia, which shows that our protocol is efficient enough for tallying real-world
elections within a reasonable time frame, while leaving ample space for further
optimization.

1.2 Comparison with Related Work on MPC

Our approach bears some resemblance to the encryption-switching approach of
Couteau et al. [13], but has some significant differences. They switch between
additively and multiplicatively homomorphic encryption schemes, while we
switch between spaces in which we have additively homomorphic encryption,
with the possibility to perform a multiplication as part of a switch. They have
two switching protocols, between the additively and multiplicatively homomor-
phic ciphertext spaces, while we only need a protocol to switch from our target
space back to our source space. Their protocols for secure computation are 2-
party protocols and highly asymmetric (assigning specific roles to each party),
while our protocols are multi-party, perfectly symmetric and universally verifi-
able.

Catalano and Fiore [11] describe boosting linearly homomorphic encryption
to achieve server aided two-party secure function evaluation on parallel inputs in
the semi-honest setting. We do not know if this approach can be generalised to
the N -party setting. Like [8], their system allows evaluation of 2DNF formulae,
that is, an addition, followed by one multiplication, followed by more additions.
However, additions in the target space require ciphertext expansion, which is
not the case in our scheme.

Three recent works address universally verifiable MPC. Their main bottle-
neck is key generation. Baum et al. [3] add universally verifiable proofs of cor-
rectness to SPDZ [15], which uses a somewhat homomorphic encryption scheme
that has n-out-of-n key generation in the covert adversary model. The proto-
col therefore only offers confidentiality in that model. We have security in the
traditional malicious adversary setting. This approach naturally scales to arbi-
trary multiplications, with cost proportional to the total number actually done.

304 K. Ramchen et al.

However, the structure of the protocols, based on secret shared data, uses secure
bidirectional channels between the input parties (e.g., the voters) and the com-
puting parties (e.g., the election trustees), which is a challenging constraint for
large scale applications. Our focus is on single pass protocols [7], in which voters
can vote by submitting a single message built from a public election description,
and have a computational work independent of the number of trustees.

Schoenmakers and Veeningen [28] rely on Damgaard-Jurik encryption, which
supports efficient threshold key generation if an RSA modulus with unknown
factorization is available bringing us back to key generation difficulties.

The most closely related work comes from Castagnos et al. [10], who propose
new encryption schemes and switching protocols following [13], but working in
prime order groups (like we do), hence also supporting threshold operations.
They combine additively and multiplicatively homomorphic schemes (while we
use a somewhat homomorphic approach). Their encryption scheme however relies
on the hardness of DDH in very specific groups: subgroups of the class group
of an order of a quadratic field of discriminant −p3, which comes with effi-
ciency penalties. They also need to work in subgroups of unknown order, which
increases the cost of the ZK proofs needed for verifiability. Our protocol works
in a standard computational setting (traditional asymmetric pairings), with effi-
ciency and compatibility advantages (in particular, standard sigma protocols for
prime order groups can be used). The tradeoff between the two would depend on
the computation: in our IRV counting setting, we have many additions, followed
by a single multiplication, followed by many more additions, repeatedly. For this
kind of circuit our approach is more efficient than [10]. However, a computation
with unbounded successive multiplications would eventually be faster with their
method, despite the use of more expensive components.

In concurrent work, Attrapadung et al. [2] introduce a somewhat homomor-
phic encryption scheme that is a specific instance of our encryption scheme
family. However, they do not offer a threshold (or distributed) variant, or a
switching protocol, which are the key ingredients for our universally verifiable
MPC protocol, nor do they consider general computation or voting.

1.3 Counting IRV Ballots

Plaintext IRV tallying raises coercion issues. The number of possible votes is
more than c! (where c is the number of candidates), which may be much larger
than the number of votes actually cast. This introduces the possibility of an
attack often called the Italian attack: a coercer demands a certain pattern of
preferences, presumably with her favourite candidate first, and then checks to
see whether that pattern appears in the final tally. To thwart this attack, many
works describe universally verifiable IRV tallying without revealing individual
ballots [6,19,20,25–27].

However, these all use mix-nets [23], which count among the most complex
cryptographic protocols ever deployed. Besides, even when mixes use strong
zero knowledge-proof based verification, if a single mix misbehaves then the
entire mix-net halts until a replacement is found, leading to a protocol which is

Universally Verifiable MPC and IRV Ballot Counting 305

inherently non-robust. Ours is the first universally verifiable scheme for privacy-
preserving IRV tallying without mixnets.

For our example application we implemented the single-authority version of
our cryptosystem and switching protocol and used it to recount two real IRV
elections, using public data from the Australian state of New South Wales. Each
election included more than 40,000 ballots. The first, involving 5 candidates
and a single elimination round, completed in 2 h. The second, with 6 candidates
and 4 elimination rounds, took 15 h. This does not include the proofs of correct
switching, which would add a constant multiplicative factor. The details are in
Appendix J of the full version of this paper, at https://eprint.iacr.org/2018/246.

1.4 Structure of This Paper

The next section contains cryptographic background. In Sect. 2 we present a new
candidate cryptosystem with which to instantiate source and destination encryp-
tion schemes for the N -party encryption switching primitive. Next, in Sect. 3,
we tackle the problem of constructing a distributed key generation procedure
for this protocol. Then in Sect. 4 we describe the universally verifiable proto-
col for switching from target back to source encryption schemes. Our prototype
implementation for Instant Runoff Vote counting is in Sect. 5.

