
Extracting High-Level System
Specifications from Source Code
via Abstract State Machines

Flavio Ferrarotti(B), Josef Pichler, Michael Moser, and Georg Buchgeher

Software Competence Center Hagenberg, Hagenberg, Austria
{flavio.ferrarotti,josef.pichler,michael.moser,georg.buchgeher}@scch.at

Abstract. We are interested in specifications which provide a consis-
tent high-level view of systems. They should abstract irrelevant details
and provide a precise and complete description of the behaviour of the
system. This view of software specification can naturally be expressed by
means of Gurevich’s Abstract State Machines (ASMs). There are many
known benefits of such an approach to system specifications for soft-
ware engineering and testing. In practice however, such specifications
are rarely generated and/or maintained during software development.
Addressing this problem, we present an exploratory study on (semi) auto-
mated extraction of high-level software specifications by means of ASMs.
We describe, in the form of examples, an abstraction process which starts
by extracting an initial ground-level ASM specification from Java source
code (with the same core functionality), and ends in a high-level ASM
specification at the desired level of abstraction. We argue that this pro-
cess can be done in a (semi) automated way, resulting in a valuable tool
to improve the current software engineering practices.

1 Introduction

We consider good software specifications to be much more than just prototypes
to build systems. In our view, they should also enable us to explore, reuse, debug,
document and test systems, and to explain their construction in a verifiable way.
In particular if these specification (models) are meant to help practitioners to
manage complex software-intensive systems.

There are many formal and semi-formal software specification methods which
realize this view, have been around for many year, and have successfully been
applied in practice. See [21] for an overview with practical focus of the main
methods, including ASM, UML, Z, TLA+, B and Estelle among others.

The research reported in this paper results from the project Higher-Order Logics and
Structures supported by the Austrian Science Fund (FWF: [I2420-N31]). It was fur-
ther supported by the Austrian Ministry for Transport, Innovation and Technology,
the Federal Ministry of Science, Research and Economy, and the Province of Upper
Austria in the frame of the COMET center SCCH.

c© Springer Nature Switzerland AG 2019
K.-D. Schewe and N. K. Singh (Eds.): MEDI 2019, LNCS 11815, pp. 267–283, 2019.
https://doi.org/10.1007/978-3-030-32065-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_19&domain=pdf
https://doi.org/10.1007/978-3-030-32065-2_19

268 F. Ferrarotti et al.

Software specifications should serve both, the client and the developer. The
client should be able to understand the specification so that she/he can validate
it. The developer should have as much freedom as possible to find the best
implementation that conforms to the specification. Thus, it is fundamentally
important for a good specification to present a consistent high-level description
of the system abstracting away irrelevant details. Let us illustrate this point with
an example.

Example 1. Suppose we are given the task of specifying an algorithm for sorting a
sequence of elements in-place. The algorithm must proceed sequentially, making
exactly one swap in each step until the sequence is in order. The abstract state
machine (ASM) in Listing 1.1 provides a formal, yet high-level specification of
such algorithm. Provided we are aware that lines 3 and 4 are executed in parallel
and thus there is no need to save the value of array(i) into a temporary variable,
this formal specification should be self-explanatory. It is not the most efficient
algorithm for the task at hand, but it is the most general and gives freedom
to the developer to refine it into an implementation of her/his choice such as
bubble sort, insertion sort or Shell sort, among others.

1 rule Sort =
2 choose i, j ∈ indices(array) with i < j and array(i) > array(j)
3 array(i) := array(j)
4 array(j) := array(i)

Listing 1.1. ASM High-Level Specification of Sort Algorithm.

Despite the many benefits that good high-level formal software specifications
bring to software design, verification by reasoning techniques, validation by sim-
ulation and testing, and documentation, they are still a rare occurrence in the
software industry, except in the case of mission critical systems. The commonly
cited problems for their adoption in practice are the restrictive time and money
constraints under which software is developed, and the dynamic nature of soft-
ware evolution which makes difficult to keep design and documentation up to
date. The need for good software specifications is further underlined by the fact
that most programmers need to work on software which was not designed or
developed by them, and the growing demand to document and reimplement
legacy software systems.

