
Robust Design of a Collaborative
Platform for Model-Based System

Engineering: Experience from
an Industrial Deployment

Christophe Ponsard1(B) , Robert Darimont2, and Mounir Touzani3

1 CETIC Research Center, Charleroi, Belgium
christophe.ponsard@cetic.be

2 Respect-IT SA, Louvain-la-Neuve, Belgium
robert.darimont@respect-it.be

3 Toulouse, France

Abstract. Model-Based System Engineering is gaining momentum in
the industry. In order to be successful, it requires adequate tooling sup-
port. In addition to functional requirements related to model edition,
verification and transformation, key non-functional requirements need
to be carefully addressed such as versioning, usability/team work, relia-
bility, security, ease of integration. In this paper, we first give an overview
of how we dealt with such requirements in the context of the development
of a real world platform for a global telecom operator, with a focus on
early steps of system modelling. We then present a more detailed design
of the tooling architecture and a high availability protocol for accessing
a mainstream model repository. The proposed protocol is modelled and
verified using the Alloy language and model-checker.

Keywords: Model-Based System Engineering · Tool support ·
Modelling · Industrial transfer · High availability · Alloy ·
Model-checking

1 Introduction

Modelling has been used for a long time across many engineering disciplines
like civil engineering, electronic systems and aeronautics. It is now increasingly
applied at system level across disciplines through Model-Based System Engineer-
ing (MBSE) with the aim to rely primarily on domain models to support the
exchange between engineers rather than documents. Model-Driven Engineering
(MDE) is a similar trend focusing only the software development process [30].
Such approaches can rely on standardised and well adopted modelling languages
like SysML [22] at system level, UML [21] for software and increasingly Domain

M. Touzani—Independent Researcher.

c© Springer Nature Switzerland AG 2019
K.-D. Schewe and N. K. Singh (Eds.): MEDI 2019, LNCS 11815, pp. 333–347, 2019.
https://doi.org/10.1007/978-3-030-32065-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_23&domain=pdf
http://orcid.org/0000-0002-5027-2114
https://doi.org/10.1007/978-3-030-32065-2_23

334 C. Ponsard et al.

Specific Languages (DSLs). They provide a visual syntax enabling the design
and communication activities of the engineers but also have precise semantics
to enable automation of parts of the System Development Life Cycle (SDLC).

Efficient modelling across the different engineering activities can only be
achieved based on reliable computer tools typically composed of a modelling
environment, a model repository and a model transformation toolchain for syn-
chronising modelling artefacts at different steps of the SDLC. Model-to-model
and model-to-text transformations are respectively used to generate detailed
models from abstract ones and code/documentation from models.

Designing a robust toolchain at industrial level is not an easy task. In
addition to functional requirements (FR) relating to various model manipula-
tions (edition, check, transformation, simulation,...), it is also very important to
cover several non-functional requirements (NFR), in order to ensure industrial
strength. Frequently cited NFR are usability, support for collaboration and ver-
sioning, scalability, highly availability, integrity, confidentiality, interoperability
and maintainability [27,29,31].

In this paper, we present an industrial feedback to cope with such non-
functional requirements by elaborating a MBSE platform for a global telecom
operator (Huawei Ltd). Our tooling is focusing on the early steps of system
development through a goal-oriented approach relying on elaborated require-
ments modelling. The contribution of this paper is twofold:

– First, we give a high level view about how we addressed important NFR
without focusing too much on the specifics of our industrial case but rather
by trying to provide adequate feedback that can be applied in a wider context.

– Second, we focus on robust operation requirements, i.e. high availability
and load balancing, by describing a generic architecture composed of sev-
eral redundant server nodes able to process multiple requests and reconfigure
in case of node failure. This protocol also involves a master node with specific
responsibilities, which must be reassigned to another node in case of failure.

The reported case was carried out over two years, with the last six months
mainly devoted to enforcing the robustness of the platform. It is more extensively
detailed from a requirements engineering perspective in [25].