1.5 Background

We define a generic access structure for linear secret sharing schemes.

Definition 1 (Access Structure [22,30]). Let S be a set of parties. A collec-
tion A ⊂ 2S is monotone if ∀ B,C : if B ∈ A and B ⊆ C then C ∈ A. An
access structure, respectively monotone access structure, is a collection (respec-
tively monotone collection) A of non-empty subsets of 2S i.e., A ⊆ 2S\{∅}. The
sets in A are called the authorised sets; the sets not in A are called unauthorised
sets.

Definition 2 (Linear Secret-Sharing Scheme [4,30]). A secret-sharing
scheme Π over a set of parties P is called linear over field Zp if

1. The shares of the parties form a vector of dimension at most l over Zp.
2. There exists a matrix M with � rows and d columns called the share-

generating matrix for Π. There also exists a function ρ which maps each
row of the matrix to an associated party. That is for i = 1, . . . , �, the
value ρ(i) is the party associated with row i. When we consider the column
vector v = (s, r2, . . . , rd)T , where s ∈ Zp is the secret to be shared, and
r2, . . . , rd ∈ Zp are randomly chosen, then Mv is the vector of � shares of the
secret s according to Π. The share (Mv)i belongs to the party ρ(i).

It is proven in [4] that every every linear secret-sharing scheme (LSSS) sat-
isfies the following property, called linear-reconstruction in [30]. Suppose that
Π is an LSSS for the access structure A. Let V ∈ A be any authorised set, and

https://eprint.iacr.org/2018/246

306 K. Ramchen et al.

let I ⊆ {1, . . . , �} be defined as I = {i : ρ(i) ∈ V }. Then there exist constants
{Λi,V ∈ Zp : i ∈ I} such that, if {si} are valid shares of any secret s according
to Π, then

∑
i∈I Λi,V · si = s. Moreover these constants {Λi,V } can be found in

time polynomial in the dimensions of the share-generating matrix M .

Definition 3 (T -Threshold Access Structure). Of specific interest for our
purposes is the T -party threshold access structure, defined as AT -Th = {S : S ∈
2{P1,...,Pn}, |S| ≥ T}, where T < n/2. Let M be the linear secret-sharing scheme
matrix corresponding to AT -Th. In that case there exists M with row-dimension
l = n and column-dimension d = T .

Pairings on Prime-Order Groups. To build our one-time homomorphic
cryptosystem of Sect. 3, we require the notion of projecting bilinear group gen-
erators [17]. Our specific choice of generator will be a variant of the polynomial-
induced projecting generator introduced by Herold et al. [21], tailored for the
asymmetric pairing setting.

Definition 4 (Bilinear Group Generator [17]). A bilinear group generator
is an algorithm G that takes as input a security parameter λ and outputs a
description of five abelian groups G,G1,H,H1, Gt with G1 < G and H1 < H.
Assume that this description permits polynomial-time group operations and ran-
dom sampling in each group. The algorithm also outputs an efficiently computable
map e : G × H → Gt that satisfies:

Bilinearity. For all g1, g2 ∈ G and h1, h2 ∈ H,
e(g1g2, h1h2) = e(g1, h1)e(g1, h2)e(g2, h1)e(g2, h2).

Non-degeneracy. e(g, h) = 1 ∀h ∈ H ⇐⇒ g = 1
and e(g, h) = 1 ∀g ∈ G ⇐⇒ h = 1.

A bilinear group generator G is prime-order if G,G1,H,H1, Gt all have prime
order p.

Definition 5 (Projecting Bilinear Group Generator [17]). Let G be a
bilinear group generator. Say that G is projecting if it also outputs a group
G′

t < Gt and three group homomorphisms π1, π2, πt mapping G,H,Gt to them-
selves such that

1. Subgroups G1,H1, G
′
t are contained in the kernels of π1, π2, πt respectively.

2. e(π1(g), π2(h)) = πt(e(g, h)) for all g ∈ G,h ∈ H.

We propose a projecting bilinear group operator induced by tensor prod-
uct, instead of relying on the polynomial product previously proposed [21]. The
polynomial solution was designed for the symmetric pairing setting, but raises
difficulties in the definition of the projecting operator when moving to the asym-
metric setting. Our tensor product based solution offers an efficient alternative
that makes it possible to have efficient ciphertext in the base groups, by relying
on the sXDH assumption.

Universally Verifiable MPC and IRV Ballot Counting 307

Definition 6 (l-Symmetric Cascade Assumption [16]). Let {Gλ}λ be an
ensemble of cyclic groups with prime-orders {Zp(λ)}λ where ∃c > 0 ∀λ |p(λ)| <
λc. For fixed λ, let Zp = Zp(λ) and define the distribution of matrices over
Z
(l+1)×l
p :

SCl =:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−s 0 . . . 0 0
1 −s . . . 0 0
0 1 0 0

.
0 0 . . . 1 −s
0 0 . . . 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

: s ∈R Zp.

Then ∀ PPT adversaries A, the difference below is a negligible function of λ.

|Pr[1 ← A(G, g, gA, gAw) : g ∈R G, A ∈ SCl,w ∈R Z
l
p]−

Pr[1 ← A(G, g, gA, gu) : g ∈R G, A ∈ SCl,u ∈R Z
l+1
p]|.

