
Bernd Finkbeiner
Leonardo Mariani (Eds.)

19th International Conference, RV 2019
Porto, Portugal, October 8–11, 2019
Proceedings

Runtime VerificationLN
CS

 1
17

57

Fo
rm

al
 M

et
ho

ds

 123

Fo
rm

al
 M

et
ho

ds

Lecture Notes in Computer Science 11757

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison, UK Takeo Kanade, USA
Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA

Formal Methods
Subline of Lectures Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK

Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany

Annabelle McIver, Macquarie University, Sydney, NSW, Australia

Peter Müller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands

Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Bernd Finkbeiner • Leonardo Mariani (Eds.)

Runtime Verification
19th International Conference, RV 2019
Porto, Portugal, October 8–11, 2019
Proceedings

123

Editors
Bernd Finkbeiner
Universität des Saarlandes
Saarbrücken, Germany

Leonardo Mariani
University of Milano Bicocca
Milan, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-32078-2 ISBN 978-3-030-32079-9 (eBook)
https://doi.org/10.1007/978-3-030-32079-9

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2019
The chapters 10, 16 and 23 are Open Access. These chapters are licensed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). For further
details see license information in the chapters.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-4280-8441
https://orcid.org/0000-0001-9527-7042
https://doi.org/10.1007/978-3-030-32079-9
http://creativecommons.org/licenses/by/4.0/

Preface

This volume contains the proceedings of the 19th International Conference on Runtime
Verification (RV 2019), which was held during October 8–11, 2019, in Porto, Portugal,
as part of the Third World Congress on Formal Methods (FM 2019).

The RV series consists of annual meetings that gather together scientists from both
academia and industry interested in investigating novel lightweight formal methods to
monitor, analyze, and guide the runtime behavior of software and hardware systems.
Runtime verification techniques are crucial for system correctness, reliability, and
robustness; they provide an additional level of rigor and effectiveness compared with
conventional testing, and are generally more practical than exhaustive formal
verification. Runtime verification can be used prior to deployment, for testing,
verification, and debugging purposes, and after deployment for ensuring reliability,
safety, and security and for providing fault containment and recovery as well as online
system repair.

RV started in 2001 as an annual workshop and turned into a conference in 2010.
The workshops were organized as satellite events of an established forum, including
CAV and ETAPS. The proceedings of RV from 2001 to 2005 were published in the
Electronic Notes in Theoretical Computer Science. Since 2006, the RV proceedings
have been published in Springer’s Lecture Notes in Computer Science. The previous
RV conferences took place in Istanbul, Turkey (2012); Rennes, France (2013);
Toronto, Canada (2014); Vienna, Austria (2015); Madrid, Spain (2016); Seattle, USA
(2017); and Limassol, Cyprus (2018).

There were 38 submissions, 31 as regular contributions, two as short contributions,
two as tool demonstration papers, and three as benchmark papers. Each benchmark
paper was reviewed by three Program Committee members, submissions in the other
categories were reviewed by four members. The committee decided to accept 19
papers, 14 regular papers, two short papers, two tool demonstration papers, and one
benchmark paper. The evaluation and selection process involved thorough discussions
among the members of the Program Committee and external reviewers through the
EasyChair conference manager, before reaching a consensus on the final decisions. To
complement the contributed papers, we included in the program three invited speakers
covering both industry and academia:

– David Basin, ETH Zurich, Switzerland
– Akshay Rajhans, Mathworks, USA
– Sanjit A. Seshia, University of California, Berkeley, USA

The conference included four tutorials that took place on the first day. The following
tutorials were selected to cover a breadth of topics relevant to RV:

– Christopher Hahn presented a tutorial on “Algorithms for Monitoring
Hyperproperties”

– Georgios Fainekos, Bardh Hoxha, and Sriram Sankaranarayanan presented a
tutorial on “Robustness of Specifications and its Applications to Falsification,
Parameter Mining, and Runtime Monitoring with S-TaLiRo”

– Hazem Torfah presented a tutorial on “Stream-based Monitors for Real-time
Properties”

– Yliès Falcone presented a tutorial “On the Runtime Enforcement of Timed
Properties”

During a special award session at the conference, the 2019 RV Test of Time Award
was given to Moonzoo Kim, Sampath Kannan, Insup Lee, and Oleg Sokolsky for their
RV 2001 paper “Java-MaC: A Run-time Assurance Tool for Java Programs.” The
awardees gave a retrospective talk and an associated invited paper is included in the
proceedings.

We would like to thank the authors of all submitted papers, the members of the
Steering Committee, the Program Committee, and the external reviewers for their
exhaustive task of reviewing and evaluating all submitted papers. We are grateful to
José Nuno Oliveira, the general chair of FM 2019, and the entire Organizing
Commmittee for their outstanding support. We highly appreciate the EasyChair system
for the management of submissions. We acknowledge the great support from our
sponsors, Runtime Verification Inc. and CPEC – TRR 248 (see perspicuous-
computing.science).

August 2019 Bernd Finkbeiner
Leonardo Mariani

vi Preface

Organization

Program Committee

Wolfgang Ahrendt Chalmers University of Technology, Sweden
Howard Barringer The University of Manchester, UK
Ezio Bartocci Vienna University of Technology, Austria
Andreas Bauer KUKA, Germany
Eric Bodden Paderborn University and Fraunhofer IEM, Germany
Borzoo Bonakdarpour Iowa State University, USA
Christian Colombo University of Malta, Malta
Ylies Falcone University of Grenoble Alpes, France
Lu Feng University of Virginia, USA
Bernd Finkbeiner Saarland University, Germany
Adrian Francalanza University of Malta, Malta
Luca Franceschini University of Genoa, Italy
Radu Grosu Stony Brook University, USA
Sylvain Hallé Université du Québec à Chicoutimi, Canada
Klaus Havelund Jet Propulsion Laboratory, USA
Catalin Hritcu Inria, France
Felix Klaedtke NEC Labs, Switzerland
Axel Legay Université Catholique de Louvain, Belgium
David Lo Singapore Management University, Singapore
Leonardo Mariani University of Milano Bicocca, Italy
Viviana Mascardi University of Genoa, Italy
Dejan Nickovic Austrian Institute of Technology, Austria
Ayoub Nouri Verimag, France
Gordon Pace University of Malta, Malta
Doron Peled Bar-Ilan University, Israel
Ka I. Pun Western Norway University of Applied Sciences,

Norway
Jorge A. Pérez University of Groningen, The Netherlands
Giles Reger The University of Manchester, UK
Grigore Rosu University of Illinois at Urbana-Champaign, USA
Kristin Yvonne Rozier Iowa State University, USA
Cesar Sanchez IMDEA Software Institute, Spain
Gerardo Schneider Chalmers—University of Gothenburg, Sweden
Nastaran Shafiei University of York, UK
Julien Signoles CEA LIST, France
Scott Smolka Stony Brook University, USA
Oleg Sokolsky University of Pennsylvania, USA
Bernhard Steffen University of Dortmund, Germany

Scott Stoller Stony Brook University, USA
Volker Stolz Høgskulen på Vestlandet, Norway
Neil Walkinshaw The University of Sheffield, UK
Chao Wang University of Southern California, USA
Xiangyu Zhang Purdue University, USA

viii Organization

Contents

A Retrospective Look at the Monitoring and Checking (MaC) Framework . . . 1
Sampath Kannan, Moonzoo Kim, Insup Lee, Oleg Sokolsky,
and Mahesh Viswanathan

Introspective Environment Modeling . 15
Sanjit A. Seshia

Robustness of Specifications and Its Applications to Falsification,
Parameter Mining, and Runtime Monitoring with S-TaLiRo 27

Georgios Fainekos, Bardh Hoxha, and Sriram Sankaranarayanan

On the Runtime Enforcement of Timed Properties. 48
Yliès Falcone and Srinivas Pinisetty

Algorithms for Monitoring Hyperproperties . 70
Christopher Hahn

Stream-Based Monitors for Real-Time Properties . 91
Hazem Torfah

Accelerated Learning of Predictive Runtime Monitors for Rare Failure 111
Reza Babaee, Vijay Ganesh, and Sean Sedwards

Neural Predictive Monitoring . 129
Luca Bortolussi, Francesca Cairoli, Nicola Paoletti, Scott A. Smolka,
and Scott D. Stoller

Comparing Controlled System Synthesis and Suppression Enforcement 148
Luca Aceto, Ian Cassar, Adrian Francalanza, and Anna Ingólfsdóttir

Assumption-Based Runtime Verification with Partial
Observability and Resets . 165

Alessandro Cimatti, Chun Tian, and Stefano Tonetta

Decentralized Stream Runtime Verification. 185
Luis Miguel Danielsson and César Sánchez

Explaining Violations of Properties in Control-Flow Temporal Logic. 202
Joshua Heneage Dawes and Giles Reger

FastCFI: Real-Time Control Flow Integrity Using FPGA Without
Code Instrumentation. 221

Lang Feng, Jeff Huang, Jiang Hu, and Abhijith Reddy

An Extension of LTL with Rules and Its Application
to Runtime Verification . 239

Klaus Havelund and Doron Peled

Monitorability over Unreliable Channels . 256
Sean Kauffman, Klaus Havelund, and Sebastian Fischmeister

Runtime Verification for Timed Event Streams with Partial Information. 273
Martin Leucker, César Sánchez, Torben Scheffel, Malte Schmitz,
and Daniel Thoma

Shape Expressions for Specifying and Extracting Signal Features 292
Dejan Ničković, Xin Qin, Thomas Ferrère, Cristinel Mateis,
and Jyotirmoy Deshmukh

A Formally Verified Monitor for Metric First-Order Temporal Logic. 310
Joshua Schneider, David Basin, Srđan Krstić, and Dmitriy Traytel

Efficient Detection and Quantification of Timing Leaks
with Neural Networks . 329

Saeid Tizpaz-Niari, Pavol Černý, Sriram Sankaranarayanan,
and Ashutosh Trivedi

Predictive Runtime Monitoring for Linear Stochastic Systems
and Applications to Geofence Enforcement for UAVs 349

Hansol Yoon, Yi Chou, Xin Chen, Eric Frew,
and Sriram Sankaranarayanan

Reactive Control Meets Runtime Verification: A Case Study
of Navigation . 368

Dogan Ulus and Calin Belta

Overhead-Aware Deployment of Runtime Monitors. 375
Teng Zhang, Greg Eakman, Insup Lee, and Oleg Sokolsky

NuRV: A NUXMV Extension for Runtime Verification 382
Alessandro Cimatti, Chun Tian, and Stefano Tonetta

AllenRV: An Extensible Monitor for Multiple Complex Specifications
with High Reactivity . 393

Nic Volanschi and Bernard Serpette

Timescales: A Benchmark Generator for MTL Monitoring Tools 402
Dogan Ulus

Author Index . 413

x Contents

A Retrospective Look at the Monitoring
and Checking (MaC) Framework

Sampath Kannan1, Moonzoo Kim2, Insup Lee1, Oleg Sokolsky1(B),
and Mahesh Viswanathan3

1 University of Pennsylvania, Philadelphia, USA
sokolsky@cis.upenn.edu

2 KAIST, Daejeon, Republic of Korea
3 University of Illinois, Urbana-Champaign, USA

Abstract. The Monitoring and Checking (MaC) project gave rise to
a framework for runtime monitoring with respect to formally specified
properties, which later came to be known as runtime verification. The
project also built a pioneering runtime verification tool, Java-MaC, that
was an instantiation of the approach to check properties of Java pro-
grams. In this retrospective, we discuss decisions made in the design
of the framework and summarize lessons learned in the course of the
project.

1 Introduction

Motivation. The idea for the MaC project came from the realization that static
verification of safety and security properties was difficult and run-time moni-
toring, which seemed more feasible and practical, lacked a formal framework.
Program checking [5] was a relatively new and rigorous framework at that time
for run-time verification of programs computing (terminating) functions compu-
tations. Our goal was to take ideas from program checking to create a formal
run-time monitoring framework that would apply universally, not just to func-
tion computations, but to arbitrary programs including reactive programs that
have an on-going interaction with an environment.

As a first instantiation of this goal we decided to look into run-time ver-
ification of sequential programs (e.g., C and single-threaded Java). We were
presented immediately with several challenges. Because program checking was
defined only for programs computing (terminating) functions, it could treat the
program being checked as a black box and check only its input-output behavior.
In contrast, we were interested in checking properties over program behavior
during execution. Since we were monitoring and checking stateful programs, our
monitors needed to keep track of the values of variables in the programs being
checked.

Next, in order to check the correctness of a program, one needs to have
a notion of correctness defined independently of the program. Program check-
ing had been successfully used largely for functions whose correct behavior was
c© Springer Nature Switzerland AG 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 1–14, 2019.
https://doi.org/10.1007/978-3-030-32079-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-32079-9_1

2 S. Kannan et al.

mathematically defined. Examples included functions in linear algebra such as
matrix rank or matrix product, graph-theoretic functions such as graph isomor-
phism, and optimization problems such as linear programming. Not only did
these functions have rigorous mathematical definitions of correctness, but they
also admitted ‘local’ self-consistency conditions. For example if two graphs are
not isomorphic, an isomorphic copy of one of them is not isomorphic to the other.
To design a program checker, one proved the sufficiency of such local consistency
checks for proving the correctness of these functions and then implemented a
checker using local self-consistency checks.

Problems. In checking arbitrary programs, however, we would not have a sim-
ple exogenously-defined, mathematical notion of correctness. How then were we
going to impose what correct behavior meant? For this we turned to formal
methods, and specifically model checking, where such notions of correctness were
defined using temporal logics such as CTL and LTL, and automata.

What makes a correctness specification in one of these formalisms truly dif-
ferent from a direct and step-by-step correctness specification of a program? For
if the latter were the way correctness was specified, then the specification would
be very specific to a particular implementation and programming language used
to write the program. The key distinction between the specification and the pro-
gram was the level of abstraction or detail. Correctness properties in temporal
logic are generally specified in terms of permissible sequences of occurrences for
certain high-level or abstract events, while the program’s behavior depends on
low-level details such as the values of variables and the changes to these values
in the course of execution of the program.

Solutions. Regarding how we relate the detailed behavior of the program to the
high-level events in the specification, which was a major design challenge, one
of the important design decisions was to let the designer of the program specify
these relationships, rather than seeking to automate the process of discovering
them. Thus the programmer, who would be intimately familiar with the details of
the program would identify the variables whose values and value changes would
trigger high-level events. The programmer would also provide a logical specifica-
tion of when a high-level event occurs. The MaC framework would provide the
language for expressing these logical connections.

We had to decide how events would be expressed in terms of values of vari-
ables. We realized that, for example, an event could be triggered at the instant at
which some variable changed its value, but only if it happened during the dura-
tion that another variable had a particular value. Thus, we needed primitive
variables both for describing instantaneous changes and durations. The specific
logic we used to combine these variables to describe events will be described in
the sequel.

There were many other design decisions, some in setting up the conceptual
framework, and some that arose when we implemented a system based on this
framework. Again, we describe some of these choices in the sequel.

A Retrospective Look at the Monitoring and Checking (MaC) Framework 3

In the rest of this paper we describe the timeline of the MaC project, some
of the detailed objectives of the project, and design decisions we made, and the
impact the project has had.

Timeline of the MaC Project. The Monitoring and Checking (MaC) project
started as part of ONR MURI funded during 1997–2002. Goals of the MURI
project were to make advances in software verification with specific applications
to cyber-security. One of the initial ideas was that the well-known program-
checking hypothesis [5], namely that it is often more efficient to check the cor-
rectness of a result than actually generating the result, can be applied to program
correctness verification. First publications of describing the framework architec-
ture and design trade-offs appeared in 1998 [12] and 1999 [15,17] and the initial
version of the tool, Java-MaC, implementing the MaC framework for monitoring
of Java programs, has been presented at the first workshop on Runtime Veri-
fication in 2001 [13]. Since then, several extensions to the monitoring language
and tools have been incorporated, while keeping the architecture intact. As the
most significant extensions, we mention the steering capability [14], parametric
monitoring [24], and support for monitoring of timing and probabilistic prop-
erties [21]. The Java-MaC tool has been applied to a variety of case studies,
including an artificial physics application [9], network protocol validation [4],
and a control system application that provided a simplex architecture-like effect
using steering [14]. A variant of the tool to generate monitors in C has been
applied to monitor a robotic control system [25].

Objectives of the MaC Project. The MaC project has several distinct objectives
from its inception:

– Understand requirements for formal specification to represent monitorable
properties and choose or develop a suitable language;

– Understand requirements for a tool infrastructure for monitoring and check-
ing of software systems with respect to formal properties and develop and
architecture to help satisfy these requirements; and

– Develop a prototype tool for software monitoring and checking.

All of these objectives were achieved in the course of the project. In the rest
of the paper we will discuss design decisions that were made in the process.

Overview of the MaC Architecture. A visual representation of the architecture
for the MaC framework is shown in Fig. 1. The architecture has two tiers. The top
tier represents design-time activity. The user specifies properties using the MaC
languages. There is a clear separation between primitive events and conditions,
defined directly in terms of observations on the system, and derived events and
conditions, defined hierarchically in terms of simpler objects. This separation
is also maintained at run time in the lower tier of the architecture diagram,
where a component called monitor or event recognizer observes the execution
and detects occurrence of primitive events and changes in the values of primitive
conditions. The checker then operates on the stream of primitive events and

4 S. Kannan et al.

determines whether the property is satisfied. The definitions of primitive events
serve an additional purpose: they capture, which observations on the system
are important for monitoring. This information is then used to instrument the
system to provide required observations. Finally, the checker can raise alarms to
notify system operators or provide feedback to the system through additional
instrumentation or via an existing recovery interface.

Fig. 1. Architecture of the MaC framework

2 MaC Design Highlights

In this sections, we take a closer look at components of the MaC framework
and key design considerations for them. We consider property specification in
the design-time layer of the framework, architecture of the run-time layer, and
feedback capabilities.

2.1 Specification Languages and Their Semantics

Two-Tiered Specification. As mentioned above, the MaC framework includes
two specification languages: Primitive Event Definition Language (PEDL) and
Meta-Event Definition Language (MEDL). This approach allows for separation
of concerns: behavior specification is expressed in MEDL, in terms of abstract
notions such as events and conditions. Separately, primitive events and condi-
tions are defined in PEDL in terms of program entities such as function calls
and variable assignments. The PEDL language is by necessity specific to the
system being monitored, since event definitions need to refer to system entities.

A Retrospective Look at the Monitoring and Checking (MaC) Framework 5

For example, in Java-MaC, an instantiation of the MaC framework for Java
programs, PEDL expressions operate on method calls, updates to fields of an
object, or local variables within a method. Objects are referenced using the “dot”
notation familiar to Java programmers. By contrast, MEDL is intended to be
system-independent.

A distinctive feature of MEDL is that it allows users to intermix two spec-
ification styles: a logical specification based on a past-time temporal logic and
operational specification based on guarded commands over explicitly defined
state variables. The interplay between the two specification styles is further dis-
cussed below.

Continuous-Time Semantics. MEDL specifications express properties of an exe-
cutions at all time instances, not just instances where observations are available.
This is in contrast to most RV approaches, where semantics of a specification
are given in terms of a trace, i.e., samples of an execution captured by available
observations. The consequence of defining semantics in terms of a given trace is
that the question of whether we check the right trace is left out of the problem.
To match MEDL specifications to program execution, the set of primitive events
in a MEDL specification imposes requirements on what observations need to
be extracted, and a PEDL specification describes how the extraction should be
performed. We can easily check that every primitive event has a definition. If
the right instrumentation technology is available, the PEDL specification also
becomes the basis for automatic instrumentation.

Events and Conditions. The core of the MEDL language is the logic of events
and conditions. Events and conditions are two distinct semantic entities in the
logic. Events are instantaneous and signal changes in the state of the system.
Typical examples of events are function calls and returns and assignment of
values to variables. By contrast, conditions can be thought as predicates over
the state of the system. Conditions evaluate to Boolean values and persist for a
certain interval of time. Events and conditions as software specification devices
have been around since the work of Parnas [1] and implemented in tools such as
SCR∗ [11].

Most logics defined in the literature avoid making this distinction (e.g., dura-
tion calculus [30]) or concentrate on one or the other notion. State-based logics
capture system properties in terms of states, while action-based logics concen-
trate on state changes. It is well-known that one specification style can be trans-
formed into the other (see, e.g., [7]). In a monitoring setting, where properties
are checked over a discrete trace, in which states are comprised of observations,
it is indeed tempting to treat events as predicates. Such a predicate would be
true in states where the event is observed and false everywhere else. Such a view
would allow us to treat events and conditions uniformly. Nonetheless, we chose
to treat events and conditions as semantically different kinds in the logic for the
two reasons discussed below.

While, theoretically, it is sufficient to have either state-based or logic-based
approach, they result in different specification styles. We believed that different

6 S. Kannan et al.

kinds of system properties are more naturally specified using different styles.
Moreover, it may be helpful to combine state-based and event-based reasoning,
resulting in more compact and understandable specifications.

Second, we wanted to make claims about satisfaction of properties not just
at instances when observations are available, but at all time instances. When
we try to do this, we notice that conditions and events require very different
reasoning. If, at a certain time point, there is no observation for an event, we
conclude that the event is not occurring at that time point. By contrast, if there
is no observation to evaluate the predicate of the condition, we conclude that
the value of the predicate has not changed since the last time the predicate has
been evaluated. If we tried to use the uniform representation of both events and
conditions as predicates, as suggested above, we would not be able to properly
choose the reasoning rule. To avoid this problem, we define separate semantic
definitions for events and conditions.

The intuition presented above, treating conditions as abstractions of state
and events as abstractions of state changes, allows us to define relationships
between events and conditions. Each condition c, primitive or composite, gives
rise to two events, start(c) and end(c). These events occur when c changes its
value: start(c) occurs at the instance when the predicate defining c becomes
true and end(c) occurs when the predicate defining c becomes false. Conversely,
given two distinct event definitions e1 and e2, we can define the condition [e1, e2),
which is true at the current time if there has been an occurrence of e1 in the
past, but no occurrence of e2 between that occurrence and the current moment.
We refer to [e1, e2) as the interval operator and note that it is similar to the
since operator in past-time LTL.

The interval operator [e1, e2) is the only temporal operator of the core logic
of MEDL. From the discussion above, it is clear that it is a past-time temporal
operator, with semantics given in terms of the prefix of the execution trace
seen so far. This design decision was motivated by two considerations. First, we
focused on detecting violations of safety properties and it is well known that if
a safety property is violated, a violation is always exhibited by a finite prefix
of an execution, so a past-time logic was deemed an appropriate specification
approach. Second, a past-time approach allows us to avoid reasoning about future
extensions of the current prefix and dealing with uncertainty about the future.
In turn, this lack of uncertainty leads to more efficient checking algorithms.
Processing a single observation takes time linear in the size of the formula and is
independent of the length of the observed trace, which matches the complexity of
checking past-time LTL [10]. The amount of space needed to represent the state
of the monitor is also linear in the size of the formula and can be determined
statically while generating the monitor.

Three-Valued Logic. Both specification languages of MaC framework are based
on a three-valued logic to express undefined states of a target program in a
compact manner. For example, a member variable vj of an object oi may not be
visible until oi is instantiated. In such situation, an expression ek of behavioral
specification like oi . vj == 10 is undefined. This expression becomes defined only

A Retrospective Look at the Monitoring and Checking (MaC) Framework 7

after oi is instantiated. Similarly, this expression becomes undefined again if oi
is destructed. Thus, an expression of behavioral specification may change its
definedness during the execution of a target program and three valued logic of
PEDL/MEDL can conveniently describe such changes.

Monitor State and Guarded Commands with Auxiliary Variables. In addition
to the logic of events and conditions, MEDL specifications can include guarded
commands. Commands are sequences of expressions that update state variables
of the monitor. We refer to these state variables as auxiliary variables, since
they extend the state of the monitored system. Commands are triggered by
occurrences of events defined in PEDL or MEDL. In turn, auxiliary variables
can be used in predicates that define MEDL conditions and, ultimately, define
new events. This creates a potential for infinite loops in monitor execution.
MEDL semantics have been augmented to detect potential loops and reject such
specifications as invalid.

2.2 Tool Architecture

Instrumentation vs. Virtual Machine. In order to support the continuous-time
semantics defined above, instrumentation has to guarantee that no changes to
monitored variables are missed. As a different method of extracting runtime
information, we can utilize a monitoring and checking layer on top of a virtual
machine such as JVM or LLVM virtual machine through debugging interfaces
(e.g., The Java Virtual Machine Tools Interface (JVM TI)). Although a virtual
machine-based approach can extract richer runtime information than the one
extracted through target program instrumentation, it might be slower than the
target program instrumentation. Also, at the time of developing Java-MaC (i.e.,
1998–2000), JVM did not have “good” debugging interface, and thus, we deter-
mined that it would have required significantly more amount of effort to develop
Java-MaC as a virtual machine layer than to develop Java-MaC as a framework
to instrument a target program.

Bytecode-Level vs. Source-Level Instrumentation. To extract runtime informa-
tion of a target program, a monitoring framework can instrument a target pro-
gram either in a bytecode (i.e., executable binary) level or a sourcecode level.
We decided to instrument a target program in a bytecode-level for the following
reasons:

– high applicability (i.e., can be applied to almost all target programs).
– fast setup for runtime verification (i.e., no source code compilation required).
– on-the-fly applicability to mobile applications (e.g., Android applications)

which are downloaded from app stores (e.g., Google playstore).

The weakness of bytecode level instrumentation is that it is difficult to
directly obtain high-level runtime information from a target program execution.
However, we believe that PEDL and MEDL scripts can enable reconstruction

8 S. Kannan et al.

of high-level behavior of target program executions based on the low-level mon-
itored data. In contrast, source-level instrumentation can be very complicated
depending on the complexity of target source code, since the instrumentation
should handle all possible complex statements of a target program.

Asynchronous vs. Synchronous Monitoring. Although MaC architecture can be
applied to synchronous as well as asynchronous monitoring, our Java-MaC tool
was designed to operate asynchronous monitors. The motivation for this design
decision was to reduce timing overhead, i.e., disruption to the timing behavior
of the system: instead of stopping the system while an observation is processed
by the monitor, we send the observation to a stand-alone monitor, allowing
the system to move along. Although the instrumentation to extract observation
still needs to run as part of the system, checking of the property is performed
elsewhere.

Checking of Timing Properties. When dealing with properties that specify quan-
titative timing behavior, the monitor needs to keep track of the progress of time.
If an event e2 should occur within a certain interval of time after an occurrence
of e1, the monitor needs to detect that the interval has expired. With the focus
on asynchronous monitoring, timing properties present additional challenges in
the MaC architecture, since the monitor clock may be different from the system
clock. One can rely on timestamps of observations received from the system.
Assuming in-order event delivery, once an observation with a sufficiently large
timestamp is received, the monitor can conclude that e2 did not occur in time.
There may be a delay in detecting the violation, which may or may not be
acceptable. However, if there is a possibility that observations will stop arriving
if e2 misses its deadline, then the violation will never be detected. In that case,
the monitor would be required to track progress of time using its own clock,
which requires additional assumptions about clock synchronization, delays in
transmitting observations, etc. Extensions to the MEDL language and ways to
provide guarantees of timely detection have been studied in [22].

2.3 Response

When a violation of a property is detected, it is not sufficient to just raise an
alarm. Human operators may not be able to respond to an alarm fast enough,
may not have sufficient situational awareness to choose an appropriate action
to take, or may not have the right level of access to the running system. The
MaC architecture allows the monitor to decide on the action and provides an
interface to apply the action though the same instrumentation technology used
to extract observations. We referred to this capability as steering. In response
to an event raised by the monitor, a steering action can be performed to change
the state of the running system or to invoke a recovery routine that may be
provided by the system. A general theory of steering that would allow us to
reason about the effects of monitor-triggered actions is not available. However,
several case studies showed the utility of steering in situations where a high-level

A Retrospective Look at the Monitoring and Checking (MaC) Framework 9

model of the system behavior is available. In particular, in [14], we developed
a monitor-based implementation of Simplex architecture [23] and demonstrated
its utility in a control system. In [9], a simulation-based study illustrated efficacy
of steering in a distributed robotic application based on artificial physics.

3 Lessons Learned

After more than two decades of working on runtime verification problems, we
can look back at the MaC framework and assess its vision and design through
the prism of accumulated experience. We see two kinds of lessons that can be
learned, as discussed in detail below. First, we can look at the impact of design
decisions we have made and compare them with alternative decisions and pos-
sible extensions we did not pursue. Second, we can revisit our vision for how
run-time verification would be applied and contrast it with emerging practical
applications.

3.1 Reflections on MaC Design Decisions

Probably the most significant contribution of the MaC project was to perform
an exploration of design choices in runtime verification, before settling on a
particular set of decisions. We revisit some of these decisions below and briefly
compare them with alternative approaches taken by the research community.

The Separation of MEDL and PEDL. Separation of event definition from the
rest of the monitoring specification proved very useful and we believe it is one
of the most important insights to come out of the MaC project. It allows to
quickly adapt to changes both in properties to be checked and in system imple-
mentations. On the one hand, if a change to the property does not require any
new primitive events, there is no impact on system instrumentation. However, if
we are unable to represent the changed property with existing primitive events,
we know that a new primitive event needs to be introduced, which in turn tells
us exactly what new instrumentation is needed. On the other hand, if a system
implementation is changed, we just need to update the definition of primitive
events and the rest of the monitoring setup is not affected. In this way, primi-
tive event definitions serve as a layer of abstraction, isolating checkers from the
system itself to the extent possible. In the case of software monitoring, primi-
tive event definitions are relatively straightforward and are defined in terms of
function calls and returns and state updates. However, in many situations where
direct observation is more difficult, in particular in cyber-physical systems where
continuous environments need to be monitored. Here, event detectors need to
deal with noisy observations, for example, using statistical techniques. In such
cases, a clear separation between properties, checked in a conventional way using
logics, and statistics-based detection of primitive events is even more useful. Pre-
liminary investigation of such a setting has been explored in [20].

At the same time, it gradually became clear that separation between prim-
itive events and the rest of the event and conditions used within the monitor

10 S. Kannan et al.

may be rather arbitrary. In fact, a complex system may benefit from multiple
levels of abstraction, where events and conditions on one level are defined in
terms of events and conditions at levels below. This insight became one of the
foundations in our follow-up work on modular runtime verification systems [29].

MEDL vs. LTL, Past Time vs. Future Time. Many people prefer to work with
familiar temporal logics like LTL. Since LTL is a future-time logic that has its
semantics over infinite traces, runtime verification requires additional machinery
to reason about all possible extensions of the currently observed prefix. Elegant
approaches have emerged after the conclusion of the MaC project, e.g., [2], which
is based on three-valued semantics of LTL. In addition, such an approach allows
us to easily decide when it is possible to turn the monitor off because the outcome
of checking will not change in any future extension of the trace, something that
is not always easy to do with past-time formulas.

Monitorability. Our approach in the MaC framework was to view runtime ver-
ification as an approach to detect violations of specifications. This means that
monitorable properties would have to be safety properties, that have finite wit-
nesses demonstrating their violation. Further, any checking framework can only
detect safety properties whose set of violating prefixes is a recursive set. It turns
out that the MEDL language (and its translation to automata) is as powerful
as one can hope for—the MaC framework can detect violations of all safety
properties whose set of violating prefixes are decidable [26]. Since this initial
work on understanding the expressiveness of what can and cannot be moni-
tored, subsequent work has identified richer notions. In this work, one views
runtime verification as not just an approach to detect specification violations,
but also as a means to establish that an observed execution is guaranteed to
meet its specification for all future extensions of the observed prefix [2]. Such
properties (i.e., those that can be affirmed) need to be such that a witnessing
finite prefix of an execution guarantees their satisfaction; these are the class of
guarantee or co-safety properties. The notion of monitorable properties has been
further extended in [18].

Temporal Logic vs. Abstract Commands. The mixture of temporal logic con-
structs and guarded commands in the monitoring language makes the approach
more expressive, but complicates semantics due to the presence of potentially
circular dependencies. State of the monitor is now spread between explicitly
introduced state variables and values of conditions defined in the logical part of
the language. Understanding the property being checked may now require more
effort by the user.

Synchronous vs. Asynchronous Monitoring. The focus of Java-MaC on asyn-
chronous monitoring turned out to be one of the design decisions that, in retro-
spect, was not completely justified. Support for synchronous monitoring turned
out to be useful in many situations, in particular for security properties as well
as checking timing properties in real-time. Moreover, case studies suggest that

A Retrospective Look at the Monitoring and Checking (MaC) Framework 11

asynchronous monitoring may not always reduce timing overhead. With asyn-
chronous monitoring, instrumentation probes do not perform checking directly,
but instead have to deliver collected observations to the monitor. When the
monitor is running in a separate process or on a remote computing node, the
overhead of buffering and transmitting observations often turns out to be higher
than performing checks synchronously within the instrumentation probe. To the
best of our knowledge, there has been no systematic exploration of the trade-
off between synchronous and asynchronous deployment of monitors. Preliminary
results are available in [28].

Randomization. As mentioned in the introduction, the original motivation for
the work in the MaC project, was to extend ideas from program checking [5] to
checking reactive program computations. In the context of program checking,
randomization is often critical to obtain effective checkers. Does the same apply
in the context of runtime verification of reactive programs? More recent work
has tried to exploit randomization in the context of runtime verification [6,16],
including identifying the theoretical limits and expressiveness of such check-
ers [6].

3.2 Applications of Runtime Verification in Safety-Critical Systems

Recurrent questions about runtime verification technologies concern which prop-
erties it makes sense to check at run time and why they were not verified at design
time. As part of our original motivation for the MaC project, our answer to these
questions was that properties come from system requirements, but they could
not be formally verified at design time because state of the art in formal verifica-
tion did not scale sufficiently well. For a safety-critical system this vision seems
insufficient. Discovering a violation of a safety property during a mission does
not improve safety, as it may be too late to react to an alarm. Therefore, more
realistic approaches need to be applied to make sure that runtime verification
improves safety assurance. Without trying to be exhaustive, we consider three
such approaches below.

Predictive Monitoring. While discovering a safety violation after it occurs may
not be acceptable, discovering that a violation is imminent would be very desir-
able. To achieve this capability would requires us to predict likely executions in
the future for a limited horizon. Such prediction may be difficult for software
executions. However, for cyber-physical systems, where an accurate model of
system may be available, model-based predictions are able to achieve this goal.
The challenge is to keep the approach computationally feasible, due to inherent
uncertainties in the model and noisy observations. A promising approach [27],
based on ideas from Gaussian process regression theory, appears to be efficient
enough to be applied on small robotic platforms.

Monitoring-Based Adaptation. Finally, an important use case is when the out-
come of monitoring is used to take action aimed at helping the system recover

12 S. Kannan et al.

from the problem or adapt to a new situation. These actions can take different
forms. In our early work, we showed that the well-known control-theoretic app-
roach based on Simplex architecture [23] can be implemented in a monitored
setting [14]. This case targets faults in controllers, where the checker monitors
boundaries of the safety envelope of the system and triggers a switch to a safety
controller, which may have worse performance but is trusted to keep the sys-
tem safe. This approach relies on careful control-theoretic analysis of the system
dynamics and targets a limited case when the source of the fault is assumed to
be known and the action is pre-determined. In more general scenarios, several
alternative approaches have been considered. One approach is to avoid diagnos-
ing the problem, concentrating instead on ensuring that observable behavior is
acceptable. This approach came to be known as runtime enforcement. Rather
than altering the state of system components to allow them to return to correct
operation, runtime enforcement concentrates on making sure that observable
behavior is safe. Runtime enforcement actions involve delaying, suppressing, or
modifying observations in other ways. A different approach is to diagnose the
problem and localize the fault by collecting additional information and invoke
an appropriate existing recovery procedure or applying a change directly to the
internal state of a faulty component. Providing guarantees in the latter app-
roach may be difficult and requires an accurate model of system components. A
detailed survey of state of the art is given in [8].

Monitoring of Assumptions. In open systems that have to operate in environ-
ments that are not sufficiently known, verification is typically performed with
respect to assumptions about the environment. In this case, it is important to
detect that some of the assumptions are violated at run time. We note that a
violation of the assumption does not necessarily indicate an immediate problem.
The system may still be able to successfully operate in the new environment.
However, some of the design-time guarantees may not hold any more and system
operators should pay additional attention to the situation.

In some approaches, most notably in assume-guarantee frameworks for reac-
tive systems [3], assumptions – just like guarantees – can be naturally expressed
in specification languages such as LTL or MEDL. In many other cases, assump-
tions take drastically different forms. For example, in control systems, assump-
tions are often made about the levels of noise in sensor streams. Similarly,
learning-based systems rely on assumptions about training data, in particular
that training data are assumed to be drawn from the same distribution as inputs
encountered at run time. Detecting violations of such assumptions require sta-
tistical techniques. While there is much literature on statistical execution mon-
itoring in process control and robotics (see, e.g., [19]), treatment of statistical
monitoring tends to be much less formal than logic-based monitoring. Much
work remains to be done to determine monitorability conditions for statistical
monitoring and develop specification languages with formal semantics.

Acknowledgement. We would like to thank Dr. Ralph Wachter who provided and
encouraged us with research funding and freedom to explore and develop the MaC
framework when he was at the ONR. We also would like to thank other participants

A Retrospective Look at the Monitoring and Checking (MaC) Framework 13

of the ONR MURI project: Andre Scedrov, John Mitchell, Ronitt Rubinfeld, Cynthia
Dwork, for all the fruitful discussions. Recent extensions of our monitoring and checking
approach have been funded by the DARPA Assured Autonomy program under contract
FA8750-18-C-0090, and by the ONR contract N68335-19-C-0200. One of the authors
of the first MaC paper [12], Hanêne Ben-Abdallah, participated in the project as a
summer visitor in 1998.

References

1. Alspaugh, T.A., Faulk, S.R., Britton, K.H., Parker, R.A., Parnas, D.L., Shore, J.E.:
Software requirements for the A7-E aircraft. Technical report NRL Memorandum
Report 3876, Naval Research Laboratory, August 1992

2. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20, 14:1–14:64 (2010)

3. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis, C.:
Multiple viewpoint contract-based specification and design. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp.
200–225. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92188-
2 9

4. Bhargavan, K., et al.: Verisim: formal analysis of network simulations. IEEE Trans.
Software Eng. 28(2), 129–145 (2002). https://doi.org/10.1109/32.988495

5. Blum, M., Kannan, S.: Designing programs that check their work. J. ACM 42,
269–291 (1995)

6. Chadha, R., Sistla, A.P., Viswanathan, M.: On the expressiveness and complexity
of randomization in finite state monitors. J. ACM 56(5), 26:1–26:44 (2009)

7. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-53479-2 17

8. Falcone, Y., Mariani, L., Rollet, A., Saha, S.: Runtime failure prevention and reac-
tion. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS,
vol. 10457, pp. 103–134. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-75632-5 4

9. Gordon, D., Spears, W., Sokolsky, O., Lee, I.: Distributed spatial control and global
monitoring of mobile agents. In: Proceedings of the IEEE International Conference
on Information, Intelligence, and Systems, November 1999

10. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0 24

11. Heitmeyer, C.L.: Software cost reduction. In: Marciniak, J.J. (ed.) Encyclopedia
of Software Engineering. Wiley, New York (2002)

12. Lee, I., Ben-Abdallah, H., Kannan, S., Kim, M., Sokolsky, O.: A monitoring and
checking framework for run-time correctness assurance. In: Proceedings of the
Korea-U.S. Technical Conference on Strategic Technologies, October 1998

13. Kim, M., Kannan, S., Lee, I., Sokolsky, O., Viswanathan, M.: Java-MaC: a run-
time assurance tool for Java programs. In: Proceedings of Workshop on Runtime
Verification (RV 2001). Electronic Notes in Theoretical Computer Science, vol. 55,
July 2001

14. Kim, M., Lee, I., Sammapun, U., Shin, J., Sokolsky, O.: Monitoring, checking, and
steering of real-time systems. In: 2nd Workshop on Run-time Verification, July
2002

https://doi.org/10.1007/978-3-540-92188-2_9
https://doi.org/10.1007/978-3-540-92188-2_9
https://doi.org/10.1109/32.988495
https://doi.org/10.1007/3-540-53479-2_17
https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/3-540-46002-0_24

14 S. Kannan et al.

15. Kim, M., Viswanathan, M., Ben-Abdallah, H., Kannan, S., Lee, I., Sokolsky, O.:
Formally specified monitoring of temporal properties. In: Proceedings of the Euro-
pean Conference on Real-Time Systems (ECRTS 1999), pp. 114–121, June 1999

16. Kini, D., Viswanathan, M.: Probabilistic automata for safety LTL specifications.
In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 118–136.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54013-4 7

17. Lee, I., Kannan, S., Kim, M., Sokolsky, O., Viswanathan, M.: Runtime assurance
based on formal specifications. In: Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications, June 1999

18. Peled, D., Havelund, K.: Refining the safety–liveness classification of temporal
properties according to monitorability. In: Margaria, T., Graf, S., Larsen, K.G.
(eds.) Models, Mindsets, Meta: The What, the How, and the Why Not?. LNCS,
vol. 11200, pp. 218–234. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-22348-9 14

19. Pettersson, O.: Execution monitoring in robotics: a survey. Robot. Auton. Syst.
53(2), 73–88 (2005)

20. Roohi, N., Kaur, R., Weimer, J., Sokolsky, O., Lee, I.: Parameter invariant monitor-
ing for signal temporal logic. In: Proceedings of the 21st International Conference
on Hybrid Systems: Computation and Control, pp. 187–196 (2018)

21. Sammapun, U., Lee, I., Sokolsky, O., Regehr, J.: Statistical runtime checking of
probabilistic properties. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol.
4839, pp. 164–175. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-77395-5 14

22. Sammapun, U.: Monitoring and checking of real-time and probabilistic properties.
Ph.D. thesis, University of Pennsylvania (2007)

23. Sha, L.: Using simplicity to control complexity. IEEE Softw. 18(4), 20–28 (2001)
24. Sokolsky, O., Sammapun, U., Lee, I., Kim, J.: Run-time checking of dynamic prop-

erties. In: Proceeding of the 5th International Workshop on Runtime Verification
(RV 2005), Edinburgh, Scotland, UK, July 2005

25. Tan, L., Kim, J., Sokolsky, O., Lee, I.: Model-based testing and monitoring for
hybrid embedded systems. In: Proceedings of the 2004 IEEE International Con-
ference on Information Reuse and Integration (IRI 2004), pp. 487–492, November
2004

26. Viswanathan, M., Kim, M.: Foundations for the run-time monitoring of reactive
systems – Fundamentals of the MaC Language. In: Liu, Z., Araki, K. (eds.) ICTAC
2004. LNCS, vol. 3407, pp. 543–556. Springer, Heidelberg (2005). https://doi.org/
10.1007/978-3-540-31862-0 38

27. Yel, E., Bezzo, N.: Fast run-time monitoring, replanning, and recovery for safe
autonomous system operations. In: Proceedings of the IEEE International Confer-
ence on Intelligent Robots and Systems (IROS), November 2019, to appear

28. Zhang, T., Eakman, G., Lee, I., Sokolsky, O.: Overhead-aware deployment of run-
time monitors. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757,
pp. 375–381. Springer, Cham (2019)

29. Zhang, T., Eakman, G., Lee, I., Sokolsky, O.: Flexible monitor deployment for
runtime verification of large scale software. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2018. LNCS, vol. 11247, pp. 42–50. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03427-6 6

30. Zhou, C., Hansen, M.R.: Duration Calculus. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-662-06784-0

https://doi.org/10.1007/978-3-642-54013-4_7
https://doi.org/10.1007/978-3-030-22348-9_14
https://doi.org/10.1007/978-3-030-22348-9_14
https://doi.org/10.1007/978-3-540-77395-5_14
https://doi.org/10.1007/978-3-540-77395-5_14
https://doi.org/10.1007/978-3-540-31862-0_38
https://doi.org/10.1007/978-3-540-31862-0_38
https://doi.org/10.1007/978-3-030-03427-6_6
https://doi.org/10.1007/978-3-030-03427-6_6
https://doi.org/10.1007/978-3-662-06784-0
https://doi.org/10.1007/978-3-662-06784-0

Introspective Environment Modeling

Sanjit A. Seshia(B)

University of California at Berkeley, Berkeley, USA
sseshia@berkeley.edu

Abstract. Autonomous systems often operate in complex environments which
can beextremely difficult to model manually at design time. The set of agents
and objects in the environment can be hard to predict, let alone their behavior.
We present the idea of introspective environment modeling, in which one algo-
rithmically synthesizes, by introspecting on the system, assumptions on the envi-
ronment under which the system can guarantee correct operation and which can
be efficiently monitored at run time. We formalize the problem, illustrate it with
examples, and describe an approach to solving a simplified version of the prob-
lem in the context of temporal logic planning. We conclude with an outlook to
future work.

1 Introduction

Autonomous systems, especially those based on artificial intelligence (AI) and machine
learning (ML), are increasingly being used in a variety of application domains including
healthcare, transportation, finance, industrial automation, etc. This growing societal-
scale impact has brought with it a set of risks and concerns about the dependability and
safety of AI-based systems including about errors in AI software, faults, cyber-attacks,
and failures of human-robot interaction. In a previous article [13], the author defined
“Verified AI” as the goal of designing AI-based systems that have strong, ideally prov-
able, assurances of correctness with respect to mathematically-specified requirements.
That article lays out five major challenges to applying formal methods for achieving
this goal, and proposes principles towards overcoming those challenges. One of those
challenges is that of modeling the environment of an AI-based autonomous system.

The environments in which AI-based autonomous systems operate can be very com-
plex, with considerable uncertainty even about how many and which agents are in the
environment (both human and robotic), let alone about their intentions and behaviors.
As an example, consider the difficulty in modeling urban traffic environments in which
an autonomous car must operate. Indeed, AI/ML is often introduced into these systems
precisely to deal with such complexity and uncertainty! From a formal methods per-
spective, this makes it very hard to create realistic environment models with respect to
which one can perform verification or synthesis.

A particularly vexing problem for environment modeling is to deal with unknown
variables of the environment. In the traditional success stories for formal verification,
such as verifying cache coherence protocols or device drivers, the interface variables
between the system S and its environment E are well-defined. The environment can

c© Springer Nature Switzerland AG 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 15–26, 2019.
https://doi.org/10.1007/978-3-030-32079-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-32079-9_2

16 S. A. Seshia

only influence the system through this interface. However, for AI-based systems such
as an autonomous vehicle, it may be impossible to precisely define all the variables (fea-
tures) of the environment. Even in restricted scenarios where the environment variables
(agents) are known, there is a striking lack of information, especially at design time,
about their behaviors. Additionally, modeling sensors such as LiDAR (Light Detec-
tion and Ranging) that represent the interface to the environment is in itself a technical
challenge.

In this paper, we present introspective environment modeling (IEM), an idea intro-
duced in [13] to address this challenge. The central idea in this approach is to introspect
on the system in order to model the environment. In other words, analyze the system’s
behavior and its sensing interface to the environment to extract a representation of envi-
ronments in which correct operation is guaranteed. A key underlying computational
problem is to algorithmically identify assumptions that the system makes about the
environment that are sufficient to guarantee the satisfaction of the specifications. In
general, we want to generate the weakest set of assumptions on the environment of
the AI-based autonomous system. These assumptions form critical components of an
assurance case for the safety and correctness of the autonomous system, since they pre-
cisely pinpoint weak points of the system. Moreover, the assumptions identified must
be efficiently monitorable at run time: one must be able to monitor at run time whether
they are true or false, and ideally to also be able to predict whether they are likely
to be violated in advance, with sufficient lead time. Additionally, in situations where
human operators may be involved, one would want the assumptions to be translatable
into an explanation that is human understandable, so that the autonomous system can
“explain” to the human why it may not be able to satisfy the specification (this infor-
mation can be used offline for debugging/repair or online for control). We illustrate our
ideas with examples drawn from the domain of autonomous driving, and more gener-
ally, for autonomous cyber-physical systems (CPS) and robotics.

Related Work: The topic of environment modeling, also termed as “world modeling”,
has been much studied in the literature in formal methods, AI, and related areas. We do
not attempt to cover the vast literature here, focusing instead on algorithmic methods
and other closely related papers. A common approach in the AI literature is to have a
probabilistic model of the world and maintain a belief distribution over possible worlds
which can be updated at run time. However, the model (or model structure) is typically
created manually and not algorithmically. Some world models can be monitored at run
time and updated online; this has been demonstrated, e.g., in the case of autonomous
vehicles [14]. In the formal methods literature, the inspiration for IEM comes from
the work on automated generation of environment assumptions. Closely related work
includes that of Chatterjee et al. [4] on finding minimal environment assumptions, the
work of Li et al. [10] on the first counterstrategy-guided approach to inductive synthe-
sis of environment assumptions, and the subsequent work by Alur et al. [3]. However,
none of these works focused on generating environment models that could be efficiently
monitored at run time. To our knowledge, our prior work [11] is the first to place this
requirement and show how to mine assumptions that can be efficiently monitored at run
time during the controller synthesis process. All of the above work on assumption min-
ing is for discrete systems/models. Later Ghosh et al. [9] showed how to algorithmically

Introspective Environment Modeling 17

repair specifications, including environment assumptions, for receding horizon model
predictive control for cyber-physical systems, but this work assumes knowledge of the
structure of the environment model. In a more recent paper, Ghosh et al. [8] show how
to close the gap between a high-level mathematical model of a system and its environ-
ment and a simulatable or executable model. Focusing on reach-avoid objectives, this
work also assumes knowledge of the environment model structure, but shows how to
adapt the environment model to account for behavioral discrepancies between the two
models. Damm and Finkbeiner [5] present an approach to representing and analyzing
the “perimeter” of the world model, which captures the environment variables that can
be modeled and restricted via environment assumptions. They provide a notion of an
optimal world model with respect to the specification and class of system strategies
based on the idea of dominant strategies; such a notion of optimality could be useful in
IEM as well.

The rest of the paper is organized as follows. In Sect. 2, we explain the idea of intro-
spective environment modeling using an illustrative example, and formalize it. Section 3
shows how traditional controller synthesis from linear temporal logic (LTL) can be
extended to perform IEM. We conclude in Sect. 4 with a discussion of future work.

2 Introspective Environment Modeling: The Idea

We now present the basic idea of introspective environment modeling (IEM). We start
in Sect. 2.1 with a discussion of the problem, and then illustrate it with an example in
Sect. 2.2. We conclude in Sect. 2.3 with a formalization of the IEM problem.

2.1 Problem Setup

Consider the standard picture of a closed system as shown in Fig. 1, where a system S
interfaces to an environment E through sensors and actuators. Let xS denote the state
variables of S, xE denote the state variables of E, y denote the inputs to S as output
from its sensors, and z denote the outputs from S as generated by its actuators. The
variables xE represent the state of the agents and objects in the environment.

The challenge that IEM seeks to address is the lack of information about the envi-
ronmentE and its behavior. More specifically, there are three kinds of uncertainty about
the environment:

1. Uncertainty about Parameters: The variables xE are known and the dynamical
model of E indicating how xE changes is known too, but values of parameters in
the dynamical model of E are not known.

2. Uncertainty about Dynamics: Variables xE are known, but the dynamical model of
E governing their evolution is not known.

3. Uncertainty about Variables: Even the agents in E and the variables xE are not
completely known, let alone the dynamics of E.

There are a variety of techniques available to deal with uncertainty about param-
eters, including using system identification or machine learning methods to estimate
parameter values or ranges. The second and third type of uncertainty are much harder
to handle and are the primary subject of this paper. We next introduce a simple example
to illustrate the main ideas.

18 S. A. Seshia

Environment E

System S

Sensors Actuators

xS

xE

y

z

Unknown / Uncertain

Known / Specified

Fig. 1. System S and environment E in a closed loop.

2.2 Illustrative Example

Consider the traffic scenario depicted in Fig. 2 on an arterial road with a top speed of
45 mph (about 20 m/s). The blue car is an autonomous vehicle (AV) travelling at 20m/s
with no vehicles or obstructions initially in the lane in front of it. On the right (slow)
lane is a slow-moving line of (orange) cars. The AV is equipped with a LiDAR sensor
that allows it to detect objects around it to a range of 300m [2], which is sufficient to
cover the entire road scene shown in the figure. The LiDAR sensor allows the AV to
estimate the position and velocity of each of the five cars A–E in the right lane; we
assume for simplicity that the sensor’s estimate is perfect. The challenge is that each
of these five cars might suddenly decide to change to the left lane in which the AV is
travelling, and the AV must avoid a collision. What assumptions on the environment
(cars A–E) guarantee the safety of the AV in this scenario? Under those assumptions,
what actions must the AV take to avoid a collision?

To answer these questions, first, we must formalize the notion of safety. Suppose
that the true safety property is to guarantee that the distance between the AV and any
environment object is always greater than zero. Such a property is expressible in a
standard specification language such as linear temporal logic and its extensions for CPS
such as metric temporal logic and signal temporal logic, as follows:

G
[∧

o∈Obj

dist(xAV ,xo) > 0
]

One challenge with specifying such a property is that not all the environment objects
(the set Obj) are known, and therefore, such a property cannot be guaranteed to hold
at run time. Therefore, we suggest to specify a weaker property that can be monitored
by available sensors. This requires the property to be based on the sensor model and be
time-bounded, i.e., expressed over a finite window of time over which the environment

Introspective Environment Modeling 19

LiDAR Braking distance

A B C D E

Fig. 2. Autonomous vehicle scenario illustrating IEM. The blue car at the top is an autonomous
vehicle travelling from left to right, while the orange cars are in a slow-moving lane from which
they may possibly change lane (Color figure online).

can be monitored with sufficient accuracy. For the example in Fig. 2, the absence-of-
collision property will need to be revised on two counts: (1) to objects detectable by
available sensors, and (ii) a finite window of time. This revised property can be formu-
lated as follows:

G[0,τ]

[∧

o∈ObjSens(t)

dist(xAV ,xo) > 0
]

where τ is a (typically short) time bound and ObjSens(t) is the set of objects that are
sensed by available sensors at the current time instant t. Using this alternate specifica-
tion is sound only if it implies the original property over the [0, τ] interval. In this case,
since we assume that the LiDAR range covers the entire scene, ObjSens equals Obj.

While designing the controller for the AV, we have no knowledge of the exact num-
ber of environment agents (vehicles) or how they will behave. In the context of this
example, the idea of IEM is as follows: given a strategy for the AV (based on its con-
troller, sensors, etc.), extract an assumption on the environment E that guarantees the
property of interest. As mentioned earlier, the AV is travelling at a velocity of 20 m/s.
A typical braking distance from that speed on modern automobiles is about 24–48 m
depending on road surfaces; we assume it to be 40m for this example, which gives the
AV 2 s to come to a complete stop. Typical lane widths in the United States are about 3
m [1]. Thus, assuming that the environment car starts in the middle of its lane, and vehi-
cles are no more than 2m wide, it would need to move with a lateral velocity of at least
1m/s to cause a collision, provided it ends in the portion of the left lane overlapping
with the braking distance.

Let us assume that the AV samples sensors periodically at (small) intervals of time
Δ (of the order of a few milliseconds), and the control strategy executes instantaneously
after the current sensor sample is received. Further, assume that at the current time step,
the AV’s strategy is to drive straight at 20m/s and brake to stop within 2 s when it
detects an object moving into its path. In this case, we set τ = 2 to be the time bound
within which the AV can come to a complete stop. Then, the AV can avoid a collision
provided the following conditions hold on the environment agents: (1) Vehicle A moves

20 S. A. Seshia

with lateral velocity vA less than 1 m/s, and (2) Vehicle B moves with lateral velocity
vB less than 0.5 m/s. In logic, this is expressed as the following predicate:

G[0,Δ] (vA < 1) ∧ (vB < 0.5)

It can avoid a collision with vehicles C, D, and E no matter their lateral velocity as they
are further than the braking distance. Note that these conditions are evaluated at the
current step, and must be re-evaluated at the next step Δ time units later.

The reader will note that the environment assumption specified above can be effi-
ciently monitored provided the estimation of velocities vA and vB is performed effi-
ciently over a small window of sensor samples. If the assumption is broken, mitigat-
ing actions must be taken, such as moving to a degraded mode of operation with a
weaker specification guaranteed. However, we also note that the process of coming up
with these assumptions involved somewhat tedious manual reasoning, even for a small
example like the one in this section with perfect LiDAR. Ideally, we need algorith-
mic methods to generate the environment assumptions automatically. Further, it would
be best to co-synthesize those assumptions along with a strategy for the system (AV) to
execute. We will discuss these in Sect. 3 after formalizing the IEM problem in Sect. 2.3.

2.3 Formalization

This section formalizes the IEM problem.
Consider Fig. 1. We model the system S as a transition system (XS ,X 0

S ,YS ,
ZS , δS , ρS) where XS is the set of states, X 0

S is the set of initial states, YS is the set of
inputs to S from its sensors, ZS is the set of outputs generated by S via its actuators,
δS ⊆ XS×YS×XS is the transition relation, and ρS ⊆ XS×YS×ZS is the output rela-
tion. As before, we will denote a system state by xS ; this will also denote the variables
used to model a system state. We model S as a non-deterministic system rather than as
a stochastic system, but the core problem formulation carries over to other formalisms.
We assume that a non-zero amount of time elapses between transitions and between
outputs; for convenience we will assume this to be Δ time units as in the preceding
section.

So far the formal model is fairly standard. Next, we consider the environment. As
discussed earlier, the environment states and model are unknown. Let us denote the
unknown set of environment states by XE , and the variables representing an environ-
ment state by xE . We will assume that xE is also unknown.

The sensor model is a crucial component of the overall formal model. If XE is
known, the sensor model can be formalized as a non-deterministic map Σ from XE

to YS , where Σ maps an environment state xE to a vector of sensor values y ∈ YS .
However, if we do not know XE then the sensor model captures the sequences of sensor
values in YS that are feasible. In other words, in this case we define Σ as the set of all
sensor value sequences, a subset of Yω

S , that can be physically generated by the sensors
in some environment. We say an environment is consistent with Σ if it only produces
sensor value sequences in Σ.

The desired specification, denoted by Φ∗, is a function of xS and xE . For example,
this can be a temporal property indicating that an AV maintains a minimum safety

Introspective Environment Modeling 21

distance from any objects in the environment. However, since we do not know xE ,
we instead have an alternative specification Φ which is a function of xS , y and z. The
following property must hold between these specifications:

Proposition 1. Given specifications Φ and Φ∗, and a sensor model Σ, for all environ-
ments consistent with Σ, if a system satisfies Φ, it also satisfies Φ∗.

We are now ready to define the introspective environment modeling problem for-
mally.

Problem 1. Given a system S, a sensor model Σ, a specification Φ, generate an envi-
ronment assumption Ψ(xS , y, z) such that S satisfies the specification (Ψ =⇒ Φ) in
environments consistent with Σ.

Two other important aspects of the IEM problem are:

1. The environment assumptions Ψ must be efficiently monitorable at run time. More
specifically, the environment assumption should be evaluated in sub-linear time and
space (in the length of the trace), and ideally in constant time and space.

2. When Ψ does not hold and Φ is violated, the violation of Ψ should occur well in
advance of the violation of Φ so that S can take mitigating actions, such as moving
into a degraded mode of operation where it satisfies a weaker specification.

Note that S is not required to satisfy Φ when the environment assumption Ψ is vio-
lated. However, we want S to be “aware of its assumptions”: the violation of Ψ should
be detected by S and it should take actions that preserve a core (safety) specification.

In the following section, we present an approach to solving the IEM problem for
a simple case where the world is modeled using propositional temporal logic and the
controller for S is synthesized using standard game-theoretic approaches to reactive
synthesis from temporal logic.

3 IEM for Synthesis from Temporal Logic

We now discuss how the IEM problem can be tackled in the context of synthesis of
controllers from temporal logic specifications. The basic idea was presented in our
prior work on synthesis for human-in-the-loop systems such as semi-autonomous vehi-
cles [11]. Concretely, we consider the setting where a specification is given in linear
temporal logic (LTL) in the GR(1) fragment [12], and one seeks to synthesize a con-
troller so as to satisfy that specification in an adversarial environment. In GR(1), the
specification is of the form ϕa =⇒ ϕg , where ϕa and ϕg are conjunctions of specific
LTL formula types capturing safety and fairness properties, where ϕa represents the
assumptions and ϕg represents guarantees. While typically the entire LTL specification
is given as input, for the variant of the problem we consider, the guarantees are given,
but the assumptions about the environment may be absent or only partial.

For this section, we consider S to be a finite-state transducer (FST) whose inputs YS

are valuations to a set of Boolean input propositions and outputs ZS are assignments
to a set of Boolean output propositions. The sensor model Σ defines the sequences of

22 S. A. Seshia

input propositions that are physically feasible in some environment. The specification
Φ is a GR(1) formula of the form ϕa =⇒ ϕg , where ϕa may be true. We wish to
solve the IEM problem, i.e., to synthesize an environment assumption Ψ that implies
Φ and additionally satisfies the following criteria: (1) it is efficiently monitorable at
run-time; (2) it is prescient, meaning that S gets at least T time units to take mitigating
actions before the property is violated, and (3) it is the weakest environment assumption
satisfying the above properties (for some reasonable definition of “weakest”).

We next present a motivating example to illustrate this variant of the IEM problem.
Then we present the algorithmic approach to synthesize Ψ . Finally, we conclude by
discussing some sample results. The material in this section is substantially borrowed
from the author’s prior work [11].

3.1 Example

Fig. 3. Controller synthesis – Car A following Car B

Consider the example in Fig. 3. Car A is a semi-autonomous vehicle, car B and C are
two other cars on the road. We assume that the road has been divided into discretized
regions that encode all the legal transitions for the vehicles on the map, similar to the
discretization used in LTL synthesis for robotics and CPS, such as the work on receding
horizon temporal logic planning [15]. The objective of car A is to follow car B. Car B
and C are part of the environment. The notion of following can be stated as follows. We
assume that car A is equipped with sensors that allows it to see two squares ahead of
itself if its view is not obstructed, as indicated by the enclosed region by blue dashed
lines in Fig. 3a. In this case, car B is blocking the view of car A, and thus car A can
only see regions 3, 4, 5 and 6. Car A is said to be able to follow car B if it can always
move to a position where it can see car B. Furthermore, we assume that at each step
cars A and C can move at most 2 squares forward, but car B can move at most 1 square
ahead, since otherwise car B can out-run or out-maneuver car A.

Given this objective, and additional safety rules such as cars not crashing into one
another, our goal is to automatically synthesize a controller for car A such that:

• car A follows car B whenever possible;
• and in situations where the objective may not be achievable, switches control to
the human driver while allowing sufficient time for the driver to respond and take
control.

Introspective Environment Modeling 23

In general, it is not always possible to come up with a fully automatic controller
that satisfies all requirements. Figure 3b illustrates such a scenario where car C blocks
the view as well as the movement path of car A after two time steps. The brown arrows
indicate the movements of the three cars in the first time step, and the blue arrows
indicate the movements of car B and C in the second time step. Positions of a car X at
time step t is indicated by Xt. In this failure scenario, the autonomous vehicle needs to
notify the human driver since it has lost track of car B.

The IEM problem, for this example, is to identify the environment assumptions that
we need to monitor and when they may fail, notify the driver sufficiently in advance so
that the driver can take mitigating actions. In the next section, we give a brief overview
of how such assumptions can be co-synthesized along with a controller.

3.2 IEM for LTL Synthesis

Our approach to solve Problem 1 is based on extending the standard game-theoretic
approach to LTL synthesis, where one must solve a two-player zero-sum game between
S and E. We begin with the specification Φ and check whether it is realizable (i.e. a
finite-state controller can be synthesized from it). If so, no environment assumptions
are needed, i.e., Ψ = true, and we are done.

The more likely case is that Φ is unrealizable. In this case, we need to synthesize
assumptions so that the resulting specification becomes realizable. For this, we follow
a counterstrategy-guided approach to environment assumption synthesis similar to that
proposed first by Li et al. [10]. A counterstrategy is a winning strategy for the environ-
ment E to force violation of Φ. The approach is based on analyzing a data structure
called the counterstrategy graph that summarizes all possible ways for the environment
to force a violation of the system guarantees. It comprises the following steps:

1. Identify Class of Assumptions: Fix a class of environment assumptions that is effi-
ciently monitorable. We use a class of LTL formulas of the form

∧
i(G(ai → ¬X bi)),

where ai is a Boolean formula describing a set of assignments over variables in
(y, z), and bi is a Boolean formula describing a set of assignments over variables in
y. This is a property over a pair of consecutive states. The template and the approach
can be extended to properties involving over a window of size k for a constant k.

2. Transform Counterstrategy Graph: Analyze the counterstrategy graph to find nodes
that correspond to violations of safety properties, and cycles that correspond to vio-
lations of liveness properties. Transform the graph into a condensed directed acyclic
graph (DAG) by contracting strongly connected components. Identify error nodes
— nodes in this DAG that correspond to property violations. A cut in this DAG
that separates nodes corresponding to start states from the error nodes corresponds
to an environment assumption – a constraint one can place on the environment to
eliminate the property violations.

3. Extract Environment Assumption from Min-Cuts: Assign weights to the edges in
the graph so as to capture the penalty of reporting an environment assumption (and
transferring control from the controller S to a higher level, supervisory controller
such as a human operator). We consider all cuts in the graph that are at least T
edges (steps) away from any error node in order to report an environment assumption

24 S. A. Seshia

violation T time steps in advance of a potential property violation. Thus, we find a
min-cut in the counterstrategy graph at least T steps away from an error node. Each
edge in the cut provides one of the conjuncts in the template formula

∧
i(G(ai →

¬X bi)).

Further details of this approach are available in [11]. We demonstrate its working on
the simple example in the following section.

3.3 Results

We now describe the operation of the approach on the car-following example intro-
duced in Sect. 3.1. We denote the positions of cars A, B, C by pA, pB , pC respectively;
these variables indicate the rectangular regions where the cars are located at the cur-
rent instant. Φ is of the form φS =⇒ φE where each of the φi’s are conjunctions of
properties. We list some of these below:

• Any position can be occupied by at most one car at a time (i.e., no collisions):

G
(
pA = x → (pB �= x ∧ pC �= x)

)

where x denotes a position on the discretized space. The cases for B and C are
similar, but they are part of ψE .

• Car A is required to follow car B:

G
(
(vAB = true ∧ pA = x) → X(vAB = true)

)

where vAB = true iff car A can see car B.
• Two cars cannot cross each other if they are right next to each other. For example,
when pC = 5, pA = 6 and p′

C = 8 (in the next cycle), p′
A �= 7. In LTL,

G
(
((pC = 5) ∧ (pA = 6) ∧ (XpC = 8)) → (X(pA �= 7))

)

The other specifications can be found in the supplementary material of Ref. [11].
Observe that car C can in fact force a violation of the system guarantees in one step
under two situations – when pC = 5, pB = 8 and pA = 4, or pC = 5, pB = 8 and
pA = 6. Both are situations where car C is blocking the view of car A, causing it to
lose track of car B. The second failure scenario is illustrated in Fig. 3b.

Applying our algorithm to this (unrealizable) specification with T = 1, we obtain
the following assumption Ψ .

Ψ = G
(
((pA = 4) ∧ (pB = 6) ∧ (pC = 1)) → ¬X((pB = 8) ∧ (pC = 5))

) ∧

G
(
((pA = 4) ∧ (pB = 6) ∧ (pC = 1)) → ¬X((pB = 6) ∧ (pC = 3))

) ∧

G
(
((pA = 4) ∧ (pB = 6) ∧ (pC = 1)) → ¬X((pB = 6) ∧ (pC = 5))

)

Note how Ψ reports a violation at least T = 1 time steps ahead of a potential
property failure. Also, Ψ corresponds to three possible evolutions of the environment

Introspective Environment Modeling 25

from the initial state. In general, Ψ can be a conjunction of conditions at different time
steps as E and S progress.

These results indicate the feasibility of an algorithmic approach to generating envi-
ronment assumptions for temporal logic based planning. However, there are also sev-
eral limitations. First, it is hard to scale this explicit graph-based approach to large state
spaces and specifications. Second, it is only applicable to problems where a discretiza-
tion of the state space is meaningful for planning in the real world. Recent work on
repair of specifications for receding horizon control for real-time temporal logics over
continuous signals [9] provides a starting point, although those methods need to be
extended to handle highly adversarial environments. Third, the sensor model is highly
simplified. Nevertheless, a counterstrategy-based approach provides a first step to pro-
ducing environment models in the form of logical specifications (assumptions) that are
usable for controller synthesis, efficiently monitorable at run time, and provide time for
taking mitigating actions when the assumptions are violated.

4 Conclusion

We presented the idea of introspective environment modeling (IEM) as a way of dealing
with the challenge of modeling unknown and uncertain environments of autonomous
systems. The central idea is to introspect on the working of the system in order to
capture a set of environment assumptions that is sufficient to guarantee correct operation
and which is also efficiently monitorable at run time. We formalized the IEM problem
and described an algorithmic approach to solving it for a simplified setting of temporal
logic planning.

Much more remains to be done to solve the IEM problem in practice. First, the
algorithmic approach presented in Sect. 3 must be extended from the discrete setting to
cyber-physical systems. The scalability challenge must be addressed, moving from the
explicit graph-theoretic method of Sect. 3 to one that scales to high-dimensional spaces
involving both discrete and continuous variables, likely requiring symbolic methods.
A particularly important problem is to devise realistic sensor models that capture the
noise and errors that arise in real-world sensors; while this is challenging, we believe
this is an easier modeling problem as the number of sensor types is much less than
the number of possible environments. Approaches to extract the weakest environment
assumptions that are also efficiently monitorable at run time must be investigated fur-
ther. It would also be useful to explore formalisms to capture environment assumptions
beyond temporal logic, and the use of IEM for stochastic environment models, rep-
resented, e.g., using probabilistic programming languages [7]. Finally, we believe the
extracted assumptions and the sensor model could be valuable in building an assurance
case for autonomous systems, especially when combined with techniques for run-time
assurance (e.g., [6]).

Acknowledgments. I gratefully acknowledge the contributions of students and other collabo-
rators in the work that this article draws from. This work was supported in part by NSF grants
1545126 (VeHICaL) and 1646208, the DARPA Assured Autonomy program, the iCyPhy center,
and Berkeley Deep Drive.

26 S. A. Seshia

References

1. Typical lane widths. https://en.wikipedia.org/wiki/Lane#Lane width
2. Velodyne Lidar: Products. https://velodynelidar.com/products.html
3. Alur, R., Moarref, S., Topcu, U.: Counter-strategy guided refinement of GR(1) temporal logic

specifications. In: Proceedings of the 13th Conference on Formal Methods in Computer-
Aided Design (FMCAD2013), pp. 26–33 (2013)

4. Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Environment assumptions for synthesis.
In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 147–161.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9 14

5. Damm, W., Finkbeiner, B.: Does it pay to extend the perimeter of a world model? In: Butler,
M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 12–26. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21437-0 4

6. Desai, A., Ghosh, S., Seshia, S.A., Shankar, N., Tiwari, A:. A runtime assurance framework
for programming safe robotics systems. In: IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN), June 2019

7. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L., Seshia, S.A.:
Scenic: a language for scenario specification and scene generation. In: Proceedings of the
40th annual ACM SIGPLAN conference on Programming Language Design and Implemen-
tation (PLDI), June 2019

8. Ghosh, S., Bansal, S., Sangiovanni-Vincentelli, A., Seshia, S.A., Tomlin, C.J.: A new sim-
ulation metric to determine safe environments and controllers for systems with unknown
dynamics. In: Proceedings of the 12th International Conference on Hybrid Systems: Com-
putation and Control (HSCC), pp. 185–196, April 2019

9. Ghosh, S., et al.: Diagnosis and repair for synthesis from signal temporal logic specifications.
In: Proceedings of the 9th International Conference on Hybrid Systems: Computation and
Control (HSCC), April 2016

10. Li, W., Dworkin, L., Seshia, S.A.: Mining assumptions for synthesis. In: Proceedings of the
Ninth ACM/IEEE International Conference on Formal Methods and Models for Codesign
(MEMOCODE), pp. 43–50, July 2011

11. Li, W., Sadigh, D., Shankar Sastry, S., Seshia, S.A.: Synthesis for human-in-the-loop control
systems. In: Proceedings of the 20th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), pp. 470–484, April 2014

12. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson, E.A.,
Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg
(2005). https://doi.org/10.1007/11609773 24

13. Seshia, S.A., Sadigh, D., Shankar Sastry, S.: Towards Verified Artificial Intelligence. ArXiv
e-prints, July 2016

14. Urmson, C., Baker, C., Dolan, J., Rybski, P., Salesky, B., Whittaker, W., Ferguson, D., Darms,
M.: Autonomous driving in traffic: boss and the urban challenge. AI Magazi 30(2), 17–17
(2009)

15. Wongpiromsarn, T., et al.: Receding horizon temporal logic planning. IEEE Trans. Autom.
Control 57(11), 2817–2830 (2012)

https://en.wikipedia.org/wiki/Lane#Lane_width
https://velodynelidar.com/products.html
https://doi.org/10.1007/978-3-540-85361-9_14
https://doi.org/10.1007/978-3-642-21437-0_4
https://doi.org/10.1007/11609773_24

Robustness of Specifications and Its
Applications to Falsification, Parameter
Mining, and Runtime Monitoring with

S-TaLiRo

Georgios Fainekos1, Bardh Hoxha2, and Sriram Sankaranarayanan3(B)

1 Arizona State University, Tempe, AZ, USA
fainekos@asu.edu

2 Southern Illinois University, Carbondale, IL, USA
bhoxha@cs.siu.edu

3 University of Colorado, Boulder, CO, USA
srirams@colorado.edu

Abstract. Logical specifications have enabled formal methods by care-
fully describing what is correct, desired or expected of a given sys-
tem. They have been widely used in runtime monitoring and applied
to domains ranging from medical devices to information security. In
this tutorial, we will present the theory and application of robustness of
logical specifications. Rather than evaluate logical formulas to Boolean
valuations, robustness interpretations attempt to provide numerical val-
uations that provide degrees of satisfaction, in addition to true/false
valuations to models. Such a valuation can help us distinguish between
behaviors that “barely” satisfy a specification to those that satisfy it in a
robust manner. We will present and compare various notions of robust-
ness in this tutorial, centered primarily around applications to safety-
critical Cyber-Physical Systems (CPS). We will also present key ways in
which the robustness notions can be applied to problems such as runtime
monitoring, falsification search for finding counterexamples, and mining
design parameters for synthesis.

1 Introduction

Embedding computers in physical engineered systems has created new oppor-
tunities and at the same time major challenges. A prime example is the recent
Boeing 737 MAX 8. Improving the efficiency of an existing and proven airframe
led to a new design which could become unstable at higher angles-of-attack.
In turn, the Maneuvering Characteristics Augmentation System (MCAS) was
developed to restrict pilot inputs and protect the system from entering poten-
tially unsafe operating regions. However, the system was not properly developed
and/or tested, which led to two tragic airplane crashes with devastating human
losses. In light of these accidents, further scrutiny and investigation revealed
a number of software related issues [31]. Unfortunately, software related issues
c© Springer Nature Switzerland AG 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 27–47, 2019.
https://doi.org/10.1007/978-3-030-32079-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-32079-9_3

28 G. Fainekos et al.

are not only troubling the aerospace industry, but also the autonomous vehicle
industry [39], and they have been a long term issue in the medical device [45]
and automotive [35] industries.

One of the main challenges on which the prior software related issues can be
attributed to is that Cyber-Physical Systems (CPS) are inherently more complex
than traditional computer systems. In general, the primary reason for the higher
complexity is that the software or hardware interactions with the physical world
cannot be abstracted away in order to use classical Boolean-based design frame-
works and tools. In turn, this means that traditional software testing methods
cannot be directly utilized for testing CPS software.

A decade ago, we recognized the limitations of traditional software testing
methods in the context of CPS and we proposed a search based testing method
explicitly targeted on testing CPS [43]. The framework proposed in [43] – some-
times also termed requirements guided falsification – falls under the broader class
of search-based testing methods [36]. In brief, requirements guided falsification
for CPS uses formal requirements (specifications) in temporal logic in order to
guide the search for system trajectories (traces) which demonstrate that the
requirement does not hold on that system (in other words the specification is
falsified). In [43], the search is guided by the robustness with which a trajectory
satisfies the formal requirement [27]. The robustness concept [27] captures how
well a trajectory satisfies a formal requirement. Namely, the robustness measure
provides a bound on how large disturbances a system trajectory can tolerate
before it does not satisfy the requirement any more. Our robustness guided fal-
sification is leveraging this property to identify regions in the search space which
are more promising for the existence of falsifying system behaviors. In other
words, our method is based on the principle that falsifying behaviors are more
likely to exist in the neighborhood of low robustness behaviors.

Despite the apparent simplicity of robustness guided testing for CPS, the
framework has been successfully utilized for a range of applications from medical
devices [12] to Unmanned Aerial Vehicles (UAV) [47] and Automated Driving
Systems (ADS) [46]. In addition, there is a growing community working on CPS
falsification problems, e.g., see the ARCH falsification competition [19,24].

This paper provides a tutorial on the software tool S-TaLiRo [7], which
started as an open source project [44] for the methods developed in [27] and [43].
Even though the temporal logic robustness computation engine [25,27] is imple-
mented in C, S-TaLiRo is primarily a Matlab toolbox. The tutorial provides a
quick overview of the S-TaLiRo support for temporal logic robustness compu-
tation [26], falsification [1,42], parameter mining [33], and runtime monitoring
[17]. For other S-TaLiRo features such as conformance testing [3], elicitation
and debugging of formal specifications [18,34], and robustness-guided analysis
of stochastic systems [2] we refer the reader to the respective publications. The
paper concludes with some current research trends.

Beyond S-TaLiRo: This paper accompanies a tutorial on S-TaLiRo and its
applications. Whereas, S-TaLiRo remains one of the many tools in this space,
there are many other tools that use temporal logic robustness for monitoring,

Robustness of Specifications 29

falsification, requirements mining and parameter mining [10,36]. A detailed
report on current tools and their performance on benchmark problems is avail-
able from the latest ARCH competition report on falsification tools [24]. Besides
commercial tools such as the Simulink (tm) design verifier toolbox in Matlab [40]
and Reactis tester (tm) [8], falsification techniques have been explored by aca-
demic tools such as Breach [21], Falstar [50] and Falsify [5], in addition to S-
TaLiRo. A recent in-depth survey on runtime monitoring provides an in-depth
introduction to the specification formalisms such as Signal Temporal Logic (STL)
and the use of robustness for runtime monitoring, falsification and parameter
mining [10]. Other recent surveys focus broadly on modeling, specification and
verification techniques for Cyber-Physical Systems [14].

2 Systems and Signals

In S-TaLiRo, we treat a CPS as an input-output map. Namely, for a system Σ ,
the set of initial operating conditions X0 and input signals U ⊆ UN , are mapped
to output signals YN and timing (or sampling) functions T ⊆ R

N
+ . The set U is

closed and bounded and contains the possible input values at each point in time
(input space). Here, Y is the set of output values (output space), R is the set of
real numbers and, R+ the set of positive reals. The set N ⊆ N, where N is the
set of natural numbers, is used as a set of indexes for the finite representation
(simulations) of system behavior.

A system Σ can be viewed as a function ΔΣ : X0 × U → YN
× T which

takes as an input an initial condition x0 ∈ X0 and an input signal u ∈ U and
it produces as output a signal y : N → Y (also referred to as trajectory) and a
timing function τ : N → R+. The only restriction on the timing function τ is that
it must be a monotonic function, i.e., τ(i) < τ(j) for i < j. The pair μ = (y, τ) is
usually referred to as a timed state sequence, which is a widely accepted model
for reasoning about real-time systems [6].

The set of all timed state sequences of a system Σ will be denoted by L(Σ).
That is, L(Σ) = {(y, τ) | ∃x0 ∈ X0 . ∃u ∈ U . (y, τ) = ΔΣ (x0, u)}.

2.1 Input Signals

We assume that the input signals, if any, must be parameterizable using a finite
number of parameters. This assumption enables us to define a search problem of
finite dimensionality. In S-TaLiRo, the input signals are parameterized using m
number of control points. The control points vector �λ and the timing vector �t, in
conjunction with an interpolation function U, define the input signal u. Namely,
at time t, u(t) = U(�λ,�t)(t).

The practitioner may choose different interpolation functions depending on
the system and application. Example functions, as shown in Fig. 1, include linear,
piecewise constant, splines, piecewise cubic interpolation, etc. If timing control
points are not included, the state control points will be distributed equidistantly
with respect to time with a chosen interpolation function. Otherwise, the timing

30 G. Fainekos et al.

0 5 10 15 20
0

20

40

0 5 10 15 20
0

20

40

)b()a(

0 5 10 15 20
0

20

40

0 5 10 15 20
0

20

40

)d()c(

Fig. 1. Signal generation with state control points �λ = [20, 40, 10, 40, 10] and equidistant
timing control points �t = [0, 5, 10, 15, 20] with various interpolation functions. (a) Linear,
(b) Piecewise constant, (c) Spline, (d) Piecewise cubic interpolation.

0 5 10 15 20
0

20

40

0 5 10 15 20
0

20

40

)b()a(

Fig. 2. Signal generation with state control points �λ = [20, 40, 10, 40, 10] and piecewise
constant interpolation. (a) With no timing control points, (b) With timing control
points �t = [0, 2, 10, 18, 20].

of the state control points is defined by the timing vector �t. The timing option
is illustrated in Fig. 2. Choosing the appropriate number of control points and
interpolation functions is application dependent. Timing should be included in
the search space whenever the system should be tested under conditions where
the input variation could be high in a very short period of time. By including
timing between control points in the search space, one may be able to produce
behaviors such as jerking behavior for the gas and brake throttle of an automotive
vehicle. Note that in this framework, for systems with multiple inputs, each input
can have a different number of control points and interpolation function. This
enables the practitioner to define a wide array of input signals.

2.2 Automotive Transmission (AT)

As a running example, we consider an Automatic Transmission model that is
widely used as a benchmark for CPS testing and verification [1,19,20,24,33].

Robustness of Specifications 31

We modify the original Simulink model provided by Mathworks1 slightly to
enable input and output interaction with Matlab scripts and S-TaLiRo. The
input space of the model is the throttle schedule u ∈ [0, 100]. The physical
component of the model has two continuous state variables x which are also its
outputs y: the speed of the engine ω (RPM) and the speed of the vehicle v.
The output space is Y = R

2 with y(i) = [ω(i) v(i)]T for all i in the simulation
time. The vehicle is at rest at time 0. The model contains a Stateflow chart with
two concurrently executing Finite State Machines (FSM) with 4 and 3 states,
respectively. The FSM models the logic that controls the switching between the
gears in the transmission system. We remark that the system is deterministic,
i.e., under the same input signal u, we will observe the same output signal y. For
a more detailed presentation of this model see [32].

3 Metric Temporal Logic

Metric Temporal Logic (MTL) is an extension of Linear Temporal Logic that
enables the definition of timing intervals for temporal operators. It was intro-
duced in [37] to reason over quantitative timing properties of Boolean signals.

In addition to propositional logic operators such as conjunction (∧), disjunc-
tion (∨) and negation (¬), MTL supports temporal operators such as next (©),
weak next (∼©), until (UI), release (RI), always (�I) and eventually (�I).

Definition 1 (MTL Syntax). MTL syntax is defined by the grammar:

φ ::= 	 | p | ¬φ | φ1 ∨ φ2 | © φ | φ1UIφ2 (1)

where p ∈ AP with AP being the set of atomic propositions, and 	 is True
(⊥ = ¬	 is False). Also, I is a nonsingular interval of the positive reals.

MTL enables the formalization of complex requirements with respect to both
state and time as presented in Table 1.

In S-TaLiRo, the user defines a specification as a string where the temporal
operators ©, � and � are represented as X, [] and <>, respectively.

The atomic propositions in our case label subsets of the output space Y . In
other words, each atomic proposition is a shorthand for an arithmetic expression
of the form p ≡ g(y) ≤ c, where g : Y → R and c ∈ R. We define an observation
map O : AP → 2Y such that for each p ∈ AP the corresponding set is O(p) =
{y | g(y) ≤ c} ⊆ Y . Examples of MTL specifications for our running example AT
can be found on Table 2.

3.1 Parametric Metric Temporal Logic

MTL specifications may also be parameterized and presented as templates, where
one or more state or timing parameters are left as variables. The syntax of
parametric MTL is defined as follows (see [9,33] for more details):
1 Simulink model discussed at: http://www.mathworks.com/help/simulink/examples/

modeling-an-automatic-transmission-controller.html.

http://www.mathworks.com/help/simulink/examples/modeling-an-automatic-transmission-controller.html
http://www.mathworks.com/help/simulink/examples/modeling-an-automatic-transmission-controller.html

32 G. Fainekos et al.

Table 1. Specifications in MTL and natural language.

Specification Natural language

Safety (�[0,θ]φ) φ should always hold from time 0 to θ

Liveness (�[0,θ]φ) φ should hold at some point from 0 to θ (or
now)

Coverage (�φ1 ∧ �φ2 ... ∧ �φn) φ1 through φn should hold at some point in
the future (or now), not necessarily in order
or at the same time

Stabilization (��φ) At some point in the future (or now), φ
should always hold

Recurrence (��φ) At every point in time, φ should hold at
some point in the future (or now)

Reactive Response (�(φ→ ψ)) At every point in time, if φ holds then ψ
should hold

Definition 2 (Syntax of Parametric MTL). Let �θ = [θ1 . . . θn] be a vector
of parameters. The set of all well-formed Parametric MTL (PMTL) formulas is
the set of all well-formed MTL formulas where for all i, θi either appears in an
arithmetic expression, i.e., p[θi] ≡ g(y) ≤ θi, or in the timing constraint of a
temporal operator, i.e., I[θi].

We will denote a PMTL formula φ with parameters �θ by φ[�θ]. Given a vector
of parameters �θ ∈ Θ, then the formula φ[�θ] is an MTL formula. There is an
implicit mapping from the vector of parameters �θ to the corresponding arithmetic
expressions and temporal operators in the MTL formula. Once a parameter
valuation is defined, a PMTL formula is transformed into an MTL formula.

4 Robustness of Metric Temporal Logic Formulas

Once system specifications are defined in MTL, we can utilize the theory of the
robustness of MTL to determine whether a particular behavior satisfies or falsi-
fies (does not satisfy) the specification. Furthermore, we can quantify how “close”
that particular behavior is to falsification. A positive robustness value indicates
that the specification is satisfied and a negative robustness value indicates that
the specification is falsified.

Using a metric d [28], we can define the distance of a point x ∈ X from a set
S ⊆ X as follows:

Definition 3 (Signed Distance). Let x ∈ X be a point, S ⊆ X be a set and d
be a metric on X. Then, we define the Signed Distance from x to S to be

Distd(x, S) :=
{
−min{d(x, y) | y ∈ S} if x � S
min{d(x, y) | y ∈ X\S} if x ∈ S

Robustness of Specifications 33

Table 2. Various specifications for the AT model [32].

Natural Language MTL

ψ1 It is not the case that eventually, the
vehicle will be in fourth gear and the
speed of the vehicle is less than 50

ψ1 = ¬�(g4 → (v < 50))

ψ2 There should be no transition from
gear two to gear one and back to gear
two in less than 2.5 s

�((g2 ∧ ©g1) → �(0,2.5]¬g2)

ψ3 After shifting into gear one, there
should be no shift from gear one to
any other gear within 2.5 s

�((¬g1 ∧ ©g1) → �(0,2.5]g1)

ψ4 When shifting into any gear, there
should be no shift from that gear to
any other gear within 2.5 s

∧
4
i=1�((¬gi ∧ ©gi) → �(0,2.5]gi)

ψ5 If engine speed is always less than ω̄,
then vehicle speed can not exceed v̄ in
less than T sec

¬(�[0,T](v > v̄) ∧ �(ω < ω̄)) or �(ω <
ω̄) → �[0,T](v > v̄)

ψ6 Within T sec the vehicle speed is
above v̄ and from that point on the
engine speed is always less than ω̄

�[0,T]((v ≥ v̄) ∧ �(ω < ω̄))

ψ7 A gear increase from first to fourth in
under 10 s, ending in an RPM above ω̄
within 2 s of that, should result in a
vehicle speed above v̄

((g1 U g2 U g3 U g4) ∧ �[0,10](g4 ∧

�[0,2](ω ≥ ω̄))) → �[0,10](g4 ∧

©(g4 U[0,1] (v ≥ v̄)))

ω: Engine rotation speed, v: vehicle velocity, gi : gear i. Recommended values:
ω̄ : 4500, 5000, 5200, 5500 RPM; v̄ : 120, 160, 170, 200 mph; T : 4, 8, 10, 20 s
�: Always, �: Eventually, U: Until, ©: Next

MTL formulas are interpreted over timed state sequences μ. We let the val-
uation function be the depth (or the distance) of the current point of the signal
y(i) in the set O(p) labeled by the atomic proposition p. This robustness estimate
over a single point can be extended to all points on a trajectory by applying a
series of min and max operations over time. This is referred to as the robust-
ness estimate and is formally presented in Definition 4. The robustness estimate
defines how much of a perturbation a signal can tolerate without changing the
Boolean truth value of the specification.

For the purposes of the following discussion, we use the notation [[φ]] to
denote the robustness estimate with which the timed state sequence μ satisfies
the specification φ. Formally, the valuation function for a given formula φ is
[[φ]] : YN

×T×N → R. In the definition below, we also use the following notation:
for Q ⊆ R, the preimage of Q under τ is defined as: τ−1(Q) := {i ∈ N | τ(i) ∈ Q}.
Also, given an α ∈ R and I = 〈l, u〉, we define the timing interval shift operation

34 G. Fainekos et al.

as α+I = 〈α+ l, α+ u〉. Here, 〈 and 〉 are used to denote brackets or parentheses
for closed and open intervals.

Definition 4 (Robustness Estimate [28]). Let μ = (y, τ) ∈ Y [0,T], and i, j, k ∈

N, then the robustness estimate of any formula MTL formula is defined as:

[[]](μ, i) := +∞

[[p]](μ, i) := Distd(y(i),O(p))

[[¬φ]](μ, i) := −[[φ]](μ, i)

[[φ1 ∨ φ2]](μ, i) := max([[φ1]](μ, i), [[φ2]](μ, i))

[[©φ]](μ, i) :=
{
[[φ]](μ, i + 1) if i + 1 ∈ N
−∞ otherwise

[[φ1 UIφ2]](μ, i) := max
j∈τ−1(τ(i)+I)

(
min([[φ2]](μ, j), min

i≤k< j
[[φ1]](μ, k))

)

When i = 0, then we write [[φ]](μ). With [[φ]](Σ), We denote the system
robustness as the minimum robustness over all system behaviors.

[[φ]](Σ) = min
μ∈L(Σ)

[[φ]](μ) (2)

In S-TaLiRo, the robustness of an MTL formula with respect to a timed
state sequence is computed using two algorithms. The first algorithm, dp taliro
[25], uses a dynamic programming algorithm to compute the robustness in seg-
ments, iteratively. The second algorithm, fw taliro [28], uses formula rewriting
techniques. This approach maintains a state of the formula with respect to time,
however, at a significant computation cost. If we consider the robustness esti-
mate over systems, the resulting robustness landscape can be both nonlinear and
non-convex. An example of the robustness landscape for an MTL specification
is illustrated in Fig. 3.

We note that a similar notion of robustness is presented in [22] for Signal
Temporal Logic (STL) formulas [41]. While between the two approaches the
robust interpretation (semantics) for predicates of the form x < a is identical, the
two approaches differ over arbitrary predicates of form f (x) < 0. Using the notion
of robustness in Definition 4, predicates of the form f (x) < 0 are interpreted as
the signed distance of the current point x from the set {x | f (x) < 0}. On the
other hand, predicates of the form f (x) < 0 are not directly supported by the
theory as introduced in [22]. If the robustness of f (x) < 0 is simply defined as
f (x), then the robustness estimate is not guaranteed to define a robustness tube
within which all other trajectories satisfy the same property. Nevertheless, for
both semantics, positive robustness implies Boolean satisfaction, while negative
robustness implies falsification.

Robustness of Specifications 35

0
20

40
60

01020304050
-60

-50

-40

-30

-20

-10

0

10

20

30

u1u2

R
ob

us
tn
es

s

Fig. 3. Robustness estimate landscape for the AT model and specification φAT =

¬(�[0,30](v > 100) ∧�(ω ≤ 4500)) ∧ ¬�[10,40]�[0,5](60 < v ≤ 80) ∧ ¬�[50,60]�[0,3](v ≤ 60).
The input signal to the system is generated by linearly interpolating control points u1,
u2 at time 0 and 60, respectively, for the throttle input u. That is, u(t) = 60−t

60 u1 + t
60u2.

5 Falsification with S-TaLiRo

The problem of determining whether a CPS Σ satisfies a specification φ is an
undecidable problem, i.e. there is no general algorithm that terminates and
returns whether Σ |= φ. Therefore, it is not possible to determine exactly the
minimum robustness over all system behaviors. However, by repeatedly testing
the system, we can check whether a behavior that does not satisfy the spec-
ification exists. In other words, we try to find a counter-example or falsifying
example that proves that the system does not satisfy the specification within a
set number of tests. The MTL falsification problem is presented as follows:

Problem 1 (MTL Falsification). Given an MTL formula φ and a system Σ ,
find initial conditions and input signals such that, when given to Σ , generate
a trajectory that does not satisfy φ. Formally, find x0 ∈ X0, u ∈ U, where μ =

ΔΣ (x0, u) and [[φ]](μ) < 0 (or with Boolean semantics μ � |= φ).

In S-TaLiRo [7,44], this is defined as an optimization problem that uses
the notion of MTL robustness to guide the search. To solve this problem, an
automated test case generation framework is utilized (see Fig. 4). S-TaLiRo
takes as input a model, an MTL specification and a well-defined search space
over the system inputs and initial conditions. Then, a stochastic optimization
algorithm generates a point x0 for the initial conditions and input signal u.
These are given to the system model which generate an execution trace (output
trajectory and timing function). By analyzing the execution trace, a robustness
value is computed. This is then used by the stochastic optimization algorithm to
select the next sample until a falsifying trajectory is generated or the maximum
number of test is reached. The algorithm will return the least robust system
behavior with the corresponding input signal and initial conditions.

36 G. Fainekos et al.

5.1 Falsification with the Hybrid Distance

For falsification of specifications such as ψ1 = ¬�(g4 → (v < 50)) over the AT
model, where there is an implication relation and the antecedent is over a discrete
mode of the system rather than a continuous state, the robustness estimate from
Definition 4 does not provide sufficient information to the stochastic optimizer to
find a falsifying behavior. In fact, the formula may be trivially satisfied since the
search space that pushes the system to gear four is never explored. Therefore,
the antecedent is false and the formula evaluates to true. For such specifications,
in S-TaLiRo, a hybrid distance metric may be utilized to attempt falsification.
In this case, we assume that the user has information on the logical modes of the
model including a connectivity graph G and transition guards. Now, the output
space becomes a hybrid space Y = {g1, g2, g3, g4} × R

2.

System
Simulator

Specification
MTL

Robustness
Stochastic

Optimization
robustness

Initial conditions , input signal

Fig. 4. The falsification framework in S-TaLiRo. Once a system Σ, initial conditions
x0, and input signals u are given, an output trajectory y is generated. The output
trajectory y is then analyzed with respect to a specification and a robustness estimate
ε is produced. This robustness estimate is then used by the stochastic optimizer to
generate a new initial condition and input signal with the goal of minimizing the
system robustness.

The hybrid distance metric is defined as a piecewise function. In the case
when the current mode of the system is not in the mode where the specification
can be falsified, then the hybrid distance is composed of two components. The
first contains the number of hops/transitions from the current mode to the mode
where falsification may occur. The second component is the continuous distance
to the guard transition in the shortest path to the falsifying mode. In the case
where falsification may occur in the current mode, the hybrid distance metric is
the robustness estimate from Definition 4. For a detailed, formal presentation of
the hybrid distance see [1].

In Fig. 5, we illustrate the robustness landscape from Definition 4 and the
hybrid distance. While one is flat, offering little information to the stochastic
optimizer, the other one has a gradient that leads to falsification. Note that the
hybrid distance there is mapped to a real value using a weighting function that
emphasizes the number of hops to the mode where falsification may occur.

6 Parameter Mining

Parameter mining refers to the process of determining parameter valuations for
parametric MTL formulas for which the specification is falsified. The parameter

Robustness of Specifications 37

)b()a(

Fig. 5. Robustness landscape for the specification ψ1 = ¬�(g4 → (v < 50)) over the AT
model using the (a) euclidean robustness estimate and (b) hybrid robustness estimate.

mining problem can be viewed as an extension of the falsification problem, where
not only are we interested in finding falsifying behaviors for a specific parameter
valuation of a parametric MTL formula, but we are interested in finding falsifying
behaviors for a range of parameter valuations. In other words, we answer the
question of what parameter ranges cause falsification.

Our high-level goal is to explore and infer properties that a system does not
satisfy. We assume that the system designer has partial understanding about the
properties that the system satisfies (or does not satisfy) and would like to be
able to determine these properties precisely. The practical benefits of this method
are twofold. One, it allows for the analysis and development of specifications. In
many cases, system requirements are not well formalized by the initial system
design stages. Two, it allows for the analysis and exploration of system behavior.
If a specification can be falsified, then it is natural to inquire for the range of
parameter values that cause falsification. That is, in many cases, the system
design may not be modified, but the guarantees provided should be updated.

The parameter mining problem is formally defined as follows.

Problem 2 (MTL Parameter Mining). Given a parametric MTL formula

φ[�θ] with a vector of m unknown parameters �θ ∈ Θ = [�θ,
�
θ] and a system Σ , find

the set Ψ = {�θ∗ ∈ Θ | Σ does not satisfy φ[�θ∗]}.

That is, the solution to Problem 2 is the set Ψ such that for any parameter
�θ∗ in Ψ the specification φ[�θ∗] does not hold on system Σ . In other words, it is
the set of parameter valuations for which the system is falsified. In the following,
we refer to Ψ as the parameter falsification domain.

6.1 Monotonicity of Parametric MTL

In S-TaLiRo, we solve this problem for a class of monotonic parametric MTL
specifications. For these specifications, as you increase the parameter valuation,

38 G. Fainekos et al.

the robustness of the system is either non-increasing or non-decreasing. The
first step in the parameter mining algorithm in S-TaLiRo is to automatically
determine the monotonicity of the parametric MTL specification. A formal result
on the monotonicity problem is presented next.

Theorem 1 (Monotonicity of parametric MTL). Consider a PMTL for-
mula ψ[�θ], where �θ is a vector of parameters, such that ψ[�θ] contains temporal
subformulas φ[�θ] = φ1[�θ]UI[θs]φ2[

�θ], or propositional subformulas φ[�θ] = p[�θ].
Then, given a timed state sequence μ = (y, τ), for �θ, �θ ′ ∈ R

n

≥0, such that �θ � �θ ′,
where 1 ≤ j ≤ n, and for i ∈ N, we have:

– if for all such subformulas (i) maxI(θs) = θs or (ii) p[�θ] ≡ g(x) ≤ �θ, then
[[φ[�θ]]](μ, i) ≤ [[φ[�θ ′]]](μ, i), i.e., function [[φ[�θ]]](μ, i) is non-decreasing with
respect to �θ,

– if for all such subformulas (i) minI(θs) = θs or (ii) p[�θ] ≡ g(x) ≥ �θ, then
[[φ[�θ]]](μ, i) ≥ [[φ[�θ ′]]](μ, i), i.e., function [[φ[�θ]]](μ, i) is non-increasing with
respect to �θ.

Consider the parametric MTL formula φ[θ] = �[0,θ]p where p ≡ (ω ≤ 3250).
The function [[φ[θ]]](μ) is non-increasing with respect to θ [9,33]. Intuitively, this
relationship holds since by extending the value of θ in φ[θ], it becomes just as
or more difficult to satisfy the specification. In Fig. 6, this is illustrated using a
single output trajectory over the AT model. However, using Theorem1, we know
that the monotonicity of the specification holds over all system behaviors.

0 5 10 15 20 25 30
1000

1500

2000

2500

3000

3500

t

ω
(t)

0 5 10 15 20 25 30
−1000

0

1000

2000

3000

θ

R
ob

us
te
ns

s

Fig. 6. Left: An output trajectory of the AT model for engine speed ω(t) for constant
input throttle u(t) = 50; Right: corresponding robustness estimate of the specification
�[0,θ](ω ≤ 3250) with respect to θ.

6.2 Robustness-Guided Parameter Mining

To solve the parameter mining problem, we utilize the theory of robustness of
MTL specifications to pose it as an optimization problem.

Robustness of Specifications 39

0 5 10 15 20 25 30
-20

0

20

40

60

80

100

120

*

Fig. 7. Estimate of the robustness landscape for specification φ[θ] = �[0,θ](v < 120)
over the AT model. The figure is generated by running a falsification algorithm for
parameter valuations 0 to 30. The red line drawn at 0 marks the boundary between
satisfaction and falsification. The green (red) dots represent trajectories over different
input signals that satisfied (falsified) the specification. (Color figure online)

In Fig. 7, the estimated robustness landscape over parameter valuations is
presented for the specification φ[θ] = �[0,θ](v < 120). The graph was generated
by conducting falsification at parameter valuations 0 to 30. For each parame-
ter valuation, 100 tests are conducted (hence estimated). Although we cannot
calculate the exact robustness landscape, from Theorem 1, we know that the
monotonicity of the specification is non-increasing. By increasing the value of
θ you extend the time bounds for which (v < 120) has to hold, and therefore
the robustness cannot increase. Of particular interest is the parameter valuation
where the robustness line intersects with 0, that is, the point where the specifi-
cation switches from satisfied to falsified. Formally, in order to solve Problem 2,
we solve the following optimization problem:

optimize f (�θ) (3)

subject to �θ ∈ Θ and [[φ[�θ]]](Σ) = min
μ∈Lτ (Σ)

[[φ[�θ]]](μ) ≤ 0

where f : Rn
→ R is a non-increasing (≥) or a non-decreasing (≤) function.

The function [[φ[�θ]]](Σ), which is the robustness of the system for a parameter
valuation over all system behaviors, cannot be computed using reachability anal-
ysis algorithms nor is known in closed form for the systems we are considering.
Therefore, we have to compute an under-approximation of Θ∗. We reformulate an
optimization problem that can be solved using stochastic optimization methods.
In particular, we reformulate the optimization problem (3) into a new one where
the constraints due to the specification are incorporated into the cost function:

optimize�θ∈Θ

(
f (�θ) +

{
γ ± [[φ[�θ]]](Σ) if [[φ[�θ]]](Σ) ≥ 0
0 otherwise

)
(4)

40 G. Fainekos et al.

0 5 10 15 20 25 30
-40

-20

0

20

40

60

80

100

120

*

Fig. 8. The modified cost function for parameter mining for the specification φ[θ] =
�[0,θ](v < 120) over the AT model. The solution to the optimization problem in Eq. (4)
returns θ∗

where the sign (±) and the parameter γ depend on whether the problem is a
maximization or a minimization problem. The parameter γ must be properly
chosen so that the solution of the problem in Eq. (4) is in Θ if and only if
[[φ[�θ]]](Σ) ≤ 0. Therefore, if the problem in Eq. (3) is feasible, then the optimal
points of Eqs. (3) and (4) are the same. For more details on Eq. (4), see [33]
(Fig. 8).

For specifications with more than one parameter, the robustness landscape
over the parameters forms a Pareto front. One inefficient and potentially mis-
leading approach for generating the parameter falsification domain is by running
a falsification algorithm for a set number of parameter valuations. For exam-
ple, consider the parameter falsification domain in Fig. 9 (Left) for specification
φ[�θ] = ¬(�[0,θ1] ∧ �(ω < θ2)). The figure was generated by running the falsi-
fication algorithm for 200 iterations for every green/red dot. This approach is
computationally very expensive and this specific example took 52 h to compute
on a computer with an I7 4770 k CPU and 16 GB of RAM. Furthermore, this
approach may be misleading. It is possible that for a particular parameter valua-
tion, falsification fails when in fact there exists falsifying behavior. For example,
in Fig. 9 (Left), the green dot for the parameter valuation [36,4360], i.e. specifi-
cation φ[36, 4360] = ¬(�[0,36] ∧ �(ω < 4360)), has falsifying behavior. We know
this since there exists falsifying behavior for the red dot for parameter valuation
[34,4190]. From Theorem 1, we know that the specification has a non-increasing
robustness with respect to parameters. We say that the parameter valuation
[34,4190] dominates [36,4360] in terms of falsification because if there exists a
trajectory μ such that μ � |= φ[34, 4190] then μ � |= φ[36, 4360].

In S-TaLiRo, we provide two efficient approaches to explore the parameter
falsification domain iteratively. The Robustness-Guided Parameter Falsification
Domain Algorithm (RGDA) and the Structured Parameter Falsification Domain

Robustness of Specifications 41

Algorithm (SDA). In RGDA, parameters weights are utilized to guide the search
towards unexplored areas of the parameter falsification domain. In SDA, the
search is finely structured and does not depend on randomized weights. For
details and analysis on the two algorithms, see [33]. The parameter falsification
domain in Fig. 9 (Right) was computed with the RGDA algorithm with 100
iterations in 52 min.

[36,4360]
[34,4190]

Fig. 9. The parameter falsification domain Ψ for the specification φ[�θ] = ¬(�[0,θ1] ∧
�(ω < θ2)) over the AT model for parameter valuations 0 to 60 for θ1 and 3000 to
8000 for θ2. Left: The figure is generated by running the falsification algorithm with
100 iterations for each dot in the figure. The green (red) dots represent the minimum
robustness over 100 iterations that satisfied (falsified) the specification. Right: The
figure is generated using the RGDA algorithm. The red area represents the parameter
falsification domain, i.e. parameter valuations for which the specification is falsified.
(Color figure online)

7 Runtime Monitoring

The discussion so far was primarily concerned with applications of offline moni-
toring of temporal logic robustness. However, many applications require online
or runtime monitoring of robustness. In offline monitoring, the whole system
trace is available offline for analysis, which means that it is possible to move
forward and backward in time in order to compute its robustness with respect
to a given specification. On the other hand, in runtime verification, the data
become available during system execution.

Therefore, it is not clear that future time formal languages can always capture
requirements in a meaningful way. For example, let us consider the future tense
requirement that “the RPM can remain higher than 2000 for more than 5 sec
only when the vehicle is in gear 4.” Formally, the requirement is ϕ = �(¬g4 →

�[0,5](ω < 2000)) which is equivalent to �(g4 ∨ �[0,5](ω < 2000)). If at time t
the gearbox is not in the fourth gear, then we can only know at time t + 5 if
the requirement was violated. From a requirements perspective, it is desirable

42 G. Fainekos et al.

to check at time t if the requirement is satisfied or violated. In other words,
we may want to monitor an invariant like “at least once in the past 5 seconds,
either the system was in gear four or the RPM was below 2000.” The past tense
requirement would guarantee that at time t we have not observed an interval
that the RPM was above 2000 and the system was not in gear four.

In [17], we developed a Simulink block in S-TaLiRo which can perform
runtime robustness monitoring for past-future time MTL specifications. Namely,
the Simulink block enables past time formula monitoring on data generated by
a model or by a physical system interfaced with Simulink. In addition, if the
Simulink model contains a prediction model with a prediction finite-time horizon
h, then the user can express requirements with unbounded past and bounded
future time horizon. In more detail, we have extended the syntax of MTL with
past time operators such as “the previous sample satisfies φ (�φ), “φ1 since
φ2” (φ1Sφ2), “sometime in the past φ” (�φ ≡ 	Sφ), and “always in the past
φ” (�φ ≡ ¬�¬φ). All these past-time operators can be additionally restricted
though timing constraints as in the case of the future time operators. Details on
the semantics of these operators can be found in [17].

0 10 20 30 40 50 60 70 80 90 100
1000

1500

2000

2500

R
PM

0 10 20 30 40 50 60 70 80 90 100
1

2

3

4

G
ea

r

0 10 20 30 40 50 60 70 80 90 100
Time

0

500

1000

R
ob

us
tn
es

s

Fig. 10. S-TaLiRo runtime monitoring on the automatic transition demo.

Figure 10 presents the output of the S-TaLiRo Simulink monitoring block
when applied to the Simulink automatic transmission model. For this demon-
stration, the throttle input has been set to a constant value of 20 while the
brake input to a constant value of 0. The invariant checked is for the specifica-
tion ϕ = �[0,5](g4 ∨ (ω < 2000)) and its robustness is plotted in Fig. 10. Notice
that about time 21.6 the RPM exceed the 2000 threshold while the gear is still
in three. The instantaneous robustness value of ϕ drops below zero 5 s later as
expected. When the system switches into gear four, the robustness of ϕ immedi-
ately becomes positive again. We remark that the robustness value of predicates

Robustness of Specifications 43

with Boolean interpretation, e.g., gear = 4, must be mapped to some arbi-
trary large value within Simulink. Formalization of the robust interpretation of
such predicates through hybrid distances (see Sect. 5.1) is not straightforward in
Simulink, but potentially using input-output types [29] the process can become
more systematic.

8 Future Directions

We will now turn our attention to problems surrounding learning-enabled and
autonomous systems, which will form an important application area for many of
the techniques detailed thus far. Autonomous systems such as self-driving cars
are increasingly common on our streets. They rely heavily on machine learn-
ing components such as neural networks for detecting other vehicles, obstacles,
pedestrians, traffic signals and signs from a combination of image and LiDAR
data [38]. Besides perception, neural networks are also increasingly used as con-
trollers that directly output steering and throttle commands to the vehicle [11].
Numerous accidents involving autonomous vehicles motivate the need for ensur-
ing the safety of these systems [39]. At the same time, the key challenge lies in
the lack of detailed component-wise specifications for the neural networks. In
fact, most specifications are “end-to-end” high level specifications such as “the
vehicle should brake if it detects a pedestrian in front”.

Falsification approaches are increasingly being used to tackle the issue of
missing specifications by using generative models tied in with rendering tools
that can create realistic inputs to these systems with known “ground truth”.
Falsification tools including S-TaLiRo have been employed directly to find cor-
ner cases that can cause these systems to potentially fail [4,23,30,46]. However,
the key challenges posed by these applications are numerous:

(a) Falsification techniques have been designed primarily for control systems.
The use of neural networks poses many challenges requiring a better formulation
of the robustness concept that encompasses the robustness of classifiers as well as
better stochastic search techniques [48]. Regarding the former, some first steps
have been taken in [16] by defining a new formal logic for perception systems.

(b) Simply providing a falsifying scenario does not solve the issue of design-
ing safe systems. Unlike human designed components, it is nearly impossible
to localize failures to a bad value of a parameter or incorrect logic in soft-
ware. Often neural networks have to be retrained. This requires us to consider
a family of falsifying scenarios that can provide new training data for retraining
the network to hopefully correct the underlying issue. Preliminary approaches
have been proposed that involve repeated application of falsification search and
retraining [13,49]. However, a lot of open challenges remain before this problem
can be considered satisfactorily resolved.

(c) The problem of helping developers understand root causes for falsification
is yet another important future challenge in this area. Current approaches for
understanding root causes are at their infancy [15]. Ideas from other fields such

44 G. Fainekos et al.

as explainable machine learning and natural language processing are needed to
tackle the challenge of producing human understandable explanations of failures.

9 Conclusions

Robustness of temporal logic specification provides a systematic way of defining
real-valued semantics to denote the degree of satisfaction of a specification by
a trace of the system. Starting from robustness, we present important appli-
cations including falsification, parameter mining, runtime monitoring and safe
autonomy. This area continues to be active with new challenges arising from
the rapid emergence of learning-enabled autonomous systems. Future work in
this area will continue to draw upon ideas from diverse areas including machine
learning, robotics, natural language processing and human factors.

Acknowledgments. GF acknowledges support from NSF award 1350420. SS
acknowledges support from NSF award numbers 1646556, 1815983 and the Air Force
Research Laboratory (AFRL). All opinions expressed are those of the authors and not
necessarily of the US NSF or AFRL.

References

1. Abbas, H., Fainekos, G.E., Sankaranarayanan, S., Ivancic, F., Gupta, A.: Proba-
bilistic temporal logic falsification of cyber-physical systems. ACM Transactions
on Embedded Computing Systems 12(s2) (2013)

2. Abbas, H., Hoxha, B., Fainekos, G., Ueda, K.: Robustness-guided temporal logic
testing and verification for stochastic cyber-physical systems. In: IEEE 4th Annual
International Conference on Cyber Technology in Automation, Control, and Intel-
ligent Systems (CYBER) (2014)

3. Abbas, H., Mittelmann, H., Fainekos, G.: Formal property verification in a confor-
mance testing framework. In: 12th ACM-IEEE International Conference on Formal
Methods and Models for System Design (2014)

4. Abbas, H., O’Kelly, M., Rodionova, A., Mangharam, R.: Safe at any speed: a
simulation-based test harness for autonomous vehicles. In: CyPhy 2017 (2017)

5. Akazaki, T., Liu, S., Yamagata, Y., Duan, Y., Hao, J.: Falsification of cyber-
physical systems using deep reinforcement learning. In: Havelund, K., Peleska, J.,
Roscoe, B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 456–465. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-95582-7 27

6. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In:
Mitchell, J. (ed.) 5th Annual IEEE Symposium on Logic in Computer Science
(LICS), pp. 414–425. IEEE Computer Society Press, June 1990

7. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

8. Anonymous: Model-based testing and validation of control software with Reactis
(2003). http://www.reactive-systems.com/papers/bcsf.pdf

https://doi.org/10.1007/978-3-319-95582-7_27
https://doi.org/10.1007/978-3-642-19835-9_21
http://www.reactive-systems.com/papers/bcsf.pdf

Robustness of Specifications 45

9. Asarin, E., Donzé, A., Maler, O., Nickovic, D.: Parametric identification of tem-
poral properties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp.
147–160. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-
8 12

10. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a
survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lec-
tures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75632-5 5

11. Bojarski, M., Testa, D.D., Dworakowski, D., et al.: End to end learning for self-
driving cars. CoRR abs/1604.07316 (2016)

12. Cameron, F., Fainekos, G., Maahs, D.M., Sankaranarayanan, S.: Towards a verified
artificial pancreas: challenges and solutions for runtime verification. In: Bartocci,
E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 3–17. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23820-3 1

13. Claviere, A., Dutta, S., Sankaranarayanan, S.: Trajectory tracking control for
robotic vehicles using counterexample guided training of neural networks. In:
ICAPS, pp. 680–688. AAAI Press (2019)

14. Deshmukh, J.V., Sankaranarayanan, S.: Formal techniques for verification and test-
ing of cyber-physical systems. In: Al Faruque, M.A., Canedo, A. (eds.) Design
Automation of Cyber-Physical Systems, pp. 69–105. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-13050-3 4

15. Diwakaran, R.D., Sankaranarayanan, S., Trivedi, A.: Analyzing neighborhoods of
falsifying traces in cyber-physical systems. In: International Conference on Cyber-
Physical Systems (ICCPS), pp. 109–119. ACM Press (2017)

16. Dokhanchi, A., Amor, H.B., Deshmukh, J.V., Fainekos, G.: Evaluating perception
systems for autonomous vehicles using quality temporal logic. In: Colombo, C.,
Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 409–416. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03769-7 23

17. Dokhanchi, A., Hoxha, B., Fainekos, G.: On-line monitoring for temporal logic
robustness. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734,
pp. 231–246. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-
3 19

18. Dokhanchi, A., Hoxha, B., Fainekos, G.: Formal requirement debugging for testing
and verification of cyber-physical systems. ACM Trans. Embed. Comput. Syst.
(TECS) 17(2), 34 (2018)

19. Dokhanchi, A., et al.: ARCH-COMP18 category report: results on the falsification
benchmarks. In: ARCH@ ADHS, pp. 104–109 (2018)

20. Dokhanchi, A., Zutshi, A., Sriniva, R.T., Sankaranarayanan, S., Fainekos, G.:
Requirements driven falsification with coverage metrics. In: Proceedings of the 12th
International Conference on Embedded Software, pp. 31–40. IEEE Press (2015)

21. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

22. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

23. Dreossi, T., Ghosh, S., Sangiovanni-Vincentelli, A., Seshia, S.A.: Systematic testing
of convolutional neural networks for autonomous driving (2017). Reliable Machine
Learning in the Wild (RMLW) workshop

https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-319-23820-3_1
https://doi.org/10.1007/978-3-030-13050-3_4
https://doi.org/10.1007/978-3-030-03769-7_23
https://doi.org/10.1007/978-3-319-11164-3_19
https://doi.org/10.1007/978-3-319-11164-3_19
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-15297-9_9

46 G. Fainekos et al.

24. Ernst, G., Arcaini, P., Donze, A., Fainekos, G., Mathesen, L., Pedrielli, G.,
Yaghoubi, S., Yamagata, Y., Zhang, Z.: ARCH-COMP 2019 category report: fal-
sification. EPiC Ser. Comput. 61, 129–140 (2019)

25. Fainekos, G., Sankaranarayanan, S., Ueda, K., Yazarel, H.: Verification of automo-
tive control applications using s-TaLiRo. In: Proceedings of the American Control
Conference (2012)

26. Fainekos, G.E., Girard, A., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion
planning for dynamic robots. Automatica 45(2), 343–352 (2009)

27. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications. In:
Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV -2006. LNCS,
vol. 4262, pp. 178–192. Springer, Heidelberg (2006). https://doi.org/10.1007/
11940197 12

28. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theoret. Comput. Sci. 410(42), 4262–4291 (2009)

29. Ferrère, T., Nickovic, D., Donzé, A., Ito, H., Kapinski, J.: Interface-aware signal
temporal logic. In: 22nd ACM International Conference on Hybrid Systems: Com-
putation and Control, pp. 57–66 (2019)

30. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L.,
Seshia, S.A.: Scenic: a language for scenario specification and scene generation.
In: PLDI, pp. 63–78 (2019)

31. Gregg, A., MacMillan, D.: Airlines cancel thousands of flights as Boeing works to
fix 737 max software problems. The Washington Post July 14 (2019)

32. Hoxha, B., Abbas, H., Fainekos, G.: Benchmarks for temporal logic requirements
for automotive systems. In: Workshop on Applied Verification for Continuous and
Hybrid Systems (2014)

33. Hoxha, B., Dokhanchi, A., Fainekos, G.: Mining parametric temporal logic proper-
ties in model based design for cyber-physical systems. Int. J. Softw. Tools Technol.
Transfer 20, 79–93 (2018)

34. Hoxha, B., Mavridis, N., Fainekos, G.: VISPEC: a graphical tool for elicitation of
MTL requirements. In: IEEE/RSJ IROS (2015)

35. Johnson, T.T., Gannamaraju, R., Fischmeister, S.: A survey of electrical and elec-
tronic (E/E) notifications for motor vehicles. In: ESV 2015 (2015)

36. Kapinski, J., Deshmukh, J.V., Jin, X., Ito, H., Butts, K.: Simulation-based
approaches for verification of embedded control systems: an overview of traditional
and advanced modeling, testing, and verification techniques. IEEE Control Syst.
36(6), 45–64 (2016)

37. Koymans, R.: Specifying real-time properties with metric temporal logic. Real
Time Syst. 2(4), 255–299 (1990)

38. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications
in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and
Systems, pp. 253–256, May 2010

39. Lee, T.B.: Report: software bug led to death in Uber’s self-driving crash. Ars
Technica May 07 (2018)

40. Leitner, F., Leue, S.: Simulink design verifier vs. SPIN - a comparative case study
(short paper). In: Formal Methods for Industrial Critical Systems (2008)

41. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

https://doi.org/10.1007/11940197_12
https://doi.org/10.1007/11940197_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12

Robustness of Specifications 47

42. Mathesen, L., Yaghoubi, S., Pedrielli, G., Fainekos, G.: Falsification of cyber-
physical systems with robustness uncertainty quantification through stochastic
optimization with adaptive restart. In: IEEE CASE (2019)

43. Nghiem, T., Sankaranarayanan, S., Fainekos, G.E., Ivancic, F., Gupta, A., Pappas,
G.J.: Monte-Carlo techniques for falsification of temporal properties of non-linear
hybrid systems. In: Proceedings of the 13th ACM International Conference on
Hybrid Systems: Computation and Control, pp. 211–220. ACM Press (2010)

44. S-TaLiRo Tools. https://sites.google.com/a/asu.edu/s-taliro/
45. Sandler, K., et al.: Killed by code: software transparency in implantable medical

devices. Technical report, Software Freedom Law Center (2010)
46. Tuncali, C.E., Fainekos, G., Ito, H., Kapinski, J.: Simulation-based adversarial test

generation for autonomous vehicles with machine learning components. In: IEEE
Intelligent Vehicles Symposium (IV) (2018)

47. Tuncali, C.E., Hoxha, B., Ding, G., Fainekos, G., Sankaranarayanan, S.: Experi-
ence report: application of falsification methods on the UxAS system. In: Dutle,
A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 452–459.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77935-5 30

48. Yaghoubi, S., Fainekos, G.: Gray-box adversarial testing for control systems with
machine learning components. In: ACM International Conference on Hybrid Sys-
tems: Computation and Control (HSCC) (2019)

49. Yaghoubi, S., Fainekos, G.: Worst-case satisfaction of STL specifications using
feedforward neural network controllers: a Lagrange multipliers approach. In: Inter-
national Conference on Embedded Software (EMSOFT) (2019)

50. Zhang, Z., Ernst, G., Sedwards, S., Arcaini, P.: Two-layered falsification of hybrid
systems guided by Monte Carlo tree search. IEEE Trans. CADIntegr. Circ.Syst.
37(11), 2894–2905 (2018)

https://sites.google.com/a/asu.edu/s-taliro/
https://doi.org/10.1007/978-3-319-77935-5_30

On the Runtime Enforcement
of Timed Properties

Yliès Falcone1(B) and Srinivas Pinisetty2

1 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
ylies.falcone@univ-grenoble-alpes.fr

2 School of Electrical Sciences, IIT Bhubaneswar, Bhubaneswar, India
spinisetty@iitbbs.ac.in

Abstract. Runtime enforcement refers to the theories, techniques, and tools for
enforcing correct behavior of systems at runtime.We are interested in such behav-
iors described by specifications that feature timing constraints formalized in what
is generally referred to as timed properties. This tutorial presents a gentle intro-
duction to runtime enforcement (of timed properties). First, we present a taxon-
omy of the main principles and concepts involved in runtime enforcement. Then,
we give a brief overview of a line of research on theoretical runtime enforcement
where timed properties are described by timed automata and feature uncontrol-
lable events. Then, we mention some tools capable of runtime enforcement, and
we present the TiPEX tool dedicated to timed properties. Finally, we present some
open challenges and avenues for future work.

Runtime Enforcement (RE) is a discipline of computer science concerned with enforc-
ing the expected behavior of a system at runtime. Runtime enforcement extends the
traditional runtime verification [12–14,42,43] problem by dealing with the situations
where the system deviates from its expected behavior. While runtime verification mon-
itors are execution observers, runtime enforcers are execution modifiers.

Foundations for runtime enforcement were pioneered by Schneider in [98] and by
Rinard in [95] for the specific case of real-time systems. There are several tutorials and
overviews on runtime enforcement for untimed systems [39,47,59], but none on the
enforcement of timed properties (for real-time systems).

In this tutorial, we focus on runtime enforcing behavior described by a timed prop-
erty. Timed properties account for physical time. They allow expressing constraints on
the time that should elapse between (sequences of) events, which is useful for real-
time systems when specifying timing constraints between statements, their scheduling
policies, the completion of tasks, etc. [5,7,88,101,102].

This work is supported by the French national program “Programme Investissements d’Avenir
IRT Nanoelec” (ANR-10-AIRT-05).

c© Springer Nature Switzerland AG 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 48–69, 2019.
https://doi.org/10.1007/978-3-030-32079-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-32079-9_4

On the Runtime Enforcement of Timed Properties 49

Fig. 1. Taxonomy of concepts in runtime enforcement.

This tutorial comprises four stages:

1. the presentation of a taxonomy of concepts and principles in RE (Sect. 1);
2. the presentation of a framework for the RE of timed properties where specifications

are described by timed automata (preliminary concepts are recalled in Sect. 2, the
framework is overviewed in Sect. 3, and presented in more details in Sect. 4);

3. the demonstration of the TiPEX [82] tool implementing the framework (Sect. 5);
4. the description of some avenues for future work (Sect. 6).

1 Principles and Concepts in Runtime Enforcement

In the first stage of the tutorial, we discuss a taxonomy of the main concepts and princi-
ples in runtime enforcement (see Fig. 1). We refer to this taxonomy as the RE taxonomy.
The RE taxonomy builds upon, specializes, and extends the taxonomy of runtime verifi-
cation [45] (RV taxonomy). In particular, the RE taxonomy shares the notions of specifi-
cation, trace, and deploymentwith the RV taxonomy. We briefly review and customize
these for runtime enforcement in the following for the sake of completeness. The RE tax-
onomy considers the additional enforceability and enforcement mechanism parts. We
also present some application domains where the RE principles were used.

50 Y. Falcone and S. Pinisetty

1.1 Specification

A specification (Fig. 2) describes (some of) the intended system behavior to be enforced.
It usually relies on some abstraction of the actual and detailed system behavior. A speci-
fication can be categorized as being explicit or implicit. An explicit specification makes
the functional or non-functional requirements of the target system explicit. An explicit
specification is expressed by the user using a specification language (e.g., some variant
of temporal logic or extension of automata). Such specification language relies on an
operational or denotational paradigm to express the intended behavior. The specifica-
tion language offers modalities which allow referring to the past, present, or future of
the execution. Other dimensions of a specification are related to the features allowing
expressing the expected behavior with more or less details. The time dimension refers
to the underlying model of time, being either a logical time or the actual physical time.

Fig. 2. Taxonomy - specification.

The data dimension refers
to whether the specifi-
cation allows reasoning
about any form of data
involved in the program
(values of variables or
function parameters). An
implicit specification is
related to the seman-
tics of the program-
ming language of the
target application sys-
tem, or its program-
ming or memory mod-
els. Implicit specifica-
tions generally capture
a collection of errors
that should not appear
at runtime because they
could lead to unpre-
dictable behavior. Implicit
specifications include security concerns (see also Sect. 1.6) such as memory
safety [10,105] where some form of memory access errors should be avoided
(e.g., use after free, null pointer dereference, overflow) and the integrity of
the execution (of the data, data flow, or control flow). They also include
absence of concurrency errors [69] such as deadlocks, data races, and atomicity
violations.

On the Runtime Enforcement of Timed Properties 51

1.2 Trace

Fig. 3. Taxonomy - trace.

Depending on the target system and spec-
ification being enforced, the considered
notion of trace can contain several sorts of
information (Fig. 3): input/output from
the system, events or sample states from
the system, or signals. The notion of trace
can play up to three different roles: it can
be the mathematical model of a specifica-
tion (when a set of traces defines the spec-
ification), the sequence of pieces of infor-
mation from the system which is input
to the enforcement mechanism, or the
sequence of pieces of information enforced on the system which is output from the
enforcement mechanism. In the two latter cases, the observation and imposition of the
trace is influenced by the sampling on the system state, which can be triggered accord-
ing to events or time. Moreover, the trace can contain more or less precise information
depending on the points of control and observation provided by instrumentation. Such
information can be gathered by evaluating/abstracting the system state at points of
intervals of physical time. We refer to [74,90] for more details on the concept of trace.

1.3 Enforcement Mechanism

Fig. 4. Taxonomy - enforcement mechanism.