This paper is structured as follows: Sect. 2 presents our industrial case and
analyses its key requirements. Then Sect. 3 elaborates on how we dealt with non-
functional requirements with a generalisation effort. Section 4 goes into details
about the specific high availability requirement. It presents a multi-server archi-
tecture and a specific protocol ensuring robust operation in presence of node fail-
ures. It is modelled and verified using the Alloy language and analyser. Section 5
discusses some related work. Finally, Sect. 6 draws some conclusions and presents
our future work.

2 Presentation of Our Industrial Case

This section gives a summary of the context and main requirements of the devel-
oped platform. We try to step away from too specific aspects of the industrial

Robust Design of a Collaborative Platform 335

case that initiate the work in order to provide a more general feedback. Another
reason is that the core of the resulting platform already proved applicable in
other domains. An extended description of the Huawei deployment is available
[25] and a demonstration version accessible at: http://demo.objectiver.cetic.be/
objectiver/client.

2.1 Context and Objectives

The context of our case is quite common to many industries with requirements
engineering practices mainly based on domain modelling, analysis of the cur-
rent solution (i.e. existing product), use case analysis and UML/SysML mod-
elling. The global process is still strongly document-based with different types of
documents flowing across the lifecycle. Domain specific languages were already
present, mainly for design and testing phases. For example, Gherkins was used to
formalise specifications using “Given-When-Then” structure which can be used
for testing [3,36].

A common long term objective of companies is also to evolve towards a wider
use of modelling across the SDLC but also across products, i.e. by modelling their
product lines and using it for better reuse through more systematic domain engi-
neering. However, this evolution should be progressive and preserve the current
flow of documents. The transition can be achieved the efficient production of
documents using model-to-text [23]. Later on, some documents could become
obsolete when direct model-to-model integration is achieved [13].

2.2 Key Requirements

As we focus on requirements modelling, the starting point was to obtain an
adequate meta-model for capturing all the knowledge related to stakeholders
goals, system properties, domain properties, assumptions on users, and informa-
tion to be exchanged. As the meta-models available in standard modelling lan-
guages such as UML and SysML are mostly poor with this respect, a specialised
meta-model was selected: KAOS [7,14], among other candidates like i* [37] or
URN [5]. In addition to concepts, different sources and targets of the model
transformations were also modelled, like diagrams or documents. Possible trans-
formations between those artefacts were also identified and are documented in
[26]. For example, requirements can be tagged in a source document and refined
using decomposition inside a diagram, then selected as part of a specific subsys-
tem and exported in a public tender or directly transferred in the development
department of the company.

In order to minimise the effort to build a model and to maximise the value
from the invested modelling effort, the proposed tooling needs to have the fol-
lowing qualities (or NFR):

– Scalability : efficient support for large models but also for several models and
multiple concurrent users.

http://demo.objectiver.cetic.be/objectiver/client
http://demo.objectiver.cetic.be/objectiver/client

336 C. Ponsard et al.

– High availability : system up and running with very reduced unplanned inter-
rupt time, meaning service reliability and server redundancy.

– Navigation across multiple versions of modelling artefacts for traceability or
better collaboration support.

– Usability (visual feedback, shortcuts,...) for productivity and adoption.
– Flexible integration: to exchange models or expose specific (web-)services.
– Security enforcement (model integrity, confidentiality, access control).
– Long term support/portability : to ease maintenance over a long time and to

enable reuse through a knowledge base or product lines.
– Reduced installation and maintenance effort to minimise operation costs.

3 Dealing with Non-functional Requirements

3.1 Global Architecture

Several NFR can be addressed through an adequate tool architecture. Our archi-
tecture is depicted in Fig. 1. We give here a short summary why it is convenient.
More information is available in [8].

Fig. 1. Global platform architecture

Our tooling architecture is composed of:

– several clients, including a full web-based client, either standalone or embed-
ded in third party tools.

– a RESTful API, called RAWET, providing services for model and diagram
edition, history, snapshots, user authentication and project management. It
also enables different kinds of integration [28].