Definition 7 (External l-Symmetric Cascade Assumption). Let D1, D2

and Dt be three ensembles of cyclic groups, such that for every λ ∈ N, if G1 =
G1λ ∈ D1, G2 = G2λ ∈ D2 and Gt = Gtλ ∈ Dt, there exists an efficiently
computable pairing e(·, ·), such that e : G1×G2 → Gt. The External l-Symmetric
Cascade assumption is that the l-Symmetric Cascade assumption holds in each
of the ensembles D1 and D2.

Proposition 1. The Symmetric External Diffie-Hellman Assumption [29] holds
with respect to group ensembles D1,D2, iff the External 1-Symmetric Cascade
Assumption holds with respect to D1,D2.

CF Encryption. Recently Catalano and Fiore [11] showed how to generalise
earlier work on 2DNF formulae [8] to transform virtually any linearly homomor-
phic cryptosystem into one permitting the computation of any degree-2 formula.
Multiplication transforms two input ciphertexts from a “level-1” space into an
encryption of the product in the “level-2” space. In this level-2 space, further
homomorphic additions remain possible, at the cost of ciphertext expansion at
each step. Still, it is not possible to perform any further multiplications.

For concreteness we will assume additive ElGamal encryption for the base
public key encryption scheme. Let (Keygen,Enc,Dec) be additive ElGamal on
message space (M,+). The Catalano-Fiore cryptosystem is as follows.

Keygen(1λ) Let (pk, sk) ← Keygen(1λ).
Set (pk, sk) ← (pk, sk).

Enc(pk,M) Choose b ∈R M.
Output C = (M − b,Enc(pk, b)).

Multiply(pk, C, C ′) Let C = (C0, C1) and C ′ = (C ′
0, C

′
1) be inputs. Let α =

Enc(pk, C0C
′
0) · (C1)C′

0 · (C ′
1)

C0 .
Output (α,C1, C

′
1).

308 K. Ramchen et al.

Dec(sk, C) Accept C = (α,C1, C
′
1) as input.

Let M ′ ← Dec(sk, α), b ← Dec(sk, C1) and
b′ ← Dec(sk, C ′

1) as input. Output M = M ′ + bb′.

Noninteractive Zero Knowledge Proofs. We use non-interactive zero
knowledge proofs of the following NP relations. Efficient constructions of these
can be found in Appendix D of the full version. Let Πrange = (Grange, Prange, Vrange)
be a non-interactive zero knowledge proof for the relation Rrange = {(c, y)|∃ a, r :
ci = Enc(y, a; r) ∧ a ∈ [0, 2λ − 1]}. Let Rbit ⊆ Rrange be the special case
λ = 1 and Πbit be the corresponding proof system. Let Πeq = (Geq, Peq, Veq)
be a non-interactive zero knowledge proof system for the relation Req =
{(c, c′, pk1, pk2)|∃m, r, r′ : c = Enc1(pk1,m; r) ∧ c′ = Enc2(pk2,m; r′)}. For
1 ≤ j ≤ N let σj be the common reference string belonging to Pj .

2 One-Time Multiplicatively Homomorphic
Cryptosystem

The basis of our universally verifiable MPC protocol is a homomorphic cryp-
tosystem that supports arbitrarily many additions, followed by one multiplica-
tion, followed by arbitrarily many additions.

Many such encryption schemes have been already proposed, starting with
the BGN pairing-based scheme [8]. However, threshold key generation for BGN
and similar schemes is challenging, as it would require the generation of RSA-
type moduli with unknown factorization, and computing in the resulting pairing
groups of composite order is also quite demanding. Unverifiable trust assump-
tions would undermine the main purpose of this work.

This motivates our construction of a pairing based homomorphic cryptosys-
tem on prime-order groups, for which a secure and robust key generation pro-
cedure can be derived. This has been explored by Freeman [17], who shows how
to build such schemes from projecting pairings and, more recently by Herold
et al. [21] who show how to build them from hidden matrix-rank based indistin-
guishability assumptions [16] on the source group of symmetric pairings.

As these symmetric pairings have also become extremely expensive from a
computational point of view due to the recent attacks on the discrete logarithm
in low characteristic, we aim for a more efficient scheme based an asymmet-
ric pairings, by extending their work to that setting. This requires performing
operations in parallel in the two source groups of the pairing, and designing a
tensor product-based projecting pairing as a replacement for their polynomial
product. The underlying indistinguishability problem induced by this pairing on
both source groups is a generalisation of the well-known XDH problem [29].

This section contains only the simplest instance of our encryption scheme,
based on the External 1-Symmetric Cascade Assumption. A general ver-
sion based on the External l-Symmetric Cascade Assumption is presented in
Appendix C of the full version. Here we construct a projecting bilinear group as
a special case with l = 1.

Universally Verifiable MPC and IRV Ballot Counting 309

Definition 8 (Projecting pairing construction). Take as input a prime-
order bilinear group (p,G1,G2,Gt, ê), elements g ∈ G1 and h ∈ G2, and secret
keys s and s′ in Zp.