In order to alleviate these problems, since early on [12] a considerable amount
of effort have been put into reverse engineering higher level abstractions from
existing systems. Nowadays the common approach in the literature (see for
instance [22]) is to transform a given program P which conforms to a given
grammar G into a high-level model M which conforms to a meta model MM .
During this transformation P is usually represented by an abstract syntax tree or
a concrete syntax tree. The extraction process relies in the specification of map-
pings between elements of G and MM . Independently for the specific details, this
transformation is done in one big step from P to M , and the level of abstraction
of M is fixed, determined by the mappings from G to MM .

Extracting High-Level System Specifications from Source Code 269

In this paper we propose a different approach. Instead of relying on a big
step transformation from the source code to a model at the desired level of
abstraction, we propose to derive formal software specifications by a sequence of
(semi) automated transformations, in which each transformation increases the
level of abstraction of the previous specification in the sequence. We argue that
this process can be done in a (semi) automated way and thus result in a valuable
tool to improve the current software (reverse) engineering practices.

The method for high-level system design and analysis known as the ASM
method [9] inspired our idea of extracting high-level specifications from soft-
ware following an organic and effectively maintainable sequence of rigorous and
coherent specifications at stepwise higher abstraction levels. The simple but key
observation to this regard is that the process of stepwise refinement from high-
level specification down to implementation provided by the ASM method, can
be applied in reverse order and thus used for the (semi) automated extraction
of high-level software specifications from source code.

The idea of using formal methods to reverse engineering formal specifications
is of course not new. Already in the nineties, Z notation was used to extract
formal specifications from COBOL [11,23]. Declarative specifications such as Z
imply a fixed level of abstraction for design and verification, completely indepen-
dent of any idea of computation. This is unsuitable for the multi-step abstrac-
tion approach proposed in this paper. In this sense, ASMs provide us with the
required unifying view of models of computation and declarative frameworks [5].

The paper is organized as follows. In Sect. 2 we argue why ASMs provide the
correct foundations for the method presented in this work for high-level software
specification extraction. The actual method for stepwise abstraction of software
specifications is presented in Sect. 3. In Sect. 4 we show how the method works
in practice through a complete example. We conclude our work in Sect. 5.

2 Abstract State Machines

A distinctive feature of the ASM method which is not shared by other formal
and semi-formal specification methods such as B, Event-B and UML is that,
by the ASM thesis (first stated in [18,19] as project idea for a generalization of
Turing’s thesis), ASMs can step-by-step faithfully model algorithms at any level
of abstraction. This thesis has been theoretically confirmed for most well known
classes of algorithms, including sequential [20], parallel [2,3,14], concurrent [8],
reflective [13], and even quantum [16] algorithms. Moreover, it has long been
confirmed in practice (see [4] and Chapter 9 in [9] for a survey). This distinctive
feature is a key component of the approach that we propose in this paper to
extract specifications from source code. Moreover, ASMs provide simple founda-
tions and a uniform conceptual framework (see Section 7.1 in [9]).

This paper can be understood correctly by reading our ASM rules as pseu-
docode over abstract data types. Nevertheless, we review some of the basic ASM
features in order to make the paper self-contained. The standard reference book
for this area is [9].

270 F. Ferrarotti et al.

The states of ASMs are formed by a domain of elements or objects and a
set of functions defined over this domain. That is, states are arbitrary universal
structures. Predicates are just treated as characteristic functions. The collection
of the types of the functions (and predicates) which can occur in a given ASM
is called its signature.

In its simplest form an ASM of some signature Σ can be defined as a finite
set of transition rules of the form if Condition then Updates which transforms
states. The condition or guard under which a rule is applied is an arbitrary
first-order logic sentence of signature Σ. Updates is a finite set of assignments
of the form f(t1, . . . , tn) := t0 which are executed in parallel. The execution
of f(t1, . . . , tn) := t0 in a given state S proceeds as follows: first all parame-
ters t0, t1, . . . , tn are assigned their values, say a0, a1, . . . , an, then the value of
f(a1, . . . , an) is updated to a0, which represents the value of f(a1, . . . , an) in the
next state. Such pairs of a function name f , which is fixed by the signature,
and optional argument (a1, . . . , an) of dynamic parameters values ai, are called
locations. They represent the abstract ASM concept of memory units which
abstracts from particular memory addressing. Location value pairs (l, a), where
l is a location and a is a value, are called updates and represent the basic units
of state change.