An enforcement mechanism
(EM, Fig. 4) is a mecha-
nism in charge of enforc-
ing the desired specification,
be it either a mathemati-
cal model of the expected-
behavior transformation or its
realization by algorithms or
routines. It is referred to by
several names in the literature,
e.g., enforcement monitor, ref-
erence monitor, enforcer, and
enforcement mechanism. Sev-
eral models of enforcement
mechanisms were proposed:
security automata [98], edit-
automata [68] (and its vari-
ants [19]), generalized enforce-
ment monitors [48], iteration
suppression automata [21],
delayers [83], delayers with
suppression [44], sanitizers [104],

52 Y. Falcone and S. Pinisetty

shields [63], safety shields [107], shields for burst errors [107], and safety guards [108].
An EM reads a trace produced by the target system and produces a new trace where the
specification is enforced. It acts like a “filter” on traces. This conceptualization of an
EM as a(n) (input/output) filter abstracts away from its actual role, which can be an
input sanitizer (filtering out the inputs to the target system), an output sanitizer (filter-
ing out the outputs of the target system), or a reference monitor (granting or denying
permission to the action that the system executes). An EM can be generated automat-
ically from the specification (it is said to be synthesized) or programmed manually.
Automatically generating an EM provides more confidence and binds it to the speci-
fication used to generate it, whereas manual generation permits programming an EM
and makes room for customization. There exist several paradigms for describing the
behavior of an EM: denotational, when an EM is seen as a mathematical function with
the set of traces as domain and codomain; or operational, when the computation steps
for an EM are detailed (e.g., rewriting rules, automaton, labeled transition system -
LTS, or algorithm). To transform the trace, an EM can use some internal memory to
store information from the execution. Such memory can be assumed infinite, finite, or
shallow when it cannot record multiple occurrences of the same piece of information.
Moreover, using data from the input trace and this memory, enforcement operations
in an EM may transform the trace. Examples of enforcement operations include termi-
nating the underlying target system, preventing an action from executing or altering it,
executing new actions, etc.

1.4 Deployment

Fig. 5. Taxonomy - deployment.

Like deployment in run-
time verification, deploy-
ment in runtime enforce-
ment (Fig. 5) refers to how
an EM is integrated within
the system: its implementa-
tion, organization, and how
and when it collects and
operates on the trace. One
of the first things to con-
sider is the architecture of
the system, which can be
monolithic, multi-threaded
or distributed. One can
use a centralized EM (that
operates on the whole sys-
tem) or a decentralized one
which adapts to the sys-
tem architecture and possi-
bly use existing communication mediums for decentralized EMs to communicate. An
EM itself can be deployed at several levels: software, operating system or virtual

On the Runtime Enforcement of Timed Properties 53

machine, or hardware. The higher the level (in terms of abstraction), the more the mech-
anism has access to semantic information about the target system, while lower-level
deployment provides the enforcement device with finer-grain observation and control
capabilities on the target system. The stage refers to when an EM operates, either offline
(after the execution) or online (during the execution, synchronously or asynchronously).
Offline runtime enforcement (and verification) is conceptually simpler since an EM has
access to the complete trace (in e.g., a log) and can thus perform arbitrary enforcement
operations. On the contrary, in online enforcement, an EM only knows the execution
history and decisions have to be made while considering all possible future behaviors.
The placement refers to where an EM operates, either inline or outline, within or out-
side the existing address space of the initial system. The deployment parameters are
constrained by the instrumentation (technique) used to augment the initial system to
include an EM. Instrumentation can be software-based or hardware-based depending on
the implementation of the target system. In the case of software-based instrumentation,
it can operate at the level of the source (language) of the application system, its inter-
mediate representation (IR), the binary, or using library interposition. Hardware-based
instrumentation [8,9,75,99] can be for instance realized by observing and controlling
the system through a JTAG port and using dedicated hardware (e.g., an FPGA).

Deployment Challenges. Deploying an EM with the appropriate parameters raises sev-
eral challenges and issues. From a bird-eye view, the challenges revolve around ensur-
ing that an EM does not “conflict with the initial system”. We discuss this around two
questions. First, how to implement the “reference logic” where the enforcement mech-
anism takes important decisions regarding the system execution? In the case where an
EM is a sanitizer, deployment should ensure that all the relevant inputs or outputs go
through the enforcement device. In the case where an EM is a reference monitor, the ref-
erence logic should ensure that the application actions get executed only if the monitor
authorizes it. In security-sensitive or safety-critical applications, users of an enforce-
ment framework may demand formal guarantees. There are some approaches to cer-
tify runtime verification mechanisms [3,23,33] and some to verify edit-automata [94],
but more research endeavors are needed in these directions. Second, how to preserve
the integrity of the application? As an EM modifies the behavior of the application, it
should not alter its functioning by avoiding crashes, preserving its semantics, and not
deteriorating its performance. For instance, consider the case where an EM intervenes
by forbidding the access to some resource or an action to execute (denying it or post-
poning it). In case of online monitoring, an EM should be aware of the application
semantics and more particularly of its control and data flows. In case of outline moni-
toring, there should be some signaling mechanism already planned in the application or
added through instrumentation.

54 Y. Falcone and S. Pinisetty

1.5 Enforceability

Fig. 6. Taxonomy - enforceability.

Enforceability (Fig. 6) refers
to the concept of determin-
ing the specification behav-
ior that can effectively be
enforced on systems. EMs
should follow some require-
ments on how they correct
the behavior of systems. For
instance, soundness refers
to the fact that what is out-
put by an EM should com-
ply with the specification
while transparency refers to the fact that the modification to the initial system behavior
should be minimal. Additional constraints such as optimality can be introduced to sev-
eral possible modifications that a monitor can make, according to some desired quality
of service. Additionally, distances or pre-orders can be defined over valid traces for the
same purpose [20,58]. When it is possible to obtain an EM that enforces a property
while complying with the requirements, the property is said to be enforceable, and non-
enforceable otherwise. Enforceability of a specification is also influenced by the realiz-
ability of EMs. For this, assumptions are made on the feasibility of some operations of
an EM. An example is when an EM memorizes input events from the target system, it
should not prevent the system from functioning. Another example is when enforcing a
timed specification, as the time that elapses between events matters for the satisfaction
of the specification, there are assumptions to be made or guarantees to be ensured on
the computation time performed by EMs (e.g., the computation time of an EM should
be negligible) or on the system communication (e.g., communication overhead or reli-
ability). Moreover, the amount of memory that an EM disposes influences how much
from the execution history it can record or events it can store, and thus the enforceable
properties [50,106]. Furthermore, importantly in a timed context, physical constraints
should be taken into consideration: in the online enforcement of a specification, events
cannot be released by an EM before being received. The realizability of EMs can ben-
efit from knowledge on the possible system behavior. Such knowledge can come from
a (possibly partial) model of the system or static analysis. Knowledge permits upgrad-
ing an EM with predictive abilities [86] and it can thus enforce more specifications
(see also [11,85,110] for predictive runtime verification frameworks). Another concern
with enforceability is to delineate the sets of enforceable and non-enforceable spec-
ifications. Characterizing the set of enforceable specifications allows identifying the
(possibly syntactically characterized) fragments of a specification language that can be
enforced. For this, one can rely on existing classical classifications of properties, such
as the safety-liveness “dichotomy” [4,66,103] or the safety-progress hierarchy [27,71]
classifications. There exist several delineations of enforceable/non-enforceable proper-
ties based on different assumptions and EMs; see e.g., [26,48,58,68,98].

On the Runtime Enforcement of Timed Properties 55

1.6 Application Domains

Fig. 7. Taxonomy - application domains.

Application domains (Fig. 7)
refers to the domains where
the principles of runtime
enforcement are applied.We
briefly refer to some appli-
cations of runtime enforce-
ment in categories: usage
control and security/privacy,
and memory safety. We do
not further elaborate the
taxonomy for application
domains since classifying
security domains is subject
to interpretation and most implementations of EMs for security address several flavors
of security. Regarding applications for usage control, runtime enforcement was applied
to enforce usage control policies in [73], enforcement of the usage of the Android
library in [41], disabling Android advertisements in [36]. Regarding applications in
the domain of security, runtime enforcement was applied to enforce the opacity of
secrets in [46,55,109], access control policies in [76–78], confidentiality in [28,53],
information-flow policies [28,49,64,64], security and authorization policies in [22,38],
privacy policies in [28,56,65], control-flow integrity in [2,34,52,57,62], and memory
safety in [24,25,35,100].

2 Real-Time Systems and Specifications with Time Constraints

The correctness of real-time systems depends not only on the logical result of the com-
putation but also on the time at which the results are produced. Such systems are speci-
fied with requirements with precise constraints on the time that should elapse between
actions and events. Formalization of a requirement with time constraints is referred
to as a timed property. Timed automata is a formal model used to define timed prop-
erties. A timed automaton [6] is a finite automaton extended with a finite set of real
valued clocks. It is one of the most studied models for modeling and verifying real-time
systems with many algorithms and tools. In this section, we present the preliminaries
required to formally define timed requirements and executions (traces) of a system.

2.1 Preliminaries and Notations

Untimed Concepts. Let Σ denote a finite alphabet. A (finite) word over Σ is a finite
sequence of elements of Σ . The length of a word w is the number of elements in it and
is denoted by |w|. The empty word over Σ is denoted by εΣ , or ε when clear from the
context. The set of all (resp. non-empty) words over Σ is denoted by Σ ∗ (respectively
Σ+). The concatenation of two words w and w′ is denoted by w ·w′. A word w′ is a
prefix of a word w, noted w′ �w, whenever there exists a word w′′ such that w=w′ ·w′′,
and w′ ≺ w if additionally w′ �= w; conversely w is said to be an extension of w′.

56 Y. Falcone and S. Pinisetty

A language over Σ is a subset of Σ ∗. The set of prefixes of a word w is denoted by

pref(w). For a languageL , pref(L) def=
⋃

w∈L pref(w) is the set of prefixes of words in
L . A languageL is prefix-closed if pref(L)=L and extension-closed ifL ·Σ ∗ =L .

Timed Words and Timed Languages. In a timed setting, we consider the occurrence time
of actions. Input and output streams of enforcement mechanisms are seen as sequences
of events composed of a date and an action, where the date is interpreted as the absolute
time when the action is received by the enforcement mechanism.

Let R≥0 denote the set of non-negative real numbers, and Σ a finite alphabet of

actions. An event is a pair (t,a), where date((t,a)) def= t ∈ R≥0 is the absolute time at

which the action act((t,a)) def= a ∈ Σ occurs.
A timed word over the finite alphabet Σ is a finite sequence of events σ = (t1,a1).

(t2,a2) · · ·(tn,an), for some n∈N, where (ti)i∈[1,n] is a non-decreasing sequence in R≥0.
The set of timed words over Σ is denoted by tw(Σ). A timed language is any

set L ⊆ tw(Σ). Even though the alphabet (R≥0 × Σ) is infinite in this case, previous
untimed notions and notations (related to length, prefix etc.) extend to timed words.

When concatenating two timed words, one should ensure that the result is a timed
word, i.e., dates should be non-decreasing. This is ensured if the ending date of the
first timed word does not exceed the starting date of the second one. Formally, let
σ = (t1,a1) · · ·(tn,an) and σ ′ = (t ′1,a

′
1) · · ·(t ′m,a′

m) be two timed words with end(σ) ≤
start(σ ′), their concatenation is σ ·σ ′ def= (t1,a1) · · ·(tn,an) · (t ′1,a′

1) · · ·(t ′m,a′
m). By con-

vention σ · ε def= ε ·σ def= σ . Concatenation is undefined otherwise.

2.2 Timed Automata

A timed automaton [6] (TA) is a finite automaton extended with a finite set of real-
valued clocks. Intuitively, a clock is a variable whose value evolves with the passing of
physical time. Let X = {x1, . . . ,xk} be a finite set of clocks. A clock valuation for X is
an element of RX

≥0, that is a function from X to R≥0. For χ ∈ R
X
≥0 and δ ∈ R≥0, χ +δ

is the valuation assigning χ(x)+δ to each clock x of X . Given a set of clocks X ′ ⊆ X ,
χ[X ′ ← 0] is the clock valuation χ where all clocks in X ′ are assigned to 0. G (X)
denotes the set of guards, i.e., clock constraints defined as Boolean combinations of
simple constraints of the form x �� c with x ∈ X , c ∈ N and �� ∈ {<,≤,=,≥,>}. Given
g ∈ G (X) and χ ∈ R

X
≥0, we write χ |= g when g holds according to χ . A (semantic)

state is a pair composed of a location and a clock valuation.

l0 l1 l2

Σ \ {alloc}
alloc,
x := 0

Σ \ {alloc}

alloc, x ≥ 10,
x := 0

alloc,
x<10

Σ

Fig. 8. Example of TA.

Instead of presenting the formal defi-
nitions, we introduce TAs on an example.
The timed automaton in Fig. 8 formalizes
the requirement “In every 10 time units (tu),
there cannot be more than 1 alloc action”.
The set of locations is L= {l0, l1, l2}, l0 is the
initial location, l0 and l1 are accepting loca-
tions, and l2 is a non-accepting location. The
set of actions is Σ = {alloc,rel}. There are
transitions between locations upon actions. A

On the Runtime Enforcement of Timed Properties 57

finite set of real-valued clocks is used to model realtime behavior, set X = {x} in the
example. On the transitions, there are (i) guards with constraints on clock values (such
as x < 10 on the transition between l1 and l2 in the example), and (ii) assignment to
clocks. Upon the first occurrence of action alloc, the automaton moves from l0 to l1,
and 0 is assigned to clock x. In location l1, if action alloc is received, and if the value of
x is greater than or equal to 10, then the automaton remains in l1, resetting the value of
clock x to 0. It moves to location l2 otherwise.

2.3 Partitioning the States of a Timed Automaton

Given a TA with semantic states Q and accepting semantic states QF , following [42],
we can define a partition ofQwith four subsets good (G), currently good (Gc), currently
bad (Bc) and bad (B), based on whether a state is accepting or not, and whether accept-
ing or non-accepting states are reachable or not. This partitioning is useful for runtime
verification and enforcement. An enforcement device makes decisions by checking the
reachable subsets. For example, if all the reachable states belong to the subset B, then it
is impossible to correct the input sequence anymore (in the future). If the current state
belongs to the subset G, then any sequence will lead to a state belonging to the same
subset and thus the enforcement device can be turned off. This partition is also useful
to classify timed properties and for the synthesis of enforcement devices.

Formally, Q is partitioned into Q = Gc∪G∪Bc∪B, where QF = Gc ∪G and Q \
QF = Bc ∪B, and:

– Gc = QF ∩ pre∗(Q \QF) is the set of currently good states, that is the subset of
accepting states from which non-accepting states are reachable;

– G = QF \Gc = QF \ pre∗(Q \QF) is the set of good states, that is the subset of
accepting states from which only accepting states are reachable;

– Bc = (Q \QF)∩ pre∗(QF) is the set of currently bad states, that is the subset of
non-accepting states from which accepting states are reachable;

– B= (Q\QF)\pre∗(QF) is the set of bad states, that is the subset of non-accepting
states from which only non-accepting states are reachable.

where, for a subset P of Q, pre∗(P) denotes the set of states from which set P is reach-
able.

It is well known that reachability of a set of locations is decidable using the classical
zone (or region) symbolic representation (see [18]). AsQF corresponds to all states with
location in F , the partition can then be symbolically computed on the zone graph.

2.4 Classification of Timed Properties

A timed property is defined by a timed language ϕ ⊆ tw(Σ) that can be recognized by
a timed automaton. That is, the set of regular timed properties are considered. Given a
timed word σ ∈ tw(Σ), we say that σ satisfies ϕ (noted σ |= ϕ) if σ ∈ ϕ .

58 Y. Falcone and S. Pinisetty

Enforcement
Mechanism

Timed Memory

timed property

Event
Emitter

Event
Receiver

timed word timed word

Fig. 9. RE of a timed property. The enforcement mechanism (EM) is synthesized from a timed
property. At runtime, the EM is placed between an event emitter (EE) and event receiver (ER); it
receives as input a timed word from the EE and produces as output a timed word for the ER.

Definition 1 (Regular, safety, and co-safety properties)

– Regular timed properties are the properties that can be defined by languages
accepted by a TA.

– Safety timed properties are the non-empty prefix-closed regular timed properties.
– Co-safety timed properties are the non-universal1 extension-closed regular timed
properties.

As in the untimed case, safety (resp. co-safety) properties state that “nothing bad should
ever happen” (resp. “something good should happen within a finite amount of time”).

3 Overview of RE Approaches for Timed Properties

In this section, we overview some formal approaches [44,80,81,83,84,91–93] to the
runtime enforcement of timed properties described by timed automata (TA). Properties
can feature uncontrollable events which can be only seen by the enforcement mecha-
nism (EM) and cannot be acted upon. The runtime enforcement problem is conceptual-
ized as illustrated in Fig. 9: an EM reads as input a timed word and should transform and
output it so that it complies with a timed property used to obtain the EM, using a timed
memory which accounts for the physical time during which elements have been stored.
In all the following frameworks, EMs are described with two paradigms: a denotational
one where EMs are seen as functions through their input/output behavior, and two oper-
ational ones: input/output labeled transition systems and algorithms. These approaches
differ either in the supported classes of properties for which EMs can be synthesized
and the enforcement operations of the enforcement mechanism.

Runtime Enforcement of Timed Properties [84] (for Safety and Co-safety Properties).
In [84] the first steps to runtime enforcement of (continuous) timed safety and co-safety
properties was introduced. EMs were endowed only with an enforcement operation
allowing to delaying events to satisfy the required property. For this purpose, the EM
stores some actions for a certain time period computed when they are received. Require-
ments over the EMs ensured that their outputs not only satisfy the required property, but
also with the shortest delay according to the current satisfaction of the property.

1 The universal property over R≥0 ×Σ is tw(Σ).

On the Runtime Enforcement of Timed Properties 59

Runtime Enforcement of Regular Timed Properties [81,83]. The approach in [81,83]
generalizes [84] and synthesizes EMs for any regular timed property. It allows consid-
ering interesting properties of systems belonging to a larger class specifying some form
of transactional behavior. The difficulty that arises is that the EMs should consider the
alternation between currently satisfying and not satisfying the property2. The unique
enforcement operation is still delaying events as in [84].

Runtime Enforcement of Regular Timed Properties by Suppressing and Delaying
Events [44]. The approach in [44] considers events composed of actions with abso-
lute occurrence dates, and allows increasing the dates (while allowing reducing delays
between events in memory). Moreover, suppressing events is also introduced. An event
is suppressed if it is not possible to satisfy the property by delaying, whatever are the
future continuations of the input sequence (i.e., the underlying TA can only reach non-
accepting states from which no accepting state can be reached). In Sect. 4, we overview
this framework.

Runtime Enforcement of Parametric Timed Properties with Practical Applications [80].
The framework in [80] makes one step towards practical runtime enforcement by con-
sidering event-based specifications where (i) time between events matters and (ii) events
carry data values ([54]) from the monitored system. It defines how to enforce paramet-
ric timed specifications which are useful to model requirements from some application
domains such as network security which have constraints both on time and data. For
this, it introduces the model of Parametrized Timed Automata with Variables (PTAVs).
PTAVs extend TAs with session parameters, internal and external variables. The frame-
work presents how to synthesize EMs as in [44,83] from PTAVs and shows the useful-
ness of enforcing such expressive specifications on application scenarios.

Enforcement of Timed Properties with Uncontrollable Events [91,92]. The approach
in [91,92] presents a framework for enforcing regular untimed and timed properties
with uncontrollable events. An EM cannot delay nor intercept an uncontrollable event.
To cope with uncontrollable events, the notion of transparency should be weakened
to the so-called notion of compliance. Informally, compliance means that the order of
controllable events should be maintained by the EM, while uncontrollable events should
be released as output soon after they are received.

Runtime Enforcement of Cyber-Physical Systems [87]. In synchronous reactive systems,
terminating the system or delaying the reaction is not feasible. Thus, the approaches
in [44,80,81,83,91,92] are not suitable for such systems. The approach in [87] intro-
duces a framework for synchronous reactive systems with bidirectional synchronous
EMs. While the framework considers similar notions of soundness, and transparency,
it also introduces the so-called additional requirements of causality and instantaneity
which are specific to synchronous executions. Moreover, the framework considers prop-
erties expressed using a variant of Discrete Timed Automata (DTA).

2 Indeed, in safety (resp. co-safety) (timed) automaton, there are only good, currently good, and
bad states (resp. bad, currently bad, and good states), and thus the strategies for the EM is
simpler: avoiding the bad states (resp. reaching a good state) [42].

60 Y. Falcone and S. Pinisetty

4 A Framework for the Runtime Enforcement of Timed Properties

In this section, we present a framework for the runtime enforcement of timed properties
described by timed automata [44]. Most of the material comes from [44,79].

4.1 Overview

Given some timed property ϕ and an input timed word σ , the EM outputs a timed word
o that satisfies ϕ . The considered EMs are time retardants, i.e., their main enforcement
operation consists in delaying the received events3. In addition to introducing additional
delays (increasing dates), for the EM and system to continue executing, the EM can
suppress events when no delaying is appropriate. However, it can not change the order
of events. The EM may also reduce delays between events stored in its memory.

To ease the design and implementation of EMs in a timed context, they are described
at three levels of abstraction: enforcement functions, enforcement monitors, and enforce-
ment algorithms; all of which can be deployed to operate online. EMs should abide to
some requirements, namely the physical constraint, soundness, transparency.

– The physical constraint says that the output produced for an extension σ ′ of an input
word σ extends the output produced for σ . This stems from the fact that, over time
the enforcement function outputs a continuously growing sequence of events. The
output for a given input can only be modified by appending new events (with greater
dates).

– Soundness says that the output either satisfies property ϕ , or is empty. This allows to
output nothing if there is no way to satisfy ϕ . Note that, together with the physical
constraint, this implies that no event can be appended to the output before being sure
that the property will be eventually satisfied with subsequent output events.

– Transparency says that the output is a delayed subsequence of the input σ ; that is
with increased dates, preserved order, and possibly suppressed events.

Notice that for any input σ , releasing ε as output would satisfy soundness, transparency,
and the physical constraint. We want to suppress an event or to introduce additional
delay only when necessary. Additionally, EMs should also respect optimality require-
ments:

– Streaming behavior and deciding to output as soon as possible. Since an EM does
not know the entire input sequence, for efficiency reasons, the output should be
built incrementally in a streaming fashion. EMs should take decision to release input
events as soon as possible. The EM should wait to receive more events, only when
there is no possibility to correct the input.

3 Several application domains have requirements, where the required timing constraints can be
satisfied by increasing dates of some actions [67].

On the Runtime Enforcement of Timed Properties 61

– Optimal suppression. Suppressing events should occur only when necessary, i.e.,
when, upon the reception of a new event, there is no possibility to satisfy the prop-
erty, whatever is the continuation of the input.

– Optimal dates. Choosing/increasing dates should be done in way that dates are opti-
mal with respect to the current situation, releasing here as output as soon as possible.

The enforcement function Eϕ : tw(Σ) → tw(Σ) for a property ϕ defines how an
input stream σ is transformed into an output stream. An enforcement monitor (see [44])
is a more concrete view and defines the operational behavior of the EM over time as a
timed labeled transition system. An enforcement algorithm realises enforcement mon-
itor in pseudo code with two concurrent processes and a shared buffer At an abstract
level, one process stores the received events in the shared buffer and computes their
releasing date. The other process scrutinizes the shared buffer and releases the event at
their releasing dates. In [44], we formally prove that enforcement functions respect the
requirements, that enforcement monitors realizes enforcement functions, that enforce-
ment algorithms implements enforcement monitors, and that all description of EMs can
be optimized for the particular case of timed safety properties.

4.2 Intuition on an Example

We provide some intuition on the expected behavior of EMs. Consider two processes
that access to and operate on a shared resource. Each process i (with i∈ {1,2}) has three
interactions with the resource: acquisition (acqi), release (reli), and a specific operation
(opi). Both processes can also execute a common action op. System initialization is
denoted by action init. In the following, variable t keeps track of the evolution of time.

l0 l1l2

op1
x := 0
y := 0

op2
x := 0
y := 0

2 ≤ x ≤ 10 ∧ 2 ≤ y
op2

2 ≤ y
op

y := 0

2 ≤ x ≤ 10 ∧ 2 ≤ y
op1

2 ≤ y
op

y := 0

Fig. 10. TA defining property S1.

Consider one specification, referred
to as S1, of the shared resource
(Fig. 10): “Operations op1 and op2
should execute in a transactional man-
ner. Both actions should be executed, in
any order, and any transaction should
contain one occurrence of op1 and
op2. Each transaction should complete
within 10 tu. Between operations op1
and op2, occurrences of operation op
can occur. There is at least 2 tu between
any two occurrences of any operation.”

62 Y. Falcone and S. Pinisetty

actions

time

op1 op1 op op2

1

2

3

4

5

6

7

8

9

10

input

output

Fig. 11. Illustration of the behavior of an
EM enforcing S1. (Color figure online)

Figure 11 illustrates the behavior of an
EM and how it transforms an input timed
word (red) to a correct output timed word
(blue) satisfying S1; actions are in abscissa
and occurrence dates in ordinate. Note, the
satisfaction of the property is not represented
in the figure. The input sequence is σ =
(2,op1) ·(3,op1) ·(3.5,op) ·(6,op2). At t = 2,
the EM can not output action op1 because
this action alone does not satisfy the speci-
fication (and the EM does not yet know the
next events i.e., actions and dates). If the next
action was op2, then, at the date of its recep-
tion, the EM could output action op1 fol-
lowed by op2, as it could choose dates for
both actions in order to satisfy the timing con-
straints. At t = 3 the EM receives a second
op1 action. Clearly, there is no possible date
for these two op1 actions to satisfy the spec-
ification, and no continuation could solve the
situation. The EM thus suppresses the second
op1 action, since this action is the one that
prevents satisfiability in the future. At t = 3.5,
when the EM receives action op, the input
sequence still does not satisfy the specifica-
tion, but there exists an appropriate delaying of such action so that with future events,
the specification can be satisfied. At t = 6, the EM receives action op2, it can decide that
action op1 followed by op and op2 can be released as output with appropriate delaying.
Thus, the date associated with the first op1 action is set to 6 (the earliest possible date,
since this decision is taken at t = 6), 8 for action op (since 2 is the minimal delay
between those actions satisfying the timing constraint), and 10 for action op2. Hence-
forth, as shown in the figure, the output of the EM for σ is (6,op1) · (8,op) · (10,op2).

5 Tool Implementations

Any tool for runtime verification [13] can perform basic enforcement by terminating
the execution of programs violating their specification. There are, however, several run-
time verification tools that go further and feature their own enforcement operations, for
instance Java-MOP and EnforceMOP [70] with handlers, LARVA [31] with compensa-
tions [32]. There are also numerous tools in the security domain enforcing (implicit)
specifications related to the security of the monitored applications (memory safety,
control-flow integrity, etc.); see [104] for a recent overview.

To the best of our knowledge, there are two tools dedicated to the runtime enforce-
ment of timed properties: TiPEX [82] and GREP [93]. TiPEX implements the frame-
work presented in Sect. 4 and provides additional features to synthesize timed automata

On the Runtime Enforcement of Timed Properties 63

and check the class of a timed automaton as per Definition. 1. A detailed description
of the TiPEX tool with some examples is provided in [82]. TiPEX can be downloaded
from [97]. GREP [93] follows the same objectives as TiPEX but is based on game
theory to synthesize the enforcement mechanisms. GREP also handles uncontrollable
events.

6 Open Challenges and Avenues for Future Work

We conclude this tutorial by proposing some future research directions.

Enforcement Monitoring for Systems with Limited Memory. An enforcement mecha-
nism basically acts as a filter storing the input events in its memory, until it is certain
that the underlying property will be satisfied. As was the case with untimed proper-
ties [16,17,50,106], defining enforcement mechanisms and new enforcement strate-
gies should be defined when there are bounds on memory usage or limited resources.
Delineating the subset of enforceable timed properties for which effective enforcement
mechanisms can be obtained is also a subject for future work.

Predictive Runtime Enforcement. Predictive runtime enforcement considers the case
where knowledge about the event emitter is available [86]. When the enforcement
mechanism knows the set of input sequences that it may receive, then it may anticipate
decisions of releasing events as output without storing them in memory nor waiting for
future events, e.g., when it knows that all the possible continuations of the input it has
observed will not violate the property. Predictive runtime enforcement of timed proper-
ties poses several difficulties and challenges that have to be further explored [85,86].

Realizing Requirements Automatically. In current research efforts, enforcement mech-
anisms are seen as modules outside the system, which take as input a stream of events
(output of the system being monitored) and verify or correct this stream according to the
property. For a better adoption of runtime enforcement theories and tools, one direction
is to define methods and instrumentation techniques so that enforcement mechanisms
can realize the requirements (which could not be integrated in the initial application.
For this, one can imagine enforcement monitors (realizing some requirements) inte-
grated as another layer on top of the core functionality or with libraries, inspiring from
aspect-oriented programming [60,61] and acceptability-oriented computing [95].

Decentralized Runtime Enforcement. Decentralized runtime verification appro-
aches [15,29,37,40] allow decentralizing the monitoring mechanism on the compo-
nents of a system (see [51] for an overview). Such approaches deal with the situations
where it is not desired to impose a central observation point in the system. Frameworks
for decentralized runtime enforcement (of timed properties) have yet to be defined
and will permit enforcing properties on distributed systems. For this purpose, one can
inspire from generalized consensus to help enforcement mechanisms forge a collective
decisions when applying enforcement operations to the system.

64 Y. Falcone and S. Pinisetty

Acknowledgment. The authors thank Frédéric Desprez, Antoine El-Hokayem, Raphaël Jakse,
Ali Kassem, and the reviewers for their comments on a preliminary version of this tutorial. The
framework for runtime enforcement of timed properties reported in Sect. 2 to Sect. 5 is based
upon joint research efforts with colleagues and friends: Jean-Claude Fernandez, Thierry Jéron,
Hervé Marchand, Laurent Mounier, Omer Nguena-Timo, Matthieu Renard, and Antoine Rollet.

References

1. Proceedings of the 5th Annual Symposium on Logic in Computer Science (LICS 1990).
IEEE Computer Society (1990)

2. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control-flow integrity principles, imple-
mentations, and applications. ACM Trans. Inf. Syst. Secur. 13(1), 4:1–4:40 (2009)

3. Aktug, I., Dam, M., Gurov, D.: Provably correct runtime monitoring. J. Log. Algebr. Pro-
gram. 78(5), 304–339 (2009)

4. Alpern, B., Schneider, F.B.: Defining liveness. Inf. Process. Lett. 21(4), 181–185 (1985)
5. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking for real-time systems. In: Proceed-

ings of the 5th Annual Symposium on Logic in Computer Science (LICS 1990) [1], pp.
414–425 (1990)

6. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126, 183–235
(1994)

7. Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. In: Proceedings
of the Fifth Annual Symposium on Logic in Computer Science (LICS 1990) [1], pp. 390–
401 (1990)

8. Amiar, A., Delahaye, M., Falcone, Y., du Bousquet, L.: Compressing microcontroller exe-
cution traces to assist system analysis. In: Schirner, G., Götz, M., Rettberg, A., Zanella,
M.C., Rammig, F.J. (eds.) IESS 2013. IFIP AICT, vol. 403, pp. 139–150. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38853-8 13

9. Amiar, A., Delahaye, M., Falcone, Y., du Bousquet, L.: Fault localization in embedded
software based on a single cyclic trace. In: IEEE 24th International Symposium on Software
Reliability Engineering, ISSRE 2013, pp. 148–157. IEEE Computer Society (2013)

10. Azevedo de Amorim, A., Hriţcu, C., Pierce, B.C.: The meaning of memory safety. In: Bauer,
L., Küsters, R. (eds.) POST 2018. LNCS, vol. 10804, pp. 79–105. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-89722-6 4

11. Babaee, R., Gurfinkel, A., Fischmeister, S.: Predictive run-time verification of discrete-
time reachability properties in black-box systems using trace-level abstraction and statisti-
cal learning. In: Colombo and Leucker [30], pp. 187–204

12. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification - Introductory and
Advanced Topics. LNCS, vol. 10457. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-75632-5

13. Bartocci, E., et al.: First international competition on runtime verification: rules, bench-
marks, tools, and final results of CRV 2014. STTT 21(1), 31–70 (2019)

14. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime verification.
In: Bartocci and Falcone [12], pp. 1–33

15. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. Form. Meth. Syst. Des. 48(1–2),
46–93 (2016)

16. Beauquier, D., Cohen, J., Lanotte, R.: Security policies enforcement using finite edit
automata. Electr. Notes Theor. Comput. Sci. 229(3), 19–35 (2009)

17. Beauquier, D., Cohen, J., Lanotte, R.: Security policies enforcement using finite and push-
down edit automata. Int. J. Inf. Sec. 12(4), 319–336 (2013)

https://doi.org/10.1007/978-3-642-38853-8_13
https://doi.org/10.1007/978-3-319-89722-6_4
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/978-3-319-75632-5

On the Runtime Enforcement of Timed Properties 65

18. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel, J.,
Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2 3

19. Bielova, N., Massacci, F.: Do you really mean what you actually enforced? In: Degano,
P., Guttman, J., Martinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp. 287–301. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01465-9 19

20. Bielova, N., Massacci, F.: Predictability of enforcement. In: Erlingsson, Ú., Wieringa, R.,
Zannone, N. (eds.) ESSoS 2011. LNCS, vol. 6542, pp. 73–86. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19125-1 6

21. Bielova, N., Massacci, F.: Iterative enforcement by suppression: towards practical enforce-
ment theories. J. Comput. Secur. 20(1), 51–79 (2012)

22. Birgisson, A., Dhawan, M., Erlingsson, Ú., Ganapathy, V., Iftode, L.: Enforcing authoriza-
tion policies using transactional memory introspection. In: Ning, P., Syverson, P.F., Jha, S.
(eds.) Proceedings of the 2008 ACM Conference on Computer and Communications Secu-
rity, CCS 2008, pp. 223–234. ACM (2008)

23. Blech, J.O., Falcone, Y., Becker, K.: Towards certified runtime verification. In: Aoki, T.,
Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 494–509. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-34281-3 34

24. Bruening, D., Zhao, Q.: Practical memory checking with Dr. memory. In: Proceedings of
the CGO 2011, The 9th International Symposium on Code Generation and Optimization,
pp. 213–223. IEEE Computer Society (2011)

25. Bruening, D., Zhao, Q.: Using Dr. Fuzz, Dr. Memory, and custom dynamic tools for secure
development. In: IEEE Cybersecurity Development, SecDev 2016, Boston, MA, USA, 3–4
November 2016, p. 158. IEEE Computer Society (2016)

26. Chabot, H., Khoury, R., Tawbi, N.: Extending the enforcement power of truncation monitors
using static analysis. Comput. Secur. 30(4), 194–207 (2011)

27. Chang, E., Manna, Z., Pnueli, A.: Characterization of temporal property classes. In: Kuich,
W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 474–486. Springer, Heidelberg (1992). https://
doi.org/10.1007/3-540-55719-9 97

28. Chong, S., Vikram, K., Myers, A.C.: SIF: enforcing confidentiality and integrity in web
applications. In: Provos, N. (ed.) Proceedings of the 16th USENIX Security Symposium.
USENIX Association (2007)

29. Colombo, C., Falcone, Y.: Organising LTL monitors over distributed systems with a global
clock. Form. Meth. Syst. Des. 49(1–2), 109–158 (2016)

30. Colombo, C., Leucker, M. (eds.): RV 2018. LNCS, vol. 11237. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03769-7

31. Colombo, C., Pace, G.: Runtime verification using LARVA. In: Reger, G., Havelund, K.
(eds.) RV-CuBES 2017. An International Workshop on Competitions, Usability, Bench-
marks, Evaluation, and Standardisation for Runtime Verification Tools. Kalpa Publications
in Computing, vol. 3, pp. 55–63. EasyChair (2017)

32. Colombo, C., Pace, G.J.: Recovery within long-running transactions. ACM Comput. Surv.
45(3), 28:1–28:35 (2013)

33. Dam, M., Jacobs, B., Lundblad, A., Piessens, F.: Provably correct inline monitoring for
multithreaded java-like programs. J. Comput. Secur. 18(1), 37–59 (2010)

34. Davi, L., Sadeghi, A., Winandy, M.: ROPdefender: a detection tool to defend against return-
oriented programming attacks. In: Cheung, B.S.N., Hui, L.C.K., Sandhu, R.S., Wong, D.S.
(eds.) Proceedings of the 6th ACM Symposium on Information, Computer and Communi-
cations Security, ASIACCS 2011, pp. 40–51. ACM (2011)

35. Duck, G.J., Yap, R.H.C., Cavallaro, L.: Stack bounds protection with low fat pointers. In:
24th Annual Network and Distributed System Security Symposium, NDSS 2017. The Inter-
net Society (2017)

https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/978-3-642-01465-9_19
https://doi.org/10.1007/978-3-642-19125-1_6
https://doi.org/10.1007/978-3-642-34281-3_34
https://doi.org/10.1007/3-540-55719-9_97
https://doi.org/10.1007/3-540-55719-9_97
https://doi.org/10.1007/978-3-030-03769-7

66 Y. Falcone and S. Pinisetty

36. El-Harake, K., Falcone, Y., Jerad, W., Langet, M., Mamlouk, M.: Blocking advertisements
on android devices using monitoring techniques. In: Margaria, T., Steffen, B. (eds.) ISoLA
2014, Part II. LNCS, vol. 8803, pp. 239–253. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45231-8 17

37. El-Hokayem, A., Falcone, Y.: THEMIS: a tool for decentralized monitoring algorithms. In:
Bultan, T., Sen, K. (eds.) Proceedings of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis, pp. 372–375. ACM (2017)

38. Erlingsson, Ú., Schneider, F.B.: SASI enforcement of security policies: a retrospective. In:
Kienzle, D.M., Zurko, M.E., Greenwald, S.J., Serbau, C. (eds.) Proceedings of the 1999
Workshop on New Security Paradigms, pp. 87–95. ACM (1999)

39. Falcone, Y.: You should better enforce than verify. In: Barringer, H., et al. (eds.) RV 2010.
LNCS, vol. 6418, pp. 89–105. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-16612-9 9

40. Falcone, Y., Cornebize, T., Fernandez, J.-C.: Efficient and generalized decentralized moni-
toring of regular languages. In: Ábrahám, E., Palamidessi, C. (eds.) FORTE 2014. LNCS,
vol. 8461, pp. 66–83. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
43613-4 5

41. Falcone, Y., Currea, S., Jaber, M.: Runtime verification and enforcement for Android appli-
cations with RV-Droid. In: Qadeer and Tasiran [89], pp. 88–95

42. Falcone, Y., Fernandez, J., Mounier, L.: What can you verify and enforce at runtime? STTT
14(3), 349–382 (2012)

43. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. In: Broy, M., Peled,
D.A., Kalus, G. (eds.) Engineering Dependable Software Systems. NATO Science for Peace
and Security Series D: Information and Communication Security, vol. 34, pp. 141–175. IOS
Press (2013)

44. Falcone, Y., Jéron, T., Marchand, H., Pinisetty, S.: Runtime enforcement of regular timed
properties by suppressing and delaying events. Sci. Comput. Program. 123, 2–41 (2016)

45. Falcone, Y., Krstic, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime verifica-
tion tools. In: Colombo and Leucker [30], pp. 241–262

46. Falcone, Y., Marchand, H.: Enforcement and validation (at runtime) of various notions of
opacity. Discrete Event Dyn. Syst. 25(4), 531–570 (2015)

47. Falcone, Y., Mariani, L., Rollet, A., Saha, S.: Runtime failure prevention and reaction. In:
Bartocci and Falcone [12], pp. 103–134

48. Falcone, Y., Mounier, L., Fernandez, J., Richier, J.: Runtime enforcement monitors: compo-
sition, synthesis, and enforcement abilities. Form. Meth. Syst. Des. 38(3), 223–262 (2011)

49. Ferraiuolo, A., Zhao, M., Myers, A.C., Suh, G.E.: HyperFlow: a processor architecture
for nonmalleable, timing-safe information flow security. In: Lie, D., Mannan, M., Backes,
M., Wang, X. (eds.) Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, pp. 1583–1600. ACM (2018)

50. Fong, P.W.L.: Access control by tracking shallow execution history. In: 2004 IEEE Sympo-
sium on Security and Privacy (S&P 2004), pp. 43–55. IEEE Computer Society (2004)

51. Francalanza, A., Pérez, J.A., Sánchez, C.: Runtime verification for decentralised and dis-
tributed systems. In: Bartocci and Falcone [12], pp. 176–210

52. Göktas, E., Athanasopoulos, E., Bos, H., Portokalidis, G.: Out of control: overcoming
control-flow integrity. In: 2014 IEEE Symposium on Security and Privacy, SP 2014, pp.
575–589. IEEE Computer Society (2014)

53. Hallé, S., Khoury, R., Betti, Q., El-Hokayem, A., Falcone, Y.: Decentralized enforcement
of document lifecycle constraints. Inf. Syst. 74(Part), 117–135 (2018)

54. Havelund, K., Reger, G., Thoma, D., Zalinescu, E.: Monitoring events that carry data. In:
Bartocci and Falcone [12], pp. 61–102

https://doi.org/10.1007/978-3-662-45231-8_17
https://doi.org/10.1007/978-3-662-45231-8_17
https://doi.org/10.1007/978-3-642-16612-9_9
https://doi.org/10.1007/978-3-642-16612-9_9
https://doi.org/10.1007/978-3-662-43613-4_5
https://doi.org/10.1007/978-3-662-43613-4_5

On the Runtime Enforcement of Timed Properties 67

55. Ji, Y., Wu, Y., Lafortune, S.: Enforcement of opacity by public and private insertion func-
tions. Automatica 93, 369–378 (2018)

56. Johansen, H.D., Birrell, E., van Renesse, R., Schneider, F.B., Stenhaug, M., Johansen, D.:
Enforcing privacy policies with meta-code. In: Kono, K., Shinagawa, T. (eds.) Proceedings
of the 6th Asia-Pacific Workshop on Systems, APSys 2015, pp. 16:1–16:7. ACM (2015).
https://doi.org/10.1145/2797022

57. Kayaalp, M., Ozsoy, M., Abu-Ghazaleh, N.B., Ponomarev, D.: Branch regulation: low-
overhead protection from code reuse attacks. In: 39th International Symposium on Com-
puter Architecture (ISCA 2012), pp. 94–105. IEEE Computer Society (2012)

58. Khoury, R., Tawbi, N.: Corrective enforcement: a new paradigm of security policy enforce-
ment by monitors. ACM Trans. Inf. Syst. Secur. 15(2), 10:1–10:27 (2012)

59. Khoury, R., Tawbi, N.: Which security policies are enforceable by runtime monitors? A
survey. Comput. Sci. Rev. 6(1), 27–45 (2012)

60. Kiczales, G.: Aspect-oriented programming. In: Roman et al. [96], p. 730
61. Kiczales, G., Mezini, M.: Aspect-oriented programming and modular reasoning. In: Roman

et al. [96], pp. 49–58
62. Kiriansky, V., Bruening, D., Amarasinghe, S.P.: Secure execution via program shepherding.

In: Boneh, D. (ed.) Proceedings of the 11th USENIX Security Symposium, pp. 191–206.
USENIX (2002)

63. Könighofer, B., et al.: Shield synthesis. Form. Meth. Syst. Des. 51(2), 332–361 (2017)
64. Kozyri, E., Arden, O., Myers, A.C., Schneider, F.B.: JRIF: reactive information flow control

for Java. In: Guttman, J.D., Landwehr, C.E., Meseguer, J., Pavlovic, D. (eds.) Foundations
of Security, Protocols, and Equational Reasoning. LNCS, vol. 11565, pp. 70–88. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-19052-1 7

65. Kumar, A., Ligatti, J., Tu, Y.-C.: Query monitoring and analysis for database privacy - a
security automata model approach. In: Wang, J., et al. (eds.) WISE 2015, Part II. LNCS,
vol. 9419, pp. 458–472. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26187-
4 42

66. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng.
3(2), 125–143 (1977)

67. Lesage, J., Faure, J., Cury, J.E.R., Lennartson, B. (eds.): 12th International Workshop on
Discrete Event Systems, WODES 2014. International Federation of Automatic Control
(2014)

68. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies. ACM Trans.
Inf. Syst. Secur. 12(3), 19:1–19:41 (2009)

69. Lourenço, J.M., Fiedor, J., Krena, B., Vojnar, T.: Discovering concurrency errors. In:
Bartocci and Falcone [12], pp. 34–60

70. Luo, Q., Rosu, G.: EnforceMOP: a runtime property enforcement system for multithreaded
programs. In: Pezzè, M., Harman, M. (eds.) International Symposium on Software Testing
and Analysis, ISSTA, pp. 156–166. ACM (2013)

71. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems - Specifi-
cation. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-0931-7

72. Margaria, T., Steffen, B. (eds.): ISoLA 2016, Part II. LNCS, vol. 9953. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47169-3

73. Martinelli, F., Matteucci, I., Mori, P., Saracino, A.: Enforcement of U-XACML history-
based usage control policy. In: Barthe, G., Markatos, E., Samarati, P. (eds.) STM 2016.
LNCS, vol. 9871, pp. 64–81. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46598-2 5

74. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An overview of the MOP runtime
verification framework. STTT 14(3), 249–289 (2012)

https://doi.org/10.1145/2797022
https://doi.org/10.1007/978-3-030-19052-1_7
https://doi.org/10.1007/978-3-319-26187-4_42
https://doi.org/10.1007/978-3-319-26187-4_42
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-3-319-47169-3
https://doi.org/10.1007/978-3-319-46598-2_5
https://doi.org/10.1007/978-3-319-46598-2_5

68 Y. Falcone and S. Pinisetty

75. Nguyen, T., Bartocci, E., Nickovic, D., Grosu, R., Jaksic, S., Selyunin, K.: The HARMO-
NIA project: hardware monitoring for automotive systems-of-systems. In: Margaria and
Steffen [72], pp. 371–379

76. Pavlich-Mariscal, J.A., Demurjian, S.A., Michel, L.D.: A framework of composable access
control definition, enforcement and assurance. In: Bastarrica, M.C., Solar, M. (eds.) XXVII
International Conference of the Chilean Computer Science Society (SCCC 2008), pp. 13–
22. IEEE Computer Society (2008)

77. Pavlich-Mariscal, J.A., Demurjian, S.A., Michel, L.D.: A framework for security assurance
of access control enforcement code. Comput. Secur. 29(7), 770–784 (2010)

78. Pavlich-Mariscal, J., Michel, L., Demurjian, S.: A formal enforcement framework for role-
based access control using aspect-oriented programming. In: Briand, L., Williams, C. (eds.)
MODELS 2005. LNCS, vol. 3713, pp. 537–552. Springer, Heidelberg (2005). https://doi.
org/10.1007/11557432 41

79. Pinisetty, S.: Runtime enforcement of timed properties. (Enforcement à l’éxécution de pro-
priétés temporisées). Ph.D. thesis, University of Rennes 1, France (2015)

80. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H.: Runtime enforcement of parametric
timed properties with practical applications. In: Lesage et al. [67], pp. 420–427

81. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H.: Runtime enforcement of regular timed
properties. In: Cho, Y., Shin, S.Y., Kim, S., Hung, C., Hong, J. (eds.) Symposium on
Applied Computing, SAC 2014, pp. 1279–1286. ACM (2014)

82. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H.: TiPEX: a tool chain for timed property
enforcement during execution. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol.
9333, pp. 306–320. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23820-3 22

83. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H., Rollet, A., Nguena-Timo, O.: Runtime
enforcement of timed properties revisited. Form. Meth. Syst. Des. 45(3), 381–422 (2014)

84. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H., Rollet, A., Nguena-Timo, O.L.: Runtime
enforcement of timed properties. In: Qadeer and Tasiran [89], pp. 229–244

85. Pinisetty, S., Jéron, T., Tripakis, S., Falcone, Y., Marchand, H., Preoteasa, V.: Predictive
runtime verification of timed properties. J. Syst. Softw. 132, 353–365 (2017)

86. Pinisetty, S., Preoteasa, V., Tripakis, S., Jéron, T., Falcone, Y., Marchand, H.: Predictive
runtime enforcement. Form. Meth. Syst. Des. 51(1), 154–199 (2017)

87. Pinisetty, S., Roop, P.S., Smyth, S., Allen, N., Tripakis, S., Hanxleden, R.V.: Runtime
enforcement of cyber-physical systems. ACM Trans. Embed. Comput. Syst. 16(5s), 178:1–
178:25 (2017)

88. Pnueli, A.: Embedded systems: challenges in specification and verification. In:
Sangiovanni-Vincentelli, A., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491, pp. 1–14.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45828-X 1

89. Qadeer, S., Tasiran, S. (eds.): RV 2012. LNCS, vol. 7687. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35632-2

90. Reger, G., Havelund, K.: What is a trace? A runtime verification perspective. In: Margaria
and Steffen [72], pp. 339–355

91. Renard, M., Falcone, Y., Rollet, A., Jéron, T., Marchand, H.: Optimal enforcement of
(timed) properties with uncontrollable events. Math. Struct. Comput. Sci. 29(1), 169–214
(2019)

92. Renard, M., Falcone, Y., Rollet, A., Pinisetty, S., Jéron, T., Marchand, H.: Enforcement of
(timed) properties with uncontrollable events. In: Leucker, M., Rueda, C., Valencia, F.D.
(eds.) ICTAC 2015. LNCS, vol. 9399, pp. 542–560. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-25150-9 31

93. Renard, M., Rollet, A., Falcone, Y.: Runtime enforcement using büchi games. In: Erdog-
mus, H., Havelund, K. (eds.) Proceedings of the 24th ACM SIGSOFT International SPIN
Symposium on Model Checking of Software, pp. 70–79. ACM (2017)

https://doi.org/10.1007/11557432_41
https://doi.org/10.1007/11557432_41
https://doi.org/10.1007/978-3-319-23820-3_22
https://doi.org/10.1007/3-540-45828-X_1
https://doi.org/10.1007/978-3-642-35632-2
https://doi.org/10.1007/978-3-319-25150-9_31
https://doi.org/10.1007/978-3-319-25150-9_31

On the Runtime Enforcement of Timed Properties 69

94. Riganelli, O., Micucci, D., Mariani, L., Falcone, Y.: Verifying policy enforcers. In: Lahiri,
S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 241–258. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-67531-2 15

95. Rinard, M.C.: Acceptability-oriented computing. In: Crocker, R., Steele Jr., G.L., Gabriel,
R.P. (eds.) Companion of the 18th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2003, pp. 221–239. ACM
(2003)

96. Roman, G., Griswold, W.G., Nuseibeh, B. (eds.): 27th International Conference on Soft-
ware Engineering (ICSE 2005). ACM (2005)

97. Pinisetty, S., et al.: TiPEX website (2015). https://srinivaspinisetty.github.io/Timed-
Enforcement-Tools/

98. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1), 30–50
(2000)

99. Selyunin, K., Nguyen, T., Bartocci, E., Nickovic, D., Grosu, R.: Monitoring of MTL spec-
ifications with IBM’s spiking-neuron model. In: Fanucci, L., Teich, J. (eds.) 2016 Design,
Automation & Test in Europe Conference & Exhibition, DATE 2016, pp. 924–929. IEEE
(2016)

100. Seward, J., Nethercote, N.: Using valgrind to detect undefined value errors with bit-
precision. In: Proceedings of the 2005 USENIX Annual Technical Conference, pp. 17–30.
USENIX (2005)

101. Sifakis, J.: Modeling real-time systems. In: Proceedings of the 25th IEEE Real-Time Sys-
tems Symposium (RTSS 2004), pp. 5–6. IEEE Computer Society (2004)

102. Sifakis, J., Tripakis, S., Yovine, S.: Building models of real-time systems from application
software. Proc. IEEE 91(1), 100–111 (2003)

103. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Asp. Comput. 6(5),
495–512 (1994)

104. Song, D., Lettner, J., Rajasekaran, P., Na, Y., Volckaert, S., Larsen, P., Franz, M.: SoK:
sanitizing for security. CoRR abs/1806.04355 (2018)

105. Szekeres, L., Payer, M., Wei, T., Song, D.: SoK: eternal war in memory. In: 2013 IEEE
Symposium on Security and Privacy, SP 2013, pp. 48–62. IEEE Computer Society (2013)

106. Talhi, C., Tawbi, N., Debbabi, M.: Execution monitoring enforcement under memory-
limitation constraints. Inf. Comput. 206(2–4), 158–184 (2008)

107. Wu, M., Zeng, H., Wang, C.: Synthesizing runtime enforcer of safety properties under burst
error. In: Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS, vol. 9690, pp. 65–81.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40648-0 6

108. Wu, M., Zeng, H., Wang, C., Yu, H.: Safety guard: runtime enforcement for safety-critical
cyber-physical systems: invited. In: Proceedings of the 54th Annual Design Automation
Conference, pp. 84:1–84:6. ACM (2017)

109. Yin, X., Lafortune, S.: A new approach for synthesizing opacity-enforcing supervisors for
partially-observed discrete-event systems. In: American Control Conference, ACC 2015,
pp. 377–383. IEEE (2015)

110. Zhang, X., Leucker, M., Dong, W.: Runtime verification with predictive semantics. In:
Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 418–432. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28891-3 37

https://doi.org/10.1007/978-3-319-67531-2_15
https://srinivaspinisetty.github.io/Timed-Enforcement-Tools/
https://srinivaspinisetty.github.io/Timed-Enforcement-Tools/
https://doi.org/10.1007/978-3-319-40648-0_6
https://doi.org/10.1007/978-3-642-28891-3_37

Algorithms for Monitoring
Hyperproperties

Christopher Hahn(B)

Saarland University, Saarbrücken, Germany
hahn@react.uni-saarland.de

Abstract. Hyperproperties relate multiple computation traces to each
other and thus pose a serious challenge to monitoring algorithms. Obser-
vational determinism, for example, is a hyperproperty which states that
private data should not influence the observable behavior of a system.
Standard trace monitoring techniques are not applicable to such proper-
ties. In this tutorial, we summarize recent algorithmic advances in mon-
itoring hyperproperties from logical specifications. We classify current
approaches into two classes: combinatorial approaches and constraint-
based approaches. We summarize current optimization techniques for
keeping the execution trace storage and algorithmic workload as low as
possible and also report on experiments run on the combinatorial as well
as the constraint-based monitoring algorithms.

Keywords: Hyperproperties · HyperLTL · Information-flow ·
Monitoring · Runtime verification

1 Introduction

Hyperproperties [12] relate multiple computation traces to each other.
Information-flow control is a prominent application area. Observational deter-
minism, for example, is a hyperproperty which states that two executions agree
on the observable output whenever they agree on the observable input, i.e., pri-
vate data does not influence the observable behavior of the system. Standard
trace monitoring techniques are not applicable to such properties: For example,
a violation of observational determinism cannot be determined by analyzing exe-
cutions in isolation, because each new execution must be compared to executions
already seen so far. This results in a challenging problem: A naive monitor would
store all traces and, thus, run inevitably out of memory. So how do we efficiently
store, process and compare every executions seen so far? In this paper, we will

This work was partially supported by the German Research Foundation (DFG) as part
of the Collaborative Research Center “Methods and Tools for Understanding and Con-
trolling Privacy” (CRC 1223) and the Collaborative Research Center “Foundations of
Perspicuous Software Systems” (TRR 248, 389792660), and by the European Research
Council (ERC) Grant OSARES (No. 683300).

c© Springer Nature Switzerland AG 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 70–90, 2019.
https://doi.org/10.1007/978-3-030-32079-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-32079-9_5

Algorithms for Monitoring Hyperproperties 71

give an overview on the significant algorithmic advances [1,7–9,23,24,31] that
have been made in monitoring hyperproperties.

Monitoring hyperproperties requires, in general, extensions of trace property
monitoring in three orthogonal dimensions: (1) how the set of execution traces is
obtained and presented to the monitor, (2) how hyperproperties can be rigorously
specified formally and (3) how algorithms process multiple traces at once without
an explosion of the running time or storage consumption.

execution 2

execution 1

execution b

execution 3

execution 2

execution 1

execution 2

execution 1

bound b

Fig. 1. Input Models: The parallel model (left), the unbounded sequential model (mid-
dle), and the bounded sequential model (right).

Input Model. There are three different straight-forward input models [25]: (1)
The parallel model, where a fixed number of system executions is processed
in parallel. (2) The unbounded sequential model, where an a-priori unbounded
number of system executions are processed sequentially, and (3) The bounded
sequential model where the traces are processed sequentially and the number of
incoming executions is bounded (see Fig. 1). Choosing a suitable input model for
the system under consideration is crucial: The choice of the model has signifi-
cant impact on the monitorability and, especially, on the monitoring algorithms
(Figs. 2 and 3). If, for example, the number of traces is a-priori bounded, offline
monitoring becomes an efficient option. If, however, violations must be detected
during runtime, algorithms must be specifically designed and optimized to reduce
trace storage and algorithmic workload.

Hyper Logical Specifications. Hyperlogics are obtained by either (1) extend-
ing linear-time temporal and branching-time temporal logics with explicit trace
quantification [11] or (2) by equipping first-order and second-order logics with
the equal-level predicate [29,39]. There are several extensions of logics for trace
properties to hyperlogics (see [13] for a recently initiated study of the hierarchy of
hyperlogics). HyperLTL [11] is the most studied hyperlogic, which extends linear-
time temporal logic (LTL) with a trace quantification prefix. Let Out , In ⊆ AP
denote all observable output and input propositions respectively. For example,
the HyperLTL formula

∀π.∀π′. (
∧

o∈Out

oπ ↔ oπ′)W(
∨

i∈In

iπ �↔ iπ′) (1)

72 C. Hahn

execution 2

execution 1

execution b

m
on

it
or execution 2

execution 1

execution b

m
on

it
or

Fig. 2. [25] Monitor approaches for the parallel model: online in a forward fashion (left)
and offline in a backwards fashion (right).

execution 3

execution 2

execution 1

m
on

it
or

execution 2

execution 1

execution b

m
on

it
or

Fig. 3. [25] Monitor approaches for the sequential models: an unbounded number of
traces (left) and bounded number of traces (right) are processed sequentially.

expresses observational determinism, i.e., that all pairs of traces must agree on
the observable values at all times or until the inputs differ. With this added
dimension, hyperlogics can relate traces or paths to each other, which makes
it possible to express hyperproperties, such as information-flow control policies
rigorously and succinctly.

Algorithms. Current monitoring approaches can be classified into two classes:
(1) algorithms that rely on combinatorial constructions, for example, on multiple
instantiations of automaton constructions and (2) constraint-based algorithms
that translate the monitoring requirements into Boolean constraints and, for
example, apply rewriting techniques, which rely on SAT or SMT solving. Both
types of monitoring techniques require heavy optimization, in order to make the
monitoring problem of hyperproperties feasible. The bottleneck in combinatorial
approaches is that a monitor needs to store, in the worst case, every observation
seen so far. Optimizing the trace storage is therefore crucial. We describe a trace
storage minimization algorithm that prunes redundant traces to circumvent this
problem. Constraint-based approaches on the other hand, suffer from growing
constraints, such that naive implementations push SAT and SMT solvers quickly
to their limits. Keeping the constraint system as small as possible is therefore
crucial. We report an optimization technique that stores formulas and their cor-
responding variables in a tree structure, such that conjunct splitting becomes
possible. The algorithms reported in this paper in detail, i.e., [25,31], have been
implemented in the state-of-the-art monitoring tool for temporal hyperproper-
ties, called RVHyper [24].

Algorithms for Monitoring Hyperproperties 73

Structure. The remainder of this paper is structured as follows. We will report
related work in Sect. 2 and give necessary preliminaries in Sect. 3. We classify
current monitoring approaches into two classes in Sect. 4 and go exemplary into
detail in [25,31]. We will summarize the optimization efforts that have been
implemented in RVHyper in Sect. 5. In Sect. 6, we will report a summary of
the experimental results that have been done over the last couple of years on
RVHyper before concluding in Sect. 7.

2 Related Work

HyperLTL was introduced to model check security properties of reactive sys-
tems [11,26,27]. The satisfiability problem [19,20,22] and the realizability prob-
lem [21] of HyperLTL has been considered as well. For one of its predecessors,
SecLTL [16], there has been a proposal for a white box monitoring approach [17]
based on alternating automata. The problem of monitoring HyperLTL [6] was
considered in an combinatorial approach in [1,25] and in a constraint-based app-
roach in [9,31].

Runtime verification of HyperLTL formulas was first considered for (co-)k-
safety hyperproperties [1]. In the same paper, the notion of monitorability for
HyperLTL was introduced. The authors have also identified syntactic classes of
HyperLTL formulas that are monitorable and they proposed a combinatorial
monitoring algorithm based on a progression logic expressing trace interdepen-
dencies and the composition of an LTL3 monitor.

Another combinatorial and automata-based approach for monitoring Hyper-
LTL formulas was proposed in [23]. Given a HyperLTL specification, the algo-
rithm starts by creating a deterministic monitor automaton. For every incom-
ing trace it then checks that all combinations with the already seen traces are
accepted by the automaton to minimize the number of stored traces, a language-
inclusion-based algorithm is proposed, which allows for pruning traces with
redundant information. Furthermore, a method to reduce the number of com-
bination of traces which have to get checked by analyzing the specification for
relations such as reflexivity, symmetry, and transitivity with a HyperLTL-SAT
solver [19,22], is proposed. The algorithm is implemented in the tool RVHy-
per [24], which was used to monitor information-flow policies and to detect spu-
rious dependencies in hardware designs.

A first constraint-based approach for HyperLTL is outlined in [9]. The idea
is to identify a set of propositions of interest and aggregate constraints such that
inconsistencies in the constraints indicate a violation of the HyperLTL formula.
While the paper describes the building blocks for such a monitoring approach
with a number of examples, we have, unfortunately, not been successful in apply-
ing the algorithm to other hyperproperties of interest, such as observational
determinism.

A sound constraint-based algorithm for HyperLTL formulas in the ∀2 frag-
ment is proposed in [31]. The basic idea is to rewrite incoming events and a given
HyperLTL formula into a Boolean constraint system, which is unsatisfiable if a

74 C. Hahn

violation occurs. The constraint system is built incrementally: the algorithm
starts by encoding constraints that represent the LTL constraints, which result
from rewriting the event into the formula, and encode the remaining HyperLTL
constraints as variables. Those variables will be defined incrementally when more
events of the trace become available.

In [7], the authors study the complexity of monitoring hyperproperties. They
show that the form and size of the input, as well as the formula have a sig-
nificant impact on the feasibility of the monitoring process. They differentiate
between several input forms and study their complexity: a set of linear traces,
tree-shaped Kripke structures, and acyclic Kripke structures. For acyclic struc-
tures and alternation-free HyperLTL formulas, the problems complexity gets as
low as NC.

In [8], the authors discuss examples where static analysis can be combined
with runtime verification techniques to monitor HyperLTL formulas beyond the
alternation-free fragment. They discuss the challenges in monitoring formulas
beyond this fragment and lay the foundations towards a general method.

For certain information flow policies, like non-interference and some exten-
sions, dynamic enforcement mechanisms have been proposed. Techniques for
the enforcement of information flow policies include tracking dependencies at
the hardware level [37], language-based monitors [2,3,5,36,40], and abstraction-
based dependency tracking [10,30,32]. Secure multi-execution [15] is a technique
that can enforce non-interference by executing a program multiple times in dif-
ferent security levels. To enforce non-interference, the inputs are replaced by
default values whenever a program tries to read from a higher security level.

3 Preliminaries

Since hyperproperties relate multiple computation traces to each other, standard
trace property specification logics like linear-time temporal logic (LTL) [34] can-
not be used to express them. In this section, we will give a quick overview on
how classic logics can be extended to obtain hyperlogics. We define HyperLTL,
which is the, so far, most studied hyperlogic. We furthermore give the finite trace
semantics of HyperLTL and define monitorability for the different input models.

3.1 Logics for Hyperproperties

Two extensions for obtaining hyperlogics are studied in the literature so far: (1)
extending temporal trace logics, like LTL [34] and CTL* [18], with explicit trace
quantification or (2) extending first-order and second-order logics with the equal-
level predicate [29,39]. An extensive expressiveness study of such hyperlogics
has been initiated recently [13] and the hierarchy of linear-time hyperlogics is
depicted in Fig. 4.

For example, HyperLTL extends LTL with trace quantification and trace
variables. The formula

∀π.∀π′.
∧

a∈AP

aπ ↔ aπ′ (2)

Algorithms for Monitoring Hyperproperties 75

HyperLTL

FO[<,E]

HyperQPTL

S1S[E]

Fig. 4. The hierarchy of linear-time hyperlogics [13].

expresses that all pairs of traces must agree on the values of the atomic propo-
sitions (given as a set AP) at all times.

The other technique for obtaining hyperlogics consists of adding the equal-
level predicate E, which relates the same time points on different traces. The
HyperLTL formula (2), for example, is equivalent to the FO[<,E] formula

∀x.∀y. E(x, y) →
∧

a∈AP

(Pa(x) ↔ Pa(y)).

Solving the runtime verification problem for logics beyond HyperLTL is still
open. Current monitoring approaches focus on the, so far, best understood tem-
poral hyperlogic HyperLTL, which we will define in the following.

3.2 HyperLTL

Let AP be a set of atomic propositions. A trace t is an infinite sequence over
subsets of the atomic propositions. We define the set of traces TR := (2AP)ω.
A subset T ⊆ TR is called a trace property. A hyperproperty H is a set of trace
properties, i.e., H ⊆ P(Σω). We use the following notation to manipulate traces:
let t ∈ TR be a trace and i ∈ N be a natural number. t[i] denotes the i-th element
of t. Therefore, t[0] represents the starting element of the trace. Let j ∈ N and
j ≥ i. t[i, j] denotes the sequence t[i] t[i + 1] . . . t[j − 1] t[j]. t[i,∞] denotes the
infinite suffix of t starting at position i. Let V be an infinite supply of trace
variables.

The syntax of HyperLTL is given by the following grammar:

ϕ ::= ∀π. ϕ | ∃π. ϕ | ψ , and
ψ ::= aπ | ¬ψ | ψ ∨ ψ | ψ | ψ U ψ ,

where a ∈ AP is an atomic proposition and π ∈ V is a trace variable. The
quantification over traces makes it possible to express properties like “on all

76 C. Hahn

traces ψ must hold”, which is expressed by ∀π. ψ and, dually, that “there exists
a trace such that ψ holds”, which is denoted by ∃π. ψ. The derived operators

, , and W are defined as for LTL.
A HyperLTL formula defines a hyperproperty, i.e., a set of sets of traces. A

set T of traces satisfies the hyperproperty if it is an element of this set of sets.
Formally, the semantics of HyperLTL formulas is given with respect to a trace
assignment Π from V to TR, i.e., a partial function mapping trace variables
to actual traces. Π[π �→ t] denotes that π is mapped to t, with everything else
mapped according to Π. Π[i,∞] denotes the trace assignment that is equal to
Π(π)[i,∞] for all π.

(T,Π, i) � aπ if a ∈ Π(π)[i]
(T,Π, i) � ¬ϕ if (T,Π, i) � ϕ
(T,Π, i) � ϕ ∨ ψ if (T,Π, i) � ϕ or (T,Π, i) � ψ
(T,Π, i) � ϕ if (T,Π, i + 1) � ϕ
(T,Π, i) � ϕ U ψ if ∃j ≥ i. (T,Π, j) � ψ ∧ ∀i ≤ k < j. (T,Π, k) � ϕ
(T,Π, i) � ∃π. ϕ if there is some t ∈ T such that (T,Π[π �→ t], i) � ϕ
(T,Π, i) � ∀π. ϕ if for all t ∈ T it holds that (T,Π[π �→ t], i) � ϕ .

3.3 Finite Trace Semantics

We recap the finite trace semantics for HyperLTL [9,31]. Let Πfin : V → Σ+

be a partial function mapping trace variables to finite traces. We define ε[0] as
the empty set. By slight abuse of notation, we write t ∈ Πfin to access traces
t in the image of Πfin . The satisfaction of a HyperLTL formula ϕ over a finite
trace assignment Πfin and a set of finite traces T , denoted by (T,Πfin , i) � ϕ, is
defined as follows:

(T,Πfin , i) � aπ if a ∈ Πfin(π)[i]
(T,Πfin , i) � ¬ϕ if (T,Πfin , i) � ϕ
(T,Πfin , i) � ϕ ∨ ψ if (T,Πfin , i) � ϕ or (T,Πfin , i) � ψ
(T,Πfin , i) � ϕ if ∀t ∈ Πfin . |t| > i + 1 and (T,Πfin , i + 1) �T ϕ
(T,Πfin , i) � ϕ U ψ if ∃j ≥ i with j < min

t∈Πfin
|t| such that (T,Πfin , j) � ψ

∧ ∀k ≥ i with k < j it holds that (T,Πfin , k) � ϕ
(T,Πfin , i) � ∃π. ϕ if there is some t ∈ T such that (T,Πfin [π �→ t], i) � ϕ
(T,Πfin , i) � ∀π. ϕ if for all t ∈ T such that (T,Πfin [π �→ t], i) � ϕ

3.4 Monitorability of HyperLTL Specifications

We recap the monitorability definitions for trace properties [35] and hyperprop-
erties [1,25]. Let L ⊆ Σω. We distinguish good and bad prefixes: good(L) := {u ∈
Σ∗ | ∀v ∈ Σω. uv ∈ L} and bad(L) := {u ∈ Σ∗ | ∀v ∈ Σω. uv /∈ L}, respectively.
A trace language L is monitorable if every prefix has a (finite) continuation that
is either good or bad, formally, ∀u ∈ Σ∗.∃v ∈ Σ∗. uv ∈ good(L)∨uv ∈ bad(L).

Theorem 1 ([4]). Deciding whether an LTL formula ϕ is monitorable is
PSpace-complete.

Algorithms for Monitoring Hyperproperties 77

Let H ⊆ P(Σω) be a hyperproperty. We say that a finite set of prefix traces
is good if every continuation, i.e., a (possibly infinite) set of infinite traces, is
contained in H. The set of good and bad prefix traces is then formally defined
as good(H) := {U ∈ P∗(Σ∗) | ∀V ∈ P(Σω). U � V ⇒ V ∈ H} and bad(H) :=
{U ∈ P∗(Σ∗) | ∀V ∈ P(Σω). U � V ⇒ V /∈ H}.

Unbounded Sequential Model. A hyperproperty H is monitorable in the
unbounded input model if every finite prefix set has a good or bad continua-
tion, formally,

∀U ∈ P∗(Σ∗).∃V ∈ P∗(Σ∗). U � V ∧ (
V ∈ good(H) ∨ V ∈ bad(H)

)
.

Theorem 2 ([25]). Given an alternation-free HyperLTL formula ϕ. Deciding
whether ϕ is monitorable in the unbounded sequential model is PSpace-complete.

Theorem 3 ([25]). Deciding whether a HyperLTL formula ϕ is monitorable in
the unbounded sequential model is undecidable.

Bounded Sequential Model. We give the adapted definition of monitorability
and a characterization for alternation-free HyperLTL. A hyperproperty H is
monitorable in the bounded input model for some bound b > 0 if

∀U ∈ P≤b(Σ∗).∃V ∈ Pb(Σ∗). U � V ∧ (V ∈ goodb(H) ∨ V ∈ badb(H)) ,

where goodb(H) := {U ∈ Pb(Σ∗) | ∀V ∈ Pb(Σω). U � V ⇒ V ∈ H} and
bad(H) := {U ∈ Pb(Σ∗) | ∀V ∈ Pb(Σω). U � V ⇒ V /∈ H}.

Theorem 4 ([25]). Deciding whether a HyperLTL formula ϕ is monitorable in
the bounded sequential model is undecidable.

Parallel Model. Lastly, we consider the parallel model, were b traces are given
simultaneously. This model is with respect to monitorability a special case of
the bounded model. A hyperproperty H is monitorable in the fixed size input
model if for a given bound b

∀U ∈ Pb(Σ∗).∃V ∈ Pb(Σ∗). U � V ∧ (V ∈ goodb(H) ∨ V ∈ badb(H)) .

Theorem 5 ([25]). Deciding whether a HyperLTL formula ϕ is monitorable in
the parallel model is undecidable.

4 Algorithms for Monitoring Hyperproperties

We classify the current state-of-the art monitoring algorithms for hyperprop-
erties into two approaches: combinatorial approaches [1,23,25] and constraint-
based approaches [9,31].

As combinatorial approaches we understand algorithms that construct mon-
itors by explicitly iterating over each (necessary) combination of traces for mon-
itoring them. For example, consider a trace set T of already monitored traces

78 C. Hahn

incoming trace t

stored trace t1

stored trace tn

violation (t, t2)

A(t, t)

A(t, t1)

A(t1, t)

A(t, t2)

new events on t

Fig. 5. A combinatorial approach to monitoring hyperproperties [23,25]: a monitoring
template A, constructed from a given HyperLTL formula ϕ, is initiated with combi-
nations from the new incoming trace t and stored traces {t1, . . . , tn}. The monitors
progress with new events on t, in this case, until a violation is found for trace t and t2.

and a fresh incoming trace t. A combinatorial monitor would construct each pair
T × {t} and check whether the hyperproperty holds on such a trace tuple. The
monitor, in the worst case, therefore has to store each incoming trace seen so
far. This is currently done by explicit automata constructions, but other meth-
ods, such as SAT-solvers could be plugged into such combinatorial approaches
as well. In Sect. 4.1, we will investigate one such approach [25] in detail, which is
the algorithmic foundation for the combinatorial algorithm implemented in the
current state-of-the-art monitoring tool RVHyper [24].

The constraint-based approaches try to avoid the storing of explicit traces by
translating the monitoring task into a constraint system. This is currently imple-
mented by rewriting approaches that translate the requirements that a current
trace imposes on future traces into the formula. For example, a hyperproperty
ϕ under consideration and a new event et on a trace t will be translated into
ϕ[et] and used as the new specification when monitoring new events on possibly
new traces. Such a rewritten formula can then, together with the trace under
consideration, be translated into an constraint system, which is fed, for exam-
ple, into a SAT-solver. In Sect. 4.2, we will investigate a recently introduced [31]
constraint-based algorithm for ∀2 HyperLTL formulas in detail.

4.1 Combinatorial Approaches

Intuition. We describe the automaton-based combinatorial approach introduced
in [23,25] in detail. The basic architecture of the algorithm is depicted in Fig. 5.
Let a trace set T := {t1, . . . , tn} of already seen traces and a fresh trace t,
which is processed online, be given. From a ∀∗ HyperLTL formula, a monitor
template A is automatically constructed, which runs over two execution traces.
This template is then initialized with every combination between t and T . A
violation will be reported when one of the automaton instantiations ends up in
a rejecting state.

Algorithms for Monitoring Hyperproperties 79

new event e of trace t ∀2 HyperLTL formula ϕt1,...,tn

rewritten formula “ϕt1,...,tn [e]”

sa
t

encoding

constraint system unsat

Fig. 6. A constraint-based approach to monitoring hyperproperties [31]: a fresh trace
t, and a HyperLTL formula ϕt1,...,tn , which has already been rewritten with respect to
seen traces t1, . . . tn, will be rewritten to a formula representing the requirements that
are posed on future traces. The rewritten formula will be translated into a constraint
system, which is satisfiable if the new event complies with the formula ϕt1,...,tn and
unsatisfiable if there is a violation.

q0

q2
q1 q3q4

¬pcπ ∧ pcπ′

¬sπ

sπ

vπ′ ∧ ¬sπ

vπ′ ∧ sπ

¬pcπ′

�

pcπ ∧ pcπ′

vπ ↔ vπ′

Fig. 7. [23,25] Visualization of the monitor template for Formula 3.

Example 1 (Conference Management System [23,25]). Consider a conference
management system, where we distinguish two types of traces, author traces
and program committee member traces. The latter starts with proposition pc.
Based on these traces, we want to verify that no paper submission is lost, i.e.,
that every submission (proposition s) is visible (proposition v) to every program
committee member in the following step. When comparing two PC traces, we
require that they agree on proposition v. The monitor template for the following
HyperLTL formalization is depicted in Fig. 7.

∀π.∀π′.
(
(¬pcπ∧pcπ′) → (sπ → vπ′)

)∧(
(pcπ∧pcπ′) → (vπ ↔ vπ′)

)
(3)

Algorithm. Formally, a deterministic monitor template M = (Σ,Q, δ, q0, F)
[23,25] is a tuple of a finite alphabet Σ = P(AP × V), a non-empty set of
states Q, a partial transition function δ : Q × Σ ↪→ Q, a designated initial
state q0 ∈ Q, and a set of accepting states F ⊆ Q. The instantiated automaton
runs in parallel over traces in P(AP)∗, thus we define a run with respect to a
n-ary tuple N ∈ (P(AP)∗)n of finite traces. A run of N is a sequence of states

80 C. Hahn

input : ∀n HyperLTL formula ϕ
output: satisfied or n-ary tuple witnessing violation

Mϕ = (ΣV , Q, q0, δ, F) = build template(ϕ);
T ← ∅;
S : T n → Q initially empty;

while there is a new trace do
t ← ε;
for t ∈ ((T ∪ {t})n \ T n) do init S for every new tuple t

S(t) = q0;
end
while p ∈ Σ is a new input event do

t ← t p append p to t;
for ((t1, . . . , tn), q) ∈ S where t ∈ (t1, . . . , tn) do progress every state
in S

if ∃t′ ∈ {t1, . . . , tn}. |t′| < |t| then some trace ended
if S((t1, . . . , tn)) ∈ F then

remove (t1, . . . , tn) from S and continue;
else

return violation and witnessing tuple t;
end

else if δ(S((t1, . . . , tn)),
⋃n

i=1

⋃
a∈ti[|t|−1]{(a, πi)}) = q′ then

S(N) ← q′;
else

return violation and witnessing tuple t;
end

end
end
T = T ∪ {t};

end
return satisfied;

Fig. 8. [25] Evaluation algorithm for monitoring ∀n HyperLTL formulas in the
unbounded sequential model.

q0q1 · · · qm ∈ Q∗, where m is the length of the smallest trace in N , starting in
the initial state q0 such that for all i with 0 ≤ i < m it holds that

δ

⎛

⎝qi,

n⋃

j=1

⋃

a∈N(j)(i)

{(a, πj)}
⎞

⎠ = qi+1 .

A tuple N is accepted, if there is a run on M that ends in an accepting state.
The algorithm for monitoring ∀n HyperLTL formulas in the unbounded

sequential model is given in Fig. 8. The algorithm proceeds as follows. A monitor-
ing template is constructed a-priori from the specification (in doubly-exponential
time in the size of the formula [14,38]) and the trace set T is initially empty. For
each new trace, we proceed with the incoming events on this trace. The automaton

Algorithms for Monitoring Hyperproperties 81

input : HyperLTL formula Qn.ψ
trace set T ⊆ P∗(Σ∗)

output: satisfied or violation

Aψ = (ΣV , Q, q0, δ, F) = build alternating automaton(ψ);

if ♦
t1∈T

· · · ♦
tn∈T

. LTL backwards algorithm(Aψ,(t1, t2, . . . , tn)) then

return satisfied;
else

return violation;
end

Fig. 9. [25] Offline backwards algorithm for the parallel model, where ♦i := ∧ if the
i-th quantifier in ϕ is a universal quantifier and ∨ otherwise.

template will then be initialized by each combination between t and traces in T ,
i.e. S(t) = q0. Each initialized monitor progresses with new input events p until
a violation is found, in which case the witnessing tuple t is returned, or a trace
ends, in which case this monitor is discarded if no violation occurred. If no viola-
tion occurred, and all trace combinations have been monitored, the current trace
t is added to the traces that have been seen already, i.e., T .

While the online monitoring algorithms in the bounded sequential and par-
allel input model can be seen as special cases of the above described algorithm,
traces can be processed efficiently in a backwards fashion when considering
offline monitoring. The algorithm depicted in Fig. 9 exploits the backwards algo-
rithm based on alternating automata [28].

4.2 Constraint-Based Approaches

Intuition. We describe the constraint-based monitoring algorithm for ∀2 Hyper-
LTL formulas introduced in [31] in detail. The basic architecture of the algorithm
is depicted in Fig. 6. The basic idea is that a formula and an event on a trace
will be rewritten into a new formula, which represents the requirements posed
on future traces.

Example 2 (Observational Determinism [31]). Assume the event {in, out} while
monitoring observational determinism: ((outπ ↔ outπ′)W(inπ � inπ′)). The
formula is rewritten by applying the standard expansion laws and insert-
ing {in, out} for the atomic propositions indexed by the trace variable π:
¬in ∨ out ∧ ((outπ ↔ outπ′)W(inπ � inπ′)). Based on this, a Boolean con-
straint system is built incrementally: one starts by encoding the constraints
corresponding to the LTL part ¬in ∨ out and encodes the HyperLTL part as
variables. Those variables will then be defined incrementally when more elements
of the trace become available. A violation will be reported when the constraint
system becomes unsatisfiable.

82 C. Hahn

Input : ∀π, π′. ϕ, T ⊆ Σ+

Output: violation or no violation

ψ := nnf(ϕ̂)
C := �
foreach t ∈ T do

Ct := vψ,0

tenc := �
while ei := getNextEvent(t) do

tenc := tenc ∧ encoding(ei)
foreach vφ,i ∈ Ct do

c := ψ[π, ei, i]
Ct := Ct ∧ (vφ,i → c)

end
if ¬sat(C ∧ Ct ∧ tenc) then

return violation
end

end
foreach v+

φ,i+1 ∈ Ct do
Ct := Ct ∧ v+

φ,i+1

end
foreach v−

φ,i+1 ∈ Ct do
Ct := Ct ∧ ¬v−

φ,i+1

end
C := C ∧ Ct

end
return no violation

Fig. 10. [31] Constraint-based algorithm for monitoring ∀2HyperLTL formulas.

Algorithm. We define the operation ϕ[π, e, i] (taken from [31]), where e ∈ Σ is
an event and i is the current position in the trace, as follows: ϕ[π, e, i] trans-
forms ϕ into a propositional formula, where the variables are either indexed
atomic propositions pi for p ∈ AP , or a variable v−

ϕ′,i+1 and v+
ϕ′,i+1 that act as

placeholders until new information about the trace comes in. Whenever the next
event e′ occurs, the variables are defined with the result of ϕ′[π, e′, i + 1]. If the
trace ends, the variables are set to true and false for v+ and v−, respectively.
In Fig. 11, we define ϕ[π, e, i] of a ∀2HyperLTL formula ∀π, π′. ϕ in NNF, event
e ∈ Σ, and i ≥ 0 recursively on the structure of the body ϕ. We write vϕ,i to
denote either v−

ϕ,i or v+
ϕ,i.

The algorithm for monitoring ∀2 HyperLTL formulas with the constraint-
based approach is given in Fig. 10. We continue with the explanation of the
algorithm (taken from [31]): ψ is the negation normal form of the symmetric
closure of the original formula. We build two constraint systems: C containing
constraints of previous traces and Ct (built incrementally) containing the con-
straints for the current trace t. Consequently, we initialize C with � and Ct with
vψ,0. If the trace ends, we define the remaining v variables according to their

Algorithms for Monitoring Hyperproperties 83

aπ[π, e, i] :=

{
� if a ∈ e

⊥ otherwise
(¬aπ)[π, e, i] :=

{
� if a /∈ e

⊥ otherwise
aπ′ [π, e, i] := ai (¬aπ′)[π, e, i] := ¬ai

(ϕ ∨ ψ)[π, e, i] := ϕ[π, e, i] ∨ ψ[π, e, i] (ϕ ∧ ψ)[π, e, i] := ϕ[π, e, i] ∧ ψ[π, e, i]
(ϕ)[π, e, i] := v−

ϕ,i+1 (w ϕ)[π, e, i] := v+
ϕ,i+1

(ϕ U ψ)[π, e, i] := ψ[π, e, i] ∨ (ϕ[π, e, i] ∧ v−
ϕ U ψ,i+1)

(ϕ R ψ)[π, e, i] := ψ[π, e, i] ∧ (ϕ[π, e, i] ∨ v+
ϕ R ψ,i+1)

Fig. 11. [31] Recursive definition of the rewrite operation.

polarities and add Ct to C. For each new event ei in the trace t, and each “open”
constraint in Ct corresponding to step i, i.e., vφ,i ∈ Ct, we rewrite the formula
φ and define vφ,i with the rewriting result, which, potentially introduced new
open constraints vφ′,i+1 for the next step i + 1. The constraint encoding of the
current trace is aggregated in constraint tenc . If the constraint system given the
encoding of the current trace turns out to be unsatisfiable, a violation to the
specification is detected, which is then returned.

5 Optimizations

Both monitoring approaches rely heavily on optimization techniques to become
feasible in practice. Naive implementations, that blindly store all traces seen
so far or consider the same constraints multiple times, will run out of memory
quickly or will take unfeasibly long. We present several techniques that signifi-
cantly speed up the monitoring process.

5.1 Specification Analysis

We can analyze the specification and determine if it is symmetric, transitive,
or reflexive. Formally, we define symmetry of a HyperLTL formulas as follows
(reflexivity and transitivity is discussed in detail in [25]).

Definition 1 ([25]). Let ψ be the quantifier-free part of some HyperLTL formula
ϕ over trace variables V. We say ϕ is invariant under trace variable permutation
σ : V → V, if for any set of traces T ⊆ Σω and any assignment Π : V → T ,
(∅,Π, 0) � ψ ⇔ (∅,Π ◦σ, 0) � ψ. We say ϕ is symmetric, if it is invariant under
every trace variable permutation in V.

Observational determinism, for example, is symmetric. To illustrate the impact of
this observation, consider again Fig. 5. Symmetry means that one of the automa-
ton instantiation A[t, ti] or A[ti, t] can be omitted for each i ≤ n, resulting in an
reduction of half the monitor instantiations.

84 C. Hahn

A HyperLTL formula can be checked for symmetry, transitivity and reflex-
ivity fully automatically and a-priori to the monitoring task with a satisfiability
solver for hyperproperties, such as EAHyper [22]. Such a check, for example for
observational determinism, is performed in under a second.

5.2 Trace Analysis

Keeping the set of stored traces minimal is crucial for a combinatorial approach
to monitoring hyperproperties: We explain a method that checks whether a trace
t poses strictly stronger requirements on future traces than another trace t′. In
this case, t′ could be safely discarded without losing the ability to detect every
violation of the hyperproperty.

Definition 2 ([25]). Given a HyperLTL formula ϕ, a trace set T and an arbi-
trary t ∈ Σω, we say that t is (T, ϕ)-redundant if T is a model of ϕ if and only
if T ∪ {t} is a model of ϕ as well, formally

∀T ′ ⊇ T. T ′ ∈ H(ϕ) ⇔ T ′ ∪ {t} ∈ H(ϕ) .

Example 3 ([31]). Consider the monitoring of the HyperLTL formula
∀π, π′. (aπ → ¬bπ′), which states that globally if a occurs on any trace π,
then b is not allowed to hold on any trace π′, on the following incoming traces:

{a} {} {} {} ¬b is enforced on the 1st pos. (4)

{a} {a} {} {} ¬b is enforced on the 1st and 2nd pos. (5)

{a} {} {a} {} ¬b is enforced on the 1st and 3rd pos. (6)

In this example, the requirements of the first trace are dominated by the require-
ments of the second trace, namely that b is not allowed to hold on the first and
second position of new incoming traces. Hence, the first trace must not be stored
any longer to detect a violation.

5.3 Tree Maintaining Formulas and Conjunct Splitting

For constraint-based approaches, a valuable optimization is to store formulas and
their corresponding variables in a tree structure, such that a node corresponds to
an already seen rewrite. If a rewrite is already present in the tree, there is no need
to create any new constraints. By splitting conjuncts in HyperLTL formulas, we
can avoid introducing unnecessary nodes in the tree.

Example 4 ([31]). Consider ∀π, π′. ϕ with ϕ = ((aπ ↔ a′
π) ∨ (bπ ↔ b′

π)),
which demands that on all executions on each position at least on of propo-
sitions a or b agree in its evaluation. Consider the two traces t1 = {a}{a}{a},
t2 = {a}{a, b}{a} that satisfy the specification. As both traces feature the same
first event, they also share the same rewrite result for the first position. Inter-
estingly, on the second position, we get (a ∨ ¬b) ∧ sϕ for t1 and (a ∨ b) ∧ sϕ

Algorithms for Monitoring Hyperproperties 85

0 100 200 300 400 500
0

2

4

·104

of instances
ru
nt
im

e
in

m
se
c.

naive
specification analysis

trace analysis
both

Fig. 12. [23,25] Hamming-distance preserving encoder: runtime comparison of the
naive monitoring approach with different optimizations and the combination thereof.

Table 1. [31] Average results of BDD and SAT based constraint-based algorithms
compared to the combinatorial algorithm on traces generated from circuit instances.
Every instance was run 10 times.

Instance # traces Length Time combinatorial Time SAT Time BDD

xor1 19 5 12 ms 47 ms 49 ms

xor2 1000 5 16913 ms 996 ms 1666 ms

Counter1 961 20 9610 ms 8274 ms 303 ms

Counter2 1353 20 19041 ms 13772 ms 437 ms

mux1 1000 5 14924 ms 693 ms 647 ms

mux2 80 5 121 ms 79 ms 81 ms

for t2 as the rewrite results. While these constraints are no longer equal, by the
nature of invariants, both feature the same subterm on the right hand side of
the conjunction. We split the resulting constraint on its syntactic structure, such
that we would no longer have to introduce a branch in the tree.

6 Experimental Results

The presented algorithms and optimizations implemented in RVHyper [24] were
extensively evaluated over the last years [23–25,31].

A first benchmark that shows the impact of the trace and specification anal-
ysis is the following: it is monitored whether an encoder preserves a Hamming-
distance of 2 [25], which can be encoded as a universally quantified HyperLTL
formula [11]: ∀ππ′.((Iπ � Iπ′) → ((Oπ ↔ Oπ′)U((Oπ � Oπ′) ∧ ((Oπ ↔
Oπ′)U(Oπ � Oπ′))))). In Fig. 12 a comparison between the naive monitoring

86 C. Hahn

0 200 400 600 800 1,000

0

50

100

150

200

number of traces

se
c

64bit input, trace length 50

SAT
BDD
RVHyper

0 200 400 600 800 1,000

0

50

100

150

200

number of traces

se
c

128bit input, trace length 50

SAT
BDD

Fig. 13. [31] Runtime comparison between the combinatorial algorithm and the
constraint-based algorithm implemented in RVHyper on a non-interference specifica-
tion with traces of varying input size.

approach and the monitor using specification analysis and trace analysis, as well
as a combination thereof is depicted. Traces were built randomly, where the
corresponding bit on each position had a 1% chance of being flipped.

A second benchmark was introduced in [24] with the idea to detect spu-
rious dependencies in hardware design. Traces were generated from circuit
instances and then monitored whether input variables influence out variables.
The property was specified as the following HyperLTL formula: ∀π1∀π2. (oπ1 ↔
oπ2)W(iπ1 � iπ2), where i denotes all inputs except i. The results are depicted
in Table 1.

The next benchmark [31] considers non-interference [33], which is an impor-
tant information flow policy demanding that an observer of a system cannot
infer any high security input of a system by observing only low security input
and output. Reformulated we could also say that all low security outputs olow

have to be equal on all system executions as long as the low security inputs
ilow of those executions are the same: ∀π, π′. (olow

π ↔ olow
π′)W(ilow

π � ilow
π′).

The results of the experiments are depicted in Fig. 13. For 64 bit inputs, the
BDD implementation performs well when compared to the combinatorial app-
roach, which statically constructs a monitor automaton. For 128 bit inputs, it
was not possible to construct the automaton for the combinatorial approach in
reasonable time.

The last benchmark considers guarded invariants, which express a certain
invariant relation between two traces, which are, additionally, guarded by a
precondition. Figure 14 shows the results of monitoring an arbitrary invariant P :
Σ → B of the following form: ∀π, π′. (∨i∈I iπ � iπ′) → (P (π) ↔ P (π′)). The
constraint-based approach significantly outperforms combinatorial approaches
on this benchmark as the conjunct splitting optimization synergizes well with
current SAT-solver implementations.

Algorithms for Monitoring Hyperproperties 87

0 200 400 600 800 1,000

0

50

100

150

200

number of traces

se
c

linear scale

SAT, o=1
SAT, o=8
RVHyper, o=1
RVHyper, o=2
RVHyper, o=3
RVHyper, o=4
RVHyper, o=5
RVHyper, o=6
RVHyper, o=7
RVHyper, o=8

0 200 400 600 800 1,000

10−3

10−2

10−1

100

101

102

number of traces

se
c

logarithmic scale

Fig. 14. [31] Runtime comparison between the combinatorial approach and the
constraint-based monitor on the guarded invariant benchmark with trace lengths 20,
20 bit input size.

7 Conclusion

We classified current monitoring approaches into combinatorial and constraint-
based algorithms and explained their basic architecture. We have gone into detail
into two of these approaches and summarized current optimization technique
making the monitoring of hyperproperties feasible in practice.

Future work consists of implementing and adapting more optimization tech-
niques for constraint-based and combinatorial approaches. It would also be inter-
esting to plug SAT and SMT solvers into combinatorial monitoring approaches,
instead of using automata. Furthermore, considering the monitoring problem
of specifications given in HyperQPTL, i.e., the extension of HyperLTL with
quantification over propositions, is not studied yet. This problem is particularly
interesting and challenging since HyperQPTL allows for a true combination of
ω-regular properties and hyperproperties.

Acknowledgements. This paper is based on a tutorial that will be given at the
19th International Conference on Runtime Verification. The work summarized here
has previously appeared in various publications [23–25,31]. The author is particularly
grateful to his coauthors Bernd Finkbeiner, Marvin Stenger, and Leander Tentrup and,
furthermore, to Maximilian Schwenger for his valuable comments on an earlier version
of this paper.

References

1. Agrawal, S., Bonakdarpour, B.: Runtime verification of k-safety hyperproperties
in HyperLTL. In: Proceedings of CSF. IEEE Computer Society (2016)

2. Askarov, A., Sabelfeld, A.: Tight enforcement of information-release policies for
dynamic languages. In: Proceedings of CSF. IEEE Computer Society (2009)

88 C. Hahn

3. Austin, T.H., Flanagan, C.: Permissive dynamic information flow analysis. In: Pro-
ceedings of PLAS. ACM (2010)

4. Bauer, A.: Monitorability of omega-regular languages. CoRR (2010)
5. Bichhawat, A., Rajani, V., Garg, D., Hammer, C.: Information flow control in

WebKit’s JavaScript bytecode. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS,
vol. 8414, pp. 159–178. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54792-8 9

6. Bonakdarpour, B., Finkbeiner, B.: Runtime verification for hyperLTL. In: Run-
time Verification - 16th International Conference, RV 2016, Madrid, Spain, 23–30
September 2016, Proceedings (2016)

7. Bonakdarpour, B., Finkbeiner, B.: The complexity of monitoring hyperproperties.
In: Proceedings of CSF. IEEE Computer Society (2018)

8. Bonakdarpour, B., Sanchez, C., Schneider, G.: Monitoring hyperproperties by com-
bining static analysis and runtime verification. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2018. LNCS, vol. 11245, pp. 8–27. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-03421-4 2

9. Brett, N., Siddique, U., Bonakdarpour, B.: Rewriting-based runtime verification for
alternation-free hyperLTL. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS,
vol. 10206, pp. 77–93. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54580-5 5

10. Chudnov, A., Kuan, G., Naumann, D.A.: Information flow monitoring as abstract
interpretation for relational logic. In: Proceedings of CSF. IEEE Computer Society
(2014)

11. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8 15

12. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

13. Coenen, N., Finkbeiner, B., Hahn, C., Hofmann, J.: The hierarchy of hyperlogics.
In: Proceedings of LICS (2019, to appear)

14. d’Amorim, M., Roşu, G.: Efficient monitoring of ω-languages. In: Etessami, K.,
Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 364–378. Springer, Heidel-
berg (2005). https://doi.org/10.1007/11513988 36

15. Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: Pro-
ceedings of SP. IEEE Computer Society (2010)

16. Dimitrova, R., Finkbeiner, B., Kovács, M., Rabe, M.N., Seidl, H.: Model check-
ing information flow in reactive systems. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 169–185. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-27940-9 12

17. Dimitrova, R., Finkbeiner, B., Rabe, M.N.: Monitoring temporal information flow.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 342–357.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34026-0 26

18. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: on branch-
ing versus linear time temporal logic. J. ACM 33(1), 151–178 (1986)

19. Finkbeiner, B., Hahn, C.: Deciding hyperproperties. In: Proceedings of CONCUR,
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

20. Finkbeiner, B., Hahn, C., Hans, T.: MGHyper: checking satisfiability of hyperLTL
formulas beyond the ∃∗∀∗ fragment. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018.
LNCS, vol. 11138, pp. 521–527. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-01090-4 31

https://doi.org/10.1007/978-3-642-54792-8_9
https://doi.org/10.1007/978-3-642-54792-8_9
https://doi.org/10.1007/978-3-030-03421-4_2
https://doi.org/10.1007/978-3-030-03421-4_2
https://doi.org/10.1007/978-3-662-54580-5_5
https://doi.org/10.1007/978-3-662-54580-5_5
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/11513988_36
https://doi.org/10.1007/978-3-642-27940-9_12
https://doi.org/10.1007/978-3-642-27940-9_12
https://doi.org/10.1007/978-3-642-34026-0_26
https://doi.org/10.1007/978-3-030-01090-4_31
https://doi.org/10.1007/978-3-030-01090-4_31

Algorithms for Monitoring Hyperproperties 89

21. Finkbeiner, B., Hahn, C., Lukert, P., Stenger, M., Tentrup, L.: Synthesizing reac-
tive systems from hyperproperties. In: Chockler, H., Weissenbacher, G. (eds.) CAV
2018. LNCS, vol. 10981, pp. 289–306. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96145-3 16

22. Finkbeiner, B., Hahn, C., Stenger, M.: EAHyper: satisfiability, implication, and
equivalence checking of hyperproperties. In: Majumdar, R., Kunčak, V. (eds.) CAV
2017. LNCS, vol. 10427, pp. 564–570. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63390-9 29

23. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Monitoring hyperproperties.
In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 190–207. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67531-2 12

24. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: RVHyper: a runtime verifica-
tion tool for temporal hyperproperties. In: Beyer, D., Huisman, M. (eds.) TACAS
2018. LNCS, vol. 10806, pp. 194–200. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89963-3 11

25. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Monitoring hyperproperties.
In: Formal Methods in System Design (2019)

26. Finkbeiner, B., Hahn, C., Torfah, H.: Model checking quantitative hyperproperties.
In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 144–
163. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 8

27. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking hyper-
LTL and hyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 30–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 3

28. Finkbeiner, B., Sipma, H.: Checking finite traces using alternating automata. For-
mal Methods Syst. Des. 24(2), 101–127 (2004)

29. Finkbeiner, B., Zimmermann, M.: The first-order logic of hyperproperties. In: 34th
Symposium on Theoretical Aspects of Computer Science, STACS 2017, 8–11 March
2017, Hannover, Germany (2017)

30. Le Guernic, G., Banerjee, A., Jensen, T., Schmidt, D.A.: Automata-based con-
fidentiality monitoring. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol.
4435, pp. 75–89. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
77505-8 7

31. Hahn, C., Stenger, M., Tentrup, L.: Constraint-based monitoring of hyperproper-
ties. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 115–131.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1 7

32. Kovács, M., Seidl, H.: Runtime enforcement of information flow security in tree
manipulating processes. In: Barthe, G., Livshits, B., Scandariato, R. (eds.) ESSoS
2012. LNCS, vol. 7159, pp. 46–59. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28166-2 6

33. McLean, J.: Proving noninterference and functional correctness using traces. J.
Comput. Secur. 1(1), 37–57 (1992)

34. Pnueli, A.: The temporal logic of programs. In: Proceedings of FOCS. IEEE Com-
puter Society (1977)

35. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586.
Springer, Heidelberg (2006). https://doi.org/10.1007/11813040 38

36. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

37. Suh, G.E., Lee, J.W., Zhang, D., Devadas, S.: Secure program execution via
dynamic information flow tracking. In: Proceedings of ASPLOS. ACM (2004)

https://doi.org/10.1007/978-3-319-96145-3_16
https://doi.org/10.1007/978-3-319-96145-3_16
https://doi.org/10.1007/978-3-319-63390-9_29
https://doi.org/10.1007/978-3-319-63390-9_29
https://doi.org/10.1007/978-3-319-67531-2_12
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-540-77505-8_7
https://doi.org/10.1007/978-3-540-77505-8_7
https://doi.org/10.1007/978-3-030-17465-1_7
https://doi.org/10.1007/978-3-642-28166-2_6
https://doi.org/10.1007/978-3-642-28166-2_6
https://doi.org/10.1007/11813040_38

90 C. Hahn

38. Tabakov, D., Rozier, K.Y., Vardi, M.Y.: Optimized temporal monitors for Sys-
temC. Formal Methods Syst. Des. 41(3), 236–268 (2012)

39. Thomas. Path logics with synchronization. In: Perspectives in Concurrency Theory
(2009)

40. Vanhoef, M., De Groef, W., Devriese, D., Piessens, F., Rezk, T.: Stateful declassifi-
cation policies for event-driven programs. In: Proceedings of CSF. IEEE Computer
Society (2014)

Stream-Based Monitors
for Real-Time Properties

Hazem Torfah(B)

Reactive Systems Group, Saarland University, Saarbrücken, Germany
torfah@react.uni-saarland.de

Abstract. In stream-based runtime monitoring, streams of data, called
input streams, which involve data collected from the system at runtime,
are translated into new streams of data, called output streams, which
define statistical measures and verdicts on the system based on the input
data. The advantage of this setup is an easy-to-use and modular way for
specifying monitors with rich verdicts, provided with formal guarantees
on the complexity of the monitor.

In this tutorial, we give an overview of the different classes of stream
specification languages, in particular those with real-time features. With
the help of the real-time stream specification language RTLola, we illus-
trate which features are necessary for the definition of the various types of
real-time properties and we discuss how these features need to be imple-
mented in order to guarantee memory efficient and reliable monitors.

To demonstrate the expressive power of the different classes of stream
specification languages and the complexity of the different features, we
use a series of examples based on our experience with monitoring prob-
lems from the areas of unmanned aerial systems and telecommunication
networks.

Keywords: Stream-based monitoring · Real-time properties · Stream
specification languages

1 Introduction

The online monitoring of real-time data streams has recently gained a great deal
of attention, especially with the growing levels of autonomy and connectivity in
modern real-time systems [1,7–9,14,17,28,30]. Runtime monitors are essential
for evaluating the performance and for assessing the health of a running system,
and are integral for the detection of malfunctions and consequently for deploying
the necessary counter measures when these malfunctions occur at runtime.

This work was partially supported by the German Research Foundation (DFG) as part
of the Collaborative Research Center “Foundations of Perspicuous Software Systems”
(TRR 248, 389792660), and by the European Research Council (ERC) Grant OSARES
(No. 683300).

c© Springer Nature Switzerland AG 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 91–110, 2019.
https://doi.org/10.1007/978-3-030-32079-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-32079-9_6

92 H. Torfah

Formal Guarantees Rich Verdicts

Temporal

Logics

Programming

Languages

Stream
Specification

Languages

Fig. 1. Spectrum of specification languages and tradeoffs in implementing monitors for
real-time properties.

The integration of monitoring components into real-time systems demands
the construction of monitors that are (1) efficient : using an on-board monitor
that consumes a large amount of memory is bound to eventually disrupt the
normal operation of the system, and (2) reliable: in the case of any malfunction or
abnormality in one of the system’s components, the monitor needs to provide, as
early as possible, a correct assessment for deploying the right fallback procedure.

Monitors for real-time properties can be defined using a variety of languages,
ranging over a spectrum that spans from formal languages with strong guaran-
tees, such as temporal logics (e.g. [2,25,29]), to very expressive languages that
allow for the definition of monitors with rich verdicts, such as scripting and
programming languages. Moving from one end of the spectrum to the other,
there is always a trade-off between the expressivity of a language and the guar-
antees it provides on the constructed monitors (Fig. 1). Monitors specified in
temporal logics come with formal complexity guarantees, involving bounds on
the maximum memory consumption of the monitor at runtime. Furthermore,
temporal logics have the big advantage of allowing for the automatic construc-
tion of monitors from their specifications, and the guarantee that these monitors
fulfill these specifications. A disadvantage of temporal logics is, however, that
they are limited to describing monitors with simple boolean verdicts, which do
not always suffice for the definition of monitors for practical real-world monitor-
ing problems, where more involved computations over more complex datatypes
are needed. Programming languages on the other hand allow for the implemen-
tation of such complex computations. This comes at the cost of losing formal
guarantees on the constructed monitors, and also on their reliability, as there is
no guarantee on the soundness of the manually implemented monitor.

In general, different monitoring applications require different approaches to
constructing monitors. In modern real-time systems, monitors are required to
perform complex arithmetic computations, but at the same time perform these
computations with respect to the limited resources available on the platform
they are running on. To implement such monitors for real-time properties, we
need specification languages that are expressive enough, and, at the same time,
provide certain guarantees on the complexity of the constructed monitor.

In this tutorial, we show how stream specification languages with real-time
features can be used for the specification of runtime monitors for real-time prop-
erties. Stream specification languages allow for the definition of stream-based
monitors, where input streams, containing data collected at runtime, such as

Stream-Based Monitors for Real-Time Properties 93

sensor readings, or network traffic, are translated into output streams, contain-
ing aggregate statistics, threshold assertions and other logical conditions. The
advantage of this setup is that it combines features from both sides of the specifi-
cation language spectrum: the great expressiveness of programming languages on
one hand, and the ability to compute a-priori formal guarantees on the monitor,
as in the case for temporal logics, on the other hand.

We give an overview of the different types of real-time stream specification
languages and illustrate, using the stream specification language RTLola [14,
15], the different features needed for expressing monitors for real-time properties.
We further show how these features need to be implemented in order to obtain
memory efficient and reliable monitors. To demonstrate the expressive power of
stream specification languages in general and RTLola in particular, we will rely
on examples from real-world monitoring problems from the area of unmanned
aerial vehicles, which we have been investigating in close collaboration with the
German Aerospace Center (DLR) [1], and from our experience with problems
from the field of network monitoring [13].

This tutorial is structured as follows. In Sect. 2, we give an introduction
to stream specification languages and show the different classes of these lan-
guages, according to their underlying computational model (synchronous vs.
asynchronous), and the ways streams are accessed in the language (discrete-time
vs. real-time access). In Sect. 3, we show the advantage of adding parameteri-
zation to stream specification languages and briefly explain the challenges in
monitoring parameterized stream specifications. Section 4 shows how real-time
stream specification languages subsume real-time logics like STL [25], and the
role of parameterization in encoding STL formulas in stream specification lan-
guages like RTLola. In Sect. 5, we give an overview of the various monitoring
approaches for real-time properties. Finally, in Sect. 6, we conclude our survey
with a brief discussion on the usage of stream-based languages in practice, and
mention some works that have been done along this line.

2 Stream Specification Languages

A stream-based specification defines a runtime monitor by describing the relation
between the values of input streams, entering the monitor, and the values of
the output streams, computed by the monitor. For example, if an input stream
contains the elevation values measured by an altimeter in some aerial vehicle, the
monitor could compute the output stream that determines whether the measured
elevations are below a certain altitude. In a telecommunication network, we may
deploy a monitor that checks the frequency at which data is received on a node
in the network over a period of time. The input stream to this monitor is the
stream of data packets entering the node, and the output stream of the monitor
is a stream of values where each value defines the number of packets that entered
the network, for example, in the last second.

Stream specification languages are classified according to the type of monitors
they can describe (Fig. 2). The distinction depends, in general, on which values

94 H. Torfah

are allowed to be used in the definition of the output stream, and when the
values of an output stream are computed. With respect to what values can be
used in the definition of streams, we can distinguish between languages that allow
for the definition of rule-based monitors, or memoryless monitors, i.e., monitors
which do not need to memorize any previous stream values to compute the new
values, and languages that allow for the definition of state-based monitors, i.e.,
monitors that can maintain a memory of previous values that were computed
by the monitor. In state-based monitors, we further distinguish between how
previous values of streams are accessed in the stream definition. Stream accesses
can be either in discrete-time, i.e., in the definition of the output stream, concrete
previous values of other streams were accessed. A stream access can also be a
real-time access, i.e., the output stream has access to the values of another stream
that occurred over a certain period of time.

In addition to maintaining the necessary memory of values for the compu-
tation of output streams, we also have to specify when the values of an output
stream are to be computed. Values of an output stream can, for example, be
computed every time the monitor receives a new input value, or at certain fixed
points or periods of time. The computation models for stream-based monitors
can be categorized according to when input data arrives into the monitor and
whether the computation of output values depends on the arrival times of input
data. In general, we can distinguish between the synchronous and the asyn-
chronous computation models. In the synchronous model, new data on different
input streams arrive at the same time, and the values of output streams are com-
puted with every arrival of new input data. A prominent example of monitoring
problems with a synchronous computation model are network monitoring prob-
lems where the monitoring task is defined over the individual packets arriving to
a node in the network. In the asynchronous computation model, input data on
different input streams may arrive at different times and the values of the output
streams may be computed independently of the arrival of input values. Such a
computation model can be found in any cyber-physical system with different
sensors that function at different rates.

In the following we will elaborate on each of these notions with the help
the stream specification language RTLola [14]. RTLola is a state-based asyn-
chronous stream specification language with real-time features that allows for the
definition of monitors for real-time properties over rich datatypes. An RTLola
specification defines a typed set of output streams given as a set of typed stream
equations that map output stream names to expressions over input streams and
other streams defined by the specification1.

2.1 A Classification of Stream Specification Languages

Rule-Based vs. State-Based Specifications. We distinguish between two
types of stream specification languages with respect to whether the computa-
tion of an output stream depends on previously computed values. Rule-based

1 For the complete syntax of RTLola we refer the reader to www.stream-lab.org.

http://www.stream-lab.org

Stream-Based Monitors for Real-Time Properties 95

Stream Engine

Specification

in
pu

t
st
re
am

s

ou
tp
ut

st
re
am

s

Rule-based State-based

M

Discrete-time access Real-time access

Synchronous

Asynchronous

Fig. 2. Classification of stream specification languages.

languages are those specification languages that allow for the definition of mem-
oryless monitors, i.e., computing the value of an output stream depends only
on the current values of input streams and are independent from any history
of values that have been computed up to that moment2. Monitors specified in
a rule-based stream specification language are also known as stateless monitors
and are very common in network intrusion detection [19,24].

An example of a rule-based stream-based monitor is given by the RTLola
specification

input packet: IPv4

output empty_UDP: Bool := packet.isUDP () & packet.isEmpty ()

Every time a data packet is received on the input stream packet, which represents
the stream of packet traffic in some node in a network, a new event is computed
for the output stream empty_UDP. If the packet is a UDP packet and has an
empty payload, then the newly computed value of empty_UDP is true, otherwise
it is false.

Another example of a rule-based stream definition is given by the following
specification. Assume we want to monitor the vertical geofencing boundaries of
a flying drone. A monitor for this task can be defined by the specification

input altimeter: UInt32

output too_low: Bool := altimeter < 100

For each value received from the altimeter, a new output value for the stream
too_low is computed that registers whether the drone is flying below 100 ft.

Rule-based specification languages are easy to use and allow for the construc-
tion of simple and efficient monitors. They are, however, not suited for specifying
complex monitoring tasks that need to maintain a state.

2 The term memoryless here does not consider the memory needed to perform an
operation on the current values of input streams in order to compute the value of
the output stream, but refers the number of previous values that need to be stored
to compute the current output value.

96 H. Torfah

Consider for example a monitor that extends the vertical geofencing monitor
by additionally counting the number of times the drone flew below the allowed
height. A stream specification for such a monitor looks as follows

output count: UInt32 := if too_low

then count.offset(by: -1) + 1

else count.offset(by: -1)

The output stream represents a counter that is increased every time a new value
is received from the altimeter, and when that value is below 100 ft. The new value
of the stream count thus depends on its last computed value, which is defined
in the RTLola specification by the expression count.offset(-1). To implement
a monitor for this specification, the monitor needs to store the last value of the
output stream in order to compute its new value.

Monitors that need to maintain a state can be defined using state-based spec-
ification languages like RTLola. State-based stream specification languages are
powerful languages that combine the ease-of-use of rule-based specification lan-
guages with the expressive power of programming languages, when equipped
with the right datatypes. State-based languages are common in state-based intru-
sion detection [12,27], or in developing mission control and flight managing tasks
in UAVs [1].

Discrete-Time vs. Real-Time Stream Access. In state-based approaches
a monitor may compute a value of an output stream depending on a history of
values received on or computed over other streams, including the own history of
the output stream. In the following we distinguish between the different types
of stream access.

Accessing the values of other streams can be done in a discrete manner, i.e.,
the value of an output stream depends on certain previous values of some other
stream. For example, in the stream count, the value of the stream depends on
its own lastly computed value. A stream may also depend on the last n values
of a stream, for example, when we want to compute a discrete sliding window
over events. If we want to check whether the drone has been flying below the
minimum altitude during the last three values received from the altimeter, we
can define such a monitor using the following specification

output last_three: Bool :=

too_low

& too_low.offset(by: -1).defaults(to: false)

& too_low.offset(by: -2).defaults(to: false)

Here, we access the current and, using the offset operator, the last and the before
the last value of the stream too_low.

When using offset expressions to access previous values of a stream, we
need to make sure that such values actually exist. A new value for the stream
last_three is computed whenever a new value is computed for too_low. At the
beginning of the monitoring process, the monitor may not have computed three
values for too_low yet, because we have not received the necessary number of
readings from the altimeter. Assume that we have received the first value over

Stream-Based Monitors for Real-Time Properties 97

the input altimeter. Then, the values too_low.offset(-1) and too_low.offset

(-2) are not yet defined. To still be able to evaluate the stream last_three, we
need to divert to a fixed default value given in the specification above by the
expression defaults(to: false). This expression returns the value false when the
stream expressions too_low.offset(-1) or too_low.offset(-2) are not defined.

Discrete offset expressions can also be used to access future values of streams.
Consider for example a monitor that checks whether a drone reaches a specific
waypoint with GPS coordinates (a, b), a geographic location the drone is com-
manded to fly to. A specification for such monitor is given as follows

input gps: (Float64 ,Float64) // (latitude , longitude)

output reached_wp: Bool :=

gps == (a,b) |

reached_wp.offset(by: 1).defaults(to:false)

The monitor checks whether the current GPS coordinates match the targeted
waypoint and if not repeats the check for the next received GPS value. In general,
most of the monitors defined by stream specifications with future offsets can be
defined with stream specifications with only past offsets. The future offsets are
nevertheless convenient for encoding specifications given as formulas in temporal
logics. One has to be careful however in using future offsets, as they introduce the
possibility of defining ill-formed specifications, when they contain zero circular
offset dependencies [9,33].

An output stream may also depend on the values that occurred in a certain
time interval. Real-time stream access can be achieved using real-time sliding
windows, where an aggregation of events is computed over a fixed period of
time. Consider for example a monitor that checks whether packets are received
in large bursts. The specification of such a monitor can be given by the RTLola
specification

input packet: IPv4

output burst: Bool :=

packet.aggregate(over: 10sec , using: count)

> threshold

For each new event received on the input stream packet, the monitor checks
whether more than threshold many packets have been received over the input
stream in the last 10 s.

Sliding windows can be implemented in two versions, forward and backward
sliding windows. A backward sliding window of duration d is interpreted as in the
last specification where the aggregate is defined over the values of the interval
of d seconds until the last value arrived. Forward sliding windows consider the
values in the period of length d starting with the time at which the last value
arrived. Forward sliding windows are necessary for the specification of monitors
that check timeouts. For example, to check whether the drone reaches a certain
height h within d seconds we can specify the following monitor

98 H. Torfah

input gps: (Float64 ,Float64)

input coordinate: (Float64 ,Float64)

output too_slow: Bool :=

gps.aggregate(over: +2min , using: exists(coordinates))

where exists(coordinates) is syntactic sugar for an aggregation function that
checks whether we received a value on the stream coordinates during a window
of two minutes. Backward windows cannot be used to specify such monitoring
tasks, at least not accurately, as they might miss some values (we explain this
below). Backward sliding windows nevertheless come with the advantage that
their computation does not have to be delayed as for the case of forward sliding
windows, because they only rely on the events that have already been observed
by the monitor. In general, one may use backward sliding windows to perform
timeout checks, if the computational model of the specification language also
allows to evaluate output streams at certain rates, as we will see later. This may
come however at the cost of missing some windows, if the granularity in which
the stream is computed is not small enough. We explain this with the help of the
following example. Assume we want to check that there are no windows with a
duration of one second that have events with values less than 3. A specification
for such a monitor looks as follows

input x: UInt32

output y: UInt32 :=

if x.aggregate(over: 1sec , using: max) <= 2

then y.offset(by: -1).defaults(to: 0) + 1

else y.offset(by: -1).defaults(to: 0)

Assume that we receive events 5, 4, 2, 2 on the stream x at times 0.1, 0.2, 0.6,
and 1.4 s. A backward window approach will count 1 window with a maximum
number of 2, namely when evaluating the stream at the arrival of the fourth
event. A forward approach will count 2 windows when evaluated for the third
an the fourth event. With the right rate, nevertheless, we can count the right
number of windows, for example, if the output stream is computed every 0.5 s.

Synchronous vs. Asynchronous Computation Models. The evaluation of
an output stream may depend on the values of several input streams. The compu-
tation of an output stream may thus depend on the arrival times of the input val-
ues. In general, we distinguish two computation models, the synchronous model
and the asynchronous model.

In the synchronous model, events on all input streams arrive to the monitor
at the same time. Output streams are evaluated with the arrival of new inputs
values and thus are also evaluated simultaneously. Examples of systems with
synchronous models are synchronous circuits and networks [9,13].

In the asynchronous model, the arrival times of inputs may vary from one
input stream to another, and the computation of output streams does not nec-
essarily depend on the arrival times of input values. In a cyber-physical system,
for example, sensors may function at different frequencies, and thus data from
these sensors arrive at different not necessarily synchronized rates. Computing

Stream-Based Monitors for Real-Time Properties 99

the values of output streams may respect the arrival times of input values, or
could completely be decoupled from them. In general, we distinguish two types
of output streams with respect to their dependency on the rate in which input
values reach the monitor, namely, time-triggered and event-triggered streams.

Time-Triggered Streams. In time-triggered output streams, values are computed
at determined times, which are independent of the arrival of input values. These
determined times can be periodic or dynamically determined. In periodic output
streams, a new output is computed at a fixed frequency. Periodic monitors are
associated with tasks for validating sensor frequencies in cyber-physical systems.
For example, a monitor for checking whether a GPS sensor is delivering data in
the right frequency can be specified as follows

input gps: (Float64 ,Float64)

output gps_glitch: UInt32 @ 1Hz:=

gps.aggregate(over: 2sec , using: count)

trigger gps_glitch < 10 "GPS sensor: frequency < 5Hz"

The stream gps is an input stream that represents the values received from
the GPS module and is expected to deliver data with a frequency greater than
or equal to 5Hz. To check whether this data is delivered with the expected
frequency, we define the output stream gps_glitch. A new value for the output
stream gps_glitch is computed every second (the expression @ 1Hz), and at each
time, it evaluates to the number of values received from the GPS module over
a time window of two seconds, i.e., it computes the number of events received
via the input stream gps (the expression using: count) over the last two seconds
(the expression over: 2sec). The stream trigger gps_glitch < 10 defines an
assertion that evaluates to true when the value of gps_glitch is less than 10
(trigger is a special keyword adapted from the language Lola [9] that raises an
alarm and outputs a message in case the assertion is true).

Dynamically evaluated output streams allow further to use a function defined
over streams to determine when to compute the next value of an output stream.
An example of such a function is one that allows for the specification of streams
where the output stream is delayed 5 s after gps received a new value3

output gps_glitch: UInt32 @ gps + 5 :=

gps.aggregate(over: 2sec , using: count)

Event-Triggered Streams. In an event-triggered output stream, a new value is
computed for this stream depending on the arrival times of new input events. An
example of an event-triggered output stream is one where we extend our GPS

3 The version of RTLola that is currently implemented in StreamLAB [14] does not
allow for activation conditions with delay, but the implementation of such condi-
tions is planned for the near future. Striver [17] and TeSSLa [8] have a native delay
operator.

100 H. Torfah

specification with a definition of an output stream that counts the number of
glitches observed

output num_glitches: UInt32 :=

if gps_glitch

then num_glitched.offset(by: -1).defaults(to:0) + 1

else num_glitches.offset(by: -1).defaults(to:0)

The specification defines a monitor that, with each new value computed for the
stream gps_glitch, computes the number of glitches seen so far. This means that
the pace in which num_glitches is computed is equal to the pace of gps_glitch.

If the output stream is defined over more than one input stream, then the
new value of the output stream can be computed in different ways. In some cases
it makes sense to use a hold semantics, where with each arrival of a new event on
some input stream, the value of the output stream is computed with the latest
values of all input streams. This is typical for monitors over piecewise constant
signals. Piecewise constant signals can be represented as discrete signals where
every change in the signal is a new event. In the continuous world, an operation
over two piecewise constant signals result in a new piecewise constant signal that
in each point evaluates to the operation on the values of the two signals at that
point. For example, if we have two signals a : R≥0 → R and b : R≥0 → R, then the
signal representing the sum of a and b, is a signal s(t) = a(t) + b(t). To monitor
whether the sum exceeds any threshold we construct the signal s and check if
the value of s is larger than the threshold. Over the discrete representation, a
monitor is given by the specification

input a: UInt32 , b : UInt32

output exceededThreshold: Bool @ (a|b)

:= a.hold() + b.hold() > c

This output stream is evaluated every time a or b receives a new value. If a has
a new value and b does not, then the value of the output stream is computed
using the new value of a and the last received value of b. This is determined
by the use of the access via the zero-order hold operator hold() which returns
the last computed value of a stream. The condition a|b is called the activation
condition. If the activation condition is empty then the stream is only computed
if all values arrive at the same time.

Another advantage of the activation condition and the hold semantics is that
in the case where the values of sensors arrive with slight delays, we can use the
activation condition to evaluate the stream when the later value arrives and the
hold operator to use the last value of the other sensor. Consider the following
specification

input gps: (Float64 ,Float64)

input height: Float64

output too_low:Bool @ gps := if zone(gps)

then (height.hold().defaults(to: 300)) < 300

else false

Stream-Based Monitors for Real-Time Properties 101

where the function zone is some function that determines whether the drone is
in an inhabited area. The output stream is evaluated every time the GPS sensor
delivers a new value. The value of the stream too_low is determined using the
last value of height.

2.2 Memory Analysis

To compute memory bounds on a monitor specified in RTLola, we need to
analyze the stream accesses in the monitor’s specification. For output streams
that only use offset expressions to access other streams, memory bounds can be
computed in the same way as for Lola [9,33]. To give an idea on how these
bounds are computed, we describe the process using the following examples.

Consider again the RTLola specification

output last_three: Bool :=

too_low.offset

& too_low.offset(by: -1).defaults(to: false)

& too_low.offset(by: -2).defaults(to: false)

To evaluate an event of the output event last_three, we need the last three values
of the streams too_low. This means that the monitor requires two memory units,
where the last and the value before the last are saved, in order to be able to
compute the values for the stream last_three.

Consider further the specification

input gps: (Float64 ,Float64) // (latitude , longitude)

output reached_wp: bool :=

gps == (a,b) |

reached_wp.offset(by: 1).defaults(to:false)

To compute a value for the output stream reached_wp, the monitor checks
whether the drone has reached the designated waypoint (a,b), otherwise it will
wait for the next values received from the GPS sensor to compute the current
value of reach_wp. If the waypoint (a,b) is not reached, computing a value for
reached_wp remains pending. This means that the monitor needs to save all
unresolved values for reached_wp until the coordinates (a,b) are reached. In the
hypothetical case that the drone will never reach these coordinates, the monitor
needs to memorize an infinite number of unresolved values for reached_wp, which
results in problems when the monitor is only offered a limited amount of memory
to compute its streams.

The memory bounds can be automatically computed by constructing the
annotated dependency graph of a specification [9]. The dependency graphs for
the specifications above are depicted in Fig. 3. A RTLola specification is called
efficiently computable, if we can determine memory bounds on the monitor spec-
ified by the specification. This is the case when the dependency graph of a spec-
ification does not contain any positive cycles. If an RTLola specification is
efficiently computable, then we can compute the memory bounds for a stream
by computing the maximum of the maximum added positive weights on a path

102 H. Torfah

too_low

last_three

0 -1 -2

(a) An annotated dependency
graph for the stream last_three.

A monitor for last_three needs to
save the last two events of too_low.

gps

reached_wp

0

1

(b) An annotated dependency
graph for the stream reached_wp.

A monitor for reached_wp needs to
save a possibly infinite number of
unresolved expressions of itself.

Fig. 3. Annotated dependency graphs for the RTLola specifications of the streams
last_three and reached_wp.

starting from the stream’s node, or the maximum absolute value of the negative
weights on edges exiting the node.

For specifications with sliding windows, and in the case of input streams with
variable arrival rates, it is in general not possible to compute memory bounds
on the monitors implementing these specifications. The reason for this lies in
the fact that the number of events that may occur in a period of time might be
arbitrary large. Nevertheless, in most cases the rates in which input data arrives
on a an input stream are bounded by some frequency. If we do not know this
frequency, we can still compute sliding windows efficiently by using periodic time-
triggered streams. We use the following example to demonstrate how computing
aggregates over sliding windows can be done with bounded memory4. Consider
the specification

input packet: IPv4

output burst: Bool @ 1Hz:=

packet.aggregate(over: 5 sec , using: count)

Instead of counting the number of packets that arrive within a window every
time the sliding window needs to be evaluated, we split the window into intervals,
called panes, and count the number of events in each pane [23]. When we compute
the aggregate for a new window, we reuse the values of the panes that overlap
with the new window to compute the new aggregate. Figure 4 illustrates the
computation of the sliding window for our specification above. The memory
needed for computing the aggregate count over the sliding window is bounded
by five memory units that save the aggregate for each of the five one-second
panes. Each second the window moves by one second to the right. To compute
the aggregate over the new window, we just need to remove the value of the first
pane form the value of the last window and add the value of a new pane that
includes all events that arrived within the last second. The first pane of the last

4 For more on the implementation of sliding windows we refer the reader to [5,14,23].

Stream-Based Monitors for Real-Time Properties 103

1 3 2 2 1 3

Fig. 4. Efficient computation of the aggregate count over a sliding window over 10 s
that is computed in periods of one second. The value of the new window is equal to
9 − 1 + 3, where 9 is the value of the aggregation over the last window.

window can be removed from memory and the value of the new pane is saved
instead.

Splitting windows into panes showed to be very useful in practice [7,14].
However, it can only be applied to aggregation functions that fulfill certain prop-
erties [14]. The approach would for example not work for aggregation functions
such as the median. Nevertheless, from our experience most aggregation func-
tions used in practice can be efficiently solved by this approach. These include
aggregation function such as count, sum, max, min and integral.

3 Parameterized Stream Specifications

In many cases, the same monitoring task has to be performed for multiple sets of
data. For example, in an online platform with a large user base, we might want
to compute the same statistics over the different user groups of the platform,
distinguished by age, gender, or geographic location. To compute the statistic for
each group we can define an output stream for each user group, but this results
in unnecessary redundant stream definitions. The redundancy can be avoided by
defining one stream using appropriate datatypes such as sets, maps, etc. This,
however, may result in incomprehensible specifications and cumbersome extra
work for managing the complex datatypes. Furthermore, when the statistics
need to be computed separately for each individual user, writing different stream
definitions for each user is not feasible and managing the computation in one
stream results in a large overhead caused by updating the complex datatypes.

To overcome this problem, we can define parameterized monitoring tem-
plates, from which new monitors can be instantiated every time we want to
perform the monitoring task for a specific user. Parameterized stream specifi-
cations allow for the dynamic construction of streams, when these streams are
needed, and that run on their own individual pace.