Define G = G
2
1, H = G

2
2, Gt = G

4
t , and define the bilinear map e : G × H →

Gt as e((g0, g1), (h0, h1)) = (ê(g0, h0), ê(g0, h1), ê(g1, h0), ê(g1, h1)).
Define G1 (resp. H1) as the subgroup of G (resp. H) generated by g(−s,1) =

(g−s, g) (resp. h(−s′,1)).
Define the following projecting maps:

– π1 : G → G1 as π1(g1, g2) = g1g
s
2,

– π2 : H → G2 as π2(h1, h2) = h1h
s′
2 ,

– πt : Gt → Gt as πt(g1, g2, g3, g4) = g1g
s′
2 gs

3g
ss′
4 .

Output secret key sk = (π1, π2, πt) and public key pk = (G,G1,H,H1, Gt, e, g, h).

It is easy to see that G1 and H1 are the kernel of π1 and π2 and that these
operators essentially offer a decryption operation for ElGamal-like encryption
schemes that use s and s′ as secret keys.

Notation: v1 · v2 denotes elementwise multiplication; v2
n is elementwise expo-

nentiation.
Our encryption scheme is then defined as follows.

Setup(1λ): Let P be a prime-order bilinear group generator. Let M = Zp. Output
pp = (p,G1,G2,Gt, ê) ← P(1λ).

KeyGen(pp): Select s and s′ in Zp, set x = (−s, 1) and x′ = (−s′, 1). Choose g ∈R

G1, h ∈R G2, and define g = gx = (g−s, g) and h = hx′
= (h−s′

, h). Run the
Projecting Pairing construction on input pp, g, h, s, s′. Output the resulting
secret key sk = (π1, π2, πt) and the public key pk = (G,G1,H,H1, Gt, e, g, h).
Note that G1 and H1 are described by their generators g and h respectively.

Encsrc(pk,M): Choose a, b at random in Zp. Let g1 = (g)a = (g−as, ga) and
h1 = (h)b = (h−bs′

, hb). Let C0 = gM ·g1, C1 = hM ·h1. Output the ciphertext
(C0, C1) in G × H.

Enctgt(pk,M): Choose a, b at random in Zp. Let g1 = (g)a = (g−as, ga) and h1 =
(h)b = (h−bs′

, hb). Output the ciphertext C = e(g,h)M · e(g,h1) · e(g1,h) in
Gt.

Multiplysrc(pk, C, C ′): Take as input two ciphertexts C = (C0, C1) and C ′ =
(C ′

0, C
′
1). Choose g1 ∈R G1 and h1 ∈R H1, as in the above routine. Output

C = e(C0, C
′
1) · e(g,h1) · e(g1,h), an element of Gt.

Addsrc(pk, C, C ′): Take as input two ciphertexts C = (C0, C1) and C ′ = (C ′
0, C

′
1).

Choose g1 ∈R G1 and h1 ∈R H1. Let C ′′
0 = C0 ·C ′

0 ·g1. Let C ′′
1 = C1 ·C ′

1 ·h1.
Output C ′′ = (C ′′

0 , C ′′
1).

Addtgt(pk, C, C ′): Take as input two ciphertexts C and C ′ in Gt. Choose g1 ∈R

G1 and h1 ∈R H1.
Let C ′′ = C · C ′ · e(g,h1) · e(g1,h). Output C ′′.

Decsrc(sk, C): Take as input a ciphertext C = (C0, C1) in G × H. Compute
M ← logπ1(g)(π1(C0)) and M ′ ← logπ2(h)(π2(C1)). Output M if M = M ′ or
⊥ otherwise.

310 K. Ramchen et al.

Dectgt(sk, C): Take as input a ciphertext C in Gt. Output M ← logπt(e(g,h))

(πt(C)).

Lemma 1. Suppose that the External 1-Symmetric Cascade assumption, i.e.,
Symmetric External Diffie Hellman assumption, holds with respect to the groups
G1 and G2. Then the above cryptosystem is semantically secure.

Proof. See Appendix C of the full version.

3 Distributed Key Generation Protocol for One-Time
Multiplicative Homomorphic Cryptosystem

In this section we describe key generation for the one-time multiplicatively homo-
morphic cryptosystem of Sect. 2. Traditional protocols for threshold key genera-
tion [18,24] would be a natural choice, except that they fail for the Dectgt algo-
rithm, because the evaluation of πt requires the sharing of a quadratic secret ss′,
while the traditional protocols are defined for linear terms only.

To overcome this difficulty, our protocol requires each party in the qualified
set to split their individual secrets into chunks over a small interval. We construct
a blinded version, i.e, ss′ + b, in which the blinding factor b is distributed across
parties, in such a way that it can be cancelled out from shares submitted by a
qualified set. To perform the private construction of the blinded square, we use
the Catalano-Fiore transformation [11], which enables depth-one multiplications
on any linearly homomorphic cryptosystem. A problem arises with the natural
choice of additive El Gamal as the base scheme with which to bootstrap the
computation of the square. This cryptosystem mandates that only secrets from
a small space can be safely decrypted, while the space over which s and s′ are
derived is much larger. We solve this problem by splitting the individual secrets
of qualified players into chunks. Thus the private product of individual secrets
becomes equivalent to a private product of polynomials, crucially ones for which
the coefficient space is small and therefore amenable to the discrete log problem.