The notion of ASM run (or equivalently computation) is an instance of the
classical notion of the computation of transition systems. An ASM computa-
tion step in a given state consists in executing simultaneously all updates of all
transition rules whose guard is true in the state. If these updates are consistent,
the result of their execution yields a next state, otherwise it does not. A set
of updates is consistent if it contains no pairs (l, a), (l, b) of updates to a same
location l with a �= b. Simultaneous execution, as obtained in one step through
the execution of a set of updates, provides a useful instrument for high-level
design to locally describe a global state change. This synchronous parallelism is
further enhanced by the transition rule forall x with ϕ do r which expresses
the simultaneous execution of a rule r for each x satisfying a given condition
ϕ. Similarly, non-determinism as a convenient way of abstracting from details
of scheduling of rule executions can be expressed by the rule choose x with ϕ
do r, which means that r should be executed with an arbitrary x chosen among
those satisfying the property ϕ.

3 The Stepwise Abstraction Method

In this section we present a stepwise abstraction method to extract high-level
specifications from source code. The method comprises the following two phases:

1. Ground specification extraction: This is the first step consisting on parsing
the source code of the system in order to translate it into a behaviourally
equivalent ASM. Here we use the term behaviourally equivalent in the pre-
cise sense of the ASM thesis (see [2,3,8,13,14,20] among others), i.e., in the
sense that behaviourally equivalent algorithms have step-by-step exactly the

Extracting High-Level System Specifications from Source Code 271

same runs. Thus the ground specification is expected to have the same core
functionality as the implemented system.

2. Iterative high-level specification extraction: After the first phase is completed,
the ground ASM specification is used as a base to extract higher-level specifi-
cations, by means of a semi-automated iterative process. The implementation
of the method must at this point present the user with different options to
abstract away ASM rules and/or data.

A detailed analysis of these phases follows.

3.1 Ground Specification Extraction

In this phase we focus on how to extract an ASM behaviourally equivalent to a
source code implementation in a given programming language. In our research
center, we have a positive industrial experience in parsing and extracting knowl-
edge from source code1. We have built and applied several reverse engineering
tools around the Abstract Syntax Tree Metamodel (ASTM) standard2. In par-
ticular, we have shown its potential for multi-language reverse engineering in
practice [15].

Using this approach and adapting our previous results, we have determined
that it is possible extract the desired ground specifications in the form of
a behaviourally equivalent ASM by automated means. The idea is to trans-
form the source code into an ASM model in two steps. First, by means of
eKnows3, the source code is parsed into a language-agnostic canonical AST rep-
resentation. Besides concrete language syntax, this intermediate representation
also abstracts from language-specific semantics with regard to control-flow. For
instance, the switch statement occurs in different forms, namely with or with-
out fall-through semantics. eKnows constructs an AST representation with a
standardized semantic (e.g. explicit break statements even for non-fall-through
languages) that allows homogeneous subsequent analysis/transformation steps.
Furthermore, eKnows resolves unstructured control-flow (e.g. break and continue
within loop statements, or goto statement) by means of refactoring resulting in
well-structured control-flow, i.e. single entry/exit points of statements.

In the second step, we provide rewriting rules for AST nodes specifically
related to control-flow (e.g. for loops, conditional statements) and assignment
statements. Rewriting rules for control-flow nodes can be applied in a straight-
forward way to individual nodes independent of any context information. The
subsequent examples illustrate the idea for the transformation of loop state-
ments. The transformation of assignment statements, however, need semantic
analysis of the source code due to the difference between strict sequential exe-
cution order of program code and simultaneous execution of ASM update rules.
We can leverage symbolic execution (also part of eKnows) in order to eliminate
intermediate variables and construct assignment statements that only contain
1 http://codeanalytics.scch.at/.
2 https://www.omg.org/spec/ASTM/1.0/.
3 https://www.scch.at/de/eknows.

http://codeanalytics.scch.at/
https://www.omg.org/spec/ASTM/1.0/
https://www.scch.at/de/eknows

272 F. Ferrarotti et al.

input/output parameters of the analyzed algorithms. In this transformed repre-
sentation, the strict execution sequence becomes irrelevant and statements can
be transformed into behaviorally equivalent ASM update rules executed in par-
allel.

Next we present a simple example of ground level ASM specifications
extracted from a Java implementation of the bubble sort algorithm.

Example 2. Let us analyse the very simple and compact bubble sort algorithm
implemented by the Java method in Listing 1.2.

1 public stat ic void bubbleSort (int array []) {
2 for (int n = array . l ength − 1 ; n > 0 ; n−−) {
3 for (int i = 0 ; i < n ; i++) {
4 i f (array [i] > array [i +1]) {
5 int temp = array [i] ;
6 array [i] = array [i +1] ;
7 array [i +1] = temp ;} } } }

Listing 1.2. Bubble sort algorithm as Java method.