Consider, for example, the following parameterized RTLola specification for
monitoring the log-in’s of users to some online platform

input user_activity: UInt32

output timeout(id: UInt32): Bool @ 1min

close timeout(id)

104 H. Torfah

:=

user_activity.aggregate(over: 10min , using: count(id)) == 0

output logout: UInt32 @ user_activity :=

if timeout(user_activity).hold()

then user_activity

else -1

The specification defines an output stream template timeout with one parameter
id of type UInt32. An instance of the template timeout is a stream timeout(x)

for a concrete value x of type UInt32. At the beginning, there are no instances
for the template timeout, and instances for a concrete value x are only created
when they are called by the stream logout. Every time a new user id is observed
on the input stream user_activity, the stream logout calls the value of the
instance timeout(user_activity). If the instance has not been created yet, then
a new instance with the current value of user_activity is created and evaluated
according to the expression of timeout with respect to the new parameter value.
Here, the new instance evaluates to true, if the user with the id user_activity

has not been active in the last 10 min. If the instance already exists, then logout

is evaluated according to the last value computed for the instance. If a user
with id x has not been active for more than 10 min, the instance timeout(x) is
terminated, as defined by the termination expression close: timeout(id).

Memory bounds for parameterized stream specifications can be computed
in the same way as for non-parameterized ones, with the significant difference,
that the memory bounds determine the size of memory needed to compute each
instance. The number of instances created by the monitor, and the number of
instances that are active simultaneously depends highly on the application. In
general, the number is limited, as most created streams define simple monitoring
tasks that reach a verdict quickly. In the case, where the monitor is forced to
produce a large number of instances at once, it is recommended to force the
termination of instances after a period of time.

4 Embedding Real-Time Logics in RTLola Using
Parameterized Specifications

Stream specification languages like Lola that provide operators for referencing
values in the future subsume temporal logics like LTL [9]. LTL is a linear-time
logic that allows us to define properties over traces using boolean and temporal
operators. Temporal operators in LTL are used to reason about time and are
given by the operator “next” (ϕ), that states that a certain property ϕ must
hold in the next step, and the operator “until” (ϕ U ψ) that states that a property
ϕ must hold until another property ψ is satisfied. The temporal operators can
be specified in RTLola by the following stream specifications

Stream-Based Monitors for Real-Time Properties 105

output next: Bool := phi.offset (1).defaults(to: true)

output until: Bool :=

psi |

(phi & until.offset (1).defaults(to: false))

where phi and psi are stream definitions for the formulas ϕ and ψ.
For real-time logics like STL [25], the offset operator does not suffice as we

need to check the values of signals at certain points in time. In the following
we show how we can use parameterized RTLola specifications to encode STL
specifications over piece-wise constant signals. The next definition gives a short
recap on the syntax of STL.

Definition 1 (Signal Temporal Logic [25]). An STL formula ϕ over signals
x1, . . . , xm ∈ R≥0 → R is given by the grammar

ϕ = μ | ¬ϕ | ϕ ∨ ϕ | ϕ U [a,b] ϕ

where μ is a predicate from R → B with μ(t) = f(x1[t], . . . , xm[t]) > 0 for some
function f : Rm → R.

Given piecewise-constant signals x1, ..., xm, an STL formula ϕ, and predicates
μ1, . . . , μn we can encode the monitoring problem for ϕ in RTLola using the
following recursively defined translations:

– xi for 1 ≤ x ≤ m:

input x_i: Float64

where x_i receives a new event every time the signal xi changes its value.

– μj for 1 ≤ j ≤ n:

output mu_j(t: Time): Bool @ any :=

f(x_1.hold() ,...,x_m.hold())>0

where f is an operation that defines the value of f . The stream template mu_j

defines streams that represents the values of the expression f(x_1,...,x_m)

starting at time t. Once a stream has be created, it is evaluated every time one
of the streams x_i receives a new value (abbreviated by the word any).

– ¬ϕ:

output nphi(t: Time): Bool := !phi(t)

The stream computes the negated values of the stream phi(t), and is evaluated
at the pace of phi.

106 H. Torfah

– ϕ1 ∨ ϕ2:

output orphi1phi2(t: Time): Bool @ any

:= phi1(t).hold() | phi2(t).hold()

The stream computes the disjunction of the streams phi1 and phi2.

– ϕ1 U [a,b] ϕ2. For such a formula, we need to check whether the formula ϕ2 is
true at some point t ∈ [a, b], and the formula ϕ1 must hold up to the point t.
If ϕ2 is also an until formula defined for some interval [c, d] then the validity
of ϕ2 must then be checked relative to the time t. This is encoded in RTLola
as follows.

output unitlphi1phi2(t: Time) : Bool @ (t+b)| any

close: time == b | !untilphi1phi2(t)

:=

if time <= t+a

then

phi1 <time >.hold() & unitlphi1phi2[a,b](t).offset (1)

else

if time < t+b

then

phi1(time).hold() &

(phi2(time).hold() |

unitlphi1phi2[a,b](t).offset (1))

else

phi1(time).hold() & phi2(time).hold()

trigger unitlphi1phi2[a,b](0)

The complete STL formula must hold at time 0. Therefore we check the
value of the formula by calling the stream unitlphi1phi2[a,b](0). An instance
unitlphi1phi2(x) is evaluated whenever a value of one of its substreams is
computed or when reaching the time mark x + b. The evaluation at x + b is
necessary for the case that none of the signals change their values up to that
point. At every evaluation point of unitlphi1phi2(x), we check in which time
interval we are. If the current time is smaller than x + a, then we check that
the value of phi1(x) is true. If this is the case, we check the validity of the
right formula in the designated future interval [a, b] by calling unitlphi1phi2

[a,b].offset(1). If we arrive at the time interval [x+a, x+ b] we check again
whether the left formula still holds, and whether the right formula holds. If
we exceed the time x + b and the right formula has not been true yet then
the stream is evaluated to false.
At each time t, where the instance is evaluated, new instances with parameter
instantiation t are created for the subformulas. All instances are terminated
once their intervals are exceeded.

Stream-Based Monitors for Real-Time Properties 107

Remark 1. Formulas in STL can also be encoded without the usage of param-
eterized stream definition, if the stream specification language allows for the
definition of activation conditions where the evaluation of a stream can be set
to certain points in time. Such activation conditions can be defined in languages
like Striver [17].

5 Bibliographic Remarks

Most of the early work on formal runtime monitoring was based on temporal
logics [11,16,18,21]. The approaches vary between inline methods that realize
a formal specification as assertions added to the code to be monitored [18], or
outline approaches that separate the implementation of the monitor from the
one of the system under investigation [16]. Based on these approaches and with
the rise of real-time temporal logics such as MTL [20] and STL [25], a series
of works introduced new algorithms and tools for the monitoring of real-time
properties described in one of the previous logics [3,4,6,10,26,32].

The stream-based approach to monitoring was pioneered by the specification
language Lola [9,33], a descriptive language, that can express both past and
future properties. The main feature of Lola is that upper bounds on the memory
required for monitoring can be computed statically. RTLola extends Lola with
real-time features, such as sliding windows and time-triggered stream definitions,
and allows for the definition of monitors with an asynchronous computation
model. RTLola adapts the memory analysis techniques provided by Lola, and
extends those techniques for determining memory bounds for the new real-time
features added to the language.

Further real-time stream specification languages based on Lola were intro-
duced with the languages TeSSLa and Striver. TeSSLa [22] allows for monitoring
piece-wise constant signals where streams can emit events at different speeds
with arbitrary latencies. TeSSLa has a native delay operator that allows for the
definition of future times in which streams shall be computed. The version of
RTLola that is currently implemented in the tool StreamLAB [14] does not yet
have such a delay operator. On the other hand, TeSSLa does not have native
support for real-time features such as the definition of sliding windows. Striver,
is a stream specification language that allows the definition of involved activa-
tion conditions, that especially allow for the definition of timeout specifications.
Using a tagging mechanism and the delay operator in Striver, one can define
forward sliding windows. There is however no native operator in the language
for the definition of sliding windows, for which built-in efficient algorithms are
implemented, as in the case of RTLola.

Further stream-based specification languages with real-time features include
the languages Copilot [28], which allow for the definition of monitors based on the
synchronous computation model. Prominent specification languages specialized
for specifying monitors for network intrusion detection include the frameworks
Bro [27] and snort [31].

108 H. Torfah

6 Conclusion

In this tutorial, we gave an overview of the different classes of stream specifi-
cation languages for specifying monitors for real-time properties, and demon-
strated, with the help of the stream specification languages RTLola, which
features allow for the definition of monitors for the different types of real-time
properties. We further discussed the construction of memory efficient monitors
and showed how memory bounds can be computed for monitors written in the
stream specification language RTLola. Finally we discussed parametric exten-
sions to stream specification languages and showed that real-time logics such as
STL are subsumed by RTLola with parameterization.

From our experience, stream specification languages like RTLola are well
received by practitioners [1,34,35]. The outline monitoring approach given by
stream-based monitors allows for the separation between the monitoring compo-
nent and the system under scrutiny, which has the advantage of not interfering
with the functionality of the system. Furthermore, stream specification languages
provide a specification framework that is simple to use, easy to understand and
one that combines features of high expressive scripting languages that are used in
industry with important features of formal languages such as computing memory
bounds.

Acknowledgements. I would like to thank Bernd Finkbeiner, Norine Coenen,
Christopher Hahn, Maximilian Schwenger and Leander Tentrup for their valuable feed-
back and comments.

References

1. Adolf, F.-M., Faymonville, P., Finkbeiner, B., Schirmer, S., Torens, C.: Stream run-
time monitoring on UAS. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548,
pp. 33–49. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67531-2 3

2. Alur, R., Henzinger, T.A.: Logics and models of real time: a survey. In: de
Bakker, J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991.
LNCS, vol. 600, pp. 74–106. Springer, Heidelberg (1992). https://doi.org/10.1007/
BFb0031988. http://dl.acm.org/citation.cfm?id=648143.749966

3. Basin, D., Klaedtke, F., Müller, S., Zălinescu, E.: Monitoring metric first-order
temporal properties. J. ACM 62(2), 15:1–15:45 (2015). https://doi.org/10.1145/
2699444

4. Basin, D., Harvan, M., Klaedtke, F., Zălinescu, E.: MONPOLY: monitoring usage-
control policies. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp.
360–364. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-
8 27

5. Basin, D.A., Klaedtke, F., Marinovic, S., Zalinescu, E.: Monitoring of temporal
first-order properties with aggregations. Formal Methods Syst. Des. 46(3), 262–
285 (2015). https://doi.org/10.1007/s10703-015-0222-7

6. Basin, D.A., Krstic, S., Traytel, D.: AERIAL: Almost event-rate independent algo-
rithms for monitoring metric regular properties. In: RV-CuBES. Kalpa Publica-
tions in Computing, vol. 3, pp. 29–36. EasyChair (2017)

https://doi.org/10.1007/978-3-319-67531-2_3
https://doi.org/10.1007/BFb0031988
https://doi.org/10.1007/BFb0031988
http://dl.acm.org/citation.cfm?id=648143.749966
https://doi.org/10.1145/2699444
https://doi.org/10.1145/2699444
https://doi.org/10.1007/978-3-642-29860-8_27
https://doi.org/10.1007/978-3-642-29860-8_27
https://doi.org/10.1007/s10703-015-0222-7

Stream-Based Monitors for Real-Time Properties 109

7. Baumeister, J., Finkbeiner, B., Schwenger, M., Torfah, H.: FPGA stream-
monitoring of real-time properties. In: ESWEEK-TECS special issue, International
Conference on Embedded Software EMSOFT 2019, New York, USA, October 13–
18 (2019)

8. Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M., Thoma, D.:
TeSSLa: temporal stream-based specification language. In: Massoni, T., Mousavi,
M.R. (eds.) SBMF 2018. LNCS, vol. 11254, pp. 144–162. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03044-5 10

9. D’Angelo, B., et al.: LOLA: runtime monitoring of synchronous systems. In:
12th International Symposium on Temporal Representation and Reasoning (TIME
2005), pp. 166–174. IEEE Computer Society Press, June 2005

10. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust
online monitoring of signal temporal logic. In: Bartocci, E., Majumdar, R. (eds.)
RV 2015. LNCS, vol. 9333, pp. 55–70. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-23820-3 4

11. Drusinsky, D.: The temporal rover and the ATG rover. In: Havelund,
K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp.
323–330. Springer, Heidelberg (2000). https://doi.org/10.1007/10722468 19.
http://dl.acm.org/citation.cfm?id=645880.672089

12. Eckmann, S.T., Vigna, G., Kemmerer, R.A.: STATL: an attack language for
state-based intrusion detection. J. Comput. Secur. 10(1–2), 71–103 (2002).
http://dl.acm.org/citation.cfm?id=597917.597921

13. Faymonville, P., Finkbeiner, B., Schirmer, S., Torfah, H.: A stream-based speci-
fication language for network monitoring. In: Falcone, Y., Sánchez, C. (eds.) RV
2016. LNCS, vol. 10012, pp. 152–168. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46982-9 10

14. Faymonville, P., Finkbeiner, B., Schledjewski, M., Schwenger, M., Stenger, M.,
Tentrup, L., Torfah, H.: StreamLAB: stream-based monitoring of cyber-physical
systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 421–431.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 24

15. Faymonville, P., Finkbeiner, B., Schwenger, M., Torfah, H.: Real-time stream-based
monitoring. ArXiv abs/1711.03829 (2017)

16. Finkbeiner, B., Sipma, H.: Checking finite traces using alternating automata. Form.
Methods Syst. Des. 24(2), 101–127 (2004). https://doi.org/10.1023/B:FORM.
0000017718.28096.48

17. Gorostiaga, F., Sánchez, C.: Striver: stream runtime verification for real-time event-
streams. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 282–
298. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 16

18. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In:
Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–
356. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0 24.
http://dl.acm.org/citation.cfm?id=646486.694486

19. Hindy, H., et al.: A taxonomy and survey of intrusion detection system design
techniques, network threats and datasets. ArXiv abs/1806.03517 (2018)

20. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990). https://doi.org/10.1007/BF01995674

21. Lee, I., Kannan, S., Kim, M., Sokolsky, O., Viswanathan, M.: Runtime assurance
based on formal specifications. In: Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications (1999)

https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1007/978-3-319-23820-3_4
https://doi.org/10.1007/978-3-319-23820-3_4
https://doi.org/10.1007/10722468_19
http://dl.acm.org/citation.cfm?id=645880.672089
http://dl.acm.org/citation.cfm?id=597917.597921
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-030-25540-4_24
https://doi.org/10.1023/B:FORM.0000017718.28096.48
https://doi.org/10.1023/B:FORM.0000017718.28096.48
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/3-540-46002-0_24
http://dl.acm.org/citation.cfm?id=646486.694486
https://doi.org/10.1007/BF01995674

110 H. Torfah

22. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Schramm, A.: TeSSLa: runtime
verification of non-synchronized real-time streams. In: Proceedings of the 33rd
Annual ACM Symposium on Applied Computing, SAC 2018, pp. 1925–1933. ACM,
New York, NY, USA (2018). https://doi.org/10.1145/3167132.3167338

23. Li, J., Maier, D., Tufte, K., Papadimos, V., Tucker, P.A.: No pane, no gain: efficient
evaluation of sliding-window aggregates over data streams. SIGMOD Rec. 34(1),
39–44 (2005). https://doi.org/10.1145/1058150.1058158

24. Liao, H.J., Lin, C.H.R., Lin, Y.C., Tung, K.Y.: Intrusion detection system: a com-
prehensive review. J. Netw. Comput. Appl. 36(1), 16–24 (2013). https://doi.org/
10.1016/j.jnca.2012.09.004

25. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

26. Nickovic, D., Maler, O.: AMT: a property-based monitoring tool for analog sys-
tems. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol.
4763, pp. 304–319. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-75454-1 22

27. Paxson, V.: Bro: a system for detecting network intruders in real-time. In: Proceed-
ings of the 7th Conference on USENIX Security Symposium, SSYM 1998, vol. 7,
p. 3. USENIX Association, Berkeley, CA, USA (1998). http://dl.acm.org/citation.
cfm?id=1267549.1267552

28. Pike, L., Goodloe, A., Morisset, R., Niller, S.: Copilot: a hard real-time runtime
monitor. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace,
G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 345–
359. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9 26

29. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, SFCS 1977, pp. 46–57. IEEE
Computer Society, Washington, DC, USA (1977). https://doi.org/10.1109/SFCS.
1977.32

30. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer
pairs for system health management of real-time systems. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 357–372. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-54862-8 24

31. Roesch, M.: Snort - lightweight intrusion detection for networks. In: Proceedings of
the 13th USENIX Conference on System Administration, LISA 1999, pp. 229–238.
USENIX Association, Berkeley, CA, USA (1999). http://dl.acm.org/citation.cfm?
id=1039834.1039864

32. Rozier, K.Y., Schumann, J.: R2U2: tool overview. In: RV-CuBES. Kalpa Publica-
tions in Computing, vol. 3, pp. 138–156. EasyChair (2017)

33. Sánchez, C.: Online and offline stream runtime verification of synchronous systems.
In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 138–163.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 9

34. Schirmer, S., Benders, S.: Using runtime monitoring to enhance offline analysis.
In: Proceedings of the Workshops of the Software Engineering Conference 2019,
Stuttgart, Germany, 19 February 2019, pp. 83–86 (2019). http://ceur-ws.org/Vol-
2308/aviose2019paper05.pdf

35. Torens, C., Adolf, F., Faymonville, P., Schirmer, S.: Towards intelligent system
health management using runtime monitoring. In: AIAA Information Systems-
AIAA Infotech @ Aerospace. American Institute of Aeronautics and Astronautics
(AIAA), January 2017. https://doi.org/10.2514/6.2017-0419

https://doi.org/10.1145/3167132.3167338
https://doi.org/10.1145/1058150.1058158
https://doi.org/10.1016/j.jnca.2012.09.004
https://doi.org/10.1016/j.jnca.2012.09.004
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-75454-1_22
https://doi.org/10.1007/978-3-540-75454-1_22
http://dl.acm.org/citation.cfm?id=1267549.1267552
http://dl.acm.org/citation.cfm?id=1267549.1267552
https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-642-54862-8_24
http://dl.acm.org/citation.cfm?id=1039834.1039864
http://dl.acm.org/citation.cfm?id=1039834.1039864
https://doi.org/10.1007/978-3-030-03769-7_9
http://ceur-ws.org/Vol-2308/aviose2019paper05.pdf
http://ceur-ws.org/Vol-2308/aviose2019paper05.pdf
https://doi.org/10.2514/6.2017-0419

Accelerated Learning of Predictive
Runtime Monitors for Rare Failure

Reza Babaee(B), Vijay Ganesh, and Sean Sedwards

Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
{rbabaeec,vijay.ganesh,sean.sedwards}@uwaterloo.ca

Abstract. Predictive runtime verification estimates the probability of
a future event by monitoring the executions of a system. In this paper
we use Discrete-Time Markov Chains (DTMC) as predictive models that
are trained from many execution samples demonstrating a rare event: an
event that occurs with very low probability. More specifically, we pro-
pose a method of grammar inference by which a DTMC is learned with
far fewer samples than normal sample distribution. We exploit the con-
cept of importance sampling, and use a mixture of samples, generated
from the original system distribution and distributions that are suitably
modified to produce more failures. Using the likelihood ratios of the var-
ious samples, we ensure the final trained model is faithful to the original
distribution. In this way we construct accurate predictive models with
orders of magnitude fewer samples. We demonstrate the gains of our
approach on a file transmission protocol case study from the literature,
and highlight future directions.

1 Introduction

In conventional Runtime Verification (RV) [22], a monitor observes a finite prefix
of an execution of a system and checks it against a given property specified in
some form of temporal logic. The monitor accepts (or rejects) the prefix if all
infinite extensions of the prefix belong (resp. do not belong) to the set of infinite
paths satisfying the property [6]. Otherwise, the monitor outputs unknown until
the property is either satisfied or falsified [5]. RV is an effective means of mon-
itoring and analyzing black-box systems [23,33] as well as when there exists a
compact executable description of a system whose state space is intractable [20].
The scope of the current paper is the latter.

In contrast to traditional RV, predictive RV [2] uses a model to predict exten-
sions of an observed prefix of an execution of a system. The model is trained by
observing previous execution samples that demonstrate the relevant behaviour.
The trained model is then used to construct a predictive monitor, which esti-
mates at runtime the probability of a future failure.

The challenge we address in this paper is when failure is rare, i.e., when it has
low probability. This is generally the case in real-world applications, where failure
is usually designed to be very rare (e.g., the violation of a safety property [35]).
Training an accurate prediction model for rare events therefore poses problems
c© Springer Nature Switzerland AG 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 111–128, 2019.
https://doi.org/10.1007/978-3-030-32079-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-32079-9_7

112 R. Babaee et al.

for conventional statistical learning, precisely because they occur very rarely,
requiring many and/or long traces to adequately characterize the rare event.

To construct our predictive monitor we use grammar inference [12], which
can produce accurate probabilistic models from observed executions of a sys-
tem. In [8] the authors propose the Alergia algorithm to learn a probabilistic
automaton that reproduces the grammar observed in a set of stochastically-
generated traces of the language. The idea is to first construct a Frequency
Prefix Tree Acceptor (FPTA) from the samples and to label its edges with the
frequencies that the corresponding prefixes are observed. According to a metric of
compatibility based on these frequencies, using the Hoeffding bound [13], nodes
in the tree are then folded and merged into one another to form an automaton.
To construct models suitable for verification, the Aalergia algorithm of [24]
adopts a different metric, based on Angluin’s bound [1], and uses a Bayesian
Information Criterion to select the best model.

To address the problem of predicting rare events, we adapt the above
approaches and propose a solution that adopts notions from importance sam-
pling [29,30] (IS) to accelerate the learning of an accurate model of rare failures.
IS is a standard technique by which a measure of an “inconvenient” probabilistic
distribution is estimated by sampling from a “convenient” (IS) distribution over
the same sample space. Typically, the inconvenience arises because the measure
of interest is a rare event and the convenient distribution makes the rare event
more likely. Samples are drawn from the IS distribution and compensated on the
fly to give an accurate estimate of the rare event, but with fewer samples.

Optimizing the system distribution for a rare event can make normal
behaviour rare, with the corresponding parts of the state space poorly covered
by simulations, and consequently increasing the number of false positives by
the monitor. To construct a good predictive model that adequately covers all
the relevant parts of the state space, it may be necessary to use samples from
more than one distribution, e.g., from the original system distribution as well
as the distribution that favours the rare event. Our approach therefore allows
arbitrarily many simulations from arbitrarily many distributions to be combined
in a training set, using their likelihood ratios [30, Ch. 5] to ensure their correct
contribution to the final model.

Our approach assumes that the monitored system has inputs or accessible
parameters that allow its behaviour to be modified, and that there is a well-
defined likelihood ratio between its behaviour before and after modification.
Systems of this nature are common in the Statistical Model Checking (SMC)
literature (see e.g., [18]), noting that SMC does not inherently provide means
of predictive verification. With the above assumption, it is possible, within the
context of RV, to optimize the parameters of the system with respect to the rare
event, without access to the explicit representation of the state space. E.g., start-
ing with randomly chosen parameters and knowing how the parameters affect the
likelihood ratio, it is possible to find optimal parameters using an iterative algo-
rithm based on cross-entropy minimization [14,18]. It is also possible to create
effective IS distributions using heuristics, e.g., by locally balancing the transition

Accelerated Learning of Predictive Runtime Monitors for Rare Failure 113

probabilities from all states or by increasing the probabilities of specific critical
transitions. Further discussion of IS distributions, however, is beyond the scope
of the current work, so in what follows we assume that such a distribution has
been obtained and that sample traces can be drawn from it.
Summary of Contributions:

– Given a training set assembled from samples of various distributions that
cover the normal and rare behaviour, we propose an approach to construct a
Weighted Prefix Tree Acceptor (WPTA) based on the likelihood ratio of each
sample.

– We adapt standard grammar inference algorithms, e.g., A(a)lergia, to build
a discrete-time Markov Chain (DTMC) from the WPTA, to act as a predictive
model.

– We demonstrate our approach on a file transmission protocol [11], predicting
the failure of a sender to report a successful transmission.

2 Preliminaries

In this section we briefly introduce definitions and notations. A probability dis-
tribution over a finite set S is a function P : S → [0, 1] such that

∑
s∈S P (s) = 1.

We use u and w to, respectively, denote a finite and an infinite path. We use Σ∗

and Σω to denote the set of finite and infinite paths over the finite alphabet Σ.

Definition 1 (FPTA). A Frequency Prefix Tree Acceptor (FPTA) is a tuple
A : (Q,Σ,Fr I , δ,FrF ,FrT), where Q is a non-empty finite set of states, Σ is a
non-empty finite alphabet, FrI : Q → N is the initial frequency of the state(s),
δ : Q × Σ → Q is the transition function, FrF : Q → N is the final frequency
of the state(s), and FrT : Q × Σ × Q → N is the transition frequency function
between two states.

Definition 2 (PFA). A Probabilistic Finite Automaton (PFA) is a tuple A :
(Q,Σ, π, δ,PT ,PF), where Q is a non-empty finite set of states, Σ is a non-
empty finite alphabet, π : Q → [0, 1] is the initial probability distribution over
Q, δ : Q × Σ → Q is the transition function that maps the state-symbol pair to
another state, PT : Q × Σ → [0, 1] is the transition probability distribution, and
PF : Q → [0, 1] is the final probability distribution, such that for any q ∈ Q,
PT (q, ·) + PF (q) is a probability distribution.

Definition 3 (DTMC). A Discrete-Time Markov Chain (DTMC) is a tuple
M : (S,Σ, π,P, L), where S is a non-empty finite set of states, Σ is a non-
empty finite alphabet, π : S → [0, 1] is the initial probability distribution over S,
P : S × S → [0, 1] is the transition probability, such that for any s ∈ S, P(s, ·)
is a probability distribution, and L : S → Σ is the labeling function.

Let M be a DTMC. The sequence σ0σ1 . . . is an execution path on M
iff P(si, si+1) > 0, where L(si) = σi, i ≥ 0. An execution path can be finite
or infinite. The probability measure of a finite path u on M is defined as

114 R. Babaee et al.

PrM(u) =
∏

i∈[0,n] P(si, si+1). The probability distribution over the infinite
executions, PrM(w), w ∈ Σω, is defined using the probability measure over the
cylinder sets with the prefixes of w obtained from M [20].

3 Importance Sampling

In this section we briefly introduce the concepts of importance sampling (IS)
that are necessary for the sequel.

Given a stochastic system with distribution F : Σ∗ → [0, 1], from which we
may draw random samples u ∈ Σ∗ according to F , denoted u ∼ F , and an
indicator function 1ϕ : Σ∗ → {0, 1} that returns 1 iff u satisfies some property
ϕ, then the probability of satisfying ϕ under F , denoted PF (ϕ), can be estimated
using the standard Monte Carlo (MC) estimator,

PF (ϕ) ≈ 1
N

N∑

i=1

1ϕ(ui), with ui ∼ F. (1)

N ∈ N independent and identically distributed (iid) samples, u1, . . . , uN , are
drawn at random according to F and evaluated with respect to ϕ. The proportion
of samples that satisfy ϕ is an unbiased estimate of PF (ϕ).

If satisfying ϕ is a rare event under F , i.e., PF (ϕ) � 1, the number of samples
must be set very large to estimate PF (ϕ) with low relative error [30, Chap. 1].
The intuition of this is given by the fact that N must be greater than or equal
to 1/PF (ϕ) to expect to see at least one sample that satisfies ϕ.

Given another distribution, G : Σ∗ → [0, 1], such that 1ϕF is absolutely con-
tinuous with respect to G, PF (ϕ) can be estimated using the importance sam-
pling estimator,

PF (ϕ) ≈ 1
N

N∑

i=1

1ϕ(ui)
F (ui)
G(ui)

, with ui ∼ G. (2)

N samples are drawn according to G and the proportion that satisfy ϕ is com-
pensated by the likelihood ratio, F/G. Absolute continuity of 1ϕF with respect to
G requires that for all u ∈ Σ∗, G(u) = 0 =⇒ 1ϕ(u)F (u) = 0. This guarantees
that (2) is always well defined. If ϕ is not a rare event under G, (2) will typically
converge faster than (1). Under these circumstances, the IS estimator (2) is said
to have lower variance than the standard MC estimator (1). Equation (2) is the
basis of Statistical Model Checking (SMC) tools that use IS [7,15].

We call F the original distribution and G the IS distribution, using these
symbols as synonyms for the explicit terms in the remainder of this section.
Later, we also use the terms MC and IS to distinguish simulations or models
generated from the original and importance sampling distributions, respectively.

In the present context, we assume that F and G are members of a family
of distributions generated by two DTMCs, having different sets of transition
probabilities over a common set of states and transitions. We can thus talk

Accelerated Learning of Predictive Runtime Monitors for Rare Failure 115

Fig. 1. Running example.

about the likelihood ratio of a trace as well as of an individual transition, which
is defined as the ratio of the transition’s probability under F divided by its
probability under G. Absolute continuity implies that every zero probability
transition in G corresponds to a zero probability transition in F or a transition
that does not occur in a trace that satisfies ϕ.

4 Running Example

Figure 1 describes the running example used throughout the paper. Figure 1(a)
depicts a DTMC, M, with four states, labelled i,m, e and s representing the
initial, middle, error, and success states, respectively.

The training dataset, D, contains samples that are randomly generated from
M. Each sample u ∈ D is a finite prefix of a random infinite path w ∈ Σω

representing a random variable from the distribution PrM. The length of the
samples is positive, unbounded, and selected randomly and independently of the
sample itself. That is, the execution ends at a time independent of the behaviour
of the system, with some fixed probability greater than zero [24].

Figure 1(b) shows a training set containing 100 samples from the DTMC
in Fig. 1(a). The probability of eventually error from the initial state is less
than 0.01, explaining why there is no instance in the samples. For the sake of
illustration, we assume that this error is a rare event.

5 Training on Rare-Event Samples

Inferring the probabilistic languages of infinite strings from a set of sam-
ples is defined as obtaining the probability distribution over Σω. The state-
merging algorithms [8,24] are shown to be effective in learning probabilistic
finite automata [12], which in turn, can be converted to DTMC [24]. Although
we use the Alergia algorithm [12] to explain our approach; in principle it will
work with any learning algorithm that uses an FPTA in its learning process
(e.g., [25]).

116 R. Babaee et al.

1 Alergia(Sample dataset D, α > 0)

output: PFA A
2 begin
3 A ← BuildFPTA(D)
4 Red ← {qε}
5 Blue ← {qa : a ∈ Σ ∩ Pref(D)}
6 while Blue �= ∅ do
7 qb ← SelectBlueState
8 merge ← false
9 foreach qr ∈ Red do

10 if CompatibilityTest(qb, qr, α) then
11 A ← StochasticMerge(A, qr, qb)
12 merge ← true
13 break

14 if ¬merge then
15 Red ← Red ∪{qb}
16 Blue ← {qua | qu ∈ Red, a ∈ Σ, ua ∈ Pref(D)}\Red

17 A ← NormalizeFPTA(A)
18 return A

Algorithm 1: Generating a PFA from a set of iid samples.

Algorithm 1 demonstrates the main steps of Alergia, adapted from [24]
and [8]. The algorithm starts by building the Frequency Prefix Tree Acceptor
(FPTA)(line3).The tree is essentiallya representationof the trainingdataset, such
that each node represents a prefix that appeared in the dataset with its frequency,
i.e., the number of times the prefix appeared in the training data (see Fig. 2(a)).

After building the FPTA, the algorithm initializes and maintains two sets of
nodes: Red and Blue. The red nodes have already been merged and will form
part of the final automaton. The blue nodes are the candidates to be merged
with a red node. The set Red is initialized with qε (line 4), i.e., the initial node
in the FPTA that represents the empty string (no prefix). The set Blue is ini-
tialized with all the nodes connected to qε, which represent prefixes of length one
(line 5). We use Pref(D) to denote the set of all prefixes in the dataset D.

The main while loop (lines 6–16) selects a blue node and tests it against all
the red nodes (lines 9–13) for compatibility (line 10). To be faithful to the sample
data, as in [24] we assume that the compatibility test is performed on the original
FPTA, rather than the intermediate automaton. The parameter α > 1 is used for
the compatibility criterion [24], which is based onAngluin’s bound and the learning
by enumerationprinciple [1]. If the twonodes are compatible, they aremerged,with
all the frequencies of the blue node and its descendants recursively added to the red
node and its descendants (procedure StochasticMerge in line 11).

If there is no compatible red node with a given blue node, then the blue node
is promoted to a red node (line 15). In either case, Blue is updated in line 16
according to its declarative definition: all the successors of red nodes that are
not themselves red.

Accelerated Learning of Predictive Runtime Monitors for Rare Failure 117

1 Pfa2Dtmc(A : (Q, Σ, πA, δ,PT ,PF))

output: M : (S, Σ, πM,P, L)
2 begin
3 S ← {}
4 foreach a ∈ Σ where δ(q0, a) exists do
5 q ← δ(q0, a)
6 S ← S ∪ {q}
7 πM(q) ← PT (q0, a)
8 L(q) ← a

9 foreach a ∈ Σ and q ∈ S, where δ(q, a) exists do
10 q′ ← δ(q, a)
11 S ← S ∪ {q′}
12 P(q, q′) ← PT (q, a)/(1 − PF (q, a))
13 L(q′) ← a

14 if δ(q, a) does not exist ∀a ∈ Σ then
15 P(q, q) ← 1

16 return M
Algorithm 2: Constructing a DTMC from a PFA.

The output of Algorithm 1 is a PFA, which is essentially the transforma-
tion of the FPTA by normalizing all the frequencies to obtain the probability
distributions for the transitions (line 12).

Algorithm 2 constructs a DTMC from the trained PFA. Constructing the
states of the DTMC begins by iterating all the successor states of q0 in the PFA,
i.e., the state representing the empty string. Notice that since we assume the
length of the samples is positive, there is no empty string (ε) in the dataset. The
for loop in lines 4–8 sets the initial probability distribution of the underlying
DTMC, which is obtained from the transition from q0 to the other states using
each alphabet symbol a (line 7). Those states are added to the set of states of
the DTMC (line 6), and labelled with a (line 8).

The for loop in lines 9–13 computes the transition probability distribution
of the DTMC for each pair (q, a). Notice that each state in the DTMC is also
in the PFA, hence, q ∈ S and δ(q, a) is well defined. In line 12 we normalize the
transition probability by dividing it by the complement of the final probability
distribution in the PFA (see Definition. 2). To generate a distribution over Σω,
if a state in the PFA does not have any outgoing transition, we turn it into an
absorbing state in the DTMC by adding a self loop (lines 14–15).

Figure 2(a) depicts the FPTA obtained from the training sample in Fig. 1(b),
with Table 1 showing the prefix and final frequency (fin. freq.) associated with
each state of the FPTA. The final frequency is obtained by counting the traces
that are equal to the prefix that each state represents. Figure 2(b) shows the
outcome of merging the states of the FPTA and turning the resulting PFA into
a DTMC.

118 R. Babaee et al.

Table 1. The prefixes and their final frequencies associated with each state of the
FPTA in Fig. 1(a).

state prefix fin. freq. state prefix fin. freq.

q0 ε 0 q1 i 0

q2 i, m 10 q3 i, s 20

q4 i, m, m 2 q5 i, m, s 2

q6 i, s, s 15 q7 i, m, s, s 4

q8 i, s, s, s 15 q9 i, m, s, s, s 2

q10 i, s, s, s, s 15 q11 i, s, s, s, s, s 15

Fig. 2. Training DTMC using normal samples.

5.1 Generating Rare-Event Samples from an IS Distribution

Drawing samples from the original distribution may result in a model that either
does not contain any of the required structure, or estimates the probability with
large errors, due to a low number of samples that exhibit the rare event.

In this section we present our modification of Alergia, which incorporates
importance sampling such that, without increasing the sample complexity [31],
i.e., the size of the training set, a DTMC is trained with reduced error for
predicting the occurrence of a rare event.

We modify building the FPTA (the function BuildFPTA in Algorithm 1), to
adjust the probabilities of the final PTA with respect to the sample distribution
generated by the importance sampling.

To achieve this goal, first we use the notion of likelihood ratio (LR) that
is obtained by the importance sampling for each sample. The LR is effectively
the inverse of the bias introduced in the transition probabilities of the model
by the importance sampling distribution to increase the probability of the rare
events (see Sect. 3). Let F (u) be the probability measure of the path u under the
original distribution F , and G(u) be the probability measure of the same path
under the importance sampling distribution, G. Then the likelihood ratio of u
is defined as follows:

Accelerated Learning of Predictive Runtime Monitors for Rare Failure 119

Fig. 3. Importance sampling model with corresponding traces and their LR.

LR(u) =
F (u)
G(u)

(3)

Figure 3(a) displays the modified version of the model in Fig. 1(a) obtained
by an importance sampling distribution that increases the probability of even-
tually error to ≈0.8 (the changed transition probabilities are shaded). Samples
randomly generated from this model, with the likelihood ratio for each sample,
are shown in Fig. 3(b). The LR for each training sample is computed using (3).
For example, LR(i,m, e) is 0.2×0.04

0.8×0.8 = 1/80.

5.2 Weighted Prefix Tree Acceptor

We define the notion of Weighted Prefix Tree Acceptor (WPTA) to obtain an
automaton as the representation of the samples with different likelihood ratios.
A WPTA is similar to an FPTA except that instead of integer frequency counts,
fractional numbers are used as weights.

Definition 4 (WPTA). A Weighted Prefix Tree Acceptor (WPTA) is a tuple
A : (Q,Σ,WI , δ,WF ,WT), where Q is a non-empty finite set of states, Σ is a
non-empty finite alphabet, FrI : Q → R is the initial weighted frequency of the
state(s), δ : Q × Σ → Q is the transition function, FrF : Q → R is the final
weighted frequency of the state(s), and FrT : Q × Σ × Q → R is the transition
weighted frequency function between two states.

Let original distribution F : Σ∗ → [0, 1] be absolutely continuous with respect
to importance sampling distributions G1, . . . , Gn, with Gi : Σ∗ → [0, 1] for i ∈
{1, . . . , n}. Then let N1, . . . , Nn be the number of samples drawn at random
using G1, . . . , Gn, respectively.

When constructing our WPTA, we add a weight to each frequency count
along the trace. If pi denotes the probability measure of some property under F
and wi is the expected weight applied to traces drawn using Gi, then we require
that in the limit of large N1, . . . , Nn,

120 R. Babaee et al.

pi =
Niwi∑n

j=1 Njwj
. (4)

That is, we expect the normalized total frequency to equal the total measure of
probability, which follows from the laws of total probability and large numbers.
Given that the properties of interest in the present context are rare events of
a complex system, in practice the values of pi will typically be estimated using
rare event SMC. In order to derive a formula to calculate the weight applied to
an individual simulation trace, in what follows we do not consider the potential
statistical errors arising from finite sampling.

Re-arranging (4) for wi gives wi =
pi

∑
j∈{1,...,n}\{i} Njwj

Ni(1−pi)
, however there is

no unique solution because the numerator on the right hand side contains all
the other unknown weights. To sufficiently constrain (4), we set

∑n
j=1 Njwj =

∑n
j=1 Nj . Hence, the expected weight for samples from Gi is given by wi =

pi

∑n
j=1 Nj

Ni
. The actual weight used for simulation trace u ∼ Gi is dependent on

its likelihood ratio and is thus given by

wi =
F (u)
Gi(u)

∑n
j=1 Nj

Ni
. (5)

The relative values of the set of weights calculated by (5) are unique up to
a positive scaling factor. This scaling factor may be important when deciding
when nodes are compatible for merging, since metrics such as the Hoeffding
bound, used in [8], and the Angluin bound, used in [24], are sensitive to the
absolute value. The results presented in Sect. 6 are based on models created
using the values calculated directly by (5), however it can be argued that IS
achieves performance that is only possible with many more samples using MC,
so the weights should be normalized with respect to the probabilities of the rare
properties. For example, the weights could be scaled such that the expected
weight associated to the lowest probability is equal to 1. Since the scaling factor
is related to the specific learning algorithm being used, further discussion is
beyond the scope of the present work.

5.3 WPTA Construction from a Single Distribution

In this section we describe the steps of the algorithm to build a WPTA. To
simplify the algorithm description, in the remainder of this section we assume
that the samples are drawn from a single distribution, therefore the weights
defined in (3) become the likelihood ratio for each sample. In the case of multiple
distributions it is straightforward to adjust the weights according to the number
of samples generated from each distribution and use (5) instead.

Algorithm 3 builds the WPTA from the importance sampling samples, where
the frequencies are multiplied by the likelihood ratio of each sample. The input
is a dataset which contains samples, denoted by u, their frequency, denoted
by freq, and their likelihood ratio, denoted by LR, provided by importance

Accelerated Learning of Predictive Runtime Monitors for Rare Failure 121

1 BuildWPTA(Sample dataset D, LR)

output: WPTA A
2 begin
3 A ← (Q, Σ,WI , δ,WF ,WT)
4 Q ← {qu|u ∈ Pref(D)} ∪ {qε}
5 WI(qε) ← ∑

∀u∈D(u.freq) × LR(u)
6 forall the ua ∈ Pref(D) do
7 δ(qu, a) ← qua

8 WT (qu, a, qua) ← ua.freq × LR(ua)

9 forall the u ∈ D do
10 WF (qu) ← u.freq × LR(u)

11 return A
Algorithm 3: Building WPTA from the samples obtained by importance
sampling.

sampling. Line 4 initializes the states of the WPTA with all the prefixes that
exist in the dataset, with an additional state qε that represents the empty prefix
that is used as the initial state, whose initial weighted frequency is equal to the
sum of the weights of the entire dataset (line 5). The remaining states have the
initial weighted frequency equal to zero. For each ua ∈ Pref(D), where a ∈ Σ,
the for loop in lines 6–8 sets the transition function between the states qu and
qua, and its transition weighted frequency by multiplying the frequency of ua in
the dataset to its LR (lines 7–8). The final weighted frequency is obtained as
the product of the frequency of each sample and its likelihood ratio (line 10).

Fig. 4. Training DTMC using samples from IS.

Figure 4(a) illustrates the WPTA obtained from the IS samples shown in
Fig. 3(b). Table 2 shows the final weighted frequencies of each state of the WPTA,

122 R. Babaee et al.

which are used to judge compatibility when merging to obtain the final PFA.
Figure 2(b) is the DTMC after converting the resulting PFA.

Table 2. The prefixes and their final weighted frequencies associated with each state
of the WPTA in Fig. 4(a).

state prefix fin. Wfreq. state prefix fin. Wfreq.

q0 ε 0 q1 i 0

q2 i, m 5 q3 i, s 40

q4 i, m, m 2.4 q5 i, m, e 0.2

q6 i, m, s 4 q7 i, s, s 8

q8 i, m, e, e 0.125 q9 i, m, s, s 8

q10 i, s, s, s 12 q11 i, m, e, e, e 0.2

q12 i, s, s, s, s 20 q13 i, m, e, e, e, e 0.075

Correctness & Complexity. Note that the weights in a WPTA are LR(u)×G(u),
where G(u) is the empirical probability of u according to the distribution G.
Using (3), it is trivial to observe that the weights are essentially giving the same
empirical probability distribution that the FPTA provides, i.e., F . Therefore, the
correctness of our approach for predicting the failure, expressed as a reachability
property, is implied by the convergence analysis of the compatibility test on an
FPTA in the large sample limit (see e.g., Theorem 2 in [24]). The time complexity
of building a WPTA has the additional multiplication operations to compute the
weights. The order of the merging and the training in general would remain cubic
with the size of the dataset [8].

6 Case Study: Bounded Retransmission Protocol

We demonstrate our IS approach on the bounded retransmission protocol (BRP)
model of [9]. The BRP model describes a sender, a receiver, and a channel
between them, which the sender uses to send a file in chunks with a maximum
number of retransmissions for each chunk defined as a parameter. We use 64
chunks with at most 2 retransmissions.

The rare-event failure property that we consider is the sender does not report
a successful transmission [9], which we express in temporal logic as F error. The
F temporal operator means Finally or eventually. The probability of this prop-
erty, expressed as Pr(F error), is approximately 1.7 × 10−4. We also consider the
time-bounded property that the sender does not report a successful transmission
within k steps, expressed as F≤k error.

The learned models of the BRP using IS and standard MC were constructed
from simulation traces generated by Plasma [15], according to the algorithms
defined in Sect. 5. The resulting models were then checked with respect to the
above properties using Prism [21]. The results are illustrated in Figs. 5 and 6.

Accelerated Learning of Predictive Runtime Monitors for Rare Failure 123

Fig. 5. Predictive performance of a typical 103-trace IS model of BRP (labelled IS) vs.
that of 1000 104-trace MC models (shaded area). The reference performance is labelled
ref. The performance of an example MC model is labelled MC.

Using standard MC simulation of the original distribution of the BRP model,
we constructed 1000 learned models, each using a training set of 104 indepen-
dently sampled traces. These training sets included between 6 and 34 traces
that satisfy the property. Since the performances of different models generated
by IS are visually indistinguishable, for comparison we trained just a single IS
model, using a training set of only 103 sampled traces. The IS training set com-
prised 500 traces that satisfy the property, selected from simulations of an IS
distribution over the original BRP model, and 500 traces that do not satisfy
the property, selected from simulations of the original distribution of the BRP
model. By combining these traces in accordance with (5), the resulting IS distri-
bution adequately covers the parts of the state space related to both satisfying
and not satisfying the property.

The results for the MC models are represented as a shaded area that encloses
the minimum and maximum probabilities recorded for each value of k. To give
a better intuition of the distribution of these results, we plot lines representing
the empirical mean (μMC) and empirical mean ±1 standard deviation (μMC ±σ).
We also plot the performance of a typical MC model (labelled MC), where each
apparent step in the curve corresponds to one of the 24 traces that satisfy the
property in its training data.

The results for the IS model are almost coincident with the reference curve
(ref), calculated by evaluating the property with respect to the original model
of the system. The small difference at around k = 400 arises due to the learned
models using an abstraction based on only two variables in the original system.

124 R. Babaee et al.

Fig. 6. Prediction distributions of learned models of BRP.

The results presented in Fig. 5 are with respect to a property in a single initial
state. To judge the performance of our approach in constructing a typical failure
monitor, we consider the predictive accuracy of all the states in learned models
using MC and IS, with respect to probability Pr(F error). As in the previous
experiments, we constructed an MC model using 104 traces and an IS model
using 103 traces. To eliminate an obvious source of discrepancy, we generated
multiple sets of 104 MC traces and selected a set with exactly 17 traces that
satisfy the property. This ensures that the MC model is based on approximately
the same probability as the IS model.

Each training set contains a different randomly selected set of concrete states
in the original model. Hence, even though we use the same merging compatibility
parameter for both sets (α = 10), the two learned models are different. Also,
since we use abstraction, each learned model state maps to a different set of
concrete states in the original model. Hence, for every state in each learned
model, we calculate the probability of the property in the learned model and,
for comparison, calculate the probability of the property with respect to its
associated set of concrete states in the original model.

The results of our calculations are two pairs of sets of probabilities, which
we visualize as cumulative distributions in Fig. 6(a) and (b). In this form, the
maximum vertical distance between the curves in each pair is a measure of
similarity of the two distributions (the Kolmogorov-Smirnov (K-S) statistic [19]).
The K-S statistic for the MC model is 0.63, while that of the IS model is 0.19.
As expected, the IS model significantly outperforms the MC model, despite the
IS model being trained with an order of magnitude fewer training samples and
hand-selecting a good MC training set.

Accelerated Learning of Predictive Runtime Monitors for Rare Failure 125

7 Related Work

This paper continues the previous line of work on the predictive RV frame-
work [2], where the monitor finitely extends the prefix based on a prediction
model that is trained on the set of iid sample traces. This gives the monitor the
ability to detect a monitorable [10] property’s satisfaction or violation before
its occurrence. Abstraction to the observation space is used in [3] to reduce
the size of the prediction model, which directly impacts both the size and the
performance of the monitor.

The present work’s focus is on training a prediction model using rare-event
samples. Importance sampling is used in the context of reinforcement learn-
ing [32] to estimate the optimal policy in an unknown partially observable
Markov decision process [26–28]. Our technique uses the state-merging method
as a form of supervised learning to build a DTMC for a rare event. The authors
of [34] introduce a genetic algorithm to predict rare events in event sequences.
Their approach is based on identifying temporal and sequential patterns through
the mutation and crossover operators. Our approach instead uses importance
sampling to identify the rare-event samples, and diversifies them by adding other
(importance) sampling distributions. Our purpose is to construct the underlying
model that captures the probabilities of a rare event.

In the context of statistical model checking (SMC), importance sampling [14,
18] and importance splitting [16,17] have already been used to mitigate the joint
problems of intractable state space and rare events. SMC is essentially runtime
verification of an accurate existing model that is deliberately not constructed
in its entirety. Rare event SMC is therefore not inherently predictive, so not
immediately applicable in the current context.

8 Conclusion

In this paper we have presented an accelerated-learning technique to create accu-
rate predictive runtime monitors for rare events. We use importance sampling
to generate samples with more failure instances, so that the part of the model
responsible for failure is adequately covered. We also use regular Monte Carlo
simulation of the original system so that we have sufficient training samples to
cover the rest of the model. We then use the likelihood ratios of the samples
to construct a probabilistic automaton to represent the true distribution of the
model. Finally, the prediction model is used in building a monitor for predic-
tive runtime verification [2]. To evaluate our approach, we applied it to the file
retransmission protocol case study, demonstrating the efficacy of our method in
using far fewer samples while achieving greater accuracy compared to previous
approaches.

In line with previous work [3], we propose to explore importance sampling
with abstraction, which is necessary when the state space is intractable. We
have already demonstrated in our experiments that this combination works, but
obtaining a good abstraction of a complex system may be challenging. Drawing

126 R. Babaee et al.

on experience with parametrized importance sampling [14,18], we speculate to
exploit cross entropy minimization or the coupling method [4] to find both good
importance sampling distributions and good abstractions.

Acknowledgment. This work is partly supported by the Japanese Science and Tech-
nology agency (JST) ERATO project JPMJER1603: HASUO Metamathematics for
Systems Design.

References

1. Angluin, D.: Identifying languages from stochastic examples. Technical report
YALEU/ DCS/RR-614, Yale University, Department of Computer Science,
New Haven, CT (1988)

2. Babaee, R., Gurfinkel, A., Fischmeister, S.: Prevent: a predictive run-time verifi-
cation framework using statistical learning. In: Johnsen, E.B., Schaefer, I. (eds.)
SEFM 2018. LNCS, vol. 10886, pp. 205–220. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-92970-5 13

3. Babaee, R., Gurfinkel, A., Fischmeister, S.: Predictive run-time verification of
discrete-time reachability properties in black-box systems using trace-level abstrac-
tion and statistical learning. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS,
vol. 11237, pp. 187–204. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03769-7 11

4. Barbot, B., Haddad, S., Picaronny, C.: Coupling and importance sampling for
statistical model checking. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 331–346. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28756-5 23

5. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how
ugly is ugly? In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp.
126–138. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77395-
5 11

6. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. J. Log. Comput. 20(3), 651–674 (2010)

7. Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: a flexible, dis-
tributable statistical model checking library. In: Joshi, K., Siegle, M., Stoelinga,
M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 160–164. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40196-1 12

8. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a
state merging method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS,
vol. 862, pp. 139–152. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58473-0 144

9. D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reachability analysis of
probabilistic systems by successive refinements. In: de Alfaro, L., Gilmore, S. (eds.)
PAPM-PROBMIV 2001. LNCS, vol. 2165, pp. 39–56. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44804-7 3

10. Falcone, Y., Fernandez, J.-C., Mounier, L.: Runtime verification of safety-progress
properties. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS, vol. 5779, pp.
40–59. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04694-0 4

11. Helmink, L., Sellink, M.P.A., Vaandrager, F.W.: Proof-checking a data link pro-
tocol. In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806, pp.
127–165. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58085-9 75

https://doi.org/10.1007/978-3-319-92970-5_13
https://doi.org/10.1007/978-3-319-92970-5_13
https://doi.org/10.1007/978-3-030-03769-7_11
https://doi.org/10.1007/978-3-030-03769-7_11
https://doi.org/10.1007/978-3-642-28756-5_23
https://doi.org/10.1007/978-3-642-28756-5_23
https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1007/978-3-642-40196-1_12
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/3-540-44804-7_3
https://doi.org/10.1007/978-3-642-04694-0_4
https://doi.org/10.1007/3-540-58085-9_75

Accelerated Learning of Predictive Runtime Monitors for Rare Failure 127

12. De la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, Cambridge (2010)

13. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963)

14. Jegourel, C., Legay, A., Sedwards, S.: Cross-entropy optimisation of importance
sampling parameters for statistical model checking. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 327–342. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31424-7 26

15. Jegourel, C., Legay, A., Sedwards, S.: A platform for high performance statisti-
cal model checking – PLASMA. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 498–503. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28756-5 37

16. Jegourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model
checking rare properties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS,
vol. 8044, pp. 576–591. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39799-8 38

17. Jegourel, C., Legay, A., Sedwards, S.: An effective heuristic for adaptive importance
splitting in statistical model checking. In: Margaria, T., Steffen, B. (eds.) ISoLA
2014. LNCS, vol. 8803, pp. 143–159. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45231-8 11

18. Jegourel, C., Legay, A., Sedwards, S.: Command-based importance sampling for
statistical model checking. Theoret. Comput. Sci. 649, 1–24 (2016)

19. Kolmogoroff, A.: Confidence limits for an unknown distribution function. Ann.
Math. Stat. 12(4), 461–463 (1941)

20. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0 6

21. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

22. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Program. 78(5), 293–303 (2009)

23. Maler, O.: Some thoughts on runtime verification. In: Falcone, Y., Sánchez, C.
(eds.) RV 2016. LNCS, vol. 10012, pp. 3–14. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-46982-9 1

24. Mao, H., et al.: Learning probabilistic automata for model checking. In: Proceed-
ings of the 8th International Conference on Quantitative Evaluation of SysTems
(QEST), pp. 111–120. IEEE, September 2011

25. Mediouni, B.L., Nouri, A., Bozga, M., Bensalem, S.: Improved learning for
stochastic timed models by state-merging algorithms. In: Barrett, C., Davies, M.,
Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 178–193. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-57288-8 13

26. Peshkin, L., Meuleau, N., Kaelbling, L.P.: Learning policies with external memory.
In: Proceedings of the 16th International Conference on Machine Learning (ICML).
pp. 307–314. Morgan Kaufmann (1999)

27. Peshkin, L., Shelton, C.R.: Learning from scarce experience. In: Proceedings of the
19th International Conference on Machine Learning (ICML), pp. 498–505. Morgan
Kaufmann (2002)

https://doi.org/10.1007/978-3-642-31424-7_26
https://doi.org/10.1007/978-3-642-28756-5_37
https://doi.org/10.1007/978-3-642-28756-5_37
https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.1007/978-3-662-45231-8_11
https://doi.org/10.1007/978-3-662-45231-8_11
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-319-46982-9_1
https://doi.org/10.1007/978-3-319-46982-9_1
https://doi.org/10.1007/978-3-319-57288-8_13

128 R. Babaee et al.

28. Precup, D., Sutton, R.S., Dasgupta, S.: Off-policy temporal difference learning
with function approximation. In: Proceedings of the 18th International Conference
on Machine Learning (ICML), pp. 417–424. Morgan Kaufmann (2001)

29. Rubino, G., Tuffin, B.: Rare Event Simulation Using Monte Carlo Methods. Wiley,
Hoboken (2009)

30. Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo Method, 2nd edn.
Wiley, Hoboken (2007)

31. Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach (3. internat.
ed.). Pearson Education, London (2010)

32. Shelton, C.R.: Importance sampling for reinforcement learning with multiple objec-
tives. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA
(2001)

33. Sistla, A.P., Žefran, M., Feng, Y.: Monitorability of stochastic dynamical systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 720–736.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 58

34. Weiss, G.M., Hirsh, H.: Learning to predict rare events in event sequences. In:
Proceedings of the 4th International Conference on Knowledge Discovery and Data
Mining (KDD-98), pp. 359–363. AAAI Press (1998)

35. Zuliani, P., Baier, C., Clarke, E.M.: Rare-event verification for stochastic hybrid
systems. In: Hybrid Systems: Computation and Control (HSCC), pp. 217–226.
ACM (2012)

https://doi.org/10.1007/978-3-642-22110-1_58

Neural Predictive Monitoring

Luca Bortolussi1,4, Francesca Cairoli1(B), Nicola Paoletti2, Scott A. Smolka3,
and Scott D. Stoller3

1 Department of Mathematics and Geosciences, Università di Trieste, Trieste, Italy
FRANCESCA.CAIROLI@PHO.UNITS.IT

2 Department of Computer Science, Royal Holloway,
University of London, Egham, UK

3 Department of Computer Science, Stony Brook University, Stony Brook, USA
4 Modelling and Simulation Group, Saarland University, Saarbrücken, Germany

Abstract. Neural State Classification (NSC) is a recently proposed
method for runtime predictive monitoring of Hybrid Automata (HA)
using deep neural networks (DNNs). NSC trains a DNN as an approxi-
mate reachability predictor that labels a given HA state x as positive if
an unsafe state is reachable from x within a given time bound, and labels
x as negative otherwise. NSC predictors have very high accuracy, yet are
prone to prediction errors that can negatively impact reliability. To over-
come this limitation, we present Neural Predictive Monitoring (NPM),
a technique based on NSC and conformal prediction that complements
NSC predictions with statistically sound estimates of uncertainty. This
yields principled criteria for the rejection of predictions likely to be incor-
rect, without knowing the true reachability values. We also present an
active learning method that significantly reduces both the NSC predic-
tor’s error rate and the percentage of rejected predictions. Our approach
is highly efficient, with computation times on the order of milliseconds,
and effective, managing in our experimental evaluation to successfully
reject almost all incorrect predictions.

1 Introduction

Hybrid systems are a central model for many safety-critical, cyber-physical sys-
tem applications [2]. Their verification typically amounts to solving a hybrid
automata (HA) reachability checking problem [14]: given a model M of the
system expressed as an HA and a set of unsafe states U , check whether U is
reached in any (time-bounded) path from a set of initial states of M. Due to its
high computational cost, reachability checking is usually limited to design-time
(offline) analysis.

Our focus is on the online analysis of hybrid systems and, in particular, on
the predictive monitoring (PM) problem [10]; i.e., the problem of predicting,
at runtime, whether or not an unsafe state can be reached from the current
system state within a given time bound. PM is at the core of architectures for
runtime safety assurance such as Simplex [26], where the system switches to a
safe fallback mode whenever PM indicates the potential for an imminent failure.
c© Springer Nature Switzerland AG 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 129–147, 2019.
https://doi.org/10.1007/978-3-030-32079-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-32079-9_8

130 L. Bortolussi et al.

In such approaches, PM is invoked periodically and frequently, and thus
reachability needs be determined rapidly, from a single state (the current system
state), and typically for short time horizons. This is in contrast with offline
reachability checking, where long or unbounded time horizons and sizable regions
of initial states are typically considered. PM also differs from traditional runtime
verification in that PM is preemptive: it detects potential safety violations before
they occur, not when or after they occur.

Any solution to the PM problem involves a tradeoff between two main
requirements: accuracy of the reachability prediction, and computational effi-
ciency, as the analysis must execute within strict real-time constraints and typi-
cally with limited hardware resources. In this work, we present Neural Predictive
Monitoring (NPM), a machine learning-based approach to PM that provides
high efficiency and accuracy, and crucially, statistical guarantees on the predic-
tion error.

NPM builds on Neural State Classification (NSC) [21], a recently proposed
method for approximate HA reachability checking using deep neural networks
(DNNs). NSC works by training DNNs as state classifiers using examples com-
puted with an oracle (an HA model checker). For any state x of the HA, such a
classifier labels x as positive if an unsafe state is reachable from x within a given
time bound; otherwise, x is labeled as negative. Executing a neural state classi-
fier corresponds to computing the output of a DNN for a single input, and thus
is extremely efficient. NSC has also demonstrated very high accuracy in reach-
ability predictions, owing to the powerful approximation capabilities of DNNs.
Some classification errors are, however, unavoidable, the most important being
false negatives, in which positive states are misclassified as negative. Such errors
may compromise the safety of the system.

NPM overcomes this problem by extending NSC with rigorous methods for
quantifying the uncertainty of NSC predictions. NPM can consequently identify
and reject predictions that are likely to produce classification errors. For this
purpose, we investigate the use of Conformal Prediction (CP) [27], a method that
provides statistical guarantees on the predictions of machine-learning models.
Importantly, CP requires only very mild assumptions on the data1, which makes
it suitable for state classification of HA models.

Figure 1 provides an overview of the NPM approach. We sample from a dis-
tribution of HA states to generate a training set Zt and a calibration set Zc.
An HA reachability oracle (a model checker or, for deterministic systems, a sim-
ulator) is used to label sampled states as positive or negative. A neural state
classifier h (i.e., a DNN-based binary classifier) is derived from Zt via supervised
learning.

We use CP to estimate two statistically sound measures of prediction uncer-
tainty, confidence and credibility. Informally, the confidence of a prediction is the
probability that a reachability prediction for an HA state s corresponds to the

1 The only assumption is exchangeability, a weaker version of the independent and
identically distributed assumption.

Neural Predictive Monitoring 131

Fig. 1. Overview of the NPM framework. Double-bordered components denote exten-
sions to the method of [21]. Training of the neural state classifier h and retraining via
active learning are performed offline. The only components used at runtime are the
classifier h and the rejection criterion.

true reachability value of s. Credibility quantifies how likely a given state is to
belong to the same distribution of the training data.

Using confidence and credibility, we derive criteria for anomaly detection,
that is, for rejecting NSC predictions that are likely to be erroneous. The rejec-
tion criterion is based on identifying, via support vector classification, confidence
and credibility thresholds that optimally separate incorrect and correct predic-
tions. The key advantage of such an approach is that predictions are rejected on
rigorous statistical grounds. Furthermore, computation of CP-based confidence
and credibility is very efficient (approximately 1 ms in our experiments), which
makes our NPM method suitable for online analysis and PM.

Finally, our approach includes an active learning strategy to improve the
reliability of the state classifier h. The idea is to employ the CP-based rejection
criterion to identify HA states for which h yields uncertain predictions, and
augment the training and calibration sets with those states. We then train a new
state classifier with the augmented dataset, thus ensuring improved accuracy on
the HA states where h performed poorly, and in turn, a reduced rejection rate. As
opposed to simple random sampling of the state distribution, an advantage of our
active learning strategy is its parsimony: by focusing on the states with uncertain
predictions, it requires a significantly smaller number of additional re-training
samples to achieve a given reduction in rejection rate, and thus significantly
reduces the cost of re-training. The active learning procedure can be iterated,
as shown in Fig. 1. We stress that these re-training iterations are part of the
training process, which is performed offline and hence does not affect runtime
performance.

In summary, the main contributions of this paper are the following:

– We develop Neural Predictive Monitoring, a framework for runtime predictive
monitoring of hybrid automata that extends neural state classification with
conformal prediction.

– We derive statistically sound and optimal criteria for rejecting unreliable NSC
predictions, which leverage CP-based measures of prediction uncertainty.

132 L. Bortolussi et al.

– We develop an active learning method designed to reduce both prediction
errors and the rejection rate.

– We evaluate the method on five case studies, demonstrating that our optimal
rejection criteria successfully rejects almost all prediction errors (missing an
average of only 1.4 errors out of 49.4 over a total of 50, 000 samples), and
that a single iteration of our active learning strategy reduces the range of
prediction errors from 15.2–82 to 3.8–22.8, and the range of overall rejection
rates from 3.46%–9.88% to 0.51%–2.74%. The ranges are taken over the set
of case studies, and the results for each case study are averaged over 5 runs.

2 Problem Formulation

We describe the predictive monitoring problem for hybrid automata reachability
and the related problem of finding an optimal criterion for rejecting erroneous
reachability predictions. We assume that the reader is familiar with the defini-
tions of HA and HA reachability. These definitions can be found in e.g. [21].

Problem 1 (Predictive monitoring for HA reachability). Given an HA M with
state space X, time bound T , and set of unsafe states U ⊂ X, find a predictor
h∗, i.e., a function h∗ : X −→ {0, 1} such that for all x ∈ X, h∗(x) = 1 if
M |= Reach(U, x, T), i.e., if it is possible for M, starting in x, to reach a state
in U within time T ; h∗(x) = 0 otherwise.

A state x ∈ X is called positive if M |= Reach(U, x, T). Otherwise, x is negative.
The neural state classification method of [21] provides an approximate solu-

tion to the above PM problem2, a solution based on deep neural networks
(DNNs). NSC assumes a distribution X of HA states and derives a DNN-based
reachability predictor h using supervised learning, where the training inputs are
sampled according to X and labeled using a reachability oracle. Being an approx-
imate solution, h can commit prediction errors: a state x ∈ X is a false positive
(FP) if h(x) = 1 but M �|= Reach(U, x, T); x is a false negative (FN) if h(x) = 0
but M |= Reach(U, x, T). These errors are respectively denoted by predicates
fn(x) and fp(x). Predicate pe(x) = fn(x) ∨ fp(x) denotes a generic prediction
error.

A central objective of this work is to derive, given a predictor h, a rejection
criterion R able to identify states x that are wrongly classified by h. Importantly,
for runtime applicability, R should not require knowing the true reachability
value of x, as computing it would be too costly at runtime. Further, R should be
optimal, that is, it should ensure minimal probability of rejection errors w.r.t.
the state distribution X .

Problem 2. Given an approximate reachability predictor h, a state distribution
X : X −→ [0, 1], and e ∈ {pe, fn, fp}, find an optimal rejection rule R : X −→
{0, 1}, i.e., such that it minimizes the probability Px∼X (e(x) �= R(x)).
2 In [21], the PM problem is called “state classification problem”, and its solution a

“state classifier”.

Neural Predictive Monitoring 133

Note that Problem 2 requires specifying the kind of prediction errors to reject.
Indeed, depending on the application at hand, one might desire to reject only a
specific kind of errors. For instance, in safety-critical applications, FNs are the
most critical errors while FPs are less important.

As we will explain in Sect. 4, our solution to Problem 2 will consists in identi-
fying optimal rejection thresholds for confidence and credibility, two statistically
sound measures of prediction uncertainty based on CP. The statistical guaran-
tees of our approach derive from using these uncertainty measures as the basis
of the rejection criterion.

3 Conformal Prediction for Classification

Conformal Prediction (CP) associates measures of reliability to any traditional
supervised learning problem. It is a very general approach that can be applied
across all existing classification and regression methods [5]. Since we are inter-
ested in the analysis of the DNN-based state classifiers of NSC, we present the
theoretical foundations of CP in relation to a generic classification problem.

Let X be the input space, Y = {y1, . . . , yc} be the set of labels (or classes),
and define Z = X × Y . The classification model is represented as a function
h : X → [0, 1]c mapping inputs into a vector of class likelihoods, such that the
class predicted by h corresponds to the class with the highest likelihood. In the
context of PM of HA reachability, X is the HA state space, Y = {0, 1} (c = 2)
indicates the possible reachability values, and h is the predictor3.

Let us introduce some notation: for a generic input xi, we denote with yi the
true label of xi and with ŷi the label predicted by h. Test points, whose true
labels are unknown, are denoted by x∗.

The CP algorithm outputs prediction regions, instead of single point pre-
dictions: given a significance level ε ∈ (0, 1) and a test point xi, its prediction
region, Γ ε

i ⊆ Y , is a set of labels guaranteed to contain the true label yi with
probability 1 − ε. The main ingredients of CP are: a nonconformity function
f : Z → R, a set of labelled examples Z ′ ⊆ Z, a classification model h trained
on a subset of Z ′, and a statistical test. The nonconformity function f(z) mea-
sures the “strangeness” of an example zi = (xi, yi), i.e., the deviation between
the label yi and the corresponding prediction h(xi).

3.1 CP Algorithm for Classification

Given a set of examples Z ′ ⊆ Z, a test input x∗ ∈ X, and a significance level
ε ∈ [0, 1], CP computes a prediction region Γ ε

∗ for x∗ as follows.

1. Divide Z ′ into a training set Zt, and calibration set Zc. Let q = |Zc| be the
size of the calibration set.

2. Train a model h using Zt.
3 We will interchangeably use the term “predictor” for the function returning a vector

of class likelihoods, and for the function returning the class with highest likelihood.

134 L. Bortolussi et al.

3. Define a nonconformity function f((xi, yi)) = Δ(h(xi), yi), i.e., choose a met-
ric Δ to measure the distance between h(xi) and yi (see Sect. 3.2).

4. Apply f(z) to each example z in Zc and sort the resulting nonconformity
scores {α = f(z) | z ∈ Zc} in descending order: α1 ≥ · · · ≥ αq.

5. Compute the nonconformity scores αj
∗ = f((x∗, yj)) for the test input x∗ and

each possible label j ∈ {1, . . . , c}. Then, compute the smoothed p-value

pj
∗ =

|{zi ∈ Zc : αi > αj
∗}|

q + 1
+ θ

|{zi ∈ Zc : αi = αj
∗}| + 1

q + 1
, (1)

where θ ∈ U [0, 1] is a tie-breaking random variable. Note that pj
∗ represents

the portion of calibration examples that are at least as nonconforming as the
tentatively labelled test example (x∗, yj).

6. Return the prediction region

Γ ε
∗ = {yj ∈ Y : pj

∗ > ε}. (2)

together with a vector of p-values, one for each class.

Note that in this approach, called inductive CP [19], steps 1–4 are performed
only once, while Steps 5–6 are performed for every test point x∗.

The rationale is to use a statistical test, more precisely the Neyman-Pearson
theory for hypothesis testing and confidence intervals [15], to check if (x∗, yj) is
particularly nonconforming compared to the calibration examples. The unknown
distribution of f(z), referred to as Q, is estimated applying f to all calibration
examples. Then the scores αj

∗ are computed for every possible label yj in order
to test for the null hypothesis αj

∗ ∼ Q. The null hypothesis is rejected if the
p-value associated to αj

∗ is smaller than the significance level ε. If a label is
rejected, meaning if it appears unlikely that f((x∗, yj)) ∼ Q, we do not include
this label in Γ ε

∗ . Therefore, given ε, the prediction region contains only those
labels for which we could not reject the null hypothesis.

3.2 Nonconformity Function

A nonconformity function is well-defined if it assigns low scores to correct pre-
dictions and high scores to wrong predictions. A natural choice for f , based on
the underlying model h, is f(z) = Δ(h(xi), yi), where Δ is a suitable distance4.
Recall that, for an input x ∈ X, the output of h is a vector of class likelihoods,
which we denote by h(x) = [Ph(y1|x), . . . , Ph(yc|x)]. In classification problems,
a common well-defined nonconformity function is obtained by defining Δ as

Δ(h(xi), yi) = 1 − Ph(yi|xi), (3)

where Ph(yi|xi) is the likelihood of class yi when the model h is applied on xi.
If h correctly predicts yi for input xi, the corresponding likelihood Ph(yi|xi) is

4 The choice of Δ is not very important, as long as it is symmetric.

Neural Predictive Monitoring 135

high (the highest among all classes) and the resulting nonconformity score is
low. The opposite holds when h does not predict yi. The nonconformity measure
chosen for our experiments, Eq. 3, preserves the ordering of the class likelihoods
predicted by h.

3.3 Confidence and Credibility

Observe that, for significance levels ε1 ≥ ε2, the corresponding prediction regions
are such that Γ ε1 ⊆ Γ ε2 . It follows that, given an input x∗, if ε is lower than all
its p-values, i.e. ε < minj=1,...,c pj

∗, then the region Γ ε
∗ contains all the labels. As

ε increases, fewer and fewer classes will have a p-value higher than ε. That is, the
region shrinks as ε increases. In particular, Γ ε

∗ is empty when ε ≥ maxj=1,...,c pj
∗.

The confidence of a point x∗ ∈ X, 1−γ∗, measures how likely is our prediction
for x∗ compared to all other possible classifications (according to the calibration
set). It is computed as one minus the smallest value of ε for which the conformal
region is a single label, i.e. the second largest p-value γ∗:

1 − γ∗ = sup{1 − ε : |Γ ε
∗ | = 1}.

The credibility, c∗, indicates how suitable the training data are to classify
that specific example. In practice, it is the smallest ε for which the prediction
region is empty, i.e. the highest p-value according to the calibration set, which
corresponds to the p-value of the predicted class:

c∗ = inf{ε : |Γ ε
∗ | = 0}.

Note that if γ∗ ≤ ε, then the corresponding prediction region Γ ε
∗ contains

at most one class. If both γ∗ ≤ ε and c∗ > ε hold, then the prediction region
contains exactly one class, i.e., the one predicted by h. In other words, the interval
[γ∗, c∗) contains all the ε values for which we are sure that Γ ε

∗ = {ŷ∗}. It follows
that the higher 1− γ∗ and c∗ are, the more reliable the prediction ŷ∗ is, because
we have an expanded range [γ∗, c∗) of significance values by which ŷ∗ is valid.
Indeed, in the extreme scenario where c∗ = 1 and γ∗ = 0, then Γ ε

∗ = {ŷ∗} for any
value of ε. This is why, as we will explain in the next section, our uncertainty-
based rejection criterion relies on excluding points with low values of 1− γ∗ and
c∗. We stress, in particular, the following statistical guarantee: the probability
that the true prediction for x∗ is exactly ŷ∗ is at most 1 − γ∗.

In binary classification problems, each point x∗ has only two p-values, one
for each class, which coincide with c∗ (p-value of the predicted class) and γ∗
(p-value of the other class).

4 Uncertainty-Based Rejection Criteria

Confidence and credibility measure how much a prediction can be trusted. Our
goal is to leverage these two measures of uncertainty to identify a criterion

136 L. Bortolussi et al.

to detect errors of the reachability predictor. The criterion is also required to
distinguish between false-negative and false-positives errors.

The rationale is that every new input x is required to have values of confi-
dence, 1 − γ, and credibility, c, sufficiently high in order for the classification to
be accepted. However, determining optimal thresholds is a non-trivial task.

In order to automatically identify optimal thresholds, we proceed with an
additional supervised learning approach. For this purpose, we introduce a cross-
validation strategy to compute values of confidence and credibility, using Zc

as validation set. The cross-validation strategy consists of removing the j-th
score, αj , in order to compute γj and cj , i.e. the p-values at xj ∈ Xc, where
Xc = {x | (x, y) ∈ Zc}. In this way, we can compute confidence, 1 − γ, and
credibility, c, for every point in the calibration set.

We now state our supervised learning approach to derive the optimal rejection
thresholds. Starting from the calibration set, we construct two training datasets,
Dfn

c and Dfp
c , which will be used to learn thresholds specific to FN and FP

errors, respectively. The inputs of dataset Dfn
c (Dfp

c) are the confidence and
credibility values of the calibration points, and these inputs are labelled with
1 or 0 depending on whether the classifier h makes a FN (FP) error on the
corresponding calibration point. Formally,

Dfn
c = {((γj , cj), lj) | xj ∈ Xc, lj = I(ŷj = 0 ∧ yj = 1)}

Dfp
c = {((γj , cj), lj) | xj ∈ Xc, lj = I(ŷj = 1 ∧ yj = 0)},

where I(pred) equals 1 if predicate pred is true and equals 0 otherwise.
For simplicity, let us now focus on one of the two cases, Dfn

c . Analogous
reasoning applies to Dfp

c . We seek to find confidence and credibility values that
optimally separate the points in Dfn

c in relation to their classes, that is, separate
points yielding FN errors from those that do not. We solve this problem by
learning two linear Support Vector Classifiers (l-SVCs), trained on pairs (1 −
γ, l) and (c, l), respectively. In this way, we identify individual confidence and
credibility thresholds, denoted by 1 − γfn

τ and cfn
τ , respectively5. Given a test

point x∗ with predicted label ŷ∗, confidence 1−γ∗ and credibility c∗, the learned
thresholds establish two rejection criteria: one for confidence, Rfn

γ (x∗) = (1 −
γ∗ < 1 − γfn

τ), and one for credibility, Rfn
c (x∗) = (c∗ < cfn

τ).

Proposition 1. Both Rfn
γ (Rfp

γ) and Rfn
c (Rfp

c) are the best approximate solu-
tions of Problem 2, i.e., they are such that the probability of wrongly rejecting or
accepting a FN (FP) prediction is minimal.

Proof (Sketch). A SVC finds the maximum-margin hyper-plane that separates
the classes, i.e. it maximizes the distance between the hyper-plane and the near-
est point from either group. In general the larger the margin, the lower the
generalization error. If the classes overlap the exact separation of the training
data can lead to poor generalization. The SVC allows some of the training points
5 As opposed to learning a linear combination of confidence and credibility, which is

less interpretable.

Neural Predictive Monitoring 137

to be misclassified, with a penalty that increases linearly with the distance from
that boundary. The optimization goal is to maximize the margin, while penal-
izing points that lie on the wrong side of the hyper-plane (see Chapter 7 of [7]
for a complete treatment). Therefore, the learned hyperplane optimally sepa-
rates erroneous from non-erroneous predictions, that is, the probability, over the
calibration set, that a prediction is wrongly rejected or wrongly accepted is min-
imal and so is the generalization error. Since we are cross-validating, i.e. we are
approximating a sample from the data distribution, then the criterion is optimal
for any input test point. �

The final rejection criterion is a conservative combination of the four rejection
criteria. A test point x∗ is rejected if:

R(x∗) =
(
1 − γ∗ < max(1 − γfn

τ , 1 − γfp
τ)

) ∨ (
c∗ < max(cfn

τ , cfp
τ)

)
. (4)

Alternatively, one can implement rejection criteria specific to FN (FP) errors by
using only the thresholds 1 − γfn

τ and cfn
τ (1 − γfp

τ and cfp
τ).

Tuning of SVC hyperparameters. In NSC, we deal with high-accuracy state
classifiers. This implies that the datasets De

c , with e ∈ {fp, fn}, are highly
unbalanced, as they contain more examples of correct classifications (label 0)
than of classification errors (label 1). In binary classification problems, such as
our l-SVCs, accuracy can be misleading with imbalanced datasets, as any model
that “blindly” assigns the label of the most frequent class to any input will have
high accuracy.

A simple method to handle imbalanced classes in SVC is to design an empir-
ical penalty matrix Pe, which assigns different error penalties by class [6]. In
particular, the (i, j)-th entry of Pe gives the penalty for classifying an instance
of class i as class j. Of course, when i = j, the penalty is null. The penalty
matrix for dataset De

c is defined as

Pe =
[

0 q
2re(q−ne)

req
2ne

0

]
, (5)

where ne is the number of points belonging to class 1 in dataset De
c , and re is a

parameter influencing how many errors of type e we are willing to accept. The
term req

2ne
, which represents the penalty for wrongly classifying an error of type

e as correct, increases as ne decreases. Note that, when re = 1 and the dataset
is perfectly balanced (q = 2ne), the penalties are equals: req

2ne
= q

2re(q−ne)
= 1.

Further, if re > 1, the penalty term increases, leading to more strict rejection
thresholds and higher overall rejection rates. On the contrary, if re < 1, the
penalty decreases, leading to possibly miss some errors of type e.

5 Active Learning

Recall that we are dealing with two combined learning problems: learning a
prediction rule (i.e., a state classifier) using the training set Zt, and learning

138 L. Bortolussi et al.

a rejection rule using the calibration sets Dfn
c and Dfp

c . As the accuracy of a
classifier increases with the quality and the quantity of observed data, adding
samples to Zt will generate a more accurate predictor, and similarly, adding
samples to Dfn

c and Dfp
c will lead to more precise rejection thresholds. Ideally,

one wants to maximize accuracy while using the least possible amount of addi-
tional samples, because obtaining labeled data is expensive (in NSC, labelling
each sample entails solving a reachability checking problem), and the size of the
datasets affect the complexity and the dimension of the problem. Therefore, to
improve the accuracy of our learning models efficiently, we need a strategy to
identify the most “informative” additional samples.

Our solution is uncertainty sampling-based active learning, where the re-
training points are derived by first sampling a large pool of unlabeled data, and
then considering only those points where the current predictor h is still uncertain.
We develop an efficient query strategy that leverages the CP-based measures of
uncertainty, and in particular, the rejection rule of Sect. 4, since rejected points
are indeed the most uncertain ones. The proposed active learning method should
reduce both the overall number of false-positive and false-negative predictions
and the overall rejection rate.

Fig. 2. Spiking Neuron: calibration scores (first column) and credibility landscapes
using the initial calibration set Zc (top line) versus the query set ZQ (bottom line).
The landscapes are obtained for different instances of the predictor h, trained on the
same dataset Zt.

5.1 Refining the Query Strategy

Sensitivity of the uncertainty measures. The distribution of calibration scores
depends both on the case study at hand and on the trained classifier. If such a
classifier h has high accuracy, then most of the calibration scores α1, . . . , αq will

Neural Predictive Monitoring 139

be close to zero. Each p-value pj
∗ of an unseen test point x∗ counts the number

of calibration scores greater than αj
∗, the non-conformity score for label j at

x∗. Credibility, which is the p-value associated with the class predicted by h, is
expected to have a small score and therefore a high p-value. On the contrary, γ,
which is the p-value associated to the other (non-predicted) class, is expected to
have a larger score. However, given the high accuracy of h, the number of calibra-
tion scores significantly greater than zero is very small. Therefore, the fraction of
calibration scores determining γ is not very sensitive to changes in the value of
α∗, which is determined by h(x∗). On the contrary, credibility is extremely sensi-
tive to small changes in α∗. In general, the sensitivity of confidence with respect
to α∗ increases as the accuracy of h decreases, and vice versa for credibility.
Figure 2 shows the credibility landscapes for two different training instances of
model h on the same training set for a concrete case study. We observe that even
if regions where misclassifications take place are always assigned low credibility
values, outside those regions credibility values are subject to high variance.

This sensitivity results in a over-conservative rejection criterion, leading to a
high rejection rate and in turn, to an inefficient query strategy. However, if we
enrich the calibration set using additional samples with non-zero α-scores, we can
reduce such sensitivity, thereby making credibility more robust with respect to
retraining. This process is illustrated in Fig. 2, where the additional non-zero α-
scores (bottom) lead to a more robust credibility landscape, where low-credibility
regions are now more tightly centred around areas of misclassification.

Since samples with uncertain predictions will have non-zero α-scores6, we
will use the original rejection rule to enrich the calibration set, thereby deriving
a refined rejection rule and in turn, a refined and more effective query strategy
for active learning. Notice that, once the model h has been retrained we must
accordingly retrain the rejection rule as well, since values of confidence and
credibility depend on the predictions of h.

5.2 Active Learning Algorithm

The active learning is divided in two phases. In the first phase, we refine the
query strategy: we use the current rejection rule to select a batch of uncer-
tain points, temporarily add these points to the calibration set, and obtain an
updated rejection rule, which represents our query strategy.

In the second phase, using the refined query strategy, we sample another
batch of points, divide it in two groups, and use them to augment training and
calibration sets, respectively. The resulting predictor ha, trained on the aug-
mented set, is expected to be more accurate then h. Further, ha is used to
update the α-scores and the values of confidence and credibility for the aug-
mented calibration set. This results in an updated rejection rule, for which a
lower rejection rate is expected.

6 Note indeed that the α-score of a sample (xi, yi) is zero only if h both correctly
predicts yi and the corresponding class likelihood Ph(yi | xi) is 1.

140 L. Bortolussi et al.

We now describe in details our uncertainty sampling-based active learning
algorithm, which given an initial training set Zt, a prediction rule h trained on
Zt, an initial calibration set Zc, a rejection rule R trained on Zc using some
rejection ratios rfn and rfp, computes an enhanced predictor ha and enhanced
rejection rule Ra as follows.

1. Refining the query strategy:
– Randomly select a large number of input points, compute their confidence

and credibility using h, and identify the subset Q of points rejected based
on R.

– Invoke the reachability oracle to label the points in Q and define a query
set ZQ by adding these points to Zc.

– Obtain an updated rejection rule RQ from ZQ using the method of Sect. 4
with rejection ratios rfn and rfp.

2. Active phase:
– Randomly select a large number of input points, compute their confidence

and credibility using h, and identify the subset A of points rejected based
on RQ.

– Invoke the reachability oracle to label the points in A, divide the data
into two groups and add them respectively to Zt and Zc, obtaining an
augmented training set, Za

t , and an augmented calibration set, Za
c .

– Train a new predictor ha from Za
t .

– Train new detection thresholds using the method of Sect. 4, with rejection
ratios rfn and rfp, and obtain the enhanced rejection rule Ra.

Note that the above algorithm can be iterated, using Za
t , Za

c , ha, and Ra as new
inputs.

It is important to observe that, in order for the active learning algorithm to
preserve the statistical soundness of conformal prediction, the augmented train-
ing and calibration sets Za

t and Za
c must be sampled from the same distribution.

This is guaranteed by the fact that, in the active learning phase, we add new
points to both the training and the calibration dataset, and these points are
sampled from the same distribution (in particular, we apply the same random
sampling method and same rejection criterion). The only caveat is ensuring that
the ratio between the number of samples in Zc and Zt is preserved on the aug-
mented datasets.

6 Experimental Results

In order to experimentally evaluate the proposed method, both the initial app-
roach and the active learning approach have been applied to hybrid systems with
varying degrees of complexity. We consider three deterministic case studies: the
spiking neuron [21], which is a two-dimensional model with non-linear dynamics,
the artificial pancreas (AP) [18], which is a nine-dimensional non-linear model,
and the helicopter [21], a linear model with 29 variables. In addition, we analyze

Neural Predictive Monitoring 141

two non-deterministic models with non-linear dynamics: a cruise controller [21],
whose input space has four dimensions, and a triple water tank (WT) [1], which
is a three-dimensional model. For the AP model, the unsafe set U corresponds
to hypoglycemia states, i.e., U = BG ≤ 3.9 mmol/L, where BG is the blood
glucose variable. The state distribution considers uniformly distributed values
of plasma glucose and insulin. The insulin control input is fixed to the basal
value. The time bound is T = 240. For the WT model, U is given by states
where the water level of any of the tanks falls outside a given safe interval I,
i.e., U = ∨3

i=1xi �∈ I, where xi is the water level of tank i. The state distribution
considers water levels uniformly distributed within the safe interval. The time
bound is T = 1. Details on the other case studies are available in Appendix D
of [20].

Experimental settings. The entire pipeline is implemented in MATLAB. Moti-
vated by the results presented in [21], we define the state classifier as a sigmoid
DNN. Each case study shares the same DNN architecture: 3 hidden layers, each
consisting of 10 neurons with the Tan-Sigmoid activation function and an out-
put layer with 1 neuron with the Log-Sigmoid activation function. In particular,
the output of the DNN, which is our model h, is the likelihood of class 1, i.e.,
the likelihood that the hybrid automaton state is positive. Training is performed
using MATLAB’s train function, with the Levenberg-Marquardt backpropaga-
tion algorithm optimizing the mean square error loss function, and the Nguyen-
Widrow initialization method for the NN layers. Training the DNNs takes from 2
to 39 s. For every model we generate an initial dataset Z

′
of 20, 000 samples and

a test set Ztest of 10, 000 samples. The helicopter model is the only exception,
where, due to the higher dimensionality, a dataset of 100, 000 samples is used.
The training and calibration sets are two subsets of Z

′
extracted as follows: a

sample z ∈ Z
′
has probability 0.7 of falling into Zt and probability 0.3 of falling

into Zc. We used the dReal solver [13] as reachability oracle to label the datasets
for the non-deterministic case studies. For deterministic ones, we used an HA
simulator implemented in MATLAB.

Computational performance. We want our method to be capable of working at
runtime, which means it must be extremely fast in making predictions and decid-
ing whether to trust them. We must clarify that the time required to train the
method does not affect its runtime efficiency, as it is performed in advance only
once. Learning the rejection criteria, which is also performed offline, requires the
following steps: (i) train the state classifier, (ii) generate the datasets Dfp/fn

c ,
which requires computing the p-values for each point in Zc, and (iii) train four l-
SVCs. Executing the entire pipeline takes around 10 s, if |Z ′ | = 20K, and around
80 s if |Z ′ | = 100K. Nonetheless, given a new input x∗, it takes from 0.3 up to
2 ms to evaluate the rejection criterion. This evaluation time does not depend
on the dimension of the hybrid system, but it is affected by the size of the cal-
ibration set Zc. Refining the uncertainty measures leads to an increase in the
size of Zc. Hence the aim of active learning is to improve the performance while
keeping the technique as efficient as possible. Instead of adding random samples

142 L. Bortolussi et al.

to Zc, our active learning approach adds only samples that are extremely infor-
mative and brings a consistent improvement in the precision of the uncertainty
measures. It carries two additional training costs: the time needed to compute
confidence and credibility for a large pool of data, and the time the oracle needs
to compute labels for the uncertain points. The latter dominates, especially for
non-deterministic systems, since their oracles are more expensive. Therefore, if
the rejection rate is relatively high and we consider a large pool of points, which
allows for a good exploration, the procedure may be long. However, this time
spent to optimally tune the performance improves the run-time behaviour of our
method. This is another good reason to improve the query strategy before pro-
ceeding with the active learning approach. The time required to refine the query
strategy depends on the size of the pool of data, the higher the initial rejection
rate, the higher the number of queries. However, the pool has to be large in
order to find significant instances. Adding observations about uncertain samples
results in a more precise rejection rule with a lower rejection rate. Therefore,
points selected with the refined query strategy are fewer and more informative.

Experiments. We compare our uncertainty-based query strategy with a random
sampling strategy. Both strategies add the same number of samples to Zt and the
same number of samples to Zc. However, in the first case, referred to as active
approach, these samples are selected according to the refined query strategy,
whereas in the second case, referred to as passive approach, they are randomly
sampled following a uniform distribution, the same distribution used to generate
the initial datasets.

The duration of the active learning phase depends on the sizes of the sample
pools. In our study, the pool used to refine the query strategy contains 100, 000
samples (250, 000 for the helicopter), whereas the pool used for the active learn-
ing phase contains 200, 000 samples (500, 000 for the helicopter). In particular,
one iteration of the active learning procedure took around 10 min for the spiking
neuron and the artificial pancreas, the simplest deterministic models, and around
70 min for the helicopter, due to the larger pools. For the non-deterministic mod-
els (triple water tank and cruise controller), it took around 2.25 h. This time is
expected to decrease for subsequent iterations, as the rejection rate will be lower
(leading to fewer retraining samples). Note that retraining is performed offline
and does not affect runtime performance of our approach.

Tables 1 and 2 present the experimental performance of the rejection criterion
obtained using the original method in Sect. 4 and the refined rejection criteria
obtained using the active and passive approaches. All results are averaged over
5 runs; in each run, we resample Zt and Zc from Z

′
and retrain the DNN.

Table 1 shows the performance obtained using the initial rejection rule on the
test set Ztest. The accuracy of the NSC, averaged over the five case studies,
is 99.5832%. The rejection criterion recognizes well almost all the errors (with
average accuracy over the accepted predictions of 99.9956%), but the overall
rejection rate is around 5%, a non-negligible amount. We see from Table 2 that
the passive learning approach provides little improvement: the overall number
of errors is similar to the initial one and the rejection rate is still relatively
large. Table 2 also shows that the active approach provides much more significant

Neural Predictive Monitoring 143

improvements: the overall rejection rate and the number of errors made by the
NSC fall dramatically, while preserving the ability of recognizing almost all of the
errors, both false positives and false negatives, made by the predictor (average
accuracy over the accepted predictions of 99.9992%). The overall rejection rates
span between 3.46% and 9.88% when the initial rejection rule is applied. In
contrast, the active learning approach achieves rejection rates between 0.51%
and 2.74%. The overall number of errors reduces as well: the range of false-
negative errors reduces from 7–33.2 to 1.8–11.6, while the range of false-positive
errors reduces from 8.2–48.8 to 2–11.2.

In our analysis, parameters rfp and rfn are set to one, i.e., they do not
influence the selection of rejection thresholds. If false negatives have severe con-
sequences, one can design a stricter policy by assigning rfn a value greater than
one. On the contrary, we can relax the policy on false positives, assigning to rfp

a value smaller than one, and thus reducing the overall rejection rate. In general,
it may be wise to first improve the performance of the predictor in recognizing
both types of errors via active learning, and then decide to reduce the overall
rejection rate by allowing some false positives.

Table 1. Performance of the initial rejection criterion on the test set. Results are aver-
aged over 5 runs. Accuracy is the percentage of points in the test set that are correctly
predicted. The fp and fn columns show the ratio of false positives and false negatives,
respectively, recognized by each criteria. The last column shows the percentage of point
rejected over the entire test set.

INITIAL

Model accuracy fp fn rej. rate

Spiking Neuron (SN) 99.582% 24.4/24.6 17.2/17.2 5.68%

Artificial Pancreas (AP) 99.488% 30.4/30.6 20.6/20.6 6.23%

Helicopter (HE) 99.180% 47.4/48.8 33/33.2 9.88%

Water Tank (WT) 99.818% 8.6/8.6 9.6/9.6 5.97%

Cruise Controller (CC) 99.848% 8.2/8.2 7/7 3.46%

Table 2. Performance of rejection criteria obtained by refining the initial rejection
criterion using the passive and active approaches. Results are averaged over 5 runs.
Most of the columns have the same meaning as in Table 1. “# samples” is the number
of samples added globally to Zt and Zc.

PASSIVE ACTIVE

Model # samples fp fn rej. rate accuracy fp fn rej. rate

SN 5748.2 18.2/18.2 10.6/10.8 3.91% 99.918% 2.8/2.8 5.4/5.4 1.16%

AP 6081.8 23/23.4 19.4/19.4 5.94% 99.892% 6.2/6.2 4.4/4.6 1.02%

HE 22014.6 31.4/31.6 26/26.6 7.21% 99.772% 11.2/11.2 10.4/11.6 2.74%

WT 4130.2 8.4/8.4 10.2/10.4 4.43% 99.962% 2.8/2.8 1/1 0.70%

CC 2280.6 6/6 6/6 5.15% 99.962% 2/2 1.8/1.8 0.51%

144 L. Bortolussi et al.

7 Related Work

A number of methods have been proposed for online reachability analysis that
rely on separating the reachability computation into distinct offline and online
phases. However, these methods are limited to restricted classes of models [10],
or require handcrafted optimization of the HA’s derivatives [4], or are efficient
only for low-dimensional systems and simple dynamics [25].

In contrast, NSC [21] is based on learning DNN-based classifiers, is fully auto-
mated and has negligible computational cost at runtime. In [11,24], similar tech-
niques are introduced for neural approximation of Hamilton-Jacobi (HJ) reacha-
bility. Our methods for prediction rejection and active learning are independent
of the class of systems and the machine-learning approximation of reachability,
and thus can also be applied to neural approximations of HJ reachability.

The work of [3] addresses the predictive monitoring problem for stochastic
black-box systems, where a Markov model is inferred offline from observed traces
and used to construct a predictive runtime monitor for probabilistic reachability
checking. In contrast to NSC, this method focuses on discrete-space models,
which allows the predictor to be represented as a look-up table (as opposed to
a neural network).

In [22], a method is presented for predictive monitoring of STL specifications
with probabilistic guarantees. These guarantees derive from computing predic-
tion intervals of ARMA/ARIMA models learned from observed traces. Simi-
larly, we use CP which also can derive prediction intervals with probabilistic
guarantees, with the difference that CP supports any class of prediction models
(including auto-regressive ones).

A related approach to NSC is smoothed model checking [9], where Gaussian
processes [23] are used to approximate the satisfaction function of stochastic
models, i.e., mapping model parameters into the satisfaction probability of a
specification. Smoothed model checking leverages Bayesian statistics to quantify
prediction uncertainty, but faces scalability issues as the dimension of the system
increases. In contrast, computing our measure of prediction reliability is very
efficient, because it is nearly equivalent to executing the underlying predictor.7 In
Bayesian approaches to uncertainty estimation, one often does not know the true
prior distribution, which is thus often chosen arbitrarily. However, if the prior
is incorrect, the resulting uncertainty measures have no theoretical base. The
CP framework that we use is instead distribution-free and provides uncertainty
information based only on the standard i.i.d. or exchangeability assumption.
Avoiding Bayesian assumptions makes CP conclusions more robust to different
underlying data distributions, which is also shown experimentally in [17].

A basic application of conformal predictors in active learning is presented
in [16]. Our approach introduces three important improvements: a more flexi-
ble and meaningful combination of confidence and credibility values, automated
7 Evaluating our rejection criterion reduces to computing two p-values (confidence

and credibility). Each p-value is derived by computing a nonconformity score, which
requires one execution of the underlying predictor h, and one search over the array
of calibration scores.

Neural Predictive Monitoring 145

learning of rejection thresholds (which are instead fixed in [16]), and refinement
of the query strategy.

In [8], we presented a preliminary version of this approach. The present paper
greatly extends and improves that work by including an automated and opti-
mal method to select rejection thresholds, the active learning method, and an
evaluation on larger HA benchmarks.

8 Conclusion

We have presented Neural Predictive Monitoring, a technique for providing sta-
tistical guarantees on the prediction reliability of neural network-based state clas-
sifiers used for runtime reachability prediction. To this purpose, we have intro-
duced statistically rigorous measures that quantify the prediction uncertainty of
a state classifier. We have employed these uncertainty measures to derive conser-
vative rejection criteria that identify, with minimal error, those predictions that
can lead to safety-critical state classification errors. We have further designed an
active learning strategy that, leveraging such uncertainty-based rejection crite-
ria, allow to increase the accuracy of the reachability predictor and reduce the
overall rejection rate.

The strengths of our NPM technique are its effectiveness in identifying and
rejecting prediction errors and its computational efficiency, which is not directly
affected by the complexity of the system under analysis (but only by the com-
plexity of the underlying learning problem and classifier). As future work, we
plan to extend our approach to predict quantitative measures of property satis-
faction (like the robust STL semantics [12]), which will require us to develop a
regression framework for NPM.

Acknowledgements. This material is based on work supported in part by NSF
Grants CCF-1414078, CCF-1918225, CPS-1446832, and IIS-1447549.

References

1. dReal - Networked Water Tank Controllers (2017). http://dreal.github.io/
benchmarks/networks/water/

2. Alur, R.: Formal verification of hybrid systems. In: Proceedings of the Ninth ACM
International Conference on Embedded Software (EMSOFT), pp. 273–278, Octo-
ber 2011

3. Babaee, R., Gurfinkel, A., Fischmeister, S.: Predictive run-time verification of
discrete-time reachability properties in black-box systems using trace-level abstrac-
tion and statistical learning. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS,
vol. 11237, pp. 187–204. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03769-7 11

4. Bak, S., Johnson, T.T., Caccamo, M., Sha, L.: Real-time reachability for verified
simplex design. In: Real-Time Systems Symposium (RTSS), 2014 IEEE, pp. 138–
148. IEEE (2014)

http://dreal.github.io/benchmarks/networks/water/
http://dreal.github.io/benchmarks/networks/water/
https://doi.org/10.1007/978-3-030-03769-7_11
https://doi.org/10.1007/978-3-030-03769-7_11

146 L. Bortolussi et al.

5. Balasubramanian, V., Ho, S.S., Vovk, V.: Conformal prediction for reliable machine
learning: theory, adaptations and applications. Newnes (2014)

6. Batuwita, R., Palade, V.: Class imbalance learning methods for support vector
machines (2013)

7. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer, New York (2006)

8. Bortolussi, L., Cairoli, F., Paoletti, N., Stoller, S.D.: Conformal predictions for
hybrid system state classification. In: From Reactive Systems to Cyber-Physical
Systems, to appear (2019)

9. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain
continuous-time Markov chains. Inf. Comput. 247, 235–253 (2016)

10. Chen, X., Sankaranarayanan, S.: Model predictive real-time monitoring of linear
systems. In: Real-Time Systems Symposium (RTSS), 2017 IEEE, pp. 297–306.
IEEE (2017)

11. Djeridane, B., Lygeros, J.: Neural approximation of PDE solutions: an application
to reachability computations. In: Proceedings of the 45th IEEE Conference on
Decision and Control, pp. 3034–3039. IEEE (2006)

12. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

13. Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–
214. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2 14

14. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

15. Lehmann, E.L., Romano, J.P.: Testing Statistical Hypotheses. Springer Texts in
Statistics. Springer, New York (2006)

16. Makili, L.E., Sánchez, J.A.V., Dormido-Canto, S.: Active learning using conformal
predictors: application to image classification. Fusion Sci. Technol. 62(2), 347–355
(2012)

17. Melluish, T., Saunders, C., Nouretdinov, I., Vovk, V.: The typicalness framework:
a comparison with the bayesian approach. University of London, Royal Holloway
(2001)

18. Paoletti, N., Liu, K.S., Smolka, S.A., Lin, S.: Data-driven robust control for type
1 diabetes under meal and exercise uncertainties. In: Feret, J., Koeppl, H. (eds.)
CMSB 2017. LNCS, vol. 10545, pp. 214–232. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67471-1 13

19. Papadopoulos, H.: Inductive conformal prediction: Theory and application to neu-
ral networks. In: Tools in artificial intelligence. InTech (2008)

20. Phan, D., Paoletti, N., Zhang, T., Grosu, R., Smolka, S.A., Stoller, S.D.: Neural
state classification for hybrid systems. ArXiv e-prints, July 2018

21. Phan, D., Paoletti, N., Zhang, T., Grosu, R., Smolka, S.A., Stoller, S.D.: Neural
state classification for hybrid systems. In: Lahiri, S.K., Wang, C. (eds.) ATVA
2018. LNCS, vol. 11138, pp. 422–440. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01090-4 25

22. Qin, X., Deshmukh, J.V.: Predictive monitoring for signal temporal logic with
probabilistic guarantees. In: Proceedings of the 22nd ACM International Confer-
ence on Hybrid Systems: Computation and Control, pp. 266–267. ACM (2019)

23. Rasmussen, C.E., Williams, C.K.: Gaussian Processes for Machine Learning, vol.
1. MIT press, Cambridge (2006)

https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-319-67471-1_13
https://doi.org/10.1007/978-3-319-67471-1_13
https://doi.org/10.1007/978-3-030-01090-4_25
https://doi.org/10.1007/978-3-030-01090-4_25

Neural Predictive Monitoring 147

24. Royo, V.R., Fridovich-Keil, D., Herbert, S., Tomlin, C.J.: Classification-based
approximate reachability with guarantees applied to safe trajectory tracking. arXiv
preprint arXiv:1803.03237 (2018)

25. Sauter, G., Dierks, H., Fränzle, M., Hansen, M.R.: Lightweight hybrid model check-
ing facilitating online prediction of temporal properties. In: Proceedings of the 21st
Nordic Workshop on Programming Theory, pp. 20–22 (2009)

26. Sha, L.: Using simplicity to control complexity. IEEE Softw. 4, 20–28 (2001)
27. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic learning in a random world.

Springer, Heidelberg (2005)

http://arxiv.org/abs/1803.03237

Comparing Controlled System Synthesis
and Suppression Enforcement

Luca Aceto1,2, Ian Cassar2,3(B), Adrian Francalanza3, and Anna Ingólfsdóttir2

1 Gran Sasso Science Institute, L’Aquila, Italy
2 School of Computer Science, Reykjav́ık University, Reykjav́ık, Iceland
3 Department of Computer Science, University of Malta, Msida, Malta

ian.cassar.10@um.edu.mt

Abstract. Runtime enforcement and control system synthesis are two
verification techniques that automate the process of transforming an
erroneous system into a valid one. As both techniques can modify the
behaviour of a system to prevent erroneous executions, they are both
ideal for ensuring safety. In this paper, we investigate the interplay
between these two techniques and identify control system synthesis as
being the static counterpart to suppression-based runtime enforcement,
in the context of safety properties.

1 Introduction

Our increasing reliance on software systems is inherently raising the demand
for ensuring their reliability and correctness. Several verification techniques help
facilitate this task by automating the process of deducing whether the system
under scrutiny (SuS) satisfies a predefined set of correctness properties. Prop-
erties are either verified pre-deployment (statically), as in the case of model
checking (MC) [7,12], or post-deployment (dynamically), as per runtime verifica-
tion (RV) [11,20,27]. In both cases, any error discovered during the verification
serves as guidance for identifying the invalid parts of the system that require
adjustment.

Other techniques, such as runtime enforcement (RE), additionally attempt
to automatically transform the invalid system into a valid one. Runtime enforce-
ment [5,15,26,28] adopts an intrusive monitoring approach by which every
observable action executed by the SuS is scrutinized and modified as necessary
by a monitor at runtime. Monitors in RE may be described in various ways, such
as: transducers [5,8,32], shields [26] and security automata [17,28,34]. They may
opt to replace the invalid actions by valid ones, or completely suppress them,

This work was partly supported by the projects “TheoFoMon: Theoretical Foundations
for Monitorability” (nr. 163406-051) and “Developing Theoretical Foundations for Run-
time Enforcement” (nr. 184776-051) of the Icelandic Research Fund, by the EU H2020
RISE programme under the Marie Sk�lodowska-Curie grant agreement nr. 778233, and
by the Endeavour Scholarship Scheme (Malta), part-financed by the European Social
Fund (ESF) - Operational Programme II – Cohesion Policy 2014–2020.

c© Springer Nature Switzerland AG 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 148–164, 2019.
https://doi.org/10.1007/978-3-030-32079-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-32079-9_9

Comparing Controlled System Synthesis and Suppression Enforcement 149

thus rendering them immaterial to the environment interacting with the SuS; in
certain cases, monitors can even insert actions that may directly affect the envi-
ronment. Different enforcement strategies are applied depending on the property
that needs to be enforced.

A great deal of effort [4,13,22,23,25] has been made to study the interplay
between static and dynamic techniques, particularly to understand how the two
can be used in unison to minimise their respective weaknesses. It is well estab-
lished that runtime verification is the dynamic counterpart of model checking,
which means that a subset of the properties verifiable using MC can also be ver-
ified dynamically via RV. In fact, multi-pronged verification approaches often
use RV in conjunction with MC. Particularly, MC is used to statically verify
the parts of the SuS which cannot be verified dynamically (e.g., inaccessible
code, performance constraints, etc.), while RV is then used to verify other parts
dynamically in order to minimise the state explosion problem inherent to MC.

It is however unclear as to which technique can be considered as the static
counterpart to runtime enforcement. Identifying such a technique enables the
possibility of adopting a multi-pronged enforcement approach. One possible can-
didate is controlled system synthesis (CSS) [9,14,24,30]: it analyses the state
space of the SuS and reformulates it pre-deployment by removing the system’s
ability to execute erroneous behaviour. As a result, a restricted (yet valid) version
of the SuS is produced; this is known as a controlled system.

The primary aim of both RE and CSS is to force the resulting moni-
tored/controlled system adheres to the respective property − this is known
as soundness in RE and validity in CSS. Further guarantees are also gener-
ally required to ensure minimal disruption to valid systems − this is ensured via
transparency in RE and maximal expressiveness in CSS. As both techniques may
adjust systems by omitting their invalid behaviours, they are ideal for ensuring
safety. These observations, along with other commonalities, hint at the existence
of a relationship between runtime enforcement and controlled system synthesis,
in the context of safety properties.

In this paper we conduct a preliminary investigation on the interplay between
the above mentioned two techniques with the aim of establishing a static coun-
terpart for runtime enforcement. We intend to identify a set of properties that
can be enforced either dynamically, via runtime enforcement, or statically via
controlled system synthesis. In this first attempt, we however limit ourselves to
study this relationship in the context of safety properties. As a vehicle for this
comparison, we choose the recent work on CSS by van Hulst et al. [24], and
compare it to our previous work, presented in [5], on enforcing safety properties
via action suppressions. We chose these two bodies of work as they are accurate
representations of the two techniques. Moreover, they share a number of com-
monalities including their choice of specification language, modelling of systems,
etc. To further simplify our comparison, we formulate both techniques in a core
common setting and show that there are subtle differences between them even in
that scenario. Specifically, we identify a common core within the work presented
in [5,24] by:

150 L. Aceto et al.

– working with respect to the Safe Hennessy Milner Logic with invariance
(sHMLinv), that is, the intersection of the logics used by both works, namely,
the Safe Hennessy Milner Logic with recursion (sHML) in [5] and the Hen-
nessy Milner Logic with invariance and reachability (HMLreach

inv) in [24],
– removing constructs and aspects that are supported by one technique and

not by the other, and by
– taking into account the assumptions considered in both bodies of work.

To our knowledge, no one has yet attempted to identify a static counterpart
to RE, and an insightful comparison of RE and CSS has not yet been conducted.
As part of our main contributions, we thus show that:

(i) The monitored system obtained from instrumenting a suppression monitor
derived from a formula, and the controlled version of the same system (by
the same formula), need not be observationally equivalent, Theorem2.

(ii) In spite of (i) we prove that both of the obtained systems are trace (language)
equivalent, that is, they can execute the same set of traces, Theorem 3.

(iii) When restricted to safety properties, controlled system synthesis is the static
counterpart (Definition 3) to runtime enforcement, Theorem 4.

Although (i) entails that an external observer can still tell the difference between
these two resultant systems [1], knowing (ii) suffices to deduce (iii) since it is
well known that trace equivalent systems satisfy the exact same set of safety
properties, Theorem 1.

Structure of the Paper. Section 2 provides the necessary preliminary material
describing how we model systems as labelled transition systems and properties
via the chosen logic. In Sect. 3 we give an overview of the equalized and simpli-
fied versions of the enforcement model presented in [5] and the controlled system
synthesis rules of [24]. Section 4 then compares the differences and similarities
between the two models, followed by our first contribution which disproves the
observational equivalence of the two techniques. Section 5 then presents our sec-
ond set of contributions consisting of a mapping function that derives enforce-
ment monitors from logic formulas, and the proof that the obtained monitored
and controlled versions of a given system are trace equivalent. This allows us to
establish that controlled system synthesis is the static counterpart to enforce-
ment when it comes to safety properties. Section 6 overviews related work, and
Sect. 7 concludes.

2 Preliminaries

The Model: We assume systems described as labelled transition systems (LTSs),
which are triples 〈Sys,Act∪{τ} ,→〉 defining a set of system states, s, r, q ∈Sys,
a finite set of observable actions, α, β ∈Act, and a distinguished silent action
τ /∈Act, along with a transition relation, −→ ⊆ (Sys×Act∪{τ}×Sys). We let
μ∈Act∪{τ} and write s

μ−−→ r in lieu of (s, μ, r) ∈→. We use s
α=⇒ r to denote

Comparing Controlled System Synthesis and Suppression Enforcement 151

Fig. 1. The syntax and semantics for sHML.

weak transitions representing s(τ−→)∗· α−−→ r and refer to r as an α-derivative
of s. Traces t, u ∈ Act∗ range over (finite) sequences of observable actions, and
we write s

t=⇒ r for a sequence of weak transitions s
α1==⇒ . . .

αn==⇒ r where
t = α1, . . . , αn for some n ≥ 0; when n = 0, t is the empty trace ε and s

ε=⇒ r
means s

τ−→*r. For each μ∈Act∪{τ}, the notation μ̂ stands for ε if μ= τ and
for μ otherwise. We write traces(s) for the set of traces executable from system
state s, that is, t ∈ traces(s) iff s

t=⇒ r for some r. We use the syntax of the
regular fragment of CCS [29] to concisely describe LTSs in our examples. We
also assume the classic notions for trace (language) equivalence and observational
equivalence, that is, weak bisimilarity [29,33].

Definition 1 (Trace Equivalence). Two LTS system states s and r are trace
equivalent iff they produce the same set of traces, i.e., traces(s) = traces(r).
�
Definition 2 (Observational Equivalence). A relation R over a set of sys-
tem states is a weak bisimulation iff whenever (s, r) ∈ R for every action μ, the
following transfer properties are satisfied:

– s
μ−−→ s′ implies there exists a transition r

μ̂
=⇒ r′ such that (s′, r′) ∈ R; and

– r
μ−−→ r′ implies there exists a transition s

μ̂
=⇒ s′ such that (s′, r′) ∈ R.

Two system states s and r are observationally equivalent, denoted by s ≈ r, iff
there exists a weak bisimulation that relates them.
�

The Logic: The safety logic sHML [6,7] is defined as the set of formulas gener-
ated by the grammar of Fig. 1. It assumes a countably infinite set of logical vari-
ables X,Y ∈LVar and provides the standard constructs of truth, tt, falsehood,
ff, and conjunctions, ϕ∧ψ. As a shorthand, we occasionally denote conjunctions
as

∧
i∈I ϕi, where I is a finite set of indices, and when I = ∅,

∧
i∈∅ ϕi is equivalent

to tt. The logic is also equipped with the necessity (universal) modality, [α]ϕ,
and allows for defining recursive properties using greatest fixpoints, max X.ϕ,
which bind free occurrences of X in ϕ. We additionally encode the invariance

152 L. Aceto et al.

operator, �ϕ, requiring ϕ to be satisfied by every reachable system state, as the
recursive property, max X.ϕ ∧ ∧

β∈Act[β]X, where X is not free in ϕ.
Formulas in sHML are interpreted over the system powerset domain where

S∈P(Sys). The semantic definition of Fig. 1, [[ϕ, ρ]], is given for both open and
closed formulas. It employs a valuation from logical variables to sets of states,
ρ ∈ (LVar → P(Sys)), which permits an inductive definition on the struc-
ture of the formulas; ρ′ = ρ[X �→ S] denotes a valuation where ρ′(X)= S and
ρ′(Y)= ρ(Y) for all other Y �= X. We assume closed formulas, i.e., without free
logical variables, and write [[ϕ]] in lieu of [[ϕ, ρ]] since the interpretation of a closed
formula ϕ is independent of the valuation ρ. A system (state) s satisfies formula
ϕ whenever s∈ [[ϕ]].

It is a well known fact that trace equivalent systems satisfy the same set of
safety properties. As the (recursion-free) subset of sHML characterises regular
safety properties [21], this means that systems sharing the same traces also
satisfy the same sHML formulas.

Theorem 1. Let s and r be system states in an LTS. Then traces(s) = traces(r)
iff s and r satisfy exactly the same sHML formulas.
�
Example 1. Consider two systems (a good system, sg, and a bad one, sb) imple-
menting a server that repeatedly accepts requests and answers them in response,
and that only terminates upon accepting a close request. Whereas sg outputs
a single answer (ans) for every request (req), sb occasionally produces multiple
answers for a given request (see the underlined branch in the description of sb
below). Both systems terminate with cls.

sg = rec x.
(
req.ans.x + cls.nil

)

sb = rec x.
(
req.(ans.x + ans.(ans.x + cls.nil)) + cls.nil

)

We can specify that a request followed by two consecutive answers indicates
invalid behaviour via the sHML formula ϕ0.

ϕ0
def= � [ans][ans]ff
def= max X.[ans][ans]ff∧∧

α∈Act [α]X

where Act
def= {ans, req, cls}. It defines an invariant property requiring that

at every reachable state, whenever the system produces an answer following a
request, it cannot produce a subsequent answer, i.e., [ans]ff. Using the semantics
in Fig. 1, one can check that sg∈[[ϕ0]], whereas sb �∈[[ϕ0]] since it exhibits the
violating trace sb

req−−→ · ans−−−→ · ans−−−→ . . ., amongst others.
�

3 Controlled System Synthesis and Suppression
Enforcement

We present the simplified models for suppression enforcement and controlled
system synthesis adapted from [5] and [24] respectively. Both models describe

Comparing Controlled System Synthesis and Suppression Enforcement 153

ϕ, ψ ∈ sHMLinv ::= tt | ff | ϕ ∧ ψ | [α]ϕ | � ϕ

Fig. 2. The syntax for sHMLinv.

the composite behaviour attained by the respective techniques. In suppres-
sion enforcement, the composite behaviour describes the observable behaviour
obtained when the monitor and the SuS interact at runtime, while in controlled
system synthesis, it describes the structure of the resulting controlled system
obtained statically prior to deployment.

To enable our comparison between both approaches, we standardise the log-
ics used in both works and restrict ourselves to sHMLinv, defined in Fig. 2.
sHMLinv is a strict subset of sHML which results from the intersection of
sHML, used for suppression enforcement in [5], and HMLreach

inv , used for con-
trolled system synthesis in [24].

Although the work on CSS in [24] assumes that systems do not perform
internal τ actions and that output labels may be associated to system states,
the work on RE assumes the converse. We therefore equalise the system models
by working with respect to LTSs that do not associate labels to states, and do
not perform τ actions. We however assume that the resulting monitored and
controlled systems may still perform τ actions.

Since we do not focus on state-based properties, the removal of state labels
is not a major limitation as we are only forgoing additional state information
from the SuS. Although the removal of τ actions requires the SuS to be fully
observable, this does not impose significant drawbacks as the work on CSS can
easily be extended to allow such actions.

Despite the fact that controlled system synthesis differentiates between sys-
tem actions that can be removed (controllable) and those which cannot (uncon-
trollable), the work on enforcement does not. This is also not a major limitation
since enforcement models can easily be adapted to make such a distinction. How-
ever, in our first attempt at a comparison, we opt to simplify the models as much
as possible, and so to enable our comparison we assume that every system action
is controllable and can be removed and suppressed by the respective techniques.

Finally, since we do not liberally introduce constructs that are not present
in the original models of [5,24], the simplified models are just restricted versions
of the original ones. Hence, the results proven with respect to these simplified
models should either apply to the original ones or extend easily to the more
general setting.

3.1 A Model for Suppression Enforcement

We use a simplified version of the operational model of enforcement presented in
[5], which uses the transducers m,n ∈ Trn defined in Fig. 3. Transducers define
transformation pairs, ⁅β, μ⁆, consisting of: the specifying action β that determines
whether or not the transformation should be applied to a system action α, and

154 L. Aceto et al.

Fig. 3. A model for transducers.

the transformation action μ that specifies whether the matched action α should
be suppressed into a τ action, or be left intact. A transformation pair thus acts
as a function that takes as input a system action α and transforms it into μ
whenever α is equal to specifying action β. As a shorthand, we sometimes write
⁅β⁆ in lieu of ⁅β, β⁆ to signify that actions equal to β will remain unmodified.

The transition rules in Fig. 3 yield a LTS with labels of the form α�μ. Intu-
itively, a transition m

α�μ−−−→ n denotes the fact that the transducer in state m
transforms the visible action α (produced by the system) into action μ and tran-
sitions into state n. In this sense, the transducer action α�α denotes the identity
transformation, while α�τ encodes the suppression transformation of action α.
The key transition rule is eTrn. It states that the transformation-prefix trans-
ducer ⁅α, μ⁆.m can transform action α into μ, as long as the specifying action α
is the same as the action performed by the system. In this case, the transformed
action is μ, and the transducer state that is reached is m.

The remaining rules eSel and eRec respectively define the standard selec-
tion and recursion operations. A sum of transducers

∑
i∈I mi can reduce via

eSel to some nj over some action α�μ, whenever there exists a transducer mj

in the summation that reduces to nj over the same action. Rule eRec enables
a recursion transducer rec x.m to reduce to some n when its unfolded instance
m{rec x.m/x} reduces to n as well. We encode the identity monitor, id, and
the suppression monitor, sup, as rec x.

∑
β∈Act ⁅β⁆.x and rec x.

∑
β∈Act ⁅β, τ ⁆.x

respectively, i.e., as recursive monitors respectively defining an identity and sup-
pression transformation for every possible action β ∈ Act that can be performed
by the system.

Figure 3 also describes an instrumentation relation, which composes the
behaviour of the SuS s with the transformations of a transducer monitor m

Comparing Controlled System Synthesis and Suppression Enforcement 155

Fig. 4. The runtime execution graph of the monitored system.

that agrees with the (observable) actions Act of s. The term m[s] thus denotes
the resulting monitored system whose behaviour is defined in terms of Act∪ {τ}
from the system’s LTS. Concretely, rule iTrn states that when a system s transi-
tions with an observable action α to s′ and the transducer m can transform this
action into μ and transition to n, the instrumented system m[s] transitions with
action μ to n[s′]. Rule iDef is analogous to standard monitor instrumentation
rules for premature termination of the transducer [2,18,19,21], and accounts for
underspecification of transformations. Thus, if a system s transitions with an
observable action α to s′, and the transducer m does not specify how to trans-
form it (m �α−→), the system is still allowed to transition while the transducer
defaults to acting like the identity monitor, id, from that point onwards.

Example 2. Consider the suppression transducer ms below:

ms
def= rec x.(⁅ans⁆.m′

s) + ⁅req⁆.x + ⁅cls⁆.x

m′
s

def= (⁅ans, τ ⁆.sup + ⁅req⁆.x + ⁅cls⁆.x)

where sup recursively suppresses every action β ∈ Act that can be performed by
the system from that point onwards. When instrumented with system sb from
Example 1, the monitor prevents the monitored system ms[sb] from answering
twice in a row by suppressing the second answer and every subsequent visible
action:

ms[sb]
req.ans

====⇒ · τ−→ sup[sb].

When equipped with this dynamic action suppression mechanism, the result-
ing monitored system ms[sb] never violates formula ϕ0 at runtime − this is
illustrated by the runtime execution graph in Fig. 4.
�
We now formalise what we mean by a “static counterpart to suppression enforce-
ment”.

Definition 3 (Static Counterpart). A static verification technique S is the
static counterpart for suppression enforcement (in the context of safety proper-
ties) when, for every LTS 〈Sys,Act,→〉, formula ϕ∈ sHMLinv and s ∈ Sys,
there exists a transducer m so that m[s] ∈ [[ϕ]] iff S(s) ∈ [[ϕ]] (where S(s) is a
statically reformulated version of s obtained from applying S).
�

156 L. Aceto et al.

Fig. 5. The controlled system synthesis.

3.2 Synthesising Controlled Systems

Figure 5 presents a synthesis function that takes a system 〈Sys,Act,→〉 and a
formula ϕ and constructs a controlled version of the system that satisfies the
formula. The new system is synthesised in two stages. In the first stage, a new
transition relation �−→⊆ (Sys × sHML) × Act × (Sys × sHML) is constructed
over the state-formula product space, (Sys× sHML). Intuitively, this transition
relation associates a sHML formula to the initial system state and defines how
this changes when the system transitions to other subsequent states. The com-
posite behaviour of the formula and the system is statically computed using the
first five rules in Fig. 5.

cBool always adds a transition when the formula is b∈{
tt,ff

}
. Rules cNec1

and cNec2 add a transition from [α]ϕ to ϕ when s has a transition over α, and
to tt if it reduces over β �= α. cAnd adds a transition for conjunct formulas,
ϕ∧ψ, when both formulas can reduce independently to some ϕ′ and ψ′, with the
formula of the end state of the new transition being min(ϕ′∧ψ′). Finally, cMax
adds a fixpoint max X.ϕ transition to min(ψ), when its unfolding can reduce
to ψ. In both cAnd and cMax, min(ϕ) stands for a minimal logically equiva-
lent formula of ϕ. This is an oversimplification of the minimisation techniques
used in [24] to avoid synthesising an infinite LTS due to invariant formulas and
conjunctions, see [24] for more details.

Example 3. Formulas ϕ′∧tt, ϕ′∧ff and ϕ∧ψ∧ψ are logically equivalent to (and
can thus be minimized into) ϕ′, ff and ϕ∧ψ respectively.
�

Comparing Controlled System Synthesis and Suppression Enforcement 157

Fig. 6. The LTS obtained from controlling sb via ϕ0.

Instead of defining a rule for fixpoints, the authors of [24] define a syn-
thesis rule directly for invariance stating that when (s, ϕ) α�−−→ (s′, ϕ′), then
(s, �ϕ) α�−−→ (s′, min(� ϕ∧ϕ′)). We, however, opted to generalize this rule to fix-
points to simplify our comparison, while still limiting ourselves to sHMLinv for-
mulas. This is possible since by encoding � ϕ as max X.ϕ∧ ∧

β∈Act[β]X, we get
that (s, max X.ϕ ∧ ∧

β∈Act[β]X) α�−−→ (s′, min((max X.ϕ∧ ∧
β∈Act[β]X)∧ϕ′))

when (s, ϕ) α�−−→ (s′, ϕ′) where min((max X.ϕ ∧ ∧
β∈Act[β]X)∧ϕ′) is the encoded

version of min(� ϕ∧ϕ′).
The second stage of the synthesis involves using rule cTr to remove invalid

transitions that lead to violating states; this yields the required transition func-
tion for the controlled system. This rule relies on the synthesizability test rules
to tell whether a controlled state, (s, ϕ), is valid or not. Intuitively, the test
rules fail whenever the current formula ϕ is semantically equivalent to ff, e.g.,
formulas max X.([α]X∧ff) and ϕ∧ff both fail the synthesizability test rules as
they are equivalent to ff. Concretely, the test is vacuously satisfied by truth, tt,
logical variables, X, and guarded formulas, [α]ϕ, as none of them are logically
equivalent to ff. Conjunct formulas, ψ1∧ψ2, pass the test when both ψ1 and ψ2

pass independently. A fixpoint, max X.ϕ′, is synthesisable if ϕ′ passes the test.
Transitions that lead to a state that fails the test are therefore removed, and

transitions outgoing from failing states become redundant as they are unreach-
able. The resulting transition function is then used to construct the controlled
LTS 〈(Sys × sHMLinv),Act,→〉.
Example 4. From ϕ0 and sb of Example 1 we can synthesise a controlled sys-
tem in two stages. In the first stage we compose them together using the
composition rules of Fig. 5. We start by generating the composite transition
(sb, ϕ0)

req�−−→ (s1b, ϕ0) via rules cMax and cNec since sb
req−−→ s1b, and keep

on apply the respective rules to the rest of sb’s transitions until we obtain the
LTS of Fig. 6. The (grey) ans transition leading to the test failing state, (sb, ff)�↓,
is then removed in the second stage along with its outgoing (grey) transitions,
therefore generating the required (black) controlled system.
�

158 L. Aceto et al.

4 Discussion and Comparison

We reiterate that controlled system synthesis is a static technique, while suppres-
sion enforcement is a dynamic one. Being a dynamic technique, the monitor and
the system in suppression enforcement still remain two separate entities, and the
instrumentation between them is merely a way for the monitor to interact with
the system. In general, the monitor cannot affect the execution of the system
itself, but rather modifies its observable trace of actions, such as its inputs and
outputs. By contrast, when a controlled system is synthesised, an existing sys-
tem is paired up with a formula and statically reconstructed into a new (valid)
system that is incapable of executing the erroneous behaviour.

By removing invalid transitions entirely, controlled system synthesis is more
ideal to guarantee the property compliance of the internal (less observable)
behaviour of a system. For example, this can be useful to ensure that the system
does not use a shared resource before locking it. By contrast, the invalid actions
are still executed by the system in suppression enforcement, but their effect is
rendered invisible to any external observer. This makes suppression enforcement
more suitable to ensure that the external (observable) behaviour of the system
complies with a desired property. For instance, one can ensure that the system
does not perform an output that is innocuous to the system itself, but may be
providing harmful information to the external environment.

One way of assessing the difference between these two techniques is to use
observational equivalence as a yardstick, thus:

∀ϕ ∈ sHML, s ∈ Sys,∃m ∈ Trn · m[s] ≈ (s, ϕ). (1)

We show by means of a counter example that (1) is in fact false and as a result
prove Theorem 2.

Theorem 2 (Non Observational Equivalence). There exist an sHMLinv

formula ϕ, an LTS 〈Sys,Act,→〉 and a system state s∈Sys such that for every
monitor m∈Trn, m[s]�≈(s, ϕ).
�
Proof Sketch. Recall the controlled LTS with initial state (sb, ϕ0) obtained in
Example 4. To prove Theorem 2 we must show that for every action suppression
monitor m (that can only apply suppression and identity transformations), one
cannot find a weak bisimulation relation R so that (m[sb], (sb, ϕ0)) ∈ R. An
elegant way of showing this claim, is by playing the weak bisimulation games [7]
starting from the pair (m[sb], (sb, ϕ0)), for every possible m. The game is played
between two players, namely, the attacker and the defender. The attacker wins
the game by finding a sequence of moves from the monitored state m[sb] (or
the controlled state (sb, ϕ0)), which the defender cannot counter, i.e., the move
sequence cannot be performed by the controlled state (sb, ϕ0) (resp. monitored
state m[sb]). Note that the attacker is allowed to play a transition from either
the current monitored state or the controlled state at each round of the game.
A winning strategy for the attacker entails that the composite systems are not
observationally equivalent.