Another problem is how to construct the blinding factor so that no infor-
mation is leaked on ss′ in the construction of ss′ + b. We show that this is
possible via direct verifiable secret sharing of the chunks corresponding to b in
polynomial form. As long as the chunk-size used to derive b is sufficiently larger
than the chunk-size used to derive ss′, we may treat them as distinct secrets
to be jointly constructed by the qualified set. For this, and for constructing
the Catalano-Fiore encryption key, we may simply employ the key-generation
protocol of Pedersen [24] or the later protocol by Gennaro et al. [18].

Thus, after CF decryption, a blinding of the square of the secret is revealed
in the clear, while the blinding factor is a distributed secret. The blinding factor
can be cancelled out “on demand” by a threshold set of qualified players, leading
to a fully contained key generation protocol for our multiplicative cryptosystem.
Like the key generation protocols of [12,18,24], our protocol uses concurrent
verifiable secret sharing to build a secret key but assumes as input shares of a

Universally Verifiable MPC and IRV Ballot Counting 311

transport key under which the main key generation protocol runs. For the latter
purpose one may use any of those schemes.

Let [·]y denote a CF encryption under key y. Let g1, g2, gvss, gpke ∈ G1 and
h1, h2, hpke ∈ G2 be public. Let cA = 2λA and cB = 2λB be the chunk sizes of
individual secrets and individual blinding factors. One may set cA = p

1
4l · 2− λ

2

and cB = p
1
2l where l is chosen so that discrete logarithms are feasible in the

range [0, N · p
1
2l]. Appropriate sizes are given in Lemma 3, Appendix F of the

full version.
Recall the security properites of a distributed key generation protocol [18].

Correctness: All subsets of T shares provided by honest players define the same
unique secret key sk; all honest parties have the same value of the public key
pk, which is correct wrt sk; sk is uniformly distributed among a range {0, 1}λ,
where λ is the security parameter.

Resilience: There is a procedure to reconstruct the secret key sk out of T or
more shares, which is resilient in the presence of malicious parties.

Security: No information can be learned on sk except for what is implied by
the public key pk.

The full protocol is given in Figs. 2 and 3. The NIZKs are described in
Appendix D of the full version.

3.1 Protocol Description and Security Properties

Theorem 2. Protocol 1 is a distributed key generation protocol for the cryp-
tosystem of Sect. 3 and that is correct, resilient and secure against an active
adversary corrupting fewer than T statically chosen players.

Proof. Proofs of this theorem and the following two propositions are in
Appendix K of the full version.

Proposition 3. The values x =
∑

i∈Q si, x′ =
∑

i∈Q s′
i and b =

∑
i∈Q ti are

distributed secrets according to the threshold access structure.

Proposition 4. The values γ, x, x′ and b computed in Step 6 satisfy the relation
γ = xx′ + b.

4 Distributed Encryption Switching

In this section we present universally verifiable switching between target and
source encryption schemes using only the additive homomorphism on the cipher-
text spaces. The protocol is in Fig. 4. The idea is for each party to contribute
an equivalent encryption of a blinding factor under both cryptosystems together
with a zero knowledge proof of plaintext equality. In the source space the blind-
ing factors are homomorphically added to the input ciphertext and the result

312 K. Ramchen et al.

Fig. 2. Key gen protocol for one-time homomorphic cryptosystem.

decrypted under a threshold decryption scheme. From this plaintext, the blind-
ing factors under the target encryption scheme are homomorphically subtracted,
producing an encryption of the input message under the target cryptosystem.

To blind the ciphertexts without increasing the size of the messages (remem-
ber that it requires a DL extraction), we apply the blinding using an xor-sum.
Specifically, we assume an ideal functionality for bit-wise sum, FSUM with the
following behaviour:

– On input (setup, 1λ) initialises D ← ∅, t ← 0.
– On input (send, C), if t < N , sets D ← D ∪ {C}, t ← t + 1, if t = N , output

Cs which is an encryption of the bit-wise sum of all decrypted ciphertexts
contained in D.

The details of the protocol realising this functionality are in Appendix E of the
full version.

Universally Verifiable MPC and IRV Ballot Counting 313

Fig. 3. Key gen protocol for one-time homomorphic cryptosystem, Part 2.

If the ciphertexts are known to be small, the xor-sum can be avoided and we
can just homomorphically add a blinding factor, like we did for key generation.
This blinding factor can be large enough to offer statistical blinding (e.g., 40 bits
more than an upper-bound on the plaintext size) and small enough to support
efficient decryption, possibly using a baby-step giant-step algorithm. This comes
with the benefit of being a completely non interactive process, and works fine
for our voting application.

Our definition of universally verifiable secure computation is derived from [28]
and given in Appendix H of the full version. It formalises the idea that either
a threshold of honest participants produces a true answer, or the output fails
verification.

314 K. Ramchen et al.

Theorem 5. Protocol πSWITCH securely computes universally verifiable encryp-
tion switching in the FSUM-hybrid model against statically chosen adversaries if
πCOM is a secure non-malleable commitment scheme and Peq is a secure NIZK
proof system.

Proof. See Appendix K of the full version.

Given that the switch is the only operation of our protocols that requires
the use of secret information (i.e., decryption keys), and that this operation is
verifiable, we obtain a universally verifiable MPC protocol: addition and multi-
plication are publicly performed using our encryption scheme, and the verifiable
switch offers the possibility to repeat these operations as often as needed. In
Appendix H.2 of the full version, we use this approach to evaluate any function
class representable by an arithmetic circuit of polynomial size over M.