Let for be the following iterative turbo ASM rule which first executes the
rule R0, and then repeats the execution of its body rule R2 followed by R1 as
long as they produce a non-empty update set and the condition cond holds.

for (R0 ; cond ; R1) R2 =
R0 seq iterate (i f cond then R2 seq

R1)

The turbo ASM in Listing 1.3 can easily be obtained from the Java code in
Listing 1.2 by mostly simple syntactic rewriting, except for the value swap done
in parallel in lines 5 and 6 which requires a simple semantic abstraction of lines 5–
7 in Listing 1.2. Using the symbolic approach described above, the Java variable
temp in the assignment in line 7 of Listing 1.2 would get substituted by the
previous assignment (line 5) resulting in the ASM rule array(i + 1) := array(i).

1 rule bubbleSort0 =
2 for (n := array.length − 1 ; n > 0 ; n := n − 1)
3 for (i := 0 ; i < n ; i := i + 1)
4 i f array(i) > array(i + 1) then
5 array(i) := array(i + 1)
6 array(i + 1) := array(i)

Listing 1.3. Turbo ASM extracted from Java method bubbleSort.

Alternatively, we can extract from Listing 1.2 the control state ASM in List-
ing 1.4. Same as in the case of the turbo ASM, the transformation from the Java
method bubbleSort to the control state ASM only requires simple rewriting
techniques.

Extracting High-Level System Specifications from Source Code 273

1 rule bubbleSort1 =
2 i f state = s0 then
3 n := array.length − 1
4 state := s1
5 i f state = s1 then
6 i f n > 0 then
7 i := 0
8 state := s2
9 i f state = s2 then

10 i f i < n then
11 i f array(i) > array(i + 1) then
12 array(i) := array(i + 1)
13 array(i + 1) := array(i)
14 i := i + 1
15 else
16 n := n − 1
17 state := s1

Listing 1.4. Control State ASM abstracted from Java code of bubbleSort.

Although the control state ASM in Listing 1.4 has more lines of code than
the turbo ASM in Listing 1.3 (and that the original Java code), it has certain
advantages. It can for instance be represented graphically as the UML-style
diagram in Fig. 1. Furthermore, the control state ASM presents a transparent
white-box view of the states while the turbo ASM presents a black-box view
which hides internal sub-computations. Which of these views is more useful
depends on the desired specification level and the application at hand, and can
be decided by the user. For instance, at low levels of abstraction, control ASMs
can lead to complex UML-style diagrams which might share the usual drawbacks
of UML activity diagrams, unnecessarily replacing elegant structured code by
control flow based in states (a kind of “hidden goto” if viewed as a program).

s1 s2

n := n − 1

i := i+ 1

s0 n > 0 i < ni := 0

noyes

no

yes

array(i+ 1) := array(i)
array(i) := array(i+ 1) array(i) > array(i+ 1)

n := array.length − 1

Fig. 1. bubbleSort1

3.2 Iterative High-Level Specification Extraction

Without entering into technical details, which are nevertheless well explained
in Section 3.2 in [9], we note that the schema of ASM refinement step, can also

274 F. Ferrarotti et al.

be viewed as describing an abstraction step if it is used for extracting a high-
level model. In this sense, the re-engineering project in [1] confirms this idea in
practice and it is a source of inspiration for our proposal.

Thus, when abstracting an ASM M ′ from an ASM M , there is a lot of
freedom. In particular, it is possible to perform diverse kinds of abstractions by
combining the following items:

– The notion of an abstracted state, obtained by changing (usually reducing)
the signature.

– The notion of state of interest and correspondence between states, obtained
by changing (usually reducing) the states of interest in M ′ with respect to
M , and determining the pairs of states of interest in the runs of M and M ′

that we want to relate through the abstraction.
– The notion of abstract computation segments, obtained by changing (usually

reducing) the number of abstract steps that lead to states of interest of M ′

with respect to M .
– The notion of locations of interest and of corresponding locations, obtained by

changing (usually reducing) the locations of interest of M ′, and determining
the pairs of corresponding locations of interest of M and M ′ that we want to
relate through abstraction. Recall that in ASM terminology the term location
refer to abstract data container.