– a back-end composed of the model repository relying on a Eclipse Modelling
Framework (EMF) store [33] and a collection of plugins enabling both web-
services and user interface extensions.

Robust Design of a Collaborative Platform 337

3.2 Scalability and High Availability

Scalability and high availability are crucial for the industrial adoption of an
MBSE tooling. This are dealt with at the architecture level an more specifically
the model repository which must be able to manage a large number of models,
possibly large in size.

In our case the Eclipse Modelling Framework is used [32]. Different solu-
tions to persist EMF are available and the selected one, Connected Data Object
(CDO), offers different possible back-ends, including a mature and scalable rela-
tional database manager also with mirroring capabilities.

The server itself is dealing with our RAWET service API. Standard web
application technologies can be used to dispatch requests on many concurrent
servers and, at the same time, allow some server to be down, thus addressing
both scalability and high availability of the service. However, our architecture
requires that the model repository access is centralised on a single server which is
thus a possible point of failure of the system. In order to cope with this problem,
we designed a specific protocol, which is detailed in Sect. 4.

3.3 Ease of Integration

Toolchain integration has started from simple import/export mechanisms and
evolved towards a more complex integration with specific tools such as text
processors and other SDLC tools. A key decision was to shape the tooling as a
series of services available for use over the company intranet. This comes at two
different levels:

– at the user interface level, the tool provides a similar experience as other
modelling tools. However, due to its modular design, web-client extensions

Fig. 2. Modular web-based user interface

338 C. Ponsard et al.

can easily be embedded. For example, Fig. 2 shows the integration of an editor
for the GWT Domain Specific Language. Conversely, specific components can
use reused inside other tools, e.g. a dashboard or read-only view.

– at the model level, a clean RESTful API is directly available to perform CRUD
(Create/Read/Update/Delete) operations both on the model elements and on
model representations inside diagrams, baselines, etc. This allows third-party
tools to directly push or query requirements inside the tool while, previously,
many import and export actions had to be initiated from the tool.

3.4 Usability

Usability was largely stressed by our Chinese customer. The standard model
edition features had to be enriched with extensions in order to:

– provide quick access to frequently used features, with minimal number of
clicks and even keyboard shortcuts.

– support batch operation over multiple concepts (e.g. move, change type).
– tune graphical representation of concepts based on meta-model extensions

(e.g. through decorations on such extended concepts).
– provide efficient default graphical layout and include filtering capabilities.

3.5 Versioning

Model versioning is required to track the model evolution. Versioning is sup-
ported by the CDO model repository [33]. However, the provided technical fea-
tures had to be translated to a more intuitive user experience. Our implementa-
tion started with the support of a single baseline and was extended to multiple
baselines with comparison and rollback capabilities. Access to concepts history
was also made easily accessible at the user interface level to ease collaboration.

4 Analysis of the High-Availability Protocol

This section studies the robustness of server operation. The server is taking care
of model manipulation initiated from the client side and implemented through
a well-defined API. Its implementation can be assumed stateless because in case
of crash, a server session can easily be restarted without impacting the client.

A standard solution for increasing availability and coping with high load
is to use multiple servers and a load balancer/monitor front-end service, like
NGINGX [34]. A typical deployment with three servers is depicted in Fig. 3(a).
An important constraint relates to the access to the model repository: each
server actually maintains a form of cache of modelling concepts related to its user
sessions. However, all the traffic to the model repository needs to be processed
by a single node which is the gateway to the model repository. This node ensures
the serialisation of changes and notifies all other nodes of the relevant changes
through a synchronisation mechanism. As this node has a specific role, we call

Robust Design of a Collaborative Platform 339

it master in our architecture. Some other unique responsibilities may also be
assigned to this node.

As the master is different from the other servers, its failure cannot be resolved
by simply redirecting the traffic to another node as this is the case for non-master
nodes as described in Fig. 3(b).

Fig. 3. (a) Fully operational system (b) Failure of a non-master server

4.1 Informal Model for Master Recovery

As depicted in Fig. 4(a), in case of crash of the master server, the access to the
repository is also lost and the whole system is going to freeze until a new master
is restored. Hence, it must happen quickly.