Fig. 4. Protocol πSWITCH.

5 Tallying Instant Runoff Voting (IRV)

In this section we describe how to use the primitives described earlier to construct
a universally verifiable protocol for tallying encrypted ballots according to the
IRV algorithm. Ballots are input to the tallying protocol in encrypted form. We
reveal only the tallies of each candidate after each round of the IRV algorithm.
The main challenge is to ensure that the privacy of ballots is maintained between
tallying rounds. We use distributed encryption switching on the cryptosystems
Πsrc = (Setup,KeyGen,Encsrc,Decsrc) and Πtgt = (Setup,KeyGen,Enctgt,Dectgt)

Universally Verifiable MPC and IRV Ballot Counting 315

of Sect. 2. Suppose that Πtgt → Πsrc is a distributed encryption switching proto-
col, where Encsrc is used to encrypt votes. Recall that in an IRV election, after
each phase of tallying, if a candidate is not elected, then the candidate with
fewest votes is eliminated. Each ballot should count towards its most-preferred
uneliminated candidate. We can use the one-time multiplicative homomorphism
to compute the necessary product computations on ballots for the first two
rounds of tallying. This takes ballots from the ciphertext space of Πsrc to the
ciphertext space of Πtgt, for which addition, but not multiplication, is possible.
To compute the product computations corresponding to further rounds of tally-
ing, the election trustees will come together and perform a distributed switch on
the ballots, will take them back to the ciphertext space of Πsrc, and for which
multiplications are again possible. In this way, for every round of tallying after
the first, distributed encryption switching can be used to ensure that the trustees
can compute the tally for each uneliminated candidate.

5.1 Protocol Details

Ballot Representation. Assume c candidates and M voters. An IRV ballot
allows expression of up to k preferences, where k ≤ c is a constant specific to
the election. For the purpose of homomorphic tallying, we will use a special
“preference-order” ballot. Let μn : {1, . . . , k} → {1, . . . , c} be an (injective)
function representing the preferences of voter n. The ballot used for tallying, Bn,
will be an encryption of the indicator vectors eμn(1), . . . , eμn(k). The indicator
vector eμn(j) is encrypted as a tuple of c ciphertexts, vj . Thus Bn is simply a
list of k encrypted c-tuples Fig. 5 (left) shows an example.

Updating of Ballots. This ballot representation permits a convenient method
for eliminating candidates, by simply striking out the corresponding column
in Bn’s matrix of preferences. Since each elimination is a function of publicly
verifiable totals, there is no ambiguity as to the representation of any ballot
at any stage of tallying. An important feature of this is that the sequence of
accesses made by Protocol 2 is derivable from the sequence of intermediate tallies
it produces until termination. Input obliviousness follows. Figure 5 (right) shows
a preference-order ballot after a candidate has been eliminated.

preference\ candidate 1 2 3 4 5 6 1 2 3 4 5 6
1 0 0 1 0 0 0 0 0 × 0 0 0
2 0 0 0 0 1 0 0 0 × 0 1 0
3 1 0 0 0 0 0 1 0 × 0 0 0

Fig. 5. Preference-order ballot for c = 6 and k = 3, in its initial form (left) and after
elimination of candidate 3 (right), when it should count in candidate 5’s tally.

316 K. Ramchen et al.

Tallying Votes. Let Bn = (v1, . . . ,vk) be a ballot, SC be the set of uneliminated
candidates, and ΣSC(vi) be the homomorphic sum of the entries of the ith pref-
erence vector over uneliminated candidates. Clearly ΣSC(vi) is an encryption
of 1 iff the ith preference is for an uneliminated candidate, and an encryption
of 0 otherwise. Let C �src C ′ = Encsrc(pk,MM ′) : M = Decsrc(sk, C) and M ′ =
Decsrc(sk, C ′). After l ≤ k rounds of tallying, the product

π
(l)
j := �src

1≤j′≤j (Enc∗
1(1) − ΣSC(vj′)) : j ≤ l

is an encryption of 0 iff at least one of the first j preferences is for an uneliminated
candidate, and an encryption of 1 otherwise. After l−1 rounds of tallying, there
is at least one j ≤ l such that the jth preference is for a continuing candidate.1

Therefore after l rounds of tallying, the homomorphic dot product
∑l

j=1 vj �src

πj is an encryption of the indicator vector describing which candidate this vote
should count for in round l. The protocol is shown in Fig. 14, Appendix J of the
full version.

Implementation. We implemented the single-authority version of our system
and tested it using elections data for the districts of Albury and Auburn for
the 2015 New South Wales state election.2 The implementation encrypted each
of the entries in the ballot matrix prior to commencing the count, to simulate
the receipt of encrypted ballots. Ballots were represented as per Fig. 5. The
experiments were performed on an Intel i7-6770HQ with 4 cores (8 threads) and
32 GB RAM. The results are shown in Table 1.

We also ran experiments to time the main primitives, i.e. switching and
multiplication. We ran the multiply and switch functions 1000 times and took the
mean time. Multiplication in the source group averages 0.0671 s, while switching
averages 0.0971 s. The code is available at https://github.com/vteague/PPAT/
tree/chris-dev.

Table 1. Results for Sample IRV Counts. Timings in seconds.