– The notion of equivalence of the data in the locations of interest, obtained
by changing (usually reducing) the number of different classes of equivalence,
and thus also changing the notion of equivalence of corresponding states of
interest of M and M ′.

The aim of this phase is to semi-automatically extract high-level system
specifications starting from the ground ASM specification built in the previous
phase. In this paper we present a proof of concept through examples. We show
that very simple heuristic analyses of ASM rules can already lead to useful
abstractions. Of course, much more sophisticated abstraction mechanisms such
as abstract interpretations are certainly possible, opening what would constitute
an interesting research project.

Example 3. Note that it is clear from the ASM ground specifications extracted
in Example 2 that the order in which the values in the sequence are swapped
does not really matter from a conceptual high-level perspective. That is, if we
keep swapping the values of array(i) and array(i + 1) as long as array(i) >
array(i + 1) for some index i, then the algorithm still works correctly. We thus
can abstract the ASM in Listing 1.5. After at most 2n steps, where n is the
length of the array, we have that for every index i the condition in the choose
rule no longer holds. At that point the machine stops and, for every index i, it
holds that array(i) ≤ array(i + 1), i.e., the array is in order. Clearly, the ASM
in Listing 1.5 is not only an abstraction of the bubble sort algorithm, it is also
an specialization of the in place sorting algorithm specified by the ASM rule in
Listing 1.1.

Extracting High-Level System Specifications from Source Code 275

1 rule bubbleSort2 =

2 choose i with 0 ≤ i < array.length − 1 and array(i) > array(i + 1)

3 array(i) := array(i + 1)

4 array(i + 1) := array(i)

Listing 1.5. Abstraction from control state ASM bubbleSort1.

Admittedly, high-level specifications such as the one in Listing 1.5 are not
trivial to abstract following mechanical procedures, since they are not decid-
able in the general case. We can however analyse and classify programming
patterns, applying engineering and AI techniques such as heuristics, symbolic
execution, machine learning, theorem provers etc. to identify appropriate and
correct abstractions of this kind.

4 Dijkstra’s Shortest Path Algorithm: Extracting
High-Level Specifications from a Java Implementation

In this section we showcase a step-by-step formal process of abstraction from
a Java implementation of the famous Dijkstra’s shortest path algorithm, up to
a high-level ASM specification of the underpinning graph traversal algorithm.
The correctness of each step of this abstraction process can be formally proven
following similar arguments to those in the refinement proofs of Sect. 3.2 of the
ASM book [9]. Automated proving would also be possible in some cases, but
that is not the focus of this work.

We start from a Java implementation (slightly adapted from the one
in https://www.baeldung.com/java-dijkstra) of the shortest path algorithm.
Rather surprisingly we show that applying our method we can extract very
similar high-level specifications to those in Sect. 3.2 of the ASM book [9].

In the Java implementation of the algorithm graph are represented as sets of
nodes. Each node is an object of the class in Listing 1.6 which has a name, an
upper bound for its distance from source, and a list of adjacent nodes.

1 public class Node {
2 private St r ing name ;
3 private I n t eg e r upbd = In t eg e r .MAX VALUE;
4 private Map<Node , Integer> adj = new HashMap<>() ;
5 public Node (St r ing name) {
6 this . name = name ;
7 }
8 public void addDest inat ion (Node de s t ina t i on , int

weight) {
9 adjacentNodes . put (de s t i na t i on , weight) ;

10 }
11 // g e t t e r s and s e t t e r s . . .
12 }

Listing 1.6. Class Node.

https://www.baeldung.com/java-dijkstra

276 F. Ferrarotti et al.

It is not difficult to see that the Java method in Listing 1.7 actually imple-
ments Dijkstra’s shortest path algorithm. This is the case mainly because: (a)
the algorithm is well known, (b) the implementation is quite standard, and (c)
the code is quite short. If either of (a), (b) or (c) does not hold, then the task
of understanding the program would certainly be more time consuming and
challenging.