Fig. 4. (a) Failure of the master server (b) Recovery (new master election)

For finding a new master, we will consider the nodes form a logical ring, e.g.
from the lower to highest IP address and then back to the lowest one. Given
that setting, we could apply a standard leader election protocol such as Chang

340 C. Ponsard et al.

and Roberts [6]. However, we do not restrict communication to message passing
between adjacent nodes. We also need to consider the sub-ring formed by the
working servers because, in our algorithm, we choose to select as new master,
the first available server following the crashed master. This master will then
reconnect to the database and start synchronising will all remaining servers.
This will result in the new operational situation depicted in Fig. 4(b) where
server#2 is the new master. Note that is the crashed master is restarted, it will
start acting as a normal server and will synchronise with master server#2.

In order to achieve this, the following rules are applied: a server detecting a
master crash will start scanning the previous nodes in the logical ring

– until finding a running server, then this server has priority to become master
and the server will wait for this new master to come up and contact him.

– or finding the crashed master, then the server is the first alive server after
the master and it should become the master. It will then notify all nodes it
is now the master. All other nodes will then reinitialise their synchronisation
link with the new master.

Given the load-balancer only directs request to working nodes, if the master
is crashed, the request must go through another server and this will trigger the
change of master as soon as there is a client request. Periodic monitoring requests
internal to the platform can also be used to avoid waiting for a client request.

4.2 Formal Modelling with Alloy

In order to make sure our protocol is behaving as expected, we decided to model
it and verify it using a formal modelling. We selected Alloy because it is a
lightweight formal method [10,12]. On the tool side, the Alloy Analyser relies on
model-checking, which is fully automated contrary to theorem proving, and has
a nice way for visualising solutions with many filtering and rendering capabilities
[11]. This section first describes the static part of the model, then its behaviour
and finally, different validation experiments.

4.3 Structure of the System

The system structure is described in Listing 1.1. It relies on Time and Server
signatures which are ordered using the available ordering module. The ring
structure is enforced using a circular constraint on the time-independent succ
attribute. Three other time-dependent attributes are used: crashed, which
records at which time a server was crashed, master, which records at which
time a server was a master and link, which records who each server believes is
the master at a given time. A key requirement that needs to be checked, is that
at any given time only one master may exist.

Robust Design of a Collaborative Platform 341

Listing 1.1. Structure of the System

open util/ordering[Time] as TO -- time steps is ordered
open util/ordering[Server] as SO -- processes are ordered

sig Time {} -- Time steps (ordered)

sig Server { -- Server node (ordered)
succ : Server , -- this is a static topology
crashed : set Time , -- captures when a server is crashed
master : set Time , -- captures when a server is master
link : Time -> lone Server -- captures knowledge of a node about master

}

fact ring { -- Server nodes are constrained to form a ring
all p: Server | Server in p.^succ

}

4.4 Dynamic Modelling for Maintaining Master Node

In order to build a dynamic model, we use standard Alloy modelling guide-
lines [9], i.e. we define a trace composed of sequence of Time, starting with
some initialisation init with no crashed server and the master allocated on
the first one. Each pair of successive Time of a trace is constrained to be
either a normalOperation when the master to be up and running, or a
recoverOperation when this is not the case. The masterAvailable predicate
is used for this test.

In normalOperation, the state is globally unchanged: a crashed node remains
crashed (repair is considered later) but we allow new nodes to crash, so we can
study server unreliability. However, we do not allow all the nodes to crash (see
notFullyCrashed predicate) because in that case no solution is possible.

In recoveryOperation, the first non-crashed successor of the crashed master
is selected as new master. This node is identified in a single Time step through a
transitive closure on the succ function with domain and range filtering to discard
crashed node. All other Servers are then informed of this new master by directly
changing their link relationship. Listing 1.2 presents the full specification of this
behavioural part.