District

Albury (5 candidates) Auburn (6 candidates)

No. ballots 46347 43738

Ballot encryption time 3069 s 3936 s

No. elimination rounds 1 4

Count time 6979 s 54637 s

1 For example, the use of a “stop” candidate by [20] remedies the case that a ballot is
exhausted prematurely.

2 From http://pastvtr.elections.nsw.gov.au/SGE2015/la-home.htm.

https://github.com/vteague/PPAT/tree/chris-dev
https://github.com/vteague/PPAT/tree/chris-dev
http://pastvtr.elections.nsw.gov.au/SGE2015/la-home.htm

Universally Verifiable MPC and IRV Ballot Counting 317

6 Conclusion

We have devised a very simple universally verifiable MPC protocol based on
combining an efficient distributed key generation, a somewhat homomorphic
cryptosystem in which one multiplication comes almost for free, and a switching
protocol that allows a return to the cryptosystem from which more multiplica-
tions can be performed.

Acknowledgement. Olivier Pereira is grateful to the Belgian Fund for Scientific
Research (F.R.S.- FNRS) for its financial support provided through the SeVoTe project,
to the European Union (EU) and the Walloon Region through the FEDER project
USERMedia (convention number 501907-379156), and to the Melbourne School of
Engineering for its fellowship.

A Appendix

Appendices are in the full version of the paper on the IACR eprint archive at
https://eprint.iacr.org/2018/246.

References

1. Adida, B., De Marneffe, O., Pereira, O., Quisquater, J.J.: Electing a university
president using open-audit voting: analysis of real-world use of helios. In: Pro-
ceedings of the 2009 Conference on Electronic Voting Technology/Workshop on
Trustworthy Elections, EVT/WOTE 2009, p. 10. USENIX Association, Berkeley
(2009). http://dl.acm.org/citation.cfm?id=1855491.1855501

2. Attrapadung, N., Hanaoka, G., Mitsunari, S., Sakai, Y., Shimizu, K., Teruya, T.:
Efficient two-level homomorphic encryption in prime-order bilinear groups and a
fast implementation in webassembly. In: Proceedings of the 2018 on Asia Confer-
ence on Computer and Communications Security, pp. 685–697. ACM (2018)

3. Baum, C., Damg̊ard, I., Orlandi, C.: Publicly auditable secure multi-party compu-
tation. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 175–
196. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7 11. Also
Cryptology ePrint Archive, Report 2014/075: http://eprint.iacr.org/2014/075

4. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis,
Israel Institute of Technology (1996)

5. Benaloh, J., et al.: Star-vote: a secure, transparent, auditable, and reliable voting
system. CoRR abs/1211.1904 (2012). http://arxiv.org/abs/1211.1904

6. Benaloh, J., Moran, T., Naish, L., Ramchen, K., Teague, V.: Shuffle-sum: coercion-
resistant verifiable tallying for STV voting. Trans. Info. For. Sec. 4(4), 685–698
(2009). https://doi.org/10.1109/TIFS.2009.2033757

7. Bernhard, D., Cortier, V., Pereira, O., Smyth, B., Warinschi, B.: Adapting helios
for provable ballot privacy. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS,
vol. 6879, pp. 335–354. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23822-2 19

8. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30576-7 18

https://eprint.iacr.org/2018/246
http://dl.acm.org/citation.cfm?id=1855491.1855501
https://doi.org/10.1007/978-3-319-10879-7_11
http://eprint.iacr.org/2014/075
http://arxiv.org/abs/1211.1904
https://doi.org/10.1109/TIFS.2009.2033757
https://doi.org/10.1007/978-3-642-23822-2_19
https://doi.org/10.1007/978-3-642-23822-2_19
https://doi.org/10.1007/978-3-540-30576-7_18

318 K. Ramchen et al.

9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theory 6(3), 13:1–13:36
(2014)

10. Castagnos, G., Imbert, L., Laguillaumie, F.: Encryption switching protocols revis-
ited: switching modulo p. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 255–287. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 9

11. Catalano, D., Fiore, D.: Using linearly-homomorphic encryption to evaluate degree-
2 functions on encrypted data. In: Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2015, pp. 1518–1529. ACM,
New York (2015). https://doi.org/10.1145/2810103.2813624. http://doi.acm.org/
10.1145/2810103.2813624

12. Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Distributed elgamal à la
pedersen: application to helios. In: Proceedings of the 12th ACM Workshop on
Workshop on Privacy in the Electronic Society, WPES 2013, pp. 131–142. ACM,
New York (2013). https://doi.org/10.1145/2517840.2517852. http://doi.acm.org/
10.1145/2517840.2517852

13. Couteau, G., Peters, T., Pointcheval, D.: Encryption switching protocols. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 308–338.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4 12

14. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 103–118. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 9

15. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

16. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1 8

17. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 3

18. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. J. Cryptol. 20(1), 51–83 (2007). https://
doi.org/10.1007/s00145-006-0347-3

19. Goh, E.-J., Golle, P.: Event driven private counters. In: Patrick, A.S., Yung, M.
(eds.) FC 2005. LNCS, vol. 3570, pp. 313–327. Springer, Heidelberg (2005). https://
doi.org/10.1007/11507840 27

20. Heather, J.: Implementing STV securely in prêt à voter. In: Proceedings of the
20th IEEE Computer Security Foundations Symposium, CSF 2007, pp. 157–169.
IEEE Computer Society, Washington (2007). https://doi.org/10.1109/CSF.2007.
22