1 public stat ic Graph shortes tPath (Graph graph , Node source)
2 { source . setUpbd (0) ;
3 Set<Node> v i s i t e d = new HashSet<>() ;
4 Set<Node> f r o n t i e r = new HashSet<>() ;
5 f r o n t i e r . add (source) ;
6 while (f r o n t i e r . s i z e () != 0) {
7 Node u = LowestDistanceNode (f r o n t i e r) ;
8 f r o n t i e r . remove (u) ;
9 for (Entry<Node , Integer> pa i r :

10 u . getAdj () . entrySet ()) {
11 Node v = pa i r . getKey () ;
12 I n t eg e r weight = pa i r . getValue () ;
13 LowerUpbd(u , v , weight) ;
14 i f (! v i s i t e d . conta in s (v)) {
15 v i s i t e d . add (v) ;
16 f r o n t i e r . add (v) ;}}}
17 return graph ;}
18

19 private stat ic void LowerUpbd(Node u , Node v , I n t eg e r
weight) {

20 i f (u . getUpbd () + weight < v . getUpbd ()) {
21 v . setUpbd (u . getUpbd () + weight) ;}}

Listing 1.7. Shortest path algorithm as Java program.

Let us now abstract the code of shortestPath by transforming it into a
control state ASM. We follow a very simple procedure which consists mostly
on syntactic rewriting. First we note that we can represent the omnipresent
binding or instantiation of methods and operations to given objects, by means
of parametrized functions [7]. The schema can be expressed by the equation
self .f(x) = f(self , x) or f(x) = f(self , x). The parameter self is used to denote
an agent, typically the one currently executing a given machine. This is similar
to the object-oriented current class instance this with respect to which methods
of that class are called (executed). In an object oriented spirit the parameter
self is often left implicit.

The state in which the control state ASM will operate is easily abstracted
from the input parameters to the method shortestPath, i.e., the Graph and
Node classes. We omit a detailed description here since it will be clear from the
context.

Extracting High-Level System Specifications from Source Code 277

The rewriting of shortestPath into a behavioural equivalent ASM control
state machine ShortestPath proceeds as follow:

1. Lines 2–4 in Listing 1.7 translate to simple updates of the current upper
bound value of the node source to 0 (initially set to Integer.MAX VALUE, or
∞ in ASM notation) and the values of visited and frontier to empty sets.
These three updates can be done in parallel and thus in the initial control
state s0. The update to frontier in Line 5 cannot be done in parallel with
that of Line 4. Nevertheless, a simple heuristic can easily discover that these
two updates can be collapsed into one. Thus Lines 2–5 can be translated to
the parallel updates shown in lines 3–5 in Listing 1.8.

2. The while-loop starting in line 6 requires a new control state to which the
ASM can return. If we are in this state and the condition in the while-loop
is satisfied, then the rule corresponding to the code inside the while-loop is
applied and the machine remains in control state s1. See lines 3–5 in List-
ing 1.8.

3. Lines 7–8 can be done in parallel since they require updates to different
locations. See lines 9–10 in Listing 1.8.

4. Same as the while-loop, the for-loop in line 9 calls for a new control state
and to keep track of the nodes adjacent to LowestDistanceNode(frontier)
which have not been visited yet. Once the for-loop is done, i.e., there is no
more adjacent nodes to visit, we need to return to the control state s1, since
this for-loop is nested in the while-loop being represented in that control
state. The result is shown in lines 11–16 and 22–23 of Listing 1.8.

5. The values of v and weight are only defined and used locally in lines 10–
15. In addition, lines 12–15 update disjoint state locations, and there is no
interdependency among them. Thus, we can replace lines 10–11 by a let-rule
and process lines 12–15 in parallel. See lines 17–21 in Listing 1.8.

6. Finally, the ASM rule LowerUpbd is almost identical to the LowerUpbd
method, except for the trivial differences in notation. In LowerUpbd, parame-
ter u is a location variable while parameters v and weight are logical variables.
See lines 25–27 in Listing 1.8.

1 rule ShortestPath0 =
2 i f state = s0 then
3 upbd(source) := 0
4 visited := ∅
5 frontier := {source}
6 state := s1
7 i f state = s1 then
8 i f frontier �= ∅ then
9 u := LowestDistanceNode(frontier)

10 frontier(LowestDistanceNode(frontier)) := false
11 neighb := getAdj(LowestDistanceNode(frontier))
12 state := s2
13 i f state = s2 then

278 F. Ferrarotti et al.

14 i f neighb �= ∅ then
15 choose pair ∈ neighb
16 neighb(pair) := false
17 let v = getKey(pair), weight = getV alue(pair) in
18 LowerUpbd(u, v, weight)
19 i f v �∈ visited then
20 visited(v) := true
21 frontier(v) := true
22 else
23 state := s1
24

25 rule LowerUpbd(u, v, weight) =
26 i f upbd(u) + weight < upbd(v) then
27 upbd(v) := upbd(u) + weight

Listing 1.8. Control State ASM extracted from the Java code of shortestPath.