Comparing Controlled System Synthesis and Suppression Enforcement 159

We start playing the game from the initial pair (m[sb], (sb, ϕ0)) for every
monitor m. Pick any monitor that suppresses any action other than a second
consecutive ans, such as m0

def= ⁅req, τ ⁆.m′
0. In this case, it is easy to deduce

that the defender always loses the game, that is, if the attacker attacks with
(sb, ϕ0)

req−−→ (s1b, ϕ0) the defender is defenceless since m0[sb] �req==⇒. This remains
true regardless of the “depth” at which the suppression of the first req transition
occurs.

On the one hand, using the same game characterisation, one can also deduce
that by picking a monitor that fails to suppress the second consecutive ans action,
such as m1

def= ⁅req⁆.⁅ans⁆.⁅ans⁆.m′
1, also prevents the defender from winning. If

the attacker plays with m1[sb]
req.ans.ans

=======⇒ m′
1[sb], the defender loses since it can

only counter the first two transitions, i.e., (sb, ϕ0)
req.ans

====⇒ �ans==⇒. Again, this holds
regardless of the “depth” of the first such failed suppression.

On the other hand, any monitor that actually suppresses the second consecu-
tive ans action, such as ms from Example 2, still negates a win for the defender.
In this case, the attacker can play (sb, ϕ0)

req.ans
====⇒ (s2b, ϕ0∧[ans]ff) to which

the defender may reply either with ms[sb]
req.ans

====⇒ ms[sb] or ms[sb]
req.ans

====⇒
m′

s[s
2
b]. In the former option, the attacker can subsequently play req in the

monitored system, to which the defender cannot reply via the controlled sys-
tem, i.e., ms[sb]

req−−→ ms[s1b] but (s2b, ϕ0∧[ans]ff) �req−−→. In the latter case,
the attacker can now play m′

s[s
2
b] τ−→ sup[sb], which can only be coun-

tered by an inaction on behalf of the defender, i.e., the controlled system
remains in state (s2b, ϕ0∧[ans]ff). However, the attacker can subsequently play

(s2b, ϕ0∧[ans]ff) cls−−→ (nil, ϕ0) which is indefensible since sup[sb] �cls==⇒. As in the
previous cases, the above reasoning applies.

These cases therefore suffice to deduce that for every possible monitor the
attacker always manages to win the game, and hence we conclude that Theorem 2
holds as required.
�

This result is important since it proves that powerful external observers,
such as the ones presented by Abramsky in [1], can still distinguish between the
resulting monitored and controlled systems.

5 Establishing a Static Counterpart to Enforcement

Despite not being observationally equivalent, Examples 2 and 4 provide the intu-
ition that there still exists some level of correspondence between these two tech-
niques. In fact, from the monitored execution graph of Fig. 4 and the controlled
LTS in Fig. 6 one can notice that they both execute the same set of traces, and
are therefore trace equivalent. Hence, since trace equivalent systems satisfy the
same set of safety properties (Theorem 1), it suffices to conclude that the con-
trolled LTS is statically achieving the same result obtained dynamically by the
monitored one, and that it is therefore its static counterpart.

In what follows, we prove that this observation (i.e., trace equivalence) also
applies in the general case.

160 L. Aceto et al.

Theorem 3 (Trace Equivalence). For every LTS 〈Sys,Act,→〉, formula
ϕ ∈ sHMLinv and s∈Sys, there exists a monitor m such that traces(m[s]) =
traces((s, ϕ)).
�
To be able to prove this result, we first define a function that maps sHMLinv

formulas to enforcement transducers. We reduce the complexity of this mapping
by defining it over the normalised sHML formulas instead.

Definition 4 (sHML normal form). The set of normalised sHML formulas
is defined as:

ϕ,ψ ∈ sHMLnf ::= tt | ff | ∧
i∈I [αi]ϕi | X | max X.ϕ .

In addition, a normalised sHML formula ϕ must satisfy the following conditions:

1. In each subformula of ϕ of the form
∧

i∈I [αi]ϕi, the αi’s are pairwise differ-
ent, i.e., ∀i, j ∈ I · if i �= j then αi �= αj.

2. For every max X.ϕ we have X ∈ fv(ϕ).
3. Every logical variable is guarded by a modal necessity.
�

In previous work, [3,5] we proved that despite being a syntactic subset of
sHML, sHMLnf is semantically equivalent to sHML. Hence, since sHMLinv is
a (strict) subset of sHML, for every sHMLinv formula we can always find an
equivalent sHMLnf formula. This means that by defining our mapping function
in terms of sHMLnf, we can still map every formula in sHMLinv to the respective
monitor.

We proceed to define our mapping function over normalised sHML formulas.

Definition 5. Recall the definitions of id and sup from Fig. 3. We define our
mapping �− � : sHMLnf �→Trn inductively as:

�X �
def= x � tt �

def= id �ff �
def= sup �max X.ϕ �

def= recx.�ϕ �

�
∧

i ∈ I

[⁅pi, ci⁆]ϕi �
def=

∑

i∈I

mi where mi
def=

{
⁅αi, αi⁆.�ϕi � if ϕi �=ff

⁅αi, τ ⁆.�ff � otherwise

�

The function is compositional. It assumes a bijective mapping between fix-
point variables and monitor recursion variables and converts logical variables
X accordingly, whereas maximal fixpoints, max X.ϕ, are converted into the cor-
responding recursive monitor. The function also converts truth and falsehood
formulas, tt and ff, into the identity monitor id and the suppression monitor
sup respectively. Normalized conjunctions,

∧
i ∈ I [αi]ϕi, are mapped into a sum-

mation of monitors,
∑

i∈I mi, where every branch mi can be either prefixed by
an identity transformation when ϕi �= ff, or by a suppression transformation
otherwise. Notice that the requirement that, ϕi �= ff, is in some sense analogous
to the synthesisability test applied by the CSS rule cTr of Fig. 5 to retain the
valid transitions only. In this mapping function, this requirement is essential to
ensure that only the valid actions remain unsuppressed by the resulting monitor.

Comparing Controlled System Synthesis and Suppression Enforcement 161

Example 5. Recall formula ϕ0 from Example 1 which can be normalised as:

ϕ0
def= max X.([ans]([ans]ff∧[req]X∧[cls]X))∧[req]X∧[cls]X.

Using the mapping function defined in Definition 5, we generate monitor

�ϕ0 � = rec x.(⁅ans⁆.(⁅ans, τ ⁆.sup + ⁅req⁆.x + ⁅cls⁆.x)) + ⁅req⁆.x + ⁅cls⁆.x

which is identical to ms from Example 2.
�
With this mapping function in hand, we are able to prove Theorem3 as a

corollary of Proposition 1.

Proposition 1. For every LTS 〈Sys,Act,→〉, sHMLnf formula ϕ, s ∈ Sys
and trace t, when �ϕ � = m then t ∈ traces(m[s]) iff t ∈ traces((s, ϕ)).
�
Proof Sketch. The if and only-if cases are proven separately and both proofs are
conducted by induction on the length of trace t and by case analysis of ϕ.
�

Having concluded the proof of Theorem3 and knowing Theorem 1, we can
finally obtain our main result with respect to Definition 3.

Theorem 4. Controlled system synthesis is the static counterpart of suppres-
sion enforcement in the context of safety properties.
�

6 Related Work

Several works comparing formal verification techniques can be found in the lit-
erature. In [24] van Hulst et al. explore the relationship between their work on
controlled system synthesis and the synthesis problem in Ramadge and Won-
ham’s Supervisory Control Theory (SCT) [31]. The aim in SCT is to generate a
supervisor controller from the SuS and its specification (e.g., a formal property).
If successfully generated, the synchronous product of the SuS and the controller
is computed to obtain a supervised system. To enable the investigation, van
Hulst et al. developed language-based notations akin to that used in [31], and
proved that Ramadge and Wonham’s work can be expressed using their theory.

Ehlers et al. in [14] establish a connection between SCT and reactive synthesis
− a formal method that attempts to automatically derive a valid reactive system
from a given specification. To form this connection, the authors first equalise
both fields by using a simplified version of the standard supervisory control
problem and focus on a class of reactive synthesis problems that adhere to the
requirements imposed by SCT. They then show that the supervisory control
synthesis problem can be reduced to a reactive synthesis problem.

Basile et al. in [10] explore the gap between SCT and coordination of services,
which describe how control and data exchanges are coordinated in distributed
systems. This was achieved via a new notion of controllability that allows one
to reduce the classical SCT synthesis algorithms to produce orchestrations and
choreographies describing the coordination of services as contract automata.

Falcone et al. made a brief, comparison between runtime enforcement and
SCT in [16] in the context of K-step opacity, but established no formal results
that relate these two techniques.

162 L. Aceto et al.

7 Conclusion

We have presented a novel comparison between suppression enforcement and
controlled system synthesis − two verification techniques that automate system
correction for erroneous systems. Using a counter-example we have proven that
those techniques are different modulo observational equivalence, Theorem 2. An
Abramsky-type external observer [1] can therefore tell the difference between
a monitored and controlled system resulting from the same formula and SuS.
However, we were still able to conclude that controlled system synthesis is the
static counterpart to suppression enforcement in the context of safety, as defined
by Definition 3. This required developing a function that maps logic formulas
to suppression monitors, Definition 5, and proving inductively that for every
system and formula, one can obtain a monitored and a controlled system that
execute the same set of traces at runtime, Theorem 3. As trace equivalent systems
satisfy the same safety properties, this result was enough to reach our conclusion,
Theorem 4. To our knowledge this is the first formal comparison to be made
between these two techniques.

Future Work. Having established a connection between suppression enforce-
ment and control system synthesis with respect to safety properties, it is worth
expanding this work at least along two directions and explore how:

(i) runtime enforcement and controlled system synthesis are related with respect
to properties other than those representing safety, and how

(ii) suppression enforcement relates to other verification techniques such as
supervisory control theory, reactive synthesis, etc.

Exploring (i) may entail looking into other work on enforcement and controlled
system synthesis that explores a wider set of properties. It might be worth inves-
tigating how other enforcement transformations, such as action replacements and
insertions, can be used to widen the set of enforceable properties, and how this
relates to controlled system synthesis. The connection established by van Hulst
et al. in [24] between control system synthesis and supervisory control, along
with the other relationships reviewed in Sect. 6, may be a starting point for
conducting our future investigations on (ii).

References

1. Abramsky, S.: Observation equivalence as a testing equivalence. Theoret. Comput.
Sci. 53, 225–241 (1987). https://doi.org/10.1016/0304-3975(87)90065-X

2. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A.: A framework for param-
eterized monitorability. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS,
vol. 10803, pp. 203–220. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89366-2 11

3. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Kjartansson, S.Ö.:
Determinizing monitors for HML with recursion. arXiv preprint (2016)

https://doi.org/10.1016/0304-3975(87)90065-X
https://doi.org/10.1007/978-3-319-89366-2_11
https://doi.org/10.1007/978-3-319-89366-2_11

Comparing Controlled System Synthesis and Suppression Enforcement 163

4. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: Adven-
tures in monitorability: from branching to linear time and back again. Proc. ACM
Program. Lang. 3(POPL), 52:1–52:29 (2019). https://doi.org/10.1145/3290365.
http://doi.acm.org/10.1145/3290365

5. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: On runtime enforcement via
suppressions. In: 29th International Conference on Concurrency Theory, CONCUR
2018, Beijing, China, 4–7 September 2018, pp. 34:1–34:17 (2018). https://doi.org/
10.4230/LIPIcs.CONCUR.2018.34

6. Aceto, L., Ingólfsdóttir, A.: Testing Hennessy-Milner logic with recursion. In:
Thomas, W. (ed.) FoSSaCS 1999. LNCS, vol. 1578, pp. 41–55. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-49019-1 4

7. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling,
Specification and Verification. Cambridge University Press, New York (2007)

8. Alur, R., Černý, P.: Streaming transducers for algorithmic verification of single-
pass list-processing programs. In: Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 599–610. ACM
(2011)

9. Arnold, A., Walukiewicz, I.: Nondeterministic controllers of nondeterministic pro-
cesses. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic and Automata. Texts in
Logic and Games, vol. 2, pp. 29–52. Amsterdam University Press, Amsterdam
(2008)

10. Basile, D., ter Beek, M.H., Pugliese, R.: Bridging the gap between supervisory
control and coordination of services: synthesis of orchestrations and choreographies.
In: Riis Nielson, H., Tuosto, E. (eds.) COORDINATION 2019. LNCS, vol. 11533,
pp. 129–147. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22397-7 8

11. Cassar, I., Francalanza, A., Aceto, L., Ingólfsdóttir, A.: A survey of runtime mon-
itoring instrumentation techniques. In: PrePost 2017, pp. 15–28 (2017)

12. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

13. Desai, A., Dreossi, T., Seshia, S.A.: Combining model checking and runtime ver-
ification for safe robotics. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol.
10548, pp. 172–189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67531-2 11

14. Ehlers, R., Lafortune, S., Tripakis, S., Vardi, M.Y.: Bridging the gap between
supervisory control and reactive synthesis: case of full observation and centralized
control. In: WODES, pp. 222–227. International Federation of Automatic Control
(2014)

15. Erlingsson, U., Schneider, F.B.: SASI enforcement of security policies: a retrospec-
tive. In: Proceedings of the 1999 Workshop on New Security Paradigms, NSPW
1999, pp. 87–95. ACM, New York (1999)

16. Falcone, Y., Marchand, H.: Runtime enforcement of k-step opacity. In: 52nd IEEE
Conference on Decision and Control, pp. 7271–7278, December 2013. https://doi.
org/10.1109/CDC.2013.6761043

17. Falcone, Y., Fernandez, J.C., Mounier, L.: What can you verify and enforce at
runtime? Int. J. Softw. Tools Technol. Transfer 14(3), 349 (2012)

18. Francalanza, A.: A theory of monitors. In: Jacobs, B., Löding, C. (eds.) FoSSaCS
2016. LNCS, vol. 9634, pp. 145–161. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49630-5 9

https://doi.org/10.1145/3290365
http://doi.acm.org/10.1145/3290365
https://doi.org/10.4230/LIPIcs.CONCUR.2018.34
https://doi.org/10.4230/LIPIcs.CONCUR.2018.34
https://doi.org/10.1007/3-540-49019-1_4
https://doi.org/10.1007/978-3-030-22397-7_8
https://doi.org/10.1007/978-3-319-67531-2_11
https://doi.org/10.1007/978-3-319-67531-2_11
https://doi.org/10.1109/CDC.2013.6761043
https://doi.org/10.1109/CDC.2013.6761043
https://doi.org/10.1007/978-3-662-49630-5_9
https://doi.org/10.1007/978-3-662-49630-5_9

164 L. Aceto et al.

19. Francalanza, A.: Consistently-detecting monitors. In: 28th International Confer-
ence on Concurrency Theory (CONCUR 2017). Leibniz International Proceedings
in Informatics (LIPIcs), vol. 85, pp. 8:1–8:19. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, Dagstuhl (2017)

20. Francalanza, A., et al.: A foundation for runtime monitoring. In: Lahiri, S., Reger,
G. (eds.) RV 2017. LNCS, vol. 10548, pp. 8–29. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-67531-2 2

21. Francalanza, A., Aceto, L., Ingólfsdóttir, A.: Monitorability for the Hennessy-
Milner logic with recursion. Formal Methods Syst. Des. 51(1), 87–116 (2017)

22. Havelund, K., Pressburger, T.: Model checking Java programs using Java
PathFinder. Int. J. Softw. Tools Technol. Transfer 2(4), 366–381 (2000). https://
doi.org/10.1007/s100090050043

23. Havelund, K., Roşu, G.: An overview of the runtime verification tool Java PathEx-
plorer. Formal Methods Syst. Des. 24(2), 189–215 (2004)

24. van Hulst, A.C., Reniers, M.A., Fokkink, W.J.: Maximally permissive controlled
system synthesis for non-determinism and modal logic. Discrete Event Dyn. Syst.
27(1), 109–142 (2017)

25. Kejstová, K., Ročkai, P., Barnat, J.: From model checking to runtime verification
and back. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 225–240.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67531-2 14

26. Könighofer, B., et al.: Shield synthesis. Formal Methods Syst. Des. 51(2), 332–361
(2017)

27. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Program. 78(5), 293–303 (2009)

28. Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for
run-time security policies. Int. J. Inf. Secur. 4(1), 2–16 (2005)

29. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I. Inf. Comput.
100(1), 1–40 (1992)

30. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings
of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 1989, pp. 179–190. ACM, New York (1989). https://doi.org/10.
1145/75277.75293. http://doi.acm.org/10.1145/75277.75293

31. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM J. Control Optim. 25(1), 206–230 (1987)

32. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, New
York (2009)

33. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge Univer-
sity Press, New York (2011)

34. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. (TIS-
SEC) 3(1), 30–50 (2000)

https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1007/s100090050043
https://doi.org/10.1007/s100090050043
https://doi.org/10.1007/978-3-319-67531-2_14
https://doi.org/10.1145/75277.75293
https://doi.org/10.1145/75277.75293
http://doi.acm.org/10.1145/75277.75293

Assumption-Based Runtime Verification
with Partial Observability and Resets

Alessandro Cimatti, Chun Tian(B) , and Stefano Tonetta

Fondazione Bruno Kessler, Trento, Italy
{cimatti,ctian,tonettas}@fbk.eu

Abstract. We consider Runtime Verification (RV) based on Proposi-
tional Linear Temporal Logic (LTL) with both future and past temporal
operators. We generalize the framework to monitor partially observable
systems using models of the system under scrutiny (SUS) as assumptions
for reasoning on the non-observable or future behaviors of the SUS. The
observations are general predicates over the SUS, thus both static and
dynamic sets of observables are supported. Furthermore, the monitors are
resettable, i.e. able to evaluate any LTL property at arbitrary positions of
the input trace (roughly speaking, [[u, i |= ϕ]] can be evaluated for any u
and i with the underlying assumptions taken into account). We present a
symbolic monitoring algorithm that can be efficiently implemented using
BDD. It is proven correct and the monitor can be double-checked by
model checking. As a by-product, we give the first automata-based mon-
itoring algorithm for Past-Time LTL. Beside feasibility and effectiveness
of our approach, we also demonstrate that, under certain assumptions
the monitors of some properties are predictive.

1 Introduction

Runtime Verification (RV) [15,26] as a lightweight verification technique, aims at
checking whether a run of a system under scrutiny (SUS) satisfies or violates a
given correctness specification (or monitoring property). Given any monitoring
property, the corresponding runtime monitor takes as input an execution (i.e. finite
prefix of a run, or finite word) and outputs a verdict for each input letter (or state).

The applicability of RV techniques on black box systems for which no system
model is at hand, is usually considered as an advantage over other verification
techniques like model checking. However, as systems are often partially observ-
able, this forces one to specify the monitoring property in terms of the external
interface of the SUS and diagnosis condition on its internals must be reflected
in input/output sequence with an implicit knowledge about the SUS behavior.
For example, the sequence to verify that an embedded system does not fail dur-
ing the booting phase may involve observing that an activity LED blinks until
it becomes steady within a certain amount of time; the booting failure is not

This work has received funding from European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No. 700665 (Project CITADEL).

c© The Author(s) 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 165–184, 2019.
https://doi.org/10.1007/978-3-030-32079-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_10&domain=pdf
http://orcid.org/0000-0002-2777-9443
https://doi.org/10.1007/978-3-030-32079-9_10

166 A. Cimatti et al.

Fig. 1. Traditional RV (left) v.s. ABRV with partial observability & resets (right)

directly observable and the sequence assumes that the LEDs are not broken. In
practice, one almost always knows something about the SUS. This information
can be derived, for example, from models produced during the system design, or
from the interaction with operators (person) of the system. Such information can
be leveraged to monitor properties on unobservable parts of the SUS, assuming
it behaves the same as specified by its model.

In this paper, we consider the RV problem for Propositional Linear Temporal
Logic (PLTL or LTL) with both future and past temporal operators [28]. We
extend a traditional RV approach where the monitor synthesis is based on a
black-box specification of the system (Fig. 1, on the left) to the practical case
where the property to monitor refers to some internal unobservable part of the
SUS (Fig. 1, on the right). In order to cope with the partial observability of
the SUS, we rely on certain assumption on its behavior, which is expressed
in (symbolic) fair transition systems in our framework. Essentially the monitor
output in our RV framework can be: the specification is satisfied (�a) or violated
(⊥a) under the assumption; the SUS violates its assumption (×); or unknown
(?) otherwise. The output of the monitor depends on the knowledge that can
be derived from the partial observations of the system and the semantics of RV
is extended to consider all infinite runs of the SUS having the same observed
finite execution as prefixes. As for predictive semantics [25,36], by considering
the assumption during the synthesis of runtime monitors, the resulting monitors
may obtain more precise results: (1) conclusive verdicts could be given on shorter
execution prefixes; (2) conclusive verdicts may be obtained from properties that
are in general non-monitorable (without assumption).

We also generalize the RV framework to encompass resettable monitors. In
addition to the observations from SUS, a resettable monitor also takes as input
reset signals that can change the reference time for the evaluation of the spec-
ification without losing the observation history. Consider the case where the
monitor is currently evaluating a property ϕ from the initial position (as done
in the traditional case and denoted by [[u, 0 |= ϕ]]). Upon a sequence u of obser-
vations, receiving as next input a reset, together with a new observation a, the
monitor will evaluate ϕ from the last position. Taking one more observation b
but without reset, the monitor will evaluate ϕ still in the previous position. In
general, the monitor can evaluate ϕ at any position i (denoted by [[u, i |= ϕ]]) as

Assumption-Based RV with Partial Observability and Resets 167

long as a reset is sent to the monitor with the observation at position i in the
sequence u. We remark that in this framework if the properties are evaluated
under assumptions or contain past operators, the observations before the reset
may contribute to the evaluation of the property in the new position.

The motivation for introducing resettable monitors is twofold. First, most
monitors based on LTL3-related semantics are monotonic: once the monitor has
reached conclusive true (�) or false (⊥), the verdict will remain unchanged for all
future inputs, rendering them useless from now on. However, when a condition
being monitored occurs (e.g. a fault is detected), and necessary countermeasures
(e.g. reconfiguration) have been taken, we want the monitoring process to provide
fresh information. Given that the SUS (and maybe also other monitors) is still
running, it would be desirable to retain the beliefs of the current system state.
The monitor after reset will be evaluating the property at the current reference
time, without losing the knowledge of the past. Hence, our reset is different from
the simple monitor restart mechanisms found in most RV tools: our monitors
keep in track the underlying assumptions and memorize all notable events ever
happened in the past, whilst the monitor restart is too coarse in that it wipes out
the history, and may thus lose fundamental information. Second, the concept of
reset significantly enhances the generality of the formal framework. For example,
by issuing the reset signal at every cycle, we capture the semantics of Past-Time
LTL, i.e. we monitor [[u, |u| − 1 |= ϕ]] where ϕ is evaluated with reference to the
time point of the most recent observation. As a by-product, this results in the
first automata-based monitoring algorithm for Past-Time LTL.

As an example, consider a property ϕ = G¬p, which means that p never
occurs, with an assumption K stating that “p occurs at most once.” For every
sequence u that contains p, the monitor should report a violation of the property
(independently of the assumption). After a violation, if the monitor is reset, given
the assumption K on the occurrence of p, the monitor should predict that the
property is satisfied by any continuation. However, this requires that the reset
does not forget that a violation already occurred in the past. Should the SUS
produce a trace violating the assumption, where p occurs twice at i and at j > i,
the assumption-based monitor will output “×” at j.

We propose a new algorithm for assumption-based monitor synthesis with
partial observability and resets. It naturally extends the LTL3 RV approach [4].
Our work is based on a symbolic translation from LTL to ω-automata, used
also by nuXmv model checker. Using symbolic algorithms, assumptions can
be easily supported by (symbolically) composing the ω-automata with a system
model representing the assumptions. The algorithm explores the space of beliefs,
i.e. the sets of SUS states compatible with the observed signals (traces). The
symbolic computation of forward images naturally supports partially observed
inputs. Finally, the support of resettable monitors exploits some properties of
the symbolic translation from LTL to ω-automata.

The new RV approach has been implemented on top of the nuXmv model
checker [8]. We have evaluated our approach on a number of benchmarks showing
its feasibility and applicability and the usefulness of assumptions. Beside the

168 A. Cimatti et al.

correctness proof, we have also used the nuXmv model checker to verify the
correctness and the effectiveness of the synthesized monitors.

The rest of this paper is organized as follows. Preliminaries are presented
in Sect. 2. In Sect. 3 our extended RV framework is presented. The symbolic
monitoring algorithm and its correctness proof are given in Sect. 4. In Sect. 5 we
describe implementation details and the experimental evaluation. Some related
work is discussed in Sect. 6. Finally, in Sect. 7, we make conclusions and discuss
future directions.

2 Preliminaries

Let Σ be a finite alphabet. A finite word u (or infinite word w) over Σ is a finite
(or countably infinite) sequence of letters in Σ, i.e. u ∈ Σ∗ and w ∈ Σω. Empty
words are denoted by ε. ui denotes the zero-indexed ith letter in u (i ∈ N here
and after), while ui denotes the sub-word of u starting from ui. |u| is the length
of u. Finally, u · v is the concatenation of a finite word u with another finite (or
infinite) word v.

Linear Temporal Logic. Let AP be a set of Boolean variables, the set of
Propositional Linear Temporal Logic (LTL) [28] formulae, LTL(AP), is induc-
tively defined as

ϕ ::= true
∣
∣ p

∣
∣ ¬ϕ

∣
∣ ϕ ∨ ϕ

∣
∣ Xϕ

∣
∣ ϕUϕ

∣
∣ Yϕ

∣
∣ ϕSϕ

with p ∈ AP . Here X stands for next, U for until, Y for previous, and S for since.
Other logical constants and operators like false, ∧, → and ↔ are used as syntac-
tic sugars with the standard meaning. The following abbreviations for tempo-
ral operators are also used: Fϕ =̇ trueUϕ (eventually), Gϕ =̇ ¬F¬ϕ (globally),
Oϕ =̇ true Sϕ (once), Hϕ =̇ ¬O¬ϕ (historically). Additionally, Xn p denotes a
sequence of n nested unary operators: XX · · ·X p; similar for Yn p.

The semantics of LTL formulae over an infinite word w ∈ (2AP)ω is given
below:

w, i |= true
w, i |= p ⇔ p ∈ wi

w, i |= ¬ϕ ⇔ w, i
|= ϕ

w, i |= ϕ ∨ ψ ⇔ w, i |= ϕ ∨ w, i |= ψ

w, i |= Xϕ ⇔ w, i + 1 |= ϕ

w, i |= ϕUψ ⇔ ∃k. i � k ∧ w, k |= ψ ∧ ∀j. i � j < k ⇒ w, j |= ϕ

w, i |= Yϕ ⇔ 0 < i ∧ w, i − 1 |= ϕ

w, i |= ϕSψ ⇔ ∃k. k � i ∧ w, k |= ψ ∧ ∀j. k < j � i ⇒ w, j |= ϕ

We write w |= ϕ for w, 0 |= ϕ and L(ϕ) =̇ {w ∈ (2AP)ω | w |= ϕ} for the language
(or the set of models) of ϕ. Two formulae φ and ψ are equivalent, φ ≡ ψ, iff
L(φ) = L(ψ).

Assumption-Based RV with Partial Observability and Resets 169

Boolean Formulae. Let B = {�,⊥} denote the type of Boolean values, a set
of Boolean formulae Ψ(V) over a set of propositional variables V = {v1, . . . , vn},
is the set of all well-formed formulae (wff) [1] built from variables in V , propo-
sitional logical operators like ¬ and ∧, and parenthesis. Henceforth, as usual in
symbolic model checking, any Boolean formula ψ(V) ∈ Ψ(V) is used to denote
the set of truth assignments that make ψ(V) true. More formally, following
McMillan [30], a Boolean formula ψ(V) as a set of truth assignments, is the same
thing as a λ-function of type B

|V | → B, which takes a vector of these variables
and returns a Boolean value, i.e. λ(v1, . . . , vn). ψ(v1, . . . , vn) or λV. ψ(V), assum-
ing a fixed order of variables in V . Thus Ψ(V) itself has the type (B|V | → B) → B.
Whenever V is clear from the context, we omit the whole λ prefix. Therefore,
set-theoretic operations such as intersection and union are interchangeable with
logical connectives on sets of Boolean formulae.

Fair Kripke Structures. The system models, assumptions and ω-automata
used in our RV framework are expressed in a symbolic presentation of Kripke
structures called Fair Kripke Structure (fks) [23] (or Fair Transition Sys-
tem [29]):

Definition 1. Let V be a set of Boolean variables, and V ′ =̇ {v′ | v ∈ V } be the
set of next state variables (thus V ∩V ′ = ∅). An fks K = 〈V,Θ, ρ,J 〉 is given by
V , a set of initial states Θ(V) ∈ Ψ(V), a transition relation ρ(V, V ′) ∈ Ψ(V ∪V ′),
and a set of Boolean formulae J = {J1(V), . . . , Jk(V)} ⊆ Ψ(V) called justice
requirements.

Given any fks K =̇ 〈V,Θ, ρ,J 〉, a state s(V) of K is an element in 2V rep-
resenting a full truth assignment over V , i.e., for every v ∈ V , v ∈ s if and only
if s(v) = �. For example, if V = {p, q}, a state {p} means p = � and q = ⊥.
Whenever V is clear from the context, we write s instead of s(V). The transition
relation ρ(V, V ′) relates a state s ∈ 2V to its successor s′ ∈ 2V ′

. We say that s′

is a successor of s (and that s is a predecessor of s′) iff s(V)∪ s′(V ′) |= ρ(V, V ′).
For instance, if ρ(V, V ′) = (p ↔ q′), s′(V ′) = {q′} is a successor of s(V) = {p},
since s(V) ∪ s′(V ′) = {p, q′} and {p, q′} |= (p ↔ q′). A path in K is an
infinite sequence of states s0, s1, . . . where s0(V) |= Θ and, for all i ∈ N,
si(V) ∪ si+1(V ′) |= ρ(V, V ′). The forward image of a set of states ψ(V) on
ρ(V, V ′) is a Boolean formula fwd(ψ, ρ)(V) =̇ (∃V. ρ(V, V ′)∧ψ(V))[V/V ′], where
[V/V ′] substitutes all (free) variables from V ′ to V .

A fair path of K is a path s0s1 . . . ∈ Σω of K such that, for all i we have
si ∪ s′

i+1 |= ρ, and, for all J ∈ J , for infinitely many i, we have that si |= J .
We denote by FP ρ

J (ψ) the set of fair paths starting from ψ (i.e., such that
s0 |= ψ). The language L(K) is the set of initial fair paths, i.e. FP ρ

J (Θ) and
L(K) is the set of finite prefixes of paths in L(K). A state s is fair iff it occurs
in a fair path. The set of all fair states, denoted by FK , can be computed by
standard algorithms like Emerson-Lei [14]. Finally, let K1 = 〈V1, Θ1, ρ1,J1〉
and K2 = 〈V2, Θ2, ρ2,J2〉, the synchronous product of K1 and K2 is defined as
K1 ⊗ K2 =̇ 〈V1 ∪ V2, Θ1 ∧ Θ2, ρ1 ∧ ρ2,J1 ∪ J2〉.

170 A. Cimatti et al.

Translating LTL to ω-Automata. Our work relies on a linear-time symbolic
translation from LTL to ω-automata. The algorithm traces its roots back to
[7,10] where only future operators are supported, with additional support of
past operators [17]. A set of propositional elementary variables of ϕ, denoted by
el(ϕ), is used for converting any LTL formula into an equivalent propositional
formula. It can be defined recursively as follows (where p ∈ V , φ and ψ are
sub-formulae of ϕ):

el(true) = ∅, el(Xφ) = {xφ} ∪ el(φ),
el(p) = {p}, el(φUψ) = {xφUψ} ∪ el(φ) ∪ el(ψ),

el(¬φ) = el(φ), el(Yφ) = {yφ} ∪ el(φ),
el(φ ∨ ψ) = el(φ) ∪ el(ψ), el(φSψ) = {yφSψ} ∪ el(φ) ∪ el(ψ).

For any LTL formula ϕ, el(ϕ) = el(¬ϕ), and ϕ can be rewritten into a Boolean
formula χ(ϕ) using only variables in el(ϕ). Below is the full definition of χ(·):

χ(ϕ) =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ϕ forϕ an elementary variable in el(·),
¬χ(φ) forϕ = ¬φ,

χ(φ) ∨ χ(ψ) forϕ = φ ∨ ψ,

xφ (orxφUψ) forϕ in forms of Xφ(orX (φUψ), resp.),
yφ (oryφSψ) forϕ in forms of Yφ(orY(φSψ), resp.) .

(1)

To apply (1), all sub-formulae of ϕ leading by U and S must be wrapped within
X and Y, respectively. This can be done (if needed) by using the following
Expansion Laws :

ψUφ ≡ φ ∨ (ψ ∧ X(ψUφ)), ψ Sφ ≡ φ ∨ (ψ ∧ Y(ψ Sφ)). (2)

For instance, χ(pUq) = q ∨ (p ∧ xpUq), and χ′(pUq) = q′ ∨ (p′ ∧ x′
pUq).

The fks translated from ϕ is given by Tϕ =̇ 〈Vϕ, Θϕ, ρϕ,Jϕ〉, where
Vϕ =̇ el(ϕ).

The initial condition Θϕ is given by Θϕ =̇χ(ϕ) ∧
∧

yψ∈ el(ϕ)

¬yψ. Here each yψ ∈

el(ϕ) has an initial false assignment in Θϕ. This is essentially a consequence of
LTL semantics for past operators, i.e. for any word w and formula ψ, w, 0
|= Yψ.

The transition relation ρϕ (as a formula of variables in el(ϕ)∪el′(ϕ)) is given
by

ρϕ =̇
∧

xψ∈ el(ϕ)

(

xψ ↔ χ′(ψ)
) ∧

∧

yψ∈ el(ϕ)

(

χ(ψ) ↔ y′
ψ

)

. (3)

Intuitively, the purpose of ρϕ is to relate the values of elementary variables to
the future/past values: for any ψ ∈ el(ϕ), the current value of ψ is memorized by
the value of yψ in next state; and the next value of ψ is guessed by the current
value of xψ.

The justice set Jϕ is given by Jϕ =̇ {χ(ψ U φ) → χ(φ) | xψUφ ∈ el(ϕ)}.
It guarantees that, whenever a sub-formula ψ U φ is satisfied, eventually φ is

Assumption-Based RV with Partial Observability and Resets 171

satisfied. Thus an infinite sequence of ψ cannot be accepted by the fks translated
from ψUφ.

Notice that Tϕ and T¬ϕ only differ at their initial conditions Θϕ and Θ¬ϕ.

3 The Generalized RV Framework

Now we formally present the generalized RV framework which extends the tradi-
tional RV with three new features: assumptions, partial observability and resets.

Let ϕ ∈ LTL(AP) be a monitoring property1, K =̇ 〈VK , ΘK , ρK ,JK〉 be an
fks representing the assumptions under which ϕ is monitored. Note that K can
be a detailed model of the SUS or just a simple constraint over the variables in
AP . In general, we do not have any specific assumption on the sets AP and VK ;
although it is quite common that AP ⊆ VK , VK can be even empty if there is
no assumption at all. Let V =̇ VK ∪ AP .

We say that the SUS is partially observable when the monitor can observe
only a subset O ⊆ V of variables (O is called the observables). Thus, the input
trace of the monitor contains only variables from O. However, it is not required
that all variables in O must be observable in each input state of the input trace.
For instance, if O = {p, q}, it could be imagined that an observation reads the
value of p holds but do not know anything about q, or vice versa. It is even
possible that an observation does not know anything about p and q, except
for knowing that the SUS has moved to its next state. Thus, in general, an
observation is a set of assignments to O. If O = V and the observation contains
a single assignment to V , then we speak of full observability.

As recalled in Sect. 2, this can be represented by a Boolean formula over
O. Thus, in our framework, the monitor takes as input a sequence of formulas
over O. For example, if the input trace is μ = p · q · �, then μ represents the
following sequence of assignments: {{p}, {p, q}}·{{q}, {p, q}}·{∅, {p}, {q}, {p, q}}
(recall that, knowing nothing about p and q actually means all 4 possible value
assignments are possible, just the monitor does not know which one actually
happened in the SUS).

Now we present the ABRV-LTL semantics as an extension of Leucker’s LTL3:

Definition 2 (ABRV-LTL). Let K =̇ 〈VK , ΘK , ρK ,JK〉 be an fks, ϕ ∈
LTL(AP), μ ∈ Ψ(O)∗ be a finite sequence of Boolean formulae over O ⊆
VK ∪ AP , and

LK(μ) =̇
{

w ∈ L(K)
∣
∣ ∀i < |μ|. wi(VK ∪ AP) |= μi(O)

}

(4)

be the set of runs in K which are compatible with μ. The ABRV-LTL semantics
of ϕ over μ under the assumption K, denoted by [[·]]K4 ∈ B4 =̇ {�a,⊥a, ?,×}, is
defined as

[[μ, i |= ϕ]]K4 =̇

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

×, if LK(μ) = ∅
�a, if LK(μ)
= ∅ ∧ ∀w ∈ LK(μ). w, i |= ϕ

⊥a, if LK(μ)
= ∅ ∧ ∀w ∈ LK(μ). w, i |= ¬ϕ

?, otherwise.

(5)

1 Here AP ⊆ Vϕ (the set of variables in Tϕ).

172 A. Cimatti et al.

ABRV-LTL has four verdicts: conclusive true (�a), conclusive false (⊥a),
inconclusive (?) and out-of-model (×). Due to partial observability, the finite
trace μ is actually a set of finite traces over O, where each ui of each u ∈ μ is
a full assignment of truths over O. When LK(μ) = ∅, K is unable to “follow”
the behaviour shown from the SUS, hence the fourth verdict out-of-model (×)
comes.

The sequence of observations is paired with a sequence of Boolean reset
signals. Intuitively, if the monitor receives a reset at cycle i, then it starts to
evaluate the truth of ϕ at i (and does so until the next reset). Formally, the
monitor receives inputs in Ψ(O)×B, the cross-product between formulas over the
observables and the reset values. Thus u = (μ0, res0), (μ1, res1), . . . , (μn, resn).
We denote by res(u) and obs(u) the projection of u respectively on the reset
and observation components, i.e. res(u) = res0, res1, . . . , resn and obs(u) =
μ0, μ1, . . . , μn.

Definition 3 (ABRV with Partial Observability and Resets). Let K, ϕ and
O have the same meaning as in Definition 2, Let u ∈ (Ψ(O) × B)∗ be a finite
sequence of observations paired with resets. The problem of Assumption-based
Runtime Verification (ABRV) w.r.t. K, ϕ and O is to construct a function
MK

ϕ : (Ψ(O) × B)∗ → B4 such that

(6)

where (the most recent reset) is the maximal i such that .

Fig. 2. LTL3 lattice (left) v.s. ABRV-LTL lattice (right)

Here are some basic properties of the monitor defined in Definition 3. Let
(B4,�) be a lattice with the partial order ? � �a/⊥a � ×, shown in Fig. 2
(with a comparison to the LTL3 lattice). It is not hard to see that, if there is no
reset in the inputs, the monitor MK

ϕ is always mono-increasing, i.e. MK
ϕ (u) �

MK
ϕ (u · (ψ,⊥)). On the other hand, the monitor is anti-monotonic w.r.t. the

assumption, i.e. if L(K2) ⊆ L(K1), then MK1
ϕ (u) � MK2

ϕ (u). We omit the
proofs of above properties due to page limits, instead the related experiments
that use model checkers to prove them on the generated monitors are briefly
reported in Sect. 5 with two samples of K2.

If K1 is taken as an empty fks, i.e. L(K1) = (2O)ω, we say that the assump-
tion K2 is valuable for ϕ if there exists u ∈ (Ψ(O)×{⊥})∗ such that MK1

ϕ (u) = ?

Assumption-Based RV with Partial Observability and Resets 173

and MK2
ϕ (u) = �a or ⊥a. This can happen when the monitor MK2

ϕ is diagnos-
tic, deducing some non-observable values from the assumption and observations,
or when the monitor MK2

ϕ is predictive, deducing some future facts from the
assumption and observations.

Monitoring Past-time LTL. If the monitor is reset on each input state, i.e.
∀i.res(ui) = �, then MK

ϕ (u) = [[obs(u), |u| − 1]]K4 . Furthermore, if ϕ has only
past operators (Y and S), this monitor actually follows the (finite-trace) seman-
tics (|=p) of Past-Time LTL [22], where [[u |=p ϕ]] =̇ [[u, |u|−1 |= ϕ]]K4 (for |u| > 0).
The corresponding RV problem (under full observability, without assumptions) is
usually handled by rewriting-based approaches or dynamic programming. Using
our BDD-based algorithm now it is possible to generate an automaton monitor-
ing Past-Time LTL.

4 The Symbolic Algorithm

Now we present Algorithm 1 for the RV problem given in Definition 3. This
algorithm leverages Boolean formulae and can be effectively implemented in
Binary Decision Diagrams (BDD) [6]. A monitor is built from an assumption
K =̇ 〈VK , ΘK , ρK ,JK〉 and an LTL property ϕ ∈ LTL(AP). Then it can be used
to monitor any finite trace u ∈ (Ψ(O) × B)∗, where O ⊆ VK ∪ AP is the set of
observables.

In the monitor building phase (L2–5), the LTL to ω-automata translation
algorithm (c.f. Sect. 2) is called on ϕ and ¬ϕ for the constructions of fks Tϕ

and T¬ϕ. The set of fair states of K ⊗ Tϕ and of K ⊗ T¬ϕ are computed as FK
ϕ

and FK
¬ϕ. Starting from L6, the purpose is to update two belief states rϕ and

r¬ϕ according to the input trace u. If we imagine K ⊗ Tϕ and K ⊗ T¬ϕ as two
NFAs, then rϕ and r¬ϕ are the sets of current states in them. They are initialized
with the initial conditions of K ⊗ Tϕ and K ⊗ T¬ϕ (restricted to fair states).
Indeed, their initial values are given by a chain of conjunctions (L6–7). They
are then intersected with the first input state u0 (L9–10). For the remaining
inputs (if they exist), when there is no reset (L13–14), the purpose is to walk
simultaneously in K ⊗ Tϕ and K ⊗ T¬ϕ by computing the forward images of rϕ

and r¬ϕ with respect to the current input state and the set of fair states.
If any input state comes in with a reset signal, now the monitor needs to

be reset (L16–18). Our most important discovery in this paper is that, a simple
rϕ ∨ r¬ϕ at L16 just did the work. The resulting Boolean formula r actually
contains the history of the current input trace and the current “position” in the
assumption. (c.f. the correctness proof below for more details.) Then the forward
image computed in 17–18 is for shifting the current values of all elementary
variables by one step into the past, then the conjunction of χ(ϕ) (or χ(¬ϕ), resp.)
makes sure that from now on the “new” automata will accept ϕ (or ¬ϕ, resp.)
from the beginning, just like in L9–10. We cannot use Θϕ or Θ¬ϕ here, because
they contain the initial all-false assignments of the past elementary variables,
which may wrongly overwrite the history stored in r, as some of these variables

174 A. Cimatti et al.

Algorithm 1: The symbolic (offline) monitor
1 function symbolic monitor(K =̇ 〈VK , ΘK , ρK , JK〉, ϕ(AP), u ∈ (Ψ(O) × B)∗)
2 Tϕ =̇ 〈Vϕ, Θϕ, ρϕ, Jϕ〉 ←− ltl translation(ϕ);
3 T¬ϕ =̇ 〈Vϕ, Θ¬ϕ, ρϕ, Jϕ〉 ←− ltl translation(¬ϕ);

4 FK
ϕ ←− fair states(K ⊗ Tϕ);

5 FK
¬ϕ ←− fair states(K ⊗ T¬ϕ);

6 rϕ ←− ΘK ∧ Θϕ ∧ FK
ϕ ; /* no observation */

7 r¬ϕ ←− ΘK ∧ Θ¬ϕ ∧ FK
¬ϕ;

8 if |u| > 0 then /* first observation */

9 rϕ ←− rϕ ∧ obs(u0);
10 r¬ϕ ←− r¬ϕ ∧ obs(u0);

11 for 1 � i < |u| do /* more observations */

12 if res(ui) = ⊥ then /* no reset */

13 rϕ ←− fwd(rϕ, ρK ∧ ρϕ)(VK ∪ Vϕ) ∧ obs(ui) ∧ FK
ϕ ;

14 r¬ϕ ←− fwd(r¬ϕ, ρK ∧ ρϕ)(VK ∪ Vϕ) ∧ obs(ui) ∧ FK
¬ϕ;

15 else /* with reset */

16 r ←− rϕ ∨ r¬ϕ;

17 rϕ ←− fwd(r, ρK ∧ ρϕ)(VK ∪ Vϕ) ∧ χ(ϕ) ∧ obs(ui) ∧ FK
ϕ ;

18 r¬ϕ ←− fwd(r, ρK ∧ ρϕ)(VK ∪ Vϕ) ∧ χ(¬ϕ) ∧ obs(ui) ∧ FK
¬ϕ;

19 if rϕ = r¬ϕ = ⊥ then return ×;
20 else if rϕ = ⊥ then return ⊥a;
21 else if r¬ϕ = ⊥ then return �a;
22 else return ?;

may not be false any more. The whole reset process completes here, then the
current input observation obs(ui) is finally considered and the new belief states
must be restrict in fair states. Finally (L19–22) the monitor outputs a verdict in
B4, depending on four possible cases on the emptiness of rϕ and r¬ϕ. This is in
line with ABRV-LTL given in Definition 2.

Sample Run. Suppose we monitor ϕ = pU q (fully observable) assuming p
= q.
Here O = {p, q}, Vϕ = {p, q, x =̇xpUq}, Θϕ = q ∨ (p ∧ x), Θ¬ϕ = ¬(q ∨ (p ∧ x)),
ρϕ = x ↔ (q′ ∨(p′ ∧x′)), and K = 〈O,�, p′
= q′, ∅〉. (Jϕ and J¬ϕ can be ignored
since all states are fair, i.e. FK

ϕ = FK
¬ϕ = �.) Let u = {p}{p} · · · {q}{q} · · · (no

reset). Initially (L6–7) rϕ = Θϕ, r¬ϕ = Θ¬ϕ, taking the initial state {p} they
become (L9–10) rϕ = Θϕ ∧ (p ∧ ¬q) ≡ p ∧ ¬q ∧ x, and r¬ϕ = Θ¬ϕ ∧ (p ∧
¬q) ≡ p ∧ ¬q ∧ ¬x. Since both rϕ and r¬ϕ are not empty, the monitor outputs
? (if ends here.) If the next state is still {p}, the values of rϕ and r¬ϕ actually
remain the same, because ρϕ ∧ (p′ ∧ ¬q′) ≡ x ↔ x′ and L13–14 does not change
anything. Thus the monitor still outputs ?, until it received {q}: in this case
ρϕ ∧ (¬p′ ∧ q′) ≡ x ↔ �, and fwd(r¬ϕ, ρϕ)(Vϕ)∧ (¬p′ ∧ q′) (L14) is unsatisfiable,
i.e. r¬ϕ = ⊥, while rϕ is still not empty, thus the output is �a. Taking more
{q} does not change the output, unless the assumption p
= q is broken (then
rϕ = r¬ϕ = ⊥, the output is × and remains there, unless the monitor were
reset).

Assumption-Based RV with Partial Observability and Resets 175

Online Monitoring. Algorithm 1 returns a single verdict after processing the
entire input trace. This fits into Definition 3. However, runtime monitors are
usually required to return verdicts for each input state and “should be designed
to consider executions in an incremental fashion” [26]. Our algorithm can be
easily modified for online monitoring, it outputs one verdict for each input state.
It is indeed incremental since rϕ and r¬ϕ are updated on each input state, and
the time complexity of processing one input state is only in terms of the size of
K and ϕ, thus trace-length independent [12]. Space complexity is also important,
as a monitor may eventually blow up after storing enough inputs. Our algorithm
is trace non-storing [31] with bounded memory consumption.

Fig. 3. The monitor of G¬p under
assumption G(p → ¬XF p)

Example. Let us consider again the exam-
ple proposed in Sect. 1: the LTL property
ϕ = G¬p (p never occurs) under the assump-
tion K stating that “p occurs at most once”
(expressed in LTL: G(p → XG¬p)). Figure 3
shows the automaton that results from pre-
computing the states that Algorithm 1 can
reach, given ϕ and K. Each state reports the
monitor output (N stands for ⊥a, Y for �a

and X for ×), while inputs are represented
on the edges (R stands for reset). Starting
from state 1, the monitors goes and remains
in state 2 with the output ? as long as it
reads ¬p independently of the reset; it goes
to state 3 with output ⊥ as soon as it reads
p (again independently of the reset); then,
either it goes to state 4 with output ⊥ while
still reading ¬p without reset; as soon as a
reset is received it goes to state 5 with output
� where it remains while reading ¬p; from
states 3–5, whenever the monitor receives p
(which would be the second occurrence vio-
lating the assumption), it goes to the sink
state 0 with output ×.

Now we show the correctness of
Algorithm 1:

Theorem 1. The function symbolic monitor given in Algorithm1 correctly
implements the monitor function MK

ϕ (·) given in Definition 3.

Proof (sketch). Fix a trace u ∈ (2O ×B)∗, we define the following abbreviations:

u � w ⇔ ∀i. i < |u| ⇒ wi(Vk ∪ AP) |= obs(ui)(O), (7)
LK

ϕ (u) =̇
{

w ∈ L(K) | (w,mrr(u) |= ϕ) ∧ u � w
}

, (8)

LK
ϕ (u) =̇

{

v | ∃w. v · w ∈ LK
ϕ (u) ∧ |v| = |u|}. (9)

176 A. Cimatti et al.

Intuitively, if u � w holds, w is an (infinite) run of the fks K compatible with the
input trace u; LK

ϕ (u) is the set of (infinite) u-compatible runs of K which satisfies
ϕ w.r.t. the last reset position; And LK

ϕ (u) is the set of |u|-length prefixes from
LK

ϕ (u).
It is not hard to see that, Definition 3 can be rewritten in terms of LK

ϕ (u)
and LK

¬ϕ(u):

MK
ϕ (u) = [[obs(u),mrr(u) |= ϕ]]K4 =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

×, if LK
ϕ (u) = ∅ ∧ LK

¬ϕ(u) = ∅,

�a, if LK
ϕ (u)
= ∅ ∧ LK

¬ϕ(u) = ∅,

⊥a, if LK
ϕ (u) = ∅ ∧ LK

¬ϕ(u)
= ∅,

?, if LK
ϕ (u)
= ∅ ∧ LK

¬ϕ(u)
= ∅.

Now the proof of Theorem1 can be reduced to the following sub-goals:

LK
ϕ (u) = ∅ ⇒ rϕ(u) = ∅ and LK

¬ϕ(u) = ∅ ⇒ r¬ϕ(u) = ∅. (10)

Equation (10) trivially holds when u = ε, i.e. |u| = 0. Below we assume
|u| > 0. We first prove the invariant properties of rϕ and r¬ϕ: (c.f. L12–18 of
Algorithm 1)

rϕ(u) = {s | ∃w ∈ L(K ⊗ Tϕ). (w,mrr(u) |= ϕ) ∧ u � w ∧ w|u|−1 = s},

r¬ϕ(u) = {s | ∃w ∈ L(K ⊗ T¬ϕ). (w,mrr(u) |= ¬ϕ) ∧ u � w ∧ w|u|−1 = s}
(11)

Intuitively, rϕ(u) is the set of last states of u-compatible runs in K⊗Tϕ, satisfying
ϕ w.r.t. the last reset position. Now we prove (11) by induction:

If |u| = 1, then rϕ = ΘK ∧Θϕ ∧FK,ϕ ∧obs(u0). (mrr(u) is not used.) Thus,
rϕ contains all states s such that ∃w ∈ L(K ⊗ Tϕ), (w, 0 |= ϕ), u0 � w0 and
w0 = s.

If |u| > 1 and res(un) = ⊥, let |u| = n + 1 and u = v · un with |v| > 0.
Here mrr(u) = mrr(v). By induction hypothesis, rϕ(v) = {s | ∃w ∈ L(K ⊗
Tϕ). (w,mrr(v) |= ϕ)∧ v � w ∧wn−1 = s}. Thus rϕ(u) = fwd(rϕ(v), ρK ∧ ρϕ)∧
obs(un) = {s | ∃w ∈ L(K ⊗ Tϕ). (w,mrr(v) |= ϕ) ∧ v · un � w ∧ wn = s}. Same
arguments for r¬ϕ(u).

If |u| > 1 and res(un) = �, let |u| = n + 1 and u = v · un with |v| > 0. Here
mrr(u) = n. By induction hypothesis, we have

rϕ(v) = {s | ∃w ∈ L(K ⊗ Tϕ). (w,mrr(v) |= ϕ) ∧ v � w ∧ wn−1 = s},

r¬ϕ(v) = {s | ∃w ∈ L(K ⊗ T¬ϕ). (w,mrr(v) |= ¬ϕ) ∧ v � w ∧ wn−1 = s}.

Here, if we take the union of rϕ(v) and r¬ϕ(v), the two conjugated terms
(w,mrr(v) |= ϕ) and (w,mrr(v) |= ¬ϕ) will be just neutralized, i.e., rϕ(v) ∨
r¬ϕ(v) = {s | ∃w ∈ L(K ⊗T 0

ϕ). v � w ∧wn−1 = s}, where T 0
ϕ = 〈Vϕ, Θ0

ϕ, ρϕ,Jϕ〉
and Θ0

ϕ =
∧

yp∈ el(ϕ)

¬yp. It can be seen that ∀w ∈ L(K ⊗ T 0
ϕ), n. (w, n |= ϕ) ⇔ (wn |=

Θ0
ϕ). Thus rϕ(u) = fwd(rϕ(v) ∨ r¬ϕ(v), ρK ∧ ρϕ) ∧ obs(un) ∧ χ(ϕ) = {s | ∃w ∈

Assumption-Based RV with Partial Observability and Resets 177

L(K ⊗ Tϕ). (w, n |= ϕ) ∧ (v · un � w) ∧ wn = s}. Same procedure for r¬ϕ(u),
thus (11) is proven.

To finally prove (10), we first unfold (8) into (9) and get LK
ϕ (u) = {v | ∃w. v ·

w ∈ L(K) ∧ (v · w,mrr(u) |= ϕ) ∧ u � v ∧ |v| = |u|}. If LK
ϕ (u) is empty, then by

(11) rϕ(u) must be also empty, simply because L(K ⊗ Tϕ) ⊆ L(K). This proves
the first part of (10), the second part follows in the same manner. ��

5 Experimental Evaluation

The RV approach presented in this paper has been implemented as an extension
of nuXmv [8] in which the BDD library is based on CUDD 2.4.1.1. Besides
the offline monitoring in nuXmv, it is also possible to synthesize the symbolic
monitors into explicit-state monitors as independent code in various languages
as online monitors without dependencies on nuXmv and BDD. The correctness
of generated explicit-state monitor code has been extensively tested by compar-
ing the outputs with those from the symbolic monitors, on a large set of LTL
properties and random traces.

The comparison of the baseline implementation (no assumption, no reset)
with other RV tools is not in the scope of this paper. However, a comparison
with the RV-Monitor [27] has been reported in our companion tool paper [9],
where our Java-based monitors are shown to be about 200x faster than RV-
Monitor at generation-time and 2-5x faster at runtime, besides the capacity of
generating monitors from long LTL formulae. As no other tool supports all our
extended RV features, here we only focus on experimental evaluations on the
usefulness and correctness of our ABRV approach.2

Tests on LTL Patterns. To show the feasibility and effectiveness of our
RV approach, we have generated monitors from a wide coverage of practical
specifications, i.e. Dwyer’s LTL patterns [13]3. To show the impact of assump-
tions, we generated two groups of monitors, with and without assumption. The
chosen assumption says that the transitions to s-states occur at most 2 times,
which can be expressed in LTL as ((¬s)W (sW ((¬s)W (sW (G¬s))))), where
W denotes weak until : ϕWψ =̇ (Gϕ) ∨ (ϕUψ) = ϕU (ψ ∨ Gϕ). Under this
assumption we found that, non-monitorable properties like G(p → Fs) now
become monitorable, i.e. the monitor may output conclusive verdicts on certain
inputs. This is because, if the transitions to s-state have already occurred 2
times, there should be no s any more in the remaining inputs. Thus whenever p
occurs, for whatever future inputs it is impossible to satisfy Fs, thus the prop-
erty is violated conclusively. Eight monitors (Pattern 25, 27, 40, 42, 43, 44, 45,
50) are found to be monitorable under this fairness assumption.
2 All test data, models and other artifacts for reproducing all experiments here are

available at https://es.fbk.eu/people/ctian/papers/rv2019/rv2019-data.tar.gz.
3 The latest version (55 in total) is available at http://patterns.projects.cs.ksu.edu/

documentation/patterns/ltl.shtml. We call them Pattern 0, 1, . . . , 54 in the same
order.

https://es.fbk.eu/people/ctian/papers/rv2019/rv2019-data.tar.gz
http://patterns.projects.cs.ksu.edu/documentation/patterns/ltl.shtml
http://patterns.projects.cs.ksu.edu/documentation/patterns/ltl.shtml

178 A. Cimatti et al.

Fig. 4. The number of observations before a conclusive verdict with and w/o assump-
tion

On the other hand, under this assumption some patterns result in predictive
monitors, which output conclusive verdicts earlier than those without assump-
tions. For showing it, we generated 500 random traces (uniformly distributed),
each with 50 states, under the assumption (thus the monitor outputs cannot
be out-of-model). For each pair of monitors (with and without assumption), we
record two numbers of states before reaching a conclusive verdict. Whenever
the two numbers are the same, the related plot is omitted. In summary, fifteen
monitors (Pattern 25, 27, 29, 37, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 54) are
predictive, and five of them (Pattern 29, 37, 41, 49, 54) have more than 50 traces
showing the difference. Figure 4 shows, for example, the tests of Pattern 29 (s
responds to p after q until r) and 49 (s, t responds to p after q until r). The time
needed to run the tests on all traces is almost negligible (less than one second)
for each pattern.

The interesting traces (which show predictive verdicts) can be also obtained
by model checking on monitors generated into SMV models. Suppose we have
two monitors M1 (with assumption) and M2 (w/o assumption), and AV :=
(M1. concl ∧ ¬ M2. concl) (the assumption is valuable iff M1 has reached con-
clusive verdicts (�a, ⊥a or ×) while M2 has not), then the counterexample of
model-checking ¬F AV (AV cannot eventually be true) will be a trace show-
ing that the monitor M1 is predictive: ∅, {p, s}, ∅, s, p, ∅, Furthermore, it is
possible to find a trace such that the distance of conclusive outputs from the
two monitors is arbitrary large. For this purpose, we can setup a bounded
counter c, whose value only increases when AV is true and then verify if c
can reach a given maximum value, say, 10. By checking the invariance spec-
ification c < 10, the counterexample will be the desired trace. Similarly,
the monotonicity (G M. unknown ∨ (M. unknownU M. concl)), the correctness
((F M. true) → ϕ and (F M. false) → ¬ϕ), and the correctness of resets
(Xn(M. reset ∧ X(¬ M. resetU M. true)) → Xnϕ) of any monitor M gener-
ated from ϕ can also be checked in nuXmv. Details are omitted due to page
limits.

Assumption-Based RV with Partial Observability and Resets 179

Fig. 5. The factory

Tests on a Factory Model. The assumption used in previous tests may look
too artificial, so we present a real-world example taken from [16] and shown in
Fig. 5. It models a (simplified) assembly line in a factory, in which some empty
bottles need to pass three positions in the assembly line to have two ingredients
filled. The red ingredient is filled at position 0, while the green ingredient is filled
at position 1. In case of faults, either ingredient may not be correctly filled. The
goal is to make sure that all bottles at position 2 have both ingredients filled
successfully. There is a belt (the grey bottom line) moving all bottles to their
next positions, and the filling operations can only be done when the belt is not
moving. All variables in the model are Boolean: bottle present[] (with index
0–2) denotes the existence of a bottle at a position. Similarly, bottle ingr1[]
denotes the existence of the red ingredient in the bottle at a position, and
bottle ingr2[] for the green ingredient. Besides, move belt denotes if the belt
is moving, and new bottle denotes if there is a new bottle coming at position 0
before the belt starts to move. Finally, an unobservable variable fault denotes
the fault: whenever it happens, the current filling operations (if any) fail and the
corresponding ingredients are not filled into the bottle. (The related model files
are part of the downloadable artifacts.)

The basic requirement is that all bottles at position 2 have both ingre-
dients filled, if the belt is not moving. It can be expressed by safety
property G ((bottle present[2] ∧ ¬ move belt) → (bottle ingr1[2] ∧
bottle ingr2[2])) (whenever the belt is not moving and there is a bottle at posi-
tion 2, both ingredients are filled in that bottle). We found that, the monitor of
the same property, generated with the factory model as assumption, is predictive:
it outputs ⊥a almost immediately after the first fault happens, before the bottle
arrived at position 2. To see such a possible trace, again we used model checking.
By checking LTL specification ¬F AV where AV := (M1. concl ∧ ¬ M2. concl)
and M1 (M2) are monitors of the above safety property built with (without)
assumption, respectively. The counterexample shows one such trace: the fault
happens at state 4, and the filling of the red ingredient at position 0 failed at
position 1; the monitor with assumption outputs ⊥a at state 6, before the bottle
is moved to position 1, while the monitor without assumption can only output
⊥a at state 10, after the bottle is moved to position 2. This is because, any
unfilled bottle at position 0 or 1 will remain unfilled at position 2 under the
model, thus the monitor with assumption should have known the faults before
any unfilled bottle arrived at position 2, even if the fault itself is not directly

180 A. Cimatti et al.

observable. In practice, there may be more positions (and more ingredients) in
the assembly line, reporting the faults as early as possible may skip the rest of
filling operations of the faulty bottle (e.g. the bottle can be removed from the
assembly line by a separate recovery process) and potentially reduce the costs.

6 Related Work

The idea of leveraging partial knowledge of a system to improve monitorablity is
not altogether new. Leucker [25] considers an LTL3-based predictive semantics
LTLP , where, given a finite trace u, an LTL formula ϕ is evaluated on every
extension of u that are paths of a model P̂ of the SUS P. Our proposal is a
proper conservative extension of this work: in case of full observability, no reset,
if the system always satisfies the assumption, i.e. L(P) ⊆ L(P̂), our definition
coincides with [25]. As L(P) ⊆ L(P̂) is a strong assumption there, if it is violated,
the monitor output will be undefined, while we explicitly take that possibility
into account. On the other hand, partial observability is essential for extending
traditional RV approaches such that assumptions are really needed to evaluate
the property (not only for prediction). In fact, under full observability, if the
model P̂ is expressed in LTL, the monitor of [25] coincides with the monitor
for P̂ → φ given in [26]. Due to the partial observability, ABRV-LTL monitors
cannot be expressed in traditional RV approach (quantifiers over traces would
be necessary).

In another three-valued predictive LTL semantics [36], the assumption is
based on predictive words. Given a sequence u, a predictive word v of subse-
quent inputs is computed with static analysis of the monitored program and the
monitor output evaluates [[u · v |= ϕ]]3. The assumption used in our framework
can be also used to predict the future inputs, but can associate to each u an infi-
nite number of words. Thus our assumption-based RV framework is more general
than [36], even without partial observability and resets. On the other side, while
our assumptions can be violated by the system execution, the predictive word
of [36] is assured by static analysis.

The research of partial observability in Discrete-Event Systems is usually con-
nected with diagnosability [32] and predicability [18,19]. The presence of system
models plays a crucial role here, although technically speaking the support of
partial observation is orthogonal with the use of system models (or assumptions)
in the monitoring algorithm. Given a model of the system which includes faults
(eventually leading the system to a failure) and which is partially-observable
(observable only with a limited number of events or data variables), diagnosabil-
ity studies the problem of checking if the faults can be detected within a finite
amount of time. On the other hand, if we take an empty specification (true)
and use the system model as assumptions, then our monitors will be checking
if the system implementation is always consistent with its model—the monitor
only outputs �a and × in this case. This is in spirit of Model-based Runtime
Verification [2,38], sometimes also combined with extra temporal specifications
[34,35,37].

Assumption-Based RV with Partial Observability and Resets 181

Other work with partial observability appears in decentralised monitoring of
distributed systems [3,11], where an LTL formula describing the system’s global
behavior may be decomposed into a list (or tree) of sub-formulae according to
the system components, whose local behaviours are fully observable.

To the best of our knowledge, the concept of resettable monitors was never
published before. In general, if we do not consider assumptions or past operators,
restarting monitors for LTL is not an issue. For example, in [33], the authors
extend a runtime monitor for regular expressions with recovery. Comparing with
our work, it is specific to the given pattern and considers neither past operators,
nor the system model.

7 Conclusion

In this paper, we proposed an extended RV framework where assumptions, par-
tial observability and resets are considered. We proposed a new four-valued LTL
semantics called ABRV-LTL and have shown its necessity in RV monitors under
assumptions. As the solution, we gave a simple symbolic LTL monitoring algo-
rithm and demonstrated that, under certain assumptions the resulting monitors
are predictive, while some non-monitorable properties becomes monitorable.

Future work includes: (1) analyzing monitorability, fixing the assumption and
in the presence of resets; (2) characterizing monitors with partial observability
and resets in terms of epistemic operators [21] and forgettable past [24]; (3)
synthesizing the minimal assumption and/or the minimal number of observables
to make a property monitorable or to detect every violation (this is related
to [5,20]).

References

1. Ackermann, W.: Solvable Cases of the Decision Problem. North-Holland Publishing
Company (1954). https://doi.org/10.2307/2964059

2. Azzopardi, S., Colombo, C., Pace, G.: A model-based approach to combining static
and dynamic verification techniques. In: Margaria, T., Steffen, B. (eds.) ISoLA
2016, Part I. LNCS, vol. 9952, pp. 416–430. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47166-2 29

3. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. Formal Methods Syst. Des.
48(1–2), 46–93 (2016). https://doi.org/10.1007/s10703-016-0253-8

4. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14–64 (2011). https://doi.org/10.1145/
2000799.2000800

5. Bittner, B., Bozzano, M., Cimatti, A., Olive, X.: Symbolic synthesis of observ-
ability requirements for diagnosability. In: Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence, Toronto, Ontario, Canada, 22–26 July 2012.
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5056

6. Bryant, R.E.: Binary decision diagrams. In: Clarke, E., Henzinger, T., Veith, H.,
Bloem, R. (eds.) Handbook of Model Checking, pp. 191–217. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-10575-8 7

https://doi.org/10.2307/2964059
https://doi.org/10.1007/978-3-319-47166-2_29
https://doi.org/10.1007/978-3-319-47166-2_29
https://doi.org/10.1007/s10703-016-0253-8
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5056
https://doi.org/10.1007/978-3-319-10575-8_7

182 A. Cimatti et al.

7. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992). https://doi.
org/10.1016/0890-5401(92)90017-A

8. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 22

9. Cimatti, A., Tian, C., Tonetta, S.: NuRV: a nuXmv extension for runtime ver-
ification. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp.
382–392. Springer, Cham (2019)

10. Clarke, E.M., Grumberg, O., Hamaguchi, K.: Another look at LTL model check-
ing. Formal Methods Syst. Des. 10(1), 47–71 (1997). https://doi.org/10.1023/A:
1008615614281

11. Colombo, C., Falcone, Y.: Organising LTL monitors over distributed systems with
a global clock. Formal Methods Syst. Des. 49(1), 109–158 (2016). https://doi.org/
10.1007/s10703-016-0251-x

12. Du, X., Liu, Y., Tiu, A.: Trace-length independent runtime monitoring of quanti-
tative policies in LTL. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol.
9109, pp. 231–247. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19249-9 15

13. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 21st International Conference on
Software Engineering, pp. 411–420. ACM Press, New York (1999). https://doi.
org/10.1145/302405.302672

14. Emerson, E.A., Lei, C.-L.: Temporal reasoning under generalized fairness con-
straints. In: Monien, B., Vidal-Naquet, G. (eds.) STACS 1986. LNCS, vol. 210,
pp. 21–36. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-16078-7 62

15. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. Eng.
Dependable Softw. Syst. 34, 141–175 (2013). https://doi.org/10.3233/978-1-
61499-207-3-141

16. Fauri, D., dos Santos, D.R., Costante, E., den Hartog, J., Etalle, S., Tonetta, S.:
From system specification to anomaly detection (and back). In: Proceedings of the
2017 Workshop on Cyber-Physical Systems Security and PrivaCy, pp. 13–24. ACM
Press, New York, November 2017. https://doi.org/10.1145/3140241.3140250

17. Fuxman, A.D.: Formal analysis of early requirements specifications. Ph.D. thesis,
University of Toronto (2001). http://dit.unitn.it/∼ft/papers/afthesis.ps.gz

18. Genc, S., Lafortune, S.: Predictability of event occurrences in partially-observed
discrete-event systems. Automatica 45(2), 301–311 (2009). https://doi.org/10.
1016/j.automatica.2008.06.022

19. Genc, S., Lafortune, S.: Predictability in discrete-event systems under partial
observation. IFAC Proc. Vol. 39(13), 1461–1466 (2006). https://doi.org/10.3182/
20060829-4-CN-2909.00243

20. Graf, S., Peled, D., Quinton, S.: Monitoring distributed systems using knowledge.
In: Bruni, R., Dingel, J. (eds.) FMOODS/FORTE -2011. LNCS, vol. 6722, pp.
183–197. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21461-
5 12

21. Halpern, J.Y., Vardi, M.Y.: The complexity of reasoning about knowledge and
time. I. Lower bounds. Journal of Computer and System Sciences 38(1), 195–237
(1989). https://doi.org/10.1016/0022-0000(89)90039-1

22. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0 24

https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1023/A:1008615614281
https://doi.org/10.1023/A:1008615614281
https://doi.org/10.1007/s10703-016-0251-x
https://doi.org/10.1007/s10703-016-0251-x
https://doi.org/10.1007/978-3-319-19249-9_15
https://doi.org/10.1007/978-3-319-19249-9_15
https://doi.org/10.1145/302405.302672
https://doi.org/10.1145/302405.302672
https://doi.org/10.1007/3-540-16078-7_62
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.1145/3140241.3140250
http://dit.unitn.it/~ft/papers/afthesis.ps.gz
https://doi.org/10.1016/j.automatica.2008.06.022
https://doi.org/10.1016/j.automatica.2008.06.022
https://doi.org/10.3182/20060829-4-CN-2909.00243
https://doi.org/10.3182/20060829-4-CN-2909.00243
https://doi.org/10.1007/978-3-642-21461-5_12
https://doi.org/10.1007/978-3-642-21461-5_12
https://doi.org/10.1016/0022-0000(89)90039-1
https://doi.org/10.1007/3-540-46002-0_24

Assumption-Based RV with Partial Observability and Resets 183

23. Kesten, Y., Pnueli, A., Raviv, L.: Algorithmic verification of linear temporal
logic specifications. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 1–16. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055036

24. Laroussinie, F., Markey, N., Schnoebelen, P.: Temporal logic with forgettable past.
In: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science
(LICS 2002), pp. 383–392. IEEE Comput. Soc., July 2002. https://doi.org/10.
1109/LICS.2002.1029846

25. Leucker, M.: Sliding between model checking and runtime verification. In: Qadeer,
S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 82–87. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35632-2 10

26. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Program. 78(5), 293–303 (2009). https://doi.org/10.1016/j.jlap.2008.08.004

27. Luo, Q., et al.: RV-Monitor: efficient parametric runtime verification with simul-
taneous properties. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS,
vol. 8734, pp. 285–300. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11164-3 24

28. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Sys-
tems: Specification. Springer, New York (1992). https://doi.org/10.1007/978-1-
4612-0931-7

29. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer,
New York (1995). https://doi.org/10.1007/978-1-4612-4222-2

30. McMillan, K.L.: Symbolic Model Checking. Springer, Boston (1993). https://doi.
org/10.1007/978-1-4615-3190-6

31. Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification.
Autom. Softw. Eng. 12(2), 151–197 (2005). https://doi.org/10.1007/s10515-005-
6205-y

32. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.:
Diagnosability of discrete-event systems. IEEE Trans. Autom. Control 40(9), 1555–
1575 (1995). https://doi.org/10.1109/9.412626

33. Selyunin, K., et al.: Runtime monitoring with recovery of the SENT communication
protocol. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017, Part I. LNCS, vol.
10426, pp. 336–355. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63387-9 17

34. Tan, L.: Model-based self-monitoring embedded programs with temporal logic
specifications. Autom. Softw. Eng. 380–383 (2005). https://doi.org/10.1145/
1101908.1101975

35. Tan, L., Kim, J., Sokolsky, O., Lee, I.: Model-based testing and monitoring for
hybrid embedded systems. In: IEEE International Conference on Information
Reuse and Integration, pp. 487–492. IEEE, November 2004. https://doi.org/10.
1109/IRI.2004.1431508

36. Zhang, X., Leucker, M., Dong, W.: Runtime verification with predictive semantics.
In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 418–432.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28891-3 37

37. Zhao, Y., Oberthür, S., Kardos, M., Rammig, F.J.: Model-based runtime verifica-
tion framework for self-optimizing systems. Electron. Notes Theor. Comput. Sci.
144(4), 125–145 (2006). https://doi.org/10.1016/j.entcs.2006.02.008

38. Zhao, Y., Rammig, F.: Model-based runtime verification framework. Electron.
Notes Theor. Comput. Sci. 253(1), 179–193 (2009). https://doi.org/10.1016/j.
entcs.2009.09.035

https://doi.org/10.1007/BFb0055036
https://doi.org/10.1007/BFb0055036
https://doi.org/10.1109/LICS.2002.1029846
https://doi.org/10.1109/LICS.2002.1029846
https://doi.org/10.1007/978-3-642-35632-2_10
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1007/978-3-319-11164-3_24
https://doi.org/10.1007/978-3-319-11164-3_24
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-4222-2
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/s10515-005-6205-y
https://doi.org/10.1007/s10515-005-6205-y
https://doi.org/10.1109/9.412626
https://doi.org/10.1007/978-3-319-63387-9_17
https://doi.org/10.1007/978-3-319-63387-9_17
https://doi.org/10.1145/1101908.1101975
https://doi.org/10.1145/1101908.1101975
https://doi.org/10.1109/IRI.2004.1431508
https://doi.org/10.1109/IRI.2004.1431508
https://doi.org/10.1007/978-3-642-28891-3_37
https://doi.org/10.1016/j.entcs.2006.02.008
https://doi.org/10.1016/j.entcs.2009.09.035
https://doi.org/10.1016/j.entcs.2009.09.035

184 A. Cimatti et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Decentralized Stream Runtime Verification

Luis Miguel Danielsson1,2(B) and César Sánchez1(B)

1 IMDEA Software Institute, Madrid, Spain
{luismiguel.danielsson,cesar.sanchez}@imdea.org

2 Universidad Politécnica de Madrid (UPM), Madrid, Spain

Abstract. We study the problem of decentralized monitoring of stream
runtime verification specifications. Decentralized monitoring uses dis-
tributed monitors that communicate via a synchronous network, a com-
munication setting common in many cyber-physical systems like auto-
motive CPSs. Previous approaches to decentralized monitoring were
restricted to logics like LTL logics that provide Boolean verdicts. We
solve here the decentralized monitoring problem for the more general
setting of stream runtime verification. Additionally, our solution han-
dles network topologies while previous decentralized monitoring works
assumed that every pair of nodes can communicate directly. We also
introduce a novel property on specifications, called decentralized effi-
cient monitorability, that guarantees that the online monitoring can be
performed with bounded resources. Finally, we report the results of an
empirical evaluation of an implementation and compare the expressive
power and efficiency against state-of-the-art decentralized monitoring
tools like Themis.

1 Introduction

We study the problem of decentralized runtime verification of stream runtime
verification (SRV) specifications. Runtime verification (RV) is a dynamic tech-
nique for software quality assurance that consists of generating a monitor from a
formal specification, that then inspects a single trace of execution of the system
under analysis. One of the problems that RV must handle is to generate monitors
from a specification. Early approaches for specification languages were based on
temporal logics [6,11,18], regular expressions [25], timed regular expressions [2],
rules [3], or rewriting [23]. Stream runtime verification, pioneered by Lola [10],
defines monitors by declaring the dependencies between output streams of results
and input streams of observations. SRV is a richer formalism that goes beyond
Boolean verdicts, like in logical techniques, to allow specifying the collection of
statistics and the generation richer (non-Boolean) verdicts. Examples include
counting events, specifying robustness or generating models or quantitative ver-
dicts. See [10,14,17] for examples illustrating the expressivity of SRV languages.

This work was funded in part by the Madrid Regional Government under project
“S2018/TCS-4339 (BLOQUES-CM)”, by EU H2020 project 731535 “Elastest” and by
Spanish National Project “BOSCO (PGC2018-102210-B-100)”.

c© Springer Nature Switzerland AG 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 185–201, 2019.
https://doi.org/10.1007/978-3-030-32079-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-32079-9_11

186 L. M. Danielsson and C. Sánchez

Another important aspect of RV is the operational execution of monitors:
how to collect information and how to monitor incrementally. In this paper we
consider using a network of distributed monitors connected via a synchronous
network, together with periodic sampling of inputs. This problem is known as
decentralized monitoring. Our goal is to generate local monitors at each node that
collaborate to monitor the specification, distributing the computational load
while minimizing the network bandwidth and the latency of the computation
of verdicts. Apart from more efficient evaluation, decentralized monitoring can
provide fault-tolerance as the process can partially evaluate a specification with
the part of the network that does not fail.

Our Solution. In this paper we provide a solution to the decentralized monitor-
ing problem for Lola specifications for arbitrary network topologies and place-
ment of the local monitors. We assume a connected network topology where
nodes can only communicate directly with their neighbors. In general, messages
between two nodes require several hops, and all nodes have initially deployed
a local routing table that contains the next hop depending on the final des-
tination. We follow the synchronous distributed model of computation, where
computation (input readings from the system, message routing and local monitor
computations) proceeds in rounds. We also assume a reliable system: nodes do
not crash, and messages are not lost or duplicated. These assumptions are realis-
tic, for example in automotive CPSs like solutions based on a synchronous BUS,
like CAN networks [19] and Autosar [1]. In our solution, different parts of the
specification (modeled as streams), including input readings, will be deployed
in different nodes as a local monitor. Local monitors will communicate when
necessary to resolve the streams assigned to them, trying to minimize the com-
munication overhead.

A degenerated case of this setting is a centralized solution: nodes with
mapped observations send their sensed values to a fixed central node that is
responsible of computing the whole specification. The SRV language that we
consider is Lola [10] including future dependencies. We will identify those speci-
fications that can be monitored decentralized with finite memory, independently
of the trace length.

Motivating Example. Our motivation is to build rich monitors for decen-
tralized synchronous networks, used in automotive CPSs [20] for example

CH PTC TR

EN

Fig. 1. Autosar simplified topology

using the Autosar standard over the CAN
network. This example is inspired by the
Electronic Stability Program (ESP) and
models the under steering to the left scenario
in an attempt to avoid an obstacle. The ESP
must detect the sudden turn of the steering
wheel and the deviation produced with the
actual movement of the car (yaw). When this
deviation is perceived and maintained over a

Decentralized Stream Runtime Verification 187

period of time, the ESP must act on the brakes, the torque distribution and the
engine in order to produce the desired movement without any lose of control
over the vehicle. The topology is shown on the right. The monitor in node CH
(chassis) detects the under-steering and whether the ESP must be activated.
The monitor in EN (engine) checks that the throttle is ready to react to the
evasive maneuver. Our intention is to define the following streams:

– ESP on: represents whether there is under-steering or the wheel is slipping,
– req thr: the requested throttle,
– good thro: whether the throttle is correct

We achieve this by using input values, like yaw (the direction of the wheels), the
desired steering, drive wheel slip (whether the drive wheels are slipping),
and the throttle.
@Chassis{ input num yaw , steering , drive_wheel_slip

define num dev = steering - yaw

define bool under_steering_l = dev > 0 and dev > 0.2

output bool ESP_on = under_steering_left or drive_wheel_slip

}

@Engine{ input num throttle

output num req_thr = if ESP_on then req_thr[-1|0] -dev else 0

output bool good_thro = req_thr[-1|0]/ throttle <= 0.1

}

Related Work. The work in [4] shows how monitoring Metric Temporal Logic
specifications of distributed systems (including failures and message reordering)
where the nodes communicate in a tree fashion and the root emits the final ver-
dict. Sen et al. [26] introduces PT-DTL, a variant of LTL logic for monitoring
distributed systems. The work in [16] uses slices to support node crashes and mes-
sage errors when monitoring distributed message passing systems with a global
clock. Bauer et al. [5] introduce a first-order temporal logic and trace-length inde-
pendent spawning automaton. Bauer et al. [7] shows a decentralized solution to
monitor LTL3 in synchronous systems using formula rewriting. This is improved
in [12,13] using an Execution History Encoding (EHE). All these approaches
consider only Boolean verdicts. SRV can generate verdicts from arbitrary data
domains, but all previous SRV efforts, from Lola [10], Lola2.0 [14], Copilot [21,22]
and extensions to timed event streams, like TeSSLa [8], RTLola [15] or Striver [17]
assume a centralized monitoring setting.

Contributions and Structure. The main contribution of this paper is a solu-
tion, described in Sect. 3, to the decentralized stream runtime verification prob-
lem. A second contribution, included in Sect. 4, is the identification of a frag-
ment of specifications, called decentralized efficiently monitorable, that ensure
that monitoring can be performed with bounded memory (independently of the
length of the input trace). A third contribution, detailed in Sect. 5, is a prototype
implementation and an empirical evaluation. Section 2 contains the preliminaries
and Sect. 6 concludes.

188 L. M. Danielsson and C. Sánchez

2 Preliminaries. Stream Runtime Verification

We recall now SRV briefly (see [10] and the tutorial [24]). The fundamental idea
of SRV, pioneered by Lola [10] is to cleanly separate the temporal dependencies
from the individual operations to be performed at each step, which leads to gen-
eralization of monitoring algorithms for logics to the computation of richer val-
ues. A Lola specification declares the relation between output streams and input
streams, including both future and past temporal dependencies. The streams are
typed using arbitrary multi-sorted first-order theories. A type has a collection of
symbols used to construct expressions, together with an interpretation of these
symbols to evaluate ground expressions.

Lola Syntax. Given a set Z of (typed) stream variables the set of stream expres-
sions consists of (1) variables from Z, (2) offsets v[k, d] where v is a stream vari-
able of type D, k is a natural number and d a value from D, and (3) function
applications f(t1, . . . , tn) using constructors f from the theories to previously
defined terms. Stream variables represent streams (sequences of values). The
intended meaning of expression v[−1, false] is the value of stream v in the previ-
ous position of the trace (or false if there is no such previous position, that is, at
the beginning). We assume that all theories have a constructor if · then · else ·
that given an expression of type Bool and two expressions of type D constructs
a term of type D. We use TermD(Z) for the set of stream expressions of type D
constructed from variables from Z (and drop Z if clear from the context). Given
a term t, sub(t) represents the set of sub-terms of t.

Definition 1 (Specification). A Lola specification ϕ(I,O) consists of a set
I = {r1, . . . , rm} of input stream variables, a set O = {s1, . . . , sn} of output
stream variables, and a set of defining equations, si = ei(r1, . . . , rm, s1, . . . , sn)
one per output variable si ∈ O, from TermD(I ∪ O) where D is the type of si.

A specification describes the relation between input streams and output streams.
We will use r, ri, . . . to refer to input stream variables; s, si, . . . to refer to output
stream variables; and u, v for an arbitrary input or output stream variable.
Given ϕ(I,O) we use appears(u) for the set of output streams that use u, that
is {si | u[−k, d] ∈ sub(ei) or u ∈ sub(ei)}. Also, ground(t) indicates whether
expression t is a ground (contains no variables or offsets) and can be evaluated
into a value.

Example 1. The property “sum the previous values in input stream y, but if the
reset stream is true, reset the count”, can be expressed as follows, where stream
variable root uses the accumulator acc and the input reset to compute the
desired sum:

input bool reset , int i

define int acc = i + root[-1|0]

output int root = if reset then 0 else acc

Decentralized Stream Runtime Verification 189

Lola Semantics. At runtime, input stream variables are associated with input
streams (sequence of values of the appropriate type and of the same length M).
The intended meaning of a Lola specification is to associate output streams
to output stream variables (of the same length M) that satisfy the equations
in the specification. Formally, this semantics are defined denotationally. Given
input streams σI (one sequence per input stream variable) and given an output
candidate σO (one sequence per output stream) the semantics describe when the
pair (σI , σO) matches the specification, which we write (σI , σO) � ϕ. We use σr

for the stream in σI corresponding to input variable r and σr(k) for the value
at position k (with 0 ≤ k ≤ M).

A valuation is a pair σ : (σI , σO). Given a valuation the evaluation �t�σ of a
term t is a sequence of length M of values of the type of t defined as follows:

– If t is a stream variable u, then �u�σ(j) = σu(j).
– If t is f(t1, . . . , tk) then �f(t1, . . . , tk)�σ(j) = f(�t1�σ(j), . . . , �tk�σ(j))
– If t is v[i, c] then �v[i, c]�σ(j) = �v�σ(j + i) if 0 ≤ j + i < M , and c otherwise.

Definition 2 (Evaluation Model). A valuation (σI , σO) satisfies a Lola spec-
ification ϕ whenever for every output variable si, �si�(σI ,σO) = �ei�(σI ,σO). In this
case we say that σ is an evaluation model of ϕ and write (σI , σO) � ϕ.

This semantics capture when a candidate valuation is an evaluation model, but
the intention of a Lola specification is to compute the unique output streams
given input streams.

A dependency graph Dϕ of a specification ϕ(I ∪O) is a weighted multi-graph
(V,E) whose vertices are the stream variables V = I ∪ O, and E contains a
directed weighted edge u

w−→ v whenever v[w, d] is a subterm in the defining
equation of u. If a dependency graph Dϕ contains no cycles with 0 weight then
the specification is called well-formed, and it guarantees that for every σI there
is a unique σO such that (σI , σO) � ϕ. This is because the value of a stream at
a given position cannot depend on itself.

Given a stream variable u and position i ≥ 0 the instant stream variable (or
simply instant variable) u[i] is a fresh variable of the same type as u.

Definition 3 (Evaluation Graph). Given ϕ(I,O) and a trace length M the
evaluation graph Gϕ,M has as vertices the set of instant variables {u[k]} for
u ∈ I ∪ O and 0 ≤ k < M , and has edges u[k] → v[k′] if the dependency graph

contains an edge u
j−→ v and k + j = k′.

For example, if the defining equations of u contains v[−1, d] then u[16] points to
v[15] in all evaluation graphs with M ≥ 16. In well-formed specifications there
are no cycles in any evaluation graph, which enables to reason by induction on
evaluation graphs.

Lola Online Monitoring. The Lola online monitoring algorithm [10,24] main-
tains two storages:

– R: for instant variables that have been resolved (that is, pairs (u[k], c) that
denote that u[k] is known to have value c);

190 L. M. Danielsson and C. Sánchez

– U : for instant variables u[k] whose value is not determined yet (that is, whose
instantiated equation still contains variables).

At instant k the equation ei for si gets instantiated as follows: every variable
u in ei is converted into u[k] and every offset u[j, d] is turned into u[k + j] (or
into d if k + j falls out of bounds). After instantiating all equations, the monitor
substitutes instant variables by their value if these values are resolved (in R). If
the resulting equation is not ground then it remains in U . Eventually, all values
will be discovered and every term will be resolved and moved from U to R.

3 Decentralized Stream Runtime Verification

In this section we describe our solution to the decentralized SRV problem. Given
a well-formed Lola specification, the decentralized online algorithm that we
present here will incrementally compute a value for each output instant vari-
able, reading values from the input stream variables at every clock instant. The
starting point of the solution is a map that associates each variable in the speci-
fication to a network node. The node associated to an input variable corresponds
to the location where readings of new values are performed, and the node asso-
ciated to an output variable s is the node responsible to incrementally compute
the stream for s. Each node will run a local monitor, that will collaborate with
other monitors by exchanging messages to perform the global monitoring task.

The main correctness criteria is that the output produced by our network
of cooperating monitors corresponds to the denotational semantics. However,
the decentralized algorithm may compute some output values at different time
instants than the centralized version, due to the different location of the inputs
and the delays caused by the communication.

3.1 Problem Description

The description of the decentralized SRV monitoring problem consists of a spec-
ification, a network topology and a stream assignment.

Network. A network topology T : 〈N,→〉 is given by a set of nodes N connected
by directed edges →⊆ N × N that represent communication links between the
nodes. We assume that the graph is connected. A route between two nodes n
and m is list of nodes [n0, . . . , nk] such that consecutive nodes are neighbors (i.e.
ni → ni+1), no node is repeated, and n = n0 and m = nk. We statically fix
routes between every two nodes with the following properties: (1) if two nodes
n,m are neighbors then they communicate directly (that is [n,m] is the route
from n to m); (2) if [n0, . . . , ni, . . . nk] is a route, then the route from ni to nk

is the sub-list [ni . . . nk]. These properties can be enforced easily in a connected
graph, and they imply that routing tables can be encoded locally in every node
by just encoding at every node the next hop for every destination.

Decentralized Stream Runtime Verification 191

We use nextn(m) for the next hop in the routing table of n for messages with
destination m, and dist(n,m) for the number of hops between n and m. This is
precisely the number of routing operations that are needed for a message from
n to arrive to m. Consider the topology in Fig. 1. A message inserted at time 17
in CH with destination EN will arrive to PTC at time 18, which will be routed,
arriving at EN at time 19.

We assume reliable unicast communication (no message loss or duplication)
over a synchronous network, from which we build a synchronous distributed
system where computation proceeds as a sequence of cycles. In this computa-
tional model, all nodes in the network execute in every cycle—in parallel and
to completion— the following actions: (1) read input messages, (2) perform a
terminating local computation, (3) generate output messages. We describe below
our decentralized monitoring solution as a synchronous distributed system. In
our solution we use two types of messages:

– Requests messages: (req, s[k], ns, nd) where s[k] is an instant variable, ns is
the source node and nd is the destination node of the message.

– Response messages: (resp, s[k], c, ns, nd) where s[k] is an instant variable, c
is a value, ns is the source node and nd is the destination node.

Let msg = (resp, s[k], c, ns, nd), then msg .src = ns, msg .dst = nd, msg .type =
resp, msg .stream = s[k] and msg .val = c (the analogous definitions apply for a
request message except that msg .val is not applicable). The intention of request
messages is that ns requests the value of s[k] from nd, which is the node in
charge of stream s. Response messages are used to inform of the actual values
read or computed.

Stream Assignment and Communication Strategies. Given a specifica-
tion ϕ(I,O) and a network topology T : 〈N,→〉 a stream assignment is a map
μ : I ∪ O → N that assigns a network node to each stream variable. The node
μ(r) for an input stream variable r is the location in the network where r is
sensed in every clock tick. At runtime, at every instant k new input values for
variables mapped to different nodes are read simultaneously. The node μ(s) for
an output stream variable s is the location whose local monitor is responsible
for resolving the values of s.

Additionally, each stream variable v can be assigned one of the following
two communication strategies to denote whether an instant value v[k] is auto-
matically communicated to all potentially interested nodes, or whether its value
is obtained on request only. Let v and u be two stream variables such that v
appears in the equation of u and let nv = μ(v) and nu = μ(u).

– Eager communication: the node nv informs nu of every value v[k] = c that
it resolves by sending a message (resp, v[k], c, nv, nu).

– Lazy communication: node nu requests nv the value of v[k] (in case nu

needs it to resolve u[k′] for some k′) by sending a message (req, v[k], nu, nv).
When nu receives this message and resolves v[k] to a value c, nu will respond
with (resp, v[k], c, nv, nu).

192 L. M. Danielsson and C. Sánchez

Each stream variable can be independently declared as eager or lazy. We use
two predicates eager(u) and lazy(u) (which is defined as ¬eager(u)) to indicate
the communication strategy of stream variable u. Note that the lazy strategy
involves two messages and eager only one, but eager sends every instant variable
resolved, while lazy will only sends those that are requested. In case the values
are almost always needed, eager is preferable while if values are less frequently
required lazy is preferred. We are finally ready to define the decentralized SRV
problem.

Definition 4. A decentralized SRV problem 〈ϕ, T , μ, eager〉 is characterized by
a specification ϕ, a topology T , a stream assignment μ and a communication
strategy for every stream variable.

3.2 Decentralized Stream Runtime Verification

Our solution consists of a collection of local monitors, one for each network node
n. A local monitor 〈Qn, Un, Rn, Pn,Wn〉 for n consists of an input queue Qn and
four storages:

– Resolved storage Rn, where n stores resolved instant variables (v[k], c).
– Unresolved storage Un, where n stores unresolved equations v[k] = e where

e is not a value, but an expression that contains other instant variables.
– Pending requests Pn, where n records instant variables that have been

requested from n by other monitors but that n has not resolved yet.
– Waiting for responses Wn, where n records instant variables that n has

requested from other nodes but has received no response yet.

When n receives a response from remote nodes, the information is added
to Rn, so future local requests for the same value can be resolved immediately.
The storage Wn is used to prevent n from requesting the same value twice while
waiting for the first request to be responded. An entry in Wn is removed when
the value is received, since the value will be subsequently fetched directly from
Rn and not requested through the network. The storage Pn is used to record
that a value that n is responsible for has been requested, but n does not know
the answer yet. When n computes the answer, then n sends the corresponding
response message and removes the entry from Pn.

Informally, in each cycle, the local monitor for n processes the incoming mes-
sages from its input queue Qn. Then n reads the values for input streams assigned
to it and also instantiates for the current instant the output stream variables
that n is responsible for. After that, the equations obtained are simplified using
the knowledge acquired so far by n. Finally, new response and request messages
are generated and inserted in the queues of the corresponding neighbors.

More concretely, every node n will execute the procedure Monitor shown in
Algorithm 1, which invokes Step in every clock tick until the input terminates.
The procedure Finalize is used to resolve the pending values at the end of the
trace to their default. The procedure Step executes the following steps:

Decentralized Stream Runtime Verification 193

1. Process Messages: Lines 11–20 deal with the processing of incoming mes-
sages. First, Lines 13–14 route messages with a different destination. Lines
16–17 annotate requests in P , which will be later resolved and responded.
Lines 19–20 handle response arrivals, adding them to R and removing them
from W .

2. Read New Inputs and Outputs: Line 21 reads new inputs for current
time k, and line 22 instantiates the equation of every output stream that n
is responsible for.

3. Evaluate: Line 23 evaluates the unresolved equations using Evaluate.
4. Send Responses: Lines 24–27 send messages for all eager variables. Lines

28–31 deal with pending lazy variables. If a pending instant variable is now
resolved, the response message is sent and the entry is removed from Pn.

5. Send new Requests: Lines 32–35 send new request messages for all lazy
instant streams that are now needed, to the corresponding responsible nodes.

6. Prune: Line 37 prunes the set R from information that is no longer needed.

The pruning algorithm appears in Algorithm 2 and it is described in Sect. 4. We
now show that our solution is correct by proving that the output computed is
the same as in the denotational semantics, and that every output is eventually
computed.

Theorem 1. All of the following hold for every instant variable u[k]:

(1) If lazy(u) then all request messages for u[k] are eventually responded.
(2) If eager(u) then a response message for u[k] is eventually sent.
(3) The value of u[k] is eventually resolved.
(4) The value of u[k] is c if and only if (u[k], c) ∈ R at some instant.

The proof proceeds by induction in the evaluation graph, showing simultane-
ously in the induction step (1)–(4) as these depend on each other (in the previ-
ous inductive steps). Theorem 1 implies that every value of every defined stream
at every point is eventually resolved by our network of cooperating monitors.
Therefore, given input streams σI , the algorithm computes (by (4)) the unique
output streams σi one for each si. The element σi(k) is the value resolved for
si[k] by the local monitor for μ(si). The following theorem captures that Algo-
rithm 1 computes the right values (according to the denotational semantics) and
Theorem 1 that all values are eventually computed.

Theorem 2. Let ϕ be a specification, S = 〈ϕ, T , μ〉 be a decentralized SRV
problem, and σI an input. Then (σI , out(σI)) � ϕ.

3.3 Simplifiers

The evaluation of expressions in Algorithm 1 assumes that all instant variables in
an expression e are known (i.e., e is ground), so the interpreted functions in the
data theory can evaluate e. Sometimes, expressions can be partially evaluated
(or even the value fully determined) knowing only some of the instant variables.
A simplifier is a function f : TermD → TermD such that

194 L. M. Danielsson and C. Sánchez

– for every term t of type D, Vars(f(t)) ⊆ Vars(t)
– for every substitution ρ of Vars(t), �t � ρ�(σI ,σO) = �f(t) � ρ�(σI ,σO)

For example, the following are sound simplifications

if true then s[0] else t[1] �→ s[0] 0 + s[7] �→ s[7] true ∨ s[0] �→ true
if false then s[0] else t[1] �→ t[1] 1 · t[23] �→ t[23] false ∨ s[0] �→ s[0]

Simplifiers can dramatically affect the performance in terms of the instant at
which an instant variable is resolved and the number of messages exchanged.

It is easy to see that for every term t obtained by instantiating a defining
equation and for every simplifier f , �t�σI ,σO

= �f(t)�(σI ,σO), because the values
of the variables in t and in f(t) are filled with the same values (from σI and σO).
The following also holds for every ϕ and valuation (σI , σO).

Lemma 1. Let e be an instant term and let ρ = {u[k]
→ c} be the substitution
such that c = �u[k]�(σI ,σO). Then, �e�(σI ,σO) = �e � ρ�(σI ,σO).

Lemma 1 holds immediately because the substitution ρ is just the partial applica-
tion of one of the values of the variables that may appear in e. Now, consider arbi-
trary simplifiers simp used in line 43 to simplify expressions. Let Un be the unre-
solved storage for node n and let u[k] be an instant variable with μ(u) = n. By
Algorithm 1 the sequence of terms (u[k], t0), (u[k], t1), . . . (u[k], tk) that Un will
store are such that ti+1 = simp(ti) or ti+1 = t1 � ρ where ρ = {vi[ki] ← ci} cor-
responds to the substitution of values of instant variables that are discovered at
the given time step. By Lemma 1, it follows that �ti�(σI ,σO) = �ti+1�(σI ,σO) which
in particular when tk = c implies that the value computed is �u[k]�(σI ,σO) = c.
The following theorem follows.

Theorem 3. The decentralized algorithm using simplifiers terminates and com-
putes the unique output for every well-formed specification ϕ.

In fact, it is easy to show that the algorithm using simplifiers obtains the value of
every instant variable no later than the algorithm that uses no simplifier. This is
because in the worst case every instant variable is resolved when all its depending
variables are known, and all response messages are sent at the moment they are
resolved.

4 Decentralized Efficient Monitorability

In this section we identify a fragment of specifications, called decentralized effi-
ciently monitorable, for which the local monitors only need bounded memory to
compute every output value. To guarantee that a given storage in a local moni-
tor for node n is bounded, one must provide a bound on both: (1) when a value
(u[k], c) in Rn can be removed; and (2) when it is guaranteed that an unresolved
value from Un is resolved. Note that if s[k] is resolved in bounded time then all
occurrences of s[k] in Wn and Pn are also removed in bounded time, because it
only takes a bounded amount of time for response messages to arrive.

Decentralized Stream Runtime Verification 195

Pruning the Resolved Storage. We show now that the memory necessary
in the resolve storage Rn can be bounded (for all specifications). If a stream
s is eager(s) then once s[k] is resolved it is sent to the potentially interested
remote nodes. However, the value of s[k] has to remain in Rn (and in Rm for
remote nodes that receive it) until it is no longer needed. For streams s that are
lazy(s), the value must remain in Rn until it is guaranteed that the value will
not be requested any more. This information is captured by the notion of back
reference.

Definition 5. Let ϕ be a Lola specification with dependency graph Dϕ. The back
reference of a stream s is

Δ(s)
def
=

{
max(0, {−k | r

k−→ s}) if eager(s)
max(0, {−k + dist(r, s) | r

k−→ s}) if lazy(s)

Note that for lazy streams the request is guaranteed to be received after
dist(μ(r), μ(s)) steps of the instantiation of the correspondent instance of r.
Therefore, a node responsible for s will have received all requests for u[k] at
k + Δ(u). Similarly, a fetch for u[k] in Rn locally at n is guaranteed to be done
no later than k + Δ(u). Therefore, the following results holds.

Lemma 2. A value (u[k], c) ∈ Rn will not be fetched or requested after k+Δ(u).

This implies that at every node n, all values of u[k] can be removed at instant k+
Δ(s), which allows to implement the algorithm for pruning shown in Algorithm 2.
Therefore, the maximum size of Rn needed is bounded linearly by the maximum
Δ(s) times the number of streams.

Time to Resolve. In centralized SRV monitoring [10,24] a specification is
efficiently monitorable whenever all cycles in Dϕ have negative weight. This
guarantees that the online algorithm can be performed in a trace length inde-
pendent way. However, this is not true for decentralized monitoring as illustrated
in the following example.
Example 2. Consider the following specification deployed in monitors 1 and 2
with dist(1, 2) = dist(2, 1) = 2:

@1{output num a eval = b[-1|0]}

@2{output num b eval = a[-1|0]}

It is easy to see that a[0] and b[0] will be resolved at time 0, a[1] and b[1] at time
2, and a[n] and b[n] at time 2n. Then, U1 and U2 will grow to contain a number
of equations that depends on the length the trace. �
We introduce the notion of decentralized efficiently monitorable, that guarantees
an upper bound on the number of steps that it takes to resolve an equation in Un.
Note that Algorithm 1 removes an equation from Un and moves it into Rn once it
is resolved. In turn, this also gives a bound on the duration of the elements in Pn

and Wn. It follows that for decentralized efficiently monitorable specifications,
the monitoring process requires only a constant amount of memory (on the size
of the specification) independently of the length of the trace.

196 L. M. Danielsson and C. Sánchez

Algorithm 1. Local monitoring algorithm at node n with 〈Qn, Un, Rn, Pn,Wn〉
1: procedure Monitor
2: Un, Rn, Pn, Wn ← ∅
3: k ← 0

4: while not END do

5: Step(k)
6: k ← k + 1

7: M ← k � Trace length M
8: Finalize(M)

9: procedure Step(k)

10: Rold ← Rn

11: for all msg ∈ Q do � Process incoming messages
12: Qn ← Qn \ msg
13: if msg.dst �= n then
14: route(msg)

15: else

16: if msg.type = req then
17: Pn ← Pn ∪ msg

18: else
19: Rn ← Rn ∪ {(msg.stream,msg.val)}
20: W ← W \ {msg.stream}
21: Rn ← Rn ∪ {r[k],new(r, k) | r ∈ inputs(n)} � Read inputs
22: Un ← Un ∪ {s[k], instantiate(es, k) | s ∈ outputs(n)} � Instantiate outputs

23: Evaluate(Un, Rn)
24: for all (r[k′], c) ∈ Rn \ Rold do � New knowledge

25: if eager(r) ∧ μ(r) = n then � Eager new knowledge

26: for all nd ∈ μ(appears(r)) such that n �= nd do
27: send(resp, r[k′], c, n, nd)

28: for all msg ∈ Pn do � Pending lazy new knowledge
29: if (msg.stream, c) ∈ Rn then

30: send(resp,msg.stream, c, n,msg.src)
31: Pn ← Pn \ {msg}
32: for all (, e) ∈ U do

33: for all u[k′] ∈ sub(e) do

34: if lazy(u) ∧ u[k′] /∈ Wn ∧ μ(u) �= n then � Send needed new requests
35: send(req, u[k′], n, μ(u))
36: Wn ← Wn ∪ {u[k′]}
37: Prune(Rn)

38: procedure Evaluate(Un, Rn)

39: done ← false
40: while not done do

41: done ← true

42: for all (s[k], e) ∈ Un do
43: e′ ← Subst(e, Rn)

44: if ground(e′) then
45: done ← false

46: Un ← Un \ {(s[k], e)}
47: Rn ← Rn ∪ {(s[k], e′)}
48: else

49: Un ← Un \ {(s[k], e)} ∪ {(s[k], e′)}

Decentralized Stream Runtime Verification 197

Algorithm 2. Pruning Rn at node n at instant k

1: procedure Prune
2: for all (u[j], c) ∈ Rn do
3: if k ≥ j + Δ(u) then � If u[j] will not be needed
4: Rn ← Rn \ {(u[j], c)} � Remove

Definition 6 (Decentralized Efficiently monitoriable). A specification ϕ
is decentralized efficiently monitoriable whenever it is efficiently monitorable and
no cycle in Dϕ visits two streams r and s assigned to different nodes μ(r) �= μ(s).

Note that since Lola is very expressive many decision problems for Lola specs
(well-formedness, equivalence, etc.) are undecidable. However, well-definedness
(which guarantee that the monitoring algorithm always computes a verdict),
efficient monitorability and decentralized efficient monitorability are syntactic
properties which are very easy to check.

We now define the notion of look-ahead of a stream s, that bounds for decen-
tralized efficiently monitorable specifications the maximum between the moment
at which s[k] is inserted in Un and s[k] is resolved into a value. Note that a decen-
tralized efficiently monitorable specification can be decomposed into a DAG of
sets of stream variables such that each set is mapped to a single node (because
cycles in the graph must belong to a single node). We use S(s) for the set of
streams that are grouped with s. In order to define the look-ahead distance ∇(s)
we use an auxiliary definition: ∇rem(s). This provides an upper-bound on the
time to receive from a remote node the value of an instant variable r[k′] that
s[k] directly depends on.

– If r is eager, this value depends on ∇(r) to guarantee that r[k′] is known at
k′ + ∇(r) and the time dist(r, s) to communicate this value.

– If r is lazy, the instant at which the network node of r sends the value of r[k′]
is the later instant between k′ + ∇(r) and the reception of the request, that
is k + dist(s, r). After receiving the request, the response takes dist(r, s) to
arrive to s.

Once ∇rem has been determined for all edges in the dependency graph that leave
a component S(s), ∇(s) can be determined by the weight of the maximum simple
path in S(s) adding also the additional time to resolve the remote dependencies.
Note that the definition of ∇(s) is identical to the look-ahead in a centralized
specification with S(s) as streams that considers directly accessible streams r at
remote nodes as input streams. Formally:

Definition 7 (Look-ahead). The remote look-ahead distance ∇rem(s) of a

stream s is ∇rem(s)
def
= max(0, {delay(r w−→ s) | μ(r) �= μ(s)}, where

delay(r w−→ s)
def
=

{
dist(r, s) + w + ∇(r) if eager (r)
dist(r, s) + max(w + ∇(r), d(s, r)) if lazy (r)

The look-ahead distance is ∇(s)
def
= max(0, {w + ∇rem(r) | s

w−→∗

r with S(s) = S(r)})

198 L. M. Danielsson and C. Sánchez

The definition is well-defined because the graph is a DAG of components, each
of which is mapped to single network node. Intuitively, the remote look-ahead
∇rem(s) captures how long it takes to receive information from μ(r) that is
relevant to compute s[k]. Note that if the specification is centralized, then there
is a single component, ∇rem(s) is 0 and the look-ahead distance coincides with
the look-ahead for centralized Lola evaluation [24].

Lemma 3. Every unresolved s[k] = e in Un is resolved at most at k + ∇(s).

Lemmas 2 and 3 imply that decentralized efficiently monitorable specifications
can be monitored with bounded resources. The bound depends only linearly on
the size of the specification and the diameter of the network.

5 Empirical Evaluation

We have implemented our solution in a prototype tool dLola, written in the Go
programming language (available at http://github.com/imdea-software/dLola).
We describe now (1) an empirical comparison of dLola versus Themis [13]—a
state-of-the-art tool for decentralized runtime verification of LTL specifications—
and (2) the effect on dLola of the network placement on richer specifications (not
supported by Themis).

Themis Comparison. Themis can only monitor Boolean specifications while
dLola can monitor arbitrary values from richer domains. Also, Themis can only
handle a clique topology while dLola supports arbitrary connected networks. In
this comparison, we restrict to specifications and topologies that Themis can han-
dle, and we translate directly LTL formulas to Lola specifications. We evaluate
both tools against 213, 196 synthesized input tests in a network with 5 nodes.
The results from Themis where obtained from the database provided openly
at https://gitlab.inria.fr/monitoring/themis. Our tool reached a final verdict on
all cases, which coincided with Themis on all experiments for which Themis
had a verdict in the database (85% of our input cases). Figure 2 report metrics
collected using these experiments. We compared our centralized setting (with
decentralized observation) with the Themis’ Orchestration algorithm and our
decentralized setting with Themis’ Choreography algorithm. Figure 2(a) shows
the number of messages exchanged to compute the final verdict. In the best
case a lazy strategy requires less messages than an eager strategy because many
remote values are not required. In the worst case the eager strategy consumes
less messages than the lazy, because the request messages are not sent.

In comparison with Themis, dLola requires less messages on average and
in the worst case, but more messages in the minimum case. Figure 2(b) shows
the size of the message payload used for the computation of verdicts. Again,
dLola uses smaller payloads except in the minimum case. Figure 2(c) contains
the maximum delay, which shows that dLola incurs in a higher maximum delay
for the centralized cases, but significantly lower when decentralized.

http://github.com/imdea-software/dLola
https://gitlab.inria.fr/monitoring/themis

Decentralized Stream Runtime Verification 199

min avg max
dLola

Themis
dLola

Themis
dLola

Themis
Lazy Eager Lazy Eager Lazy Eager

decentr 6.00 12.00 0.00 564.19 332.50 6751.12 4201.00 2101.00 66000.00
centr 1.00 9.00 0.00 98.33 140.88 7085.40 1001.00 801.00 48400.00

(a) Number of messages exchanged
decentr 139.50 279.00 0.00 13186.87 7792.24 60743.17 97862.00 49074.50 594000.00

centr 24.50 204.50 0.00 2208.38 3171.91 83833.05 82759.45 22462.00 576950.00

(b) Payload size (in bits)
decentr 2.00 1.00 0.00 23.72 20.49 84.46 115.00 110.00 4070.00

centr 0.00 0.00 0.00 17.61 16.59 6.52 101.00 100.00 110.00

(c) Time delay (in cycles)

Fig. 2. Comparison dLola vs Themis

Ring Ringshort Line Clique Star
best even worst best even worst best even worst best even worst best even worst

4 301 1301 2901 301 1301 1301 301 1501 2401 301 901 1101 301 1401 2101
5 301 1301 3903 301 1301 2103 301 1501 3401 301 901 1101 301 1501 2101
7 301 1301 5701 301 1301 3001 301 1801 5401 301 901 1101 301 2401 3901
9 301 1301 5901 301 1301 4301 301 1301 7401 301 901 1101 301 2301 3901

10 301 1301 6501 301 1301 4501 301 1301 8401 301 901 1101 301 2701 5701

Fig. 3. Number of messages exchanged by topology and placement (for 4, . . . , 10 nodes)

Topologies. Intuitively speaking, the performance depends on the placement
of streams, as more locality reduces the latency and the number of mes-
sages required. We selected five representative topologies (ring, ringshort, lin-
ear, clique, star) and for each topology selected three different placements: (1)
maximizing manually the locality, (2) assigning output streams evenly, and (3)
minimizing manually the locality. For all experiments we use the following spec-
ification, where we make a chain of four output streams depend on an input
and on the previous stream. Figure 3 illustrates how the placement of subformu-
las affect the overall efficiency of the monitors, which confirms that placement is
crucial for efficiency and suggests that in most cases, values can be resolved with
a number of messages independently of the topology and size of the network by
careful placement. This is relevant since the topology may be fixed by the system
design, while the placement is part of the monitoring solution.

6 Conclusions and Future Work

We have studied the problem of decentralized stream runtime verification, that
starts from a specification, a topology and a placement of the input streams. Our

200 L. M. Danielsson and C. Sánchez

solution consists of a placement of output streams and an online local monitoring
algorithm that runs on every node. We have captured specifications that guaran-
tee that the monitoring can be performed with constant memory independently
of the length of the trace. We report on an empirical evaluation of our prototype
tool dLola. Our empirical evaluation shows that placement is crucial for perfor-
mance and suggest that in most cases careful placement can lead to constant
costs and delays. As future work we plan to extend our solution to timed asyn-
chronous distributed systems [9], to monitor under failures and uncertainties and
to support reading at different nodes (alternatively or simultaneously).

References

1. Autosar. https://www.autosar.org/
2. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206

(2002)
3. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-

tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0 5

4. Basin, D., Klaedtke, F., Zalinescu, E.: Failure-aware runtime verification of dis-
tributed systems. In: Proceedings of the 35th IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2015). LIPIcs. vol. 45, pp. 590–603. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik (2015)

5. Bauer, A., Küster, J.-C., Vegliach, G.: From propositional to first-order monitoring.
In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 59–75. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40787-1 4

6. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14 (2011)

7. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. In: Giannakopoulou, D.,
Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 85–100. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32759-9 10

8. Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M., Thoma, D.:
TeSSLa: temporal stream-based specification language. In: Massoni, T., Mousavi,
M.R. (eds.) SBMF 2018. LNCS, vol. 11254, pp. 144–162. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03044-5 10

9. Cristian, F., Fetzer, C.: The timed asynchronous distributed system model. IEEE
Trans. Parallel Distrib. Syst. 10(6), 642–657 (1999)

10. D’Angelo, B., et al.: LOLA: runtime monitoring of synchronous systems. In: Pro-
ceedings of the 12th International Symposium of Temporal Representation and
Reasoning (TIME 2005), pp. 166–174. IEEE CS Press (2005)

11. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.:
Reasoning with temporal logic on truncated paths. In: Hunt, W.A., Somenzi, F.
(eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45069-6 3

12. El-Hokayem, A., Falcone, Y.: Monitoring decentralized specifications. In: Proceed-
ings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2017), pp. 125–135. ACM (2017)

https://www.autosar.org/
https://doi.org/10.1007/978-3-540-24622-0_5
https://doi.org/10.1007/978-3-642-40787-1_4
https://doi.org/10.1007/978-3-642-32759-9_10
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/978-3-540-45069-6_3

Decentralized Stream Runtime Verification 201

13. El-Hokayem, A., Falcone, Y.: THEMIS: a tool for decentralized monitoring algo-
rithms. In: Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2017), pp. 125–135. ACM, July 2017

14. Faymonville, P., Finkbeiner, B., Schirmer, S., Torfah, H.: A stream-based speci-
fication language for network monitoring. In: Falcone, Y., Sánchez, C. (eds.) RV
2016. LNCS, vol. 10012, pp. 152–168. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46982-9 10

15. Faymonville, P., et al.: StreamLAB: stream-based monitoring of cyber-physical
systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 421–431.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 24

16. Francalanza, A., Pérez, J.A., Sánchez, C.: Runtime verification for decentralised
and distributed systems. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime
Verification. LNCS, vol. 10457, pp. 176–210. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-75632-5 6

17. Gorostiaga, F., Sánchez, C.: Striver: stream runtime verification for real-time event-
streams. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 282–
298. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 16

18. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0 24

19. ISO Central Secretary: Road vehicles interchange of digital information controller
area network (CAN) for high speed communication. Standard ISO 11898, Interna-
tional Standards Organisation (1993)

20. Liebemann, E.K., Meder, K., Schuh, J., Nenninger, G.: Safety and performance
enhancement: the Bosch electronic stability control (ESP). In: SAE, pp. 421–428
(2004)

21. Pike, L., Goodloe, A., Morisset, R., Niller, S.: Copilot: a hard real-time runtime
monitor. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace,
G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 345–
359. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9 26

22. Pike, L., Wegmann, N., Niller, S., Goodloe, A.: Copilot: monitoring embedded
systems. Innovations Syst. Softw. Eng. 9(4), 235–255 (2013)

23. Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification.
Autom. Softw. Eng. 12(2), 151–197 (2005)

24. Sánchez, C.: Online and offline stream runtime verification of synchronous systems.
In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 138–163.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 9

25. Sen, K., Roşu, G.: Generating optimal monitors for extended regular expressions.
In: Sokolsky, O., Viswanathan, M. (eds.) Electronic Notes in Theoretical Computer
Science, vol. 89. Elsevier (2003)

26. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Efficient decentralized monitoring of
safety in distributed systems. In: Proceedings of the 26th International Conference
on Software Engineering (ICSE 2004), pp. 418–427. IEEE CS Press (2004)

https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-030-25540-4_24
https://doi.org/10.1007/978-3-319-75632-5_6
https://doi.org/10.1007/978-3-319-75632-5_6
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1007/978-3-030-03769-7_9

Explaining Violations of Properties
in Control-Flow Temporal Logic

Joshua Heneage Dawes1,2(B) and Giles Reger1

1 University of Manchester, Manchester, UK
joshua.dawes@cern.ch

2 CERN, Geneva, Switzerland

Abstract. Runtime Verification is the process of deciding whether a
run of a program satisfies a given property. This work considers the
more challenging problem of explaining why a run does or does not sat-
isfy the property. We look at this problem in the context of CFTL, a
low-level temporal logic. Our main contribution is a method for recon-
structing representative execution paths, separating them into good and
bad paths, and producing partial parse trees explaining their differences.
This requires us to extend CFTL and our second contribution is a partial
semantics used to identify the first violating observation in a trace. This
is extended with a notion of severity of violation, allowing us to han-
dle real-time properties sensitive to small timing variations. These tech-
niques are implemented as an extension to the publicly available VyPR2
tool. Our work is motivated by results obtained applying VyPR2 to a
web service on the CMS Experiment at CERN and initial tests produce
useful explanations for realistic use cases.

1 Introduction

The Runtime Verification (RV) problem [5] is typically phrased as given a run
of a system (e.g. a trace) τ and a property ϕ, does τ satisfy ϕ? Over the last
20 years many techniques and tools [6,15,16,18,20,24] have been introduced to
answer this question and most of these will answer yes, no, or some form of maybe
but few attempt to explain why they return the given result. This work considers
this challenge within the context of online monitoring of Control-Flow Temporal
Logic [10,11] (CFTL) properties but we argue that the approach generalises to
the broader RV problem. As such, the technical details of the approach will use
CFTL but we will comment on the general application of the idea throughout
the paper. An advantage of using CFTL as a vehicle for this idea is that its
semantics are already closely aligned with the control-flow of the monitored
program, which will be useful when using this to explain violations.

CFTL is a low-level temporal logic with real-time constraints. Specifications
in CFTL are written directly over program constructs (e.g. variable assignments
and function calls) occuring within the scope of a single function. For example,

∀t ∈ calls(save) : duration(t) ∈ [0, 10] ∧ dest(t)(result) = 1
c© Springer Nature Switzerland AG 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 202–220, 2019.
https://doi.org/10.1007/978-3-030-32079-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-32079-9_12

Explaining Violations of Properties in Control-Flow Temporal Logic 203

specifies that every local call to save should take no more than 10 s and the
value of result afterwards should be 1. If a set of traces violate this property
then it could either be due to the save call taking too long or the result being
incorrect, we would like to know which. Furthermore, if it were the former we
would like to be able to quantify by how much we violate this time constraint.
Lastly, but most importantly, there may be many calls to save in our function;
we would like to know which one(s) are the source of the violations and which
parts of the code contribute to the bad behaviour.

The general idea behind our approach is to take sets of violating and success-
ful paths and abstract these to identify the parts of the function that influence
the verdict. This requires two main steps. Firstly, we reconstruct paths through
the monitored function from an observation trace. A key property of the mon-
itoring approach for CFTL is that it admits an automatic and (in some sense)
minimal instrumentation strategy. To reconstruct paths we modify this strat-
egy to record sufficient information for full reconstruction. Secondly, once paths
have been reconstructed, we generate explanations as generalised path objects
(represented as context-free grammars) through a (symbolic) control flow graph
of the monitored function. These explanations are further enhanced by a mea-
sure of the severity of time constraint violations. This work (and our previous
work developing CFTL) is motivated by our experience working with engineers
to apply runtime verification at the CMS Experiment at CERN.

We begin by introducing CFTL (Sect. 2) and an extension to partial traces
(Sect. 3). We then describe a method for reconstructing paths (through the
monitored function) from observation traces (Sect. 4), followed by our approach
for producing explanations from sets of paths (Sect. 5). We then describe the
implementation and an experiment demonstrating its use (Sect. 6). We conclude
with related work and final remarks.

2 Control-Flow Temporal Logic (CFTL)

In this section we introduce the main concepts behind CFTL but refer the
reader to previous work [9–11] for further details and formal definitions. CFTL
is a linear-time temporal logic whose formulas reason over two central types of
objects: states, instantaneous checkpoints in a program’s runtime; and transi-
tions, the computation that must happen to move between states.

2.1 CFTL Formulas

CFTL specifications take prenex form e.g. a list of quantifiers followed by a
boolean combination of atoms, which are expressions (possibly containing tem-
poral operators) over states and transitions. Given a CFTL formula ϕ, we use
Varsϕ to refer to the set of quantified variables in ϕ, A(ϕ) to refer to the set of
atoms in ϕ and, for α ∈ A(ϕ), we use var(α) for the variable on which α is based.
At the top-level, atoms are assertions over the value of variables in a state or
duration of a transition. States and transitions within atoms either come from

204 J. H. Dawes and G. Reger

the outer quantification or from temporal operators that find the next state or
transition satisfying a given constraint.

As another example of a CFTL formula consider

∀q ∈ changes(var) : q(var) = True =⇒ duration(next(q, calls(func))) ∈ [0, 1].

which captures the property “for every change to var, if the new value is True,
then the next call to the function func should take no more than 1 s”.

2.2 What CFTL Formulas Mean

The semantics of CFTL formulas are defined over dynamic runs, which are
sequences of observations with each observation relating directly to a point in
the monitored function taken from the function’s symbolic control-flow graph.
It is important to note that a CFTL formula is defined in terms of elements
in the control-flow graph and this is needed to understand the meaning of the
formula. This close relation to the control-flow graph is what makes instrumen-
tation points easy to define and helps later in explanation.

Symbolic Control-Flow Graphs. Given a program P (we assume a basic language
with assignments, conditionals, and loops, see [10]1), its Symbolic Control-Flow
Graph SCFG(P) captures (1) the change in state generated by variable assign-
ments and function calls in programs and (2) reachability in control-flow.

We associate with each node in the abstract syntax tree of P a unique program
point and let Sym be a set of symbols representing variables and functions in P .
Then, a symbolic state σ is a pair 〈p,m〉 where p is a program point and m is
a map (partial function with finite domain) from symbols to the set of statuses
{changed,unchanged, called, undefined}. We abuse notation and denote by σ(x)
the value to which m maps x. SCFGs are then directed graphs with symbolic
states as vertices.

Definition 1. A symbolic control-flow graph (SCFG) is a directed graph 〈V,E,
vs〉 with a finite set of symbolic states V , a finite set of edges E ⊆ V × V , and
an initial symbolic state vs ∈ V .

A symbolic state σ is final if it has no successors e.g. there is no edge 〈σ, σ′〉
in E. A path π through SCFG(P) = 〈V,E, vs〉 is a finite sequence of symbolic
states σ1, . . . , σk such that for every pair of adjacent symbolic states σi, σi+1

there is an edge 〈σi, σi+1〉 in E. A path is complete if σ1 = vs and σk is final.
Our previous work [10] gave a construction to generate SCFG(P) for a given
program P .

1 Practically, in our implementation we target a subset of Python.

Explaining Violations of Properties in Control-Flow Temporal Logic 205

Dynamic Runs. A dynamic run is an abstraction of a run of a program P and
is associated with a path through SCFG(P). Let Val be the finite set of possible
values to which the elements of Sym can be mapped at runtime. Then a concrete
state is a triple 〈t, σ, τ〉 for timestamp t ∈ R

≥, symbolic state σ and a map
τ : Sym ⇁ Val from program symbols to values. A dynamic run D is a finite
sequence of such concrete states.

Definition 2. A dynamic run over SCFG(P) = 〈V,E, vs〉 is a finite sequence
D = 〈t1, σ1, τ1〉, . . . , 〈tn, σn, τn〉 such that timestamps ti are strictly increasing,
σ1 = vs, σn is final, and there is a path in SCFG(P) between every pair of
symbolic states σi and σi+1 i.e. σ1, . . . , σn can be extended to a complete path.

A transition is a pair of concrete states. A transition 〈〈t, σ, τ〉, 〈t′, σ′, τ ′〉〉 is
atomic if 〈σ, σ′〉 is an edge in SCFG(P). A dynamic run D is most-general if
every transition is atomic. Later we will restrict the condition on σn to get par-
tial dynamic runs, therefore we sometimes refer to these as total. Given some
concrete state q = 〈t, σ, τ〉, the symbolic support support(q) of q is symbolic
state σ. Similarly for a transition tr = 〈〈t, σ, τ〉, 〈t′, σ′, τ ′〉〉, the symbolic sup-
port support(tr) is the edge 〈σ, σ′〉.

Evaluation of CFTL Formulas. The semantics of a CFTL formula ϕ with respect
to a dynamic run D is defined by iterating over the quantifiers of ϕ (by the well-
formedness criteria [10] there must be at least one) to generate sets of points of
interest, and then evaluating the inner part of the formula at each of these points.
This evaluation relies on an eval function that gives the next state or transition
satisfying a state or transition constraint. More formally, given a dynamic run
D, a point of interest θ, and an expression Exp, eval(D, θ,Exp) gives the unique
concrete state or transition to which Exp refers based on D and θ. In the total
semantics (for total dynamic runs) this is guaranteed to exist. A full definition
is omitted here but can be found in previous work [10].

2.3 Instrumentation and Observations

Given SCFG(P) = 〈V,E, vs〉, instrumentation is the process of choosing a subset
Inst ⊂ V of instrumentation points such that ϕ can be evaluated given concrete
states and transitions whose symbolic supports are the elements of Inst. One
could of course take Inst = V , but the intention of instrumentation is to throw
away concrete states from a most-general dynamic run which are not needed to
monitor ϕ, thus reducing work for a monitoring algorithm.

To compute Inst, we first inspect the quantification sequence of ϕ to determine
which symbolic states could generate points of interest. We call such symbolic
states candidate points of interest. For example, a formula with quantification
sequence ∀q ∈ calls(f) would lead us to identify all pairs of symbolic states that
may correspond to calls to the function f in a dynamic run. Once these points of
interest are obtained, we then inspect the quantifier-free part of ϕ to determine
the actual instrumentation points.

206 J. H. Dawes and G. Reger

We then use Inst to filter D to give a second dynamic run D′ whose concrete
states are only those with symbolic supports in Inst. This filtered dynamic run
has the property that D, [] |= ϕ if and only if D′, [] |= ϕ (see [10]). Given a
computed set Inst and a (not necessarily most-general) dynamic run D, we call
a concrete state or transition an observation if its symbolic support is in Inst.
We call any concrete state/transition that is not an observation redundant with
respect to ϕ.

2.4 What Matters for Explanation?

If we wanted to replace CFTL with another specification language we would need
to ensure that there is a direct correspondence between the assertions/predicates
in that language and points in the SCFG. Properly defined, this should be com-
patible with the above notion of redundancy. To take advantage of the concept
of verdict severity the language should contain real-time constraints.

3 Identifying Failing Observations

Later we will explain violations using paths through the associated SCFG to
the observation causing the failure. To do this we assume that the property is
a safety property (CFTL only captures safety properties), e.g. all violations are
witnessed by finite prefixes, and the semantics for incomplete runs is impartial
[17] e.g. the verdict cannot change from true to false or vice versa with more
information. In the following we outline a partial semantics for CFTL that holds
the impartiality property. We also give a quantitative extension of this semantics
called verdict severity, which will be helpful later when determining the extent
to which a violation has occurred.