Listing 1.2. Behaviour of the System

pred init [t: Time] {
t in SO/first.master
all s: Server |

(t �∈ s.crashed)
and (s�=SO/first =\textgreater t �∈ s.master)
and (s.link[t]=SO/first)

}

pred masterAvailable(t: Time) {
all s: Server |

t in s.master =\textgreater t �∈ s.crashed
}

pred notFullyCrashed(t: Time) {
some s: Server | t �∈ s.crashed

}

342 C. Ponsard et al.

pred normalOperation [t, t’: Time , s: Server] {
masterAvailable[t]
t in s.crashed =\textgreater t’ in s.crashed -- crashed stuff remains so
-- but note that new crash may occur !
in s.master iff t’ in s.master -- nothing changed about master routing
s.link[t’]=s.link[t] -- nothing changed about master routing
notFullyCrashed[t’] -- restricting fault model

}

pred recoverOperation [t,t’: Time , s: Server] {
not masterAvailable[t]
let select=(^(crashed.t <: succ)) : > (Server -crashed.t) | -- new master !

(t’ in s.master ≤> select[s.link[t]]=s) -- new master
and s.link[t’]=master.t.(select) -- updating links

t’ in s.crashed iff t in s.crashed -- no crash during recovery
}

fact traces { -- fact for constraining traces to allowed
↪→ operations

init [first]
all t: Time -last | let t’ = t.next | all s: Server |

normalOperation [t, t’, s] or recoverOperation [t, t’, s]
}

4.5 Model Validation

Prior to model-checking, it is important to validate the consistency of the model,
i.e. that it has instances and that those instances match the intended behaviour.
In order to validate our model, we first look for SingleMasterCrash in cascade,
i.e. each time there is a master, it should be crashed the next time, as this
is allowed by our normalOperation. The expected behaviour is that the next
server should take over as master and then crash, hence the master server will
progress around the ring. Note that because crashed nodes remains crashed, no
instance will be possible if there are more time steps than the double of the size
of the ring. The resulting scenario is depicted in Fig. 5(a) for the three first time
steps and it behaves as expected.

Listing 1.3. Behaviour of the System

-- find some instance with a lot of server crashing
pred singleMasterCrash { all t: Time | all s: Server |

t in s.master => t.next in s.crashed }
run singleMasterCrash for 5 Server , 8 Time
-- find some instance with a lot of server crashing and first backup node

↪→ too
pred MasterAndBackupCrash { all t: Time | all s: Server |

t in s.master => (t.next in s.crashed and t.next in s.succ.crashed) }
run MasterAndBackupCrash for 5 Server , 5 Time

A second validation is more naughty and involves the simultaneous crash
of the master and its backup node (i.e. immediate successor). In this case, we
expect the second successor server of the master to take over. The trace in
Fig. 5(b) (limited to the three first time steps here) shows this is the observed
behaviour.

Robust Design of a Collaborative Platform 343

Fig. 5. Behaviour in case of (a) single failure (b) double failure

4.6 Model Checking

Finally, we can ask the analyser to verify the uniqueness of the master at all
times. Rather than requiring exactly one master, actually two separate verifi-
cations are performed: at least one master and at most one master (see Listing
1.4). Their conjunction yields the wished property, but each kind of violation is
more interesting to study separately.

Listing 1.4. Behaviour of the System

-- no multiple masters allowed
assert AtMostOneMaster { all t: Time | lone s: Server | t in s.master }
check AtMostOneMaster for 5 Server , 15 Time

-- at least one master allowed
assert AtLeastOneMaster { all t: Time | some s: Server | t in s.master }
check AtLeastOneMaster for 5 Server , 15 Time

Listing 1.5 recapitulates the running time of all the checks performed on a
core I7 laptop with a 64 bit Java Virtual Machine. One can see the validation
are straightforward, meaning it is easy to find instances of the model, while
the verification took much longer: about 5 s for AtMostOneMaster and about
25 s for AtLeastOneMaster for 5 servers and 15 units of Time. The verification
did not find any counter-example meaning the model might be valid. Given the
limited variety of scenarios, one might be confident the system is indeed correct.
However, the behaviour should be studied in further details by removing some
of the limitations:

344 C. Ponsard et al.

– by allowing crashed servers to become operational again during operation
mode. In this case, the verification is still fine but takes more time for
AtLeastOneMaster (about 2 min)

– by allowing failures during the restoration step. In this case, there can be
scenarios without any master beyond a given step after a crash of all servers.
When excluding fully crashed states, the verification is fine too.