21. Herold, G., Hesse, J., Hofheinz, D., Ràfols, C., Rupp, A.: Polynomial spaces: a
new framework for composite-to-prime-order transformations. Cryptology ePrint
Archive, Report 2014/445 (2014). http://eprint.iacr.org/2014/445

https://doi.org/10.1007/978-3-319-63688-7_9
https://doi.org/10.1007/978-3-319-63688-7_9
https://doi.org/10.1145/2810103.2813624
http://doi.acm.org/10.1145/2810103.2813624
http://doi.acm.org/10.1145/2810103.2813624
https://doi.org/10.1145/2517840.2517852
http://doi.acm.org/10.1145/2517840.2517852
http://doi.acm.org/10.1145/2517840.2517852
https://doi.org/10.1007/978-3-662-53018-4_12
https://doi.org/10.1007/3-540-69053-0_9
https://doi.org/10.1007/3-540-69053-0_9
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-13190-5_3
https://doi.org/10.1007/978-3-642-13190-5_3
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/11507840_27
https://doi.org/10.1007/11507840_27
https://doi.org/10.1109/CSF.2007.22
https://doi.org/10.1109/CSF.2007.22
http://eprint.iacr.org/2014/445

Universally Verifiable MPC and IRV Ballot Counting 319

22. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access
structure. Electron. Commun. Jpn (Part III: Fundam. Electron. Sci.) 72(9), 56–64
(1989). https://doi.org/10.1002/ecjc.4430720906. https://onlinelibrary.wiley.com/
doi/abs/10.1002/ecjc.4430720906

23. Park, C., Itoh, K., Kurosawa, K.: Efficient anonymous channel and all/nothing
election scheme. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
248–259. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7 21.
http://dl.acm.org/citation.cfm?id=188307.188351

24. Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6 47. http://dl.acm.org/
citation.cfm?id=1754868.1754929

25. Ryan, P.Y.A.: Prêt à voter with paillier encryption. Math. Comput. Model. 48(9–
10), 1646–1662 (2008). https://doi.org/10.1016/j.mcm.2008.05.015

26. Ryan, P.Y.A.: A variant of the chaum voter-verifiable scheme. In: Proceedings
of the 2005 Workshop on Issues in the Theory of Security, WITS 2005, pp. 81–
88. ACM, New York (2005). https://doi.org/10.1145/1045405.1045414. http://doi.
acm.org/10.1145/1045405.1045414

27. Ryan, P.Y.A., Teague, V.: Ballot permutations in prêt à voter. In: Proceedings of
the 2009 Conference on Electronic Voting Technology/Workshop on Trustworthy
Elections, EVT/WOTE 2009, p. 13. USENIX Association, Berkeley (2009). http://
dl.acm.org/citation.cfm?id=1855491.1855504

28. Schoenmakers, B., Veeningen, M.: Universally verifiable multiparty computa-
tion from threshold homomorphic cryptosystems. In: Malkin, T., Kolesnikov,
V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092,
pp. 3–22. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28166-7 1.
http://eprint.iacr.org/2015/058

29. Scott, M.: Authenticated id-based key exchange and remote log-in with simple
token and pin number. Cryptology ePrint Archive, Report 2002/164 (2002). http://
eprint.iacr.org/2002/164

30. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, effi-
cient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19379-8 4. http://dl.acm.org/citation.
cfm?id=1964658.1964664

https://doi.org/10.1002/ecjc.4430720906
https://onlinelibrary.wiley.com/doi/abs/10.1002/ecjc.4430720906
https://onlinelibrary.wiley.com/doi/abs/10.1002/ecjc.4430720906
https://doi.org/10.1007/3-540-48285-7_21
http://dl.acm.org/citation.cfm?id=188307.188351
https://doi.org/10.1007/3-540-46416-6_47
http://dl.acm.org/citation.cfm?id=1754868.1754929
http://dl.acm.org/citation.cfm?id=1754868.1754929
https://doi.org/10.1016/j.mcm.2008.05.015
https://doi.org/10.1145/1045405.1045414
http://doi.acm.org/10.1145/1045405.1045414
http://doi.acm.org/10.1145/1045405.1045414
http://dl.acm.org/citation.cfm?id=1855491.1855504
http://dl.acm.org/citation.cfm?id=1855491.1855504
https://doi.org/10.1007/978-3-319-28166-7_1
http://eprint.iacr.org/2015/058
http://eprint.iacr.org/2002/164
http://eprint.iacr.org/2002/164
https://doi.org/10.1007/978-3-642-19379-8_4
http://dl.acm.org/citation.cfm?id=1964658.1964664
http://dl.acm.org/citation.cfm?id=1964658.1964664

	Universally Verifiable MPC and IRV Ballot Counting
	1 Introduction
	1.1 Summary of Our Contribution
	1.2 Comparison with Related Work on MPC
	1.3 Counting IRV Ballots
	1.4 Structure of This Paper
	1.5 Background

	2 One-Time Multiplicatively Homomorphic Cryptosystem
	3 Distributed Key Generation Protocol for One-Time Multiplicative Homomorphic Cryptosystem
	3.1 Protocol Description and Security Properties

	4 Distributed Encryption Switching
	5 Tallying Instant Runoff Voting (IRV)
	5.1 Protocol Details

	6 Conclusion
	A Appendix
	References