3.1 Partial Semantics for CFTL

Our aim is to identify the observation in a most-general dynamic run D after
which a CFTL formula ϕ can no longer be satisfied. We call such an observation
a falsifying observation. If D violates ϕ there is exactly one such observation.
Unfortunately, CFTL semantics is defined over total dynamic runs corresponding
to complete paths through SCFGs, hence we have no way to talk about such an
observation. We now describe a partial semantics over dynamic runs that do not
finish at final symbolic states in SCFGs.

We define a partial dynamic run as a dynamic run where the last symbolic
state is not final in the SCFG. This ensures that the semantics is well defined:
the total semantics (with truth domain {true, false}) should be used for total
dynamic runs.

The first change required is to update the evaluation function (which returns
the unique concrete state or transition corresponding to an expression) so that it

Explaining Violations of Properties in Control-Flow Temporal Logic 207

is partial and returns null when the expression cannot be evaluated. For example,
for the property

∀q ∈ changes(var) : q(var) = True =⇒ duration(next(q, calls(func))) ∈ [0, 1].

when evaluating next(q, calls(func)) we would get null if there is no next transi-
tion satisfying the condition. Note that this extended evaluation function coin-
cides with the original function for total dynamic runs.

Once the evaluation function has been updated it is then necessary to update
the way that points of interest are defined so that they can also be partial. For
example, if the quantification were ∀q ∈ changes(var) : ∀t ∈ future(q, calls(f))
we would include a partial quantification for all satisfying states q even if no
satisfying transitions t exist.

Finally, we get a partial semantics with a truth domain {false, notSure,
trueSoFar}. Expressions are evaluated as false if their value is known and they
are false, otherwise (if their value is known and it is true) we get trueSoFar.
If the expression cannot be fully evaluated then the result is notSure. For
the above example, if next(q, calls(func)) evaluates to null then the atom
duration(next(q, calls(func))) ∈ [0, 1] would evaluate to notSure. The truth
domain has the ordering false < notSure < trueSoFar with ¬false ≡ trueSoFar,
and ¬notSure ≡ notSure. We take � to be the greatest lower bound with respect
to this order, and � to be the least upper bound. This can be used to interpret
the boolean operators in the language as expected e.g. using � for ∨.

As soon as a dynamic run is extended to be total, its satisfaction of some
CFTL formula ϕ is subject to the normal semantics with the truth domain
{true, false}. To ensure well-definedness on which semantics to use, we consider
dynamic runs before filtering by instrumentation (this could remove the last
concrete state corresponding to a final symbolic state in the SCFG).

The resulting partial semantics holds the verdict impartiality property [17]:
true can never be declared for a dynamic run identifying with a path that is
not complete because extensions to a complete path can introduce new points of
interest that cause violations. In addition, the partial semantics will be able to
give a false verdict since CFTL formulas are universally quantified, hence a single
falsifying observation means false for every possible extension of the dynamic run
(they are safety properties).

With a partial semantics defined for partial dynamic runs, we can now isolate
the observation in a total dynamic run that prevented satisfaction of a property
ϕ. We do this by taking a total dynamic run and extracting a partial dynamic
run whose final state causes the partial semantics to switch to the false verdict.

Given a total dynamic run D let Dp(q) be the partial dynamic run that is
the prefix of D ending with concrete state q. For a CFTL formula ϕ such that
D, [] �|= ϕ, the falsifying observation is q ∈ D such that:

1. [Dp(q), [] |= ϕ] = false.
2. Given the previous state q′ in D (if it exists), [Dp(q′), [] |= ϕ] = trueSoFar or

[Dp(q′), [] |= ϕ] = notSure.

208 J. H. Dawes and G. Reger

It suffices to consider the previous state due to the impartiality of the partial
semantics.

3.2 Verdict Severity

Later we will divide a set of runs into good and bad. This can be trivially done
based on whether the runs satisfy the given property or not. However, for timing
properties things are not so clear-cut; perhaps small deviations are acceptable,
or more likely, the more problematic violations are grouped with less problem-
atic ones. To handle this situation we introduce a quantitative extension to our
semantics that uses a notion of severity of violation such that a negative severity
means violation and a positive one means success, with the magnitude indicating
the level to which this verdict is reached. In essence, this gives a metric of by how
much some function call was or was not a falsifying observation. As mentioned
later, this can also be used to decide whether a path is only a borderline satis-
faction/violation i.e. whether it could be included in the paths that generated
the opposite verdict.

Given an observation c it is always possible to identify the atom α that is
evaluated for c (indeed, our monitoring algorithm makes this explicit). We define
the verdict severity of c with respect to this atom α.

Definition 3. Given an observation c evaluated at atom α, the verdict severity
Sev(α, c) is 1 if the atom is satisfied and −1 otherwise, with the exception of the
case where α = (duration(t) ∈ I) ∈ Aϕ for some finite, bounded I ⊂ R>0, in
which case

Sev(α, c) = inf{|duration(c) − n| : n ∈ I} · X (α, c)

such that X (α, c) = 1 if duration(c) ∈ I,−1 otherwise.

The term X (α, c) allows us to differentiate between satisfaction and violation
of the constraint, and the infimum captures by how much.

As an example, consider again the property

∀q ∈ changes(var) : q(var) = True =⇒ duration(next(q, calls(func))) ∈ [0, 1].

which can only be violated by breaking the duration constraint. If the duration
of the failing transition were 2 then the severity would be −1, whereas if it were
1.3, then the severity would be −0.3.

4 Path Reconstruction

As discussed previously, the first step in generating explanations is to reconstruct
the path through the monitored program that leads to the observation we want
to explain (often the falsifying observation, which we showed how to identify for
CFTL in the previous section). Note that later we may also want to reconstruct

Explaining Violations of Properties in Control-Flow Temporal Logic 209

paths for satisfying runs, so this section talks about reconstructing paths for an
observation in general.

Given an observation and a symbolic control-flow graph SCFG(P), we con-
sider the task of deciding precisely which path was taken through SCFG(P)
to reach the observation. When the dynamic run given is most-general, this is
straightforward, but if it has been filtered by instrumentation, it is not neces-
sarily possible.

Let SCFG(P) = 〈V,E, vs〉 be the symbolic control-flow graph of P and q be
an observation in a most-general dynamic run D over SCFG(P). We consider
the dynamic run D′ obtained by removing concrete states that are redundant
with respect to a formula ϕ, and what can be done to determine the path taken
through SCFG(P) by D′. Given that D′ contains only the concrete states required
to check ϕ, it is clear that, for consecutive concrete states 〈t, σ, τ〉, 〈t′, σ′, τ ′〉,
there may be multiple paths between σ and σ′. This means there may not be
enough information in D′ to decide the exact path taken. We therefore intro-
duce the notion of a branch-aware dynamic run, which is a dynamic run whose
concrete states allow the exact path taken to be reconstructed.

Definition 4. A dynamic run Db is a branch-aware dynamic run if between
any two consecutive concrete states 〈t, σ, τ〉 and 〈t′, σ′, τ ′〉, there is a single path
from σ to σ′.

Let us denote the set of concrete states added to some D to make it branch-
aware by branching(Db). If there is no branching in P , possibly branching(Db) =
∅. The concrete states in branching(Db) are considered redundant with respect
to ϕ since they are added after instrumentation allowed removal of states.

The most obvious example of a branch-aware dynamic run is a most-general
dynamic run, since all transitions correspond to single edges. However, given
that making a dynamic run branch-aware makes additional instrumentation nec-
essary, a most-general dynamic run is not economical.

A dynamic run Db is minimally branch-aware if it is branch-aware and there
is no concrete state which is redundant with respect to ϕ and whose removal
would not stop Db being branch-aware. This definition captures the intuition
that a minimally branch-aware dynamic run should have additional concrete
states placed in strategic places.

4.1 Instrumentation for Branch-Aware Dynamic Runs

To make branching(Db) minimal we determine the minimal set of symbolic states
SCFG(P) which will be the symbolic supports of the elements of branching(Db).
We now present a strategy for determining such a set of symbolic states.

There are multiple structures that result in multiple possible directions for a
path to take . For conditionals the branch taken can be determined if the first
vertex on that branch is known, hence we instrument the first vertex on each
branch. Further, it is necessary to instrument the first vertex after the branches
have converged, distinguishing observations from inside and after the body. For

210 J. H. Dawes and G. Reger

Algorithm 1. Path reconstruction algorithm given a minimally branch-aware
dynamic run Db and a symbolic control-flow graph SCFG(P) = 〈V,E, vs〉.
1: π ← 〈〉 � Initialise an empty path.
2: branchingIndex ← 0 � Initialise the index of the element of branching(Db) to be

used next.
3: curr ← vs
4: while branchingIndex < |branching(Db)| do
5: if ∃〈curr, σ〉 ∈ outgoing(curr) : σ = support(L(branchingIndex)) then
6: curr ← the σ from 〈curr, σ〉
7: branchingIndex += 1
8: else
9: curr ← the σ such that there is 〈curr, σ〉 ∈ E

10: π += 〈curr, σ〉

loops we instrument the first vertex of the loop body (to capture the number of
iterations) and the post-loop vertex. For try-catch blocks we insert instruments
at the beginning of each block but, so far, we have no efficient way to capture
the jump from an arbitrary statement inside the try block to the catch block.
However, it would be possible to use an error trace to determine the statement
at which the exception was thrown, and use this in path reconstruction.

Applying this method for instrumentation to the entire SCFG gives a mini-
mally branch-aware dynamic run, e.g. one whose path we can reconstruct, using
a small and conservative set of new instrumentation points.

4.2 Computing Reconstructed Paths

In order to finally determine the path taken to reach some observation we step
through the (minimally) branch-aware dynamic run collecting the relevant sym-
bolic states. Algorithm 1 takes a minimally branch-aware dynamic run Db with
n concrete states and a symbolic control-flow graph SCFG(P), and reconstructs
the path taken by Db as a sequence of edges. It makes use of:

– A labelling L(i) on branching(Db) giving the ith concrete state with respect
to timestamps and L(0) being the first concrete state.

– A function outgoing(σ) which gives {〈σ, σ′〉 ∈ E}.

The intuition is that we follow edges in the symbolic control-flow graph until
we arrive at a symbolic state at which branching occurs. At this point, we use
branching(Dp) to decide on which direction to take.

4.3 What Matters for Explanation?

If we wanted to replace CFTL with another specification language we would
need to solve the path reconstruction problem separately. The main challenge
would be to ensure that enough information is captured in the recorded dynamic
run for path reconstruction. This is made easier in CFTL as the semantics is
defined in terms of the SCFG.

Explaining Violations of Properties in Control-Flow Temporal Logic 211

5 Explaining Verdicts with Paths

We now consider the following problem: given a set of dynamic runs (for a
CFTL formula ϕ over a single symbolic control-flow graph SCFG(P)) containing
a violating dynamic run Dv how can we explain what makes this run a bad run?

Our first step is identify the other dynamic runs in our original set that
follow the same edge in SCFG(P). Let c⊥ be the falsifying observation for Dv and
consider support(c⊥), the edge in SCFG(P) corresponding to c⊥. To save space,
we consider only the case where c⊥ is the only transition with this symbolic
support (ie, it is not inside a loop). Let F = D1, . . . ,Dn be the set of dynamic
runs containing an observation ci such that support(ci) = support(c⊥). To explain
the violating run Dv (which must appear in F), we will take the reconstructed
paths up to each observation ci and compare them. Note that for satisfying runs
we will only examine the behaviour up until the corresponding observation.

We use the notion of verdict severity (or if there are no timing constraints,
just the satisfaction relation) to separate these paths. Let C� be the set of pairs
〈ci,Sev(α, ci)〉 such that Sev(α, ci) ≥ 0 for each ci. We define C⊥ similarly, but
with Sev(α, ci) < 0. Using these sets, we will reconstruct paths up to each obser-
vation and associate each path with the verdict severity to which it leads. The
differences between these two sets will then be used to construct the explanation.

5.1 Reconstructed Paths as Parse Trees

We now consider what all the paths in C� and C⊥ have in common. If there are
common characteristics, we may conclude that such characteristics could affect
the verdict. This requires us to represent reconstructed paths (computed by
Algorithm 1) in a concise way that makes it easy to isolate divergent behaviours.
Our solution is to derive a context-free grammar from the SCFG and use this
to parse the paths and then compare the parse trees. This representation will
allow comparison of path characteristics such as branches taken and number of
iterations completed by loops. Our approach is similar to the standard approach
to deriving context free grammars from finite state automata, with the major
difference being that we recognise that there are commonly found structures in
symbolic control-flow graphs, such as conditionals and loops. Such structures are
used to generate grammars that yield parse trees which make it easy to compare
path characteristics.

Figure 1 gives a detailed schema for deriving these grammars. For each com-
ponent of a SCFG we give the corresponding generated grammar. The grammar
of an entire SCFG can be constructed by recursively applying this schema. An
application of this is illustrated in Fig. 2, which shows a SCFG on the left with
a grammar derived on the right. Non-terminal symbols (symbolic states) are
written in bold. The grammar on the right works by mapping symbolic states in
the SCFG to sequences of edges and other symbolic states. Symbolic states are
always non-terminal, so any path generated by such a grammar is a sequence
of edges. The difference between our approach to deriving a grammar vs the
traditional approach is reflected in the right hand side of rule σ1. Using this fact

212 J. H. Dawes and G. Reger

[]σ1

[conditional]σ2

[...]σ3

[...]σ5

[...]σ4

[...]σ6

[endConditional]σ7

[]σ8

e1

e2

e3

e4
e5

e6

[]σ1

[loop]σ2 [...]σ3

[...]σ4[endLoop]σ5

[]σ6

e1
e2

e3

e4

e5

e6

[...]σ1

[...]σ2

e1

e2

σ1 → e1 σ2 σ7

σ2 → e2 σ3 | e3 σ4

σ3 → . . .
σ4 → . . .

...
σ5 → e4
σ6 → e5
σ7 → e6 σ8

σ1 → e1 σ2 σ5

σ2 → e2 σ3 | e3
σ3 → . . .

...
σ5 → e6 σ6

σ1 → e1 σ2

σ2 → . . .

Fig. 1. A subset of the full schema for deriving a context free grammar from a SCFG.

[]σ0

[x �→ changed]σ1

[loop]σ2

[endLoop]σ4

[y �→ changed]σ3

[a �→ changed]σ5 [f �→ called]σ6

e1

e2
e3

e4

e5

e6

e7
e8

σ0 → e1 σ1

σ1 → e2 σ2 σ4

σ2 → e3 σ3 | e6
σ3 → e4 σ2 | e5
σ4 → e7 σ5

σ5 → e8 σ6

σ6 → ε

Fig. 2. A symbolic control-flow graph and its context free grammar.

that all complete paths through the SCFG must pass through the edge e7 to
exit the loop, we encode loops in grammars by using one rule for the loop body,
and another for the post-loop control-flow.

Explaining Violations of Properties in Control-Flow Temporal Logic 213

π1 = e1 e2 e6 e7 e8

σ0

σ1

σ4

σ5

σ6

ε

e8

e7

σ2

e6

e2

e1

π2 = e1 e2 e3 e5 e7 e8

σ0

σ1

σ4

σ5

σ6

ε

e8

e7

σ2

σ3

e5

e3

e2

e1

π1 ∩ π2 = e1 e2 σ2 e7 e8

σ0

σ1

σ4

σ5

σ6

ε

e8

e7

σ2e2

e1

Fig. 3. The parse trees of two paths, and their intersection.

Once we have constructed these parse trees we want to find commanilities
between them. Figure 3 shows how we can take parse trees from multiple paths
and form the intersection. We define the intersection of two parse trees T (π1) and
T (π2), written T (π1) ∩ T (π2), by the parse tree which contains a subtree if and
only if that subtree is found in both T (π1) and T (π2) at the same path. Intersec-
tion is given by the recursive definition in Fig. 4. In this definition, a subtree is a
pair 〈r, {h1, . . . , hn}〉 for root r and child vertices h1, . . . , hn, and the empty tree is
denoted by null. The base case of recursion is for leaves l and l′.

We abuse notation and write π1 ∩ π2 for the path obtained by reading the
leaves from left to right from the intersection of the parse trees T (π1) and T (π2).
If such a path contains symbolic states, we call it a parametric path and call a
symbolic state contained by such a path a path parameter. In particular, the
vertex to which this symbolic state corresponds in the intersection parse tree is
given different subtrees by at least two parse trees in the intersection. The values
given to those parameters by each path in the intersection can be determined
by following the path to the path parameter’s vertex through each parse tree.

intersect(l, l′) =

{
null if l �= l′

l otherwise

intersect(〈r, {h1, . . . , hn}〉,
〈r′, {h′

1, . . . , h
′
m}〉) =

⎧⎪⎨
⎪⎩

〈r, {. . . intersect(hi, h
′
i) . . . }〉 if r = r′ ∧ n = m

r if r = r′ ∧ n �= m

null if r �= r′

Fig. 4. A recursive definition of parse tree intersection.

214 J. H. Dawes and G. Reger

5.2 Representing Paths up to Observations

σ0

σ1

σ4σ2

σ3

σ2

σ3e3

e4

e3

e2

e1

Fig. 5. A partial parse tree.

So far we have seen how one can represent
complete paths through symbolic control-flow
graphs, however paths up to symbolic states
or edges that are symbolic supports of obser-
vations are rarely complete. We choose to rep-
resent paths that are not complete as partially
evaluated parse trees, that is, parse trees which
still have leaves which are non-terminal symbols.
Further, we denote the path up to an observation
q by π(q).

As an example, consider the path e1 e2 e3
e4 e3 through the symbolic control-flow graph in
Fig. 2. This path is not complete, since it does not end with the edge e8, hence its
parse tree with respect to the context free grammar must contain non-terminal
symbols. Figure 5 shows its partial parse tree.

5.3 Producing Explanations

We show how we can use intersections of the paths up to observations ci of pairs
〈ci,Sev(α, ci)〉 in our good, C�, and bad, C⊥, sets to determine whether certain
parts of code may be responsible for violations or not. This intersection is our
explanation. In the case that the path taken is not likely to be responsible, we
give an alternative method that is a sensible approach for our work at the CMS
Experiment at CERN.

For each 〈ci,Sev(α, ci)〉 ∈ C�, we compute π(ci), the path taken by
Di to reach support(ci). We then form the intersection of the parse trees⋂

ci∈C� T (π(ci)). Any path parameter in the resulting intersection tells us that
this part of the path is unlikely to contribute to the verdict reached by the
observations ci which are not falsifying. We draw a similar conclusion when we
compute the parse trees for ci ∈ C⊥; any parts of the paths that disagree across
dynamic runs in which an observation was always falsifying are unlikely to affect
the verdict.

Verdict severity is useful if there are multiple paths π(ci) which disagree with
all others on a specific path parameter, but which have verdict severity Sev(α, ci)
close to 0, ie, borderline. In these cases, we could move the associated runs to the
other set and redo the analysis e.g. reclassify a run that should not contribute
to a particular class.

In the case of disagreement of values of path parameters for the same verdict,
we capture input parameters of the relevant function calls. The space of maps
from input parameters to their values will then give us an indication of whether
state, rather than control flow, contributed to a verdict. For example, all vio-
lations may occur when an input variable is negative. If neither factor shows
to affect the verdict, in the cases we have dealt with so far at the CMS Exper-
iment at CERN, it is reasonable to conclude that external calls (e.g. network
operations) are a contributing factor.

Explaining Violations of Properties in Control-Flow Temporal Logic 215

6 Implementation in VyPR2

We have implemented our explanation technique as an extension of the VyPR2
framework [11] (http://cern.ch/vypr). The code used to perform the analysis in
this section is found at http://github.com/pyvypr/. The necessary modifications
to VyPR2 included (1) additional instrumentation, to make the dynamic run
derived by VyPR2 branch-aware; (2) changes to the relational verdict schema to
allow detailed querying of the data now being obtained by VyPR2 during mon-
itoring; and (3) path reconstruction and comparison tools to allow construction
of explanations.

We now demonstrate how our prototype implementation can be used on a
representative program to conclude that one branch is more likely to cause viola-
tion than another when an observation generated after the branches converge is
checked. Work is currently underway at the CMS Experiment at CERN to build
an analysis library, since everything in the remainder of this section required
custom scripts.

A representative program and PyCFTL specification are given in Fig. 6. Since
the current implementation of VyPR2 works with Python-based web services
that are based on the Flask [1] framework (this being a commonly used frame-
work at the CMS Experiment), the code in Fig. 6 is typical of the code seen in a
Flask-based web service. In this case, the result of the function test is returned
when the URL test/n/, where n is a natural number, is accessed.

6.1 Performing an Analysis

Path Reconstruction. This step generates sequences of edges in the SCFG of the
function being monitored using Algorithm 1. The minimal amount of informa-
tion is stored in the verdict database to perform such reconstruction by storing

1 def f(l):
2 for item in l:
3 time.sleep(0.1)
4
5 @app.route(
6 ’/test/<int:n>/’,
7 methods=["GET", "POST"]
8)
9 def test(n):
10 a = 10
11 if n > 10:
12 l = []
13 for i in range(n):
14 l.append(i**2)
15 print(’’test’’)
16 else:
17 l = []
18 f(l)
19 return "..."

1 "app.routes" : {
2 "test" : [
3 Forall(
4 s = changes(’a’)
5).\
6 Check(
7 lambda s : (
8 If(
9 s(’a’).equals(10)
10).then(
11 s.next_call(’f’).\
12 duration()._in([0, 1])
13)
14)
15)
16]
17 }

Fig. 6. The program (left) and PyCFTL specification (right) we use to demonstrate
our path comparison approach.

http://cern.ch/vypr
http://github.com/pyvypr/

216 J. H. Dawes and G. Reger

observations and mapping them to the previous branching condition that was
satisfied to reach them. This way, the complexity of the specification has no
effect on the efficiency of path reconstruction. The results of this step are not
visible to the user.

Path Comparison. Our initial implementation of path comparison processes all
recorded dynamic runs, and then focuses on observations generated by the call to
f at line 18 in Fig. 6. These observations are grouped into two sets; those gener-
ating the false verdict, and those generating trueSoFar. Figure 7 (top) shows the
intersection of all parse trees derived from observations that generated trueSoFar,
and Fig. 7 (middle) those that generated false. We call these parse trees repre-
sentatives.

Finally, in the implementation used for these experiments, Fig. 7 (bottom) is
the result of our analysis. It shows the intersection of the representative parse
trees from trueSoFar and false verdicts with the single path parameter highlighted
in bold. It is clear from the path parameter that variation in paths is found at
an if-statement, and the branch taken here may affect the verdict, since the
representatives show that good and bad paths follow single paths.

Fig. 7. The intersection (bottom) of the good (top) and bad (middle) path represen-
tatives, with the single path parameter highlighted in bold.

Explaining Violations of Properties in Control-Flow Temporal Logic 217

Our notion of verdict severity would come in useful if there were observations
on the borderline of a verdict that were stopping us from obtaining a single path
parameter value for all paths giving a single verdict. We could redo our analysis,
counting the anomalous observation(s) as contributing to different verdicts.

6.2 Performance

The overhead induced by additional instrumentation for path reconstruction
has been shown to be minimal. When the program in Fig. 6 traverses the branch
starting at line 17, the overhead is large (approximately 43%), but we observe,
exactly as in [10], that this is due to Python’s Global Interpreter Lock preventing
truly asynchronous monitoring. When the branch starting at line 12 is traversed,
the overhead becomes negligible because time.sleep is called, which is thread-
local.

Our implementation of offline path comparison (including path reconstruc-
tion, context free grammar construction, parse tree derivation and intersection)
has shown to scale approximately quadratically with the number of paths. Recon-
struction and comparison of 400 paths (200 good, 200 bad) took approximately
3.6 s, while 1000 paths (500 good, 500 bad) took approximately 16.6 s. These
measurements were taken by turning off many of the writes to disk used to store
SCFGs and parse trees, since these are performed by the graphviz [2] library.
We observe that it is possible to use previously computed parts of an intersection
since intersection is commutative and that deriving the parse trees of multiple
paths with respect to a context free grammar is parallelisable, with a possibly
small increase in memory usage.

7 Related Work

An alternative approach to explaining violations measures the distance between
a violating trace and the language of the specification [3,19,22]. Other work con-
siders error traces and what changes could be made to prune violating extensions
[8]. The idea is that, if a fix can be found that prunes all possible erroneous exten-
sions, the code to be fixed could be regarded as a fault. This work lies inside
the general field of Fault Localisation [26], where much work has been done,
including Spectra-based [25] and Model-based [21] approaches. Our work differs
from the existing work in that we consider faults to be potentially problematic
control flow with respect to CFTL formulas.

Reconstructing paths is also not a new idea [4], where some approaches have
compared paths [23]. Our work differs in its context free grammar-based com-
parison, and the subsequent use to construct explanations of violations of CFTL
specifications.

Much work has been done on explanation in the Model Checking community.
For example, finding the closest satisfying traces to the set of counterexamples
and describing the differences [14] or localising the parts of an input signal
violating the property [7,13]. There has also been work quantifying the degree

218 J. H. Dawes and G. Reger

of severity of a violation/satisfaction [12]. Although the setting is different (in
RV we deal with concrete runs), there are similarities with our approach, which
will be explored in the future.

8 Conclusion

We introduced a new partial semantics for CFTL that allows isolation of the
observation that causes a CFTL formula to evaluate to false. Following that, we
extended the notion of dynamic runs to define branch-aware dynamic runs which
allow reconstruction of the execution path of a program as a path through its
symbolic control-flow graph. Finally, we gave our approach for comparing paths
using context free grammars. Implementation of this approach in VyPR2 allows
construction of explanations based on comparison of the paths taken with respect
to verdicts generated.

Our next step is already underway: we are developing analysis tools for
VyPR2, with services used at the CMS Experiment at CERN serving as use
cases.

References

1. Flask for Python. http://flask.pocoo.org
2. Graphviz for Python. https://graphviz.readthedocs.io/en/stable/
3. Babenko, A., Mariani, L., Pastore, F.: Ava: automated interpretation of dynam-

ically detected anomalies. In: Proceedings of the Eighteenth International Sym-
posium on Software Testing and Analysis, ISSTA 2009, pp. 237–248. ACM, New
York, NY, USA (2009). https://doi.org/10.1145/1572272.1572300

4. Ball, T., Larus, J.R.: Efficient path profiling. In: Proceedings of the 29th Annual
ACM/IEEE International Symposium on Microarchitecture MICRO, vol. 29, pp.
46–57. IEEE Computer Society, Washington, DC, USA (1996). http://dl.acm.org/
citation.cfm?id=243846.243857

5. Bartocci, E., Falcone, Y., Francalanza, A., Leucker, M., Reger, G.: An introduction
to runtime verification. In: Lectures on Runtime Verification - Introductory and
Advanced Topics. LNCS, vol. 10457, pp. 1–23 (2018)

6. Basin, D., Krstić, S., Traytel, D.: Almost event-rate independent monitoring of
metric dynamic logic. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548,
pp. 85–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67531-2_6

7. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.: Explaining counterex-
amples using causality. Form. Methods Syst. Des. 40(1), 20–40 (2012). https://
doi.org/10.1007/s10703-011-0132-2

8. Christakis, M., Heizmann, M., Mansur, M.N., Schilling, C., Wüstholz, V.: Seman-
tic fault localization and suspiciousness ranking. In: Vojnar, T., Zhang, L. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems, pp. 226–243.
Springer International Publishing, Cham (2019)

http://flask.pocoo.org
https://graphviz.readthedocs.io/en/stable/
https://doi.org/10.1145/1572272.1572300
http://dl.acm.org/citation.cfm?id=243846.243857
http://dl.acm.org/citation.cfm?id=243846.243857
https://doi.org/10.1007/978-3-319-67531-2_6
https://doi.org/10.1007/s10703-011-0132-2
https://doi.org/10.1007/s10703-011-0132-2

Explaining Violations of Properties in Control-Flow Temporal Logic 219

9. Dawes, J.H., Reger, G.: Specification of State and Time Constraints for Runtime
Verification of Functions (2018). arXiv:1806.02621

10. Dawes, J.H., Reger, G.: Specification of temporal properties of functions for
runtime verification. In: Proceedings of the 34th ACM/SIGAPP Symposium on
Applied Computing, pp. 2206–2214. SAC 2019. ACM, New York, NY, USA (2019).
https://doi.org/10.1145/3297280.3297497

11. Dawes, J.H., Reger, G., Franzoni, G., Pfeiffer, A., Govi, G.: VyPR2: a framework
for runtime verification of python web services. In: Vojnar, T., Zhang, L. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems, pp. 98–114.
Springer International Publishing, Cham (2019)

12. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) Formal Modeling and Analysis of Timed
Systems, pp. 92–106. Springer, Heidelberg (2010)

13. Ferrère, T., Maler, O., Ničković, D.: Trace diagnostics using temporal implicants.
In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) Automated Technology for Verification
and Analysis, pp. 241–258. Springer International Publishing, Cham (2015)

14. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation with distance
metrics. Int. J. Softw. Tools Technol. Transfer 8(3), 229–247 (2006). https://doi.
org/10.1007/s10009-005-0202-0

15. Havelund, K., Reger, G.: Specification of parametric monitors - quantified event
automata versus rule systems. In: Formal Modeling and Verification of Cyber-
Physical Systems (2015)

16. Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-MaC: a run-time
assurance approach for java programs. Form. Methods Syst. Des. 24(2), 129–155
(2004). https://doi.org/10.1023/B:FORM.0000017719.43755.7c

17. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic
Algebr. Program. 78(5), 293–303 (2009). https://doi.org/10.1016/j.jlap.2008.08.
004. http://www.sciencedirect.com/science/article/pii/S1567832608000775. The
1st Workshop on Formal Languages and Analysis of Contract-Oriented Software
(FLACOS 2007)

18. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An overview of the MOP
runtime verification framework. STTT 14(3), 249–289 (2012). https://doi.org/10.
1007/s10009-011-0198-6

19. Reger, G.: Suggesting edits to explain failing traces. In: Bartocci, E., Majumdar,
R. (eds.) RV 2015. LNCS, vol. 9333, pp. 287–293. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23820-3_20

20. Reger, G., Cruz, H.C., Rydeheard, D.: MarQ: monitoring at runtime with QEA.
In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 596–610.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_55

21. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell.
32(1), 57–95 (1987). https://doi.org/10.1016/0004-3702(87)90062-2,. http://www.
sciencedirect.com/science/article/pii/0004370287900622

22. Renieris, M., Reiss, S.P.: Fault localization with nearest neighbor queries. In: Pro-
ceedings of the 18th IEEE International Conference on Automated Software Engi-
neering, ASE 2003, pp. 30–39. IEEE Press, Piscataway, NJ, USA (2003). https://
doi.org/10.1109/ASE.2003.1240292

http://arxiv.org/abs/1806.02621
https://doi.org/10.1145/3297280.3297497
https://doi.org/10.1007/s10009-005-0202-0
https://doi.org/10.1007/s10009-005-0202-0
https://doi.org/10.1023/B:FORM.0000017719.43755.7c
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1016/j.jlap.2008.08.004
http://www.sciencedirect.com/science/article/pii/S1567832608000775
https://doi.org/10.1007/s10009-011-0198-6
https://doi.org/10.1007/s10009-011-0198-6
https://doi.org/10.1007/978-3-319-23820-3_20
https://doi.org/10.1007/978-3-319-23820-3_20
https://doi.org/10.1007/978-3-662-46681-0_55
https://doi.org/10.1016/0004-3702(87)90062-2,
http://www.sciencedirect.com/science/article/pii/0004370287900622
http://www.sciencedirect.com/science/article/pii/0004370287900622
https://doi.org/10.1109/ASE.2003.1240292
https://doi.org/10.1109/ASE.2003.1240292

220 J. H. Dawes and G. Reger

23. Reps, T., Ball, T., Das, M., Larus, J.: The use of program profiling for software
maintenance with applications to the year 2000 problem. In: Jazayeri, M., Schauer,
H. (eds.) Software Engineering – ESEC/FSE 1997, pp. 432–449. Springer, Berlin
Heidelberg, Berlin, Heidelberg (1997)

24. Signoles, J.: E-ACSL: Executable ANSI/ISO C Specification Language, version
1.5-4, March 2014. frama-c.com/download/e-acsl/e-acsl.pdf

25. de Souza, H.A., Chaim, M.L., Kon, F.: Spectrum-based software fault localization:
A survey of techniques, advances, and challenges. CoRR abs/1607.04347 (2016).
http://arxiv.org/abs/1607.04347

26. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault
localization. IEEE Trans. Softw. Eng. 42(8), 707–740 (2016). https://doi.org/10.
1109/TSE.2016.2521368

http://frama-c.com/download/e-acsl/e-acsl.pdf
http://arxiv.org/abs/1607.04347
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368

FastCFI: Real-Time Control Flow
Integrity Using FPGA Without Code

Instrumentation

Lang Feng1(B), Jeff Huang2, Jiang Hu1,2, and Abhijith Reddy1

1 Department of Electrical and Computer Engineering, Texas A&M University,
College Station, TX 77843, USA

{flwave,jianghu,abreddy}@tamu.edu
2 Department of Computer Science and Engineering,

Texas A&M University, College Station, TX 77843, USA
jeffhuang@tamu.edu

Abstract. Control Flow Integrity (CFI) is an effective defense technique
against a variety of memory-based cyber attacks. CFI is usually enforced
through software methods, which entail considerable performance over-
head. Hardware-based CFI techniques can largely avoid performance over-
head, but typically rely on code instrumentation, which forms a non-trivial
hurdle to the application of CFI. We develop FastCFI, an FPGA based CFI
system that can perform fine-grained and stateful checking without code
instrumentation. We also propose an automated Verilog generation tech-
nique that facilitates fast deployment of FastCFI. Experiments on popu-
lar benchmarks confirm that FastCFI can detect fine-grained CFI viola-
tions over unmodified binaries. The measurement results show an average
of 0.36% performance overhead on SPEC 2006 benchmarks.

1 Introduction

Control Flow Integrity (CFI) [1] is to regulate instruction flow transitions, such
as branch, toward target addresses conforming to the original design intention.
Such regulation can prevent software execution from being redirected to erro-
neous address or malicious code. It is widely recognized as an effective approach
to defend against a variety of security attacks including return oriented program-
ming (ROP) [34] and jump oriented programming (JOP) [3].

Software-based CFI usually competes for the same processor resource as the
software application being protected [1,9,30,41], and therefore it tends to incur
large performance overhead unless its resolution is very coarse-grained. Alter-
natively, CFI can be realized through hardware-based enforcement, which is
performed largely external to software execution and thus involves much lower
overhead. Indeed, hardware-based CFI has attracted significant research atten-
tion recently [13,15,26,40].

Apart from relatively low overhead, there are some other issues of hardware
CFI which are worth a close look.

This work is partially supported by NSF (CNS-1618824).

c© Springer Nature Switzerland AG 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 221–238, 2019.
https://doi.org/10.1007/978-3-030-32079-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-32079-9_13

222 L. Feng et al.

1. Code instrumentation. Previous hardware CFI methods often rely on code
instrumentation [5,10,22,23,25,26,37]. Additional code is added to the appli-
cation software being protected for more executing information. This causes
performance overhead, may introduce extra security vulnerability, and is not
always practically feasible [18].

2. Granularity. Fine-grained CFI can detect detailed violations that would be
missed by coarse-grained CFI. For example, the only legal instruction flow
transitions are from code segment A to B, denoted by A → B, and C → D. A
coarse-grained CFI may only check if a transition target is legitimate without
examining the transition source. As such, an illegal transition A → D would
pass such coarse-grained CFI check as D is a legitimate target, while fine-
grained CFI can detect this violation.

3. Stateful CFI. Whether or not a transition is legal may depend on its history.
For example, a transition C → D is legal only when its previous transition
is A → C, while transition B → C is also legal. Therefore, transition B →
C → D is illegal. Most previous hardware CFI works [17,32,40] are stateless,
and in this case only check C → D without examining its history.

The first issue affects practical applications. The next two issues are for
security in term of CFI coverage. To the best of our knowledge, there is no
previous work that well addresses all of these issues along with low overhead.

Table 1. Comparison among different methods.

Method Fine-

grained

Stateful No instru-

mentation

<1%

overhead

No false

alarm

FastCFI
√ √ √ √ √

Lee [26] × √ × × √

CONVERSE [17]
√ × √ √ ×

Griffin [15]
√ √ √ × √

FlowGuard [27] × √ √ × √

CFIMon [40] × × √ × ×
MoCFI [9]

√ √ × × ×
Zhang [41] × √ × × √

kBouncer [30] × √ √ √ √

Ding [13]
√ √ √ × √

Abadi [1]
√ √ × × √

In this paper, we
present FastCFI, which
is an FPGA-based
CFI system. FPGA
implementation is a
customized hardware
solution that is much
more power-efficient
than software-based
solution on general
purpose microproces-
sors. In embedded
applications, such as
autonomous vehicles, such power-efficiency is particularly desirable. At the same
time, the reconfigurability of FPGAs provides an important flexibility that is not
available in dedicated ASIC solutions. Largely due to these appealing advantages,
Microsoft adopts FPGA for its datacenters [31]. FastCFI also inherits the com-
puting efficiency and flexibility of FPGA. The computing efficiency arises from
the fact that FPGA computing can considerably circumvent system overhead
and intrinsically support parallel processing.

FastCFI is the first fine-grained and stateful CFI system with negligible over-
head and without using code instrumentation. Moreover, FastCFI does not pro-
duce any false alarm and has low detection latency.

A comparison between FastCFI and some major works is provided in Table 1.
The source code of FastCFI is available at [35]. The main contributions of

our paper are:

FastCFI: Real-Time Control Flow Integrity 223

– A CFI system without code instrumentation or processor architecture/in-
struction set modification.

– A detailed design of a hardware-based fine-grained and stateful CFI system
with low latency.

– A concrete system implementation based on FPGA, instead of simulation.
– A new circuit design technique that can automatically generate Verilog HDL

for the application dependent component and therefore facilitates fast deploy-
ment of FastCFI systems.

– An extensive evaluation on both popular security and performance bench-
marks (never done before in FPGA-based work to the best of our knowledge).

We anticipate several application scenarios of FastCFI. FastCFI can be
applied to various electronic systems, especially those security-critical ones such
as banks, public security systems, and military defense systems. These systems
often have high real-time and security requirements, and can afford additional
hardware resources, such as FPGAs which are relatively expensive as of today.
FastCFI can also be applied in software supply chain to secure users of poten-
tially vulnerable third-party software, the binaries of which can be analyzed, but
do not allow code instrumentation. FastCFI has low latency (Sect. 5.4) and low
overhead (Sect. 5.3), indicating its high real-time capability. On one hand, the
programs running on the processors will not be disturbed. On the other hand,
once there is an attack, FastCFI can identify it immediately. FastCFI also has
high precision (Sect. 5.2) without any false alarm. These properties ensure the
system’s security. Furthermore, FastCFI does not depend on code instrumenta-
tion and thus, makes the implementation be practical.

The rest of this paper is organized as follows. Section 2 introduces the back-
ground on CFI and control flow graph; Sect. 3 discusses previous work; Sect. 4
presents our proposed system design; Sect. 5 reports the experimental results
and Sect. 6 concludes the paper.

2 CFI and Control Flow Graph

movs r3, #1
add r3, r2

……
bl 84a0

add r1, r2
…...

ldr r2, [r3, #0]
……

bl 85c0
movs r1, #5

……
cmp r3, #3
bne 8040

push {r7}
……

adds r3, #1
adds r7, #28
mov sp, r7

ldr.w r7, [sp], #4
bx lr

push {r7}
……

ldr r0, [r7, #4]
adds r7, #24
mov sp, r7

ldr.w r7, [sp], #4
bx lr

A

B

C

D

(a)

E

G

A

B

C
D

E

F

ldr r1, [r3, #8]
……
blx r3

func1 func2

func3

F

G

(b)

Control flow changed by
direct branch instruction
Control flow changed by

indirect branch instruction

Fig. 1. Example of control flow graph.

The specification of CFI
is a control flow graph
(CFG) of the target pro-
gram, in which each node
corresponds to one segment
or block of instructions and
each directed edge indicates
a legal transition between
instruction segments. In the
example of Fig. 1(a), the
instructions are divided into
seven segments, each of
which corresponds to a node
in Fig. 1(b). The solid and

224 L. Feng et al.

dashed edges in Fig. 1(b) indicate transitions by direct and indirect branch
instructions, respectively. For example, the edge from node A to F implies that
the branch instruction bl 84a0 in A is taken and the software execution switches
from A to F .

Once a CFG is constructed for a software, CFI of this software execution is
enforced by verifying if an execution trace conforms to the CFG. For instance,
transition A → B is illegal as there is no edge from A to B in the CFG. CFI for
function returns can be stateful. For example, there are edges from F to both B
and E. However, if F is invoked by function call from A, the last instruction in
F should only return to the instruction right after A, which is in B. Therefore,
function return F → B is legal while transition F → E is illegal.

3 Previous Work

3.1 Software-Based CFI

Early work on CFI was mostly realized by software implementation. The seminal
work by Abadi et al. [1] proposes two code instrumentation approaches, which
have average overhead of 16% and 21%, respectively, on the SPEC 2000 bench-
mark. Later work targeted CFI at specific application scenarios. For example, the
method of Davi et al. [9] is designed for smartphones, and the work by Zhang and
Sekar [41] addresses how to handle COTS binary codes. Several works [4,11,30]
attempt to reduce performance overhead or avoid code instrumentation by sacri-
ficing granularity or security coverage. For example, kBouncer [30] has very low
overhead and code instrumentation is avoided in [4]. However, both methods
handle ROP attacks only.

FastCFI is hardware-based CFI, which avoids some disadvantages in
software-base CFI, such as high performance overhead [1,9], coarse-grained CFI
policy [4,11,30], and requiring code instrumentation [1,9,41].

3.2 Hardware-Based CFI

Recently, several hardware-based CFI approaches [2,5,8,10,12–17,22–29,32,37,
40] have been proposed, based on Intel Processor Trace [13,15,16,27], perfor-
mance counters [40], FPGA [8,25,26], and others [17]. Intel also proposed the
control-flow enforcement technology (CET) [20]. However, processors that sup-
port CET are still not available. Meanwhile, CET only implements the weakest
form of CFI in that there’s only a single class of valid targets and is too weak
to protect against the larger class of code reuse attacks.

Besides these approaches, great amount of the hardware-based CFI
approaches require hardware modification [2,5,8,10,12,14,22–24,28,29,32,37].
Modifying hardware structure such as adding additional modules inside the pro-
cessor’s pipeline is not practical, since one will need to repeat the whole design
flow, which is a tedious task.

Compared to previous hardware-based CFI, FastCFI has novelties in multiple
directions. Firstly, FastCFI does not depend on code instrumentation. Previous

FastCFI: Real-Time Control Flow Integrity 225

hardware-based approaches leverage code instrumentation for getting more infor-
mation [5,10,22,23,25,26,37]. However, this results in large overhead, and code
instrumentation itself is also not secure and sometimes even impossible. Secondly,
FastCFI has a low overhead compared to some previous works [12,13,15,25,26].
High overhead is unacceptable in some real-time applications. Also, not all the
hardware-based CFI are fine-grained and stateful [8,17,25,26,40]. They may
miss some attacks. In operating system, false positive may delay all the pro-
cesses, but some techniques used in previous works lead to this [17,40]. Through
results obtained in FastCFI we show that such cases are avoided in our CFI
solution. Hardware-based CFI is harder to be implemented than software-based
CFI due to the cost, difficulties in manufacturing, resources, etc. A few previous
works prefer using simulator for implementation [8,10,14,22,23], but this will
not guarantee the functionality because there are differences between simulation
and real world conditions. We use FPGA to implement the hardware design.
By taking advantage of existing devices in the processor, we avoid changing the
structure of the processor and are able to build a real system for CFI verification.

4 The Proposed System Design

4.1 System Platform

FastCFI is developed on a platform depicted in Fig. 2. It is composed of an
ARM Cortex-A9 processor and an FPGA. The CFI of a software execution
on the ARM core is verified by the FPGA. Program Trace Macrocell (PTM)
generates compressed control-flow traces according to instructions processed by
the ARM core. The CoreSight Debug module in the ARM core can obtain traces
from PTM and send the traces to FPGA through the Trace Port Interface Unit
(TPIU), which acts as a bridge between the trace data and a data stream. The
key ideas of FastCFI can be applied to other platforms such as x86 architecture.

Fig. 2. System platform for
the proposed CFI.

Decoder

CFI
Verification

Module

Verification
Controller

CFG
Checker

(a) (b)

FPGABinary

Verilog of
CFG Checker

Traces

CFG

CFG
Generator

Verilog
Generator

Fig. 3. System design overview: (a) offline CFG
checker generator; (b) online CFI verifier.

226 L. Feng et al.

4.2 System Design Overview

The system design of FastCFI consists of an offline CFG checker generator and
an online CFI verifier, as depicted in Fig. 3. The CFG checker generator is a
software that takes application software binary as input and generates CFG
checker design in Verilog. During online software execution, a trace captured
through ARM CoreSight is first decoded in order to understand its semantics.
The decoded trace data is then fed to the CFI verification module, which is
composed of a verification controller and a CFG checker. Both the decoder and
the verification module are implemented on FPGA.

4.3 Offline CFG Checker Generator

To give the hardware verification circuits the correct execution information which
can be represented by CFG, target software binary has to be analyzed, and CFG
should be extracted. Since we implement the CFG as a hardware circuit called
CFG checker in the verification module for higher speed, the output of the CFG
checker generator is the CFG checker’s Verilog HDL file.

Given software binary, the generator first converts it to assembly code. It
extracts CFG from the assembly code and generates the Verilog design of CFG
checker circuit. Then, the CFG checker is mapped on FPGA. The generator is
able to help the fast implementation of CFI verification given a system to be
protected, and only the target vulnerable binary is required.

We denote a sequence of assembly instructions as I1, I2, ...Im1, B1, Im1+1,
Im1+2, ..., Im2, B2, ...Bn..., where B1, B2, ...Bn are branch instructions (e.g., jmp,
call, ret, etc.) and the others are non-branch instructions. Then, the instruction
sequence is partitioned into multiple segments {I1, I2, ...Im1, B1}, {Im1+1, Im1+2,
..., Im2, B2},..., each of which has a single branch instruction at its end. Each
instruction segment forms a node in the CFG. In the sequel, we use CFG node
and instruction segment interchangeably when the context is clear.

By examining the source node and target node of each branch instruction, the
generator can establish edges of the CFG. Recognizing the source node is trivial,
but finding target node can be quite difficult. The target address of a direct
branch instruction is hardcoded in the binary and can be easily found. Indirect
branch is a tricky case, as its target address is stored in a register. Such address
can be a constant hardcoded somewhere in the binary, and can be recovered
through tracing instructions. The more difficult case is where the target address
depends on software input data at runtime. As such, it is almost impossible to
find the address with an offline static analysis. Despite this difficulty, we find how
to perform partial CFI check for unspecified target address and this technique
will be described in Sect. 4.5.

We developed a software program to automatically construct CFG from
binary code. The generator further creates Verilog description for the CFG
checker circuit. Meanwhile, our framework is general and can accommodate other
tools such as IDA [19].

FastCFI: Real-Time Control Flow Integrity 227

4.4 Trace Decoder

The decoder takes software execution trace from TPIU as input, interprets its
semantic and extracts information that is relevant to CFI. A trace consists of
many packets, each of which is usually a few bytes. Two types of packets are
of particular relevance to CFI, Atom and Branch address [6], which is simply
called Branch subsequently. An Atom tells if a direct branch is taken or not,
and indicates the case that an indirect branch is not taken. If an indirect branch
is taken, its target address is contained in Branch. Some other types of packets,
such as I-sync [6], can periodically indicate the current instruction address.

The decoder extracts the following required information:

– Context ID that identifies the current program.
– The current program state.
– The current packet type: Atom, Branch, or I-sync, etc.
– The current instruction address, which is obtained from Branch, or I-sync.

Note that this information is not always available and the scenarios of its
availability are complex. The starting address of a program is available at
I-sync, which continues to provide current address periodically.

– T/N from Atom, where T indicates that a branch is taken and N means an
indirect branch is not taken.

– Program exception and PTM buffer overflow information.

The TPIU channel in the ARM core has 32-bit bitwidth, which means 4
bytes of packets can be sent to FPGA in every clock cycle. When implementing,
we design a 3-phase pipeline decoder to increase the throughput and match the
speed of the TPIU.

4.5 CFI Verification Module

Fig. 4. Architecture of CFI verification module.

The CFI verification module
is to examine if flow tran-
sitions in a software exe-
cution trace are consistent
with transitions specified in
CFG, which is embedded in
the CFG checker. In order
to do so, we need to obtain
the source node and target
node of a branch instruction
from the execution trace.
The source node of a branch
instruction, which is equiva-
lent to the current instruc-
tion address of the branch,
is often unavailable in trace packets. In [26], it is acquired through code instru-
mentation. Without code instrumentation, identifying the source/current node

228 L. Feng et al.

is much more difficult. We solve this difficulty by using the periodically available
instruction address information and tracking the other addresses by following
the CFG.

Consider the example in Fig. 1. Suppose we know the address of the first
instruction of node A. The last instruction of A, bl 84a0, is a branch to node
F , whose execution results in an Atom with T indicating that the branch is taken.
Note that every direct branch has only one deterministic target when it is taken.
When Write⊕Execute [39] feature is applied in an operating system, an attacker
is not able to change the code and the target of each direct branch. Therefore,
by observing T from trace decoder and examining the CFG in the CFG checker,
we know that the software execution now moves to node F even if the current
instruction address is not available at trace packets. Since the transition from
A to F changes the current function from func1 to func2, bl 84a0 is inferred
as a function call. Therefore, func2 should return to the next instruction of
bl 84a0 of func1, which is the first instruction of B. The last instruction of
node F is function return, which is an indirect branch. Its execution leads to a
Branch in decoded trace packet. By receiving this Branch, we can be aware of
the occurrence of a transition from F . The target address is contained in Branch
and we can examine if it is consistent with the target node B in the CFG.

The architecture of the CFI verification module is shown in Fig. 4. Its key
components, CFG checker and verification controller, are described as follows.

CFG Checker. The CFG checker is an FPGA circuit that contains CFG infor-
mation and outputs specific CFG details for given execution trace information.
It has n blocks, as shown in Fig. 4, each of which corresponds to a node in
CFG. Assigning each CFG node in one block makes the CFG node search run
in parallel, and this will greatly increase the performance of FastCFI.

In detail, there are three main inputs to the checker circuit, all of which are
from the decoded trace packets or earlier computations.

– curr addr : current instruction address from trace or earlier calculation.
– target addr : indirect branch target address decoded from Branch.
– tn: T/N information decoded from Atom.

The four main outputs are:

– next addr : the next program counter address after executing the branch of
current node according to CFG.

– node addr size: the start address and size of current node, and function size
if the current node is the first node of a function, where the size is equivalent
to difference between end and start addresses of a node/function.

– invalid : a binary signal whose assertion indicates that the target addr does
not conform to the next addr.

– unspec target : a binary signal whose assertion indicates that an indirect
branch target depends on application input and is not specified in CFG.

FastCFI: Real-Time Control Flow Integrity 229

Each block first checks if an input curr addr is within the node corresponding
to this block. If so, the block is activated and always generates its node addr size
output. The other outputs vary depending on three different types of blocks.
Since each node in CFG contains only one branch instruction at its end, the
categorization of blocks is based on their branch instructions.

1. Direct branch. An activated block with direct branch generates next addr
according to input tn. If tn is T , indicating that the branch is taken, the
next addr can be found in CFG and is hardcoded in the FPGA. Otherwise,
the next addr is the address of the next instruction.

2. Indirect branch with constant target. If tn is T , the target addr is
compared with the possible next addr from CFG. If they are the same, the
next addr is sent to output. Otherwise, signal invalid asserts.

3. Indirect branch with unspecified target. In this case, next addr is not
specified in CFG as the target address depends on software application input
and cannot be identified in the offline analysis. Then, next addr is output as
target addr and at the same time signal unspec target asserts.

MUX

CFG
Checker

B3

B4

B5

MUX

B0

B1

B2

MUX

Fig. 5. An example of grouping
blocks in CFG checker.

Note that at most one block can be acti-
vated in the checker circuit. When the CFG
checker is implemented in Verilog HDL, we use
if statement for each block, where the condition
is that the current address is within the range
of instructions’ addresses of the corresponding
CFG node. Inside if, the tn and target addr are
examined by the three rules above. Since the
only difference among the same type blocks is the
parameter but not the structure, we can write
three Verilog description templates for all the
three types and use software to automatically
instantiate one of them for each block, which
is the way that the CFG checker generator in
Sect. 4.3 works.

The checker outputs cover the following scenarios.

C1 No output: Current address is not in any CFG nodes.
C2 There is output: Current address is in one CFG node, whose start address

is found. The start address of the next node is also found.
C3 Output contains function size: The current node is at the beginning of

a function. The address range of this function is found.
C4 No invalid or unspec target assertion: The actual control flow is valid

after executing the branch instruction in the current node. The next address
after the current node is found so that the actual software execution position
is located. Meanwhile, the current node has a direct branch or has an indirect
branch with constant target, which the actual execution target address.

C5 invalid asserts but no unspec target assertion: The current node has
an indirect branch with constant target, which is different from the target
address of the actual software execution.

230 L. Feng et al.

C6 unspec target asserts but no invalid assertion: The current node has
an indirect branch with unspecified target in CFG and the verification mod-
ule is to perform other checks for CFI which will be discussed later in this
section.

For the Verilog compilation tool, optimizing a large number of blocks is
more difficult than optimizing fewer blocks. Therefore, in our implementation,
we develop a hierarchical approach that groups blocks into small Verilog mod-
ules. Each small module takes the checker input to all of its internal blocks, and
selects an output among all of its internal blocks. For example, in Fig. 5, the
CFG checker has 6 blocks, B0 to B5, which are grouped into two small modules.
In this way, the compiling optimization is directed to perform in a hierarchical
manner to reach different resource use and compiling time tradeoffs.

Verification Controller. The verification controller takes the decoded trace
packets as input, feeds input to the CFG checker, and analyzes the checker results
to locate current instruction address, if not available from the trace packets,
and performs CFI verification. It is mainly a finite state machine with state
transition diagram provided in Fig. 6. It also has a function stack, which stores
information about the current function, and a return stack that stores function
return addresses. These two stacks are the critical parts for realizing the stateful
attribute of the proposed system.

WAIT SCOPE_CHECK

SCOPE_
PROCESSING

BRANCH_
ACQUISITIONCFG_CHECK

VERIFICATION

Decoded Address
from FIFO/Decoded

Address

[No Decoded Address
from FIFO]/[No Output]

Decoded Address/
C1 or C2

C1/[No Output]

C2/Current Address

[No Data From FIFO]/
[No Output]

T/N or Target Address
from FIFO/

T/N or Target Address

Current Address and
T/N or Target Address/
CFG Checker Output

Correct Control Flow
Information/Pass

Wrong Control Flow
Information/Violation

Other Data from
FIFO/[No Output]

Fig. 6. State transition diagram of the controller.

The controller
operations start from
the WAIT state, which
attempts to capture
executing instruction
address from decoded
trace packets. This
address provides a
reference for the ver-
ification module to
track the software
execution location,
and can be obtained
from Branch or
I-sync.

Once an execut-
ing instruction address
is acquired, the cont-
roller enters the
SCOPE CHECK state,
where the instruc-
tion address is sent
to the CFG checker
as curr addr to tell

FastCFI: Real-Time Control Flow Integrity 231

if it is in the scope of CFG. After the scope checking is finished,
SCOPE PROCESSING state is entered where the controller analyzes the check-
ing result and decides what to do next. If the result is C1, the instruction address
is not in the CFG and the next state is WAIT. If the result is C2, the controller
records the context ID, which identifies the software execution to be verified,
and then moves to state BRANCH ACQUISITION.

At BRANCH ACQUISITION, the controller attempts to capture decoded
Atom or Branch, and feeds tn or target addr to the CFG checker. If the received
trace packet is I-sync with current instruction address, the controller switches to
the WAIT so as to update the reference instruction address. If branch informa-
tion, Atom or Branch, is received, it enters the CFG CHECK state, where the
CFG checker processes the Atom or Branch information, along with curr addr.

When the CFG checking is finished, the controller switches to VERIFICA-
TION. This state is to analyze the checking results and keep track of instruction
execution location. If condition C3 occurs, the function address range is pushed
in to the function stack. The function stack top always stores the address range
of the current function. C3 also implies that the previous node made a function
call, and notifies the controller to push the return address onto the return stack.

If the target address of a branch instruction is specified in the CFG, either
C4 or C5 will hold when the corresponding block is activated. Condition C4
indicates that CFI verification is passed without seeing any violations. Then,
the controller updates the current address with the next address and the state
goes back to BRANCH ACQUISITION. Condition C5 shows CFI violation, then
the controller outputs a violation signal and goes back to the WAIT state.

Otherwise, if the target address of an indirect branch is not specified, con-
dition C6 will hold, which is a very difficult case for CFI verification as the
CFG alone does not immediately tell if the actual target address is legal or
not. Despite the difficulty, our controller continues to evaluate three sub-cases
and detect as many CFI violations as possible. The first case is function return.
The controller compares the actual target address from a trace packet with the
return address at the top of the return stack. If they are same, the current indi-
rect branch is confirmed to be a function return, which is legal. Note that this
check is stateful as it relies on historical information stored in the return stack.
The second one is Branch within current function. The controller checks if the
actual target address is within the range of function address at the top of the
function stack. If the check result is yes, no violation signal is triggered. The
third one is Branch as a new function call. If the actual target address is not in
current function, the only legal scenario is that a new function call is made. To
verify if a new function call is indeed made, the controller updates the current
address with the next address and waits for the next BRANCH ACQUISITION
and CFG CHECK result. If the next result indicates C3 and the current address
is the same as the new function entry address, a new function call is confirmed.
Evidently, this is also a stateful check. Any other scenario beyond the above
three is illegal and then a CFI violation signal is triggered.

232 L. Feng et al.

The verification is not only stateful, but also fine-grained as its resolution
is on each individual edge in the CFG. We also re-emphasize that our work is
general and flexible enough to be applied with other code static analysis tools.

5 Experiments and Results

5.1 Experiment Setup

All our experiments were run and measured on an Altera DE1-SoC board, con-
taining a Cyclone V FPGA working at 50 MHz and an ARM Cortex-A9 dual
core processor working at 1 GHz on which we loaded a Linux kernel. In addition,
we use Quartus Prime 17.1 [21] for Verilog compilation and FPGA layout syn-
thesis, and Signal Tap Logic Analyzer for FPGA signal monitoring. The Verilog
compilation is done on a desktop with an Intel 3.8 GHz CPU and 16 GB RAM.

5.2 Security

We use RIPE [33,38] to evaluate the effectiveness of FastCFI. RIPE is a popular
benchmark that has been used frequently in previous works [13,15] for evaluating
control flow defenses. However, RIPE is designed for Intel processors, and does
not directly run on our ARM platform. There are numerous processor architec-
ture specific assembly and shell codes in RIPE, which we had to modify for the
ARM processor.

Table 2. Security performance for different attack methods.

Due to the engineering difficulties, it is hard to port all RIPE functions to
ARM. In total, we recovered 41 attacks (which can run successfully on ARM),

FastCFI: Real-Time Control Flow Integrity 233

including both return oriented programming (ROP) and jump oriented program-
ming (JOP) attacks, as shown in Table 2 (Row #1-41). To assess the precision
(i.e., no false positive), we also added a new function (Row #42) in RIPE and
let it run without attack.

The results in Table 2 show that all these attacks can be identified by
FastCFI. In addition, FastCFI does not report any false positive (for the newly
introduced function with no attack).

Fine-Grained, Stateful Attacks. We also designed two special attacks not
included in RIPE, as shown in the last two rows of Table 2.

SP1 is a stateful attack that cannot be detected by stateless CFI techniques.
As shown in Fig. 7(a), in SP1, there is a function vuln which may be called
by function func1 or func2. So in the CFG, the node with function return of
vuln has edges to nodes in both func1 and func2. However, only one of them
is valid each time vuln is called. If func1 calls vuln, then vuln can only return
to func1. In our test, we use buffer overflow to change the return address of
vuln to func2, even if it is called by func1. Our experiment shows that FastCFI
can easily identify this attack. However, stateless CFI such as [17,40] and the
coarse-grained approach in [15], would not be able to identify this attack.

Fig. 7. Code illustrating the stateful SP1
attack.

Fig. 8. Code illustrating the fine-grained
SP2 attack.

SP2 is a fine-grained attack. In SP2, the attack changes a function call,
making it call another unintended function in the program’s binary. The C code
is shown in Fig. 8(a). In main, there is a structure struct attack, which contains a
buffer and a function pointer. Usually, the function pointer in the memory is right
after the buffer. The user data, which can be controlled by the attacker, is copied
to the buffer through memcpy. An attacker can input the data with a larger

234 L. Feng et al.

size than the buffer, and put the address of the function func wrong right after
the 32-byte’s data. In this way, when the struct attack.func() is called, function
func wrong will be executed rather than the correct function func correct.

For our fine-grained CFI, FastCFI can easily identify this attack. Figure 8(b)
shows part of the assembly in main. The instruction at 84c0 is the function
call struct attack.func(). The program would jump to the address stored in r3.
By backtracking the value in r3, we can find that it should be 0x8471, where
there is the entry of func correct. This is a typical example of indirect branch
with constant target address that we discussed before. We create the CFG with
a node containing the instruction at 84c0, and the only outgoing edge of this
node is to the node containing the entry of func correct. If the buffer overflow is
performed by an attacker, then the control flow will not go through the correct
edge in CFG. This will be detected by FastCFI.

Fig. 9. The runtime overhead on SPEC 2006 benchmarks.

However, this attack cannot be identified by coarse-grained CFI techniques
such as Lee et al. [26]. In [26], it only checks if the indirect branch instruction
performed as a function call is at the function’s entry. For the example above,
the attacked target address of the indirect branch instruction at 84c0 is still the
function entry. This would be ignored by [26].

5.3 Performance Overhead

We used the SPEC CPU2006 benchmarks [36] to evaluate the runtime overhead
of FastCFI. We successfully ran all the benchmarks, except 403.gcc, which could
not be cross compiled by the arm-linux-gnueabihf-gcc(g++) compiler.

The results are reported in Fig. 9, including a comparison with the results
from two recent works: Griffin [15] and Lee [26]. Both results of Lee and Griffin
are copied from the original papers [15,26]. For Lee [26], some benchmarks are
marked with “\”, because they were not evaluated in Lee’s work. Besides, we
also did the code instrumentation and repeated the overhead experiments in [26],
the results are shown as Lee Exp. The benchmarks not evaluated in Lee Exp
(marked with “/”) are also not evaluated by Lee’s original work [26]. Moreover,
400.perlbench and 458.sjeng are not evaluated by Lee but evaluated by our
repeated experiment Lee Exp. There are some benchmarks, such as 471.omnetpp,
which have overhead less than 0. This is likely due to cache effects or the noise
of the measurement, since the actual overhead is negligible.

FastCFI: Real-Time Control Flow Integrity 235

Overall, FastCFI has the lowest performance overhead, only 0.36% on aver-
age. The reason is that we do not add or modify anything on the software side,
and there is no code instrumentation or running of other programs. The only
overhead is caused by enabling the PTM device.

5.4 Latency

We also evaluated the latency introduced by FPGA to detect CFI violations,
since it relies on TPIU to communicate the trace between the ARM core and
FPGA. The latency is the clock cycles needed by FPGA to identify the attacks
after receiving the trace packet containing the CFI violation information. The
results are shown in Fig. 10. Overall, FastCFI has a latency within dozens of clock
cycles only. We note that some other hardware-based techniques such as [7] incur
a latency of tens of thousands of clock cycles, due to a more complex architectural
design.

The latency varies between different attacks. This depends on the quantity
of data in the FIFO when the wrong control flow information comes. The data
in the FIFO must be processed sequentially by the CFI verification module. The
more data, the longer latency. In general, this can be affected by many factors,
such as the target program itself, the input, or the other programs running on
the same processor.

Fig. 10. The latency for FPGA to identify attacks.

5.5 Circuit Resource Use and Compilation Time

Resource use is important for hardware design. Due to the resource limitation of
our FPGA, for some benchmarks the system may not fully verify the whole CFG,
but a sub-CFG, and ignores the instruction flow transitions happened outside
the sub-CFG. In our experiments, we always create the complete CFG first, and
then select as many CFG nodes as our FPGA can contain for the sub-CFG. In
practice, the sub-CFG can be specified by the user or developer, who may choose
the most security sensitive parts of the code to protect against CFI attacks.

236 L. Feng et al.

Table 3. Resource use on SPEC 2006 benchmarks.

Benchmark Sub-CFG

Nodes

Total CFG

Nodes

of

ALMs

Compile

Time

False

Alarm?

400.perlbench 4563 65083 32070 18m 55 s None

401.bzip2 2247 2247 22840 15m 32 s None

429.mcf 471 471 16171 13m 48 s None

445.gobmk 4585 37019 31604 19m 11 s None

456.hmmer 4602 12286 31449 19m 10 s None

458.sjeng 4591 6458 18738 15m 08 s None

462.libquantum 1300 1300 18738 15m 08 s None

464.h264ref 4513 15195 32070 19m 15 s None

471.omnetpp 4763 31811 30250 18m 07 s None

473.astar 1345 1345 18995 15m 07 s None

483.xalancbmk 4807 173204 31576 18m 39 s None

The resource use
results are reported in
Table 3. The ALM
means adaptive logic
module in Altera FPGA,
which is the basic ele-
ment of FPGA and
similar to LUT (Lookup
Tables). For these exper-
iments, we group 100
blocks in one small
Verilog module as dis-
cussed in Sect. 4.5. Over-
all, our current FPGA
can support 4500−4600 CFG nodes. Note that even though with only the sub-
CFGs, FastCFI does not report any false alarms on the studied benchmarks. As
also reported in Table 3, the Verilog compilation time, including FPGA layout
synthesis, in our experiments is less than 20 min for each benchmark.

6 Conclusion

We have presented an FPGA-based CFI system named FastCFI. To the best
of our knowledge, it is the first to simultaneously achieves low overhead, fine-
grained and stateful verification and independence of code instrumentation. It
does not produce false alarms and has low detection latency. It successfully
detects all CFI violations in major benchmarks and incurs an average overhead
of 0.36%. While it offers the computing efficiency of FPGAs, its deployment
is nearly as convenient as software due to our automated Verilog generation
technique. These advantages make FastCFI be feasible to be applied to the
systems having high real-time and security requirements.

References

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow Integrity. In: ACM
Conference on Computer and Communications Security, pp. 340–353 (2005)

2. Arora, D., Ravi, S., Raghunathan, A., Jha, N.K.: Hardware-assisted run-time mon-
itoring for secure program execution on embedded processors. IEEE Trans. Very
Large Scale Integr. Syst. 14(12), 1295–1308 (2006)

3. Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z.: Jump-oriented programming: a new
class of code-reuse attack. In: ACM Symposium on Information, Computer and
Communications Security, pp. 30–40 (2011)

4. Cheng, Y., Zhou, Z., Miao, Y., Ding, X., Deng, H.R.: ROPecker: a generic and
practical approach for defending against ROP attacks. In: Symposium on Network
and Distributed System Security (2014)

5. Christoulakis, N., Christou, G., Athanasopoulos, E., Ioannidis, S.: HCFI:
Hardware-enforced Control-Flow Integrity. In: ACM Conference on Data and
Application Security and Privacy, pp. 38–49 (2016)

FastCFI: Real-Time Control Flow Integrity 237

6. CoreSightTM Program Flow TraceTM. http://infocenter.arm.com/help/topic/com.
arm.doc.ihi0035b/IHI0035B cs pft v1 1 architecture spec.pdf

7. Das, S., Liu, Y., Zhang, W., Mahinthan, C.: Semantics-based online malware
detection: towards efficient real-time protection against malware. IEEE Trans. Inf.
Forensics Secur. 11(2), 289–302 (2016)

8. Das, S., Zhang, W., Liu, Y.: A fine-grained control flow integrity approach against
runtime memory attacks for embedded systems. IEEE Trans. Very Large Scale
Integr. Syst. 24(11), 3193–3207 (2016)

9. Davi, L., et al.: MoCFI: a framework to mitigate control-flow attacks on smart-
phones. In: Symposium on Network and Distributed System Security (2012)

10. Davi, L., et al.: HAFIX: Hardware-assisted Flow Integrity Extension. In: Annual
Design Automation Conference, pp. 74:1–74: 6 (2015)

11. Davi, L., Sadeghi, A.-R., Lehmann, D., Monrose, F.: Stitching the gadgets: on
the ineffectiveness of coarse-grained control-flow integrity protection. In: USENIX
Conference on Security, pp. 401–416 (2014)

12. de Clercq, R., Gtzfried, J., Bler, D., Maene, P., Verbauwhede, I.: SOFIA: Software
and Control Flow Integrity Architecture. Comput. Secur. 68(C), 16–35 (2017)

13. Ding, R., Qian, C., Song, C., Harris, B., Kim, T., Lee, W.: Efficient protection of
path-sensitive control security. In: USENIX Conference on Security, pp. 131–148
(2017)

14. Francillon, A., Perito, D., Castelluccia, C.: Defending embedded systems against
control flow attacks. In: ACM Workshop on Secure Execution of Untrusted Code,
pp. 19–26 (2009)

15. Ge, X., Cui, W., Jaeger, T.: GRIFFIN: guarding control flows using Intel Proces-
sor trace. In: International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 585–598 (2017)

16. Gu, Y., Zhao, Q., Zhang, Y., Lin, Z.: PT-CFI: transparent backward-edge control
flow violation detection using Intel Processor Trace. In: ACM Conference on Data
and Application Security and Privacy, pp. 173–184 (2017)

17. Guo, Z., Bhakta, R., Harris, I.G.: Control-flow checking for intrusion detection
via a real-time debug interface. In: International Conference on Smart Computing
Workshops, pp. 87–92 (2014)

18. Huang, J., Rajagopalan, A.K.: Precise and maximal race detection from incomplete
traces. In: ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pp. 462–476 (2016)

19. IDA. https://www.hex-rays.com/products/ida/index.shtml
20. Intel CET. https://software.intel.com/sites/default/files/managed/4d/2a/control-

flow-enforcement-technology-preview.pdf
21. Intel Quartus Prime. https://fpgasoftware.intel.com/17.1/?edition=lite
22. Kayaalp, M., Ozsoy, M., Abu-Ghazaleh, N., Ponomarev, D.: Branch regulation:

low-overhead protection from code reuse attacks. In: Annual International Sympo-
sium on Computer Architecture, pp. 94–105 (2012)

23. Kayaalp, M., Ozsoy, M., Abu-Ghazaleh, N., Ponomarev, D.: Efficiently securing
systems from code reuse attacks. IEEE Trans. Comput. 63(5), 1144–1156 (2014)

24. Kayaalp, M., Schmitt, T., Nomani, J., Ponomarev, D., Abu-Ghazaleh, N.: SCRAP:
architecture for signature-based protection from code reuse attacks. In: IEEE Inter-
national Symposium on High Performance Computer Architecture, pp. 258–269
(2013)

25. Lee, Y., Lee, J., Heo, I., Hwang, D., Paek, Y.: Integration of ROP/JOP Monitor-
ing IPs in an ARM-based SoC. In: Conference on Design, Automation & Test in
Europe, pp. 331–336 (2016)

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0035b/IHI0035B_cs_pft_v1_1_architecture_spec.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0035b/IHI0035B_cs_pft_v1_1_architecture_spec.pdf
https://www.hex-rays.com/products/ida/index.shtml
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://fpgasoftware.intel.com/17.1/?edition=lite

238 L. Feng et al.

26. Lee, Y., Lee, J., Heo, I., Hwang, D., Paek, Y.: Using CoreSight PTM to Integrate
CRA Monitoring IPs in an ARM-Based SoC. ACM Trans. Des. Autom. Electron.
Syst. 22(3), 52:1–52:25 (2017)

27. Liu, Y., Shi, P., Wang, X., Chen, H., Zang, B., Guan, H.: Transparent and efficient
CFI enforcement with Intel processor trace. In: IEEE International Symposium on
High Performance Computer Architecture, pp. 529–540 (2017)

28. Mao, S., Wolf, T.: Hardware support for secure processing in embedded systems.
In: Annual Design Automation Conference, pp. 483–488 (2007)

29. Ozdoganoglu, H., Vijaykumar, T.N., Brodley, C.E., Kuperman, B.A., Jalote, A.:
SmashGuard: a hardware solution to prevent security attacks on the function
return address. IEEE Trans. Comput. 55(10), 1271–1285 (2006)

30. Pappas, V., Polychronakis, M., Keromytis, A.D.: Transparent ROP exploit mit-
igation using indirect branch tracing. In: USENIX Conference on Security, pp.
447–462 (2013)

31. Putnam, A., et al.: A reconfigurable fabric for accelerating large-scale datacenter
services. IEEE Micro 35(3), 10–22 (2015)

32. Rahmatian, M., Kooti, H., Harris, I.G., Bozorgzadeh, E.: Hardware-assisted detec-
tion of malicious software in embedded systems. IEEE Embedd. Syst. Lett. 4(4),
94–97 (2012)

33. RIPE. https://github.com/johnwilander/RIPE
34. Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc without

function calls (on the x86). In: ACM Conference on Computer and Communications
Security, pp. 552–561 (2007)

35. Source Code of FastCFI. https://github.com/flwave/FastCFI
36. SPEC CPU 2006 Benchmark. https://www.spec.org/cpu2006/
37. Sullivan, D., Arias, O., Davi, L., Larsen, P., Sadeghi, A.-R., Jin, Y.: Strategy with-

out tactics: policy-agnostic hardware-enhanced control-flow integrity. In: Annual
Design Automation Conference, pp. 1–6 (2016)

38. Wilander, J., Nikiforakis, N., Younan, Y., Kamkar, M., Joosen, W.: RIPE: Run-
time Intrusion Prevention Evaluator. In: Annual Computer Security Applications
Conference, pp. 41–50 (2011)

39. Write XOR Execute. https://en.wikipedia.org/wiki/W%5EX
40. Xia, Y., Liu, Y., Chen, H., Zang, B.: CFIMon: detecting violation of control flow

integrity using performance counters. In: IEEE/IFIP International Conference on
Dependable Systems and Networks, pp. 1–12 (2012)

41. Zhang, M., Sekar, R.: Control flow integrity for COTS binaries. In: USENIX Con-
ference on Security, pp. 337–352 (2013)

https://github.com/johnwilander/RIPE
https://github.com/flwave/FastCFI
https://www.spec.org/cpu2006/
https://en.wikipedia.org/wiki/W%5EX

An Extension of LTL with Rules and Its
Application to Runtime Verification

Klaus Havelund1(B) and Doron Peled2(B)

1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
klaus.havelund@jpl.nasa.gov, doron.peled@gmail.com

2 Department of Computer Science, Bar Ilan University, Ramat Gan, Israel

Abstract. Runtime Verification (RV) consists of analyzing execution traces
using formal techniques, e.g., monitoring executions against Linear Temporal
Logic (LTL) properties. Propositional LTL is, however, limited in expressive-
ness, as first shown by Wolper [32]. Several extensions to propositional LTL,
which promote the expressive power to that of regular expressions, have there-
fore been proposed; however, none of which was, by and large, adopted for RV.
In addition, for many practical cases, there is a need in RV to monitor properties
that carry data. This problem has been addressed by numerous authors, and in
previous work we addressed this by providing an algorithm that uses BDDs to
represent relations over data elements. We show expressiveness deficiencies of
first-order LTL and suggest an extension of (propositional as well as first-order)
LTL with rules to address these limitations. We describe how the DEJAVU tool is
correspondingly extended and provide some experimental results.

1 Introduction

Runtime verification (RV) [3,20] refers to the use of rigorous (formal) techniques for
processing execution traces emitted by a system being observed. The purpose is typi-
cally to evaluate the behavior of the observed system. We focus here on specification-
based runtime verification, where an execution trace is checked against a property
expressed in a formal logic, in our case variants of Linear Temporal Logic (LTL).

LTL is a common specification formalism for reactive and concurrent systems. It
is often used in model checking and runtime verification. Another formalism that is
used for the same purpose is finite automata, often over infinite words. This includes
Büchi, Rabin, Street, Muller and Parity automata [31], all having the same expres-
sive power. In fact, model checking of an LTL specification is usually performed by
first translating the specification into a Büchi automaton. The automata formalisms are
more expressive than LTL, with a classical example by Wolper [32], showing that it

K. Havelund—The research performed by this author was carried out at Jet Propulsion Labora-
tory, California Institute of Technology, under a contract with the National Aeronautics and Space
Administration.
D. Peled—The research performed by this author was partially funded by Israeli Science Founda-
tion grant 1464/18: “Efficient Runtime Verification for Systems with Lots of Data and its Appli-
cations”.

c© Springer Nature Switzerland AG 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 239–255, 2019.
https://doi.org/10.1007/978-3-030-32079-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_14&domain=pdf
https://doi.org/10.1007/978-3-030-32079-9_14

240 K. Havelund and D. Peled

is not possible to express in LTL that every even state in the sequence satisfies some
proposition p. This has motivated extending LTL in various ways to achieve the same
expressive power as Büchi automata: Wolper’s ETL [32,33] uses right-linear gram-
mars, Sistla’s QLTL extends LTL with dynamic (i.e., state-dependent, second-order)
quantification over propositions [30] and the PSL standard [23] extends LTL with reg-
ular expressions. However, these and other extensions have not been extensively used
for RV.

We therefore first present an alternative extension of propositional LTL with rules,
named RLTL. These rules define and use auxiliary propositions, not appearing in the
execution itself. These propositions obtain their values in a state as a function of the
prefix of the execution up to and including that state, expressed as a past time temporal
formula. This extension fits easily and naturally to existing RV algorithms that use
incremental summaries of prefixes, e.g., the classical algorithm [21] for past time LTL
(denoted here PLTL), maintaining also its linear time complexity (in the length of the
trace and the size of the formula). In fact, our extension of the logic is inspired by that
RV algorithm. The logic RLTL is shown to be equivalent to QLTL and its restriction to
past properties is equivalent to Büchi automata and regular expressions.

Another expressiveness dimension is runtime verification of events that carry data,
for which a first-order LTL supporting quantification over data is appropriate, here
referred to as FLTL. We demonstrate the weakness of FLTL in expressing Wolper’s
example, relativized to the first-order case, and in expressing the transitive closure of
temporal relations over events. We therefore introduce two alternative ways of extend-
ing the expressive power of FLTL, corresponding, respectively, to the propositional
logics QLTL and RLTL. The first adds quantification over relations of data, obtaining a
logic referred to as QFLTL. The second extension adds rules for the first-order case, and
is referred to as RFLTL. Both of these extended logics can express the above examples.
We show that for the first-order case, in contrast to the propositional case, the extension
of the logic with quantification is more expressive than the extension with rules.

Runtime verification is commonly restricted to the past time versions of LTL, i.e., to
safety properties [1], where a violation can be detected and demonstrated after a finite
prefix of the execution. We refer to the logic PLTL for the propositional case and to
PFLTL for the first-order case; these logics also enjoy elegant RV algorithms, based on
the ability to compute summaries of the observed prefixes [18,21], as opposed to future
temporal logics [25]. The RV algorithm, presented here for RPFLTL (the safety part
of RFLTL) naturally extends the RV algorithm for PFLTL in [18] in the same way that
the algorithm we present for RPLTL (the safety part of RLTL) extends the RV algorithm
in [21] for PLTL.

We further present a corresponding extension of the DEJAVU tool [17–19], that real-
izes the extension of first-order past time LTL with rules (RPFLTL). The DEJAVU tool
allows runtime verification of past time first-order temporal logic over infinite domains
(e.g., the integers, strings, etc.). It achieves efficiency by using a unique BDD represen-
tation of the data part; BDDs correspond to relations over a Boolean enumeration of the
input data (with a hash table representing the correspondence between the data and the
enumerations). This is a very different use of BDDs from the classical model checking

An Extension of LTL with Rules and Its Application to Runtime Verification 241

representation of sets of Boolean states1. A garbage collection algorithm tailored for
that representation also assists in obtaining efficiency.

Our main contribution is the LTL logics extended with rules (extensions prefixed
with ‘R’), and in particular the logic RPFLTL and its implementation. The structure of
the paper reflects our step-wise approach by first exploring the problem in the proposi-
tional case to form a basic understanding, and then by addressing the more interesting
first-order case.

Numerous monitoring related expressive logics and systems have been developed
over the past decades. In the database community, relations have been added to tem-
poral databases for aggregation [22], calculating functions (sums etc.). Aggregations
were also used in the runtime verification tool MONPOLY [4]. Numerous other systems
have been produced for monitoring execution traces with data against formal speci-
fications. These include e.g. MOP [27], QEA [29], and LARVA [12], which provide
automaton-based data parameterized logics; LOLA [2], which is based on stream pro-
cessing; BEEPBEEP [15] which is temporal logic-based; and the rule-based LOGFIRE
[16]. These systems address the expressiveness issues discussed in this paper in differ-
ent ways. Our approach differs from earlier such work by taking a starting point in LTL
and extending it with rules, implemented using BDDs.

Conventions. As already outlined above, we present several versions of LTL. We name
the different versions by prefixing LTL with the following letters. ‘P’ : restricted to
Past-time temporal operators; ‘F’ : allowing First-order (static) quantification over data
assigned to variables; ‘Q’ : adding second-order (dynamic) Quantification over propo-
sitions/predicates; and finally ‘R’ : adding Rules, our main contribution.

2 Propositional LTL

The classical definition of linear temporal logic [26] has the following syntax:

ϕ ::= true | p |(ϕ∧ϕ) |¬ϕ | ©ϕ |(ϕU ϕ) | �ϕ|(ϕ S ψ)

where p is a proposition from a finite set of propositions P, and ©, U, �, S stand for
next-time, until, previous-time and since, respectively. The models for LTL formulas
are infinite sequence of states, of the form σ = s1 s2 s3 . . ., where si ⊆ P for each i ≥ 1.
These are the propositions that hold in that state. LTL’s semantics is defined as follows:

– (σ, i) |= true.
– (σ, i) |= p if p ∈ si.
– (σ, i) |= ¬ϕ if (σ, i) �|= ϕ.
– (σ, i) |= (ϕ∧ψ) if (σ, i) |= ϕ and (σ, i) |= ψ.
– (σ, i) |= ©ϕ if (σ, i+1) |= ϕ.
– (σ, i) |= (ϕUψ) if for some j, j ≥ i, (σ, j) |=ψ, and for each k, i≤ k< j, (σ,k) |= ϕ.
– (σ, i) |= �ϕ if i> 1 and (σ, i−1) |= ϕ.

1 E.g., in [6], BDDs are used to represent sets of program locations, and the data elements are
represented symbolically as a formula.

242 K. Havelund and D. Peled

– (σ, i) |= (ϕS ψ) if there exists j, 1 ≤ j ≤ i, such that (σ, j) |= ψ and for each k,
j < k ≤ i, (σ,k) |= ϕ.

Then σ |= ϕ when (σ,1) |= ϕ. We can use the following abbreviations: false = ¬true,
(ϕ ∨ ψ) = ¬(¬ϕ ∧¬ψ), (ϕ → ψ) = (¬ϕ ∨ ψ), ♦ϕ = (trueU ϕ), �ϕ = ¬♦¬ϕ, P ϕ =
(true S ϕ) (P stands for Previously) and H ϕ = ¬P ¬ϕ (H stands for History).

The expressive power of different versions of propositional LTL is often compared
to regular expressions over the alphabet σ = 2P and to monadic first and second-
order logic. Accordingly, we have the following characterizations: LTL is equiva-
lent to monadic first-order logic, star-free regular expressions2 and counter-free Büchi
automata. For an overview of logic and automata see [31]. Restricting the temporal
operators to the future operators U and © (and the ones derived from them � and ♦)
maintains the same expressive power. An important subset of LTL, called here PLTL,
allows only past temporal operators: S , � and the operators derived from them, H and
P. The past time logic is sometimes interpreted over finite sequences, where σ |= ϕ
when (σ, |σ|) |= ϕ. It is also a common practice to use a PLTL formula, prefixed with
a single � (always) operator; in this case, each of the prefixes has to satisfy ϕ. This
later form expresses safety LTL properties [1]. When PLTL is interpreted over finite
sequences, its expressive power is the same as star-free regular expressions, first-order
monadic logic over finite sequences and counting-free automata. Wolper [32] demon-
strated that the expressive power of LTL is lacking using the property that all the states
with even3 indexes in a sequence satisfy some proposition p.

Extending LTL with Dynamic Quantification. Adding quantification over proposi-
tions, suggested by Sistla in [30], allows writing a formula of the form ∃∃∃qϕ, where ∃∃∃q
represents existential quantification over a proposition q that can appear in ϕ. To define
the semantics, let X ⊆ P and denote σ|X = s1 \X s2 \X (Note that σ|X denotes pro-
jecting out the propositions in X .) The semantics is defined as follows:

– (σ, i) |= ∃∃∃qϕ if there exists σ′ such that σ′|{q} = σ and (σ′, i) |= ϕ.

Universal quantification is also allowed, where ∀∀∀qϕ = ¬∃∃∃q¬ϕ. This kind of quantifi-
cation is considered to be dynamic, since the quantified propositions can have differ-
ent truth values depending on the states. It is also called second-order quantification,
since the quantification establishes the set of states in which a proposition has the value
true. Extending LTL with such quantification, the logic QLTL has the same expressive
power as regular expressions, full Büchi automata, or monadic second-order logic with
unary predicates over the naturals (see again [31]). In fact, it is sufficient to restrict
the quantification to existential quantifiers that prefix the formula to obtain the full
expressiveness of QLTL [31]. Restricting QLTL to the past modalities, one obtains the
logic QPLTL. QPLTL has the same expressive power as regular expressions and finite
automata. Wolper’s property can be rewritten in QPLTL as:

∃∃∃qH((q ↔ �¬q)∧ (q → p)) (1)

2 Regular expressions without the star operator (or ω).
3 This is different than stating that p alternates between true and false on consecutive states.

An Extension of LTL with Rules and Its Application to Runtime Verification 243

Since �ϕ is interpreted as false in the first state of any sequence, regardless of ϕ, then
q is false in the first state. Then q alternates between even and odd states.

Extending LTL with Rules. We introduce another extension of LTL, which we call
RLTL. As will be showed later, this extension is very natural for runtime verification.
We partition the propositions P into auxiliary propositions A= {a1, . . . ,an} and basic
propositions B. An RLTL property η has the following form:

ψ where a j := ϕ j : j ∈ {1, . . . ,n} (2)

where each a j is a distinct auxiliary proposition from A, ψ is an LTL property and each
ϕi is a PLTL property where propositions from A can only occur within the scope of a
� operator. We refer to ψ as the statement of η and to a j := ϕ j as a rule (in text, rules
will be separated by commas). The semantics can be defined as follows.

σ |= η if there exists σ′, where σ′|A = σ s.t. σ′ |= (ψ∧�
∧

1≤ j≤n
(a j ↔ ϕ j))

RLTL extends the set of propositions with new propositions, whose values at a state
are functions of (i.e., uniquely defined by) the prefix of the model up to that state. This
differs from the use of auxiliary propositions in QLTL, where the values assigned to
the auxiliary propositions do not have to extend the states of the model in a unique way
throughout the interpretation of the property over a model. The constraint that auxiliary
propositions appearing in the formulas ϕi must occur within the scope of a � operator
is required to prevent conflicting rules, as in a1 := ¬a2 and a2 := a1. Wolper’s example
can be written in RLTL as follows:

�(q → p)whereq := �¬q (3)

where A = {q} and B = {p}. The auxiliary proposition q is used to augment the input
sequence such that each odd state will satisfy ¬q and each even state will satisfy q.

Lemma 1 (Well foundedness of auxiliary propositions). The values of the auxiliary
propositions of an RLTL formula η are uniquely defined in a state of an execution by
the prefix of the execution up to and including that state.

Proof. Let η be a formula over auxiliary propositions A and basic propositions B, with
rules a j := ϕ j : j ∈ {1, . . . ,n}. Let σ be a model with states over B. Then there is a
unique model σ′ such that σ′|A = σ and σ′ |= �∧

1≤ j≤n(a j ↔ ϕ j): inductively, the
value of each auxiliary proposition a j at the ith state of σ′ is defined, via a rule a j := ϕ j,
where ϕ j is a PLTL formula; hence it depends on the values of the propositions B in the
ith state of σ, and on the values of A∪B in the previous states of σ′. ��
Theorem 1. The expressive power of RLTL is the same as QLTL.

Sketch of Proof. Each RLTL formula η, as defined in (2), is expressible using the
following equivalent QLTL formula:

∃∃∃a1 . . .∃∃∃an(ψ∧�
∧

1≤ j≤n

(a j ↔ ϕ j))

244 K. Havelund and D. Peled

For the other direction, one can first translate the QLTL property into a second-order
monadic logic formula, then to a deterministic Muller automata and then construct an
RLTL formula that holds for the accepting executions of this automaton. The rules of
this formula encode the automata states, and the statement describes the acceptance
condition of the Muller automaton. ��

We define RPLTL by disallowing the future time temporal operators in RLTL. Every
top level formula is interpreted as implicitly being prefixed with a � operator, hence is
checked in every state. This results in a formalism that is equivalent to a Büchi automata,
where all the states except one are accepting and where the non-accepting state is a sink.
We can use a related, but simpler construction than in Theorem 1 to prove the following:

Lemma 2. The expressive power of RPLTL is the same as QPLTL.

Lemma 3. RPLTL can, with no loss of expressive power, be restricted to the form:

�p where a j = ϕ j : j ∈ {1, . . . ,n}

with p being one of the auxiliary propositions a j and ϕ j contains only a single occur-
rence of the � temporal operator (and the Boolean operators).

In this form, the value of the Boolean variables a j encodes the states of an automaton,
and the rules encode the transitions.

3 RV for Propositional Past Time LTL and Its Extension

Runtime verification of temporal specifications often concentrates on the past portion of
the logic. Past time specifications have the important property that one can distinguish
when they are violated after observing a finite prefix of an execution. For an extended
discussion of this issue of monitorability, see e.g., [5,13]. The RV algorithm for PLTL,
presented in [21], is based on the observation that the semantics of the past time for-
mulas �ϕ and (ϕS ψ) in the current state i is defined in terms of the semantics of its
subformula(s) in the previous state i− 1. To demonstrate this, we rewrite the semantic
definition of the S operator to a form that is more applicable for runtime verification.

– (σ, i) |= (ϕS ψ) if (σ, i) |= ψ or: i> 1 and (σ, i) |= ϕ and (σ, i−1) |= (ϕS ψ).

The semantic definition is recursive in both the length of the prefix and the structure of
the property. Thus, subformulas are evaluated based on smaller subformulas, and the
evaluation of subformulas in the previous state. The algorithm shown below uses two
vectors of values indexed by subformulas: pre, which summarizes the truth values of
the subformulas for the execution prefix that ends just before the current state, and now,
for the execution prefix that ends with the current state. The order of calculating now
for subformulas is bottom up, according to the syntax tree.

1. Initially, for each subformula ϕ of η, now(ϕ) := false.
2. Observe a new event (as a set of propositions) s as input.
3. Let pre := now.

An Extension of LTL with Rules and Its Application to Runtime Verification 245

4. Make the following updates for each subformula. If ϕ is a subformula of ψ then
now(ϕ) is updated before now(ψ).
– now(true) := true.
– now(ϕ∧ψ) := now(ϕ) and now(ψ).
– now(¬ϕ) := not now(ϕ).
– now(ϕSψ) := now(ψ) or (now(ϕ) and pre((ϕSψ))).
– now(� ϕ) := pre(ϕ).

5. If now(η) = false then report a violation, otherwise goto step 2.

Runtime Verification for RPLTL. For RPLTL, we need to add to the above algorithm
calculations of now(a j) and now(ϕ j) for each rule of the form a j := ϕ j (the correspond-
ing pre entries will be updated as in line 3 in the above algorithm). Because the auxiliary
propositions can appear recursively in RPLTL rules, the order of calculation is subtle.
To see this, consider, for example, Formula (3). It contains the definition q :=�¬q. We
cannot calculate this bottom up, as we did for PLTL, since now(q) is not computed yet,
and we need to calculate now(�¬q) in order to compute now(q). However, notice that
the calculation is not dependent on the value of q to calculate �¬q; in Step 4 above, we
have that now(� ϕ) := pre(ϕ) so now(�¬q) := pre(¬q).
Mixed Evaluation Order. Under mixed evaluation order, one calculates now as part of
Step 4 of the above algorithm in the following order.

a. Calculate now(δ) for each subformula δ that appears in ϕ j of a rule a j := ϕ j, but not
within the scope of a � operator (observe that now(�γ) is set to pre(γ)).

b. Set now(a j) to now(ϕ j) for each j.
c. Calculate now(δ) for each subformula δ that appears in ϕ j of a rule a j := ϕ j within

the scope of a � operator.
d. Calculate now(δ) for each subformula δ that appears in the statement ψ, using the

calculated now(a j).

4 First-Order LTL

Assume a finite set of infinite domains4 D1,D2, . . ., e.g., integers or strings. Let V be
a finite set of variables, with typical instances x, y, z. An assignment over a set of
variables V maps each variable x ∈V to a value from its associated domain domain(x),
where multiple variables (or all of them) can be related to the same domain. For example
[x → 5,y → “abc”] assigns the values 5 to x and the value “abc” to y.

We define models for FLTL based on temporal relations [9], that is, relations with
last parameter that is a natural number, representing a time instance in the execution. So
a tuple of a relation R can be (“a”, 5, “cbb”, 3), where 3 is the value of the time param-
eter. The last parameter i represents a discrete progress of time rather than modeling
physical real time. It is used to allow the relations to have different tuples in different
instances of i, corresponding to states in the propositional temporal logics.

For a relation R, R[i] is the relation obtained from R by restricting it to the value i
in the last parameter, and removing that last i from the tuples. For simplicity, we will

4 Finite domains are handled with some minor changes, see [18].

246 K. Havelund and D. Peled

describe henceforth the logic with relations R that have exactly two parameters, the
second of which is the time instance. Hence R[i] is a relation with just one parameter
over a domain that will be denoted as dom(R). The definition of the logic that allows
relations with more parameters is quite straightforward. Our implementation, and the
examples described later, fully support relations with zero or more parameters.

Syntax. The formulas of the core FLTL logic are defined by the following grammar,
where p denotes a relation, a denotes a constant and x denotes a variable.

ϕ ::= true | p(a) | p(x) | (ϕ∧ϕ) | ¬ϕ | ©ϕ | (ϕ U ϕ) |� ϕ | (ϕ S ϕ) | ∃x ϕ

Additional operators are defined as in the propositional logic. We define ∀x ϕ=¬∃x¬ϕ.
Restricting the modal operators to the past operators (S , � and the ones derived from
them) forms the logic PFLTL.

Semantics. A model is a set of temporal relations R = {R1 . . . ,Rm}. Since the stan-
dard definition of temporal logic is over a sequence (“the execution”), let R [i] =
{R1[i] . . . ,Rm[i]}. R [i] represents a state. A model R can thus be seen as a sequence
of states R [1]R [2] Let m be a bijection from relation names (syntax) to the relations
R (semantics).

Let free(ϕ) be the set of free (i.e., unquantified) variables of a subformula ϕ. We
denote by γ|free(ϕ) the restriction (projection) of an assignment γ to the free variables
appearing in ϕ. Let ε be the empty assignment (with no variables). In any of the follow-
ing cases, (γ,R , i) |= ϕ is defined where γ is an assignment over free(ϕ), and i ≥ 1.

– (ε,R , i) |= true.
– (ε,R , i) |= p(a) if m(p)(a, i), where a denotes a constant from dom(m(p)).
– ([x �→ a],R , i) |= p(x) if m(p)(a, i), where domain(x) = dom(m(p)).
– (γ,R , i) |= (ϕ∧ψ) if (γ|free(ϕ),R , i) |= ϕ and (γ|free(ψ),R , i) |= ψ.
– (γ,R , i) |= ¬ϕ if not (γ,R , i) |= ϕ.
– (γ,R , i) |= ©ϕ if (γ,R , i+1) |= ϕ.
– (γ,R , i) |=(ϕ U ψ) if for some j, j≥ i, (γ|free(ψ),R , j) |=ψ and for each k, i≤ k< j,
(γ|free(ϕ),R ,k) |= ϕ.

– (γ,R , i) |= �ϕ if i> 1 and (γ,R , i−1) |= ϕ.
– (γ,R , i) |= (ϕ S ψ) if for some j, 1 ≤ j ≤ i, (γ|free(ψ),R , j) |= ψ and for each k,

j < k ≤ i, (γ|free(ϕ),R ,k) |= ϕ.
– (γ,R , i) |= ∃x ϕ if there exists a ∈ domain(x) such that5 (γ [x �→ a],σ, i) |= ϕ.

For an FLTL (PFLTL) formula with no free variables, denote R |= ϕ when
(ε,R ,1) |= ϕ. We will henceforce, less formally, use the same symbols both for the
relations (semantics) and their representation in the logic (syntax). Note that the letters
p,q,r, which were used for representing propositions in the propositional versions of
the logic in previous sections, will represent relations in the first-order versions. The
quantification over values of variables, denoted with ∃ and ∀, here is static in the sense
that they are independent of the state in the execution. We demonstrate that the lack of
expressiveness carries over from LTL (PLTL) to FLTL (PFLTL).

5 γ [x �→ a] is the overriding of γ with the binding [x �→ a].

An Extension of LTL with Rules and Its Application to Runtime Verification 247

Example 1. Let p and q be temporal relations. The specification that we want to mon-
itor is that for each value a, p(a) appears in all the states where q(a) has appeared an
even number of times so far (for the odd occurrences, p(a) can also appear, but does
not have to appear). To show that this is not expressible in FLTL (and PFLTL), consider
models (executions) where only one data element a appears. Assume for the contra-
diction that there is an FLTL formula ψ that expresses this property. We recursively
replace in ψ, each subformula of the form ∃ϕ by a disjunction over copies of ϕ, in
which the quantified occurrences of p(x) and q(x) are replaced by pa and qa, respec-
tively or to false; the false represents the Boolean value of p(x) and q(x) for any x �= a,
since only p(a) and q(a)may appear in the input. For example, ∃x(q(x)S p(x)) becomes
(qa S pa)∨ (falseS false) (which can be simplified to (qa S pa)). Similarly, subformulas
of the form ∀ϕ are replaced by conjunctions. This results in an LTL formula that holds
in a model, where each p(a) is replaced by pa and each q(a) is replaced by qa, iff ψ
holds for the original model. But Wolper’s example [32] contradicts the assumption
that such a formula exists. Using parametric automata as a specification formalism, as
in [14,20,27,29], can express this property, where for each value a there is a separate
automaton that counts the number of times that q(a) has occurred.

Example 2. Consider the property that asserts that when report(y,x,d) appears in a
state, denoting that process y sends some data d to a process x, there was a chain of pro-
cess spawns: spawn(x,x1), spawn(x1,x2) . . . spawn(xl ,y). i.e., y is a descendent process
of x. The required property involves the transitive closure of the relation spawn. FLTL
can be translated (in a way similar to the standard translation of LTL into monadic first-
order logic formula [31]) to a first-order formula, with explicit occurrences of time vari-
ables over the naturals and the linear order relation < (or ≤) between them. For exam-
ple, �∀x(p(x) → ♦q(x)) will be translated into ∀x∀t (p(x, t) → ∃t ′ (t ≤ t ′ ∧ q(x, t ′))).
However, the transitive closure of spawn cannot be expressed in first-order setting. This
can be shown based on the compactness theory of first-order logic [11].

Extending FLTL with Dynamic Quantification. Relations play in FLTL a similar role
to propositions in LTL. Hence, in correspondence with the relation between LTL and
QLTL, we extend FLTL (PFLTL) with dynamic quantification over relations, obtaining
QFLTL (and the past-restricted version QPFLTL). The syntax includes ∃∃∃pϕ, where p
denotes a relation. We also allow ∀∀∀p ϕ = ¬∃∃∃p¬ϕ. The semantics is as follows.

– (γ,R , i) |= ∃∃∃qϕ if there exists R ′ such that R ′ \ {q} = R and (γ,R ′, i) |= ϕ.

Consequently, quantification over relations effectively extends the model R into a
model R ′ within the scope of the quantifier. Note that quantification here is dynamic
(as in QLTL and QPLTL) since the relations are temporal and can have different sets of
tuples in different states.

Extending FLTL with Rules.We now extend FLTL into RFLTL in a way that is moti-
vated by the propositional extension from LTL (PLTL) to RLTL (RPLTL). We allow the
following formula:

ψ where r j(x j) := ϕ j(x j) : j ∈ {1, . . . ,n} such that, (4)

248 K. Havelund and D. Peled

1. ψ, the statement, is an FLTL formula with no free variables,
2. ϕ j are PFLTL formulas with a single6 free variable x j,
3. r j is an auxiliary temporal relation with two parameters: the first parameter is of the

same type as x j and the second one is, as usual, a natural number that is omitted in the
temporal formulas.An auxiliary relation r j can appearwithinψ. They can also appear
in ϕk of a rule rk := ϕk, but only within the scope of a previous-time operator �.

We define the semantics for the RFLTL (RPFLTL) specification (4) by using the fol-
lowing equivalent QFLTL (QPFLTL, respectively) formula7:

∃∃∃r1 . . . ∃∃∃rn (ψ∧�
∧

j∈{1,...,n}
(r j(x j) ↔ ϕi(x j)) (5)

The logic RPFLTL is obtained by restricting the temporal modalities of RFLTL to
the past ones: S and �, and those derived from them.

Lemma 4 (Well foundedness of auxiliary relations). The auxiliary temporal rela-
tions of an RFLTL formula at state i are uniquely defined by the prefix of the execution
up to and including that state.

Proof. By a simple induction, similar to Lemma 1. ��
The following formula expresses the property described in Example 1, which was

shown to be not expressible using FLTL.

�∀x(r(x) → p(x)) where r(x) = (q(x) ↔ �¬r(x)) (6)

The property that corresponds to Example 2 appears as the property spawning in Fig. 1
in the implementation Sect. 6.

Theorem 2. The expressive power of RPFLTL is strictly weaker than that of QPFLTL.

Sketch of Proof. The proof of this theorem includes encoding of a property that
observes sets of data elements, where elements a, appears separately, i.e., one per state,
as v(a), in between states where r appears. The domain of data elements is unbounded.
The set of a-values observed in between two consecutive r’s is called a data set. The
property asserts that there are no two consecutive data sets that are equivalent. This
property can be expressed in QPFLTL.

We use a combinatorial argument to show by contradiction that one cannot express
this property using any RPFLTL formula ϕ. The reason is that every prefix of a model
for an RPFLTL property is extended uniquely with auxiliary relations, according to
Lemma 4. Each prefix can be summarized by a finite number of relations: the ones
in the model, the auxiliary relations and the assignments satisfying the subformulas.
The size of each such relation is bounded by O(mN) where m is the number of values

6 Again, the definition can be extended to any number of parameters.
7 Formal semantics can also be given by constructing a set of temporal relations extended with
the auxiliary ones inductively over growing prefixes.

An Extension of LTL with Rules and Its Application to Runtime Verification 249

appearing in the prefix, and N is the number of parameters of the relations. However,
the number of different data sets over m values is 2m. This means that with large enough
number of different values, each RPFLTL formula ϕ over the models of this property
can have two prefixes with the same summary, where one of them has a data set that the
other one does not. The semantics of RPFLTL implies that extending two prefixes with
the same summary in the same way would have the same truth value. Consequently,
we can extend the two prefixes where some data set appears in one of them but not in
the other into a complete model, and ϕ will not be able to distinguish between these
models. ��

From Theorem 2 and Eq. (5) we immediately obtain:

Corollary 1. Restricting the quantification of QPFLTL to existential quantification,
strictly weakens its expressive power8.

5 RV for Past Time First-Order LTL and Its Extension

Runtime verification of FLTL is performed on an input that consists of events in the
form of tuples of relations. (A typical use of runtime verification restricts the events
for each state to a single event.) In our notation, the input consists of a sequence
R [1]R [2] . . ., which we earlier identified with states, where each R [i] consists of the
relations in R with the last parameter is restricted to i. The RV algorithm will make use
of sets of assignments over a set of variables, satisfying a subformula at some state (and
stored in pre and now), also represented as relations (instead of propositions, as used
for LTL in Sect. 3).

Set Semantics. The RV algorithm for (R)PLTL, presented in Sect. 3 calculates now(ϕ),
for ϕ a subformula of the monitored property, to be the Boolean truth value of ϕ over
the prefix inspected by the RV algorithm so far. For (R)PFLTL, now(ϕ) denotes the
set of assignments satisfying ϕ (in the form of relations over the free variables in the
subformula), rather than a Boolean value. We provide an alternative set semantics for
the logic RPFLTL, without changing its interpretation, in a way that is more directly
related to the calculation of values in now by the RV algorithm that will be presented
below. Under the set semantics (introduced in [18] for PFLTL, and extended here for
RPFLTL), I[ϕ,σ, i] denotes a set of assignments such that γ ∈ I[ϕ,σ, i] iff (γ,σ, i) |= ϕ.
We present here only two simple cases of the set semantics.

– I[(ϕ∧ψ),σ, i] = I[ϕ,R , i]
⋂

I[ψ,σ, i].
– I[(ϕ S ψ),R , i] = I[ψ,R , i]

⋃
(I[ϕ,R , i]

⋂
I[(ϕSψ),R , i−1]).

Runtime Verification Algorithm for PFLTL. We start by describing an algorithm for
monitoring PFLTL properties, presented in [18] and implemented in the tool DEJAVU.
We enumerate data values appearing in monitored events, as soon as we first see them.
We represent relations over the Boolean encoding of these enumeration, rather than over

8 It is interesting to note that for QPLTL, restriction to existential quantification does not change
the expressive power.

250 K. Havelund and D. Peled

the data values themselves. A hash function is used to connect the data values to their
enumerations to maintain consistency between these two representations. The relations
are represented as BDDs [7]. For example, if the runtime-verifier sees the input events
open(“a”), open(“b”), open(“c”), it will encode the argument values as 000, 001 and
010 (say, we use 3 bits b0, b1 and b2 to represent each enumeration, with b2 being the
most significant bit). A Boolean representation of the set of values {“a”, “b”} would be
equivalent to a Boolean function (¬b1 ∧¬b2) that returns 1 for 000 and 001.

Since we want to be able to deal with infinite domains (where only a finite number
of elements may appear in a given observed prefix) and maintain the ability to perform
complementation, unused enumerations represent the values that have not been seen yet.
In fact, it is sufficient to have just one enumeration representing these values per each
variable of the LTL formula. We guarantee that at least one such enumeration exists by
preserving for that purpose the enumeration 11 . . .11. We present here only the basic
algorithm. For versions that allow extending the number of bits used for enumerations
and garbage collection of enumerations, consult [17].

Given some ground predicate p(a), observed in the monitored execution, matching
with p(x) in the monitored property, let lookup(x,a) be the enumeration of a (a lookup
in the hash table). If this is a’s first occurrence, then it will be assigned a new enu-
meration. Otherwise, lookup returns the enumeration that a received before. We can
use a counter, for each variable x, counting the number of different values appearing
so far for x. When a new value appears, this counter is incremented and converted to
a Boolean representation. The function build(x,A) returns a BDD that represents the
set of assignments where x is mapped to (the enumeration of) v for v ∈ A. This BDD
is independent of the values assigned to any variable other than x, i.e., they can have
any value. For example, assume that we use the three Boolean variables (bits) x0, x1
and x2 for representing enumerations over x (with x0 being the least significant bit), and
assume that A= {a,b}, lookup(x,a) = 000, and lookup(x,b) = 001. Then build(x,A)
is a BDD representation of the Boolean function (¬x1 ∧¬x2).

Intersection and union of sets of assignments are translated simply into conjunction
and disjunction of their BDD representation, respectively; complementation becomes
BDD negation. We will denote the Boolean BDD operators as and, or and not. To
implement the existential (universal, respectively) operators, we use the BDD existen-
tial (universal, respectively) operators over the Boolean variables that represent (the
enumerations of) the values of x. Thus, if Bϕ is the BDD representing the assign-
ments satisfying ϕ in the current state of the monitor, then exists(〈x0, . . . ,xk−1〉,Bϕ)
is the BDD that represents the assignments satisfying ∃x ϕ in the current state. Finally,
BDD(⊥) and BDD(�) are the BDDs that return always 0 or 1, respectively. The algo-
rithm for monitoring a formula η is as follows.

1. Initially, for each subformula ϕ of η, now(ϕ) := BDD(⊥).
2. Observe a new state (as a set of ground predicates) si as input.
3. Let pre := now.
4. Make the following updates for each subformula. If ϕ is a subformula of ψ then

now(ϕ) is updated before now(ψ).
– now(true) := BDD(�).
– now(pk(a)) := if Rk[i](a) then BDD(�) else BDD(⊥).

An Extension of LTL with Rules and Its Application to Runtime Verification 251

– now(pk(x)) := build(x,{a | Rk[i](a)}).
– now((ϕ∧ψ)) := and(now(ϕ),now(ψ)).
– now(¬ϕ) := not(now(ϕ)).
– now((ϕ S ψ)) := or(now(ψ),and(now(ϕ),pre((ϕ S ψ)))).
– now(� ϕ) := pre(ϕ).
– now(∃x ϕ) := exists(〈x0, . . . ,xk−1〉,now(ϕ)).

5. If now(η) = false then report a violation, otherwise goto step 2.

RV Algorithm for RPFLTL. We extend now the algorithm to capture RPFLTL. The
auxiliary relations r j extend the model, and we need to keep BDDs representing now(r j)
and pre(r j) for each relation r j. We also need to calculate the subformulas ϕi that appear
in a specification, as part of the runtime verification, as per the above PFLTL algo-
rithm. One subtle point is that the auxiliary relations r j may be defined in a rule with
respect to a variable x j as in r j(x j) := ϕ j(x j) (this can be generalized to any number
of variables), but r j can be used as a subformula with other parameters in other rules
or in the statement e.g., as r j(y). This can be resolved by a BDD renaming function
rename(r j(x j),y). We then add the following updates to step 4 of the above algorithm.

For each rule r j(x j) := ϕ j(x j):
calculate now(ϕ j);
now(r j) := now(ϕ j);
now(r j(y)) := rename(r j(x j),y);
now(r j(a)) := if now(r j)(a) then BDD(�) else BDD(⊥)

As in the propositional case, the evaluation order cannot be simply top down or bottom
up, since relations can appear both on the left and the right of a definition such as
r(x) := p(x)∨�r(x); we need to use the mixed evaluation order, described in Sect. 3.

Complexity. BDDs were first introduced to model checking [8] since they can often
(but not always) allow a very compact representation of states. In our context, each
BDD in pre or now represents a relation with k parameters, which summarizes the
value of a subformula of the checked PFLTL or RPFLTL property with k free variables
over the prefix observed so far. Hence, it can grow up to a size that is polynomial in the
number of values appearing in the prefix, and exponential in k (with k being typically
very small). However, the marriage of BDDs and Boolean enumeration is in particular
efficient, since collections of adjacent Boolean enumerations tend to compact well.

6 Implementation

DEJAVU is implemented in SCALA. DEJAVU takes as input a specification file con-
taining one or more properties, and synthesizes the monitor as a self-contained SCALA

program. This program takes as input the trace file and analyzes it. The tool uses the
JavaBDD library for BDD manipulations [24].

Example Properties. Figure 1 shows four properties in the input ASCII format of the
tool, the first three of which are related to the examples in Sect. 4, which are not express-
ible in (P)FLTL. That is, these properties are not expressible in the original first-order

252 K. Havelund and D. Peled

prop telemetry1 : Forall x . closed (x) → !telem(x) where
closed (x) := toggle (x) ↔ @!closed (x)

prop telemetry2 : Forall x . closed (x) → !telem(x) where
closed (x) := (!@true & ! toggle (x)) | (@closed (x) & ! toggle (x)) |

(@open(x) & toggle(x)) ,
open(x) := (@open(x) & ! toggle (x)) | (@closed (x) & toggle(x))

prop spawning : Forall x . Forall y . Forall d . report (y,x,d) → spawned(x,y) where
spawned(x,y) := @spawned(x,y) | spawn(x,y) |

Exists z . (@spawned(x,z) & spawn(z,y))

prop commands : Forall c . dispatch (c) → ! already dispatched (c) where
already dispatched (c) := @ [dispatch (c) , complete(c)) ,
dispatch (c) := Exists t . CMD DISPATCH(c,t),
complete(c) := Exists t . CMD COMPLETE(c,t)

Fig. 1. Properties stated in DEJAVU’s logic

logic of DEJAVU presented in [18]. The last property illustrates the use of rules to per-
form conceptual abstraction. The ASCII version of the logic uses @ for �, | for ∨, &
for ∧, and ! for ¬. The first property telemetry1 is a variant of formula 6, illustrating the
use of a rule to express a first-order version of Wolper’s example [32], that all the states
with even indexes of a sequence satisfy a property. In this case we consider a radio on
board a spacecraft, which communicates over different channels (quantified over in the
formula) that can be turned on and off with a toggle(x); they are initially off. Telemetry
can only be sent to ground over a channel x with the telem(x) event when radio channel
x is toggled on.

The second property, telemetry2, expresses the same property as telemetry1, but in
this case using two rules, reflecting how we would model this using a state machine
with two states for each channel x: closed(x) and open(x). The rule closed(x) is defined
as a disjunction between three alternatives. The first states that this predicate is true if
we are in the initial state (the only state where @true is false), and there is no toggle(x)
event. The next alternative states that closed(x) was true in the previous state and there
is no toggle(x) event. The third alternative states that in the previous state we were in
the open(x) state and we observe a toggle(x) event. Similarly for the open(x) rule.

The third property, spawning, expresses a property about threads being spawned
in an operating system. We want to ensure that when a thread y reports some data d
back to another thread x, then thread y has been spawned by thread x either directly, or
transitively via a sequence of spawn events. The events are spawn(x,y) (thread x spawns
thread y) and report(y,x,d) (thread y reports data d back to thread x). For this we need
to compute a transitive closure of spawning relationships, here expressed with the rule
spawned(x,y).

The fourth property, commands, concerns a realistic log from the Mars rover
Curiosity [28]. The log consists of events (here renamed) CMD DISPATCH(c,t) and
CMD COMPLETE(c,t), representing the dispatch and subsequent completion of a

An Extension of LTL with Rules and Its Application to Runtime Verification 253

command c at time t . The property to be verified is that a command, once dispatched,
is not dispatched again before completed. Rules are used to break down the formula to
conceptually simpler pieces.

Evaluation. In [18,19] we evaluated DEJAVU without the rule extension against the
MONPOLY tool [4], which supports a logic close to DEJAVU’s. In [17] we evaluated
DEJAVU’s garbage collection capability. In this section we evaluate the rule extension
for the properties in Figure 1 on a collection of traces. Table 1 shows the analysis time
(excluding time to compile the generated monitor) and maximal memory usage in MB
for different traces (format is ‘trace length : time/memory’). The processing time is gen-
erally very reasonable for very large traces. However, the spawning property requires
considerably larger processing time and memory compared to the other properties since
more data (the transitive closure) has to be computed and stored. The evaluation was
performed on a Mac laptop, with the Mac OS X 10.10.5 operating system, on a 2.8 GHz
Intel Core i7 with 16 GB of memory.

Table 1. Evaluation - trace lengths, analysis time in seconds, and maximal memory use

Property Trace 1 Trace 2 Trace 3

telemetry1 1,200,001 : 2.6 s/194 MB 5,200,001 : 5.9 s/210 MB 10,200,001 : 10.7 s/239 MB

telemetry2 1,200,001 : 3.8 s/225 MB 5,200,001 : 8.7 s/218 MB 10,200,001 : 16.6 s/214 MB

spawning 9,899 : 29.5 s/737 MB 19,999 : 117.3 s/1,153 MB 39,799 : 512.5 s/3,513 MB

commands 49,999 : 1.5 s/169 MB N/A N/A

7 Conclusions

Propositional linear temporal logic (LTL) and automata are two common specification
formalisms for software and hardware systems. While temporal logic has a more declar-
ative flavor, automata are more operational, describing how the specified system pro-
gresses. There has been several proposed extensions to LTL that extend its expressive
power to that of related automata formalisms. We proposed here a simple extension for
propositional LTL that adds auxiliary propositions that summarize the prefix of the exe-
cution, based on rules written as past formulas. Conceptually, this extension puts the
specification in between propositional LTL and automata, as the additional variables
can be seen as representing the state of an automaton that is synchronized with the tem-
poral property. It is shown to have the same expressive power as Büchi automata, and
is in particular appealing for runtime verification of past (i.e., safety) temporal proper-
ties, which already are based on summarizing the value of subformulas over observed
prefixes. We demonstrated that first-order linear temporal logic (FLTL), which can be
used to assert properties about systems with data, also has expressiveness deficiencies,
and similarly extended it with rules that define relations that summarize prefixes of
the execution. We proved that for the first-order case, unlike the propositional case,

254 K. Havelund and D. Peled

this extension is not identical to the addition of dynamic (i.e., state dependent) quan-
tification. We presented a monitoring algorithm for propositional past time temporal
logic with rules, extending a classical algorithm, and similarly presented an algorithm
for first-order past temporal logic with rules. Finally we described the implementation
of this extension in the DEJAVU tool and provided experimental results. The code and
many more examples appear at [10]. Future work includes performing additional exper-
iments, and making further comparisons to other formalisms. We intend to study further
extensions, exploring the space between logic and programming.

References

1. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput. 2(3), 117–126
(1987)

2. D’Angelo, B., et al.: LOLA: runtime monitoring of synchronous systems. In: TIME 2005,
pp. 166– 174 (2005)

3. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime verification.
In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp.
1–33. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5 1

4. Basin, D.A., Klaedtke, F., Marinovic, S., Zalinescu, E.n.: Monitoring of temporal first-order
properties with aggregations. Formal Methods Syst. Des. 46(3), 262–285 (2015)

5. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how ugly is
ugly? In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp. 126–138. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-77395-5 11

6. Bohn, J., Damm, W., Grumberg, O., Hungar, H., Laster, K.: First-order-CTL model check-
ing. In: Arvind, V., Ramanujam, S. (eds.) FSTTCS 1998. LNCS, vol. 1530, pp. 283–294.
Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-540-49382-2 27

7. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM
Comput. Surv. 24(3), 293–318 (1992)

8. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model check-
ing: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

9. Chomicki, J.: Efficient checking of temporal integrity constraints using bounded history
encoding. ACM Trans. Database Syst. 20(2), 149–186 (1995)

10. DejaVu. https://github.com/havelund/dejavu
11. Ebbinghaus, H.-D., Flum, J., Thomas, W.: Mathematical Logic. Undergraduate Texts in

Mathematics. Springer, New York (1984). https://doi.org/10.1007/978-1-4757-2355-7
12. Colombo, C., Pace, G.J., Schneider, G.: LARVA - safer monitoring of real-time Java pro-

grams. In: 7th IEEE International Conference on Software Engineering and Formal Methods
(SEFM 2009), Hanoi, Vietnam, 23–27 November 2009, pp. 33–37. IEEE Computer Society
(2009)

13. Falcone, Y., Fernandez, J.-C., Mounier, L.: What can you verify and enforce at runtime?
STTT 14(3), 349–382 (2012)

14. Frenkel, H., Grumberg, O., Sheinvald, S.: An automata-theoretic approach to modeling sys-
tems and specifications over infinite data. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM
2017. LNCS, vol. 10227, pp. 1–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-57288-8 1

15. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts with data.
IEEE Trans. Serv. Comput. 5(2), 192–206 (2012)

16. Havelund, K.: Rule-based runtime verification revisited. STTT 17(2), 143–170 (2015)

https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1007/978-3-540-49382-2_27
https://github.com/havelund/dejavu
https://doi.org/10.1007/978-1-4757-2355-7
https://doi.org/10.1007/978-3-319-57288-8_1
https://doi.org/10.1007/978-3-319-57288-8_1

An Extension of LTL with Rules and Its Application to Runtime Verification 255

17. Havelund, K., Peled, D.: Efficient runtime verification of first-order temporal properties. In:
Gallardo, M.M., Merino, P. (eds.) SPIN 2018. LNCS, vol. 10869, pp. 26–47. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94111-0 2

18. Havelund, K., Peled, D.A., Ulus, D.: First-order temporal logic monitoring with BDDs. In:
FMCAD 2017, pp. 116–123 (2017)

19. Havelund, K., Peled, D.A., Ulus, D.: First-order temporal logic monitoring with BDDs. For-
mal Methods Syst. Des. 1–21 (2019)

20. Havelund, K., Reger, G., Thoma, D., Zălinescu, E.: Monitoring events that carry data. In:
Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp.
61–102. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5 3

21. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen, J.-P.,
Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-46002-0 24

22. Hella, L., Libkin, L., Nurmonen, J., Wong, L.: Logics with aggregate operators. J. ACM
48(4), 880–907 (2001)

23. IEEE Standard for Property Specification Language (PSL), Annex B. IEEE Std 1850TM-
2010 (2010)

24. JavaBDD. http://javabdd.sourceforge.net
25. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods Syst.

Des. 19(3), 291–314 (2001)
26. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems. Specifica-

tion. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-0931-7
27. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An overview of the MOP runtime

verification framework. STTT 14, 249–289 (2011)
28. Mars Science Laboratory (MSL) mission website. http://mars.jpl.nasa.gov/msl
29. Reger, G., Cruz, H.C., Rydeheard, D.: MARQ: monitoring at runtime with QEA. In: Baier,

C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 596–610. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46681-0 55

30. Sistla, A.P.: Theoretical issues in the design and analysis of distributed systems, Ph.D. Thesis,
Harvard University (1983)

31. Thomas, W.: Automata on Infinite Objects, Handbook of Theoretical Computer Science,
Volume B: Formal Models and Semantics, pp. 133–192 (1990)

32. Wolper, P.: Temporal logic can be more expressive. Inf. Control 56(1/2), 72–99 (1983)
33. Wolper, P., Vardi, M.Y., Sistla, A.P.: Reasoning about infinite computation paths (Extended

Abstract). In: FOCS 1983, pp. 185–194 (1983)

https://doi.org/10.1007/978-3-319-94111-0_2
https://doi.org/10.1007/978-3-319-75632-5_3
https://doi.org/10.1007/3-540-46002-0_24
http://javabdd.sourceforge.net
https://doi.org/10.1007/978-1-4612-0931-7
http://mars.jpl.nasa.gov/msl
https://doi.org/10.1007/978-3-662-46681-0_55

Monitorability over Unreliable Channels

Sean Kauffman1(B), Klaus Havelund2, and Sebastian Fischmeister1

1 University of Waterloo, Waterloo, Canada
skauffma@uwaterloo.ca

2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA

Abstract. In Runtime Verification (RV), monitoring a system means
checking an execution trace of a program for satisfactions and viola-
tions of properties. The question of which properties can be effectively
monitored over ideal channels has mostly been answered by prior work.
However, program monitoring is often deployed for remote systems where
communications may be unreliable. In this work, we address the ques-
tion of what properties are monitorable over an unreliable communica-
tion channel. We describe the different types of mutations that may be
introduced to an execution trace and examine their effects on program
monitoring. We propose a fixed-parameter tractable algorithm for deter-
mining the immunity of a finite automaton to a trace mutation and show
how it can be used to classify ω-regular properties as monitorable over
channels with that mutation.

1 Introduction

In Runtime Verification (RV) the correctness of a program execution is deter-
mined by another program, called a monitor. In many cases, monitors run
remotely from the systems they monitor, either due to resource constraints or
for dependability. For example, ground stations monitor a spacecraft, while an
automotive computer may monitor emissions control equipment. In both cases,
the program being monitored must transmit data to a remote monitor.

Communication between the program and monitor may not always be reli-
able, however, leading to incorrect or incomplete results. For example, data from
the Mars Science Laboratory (MSL) rover is received out-of-order, and some low
priority messages may arrive days after being sent. Even dedicated debugging
channels like ARM Embedded Trace Macrocell (ETM) have finite bandwidth
and may lose data during an event burst [1]. Some works in the field of RV have
begun to address the challenges of imperfect communication, but the problem
has been largely ignored in the study of monitorability.

In this work, we propose a definition for a property to be considered mon-
itorable over an unreliable communication channel. To reach our definition, we

The research performed by the second author was carried out at Jet Propulsion Labora-
tory, California Institute of Technology, under a contract with the National Aeronautics
and Space Administration.

c© Springer Nature Switzerland AG 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 256–272, 2019.
https://doi.org/10.1007/978-3-030-32079-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_15&domain=pdf
https://doi.org/10.1007/978-3-030-32079-9_15

Monitorability over Unreliable Channels 257

must determine what constitutes a monitorable property and whether moni-
torability is affected by a mutation of the property’s input. We first examine the
concept of uncertainty in monitoring and four common notions of monitorabil-
ity in Sects. 3 and 4. We then define possible trace mutations due to unreliable
channels and describe what makes a property immune to a trace mutation in
Sects. 5 and 6. The combination of immunity to a trace mutation and moni-
torability (under an existing definition) is what defines the monitorability of a
property under that mutation. To reach a decision procedure for the immunity
of an ω-regular property, we map the definition of immunity to a property of
derived monitor automata in Sect. 7. We finally present a decision procedure for
the immunity of an automaton to a mutation and prove it correct in Sect. 8.

2 Notation

We use N to denote the set of all natural numbers and ∞ to denote infinity. We
write ⊥ to denote false and � to denote true. A finite sequence σ of n values,
is written σ = 〈v1, · · · , vn〉 where both vi and σ(i) mean the i’th item in the
sequence. A value x is in a sequence σ, denoted by x ∈ σ, iff ∃ i ∈ N such
that σ(i) = x. The length of a sequence σ is written |σ| ∈ N ∪ {∞}. The suffix
of a sequence σ beginning at the i’th item in the sequence is written σi. The
concatenation of two sequences σ, τ is written σ · τ where σ is finite and τ is
either finite or infinite.

We denote the cross product of A and B as A × B and the set of total
functions from A to B as A → B. Given a set S, S∗ denotes the set of finite
sequences over S where each sequence element is in S, Sω denotes the set of
infinite sequences of such elements, and S∞ = S∗ ∪ Sω. Given a set S, we write
2S to mean the set of all subsets of S. The cardinality of a set S is written |S|.
A map is a partial function M : K �→ V where K is a finite domain of keys
mapped to the set V of values. We write M(k) ← v to denote M updated with
k mapped to v. AP is a finite, non-empty set of atomic propositions. An alphabet
is denoted Σ = 2AP, and an element of the alphabet is a symbol s ∈ Σ. A trace,
word, or string is a sequence of symbols.

In this work, we use Finite Automata (FAs) to represent both regular and
ω-regular languages. We use Non-deterministic Büchi Automata (NBAs) to rep-
resent ω-regular languages, which accept infinite strings, and Non-deterministic
Finite Automata (NFAs) to represent regular languages, which accept finite
strings. Both an NBA and an NFA are written A = (Q,Σ, q0, δ, F), where Q is
the set of states, Σ is the alphabet, q0 ∈ Q is the initial state, δ : Q×Σ → 2Q is
the transition function, and F ⊆ Q is the set of accepting states. The two types
of FAs differ in their accepting conditions. An NFA is a Deterministic Finite
Automaton (DFA) iff ∀q ∈ Q, ∀α ∈ Σ, |δ(q, α)| = 1.

A path (or run) through an FA A from a state q ∈ Q over a word σ ∈ Σ∞

is a sequence of states π = 〈q1, q2, · · · 〉 such that q1 = q and qi+1 ∈ δ(qi, σi). We
write A(q, σ) to denote the set of all runs on A starting at state q with the word
σ. The set of all reachable states in an FA A from a starting state q0 is denoted

258 S. Kauffman et al.

Reach(A, q0) = {q ∈ π : π ∈ A(q0, σ), σ ∈ Σ∞}. Given a DFA (Q,Σ, q0, δ, F), a
state q ∈ Q, and a finite string σ ∈ Σ∗ : |σ| = n, δ∗ : Q × Σ∗ → Q denotes the
terminal (nth) state of the run over σ beginning in q.