Listing 1.5. Run result

Executing "Run singleMasterCrash for 5 Server , 8 Time"
Solver=sat4j Bitwidth =0 MaxSeq =0 SkolemDepth =1 Symmetry =20
7590 vars. 305 primary vars. 21359 clauses. 31ms.
Instance found. Predicate is consistent. 32ms.

Executing "Run MasterAndBackupCrash for 5 Server , 5 Time"
Solver=sat4j Bitwidth =0 MaxSeq =0 SkolemDepth =1 Symmetry =20
4773 vars. 200 primary vars. 12892 clauses. 22ms.
Instance found. Predicate is consistent. 31ms.

Executing "Check AtMostOneMaster for 5 Server , 15 Time"
Solver=sat4j Bitwidth =0 MaxSeq =0 SkolemDepth =1 Symmetry =20
14562 vars. 565 primary vars. 41731 clauses. 62ms.
No counterexample found. Assertion may be valid. 4919ms.

Executing "Check AtLeastOneMaster for 5 Server , 15 Time"
Solver=sat4j Bitwidth =0 MaxSeq =0 SkolemDepth =1 Symmetry =20
14554 vars. 565 primary vars. 41729 clauses. 63ms.
No counterexample found. Assertion may be valid. 25207ms.

4 commands were executed. The results are:
#1: .singleMasterCrash is consistent.
#2: .MasterAndBackupCrash is consistent.
#3: No counterexample found. AtMostOneMaster may be valid.
#4: No counterexample found. AtLeastOneMaster may be valid.

5 Related Work and Discussion

Several web-based tools are available to develop diagrams in different notations
such as UML, BPMN and flowcharts [4,15,17,18]. They provide an easy way to
draw diagrams from a web browser without requiring any installation, to save
them in the Cloud and to share access with other team members. Although some
may be based on Open Source [4], they all adopt a Software as a Service (SaaS)
model with pay-per-use beyond a limited basic offer, e.g. to support larger mod-
els, more concurrent users, or tool integration. The majority of those tools focus
on the graphical notations and do not stress the model behind them, nor the API
to be able to access that model. However, some tools provide such an API, for
example GenMyModel has an API to return user information, project details,
execute project commands, return project tag data, and more [16]. Cacoo pro-
vides a quite similar API [19]. However when testing those tools and analysing
their API, it appears that many of them have a weak notion of model, i.e. concept
and their representation are not distinguished making impossible to share con-
cept across diagrams. This also limits the ability to feed the model into a MDE
toolchain. An exception is GenMyModel which also provides EMF import and
export. Our approach is close the GenMyModel as we support a strong notion
of model and provide an RESTFul API with all the usual CRUD operations on

Robust Design of a Collaborative Platform 345

model concepts and representations. Beyond this, we also support project/user
level operations and more advanced operations, for example to manage model
versioning.

Our approach relies on the EMF Open Source modelling frameworks which
is actually widespread in the research community but less in the industrial
world where the majority of modelling tools are Closed Source, e.g. Rhap-
sody, MagicDraw and Enterprise Architect. This means such tools are missing
recent advanced made by research tools. Our work aims at bridging this gap by
enabling different forms of integration. Other researchers have also explored how
to address this problem through mechanisms going beyond the pure exchange of
models in standard formats like XMI [24] or through protocols like OSLC [20]. An
attempt to bridge a proprietary UML modelling tool (PTC Integrity Modeller)
with an Open Source family of languages for automated model management
(Epsilon) is discussed in [38]. The question is also crucial in Cyber Physical Sys-
tems to support model integration across domains. OpenMETA was applied for
the design and implementation of an experimental design automation tool suite
[35]. It could provide multiple level of abstraction, correctness-by-construction
in an heterogeneous context and reuse of Open Source tools assets. Our work is
following the same design principles but with a bigger priority on tool reliability
and availability.