Being ShortestPath0 a control state ASM, we can represent it using UML-
style graphical notation. This gives us the self explanatory Fig. 2.

s1 frontier �= ∅visited := ∅
frontier := {source}

upbd(source) := 0
s0

s2neighb �= ∅

choose pair ∈ neighb

no

yes
neighb := getAdj(LowestDistanceNode(frontier)
frontier(LowestDistanceNode(frontier)) := false
u := LowestDistanceNode(frontier)

neighb(pair) := false
let v = getKey(pair), weight = getV alue(pair) in

LowerUpbd(u, v, weight)
if v �∈ visited then

visited(v) := true
frontier(v) := true

Fig. 2. ShortestPath0

Examining the code in lines 15–21 in Listing 1.8 plus the rule LowerUpbd, it
is not difficult to conclude that instead of extending the frontier by one neighbour
of u at a time, we can extend it as a wave, i.e., in one step we can in parallel
extend the frontier to all neighbours of u. This is so because the choose rule that
select the neighbour to be processes in each round, implies that the order in
which this is done does not affect the result. Furthermore, there is no possibility
of clashes since the updated locations visited(v), frontier(v) and upbd(v) are all
disjoint for different values of v. Thus we can abstract from ShortestPath0 the
control state ASM ShortestPath1 in Listing 1.9 , where we replace the choose
rule by a for all rule.

Extracting High-Level System Specifications from Source Code 279

1 rule ShortestPath1 =
2 i f state = s0 then
3 upbd(source) := 0
4 visited := ∅
5 frontier := {source}
6 state := s1
7 i f state = s1 then
8 i f frontier �= ∅ then
9 u := LowestDistanceNode(frontier)

10 frontier(LowestDistanceNode(frontier)) := false
11 neighb := getAdj(LowestDistanceNode(frontier))
12 state := s2
13 i f state = s2 then
14 f o ra l l pair ∈ neighb
15 let v = getKey(pair), weight = getV alue(pair) in
16 LowerUpbd(u, v, weight)
17 i f v �∈ visited then
18 visited(v) := true
19 frontier(v) := true
20 state := s1

Listing 1.9. Abstraction of the ShortestPath0 ASM rule.

As a next step, we can simply eliminate control state s2 by using a let rule,
changing u and neighb from state locations to logical variables. The result is
shown in Listing 1.10.

1 rule ShortestPath1 =
2 i f state = s0 then
3 upbd(source) := 0
4 visited := ∅
5 frontier := {source}
6 state := s1
7 i f state = s1 then
8 i f frontier �= ∅ then
9 let u = LowestDistanceNode(frontier) ,

10

neighb = getAdj(LowestDistanceNode(frontier))
11 in frontier(u) := false
12 f o ra l l pair ∈ neighb
13 let

v = getKey(pair), weight = getV alue(pair) in
14 LowerUpbd(u, v, weight)
15 i f �∈ visited(v) then
16 visited(v) := true
17 frontier(v) := true

Listing 1.10. Abstraction of the ShortestPath1 ASM rule.

280 F. Ferrarotti et al.

At this point we have quite an abstract view of the shortest path algorithm.
We can nevertheless continue this abstraction process. An interesting possibility
to this regard is to eliminate the information regarding edge weights. In this way,
we get the ASM in Listing 1.11. It is not difficult to see that the resulting ASM
no longer calculates the shortest path from the source. It has been transformed
into an ASM that specifies the graph traversal algorithm which underpins the
shortest path algorithm.

1 rule GraphrTraversal0 =
2 i f state = s0 then
3 upbd(source) := 0
4 visited := ∅
5 frontier := {source}
6 state := s1
7 i f state = s1 then
8 i f frontier �= ∅ then
9 choose u ∈ frontier

10 frontier(u) := false
11 f o ra l l v ∈ getAdj(u)
12 i f v �∈ visited(v) then
13 visited(v) := true
14 frontier(v) := true

Listing 1.11. Abstraction of the ShortestPath2 ASM rule.

We can further abstract GraphrTraversal0 by processing all the nodes in
the frontier in parallel instead of one-by-one. This is the same idea that we use
to abstract ShortestPath1 from ShortestPath0. In this way, we get the ASM
in Listing 1.12.