A finite run on an NFA π = 〈q1, q2, · · · , qn〉 is considered accepting if qn ∈ F .
For an infinite run on an NBA ρ, we use Inf(ρ) ⊆ Q to denote the set of states
that are visited infinitely often, and the run is considered accepting when Inf(ρ)∩
F �= ∅. L(A) denotes the language accepted by an FA A. The complement or
negation of an FA A = (Q,Σ, q0, δ, F) is written A where L(A) = Σ∗ \L(A) for
NFAs and L(A) = Σω \ L(A) for NBAs.

We use Linear Temporal Logic (LTL) throughout the paper to illustrate
examples of properties because it is a common formalism in the RV area. The
syntax of these formulae is defined by the following inductive grammar where p
is an atomic proposition, U is the Until operator, and X is the Next operator.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ

The symbols ¬ and ∨ are defined as expected and the following inductive
semantics are used for X and U , where σ ∈ Σω.

– σ |= Xϕ iff σ2 |= ϕ
– σ |= ϕ Uφ iff ∃k ≥ 1 : σk |= φ ∧ ∀j : 1 ≤ j < k, σj |= ϕ

We also define the standard notation: true = p ∨ ¬p for any proposition p,
false = ¬true, ϕ ∧ φ = ¬(¬ϕ ∨ ¬φ), ϕ → φ = ¬ϕ ∨ φ, Fϕ = true Uϕ (eventually
ϕ), Gϕ = ¬F¬ϕ (globally ϕ), and Xϕ = Xϕ ∨ ¬Xtrue (weak-next ϕ, true at
the end of a finite trace).

3 Uncertainty

Program properties are typically specified as languages of infinite length strings,
for example by writing LTL formulae. However, in RV, a finite prefix of an
execution trace must be checked. We say a finite string determines inclusion in
(or exclusion from) a language of infinite words only if all infinite extensions of
the prefix are in (or out of) the language. If some infinite extensions are in the
language and some are out, then the finite prefix does not determine inclusion
and the result is uncertainty. The problem appears with an LTL property such as
Fa, which is satisfied if an a appears in the string. However, if no a has yet been
observed, and the program is still executing, it is unknown if the specification
will be satisfied in the future.

To express notions of uncertainty in monitoring, extensions to the Boolean
truth domain B2 = {�,⊥} have been proposed. B3 adds a third verdict of ?
to the traditional Boolean notion of true or false to represent the idea that the
specification is neither satisfied nor violated by the current finite prefix [5]. B4

replaces ? with presumably true (�p) and presumably false (⊥p) to provide more
information on what has already been seen [6].

Monitorability over Unreliable Channels 259

The verdicts �p and ⊥p differentiate between prefixes that would satisfy
or violate the property interpreted with finite trace semantics. The intuition is
that ⊥p indicates that something is required to happen in the future, while �p

means there is no such outstanding event. For example, if the formula a → Fb
is interpreted as four-value LTL (LTL4) (also called Runtime Verification LTL
(RV-LTL) [6], which uses B4), the verdict on a trace 〈b〉 is �p because a has not
occurred, and therefore no b is required, while the verdict on 〈a〉 is ⊥p because
there is an a but as yet no b. If the same property is interpreted as three-value
LTL (LTL3) (which uses B3) the verdicts on both traces would be ? .

The above intuitions are formalized in Definition 1, which is based on notation
from [13]. Here, ϕ is a language that includes both finite and infinite traces.

Definition 1 (Evaluation Functions). Given a property ϕ ⊆ Σ∞ (here under-
stood as the language it accepts) for each of the truth domains B ∈ {B3, B4}, we
define evaluation functions of the form [[·]]B(·) : 2Σ∞ × Σ∗ → B as the following.
For B3 = {⊥,?,�},

[[ϕ]]B3(σ) =

⎧
⎪⎨

⎪⎩

⊥ if σ · μ /∈ ϕ ∀μ ∈ Σω

� if σ · μ ∈ ϕ ∀μ ∈ Σω

? otherwise

For B4 = {⊥,⊥p,�p,�},

[[ϕ]]B4(σ) =

⎧
⎪⎨

⎪⎩

[[ϕ]]B3(σ) if [[ϕ]]B3(σ) �= ?

⊥p if [[ϕ]]B3(σ) = ? and σ /∈ ϕ

�p if [[ϕ]]B3(σ) = ? and σ ∈ ϕ

Introducing the idea of uncertainty in monitoring causes the possibility that
some properties might never reach a definite, true or false verdict. A monitor that
will only ever return a ? result does not have much utility. The monitorability
of a property captures on this notion of the reachability of definite verdicts.

4 Monitorability

In this section, we examine the four most common definitions of monitorability.
To define monitorability for properties over unreliable channels, we must first
define monitorability for properties over ideal channels. Rather than choose one
definition, we introduce four established definitions and allow the reader to select
that of their preference.

4.1 Classical σ-Monitorability

Pnueli and Zaks introduced the first formal definition of monitorability in their
work on Property Specification Language (PSL) model checking in 2006 [24].
They define what languages are monitorable given a trace prefix σ.

260 S. Kauffman et al.

Definition 2 (Classical σ-Monitorability). Given an alphabet Σ, and a
finite sequence σ ∈ Σ∗ a language ϕ ⊆ Σ∞ is σ-monitorable iff
∃η ∈ Σ∗ : σ · η · s |= ϕ ∀s ∈ Σ∞ ∨ σ · η · s �|= ϕ ∀s ∈ Σ∞.

That is, there exists another finite sequence η such that σ ·η determines inclusion
in or exclusion from ϕ.

For example, GFp is non-monitorable for any finite prefix, because the trace
needed to determine the verdict must be infinite. If a reactive system is expected
to run forever, then it is useless to continue monitoring after observing σ such
that ϕ is not monitorable.

4.2 Classical Monitorability

Bauer, Leuker, and Schallhart restated this definition of monitorability and
proved that safety and guarantee (co-safety) properties represent a proper subset
of the class of monitorable properties [7]. It was already known that the class
of monitorable properties was not limited to safety and guarantee properties
from the work of d’Amorim and Roşu on monitoring ω-regular languages [10],
however that work did not formally define monitorability.

The definition of monitorability given by Bauer et al. is identical to Defi-
nition 2 except that it considers all possible trace prefixes instead of a specific
prefix [12,13] and it excludes languages with finite words. The restriction to
infinite words is due to their interest in defining monitorable LTL3 properties,
which only considers infinite traces.

They use Kupferman and Vardi’s definitions of good and bad prefixes of an
infinite trace [17] to define what they call an ugly prefix. That is, given an
alphabet Σ and a language of infinite strings ϕ ⊆ Σω,

– a finite word b ∈ Σ∗ is a bad prefix for ϕ iff ∀s ∈ Σω, b · s /∈ ϕ, and
– a finite word g ∈ Σ∗ is a good prefix for ϕ iff ∀s ∈ Σω, g · s ∈ ϕ.

Bauer et al. use good and bad prefixes to define ugly prefixes and then use ugly
prefixes to define Classical Monitorability.

Definition 3 (Ugly Prefix). Given an alphabet Σ and a language of infinite
strings ϕ ⊆ Σω, a finite word u ∈ Σ∗ is an ugly prefix for ϕ iff �s ∈ Σ∗ : u · s
is either a good or bad prefix.

Definition 4 (Classical Monitorability). Given a language of infinite strings
ϕ ⊆ Σω, ϕ is classically monitorable iff �u ∈ Σ∗ : u is an ugly prefix for ϕ.

4.3 Weak Monitorability

Recently, both Chen et al. and Peled and Havelund proposed a weaker defini-
tion of monitorability that includes more properties than either the Classical or
Alternative definitions [9,22]. They observed that there are properties that are
classically non-monitorable, but that are still useful to monitor. For example, the

Monitorability over Unreliable Channels 261

property a ∧ GFa is non-monitorable under Definition 4 because any trace that
begins with a must then satisfy or violate GFa, which is not possible. However,
a ∧ GFa is violated by traces that do not begin with a, so it may have some
utility to monitor.

Definition 5 (Weak Monitorability). Given a property ϕ ⊆ Σ∞, ϕ is weakly
monitorable iff ∃p ∈ Σ∗ : p is not an ugly prefix for ϕ.

4.4 Alternative Monitorability

Falcone et al. observed that the class of monitorable properties should depend on
the truth domain of the monitored formula. However, they noticed that changing
from B3 to B4 does not influence the set of monitorable properties under clas-
sical monitorability [12,13]. To resolve this perceived shortcoming, the authors
of [12,13] introduce an alternative definition of monitorability. They introduce
the notion of an r-property (runtime property) which separates the property’s
language of finite and infinite traces into disjoint sets. We do not require this
distinction and treat the language of a property as a single set containing both
finite and infinite traces. Falcone et al. then define an alternative notion of mon-
itorability for a property using a variant of Definition 1.

Definition 6 (Alternative Monitorability). Given a truth domain B and an
evaluation function for B [[·]]B(·) : 2Σ∞ × Σ∗ → B, a property ϕ ⊆ Σ∞ is alter-
natively monitorable iff ∀σg ∈ ϕ ∩ Σ∗, ∀σb /∈ ϕ ∩ Σ∗ [[ϕ]]B(σg) �= [[ϕ]]B(σb)

Definition 6 says that, given a truth domain, a language with both finite and
infinite words is monitorable if evaluating the finite strings in the language always
yield different verdicts from evaluating the finite strings out of the language.

5 Unreliable Channels

For a property to be monitorable over an unreliable channel it must be mon-
itorable over ideal channels, and it must reach the correct verdict despite the
unreliable channel. To illustrate this idea, we introduce an example.

5.1 An Example with Unreliable Channels

Consider the LTL property Fa over the alphabet Σ = {a, b}. That is, all traces
that contain at least one a satisfy ϕ. We assume that the trace is monitored
remotely, and, for this example, we will adopt a B3 truth domain. With LTL3

semantics, the verdict on finite prefixes without an a, is ? , while the verdict
when an a is included is �. Figure 1a shows the NBA for such a property.

262 S. Kauffman et al.

Fig. 1. Example properties

Monitorability Under Reordering. Suppose that the channel over which
the trace is transmitted may reorder events. That is, events are guaranteed to
be delivered, but not necessarily in the same order in which they were sent.

We argue that Fa should be considered monitorable over a channel that
reorders the trace. First, the property is monitorable over an ideal channel (see
Sect. 4). Second, given any trace prefix, reordering the prefix would not change
the verdict of a monitor. Any a in the trace will cause a transition to state q2,
regardless of its position.

Monitorability Under Loss. Now suppose that, instead of reordering, the
channel over which the trace is transmitted may lose events. That is, the order
of events is guaranteed to be maintained, but some events may be missing from
the trace observed by the monitor.

We argue that Fa should not be considered monitorable over a channel that
loses events, even though the property is deemed to be monitorable over an ideal
channel. It is possible for the verdict from the monitor to be different from what
it would be given the original trace. For example, assume a trace 〈a, b〉. For this
trace, the verdict from an LTL3 monitor would be �. However, if the a is lost,
the verdict would be ? .

5.2 Trace Mutations

To model unreliable channels, we introduce trace mutations. A mutation repre-
sents the possible modifications to traces from communication over unreliable
channels. These mutations are defined as relations between unmodified original
traces and their mutated counterparts. Trace mutations include only finite traces
because only finite prefixes may be mutated in practice.

There are four trace mutations Mk ⊆ Σ∗ × Σ∗ where M denotes any of the
relations in Definitions 7, 8, 9, and 10 or a union of any number of them, and k
denotes the number of inductive steps.

Definition 7 (Loss Mutation)

Loss = {(σ, σ′) : σ = σ′ ∨ ∃α, β ∈ Σ∗,∃x ∈ Σ : σ = α · 〈x〉 · β ∧ σ′ = α · β}

Monitorability over Unreliable Channels 263

Definition 8 (Corruption Mutation)

Corruption = {(σ, σ′) : ∃α, β ∈ Σ∗,∃x, y ∈ Σ : σ = α · 〈x〉 · β ∧ σ′ = α · 〈y〉 · β}

Definition 9 (Stutter Mutation)

Stutter = {(σ, σ′) : σ = σ′∨∃α, β ∈ Σ∗,∃x ∈ Σ : σ = α ·〈x〉·β∧σ′ = α ·〈x, x〉·β}

Definition 10 (Out-of-Order Mutation)

OutOfOrder = {(σ, σ′) : ∃α, β ∈ Σ∗,∃x, y ∈ Σ : σ = α·〈x, y〉·β∧σ′ = α·〈y, x〉·β}

Definition 11 (Inductive k-Mutations). Given any mutation or union of muta-
tions Mk, we define Mk+1 inductively as the following.

M1 ∈ {
⋃

m : m ∈ 2{Loss,Corruption,Stutter,OutOfOrder},m �= ∅}
Mk+1 = {(σ1, σ3) : ∃(σ1, σ2) ∈ Mk,∃(σ2, σ3) ∈ M1} ∪ Mk

These mutations are based on Lozes and Villard’s interference model [21].
Other works on the verification of unreliable channels, such as [8], have chosen
to include insertion errors instead of Corruption and OutOfOrder. We prefer to
define Corruption and OutOfOrder because the mutations more closely reflect
our real-world experiences. For example, packets sent using the User Datagram
Protocol (UDP) may be corrupted or arrive out-of-order, but packets must be
sent before these mutations occur.

We say a mutation M is prefix-assured when ∀(σ, σ′) ∈ M such that |σ| > 1,
∃(σp, σ

′
p) ∈ M , where σp is a prefix of σ and σ′

p is a prefix of σ′. All mutations
M1 are prefix-assured. Combining mutations is possible under Definition 11,
and it is possible to form any combination of strings by doing so. This capability
is important to ensure the mutation model is complete.

Theorem 1 (Completeness of Mutations). Given any set of non-empty traces
S ⊆ Σ∗ \ {ε}, (Loss ∪ Corruption ∪ Stutter)∞ = S × Σ∗.

Proof: First, Definition 8 allows an arbitrary symbol in a string to be changed
to any other symbol. Thus, ∀σ′ ∈ Σ∗, ∃σ : (σ, σ′) ∈ Corruptionn, |σ| = |σ′|
where n ≥ |σ|. A string can also be lengthened or shortened arbitrar-
ily, so long as it is non-empty. Definition 9 allows lengthening, because
Stutter(σ, σ′) =⇒ |σ| < |σ′|, while Definition 7 allows shortening, because
Loss(σ, σ′) =⇒ |σ| > |σ′|. ��

These mutations are general and it may be useful for practitioners to define
their own, more constrained mutations based on domain knowledge. For example,
even Definition 10 is unnecessary for the completeness of the mutation model,
but the combination of Definitions 7, 8, and 9 cannot completely specify the
OutOfOrder relation. That is, OutOfOrdern ⊂ Corruption2n ∀n ∈ N.

264 S. Kauffman et al.

6 Immunity to Trace Mutations

The two requirements for a property to be monitorable over an unreliable channel
are that the property is monitorable over an ideal channel and that the property
is immune to the effects of the unreliable channel. A monitor must be able to
reach a meaningful, actionable verdict for a trace prefix, and the verdict must
also be correct. If a monitored property is immune to a mutation then we can
trust the monitor’s verdict whether or not the observed trace is mutated.

Definition 12 characterizes properties where the given trace mutation will
have no effect on the evaluation verdict. For example, the LTL property Fa
from Fig. 1a is immune to OutOfOrder∞ with truth domain B3 or B4 because
reordering the input trace cannot change the verdict.

Definition 12 (Full Immunity to Unreliable Channels). Given a trace alphabet
Σ, a property ϕ ⊆ Σ∞, a trace mutation Mk ⊆ Σ∗ × Σ∗, a truth domain B,
and an evaluation function [[·]]B(·) : 2Σ∞ × Σ∗ → B, ϕ is immune to Mk iff
∀(σ, σ′) ∈ Mk, [[ϕ]]B(σ) = [[ϕ]]B(σ′).

Definition 12 specifies a k-Mutation from Definition 11, but a property that
is immune to a mutation for some k is immune to that mutation for any k.
This significant result forms the basis for checking for mutation immunity in
Sect. 8. The intuition is that, since we assume any combination of symbols in
the alphabet is a possible ideal trace, and a mutation could occur at any time,
one mutation is enough to violate immunity for any vulnerable property.

Theorem 2 (Single Mutation Immunity Equivalence). Given a trace alphabet
Σ, a property ϕ ⊆ Σ∞, a trace mutation M ⊆ Σ∗ × Σ∗, and a number of
applications of that mutation k, ϕ is immune to Mk iff ϕ is immune to M1.

Proof: Since k-Mutations are defined inductively, Theorem 2 is equivalent to the
statement that ϕ is immune to Mk+1 iff ϕ is immune to Mk. Now assume
by way of contradiction a property ϕbad ⊆ Σ∞ such that ϕbad is immune
to some k-Mutation Mk but not to Mk+1. That is, given a truth domain
B, ∃(σ1, σ3) ∈ Mk+1 : [[ϕbad]]B(σ1) �= [[ϕbad]]B(σ3). From Definition 11, either
(σ1, σ3) ∈ Mk, or ∃(σ1, σ2) ∈ Mk,∃(σ2, σ3) ∈ M1 : [[ϕbad]]B(σ1) �= [[ϕbad]]B(σ3).
It cannot be true that (σ1, σ3) ∈ Mk since ϕbad is immune to Mk so there
must exist pairs (σ1, σ2) ∈ Mk and (σ2, σ3) ∈ M1. Since ϕbad is immune to Mk,
[[ϕbad]]B(σ1) = [[ϕbad]]B(σ2) so it must be true that [[ϕbad]]B(σ2) �= [[ϕbad]]B(σ3).
However, it is clear from Definition 11 that Mk ⊆ Mk+1, so M1 ⊆ Mk for any
k, which is a contradiction.

For the reverse case, assume a property ϕsad ⊆ Σ∞ such that ϕsad is not
immune to some k-Mutation Mk but immune to Mk+1. However, as we saw
before, Mk ⊆ Mk+1 so ϕsad must not be immune to Mk+1, a contradiction. ��

Immunity under Definition 12 is too strong to be a requirement for moni-
torability over an unreliable channel, however. Take, for example, the property
(G(a → Fb)) ∨ Fc, as shown in Fig. 1b. By Definition 12 with truth domain

Monitorability over Unreliable Channels 265

B4 this property is vulnerable (not immune) to OutOfOrder1 because reorder-
ing symbols may change the verdict from �p to ⊥p and vice versa. However,
this property is monitorable under all definitions in Sect. 4, so we would like to
weaken the definition of immunity only to consider the parts of a property that
affect its monitorability.

To weaken the definition of immunity we consider only the determinization
of the property to be crucial. Definition 13 characterizes properties for which
satisfaction and violation are unaffected by a mutation. We call this true-false
immunity, and it is equivalent to immunity with truth domain B3. The intuition
is that B3 treats all verdicts outside {�,⊥} as the symbol ? so immunity with
this truth domain does not concern non-true-false verdicts.

Definition 13 (True-False Immunity to Unreliable Channels). Given a trace
alphabet Σ, a property ϕ ⊆ Σ∞, a trace mutation Mk ⊆ Σ∗ × Σ∗, and the
evaluation function [[·]]B3(·) : 2Σ∞ × Σ∗ → B3, ϕ is true-false immune to Mk iff
∀(σ, σ′) ∈ Mk, [[ϕ]]B3(σ) = [[ϕ]]B3(σ

′).

The true-false immunity of a property to a mutation is necessary but not
sufficient to show that the property is monitorable over an unreliable channel.
For example, G(a → Fb) is true-false immune to all mutations because the
verdict will be ? for any prefix, but the property is not monitorable. We can
now define monitorability over unreliable channels in the general case.

Definition 14 (Monitorability over Unreliable Channels). Given a trace alpha-
bet Σ, a property ϕ ⊆ Σ∞, a trace mutation Mk ⊆ Σ∗ × Σ∗, and a definition
of monitorability V, ϕ is monitorable over Mk iff ϕ is considered monitorable
by V, and ϕ is true-false immune to Mk.

By Rice’s Theorem, monitorability over unreliable channels is undecidable in
the general case, but we now provide a decision procedure for properties express-
ible by an NBA. As decision procedures for the monitorability of ω-regular lan-
guages exist, we focus on determining the true-false immunity of a property to
a given mutation.

7 Deciding Immunity for ω-Regular Properties

To determine the immunity of an ω-regular property to a trace mutation, we
must construct automata that capture the notion of uncertainty from B3. Bauer
et al. defined a simple process to build a B3 monitor using two DFAs in their
work on LTL3 [5].

The procedure begins by complementing the language. A language of infinite
words ϕ is represented as an NBA Aϕ = (Q,Σ, q0, δ, Fϕ), for example, LTL
can be converted to an NBA by tableau construction [25]. The NBA is then
complemented to form Aϕ = (Q,Σ, q0, δ, Fϕ). Remark: The upper bound for
NBA complementation is 2O(n log n), so it is cheaper to complement an LTL
property and construct its NBA if starting from temporal logic [18].

266 S. Kauffman et al.

To form the monitor, create two NFAs based on the NBAs and then convert
them to DFAs. The two NFAs are defined as A = (Q,Σ, q0, δ, F) and A =
(Q,Σ, q0, δ, F) The new accepting states are the states from which an NBA
accepting state is reachable. That is, we make F = {q ∈ Q : Reach(Aϕ, q)∩Fϕ �=
∅}, and F = {q ∈ Q : Reach(Aϕ, q)∩Fϕ �= ∅}. The two NFAs are then converted
to DFAs via powerset construction. The verdict for a finite trace σ is then given
as the following:

Definition 15 (B3 Monitor Verdict). Given an alphabet Σ and a language
ϕ ⊆ Σω, derive B3 monitor DFAs A = (Q,Σ, q0, δ, F) and A = (Q,Σ, q0, δ, F).
The B3 verdict for a string σ ∈ Σ∗ is the following.

[[ϕ]]B3(σ) =

⎧
⎪⎨

⎪⎩

⊥ if σ /∈ L(A)
� if σ /∈ L(A)
? otherwise

We can now restate Definition 13 using monitor automata. This new defini-
tion will allow us to construct a decision procedure for a property’s immunity
to a mutation.

Theorem 3 (True-False Immunity to Unreliable Channels for ω-Regular Prop-
erties). Given an alphabet Σ and an ω-regular language ϕ ⊆ Σω, derive B3 mon-
itor DFAs A = (Q,Σ, q0, δ, F) and A = (Q,Σ, q0, δ, F). ϕ is true-false immune
to a trace mutation Mk ⊆ Σ∗ × Σ∗ iff ∀(σ, σ′) ∈ Mk, (σ /∈ L(A) ⇔ σ′ /∈ L(A))∧
(σ /∈ L(A) ⇔ σ′ /∈ L(A)).

Proof: By Definition 13 it is only necessary to show that [[ϕ[]B3(σ) = [[ϕ[]B3(σ
′)

is equivalent to (σ /∈ L(A) ⇔ σ′ /∈ L(A)) ∧ (σ /∈ L(A) ⇔ σ′ /∈ L(A)). There are
three cases: ⊥, �, and ? . For ⊥ and � it is obvious from Definition 15 that the
verdicts are derived from exclusion from the languages of A and A. As there are
only three possible verdicts, this also shows the ? case. ��

We say that an automaton is immune to a trace mutation in a similar way
to how a property is immune. To show that a property is true-false immune to a
mutation, we only need to show that its B3 monitor automata are also immune
to the property. Note that, since the implication is both directions, we can use
either language inclusion or exclusion in the definition.

Definition 16 (Finite Automaton Immunity). Given a finite automaton
A = (Q,Σ, q0, δ, F) and a trace mutation Mk ⊆ Σ∗ × Σ∗, A is immune to Mk

iff ∀(σ, σ′) ∈ Mk, σ ∈ L(A) ⇔ σ′ ∈ L(A).

With this definition we can provide a decision procedure for the monitorabil-
ity of an ω-regular property over an unreliable channel. The procedure will check
the immunity of the B3 monitor automata to the mutations from the channel,
as well as the property’s monitorability. If the DFAs are both immune to the
mutations and the property is monitorable, then the property is monitorable
over the unreliable channel.

Monitorability over Unreliable Channels 267

8 Decision Procedure for Finite Automaton Immunity

We propose Algorithm 1 for deciding whether a DFA is immune to a trace
mutation. The algorithm is loosely based on Hopcroft and Karp’s near-linear
algorithm for determining the equivalence of finite automata [15].

Algorithm 1. Determine if a DFA is immune to a given trace mutation.
1: procedure immune(A = (Σ, Q, q0, δ, F), M)
2: for q ∈ Q do E(q) ← {q} � E is a map E : Q �→ 2Q

3: R ← Reach(A, q0) � R is the reachable states
4: T ← { } � T is a set of pairs, used like a worklist
5: for (σ, σ′) ∈ M where |σ| = minLength(M) do � M is a mutation relation
6: for q ∈ R do
7: q1 ← δ∗(q, σ); q2 ← δ∗(q, σ′) � Follow mutated strings
8: E(q1) ← E(q2) ← {q1, q2} � Update E for both states
9: T ← T ∪ {(q1, q2)} � Add the pair to T

10: while T is not empty do
11: let (q1, q2) ∈ T � Get a pair from the worklist
12: T ← T \ {(q1, q2)} � Remove the pair from T
13: for α ∈ Σ do
14: n1 ← δ(q1, α); n2 ← δ(q2, α) � Follow transitions to the next states
15: C ← {E(n1), E(n2)} � C is a set of two sets
16: if |C| > 1 then � If those sets weren’t equal
17: E(n1) ← E(n2) ← ⋃

C � Merge sets in E
18: T ← T ∪ {(n1, n2)} � The new pair is added to T

19: if Any set in E contains both final and non-final states then return False
20: else return True

The parameters to Algorithm 1 are the DFA to check (A) and the mutation
(M) which is a relation given by M1 in Definition 11. The intuition behind
Algorithm 1 is to follow transitions for pairs of unmutated and corresponding
mutated strings in M and verify that they lead to the same acceptance verdicts.
More specifically, Algorithm 1 finds sets of states which must be equivalent for
the DFA to be immune to a given mutation. The final verdict of immune is found
by checking that no equivalence class contains both final and non-final states.
If an equivalence class contains both, then there are some strings for which the
verdict will change due to the given mutation.

If all mutations required only a string of length one, the step at Line 7
could follow transitions for pairs of single symbols. However, mutations like
OutOfOrder require strings of at least two symbols, so we must follow tran-
sitions for short strings. We express this idea of a minimum length for
a mutation in the minLength : 2Σ∗×Σ∗ → N function. For mutations in
Sect. 5, minLength(Loss) = minLength(Corruption) = minLength(Stutter) =
1 and minLength(OutOfOrder) = 2. Note that minLength for unions must

268 S. Kauffman et al.

increase to permit the application of both mutations on a string. For exam-
ple, minLength(Loss ∪ Corruption) = 2. This length guarantees that each string
has at least one mutation, which is sufficient to show immunity by Theorem 2.

The algorithm works as follows. We assume a mutation can occur at any
time, so we begin by following transitions for pairs of mutated and unmutated
strings from every reachable state (stored in the set R). On Lines 5–9, for each
pair (σ, σ′) in M and for each reachable state, we compute the states q1 and
q2 reached from σ (respectively σ′). The map E contains equivalence classes,
which we update for q1 and q2 to hold the set containing both states. The pair
of states is also added to the worklist T , which contains equivalent states from
which string suffixes must be explored.

The loop on Lines 10–18 then explores those suffixes. It takes a pair of states
(q1, q2) from the worklist and follows transitions from those states to reach n1 and
n2. If n1 and n2 are already marked as equivalent to other states in E or aren’t
marked as equivalent to each other, those states are added to the worklist, and
their equivalence classes in E are merged. If at the end, there is an equivalence
class with final and non-final states, then A is not immune to M .

Theorem 4 (Immunity Procedure Correctness). Algorithm 1 is sound and com-
plete for any DFA and prefix-assured mutation. That is, given a DFA A =
(Σ,Q, q0, δ, F), and a mutation, M , Immune(A,M) ⇔ A is immune to M .

Proof: By Definition 16, this is equivalent to showing that
Immune(A,M) ⇔ (∀(σ, σ′) ∈ M, σ ∈ L(A) ⇔ σ′ ∈ L(A)).

We will prove the ⇒ direction (soundness) by contradiction. Suppose at the
completion of the algorithm that all sets in E contain only final or non-final
states, but that A is not immune to M . There is at least one pair (σb, σ

′
b) ∈ M

where one leads to a final state, and one does not. If Algorithm 1 had checked
this pair then these states would be in an equivalence class in E. Since the
loop on Line 7 follows transitions for pairs in M of length minLength(M), the
reason (σb, σ

′
b) was not checked must be because |σb| �= minLength(M). The

length of σb must be greater than minLength(M) since strings shorter than
minLength(M) cannot be mutated by M . Since M is prefix-assured, there must
be a pair (σ, σ′) : |σ| = minLength(M) that are prefixes of (σb, σ

′
b). The loop on

Line 10 will check (σ ·s, σ′ ·s), ∀s ∈ Σ∗. Therefore it must be the case that σb =
σ · t, σ′

b = σ′ · u : t, u ∈ Σ∗, t �= u. However, if t �= u then (σb, σ
′
b) ∈ Mk : k > 1,

so A is immune to M1 but not Mk, but from Theorem 2 this is a contradiction.
We prove the ⇐ direction (completeness) by induction. We will show that if

A is immune to M then no set in E, and no pair in T will contain both final and
non-final states. The base case at initialization is obviously true since every set
in E contains only one state and T is empty. The induction hypothesis is that
at a given step i of the algorithm if A is immune to M then every set in E and
every pair in T contains only final or non-final states.

At step i + 1, in the loop on Line 7, E and T are updated to contain states
reached by following σ and σ′. Clearly, if A is immune to M then these states
must be both final or non-final since we followed transitions from reachable states

Monitorability over Unreliable Channels 269

for a pair in M . In the loop on Line 10, n1 and n2 are reached by following the
same symbol in the alphabet from a pair of states in T . If A is immune to M ,
the strings leading to that pair of states must both be in, or both be out of the
language. So, extending both strings by the same symbol in the alphabet creates
two strings that must both be in or out of the language. These states reached
by following these strings are added to T on Line 18.

On Lines 15 and 17, the two sets in E corresponding to n1 and n2 are merged.
Since both sets must contain only final or non-final states, and one-or-both of
n1 and n2 are contained in them, the union of the sets must also contain only
final or non-final states. ��
Theorem 5 (Immunity Procedure Complexity). Algorithm 1 is Fixed-
Parameter Tractable. That is, given a DFA A = (Σ,Q, q0, δ, F), and a mutation,
M , its maximum running time is |Q|O(1)f(k), where f is some function that
depends only on some parameter k.

Proof: The run-time complexity of Algorithm 1 is O(n)O(ml f(M)) where n =
|Q|, m = |Σ|, l = minLength(M), and f is a function on M . First, Lines 4, 7, 8,
9, 11, 12, 14, 15, 16, 17, and 18 execute in constant time, while each of Lines 2,
3, and 19 run in time bounded by n.

The initialization loop at Line 5 runs once for each pair in the mutation
where the length of σ is bounded by minLength(M). This count is ml times a
factor f(M) determined by the mutation. For example, f(Loss) = l because each
σ is mutated to remove each symbol in the string. Critically, this factor f(M)
must be finite, which it is for the mutations M1. The loop at Line 6 runs in time
bounded by n, so the body of the loop is reached at most mlf(M)n times.

The loop at Line 10 may run at most mlf(M)+n times. The loop continues
while the worklist T is non-empty. Initially, T has mlf(M) elements. Each time
Line 12 runs, an element is removed from the worklist. For an element to be
added to T , it must contain states corresponding to sets in E which are not
identical. When this occurs, those two corresponding sets are merged, so the
number of unique sets in E is reduced by at least one. Therefore, the maximum
number of times Line 18 can be reached and an element added to T is n. ��

Note that, in practice, minLength(M) is usually small (often only one), so
Algorithm 1 achieves near linear performance in the size of the FA. The size of
the alphabet has an effect but it is still quadratic.

9 Discussion

The mutations from Definitions 7 to 10 are useful abstractions of common prob-
lems in communication. However, in many cases, they are stronger than is needed
as practitioners may have knowledge of the channel that constrains the muta-
tions. For example, in MSL, messages contain sequence numbers which can be
used to narrow the range of missing symbols. An advantage of our method is
that custom mutations can be easily defined and then tested using Algorithm 1.

270 S. Kauffman et al.

Custom mutations should avoid behavior that requires long strings to mutate,
however, as this causes exponential slowdown.

Well designed mutations like those in Sect. 5 can be checked quickly. How-
ever, the method relies on B3 monitor construction to obtain DFAs, and the
procedure to create them from an NBA is in 2EXPSPACE. We argue that this
is an acceptable cost of using the procedure since a monitor must be derived to
check the property in any case. Future work should explore ideas from the study
of monitorability [11,22] to find a theoretical bound on deciding immunity.

Another avenue for improving on our work is to characterize classes of prop-
erties that are immune to different mutations. The classes of monitorable proper-
ties under different definitions in Sect. 4 are mostly understood [13,22]. Finding
a similar classification for the immunity of properties to mutations would be
useful. It is already understood that all LTL properties without the next (X)
operator are immune to Stutter [19,23].

10 Related Work

Unreliable channels have been acknowledged in formal methods research for
some time. One area where the unreliable communication channels are commonly
modeled is where Communicating Finite State Machines (CFSMs) are used to
verify network protocols. Abdulla and Jonsson provided algorithms for deciding
the termination problem for protocols on lossy first-in first-out (FIFO) buffers,
as well as algorithms for some safety and eventuality properties [2]. Cécé et
al. also considered channels with insertion errors and duplication errors [8].

Work has been done to show which properties are verifiable on a trace with
mutations and to express degrees of confidence when they are not. Stoller et
al. used Hidden Markov Models (HMMs) to compute the probability of a prop-
erty being satisfied on a lossy trace [26]. Their definition of lossy included a “gap”
marker indicating where symbols were missing. They used HMMs to predict the
missing states where gaps occurred and aided their estimations with a learned
probability distribution of state transitions. Joshi et al. introduced an algorithm
to determine if a specification could be monitored soundly in the presence of a
trace with transient loss, meaning that eventually it contained successfully trans-
mitted events [16]. They defined monotonicity to identify properties for which
the verdicts could be relied upon once a decision was made.

Garg et al. introduced a first-order logic with restricted quantifiers for audit-
ing incomplete policy logs [14]. The authors used restricted quantifiers to allow
monitoring policies that would, in principle, require iterating over an infinite
domain. Basin et al. also specified a first-order logic for auditing incomplete pol-
icy logs [4]. Basin et al. also proposed a semantics and monitoring algorithm for
Metric Temporal Logic (MTL) with freeze quantifiers that was sound and com-
plete for unordered traces [3]. Their semantics were based on a three-value logic,
and the monitoring algorithm was evaluated over ordered and unordered traces.
All three of these languages used a three value semantics (t, f,⊥) to model a
lossy trace, where ⊥ represented missing information.

Monitorability over Unreliable Channels 271

Li et al. examined out-of-order data arrival in Complex Event Processing
(CEP) systems and found that SASE [27] queries processed using the Active
Instance Stack (AIS) data structure would fail in several ways [20]. They pro-
posed modifications to AIS to support out-of-order data and found acceptable
experimental overhead to their technique.

11 Conclusion

The ability to check properties expressible by NBAs for monitorability over unre-
liable channels allows RV to be considered for applications where RV would have
previously been ignored. To arrive at this capability, we first needed to define
monitorability over unreliable channels using both existing notions of monitora-
bility and a new concept of mutation immunity. We proved that immunity to a
single application of a mutation is sufficient to show immunity to any number
of applications of that mutation, and we defined true-false immunity using B3

semantics. We believe unreliable communication is an important topic for RV
and other fields that rely on remote systems, and we hope that this work leads
to further examination of unreliable channels in the RV community.

Acknowledgements. The authors would like to thank Rajeev Joshi for his contribu-
tions to the work.

References

1. Embedded trace macrocell architecture specification, May 2019. http://infocenter.
arm.com/help/index.jsp?topic=/com.arm.doc.ihi0014q/

2. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inf. Com-
put. 127(2), 91–101 (1996)

3. Basin, D., Klaedtke, F., Zălinescu, E.: Runtime verification of temporal properties
over out-of-order data streams. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10426, pp. 356–376. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63387-9 18

4. Basin, D., Klaedtke, F., Marinovic, S., Zălinescu, E.: Monitoring compliance poli-
cies over incomplete and disagreeing logs. In: Qadeer, S., Tasiran, S. (eds.) RV
2012. LNCS, vol. 7687, pp. 151–167. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-35632-2 17

5. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In:
Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272.
Springer, Heidelberg (2006). https://doi.org/10.1007/11944836 25

6. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. J. Logic Comput. 20(3), 651–674 (2010)

7. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. (TOSEM) 20(4), 14:1–14:64 (2011)

8. Cécé, G., Finkel, A., Iyer, S.P.: Unreliable channels are easier to verify than perfect
channels. Inf. Comput. 124(1), 20–31 (1996)

9. Chen, Z., Wu, Y., Wei, O., Sheng, B.: Deciding weak monitorability for runtime
verification. In: Proceedings of the 40th International Conference on Software Engi-
neering: Companion Proceedings, ICSE 2018, pp. 163–164. ACM, New York (2018)

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0014q/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0014q/
https://doi.org/10.1007/978-3-319-63387-9_18
https://doi.org/10.1007/978-3-319-63387-9_18
https://doi.org/10.1007/978-3-642-35632-2_17
https://doi.org/10.1007/978-3-642-35632-2_17
https://doi.org/10.1007/11944836_25

272 S. Kauffman et al.

10. d’Amorim, M., Roşu, G.: Efficient monitoring of ω-languages. In: Etessami, K.,
Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 364–378. Springer, Heidel-
berg (2005). https://doi.org/10.1007/11513988 36

11. Diekert, V., Muscholl, A., Walukiewicz, I.: A note on monitors and Büchi automata.
In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399,
pp. 39–57. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25150-9 3

12. Falcone, Y., Fernandez, J.-C., Mounier, L.: Runtime verification of safety-progress
properties. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS, vol. 5779, pp.
40–59. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04694-0 4

13. Falcone, Y., Fernandez, J.C., Mounier, L.: What can you verify and enforce at
runtime? Int. J. Softw. Tools Technol. Transf. 14(3), 349–382 (2012)

14. Garg, D., Jia, L., Datta, A.: Policy auditing over incomplete logs: theory, implemen-
tation and applications. In: Proceedings of the 18th ACM Conference on Computer
and Communications Security, CCS 2011, pp. 151–162. ACM, New York (2011)

15. Hopcroft, J.E., Karp, R.M.: A linear algorithm for testing equivalence of finite
automata. Technical report, Cornell University (1971)

16. Joshi, Y., Tchamgoue, G.M., Fischmeister, S.: Runtime verification of LTL on lossy
traces. In: Proceedings of the Symposium on Applied Computing, SAC 2017, pp.
1379–1386. ACM, New York (2017)

17. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods
Syst. Des. 19(3), 291–314 (2001)

18. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM
Trans. Comput. Logic 2(3), 408–429 (2001)

19. Lamport, L.: What good is temporal logic? In: IFIP Congress, vol. 83, pp. 657–668
(1983)

20. Li, M., Liu, M., Ding, L., Rundensteiner, E.A., Mani, M.: Event stream processing
with out-of-order data arrival. In: 27th International Conference on Distributed
Computing Systems Workshops, ICDCSW 2007, p. 67, June 2007

21. Lozes, É., Villard, J.: Reliable contracts for unreliable half-duplex communications.
In: Carbone, M., Petit, J.-M. (eds.) WS-FM 2011. LNCS, vol. 7176, pp. 2–16.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29834-9 2

22. Peled, D., Havelund, K.: Refining the safety–liveness classification of temporal
properties according to monitorability. In: Margaria, T., Graf, S., Larsen, K.G.
(eds.) Models, Mindsets, Meta: The What, the How, and the Why Not?. LNCS,
vol. 11200, pp. 218–234. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-22348-9 14

23. Peled, D., Wilke, T.: Stutter-invariant temporal properties are expressible without
the next-time operator. Inf. Process. Lett. 63(5), 243–246 (1997)

24. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586.
Springer, Heidelberg (2006). https://doi.org/10.1007/11813040 38

25. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
J. ACM 32(3), 733–749 (1985)

26. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A.,
Zadok, E.: Runtime verification with state estimation. Runtime Verification 11,
193–207 (2011)

27. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over
streams. In: Proceedings of the 2006 ACM SIGMOD International Conference on
Management of Data, SIGMOD 2006, pp. 407–418. ACM, New York (2006)

https://doi.org/10.1007/11513988_36
https://doi.org/10.1007/978-3-319-25150-9_3
https://doi.org/10.1007/978-3-642-04694-0_4
https://doi.org/10.1007/978-3-642-29834-9_2
https://doi.org/10.1007/978-3-030-22348-9_14
https://doi.org/10.1007/978-3-030-22348-9_14
https://doi.org/10.1007/11813040_38

Runtime Verification for Timed Event
Streams with Partial Information

Martin Leucker1(B), César Sánchez2(B), Torben Scheffel1(B),
Malte Schmitz1(B), and Daniel Thoma1(B)

1 University of Lübeck, Lübeck, Germany
{leucker,scheffel,schmitz,thoma}@isp.uni-luebeck.de

2 IMDEA Software Institute, Madrid, Spain
cesar.sanchez@imdea.org

Abstract. Runtime Verification (RV) studies how to analyze execu-
tion traces of a system under observation. Stream Runtime Verification
(SRV) applies stream transformations to obtain information fromobserved
traces. Incomplete traces with information missing in gaps pose a com-
mon challenge when applying RV and SRV techniques to real-world sys-
tems as RV approaches typically require the complete trace without miss-
ing parts. This paper presents a solution to perform SRV on incomplete
traces based on abstraction. We use TeSSLa as specification language for
non-synchronized timed event streams and define abstract event streams
representing the set of all possible traces that could have occurred during
gaps in the input trace. We show how to translate a TeSSLa specification
to its abstract counterpart that can propagate gaps through the transfor-
mation of the input streams and thus generate sound outputs even if the
input streams contain gaps and events with imprecise values. The solution
has been implemented as a set of macros for the original TeSSLa and an
empirical evaluation shows the feasibility of the approach.

1 Introduction

Runtime verification (RV) is a dynamic formal method for software system reli-
ability. RV studies how to analyze and evaluate traces against formal specifi-
cations and how to obtain program traces from the system under observation,
e.g., through software instrumentation or utilization of processors’ embedded
trace units. Since RV only inspects one execution trace of the system, it is often
regarded to be a readily applicable but incomplete approach, that combines for-
mal verification with testing and debugging.

Most early RV languages were based on logics common in static verification,
like LTL [21], past LTL adapted for finite paths [4,11,18], regular expressions [22]
or timed regular expressions [2]. For these logics, the monitoring problem con-
sists on computing a Boolean verdict indicating whether the trace fulfills the

This work was funded in part by the Madrid Regional Government under project
S2018/TCS-4339 (BLOQUES-CM), by EU H2020 projects 731535 Elastest and 732016
COEMS, by Spanish National Project BOSCO (PGC2018-102210-B-100) and by the
BMBF project ARAMiS II with funding ID 01 IS 16025.
c© The Author(s) 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 273–291, 2019.
https://doi.org/10.1007/978-3-030-32079-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_16&domain=pdf
https://doi.org/10.1007/978-3-030-32079-9_16

274 M. Leucker et al.

Fig. 1. Example trace for a typical SRV specification (left) with two input streams
values (with numeric values) and resets (with no internal value). The intention of the
specification is to accumulate in the output stream sum all values since the last reset.
The intermediate stream cond is derived from the input streams indicating if reset has
currently the most recent event, and thus the sum should be reset to 0. If the input
streams contain gaps (dotted regions on the right) some information can no longer be
computed, but after a reset event the computation recovers from the data loss during
the gap. � denotes events with unknown data.

specification. In contrast to static analysis, however, considering only a single
concrete trace enables the application of more complex analyses: Stream Run-
time Verification (SRV) [6,7,10] uses stream transformations to derive additional
streams as verdicts from the input streams. Using SRV one can still check if the
input stream is conformant with a specification, but additionally verify streams
in terms of their events’ data: streams in SRV can store data from richer domains
than Booleans, including numerical values or user defined data-types, so SRV
languages can extract quantitative values and express quantitative properties
like “compute the average retransmission time” or “compute the longest duration
of a function”. SRV cleanly separates the temporal dependencies that the stream
transformation algorithms follow from the concrete operations to be performed
on the data, which are specific to each data-type. As an example for SRV con-
sider the trace diagram on the left of Fig. 1. We consider non-synchronized event
streams, i.e., sequences of events with increasing timestamps and values from
a data domain. Using non-synchronized event streams one can represent events
arriving on different streams with different frequencies in a compact way with
little computation overhead because there is no need to process additional syn-
chronization events in the stream-transformation process. In this paper we use
the TeSSLa specification language [7], an SRV language for non-synchronized,
timed event streams. TeSSLa has been defined to be general enough to allow for
a natural translation from other common SRV formalisms, e.g., Lola [10] and
Striver [16]. Therefore, our results carry over to these languages as well.

Since RV is performed on traces obtained from the system under test in
the deployed environment, it is a common practical problem for RV techniques
that the traces do not cover the entire run of the system. However, most of the
previous RV approaches require the trace to be available without any interrup-
tions in order to obtain a verdict, because this knowledge is assumed in the
semantics of the specification logics. Especially in the case of interrupted traces
with some data losses applying previous RV techniques can be very challenging.
Unfortunately those traces occur very often in practical testing and debugging

Runtime Verification for Timed Event Streams with Partial Information 275

scenarios, e.g., due to interrupted experiments, buffer overflows, network errors
or any other temporary problem with the trace retrieval.

In this paper we present a solution to the problem of evaluating traces with
imprecise values and even interrupted traces. Our only assumption is that we
have exact knowledge of the imprecision of the trace in the following sense: (1)
for events with imprecise values we know the range of values and (2) for data
losses we know when we stop getting information and when the trace becomes
reliable again. We call such a sequence of uncertainty a gap in the trace. Our
solution automatically propagates gaps and imprecisions, and allows to obtain
sound verdicts even in the case of missing information in the input trace.

Figure 1 on the right displays a case where the input stream values has a
long gap in the middle. It is not possible to determine the events in the output
stream sum during that gap, because we do not even know if and how many
events might have happened during that gap. Thus, the intermediate stream
cond and the output stream sum simply copy that gap representing any possible
combination of events that might occur. The first event after the gap is the one
with the value 3 on values. Because no reset happened after the end of the gap,
we would add 3 to the latest event’s value on sum, but the gap is the latest on
sum. Thus, we only know that this input event on values causes an event on sum
independently of what might have happened during the gap, but the value of that
event completely depends on possible events occurring during the gap. After the
next event on reset the values of the following events on sum are independent of
any previous events. The monitor can fully recover from the missing information
during the gap and can again produce events with precise values.

In order to realize this propagation of gaps through all the steps of the
stream-transformation we need to represent all potentially infinitely many con-
crete traces (time is dense and values are for arbitrary domains) that might
have happened during gaps and imprecise events. An intuitive approach would
be a symbolic representation in terms of constraint formulas to describe the set
of all possible streams. These formulas would then be updated while evaluat-
ing the input trace. While such a symbolic execution might work for shorter
traces, the representation can grow quickly with each input event. Consequently
the computational cost could grow prohibitively with the trace length for many
input traces. Instead, in this paper we introduce a framework based on abstrac-
tion [8,9]. We use abstraction in two ways:

(1) Streams are lifted from concrete domains of data to abstract domains to
model possible sets of values. For example, in our solution a stream can
store intervals as abstract numerical values.

(2) We define the notion of abstract traces, which extend timed streams with
the capabilities of representing gaps. Intuitively, an abstract trace over-
approximates the sets of concrete traces that can be obtained by filling the
gaps with all possible concrete events.

Our approach allows for both gaps in the input streams as well as events carrying
imprecise values. Such imprecise values can be modelled by abstract domains,

276 M. Leucker et al.

e.g., intervals of real numbers. Since we rely on abstraction, we can avoid false
negatives and false positives in the usual sense: concrete verdicts are guaranteed
to hold and imprecise verdicts are clearly distinguished from concrete verdicts.
The achievable precision depends on the specification and the input trace.

After reproducing the semantics of the basic TeSSLa operators in Sect. 2, we
introduce abstract semantics of the existing basic operators of TeSSLa in Sect. 3.
Using these abstract TeSSLa operators, we can take a TeSSLa specification on
streams and replace every TeSSLa operator with its abstract counterpart and
derive an abstraction of the specification on abstract event streams. We show
that the abstract specification is a sound abstraction of the concrete specifica-
tion, i.e., every concrete verdict generated by the original specification on a set
S of possible input traces is represented by the abstract verdict applied to an
abstraction of S. We further show that the abstract TeSSLa operators are a per-
fect abstraction of their concrete counterparts, i.e., that applying the concrete
operator on all individual elements of S doesn’t get you more accurate results.
Finally, we show that an abstract TeSSLa specification can be implemented using
the existing TeSSLa basic operators by representing an abstract event stream
as multiple concrete event streams carrying information about the events and
the gaps. Since the perfect accuracy of the individual abstract TeSSLa operators
does not guarantee perfect accuracy of their compositions, we discuss the accu-
racy of composed abstract TeSSLa specifications in Sect. 4. Next we present in
Sect. 5 an advanced use-case where we apply abstract TeSSLa to streams over a
complex data domain of unbounded queues, which are used to compute the aver-
age of all events that happened in the sliding window of the last five time units.
Section 6 evaluates the overhead and the accuracy of the presented abstractions
on representative example specifications and corresponding input traces with
gaps. An extended preprint version of this paper is available as [19].

Related Work. SRV was pioneered by LOLA [10,13,14]. TeSSLa [7] generalises
to asynchronous streams the original idea of LOLA of recursive equations over
stream transformations. Its design is influenced by formalisms like stream pro-
gramming languages [5,15,17] and functional reactive programming [12]. Other
approaches to handle data and time constraints include Quantitative Regular
Expressions QRE [1] and Signal Temporal Logic [20].

While ubiquitous in practice, the problem of gaps in an observation trace has
not been studied extensively. To the best of our knowledge, abstraction tech-
niques have not been applied to the evaluation of stream-based specifications.
However, approaches to handle the absence of events or ordering information
have been presented for MTL [3] and past-time LTL [24]. State estimation based
on Markov models has been applied to replace absent information by a proba-
bilistic estimation [23]. The concept of abstract interpretation used throughout
this paper has been introduced in [8].

Runtime Verification for Timed Event Streams with Partial Information 277

2 The TeSSLa Specification Language

A time domain is a totally ordered semi-ring (T, 0, 1,+, ·,≤) that is positive, i.e.,
∀t∈T 0 ≤ t. We extend the order on time domains to the set T∞ = T∪{∞} with
∀t∈T t < ∞. Given a time domain T, an event stream over a data domain D is a
finite or infinite sequence s = t0d0t1 · · · ∈ SD = (T ·D)ω ∪ (T ·D)∗ · (T∞ ∪T ·D⊥)
where D⊥ := D ∪ {⊥} and ti < ti+1 for all i with 0 < i + 1 < |s| (|s| is ∞ for
infinite sequences). An infinite event stream is an infinite sequence of timestamps
and data values representing the stream’s events. A finite event stream is a finite
sequence of timestamped events up to a certain timestamp that indicates the
progress of the stream. A stream can end with:

– a timestamp without a data value that denotes progress up to but not includ-
ing that timestamp,

– a timestamp followed by ⊥ (or a data value) which denotes progress up to
and including that timestamp (and an event at that timestamp),

– ∞, which indicates that no additional events will ever arrive on this stream.

We refer to these cases as exclusive, inclusive and infinite progress, resp.
Streams s ∈ SD can be seen as functions s : T → D ∪ {⊥, ?} such that s(t)

is a value d if s has an event with value d at time t or ⊥ if there is no event
at time t. For timestamps after the progress of the stream s(t) is ?. Formally,
s(t) = d if s contains td, s(t) = ⊥ if s does not contain t, but contains a
t′ > t or s ends in t⊥, and s(t) = ? otherwise. We use ticks(s) for the set
{t ∈ T | s(t) ∈ D} of timestamps where s has events. A stream s is a prefix
of stream r if ∀t∈Ts(t) ∈ {r(t), ?}. We use the unit type U = {�} for streams
carrying only the single value �. A TeSSLa specification consists of a collection
of stream variables and possibly recursive equations over these variables using
the operators nil, unit, time, lift, last and delay. The semantics of recursive
equations is given as the least fixed-point of the equations seen as a function of
the stream variables and fixed input streams. See [7] for more details.

� nil = ∞ ∈ S∅ is the stream without any events and infinite progress.
� unit = 0 � ∞ ∈ SU is the stream with a single unit event at timestamp zero

and infinite progress.
� time : SD → ST, time(s) := z maps the event’s values to their timestamps:

z(t) = t if t ∈ ticks(s) and z(t) = s(t) otherwise.
� lift : (D1⊥×. . .×Dn⊥ → D⊥) → (SD1×. . .×SDn

→ SD), lift(f)(s1, . . . , sn) := z
lifts a function f on values to a function on streams by applying f to the
stream’s values for every timestamp. The function f must not generate new
events, i.e., must fulfill f(⊥, . . . ,⊥) = ⊥.

z(t) =

{
f(s1(t), . . . , sn(t)) if s1(t) 	= ?, . . . , sn(t) 	= ?
? otherwise

� last : SD ×S
D

′ → SD, last(v, r) := z takes a stream v of values and a stream r
of triggers. It outputs an event with the previous value on v for every event

278 M. Leucker et al.

on r.

z(t) =

⎧⎪⎨
⎪⎩

d t ∈ ticks(r) and ∃t′<tisLast(t, t′, v, d)
⊥ r(t) = ⊥ and defined(z, t), or ∀t′<tv(t′) = ⊥
? otherwise

isLast(t, t′, v, d) def= v(t′) = d ∧ ∀t′′|t′<t′′<tv(t′′) = ⊥ holds if t′d is the last

event on v until t, and defined(z, t) def= ∀t′<tz(t′) 	= ? holds if z is defined until
t (exclusive).

Using the basic operators we can now derive the following utility functions:

� const(c)(a) := lift(fc)(a) with fc(d) := c. This function maps the values of
all events of the input stream a to a constant value c. Using const we can
lift constants into streams representing a constant signal with this value, e.g.,
true := const(true)(unit) or zero := const(0)(unit).

� merge(x, y) := lift(f)(x, y) with f(a 	= ⊥, b) = a and f(⊥, b) = b, which
combines events from two streams, prioritizing the first stream.

Event streams in TeSSLa can also be interpreted as a continuous signals.
Using last one can query the last known value of an event stream s and
interpret the events on s as points where a piece-wise constant signal changes
its value. By combining the last and lift operators, we can realize:

� signal lift for total functions f : D×D
′ → D

′′ as slift(f)(x, y) := lift(gf)(x′, y′)
with x′ := merge(x, last(x, y)) and y′ := merge(y, last(y, x)), as well as
gf (a 	= ⊥, b 	= ⊥) := f(a, b), gf (⊥, b) := ⊥, and gf (a,⊥) := ⊥.

Example 1. We can now specify the stream transformations shown on the left
in Fig. 1 in TeSSLa. Let resets ∈ SU and values ∈ SZ be two external input event
streams. We then derive cond ∈ SB and lst, sum ∈ SZ as follows:

cond = slift(≤)(time(resets), time(values))
lst = merge(last(sum, values), zero)

sum = slift(f)(cond, lst, values)

f : B × Z × Z → Z with

f(c, l, v) =

{
0 if c = true
l + v otherwise

Using the operators described above one can only derive streams with times-
tamps that are already present in the input streams. To derive streams with
events at computed timestamps one can use the delay operator, which is
described in [7].

3 Abstract TeSSLa

Preliminaries. Given two partial orders (A,�) and (B,�), a Galois Connection
is a pair of monotone functions α : A → B and γ : B → A such that, for all
a ∈ A and b ∈ B, α(a) � b if and only if a � γ(b). Let (A,�) be a partial

Runtime Verification for Timed Event Streams with Partial Information 279

order, f : A → A a monotone function and γ : B → A a function. The function
f# : B → B is an abstraction of f whenever, for all b ∈ B, f(γ(b)) � γ(f#(b)).
If (α, γ) is a Galois Connection between A and B, the function f# : B → B
such that f#(b) := α(f(γ(b)) is a perfect abstraction of f .

In this section we define the abstract counterparts of the TeSSLa operators,
listed in Sect. 2. A data abstraction of a data domain D is an abstract domain D

#

with an element ∈ D
and an associated concretisation function γ : D# → 2D

with γ() = D. The abstract value represents any possible value from the
data domain and can be used to model an event with known timestamp but
unknown value. A gap is a segment of an abstract event stream that represents
all combinations of events that could possibly occur in that segment (both in
terms of timestamps and values). Hence an abstract event stream consists of an
event stream over a data abstraction and an associated set of known timestamps:

Definition 1 (Abstract Event Stream). Given a time domain T, an
abstract event stream over a data domain D is a pair (s,Δ) with s ∈ S#

D
and

Δ ⊆ T such that Δ can be represented as union of intervals whose (inclusive
or exclusive) boundaries are indicated by events in an event stream. Further, we
require s(t) 	= ⊥ ⇒ t ∈ Δ. The set of all abstract event streams over D is denoted
as PD. The concretisation function γ : PD → 2SD is defined as

γ((s,Δ)) = {s′ | ∀t∈ticks(s)s(t) ∈ γ(s′(t)) ∧ ∀t∈Δ\ticks(s)s(t) = s′(t)}
If the data abstraction is defined in terms of a Galois Connection a refinement
ordering and abstraction function can be obtained.The refinement ordering (PD,�
) is defined as (s1,Δ1) � (s2,Δ2) iff Δ1 ⊇ Δ2 and ∀t∈ticks(s2)s1(t) � s2(t) ∧
∀t∈Δ2\ticks(s2)s1(t) = s2(t). The abstraction function α : 2SD → PD is defined
as α(S) = sup{(s,T)|s ∈ S}. Note, if the data abstraction is defined in terms of a
Galois Connection, (α, γ) is a Galois Connection between 2SD and PD.

An abstract event stream s = (s′,Δ) ∈ PD can also be seen as a function
s : T → D

∪ {?,⊥,�} with s(t) = s′(t) if t ∈ Δ and s(t) = � otherwise. A
particular point t of an abstract event stream s can be either (a) directly at an
event (s(t) ∈ D), (b) in a gap (s(t) = �), (c) in a gapless segment without an
event at t (s(t) = ⊥), or (d) after the known end of the stream (s(t) = ?).

We denote D
#
⊥

def= D
∪ {⊥,�}. If D# is a data abstraction of a data domain

D with an associated concretisation function γ, then D
#
⊥ is a data abstraction of

D⊥ with an associated concretisation function γ⊥ : D#
⊥ → 2D∪{⊥} with

γ⊥(d) =

⎧⎪⎨
⎪⎩

⊥ if d = ⊥
D ∪ {⊥} if d = �
γ(d) if d ∈ D

#

tt ff � ⊥

tt ff ⊥
γ γ⊥

B
#
⊥B

#

B⊥B

The above diagram shows a possible data abstraction B
of B and the cor-

responding data abstraction B
#
⊥. Using the functional representation of an

abstract event stream we can now define the abstract counterparts of the TeSSLa
operators:

280 M. Leucker et al.

� nil# = (∞,T) ∈ P∅ is the empty abstract stream without any gaps.
� unit# = (0�∞,T) ∈ PU is the abstract stream without any gaps and a single

event at timestamp 0.
� time# : PD → PT, time#(s) := z is equivalent to its concrete counterpart;

only the data domain is extended: z(t) = t if t ∈ ticks(s) and z(t) = s(t)
otherwise.

� lift# : (D1
#
⊥ × · · · × Dn

#
⊥ → D

#
⊥) → (PD1 × · · · × PDn

→ PD),
lift#(f#)(s1, . . . , sn) := z can be defined similarly to its concrete counter-
part, because the abstract function f# takes care of the gaps:

z(t) =

{
f#(s1(t), . . . , sn(t)) if s1 	= ?, . . . , sn 	= ?
? otherwise

The operator lift# is restricted to those functions f# that are an abstraction
of functions f that can be used in lift, that is, f(⊥, . . . ,⊥) = ⊥. Using the
abstract lift we can derive the abstract counterparts of const and merge:

� const#(c)(a) := lift#(fc)(a) with fc(d) := c if d 	= � and fc(�) := �
otherwise maps all events’ values to a constant while preserving the gaps.
Using const# we can define constant signals without any gaps, e.g., true# :=
const#(true)(unit#) or zero# := const#(0)(unit#).

� merge#(x, y) := lift#(f)(x, y) with f(a 	∈ {�,⊥}, b) = a, f(⊥, b) = b, f(�, b ∈
{�,⊥}) = �, and f(�, b 	∈ {�,⊥}) = .

x

y

z

The diagram on the right shows an example trace
merging the events of the streams x and y. The sym-
bol ◦ indicates a point-wise gap. Note how an event
on the first stream takes precedence over a gap on the second stream, but not
the other way round, similarly to how events from the first stream are prioritized
if both streams have an event at the same timestamp.

� last# : PD1 × PD2 → PD1 , last
#(v, r) := z has three major extensions over its

concrete counterpart:

(1) is added as an output in case an event on r occurs and there were events
on the stream v of values but all followed by a gap.

(2) � is outputted for all gaps on the stream r of trigger events if there have
been events on the stream v of values.

(3) � can also be output if an event occurs on r and no event occurred on v
before except for a gap.

The parts similar to the concrete operator are typeset in gray:

z(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d t ∈ ticks(r) ∧ ∃t′<tisLast(t, t′, v, d) ∧ ∀t′′|t′<t′′<tv(t′′) 	= �
 t ∈ ticks(r) ∧ ∃t′<tisLast(t, t′, v,�) ∧ ∃t′′|t′<t′′<tv(t′′) = � (1)
⊥ r(t) = ⊥ ∧ defined(z, t) ∨ ∀t′<tv(t′) = ⊥
� defined(z, t) ∧ r(t) = � ∧∃t′<tv(t′) 	= ⊥ (2)
� defined(z, t) ∧ t ∈ ticks(r) ∧ ∀t′<tt

′ /∈ ticks(v) ∧ ∃t′<tv(t′) = � (3)
? otherwise

Runtime Verification for Timed Event Streams with Partial Information 281

v

r

z

(3) (1) (d) (2)

The trace diagram on the right shows an exam-
ple trace covering most edge cases of the abstract
last. The output stream z is a point-wise gap if trig-
gered after initial gaps (3); z is if triggered after
non-initial gaps (1); z is an event if triggered after a gapless sequence (d); and
z inherits all gaps from the stream of trigger events (2).

We can now combine the last# and the lift# operators to realize:

� abstract signal lift for total functions f : D × D
′ → D

′′ as
slift#(f)(x, y) := lift#(gf)(x′, y′) with x′ := merge#(x, last#(x, y)) and
y′ := merge#(y, last#(y, x)), as well as gf (a 	∈ {�,⊥}, b 	∈ {�,⊥}) = f(a, b),
gf (⊥, b) = gf (a,⊥) = ⊥, gf (�,�) = �, and gf (�, b 	∈ {�,⊥}) = gf (a 	∈
{�,⊥},�) = �.

Example 2. By replacing every TeSSLa
operator in Example 1 with their abstract
counterparts and applying it to the
abstract input streams values ∈ PZ and
resets ∈ PU, we derive the abstract
stream cond ∈ PB and the recursively
derived abstract stream sum ∈ PZ: After the large gap on values, the sum stream
eventually recovers completely. The first reset after the point-wise gap does not
lead to full recovery, because at that point the last event on values cannot be
accessed, because of the prior gap. The next reset falls into the gap, so again
cond cannot be evaluated. In a similar fashion one can define an abstract delay#

operator as counterpart of the concrete delay. See [19] for details.
Following from the definitions of the abstract TeSSLa operators we get:

Theorem 1. Every abstract TeSSLa operator is an abstraction of its concrete
counterpart.

Theorem 1 implies that abstract TeSSLa operators are sound in the following
way. Let o be a concrete TeSSLa operator with the abstract counterpart o#

and let s ∈ PD be an abstract event stream with a concretization function γ.
Then, o(γ(s)) � γ(o#(s)). Since abstract interpretation is compositional we can
directly follow from the above theorem:

Corollary 1. If a concrete TeSSLa specification ϕ is transformed into a specifi-
cation ψ by replacing every concrete operator in ϕ with its abstract counterpart,
then ψ is an abstraction of ϕ.

Theorem 1 guarantees that applying abstract TeSSLa operators to the
abstract event stream is still sound regarding the underlying set of possible
concrete event streams. However, we have established no result so far about the
accuracy of the abstract TeSSLa operators. The abstraction returning only the
completely unknown stream (Δ = ∅) is sound but useless. The following theo-
rem states, that our abstract TeSSLa operators are optimal in terms of accuracy.

282 M. Leucker et al.

Using a perfect abstraction guarantees the abstract TeSSLa operators preserve
as much information as can possibly be encoded in the resulting abstract event
streams.

Theorem 2. Every abstract TeSSLa operator is a perfect abstraction of its con-
crete counterpart.

Given a concrete TeSSLa operator o and its abstract counterpart o#, and any
abstract event stream s ∈ PD with the Galois Connection (α, γ) between 2SD and
PD one can show that o#(s) = α(o(γ(s)). Applying the abstract operator on the
abstract event stream is as good as applying the concrete operator on every
possible event stream represented by the abstract event stream. Thus o# is a
perfect abstraction of o. (The detailed proof can be found in [19].) Note that
we assume that f# is a perfect abstraction of f to conclude that lift#(f#) is a
perfect abstraction of lift(f).

In Corollary 1 we have shown that a specification ψ (generated by replac-
ing the concrete TeSSLa operator in ϕ with their abstract counterparts) is an
abstraction of ϕ. Note that ψ is in general not a perfect abstraction of ϕ. We
study some special cases of perfect abstractions of compositional specifications
in Sect. 4.

The next result states that the abstract operators can be defined in terms
of concrete TeSSLa operators. Realizing the abstract operators in TeSSLa does
not require an enhancement in the expressivity of TeSSLa.

Theorem 3. The semantics of the abstract TeSSLa operators can be encoded in
TeSSLa using only the concrete operators.

Proof. One can observe that the abstract TeSSLa operators are monotone and
future independent (the output stream up to t only depends on the input streams
up to t.) As shown in [7], TeSSLa can express every such function. ��

3.1 Fixpoint Calculations Ensuring Well-Formedness

A concrete TeSSLa specification consists of stream variables and possibly recur-
sive equations applying concrete TeSSLa operators to the stream variables. The-
orem1 and Corollary 1 guarantee that a concrete TeSSLa specification can be
transformed into an abstract TeSSLa specification, which is able to handle gaps
in the input streams. Additionally, Theorem 3 states that the abstract TeSSLa
operators can be implemented using concrete TeSSLa operators. Combining
these two results, one can transform a given concrete specification ϕ into a
corresponding specification ψ, which realizes the abstract TeSSLa semantics of
the operators in ϕ, but only uses concrete TeSSLa operators.

However, using the realization of the abstractTeSSLaoperators inTeSSLaadds
additional cyclic dependencies in ψ between the stream variables. A TeSSLa spec-
ification is well-formed if every cycle of its dependency graph contains at least one
edge guarded by a last (or a delay) operator, which is required to guarantee the
existence of a unique fixed-point and hence computability (see [7]).

Runtime Verification for Timed Event Streams with Partial Information 283

v
r

last#(v, r)

Consider the trace diagram on the right showing
last#(v, r). If v is used in a recursive manner, i.e., v
is defined in terms of last#(v, r), then the first event
on v could start a gap on last#(v, r) that could start a gap on v at the same
timestamp. As a result v has an unguarded cyclic dependency and hence the
specification is not well-formed. To overcome this issue one can split up the value
and gap calculation sequentially, reintroducing guards in the cyclic dependency:

Definition 2 (Unrolled Abstract Last). We define two variants of the
abstract last, last#⊥ and last#� as follows. Let z = last#(v, r), then last#⊥(v, r) :=
z⊥ and last#�(v, r, d) := z�.

z⊥(t) =

{
z(t) if z(t) 	= �
⊥ otherwise

z�(t) =

⎧⎪⎨
⎪⎩

d(t) if t ∈ ticks(d)
� if t /∈ ticks(d) ∧ z(t) = �
⊥ otherwise

Function last#⊥ executes a normal calculation of the events, in the same way an
abstract last would do, but neglecting gaps and outputting ⊥ as long as there
is no event. Function last#� takes a third input stream and outputs its events
directly, but calculates gaps correctly as last# would do.

Since the trigger input of a last operator cannot be recursive in a well-formed
specification, a recursive equation using one last has the form x = last#(v, r)
and v = f(x, c), where c is a vector of streams not involved in the recursion
and f does not introduce further last (or delay) operators. Now, this equation
system can be rewritten in the following equivalent form:

x′ = last#⊥(v, r) v′ = f(x′, c) x = last#�(v′, r, x′) v = f(x, c)

This pattern can be repeated if multiple recursive abstract lasts are used and
can also be applied in a similar fashion to mutually recursive equations and the
delay operator.

4 Perfection of Compositional Specifications

A concrete TeSSLa specification ϕ can be transformed into an abstract TeSSLa
specification ψ by replacing the concrete operators with their abstract counter-
parts. For two functions f and g with corresponding abstractions f# and g# the
function composition f# ◦ g# is an abstraction of f ◦ g. Unfortunately, even if
f# and g# are perfect abstractions, f# ◦ g# is not necessarily a perfect abstrac-
tion. Hence, ψ needs not be a perfect abstraction of ϕ. In this section we discuss
the perfection of two common compositional TeSSLa operators: (1) the slift#

defined in Sect. 3 is a composition of last# in lift#, which realizes signal seman-
tics; (2) last#(time#(v), r), which is a common pattern used when comparing
timestamps.

284 M. Leucker et al.

The slift# is defined as the lift# applied to the synchronized versions x′ and
y′ of the input streams x and y. The input stream x is synchronized with y by
keeping the original events of x and reproducing the last known value of x for
every timestamp with an event on y, but not on x.

Theorem 4. If f# is a perfect abstraction of f then slift(f#)# is a perfect
abstraction of slift(f).

Proof. Since slift# is defined on abstract event streams we need to consider gaps.
The stream x′ does not have any gap or event until the first gap or event on x.
After the first gap or event on x the synchronized stream x′ contains a gap or
event at every timestamp where x or y contain a gap or event. Because slift#

is symmetric in terms of the event pattern the same holds for y′. By definition,
slift#(f#)(x, y) = z contains an event or gap iff x′ and y′ contain an event or
gap, because f is a total function. The output stream z contains an event iff x′

and y′ contain events. The events values are ensured to be as precise as possible,
because f# is a perfect abstraction of f . ��

a b

v

r

last#(time#(v), r)

lastTime#(v, r)
[a, b]

TeSSLa allows arbitrary computa-
tions on the timestamps of events using
the time operator. The specification z =
time(v) derives a stream z from v by
replacing all event’s values in v with
the event’s timestamps. The stream vari-
able z can now be used in any computation expressible in TeSSLa. Hence,
TeSSLa does not distinguish between timestamps and other values, and con-
sequently abstract TeSSLa specifications cannot make use of the monotonicity
of time. As an example consider the trace diagram on the right. The stream
last#(time#(v), r) is derived from v by composing time# and last#. Since
time# changes the events values with their timestamps, the last# does not
know any longer that we are interested in the last timestamp of v and can only
produce an event with the value representing all possible values. To overcome
this issue we define lastTime(v, r) := last(time(v), r) and provide a direct
abstraction, which allows a special treatment of timestamps.

Definition 3 (Time Aware Abstract Last). Let y = last#(time#(v), r),
we define lastTime# : PD × PD′ → P2T , lastTime#(v, r) := z as z(t) = [a, b]
if y(t) = with a = inf{t′ < t | ∀t′<t′′<tv(t′′) 	= �} and b = max{t′ < t | t′ ∈
ticks(v)} and z(t) = y(t) otherwise.

Now the following result holds (the proof can be found in [19]).

Theorem 5. lastTime# is a perfect abstraction of lastTime.

A similar problem occurs if slift# is used to compare event’s timestamps. In
Example 2 the stream cond derived by comparing the timestamps of values
and resets has two events with the unknown data value because of prior
gaps on values. Since the slift# is defined in terms of lift# and last# we can

Runtime Verification for Timed Event Streams with Partial Information 285

define the function sliftTime#(f#)(x, y) as an abstraction for the special case
sliftTime(f)(x, y) = slift(f)(time(x), time(y)) by using lastTime# instead of
last# and ensuring that f# uses interval arithmetics to abstract f . Note that
sliftTime#(f#) is a perfect abstraction of sliftTime(f).

Example 3. To illustrate the perfect
abstraction sliftTime# we update the def-
inition of cond in Example 2 as follows:
cond = sliftTime(≤)(resets, values). The
events drawn in red now have concrete
values instead of as in Example 2.

5 Abstractions for Sliding Windows

In this section we demonstrate how to apply the techniques presented in this
paper to specifications with richer data domains. In particular, we show now a
TeSSLa specification that uses a queue to compute the average load of a processor
in the last five time units. The moving window is realized using a queue storing
all events that happened in the time window. The stream load ∈ SR contains an
event every time the input load changes:

stripped = slift(remOlder5)(time(load),merge(last(queue, load), 〈〉)))
queue = lift(enq)(time(load), load, stripped)
avg = lift(int)(queue, time(load))

int(q, u) = fold(f, q, 0, u) f(a, b, v, acc) = acc + v · (b − a)/5

The queue operation enq adds elements to the queue, while remOlder5 removes
elements with a timestamp older than five time units. The function int accumu-
lates all values in the queue weighted by the length of the corresponding signal
piece. The queue operation fold is used to fold the function f over all elements
from the queue with the initial accumulator 0 until the timestamp u. Hence f is
called for every element in the queue with the timestamps a and b, the element’s
value v and the accumulator. Consequently, the specification adds elements to
the queue, removes the expired elements and accumulates the remaining val-
ues. Using our approach we replace every operator with its abstract counterpart
and represent abstract queues appropriately such that also queues with partly
unknown entries can be modeled. By doing this we obtain a specification that is
able to handle gaps in the input stream, as illustrated in Fig. 2.

We can extend the example such that the queue only holds a predefined
maximum number of events (to guarantee a finite state implementation). When
removing events we represent these as unknown entries in the abstract queues.
The abstract fold# is capable of computing the interval of possible average loads
for queues with unknown elements anyhow.

Note that the average load is only updated for every event on the input
stream. Using a delay operator, we can set a timeout whenever an element leaves

286 M. Leucker et al.

Fig. 2. Example trace of the abstract queue specification.

the sliding window in the abstract setting. The element is removed from the
queue at that timeout and the new value of the queue is updated with the
remaining elements. Formal definitions of the queue functions as well as the
complete specifications are available online1.

6 Implementation and Empirical Evaluation

As discussed in Sect. 3.1 the abstract TeSSLa operators can be implemented
using only the existing concrete TeSSLa operators. We implemented the abstract
TeSSLa operators as macros specified in the TeSSLa language itself such that
the existing TeSSLa engine presented in [7] can handle abstract TeSSLa spec-
ifications. An abstract event stream (s,Δ) ∈ PD can be represented as two
TeSSLa streams s ∈ SD# and sd ∈ SX , where X contains the following six pos-
sible changes of Δ: inclusive start, exclusive start, inclusive end, exclusive end,
point-wise gap and point-wise event in a gap. Using this encoding it is sufficient
to look up the latest sd(t′) with t′ ≤ t to decide whether t ∈ Δ. While this
encoding already allows a decent implementation of abstract TeSSLa we go one
step further and assume a finite time domain with a limited precision, e.g., 64
bit integers or floats. Under this assumption there is always a known smallest
relative timestamp ε. Hence, we can use the encoding sd ∈ SB where an event
sd(t) = true encodes a start inclusive and sd(t) = false an end exclusive. This
encoding captures the most common cases and simplifies the implementation of
union and intersection on Δ enormously since they can now be realized as slift(∨)
and slift(∧), resp. The other possible switches at timestamp t can be represented
as follows: sd(t + ε) = true encodes an exclusive start, sd(t + ε) = false encodes
an inclusive end, sd(t) = true and sd(t+ ε) = false encodes a point-wise event in
a gap, and sd(t) = false and sd(t+ε) = true encodes a point-wise gap. Using this
encoding the abstract TeSSLa operators do not need to handle these additional
cases explicitly.

Furthermore, assuming the smallest relative timestamp ε, we can avoid the
need to perform the unrolling defined in Definition 2 by delaying the second part
of the computation to the next possible timestamp t + ε.
1 http://tessla-a.isp.uni-luebeck.de/.

http://tessla-a.isp.uni-luebeck.de/

Runtime Verification for Timed Event Streams with Partial Information 287

As a final efficiency improvement we simplified last# before the first event
on the stream of values, which are not relevant in practice. The abstract oper-
ator and hence abstract specifications are of course still a sound abstraction of
their concrete counterparts, but due to over-abstractions no longer a perfect one
during this initial event-less phase of the stream of values.

The implementation in form of a macro library for the existing TeSSLa engine is
available together with all the examples and scripts used in the following empirical
evaluation and can be experimented with in a web IDE (see Footnote 1).

In the following empirical evaluation we measure the accuracy of the abstrac-
tions presented in this paper. An abstract event stream represents input data
with some sequences of data loss, where we do not know if any events might have
been occurred or what their values have been. Applying an abstract TeSSLa
specification to such an input stream takes these gaps into account and provides
output streams that in turn contain sequences of gaps and sequences contain-
ing concrete events. To evaluate the accuracy of this procedure we compare the
output of an abstract TeSSLa specification with the best possible output.

PD PD

2SD

2SD

2SD

I

I

ϕ#

γ γ

ϕ
ι

ι

Let r ∈ PD be an abstract event stream. We
obtain the set R of all possible input streams con-
taining all possible variants that might have hap-
pened during gaps in r by applying the concretiza-
tion function γ on the abstract input stream. Now
we can apply the concrete TeSSLa specification ϕ
to all streams in R and get the set S of concrete
output streams. On the other hand we apply the abstract TeSSLa specification
ϕ# directly to r and get the abstract output stream s. Now S is the set of
all possible output streams and γ(s) is the set of output streams defined by the
abstract TeSSLa specification. The diagram on the right depicts this comparison
process.

a
0 2 1

b
0 2 0 1

c
0 2 1

ignor.

To compare γ(s) and S in a quantitative way
we define the ignorance measure ι : 2SD → I = [0, 1]
scoring the ambiguity of such a set of streams, i.e.,
how similar the different streams in the set are.
Events in non-synchronized streams might not have
corresponding events at the same timestamp on the
other streams. Hence we refer to the signal seman-
tics of event streams where the events represent the changes of a piece-wise con-
stant signal. As depicted on the right with three event streams over the finite data
domain {0, 1, 2}, we score timestamps based on how many event streams have
the same value with respect to the signal semantics at that timestamp. These
scores are then integrated and normalized throughout the length of the streams.
See [19] for the technical details. Using this ignorance measure we can now com-
pute the optimal ignorance i := ι(S) ∈ I and the ignorance k := ι(γ(s)) ∈ I of
the streams produced by the abstract TeSSLa specification.

For the evaluation we took several example specifications and corresponding
input traces representing different use-cases of TeSSLa and compared the opti-

288 M. Leucker et al.

mal ignorance with the ignorance of abstract TeSSLa. Note that computing the
optimal ignorance requires to derive all possible variants of events that might
have happened during gaps, which are in general infinitely many and in the spe-
cial case of only point-wise gaps still exponentially many. Hence this can only be
done on rather short traces with only a few point-wise gaps. As a measure for
the overhead imposed by using the abstraction compared to the concrete TeSSLa
specification we use the computation depth, i.e., the depth of the dependency
graph of the computation nodes of the specifications. While runtimes are highly
depending on implementation details of the used TeSSLa engines, the compu-
tation depth is a good indicator for the computational overhead in terms of
how many concrete TeSSLa operators are needed to realize the abstract TeSSLa
specification. Figure 3 shows the empirical results.

Fig. 3. Empirical results.

The first three examples represent the class of common, simple TeSSLa spec-
ifications without complex interdependencies and no generation of additional
events with delay: Reset-count counts between reset events; reset-sum sums up
events between reset events; and filter-example filters events occurring in a cer-
tain timing-pattern. For these common specifications the overhead is small and
the abstraction is perfectly accurate. The burst example checks if events appear
according to a complex pattern. In the abstraction we loose accuracy because the
starting point of a burst is not accessible by last# after a gap. A similar problem
occurs in the queue example where we use a complex data domain to develop
a queue along an event stream. If last# produces after a gap all information
about the queue before the gap is lost. For variable-period the abstraction is
not perfectly accurate, because the delay is used to generate events periodically
depending on an external input. This gets even worse for the self-updating queue
where complex computations are performed depending on events generated by a
delay. Surprisingly, the finite-queue is again perfectly accurate, because the size
of the queue is limited in a way that eliminates the inaccuracy of the abstraction
in this particular example.

Runtime Verification for Timed Event Streams with Partial Information 289

7 Conclusion

By replacing the basic operators of TeSSLa with abstract counterparts, we
obtained a framework where properties and analyses can be specified with respect
to complete traces and automatically evaluated for partially known traces. We
have shown that these abstract operators can be encoded in TeSSLa, allowing
existing evaluation engines to be reused. This is particularly useful as TeSSLa
comprises a very small core language suitable for implementation in soft- as well
as hardware. Using the example of sliding windows, we demonstrated how com-
plex data structures like queues can be abstracted. Using finite abstractions, our
approach even facilitates using complex data structures when only limited mem-
ory is available. Evaluating the abstract specification typically only increases the
computational cost by a constant factor. In particular, if a concrete specification
can be monitored in linear time (in the size of the trace) its abstract counterpart
can be as well. Finally, we illustrated the practical feasibility of our approach by
an empirical evaluation using the freely available TeSSLa engine.

References

1. Alur, R., Fisman, D., Raghothaman, M.: Regular programming for quantitative
properties of data streams. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632,
pp. 15–40. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-
1_2

2. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206
(2002)

3. Basin, D.A., Klaedtke, F., Zalinescu, E.: Failure-aware runtime verification of dis-
tributed systems. In: FSTTCS. LIPIcs, vol. 45, pp. 590–603. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2015)

4. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM T. Softw. Eng. Meth. 20(4), 14 (2011)

5. Berry, G.: The foundations of Esterel. In: Plotkin, G., Stirling, C., Tofte, M. (eds.)
Proof, Language, and Interaction: Essays in Honour of Robin Milner, pp. 425–454.
MIT Press, Cambridge (2000)

6. Bozzelli, L., Sánchez, C.: Foundations of Boolean stream runtime verification. In:
Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 64–79.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_6

7. Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M., Thoma, D.:
TeSSLa: temporal stream-based specification language. In: Massoni, T., Mousavi,
M.R. (eds.) SBMF 2018. LNCS, vol. 11254, pp. 144–162. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03044-5_10

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM Press (1977)

9. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Log. Comput. 2(4),
511–547 (1992)

10. D’Angelo, B., et al.: LOLA: runtime monitoring of synchronous systems. In: TIME,
pp. 166–174. IEEE (2005)

https://doi.org/10.1007/978-3-662-49498-1_2
https://doi.org/10.1007/978-3-662-49498-1_2
https://doi.org/10.1007/978-3-319-11164-3_6
https://doi.org/10.1007/978-3-030-03044-5_10

290 M. Leucker et al.

11. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.:
Reasoning with temporal logic on truncated paths. In: Hunt, W.A., Somenzi, F.
(eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45069-6_3

12. Eliot, C., Hudak, P.: Functional reactive animation. In: Proceedings of ICFP ’07,
pp. 163–173. ACM (1997)

13. Faymonville, P., Finkbeiner, B., Schirmer, S., Torfah, H.: A stream-based speci-
fication language for network monitoring. In: Falcone, Y., Sánchez, C. (eds.) RV
2016. LNCS, vol. 10012, pp. 152–168. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46982-9_10

14. Faymonville, P., et al.: StreamLAB: stream-based monitoring of cyber-physical
systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 421–431.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_24

15. Gautier, T., Le Guernic, P., Besnard, L.: SIGNAL: a declarative language for
synchronous programming of real-time systems. In: Kahn, G. (ed.) FPCA 1987.
LNCS, vol. 274, pp. 257–277. Springer, Heidelberg (1987). https://doi.org/10.1007/
3-540-18317-5_15

16. Gorostiaga, F., Sánchez, C.: Striver: stream runtime verification for real-time event-
streams. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 282–
298. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7_16

17. Halbwachs, N., Caspi, P., Pilaud, D., Plaice, J.: LUSTRE: a declarative language
for programming synchronous systems. In: Proceedings of POPL 1987, pp. 178–
188. ACM Press (1987)

18. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0_24

19. Leucker, M., Sanchez, C., Scheffel, T., Schmitz, M., Thoma, D.: Runtime verifi-
cation for timed event streams with partial information. arXiv:1907.07761 (2019).
https://arxiv.org/abs/1907.07761

20. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3_12

21. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer,
New York (1995). https://doi.org/10.1007/978-1-4612-4222-2

22. Sen, K., Roşu, G.: Generating optimal monitors for extended regular expressions.
ENTCS 89(2), 226–245 (2003)

23. Stoller, S.D., et al.: Runtime verification with state estimation. In: Khurshid, S.,
Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 193–207. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29860-8_15

24. Wang, S., Ayoub, A., Sokolsky, O., Lee, I.: Runtime verification of traces under
recording uncertainty. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol.
7186, pp. 442–456. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-29860-8_35

https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-030-25540-4_24
https://doi.org/10.1007/3-540-18317-5_15
https://doi.org/10.1007/3-540-18317-5_15
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/3-540-46002-0_24
http://arxiv.org/abs/1907.07761
https://arxiv.org/abs/1907.07761
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-1-4612-4222-2
https://doi.org/10.1007/978-3-642-29860-8_15
https://doi.org/10.1007/978-3-642-29860-8_35
https://doi.org/10.1007/978-3-642-29860-8_35

Runtime Verification for Timed Event Streams with Partial Information 291

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Shape Expressions for Specifying
and Extracting Signal Features

Dejan Ničković1(B), Xin Qin2, Thomas Ferrère3, Cristinel Mateis1,
and Jyotirmoy Deshmukh2

1 AIT Austrian Institute of Technology, Vienna, Austria
dejan.nickovic@ait.ac.at

2 University of Southern California, Los Angeles, USA
3 IST Austria, Klosterneuburg, Austria

Abstract. Cyber-physical systems (CPS) and the Internet-of-Things
(IoT) result in a tremendous amount of generated, measured and
recorded time-series data. Extracting temporal segments that encode
patterns with useful information out of these huge amounts of data
is an extremely difficult problem. We propose shape expressions as a
declarative formalism for specifying, querying and extracting sophisti-
cated temporal patterns from possibly noisy data. Shape expressions are
regular expressions with arbitrary (linear, exponential, sinusoidal, etc.)
shapes with parameters as atomic predicates and additional constraints
on these parameters. We equip shape expressions with a novel noisy
semantics that combines regular expression matching semantics with sta-
tistical regression. We characterize essential properties of the formalism
and propose an efficient approximate shape expression matching proce-
dure. We demonstrate the wide applicability of this technique on two
case studies.

1 Introduction

Cyber-physical systems (CPS) and Internet-of-Things (IoT) applications are
everywhere around us - smart buildings that adapt heating control to the user’s
habit, intelligent transportation systems that optimize traffic based on the con-
tinuous monitoring of the road conditions, wearable health monitoring devices,
and medical devices that fine-tune a given therapy depending on sensing a
patient’s health. These applications are inherently data-driven – the decisions
of the system rely on the measurement and analysis of the dynamic behavior of
the environment. Low-cost sensing solutions combined with the availability of
powerful edge and cloud devices to store and process data has led to a tremen-
dous increase in the generation, measurement and recording of time-series data.
Processing these huge streams of available data in an efficient manner to extract
useful information is challenging. It is often the case that only specific segments
of the time series contain interesting and relevant patterns. For instance, an elec-
tricity provider may be interested in observing spikes or oscillations in the voltage
signals. A medical device manufacturer may want to detect anomalous cardiac
c© Springer Nature Switzerland AG 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 292–309, 2019.
https://doi.org/10.1007/978-3-030-32079-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_17&domain=pdf
https://doi.org/10.1007/978-3-030-32079-9_17

Shape Expressions for Specifying and Extracting Signal Features 293

behavior. A wearable device maker would like to associate specific patterns in
the measurements from accelerometer and gyroscope sensors to a concrete user
activity, such as running or walking.

Such patterns can be often characterized with geometric shapes observed in
the time-series data; e.g., a spike can be specified as an “upward triangle”, i.e. a
sequence of two contiguous line segments with slopes that have opposite signs.
There are also instances where the time-series data is multi-dimensional (say
(x(t), y(t))), and the user may be interested in knowing if a “pulse” shape in
x(t) is followed by an “exponential decay” shape in y(t).

We propose shape expressions, a novel declarative language for specifying
sophisticated temporal patterns over (possibly multi-dimensional) time series.
A shape expression is in essence a regular expression where atomic predicates
are arbitrary (linear, exponential, sinusoidal, etc.) shapes with (slope, offset, fre-
quency, etc.) parameters, and with additional parameter constraints. We asso-
ciate to shape expressions a noisy language that allows observed data to approx-
imately match the expression. The noisy expression semantics combines classical
regular expression semantics with statistical regression, which is used to match
atomic shapes and infer parameter valuations that minimize the noise between
the ideal shape and the observation. We allow either using mean squared error
(MSE) or the coefficient of determination (CoD), statistical measures of how
close the observed data are to the fitted regression (atomic) shape, as our noise
metric. We define shape automata as an executable formalism for matching shape
expressions and propose a heuristic for querying time series with shape expres-
sions efficiently. We apply this algorithm to two case studies from different CPS
and IoT domains to demonstrate its applicability.

Illustrating Example. We use the example depicted in Fig. 1 to illustrate
the concepts presented in this paper. This figure shows a raw noisy signal that
contains two pulses. The two pulses differ both in duration, depth and offset,
but have the same qualitative shape that characterizes them as pulses. Figure 1b
shows a specification of an ideal pulse. We characterize a pulse as a sequence
of 5 segments: (1) constant segment at some b; (2) linearly decreasing segment
with slope a2 < 0; (3) constant segment at some b3; (4) linearly increasing
segment with slope a4 > 0; and (5) constant segment at b. We observe that the

(a)

b

t2 t3 t4 t5 t6t1

b2

b3

(b)

Fig. 1. (a) Two pulses shapes (b) Idealized Pulse shape (Color figure online)

294 D. Ničković et al.

above specification uses parametric shapes, where the parameters are possibly
constrained (e.g. a2 < 0) or shared between shapes (e.g. b), and describes a
perfect shape without accounting for noise.

Related Work. Regular expressions and temporal logics are the most common
general purpose specification languages for expressing temporal patterns in the
formal methods community. However, specifying temporal patterns in data is a
problem that has been pervasively studied. For instance, specification and recog-
nition of a pulse in pulse-based communications is an IEEE standard [1] in its
own right. Extracting unspecified motifs in time series has been studied in data-
mining [21], and feature extraction using patterns has been studied in machine
learning [12,20]. More recently, time series shapelets were introduced in [29] as
a data mining primitive. A shapelet is a time series segment representing a cer-
tain shape identified from data. Our work is partially motivated by the concept
of shapelets. In contrast to shapelets that are extracted from unlabelled data,
shape expressions provide a more supervised feature extraction mechanism, in
which domain-specific knowledge is used to express shapes of interest.

In the context of CPS, timed regular expressions (TRE) [6,7], quantitative
regular expressions (QRE) [2–4,19], Signal Temporal Logic (STL) [18] and var-
ious stream languages [10,11,15–17] have been used as popular formalisms for
specifying properties of CPS behaviors. QREs is a powerful formalism that com-
bines quantitative computations over data with regular expression-based match-
ing. An offline algorithm for matching TREs was proposed in [22,23]. This thread
of work was extended to online pattern matching in [24]. Automata-based match-
ing for TREs has been developed in [25–27]. In contrast to our approach, pattern
matching with QREs and TREs is sensitive to noise in data. The problem of
uncertainty has been studied through parameterized TRE specifications, either
by having parameters in time bounds [5] or in spatial atomic predicates [8]. These
approaches are orthogonal to ours – instead of having parameters on standard
TRE operators, we focus on a rich class of parameterized atomic shapes. Finally,
a sophisticated algorithm to incrementally detect exponential decay patterns in
CO2 measurements was proposed in [28] in the context of smart building appli-
cations. We adapt and extend this basic idea to a general purpose specification
language that allows combining such atomic shapes with regular operators.

2 Shape Expressions and Automata

In this section, we define shape expressions as our pattern specification language.
In essence, they are regular expressions over parametrized signal shapes, such as
linear, exponential or sine segments, and with additional parameter constraints.
We then define shape automata, which translate shape expressions and provide
an executable formalism for recognizing composite signals made of several types
of segments. This executable formalism captures exactly the notion of shape
expression, and will allow us to define a family of pattern matching algorithms
as we will see in Sect. 3. We first give a few basic definitions necessary to our
framework, such as notions of signals, parameters, and shapes.

Shape Expressions for Specifying and Extracting Signal Features 295

2.1 Definitions

Let P = {p1, . . . , pn} be a set of parameters. A parameter valuation v maps
parameters p ∈ P to values v(p) ∈ R ∪ {⊥}, where ⊥ represents the undefined
value. We use the shortcut v(P) to denote {v(p1), . . . , v(pn)}. A constraint γ
over P is a Boolean combination of inequalities over P . We write v |= γ when
the constraint γ is satisfied by the valuation v. Given p ∈ P and p ◦ k for
◦ ∈ {=, <,≤, >,≥} and some k ∈ R, we have that v(p) = ⊥ implies that
v �|= p ◦ k. We denote by Γ(P) the set of all constraints over P .

Let X be a set of signal variables. A signal w over X is a function w : X ×
[0, d) → R, where [0, d) is the time domain of w, which we assume to be discrete,
hence a subset of Z. We denote by |w| = d the length of w.

Given two signals w1 : X×[0, d1) → R and w2 : X×[0, d2) → R, we denote
by w ≡ w1 ·w2 their concatenation w : X×[0, d1+d2) → R, where for all x ∈ X,
w(x, t) = w1(x, t) if t ∈ [0, d1) and w(x, t) = w2(x, t − d1) if t ∈ [d1, d1 + d2).
Let w : X × [0, d) → R be a signal, and d1 and d2 be two constants such that
0 ≤ d1 < d2 ≤ d. We denote by w[d1,d2) : X × [0, d2 − d1) → R the restriction
of w to the time domain [d1, d2), such that for all x ∈ X and t ∈ [0, d2 − d1),
w[d1,d2)(x, t) = w(x, t+d1). We allow signals of null duration d = 0, which results
in the unique signal with the empty time domain1.

Consider two sequences y = y1, . . . , yn and f = f1, . . . , fn of values, where
y represents a sequence of observations and f the corresponding sequence of
predictions given by a model which approximates the distribution of y. The
mean squared error MSE(y, f) of f relative to y is a statistical measure of how
well the predictions of a (regression) model approximates the observations, and
is defined as follows.

MSE(y, f) =
1
n

Σn
i=1(yi − fi)2

Another statistical measure in a regression analysis of how well the predic-
tions of a (regression) model approximates the observations is the coefficient of
determination R2, defined in terms of the mean ȳ of the sequence y, its total
sum of squares SStot and the residual sum of squares SSres as follows:

R2(y, f) = 1 − SSres(y,f)
SStot(y)

ȳ = 1
nΣn

i=1yi

SStot(y) = Σn
i=1(yi − ȳ)2 SSres(y, f) = Σn

i=1(yi − fi)2

The coefficient of determination R2 typically ranges from 0 to 1. An R2 of 1
indicates that the predictions are a perfect match of the observations. On the
contrary, an R2 of 0 indicates that the model explains none of the variability
of the response data around its mean. Negative values of R2 can occur if the
predictions fit the observations worse than a horizontal hyperplane.

1 The signal with the empty time domain is equivalent to the empty word in the
classical language theory.

296 D. Ničković et al.

2.2 Shape Expressions

We now define the syntax and semantics of shape expressions defined over the
set X of signals and the set P of parameter variables. A shape σx(P ′) is an
expression that maps parameter variables P ′ ⊆ P and the signal variable x ∈ X
to a parameterized family of idealized signals. To every shape σx, we associate a
special duration variable lσ,x that is included in the set P of parameter variables.2

Consider the basic shapes below.

linx(a, b, l) ≡ {w | ∃v.|w| = v(l) ∧ w(x, t) = t · v(a) + v(b)} (1)
expx(a, b, c, l) ≡ {w | ∃v.|w| = v(l) ∧ w(x, t) = v(a) + v(b)et·v(c)} (2)

sinx(a, b, c, d, l) ≡ {w | ∃v.|w| = v(l) ∧ w(x, t) = v(a) + v(b) sin(v(c)t+ v(d))} (3)

In (1), we describe a line segment parameterized by its slope a, and inter-
cept b. In (2), we describe an exponential shape with parameters a, b, c, and
l, while (3) describes a parameterized family of sinusoidal shapes with the
specified parameters3. Given a valuation v and a shape σx(P ′), we denote by
w(x) = σx(v(P ′)) the signal w that instantiates the shape σx to concrete parame-
ter values defined by v. We assume a finite set Σ of shapes, without imposing fur-
ther restrictions. Shape expressions (SE) are regular expressions, where shapes
with unknown parameters play the role of atomic primitives, and which have an
additional restriction operator for enforcing parameter constraints.

Definition 1 (SE syntax). The shape expressions are given by the grammar

ϕ ::= ε | σx(P ′) | ϕ1 ∪ ϕ2 | ϕ1 · ϕ2 | ϕ∗ | ϕ : γ

where σ ∈ Σ, x ∈ X, P ′ ⊆ P , and γ ∈ Γ (P).

The symbol ε denotes the empty word, the operators ϕ1 ∪ ϕ2, ϕ1 · ϕ2 and ϕ∗

denote the classical regular expression union, concatenation and Kleene star
respectively, while ϕ : γ says that ϕ is constrained by γ. We write ϕi as an
abbreviation of ϕ · · · ϕ (i times). We denote by ΣX(P) the set of expressions of
the form σx(P ′) for σ ∈ Σ, x ∈ X and P ′ ⊆ P . The set of shape expressions
over P and X is denoted Φ(P,X).

Example 1. Consider the visual pulse specification from Fig. 1b. We describe an
ideal pulse as a shape expression ϕpulse as follows4:

ϕ ≡ linx(0, b) · linx(a2, b2) : a2 < 0 · linx(0, b3) · linx(a4, b4) : a4 > 0 · linx(0, b)

2 We use l instead of lσ,x whenever its association to σx is clear from the context, and
omit lσ,x altogether when not interested in the duration of the shape.

3 We omit the duration variable l whenever we are not interested in the duration of a
shape - for instance we then use the notation sin(a, b, c, d).

4 We abuse the notation and replace a parameter variable by a constant, for instance
linx(0, b), as a shortcut for linx(a1, b) : a1 = 0.

Shape Expressions for Specifying and Extracting Signal Features 297

The semantics of shape expressions is given as a relation between signals
and parameter valuations, which we call a language. We associate with every
shape expression a noisy language Lν for some noise tolerance threshold ν ≥ 0,
capturing the ν-approximate meaning of the expression. The exact language L
capturing the precise meaning of the expression is obtained by setting ν to zero.

To define the noisy language of an expression, we associate a goodness of fit
measure of a signal to an ideal shape, describing how far is the observed signal
from the ideal shape. We derive this measure by combining mean squared error
(MSE) computed on atomic shapes. The overall measure gives the quality of a
match to a shape expression.

We formally define the noisy language as follows.

Definition 2 (SE noisy language). Let ν ∈ R≥0 be a noise tolerance thresh-
old. The noisy language Lν of a shape expression is defined as follows:

Lν(ε) = {(w, v) | |w| = 0}
Lν(σx(P ′)) = {(w, v) | |w| = v(l) and μ(w(x), σx(v(P ′))) ≤ ν}
Lν(ϕ1 · ϕ2) = {(w1 · w2, v) | (w1, v) ∈ Lν(ϕ1) and (w2, v) ∈ Lν(ϕ2)}

Lν(ϕ1 ∪ ϕ2) = Lν(ϕ1) ∪ Lν(ϕ2)

Lν(ϕ∗) =
∞⋃

i=0

Lν(ϕi)

Lν(ϕ : γ) = {(w, v) | (w, v) ∈ Lν(ϕ) and v |= γ}

where μ(y, f) is substituted by either MSE(y, f) or 1 − CoD(y, f).

The noisy SE language is defined as the set of all signal/parameter valuation
pairs, such that the distance of the signal from the ideal shape signal defined by
the shape expression and instantiated by the parameter valuation is smaller or
equal than the noise threshold.

Example 2. Consider the shape expression ϕpulse specifying a pulse, the sig-
nal w depicted in Fig. 1a, and the signal w′ = wI the restriction of w to the
interval I = [7, 26). Let us consider v = (v(a2), v(a4), v(b), v(b2), v(b3), v(b4)) =
(−0.67, 0.67, 9, 17, 7,−5) the valuation of parameter variables in ϕpulse that
instantiates the ideal shape (red line) of the first pulse depicted in Fig. 1a. Let
w1 = w[7,12), w2 = w12,15), w3 = w[15,18), w4 = w[18,21) and w5 = w[21,26), with:

MSE(w1(x), linx(0, v(b))) = 0.04 MSE(w4(x), linx(v(a4), v(b4))) = 0.35
MSE(w2(x), linx(v(a2), v(b2))) = 0.49 MSE(w5(x), linx(0, v(b))) = 0.10
MSE(w3(x), linx(0, v(b3))) = 0.13

It follows that (w′, v) ∈ L0.5(ϕpulse) but (w′, v) �∈ L0.1(ϕpulse).

298 D. Ničković et al.

2.3 Shape Automata

We now define shape automata, which will act as recognizers for shape expres-
sions. They are akin to finite state automata in which edges are labeled by shape
expressions with unknown parameters, and parameter constraints. We will then
show that they are inter-translatable to shape expressions.

Definition 3 (Shape automata). A shape automaton is a tuple 〈P,X,Q,
Δ, S, F 〉, where (1) P is the set of parameters, (2) X is the set of real-valued sig-
nal variables, (3) Q is the set of control locations, (4) Δ ⊆ Q×ΣX(P)×Γ (P)×Q
is the set of edges, (5) S ⊆ Q is the set of starting locations, and (6) F ⊆ Q is
the set of final locations.

linx(0, b)
q0 q1 q2 q3 q4 q5

linx(0, b)

a2 < 0

linx(a2, b2) linx(0, b3) linx(a4, b4)

a4 > 0

Fig. 2. Shape automaton Apulse

Example 3. The shape automaton Apulse, shown in Fig. 2 recognizes pulse shapes
specified by the shape expression ϕpulse.

A state in a shape automaton is a pair (q, v) where q is a location and v is a
parameter valuation. The runs of shape automata are akin to those in weighted
automata and defined as follows. For a signal w we define transitions w−→

c
between

two states as follows. We have (q, v) w−→
c

(q′, v′) if there exists (q, σx(P ′), γ, q′) ∈ Δ

such that P ′ ⊆ P , c = μ(w(x), σx(v′(P ′))), v′ |= γ, v′(p) = v(p) for all p ∈ P\P ′

and v′(p) = v(p) also for all p ∈ P ∩ P ′ such that v(p) �= ⊥. The semantics of a
shape automaton are given as follows.

Definition 4 (Shape automaton run). A run of a shape automaton over
some signal w is a sequence of transitions

(q0, v0)
w1−−→
c1

(q1, v1)
w2−−→
c2

. . .
wn−−→
cn

(qn, vn)

such that q0 ∈ S, v0 = (⊥, . . . ,⊥) and qn ∈ F , where w1 · w2 . . . wn is a decom-
position of w. Such a run ρ induces cost(ρ) = maxn

i=1 ci and the parameter
valuation val(ρ) = vn.

The set of runs of a shape automaton A over some signal w is denoted
R(A, w). A shape automaton A associates any given signal w to a similarity
measure that is the minimum among the similarity measures of all runs.

Shape Expressions for Specifying and Extracting Signal Features 299

Definition 5 (SA language and noisy language). The noisy language of
a shape automaton for a given noise tolerance threshold ν ∈ R+ is Lν(A) =
{(w, v) | ∃ρ ∈ R(A, w) s.t. val(ρ) = v and cost(ρ) ≤ ν}. The exact language of
a shape automaton is L(A) = L0(A).

Example 4. Consider the signal w′ = w1w2w3w4w5 from Example 2 and let:

v1 = (⊥,⊥, 9,⊥,⊥,⊥) c1 = 0.04 v4 = (−0.67, 0.67, 9, 17, 7,−5) c4 = 0.35
v2 = (−0.67,⊥, 9, 17,⊥,⊥) c2 = 0.49 v5 = (−0.67, 0.67, 9, 17, 7,−5) c5 = 0.10
v3 = (−0.67,⊥, 9,⊥, 7,⊥) c3 = 0.13

We then have, assuming v0 = (⊥,⊥,⊥,⊥,⊥,⊥), that

ρ = (q0, v0)
w1−−→
c1

(q1, v1)
w2−−→
c2

· · · w5−−→
c5

(q5, v5)

is a run of Apulse over w′ with cost(ρ) = 0.49 and w′ ∈ L0.5(Apulse).

We now formally show the equivalence between shape expressions and shape
automata. The first direction of the theorem allows to construct automata recog-
nizers for arbitrary expressions. The second direction of the theorem shows that
shape expressions are expressively complete relative to the class of automata
under consideration.

Theorem 1 (SE ⇔ SA). For any shape expression ϕ there exists a shape
automaton Aϕ such that Lν(Aϕ) = Lν(ϕ) for all ν ≥ 0. For any shape automa-
ton A there exists a shape expression ϕA such that Lν(ϕA) = Lν(A) for all
ν ≥ 0.

3 Pattern Matching

In Sect. 2.3, we introduced shape automata to recognize signals that are close to a
specified shape. However, a shape expression is not intended to represent a whole
signal, but only a segment thereof. In this section, we extend shape automata to
enable them identifying all signal segments that match specific shapes. We first
define the notion of noisy match sets.

Definition 6 (Noisy match set). For any signal w defined over a time domain
T = [0, d), shape expression ϕ and noise tolerance threshold ν, we define the
match set M(ϕ,w) and the noisy match set Mν(ϕ,w) as follows:

Mν(ϕ,w) = {(t, t′) ∈ T
2 | t ≤ t′ and w[t,t′) ∈ Lν(ϕ)}

Given a shape automaton A, its associated shape pattern matching automaton
Â is another shape automaton that extends A with dedicated initial and final
locations, which allow Â to silently consume a prefix and a suffix of a signal.
The construction follows [9] and is given in the definition below.

300 D. Ničković et al.

Definition 7 (Shape pattern matching automaton). Let A = 〈P,X,Q,Δ,
S, F 〉 be a shape automaton. Then the corresponding shape pattern matching
automaton is Â = 〈P,X, Q̂, Δ̂, Ŝ, F̂ 〉, where

– Q̂ = Q ∪ {ŝ, f̂}, Ŝ = {ŝ}, F̂ = {f̂},
– Δ̂ = Δ ∪ {(ŝ, any, true, q) | q ∈ S} ∪ {(q, any, true, f̂) | q ∈ F}, where any is

a special shape such that μ(w, any) = 0 for all w.

Intuitively, given a signal w, a shape expression ϕ and its associated shape
pattern matching automaton Âϕ, an accepting run ρ over w decomposed into
w0 · w1 · · · wn+1 in Âϕ

(ŝ, v0)
w0−−→
0

(q0, v0)
w1−−→
c1

. . .
wn−−→
cn

(qn, vn)
wn+1−−−→

0
(f̂ , vn)

represents one potential match (defined by segment (t, t′) in w where t = |w0|
and t′ = |w| − |wn+1|) with one specific parameter instantiation (vn) and its
associated similarity measure cost(ρ) = maxn

i=1 ci. We denote by λ(ρ) = (t, t′)
the label of run ρ over w in Â. We first note that for a given decomposition of w,
there is an infinite number of runs over w in Âϕ that follow that decomposition
due to the parameters being valued as real numbers. We also note that for a
given signal w, there is a finite (but large) number of its decompositions.

Example 5. Figure 3 shows three runs ρ1, ρ2 and ρ3 over w in Âpulse and the
corresponding ideal shapes defined by the valuations computed during the runs.
We can see that each run identifies one segment of w that could be a potential
match of the shape expression ϕpulse with specific parameter values and cost. In
particular, we can observe that runs ρ1 and ρ2 decompose w in the same manner
but with different parameter valuations, resulting in cost(ρ1) < cost(ρ2).

Fig. 3. Pulse train - three runs ρ1, ρ2 and ρ3 over w in Âpulse.

Shape Expressions for Specifying and Extracting Signal Features 301

From the above observations, we obtain that the labeling of the set of runs
associated to a shape pattern matching automaton Â and a signal w gives us
exactly the match set of L(A) relative to w.

Theorem 2. Let ϕ be a shape expression, Âϕ the corresponding shape pattern
matching automaton, w a signal and ν a noise tolerance threshold. We have that
Mν(ϕ,w) = {(t, t′) | ∃ρ ∈ R(Âϕ, w) s.t. λ(ρ) = (t, t′) and cost(ρ) ≤ ν}.

We observe that while this in principle solves the SE pattern-matching prob-
lem, the complexity in terms of signal length is not practical. Let us define the
dot-depth of some expression ϕ the maximal number of concatenations featured
on any branch of its syntax tree.

Theorem 3. The size of the set of runs of a shape matching automaton Âϕ is
Ω(nk+2), where n is the size of the trace, and k is the dot-depth of ϕ.

The dot-depth of any expression is nonnegative, hence this lower bound is
at least quadratic in the length of the signal. This means that any exhaustive
algorithm will not scale in many practical applications, where typical signal can
be over 106 samples long.

We propose two ways to handle complexity: (1) bound the length of matches,
or (2) develop heuristics to efficiently match shape expressions. Bounding the
length of matches is reflected in the following definition.

Definition 8 (Bounded shape expressions). A shape expression is said to
be bounded (by k) when for all words w we have that w ∈ L(ϕ) implies |w| ≤ k.

Theorem 4 (Linear-time upper bound). For an expression ϕ bounded by
k the size of the set of accepting runs of the shape matching automaton can be
represented by a dag of size O(nk2m·km

), where n is the length of the trace and
m is the length of the expression.

4 Policy Scheduler for Shape Matching Automata

In this section, we propose a heuristic in the form of a policy scheduler that
efficiently approximates the complete match set by computing a representative
subset of non-overlapping matches.

Let w be a signal defined over X and σx(P ′) a shape with x ∈ X. We denote
by reg the statistical regression with constraints which returns the pair of the
parameter values v(P ′) which minimizes MSE under the constraint γ and the
associated μ(w, σx(v(P ′))), defined as follows:

reg(w, σx, γ) = (argminv{MSE(w, σx(v(P ′))) | v |= γ}, μ(w, σx(v(P ′)))) .

We now show that μ (MSE and CoD) can be computed in an online fashion.
Given the two sequences y = y1, . . . , yn and f = f1, . . . , fn of observations and
predictions, we define a recursive definition of MSE and CoD as follows.

302 D. Ničković et al.

Algorithm 1. Shape expression match expression match

Input: Set of locations S, current end match time t
Output: New end match time t′

1 t′ ← −∞
2 if S ∩ F �= ∅ then t′ ← t
3 else if t < |w| then
4 foreach δ = (q, σx, γ, q′) ∈ outΔ(S) do
5 τ ← atomic match(δ, t)
6 if τ > −∞ then τ ′ ← expression match({q′}, τ)
7 t′ ← max{t′, τ ′}
8 return t′

MSE(y, f, n + 1) = n
n+1 MSE(y, f, n) + 1

n+1 (yn+1 − fn+1)2

ȳ(n + 1) = n
n+1 ȳ(n) + 1

n+1yn+1

SStot(y, n + 1) = SStot(y, n) + (yn+1 − ȳ(n))(yn+1 − ȳ(n + 1))
SSres(y, f, n + 1) = SSres(y, f, n) + (yn+1 − fn+1)2

R2(y, f, n + 1) = 1 − SSres(y,f,n+1)
SStot(y,n+1)

We require a minimum length λ > 1 for atomic shape matches5. We define
the auxiliary method outΔ as follows:

outΔ(S) = {δ | ∃ δ = (q, σx, γ, q′) ∈ Δ for some q ∈ S}

The method policy scheduler searches for non-overlapping SE matches in w from
time 0, using method expression match. The call of expression match at time t
returns another time t′. If t′ > t, the segment [t, t′] successfully matches the
expression. The segment [t, t′] is added to the set of matches and the procedure
expression match is invoked again at time t′ + 1. If t′ ≤ t, it means that the
expression could not be matched from time t. The procedure expression match is
invoked again at time t + 1.

The shape matching procedure expression match (see Algorithm 1) attempts
in a recursive fashion to reach a final location from a set of locations S and time
index t. The procedure returns another time index t′, where t′ ≥ t if a final
location can be reached in t′ − t steps from a location in S, or t′ = −∞ (the
initial value of t′, see line 1) otherwise. If one of the locations is a final location,
we have that t′ = t (lines 2). If none of the locations in S is final, and we have
not yet reached the end of w (lines 3–7), the procedure does the following. For
every transition with a source location in S, labeled by σx and γ (lines 4–7),
atomic match computes the end time τ of the longest match of σx that satisfies
γ and starts at t (line 5). If there is no such match, τ equals to −∞, otherwise

5 We also assume that the SMA Â, the signal w, the noise tolerance threshold ν and
the minimum match length λ are given as global parameters to the main procedure
policy scheduler and are implicitly propagated to all the other methods.

Shape Expressions for Specifying and Extracting Signal Features 303

Algorithm 2. Atomic shape match atomic match.
Input: Transition δ = (q, σx, γ, q′), start match time index t
Output: End match time t′

1 t′ ← −∞
2 if t + λ ≤ |w| then
3 τ ← λ; w′ ← w[t,t+τ); (v, c) ← reg(w′, σx(P ′), γ)
4 while c ≤ ν do
5 t′ ← t + τ
6 if t′ < |w| then
7 τ ← τ + 1; w′ ← w′ · w(t′)
8 c ← μ(w′, σx(v(P ′)))
9 if c > ν then (v, c) ← reg(w′, σx(P ′), γ)

10 else break

11 return t′

τ ≥ t + λ6. For all the transitions that result in a match ending at time τ , we
recursively call expression match with the target location q′ and time τ as inputs,
and τ ′ as output (line 6). The procedure keeps the longest from the successful
expression matches (line 7). This effectively allows the procedure to concurrently
follow multiple paths and select the one that provides the longest match.

The atomic shape matching procedure atomic match, shown in Algorithm2,
efficiently computes the longest match of an atomic shape starting from a given
time index. It takes as inputs a transition δ = (q, σx, γ, q′) and the time index t,
and returns the end time t′ of the longest σx ν-noisy match [t, t′] that satisfies
γ. The algorithm starts by fitting the shape σx to the segment w′ = w[t,t+τ)

under the constraint γ, using the regression method reg, and thus estimating
the parameters v (lines 3). The procedure reg also returns the corresponding
μ-value c of the performed regression. If the associated μ-value c is greater than
the allowed noise tolerance ν, the procedure returns t′ = −∞, meaning that
the segment is not a good candidate for matching the shape. Otherwise, the
algorithm iteratively extends the size τ of the segment as long as the μ-value
between the extended prefix and σx(v(P ′)) instantiated with the fixed parameter
valuation v remains lower than or equal to ν (lines 4–10). We note that each
extension of the signal prefix updates μ but not the parameter valuation. There
are two possible reasons for μ becoming greater than ν: (i) either the estimated
parameter valuation v needs to be updated, or (ii) the current prefix does not
fit the shape under the constraint ν anymore with any valuation v. In the first
case, the procedure re-estimates the new parameter valuation and re-computes
μ (line 9). If the re-computed μ is smaller than or equal to ν and we didn’t reach
the end of the signal, we repeat the match extension procedure. Otherwise, we
terminate the procedure and return the time index t′ where the current match
(if any, otherwise t′ equals to −∞) ended.

6 Recall that we require atomic matches of minimum length λ.

304 D. Ničković et al.

5 Implementation and Evaluation

We implemented the Algorithm 2 into a prototype tool using the Python pro-
gramming language. We employed pattern matching of shape expressions to two
applications – detection of patterns in electro-cardiograms (ECG) and oscilla-
tory behaviors in an aircraft elevator control system. All experiments were run
on MacBook Pro with the Intel Core i7 2.6 GHz processor and 16 GB RAM.

5.1 Detection of Anomalous Patterns in ECG

In this case study, we consider ECG signals from the PhysioBank database [14],
which contains 549 records from 290 subjects (209 male and 81 female, aged from
17 to 87). Each record includes 15 simultaneously measured signals, digitized at
1,000 samples per second, with 16-bit resolution over a range of ±16.384 mV. The
diagnostic classes for the subjects participating in the recordings include cardio-
vascular diseases such as myocardial infarction, cardiomyopathy, dysrythmia and
myocardial hypertrophy.

(a) RBBB characteristics
on channels v1, v6

(b) Signal on v6 channel (c) Magnified anomalous pulse

Fig. 4. Recognizing pulses in ECG signals

Specification of an Anomalous Heart Pulse. We consider the right bundle
branch block (RBBB) heart condition, in which the right ventricle is not directly
activated by impulses traveling through the right bundle branch. Figure 4a
depicts a visual characterization of the RBBB heart condition as it can be
observed on channels v1 and v67. In this work, we concentrate on specifying
the shape of the pulse depicted in v6 using shape expressions. The specification
ϕ of the anomalous v6 pulse consists of a sequence of 7 atomic shapes:

ϕ = exp(a1, b1, c1) : b1 > 0 · exp(a2, b2, c2) : b2 < 0·
lin(a3, b3) : a3 > 0 · lin(a4, b4) : a4 < 0 · lin(a5, b5) : a5 > 0·
exp(a6, b6, c6) : b6 > 0 · exp(a7, b7, c7) : b7 < 0

Evaluation. We evaluated our SE matching procedure with respect to the
recordings of a 70 year old patient that suffers from RBBB condition. The v6
7 The figure is under copyright by A. Rad.

Shape Expressions for Specifying and Extracting Signal Features 305

Table 1. Experimental results

channel recording of the patient, shown in Fig. 4b, has 10,000 samples. In this
experiment, we use CoD as our noise metric8. With noise threshold ν = 0.02,
we were able to identify all the segments that match ϕ in 28.98 s. The matches
are depicted as colored vertical bands in Fig. 4b. Figure 4c zooms in on a single
match and shows the ideal shape that was inferred to match the pattern.

We now experimentally study how sensitive is the quality of the procedure
outcome with respect to the noise threshold and the constraints on the param-
eters, and how well the procedure scales with the size of the input.

Sensitivity to the Noise Threshold and the Constraints on the Parameters.
Domain knowledge in a particular application field can be used to derive more
precise specifications. In the case of anomalous v6 pulses for patients with RBBB
condition, such knowledge can be for instance used to refine its specification ϕ
by further constraining the slope a3 to be greater than 0.5, resulting in spec-
ification ϕ′. We demonstrate the impact of the noise threshold to the quality
of pattern matching in the cases of under-specified (ϕ) and over-specified (ϕ′)
shape expressions. Table 1a shows the results of the experiments, where column
|H| denotes the number of segments matched by the inspection of the signal by a
human with domain knowledge and columns |Mν(ϕ)| and |Mν(ϕ′)| denotes the
number of the segments matching the expressions ϕ and ϕ′ by our procedure,
respectively.

We first observe that domain knowledge improves the quality of both the
specification the robustness of the monitor. Second, our approach can result in
missing patterns or detecting false patterns. This result is expected – very low ν
enables to only match shapes that are very close to the ideal one, while very high
ν results in matching shapes that are far away from the specification. Hence, our
procedure may require tuning parameters.

Scalability. We now evaluate the scalability of our procedure with respect to the
size of the signal, taking into account the computation time and the memory
requirements. Table 1b summarizes the results. The computation time in this

8 We recall that ν = 0 denotes zero noise tolerance and ν = 1 allows arbitrary level of
noise.

306 D. Ničković et al.

experiment exhibits an almost linear behavior, while the memory consumption
appears to grow in a sub-linear fashion with respect to the size of the input.

5.2 Detection of Ringing in an Aircraft Elevator Control System

In many electronics applications, step response is used to study how the system
responds to sudden changes in inputs. Ringing is an oscillation in the output
signal, which is encountered in response to a step in input. It is considered to be
an undesirable behavior, which nevertheless cannot be fully avoided. It is hence
important to investigate properties of the oscillations (amplitude, frequency, etc.)
to determine the quality of the output response.

We use SEs to detect and study ringing behavior in an aircraft elevator
control system [13]. It is a Simulink model of a redundant actuator control
system with one elevator on the left and one on the right side. In essence, the
pilot gives a command with the intended position of the aircraft, which must be
followed by the left and right elevators. When the pilot gives a step command,
this results in the ringing response by the control system, as shown in Fig. 5(a).

Specification of a Ringing Behavior. We are interested in detecting both the
rising and falling edge and the subsequent ringing behavior. We chose to specify
such behavior as a line, followed by a sinc wave (sinc(a, b, c, d, t) = a+b sin(ct+d)

ct+d).

ϕ = linx(a1, b1) : a1 > 0.5 · sincx(a2, b2, c2, d2).

(a) Step response of the system. (b) Segments matching ringing pat-
terns.

Fig. 5. Aircraft elevator control system step response

Table 2. Parameters inferred from seg-
ments matching ϕ.

Amp a1 b1 a2 b2 c2 d2

1 1.36 −8.98 −0.40 3.03 −2.05 17.73

2 2.83 −18.55 −1.51 2.83 −3.31 25.80

3 4.75 −30.75 −2.78 −8.76 −5.21 13.09

Inferring Parameters of Ringing
Patterns. Figure 5(b) shows the seg-
ments in the output response of the air-
craft elevator control system that match
the ringing pattern. We stimulate the sys-
tem with input steps of different ampli-
tudes and show how this change in inputs

Shape Expressions for Specifying and Extracting Signal Features 307

affects the step response and the resulting ringing oscillations. For each response
signal, we report the inferred parameters in Table 2. We can observe that the
rising edge of the step response becomes steeper with input steps of higher
amplitude. We can also see that both the amplitude and the frequency of the
sinc monotonically decrease with the input amplitude.

6 Conclusion

In this paper, we proposed shape expressions as a language for specification of
rich and complex temporal patterns. We studied essential properties of shape
expressions and developed an efficient heuristic pattern matching procedure for
this specification language. We believe that this work explores the expressiveness
boundaries of declarative specification languages.

We will pursue this work in several directions. We will apply our technique
to examples from more application domains. We will study more sophisticated
matching methods that will minimize the need of tuning parameter constraints.
We will compare more closely our approach to the work on classical regular
expression matching on one hand, and purely machine learning feature extraction
methods on the other hand. We will finally investigate the application of shape
expressions in testing CPS with the particular focus on generating test cases
from such a specification language.

Acknowledgments. This research was supported in part by the Austrian Science
Fund (FWF) under grants 27 S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein
Award), and by the Productive 4.0 project (ECSEL 737459).

References

1. IEEE standard on pulse Measurement and analysis by objective techniques. IEEE
Std. 181–1977 (1977)

2. Abbas, H., Rodionova, A., Bartocci, E., Smolka, S.A., Grosu, R.: Quantitative
regular expressions for arrhythmia detection algorithms. In: Feret, J., Koeppl, H.
(eds.) CMSB 2017. LNCS, vol. 10545, pp. 23–39. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-67471-1 2

3. Alur, R., Fisman, D., Raghothaman, M.: Regular programming for quantitative
properties of data streams. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp.
15–40. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-1 2

4. Alur, R., Mamouras, K., Stanford, C.: Modular quantitative monitoring. In: Pro-
ceedings of the ACM on Programming Languages, vol. 3(POPL), p. 50 (2019)

5. André, É., Hasuo, I., Masaki, W.: Offline timed pattern matching under uncer-
tainty. In: 23rd International Conference on Engineering of Complex Computer
Systems, ICECCS 2018, Melbourne, Australia, 12–14 December 2018, pp. 10–20
(2018)

6. Asarin, E., Caspi, P., Maler, O.: A Kleene theorem for timed automata. In: Logic
in Computer Science (LICS), pp. 160–171 (1997)

7. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206
(2002)

https://doi.org/10.1007/978-3-319-67471-1_2
https://doi.org/10.1007/978-3-319-67471-1_2
https://doi.org/10.1007/978-3-662-49498-1_2

308 D. Ničković et al.

8. Bakhirkin, A., Ferrère, T., Maler, O., Ulus, D.: On the quantitative semantics of
regular expressions over real-valued signals. In: Abate, A., Geeraerts, G. (eds.)
FORMATS 2017. LNCS, vol. 10419, pp. 189–206. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-65765-3 11

9. Bakhirkin, A., Ferrère, T., Nickovic, D., Maler, O., Asarin, E.: Online timed pattern
matching using automata. In: Jansen, D.N., Prabhakar, P. (eds.) FORMATS 2018.
LNCS, vol. 11022, pp. 215–232. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-00151-3 13

10. D’Angelo, B., et al.: LOLA: runtime monitoring of synchronous systems. In:
12th International Symposium on Temporal Representation and Reasoning (TIME
2005), 23–25 June 2005, Burlington, Vermont, USA, pp. 166–174 (2005)

11. Faymonville, P., Finkbeiner, B., Schirmer, S., Torfah, H.: A stream-based speci-
fication language for network monitoring. In: Falcone, Y., Sánchez, C. (eds.) RV
2016. LNCS, vol. 10012, pp. 152–168. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46982-9 10

12. Geurts, P.: Pattern extraction for time series classification. In: De Raedt, L., Siebes,
A. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 115–127. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44794-6 10

13. Ghidella, J., Mosterman, P.: Requirements-based testing in aircraft control design.
In: AIAA Modeling and Simulation Technologies Conference and Exhibit, p. 5886
(2005)

14. Goldberger, A.L., et al.: Physiobank, physiotoolkit, and physionet: components
of a new research resource for complex physiologic signals. Circulation 101(23),
e215–e220 (2000)

15. Gorostiaga, F., Sánchez, C.: Striver: stream runtime verification for real-time event-
streams. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 282–
298. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 16

16. Hallé, S., Khoury, R.: Event stream processing with beepbeep 3. In: RV-CuBES
2017. An International Workshop on Competitions, Usability, Benchmarks, Eval-
uation, and Standardisation for Runtime Verification Tools, 15 September 2017,
Seattle, WA, USA, pp. 81–88 (2017)

17. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Schramm, A.: TeSSLa: runtime
verification of non-synchronized real-time streams. In: Proceedings of the 33rd
Annual ACM Symposium on Applied Computing, SAC 2018, Pau, France, 09–13
April 2018, pp. 1925–1933 (2018)

18. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

19. Mamouras, K., Raghothaman, M., Alur, R., Ives, Z.G., Khanna, S.: StreamQRE:
modular specification and efficient evaluation of quantitative queries over streaming
data. In: ACM SIGPLAN Notices, vol. 52, pp. 693–708. ACM (2017)

20. Olszewski, R.T.: Generalized feature extraction for structural pattern recognition
in time-series data. Technical report, Carnegie-Mellon Univ. School of Computer
Science (2001)

21. Rakthanmanon, T., et al.: Searching and mining trillions of time series subse-
quences under dynamic time warping. In: Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 262–270.
ACM (2012)

https://doi.org/10.1007/978-3-319-65765-3_11
https://doi.org/10.1007/978-3-319-65765-3_11
https://doi.org/10.1007/978-3-030-00151-3_13
https://doi.org/10.1007/978-3-030-00151-3_13
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/3-540-44794-6_10
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12

Shape Expressions for Specifying and Extracting Signal Features 309

22. Ulus, D.: Montre: a tool for monitoring timed regular expressions. In: Majumdar,
R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 329–335. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63387-9 16

23. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Timed pattern matching. In: Legay,
A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 222–236. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10512-3 16

24. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Online timed pattern matching using
derivatives. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp.
736–751. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-
9 47

25. Waga, M., Hasuo, I.: Moore-machine filtering for timed and untimed pattern
matching. IEEE Trans. CAD Integr. Circ. Syst. 37(11), 2649–2660 (2018)

26. Waga, M., Hasuo, I., Suenaga, K.: Efficient online timed pattern matching by
automata-based skipping. In: Abate, A., Geeraerts, G. (eds.) FORMATS 2017.
LNCS, vol. 10419, pp. 224–243. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-65765-3 13

27. Waga, M., Hasuo, I., Suenaga, K.: MONAA: a tool for timed pattern matching
with automata-based acceleration. In: 3rd Workshop on Monitoring and Testing
of Cyber-Physical Systems, MT@CPSWeek 2018, Porto, Portugal, 10 April, pp.
14–15 (2018)

28. Wenig, F., Klanatsky, P., Heschl, C., Mateis, C., Dejan, N.: Exponential pattern
recognition for deriving air change rates from CO2 data. In: 26th IEEE Interna-
tional Symposium on Industrial Electronics, ISIE 2017, Edinburgh, United King-
dom, 19–21 June 2017, pp. 1507–1512 (2017)

29. Ye, L., Keogh, E.J.: Time series shapelets: a new primitive for data mining. In:
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Paris, France, 28 June–1 July 2009, pp. 947–956 (2009)

https://doi.org/10.1007/978-3-319-63387-9_16
https://doi.org/10.1007/978-3-319-10512-3_16
https://doi.org/10.1007/978-3-662-49674-9_47
https://doi.org/10.1007/978-3-662-49674-9_47
https://doi.org/10.1007/978-3-319-65765-3_13
https://doi.org/10.1007/978-3-319-65765-3_13

A Formally Verified Monitor for Metric
First-Order Temporal Logic

Joshua Schneider(B), David Basin, Srd̄an Krstić(B), and Dmitriy Traytel(B)

Institute of Information Security, Department of Computer Science, ETH Zürich, Zurich,
Switzerland

{joshua.schneider,srdan.krstic,traytel}@inf.ethz.ch

Abstract. Runtime verification tools must correctly establish a specification’s
validity or detect violations. This task is difficult, especially when the specifi-
cation is given in an expressive declarative language that demands a non-trivial
monitoring algorithm. We use a proof assistant to not only solve this task, but also
to gain confidence in our solution. We formally verify the correctness of a monitor
for metric first-order temporal logic specifications using the Isabelle/HOL proof
assistant. From our formalization, we extract an executable algorithm with cor-
rectness guarantees and use differential testing to find discrepancies in the outputs
of two unverified monitors for first-order specification languages.