6 Conclusion and Future Work

In this paper, we first investigated key non-functional requirements for building
a MBSE toolchain based on our industrial experience, focusing on the early
analysis steps. Although our work is driven by a specific case, the identified
NFR are of general nature and are also reported by others in the literature. So
we believe our feedback can be useful in other cases. Then, we focused on the
specific NFR of high-availability in the context of pool of servers with a single
repository access. We proposed a design to maintain a master node in a reliable
way by modelling and verifying our design using the Alloy analyser. Although
our solution was developed in the context of an EMF data store, we believe that
the problem is more general in nature and that our solution can be reused.

In our future work, we plan to keep improving availability by also investigat-
ing problems on the repository and the load-balancing components, e.g. through
mirroring or mutual monitoring. We also plan to refine our model at a finer level
of operation (i.e. message level). For example, our model does not capture the
behaviour when a server is crashing during the notification phase. Our intent is
also to investigate another formal method supporting model refinement, such as
Event-B and the Rodin toolkit [1,2]. We also plan to further analyse security
requirements, which were not within the scope of our initial work because the
tool was deployed within a secured intranet.

Acknowledgements. This research was partly supported by the SAMOBIGrow
project (nr. 1910032). We thank Respect-IT and Huawei for their feedback in the
elaboration of this tooling. We also thank the reviewers for their comments.

346 C. Ponsard et al.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York (2010)

2. Abrial, J.R., et al.: Rodin: an open toolset for modelling and reasoning in event-B.
STTT 12(6), 447–466 (2010)

3. Adzic, G.: Specification by Example: How Successful Teams Deliver the Right
Software, 1st edn. Manning Publications Co., Greenwich (2011)

4. Alder, G., Benson, D.: draw.io (2011). https://about.draw.io/integrations
5. Amyot, D., Mussbacher, G.: User requirements notation: the first ten years, the

next ten years. JSW 6(5), 747–768 (2011)
6. Chang, E., Roberts, R.: An improved algorithm for decentralized extrema-finding

in circular configurations of processes. Commun. ACM 22(5), 281–283 (1979)
7. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-

sition. Sci. Comput. Program. 20(1–2), 3–50 (1993)
8. Darimont, R., Zhao, W., Ponsard, C., Michot, A.: A modular requirements engi-

neering framework for web-based toolchain integration. In: 24th IEEE International
Requirements Engineering Conference, RE 2016, Beijing, China, 12–16 September,
pp. 405–406 (2016)

9. Dennis, G., Seater, R.: Alloy Analyzer 4 Tutorial Session 4: Dynamic Modeling
Software. Design Group. MIT (2017)

10. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256–290 (2002)

11. Jackson, D.: Alloy Analyser, Version 4 (2006). http://alloytools.org
12. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT

Press, Cambridge (2012)
13. Kahani, N., Bagherzadeh, M., Cordy, J.R., Dingel, J., Varró, D.: Survey and clas-

sification of model transformation tools. Softw. Syst. Model. 18(4), 2361–2397
(2018)

14. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-
els to Software Specifications. Wiley, Hoboken (2009)

15. Legrand, T.: Genmymodel (2012). https://www.genmymodel.com
16. Legrand, T.: GenMyModel API Documentation (2014). https://api.genmymodel.

com/doc
17. Lucid Software: Lucidchart (2008). https://www.lucidchart.com
18. Nulab Inc.: Cacoo (2009). https://cacoo.com
19. Nulab Inc.: Cacoo API Overview (2012). https://developer.nulab.com/docs/cacoo
20. OASIS: Open Services for Lifecycle Collaboration (2008). https://open-services.

net
21. OMG: Unified modeling language (1997). http://www.omg.org/spec/UML
22. OMG: System modeling language (2005). http://www.omg.org/spec/SysML
23. OMG: MOF Model to Text Transformation Language (2008). http://www.omg.