Keywords: First-order monitoring · Temporal logic · Proof assistant

1 Introduction

Runtime verification (RV) tools are used today in safety, mission, and security-critical
applications, where mistakes are too costly to be tolerated. These tools rely on complex
monitoring algorithms for expressive specification languages. The correctness of these
algorithms and their implementations is important and rarely obvious.

The RV community has considered different ways of improving monitors’ trustwor-
thiness by model checking monitoring algorithms [15,21,22] and using proof assistants
to formally verify monitor instances for fixed specifications [6,30] or entire monitors
for linear temporal logic (LTL) on finite words [24] and differential dynamic logic
(dL) [7,18]. We add to these lines of work and use the Isabelle/HOL proof assistant
(Sect. 2) to develop and prove correct a monitor that supports a large fragment of metric
first-order temporal logic with past and future operators (MFOTL) (Sect. 3).

Basin et al. [2] describe an efficient monitoring algorithm for MFOTL, which is
implemented in the state-of-the-art monitoring tool MonPoly [3]. Our implementation
deviates from the algorithm’s informal description [2] in several fine points, in par-
ticular regarding the concrete representation of the monitor’s state. Our formally veri-
fied algorithm closely follows MonPoly’s implementation, while incorporating several
simplifications regarding the evaluation order of subformulas and using simpler, less
optimized data structures.

Like MonPoly, we consider a fragment of MFOTL that is monitorable using finite
relations, which we represent as tables (Sect. 4). (Another version of MonPoly also
supports full MFOTL using automata to represent regular relations, but is orders of
magnitude less efficient.) Our monitoring algorithm processes a parametric event stream
c© Springer Nature Switzerland AG 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 310–328, 2019.
https://doi.org/10.1007/978-3-030-32079-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_18&domain=pdf
https://doi.org/10.1007/978-3-030-32079-9_18

A Formally Verified Monitor for Metric First-Order Temporal Logic 311

online, incrementally updates its state, and outputs verdicts specifying for every position
in the event stream whether a violation has occurred and which parameters caused it
(Sect. 5). We have proved the algorithm correct by establishing a complex invariant on
its state and verifying that the outputted violations faithfully reflect MFOTL’s semantics
(Sect. 6).

Using Isabelle’s code generator [9], we extract an executable OCaml implementa-
tion from our formalization. The resulting certified algorithm is integrated intoMonPoly
by replacing its core algorithm, while reusing its (unverified) formula and log parsers.
The certified algorithm is slower than MonPoly’s original algorithm. Yet it is efficient
enough to process roughly 4 000 events per second on a formula with non-trivial past
and future operators, whereas the original algorithm can process 23 000 events per sec-
ond.

To demonstrate the verified monitor’s usefulness, we perform a case study in differ-
ential testing: We compare our algorithm’s output to MonPoly’s on randomly generated
inputs (Sect. 7). We also compare with DejaVu [11–13], a monitor for past-only first-
order temporal logic. We find some discrepancies in the outputs of both tools, exhibiting
corner cases where the unverified tools deviate from MFOTL’s standard semantics.

In summary, we contribute a highly trustworthy monitor implementation by veri-
fying its correctness in Isabelle/HOL. The monitor features an expressive parametric
specification language with past and future metric temporal operators. Our case study
confirms the usefulness of having a trusted testing oracle. We describe the formalized
algorithm using concrete Isabelle syntax, demonstrating that programming in Isabelle is
not different from programming in any other functional programming language. More-
over, the described algorithm can be seen as a more faithful and precise description of
the MFOTL monitor than the original paper by Basin et al. [2]. With only 3 000 lines of
Isabelle definitions and proofs, the verification effort was modest. The formalization is
publicly available [29].

Related Work. Monitoring parametric traces and first-order specifications is bread-and-
butter business in runtime verification [2,3,10–13,23,25,26]. We refer to Havelund et
al. [14] for a recent overview. Here, we discuss verification efforts targeting monitors.

Pike et al. [15,21,22] use SMT-based model-checking to increase the trustworthi-
ness of monitors within the Copilot framework. Blech et al. [6] extract executable mon-
itors for regular expressions from a formalization in the Coq proof assistant. However,
the monitors must be proved correct manually for every property because their con-
struction is not verified. Völlinger [30] develops a framework for certifying the output
of distributed algorithms in Coq. The certification procedures that are part of this frame-
work can be seen as concrete monitors for specific properties. Their correctness, too,
must be proved manually for every distributed algorithm considered. Rizaldi et al. [24]
verify a dynamic programming monitor for LTL on finite traces in Isabelle/HOL as part
of their work on monitoring traffic rules. The finite trace semantics significantly simpli-
fies their algorithm. ModelPlex is a framework for synthesizing correct-by-construction
monitors for cyber-physical systems [18]. Bohrer et al. [7] further extend this work to an
entire verified pipeline that culminates in the usage of a verified compiler. Both works
use differential dynamic logic, which targets cyber-physical systems, but cannot easily
express metric temporal properties.

312 J. Schneider et al.

More distantly related verification efforts in proof assistants include regular expres-
sion matchers [1,20], a model checker for LTL [8], a library of timed automata [31]
including a model checker [32], and relational database management systems [4,5,16].

In a separate line of work [27], we have extended our formalization with a frame-
work for adaptive parallel monitoring. There parallel instances of the verified monitor
must exchange parts of their states. Having the formalization of the monitor in the first
place was crucial to gain trust in the correctness of this nontrivial extension.

2 Isabelle/HOL

Proof assistants are tools that mechanically check human-written proofs. They provide
the highest level of trustworthiness by being built around a small, well-understood infer-
ence kernel. All proofs must pass through the kernel, which rules out invalid arguments.

Isabelle/HOL [19] is a proof assistant based on classical higher-order logic (HOL)
with Hilbert choice, the axiom of infinity, and rank-1 polymorphism. HOL’s syntax
resembles that of functional programming languages, but with quantifiers. Isabelle fea-
tures a code generator [9], which exports executable specifications to Haskell, OCaml,
and Scala.

HOL’s basic types include type variables 'a, 'b, . . . , Booleans bool, natural num-
bers nat, sets 'aset, pairs 'a× 'b, and functions 'a ⇒ 'b. Functions are usually curried,
and ⇒ is right-associative. Type constructors such as 'aset are written postfix, e.g.,
nat set denotes the type of sets of natural numbers. The command type_synonym t = u
introduces an abbreviation t for an existing type u. The command typedef t = S
defines a genuinely new type from a nonempty set S over an existing type. Recur-
sive datatypes are defined by the datatype command, similar to Haskell’s data. For
example, datatype 'alist = [] | Cons 'a('alist) defines finite lists. The Cons constructor
is usually written infix as #.

Terms are built from variables x,y, . . . , constants, function applications f x, and
abstractions λx.z. Function application is left-associative. We use additional notation,
e.g., conditionals if b then z1 else z2, case distinctions for datatypes case d of x#xs ⇒
z | . . . , and infix operators. The expression z :: t denotes that the term z has type t. The
command definition c :: t where c = z defines a new constant c from the term z :: t,
which may not contain c. Recursive functions are defined by pattern-matching using
fun. For example,

fun map :: ('a ⇒ 'b) ⇒ 'a list ⇒ 'b list where
map f [] = [] | map f (x#xs) = f x#map f xs

defines the standard list map function. Inductive predicates can be introduced differ-
ently:

inductive list_all2 :: ('a ⇒ 'b ⇒ bool) ⇒ 'a list ⇒ 'b list ⇒ bool where
list_all2 P [] [] | P x y∧ list_all2 P xs ys −→ list_all2 P (x#xs) (y#ys)

The inductive command defines list_all2 as the least (inductive) predicate closed under
the two given rules (implications). In other words, list_all2 P xs ys is true iff the lists xs
and ys have the same lengths, and their elements satisfy the binary predicate P pairwise.

A Formally Verified Monitor for Metric First-Order Temporal Logic 313

Fig. 1. Syntax and semantics of MFOTL

We use many constructs from Isabelle’s library: e.g., projections fst and snd on
pairs and the minimum operator min. The type enat extends nat with infinity ∞. The set
{x. P x} contains all x satisfying P. Other set operations are A×B (Cartesian product),
A− B (set difference),

⋃
x ∈ A.F x (indexed union, i.e., {y. ∃x ∈ A. y ∈ F x}), Inf A

(infimum), and f ‘A (image of A under f , i.e.,
⋃
x ∈ A.{ f x}). The sets {a ..< b} and

{a <.. b} contain all natural numbers n with a ≤ n < b and a < n ≤ b, respectively.
The list [a ..< b] contains all of {a ..< b} in ascending order. The datatype 'aoption
has two constructors ⊥ and 〈x :: 'a〉. The term map_option f maps ⊥ to ⊥ and 〈x〉 to
〈 f x〉. Options can be converted to sets via �⊥� = {} and �〈x〉� = {x}. The function
these :: 'aoptionset ⇒ 'aset maps A to

⋃
x ∈ A.�x�. The term foldr f xs z combines

the elements of the list xs with the binary function f , using z as the initial value, e.g.,
foldr (−) [1,2] 3= 1− (2−3). The set of all elements in the list xs is set xs, the length
of xs is length xs, the i-th element of xs is xs!i (zero-based, requires i < length xs),
and list concatenation is xs@ys. Strings string are character lists. Streams 'astream are
infinite sequences of values of type 'a.

3 Metric First-Order Temporal Logic

We interpret MFOTL over infinite streams of time-stamped events. Figure 1 shows
the types of event streams and formulas along with the relation sat defining the
semantics. Events consist of a name and a list of parameters from some domain
(name× domain list). The name and domain types are arbitrary; we choose strings
for convenience. We group concurrent events into databases (db). Time-stamps are
discrete and modeled as natural numbers (ts). An event stream (trace) is an infinite
stream of time-stamped databases. We write Γσ i for the i-th database in event stream
σ and τσ i for the corresponding time-stamp, where i is a zero-based index. The pred-
icate wf_trace in trace’s definition ensures that the time-stamp sequence is monotonic
(∀i. τ σ i ≤ τ σ (i+ 1)) and unbounded (∀t. ∃i. t < τ σ i). A (stream) prefix π is a

314 J. Schneider et al.

finite list of time-stamped databases. It satisfies wf_prefix iff the prefix π has mono-
tonic time-stamps. We write prefix_of π σ if the event stream σ extends the prefix π,
i.e., the sequence of σ’s first length π elements equals π.

The datatypes for terms (trm) and formulas (frm) are mostly standard. We use
De Bruijn indices to represent free and bound variables, e.g., ∃y. A(x,y) is encoded
as Exists (Pred A [V 1,V 0]). In examples, we will show both the standard notation
and the concrete encoding. The term fvϕ denotes the set of ϕ’s free variables. The
degree nfv ϕ is the least number n such that for than any x ∈ fvϕ we have x < n. The
predicate is_Const tests whether its argument is C d for some d. The type I mod-
els nonempty intervals over the natural numbers. The term interval a b represents the
interval from a to b (both inclusive), and point c = interval c c. We write left I and
right I for the endpoints of I : I, and n ∈I I for the membership of n in I. We use
abbreviations for some derived operators: And α β = Neg (Or (Neg α) (Neg β)),
AndNot α β = Neg (Or (Neg α) β), TT = Eq (C d) (C d), where d is an arbitrary
domain value, and Eventually I ψ= Until TT I ψ. We omit the operators previous and
next from our presentation. These operators are implemented in the formalization [29].

We have sat σ v i ϕ iff the formula ϕ is satisfied by the valuation v at index i, given
the event stream σ. Valuations are modeled as lists of domain values, the first element
being the assignment to the variable with index 0, the second to the variable 1, and so
forth.

4 Finite Tables

Our monitor computes and outputs all satisfying valuations of a formula at all indices.
To do so efficiently, it operates on finite sets of valuations, which can be viewed as finite
tables, and manipulates them using standard relational operations like natural join.

A way to represent finite sets of valuations for a given formula ϕ is to use sets of
n-ary tuples (i.e., lists of length n), where n is the number of free variables in ϕ. The
representation must map free variables to positions in the tuple and the natural join
operation changes the arity of tuples. We chose a slightly different representation to
simplify the implementation of union and join: Our tuples xs are lists of optional domain
values, which assign values only to those variables i whose corresponding entries xs!i
are not ⊥. This allows us to use tuples of a fixed length n, regardless of the formula’s
free variables, while ensuring that for any subformula all its free variables given by a
set V are assigned, as specified by the well-formedness predicate wf_tuple (Fig. 2). We
use the statement wf_tuplen(fvϕ)v with nfvϕ ≤ n to express that v is a well-formed
tuple for ϕ. We obtain the corresponding valuation v = mapthev, where the function
themaps 〈x〉 to x and ⊥ to some unspecified domain element. The actual value assigned
to ⊥ is irrelevant for the valuation’s satisfaction since it is only assigned to variables
that are not free in ϕ.

A well-formed table A, writtenwf_table n V Q A, is a set of well-formed tuples. The
parameter Q is a predicate on tuples that further restricts our attention to those tuples
satisfying Q. Typically, Q will be instantiated by sat expressing that a table A consists
of precisely the well-formed tuples that satisfy a given formula ϕ on stream σ at index i,
i.e., wf_tablen(fvϕ)(λv.satσv iϕ)A, where nfvϕ ≤ n. The abbreviation tablenV A =
wf_tablenV (λv.v ∈ A)A expresses that A only contains well-formed tuples.

A Formally Verified Monitor for Metric First-Order Temporal Logic 315

Fig. 2. Finite tables

Using this representation, the union of tables A and B both satisfying tablenV is
just the set union A∪B, satisfying tablenV (A∪B). The natural join operation is more
involved. We first show how to join two individual tuples. We define this function join1
recursively (Fig. 2) assuming that the two input tuples have the same length (but not
necessarily the same variables being set to ⊥). The function join1 returns an optional
tuple, where ⊥ indicates either that the inputs do not have the same length (last equa-
tion) or that they are not joinable, i.e., have conflicting assigned domain values (the else
branch in the if-expression). The key property of join1 is its correspondence to logical
conjunction:

wf_tuple n V v∧wf_tuple n W w −→
join1 (v,w) = 〈z〉 ←→ (wf_tuple n (V ∪W) z∧ v= z ↓ V ∧w= z ↓ W),

where v ↓ V maps all domain elements assigned to variables outside of the set V to ⊥;
formally, v ↓ V = map(λi. if i ∈ V thenv!ielse⊥) [0 ..< lengthv].

The function join (Fig. 2) lifts join1 to tables, where the Boolean p indicates whether
a join (p = True) or an anti-join (p = False) is computed. Naturally, join’s key prop-
erty is similar to join1’s, but now expressed on tables. For the anti-join, the negated
part’s variables (W) must be contained in those of the non-negated part (V) to ensure
finiteness.

table n V A∧ table n W B∧ (¬p −→ W ⊆ V) −→
z ∈ join p A B ←→ (wf_tuple n (V ∪W) z∧ z ↓ V ∈ A∧ (p ←→ z ↓ W ∈ B))

Above, join computes A×B before applying join1. We prove and use for code gener-
ation the more space-efficient definition joinTrueAB=

⋃
v∈ A.

⋃
w∈ B.�join1(v,w)�.

5 Monitor

A monitor takes an MFOTL formula ϕ and an event stream σ as inputs. It computes
satisfactions: pairs (i,v) of indices i and valuations v that satisfy the formula, i.e.,

316 J. Schneider et al.

Fig. 3. The monitor’s state and its high-level interface

sat σ v i ϕ. One is often interested in finding the violations of a formula ϕ, which
are the pairs (i,v) such that ¬sat σ v i ϕ. Violations can be obtained by monitoring the
negated formula.

A monitor cannot directly process an infinite event stream. Instead, in the offline
setting, the monitor computes satisfactions for a single stream prefix. In the online set-
ting, the monitor processes an unbounded stream incrementally and produces interme-
diate outputs. Our monitor always receives a whole time-stamped database at once,
since MFOTL formulas cannot distinguish the order and arrival time of events within a
database.

Figure 3 shows our monitor’s state type (mstate) and its online and offline interface.
The online interface is a transition system given by two functions: init, which computes
the initial state, and step, which updates the state with a new input (a time-stamped
database) and outputs satisfactions. The offline interface is the function monitor ϕ π=
steps π (init ϕ), where steps iterates step on a prefix and collects all satisfactions in a
set.

Example 1. Consider the formula A(x) −→ ♦[1,2](∃y.B(x,y)), i.e., all A events must be
followed by a matching B event after one or two time units. To obtain violations, we
monitor the negation A(x)∧¬♦[1,2](∃y.B(x,y)), which we encode as

ϕex = AndNot (Pred A [V 0])
(
Eventually (interval 1 2) (Exists (Pred B [V 1,V 0]))

)
.

Given the prefix πex =
[
({(A, [d]),(A, [e])},1),({(B, [d,f])},2),({(B, [e,f])},5)], which

consists of three databases with indices 0, 1, 2 and time-stamps 1, 2, and 5, with four
events in total, there is one satisfaction: monitor ϕex πex = {(0, [〈e〉])}. The satisfaction
originates from the event (A, [e]), which is part of the database with index 0 in πex. The
satisfaction’s valuation is [〈e〉] because the parameter of (A, [e]) is bound to ϕex’s first
(and only) free variable. The satisfaction is output after processing the third database:

step ({(A, [d]),(A, [e])},1) (init ϕex) = ({}, s1)
step ({(B, [d,f])},2) s1 = ({}, s2)
step ({(B, [e,f])},5) s2 = ({(0, [〈e〉])}, s3),

where s1, s2, and s3 are the monitor’s states after processing each input.

A Formally Verified Monitor for Metric First-Order Temporal Logic 317

Fig. 4.Monitorable formulas (f ?Neg ϕ abbreviates case ϕ of Neg ϕ′ ⇒ f ϕ′ | _ ⇒ False)

Overview of the Algorithm. We require satisfactions to be output in the order they occur.
Namely, (i1,v1) cannot be output after (i2,v2) if i1 < i2. Therefore, the monitor’s state
is characterized by its progress, which we represent by a stream index i. The progress
is the smallest index for which new satisfactions cannot be computed without receiving
more databases. It is initially zero and always at most the number of databases received.
It is generally not possible to compute all satisfactions for an index j after processing
the j-th input when monitoring a formula with future operators. For example, if the j-th
input contains the event (A, [d]), we do not know whether (j, [〈d〉]) satisfies ϕex from
Example 1 until we either observe a matching B event or a time-stamp that is at least
three units ahead.

For every input database, step advances i by recursively evaluating the monitored
formula. The evaluation of a subformula ψ at index i yields a table containing all val-
uations v with sat σ v i ψ. For any binary operator in the formula, it may be possible
to evaluate its subformulas up to different indices, e.g., if one subformula contains a
future operator and the other does not. Our monitor evaluates subformulas as far as
possible. Therefore, every subformula ψ has its own progress iψ describing how far it
has been evaluated. (We omit the subscript when it is clear from the context.) Since
several indices might be resolved at once by a new input, the evaluation result is a list
xs :: table list. Its elements correspond to indices [i ..< i+ length xs] according to their
position in the list.

Recall that tables are finite sets. Evaluation of a subformula must therefore not result
in infinitely many satisfying valuations. This is not guaranteed for all MFOTL formulas.
For example, the formula ¬A(x) (i.e., Neg (Pred A [V 0])) has infinitely many satisfy-
ing valuations at each index, regardless of the event stream. We, therefore, adopt the
restriction to a syntactic fragment of MFOTL that is used in the table-based variant of
MonPoly [2]. A formula is monitorable if and only if its satisfies the recursive predicate
mf (Fig. 4). Note that the negation of ϕ must be monitorable if we search for violations
of ϕ, which is generally different from the monitorability of ϕ itself. Basin et al. [2]
describe a heuristic that attempts to rewrite formulas into equivalent, monitorable ones.

An equality Eq t1 t2 is only monitorable if at least one of the terms is a constant
(otherwise, an infinite number of valuations satisfy x= x, i.e., Eq (V 0) (V 0)). In gen-
eral, monitorable formulas may contain negations only in specific places. The pattern
Neg (Or (Neg α) (Neg β)) corresponds to a conjunction And α β, which is always

318 J. Schneider et al.

Fig. 5. Initialization and step functions of the monitor

monitorable if α and β are monitorable. For AndNot α β, we additionally require that
all variables free in β are free in α. This rules out formulas like A(x)∧ ¬B(y) (i.e.,
AndNot (Pred A [V 0]) (Pred B [V 1])), which has infinitely many satisfactions if the
stream contains at least one A event. The subformulas α and β of Or α β must have
exactly the same free variables for similar reasons. The temporal operators Since and
Until allow a negated left subformula α = Neg α′ even if α itself is not monitorable.
However, there is always a restriction on the free variables. For example, Since α I β is
already satisfied at index i if β is satisfied at i. Any free variable in α that is not free in
β could thus be assigned any value, and the resulting table would be infinite. Moreover,
the future reach of Until α I β must be bounded to ensure that the monitor can make
progress.

The monitor’s state MState n i s consists of the formula’s degree n= nfv ϕ (to avoid
recomputation), the progress i, and a formula state s. The formula state datatype state
(Fig. 3) extends the abstract syntax tree of formulas with the state that is associated with
the formula’s operators. It restricts the syntax to a superset of the monitorable formulas,
such that the evaluation can be implemented directly as a recursive function on state.

The monitor’s entry points are defined in Fig. 5. The function init uses
init0 to convert the formula recursively into a formula state. We omit init0’s
definition, which follows mf’s definition. Some of state’s constructors carry
a Boolean flag p that indicates whether one of the subformulas is posi-
tive (p = True) or negated (p = False). In those cases where a negated
subformula is not monitorable, we remove the negation before the recursive con-
version and set p to False. For example, α∧ ¬β (i.e., AndNot α β) is converted to
AndS (init0 n α) False (init0 n β) ([], []). All lists in the state are initially empty.

The step function step is a wrapper for eval that evaluates a formula state given the
formula’s degree and the new time-stamp and database. It returns a list of tables for
all indices that could be evaluated, and the updated state. We cover all cases of eval’s
definition in the following subsections. The standard function enumerate i xs maps the
elements V of xs to pairs (k,V), where the numbers k increase sequentially starting at i.

Atomic Formulas. The constructor EqS of state represents constant tables correspond-
ing to (monitorable) equalities. The associated state is always the same table, which is
returned upon evaluation. For a predicate’s state PredS e trms, we first select all events
in the database db with the name e. The auxiliary function match, defined in Fig. 6, is
applied to each selected event. This function attempts to compute the unique valuation
for the variables in trms that makes the terms match the event’s parameters. It returns

A Formally Verified Monitor for Metric First-Order Temporal Logic 319

Fig. 6. The match function

Fig. 7. Buffer operations

〈 f 〉 if such a valuation f exists, and ⊥ otherwise. To simplify match’s definition, f
is encoded as a partial function nat ⇒ domainoption. We convert it into a tuple using
map f [0 ..< n].

eval n t db (EqS r) = ([r],EqS r)
| eval n t db (PredS e trms) = ([(λ f .map f [0 ..< n]) ‘ these

(match trms ‘ (
⋃
(e′, x) ∈ db. if e= e′ then {x} else {}))], PredS e trms)

Non-Temporal Operators. It may be possible to evaluate the two subformulas α and β
of a binary operator up to different indices iα �= iβ. Then, the operator itself can only
be evaluated up to the minimum of iα and iβ. The remaining tables obtained from the
subformula that is further ahead must be stored until more results are available from the
other subformula. We store the tables in a buffer of type buf , which consists of one list
for each subformula. The lists act as queues: new results are appended, and whenever
both lists are nonempty, the subformula can be evaluated by removing pairs of tables
from the front. The function buf_add xs′ ys′ b (Fig. 7) adds the result lists xs′ and ys′
from the two subformulas to the buffer b. The function buf_take f b removes pairs of
tables from the front of the buffer and applies the operator-specific function f to them,
collecting a list of results.

For AndS and OrS, we evaluate both subformulas and obtain two result lists xs and
ys, as well as the updated subformula states s′1 and s′2. The results are added to the
buffer b. Then, buf_take combines the results that are available for both subformulas
into the results of the operator, using an (anti-)join for conjunctions and a union for
disjunctions.

| eval n t db (AndS s1 p s2 b) = (let (xs, s′1) = eval n t db s1; (ys, s′2) = eval n t db s2
(zs,b) = buf_take (join p) (buf_add xs ys b) in (zs,AndS s′1 p s′2 b)

| eval n t db (OrS s1 s2 b) = (let (xs, s′1) = eval n t db s1;(ys, s′2) = eval n t db s2;
(zs,b) = buf_take (∪) (buf_add xs ys b) in (zs,OrS s′1 s′2 b)

320 J. Schneider et al.

Fig. 8. Auxiliary operations for evaluating SinceS and UntilS

We increment the degree in the recursive computation of an existential quantifier
ExistsS to account for the variables’ De Bruijn encoding. Each computed tuple v (which
is a list) is then replaced by its tail tl v to remove the assignment to the bound variable.

| eval n t db (ExistsS s) = (let (xs, s′) = eval (n+1) t db s
in (map (λr. tl ‘ r) xs,ExistsS s′)

Since and Until. The monitoring algorithm implements Since α I β by decomposing
the interval I. Note that Since α I β is equivalent to a disjunction of Since α (point c) β,
where c ranges over I. We can additionally bound c from above by the time-stamp
τ σ (i−1), where i is the operator’s progress. This ensures that the disjunction always
consists of finitely many terms (even if right I = ∞). We store the satisfactions for
Since α (point c) β in a list in the monitor’s state, together with time-stamps τ σ (i−
1)−c. The list, called the auxiliary state, is sorted on the time-stamps c. It also contains
satisfactions for c < left I (if left I > 0) because these may move into the interval I as
time progresses.

For every new input database, the function update_since (Fig. 8) updates the list to
maintain the correspondence with Since α (point c) β. It also computes the satisfactions
by taking the union over all tables in the list that satisfy c ∈I I. The arguments of
update_since are the interval I of the Since operator, a flag p indicating whether the
left subformula is positive (not negated), the subformulas’ results r1 and r2 at index
i, the time-stamp nt = τ σ i, and the old auxiliary state aux. We assume that the left
subformula is evaluated without the negation. If the new time-stamp τ σ i differs from
the previous time-stamp τ σ (i− 1), i.e., Δ = τ σ i− τ σ (i− 1) �= 0, the tables in
the old auxiliary state now represent Since α (point (c+Δ)) β, but without taking the
satisfactions of α and β at i into account. First, update_since removes all tables for
which c+Δ exceeds the right bound of the interval. It then joins each remaining table

A Formally Verified Monitor for Metric First-Order Temporal Logic 321

with the result r1 for α, and adds the satisfactions r2 for β either to the first table (if
c+Δ= 0) or as a new list element to the list.

Decomposing a formula ψ=Until α I β into point intervals is not as useful because
there is no obvious way to compute the satisfactions of Until α (point c) β at index i+1
from those at index i, which would allow us to reuse previous computations. Another
difference to Since is that we cannot immediately output the satisfactions once we have
the subformulas’ results. A new input may still change the satisfactions for previous
indices.

Let i∗ be the minimum of iα and iβ. The auxiliary state for Until, which has type
uaux, stores for all k in {iψ ..< i∗} the time-stamp τ σ k and two tables a1 and a2, sorted
by k. The meaning of the tables depends on the flag p, which indicates whether the left
subformula α is positive. If p = True, the table a1 contains the valuations satisfying
α at all indices in {k ..< i∗}. If p = False, it contains the valuations satisfying Neg α
at some index in {k ..< i∗}. The table a2 contains the valuation satisfying β at some
index k′ in {k ..< i∗} with τ σ k′ − τ σ k ∈I I, and satisfying α for all indices in {k ..<
k′}. Note that this is not the same as the satisfactions for Until α I β at k because
the interval may be incomplete between k and i∗. The function update_until (Fig. 8)
maintains this invariant for every advance of i∗. Its arguments have the same meaning
as for update_since. However, it does not compute the results, which is instead done
by eval_until. Its argument nnt denotes the time-stamp τ σ (i∗ +1), or τ σ j if j is the
most recent input database and i∗ = j. The function retrieves those tables a2 for which
the interval is complete, i.e., nnt is more than right I units ahead of the associated time-
stamp t.

The implementation of eval for SinceS andUntilS follows the other binary operators,
but with an additional update step for the auxiliary state.

| eval n t db (SinceS p s1 I s2 b ts aux) = (let (xs, s′1) = eval n t db s1;
(ys, s′2) = eval n t db s2; ((zs,aux),b, ts) = tbuf_take (λr1 r2 t (zs,aux).

let (z,aux) = update_since I p r1 r2 t aux in (zs@[z],aux))
([],aux) (buf_add xs ys b) (ts@[t])

in (zs,SinceS p s′1 I s
′
2 b ts aux)

| eval n t db (UntilS p s1 I s2 b ts aux) = (let (xs, s′1) = eval n t db s1;
(ys, s′2) = eval n t db s2; ((zs,aux),b, ts) =

tbuf_take (update_until I p) aux (buf_add xs ys b) (ts@[t]);
(zs,aux) = eval_until I (case ts of [] ⇒ t | t′#_ ⇒ t′) aux
in (zs,UntilS p s′1 I s

′
2 b ts aux)

Here, tbuf_take (Fig. 8) is used instead of buf_take as we must consider the time-
stamps ts@[t] corresponding to the subformulas’ (future) results. Unlike buf_take, this
function does not apply f individually, but it folds all results from left to right.

6 Correctness

We define a formal invariant for the monitor’s state, which connects its structure with
MFOTL’s semantics and the stream prefix observed so far. We then prove that init estab-
lishes and that step preserves the invariant. Moreover, we show that the satisfactions
output by steps are sound and eventually complete for monitorable formulas.

322 J. Schneider et al.

Fig. 9. Progress of the monitor

Fig. 10.Main invariant predicates (excerpt)

The invariant relates the tables stored in a formula state to the semantics of the
corresponding subformulas. In Sect. 5, we introduced the notion of progress iψ, which
states how far the subformula ψ has been evaluated. The function prog in Fig. 9 defines
iψ concretely. Its arguments are the trace σ, an arbitrary MFOTL formula ψ, and the
index j of the next time-stamped database to be received by the monitor. (Initially, j is
zero, and every application of step increases it by one.) Predicates and equalities can
always be evaluated up to j. For Until α I β, we take the least index i at which we
cannot evaluate the operator yet. Recall that these are the indices for which we do not
have complete information up to and including the time τ σ i+ right I. The index k in
the definition ranges over all indices for which the time-stamp (condition k < j) and the
results from both subformulas (condition min (prog σ α j) (prog σ β j)) are available.
All other operators are only constrained by the progress of their subformula(s). We note
some basic properties of prog.

Lemma 1. (a) Monotonicity: j≤ j′ implies prog σ ϕ j≤ prog σ ϕ j′. (b) Upper bound:
prog σ ϕ j ≤ j. (c) Completeness: mf ϕ implies ∃ j. i ≤ prog σ ϕ j, for all i.

The predicate wf_mstate ϕ π mst (Fig. 10) is the invariant for a monitor state mst
after monitoring ϕ on the stream prefix π. We require that π is a well-formed prefix and
that the cached degree n agrees with the formula. All auxiliary invariants that are used
to define wf_mstate are expressed in terms of infinite streams instead of prefixes. This
includes wf_state σ j n s ϕ, which holds iff s :: state corresponds to the monitorable
formula ϕ :: frm after monitoring the first j databases of σ. Therefore, we consider all
event streams σ that extend the prefix π, i.e., prefix_of π σ.

A Formally Verified Monitor for Metric First-Order Temporal Logic 323

Fig. 11. Invariants of the state’s components

We only show the case for UntilS in wf_state here. This case states the con-
ditions under which UntilS p s1 I s2 b ts aux is a well-formed state correspond-
ing to Until α′ I β. Depending on the flag p, α′ is either a negated subformula
α′ = Neg α for some α, or its outermost operator is not a negation and α′ = α.
The invariant inherits the condition fv α ⊆ fv β from the mf predicate (Sect. 5). The
two subformula states m1 and m2 must be recursively well-formed and correspond to α
and β, respectively.

The predicate wf_buf (Fig. 11) encodes the invariant for buffers of type buf . These
store all results of the formulas α and β from index prog2 σ α β j to indices prog σ α j
and prog σ β j, respectively. The results must be tables assigning values to the free
variables of the corresponding formula. The invariant wf_ts ensures that the additional
time-stamp list ts, which is used by binary temporal operators, contains all time-stamps
from the start of the result buffer to the most recent input, which has index j.

The invariant for the auxiliary states aux of type uaux for the ψ=Until α′ I β opera-
tor is shown in Fig. 11. The elements of aux are in a one-to-one correspondence with the
indices in [iψ ..< i∗], where iψ = prog σ ψ j and i∗ = prog2 σ α′ β j= prog2 σ α β j (the
possible negation in α′ does not affect the progress). Each element for such an index k
with time-stamp t is a triple (t,r1,r2). The content of the tables r1 and r2 is described in
Sect. 5.

We state the correctness of the satisfactions output by step (and hence monitor) in
terms of a function verdicts, which characterizes the monitor’s output semantically. For
a formula ϕ and stream prefix π, it returns exactly the pairs (k,v) where the monitor has
made progress beyond k, and for which sat σ v i ϕ is true for all traces σ that extend π.

definition verdicts :: frm ⇒ (db× ts) list ⇒ (nat× tuple) set where
verdicts ϕ π= {(k,v). wf_tuple (nfv ϕ) (fv ϕ) v∧ (∀σ. prefix_of π σ−→

k < prog σ ϕ (length π)∧ sat σ v k ϕ)}
Using the completeness of prog, we show that verdicts behaves according to the infor-
mal description of a monitor, which we gave in the beginning of Sect. 5.

324 J. Schneider et al.

Lemma 2. For all monitorable formulas ϕ, verdicts ϕ is sound and eventually com-
plete, i.e., for all prefixes π extending the stream σ, indices k, and tuples v,

(a) (k,v) ∈ verdicts ϕ π−→ sat σ v k ϕ, and
(b) k < length π∧wf_tuple (nfv ϕ) (fv ϕ) v∧(∀σ′. prefix_of π σ′ −→ sat σ′ v k ϕ)−→

(∃π′. prefix_of π′ σ∧ (k,v) ∈ verdicts ϕ π′).

We can now state the main correctness result for the more general online interface
consisting of init and step. The correctness of monitor follows easily. Let last_ts π
denote the last time-stamp of π, and 0 if π is empty.

Theorem 1. (a) init establishes the invariant: mf ϕ implies wf_mstate ϕ []
(init ϕ).

(b) step preserves the invariant and its output can be described in terms of verdicts:
Let step (db, t)mst= (A,mst′). If wf_mstate ϕ πmst and last_ts π≤ t, then we have
A= verdicts ϕ (π@[(db, t)])− verdicts ϕ π and wf_mstate ϕ (π@[(db, t)]) mst′.

Corollary 1. If mf ϕ and wf_prefix π, monitor ϕ π= verdicts ϕ π.

7 Case Study in Differential Testing

To demonstrate the benefit of our verified monitor we perform differential testing [17] to
compare our monitor to two existing unverified state-of the-art monitors, MonPoly [3]
and DejaVu [13], which support first-order temporal logic specifications.

We used Isabelle/HOL’s code generator [9] to export a certified implementation of
our monitoring algorithm (called VeriMon) for the monitorable fragment of MFOTL.
The generated file consists of about 2 800 lines of OCaml code and includes code gen-
erated from an Isabelle library of red-black trees, which are used to efficiently imple-
ment sets. To be used as a standalone monitor, the verified monitor must be augmented
with a formula and log parser. We reused MonPoly’s parsing components, as they were
implemented in OCaml and extensively used and tested. About 130 lines of straightfor-
ward, unverified OCaml code integrates these unverified components with the verified
algorithm, translating between the analogous types for formulas and traces.

We focus on randomized differential testing. We generate random stream prefixes
and formulas, invoke the monitors, and validate the results using VeriMon. For this pur-
pose, we have developed a random MFOTL formula generator that takes as parameters
the formula size (in terms of number of operators) and the number of free variables
that occur in the formula, and outputs a random formula and a signature describing the
name, arity, and parameter types for each predicate used in the formula. The generator
creates a random formula of size n by randomly selecting an operator op and then recur-
sively creating its subformula of size n−1 (if op is unary) or its two subformulas of size
m and n−m− 1 (if op is binary) for some random non-negative m < n. The generator
creates predicate or equality formulas for size n = 0. Since each monitor can be tested
on the logical fragment it mutually supports with VeriMon, our formula generator only
generates monitorable MFOTL formulas for testing MonPoly and monitorable, past-
only, non-metric formulas for testing DejaVu. Monitorable formulas are generated by
sampling only the operators that correspond to the cases in the definition of the recursive

A Formally Verified Monitor for Metric First-Order Temporal Logic 325

predicate mf (Fig. 4). Whenever an operator op is sampled, free variables for its subfor-
mulas are sampled to satisfy mf’s conditions for op. DejaVu requires the generator to
sample only past temporal operators, use only interval 0 ∞ in temporal formulas, and
since it does not support free variables, all generated formulas are closed. DejaVu can
only monitor traces with databases containing a single event, which results in formulas
like P∧Q (i.e., And (Pred P []) (Pred Q [])) evaluating to false. The generator avoids
this by ensuring that binary Boolean formulas have at least one temporal subformula
referring to the past.

The generated signature file is used by a random stream prefix generator to sample
random event names defined in the file. For each event, the generator uniformly samples
its parameter values from the domain D= {0,1, . . . ,109 −1}. With a given probability
r, the last q unique values that were previously sampled are sampled again to ensure
that events have common parameter values. This makes the subsequent monitoring less
trivial.

DejaVu’s output differs from MonPoly’s and VeriMon’s. DejaVu does not output
variable valuations that violate the formula, but only the prefix indices where the for-
mula is violated. We use these indices as the basis for comparing its output with Veri-
Mon.

We ran our testing suite for formula sizes ranging from 2 to 5, having up to 6 free
variables. For each combination of these parameters, we generated 1 000 random for-
mulas and for each formula 4 random prefixes with lengths of 20, 40, 60, and 100
databases.

Our results reveal two classes of inconsistencies in MonPoly’s output and three in
DejaVu’s output. The inconsistencies in MonPoly’s output correspond to two imple-
mentation errors. The first error manifests in MonPoly’s handling of finite trace seman-
tics. Specifically, after reading the entire stream prefix MonPoly outputs an additional
violation for a non-existing index (beyond the last index present in the prefix). Mon-
Poly’s second implementation error was exhibited by its failure to correctly monitor a
formula of the form α∧ ¬(β Sα) (i.e., AndNot α (Since β (interval 0 ∞) α)) where
nfv β > 0, fv β⊂ fv α, and the order of occurrences of free variables in the two instances
of α is different. These conditions trigger a heavily optimized part of MonPoly’s code,
confirming our intuition that complex performance optimizations can lead to implemen-
tation errors.

The problems exhibited by DejaVu’s implementation are arguably less severe and
all related to monitoring formulas with equalities. The most benign issue is that for-
mulas containing only arithmetic relations (and no predicates) fail to parse. Next, we
discovered that DejaVu does not produce any violation on a prefix satisfying a propo-
sitional formula α, when monitoring a formula of the form ¬∃x.α ∧ x = 24 (i.e.,
Neg (Exists (And α (Eq (V 0) (C 24))))). DejaVu’s authors documented that the for-
mula semantics changes if a variable occurs in arithmetic relations [11, §5]. Specifically,
the variable’s quantifier becomes bounded: it quantifies only over the active domain
defined as values seen in the prefix so far. The change has an (unintuitive) effect on
the subformulas where the variable does not occur as shown in the example above.
Finally, DejaVu does not output any violation for the formula ¬∃x. x= 24∧¬P(x) (i.e.,
Neg (Exists (AndNot (Eq (V 0) (C 24))(Pred P [V 0])))) when monitored on a prefix

326 J. Schneider et al.

without the event (P, [24]). This formula’s violations coincide under both standard and
active domain quantifier semantics. However, DejaVu’s definition of the active domain
does not include the constants occurring in the formula, which causes the discrepancy.

In addition to using random formulas, we included the tool’s benchmarks in our
testing. All the experiments are available in an easy to reproduce Docker image [28].

8 Conclusion

We demonstrated an approach to increase the trustworthiness of runtime verification
by formally verifying a monitor for MFOTL in the Isabelle/HOL proof assistant. Our
formalization of the non-trivial monitoring algorithm is essentially a high-level imple-
mentation as one would write it in a functional programming language. To prove its cor-
rectness, we had to characterize the algorithm’s output, which precisely documents its
behavior. Being able to execute a verified monitor with acceptable performance enables
the systematic testing of more performant implementations. Our results from differen-
tial testing, which uncovered two genuine errors in MonPoly, show that this is benefi-
cial.

One possible use case of our verified monitor is as a referee in tool competitions,
where it can provide the ground truth. We also believe that it is a good starting point for
extensions of the monitoring algorithm, whose correctness may not be obvious, as in
our unpublished draft on adaptive monitoring [27]. Other future extensions may include
the use of more optimized and verified data structures, which would make the generated
code even more efficient. Finally, we hope that our compact formalization encourages
machine-checked proofs for other algorithms and tools.

Acknowledgment. Joshua Schneider is supported by the US Air Force grant “Monitoring at Any
Cost” (FA9550-17-1-0306). Srd̄an Krstić is supported by the Swiss National Science Founda-
tion grant “Big Data Monitoring” (167162). Martin Raszyk pointed us to DejaVu’s non-standard
semantics for formulas with equality. Anonymous reviewers gave numerous helpful suggestions
on how to improve the presentation.

References

1. Ausaf, F., Dyckhoff, R., Urban, C.: POSIX lexing with derivatives of regular expressions
(proof pearl). In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 69–86.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43144-4_5

2. Basin, D., Klaedtke, F., Müller, S., Zălinescu, E.: Monitoring metric first-order temporal
properties. J. ACM 62(2), 15:1–15:45 (2015)

3. Basin, D., Klaedtke, F., Zălinescu, E.: The MonPoly monitoring tool. In: RV-CuBES 2017.
Kalpa Publications in Computing, vol. 3, pp. 19–28. EasyChair (2017)

4. Benzaken, V., Contejean, E.: A Coq mechanised formal semantics for realistic SQL queries:
formally reconciling SQL and bag relational algebra. In: Mahboubi, A., Myreen, M.O. (eds.)
CPP 2019, pp. 249–261. ACM, New York (2019)

5. Benzaken, V., Contejean, É., Keller, C., Martins, E.: A Coq formalisation of SQL’s execu-
tion engines. In: Avigad, J., Mahboubi, A. (eds.) ITP 2018. LNCS, vol. 10895, pp. 88–107.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94821-8_6

https://doi.org/10.1007/978-3-319-43144-4_5
https://doi.org/10.1007/978-3-319-94821-8_6

A Formally Verified Monitor for Metric First-Order Temporal Logic 327

6. Blech, J.O., Falcone, Y., Becker, K.: Towards certified runtime verification. In: Aoki, T.,
Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 494–509. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-34281-3_34

7. Bohrer, B., Tan, Y.K., Mitsch, S., Myreen, M.O., Platzer, A.: VeriPhy: verified controller
executables from verified cyber-physical system models. In: Foster, J.S., Grossman, D. (eds.)
PLDI 2018, pp. 617–630. ACM, New York (2018)

8. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.: A fully veri-
fied executable LTLmodel checker. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol.
8044, pp. 463–478. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8_31

9. Haftmann, F.: Code generation from specifications in higher-order logic. Ph.D. thesis, Tech-
nical University Munich (2009)

10. Havelund, K.: Rule-based runtime verification revisited. STTT 17(2), 143–170 (2015)
11. Havelund, K., Peled, D.: Efficient runtime verification of first-order temporal properties. In:

Gallardo, M.M., Merino, P. (eds.) SPIN 2018. LNCS, vol. 10869, pp. 26–47. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94111-0_2

12. Havelund, K., Peled, D., Ulus, D.: First order temporal logic monitoring with BDDs. In:
FMCAD 2017, pp. 116–123. IEEE (2017)

13. Havelund, K., Peled, D., Ulus, D.: DejaVu: a monitoring tool for first-order temporal logic.
In: MT@CPSWeek 2018, pp. 12–13 (2018)

14. Havelund, K., Reger, G., Thoma, D., Zălinescu, E.: Monitoring events that carry data. In:
Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp.
61–102. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5_3

15. Laurent, J., Goodloe, A., Pike, L.: Assuring the guardians. In: Bartocci, E., Majumdar, R.
(eds.) RV 2015. LNCS, vol. 9333, pp. 87–101. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-23820-3_6

16. Malecha, J.G., Morrisett, G., Shinnar, A., Wisnesky, R.: Toward a verified relational database
management system. In: Hermenegildo, M.V., Palsberg, J. (eds.) POPL 2010, pp. 237–248.
ACM, New York (2010)

17. McKeeman, W.M.: Differential testing for software. Digit. Tech. J. 10(1), 100–107 (1998)
18. Mitsch, S., Platzer, A.: ModelPlex: verified runtime validation of verified cyber-physical

system models. Formal Methods Syst. Des. 49(1–2), 33–74 (2016)
19. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL - A Proof Assistant for Higher-

Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45949-9

20. Nipkow, T., Traytel, D.: Unified decision procedures for regular expression equivalence. In:
Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 450–466. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08970-6_29

21. Pike, L., Niller, S., Wegmann, N.: Runtime verification for ultra-critical systems. In: Khur-
shid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 310–324. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29860-8_23

22. Pike, L., Wegmann, N., Niller, S., Goodloe, A.: Experience report: a do-it-yourself high-
assurance compiler. In: Thiemann, P., Findler, R.B. (eds.) ICFP 2012, pp. 335–340. ACM,
New York (2012)

23. Reger, G., Rydeheard, D.: From first-order temporal logic to parametric trace slicing. In:
Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 216–232. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23820-3_14

24. Rizaldi, A., et al.: Formalising and monitoring traffic rules for autonomous vehicles in
Isabelle/HOL. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp.
50–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66845-1_4

https://doi.org/10.1007/978-3-642-34281-3_34
https://doi.org/10.1007/978-3-642-39799-8_31
https://doi.org/10.1007/978-3-642-39799-8_31
https://doi.org/10.1007/978-3-319-94111-0_2
https://doi.org/10.1007/978-3-319-75632-5_3
https://doi.org/10.1007/978-3-319-23820-3_6
https://doi.org/10.1007/978-3-319-23820-3_6
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-319-08970-6_29
https://doi.org/10.1007/978-3-642-29860-8_23
https://doi.org/10.1007/978-3-319-23820-3_14
https://doi.org/10.1007/978-3-319-66845-1_4

328 J. Schneider et al.

25. Roşu, G., Chen, F.: Semantics and algorithms for parametric monitoring. Log. Methods
Comput. Sci. 8(1:9), 1–47 (2012)

26. Sánchez, C.: Online and offline stream runtime verification of synchronous systems. In:
Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 138–163. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03769-7_9

27. Schneider, J., Basin, D., Brix, F., Krstić, S., Traytel, D.: Adaptive online first-order monitor-
ing. In: Chen, Y.F., Cheng, C.H., Esparza, J. (eds.) ATVA 2019. Springer (2019, to appear).
http://people.inf.ethz.ch/trayteld/papers/atva19-adaptive/aom.pdf

28. Schneider, J., Basin, D., Krstić, S., Traytel, D.: Case study associated with this paper (2019).
https://hub.docker.com/r/infsec/verified-monpoly-exps. Docker image (tag 1.3.0)

29. Schneider, J., Traytel, D.: Formalization of a monitoring algorithm for metric first-order tem-
poral logic. Archive of Formal Proofs (2019). http://isa-afp.org/entries/MFOTL_Monitor.
html

30. Völlinger, K.: Verifying the output of a distributed algorithm using certification. In: Lahiri,
S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 424–430. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-67531-2_29

31. Wimmer, S.: Formalized timed automata. In: Blanchette, J.C., Merz, S. (eds.) ITP 2016.
LNCS, vol. 9807, pp. 425–440. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
43144-4_26

32. Wimmer, S., Lammich, P.: Verified model checking of timed automata. In: Beyer, D., Huis-
man, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 61–78. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-89960-2_4

https://doi.org/10.1007/978-3-030-03769-7_9
http://people.inf.ethz.ch/trayteld/papers/atva19-adaptive/aom.pdf
https://hub.docker.com/r/infsec/verified-monpoly-exps
http://isa-afp.org/entries/MFOTL_Monitor.html
http://isa-afp.org/entries/MFOTL_Monitor.html
https://doi.org/10.1007/978-3-319-67531-2_29
https://doi.org/10.1007/978-3-319-43144-4_26
https://doi.org/10.1007/978-3-319-43144-4_26
https://doi.org/10.1007/978-3-319-89960-2_4
https://doi.org/10.1007/978-3-319-89960-2_4

Efficient Detection and Quantification
of Timing Leaks with Neural Networks

Saeid Tizpaz-Niari(B), Pavol Černý, Sriram Sankaranarayanan,
and Ashutosh Trivedi

University of Colorado Boulder, Boulder, USA
{saeid.tizpazniari,pavol.cerny,srirams,ashutosh.trivedi}@colorado.edu

Abstract. Detection and quantification of information leaks through
timing side channels are important to guarantee confidentiality. Although
static analysis remains the prevalent approach for detecting timing side
channels, it is computationally challenging for real-world applications. In
addition, the detection techniques are usually restricted to “yes” or “no”
answers. In practice, real-world applications may need to leak informa-
tion about the secret. Therefore, quantification techniques are necessary
to evaluate the resulting threats of information leaks. Since both prob-
lems are very difficult or impossible for static analysis techniques, we
propose a dynamic analysis method. Our novel approach is to split the
problem into two tasks. First, we learn a timing model of the program as a
neural network. Second, we analyze the neural network to quantify infor-
mation leaks. As demonstrated in our experiments, both of these tasks
are feasible in practice—making the approach a significant improvement
over the state-of-the-art side channel detectors and quantifiers. Our key
technical contributions are (a) a neural network architecture that enables
side channel discovery and (b) an MILP-based algorithm to estimate
the side-channel strength. On a set of micro-benchmarks and real-world
applications, we show that neural network models learn timing behav-
iors of programs with thousands of methods. We also show that neural
networks with thousands of neurons can be efficiently analyzed to detect
and quantify information leaks through timing side channels.

1 Introduction

Programs often handle sensitive data such as credit card numbers or medical his-
tories. Developers are careful that eavesdroppers cannot easily access the secrets
(for instance, by using encryption algorithms). However, a side channel might
arise even if the transferred data is encrypted. For example, in timing side chan-
nels [12], an eavesdropper who observes the response time of a server might
be able to infer the secret input, or at least significantly reduce the remain-
ing entropy of possible secret values. Studies show that side-channel attacks are
practical [14,27,30].

Detecting timing side channels are difficult problems for static analysis, espe-
cially in real-world Java applications. From the theoretical point of view, side-
channel presence cannot be inferred from one execution trace, but rather, an
c© Springer Nature Switzerland AG 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 329–348, 2019.
https://doi.org/10.1007/978-3-030-32079-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_19&domain=pdf
https://doi.org/10.1007/978-3-030-32079-9_19

330 S. Tizpaz-Niari et al.

analysis of equivalence classes of traces is needed [43]. From a practical perspec-
tive, the problem is hard because timing is not explicitly visible in the code. A
side channel is a property of the code and the platform on which the program is
executed. In addition, most existing static techniques rely on taint analysis that
is computationally difficult for applications with dynamic features [33].

A large body of work addresses the problem of detecting timing side chan-
nels [5,13,41]. However, detection approaches are often restricted to either “yes”
or “no” answers. In practice, real-world applications may need to leak informa-
tion about the secret [44]. Then, it is important to know “how much” information
is being leaked to evaluate the resulting threats. Quantification techniques with
entropy-based measures are the primary tools to calculate the amount of leaks.

We propose a data-driven dynamic analysis for detecting and quantifying
timing leaks. Our approach is to split the problem into two tasks: first, to learn
a timing model of the program as the neural network (NN) and second, to analyze
the NN, which is a simpler object than the original program. The key insight
that we exploit is that timing models of the program are easier to learn than the
full functionality of the program. The advantages of this approach are two-fold.
First, although general verification problems are difficult in theory and practice,
learning the timing models is efficiently feasible, as shown in our experiments.
We conjecture that this is because timing behaviors reflect the computational
complexity of a program, which is usually a simpler function of the input rather
than the program. Second, neural networks, especially with ReLU units, are
easier models to analyze than programs.

Our key technical ideas are enabling a side channel analysis using a spe-
cialized neural network architecture and a mixed integer linear program-
ming (MILP) algorithm to estimate an entropy-based measure of side-channel
strengths. First, our NN consists of three parts: (a) encoding the secret inputs,
(b) encoding the public inputs, and (c) combining the outputs of the first two
parts to produce the program timing model. This architecture has the advan-
tage that we can easily change the “strength” (the number of neurons k) of the
connection from the secret inputs. This enables us to determine whether there
is a side channel. If timing can not be accurately predicted based on just public
inputs (k = 0), then there is a timing side channel. Second, for k > 0, the trained
NN can be analyzed to estimate the strength of side-channel leaks. Each valua-
tion of the k binarized output of secret part corresponds to one observationally
distinguishable class of secret values. We use an MILP encoding to estimate the
size of classes and calculate the amount of information leaks with entropy-based
objectives such as Shannon entropy.

Our empirical evaluation shows both that timing models of programs can be
represented as neural networks and that these NNs can be analyzed to discover
side channels and their strengths. We implemented our techniques using Tensor-
flow [2] and Gurobi [25] for learning timing models as NN objects and analyzing
the NNs with MILP algorithms, respectively. We ran experiments on a Linux
machine with 24 cores of 2.5 GHz. We could learn timing model of programs (rel-
evant to the observed traces) with few thousands methods in less than 10 min

Quantification of Leaks with NNs 331

with the accuracy of 0.985. Our analysis can handle NN models with thousands
of neurons and retrieve the number of solutions for each class of observation.
The number of solutions enables us to quantify the amount of information leaks.
In summary, our key contributions are:

– An approach for side channel analysis based on learning execution times of a
program as a NN.

– A tunable specialized NN architecture for timing side-channel analysis.
– An MILP-based algorithm for estimating entropy-based measures of informa-

tion leaks over the NN.
– An empirical evaluation that shows our approach is scalable and quantifies

leaks for real-world Java applications.

2 Overview

We illustrate on examples the key ingredients of our approach: learning timing
models of programs using neural networks and a NN architecture that enables
us to detect and quantify timing leaks.

Learning Timing Models of Programs. Learning the functionality of the
sorting algorithms from programs is difficult, while learning their timing model
is much easier. We picked the domain of sorting algorithms as these algorithms
have well-known different timing behaviors. We implement six different sort-
ing algorithms namely bubble sort, selection sort, insertion sort, bucketing sort,
merging sort, and quick sort in one sorting application. We generate random
arrays of different sizes from 100 to 20,000 elements and run the application for
each input array with different sorting algorithms. This implies that we consider
the average-case computational complexities of different algorithms. Each data
point consists of the input array, the indicator of sorting algorithm, and the exe-
cution time of sorting application. In addition, the data points are independent
from each other, and the neural network learns end-to-end execution times of
the entire application, not individual sorting algorithms. Figure 1(a) shows the
learned execution times for the sorting application. The neural network model
has 6 layers with 825 neurons. The accuracy of learning based on coefficient of
determination (R2) over test data is 0.999, and the learning takes 308.7 s (the
learning rate is 0.01). As we discussed earlier, the NN model predicts (approx-
imates) execution times for the whole sorting application. Further analysis is
required to decompose the NN model for individual sorting algorithms that is
not relevant in our setting since we are only interested in learning end-to-end
execution times of applications. Using the neural network model to estimate
execution times has two important advantages over the state-of-the-art tech-
niques [23,50]. First, the neural network can approximate an arbitrary timing
model as a function of input features, while the previous techniques can only
approximate linear or polynomial functions. Second, the neural network does
not require feature engineering, whereas the previous techniques require users to
specify important input features such as work-load (size) features.

332 S. Tizpaz-Niari et al.

Fig. 1. (a) Timing models of the sorting application as learned by NNs. (b) Prediction
error vs. the number of neurons (k) in the interface layer of SnapBuddy.

Neural Network Architecture for Side Channel Discovery. With the
observations that the neural networks can learn programs’ execution times pre-
cisely, we consider a special architecture to analyze timing side channels of pro-
grams. We propose the neural network architecture shown in Fig. 2. The NN
architecture consists of three parts: (1) A reducer function that learns a map
from n secret features (inputs) to k binarized interface neurons (we call them
interface neurons as they connect the secret inputs to the rest of the network); (2)
A neural network function that connects the public features to the overall model;
(3) A joint function that uses the output of the reducer and public-features func-
tions to predict the execution times. The architecture makes it easy to change
the number of neurons (k) in the connection from the reducer, which enables us
to estimate the side-channel strength. In this architecture, there are timing side
channels if the value for k is greater than or equal to 1. The NN learning is to
find the weights in different layers with the optimal number of neurons in the
interface layer (k) such that the NN approximates execution times accurately.

Estimating the Side Channel Strength. The side-channel strength is esti-
mated by finding the minimal value of k in the learning of accurate NN models.
We use Sum of Squared Error (SSE) measure to compute prediction errors.
Figure 1(b) shows the SSE versus the number of interface neurons (k) for the
SnapBuddy application (described in Sect. 6.2). As shown in the plot, the pre-
diction error decreases as the number of neurons increase from 0 to 6. But, after
6, the prediction error stays almost the same. We thus choose 6 as the optimal
number of interface neurons. Since each neuron is a binary unit, there are 26

distinct outputs from the reducer function. Each distinct output forms a class of
observation over the secret inputs. However, some classes of observations might
be empty and are not feasible from any secret value. Furthermore, for feasi-
ble classes, the entropy measures require the number of elements in each class.
We encode the reducer function as a mixed integer linear programming (MILP)
problem. Then, we calculate the number of feasible solutions for each class. For
SnapBuddy, it takes 16.6 s to analyze the reducer function and find the number

Quantification of Leaks with NNs 333

of solutions for non-empty classes. Using Shannon entropy, the analysis shows
3.0 bits of information about secret inputs are leaking in SnapBuddy.

Fig. 2. Neural network architecture for side-channel discovery and quantification. The
NN takes secret features (x) and public features (y), and it learns weights W with the
minimal number of neurons in the interface layer (LS

α) to precisely predict execution
times. The reducer function maps n-dimensional x to k binary outputs. The MILP
analysis of reducer function is used for the quantification.

3 Problem Statement

We develop a framework for detecting and quantifying information leaks due to
the execution time of programs. Our framework is suitable for known-message
and chosen-message threat [32] settings where the variations in the execution
times depend on both public and secret inputs.

The timing model [[P]] of a program P is a tuple (X,Y,S, δ) where X =
{x1, . . . , xn} is the set of secret input variables, Y = {y1, y2, . . . , ym} is the
set of public input variables, and S ⊆ R

n is a finite set of secret inputs, and
δ : Rn ×R

m → R≥0 is the execution-time of the program as a function of secret
and public inputs. A timing function of the program P for a secret input s ∈ S
is the function δ(s) defined as y ∈ R

m �→ δ(s,y). Let F be the set of all timing
functions in P.

Given a timing model [[P]] and a tolerance ε > 0, a k-bit ε-approximate secret
reducer is a pair

(α, β) ∈ [Rn → B
k] × [Bk → R

n]

such that ‖δ(x) − δ(β(α(x)))‖ ≤ ε for every x ∈ S where ‖ · ‖ is some fixed
norm over the space of timing function. In this paper, we work with ∞-norm.
We write R(ε,k) for the set of all k-bit ε-approximate reducers for [[P]]. We say
that (α, β) ∈ R(ε,k) is an optimal ε-approximate reducer if for all k′ < k the set
R(ε,k′) is empty. Given a tolerance ε > 0, we say that there are information leaks
in execution times, if there is no 0-bit ε-approximate optimal secret reducer.

334 S. Tizpaz-Niari et al.

A reducer (α, β) characterizes an equivalence relation ≡α over the set of
secrets S, defined as the following: s ≡α s′ if α(s) = α(s′). Let S[α] =
〈S1,S2, . . . ,SK〉 be the quotient space of S characterized by the reducers (α, β);
note that 2k−1 < K ≤ 2k. Let B = 〈B1, B2, . . . , BK〉 be the size of observational
equivalence class in Sα, i.e. Bi = |Si| and let B = |S| =

∑K
i=1 Bi. The expected

information leaks due to observations on the execution times of a program can
be quantified by using the difference between the uncertainty about the secret
values before and after the timing observations. Assuming that secret values S
are uniformly distributed, we quantify information leaks [31] as

SE(S|α) def= log2(B) − 1
B

K∑

i=1

Bi log2(Bi). (1)

Given a program with inputs partitioned into secret and public inputs, our goal
is to quantify the information leaks through timing side channels. However, such
programs often have complex functionality with black-box components. More-
over, the shape of timing functions may be non-linear and unknown. We propose
a neural-network architecture to approximate the timing model as well as to
quantify information leakage due to the timing side channels in the program.
We then analyze this network to precisely quantify the information leaks based
on the Eq. (1).

4 Neural Network Architecture to Detect and Quantify
Information Leaks

A rectified linear unit (ReLU) is a function σ : R → R defined as x �→ max {x, 0}.
We can generalize this function from scalars to vectors as σ : Rn → R

n in a
straightforward fashion by applying ReLU component-wise. In this paper, we pri-
marily work with feedforward neural network (NN) with ReLU activation units.
A R

w0 → R
wN+1 feedforward neural network N is characterized by its number

of hidden layers (or depth) N , the input and output dimensions w0, wN+1 ∈ N,
and width of its hidden layers w1, w2, . . . , wN . Each hidden layer i implements
an affine mapping Ti : Rwi−1 → R

wi corresponding to the weights in each layer.
The function fN : Rw0 → R

wN+1 implemented by neural network N is:

fN = Tk+1 ◦ σ ◦ Tk ◦ σ ◦ · · · T2 ◦ σ ◦ T1.

It is well known that NNs with ReLU units implement a piecewise-linear func-
tion [8] and due to this property, it can readily be encoded [21] as a mixed integer
linear programming (MILP).

Given a target (black-box) function f : Rw0 → R
wN+1 to be approximated

and a neural network architecture (w0, w1, . . . , wN+1) ∈ R
N+2, the process of

training the network is to search for weights of various layers so as to closely
approximate the function f based on noisy approximate examples from the func-
tion f . The celebrated universal approximation theorems about neural networks

Quantification of Leaks with NNs 335

state that deep feedforward neural networks [16,26]—equipped with simple acti-
vation units such as rectified linear unit (ReLU)—can approximate arbitrary
continuous functions on a compact domain to an arbitrary precision. Assum-
ing that the timing functions of a program have bounded discontinuities, it can
be approximated with a continuous function to an arbitrary precision. It then
follows that one can approximate the execution-time function to an arbitrary
precision using feedforward neural networks.

Fig. 3. Neural Network Nδ approximating the execution-time function δ along with a
reducer (Nα,Nβ).

Figure 3 shows different components of our neural network model. We train a
neural network Nδ : Rn+m → R (where the input variables are partitioned into
secret and public and the output variable is the execution time) to approximate
the execution times of a given program to a given precision ε > 0. In order to
quantify the number of secret bits leaked in the timing functions, we train a pair
of k-bit reducer neural networks Nα : Rn → B

k and Nβ : Bk → R
n with the

output of Nβ connected to the neural network Nδ. In this training, we only learn
the weights of Nα and Nβ while keeping the weights of Nδ unchanged. We call
the composition of these networks Nk = Nα ◦ Nβ ◦ Nδ. It is easy to see that the
network pair (Nα,Nβ) implements a k-bit secret reducer (fNα

, fNβ
). Let k be

the smallest number such that the fitness of Nk is comparable to the fitness of
Nδ. We find the smallest k ∈ N such that Nk approximate the execution time as
closely as N . The value k characterizes the number of observational classes over
the secret inputs in the program and corresponding network Nα characterizes
the secret elements in each class of observation.

We use an MILP encoding, similar to [18,21,40] but in backward analysis
fashions, to count the number of secret elements in each observational class as
characterized by the network Nα. These counts can then be used to provide a
quantitative measure of information leaks in the program due to the execution
times. Since the function β is not directly useful in quantification process, we use
a simpler network model, in our experiments, to compute the reducer function
α as shown in Fig. 2.

336 S. Tizpaz-Niari et al.

5 Experiments

5.1 Implementations

Environment Setup. All timing measurements from programs are conducted
on an NUC5i5RYH machine. We run each experiment multiple times and use
the mean of running time for the rest of analysis. We use a super-computing
machine for the training and analysis of the neural network. The machine has a
Linux Red Hat 7 OS with 24 cores of 2.5 GHz CPU each with 4.8 GB RAM.

Neural Network Learning. The neural network model is implemented using
TensorFlow [2]. We randomly choose 10% of the data for testing, and the rest for
the training. We use ReLU units as activation functions and apply mini-batch
SGD with the Adam optimizer [29] where the learning rate varies from 0.01 to
0.001 for different benchmarks. For the reducer function of our NN model, we
binarize the output of every layer using the “straight-through” technique [15] to
estimate the activation function in the backward propagation of errors known
as backpropagation [35].

Quantification of Information Leaks. After training, we analyze the reducer
function using mixed integer linear programming (MILP) [21,40]. We encode the
MILP model in Gurobi [25] and use the PoolSolutions option to retrieve feasible
solutions (up to 2 Billions). For each class of observation (each distinct output of
interface layer), the Gurobi calculates possible solutions from the secret inputs
such that the output value of interface layer is feasible from those inputs. We use
the number of solutions for each class and apply Shannon entropy to quantify
the amount of information leaks.

5.2 Micro-benchmarks

First, we show our approach for finding the (optimal) number of interface neurons
(k) from the reducer function. Then, we show the scalability and usefulness of
our approach. scalability: We use the size of neural network, computation time
for learning, and the computation time for analyzing. usefulness: We consider
the number of classes of observations, the fitness of predictions, and entropy
measures. We also compare the entropy values to ground truth.

Programs. We use two sets of micro-benchmark programs for our studies. The
first one, taken from [50], uses the names R n where n is the number of secret
bits in the program. The benchmarks were constructed to exhibit complex rela-
tionships between secret bits that influence the running time. Each relationship
is a boolean formula over the secret input where the true evaluation triggers a
(linear) loop statement over the public inputs.

For Branch Loop (B L) applications [51], the program does different compu-
tations with different complexities depending on the values of the secret input.
There are four loop complexities: O(log(N)), O(N), O(N. log(N)), and O(N2)

Quantification of Leaks with NNs 337

where N is the public input. Each micro-benchmark B L i has all four loop com-
plexities, and there are i types of each complexity with different constant factors
such as O(log(N)) and O(2. log(N)) for B L 2.

Optimal Number of Reducer Outputs. Since the number of observational
classes of the secret inputs depends on the number of interface neurons (k) from
the reducer function, we choose the optimal value for k. We consider the sum
of squared error (SSE) versus the number of interface neurons (k). We choose a
value k such that the SSE error decreases from 0 to k (k ≥ 0) and stays almost
same for larger values of k. Figure 4(a) and (b) show the plot of the SSE error
vs number of interface neurons for R n and B L n, respectively. For example, in
B L 5, the optimal number of interface neurons is 7.

Fig. 4. (a) The SSE versus the number of interface neurons for R n. (b) The SSE versus
the number of interface neurons for B L n.

Scalability Results. Table 1 shows that our approach is scalable for learning
timing models of programs. For example, we could learn the time model of B L 5
program with the NN model of 7 internal layers and 717 neurons in 25 min. In
addition, the growth in computation times of learning is proportional to the
growth in the size of networks. The results show that our approach is scalable
for analyzing the reducer function of NN. For this analysis, we only consider the
secret parts of NN (shown with LS in Table 1). The computation time for the
analysis depends on the size of secret inputs and the size of reducer function.
In B L 5 program with 7 interface neurons of the reducer, we calculate feasible
solutions over secret inputs for each 27 possible classes. It takes about 8 min to
analyze the reducer function of B L 5 program. The growth in the computation
times of network analysis is also proportional to the growth in the size of secret
inputs and the size of reducer. For example, the computation time for the analysis
of B L 4 example is increased by almost 12 times in comparison to B L 3, but
the size of input, the interface, and the internal neurons have increased by two
times (from 211 to 212), two times (from 26 to 27), and 6 times (2.5 × 2.5),
respectively.

338 S. Tizpaz-Niari et al.

T
a
b
le

1
.
#
R

:
n
u
m

b
er

o
f
d
a
ta

re
co

rd
s,

#
S
:
n
u
m

b
er

o
f
se

cr
et

b
it

s,
#
P

:
n
u
m

b
er

o
f
p
u
b
li
c

b
it

s,
L

S
:
th

e
si

ze
o
f
se

cr
et

p
a
rt

(r
ed

u
ce

r
fu

n
ct

io
n
)

o
f

N
N

,
L

P
:

th
e

si
ze

o
f

p
u
b
li
c

p
a
rt

o
f

N
N

,
L

J
:

th
e

si
ze

o
f

jo
in

t
p
a
rt

o
f

N
N

,
α
:

le
a
rn

in
g

ra
te

,
R

2
:

co
effi

ci
en

t
o
f

d
et

er
m

in
a
ti

o
n
,

T
L
:

th
e

co
m

p
u
ta

ti
o
n

ti
m

e
(s

)
fo

r
le

a
rn

in
g

N
N

s,
T

A
:
th

e
co

m
p
u
ta

ti
o
n

ti
m

e
(s

)
fo

r
a
n
a
ly

zi
n
g

re
d
u
ce

r
fu

n
ct

io
n
s,

#
k
:
n
u
m

b
er

o
f
in

te
rf

a
ce

n
eu

ro
n
s

in
th

e
re

d
u
ce

r
fu

n
ct

io
n
,
#
K

:
n
u
m

b
er

o
f
(f

ea
si

b
le

)
cl

a
ss

es
o
f
o
b
se

rv
a
ti

o
n
s,

S
E

I
:
in

it
ia

l
S
h
a
n
n
o
n

en
tr

o
p
y

(b
ef

o
re

a
n
y

o
b
se

rv
a
ti

o
n
s)

,
S

E
O

:
re

m
a
in

in
g

S
h
a
n
n
o
n

en
tr

o
p
y

a
ft

er
ti

m
in

g
o
b
se

rv
a
ti

o
n
s.

A
p
p
(s

)
#
R

#
S

#
P

L
S

L
P

L
J

α
R

2
T

L
T

A
#
k

#
K

S
E

I
S

E
O

R
2

4
0
0

2
7

[5
×

1
]

[5
]

[1
0
]

1
e-

2
0
.9

9
9
1
.7

0
.1

1
2

2
.0

1
.1

9

R
3

8
0
0

3
7

[1
0
×

2
]

[1
0
]

[2
0
]

1
e-

2
0
.9

9
9
1
.7

0
.1

2
3

3
.0

1
.4

4

R
4

1
,6

0
0

4
7

[1
0
×

2
]

[1
0
]

[2
0
]

1
e-

2
0
.9

9
9
0
.3

0
.1

2
4

4
.0

2
.3

2

R
5

3
,2

0
0

5
7

[1
0
×

1
0
×

2
]

[1
0
]

[2
0
]

1
e-

2
0
.9

9
1
2
7
.3

0
.2

2
3

5
.0

3
.4

R
6

6
,4

0
0

6
7

[1
0
×

1
0
×

3
]

[1
0
×

1
0
]

[2
0
]

1
e-

2
0
.9

9
1
6
8
.4

0
.5

3
5

6
.0

4
.0

R
7

1
2
,8

0
0

7
7

[2
0
×

2
0
×

3
]

[1
0
×

1
0
]

[2
0
]

1
e-

2
0
.9

9
1
8
5
.4

1
.8

3
5

7
.0

5
.0

B
L

1
7
5
6

9
7

[2
0
×

2
0
×

4
]

[1
0
]

[2
0
×

2
0
]

1
e-

2
0
.9

9
1
2
4
.3

0
.3

4
5

8
.9

7
6
.4

3

B
L

2
1
,5

1
2

1
0

7
[4

0
×

5
]

[1
0
]

[4
0
×

4
0
]

1
e-

2
0
.9

9
1
2
9
.4

2
.5

5
1
0

9
.9

7
6
.4

0

B
L

3
3
,0

2
4

1
1

7
[2

0
×

2
0
×

6
]

[1
0
]

[1
0
0
×

1
0
0
]

5
e-

3
0
.9

9
3
4
6
.0

1
8
.6

6
1
6

1
0
.6

4
6
.3

9

B
L

4
6
,0

4
8

1
2

7
[5

0
×

5
0
×

7
]

[1
0
]

[2
0
0
×

2
0
0
]

5
e-

3
0
.9

9
8
8
9
.8

2
1
6
.7

7
3
9

1
1
.9

3
6
.0

B
L

5
1
2
,0

9
6

1
3

7
[5

0
×

5
0
×

7
]

[1
0
]

[2
0
0
×

4
0
0
]

2
e-

3
0
.9

9
1
,4

1
1
.0

4
9
6
.6

7
5
0

1
2
.2

9
6
.1

Quantification of Leaks with NNs 339

Usefulness Results. We use the statistical metric, coefficient of determination
(R2) [39], as the fitness indicator of our predictions. In all benchmarks, R2 is
0.99. The analysis of the reducer function provides us: (1) whether a class of
observation (a specific value of the reducer output) is reachable from at least
one secret value; (2) how many secret elements exist in each class of observation.
In B L 5, there are 128 possible values for the 7 interface neurons. The analysis
of network shows that only 50 values out of 128 are valid and reachable from
secret inputs. To count the number of solutions for each class, we bound the
number of possible solutions to be at most 100. We use Shanon entropy to
measure the amount of information leaks in bits. For example, in R 7, the initial
Shannon entropy is SEI = 7(bits). We obtain 5 feasible classes: {68, 16, 27, 1,
16}. Therefore, after the timing observations, the conditional Shannon entropy
is SEO = 5.2 (bits). The amount of information leaks is SHL = 1.8 (bits). We
note that the initial Shannon entropy may depend on the number of feasible
classes of observations and the bounds on the possible solutions (see B L 5 as
an example). The ground truth of conditional Shannon entropy is the following:
R 2 = 1.19, R 3 = 1.44, R 4 = 2.42, R 5 = 3.42, R 6 = 4.0, R 7 = 5.0, and
B L 1, B L 2, B L 3, B L 4, B L 5 are all equal to 6.64.

6 Case Studies

Table 2 summarizes 5 real-world Java applications used as case studies in this
paper. Table 2 has similar structure to Table 1 in Sect. 5.2 and also lists the
number of methods in the applications. Figure 5 shows the SSE (error) vs the
number of interface neurons of the reducer function for case-study applications.
The main research questions are “Does our approach of using neural networks
for side-channel analysis of real-world applications (1) scale well, (2) learn timing
models accurately, and (3) give useful information about the strength of leaks?”

6.1 GabFeed

Gabfeed [6] is a Java web application with 573 methods implementing a chat
server [13]. The application and its users can mutually authenticate each other
using public-key infrastructure. The server takes users’ public key and its own
private key and calculate a common key.

Inputs. We consider the secret and public keys with 1,024 bits. We generate
65,908 keys (combination of secret and public keys) that are uniformly taken
from the space of secret and public inputs.

Neural Network Learning. We learn the timing model of GabFeed for generating
common keys with R2 = 0.952 where we set the learning rate to 0.01. The NN
model consists of 1,024 binary secret and 1,024 binary public inputs. The network
has more than 600 neurons. The optimal number of neurons for interface layer
is 6. It takes 40 min to learn the timing model of GabFeed application.

340 S. Tizpaz-Niari et al.

Security Analysis. Since the output of the reducer is 6 bits, there are at most 64
classes of observations. Our analysis shows that there are only 26 feasible classes.
With the assumption that each class can have at most 10,000 solutions, the initial
Shannon entropy is 18.0 bits. By observing the 26 classes through timing side
channels, the remaining Shannon entropy becomes 13.29 bits. Therefore, the
amount of leaks is 4.71 bits. The security analysis of NN takes 300 min.

Research Questions. To answer our research questions: Scalability: The neu-
ral network model has 606 neurons. It takes 40 min to learn the time model
of GabFeed applications. It takes 300 min to analyze the reducer function and
obtain the number of elements in each class. Usefulness: We learn the time model
of GabFeed as the function of public and secret inputs with R2 = 0.952. Our
analysis shows that there are 26 classes of observations over the secret inputs,
and 4.71 bits of information about the secret key is leaking.

6.2 SnapBuddy

SnapBuddy is a mock social network application where each user has their own
profiles with a photograph [49]. The profile page is publicly accessible.

Inputs. The secret is the identity of a user (among 477 available users in the
network) who is currently interacting with the server. The public is the size of
each profile (from 13 KB to 350 KB). Note that the size of profiles are observable
from generated network traffics.

Neural Network Learning. We consider the response time of the SnapBuddy
application to download public profiles of 477 users in the system [6]. We learn
the response time using a neural network with 176 neurons and 6 neurons in
the interface layer. The accuracy of neural network model in predicting response
times based on the coefficient of determination is 0.985 where we set the learning
rate to be 0.01. The learning takes less than 10 min.

Security Analysis. Our analysis finds only 8 classes of observations reachable out
of 64. Since the number of users (secrets) in the current database is fixed to
477, we assume there can be at most 60 users in each class. The initial Shannon
entropy is 8.91 bits. The remaining Shannon entropy after observing the execu-
tion times and obtaining the classes of observations with their characteristics is
5.91 bits. The amount of information leaks is 3.0 bits. The analysis of reducer
function takes less than 17 s.

Research Questions. To answer our research questions: Scalability: It takes less
than 10 min to learn the time model of SnapBuddy. It takes only 16.6 s to cal-
culate feasible solutions for all of feasible classes of observations. Usefulness: We
learn the time model of SnapBuddy as a function of public and secret inputs
with R2 = 0.985. Our analysis shows that there are 8 classes of observations over
the secret inputs, and 3.0 bits of information about users’ identities are leaking.

Quantification of Leaks with NNs 341

T
a
b
le

2
.
C

a
se

S
tu

d
ie

s.
L
eg

en
d
s

si
m

il
a
r

to
T
a
b
le

1
in

S
ec

t.
5
.2

ex
ce

p
t

th
a
t

#
M

sh
ow

s
th

e
n
u
m

b
er

o
f
m

et
h
o
d
s

in
th

e
a
p
p
li
ca

ti
o
n

a
n
d

S
E

L

is
th

e
d
iff

er
en

ce
b
et

w
ee

n
S

E
O

a
n
d

S
E

I
a
n
d

sh
ow

s
th

e
a
m

o
u
n
t

o
f
in

fo
rm

a
ti

o
n

le
a
k
ed

in
b
it

s.

A
p
p
(s

)
#
M

#
R

#
S

#
P

L
S

L
P

L
J

α
R

2
T

L
T

A
#
k

#
K

S
E

L

G
a
b
F
.

5
7
3

6
5
,9

0
8

1
,0

2
4

1
,0

2
4

[5
0
×

5
0
×

6
]

[1
0
0
]

[2
0
0
×

2
0
0
]

1
e-

2
0
.9

5
2
,4

1
0

1
8
,0

1
0

6
2
6

4
.7

S
n
a
p
.

3
,0

7
1

6
,6

7
8

3
0

4
[3

0
×

3
0
×

6
]

[1
0
]

[1
0
0
]

1
e-

2
0
.9

8
5
7
9

1
7

6
8

3
.0

P
h
o
n
.

1
0
1

3
,0

4
3

8
2

1
1

[5
0
×

5
0
×

1
0
]

[5
]

[1
0
0
]

8
e-

3
0
.9

9
5
6
6

1
0
,1

5
1

1
0

6
0

5
.9

T
h
er

.
5
3

1
0
,0

0
0

1
1

4
[1

0
0
×

1
0
0
×

9
]

[1
0
0
]

[2
0
0
×

2
0
0
]

1
e-

3
0
.8

4
,2

3
6

5
,1

4
8

9
9

7
.0

P
a
ss

M
.

6
2
1
1
,2

3
8

1
4

3
0

[5
0
×

5
0
×

3
]

[5
0
]

[1
0
0
]

1
e-

2
0
.9

8
2
0
2

1
6

3
4

1
.6

342 S. Tizpaz-Niari et al.

Fig. 5. The SSE versus the number of interface neurons k for case-study application.

6.3 PhoneMaster

Phonemaster [6] is a record keeping service for tracking phone calls and bills.
The identity of a user who submits a request is secret, while the generated traffic
from the interaction is public.

Inputs. There are at most 150 users. For each user, we send a random command
from the set of possible commands.

Neural Network Learning. We use a neural network with 215 neurons. We find
out that the optimal number of neurons in the interface layer is 10. We learn the
time model of phoneMaster in less than 10 min with R2 = 0.993.

Security Analysis. We analyze the reducer function of NN and find out that 60
classes of observations are feasible. We assume that there can be at most 3 users
in each class. The initial Shannon entropy is 7.49 bits. The remaining Shannon
entropy after observing the execution times is 1.58. The amount of information
leakage is 5.91 bits. This shows that almost everything about the identity of
users is leaking. The computation time of analysis is about 169 min.

6.4 Thermomaster

Thermomaster [6] is a temperature control and prediction system. The program
takes the goal temperature (secret inputs) and the current temperature (public
inputs) to simulate the controller for matching with the goal temperature.

Inputs. The goal temperature is between –10,000 and +10,000 and the current
temperature is between –250 and +250. We generate 10,000 inputs uniformly
from the space of goal and current temperatures.

Neural Network Learning. We use a NN model with 709 neurons. The optimal
number of neurons for the interface layer is 9. We learn the timing models of
thermomaster in 70 min with R2 = 0.80.

Security Analysis. We analyze the reducer function of NN and find out that
only 9 classes of observations are feasible. The initial Shannon entropy is 11.0

Quantification of Leaks with NNs 343

bits. The remaining Shannon entropy after observations is 4.0. Therefore, 7.0
bits of information about the goal temperature are leaking through timing side
channels. The computation time of analysis is less than 86 min.

6.5 Password Matching (Keyczar)

We consider a vulnerability in a password matching algorithm similar to the
side-channel vulnerability in Keyczar library [34]. This vulnerability allows one
to recover the secret password through sequences of oracles where the attacker
learns one letter of the secret password in each step.

Inputs. The secret input is target password stored in a server, and the public
input is a guess oracle. We use libFuzzer [47] to generate 21,123 guesses for
randomly selected passwords. We assume a password is at most 6 (lower-case)
letters.

Neural Network Learning. We use a neural network with 253 neurons. The opti-
mal number of neurons for the interface layer is 3. We learn the time model of
the password matching algorithm in 202.3 s with R2 = 0.976.

Security Analysis. There can be at most 8 classes of observations. Our analysis
shows only 4 classes of observations are feasible. The initial Shannon entropy is 14
bits. The 4 classes (obtained from timing observation) have the following number
of elements: {48, 6760, 4309, 5269}. So, the remaining entropy (after observing
the classes through the time model) is 12.4 bits. It takes about 16 s to analyze
the secret parts of NN and quantify the information leaks.

7 Related Work

Modeling Program Execution Times. Various techniques have been applied
to model and predict computational complexity of software systems [7,23,50].
Both [23] and [50] consider cost measures such as execution time and predict
the cost as a function of input features such as the number of bytes in an input
file. The works [23,50] are restricted to certain classes of functions such as linear
functions, while the neural network techniques can model arbitrary functions.
Additionally, both techniques require feature engineering: the user needs to spec-
ify some features such as size or work-load features. However, neural network
models do not require this and can automatically discover important features.

Neural Networks for Security Analysis. Neural network models have been
used for software security analysis. For example, the approach in [46] uses
the deep neural network for anomaly detection in software defined network-
ing (SDN). The framework [36] uses a deep neural network model for detecting
vulnerabilities such as buffer and resource management errors. We use neural
network models to detect and quantify information leaks through timing side
channels.

344 S. Tizpaz-Niari et al.

Dynamic Analysis for Side-Channel Detections. Dynamic analysis has
been used for side-channel detections [38,41,42]. Diffuzz [41] is a fuzzing
techniques for finding side channels. The approach extends AFL [1] and
KELINCI [28] fuzzers to detect side channels. The goal of Diffuzz is to maximize
the following objective: δ = |c(p, s1) − c(p, s2)|, that is, to find two distinct secret
values s1, s2 and a public value p that give the maximum cost (c) difference. The
work [41] uses the noninterference notion of side channel leaks. Therefore, they
do not quantify the amounts of information leaks. The cost function in [41] is the
number of byte-code executed, whereas we consider the actual execution time in
a fixed environment. Note that our approach can be used with the abstract cost
model such as the byte-code executed in a straight-forward fashion. Diffuzz [41]
can be combined with our technique to generate inputs and quantify leaks.

Static Analysis for Side-Channel Detections. Noninterference was first
introduced by Goguen and Meseguer [22] and has been widely used to enforce
confidentiality properties in various systems [4,43,48]. Various works [5,13] use
static analysis for side-channel detections based on noninterference notion. The
work [13] defines ε bounded noninterference that requires the resource usage
behavior of the program executed from the same public inputs differ at most ε.
Chen et al. [13] use Hoare Logic [11] equipped with taint analysis [37] to detect
side channels. These static techniques including [13] rely on the taint analysis
that is computationally difficult for real-world Java applications. The work [33]
reported that 78% of 461 open-source Java projects use dynamic features such as
reflections that are problematic for static analysis. In contrast, we use dynamic
analysis that handles the reflections and scales well for the real-world applica-
tions. In addition, Chen et al. [13] answer either ‘yes’ or ‘no’ to the existence
of side channels, which is restricted for many real-world applications that may
need to disclose a small amounts of information about the secret. However, our
approach quantifies the leaks using entropy measures.

Quantification of Information Leaks. Quantitative information flow
[10,31,44] has been used for measuring the strength of side channels. The
work [10] presents an approach based on finding the equivalence relation over
secret inputs. The authors cast the problem of finding the equivalence relation
as a reachability problem and use model counting to quantify information leaks.
Their approach works only for a small program, limited to a few lines of code,
while our approach can work for large applications. In addition, they consider
the leaks through direct observations such as program outputs or public input
values. In contrast, we consider the leaks through timing side channels, which are
non-functional aspects of programs. Sidebuster [56] combines static and dynamic
analyses for detection and quantification of information leaks. Sidebuster [56]
also relies on taint analysis to identify the source of vulnerability. Once the
source identified, Sidebuster uses dynamic analysis and measures the amounts
of information leaks. The information leaks in Sidebuster [56] is because of gen-
erated network packets, while our information leaks are through timing side
channels.

Quantification of Leaks with NNs 345

Hardening Against Side Channels. Hardening against side channels can
be broadly divided to mitigation and elimination approaches. The mitigation
approaches [9,32,52] aim to minimize the amounts of information leaks, while
considering the performance of systems. The goal of elimination approaches [3,
19,55] is to completely transform out information leaks without considering the
performance burdens. Our techniques can be combined with the hardening meth-
ods to mitigate or eliminate information leaks.

Other Types of Side Channels. Sensitive information can be leaked through
other side channels such as power consumptions [20,53], network traffics [14],
and cache behaviors [17,24,45,54]. We believe our approach could be useful for
these types of side channels, however, we left further analysis for future work.

8 Conclusion and Discussion

We presented a data-driven dynamic analysis for detection and quantifying infor-
mation leaks due to execution times of programs. The analysis performed over a
specialized NN architecture in two steps: first, we utilized neural network objects
to learn timing models of programs and second, we analyzed the parts of NNs
related to secret inputs to detect and quantify information leaks. Our experi-
ences showed that NNs learn timing models of real-world applications precisely.
In addition, they enabled us to quantify information leaks, thanks to the sim-
plicity of NN models in comparison to program models.

Throughout this work, we assume that the analyzer would be able to con-
struct interesting inputs either with fuzzing tools, previously reported bugs, or
domain knowledges. Nevertheless, we demonstrate practical solutions to gener-
ate inputs in each example with emphasis on the recent development in fuzzing
for side-channel analysis [41].

Furthermore, our dynamic analysis approach can not prove the absent of
side channels. Our NN model learns and generalizes the timing models for the
observed program behaviors and is limited to observed paths in the program.
We emphasize that the proof is also difficult for static analysis. Although static
analysis can prove the absent of bugs or vulnerabilities in principle, the presence
of dynamic features such as reflections in Java applications is problematic and
can cause false negative in static analysis (see Limitations Section in [13]).

For future work, there are few interesting directions. One idea is to develop a
SAT-based algorithm, similar to DPLL, on top of MILP algorithms to calculate
the number of solutions more efficiently. Another idea is to define threat models
based on the attackers capabilities to utilize neural networks for guessing secrets.

Acknowledgements. The first author thanks Shiva Darian for proofreading and pro-
viding useful suggestions. This research was supported by DARPA under agreement
FA8750-15-2-0096.

References

1. American fuzzy lop (2016). http://lcamtuf.coredump.cx/afl/

http://lcamtuf.coredump.cx/afl/

346 S. Tizpaz-Niari et al.

2. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI
2016, pp. 265–283 (2016)

3. Agat, J.: Transforming out timing leaks. In: Proceedings of the 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 40–
53. ACM (2000)

4. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F., Emmi, M.: Verify-
ing constant-time implementations. In: USENIX Security Symposium, pp. 53–70
(2016)

5. Antonopoulos, T., Gazzillo, P., Hicks, M., Koskinen, E., Terauchi, T., Wei, S.:
Decomposition instead of self-composition for proving the absence of timing chan-
nels. In: ACM SIGPLAN Notices, vol. 52, pp. 362–375. ACM (2017)

6. Apogee-Research: Space/time analysis for cybersecurity (STAC) repository.
https://github.com/Apogee-Research/STAC

7. Arar, Ö.F., Ayan, K.: Software defect prediction using cost-sensitive neural net-
work. Appl. Soft Comput. 33, 263–277 (2015)

8. Arora, R., Basu, A., Mianjy, P., Mukherjee, A.: Understanding deep neural net-
works with rectified linear units. arXiv e-prints (2016)

9. Askarov, A., Zhang, D., Myers, A.C.: Predictive black-box mitigation of timing
channels. In: Proceedings of the 17th ACM Conference on Computer and Commu-
nications Security, pp. 297–307. ACM (2010)

10. Backes, M., Köpf, B., Rybalchenko, A.: Automatic discovery and quantification of
information leaks. In: S&P 2009 (2009)

11. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: Proceedings of the 17th IEEE Computer Security Foundations Workshop, pp.
100–114. IEEE (2004)

12. Brumley, D., Boneh, D.: Remote timing attacks are practical. Comput. Netw.
48(5), 701–716 (2005)

13. Chen, J., Feng, Y., Dillig, I.: Precise detection of side-channel vulnerabilities using
quantitative cartesian hoare logic. In: CCS (2017)

14. Chen, S., Wang, R., Wang, X., Zhang, K.: Side-channel leaks in web applications:
a reality today, a challenge tomorrow. In: S&P 2010 (2010)

15. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks: training deep neural networks with weights and activations constrained
to +1 or –1. arXiv preprint arXiv:1602.02830 (2016)

16. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math.
Control Signals Systems 2, 303–314 (1989)

17. Doychev, G., Köpf, B., Mauborgne, L., Reineke, J.: CacheAudit: a tool for the
static analysis of cache side channels. ACM Trans. Inf. Syst. Secur. (TISSEC)
18(1), 4 (2015)

18. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.)
NFM 2018. LNCS, vol. 10811, pp. 121–138. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77935-5 9

19. Eldib, H., Wang, C.: Synthesis of masking countermeasures against side channel
attacks. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 114–130.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 8

20. Eldib, H., Wang, C., Schaumont, P.: Formal verification of software countermea-
sures against side-channel attacks. ACM Trans. Softw. Eng. Methodol. (TOSEM)
24(2), 11 (2014)

21. Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization.
Constraints 23(3), 296–309 (2018)

https://github.com/Apogee-Research/STAC
http://arxiv.org/abs/1602.02830
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-77935-5_9
https://doi.org/10.1007/978-3-319-08867-9_8

Quantification of Leaks with NNs 347

22. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy, p. 11. IEEE (1982)

23. Goldsmith, S.F., Aiken, A.S., Wilkerson, D.S.: Measuring empirical computational
complexity. In: FSE 2007, pp. 395–404. ACM (2007)

24. Guo, S., Wu, M., Wang, C.: Adversarial symbolic execution for detecting
concurrency-related cache timing leaks. In: Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pp. 377–388. ACM (2018)

25. Gurobi Optimization, Inc.: Gurobi optimizer reference manual (2018). http://www.
gurobi.com

26. Hornik, K., Stinchcombe, M.B., White, H.: Multilayer feedforward networks are
universal approximators. Neural Networks 2, 359–366 (1989)

27. Hund, R., Willems, C., Holz, T.: Practical timing side channel attacks against
kernel space ASLR. In: IEEE Symposium on Security and Privacy, pp. 191–205.
IEEE (2013)

28. Kersten, R., Luckow, K., Păsăreanu, C.S.: POSTER: AFL-based fuzzing for Java
with Kelinci. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 2511–2513. ACM (2017)

29. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

30. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

31. Köpf, B., Basin, D.: An information-theoretic model for adaptive side-channel
attacks. In: CCS 2007, pp. 286–296 (2007)

32. Köpf, B., Dürmuth, M.: A provably secure and efficient countermeasure against
timing attacks. In: CSF 2009 (2009)

33. Landman, D., Serebrenik, A., Vinju, J.J.: Challenges for static analysis of java
reflection-literature review and empirical study. In: IEEE/ACM 39th International
Conference on Software Engineering (ICSE), pp. 507–518. IEEE (2017)

34. Lawson, N.: Timing attack in Google Keyczar library (2009). https://rdist.root.
org/2009/05/28/timing-attack-in-google-keyczar-library/

35. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
36. Li, Z., et al.: VulDeePecker: a deep learning-based system for vulnerability detec-

tion. arXiv:1801.01681 (2018)
37. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in Java applications

with static analysis. In: USENIX Security Symposium, vol. 14, p. 18 (2005)
38. Milushev, D., Beck, W., Clarke, D.: Noninterference via symbolic execution. In:

Giese, H., Rosu, G. (eds.) FMOODS/FORTE -2012. LNCS, vol. 7273, pp. 152–
168. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30793-5 10

39. Nagelkerke, N.J., et al.: A note on a general definition of the coefficient of deter-
mination. Biometrika 78(3), 691–692 (1991)

40. Narodytska, N., Kasiviswanathan, S., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying
properties of binarized deep neural networks. In: AAAI 2018 (2018)

41. Nilizadeh, S., Noller, Y., Pasareanu, C.S.: DIFFUZZ: differential fuzzing for side-
channel analysis. In: ICSE (2019). http://arxiv.org/abs/1811.07005

42. Rosner, N., Burak Kadron, I., Bang, L., Bultan, T.: Profit: detecting and quanti-
fying side channels in networked applications. In: NDSS (2019)

43. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21, 5–19 (2003)

http://www.gurobi.com
http://www.gurobi.com
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/3-540-68697-5_9
https://rdist.root.org/2009/05/28/timing-attack-in-google-keyczar-library/
https://rdist.root.org/2009/05/28/timing-attack-in-google-keyczar-library/
http://arxiv.org/abs/1801.01681
https://doi.org/10.1007/978-3-642-30793-5_10
http://arxiv.org/abs/1811.07005

348 S. Tizpaz-Niari et al.

44. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00596-1 21

45. Sung, C., Paulsen, B., Wang, C.: CANAL: a cache timing analysis framework via
LLVM transformation. In: ASE 2018, pp. 904–907 (2018)

46. Tang, T.A., Mhamdi, L., McLernon, D., Zaidi, S.A.R., Ghogho, M.: Deep learn-
ing approach for network intrusion detection in software defined networking. In:
WINCOM 2016 (2016)

47. libFuzzer Team Guided: LibFuzzer: coverage-based fuzz testing (2016). http://
llvm.org/docs/LibFuzzer.html

48. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg
(2005). https://doi.org/10.1007/11547662 24

49. Tizpaz-Niari, S., Černý, P., Chang, B.-Y.E., Sankaranarayanan, S., Trivedi, A.:
Discriminating traces with time. In: Legay, A., Margaria, T. (eds.) TACAS 2017.
LNCS, vol. 10206, pp. 21–37. Springer, Heidelberg (2017). https://doi.org/10.1007/
978-3-662-54580-5 2

50. Tizpaz-Niari, S., Černý, P., Chang, B.E., Trivedi, A.: Differential performance
debugging with discriminant regression trees. In: AAAI 2018, pp. 2468–2475 (2018)

51. Tizpaz-Niari, S., Černý, P., Trivedi, A.: Data-driven debugging for functional side
channels. arXiv:1808.10502 (2018)

52. Tizpaz-Niari, S., Černý, P., Trivedi, A.: Quantitative mitigation of timing side
channels. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 140–
160. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 8

53. Wang, J., Sung, C., Wang, C.: Mitigating power side channels during compilation.
arXiv preprint arXiv:1902.09099 (2019)

54. Wang, S., Wang, P., Liu, X., Zhang, D., Wu, D.: Cached: Identifying cache-based
timing channels in production software. In: 26th USENIX Security Symposium,
pp. 235–252 (2017)

55. Wu, M., Guo, S., Schaumont, P., Wang, C.: Eliminating timing side-channel leaks
using program repair. In: Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pp. 15–26. ACM (2018)

56. Zhang, K., Li, Z., Wang, R., Wang, X., Chen, S.: Sidebuster: automated detection
and quantification of side-channel leaks in web application development. In: Pro-
ceedings of the 17th ACM Conference on Computer and Communications Security,
pp. 595–606. ACM (2010)

https://doi.org/10.1007/978-3-642-00596-1_21
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1007/11547662_24
https://doi.org/10.1007/978-3-662-54580-5_2
https://doi.org/10.1007/978-3-662-54580-5_2
http://arxiv.org/abs/1808.10502
https://doi.org/10.1007/978-3-030-25540-4_8
http://arxiv.org/abs/1902.09099

Predictive Runtime Monitoring for Linear
Stochastic Systems and Applications
to Geofence Enforcement for UAVs

Hansol Yoon1, Yi Chou1, Xin Chen2, Eric Frew1,
and Sriram Sankaranarayanan1(B)

1 University of Colorado, Boulder, USA
{hansol.yoon,yi.chou,eric.frew,srirams}@colorado.edu

2 University of Dayton, Dayton, USA
xchen4@udayton.edu

Abstract. We propose a predictive runtime monitoring approach for
linear systems with stochastic disturbances. The goal of the monitor is
to decide if there exists a possible sequence of control inputs over a
given time horizon to ensure that a safety property is maintained with
a sufficiently high probability. We derive an efficient algorithm for per-
forming the predictive monitoring in real time, specifically for linear time
invariant (LTI) systems driven by stochastic disturbances. The algorithm
implicitly defines a control envelope set such that if the current control
input to the system lies in this set, there exists a future strategy over
a time horizon consisting of the next N steps to guarantee the safety
property of interest. As a result, the proposed monitor is oblivious of the
actual controller, and therefore, applicable even in the presence of com-
plex control systems including highly adaptive controllers. Furthermore,
we apply our proposed approach to monitor whether a UAV will respect
a “geofence” defined by a geographical region over which the vehicle may
operate. To achieve this, we construct a data-driven linear model of the
UAVs dynamics, while carefully modeling the uncertainties due to wind,
GPS errors and modeling errors as time-varying disturbances. Using real-
istic data obtained from flight tests, we demonstrate the advantages and
drawbacks of the predictive monitoring approach.

1 Introduction

We present efficient algorithms for the problem of monitoring viability in linear
stochastic systems, and apply our approach to monitoring geofencing for UAVs.
As UAVs become increasingly prevalent, the issue of such UAVs straying into
critical infrastructure such as airports [3], residential buildings, military installa-
tions and other areas has gained critical importance. Geofences are virtual areas
defined by a air traffic management authority inside which a UAV is permitted
to operate [24]. However, breaches of these geofences, intentional or otherwise,
need to be monitored. Furthermore, monitors need to provide advance warn-
ing to an operator that a breach is impending: such warnings can provide the
c© Springer Nature Switzerland AG 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 349–367, 2019.
https://doi.org/10.1007/978-3-030-32079-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_20&domain=pdf
https://doi.org/10.1007/978-3-030-32079-9_20

350 H. Yoon et al.

traffic manager valuable time to undertake possible defensive measures, or even
help with post-incident investigations. Formally, a geofence is defined by a set
F ⊆ R

3, specifying legal (x, y, z) positions of the UAV.

Definition 1 (Geofence Monitoring Problem). Given the current state of
the aircraft (assume current time is t = 0), will its position (x(t), y(t), z(t))
remain inside a geofence F over a time interval [0, T] in the future.

PHYSICAL MODEL

GUIDANCE ALG.

ux,uy,uz

CONTROLS

State:

⎛
⎜⎜⎜⎜⎜⎜⎝

x
y
z
vx
vy
vz

⎞
⎟⎟⎟⎟⎟⎟⎠

DISTURBANCES

WAYPOINTS

Fig. 1. Schematic diagram of the closed loop system showing the plant and the con-
troller.

As such, geofences are safety properties and monitoring them over a finite
time horizon requires over-approximating the set of possible reachable states
RT over the time interval [0, T] of interest, enabling us to check the condi-
tion RT ⊆ F . Naturally, for runtime monitoring, the reachable state estimate
must be computed and checked against the specifications during the deployment.
However, reachability analysis is a difficult computation that is complicated by
multiple factors. As shown in Fig. 1, the UAV system is a closed-loop consisting
of the physical dynamics of the aircraft and the on-board navigation/guidance
controller.

1. The physical dynamics are uncertain and influenced by unknown, stochastic
disturbances such as the wind.

2. The navigation and guidance component are often nonlinear, involving pro-
prietary autopilot systems and influenced by waypoints or other mission spec-
ifications provided by the operator.

Nonlinear reachability analysis for hybrid systems is an active area of research
[2,7,9,12]. However, a rapid real-time stochastic reachability analysis of the
closed loop in Fig. 1 to check geofence violations is beyond the capability of even
the most sophisticated tools, at the time of writing. In this paper, we sidestep
these issues to derive an efficient solution suitable for online monitoring:

Predictive Runtime Monitoring 351

1. We use data-driven linear forecast models for the UAVs that includes the
effect of wind uncertainty and unmodeled dynamics.

2. Instead of monitoring whether the closed loop will satisfy the safety property,
we ask a different question of viability rather than safety.

Definition 2 (θ-viable). A state x (0) of the plant is θ-viable at a future time
T , iff there exists a control strategy over [0, T] such that the probability of safety
at time T is at least θ—i.e., P(x (T) ∈ F) ≥ θ.

In practice, θ is set to a number close to 1, indicating the desired level of
confidence in the system state. Viability monitoring differs from the standard
safety monitor in the following manner: rather than ask whether the particular
control law can act to prevent a future failure, we ask the question whether there
exists some control strategies that can prevent failure. In particular, this strategy
may differ from the one used by the actual controller. It is possible that a system
state is viable but the specific control law employed can lead to failure. On the
other hand, if a system is deemed not viable for a future time, it is essentially
at the mercy of the environment: no controller can guarantee safety for such a
system with probability exceeding θ. The advantages of the viability monitoring
approach used in this paper include:

(a) It is purely a property of the plant model and does not involve the controller.
This allows us to handle systems that are controlled by complex control
strategies that may be proprietary, or in general, hard to reason about in
real-time. This may include neural networks and learning-based controllers
that are now quite popular in autonomous systems.

(b) Finally, we show a sufficient condition that yields a sound monitor for viabil-
ity for linear stochastic systems. This monitor can be implemented efficiently
with an efficient online runtime monitoring strategy.

However, viability monitoring suffers from key disadvantages from the point
of view of runtime monitoring for safety:

(a) A viability monitor can miss impending safety violation (false negatives).
The closed loop system may, in fact, violate the safety property despite
there being a strategy to avoid that violation.

(b) The approach can potentially yield false alarms, wherein a failure of via-
bility does not necessarily lead to a property failure. It is entirely possible
that the environment does not exhibit the worst case behavior leading to a
failure of viability, but at the same time allowing the system to remain safe.
Nevertheless, such situations are important to note and fix, lest they lead
to an actual violation in a different instance.

The gap between safety monitoring and the notion of viability monitoring
presented in this paper can be narrowed by constraining the definition of via-
bility, in order to account for properties of the controller. The key here is to
restrict the control strategies used in Definition 2 to a smaller set of strategies
that include those employed by the controller. For instance, the range of control

352 H. Yoon et al.

inputs used by the actual controller implementation can be used to restrict the
strategies considered in Definition 2. More general abstractions of the controller,
if available, can also be employed in this manner. In doing so, the drawbacks
mentioned above can be partly addressed.

The rest of the paper is organized as follows: Sect. 2 describes the data-driven
modeling approach, Sect. 3 presents the basic algorithm for monitoring viability
efficiently, Sect. 4 presents how this algorithm is adapted and makes more efficient
specifically for geofencing. Finally, an evaluation based on actual UAV test flight
data under windy conditions is presented in Sect. 5. The evaluation shows that
the approach is generally successful in monitoring violations of safety properties
sufficiently ahead of time. Very few violations (< 1%) are missed by our monitors,
while at the same time the false positive rate is very small (< 0.3%). Proofs have
been omitted in order to conform to the page limits. All proofs are provided in
an extended version of this paper that will be available upon request.

1.1 Related Work

The use of real-time monitors to predict and act against imminent property
violations forms the basis for runtime assurance using L1-Simplex architectures
that switch between a lower performance but formally validated control when
an impending failure is predicted [23]. However, the key issue lies in the process
of predicting impending failures with high confidence. Often, predicting failures
involves computing control invariant sets, or solving reachability problems in
real time [8,14]. Previous work by some of the authors use a game theoretic
approach to monitor impending property violations for linear systems [10]. This
paper directly extends our previous work to probabilistic models. Additionally,
we showcase a realistic application to monitoring geofence violations. Recently,
the idea of shielding has been proposed for runtime assurance of autonomous
systems with human operators and learning-enabled systems. Formally, a shield
is a component that interfaces between a human operator or a complex controller
and the plant that can modify the control inputs in real time to avoid an erro-
neous state, or recover from one as quickly as possible [15]. The idea has been
applied to safe reinforcement learning wherein the shield restricts the actions
of the learner during the training phase and prevents a specification violation
during deployment phase [1]. Although the present work focuses on efficient
monitoring, our approach described here lends itself easily to the synthesis of a
shield component. However, a key difference is that our work focuses on predict-
ing the satisfaction of safety properties over a future state using a data-driven
model. Such a prediction is complementary to the process of shield synthesis
that focuses on corrective actions to avoid failures, or recover from them.

Recently, data-driven predictions of impending property violations have
received much attention. Phan et al. demonstrate the use of neural network
classifiers combined with offline statistical model checkers to predict if the cur-
rent state is likely to violate a property during a future time horizon [20]. Neural
networks are black boxes whose predictions must be trusted. Nevertheless, the

Predictive Runtime Monitoring 353

recent surge of interest in verifying neural networks bodes well for the use of
these models in monitoring applications.

Lygeros and Prandini (along with coworkers) have investigated stochastic
reachability analysis approaches for detecting and avoiding collisions between
aircrafts [16,22]. Their approach bears many similarities with ours: the use of
stochastic models to predict future positions with uncertainties and the use
of reachability analysis to estimate probability of collision. However, there are
many key differences: first, we use discrete time data-driven models inferred in
real time as we obtain recent historical data. We also monitor viability in order
to avoid reasoning about the on-board controllers.

Stevens et al. investigate the problem of monitoring geofences: on one hand
their work can monitor nonconvex geofence regions [25]. However, their monitor-
ing is not predictive: to enable prediction they simply narrow the safety region
so that a violation of the conservative region indicates a potential impending
violation of the original specification. In this work, we tackle the problem of pre-
dicting future loss in viability, more systematically, while accounting for wind
disturbances.

The work of Moosbrugger et al. presents another key application of data-
driven models for the runtime monitoring of UAVs [19]. Their approach uses a
combination of a Bayes network to model how various observable events may
result in hardware/software failures or security threats during the operation of a
UAV. Our approach also uses data-driven models, but to predict future positions
and velocities. Also, we monitor viability properties involving future positions of
the aircraft. We hope to investigate how ideas from Moosbrugger et al. (ibid) can
be incorporated into our framework to fuse observable events on-board UAVs
to better predict future positions. Besides predicting collisions, or monitoring
onboard health, data-driven models can be applicable to other aspects of flight
such as remaining fuel/power. Chati and Balakrishnan present a data-driven
Gaussian process model of aircraft fuel consumption, an important prediction
target during flight [6].

Vinod et al. consider the problem of finding control inputs to guaran-
tee future safety property of a linear stochastic system using ideas such as
dynamic programming, chance constrained optimization and Fourier transform
approaches [26,27]. Our work in contrast attempts to get rid of the stochastic
disturbances by finding a robust set to contain the disturbances. This has the
advantage of computational speed suitable for real-time monitoring. However,
we can only provide a sound rather than a precise solution for the monitoring
problem. Quantifying the gap between the two approaches will be performed in
our future work.

2 Data-Driven Model

In this section, we review our approach to formulating data-driven models that
augment an existing physical model of aircraft dynamics. We first start with the
overall structure of the model and explain how various parts of the model are
infered as well as the process of modeling the uncertainty.

354 H. Yoon et al.

We start with a simple physical model of an aircraft with current position
(x, y, z), velocities (vx, vy, vz) along a static reference frame fixed to the earth
and accelerations (ux, uy, uz) that are treated as control inputs. Let δ be a fixed
step size. Our experiments use δ = 0.4 s based on the data refresh rate from our
UAV platforms.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x(t + δ) = x(t) + δvx(t) + 1
2δ2ux + ex(t + δ)

y(t + δ) = y(t) + δvy(t) + 1
2δ2uy + ey(t + δ)

z(t + δ) = z(t) + δvz(t) + 1
2δ2uz + ez(t + δ)

vx(t + δ) = vx(t) + δux(t) + evx(t + δ)
vy(t + δ) = vy(t) + δuy(t) + evy(t + δ)
vz(t + δ) = vz(t) + δuz(t) + evz(t + δ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1)

We have introduced terms ex, ey, ez, evx, evy, evz model discrepancies between
the observed data at time t+ δ and that predicted by a simple Newtonian parti-
cle model of the UAV. We will call Eq. (1) as our core model that incorporates
the physical knowledge as well as unexplained discrepancies that may arise due
to model mismatch as well as the disturbances. The key is to model these dis-
crepancies as a function of the recent historical data. We wish to model each
error as a function of the past:

ex(t + δ) = a0ex(t) + · · · + ap−1ex(t − (p − 1)δ) + w(t + δ). (2)

Here a0, . . . , ap−1 are called the autoregressive coefficients, p is the history length
and w is a random variable drawn from a known probability distribution, and
independent of the current state variables. Such a model is called an autoregres-
sive (AR) model. Likewise, we formulate AR models for ey, ez, evx, . . . , evz. It
is important to fix the form of this model and the length of the historical data
needed.

2.1 Autoregressive Models

In this paper, we will model discrepancies e using a simple yet effective model-
ing paradigm called auto-regressive models with exogenous inputs (ARX) mod-
els [5,18]. ARX models are a simple approach to formulating linear models in
time-series forecasting. They are widely used in numerous applications especially
where simplicity and careful modeling of uncertainties are important. Further-
more, we prefer to explore the capabilities of such a simple approach to motivate
whether more complex nonlinear models can be useful. Consider again the form
of the discrepancy model in Eq. (2). To infer the coefficients a0, . . . , ap−1, we
first use our data to compute ex(t), ey(t), . . . , evz(t) for each time t = δ, . . . , Nδ
by substituting the known data in the core model (1).

Inferring Models (Regression): For discrepancy variables ex, ey, ez, evx,
evy, and evz, we set up models for fixed history lengths p as in Eq. (2). The dis-
turbance term w(t+ δ) is removed from the model and estimated later. For each

Predictive Runtime Monitoring 355

time t = 0, δ, . . . , (N − 1)δ, we obtain a single equation involving the unknowns
c : (a0, . . . , ap−1). As a result of plugging in the data, we obtain a system of
equations of the form: Ac ≈ b, wherein A, b are formulated from the data. How-
ever, there will be more equations than there are unknowns. Thus, our goal is
not to find a “perfect” solution to the equations, since one will not exist in all
but the rarest of cases. We use linear regression to minimize the residual error
min(||Ac−b||22). Often, we wish to minimize the residual error subject to sparsity
constraints on the coefficient. One approach to do is called ridge regression [13],
wherein we minimize min(||Ac−b||22+α||c||22), wherein α is a constant. The objec-
tive function represents a tradeoff between achieving low residual errors versus
keeping the sizes of the coefficients small. This is adjusted using the parameter
α. The regression problem is solved using well-studied approaches from linear
algebra such as Cholesky decomposition or conjugate gradient approaches. The
resulting solution yields the coefficients c of the ARX model.

Once we finish solving the regression, we estimate the distribution of the
residuals w(t), by modeling the distribution of the residual error vector Ac − b.
This can be achieved in one of two ways: (a) carrying the residual vector Ac − b
and randomly sampling a value from it when needed to obtain a sample; (b)
modeling the error as a distribution such as a Gaussian distribution by comput-
ing its mean and standard deviation. Statistical tests such as the chi-squared
tests can help us estimate how close the residual distribution is to being a Gaus-
sian. We adopt the latter approach since for all our datasets seen in this paper,
we obtain excellent fits to the Gaussian distribution. The distribution mean is
obtained as the empirical mean of the residuals Ac − b and the standard devia-
tion is obtained as the empirical standard deviation. The final form of the ARX
model is therefore given by Eq. (2) with w modeled as a sample from a Gaussian
distribution with a given mean and standard deviation.

Example 1. The equation below partially illustrates a model for x, y, z with ex, ey

and ez. Note that δ = 0.4.

x(t + δ) = x(t) + δvx(t) + 1
2δ2ux + ex(t)

y(t + δ) = y(t) + δvy(t) + 1
2δ2uy + ey(t)

z(t + δ) = z(t) + δvz(t) + 1
2δ2uz + ez(t)

ex(t + δ) = 0.57ex(t) + 0.39ex(t − δ) + w1 (σ1 : 0.13)
ey(t + δ) = 0.49ey(t) + 0.27ey(t − δ) + w2 (σ2 : 0.14)
ez(t + δ) = 1.35ez(t) − 0.39ez(t − δ) + w3 (σ3 : 0.053)

The terms w1, w2, w3 are Gaussian random variables with 0 mean and vari-
ances σ1, σ2 and σ3, respectively, as shown.

Model Updating: We briefly comment on model updating. UAV environments
involve changes to aircraft dynamics due to wear and tear, payload variations
and fuel loss as well as changes in wind conditions. As a result, it is important
to update the model using the “latest” available data. In our experiments, the
process of constructing the model from nearly 2000 data points takes less than
0.1 s. As a result, it is possible to keep updating the model in real time. Another

356 H. Yoon et al.

alternative is to update the distributions of w(t) over time using the residuals
computed based on real data. For the rest of the paper, we consider the model
to remain fixed for all times. Schemes for updating the model in real time are
beyond the scope of the current work. We hope to investigate them as part of
future work.

3 Viability Monitoring

We will now present viability monitoring for linear stochastic systems.

Definition 3 (Plant Model). A plant model P is given by a tuple
〈δ,A,B,C,U ,D〉 with a time step δ > 0, state vector x (t) ∈ R

n, a control
input vector u(t) ∈ R

m and a disturbance input vector w(t) ∈ R
k. At each step,

the state of the plant model is updated according to the matrices A ∈ R
n×n,

B ∈ R
n×m and C ∈ R

n×k.

x (t + δ) = Ax (t) + Bu(t) + Cw(t),

wherein u(t) ∈ U and w(t) ∼ D , i.e., w(t) is distributed according to D .

We will make the following assumptions on the structure of the plant model.

(1) The set U is a box wherein each component ui belongs to an interval
[aui

, bui
]. Later, this assumption will enable us to simplify the overall mon-

itoring algorithm.
(2) The distribution D is normal wherein each component wi(t) for 1 ≤ i ≤ k is

distributed according to a gaussian random variable with mean 0 and stan-
dard deviation σi. Furthermore, random variable wi(t), wj(t) are pairwise
independent for i
= j. Also, random variables w(t),w(t′) are independent
for t′
= t.

We note that the data-driven model discussed in Eqs. (1) and (2) in Sect. 2
fit the structure of our plant model. The state x consists of the following:

x(t), y(t), z(t)
︸ ︷︷ ︸

Position

, vx(t), vy(t), vz(t)
︸ ︷︷ ︸

Velocities

, ex(t), . . . , ex(t − (p − 1)δ)
︸ ︷︷ ︸

ARX model state

, · · · , evz (t), . . . , evz (t − (p − 1)δ)
︸ ︷︷ ︸

ARX model state

.

Let F be a set of safe states x defined by constraints of the form P x ≤ q for
a l × n matrix P and l × 1 vector q . For a fixed parameter θ ∈ (0, 1), we define
θ viability formally in terms of the plant model.

Definition 4 (θ-viable). A state x is said to be θ-viable with respect to a plant
model P and time T = Nδ if an only if

(∃u(0), . . . , u((N − 1)δ) ∈ U N) Pw(0)∼D ,...,w((N−1)δ)∼D (x (Nδ) ∈ F) ≥ θ . (3)

Predictive Runtime Monitoring 357

3.1 Sufficient Condition for θ-Viability

We will now present the derivation for a sufficient condition for θ viability given
an initial state x (0). For simplicity, we will assume that there is no uncer-
tainty with respect to the initial state itself. However, such uncertainties can
be easily modeled in our framework. Let u(t) denote the control inputs at time

t ∈ {0, . . . , (N −1)δ}, such that u(t) ∈ U . Let vj :

⎛
⎜⎝

u(0)
...

u((j − 1)δ)

⎞
⎟⎠ for j ≥ 1, be

the vector that collects the control inputs over time points t ∈ {0, δ, . . . , (j−1)δ}.

Let Vj be the set of admissible values of vj . Finally, let zj :

⎛
⎜⎝

w(0)
...

w((j − 1)δ)

⎞
⎟⎠

collect the disturbance inputs over the time points {0, δ, . . . , (j − 1)δ}. We can
calculate x (Nδ) as follows:

x (Nδ) = ANx (0) + BNvN + CN zN . (4)

The matrix AN is defined by the recurrence: Aj = AAj−1, j ≥ 2, with
base case A1 = A. BN is defined by the recurrence Bj = [ABj−1 B]
for j ≥ 2, with base case B1 = B. Likewise, Cj = [ACj−1 C] for
j ≥ 2, with base case C1 = C.

Lemma 1. Given AN , BN , CN and the vectors vj , zj, as described above, for
any initial state x0 at time t = 0, x (Nδ) = ANx0 + BNvN + CN zN .

Note: All proofs are provided in the extended version made available upon
request.

Robust Disturbance Sets: Equation (3) involves checking an existentially quanti-
fied formula involving an integration over zN . Such assertions are called chance
constraints, and can be quite expensive to verify [26]. We perform a reduction of
the chance constraints through a simple trick of replacing the integration with
a forall quantifier by using a robust disturbance set.

Definition 5 (θ-robust set). Let z ∼ D . A set Zθ is said to be θ-robust for
distribution D if P(z ∈ Zθ) ≥ θ.

In general, there are many possible choices of θ-robust sets, given the distri-
bution of each disturbance input vector w(t). For instance, if w(t) is a normally
distributed random variable N (0 , σ2In×n) with mean 0 and co-variance matrix
Σ : σ2In×n, then the following hyper-spherical region is θ-robust:

Zθ,Σ = {w | wT Σ−1w ≤ χ2
n(1 − θ)} , (5)

wherein χ2
n(1 − θ) represents the upper (1 − θ) quantile of the standard chi-

squared distribution with n-degrees of freedom, whose value can be looked up

358 H. Yoon et al.

from a table. Therefore, to derive a sufficient condition for checking θ-viability,
we first select a θ-robust set Zθ such that P(zN ∈ Zθ) ≥ θ. Next, we check the
assertion:

(∃vN ∈ VN) (∀zN ∈ Zθ) x (Nδ) ∈ F (6)

Lemma 2. The condition in Eq. (6) implies the viability definition in Eq. (3).

Therefore, once Zθ is chosen, the computation reduces to checking (6). How-
ever, this involves a single quantifier alternation and thus, computational expen-
sive. However, the structure of the plant model can be exploited as follows:

First, we note that the set of possible states x (Nδ) in Eq. (4) is the sum
of three individual components that can each be chosen independently of the
others: (a) constant vector ANx (0) (no real choice here), (b) a vector of the
form BNvN indicating the contribution from the control strategy, and (c) a
disturbance vector chosen from the set:

Ẑ : {CN zN | zN ∈ Zθ} (7)

Thus, the key observation is that the reachable set at time Nδ is a Minkowski sum
of three sets, as described above. We will now define the operation of Minkowski
difference of two sets and directly use it to remove the quantifier alternation in
Eq. (6).

Definition 6 (Minkowski Difference). Let A,B ⊆ R
n be two sub-

sets. The Minkowski difference A B is defined as the set: A B :
{a | (∀ b ∈ B) a + b ∈ A}.
Therefore, returning to Eq. (6), we use the definition of Ẑ from Eq. (7), and the
notion of Minkowski difference to obtain an equivalent condition:

(∃ vN ∈ VN)ANx0 + BNvN ∈ (F Ẑ) (8)

Lemma 3. The condition in Eq. (8) is equivalent to that in Eq. (6).

Computing Minkowski Difference: It is essential to compute the Minkowski dif-
ference between a polyhedron F given by constraints P x ≤ q and a set Ẑ. We
use the following properties to compute this difference efficiently for polyhedral
sets.

Lemma 4. Consider a family of sets Aj for j = 1, . . . , l. (
⋂l

j=1 Aj) B =⋂l
j=1(Aj B).

Lemma 5. Let Aj be a set denoted by a half-space {x | aj · x ≥ bj} and B be a
compact set. Let Δj be the result of the optimization problem min aj ·x s.t. x ∈ B.
The set Aj B is the half-space Âj given by {x | aj · x ≥ bj − Δj}.

The lemma above provides us the ingredients for computing F Ẑ for a
polyhedron F given by the intersection of l > 0 half-spaces, and a set Ẑ. This
involves solving optimization problems of the form (min a · z s.t. z ∈ Ẑ). If
Ẑ is a convex set, then computing Δ can be performed efficiently using convex
optimization solvers [4].

Predictive Runtime Monitoring 359

Lemma 6. The Minkowski difference of a polyhedron F : P x ≤ q and a compact
set Ẑ is given by a polyhedron G : F Ẑ of the form G : P x ≤ q − Δ, wherein
Δj : min Pjx s.t. x ∈ Ẑ.

3.2 Overall Monitoring Algorithm

We will now present the overall monitoring algorithm as a combination of (a)
upfront offline calculations, and (b) the real-time online monitor.

Offline Calculations: The offline calculations are performed given the plant
model P : 〈A,B,C,U ,D〉 (Definition 3), and the safety property F as a convex
polyhedron P x ≤ q .

1. Compute matrices AN , BN and CN using Θ(N) matrix multiplication oper-
ations.

2. Compute a θ-robust set Zθ. Since the disturbance inputs are distributed nor-
mally, we use Eq. (5) to choose one Zθ.

3. Compute the polyhedron for F Ẑ, wherein Ẑ : {CN z | z ∈ Zθ} using
Lemma 6. Since Zθ is a convex quadratic, this is technically a quadratically
constrained quadratic program (QCQP).

Online Calculations: The results of the offline calculations include matri-
ces (AN , BN) and the set G : F Ẑ. The online monitor receives the
current state estimate x0 and the current controller input u0. Since vN =
(u(0), u(δ), · · · , u((N − 1)δ))T . We will set u(0) = u0 and let u(δ), . . . , u((N −
1)δ) be unknown decision variables. The monitor checks the following constraint
(Eq. (8)):

(∃ u(δ) ∈ U , · · · , u((N − 1)δ) ∈ U) ANx0 + BN

⎛
⎜⎜⎜⎝

u0

u(δ)
...

u((N − 1)δ)

⎞
⎟⎟⎟⎠ ∈ G (9)

Note that we can use a linear programming (LP) solver to check the condition
above. If it is feasible, we conclude that the system is viable. Otherwise, we flag
a potential violation of viability. Solving a LP can be performed efficiently in
polynomial time [11] and real-time solvers have been pioneered for applications
to model-predictive control [17]. However, as we will examine in the subsequent
section, it is possible to efficiently monitor a single half-space of the geofence,
while completely avoiding the LP solver.

4 Monitoring for Geofence Violations

In this section, we use the implementation of the monitoring approach from
Sect. 3 for checking geofences for UAVs. A geofence is defined by a (disjoint union

360 H. Yoon et al.

of) polyhedral regions over R3 that defines the possible (x, y, z) coordinates of an
aircraft over time. Let F denote the polyhedral region. We will use a data-driven
plant model P that is inferred from the telemetry data including positions and
velocities over time, as described in Sect. 2. The data is updated with a small
time period δ (0.4 s). We will choose a time horizon Nδ (typically in the range
5–20 s). The monitoring approach uses the following improvements on top of the
base algorithm from Sect. 3:

1. Monitoring Single Half-spaces: We show that the approach in Sect. 3 can be
simplified considerably if we can monitor one half-space at a time. This is
natural for geofencing applications, wherein the safety property represents a
large geographical region.

2. Receding horizon monitoring: We deploy N monitors M1, . . . ,MN in parallel
wherein Mj monitors the viability for time jδ into the future.

Monitoring Single Half-Spaces: We will now derive an efficient monitor when
the safety property F is defined by a single half-space: F : {x | c · x ≥ d}.
We will also assume that U , the bounds on the control inputs is a box with
each control input ui ∈ [ai, bi]. The restriction to a single half-space can be
justified for geofence regions that are large enough so that if they are violated,
the violation will occur by crossing a single hyperplane of the polyhedron rather
than crossing the intersection of multiple regions simultaneously. We will now
derive the monitoring conditions, following the same approach as in Sect. 3.
However, we will do so for the special case when F is a single half-space.

Given x (Nδ) = ANx0 + BNvN + CN zN , we have c · x (Nδ) = (cT AN)x0 +
(cT BN)vN + (cT CN)zN . Therefore, c · x (Nδ) ≥ d if and only if there exists
vN ∈ VN such that the following condition holds with probability at least θ:

(cT AN)x0 + (cT BN)vN + (cT CN)zN ≥ d (10)

Note that the disturbance term (cT CN)zN is a scalar normal random variable
with 0 mean and whose standard deviation can be computed as a weighted sum
of the individual standard deviations of the component random variables. There-
fore, let [−M,M] represent an interval such that P((cT CN)zN ∈ [−M,M]) ≥ θ.
In other words, we choose a θ-robust set, that is an interval. Therefore, a suffi-
cient condition for Eq. (10) is as follows:

(∃ vN ∈ VN) (cT BN)vN ≥ d + M − (cT AN)x0 (11)

vN collects all the control inputs u(0), . . . , u((N − 1)δ). Thus, Eq. (11) is
“expanded” as

(∃u(δ) ∈ U , . . . , u((N − 1)δ) ∈ U)
N−1∑
j=0

m∑
i=1

ĉi,jui(jδ) ≥ d̂ , (12)

Predictive Runtime Monitoring 361

wherein ĉi,j represents the component of cT BN corresponding to the control
input ui(jδ) (the ith component of the control input at time t = jδ) and d̂ =
d + M − (cT AN)x0. Note that the value of ui(0) is known, and for j ≥ 1,
ui(jδ) ∈ [ai, bi]. We define ûi,j as follows:

ûi,j =

{
bi if ĉi,j ≥ 0
ai if ĉi,j < 0

Lemma 7. The condition (12) is satisfiable iff

N−1∑
j=1

m∑
i=1

ĉi,j ûi,j ≥ d̂ −
m∑

i=1

ĉi,0ui(0). (13)

In other words, monitoring a single half-space can avoid using LP solvers,
and instead, rely on efficient matrix vector multiplication operations.

Finding largest θ value for viability: Rather than fixing a value of θ and checking
θ-viability, a simple modification to Eq. (11) allows us to find the largest value
of θ for which viability can be guaranteed. To do so, we find a value of M which
corresponds to the minimum possible disturbance that can continue to maintain
viability. This is convenient since it allows us to compute a risk measure rather
than a yes/no answer.

5 Evaluation

We now present a preliminary evaluation of the ideas presented, thus far, based
on viability monitoring applied to telemetry data collected from a test flight
of the Talon UAV running a Pixhawk autopilot [21,28]. The test flight was
carried out over the Pawnee national grassland in the USA during summer 2017
and the data recorded included GPS positions, velocities and accelerations in
x, y, z directions. Note that accelerations are treated as the control inputs to
our model. The Talon UAV flight data includes about 4500 s of flight data with
data collected at δ = 0.4 s intervals. We dropped the first 800 s that consisted
of take off followed by loitering. The subsequent 800 s of data were used as
the training set for inferring a data-driven model. The estimated average wind
speed was about 3 m/s. However, detailed wind data was not collected for these
experiments.

362 H. Yoon et al.

(a) (b)

Fig. 2. Sample trajectory segments over time intervals (a)
[1600, 1680] s and (b) [4000, 4080] s from start of flight test. Two
geofence boundaries are shown as red lines. The monitor uses a
time horizon N = 15 (6 s). Arrows denote the direction of the
UAV’s flight. Data points are shaded red if a violation results
and blue/black depending on the magnitude of the viability
probability θ(t). (Color figure online)

Data-Driven Model:
We used regres-
sion to infer AR
models for cap-
turing the devia-
tions, as explained
in Sect. 2. The value
of the lookback (p)
was chosen to be
p = 4, so that
the overall stan-
dard deviation of
the residuals was
minimized. The com-
bined model has
30 state variables
that include the
positions (x, y, z), velocities (vx, vy, vz), and the AR model states for
ex, ey, ez, evx

, evy
, and evz

. The disturbances were taken to be normal random
variable with mean and standard deviations estimated from the residual errors
obtained after fitting the AR model. The mean values were very close to 0, lying
in the range [−0.05, 0.05] in all cases, and thus taken to be exactly zero. All cal-
culations were performed in Matlab(tm) running on a macbook pro laptop with
3.1 GHz Intel Core i7 and 16 GB RAM. The time taken to perform regression
was less than 0.05 s. The matrices A,B,C for the plant model are sparse and
thus we use sparse matrix manipulations available in Matlab(tm).

To what extent can a viability monitor be used to flag safety violations?
As mentioned earlier, viability and safety are rather different. On one hand,
the UAV can violate the geofence without causing a failure of viability. This
is because, there may always be a N step strategy to keep the violation from
happening, whereas the actual controller is unable to implement this strategy.
On the other, a loss of viability does not mean that safety will be violated. After
all, the environment may not have manifested its worst case behavior. Model
mismatch between the linear stochastic data-driven model and the underlying
nonlinear model can potentially make the issue of missed violations and false
alarms much worse. We will now perform an empirical evaluation of the viability
monitor, focusing on its ability to predict an impending violation as well as the
false alarm rate.

Predictive Runtime Monitoring 363

Violation
Point

Alarm?

N steps

G
eo
fe
nc
e

B
ou
nd
ar
y

Violation?

Alarm
Raised

N steps

G
eo
fe
nc
e

B
ou
nd
ar
y

Fig. 3. (Left): For each violation point, is there an
alarm raised N steps in the past for various values of
N? (Right): For each alarm raised by the monitor, is
there a violation of the geofence N steps into the future?

Figure 2 shows two
example scenarios for a
fixed geofence property
shown, each correspond-
ing to roughly 80 s of
flying time taken from
our data. We defined
geofence boundaries and
use our monitors with
N = 15 to check for via-
bility. Note that in both,
the viability monitor is
able to provide advance
warning of an impending
violation (shown using red circles). However, the viability monitor differs from
a safety monitor: this is clearly seen at points that are shaded blue/black even
though the UAV remains in violation of the geofence. This is because the moni-
tor infers the existence of a strategy for the UAV to get back into the geofence
within the time horizon.

Empirical Evaluation on Randomly Generated Geofence Specifications: The
empirical evaluation is carried out over segments of the data past the initial
800 s of data used for training. We defined various randomly generated half-
spaces c1x + c2y + c3z ≥ d as the geofences to be monitored. For each such
geofence, we ran 30 monitors wherein the ith monitor has its time horizon of
N = i. First, we define violation points for the geofence, wherein time t is said
to be a violation point iff the position at time t violates the geofence whereas
the position at the previous time step t − δ satisfies the geofence specification
(see Fig. 3). We analyze our data in order to answer three questions Q1–3, with
Q1, Q2 focusing on missed alarms whereas Q3 focusing on alarms that do not
materialize in a violation.

1. Q1: How far ahead of a violation point do we obtain the earliest alarm cor-
responding to that point?

2. Q2: What fraction of the violation points are alarmed by monitor with looka-
head time N = i for various values of i ∈ [1, 30]?

3. Q3: If a monitor with lookahed of i, raises an alarm at time t, does the UAV
position at t + iδ violate the geofence?

We studied 250 randomly generated geofence specifications and instantiated
30 monitors for each specification with time horizons ranging from 1–30. The
offline calculations yield matrices cT AN , cT BN and cT CN , wherein c represents
the normal vector to the hyperplane describing the geofence. The online monitor
uses the calculations presented in Sect. 4 using lower bounds and upper bounds
on the accelerations. These were taken to be ±2 m/s2 for our calculations based
on the acceleration inputs observed in the actual data. For each state x (t) and
control u(t), we calculate θ(t) the largest value of θ for which the property of

364 H. Yoon et al.

interest can be guaranteed to be viable. We use a threshold of 0.95 for reporting
violations: i.e., if θ(t) ≤ 0.95, we report potential violations.

Computation Times: First, we will analyze the overall computation times taken
for various phases of our approach. The model construction solving a linear
regression problem required 0.1 s using Matlab (tm) to solve the least squares
problem. The use of sparse matrix computations yielded significant savings in
the overall computation time. The average offline computation time required for
each geofence property was 0.15 s. This includes the offline computation time
for all the 30 monitors that were instantiated corresponding to each geofence.
Likewise, the average online computation time at each time instant was 0.09 s
for all 30 monitors. Recalling that the monitors looked ahead between 1–30 steps
with 0.4 s/step, these times are much smaller than the overall time horizon.

Fig. 4. (Left): Histogram showing the number of steps between a known violation
event and the earliest alarm corresponding to the event using monitors with time
horizon ranging from 1–30. 0 steps is used to indicate that all monitors deployed did
not alarm for a given violation. (Middle): The fraction of violation points successfully
predicted by a monitor looking ahead i steps for i ∈ [1, 30]. (Right): Fraction of false
alarms for monitor looking ahead N = i steps into the future for i ∈ [1, 30]. Notice
that the y-axis numbers are scaled by 10−3.

Analysis of Missed Violation Points: Figure 4 (left) plots the number of steps
between a violation point and the earliest alarm corresponding to that violation.
We use 0 steps to indicate that a violation point was missed by all monitors. We
note that 99% of the violation points are detected at least 1 step (0.4 s ahead). In
fact, nearly 98.5% of the violation points are detected 0.8 s ahead, while 65% of
the violation points are detected more than 2 s ahead of time. At the other end,
about 15% of the violation points are detected 12 s ahead of time. Interestingly,
we note a strong correlation between violations that are predicted 15–29 steps in
advance and those predicted 30 steps in advance. In other words, most violations
that are predicted 15 steps in advance are also predicted 30 steps in advance.

Figure 4 (middle) focuses on individual monitors monitoring 1–30 steps
ahead in the future and the fraction of violation points successfully predicted by
each monitor. As expected, the monitors looking ahead less than 5 steps (≤ 2s)
are successful more than 90% of the time in predicting violation points, whereas
monitors 30 steps ahead predict less than 20% of the violation points. Overall,

Predictive Runtime Monitoring 365

the analysis shows that using a bank of monitors in parallel wherein each mon-
itor has a different lookahead time horizon can reduce the cumulative missed
alarm rate to less than 1%. However, this also means that impending violations
may be caught as early as 12 s in some cases, and as late as 0.4 s in advance in
some cases with most alarms occuring between 2–4 s ahead of a violation.

Analysis for False Positives: Another key issue is that of false positives. To
analyze for false positives, we focus on each alarm raised by the monitor that
looks ahead N = i steps into the future at time t and ask whether the UAV
violates the geofence at time t + iδ. Figure 4 (right) shows what fraction of the
alarms do not result in corresponding violations i steps into the future. We note
that the false positive rate is quite tiny: I.e., most alarms do result in violations.

6 Conclusions

To conclude, we present the notion of θ-viability and derive sufficient conditions
for monitoring whether or not a linear system driven by stochastic disturbances
is θ viable at its current state. We apply this to geofence monitoring of UAVs.
Our experimental evaluation shows that the viability monitor can provide useful
advance warnings 5–10 s before a violation. Our future work will investigate
strategies for model validation and updating, which is not studied in this paper.
We also plan to consider multi-modal approaches wherein different modes such
as loitering, turning and waypoint following are modeled differently.

Acknowledgements. We are grateful to Drs. Jyotirmoy Deshmukh and Derek
Kingston for valuable discussions. This work was funded in part by the US National
Science Foundation (NSF) under award number 1815983, the US Airforce Research
Laboratory and the NSF-IUCRC Center for Unmanned Aerial Systems (C-UAS). All
ideas and opinions expressed here are those of the authors and do not necessarily
represent those of NSF, AFRL or C-UAS.

References

1. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: Thirty-Second AAAI Conference on Arti-
ficial Intelligence (2018)

2. Althoff, M.: An introduction to CORA 2015. In: Proc. of the Workshop on Applied
Verification for Continuous and Hybrid Systems, pp. 120–151 (2015)

3. BBC News: Heathrow airport: Drone sighting halts departures, bBC News
8 January 2019: Cf. https://www.bbc.com/news/uk-46803713

4. Boyd, S., Vandenberghe, S.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

5. Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods. Springer Series in
Statistics, 2nd edn. Springer, New York (2009)

6. Chati, Y.S., Balakrishnan, H.: A gaussian process regression approach to model
aircraft engine fuel flow rate. In: Proceedings of the 8th International Conference
on Cyber-Physical Systems, ICCPS 2017, pp. 131–140 (2017)

https://www.bbc.com/news/uk-46803713

366 H. Yoon et al.

7. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

8. Chen, X., Sankaranarayanan, S.: Decomposed reachability analysis for nonlinear
systems. In: 2016 IEEE Real-Time Systems Symposium (RTSS), pp. 13–24. IEEE
Press, November 2016

9. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Taylor model flowpipe construc-
tion for nonlinear hybrid systems. In: Proceedings RTSS 2012, pp. 183–192. IEEE
(2012)

10. Chen, X., Sankaranarayanan, S.: Model-predictive real-time monitoring of linear
systems. In: IEEE Real-Time Systems Symposium (RTSS), pp. 297–306. IEEE
Press (2017)

11. Chvátal, V.: Linear Programming. Freeman (1983)
12. Duggirala, P.S., Potok, M., Mitra, S., Viswanathan, M.: C2E2: a tool for verifying

annotated hybrid systems. In: Proceedings of the 18th International Conference on
Hybrid Systems: Computation and Control, HSCC 2015, Seattle, WA, USA, 14–16
April 2015, pp. 307–308 (2015)

13. Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal
problems. Technometrics 12(1), 55–67 (1970)

14. Johnson, T.T., Bak, S., Caccamo, M., Sha, L.: Real-time reachability for verified
simplex design. ACM Trans. Embedd. Comput. Syst. 15(2), 29 (2016)

15. Könighofer, B., et al.: Shield synthesis. Formal Methods Syst. Des. 51(2), 332–361
(2017)

16. Lygeros, J., Prandini, M.: Aircraft and weather models for probabilistic collision
avoidance in air traffic control. In: Proceedings of the 41st IEEE Conference on
Decision and Control, 2002, vol. 3, pp. 2427–2432, December 2002

17. Mattingley, J., Wang, Y., Boyd, S.: Receding horizon control: automatic generation
of high-speed solvers. IEEE Control Syst. Mag. 31(3), 52–65 (2011)

18. McLeod, A.I., Li, W.K.: Diagnostic checking arma time series models using
squared-residual autocorrelations. J. Time Series Anal. 4(4), 1467–9892 (1983)

19. Moosbrugger, P., Rozier, K.Y., Schumann, J.: R2u2: monitoring and diagnosis of
security threats for unmanned aerial systems. Formal Methods Syst. Des. 1, 31–61
(2017)

20. Phan, D., Paoletti, N., Zhang, T., Grosu, R., Smolka, S.A., Stoller, S.D.: Neural
state classification for hybrid systems. In: Lahiri, S.K., Wang, C. (eds.) ATVA
2018. LNCS, vol. 11138, pp. 422–440. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01090-4 25

21. Pixhawk: Independent open-hardware autopilot (2018), cf. pixhawk.org. Accessed
October 2018

22. Prandini, M., Lygeros, J., Nilim, A., Sastry, S.: Randomized algorithms for prob-
abilistic aircraft conflict detection. In: Proceedings of the IEEE Conference on
Decision and Control, vol. 3, pp. 2444–2449, February 1999

23. Sha, L.: Using simplicity to control complexity. IEEE Softw. 18(4), 20–28 (2001)
24. Stevens, M.N., Atkins, E.M.: Multi-mode guidance for an independent multicopter

geofencing system. In: 16th AIAA Aviation Technology, Integration, and Opera-
tions Conference, p. 3150. AIAA (2016)

25. Stevens, M.N., Rastgoftar, H., Atkins, E.M.: Specification and evaluation of
geofence boundary violation detection algorithms. In: International Conference on
Unmanned Aircraft Systems (ICUAS), pp. 1588–1596. IEEE (2017)

https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-030-01090-4_25
https://doi.org/10.1007/978-3-030-01090-4_25
http://pixhawk.org

Predictive Runtime Monitoring 367

26. Vinod, A.: Scalable Stochastic Reachability: Theory, Computation, and Control.
Ph.D. thesis, University of New Mexico (2018)

27. Vinod, A.P., Gleason, J.D., Oishi, M.M.K.: SReachTools: A MATLAB Stochastic
Reachability Toolbox, 16–18 April 2019. https://sreachtools.github.io

28. Watza, S.Z.: Assessment of an online RF propagation hybrid architecture for
communication-aware small unmanned aircraft systems (2018)

https://sreachtools.github.io

Reactive Control Meets Runtime
Verification: A Case Study of Navigation

Dogan Ulus(B) and Calin Belta

Boston University, Boston, MA, USA
doganulus@gmail.com

Abstract. This paper presents an application of specification based run-
time verification techniques to control mobile robots in a reactive man-
ner. In our case study, we develop a layered control architecture where
runtime monitors constructed from formal specifications are embedded
into the navigation stack. We use temporal logic and regular expressions
to describe safety requirements and mission specifications, respectively.
An immediate benefit of our approach is that it leverages simple require-
ments and objectives of traditional control applications to more com-
plex specifications in a non-intrusive and compositional way. Finally, we
demonstrate a simulation of robots controlled by the proposed architec-
ture and we discuss further extensions of our approach.

1 Introduction

Mobile robots are designed to work either in static and fully predictable environ-
ments such as automated warehouses or in open, partially unknown, and con-
stantly changing environments. Classical deliberative control often works well
for the former case while being inadequate or very inefficient for the latter.
Alternatively, in reactive control approaches, robots continuously observe the
environment at every level and thus are able to react and adapt to previously
unknown circumstances. A common point between reactive control and runtime
verification is that they both trade the completeness guarantees of deliberate
control and model checking for online computation, practicality, and scalability.
Following this synergy and growing interest in robotics using formal specifica-
tions, we think runtime verification techniques can raise the level of abstraction
and assurance of reactive controllers in robotic applications.

In this paper, we explore the combination of reactive control and runtime
verification techniques to construct controllers for mobile robots that satisfy
given safety requirements and high-level mission specifications. To this end, we
use a multi-layered architecture that can be seen in many reactive controllers
and enhance each layer with runtime monitors1 to search for desired behaviors
on-the-fly. We depict our navigation architecture that contains several compo-
nents from reactive control and runtime verification domains in Fig. 1. At the

1 https://github.com/doganulus/python-monitors.

c© Springer Nature Switzerland AG 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 368–374, 2019.
https://doi.org/10.1007/978-3-030-32079-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_21&domain=pdf
https://github.com/doganulus/python-monitors
https://doi.org/10.1007/978-3-030-32079-9_21

Reactive Control Meets Runtime Verification: A Case Study of Navigation 369

Monitor
Mission Select Goal

Monitor
Requirements

Generate
Routes

Select
Sub-Goal

Monitor
Requirements

Generate
Trajectories

Select
Controls

Runtime Verification

R
ea
ct
iv
e
C
on

tr
ol

Robot

Fig. 1. The navigation stack used in the case study

bottom layer of the architecture, we employ limited trajectory search to devise
the short-time motion of the robot. Runtime monitors are embedded to find
trajectories that satisfy low-level safety properties such as collision avoidance
and one-way regulations. The middle layer addresses the shortcomings of short-
horizon trajectories by searching for a route over a connectivity graph of the
environment. Mid-level safety properties for the graph traversal (e.g. avoiding
specific areas) are similarly checked using runtime monitors in this layer. Once
undesired trajectories and routes are filtered out, we use a number of features
and heuristics to select the best one among the remaining. Repeating these pro-
cedures in real-time produces a safe motion for the robot to reach a specific
(goal) location relative to trajectory/route generation specifics. Finally, the top
layer is designated for high-level mission control that enforces the correct order
of locations to be visited and we similarly employ runtime monitors constructed
from mission specifications for the mission control.

2 Environment, Robots, and Specifications

For our case study, we will work on a relatively complex 2D environment designed
to give a representative view of real challenges without introducing too much
detail. Depicted on the left of Fig. 2, our environment represents an office space
with rooms (R1–R6), narrow passages (such as doors D1–D6), named locations
(A–D), and some regulations at certain regions (one-way regions) including other

R1 R2 R3

R6R5R4

D1 D2 D3

D4

D5 D6A

D6B

A

B

C

D

D6A

D6B

D3D2D1

D4 D5

D B

A
C

Fig. 2. Environment maps: Geometric on the left and topological on the right

370 D. Ulus and C. Belta

(possibly uncontrolled) agents. We use a unicycle velocity-controlled model for
the robot dynamics where the state space is defined by robot’s position (x, y)
and orientation θ, and controlled by forward and angular velocity commands
u = (v, ω). It is of critical importance that the complexity of the environment
determines the complexity of specifications and monitoring. For a static environ-
ment (that is to say, nothing changes outside of our control), we do not need any
runtime monitoring at all. This is obviously a very strong assumption for many
cases. On the other hand, if dynamic obstacles (such as other agents) exist in the
environment, we have to at least add a basic monitoring mechanism that checks
simple propositions—will the robot collide with anything soon or did the robot
reach its goal? Moreover, if we have more complex regulations and tasks to com-
plete in the environment, runtime monitors automatically constructed from rich
specification languages seem a preferable option. Therefore, our robots in this
study are assigned to perform complex navigation missions, specified by regular
expressions, while avoiding static and dynamic obstacles as well as satisfying
desired properties and regulations, specified by temporal logic formulas.

3 Search for Safe Motion

We here demonstrate an application of runtime monitors in searching for the
desired safe behavior enhancing existing trajectory and route search algo-
rithms. The general procedure can be summarized in three steps: (1) Gener-
ating a number of alternative behaviors (trajectories or routes), (2) discard-
ing unsafe/undesired behaviors using runtime monitors, and (3) selecting the
best remaining (thus safe) behaviors according to a predefined set of heuris-
tics. Importantly, the extent of these search processes is limited due to available
computational resources as well as that long-term complete plans may become
invalid very quickly in dynamic and uncertain environments. In the following,
we give more details about search procedures and actual properties used in the
case study.

Trajectory Search. Dynamic Window Approach (DWA) [3] is a well-known
collision avoidance and local motion planning algorithm that uses search pro-
cedures to find control actions (velocity commands) while considering robot’s
dynamics. The search space of DWA is limited by maximum acceleration avail-
able to the robot as depicted on the left of Fig. 3 and the algorithm samples a set
of control actions. Then it calculates the future trajectories of each alternative
action over a limited time horizon as illustrated on the right of the figure.

Originally being a collision avoidance algorithm, the only safety requirement
over these trajectories considered in DWA is never getting dangerously close to
obstacles, which is usually hard-coded into the algorithm. On the other hand, we
are interested in checking such requirements using runtime monitors so that we
can extend the approach for any temporal logic formula. We start our case study
by expressing the collision avoidance requirement in temporal logic as follows.

never(dangerously close(obstacles)) (CA)

Reactive Control Meets Runtime Verification: A Case Study of Navigation 371

where dangerously close is a predicate that computes whether any intersection
occurs between obstacles and robot’s footprint.

−4 4

−6

6

Change in Angular Velocity (Δω)

C
ha

ng
e
in

Fo
rw

ar
d
V
el
oc
it
y
(Δ

v
)

Fig. 3. (Left) A finite set of admissible velocity commands for the next time step
relative to the current velocity. The search space, depicted in gray, is constrained by
maximum allowed accelerations of the robot. (Right) Future trajectories of the robot
simulated for each admissible velocity command. Dashed trajectories contain a viola-
tion in specification so commands that lead to these trajectories are discarded.

In this case study, besides collision avoidance, we also want our robot to obey
one-way regulations of the environment, which state that robots have to move in
a single direction inside certain regions. The direction of one-way regions is either
west or east in our environment. We call these regions westways and eastways
accordingly and predicates inside westway and inside eastway check whether
the robot is in these regions. Moreover, we define some auxiliary formulas to
detect whether the robot just entered a one-way region such that

entered eastway : inside eastway and not previously inside eastway

entered westway : inside westway and not previously inside westway

The desired direction in a one-way region is checked by predicates going east
and going west and we write our safety properties for each type of one-way
regions as follows:

inside eastway implies (going east since entered eastway) (OW-E)
inside westway implies (going west since entered westway) (OW-W)

Finally, we construct our runtime monitor to check the conjunction of (CA),
(OW-E), and (OW-W) requirements over generated trajectories. Control actions
that produce violating trajectories are discarded before the selection phase. This
ensures the safety of selected control action if there exists one in alternatives

372 D. Ulus and C. Belta

otherwise we apply a full brake. The last piece of trajectory search is to select the
best one among safe trajectories according to a weighted sum of some predefined
heuristics, namely final speed of the trajectory (higher is better), final-distance-
to-goal (lower is better), minimum-distance-to-obstacles (higher is better). In
the case study, the actual values of weights are found empirically.

Route Search. Given a connectivity graph of these locations, we can search for
a route from the current location to the actual goal location and each node on
the route is passed to the lower layer as a (sub) goal. In the search of a suitable
route, we need to take into account some extra requirements. On the other hand,
external runtime monitors are desirable to enforce application-specific properties
as in trajectory search rather than generating a new graph search algorithm for
each and every one of them. For example, consider a property such that the
robot never uses the door D6A when going from the location D to A, which can
be expressed as follows.

(visit(A) && once visit(D)) -> (!visit(D6A) since visit(D)) (ND)

We then construct a runtime monitor from the property (ND) to check routes
generated over the graph. In particular, we use an off-the-shelf implementation
of the shortest path algorithm [8] that generates simple paths starting from
the shortest one. Sequentially checking these paths using runtime monitors con-
structed from temporal logic formulas [4,6] ensures that the we select the shortest
route that satisfies specified properties and then we can update the route of the
robot accordingly.

4 Navigate by Regular Expressions

In this section, we use regular expressions to specify complex navigation missions
and guide the mission execution via runtime monitors constructed from the
specification. Navigation missions describe the desired behavior of the robot
over a set of observations and regular operations of sequential composition (;),
alternative choice (|), and repetition (*) are used to express the ordering between
these observations. For example, a robot is said to reach a region A when it was
outside for a while and then entered the region A. We can specify such a behavior
using regular expressions as follows:

reach(A) = (outside(A))*; inside(A)

where atomic propositions inside(A) and outside(A) check whether the robot
is in the region A or not. Similarly more complex missions are obtained by com-
posing simple missions as below.

mission1 : (reach(C); reach(B)|reach(D); reach(A))* (M1)

Reactive Control Meets Runtime Verification: A Case Study of Navigation 373

which specifies a (robot) behavior to repeatedly visit the regions A, and C while
visiting B or D in-between. From this expression, we construct a runtime moni-
tor [7] that associates a Boolean state variable for each proposition and updates
them according to previous states and robot’s position at each time step. The
next sub-goal of the robot is determined according to the state vector of the
monitor.

(C;(B|D);A)* (A;B;C)*

A

B

C

D

A

B

C

D

A;(D;B;C)* (A;B;(C|D))*

A

B

C

D

A

B

C

D

Fig. 4. Trajectories of robots G1–G4 assigned with missions M1–M4, respectively.
(Color figure online)

Finally we present our simulation results of four robots G1–G4 operated in
the same environment and controlled by the proposed architecture. We assign
the first robot G1 with the mission M1 and the rest G2–G4 with missions M2–M4
below, respectively.

mission2 : (reach(A); reach(B); reach(C))* (M2)
mission3 : (reach(A); (reach(D); reach(B); reach(C))* (M3)
mission4 : (reach(A); reach(B); (reach(C)|reach(D))* (M4)

In Fig. 4, we separately show the simulated trajectories of the robot for a certain
duration that covers several loops as specified in the mission. The initial position
of the robot is marked by a yellow star. Robots get close to each other quite
frequently and evading maneuvers cause small variations among loops seen in
the figure. Overall we see that the robots successfully avoid each other and
static obstacles and obey regulations of the environment while performing their
formally-specified missions over achieving reasonable trajectories.

5 Conclusion

We presented an example and novel use of provably correct runtime monitors
to control a mobile robot subject to complex safety requirements and mission

374 D. Ulus and C. Belta

specifications in a dynamic environment. We embedded runtime monitors into
a layered reactive control architecture together with other simple and scalable
components to achieve a navigation solution that does not require strong assump-
tions. Our approach amounts to a more active use of runtime monitors beyond
checking assumptions of an offline motion planner at runtime [1,2,5]. We believe
the simplicity and breadth of runtime monitors would make them ideal to cover
many use cases and increase the level of assurance in robotic applications.

References

1. Medina Ayala, A.I., Andersson, S.B., Belta, C.: Temporal logic motion planning in
unknown environments. In: Intelligent Robots and Systems (IROS), pp. 5279–5284.
IEEE (2013)

2. Desai, A., Dreossi, T., Seshia, S.A.: Combining model checking and runtime verifica-
tion for safe robotics. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp.
172–189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67531-2 11

3. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoid-
ance. IEEE Robot. Autom. Mag. 4(1), 23–33 (1997)

4. Havelund, K., Rosu, G.: Efficient monitoring of safety properties. Int. J. Softw. Tools
Technol. Transfer 6(2), 158–173 (2004)

5. Lahijanian, M., Maly, M.R., Fried, D., Kavraki, L.E., Kress-Gazit, H., Vardi, M.Y.:
Iterative temporal planning in uncertain environments with partial satisfaction guar-
antees. IEEE Trans. Rob. 32(3), 583–599 (2016)

6. Ulus, D.: Online monitoring of metric temporal logic using sequential networks.
arXiv preprint arXiv:1901.00175 (2019)

7. Ulus, D.: Sequential circuits from regular expressions revisited. arXiv preprint
arXiv:1801.08979 (2018)

8. Yen, J.Y.: Finding the k shortest loopless paths in a network. Manage. Sci. 17(11),
712–716 (1971)

https://doi.org/10.1007/978-3-319-67531-2_11
http://arxiv.org/abs/1901.00175
http://arxiv.org/abs/1801.08979

Overhead-Aware Deployment of Runtime
Monitors

Teng Zhang1(B), Greg Eakman2, Insup Lee1, and Oleg Sokolsky1

1 University of Pennsylvania, Philadelphia, PA 19104, USA
{tengz,lee,sokolsky}@cis.upenn.edu

2 BAE Systems, Burlington, MA 01803, USA
gregory.eakman@baesystems.com

Abstract. One important issue needed to be handled when applying
runtime verification is the time overhead introduced by online monitors.
According to how monitors are deployed with the system to be moni-
tored, the overhead may come from the execution of monitoring logic
or asynchronous communication. In this paper, we present a method
for deciding how to deploy runtime monitors with awareness of mini-
mizing the overhead. We first propose a parametric model to estimate
the overhead given the prior knowledge on the distribution of incoming
events and the time cost of sending a message and executing monitor-
ing logic. Then, we will discuss how to statically decide the boundary of
synchronous and asynchronous monitors such that the lowest overhead
can be obtained.

Keywords: Runtime verification · Monitor deployment · Overhead

1 Introduction

Runtime verification (RV) has been widely used to check properties of software
systems. The time overhead brought by online monitors may influence the per-
formance of the system to be monitored (denoted as the target system). Multiple
factors can influence the overhead such as event sampling rate [6] or monitoring
algorithm [8]. Deployment of monitors may also have impact on the overhead [5].
According to how to interact with the target system, monitors can be deployed
synchronously or asynchronously with the target system. If multiple monitors
are involved, they can be deployed in a hybrid way. A generally accepted assump-
tion is that synchronous monitoring can detect the violation timely while asyn-
chronous monitoring can incur less overhead [4]. In the real world, however,
finding the deployment to achieve the least overhead is undecidable. Neverthe-
less, if the termination of monitors to handle each event is guaranteed and prior
knowledge about the distribution of incoming events is available, it is possible
to estimate the time overhead statically.

This paper presents an initial study on deciding deployment of monitors to
reduce the overhead. More specifically, we propose a model to estimate the time
c© Springer Nature Switzerland AG 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 375–381, 2019.
https://doi.org/10.1007/978-3-030-32079-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_22&domain=pdf
https://doi.org/10.1007/978-3-030-32079-9_22

376 T. Zhang et al.

overhead of SMEDL [12] monitors, parameterized by the distribution of incoming
events, the execution time of sending a message and making a transition. Then,
by analyzing the structure of monitors given the knowledge about the incoming
event stream, we will present a way to decide the boundary of synchronous and
asynchronous monitors to obtain the lowest overhead.

Related Work. There are multiple approaches to reduce monitoring overhead.
Considerable number of studies focus on event sampling [1,3,6,7,9]. In [8], effi-
cient monitoring algorithms are proposed to reduce the overhead. By contrast,
we are concerned with the overhead of event propagation. The RV framework
in [5] supports tuning of deployments but does not offer a quantitative method.
In [4], a hybrid instrumentation technique to dynamically switch between syn-
chronous and asynchronous monitoring. The goal is to reduce the overhead by
minimizing the synchronous instrumentation while ensuring timely detections. In
their approach, synchronous monitoring is built upon the asynchronous commu-
nication and always has higher overhead. By contrast, we decide the deployment
statically based on quantitative overhead model.

2 Preliminaries

This section briefly introduces the syntax and semantics of SMEDL. A SMEDL
specification contains a set of monitor specifications and an architecture descrip-
tion that captures patterns of communication between them. During execution,
each monitor can be instantiated statically during system startup. Specified in
the architecture description, monitors can be deployed synchronously or asyn-
chronously with the target system.

Single Monitor. A SMEDL monitor is a collection of EFSMs (Extended Finite
State Machines) in which the transitions are performed by reacting to events
sent from the environment, other monitors or raised within the monitor. EFSMs
interact with each other using shared state variables or by triggering execution
of other EFSMs through raised events. Each transition is triggered by an event
and attached to a guard condition and a list of actions to be executed after
the transition. Actions of transitions include raising events and updating state
variables. Primitive data types, arithmetic and logical operations are supported
in SMEDL. The reader can refer to [13] for detailed description and formal
semantics.

Monitor Network. The target system and monitors interact with each other
using events. Communication pattern of events among monitors is specified in
the architecture description. For instance, Fig. 1(a) illustrates event connection
between the target system and three monitors M1,M2 and M3. During runtime,
multiple instances are created with different identities as shown in Fig. 1(b).
The architecture description specifies how events raised by a monitor instance
are sent to specific instances of another monitor. For instance, when e4 is sent
from M1 to M2 as e5, the first identity of M1(x) must be equal to the identity
of M2(z). In Fig. 1(b), we can observe that instance M1(1 , 1) and M1(1 , 2)

Overhead-Aware Deployment of Runtime Monitors 377

connect to M2(1) while M1(2 , 1) connects to M2(2), which is complying with the
static specification. SMEDL supports specifying deployment form of monitors.
As shown in Fig. 1(a), M1 is deployed synchronously with the target system
while M2 and M3 are asynchronous monitors. Event connection specification
is independent of deployment form but the communication is decided by how
they are deployed. The synchronous monitors interact with the target system by
direct API calls while asynchronous communication can be implemented using
communication middleware such as RabbitMQ [10].

Fig. 1. An example of connections between monitors and the target system

3 Estimation and Comparison of Monitoring Overhead

Notation. The types of events generated by the target system sys is a set
ES = {e1, e2,, ek}. The event stream raised by sys and its correspond-
ing length are respectively denoted as S and n. Mons is the set of monitors
in the monitor network. Monssync and Monsasync are respectively the subsets
of monitors which are deployed synchronously and asynchronously with sys.
Asynchronous monitors can receive events from synchronous monitors or the
target system, but not vice versa. The accumulated overhead of the system is
denoted as OH (n), which is the sum of the overhead brought by the synchronous
(OHsync(n)) and the asynchronous part (OHasync(n)).

Assumptions. The time for sending an event asynchronously and making a
transition, respectively denoted as tm and ts, can be accurately measured or
estimated. Note that ts includes time to make transition and executing actions
in the transition. Actions are arithmetic/logical operations, raising and sending
events to other synchronous monitors. For simplicity of analysis, we assume that
transitions take approximately the same time to execute actions. It is straightfor-
ward to relax it by estimating execution time for each transition and aggregating
them. The prior knowledge about the distribution of incoming events in S is also
assumed to be available and simplified as the normalized frequency of appear-
ance in S for all events in ES, denoted as fe1 , ...fe2 ,, fek where Σe∈ESfe = 1.
This assumption is realistic in systems sending different types of events in a
regular rate and enough data can be collected to estimate the distribution.

378 T. Zhang et al.

Overhead Model. Overhead for synchronous monitors come from execution of
transitions. The set of external events to be consumed by Monssync is denoted
as ESsync = {es1 , es2 , ..., esi}, which is a subset of ES . Each event e in ESsync
may directly or indirectly trigger transitions in Monssync. The corresponding
overhead is ts ∗ tr(e,Monssync) ∗ fe. The denotation tr(e,MS) represents the number
of transitions triggered by e in the monitor set MS , which can be estimated by
static analysis. However, the transitions triggered by an event depend on the
dynamic state of the monitors and parameter values carried by the event so we
do not know which transitions will be executed statically. If we choose the largest
possible transition set, OHsync(n) may be overestimated while the smallest tran-
sition set leads to an underestimation of it. The accumulated overhead brought
by S can then be computed using the following formulae:

OHsync(n) = n ∗ ts ∗ Σe∈ESsync (tr(e,Monssync) ∗ fe)

OHasync(n) includes sending events raised by sys and Monssync to asynchronous
monitors. Denote ESasync = ES−ESsync as the events raised from sys and sent to
Monsasync . The set of events that are raised by Monssync and sent to Monsasync
is denoted as ESraised . Each event in ESraised is directly or indirectly triggered
by one or multiple events in ESsync . We use g(e′,e) to denote the number of
instances of e generated by each instance of e′. OHasync(n) can be computed
using the following formula:

OHasync(n) = n ∗ tm ∗ (Σe∈ESasyncfe + Σe∈ESraised∧e′∈ESsyncfe′ ∗ g(e′,e))

Note that to estimate the value of g and tr, we assume that all event instances
of the same type are dispatched to the same monitor instances regardless of their
parameter values. Furthermore, n will be ignored in the rest of the paper as both
formula are the linear function of n.

Determine the Deployment. The SMEDL monitor network can be modeled
as a direct acyclic graph (DAG) where nodes are the target system and monitors
and edges are event connections. All instances of the same monitor are treated as
one node in DAG. M is a direct upstream monitor to M ′ when M sends events
to M ′ and M ′ is the direct downstream monitor of M . In this paper, we consider
a simpler case in which the monitor network is a chain of monitors, which means
each monitor in Mons only has one direct upstream and downstream monitor and
only one monitor directly receives events from the target system. Algorithm 1
computes Monssync, the set of monitors to be deployed synchronously. While
traversing the monitor chain (MonsChain) and the current monitor is mon, the
overall overhead OHcur including mon as the synchronous monitor is computed
(Line 4 to Line 9). If it is smaller than the least overhead seen so far (denoted
as OHmin), mon and all pending monitors in Tempsync are added to Monssync
(Line 11 to Line 14). Otherwise, add mon to Tempsync . Note that the set of
input events of mon is the set of output events of its direct upstream monitor.
As a result, fe can be computed for every e in the set of output events since
values of all f ′

e are already available.

Overhead-Aware Deployment of Runtime Monitors 379

Algorithm 1. Determination of synchronous monitors
1: Monssync ← ∅,Tempsync ← ∅,OHmin ← tm,OHasync ← tm,OHcur ← tm
2: while MonsChain �= ∅ do
3: mon ← dequeue(MonsChain)
4: Ev ← inputEvents(mon)
5: tempOHsync ← ts ∗ Σe′∈Ev(tr(e′,{mon}) ∗ fe′)
6: for e ∈ outputEvents(mon) do
7: fe ← Σe′∈Evf

′
e ∗ g(e′,e)

8: tempOHasync ← tm ∗ Σe∈outputEvents(mon)fe
9: OHcur ← OHcur + tempOHasync + tempOHsync − OHasync

10: OHasync ← tempOHasync

11: if OHmin > OHcur then
12: Monssync ← Monssync ∪ {mon} ∪ Tempsync
13: Tempsync ← ∅
14: OHmin ← OHcur

15: else
16: Tempsync ← Tempsync ∪ {mon}

return Monssync

To summarize, the method includes the following steps: (1) measure tm and
ts on the actual platform for executing the target system and monitors; (2)
estimate frequencies fei of events raised by the system (3) for each monitor
m ∈ Mons with the set EIm and EOm of input and output events, compute
g(e′,e) and tr(e′,{m}) where e′ ∈ EIm and e ∈ EOm; (4) compute Monssync using
Algorithm 1.

4 Case Study

We present two examples to illustrate the use of method presented above. Both
examples use a tracking application which receives sensor data of tracks. The
experiments were conducted on a virtual machine of Ubuntu 18.04 64-bit run on
a laptop with 2.5 GHz Intel i7 processor and 16 GB RAM. The first case study
is a single monitor checkFormat which takes the input messages collected from
the sensor. For each input event, one transition is taken to check whether the
format complies with certain protocol. Only fully asynchronous and synchronous
deployments need to be considered. The synchronous deployment has less over-
head if tm/ts > Σe∈ES (tr(e,{checkFormat}) ∗ fe). In this example, the right-hand
side is equal to 1 and tm/ts is around 16. The testing results validate the esti-
mate: the overhead of synchronous monitor is less than 5% while the overhead
of the asynchronous monitor is about 20%.

The second example is the track quality monitors [11]. The monitors check
output track quality of the tracking application by computing average duration
over a sliding window time interval. There are two types of events generated from
the target system, track which forms the track and detection which is used to
generate heartbeat event as the boundary of the sliding window. The structure of

380 T. Zhang et al.

(a) Monitor structure (b) Overhead

Fig. 2. Track quality monitor and the overhead for 10000 detection events

the monitor is illustrated in Fig. 2(a). We assume that both frontend and sliding-
Window have one instance. This monitor has three possible deployments: fully
synchronous, fully asynchronous, and hybrid, where only frontend is deployed
synchronously.

Suppose the size of sliding window is 1000 ms and the time gap between each
detection event is about 10 ms, then g(detection,heartbeat) is 1/100. The input event
stream has the identical number of track and detection events so fdetection and
ftrack are equal to 1/2. The overhead of fully asynchronous monitoring is tm.
According to Algorithm 1, we first compute the overhead when frontend is syn-
chronously deployed. Each detection and track event trigger one transition in
the frontend monitor so tr(detection,{frontend}) and tr(track ,{frontend}) are equal to
1. Moreover, frontend immediately resends the track event. Consequently, the
overhead is ts ∗ (1/2 + 1/2) + tm ∗ (1/2 + 1/2 ∗ 1/100) = ts + 0.505 ∗ tm. We
can deduce that if tm/ts > 200/99, frontend should be deployed synchronously.
Recall that tm is 15 times greater than ts. Figure 2(b) illustrates that the over-
head of hybrid deployment is less than asynchronous deployment, which is con-
sistent with the model.

5 Future Work

In this paper, we proposed a model to estimate the overhead of monitors stati-
cally given the prior knowledge of frequency among different type of events and
the static structure of the monitor specification. We give an intuitive method to
decide the deployment of chains of monitors. Although the model is specific to
SMEDL monitors, it can also be used in other automata-based RV techniques.
Moreover, the idea of trade-off between synchronous and asynchronous moni-
toring is not unique to specific formalisms and one future work would be the
generalization of the model and algorithm to other formalisms for monitoring
logics. For example, the model for rule-based monitors such as Eagle [2] can be
expressed in terms of the number of rule firings rather than transitions.

Avenues of on-going work include: (1) more experiments on multiple applica-
tions to yield conclusive results for validation of the model; (2) monitor analysis
to estimate the number of transitions triggered by each input event; and (3)
for dynamic instantiation of monitors, we will extend the model to account
for instantiation overhead. Finally, we will invest in a more accurate overhead

Overhead-Aware Deployment of Runtime Monitors 381

measurement infrastructure. Currently, for computationally intensive systems,
overhead calculation is often noisy, making it hard to validate predictions of
our model when differences between deployments are small, as in the case with
hybrid vs. synchronous deployment in the second example above.

References

1. Arnold, M., Vechev, M., Yahav, E.: QVM: an efficient runtime for detecting defects
in deployed systems. ACM SIGPLAN Not. 43(10), 143–162 (2008)

2. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Program monitoring with LTL
in EAGLE. In: 18th International Parallel and Distributed Processing Symposium
(IPDPS), April 2004. https://doi.org/10.1109/IPDPS.2004.1303336

3. Bonakdarpour, B., Navabpour, S., Fischmeister, S.: Sampling-based runtime veri-
fication. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 88–102.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0 9

4. Cassar, I., Francalanza, A.: On synchronous and asynchronous monitor instrumen-
tation for actor-based systems. arXiv preprint: arXiv:1502.03514 (2015)

5. Colombo, C., Francalanza, A., Mizzi, R., Pace, G.J.: polyLarva: runtime verifi-
cation with configurable resource-aware monitoring boundaries. In: Eleftherakis,
G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 218–232.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33826-7 15

6. Fei, L., Midkiff, S.P.: Artemis: practical runtime monitoring of applications for
execution anomalies. ACM SIGPLAN Not. 41, 84–95 (2006)

7. Huang, X., et al.: Software monitoring with controllable overhead. Int. J. Softw.
Tools Technol. Transf. 14(3), 327–347 (2012)

8. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP
runtime verification framework. Int. J. Softw. Tools Technol. Transf. 14(3), 249–
289 (2012)

9. Stoller, S.D., et al.: Runtime verification with state estimation. In: Khurshid, S.,
Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 193–207. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29860-8 15

10. Videla, A., Williams, J.J.: RabbitMQ in Action: Distributed Messaging for Every-
one. Manning (2012)

11. Zhang, T., Eakman, G., Lee, I., Sokolsky, O.: Flexible monitor deployment for
runtime verification of large scale software. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2018, Part IV. LNCS, vol. 11247, pp. 42–50. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03427-6 6

12. Zhang, T., Gebhard, P., Sokolsky, O.: SMEDL: combining synchronous and asyn-
chronous monitoring. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol.
10012, pp. 482–490. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46982-9 32

13. Zhang, T., et al.: Correct-by-construction implementation of runtime monitors
using stepwise refinement. In: Feng, X., Müller-Olm, M., Yang, Z. (eds.) SETTA
2018. LNCS, vol. 10998, pp. 31–49. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99933-3 3

https://doi.org/10.1109/IPDPS.2004.1303336
https://doi.org/10.1007/978-3-642-21437-0_9
http://arxiv.org/abs/1502.03514
https://doi.org/10.1007/978-3-642-33826-7_15
https://doi.org/10.1007/978-3-642-29860-8_15
https://doi.org/10.1007/978-3-030-03427-6_6
https://doi.org/10.1007/978-3-030-03427-6_6
https://doi.org/10.1007/978-3-319-46982-9_32
https://doi.org/10.1007/978-3-319-46982-9_32
https://doi.org/10.1007/978-3-319-99933-3_3
https://doi.org/10.1007/978-3-319-99933-3_3

NuRV: A nuXmv Extension for Runtime
Verification

Alessandro Cimatti, Chun Tian(B) , and Stefano Tonetta

Fondazione Bruno Kessler, Trento, Italy
{cimatti,ctian,tonettas}@fbk.eu

Abstract. We present NuRV, an extension of the nuXmv model checker
for assumption-based LTL runtime verification with partial observabil-
ity and resets. The tool provides some new commands for online/offline
monitoring and code generations into standalone monitor code. Using
the online/offline monitor, LTL properties can be verified incrementally
on finite traces from the system under scrutiny. The code generation cur-
rently supports C, C++, Common Lisp and Java, and is extensible. Fur-
thermore, from the same internal monitor automaton, the monitor can
be generated into SMV modules, whose characteristics can be verified
by Model Checking using nuXmv. We show the architecture, functional-
ities and some use scenarios of NuRV, and we compare the performance
of generated monitor code (in Java) with those generated by a similar
tool, RV-Monitor. We show that, using a benchmark from Dwyer’s LTL
patterns, besides the capacity of generating monitors for long LTL for-
mulae, our Java-based monitors are about 200x faster than RV-Monitor
at generation-time and 2–5x faster at runtime.

1 Introduction

Symbolic Model Checking [16] is a powerful formal verification technique for
proving temporal properties of transition systems (a.k.a. models) represented by
logical formulae. In the case of Linear Temporal Logic (LTL) [15], the properties
can be translated into symbolically represented ω-automata, which is then con-
joined with the model and proved by search-based techniques that exhaustively
analyze the infinite traces of the system [7]. Runtime Verification (RV) [10,13] on
the other hand, is a lightweight verification technique for checking if a given prop-
erty is satisfied (or violated) on a finite trace of the system under scrutiny (SUS).
In general, LTL-based RV problems can be resolved by automata-based [1],
rewriting-based [17], or rule-based [11] approaches.

In this paper, we present a new tool called NuRV, an extension of the
nuXmv [4] model checker for LTL-based RV. To the best of our knowledge,
this is the first time that a model checker is directly modified (or extended) into
a runtime monitor (or monitor generator). It is natural to do so, as nuXmv has

This work has received funding from European Union’s Horizon 2020 research and
innovation programme under the Grant Agreement No. 700665 (Project CITADEL).
c© The Author(s) 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 382–392, 2019.
https://doi.org/10.1007/978-3-030-32079-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_23&domain=pdf
http://orcid.org/0000-0002-2777-9443
https://doi.org/10.1007/978-3-030-32079-9_23

NuRV: A nuXmv Extension for Runtime Verification 383

already provided the needed infrastructure, such as a symbolic translation from
LTL to ω-automata, an algorithm for computing the “fair states” (those leading
to infinite paths), together with an interface to BDD library [3] based on CUDD
2.4.1 [18].

For the monitoring algorithm implemented in NuRV (c.f. [6] for more details),
our start point is the automata-based approach [1] based on LTL3, implemented
symbolically. Suppose the monitoring property is ϕ, we first run the LTL trans-
lations twice, on ϕ and ¬ϕ, to get two symbolic automata Tϕ and T¬ϕ, resp.
Then an input trace u is synchronously simulated on Tϕ and T¬ϕ, by repeatedly
computing forward images w.r.t. all fair states1. For each input state of u, we
get two sets of belief states, rϕ and r¬ϕ. Based on their emptinesses, the monitor
returns one of the following verdicts:

– conclusive true (�), if rϕ �= ∅ and r¬ϕ = ∅. ϕ is verified for all future inputs;
– conclusive false (⊥), if rϕ = ∅ and r¬ϕ �= ∅. ϕ is violated for all future inputs;
– inconclusive (?), if rϕ �= ∅ and r¬ϕ �= ∅. In this case, the knowledge of the

monitor is limited by the finiteness of u.

Besides the property ϕ, the monitoring algorithm takes in input a model K
of the SUS. This is used to declare the variables in which the properties are
expressed, but more importantly to define some constraints on their temporal
evolution, which represent assumptions on the behavior of the SUS. By con-
sidering only (infinite) traces of K, the above algorithm may give more precise
outputs (turning ? into �/⊥). This is obtained by using K⊗Tϕ (the synchronous
product of K and Tϕ) and K ⊗ T¬ϕ instead of Tϕ and T¬ϕ, respectively. This
coincides with [12], where the resulting monitor is called to be predictive.

The model is used by NuRV in different novel ways. First of all, there is the
possibility that u /∈ L(K), because the model may be wrong, or it only captures
a partial knowledge of the SUS, or due to unexpected faults. In this case we
have rϕ = r¬ϕ = ∅ in above algorithm, and we naturally let the monitor returns
a fourth verdict called out-of-model (×). This is why we call K an assumption,
and the two verdicts �/⊥ are only conclusive under assumptions, thus renamed
to �a/⊥a. This extended RV approach may be called assumption-based. In par-
ticular, if one only cares whether the SUS always follows its model, we can use a
dummy LTL property true in above procedure, so that K ⊗T¬ϕ is always empty,
and the monitor will output either �a or ×, indicating whether u ∈ L(K). This
application coincides with model-based RV [19].

Second, the above monitoring algorithm directly supports partially observable
traces, i.e. variables appeared in the monitoring property are not (always) known
in each state of the input trace. This is because the symbolic forward-image
computations do not require full observability—less restrictive inputs result to

1 Emerson-Lei algorithm [9] is used here. This corresponds to the NBA-to-NFA con-
versions based on SCC (strongly connected components) detections in [1], while the
forward-image computations determinize NFAs into DFAs on the fly. Thus, NuRV
provides a full implementation of [1].

384 A. Cimatti et al.

coarser belief states. Partial observability becomes more useful under assump-
tions, as an assumption may express a relation between observable and unob-
servable variables of the SUS.

Third, NuRV supports resettable monitors, i.e. it can evaluate an LTL prop-
erty at arbitrary positions of the input trace. This idea was inspired by the
observation that, in rϕ and r¬ϕ, all variables (some are generated by the LTL
translations) related to the present and the past have the same values, while all
variables related to the future have opposite values. There is no easy way to dis-
tinguish these two groups of variables. However, by taking rϕ ∪ r¬ϕ we smartly
get a new belief state which represents the history of the system after a run
given by the input trace seen so far. If we restart the monitor algorithm at state
i using this history as the new initial condition of K (also with a reduced version
of initial conditions of Tϕ and T¬ϕ), the new monitor is essentially evaluating
�u, i |= ϕ� for |u| > i, with the underlying assumptions taken into account. This
is again an orthogonal feature, but having an assumption makes resetting of the
monitor more interesting as the assumption evolves to take into consideration
the history of the system.

Furthermore, NuRV can synthesize the symbolic monitors into explicit-state
monitor automata and then generate them into standalone monitor code in vari-
ous programming languages (currently we support C, C++, Java, and Common
Lisp). Besides, it is possible to dump the monitor automata into SMV mod-
ules, which can be further analyzed in nuXmv for their correctness and other
properties.

The rest of this paper is organized as follows: In Sect. 2 we describe its archi-
tecture and functionalities. Some use case scenarios (as running examples) are
given in Sect. 3. Section 4 shows some experimental evaluation results. Finally,
we conclude the paper in Sect. 5 with some directions for future work.

2 Architecture and Functionalities

NuRV implements the Assumption-based Runtime Verification (ABRV) with
partial observability and resets described in [6]. Monitoring properties are
expressed in Propositional Linear Temporal Logic (LTL) [15] with both future
and past temporal operators. For each input state, the monitor outputs one of
four verdicts in B4 =̇ {�a,⊥a, ?,×}. As a program, NuRV takes an assumption
(as SMV model), some LTL properties and input traces, and output the verifica-
tion results or some standalone monitor code, according to a batch of commands.
The reader may refer to [6] for the formal definition of the LTL semantics and
the related RV problems.

2.1 Architecture of NuRV

The internal structure of NuRV is shown in Fig. 1. The monitor construction
starts from the modular description of a model K (used as assumptions in
ABRV) and a set of LTL properties ϕ1, . . . , ϕn. The model is used also to declare

NuRV: A nuXmv Extension for Runtime Verification 385

Fig. 1. The internal structure of NuRV

the variables (and their types) in which the LTL properties are expressed, thus
the alphabet of the input words of the monitors. NuRV has inherited nuXmv’s
support of hierarchical models and rich variable types (such as bound integers
and arrays), all input data (models, properties and traces) are flattened and
boolean encoded before going to further steps. The Model Construction compo-
nent generates (from the model) a BDD-based representation of the Finite State
Machine (FSM), which is then used in the monitor construction step, together
with the monitoring property, to produce another BDD-based FSM represent-
ing the symbolic monitor. The resulting monitor can be used in two ways: (1) as
an online/offline monitor running inside nuXmv, accepting finite traces incre-
mentally, outputting verification results for each input states. (2) as the input
of the Monitor Generator component, resulting into standalone monitor code.
From the end-users’ point of view, NuRV extends nuXmv with the following
new commands:

1. build_monitor: build the symbolic monitor for a given LTL property;
2. verify_property: verify a currently loaded trace in the symbolic monitor;
3. heartbeat: verify one input state in the symbolic monitor (online monitoring);
4. generate_monitor: generate standalone monitors in a target language.

The commands build_monitor and verify_property together imple-
mented the offline monitoring algorithm described in [6]. The command
generate_monitor further generates explicit-state monitors in various languages
from the symbolic monitor built by the command build_monitor. These com-
mands must work with other nuXmv commands [2] to be useful.

2.2 Structure of Explicit-State Monitors

The Monitor Generator components internally generate monitor code in two
steps: (1) generating explicit-state monitor automata from the symbolic monitor;

386 A. Cimatti et al.

(2) converting monitor automata into code in specific languages. NuRV can
generate three levels of explicit-state monitors:

L1 The monitor synthesis stops at all conclusive states;
L2 The monitor synthesis explores all states;
L3 The monitor synthesis explores all states and reset states.

A sample explicit-state monitor for LTL property p U q generated by NuRV
is shown in Fig. 2. The monitor is generated under the assumption that either
p or q is true in the input. The monitor starts at location 1, and returns ? if
the input is p ∧ ¬q until it received ¬p ∧ q which has the output �a (Y). The
L1 monitor has no further transition at locations associated with conclusive
verdicts (�a or ⊥a), since it can be easily proved that ABRV-LTL monitors are
monotonic if the assumption is always respected by the input trace. The L2
monitor contains all locations and transitions, thus it may return × even after
the monitor reached conclusive verdicts. The L3 monitor additionally contains
information for the resets: in case the monitor is reset, the current location
will first jump to the location indicated in the bracket [], of current location,
then goes to next location according to the input state. However, in the above
monitor all reset locations are just the initial location (1), this is mostly because
the assumption is an invariant property and the LTL property does not have
any past operators.

Standalone monitor code are literally translated from these monitor
automata (FSMs). The correctness of monitors in C, for instance, comes indi-
rectly from the correctness of the symbolic algorithm and mode checking on
SMV-based monitors.

Fig. 2. Explicit-state monitors of pU q (assuming p �= q) (L1–L3)

NuRV: A nuXmv Extension for Runtime Verification 387

2.3 API of Generated Code

NuRV currently supports monitor code generation into five languages: C, C++,
Java, Common Lisp and SMV. The structure of monitor code is simple yet
efficient: it simply mimics the simulations of deterministic FSMs.

The monitor code generated (in C, for example) has the following signature:
int /* [out] (0 = unknown , 1 = true , 2 = false , 3 = out -of-model) */

monitor
(long /* state [in] */,
int /* reset [in] (0 = none , 1 = hard , 2 = soft) */,
int* /* current_loc: [in/out] */);

The function name (monitor here) is given by the user. It takes three param-
eters: (1) state: an encoded long integer representing the current input state of
the trace, (2) reset, an integer representing the possible reset signal, and (3)
current_loc: a pointer of integer holding the internal state of the monitor. It is
caller’s responsibility to allocate an integer and provide the pointer to the mon-
itor (otherwise the function returns −1 indicating invalid locations), and this is
actually the only thing to identify a monitor instance. The sole purpose of the
function is to update *current_loc (the value behind the pointer) according
to state and reset and to return a monitoring output. NuRV supports two
different encodings for state:

1. Static partial observability: state denotes a full assignment of the observ-
ables, encoded in binary bits: 0 for false (⊥), 1 for true (�);

2. Dynamic partial observability: state denotes a ternary number, whose each
ternary bit represents 3 possible values of an observable variable: 0 for
unknown (?), 1 for true (�) and 2 for false (⊥).

Note that the symbolic monitoring algorithm can take in general input states
expressed in Boolean formulae (e.g., if the observables are p and q, our monitor
may take an input state “p xor q”, either p or q is true but not both), but this is
not supported by the generated code.

BDD operations are implemented by the BDD manager. Their performance
strongly depends on the variable ordering used in the BDD construction. This
can be controlled by setting an input_order_file in nuXmv. The input of gen-
erated monitor code requires an encoding of BDDs into long integers according
to this file. This encoding is done from the least to the most significant bit. For
instance, if the observables are p and q with the same order, an binary encod-
ing for the state {p = �, q = ⊥} would be (01)2 = 1, and a ternary encoding
for the same state would be (21)3 = 7. The design purpose is to make sure
that the comparison of two encoded states can be as fast as possible. The signa-
tures of monitors in other languages are quite similar, except that the parameter
current_loc can be put inside C++/Java classes as an member variable, and
each monitor is an instance of the generated monitor class.

388 A. Cimatti et al.

3 Use Case Scenario

Now we briefly demonstrate the process of generating a monitor for LTL prop-
erties ϕ0 = pUq and ϕ1 = Yp∨q, assuming p �= q. A batch of commands shown
in Fig. 3 does the work (also c.f. Fig. 4 for the contents of two helper files).

Fig. 3. The batch commands

The command go builds the
model from the input file
disjoint.smv which defines two
Boolean variables p and q, together
with the invariant p �= q.

The generated monitors M0.c
and M1.c (together with their C
headers) are under the full observ-
ability of p and q. The variable
ordering is given by the file default.ord, in which each line denotes one variable
in the model.

The simplest way to use the generated monitor, M0 for instance, is to declare
an integer and call the monitor function like this: (e.g. when monitoring a C pro-
gram linked with the generated monitor code, p and q may denote two assertions
in the program)
int monitor_loc , out;
out = M0 (0b01 /* p & !q */, 1 /* hard */, &monitor_loc);
out = M0 (0b10 /* !p & q */, 0 /* none */, &monitor_loc);

Fig. 4. disjoint.smv and default.ord

There is no need to initialize the
integer monitor_loc as the first M0
call with a value 1 will also do
the monitor initialization. (Actu-
ally it just set monitor_loc to 1,
we may call it a hard reset.) The
first function call returns 0 indicat-
ing ABRV-LTL value ? (unknown);
the second call returns 1 indicating �a (conclusive true).

Fig. 5. Offline monitoring in NuRV

For offline monitoring, there is
no need to call generate_monitor
in above batch command. Sup-
pose a trace u = p p p q q q has
been loaded (by read_trace), the
command verify_property veri-
fies the trace against the symbolic
monitor of ϕ0, shown in Fig. 5 (here
“−n 0” denotes the first monitor, and 1 denotes the first loaded trace).

It is also possible to verify just one input state by heartbeat (online monitor-
ing). It has a similar interface with verify_property, just the trace ID is replaced
by a single state expressed by a logical formula (as a string), e.g. "p & !q".

NuRV: A nuXmv Extension for Runtime Verification 389

4 Experimental Evaluation

We have done some comparison tests2 between NuRV and the latest release of
RV-Monitor [14]. To show the feasibility and effectiveness of RV tools, we tried
to generate LTL monitors from a wide coverage of practical specifications, i.e.
Dwyer’s LTL patterns3 [8]. The purpose is to generate the same monitors from
NuRV and RV-Monitor (rvm) and compare their performances and other char-
acteristics. All these patterns are expressed in six Boolean variables (p, q, r, s, t
and z). RV-Monitor is event-based, i.e. the alphabet is the set of these vari-
ables instead of their power set. This means our monitors can be built under the
assumption that all six variables are disjoint.

Table 1. Eight long formulae from Dwyer’s patterns

ID Pattern LTL

13 Trans to p occur at most twice
(between q and r)

G ((q ∧ F r) →
((¬p ∧ ¬r)U (r ∨ ((p ∧ ¬r)U (r ∨ ((¬p ∧
¬r)U (r∨((p∧¬r)U (r∨(¬pU r))))))))))

14 Trans to p occur at most twice
(after q until r)

G (q → ((¬p ∧ ¬r)U (r ∨ ((p ∧ ¬r)U (r ∨
((¬p ∧ ¬r)U (r ∨ ((p ∧ ¬r)U (r ∨
(¬pW r) ∨ G p)))))))))

39 p precedes s, t (after q until r) G (q → (¬(s ∧ (¬r) ∧ X (¬rU (t ∧
¬r)))U (r ∨ p) ∨ G (¬(s ∧ XF t))))

43 p responds to s, t (between q and r) G ((q ∧ F r) → (s ∧ X (¬rU t) →
X (¬rU (t ∧ F p)))U r)

44 p responds to s, t (after q until r) G (q → (s ∧ X (¬rU t) → X (¬rU (t ∧
F p)))U (r ∨ G (s ∧ X (¬rU t) →
X (¬rU (t ∧ F p)))))

49 s, t responds to p (after q until r) G (q → (p → (¬rU (s ∧ ¬r ∧
X (¬rU t))))U (r ∨ G (p → (s ∧ XF t))))

53 s, t without z responds to p
(between q and r)

G ((q ∧ F r) → (p → (¬rU (s ∧ ¬r ∧ ¬z ∧
X ((¬r ∧ ¬z)U t))))U r)

54 s, t without z responds to p (after q
until r)

G (q → (p → (¬rU (s ∧ ¬r ∧ ¬z ∧
X ((¬r ∧ ¬z)U t))))U (r ∨ G (p →
(s ∧ ¬z ∧ X (¬zU t)))))

Unfortunately, RV-Monitor (rvm) fails in generating monitors from eight long
formulae (Pattern 13, 14, 39, 43, 44, 49, 53 and 54), shown in Table 1. Also it

2 All test data and materials for reproducing these experiments are available
at https://es.fbk.eu/people/ctian/papers/rv2019/rv2019-data.tar.gz.

3 The latest version (55 in total) is available at http://patterns.projects.cs.ksu.edu/
documentation/patterns/ltl.shtml. We call them Pattern 0, 1, . . . , 54 in the same
order.

https://es.fbk.eu/people/ctian/papers/rv2019/rv2019-data.tar.gz
http://patterns.projects.cs.ksu.edu/documentation/patterns/ltl.shtml
http://patterns.projects.cs.ksu.edu/documentation/patterns/ltl.shtml

390 A. Cimatti et al.

does not generate4 monitors from all ten safety properties (Pattern 5, 7, 22, 25,
27, 40, 41, 42, 45 and 50). Eventually we got only 37 monitors out of 55 LTL
patterns, and we confirmed that, whenever rvm monitors report violations, our
monitors behave the same. Our 55 monitors were quickly generated in 0.467 s
(MacBook Pro with Intel Core i7 2.6GHz, 4 cores) using a single core, while the
37 rvm monitors were generated in 78.619 s on the same machine using multiple
cores.

Fig. 6. Performance of generated Java monitors on 107 states.

We observed that rvm monitors does not report further violations once the
first violation happens, and goes into terminal states. To get visible performance
metrics we chose to reset all monitors once a violation is reported. Also, to
prevent extra performance loss in rvm monitors by creating multiple monitor
instances [5], we have used a single trace (stored in a vector) with 107 random
states. For each of the 37 LTL patterns, we recorded the time (in ms) spent by
both monitors (running in the same Java process), the result is shown in Fig. 6.
Our monitors (in Java) have shown a constant-like time complexity (approx.
250ms), i.e. the time needed for processing one input trace is almost the same
for all patterns. This reflects the spirit of automata-based approaches. Rvm
monitors vary from 500ms to more than 6 s, depending on the number of resets.

5 Conclusions and Future Work

We presented NuRV, a nuXmv extension for Runtime Verification. It supports
assumption-based RV for propositional LTL with both future and past opera-
tors, with the supports of partial observability and resets. It has functionalities

4 The error message is “violation is not a supported state in this logic, ltl.”.

NuRV: A nuXmv Extension for Runtime Verification 391

for offline and online monitoring, and code generation of the monitors in various
programming languages. The experimental evaluation on standard LTL patterns
shows that NuRV is quite efficient in both generation and running time. In the
future, we plan to participate in the RV competition to broaden the tool compar-
ison and to extend the monitor specification language beyond the propositional
case.

Acknowledgment. We thank the anonymous reviewers for their helpful comments.

References

1. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14–64 (2011). https://doi.org/10.1145/
2000799.2000800

2. Bozzano, M., et al.: nuXmv 1.1.1 User Manual (2016). https://es.fbk.eu/tools/
nuxmv/downloads/nuxmv-user-manual.pdf

3. Bryant, R.E.: Binary decision diagrams. In: Clarke, E.M., Henzinger, T.A., Veith,
H., Bloem, R. (eds.) Handbook of Model Checking, pp. 191–217. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-10575-8_7

4. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9_22

5. Chen, F., Roşu, G.: Parametric trace slicing and monitoring. In: Kowalewski, S.,
Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 246–261. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-00768-2_23

6. Cimatti, A., Tian, C., Tonetta, S.: Assumption-based runtime verification with
partial observability and resets. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019.
LNCS, vol. 11757, 165–184. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-32079-9_10

7. Clarke, E.M., Grumberg, O., Hamaguchi, K.: Another look at LTL model check-
ing. Formal Methods Syst. Des. 10(1), 47–71 (1997). https://doi.org/10.1023/A:
1008615614281

8. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 21st International Conference on
Software Engineering, pp. 411–420. ACM Press, New York (1999). https://doi.
org/10.1145/302405.302672

9. Allen Emerson, E., Lei, C.-L.: Temporal reasoning under generalized fairness con-
straints. In: Monien, B., Vidal-Naquet, G. (eds.) STACS 1986. LNCS, vol. 210, pp.
21–36. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-16078-7_62

10. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. Eng.
Dependable Softw. Syst. 34, 141–175 (2013). https://doi.org/10.3233/978-1-
61499-207-3-141

11. Havelund, K.: Rule-based runtime verification revisited. Int. J. Softw. Tools Tech-
nol. Transfer 17(2), 143–170 (2014). https://doi.org/10.1007/s10009-014-0309-2

12. Leucker, M.: Sliding between model checking and runtime verification. In: Qadeer,
S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 82–87. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35632-2_10

13. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Program. 78(5), 293–303 (2009). https://doi.org/10.1016/j.jlap.2008.08.004

https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://es.fbk.eu/tools/nuxmv/downloads/nuxmv-user-manual.pdf
https://es.fbk.eu/tools/nuxmv/downloads/nuxmv-user-manual.pdf
https://doi.org/10.1007/978-3-319-10575-8_7
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-642-00768-2_23
https://doi.org/10.1007/978-3-030-32079-9_10
https://doi.org/10.1007/978-3-030-32079-9_10
https://doi.org/10.1023/A:1008615614281
https://doi.org/10.1023/A:1008615614281
https://doi.org/10.1145/302405.302672
https://doi.org/10.1145/302405.302672
https://doi.org/10.1007/3-540-16078-7_62
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.1007/s10009-014-0309-2
https://doi.org/10.1007/978-3-642-35632-2_10
https://doi.org/10.1016/j.jlap.2008.08.004

392 A. Cimatti et al.

14. Luo, Q., et al.: RV-Monitor: efficient parametric runtime verification with simul-
taneous properties. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS,
vol. 8734, pp. 285–300. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11164-3_24

15. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, New York (1992). https://doi.org/10.1007/978-1-
4612-0931-7

16. McMillan, K.L.: Symbolic Model Checking. Springer, Heidelberg (1993). https://
doi.org/10.1007/978-1-4615-3190-6

17. Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification.
Autom. Softw. Eng. 12(2), 151–197 (2005). https://doi.org/10.1007/s10515-005-
6205-y

18. Somenzi, F.: CUDD: CU Decision Diagram Package, Release 2.4.1. University of
Colorado at Boulder (2005)

19. Zhao, Y., Rammig, F.: Model-based runtime verification framework. Electron.
Notes Theoret. Comput. Sci. 253(1), 179–193 (2009). https://doi.org/10.1016/j.
entcs.2009.09.035

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-11164-3_24
https://doi.org/10.1007/978-3-319-11164-3_24
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/s10515-005-6205-y
https://doi.org/10.1007/s10515-005-6205-y
https://doi.org/10.1016/j.entcs.2009.09.035
https://doi.org/10.1016/j.entcs.2009.09.035
http://creativecommons.org/licenses/by/4.0/

AllenRV: An Extensible Monitor
for Multiple Complex Specifications

with High Reactivity

Nic Volanschi(B) and Bernard Serpette

Inria Bordeaux - Sud-Ouest, Talence, France
{eugene.volanschi,bernard.serpette}@inria.fr

Abstract. AllenRV is a tool for monitoring temporal specifications,
designed for ensuring good scalability in terms of size and number of for-
mulae, and high reactivity. Its features reflect this design goal. For ensur-
ing scalability in the number of formulae, it can simultaneously monitor
a set of formulae written in past and future, next-free LTL, with some
metric extensions; their efficient simultaneous monitoring is supported
by a let construct allowing to share computations between formulae. For
ensuring scalability in the size of formulae, it allows defining new abstrac-
tions as user-defined operators, which take discrete time boolean signals
as arguments, but also constant parameters such as delays. For ensur-
ing high reactivity, its monitoring algorithm does not require clock tick
events, unlike many other tools. This is achieved by recomputing output
signals both upon input signals changes and upon internally generated
timeout events relative to such changes. As a consequence, monitoring
remains efficient on arbitrarily fine-grained time domains.

AllenRV is implemented by extending the existing Allen language and
compiler, initially targeting ubiquitous applications using binary sensors,
with temporal logic operators and a comprehensive library of user-defined
operators on top of them. The most complex of these operators, includ-
ing a complete adaptation of Allen-logic relations as selection operators,
are proven correct with respect to their defined semantics.

Thus, AllenRV offers an open platform for cooperatively developing
increasingly complex libraries of high level, general or domain-specific,
temporal operators and abstractions, without compromising correctness.

Keywords: Online monitoring · Allen logic · Linear time logic

1 Introduction

AllenRV is a monitoring tool for detecting temporal conditions about boolean
signals over discrete time. Such boolean signals may directly originate from
binary sensors, or be abstracted from non-binary sensors based on value thresh-
olds. These signals typically correspond to the monitoring of cyber-physical sys-
tems such as smart homes, smart buildings, or other sensor deployments for
c© Springer Nature Switzerland AG 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 393–401, 2019.
https://doi.org/10.1007/978-3-030-32079-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_24&domain=pdf
https://doi.org/10.1007/978-3-030-32079-9_24

394 N. Volanschi and B. Serpette

IoT applications. It is assumed that input signals are piecewise constant, and
are represented as timestamped values that are emitted upon significant value
switches (for boolean sensors, this means any value switches). Timestamps are
typically labeled in seconds or milliseconds. Based on the input signals and a
set of specifications, AllenRV incrementally computes an output boolean signal
for each specification. The output signal reports the satisfaction or violation of
each monitored condition at each time point.

The AllenRV monitoring algorithm [12] and its language for expressing tem-
poral specifications [11] are designed to satisfy several key requirements for mon-
itoring applications in this domain:

– It supports the efficient monitoring of multiple specifications over a shared
sensor infrastructure, by providing a ‘let’ construct for sharing common com-
putations between different formulae. This avoids repeatedly computing the
same sub-formulae many times. Monitoring multiple related specifications is
a key need in applications that simultaneously monitor different aspects at
different levels, such as low-level concerns (e.g. detecting basic interactions)
and application-level concerns (e.g. detecting human activities), where higher-
level aspects commonly reuse formulae of lower-level aspects.

– It supports the efficient development of complex specifications by provid-
ing the possibility to define new user-defined operators on boolean signals,
extending the comprehensive set of predefined operators. This allows to define
programming abstractions that can be instantiated for different set of signals
and which can also be parameterized with constant values such as delays or
dates. The need for developing complex specifications is key when address-
ing real use cases, where programming abstractions are typically layered on
top of each other. As a complement for the ‘let’ construct, addressing the
reuse of common computations, a ‘def’ construct allows to reuse program-
ming abstractions by instantiating them in different contexts.

– It supports highly reactive applications that rely on the quick detection of
conditions being satisfied or violated, by computing changes in the output
signals even when they occur between two input events. In contrast, many of
the available RV monitoring tools (e.g., [1,2,6]) only recompute output signals
upon change events, and rely on the introduction of regular clock events for
ensuring their reactivity; however, increasing the rate of regular clock events
typically hampers efficient monitoring, and therefore is subject to a reactivity
vs. efficiency tradeoff. AllenRV does not impose such a dilemma, thanks to
the self-generation of timeout events relative to value changes, which trigger
additional output signals recomputing, without waiting the next input event.
The high reactivity requirement is key in many interactive or security-related
applications.

While each individual feature is not necessarily novel, this combination of
features ensures unprecedented scalability in terms of number and size of the
monitored formulae and towards fine-grained reactivity.

For the specification of conditions on boolean signals, AllenRV uses a Next-
free subset of past/future LTL, with some metric extensions. This propositional

AllenRV: An Extensible Monitor for Multiple Complex Specifications 395

temporal logic, equivalent to a subset of MTL [9], has proven to be sufficient in
practice for expressing various real services of ambient assisted living (AAL) in
smart homes (SH), as pointed out in Sect. 3.

AllenRV is implemented by extending an existing tool for expressing con-
text detection logic in ubiquitous applications called Allen [11]. The original
tool offered domain-specific operators on boolean signals, extensible with user-
defined operators. Domain-specific operators included adaptations of the Allen-
logic relations (during, overlaps, etc.) working on boolean signals, hence the name
of the tool. AllenRV adds standard LTL operators Since and Until to the set of
native operators, and adds a comprehensive library of system-defined operators,
(1) re-implementing all the native operators, and (2) adding classical temporal
operators such as bounded Historically/Once past operators. The correctness of
the most complex operators, namely from the Allen logic, is ensured by formal
proofs [10]. The AllenRV implementation is open-source software distributed
under the GPL licence.1

2 Tool Description

2.1 Foundations

AllenRV monitors temporal formulae over discrete time boolean signals, which
are functions s : N → B. In practice, signals typically originate from binary
sensors, and are given as a non-empty, possible infinite sequence of timestamped
value changes s(ti)i≥0 where t0 = 0, and ∀i > 0, ti > ti−1 ∧ s(ti) = ¬s(ti−1)
(repeated values reported by the sensor are dropped). The current value of the
signal on the interval [ti, ti+1) is s(ti). Non-binary sensors can also be used as
inputs by converting them to boolean signals using a command option that
associates a sensor name to a threshold value.

A discrete time boolean signal can also be viewed as a set of states, that is,
the discrete time intervals where its current value is 1: {[ti, ti+1) ⊆ N | s(ti)}.
If the sequence of timestamped values from a sensor is finite s(ti)0≤i≤n, the last
interval is [s(tn),∞). Note that, as the timestamps ti of a signal are strictly
increasing, its states are non-empty, disjoint and non-adjacent.

A log is a sequence of timestamped value changes for a finite set of signals
s ∈ S. The definition of signals over the infinite domain of natural numbers
allows to use the standard LTL definitions of temporal operators on infinite
traces. By putting Σ = 2S , each log may be interpreted as an infinite trace in
Σω, namely the infinite sequence (at)t∈N where at = {s ∈ S | s(t)} is the set of
signals whose current value at time t is 1. In particular, a finite log analyzed in
offline mode is seen as its infinite constant continuation, that is, the last sensor
values reported in the log are prolonged indefinitely.

1 https://github.com/NicVolanschi/Allen.

https://github.com/NicVolanschi/Allen

396 N. Volanschi and B. Serpette

2.2 Specifications

All operators in AllenRV take a fixed number of signals as input and produce a
signal as output. Besides the boolean operators, having the expected pointwise
semantics, there are 4 native operators in AllenRV, defined in Fig. 1. Since and
Until are the standard past/future LTL operators. Operator delay[T] is delaying
a signal by a given period T ∈ N

∗, filling the beginning interval [0, T) with 0.2

Thus, delay[1] is equivalent to a classical Previous operator with a strong sense,
i.e. false at t=0. Moreover, delay[T] is equivalent to the Once operator O[T,T]

in the MTL logic, when interpreted synchronously over the discrete domain of
natural numbers, seen as timestamps [8]. Finally, the >!! operator selects from a
signal the states longer than a given duration T , but dropping their initial period
of length T . This operator is similar to the Historically operator H≤T in MTL,
but has a strong sense, meaning that true >!! T is 0 on [0, T),3 while H≤T true is
1 on [0, T). Nevertheless, the MTL operator H≤T can be expressed in terms of the
Allen operator >!!, as will be shown in Sect. 2.3. In this sense, we may say that
the logic implemented by AllenRV is a subset of MTL, containing unbounded
past/future operators, the Previous operator but not the Next operator, and a
subset of bounded past operators, including H[T,T] and H≤T (or, equivalently,
O[T,T] and O≤T).

since(p, q)(t) ↔ ∃t′ ≤ t . q(t′) ∧ ∀t′′ ∈ (t′, t] . p(t′′)
until(p, q)(t) ↔ ∃t′ ≥ t . q(t′) ∧ ∀t′′ ∈ [t, t′) . p(t′′)
delay[T](p) = {[t+ T, t′ + T) | [t, t′) ∈ p}
p >!! T = {[t+ T, t′) | [t, t′) ∈ p ∧ t′ − t > T}

Fig. 1. The native operators in AllenRV.

Among these 4 operators, only delay[T] existed in the original Allen tool.
The other three are extensions belonging to AllenRV.

The complete syntax of the specification language is given in Fig. 2. A specifi-
cation may start with a list of def constructs, introducing user-defined operators,
and a list of global let constructs, introducing named expressions common to
all the monitored formulae. After this optional prologue, comes the non-empty
list of named monitored formulae, also called ‘contexts’. The formulae may use
boolean operators, duration operators such as >!! and its variations, and named
operators, either defined in the system library or user-defined. Atomic formulae
may be named expressions introduced via let or signals from the log referred by
their name as a string. Constant delays and durations are by default in millisec-
onds, but can be also given in other units such as seconds or minutes. Expressions
may also contain local let constructs, introducing named sub-expressions local
to one formula.
2 From its definition, the first state of delay[T] cannot start sooner that time 0+T.
3 From its definition, the first state of p >!! T cannot start sooner that time 0+T.

AllenRV: An Extensible Monitor for Multiple Complex Specifications 397

Prog -> Lib LetRules

Lib -> Def*

Def -> "def" id ("[" id+(",") "]")? ("(" id*(",") ")")?

"=" Context

LetRules -> "let" id "=" Expr "in" LetRules | Rules

Rules -> id ":" Context (";" Rules)?

Context -> "let" id "=" Expr "in" Context | Expr

Expr -> Prod "|" Expr | Prod

Prod -> Comp "&" Prod | Comp

Comp -> Expr1 (">=!"|"<="|">="|">!"|">!!"|"<"|">") Int | Expr1

Expr1 -> true | false | "~" Expr1 | "(" Expr ")" | str

| id ("[" Int+(",") "]")? ("(" Expr*(",") ")")?

Int -> id | int ("hr" | "min" | "sec")?

Fig. 2. The syntax of the specification language for AllenRV.

User-defined operators are expanded as macros, by instantiating their def-
inition with the given constant parameters and signal arguments. In contrast,
the computation of each let expressions is shared by all the containing formu-
lae. The global let construct is an extension belonging to AllenRV. Although it
adds no expressiveness to the language, this extension allows to greatly improve
performance when multiple formulae rely on common sub-formulae.

2.3 The AllenRV Library

Based on the 4 native operators and leveraging the def construct, AllenRV offers
a comprehensive library of more than 50 system-defined temporal operators,
defined in the AllenRV specification language (complete listing in the Appendix).
Some of these operators came from needs experienced in practical applications
in the SH and AAL domains, but should be useful in other domains, too. Other
operators are well-known shorthands in temporal logics. Most, but not all of
these operators existed in the original Allen tool, but they were implemented as
native operators independently of each other, in ad-hoc ways.

Classic operators include the weak variants Z (weak Since) and W (weak Until),
the unbounded past and future logic quantifiers O (Once), H (Historically), F
(Finally), G (Globally), defined as expected using Since and Until, and also the
bounded versions of past MTL operators H≤T and O≤T , defined in Fig. 3 using
the native operators. Other classical operators are the unary operators recogniz-
ing the raising edges of a signal (up), its falling edges (dn), or both (sw).

Operators derived from practice include:

– different duration operators (<=, >), which are variants of the >!! native
operator. They all select states from a signal, or sub-intervals thereof, by
comparing them to a given duration T .

– selection binary operators derived from the 13 relations in the Allen logic. The
Allen-logic relations define all the possible positions of two time interval with
respect to each other: : during, contains, starts, started, ends, ended, overlaps,
overlapped, meets, met, eq, before, after. For each interval relation IRJ , we

398 N. Volanschi and B. Serpette

def occ(p,q) = since(q, p&q) # p has already occurred in this state of q

def step[T] = delay[T](true) # step function, 0 on [0,T) and 1 afterwards

def orig = ~step[1] # true only at the origin of time, when t=0

def init(s) = occ(orig(), s) # selects the state of s starting at t=0

def H_le[T](s) = s >!! T | init(s) # Historically_<=T in MTL

def O_le[T](s) = ~H_le[T](~s) # Once_<=T in MTL

Fig. 3. Defining the bounded past operators O≤T and H≤T in AllenRV.

implemented a binary operator r(p, q) on signals which selects all the states
of p which are in relation R with some state of q. To improve the practical
usefulness, the before and after have been interpreted as immediately before
and immediately after, respectively.

– variants of the O (Once) and F (Finally) operators bounded by a signal,
instead of a relative delay. This gives binary operators occ(p,q), meaning
“p has occurred at least once in the current state of q”, and possible(p,q),
meaning “p is still possible in the current state of q”.

– different forms of a binary flat(p,q) operator, which glue together the different
states of p which occur during a same state of q. This operator is frequently
used to reconstitute a whole period within a slot out of fragments of it: for
instance, reconstituting a presence in a room out of sporadic movements while
no other movements are sensed elsewhere.

– other operators such as a binary operator far[T](p,q) selecting states of p that
are far away (i.e. more than T away) from any state in q.

2.4 Online Monitoring

The online monitoring algorithm of Allen, first described in [12], is based on
detecting informative prefixes. The compiler constructs a graph for the set of
monitored formulae, in which let-bound sub-expressions are shared by all the
containing expressions, be it in the same or in different monitored formulae. The
monitor pushes from bottom up the value changes for each formula from the
corresponding signals; other events in the log are dropped. Evaluating certain
kinds of operators may generate timer events that are merged in the event input
stream. This way, output signals may change either triggered by input value
changes or by delays relative to such changes.

For example. the p >!! T operator schedules a timer event at time t+T when
signal p raises to 1 at time t, and cancels the scheduled event when signal p falls
to 0. If the timer event is encountered, this means that p has been continuously
1 on the interval [t, t + T), so the output signal is switched to 1.

Future time operators are handled by computing three-valued output signals
{0,1,?}, like in LTL3 monitoring [3]. However, our monitoring, like any algorithm
based on informative prefixes, does not guarantee that a definite signal (0 or
1) is computed the earliest possible for a monitored formula, but rather when
sufficient evidence was gathered to evaluate it from bottom to top. However, it

AllenRV: An Extensible Monitor for Multiple Complex Specifications 399

is important to note that, when computing an operator over the three-valued
domain, our algorithm does not always block on unknown values. Indeed, some
operators may return defined values (0 or 1) even when some of the inputs are
unknown (equal to ‘?’). For instance, the value computed for a node since(p,q)
is always 1 when the current value of q is 1, independently of the current value
of p, and in particular even if p is currently unknown.

Another salient feature of our algorithm, already mentioned in the Introduc-
tion, is that the current output of any operator is recomputed both when the
current value of its input changes (in the three-valued domain) and possibly on
timer events, such as the timer events scheduled by the >!! operator mentioned
above. An important consequence of this feature is that the monitor may sig-
nal the violation or satisfaction of a formula even when no event happens. For
instance, when monitoring for a door left open more than time T during a Night
slot using the formula during(Door >!! T,Night), the satisfaction of the formula
is signalled as soon as the delay T has elapsed since the door has been opened,
without waiting for a new event to happen. In contrast, many existing moni-
tors [1,2,6] wait for a next event, or rely on an artificial clock event to ensure
reactivity. The problem in this case is that more the clock event is fine-grained,
more the monitor is overloaded by processing these artificial events, decreasing
its efficiency. For AllenRV, no such clock events are needed, and the monitor
reacts as soon as it processes its timer events. In fact, our timer events may be
considered as clock events generated on demand, without bloating the monitor
with useless regular events. In practice, this strategy makes possible a reactivity
of the order of 1 ms, currently unreachable by many other tools.

2.5 Input and Output

AllenRV is constituted by a compiler, called allenc and a virtual machine, called
allen. The compiler takes a program adhering to the syntax in Fig. 2, expressing
a set of named formulae to be monitored, and produces a compiled module. The
virtual machine is designed as a Unix ‘filter’, that is, takes a log on standard
input (which may come from a file or a pipe) containing the value changes of
input signals, and produces a log of value changes of the output signals—one for
each named formula.

Both the input and output are in CSV format (colon-separated values): each
line is a triple containing a timestamp, a signal name, and a value. In the input
log, signals commonly correspond to sensors, and timestamps are ordered in
increasing order. Values having the same timestamp must correspond to different
signals (recall that for each signal, the timestamps are strictly increasing) and
are considered to happen simultaneously. Simultaneity is important in many
Allen-logic operators such as meets(p,q), recognizing the situation when signal p
falls at the same time when signal q is raising. In the output log, timestamps are
not necessarily increasing, as output signals are de-correlated, and each value
change is signalled immediately for maximal reactivity. This absence of sorting
is similar to other recent monitors [1,2].

400 N. Volanschi and B. Serpette

Timestamps may be either opaque integers (number of seconds or millisec-
onds since “the Epoch”) or human-readable standard date-time timestamps.

2.6 Command-Line Options

The allen command offers, among others, options for:

– converting number-valued signals to boolean signals, by associating a thresh-
old to a signal name (or a name pattern, to cover several signals)

– specifying symbolic values for a signal (e.g., OPEN/CLOSED) corresponding
to 1 and 0

– debugging, e.g., by executing only one named formula in the specification, or
by printing information about the computations performed at each event

– loading a library of operators extending the set of pre-defined operators

This last option is used, for instance, to extend the set of 4 native operators
with the AllenRV library.

3 Applications

AllenRV has been successfully used for processing logs of real homes produced by
different smart home projects. First, it has been used to simultaneously monitor
more than 50 real AAL services on logs spanning one year from more than 100
homes of seniors living along, produced by the HomeAssist project [4]. It has also
been used to simultaneously monitor 27 reals-size formulae on logs produced by
the Orange4Home experiment [5], and to process logs of several weeks produced
by the Amiqual4Home experiment [7]. All these examples are available with the
AllenRV distribution, and can be reproduced easily by using the makefile in the
examples subdirectory.

For instance, the Orange4Home example demonstrates on the corresponding
dataset that AllenRV ensures close to real time processing with millisecond-class
reactivity when processing the 27 AAL services simultaneously. These services
include: infrastructure monitoring such as checking the correct functioning of
light switches based on light sensors; recognizers for various activities in the
home, such as showering, napping, or cooking; and meta-level rules built on
top of the activity recognizers, such as alerting about unusual activity patterns,
or about a potential danger when napping while cooking. The ‘let’ construct
is especially useful in this context, when both activity and meta-activity rules
are monitored. Without this construct, activity recognition formulae have to be
computed many times, which, in this example, multiplies the total size of the
monitored formulae by a factor of 4.3, and increases computation time by 63%.

4 Conclusion

Allen RV is a scalable and extensible tool for monitoring multiple complex
specifications on discrete time boolean signals, scaling to arbitrarily fine-grain

AllenRV: An Extensible Monitor for Multiple Complex Specifications 401

reactivity with no computation overhead. The system library demonstrates its
smooth extensibility, but is only a starting point. The open platform constituted
by the AllenRV opens the way to experiment with higher-level specifications
abstractions in metric propositional temporal logic, driven by concrete practice.
Although our previous practice was limited to the SH and AAL domains, we
hope that this platform will be useful in other sensor-based applications in the
IoT realm, for example.

References

1. Basin, D.A., Klaedtke, F., Zalinescu, E.: The MonPoly monitoring tool. In: RV-
CuBES, pp. 19–28 (2017)

2. Basin, D.A., Krstic, S., Traytel, D.: Aerial: almost event-rate independent algo-
rithms for monitoring metric regular properties. In: RV-CuBES, pp. 29–36 (2017)

3. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Software Eng. Methodol. (TOSEM) 20(4), 14 (2011)

4. Consel, C., Dupuy, L., Sauzéon, H.: HomeAssist: an assisted living platform for
aging in place based on an interdisciplinary approach. In: Duffy, V., Lightner, N.
(eds.) AHFE 2017. AISC, vol. 590, pp. 129–140. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-60483-1 14

5. Cumin, J., Lefebvre, G., Ramparany, F., Crowley, J.L.: A dataset of routine daily
activities in an instrumented home. In: Ochoa, S.F., Singh, P., Bravo, J. (eds.)
UCAmI 2017. LNCS, vol. 10586, pp. 413–425. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67585-5 43

6. El-Hokayem, A., Falcone, Y.: Bringing runtime verification home. In: Colombo,
C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 222–240. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03769-7 13

7. Lago, P., Lang, F., Roncancio, C., Jiménez-Guaŕın, C., Mateescu, R., Bonnefond,
N.: The contextAct@A4H real-life dataset of daily-living activities. In: Brézillon,
P., Turner, R., Penco, C. (eds.) CONTEXT 2017. LNCS (LNAI), vol. 10257, pp.
175–188. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57837-8 14

8. Letier, E., Kramer, J., Magee, J., Uchitel, S.: Fluent temporal logic for discrete-
time event-based models. In: ACM SIGSOFT Software Engineering Notes, vol. 30,
pp. 70–79. ACM (2005)

9. Thati, P., Roşu, G.: Monitoring algorithms for metric temporal logic specifications.
Electron. Notes Theoret. Comput. Sci. 113, 145–162 (2005)

10. Volanschi, N., Serpette, B.: Scaling up RV-based activity detection (2019), sub-
mitted

11. Volanschi, N., Serpette, B., Carteron, A., Consel, C.: A language for online state
processing of binary sensors, applied to ambient assisted living. Proc. ACM Inter-
act. Mobile Wearable Ubiquit. Technol. 2(4), 192:1–192:26 (2018). https://doi.org/
10.1145/3287070

12. Volanschi, N., Serpette, B., Consel, C.: Implementing a semi-causal domain-
specific language for context detection over binary sensors. In: Proceedings of the
17th ACM SIGPLAN International Conference on Generative Programming: Con-
cepts and Experiences, pp. 66–78. ACM (2018). https://doi.org/10.1145/3278122.
3278134

https://doi.org/10.1007/978-3-319-60483-1_14
https://doi.org/10.1007/978-3-319-60483-1_14
https://doi.org/10.1007/978-3-319-67585-5_43
https://doi.org/10.1007/978-3-319-67585-5_43
https://doi.org/10.1007/978-3-030-03769-7_13
https://doi.org/10.1007/978-3-319-57837-8_14
https://doi.org/10.1145/3287070
https://doi.org/10.1145/3287070
https://doi.org/10.1145/3278122.3278134
https://doi.org/10.1145/3278122.3278134

Timescales: A Benchmark Generator
for MTL Monitoring Tools

Dogan Ulus(B)

Boston University, Boston, MA, USA
doganulus@gmail.com

Abstract. This article presents a benchmark generator, Timescales,
which can be used to evaluate the performance and scalability of runtime
verification tools using Metric Temporal Logic (MTL) formulas as their
specifications. We mainly target runtime verification of cyber-physical
systems and generate traces similar to the qualitative behavior of sensor
readings and state variables of such systems that are observed/sampled
continuously. Since such systems are composed of many heterogeneous
components that work over very different time scales, it is crucial to mea-
sure the performance of the MTL monitoring tool for a wide range of
timing parameters in specifications. Hence, Timescales supports the gen-
eration of benchmarks for 10 typical timed properties for any given trace
length and timing parameters with several other useful features. Finally,
we include some default benchmark suites generated by Timescales.

1 Introduction

Cyber physical systems (CPS) refer to large-scale interconnected control and
communication systems that incorporate physical and computing components
at various levels. Real-time decision making is the defining characteristic of
cyber physical systems such that it does not only mean responding to soft and
hard deadlines but also making decisions in a timely manner based on an ongo-
ing interaction between the system and environment. The design of CPS often
involves heterogeneous components that operate on different temporal scales
and the correct operation requires a high level of coordination and cooperation
among such components. Overall the design results in very complex artifacts to
verify the correctness and evaluate the performance. Therefore, we usually resort
to conventional simulation and model based testing methods for the analysis of
CPS. Current research efforts include developing fast, scalable, and versatile
runtime verification techniques and tools that handle complex timing require-
ments of CPS and provide an additional level of rigor and effectiveness over
conventional testing methods.

Metric Temporal Logic (MTL) [6] is a popular formalism to specify temporal
properties with timing constraints over the behavior of cyber physical systems.
Several existing runtime verification (RV) tools support MTL as their specifi-
cation and employ different techniques and algorithms to monitor MTL formu-
las over temporal behaviors (traces) [1,2,7–9]. From any MTL monitoring tool,
c© Springer Nature Switzerland AG 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 402–412, 2019.
https://doi.org/10.1007/978-3-030-32079-9_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_25&domain=pdf
https://doi.org/10.1007/978-3-030-32079-9_25

Timescales Benchmark Generator 403

we typically expect a linear-time performance in both the length of the trace and
the size of the formula. Furthermore, the insensitivity to the base time unit and
numeric time values in formulas is a very much desired feature for MTL monitor-
ing tools. This becomes especially crucial for CPS applications since we usually
have to use small and large numerical constants in the same formula when spec-
ifying timing requirements of components that operate on different timescales.
Hence, in this paper, we present Timescales benchmark generator, which can
be used to evaluate the performance and scalability of MTL monitoring tools.
In particular, Timescales generates temporal behaviors for a predefined set of
MTL formulas with parameterized timing constraints. We consider the past and
future fragments of MTL separately and our benchmarks consist of one trace
file in the comma-separated values (CSV1) format and two (past and future)
specification files in the YAML2 format. Besides we provide ANTLR3 grammar
files to parse our MTL formulas. These file formats are widely supported and
their implementations are already available for many programming languages.

Timescales is essentially developed to help measure the typical performance
of MTL monitoring tools. Therefore, we, first and foremost, consider the most
common types of timed properties encountered in real system designs. Such
typical properties have been studied in the papers [4,5], which employs the tem-
plate system developed by Dwyer et al. for untimed specifications [3]. In this
template system, a property consists of (1) a pattern, which describes what
must be observed, and (2) a scope, which describes the temporal extent of the
pattern. Each property further contains one or two timing parameters, which
can be controlled by the user. In Timescales, we support a total of 10 typical
timed properties over 4 pattern (absence, universality, recurrence, response) and
4 temporal scopes (before, after, between, globally) for the benchmark genera-
tion. Then, the tool generates a discrete time behavior that satisfy the property
for a given property, duration, and values of timing parameters. We also provide
an option to generate dense time behaviors where the maximum density is con-
trolled by the user. Since we usually want to generate a collection of benchmarks
by varying all these parameters over a grid, we include some example scripts to
generate such benchmark suites with some predefined values.

The structure of this paper is as follows. Section 2 overviews the syntax
and semantics of MTL as used in this paper. In Sect. 3, we describe supported
timed properties and corresponding MTL formulas for the benchmark genera-
tion. Section 4 explains the benchmark generation generally and gives further
details about the implementation including trace generation, output formats,
and default benchmark suites generated by Timescales.

1 CSV is a common text-based data exchange format to store a sequence of data fields.
(https://en.wikipedia.org/wiki/Comma-separated values).

2 YAML is a human-readable configuration file format. (https://yaml.org).
3 ANTLR is a powerful parser generator tool. (https://www.antlr.org).

https://en.wikipedia.org/wiki/Comma-separated_values
https://yaml.org
https://www.antlr.org

404 D. Ulus

2 Metric Temporal Logic

Metric Temporal Logic (MTL) [6] is an extension of linear temporal logic (LTL)
in which temporal operators are endowed with timing constraints. In this paper,
we interpret MTL formulas over a bounded discrete time domain T = [1, N] of
total duration N and use so-called non-strict (reflexive) semantics of temporal
operators, timed since (SI) and timed until (UI). Given a finite set P of atomic
propositions, the formulas of MTL are defined by the following grammar:

ϕ = p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 SI ϕ2 | ϕ1 UI ϕ2

where p ∈ P and I ⊆ [0,∞). Then the satisfaction relation (w, t) � ϕ indicates
that the Boolean temporal behavior w : T → B

P satisfies the formula ϕ at the
time point t ∈ T as follows.

(w, t) � p ↔ wp(t) = �
(w, t) � ¬ϕ ↔ (w, t) � ϕ
(w, t) � ϕ1 ∨ ϕ2 ↔ (w, t) � ϕ1 or (w, t) � ϕ2

(w, t) � ϕ1 SI ϕ2 ↔ ∃t′ ≤ t. (w, t′) � ϕ2 and
∀t′′ ∈ (t′, t]. (w, t′′) � ϕ1 and

t − t′ ∈ I
(w, t) � ϕ1 UI ϕ2 ↔ ∃t′ ≥ t. (w, t′) � ϕ2 and

∀t′′ ∈ [t, t′). (w, t′′) � ϕ1 and
t′ − t ∈ I

where we use wp : T → B to denote the projection of w onto its component p.
Other timed modalities include time constrained variants of sometime in the
past (�I) and always in the past (�I) as well as sometime in the future (♦I)
and always in the future (�I). For any temporal operator, we usually omit the
time bound if there is no constraint and call such an operator untimed. The
past fragment of MTL, or past MTL in short, is defined as a restriction of MTL
without the until operator. Similarly we do not use the since operator in the
future fragment. In this paper, we write MTL formulas either in the past or
future fragment of MTL.

3 Supported Properties

This section overviews supported timed properties in Timescales. By default a
single benchmark consists of a logical formula that capture the property either
in the past or future fragment of MTL and a temporal behavior that satisfies the
formula. We select 10 typical timed properties for the benchmark generation and
we cover in these properties all types of temporal operators and different types

Timescales Benchmark Generator 405

of intervals for timing constraints. Each timed property is parameterized with
one or two timing parameters in order to generate benchmarks with different
timing characteristics. Note that we do not claim or seek the logical equivalence
between the past and future MTL formulas in the following but capture the
intention in both fragments.

Bounded Absence After Q. This property has one timing parameter u.
Intuitively it means that it is always the case that the event P does not occur
at least for U time units after the event Q occurs. We capture this property by
the formula

�
(

�[0,u] Q −→ (¬P S Q)
)

(Past)

in the past fragment of MTL and by the formula

�
(

Q −→ �[0,u]¬P
)

(Future)

in the future fragment of MTL.

Bounded Absence Before R. This property has one timing parameter u.
Intuitively it means that it is always the case that the event P does not occur
at least for u time units before the event R occurs. We capture this property by
the formula

�
(

R −→ �[0,u]¬P
)

(Past)

in the past fragment of MTL and by the formula

�
(

♦[0,u] R −→ (¬P U R)
)

(Future)

in the future fragment of MTL.

Bounded Absence Between Q and R. This property has two timing param-
eters l and u. Intuitively it means that it is always the case that the event P
does not occur between events Q and R and the duration between Q and R is
in l and u time units. We capture this property by the formula

�
(

(R ∧ ¬Q ∧ �Q) −→ (¬P S[l,u] Q)
)

(Past)

406 D. Ulus

in the past fragment of MTL and by the formula

�
(

(Q ∧ ¬R ∧ ♦R) −→ (¬P U[l,u] R)
)

(Future)

in the future fragment of MTL.

Bounded Universality After Q. This property has one timing parameter u.
Intuitively it means that it is always the case that the event P always occurs at
least for u time units after the event Q occurs. We capture this property by the
formula

�
(

�[0,u] Q −→ (P S Q)
)

(Past)

in the past fragment of MTL and by the formula

�
(

Q −→ �[0,u]P
)

(Future)

in the future fragment of MTL.

Bounded Universality Before R. This property has one timing parameter
u. Intuitively it means that it is always the case that the event P always occurs
at least for u time units before the event R occurs. We capture this property by
the formula

�
(

R −→ �[0,u]P
)

(Past)

in the past fragment of MTL and by the formula

�
(

♦[0,u] R −→ (P U R)
)

(Future)

in the future fragment of MTL.

Bounded Universality Between Q and R. This property has two timing
parameters l and u. Intuitively it means that it is always the case that the event
P always occurs between events Q and R and the duration between Q and R is
in l and u time units. We capture this property by the formula

�
(

(R ∧ ¬Q ∧ �Q) −→ (P S[l,u] Q)
)

(Past)

in the past fragment of MTL and by the formula

�
(

(Q ∧ ¬R ∧ ♦R) −→ (P U[l,u] R)
)

(Future)

in the future fragment of MTL.

Timescales Benchmark Generator 407

Bounded Recurrence Globally. This property has one timing parameter u.
Intuitively it means that it is always the case that the event P occurs at least
for every u time units. We capture this property by the formula

��[0,u]P (Past)

in the past fragment of MTL and by the formula

�♦[0,u]P (Future)

in the future fragment of MTL.

Bounded Recurrence Between Q and R. This property has one timing
parameter u. Intuitively it means that it is always the case that the event P
occurs at least for every u time units between events Q and R. We capture this
property by the formula

�
(

(R ∧ ¬Q ∧ �Q) −→ (�[0,u](P ∨ Q) S Q)
)

(Past)

in the past fragment of MTL and by the formula

�
(

(Q ∧ ¬R ∧ ♦R) −→ (♦[0,u](P ∨ R) U R)
)

(Future)

in the future fragment of MTL.

Bounded Response Globally. This property has two timing parameters l
and u. Intuitively it means that it is always the case that the event S responds
to the event P in l and u time units. We capture this property by the formula

�
(
(S −→ �[l,u]P) ∧ ¬(¬S S[u,∞) P)

)
(Past)

in the past fragment of MTL and by the formula

�
(
P −→ ♦[l,u]S

)
(Future)

in the future fragment of MTL.

408 D. Ulus

Bounded Response Between Q and R. This property has two timing
parameters l and u. Intuitively it means that it is always the case that the
event S responds to the event P in l and u time units between events Q and R.
We capture this property by the formula

�
(
(R ∧ ¬Q ∧ �Q) −→ (

(S −→ �[l,u]P) ∧ ¬(¬S S[u,∞)P)
))

(Past)

in the past fragment of MTL and by the formula

�
(
(Q ∧ ¬R ∧ ♦R) −→ (

P −→ (¬R U[l,u](¬R ∧ S)) U R
))

(Future)

in the future fragment of MTL.

4 Implementation

Timescales is an open source command line program4 written in Python. For
example, using Timescales, we generate a benchmark for the property bounded
universality property between Q and R by executing the command

timescales always bqr --lbound 300 --ubound 600 --duration 1000

where the argument specifies the duration of trace and arguments lbound and
ubound specify the value for lower and upper timing parameters of the prop-
erty, respectively. Then Timescales produces a concrete specification file, which
contains an MTL formula, as a standard YAML file and a trace as a standard
CSV file. These output formats are simple human-readable text files and very
well supported in virtually all major programming languages. In the following,
we give further details on the trace generation, output formats, and default
benchmark suites.

4.1 Trace Generation

Given a timed property and parameter values, Timescales generate a temporal
behavior in a periodic fashion where each period contains a sequence of propo-
sitional values that satisfies the property. For each period, we randomly deter-
mine actual timings of the sequence according to timing constraints specified by
--lbound and --ubound arguments. Consequently, the duration of each period
varies accordingly and we terminate the generation process once we exceed the
total duration specified by the argument --duration. For example, suppose we
want to generate a trace for the property always bqr for l = 300 and u = 600.
We start each period with a time point where Q holds and end with a time point
where R holds. Then the actual number of time points where P holds between
Q and R is randomly selected between 300 and 600. We repeat this procedure
as many times as needed.
4 https://github.com/doganulus/timescales.

https://github.com/doganulus/timescales

Timescales Benchmark Generator 409

Fig. 1. Timescales command line interface

For benchmark generation, the command line interface of Timescales pro-
vides a few more customization options as shown in Fig. 1. First, properties
that contain some kind of recurrence have additional parameters to specify the
minimum and maximum number of recurrence inside a single period. By the
arguments --min-recur and --max-recur , we can specify a range and actual
number of recurrences is randomly selected to be within this range. Secondly,
generated temporal behaviors may involve the repetition of the same value over
long periods called stuttering periods. We provide an option to condense such
behaviors by omitting a time point in the trace file if the next time point also
has the same value. By the argument --condense, we can control the amount of
condensation, which caps the duration of such omitted periods. Choosing a large
value (such as larger than the total duration) would eliminate any stuttering in
the trace file while choosing zero means there would be no condensation and the
trace file explicitly includes every time point. Finally, we provide another option
to append a sequence that makes the property fail at the end of the trace. This
trick often serves a sanity check for that the monitoring algorithm does actu-
ally find an error (thus not silently fails) during the benchmarking. The option
--failing-end enables this behavior.

4.2 Output Formats

Timescales produces a specification file in the standard YAML format and a
temporal behavior in the standard CSV format as its output. These are sim-
ple human-readable text files and several implementations to read and write

410 D. Ulus

these formats already exist in virtually all major programming languages. Hence,
Timescales can be used directly for RV tools that support these formats or else
requires little implementation effort for the rest.

Fig. 2. (Top) An example specification file generated for the property with timing
values 300 and 600. (Bottom Left) An example discrete time behavior in CSV format.
(Bottom Middle) A dense time behavior with limited 10. (Bottom Right) A dense time
behavior with limited 100. Note that whitespaces in CSVs are for the aesthetics.

At the top of Fig. 2, we show an example specification file that we have gen-
erated using Timescales. The name attribute indicates the name of property,
which can be overwritten via the command line, and the spec attribute denotes
the actual MTL formula. We provide our MTL grammar as an ANTLR gram-
mar file so that an ANTLR parser can be automatically generated to parse our
MTL formulas. The bottom row of Fig. 2 demonstrates three example CSV files
generated using Timescales. The leftmost CSV file contains a row of proposi-
tional values for each time point in the time domain and represents a discrete
time behavior. The CSV file show a condensed trace where some time points are
omitted in the file if the next time has the same value of propositions. Finally
the rightmost CSV is generated with the option --condense 100 and therefore
the duration of time jumps in the file is capped by 100 time units.

4.3 Default Benchmark Suites

In the source code distribution, we also include a Makefile script to generate three
predefined sets of benchmarks named as small, large, and full suites using the
generator. First, the small suite is intended for initial testing and demonstration
purposes. It contains one benchmark for each supported property (10 in total)
with small timing bounds over short traces with a duration of 1000 time units.
Secondly, the large suite targets discrete time MTL monitoring tools and contains

Timescales Benchmark Generator 411

three benchmarks for each property (30 in total) with increasingly larger time
bounds (1×, 10×, and 100×) over traces with a duration of one million time
units. These numbers are often sufficient to check whether a runtime verification
tool scales towards large time bounds in the specification. The total size of the
large suite is about 400 MB and not included in the distribution. Finally, the
full suite extends the large suite by varying the length of generated traces (10K,
100K, 1M) and the amount of condensation (1, 10, 100). These benchmarks can
be used to check the scalability of the tool with respect to the trace length as
well as compare discrete and dense time implementations if the tool supports
both settings.

5 Conclusion

In this paper, we presented Timescales benchmark generator to help testing the
performance and scalability of MTL monitoring tools over the most common
types of timed properties encountered in real designs. In particular, we have
been interested in checking such tools when the specification contains large val-
ues of timing constraints and ideally expect that large timing constraints do not
deteriorate the performance. This is especially important in runtime verification
of cyber-physical systems, which involves various cooperating components oper-
ating in different timescales. Hence, our main motivation has been to generate
benchmarks of the same property with the varying timing constraints and mea-
suring the performance of the tool over them. In our tool, we have considered 10
typical properties for the benchmark generation and provided various customiza-
tion options, which can be accessed easily via the command line interface. We
adhered standard file formats for the implementation and tried to conform cur-
rent practices in runtime verification as much as possible.

References

1. Basin, D., Klaedtke, F., Zalinescu, E.: The MonPoly monitoring tool. In: Proceed-
ings of the Workshop on Competitions, Usability, Benchmarks, Evaluation, and
Standardisation for Runtime Verification Tools (RV-CuBES), vol. 3, pp. 19–28
(2017)

2. Basin, D., Krstic, S., Traytel, D.: AERIAL: almost event-rate independent algo-
rithms for monitoring metric regular properties. In: Proceedings of the Workshop
on Competitions, Usability, Benchmarks, Evaluation, and Standardisation for Run-
time Verification Tools (RV-CuBES), pp. 29–36 (2017)

3. Dwyer, M.B. Avrunin, G.S., Corbett, J.C.: Property specification patterns for finite-
state verification. In: Proceedings of the Workshop on Formal Methods in Software
Practice (FMSP), pp. 7–15 (1998)

4. Gruhn, V., Laue, R.: Patterns for timed property specifications. Electron. Notes
Theor. Comput. Sci. 153(2), 117–133 (2006)

5. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: Proceedings of the
International Conference on Software Engineering (ICSE), pp. 372–381 (2005)

412 D. Ulus

6. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time
Syst. 2(4), 255–299 (1990)

7. Ničković, D., Lebeltel, O., Maler, O., Ferrère, T., Ulus, D.: AMT 2.0: qualitative
and quantitative trace analysis with extended signal temporal logic. In: Proceedings
of the Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), pp. 303–319 (2018)

8. Schumann, J., Moosbrugger, P., Rozier, K.Y.: R2U2: monitoring and diagnosis of
security threats for unmanned aerial systems. In: Bartocci, E., Majumdar, R. (eds.)
RV 2015. LNCS, vol. 9333, pp. 233–249. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-23820-3 15

9. Ulus, D.: Online monitoring of metric temporal logic using sequential networks. In:
arXiv preprint arXiv:1901.00175 (2019)

https://doi.org/10.1007/978-3-319-23820-3_15
https://doi.org/10.1007/978-3-319-23820-3_15
http://arxiv.org/abs/1901.00175

Author Index

Aceto, Luca 148

Babaee, Reza 111
Basin, David 310
Belta, Calin 368
Bortolussi, Luca 129

Cairoli, Francesca 129
Cassar, Ian 148
Černý, Pavol 329
Chen, Xin 349
Chou, Yi 349
Cimatti, Alessandro 165, 382

Danielsson, Luis Miguel 185
Dawes, Joshua Heneage 202
Deshmukh, Jyotirmoy 292

Eakman, Greg 375

Fainekos, Georgios 27
Falcone, Yliès 48
Feng, Lang 221
Ferrère, Thomas 292
Fischmeister, Sebastian 256
Francalanza, Adrian 148
Frew, Eric 349

Ganesh, Vijay 111

Hahn, Christopher 70
Havelund, Klaus 239, 256
Hoxha, Bardh 27
Hu, Jiang 221
Huang, Jeff 221

Ingólfsdóttir, Anna 148

Kannan, Sampath 1
Kauffman, Sean 256
Kim, Moonzoo 1
Krstić, Srđan 310

Lee, Insup 1, 375
Leucker, Martin 273

Mateis, Cristinel 292

Ničković, Dejan 292

Paoletti, Nicola 129
Peled, Doron 239
Pinisetty, Srinivas 48

Qin, Xin 292

Reddy, Abhijith 221
Reger, Giles 202

Sánchez, César 185, 273
Sankaranarayanan, Sriram 27, 329, 349
Scheffel, Torben 273
Schmitz, Malte 273
Schneider, Joshua 310
Sedwards, Sean 111
Serpette, Bernard 393
Seshia, Sanjit A. 15
Smolka, Scott A. 129
Sokolsky, Oleg 1, 375
Stoller, Scott D. 129

Thoma, Daniel 273
Tian, Chun 165, 382
Tizpaz-Niari, Saeid 329
Tonetta, Stefano 165, 382
Torfah, Hazem 91
Traytel, Dmitriy 310
Trivedi, Ashutosh 329

Ulus, Dogan 368, 402

Viswanathan, Mahesh 1
Volanschi, Nic 393

Yoon, Hansol 349

Zhang, Teng 375

	Preface
	Organization
	Contents
	A Retrospective Look at the Monitoring and Checking (MaC) Framework
	1 Introduction
	2 MaC Design Highlights
	2.1 Specification Languages and Their Semantics
	2.2 Tool Architecture
	2.3 Response

	3 Lessons Learned
	3.1 Reflections on MaC Design Decisions
	3.2 Applications of Runtime Verification in Safety-Critical Systems

	References

	Introspective Environment Modeling
	1 Introduction
	2 Introspective Environment Modeling: The Idea
	2.1 Problem Setup
	2.2 Illustrative Example
	2.3 Formalization

	3 IEM for Synthesis from Temporal Logic
	3.1 Example
	3.2 IEM for LTL Synthesis
	3.3 Results

	4 Conclusion
	References

	Robustness of Specifications and Its Applications to Falsification, Parameter Mining, and Runtime Monitoring with S-TaLiRo
	1 Introduction
	2 Systems and Signals
	2.1 Input Signals
	2.2 Automotive Transmission (AT)

	3 Metric Temporal Logic
	3.1 Parametric Metric Temporal Logic

	4 Robustness of Metric Temporal Logic Formulas
	5 Falsification with S-TaLiRo
	5.1 Falsification with the Hybrid Distance

	6 Parameter Mining
	6.1 Monotonicity of Parametric MTL
	6.2 Robustness-Guided Parameter Mining

	7 Runtime Monitoring
	8 Future Directions
	9 Conclusions
	References

	On the Runtime Enforcement of Timed Properties
	1 Principles and Concepts in Runtime Enforcement
	1.1 Specification
	1.2 Trace
	1.3 Enforcement Mechanism
	1.4 Deployment
	1.5 Enforceability
	1.6 Application Domains

	2 Real-Time Systems and Specifications with Time Constraints
	2.1 Preliminaries and Notations
	2.2 Timed Automata
	2.3 Partitioning the States of a Timed Automaton
	2.4 Classification of Timed Properties

	3 Overview of RE Approaches for Timed Properties
	4 A Framework for the Runtime Enforcement of Timed Properties
	4.1 Overview
	4.2 Intuition on an Example

	5 Tool Implementations
	6 Open Challenges and Avenues for Future Work
	References

	Algorithms for Monitoring Hyperproperties
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Logics for Hyperproperties
	3.2 HyperLTL
	3.3 Finite Trace Semantics
	3.4 Monitorability of HyperLTL Specifications

	4 Algorithms for Monitoring Hyperproperties
	4.1 Combinatorial Approaches
	4.2 Constraint-Based Approaches

	5 Optimizations
	5.1 Specification Analysis
	5.2 Trace Analysis
	5.3 Tree Maintaining Formulas and Conjunct Splitting

	6 Experimental Results
	7 Conclusion
	References

	Stream-Based Monitors for Real-Time Properties
	1 Introduction
	2 Stream Specification Languages
	2.1 A Classification of Stream Specification Languages
	2.2 Memory Analysis

	3 Parameterized Stream Specifications
	4 Embedding Real-Time Logics in RTLola Using Parameterized Specifications
	5 Bibliographic Remarks
	6 Conclusion
	References

	Accelerated Learning of Predictive Runtime Monitors for Rare Failure
	1 Introduction
	2 Preliminaries
	3 Importance Sampling
	4 Running Example
	5 Training on Rare-Event Samples
	5.1 Generating Rare-Event Samples from an IS Distribution
	5.2 Weighted Prefix Tree Acceptor
	5.3 WPTA Construction from a Single Distribution

	6 Case Study: Bounded Retransmission Protocol
	7 Related Work
	8 Conclusion
	References

	Neural Predictive Monitoring
	1 Introduction
	2 Problem Formulation
	3 Conformal Prediction for Classification
	3.1 CP Algorithm for Classification
	3.2 Nonconformity Function
	3.3 Confidence and Credibility

	4 Uncertainty-Based Rejection Criteria
	5 Active Learning
	5.1 Refining the Query Strategy
	5.2 Active Learning Algorithm

	6 Experimental Results
	7 Related Work
	8 Conclusion
	References

	Comparing Controlled System Synthesis and Suppression Enforcement
	1 Introduction
	2 Preliminaries
	3 Controlled System Synthesis and Suppression Enforcement
	3.1 A Model for Suppression Enforcement
	3.2 Synthesising Controlled Systems

	4 Discussion and Comparison
	5 Establishing a Static Counterpart to Enforcement
	6 Related Work
	7 Conclusion
	References

	Assumption-Based Runtime Verification with Partial Observability and Resets
	1 Introduction
	2 Preliminaries
	3 The Generalized RV Framework
	4 The Symbolic Algorithm
	5 Experimental Evaluation
	6 Related Work
	7 Conclusion
	References

	Decentralized Stream Runtime Verification
	1 Introduction
	2 Preliminaries. Stream Runtime Verification
	3 Decentralized Stream Runtime Verification
	3.1 Problem Description
	3.2 Decentralized Stream Runtime Verification
	3.3 Simplifiers

	4 Decentralized Efficient Monitorability
	5 Empirical Evaluation
	6 Conclusions and Future Work
	References

	Explaining Violations of Properties in Control-Flow Temporal Logic
	1 Introduction
	2 Control-Flow Temporal Logic (CFTL)
	2.1 CFTL Formulas
	2.2 What CFTL Formulas Mean
	2.3 Instrumentation and Observations
	2.4 What Matters for Explanation?

	3 Identifying Failing Observations
	3.1 Partial Semantics for CFTL
	3.2 Verdict Severity

	4 Path Reconstruction
	4.1 Instrumentation for Branch-Aware Dynamic Runs
	4.2 Computing Reconstructed Paths
	4.3 What Matters for Explanation?

	5 Explaining Verdicts with Paths
	5.1 Reconstructed Paths as Parse Trees
	5.2 Representing Paths up to Observations
	5.3 Producing Explanations

	6 Implementation in VyPR2
	6.1 Performing an Analysis
	6.2 Performance

	7 Related Work
	8 Conclusion
	References

	FastCFI: Real-Time Control Flow Integrity Using FPGA Without Code Instrumentation
	1 Introduction
	2 CFI and Control Flow Graph
	3 Previous Work
	3.1 Software-Based CFI
	3.2 Hardware-Based CFI

	4 The Proposed System Design
	4.1 System Platform
	4.2 System Design Overview
	4.3 Offline CFG Checker Generator
	4.4 Trace Decoder
	4.5 CFI Verification Module

	5 Experiments and Results
	5.1 Experiment Setup
	5.2 Security
	5.3 Performance Overhead
	5.4 Latency
	5.5 Circuit Resource Use and Compilation Time

	6 Conclusion
	References

	An Extension of LTL with Rules and Its Application to Runtime Verification
	1 Introduction
	2 Propositional LTL
	3 RV for Propositional Past Time LTL and Its Extension
	4 First-Order LTL
	5 RV for Past Time First-Order LTL and Its Extension
	6 Implementation
	7 Conclusions
	References

	Monitorability over Unreliable Channels
	1 Introduction
	2 Notation
	3 Uncertainty
	4 Monitorability
	4.1 Classical -Monitorability
	4.2 Classical Monitorability
	4.3 Weak Monitorability
	4.4 Alternative Monitorability

	5 Unreliable Channels
	5.1 An Example with Unreliable Channels
	5.2 Trace Mutations

	6 Immunity to Trace Mutations
	7 Deciding Immunity for -Regular Properties
	8 Decision Procedure for Finite Automaton Immunity
	9 Discussion
	10 Related Work
	11 Conclusion
	References

	Runtime Verification for Timed Event Streams with Partial Information
	1 Introduction
	2 The TeSSLa Specification Language
	3 Abstract TeSSLa
	3.1 Fixpoint Calculations Ensuring Well-Formedness

	4 Perfection of Compositional Specifications
	5 Abstractions for Sliding Windows
	6 Implementation and Empirical Evaluation
	7 Conclusion
	References

	Shape Expressions for Specifying and Extracting Signal Features
	1 Introduction
	2 Shape Expressions and Automata
	2.1 Definitions
	2.2 Shape Expressions
	2.3 Shape Automata

	3 Pattern Matching
	4 Policy Scheduler for Shape Matching Automata
	5 Implementation and Evaluation
	5.1 Detection of Anomalous Patterns in ECG
	5.2 Detection of Ringing in an Aircraft Elevator Control System

	6 Conclusion
	References

	A Formally Verified Monitor for Metric First-Order Temporal Logic*-10pt
	1 Introduction
	2 Isabelle/HOL
	3 Metric First-Order Temporal Logic
	4 Finite Tables
	5 Monitor
	6 Correctness
	7 Case Study in Differential Testing
	8 Conclusion
	References

	Efficient Detection and Quantification of Timing Leaks with Neural Networks
	1 Introduction
	2 Overview
	3 Problem Statement
	4 Neural Network Architecture to Detect and Quantify Information Leaks
	5 Experiments
	5.1 Implementations
	5.2 Micro-benchmarks

	6 Case Studies
	6.1 GabFeed
	6.2 SnapBuddy
	6.3 PhoneMaster
	6.4 Thermomaster
	6.5 Password Matching (Keyczar)

	7 Related Work
	8 Conclusion and Discussion
	References

	Predictive Runtime Monitoring for Linear Stochastic Systems and Applications to Geofence Enforcement for UAVs
	1 Introduction
	1.1 Related Work

	2 Data-Driven Model
	2.1 Autoregressive Models

	3 Viability Monitoring
	3.1 Sufficient Condition for -Viability
	3.2 Overall Monitoring Algorithm

	4 Monitoring for Geofence Violations
	5 Evaluation
	6 Conclusions
	References

	Reactive Control Meets Runtime Verification: A Case Study of Navigation
	1 Introduction
	2 Environment, Robots, and Specifications
	3 Search for Safe Motion
	4 Navigate by Regular Expressions
	5 Conclusion
	References

	Overhead-Aware Deployment of Runtime Monitors
	1 Introduction
	2 Preliminaries
	3 Estimation and Comparison of Monitoring Overhead
	4 Case Study
	5 Future Work
	References

	NuRV: A nuXmv Extension for Runtime Verification
	1 Introduction
	2 Architecture and Functionalities
	2.1 Architecture of NuRV
	2.2 Structure of Explicit-State Monitors
	2.3 API of Generated Code

	3 Use Case Scenario
	4 Experimental Evaluation
	5 Conclusions and Future Work
	References

	AllenRV: An Extensible Monitor for Multiple Complex Specifications with High Reactivity
	1 Introduction
	2 Tool Description
	2.1 Foundations
	2.2 Specifications
	2.3 The AllenRV Library
	2.4 Online Monitoring
	2.5 Input and Output
	2.6 Command-Line Options

	3 Applications
	4 Conclusion
	References

	Timescales: A Benchmark Generator for MTL Monitoring Tools
	1 Introduction
	2 Metric Temporal Logic
	3 Supported Properties
	4 Implementation
	4.1 Trace Generation
	4.2 Output Formats
	4.3 Default Benchmark Suites

	5 Conclusion
	References

	Author Index