org/spec/MOFM2T
24. OMG: XML Metadata Interchange v2.5.1 (2015). https://www.omg.org/spec/XMI
25. Ponsard, C., Darimont, R.: Improving requirements engineering through goal-

oriented models and tools: feedback from a large industrial deployment. In: Pro-
ceedings of 12th International Conference on Software Technologies, ICSOFT,
Madrid, Spain, 24–26 July 2017

26. Ponsard, C., Darimont, R., Michot, A.: Combining models, diagrams and tables for
efficient requirements engineering: lessons learned from the industry. In: INFOR-
SID 2015, Biarritz, France, June 2015

https://about.draw.io/integrations
http://alloytools.org
https://www.genmymodel.com
https://api.genmymodel.com/doc
https://api.genmymodel.com/doc
https://www.lucidchart.com
https://cacoo.com
https://developer.nulab.com/docs/cacoo
https://open-services.net
https://open-services.net
http://www.omg.org/spec/UML
http://www.omg.org/spec/SysML
http://www.omg.org/spec/MOFM2T
http://www.omg.org/spec/MOFM2T
https://www.omg.org/spec/XMI

Robust Design of a Collaborative Platform 347

27. Ponsard, C., Deprez, J.C., Delandtsheer, R.: Is my formal method tool ready for the
industry? In: 11th International Workshop on Automated Verification of Critical
Systems, Newcastle, UK, 12–14 September 2011

28. Ponsard, C., Michot, A., Darimont, R., Zhao, W.: A generic rest API on top of
eclipse CDO for web-based modelling. EclipseCon France, Toulouse, June 2016

29. Ryan, M., Cook, S., Scott, W.: Application of MBSE to requirements engineer-
ing research challenges. In: Systems Engineering, Test and Evaluation Conference
SETE2013, Canberra, Australia, April 2013

30. Schmidt, D.C.: Guest editor’s introduction: model-driven engineering. Computer
39(2), 25–31 (2006). https://doi.org/10.1109/MC.2006.58

31. Soukaina, M., Abdessamad, B., Abdelaziz, M.: Model driven engineering tools: a
survey. Am. J. Sci. Eng. Technol. 3(2), 29 (2018)

32. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley Professional, Upper Saddle River (2009)

33. Stepper, E.: Connected data object (2006). https://www.eclipse.org/cdo
34. Sysoev, I.: Nginx (2004). https://nginx.org
35. Sztipanovits, J., et al.: Model and tool integration platforms for cyberphysical

system design. Proc. IEEE 106(9), 1501–1526 (2018)
36. Wynne, M., Hellesoy, A.: The Cucumber Book. The Pragmatic Programmers.

Pragmatic Bookshelf, Dallas (2012)
37. Yu, E.S.K., Mylopoulos, J.: Enterprise modelling for business redesign: the i*

framework. SIGGROUP Bull. 18(1), 59–63 (1997)
38. Zolotas, A., et al.: Bridging proprietary modelling and open-source model manage-

ment tools: the case of PTC integrity modeller and epsilon. In: Software & Systems
Modeling (2019)

https://doi.org/10.1109/MC.2006.58
https://www.eclipse.org/cdo
https://nginx.org

	Robust Design of a Collaborative Platform for Model-Based System Engineering: Experience from an Industrial Deployment
	1 Introduction
	2 Presentation of Our Industrial Case
	2.1 Context and Objectives
	2.2 Key Requirements

	3 Dealing with Non-functional Requirements
	3.1 Global Architecture
	3.2 Scalability and High Availability
	3.3 Ease of Integration
	3.4 Usability
	3.5 Versioning

	4 Analysis of the High-Availability Protocol
	4.1 Informal Model for Master Recovery
	4.2 Formal Modelling with Alloy
	4.3 Structure of the System
	4.4 Dynamic Modelling for Maintaining Master Node
	4.5 Model Validation
	4.6 Model Checking

	5 Related Work and Discussion
	6 Conclusion and Future Work
	References