1 rule GraphrTraversal1 =
2 i f state = s0 then
3 upbd(source) := 0
4 visited := ∅
5 frontier := {source}
6 f o ra l l u ∈ frontier
7 frontier(u) := false
8 f o ra l l v ∈ getAdj(u)
9 i f v �∈ visited(v) then

10 visited(v) := true
11 frontier(v) := true

Listing 1.12. Abstraction of the GraphTraversal0 ASM rule.

A somehow more abstract view can still be obtained if we simply replace
lines 8–10 in Listing 1.12 by a function defined by a sub-machine.

Extracting High-Level System Specifications from Source Code 281

5 Conclusion

We have argued that it is possible to derive high-level formal software specifica-
tions in the form of ASMs by a sequence of (semi) automated transformations,
in which each transformation increases the level of abstraction of the previous
specification in the sequence. This provides a new tool to improve the current
software (reverse) engineering practices as shown by the encouraging results of
the small experimental examples presented in this paper. The proposed approach
to software re-engineering have several advantages, including:

– Precise, yet succinct and easily understandable specifications at desired levels
of abstraction.

– Each abstraction/refinement step can be proven correct if needed. This
enables for instance to prove that the implementation satisfies the require-
ment.

– Only the first abstraction from source code to ASM rules depends from the
programming language of the implementation. Subsequent abstractions only
rely on general principles and transformations of ASM rules.

– The initial abstraction from source code to ASM can potentially be done
entirely automatically via rewriting rules.

– Enables the exploitation of abstraction for specification reuse.
– Specifications are executable for instance in CoreASM or Asmeta.
– Can be used for reverse engineering/understanding (legacy) source code.
– Can be used to produce finite state machines for model based testing. For

instance by means of refinement of the extracted high-level ASM models to
finite state machines [17].

– Interactive exploration of the design on all abstraction levels, enabling the
discovery of high-level bugs.

The natural next step is to confirm the observations in this paper within
the context of large software implementations, in the style of [1], but using
our semi-automated approach instead. For that, we aim to extend our eKnows4

platform to extract ground ASM specification from source code and experiment
with software systems of our industrial partners. In parallel, we plan to carry on
a systematic study of heuristics for the automated extraction of high-level ASM
specifications, starting from detailed ground ASM specifications. In this sense,
references [6,10] are a good starting point.

References

1. Barnett, M., Börger, E., Gurevich, Y., Schulte, W., Veanes, M.: Using abstract
state machines at microsoft: a case study. In: Gurevich, Y., Kutter, P.W., Odersky,
M., Thiele, L. (eds.) ASM 2000. LNCS, vol. 1912, pp. 367–379. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-44518-8 21

4 https://www.scch.at/de/eknows.

https://doi.org/10.1007/3-540-44518-8_21
https://www.scch.at/de/eknows

282 F. Ferrarotti et al.

2. Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms. ACM
Trans. Comput. Logic 4(4), 578–651 (2003)

3. Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms: cor-
rection and extension. ACM Trans. Comput. Logic 9(3), 19:1–19:32 (2008)

4. Börger, E.: The origins and the development of the ASM method for high level
system design and analysis. J. UCS 8(1), 2–74 (2002)

5. Börger, E.: Abstract state machines: a unifying view of models of computation and
of system design frameworks. Ann. Pure Appl. Logic 133(1–3), 149–171 (2005)

6. Börger, E.: Design pattern abstractions and abstract state machines. In: Proceed-
ings of the 12th International Workshop on Abstract State Machines, ASM 2005,
8–11 March 2005, Paris, France, pp. 91–100 (2005). http://www.univ-paris12.fr/
lacl/dima/asm05/DesignPattern.ps

7. Börger, E., Cisternino, A., Gervasi, V.: Ambient abstract state machines with
applications. J. Comput. Syst. Sci. 78(3), 939–959 (2012)

8. Börger, E., Schewe, K.: Concurrent abstract state machines. Acta Inf. 53(5), 469–
492 (2016)

9. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
642-18216-7

10. Börger, E., Stärk, R.F.: Exploiting abstraction for specification reuse. the Java/C#
case study. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2003. LNCS, vol. 3188, pp. 42–76. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30101-1 3

11. Bowen, J.P., Breuer, P.T., Lano, K.: Formal specifications in software maintenance:
from code to z++ and back again. Inf. Softw. Technol. 35(11–12), 679–690 (1993)

12. Chikofsky, E.J., II, J.H.C.: Reverse engineering and design recovery: a taxonomy.
IEEE Softw. 7(1), 13–17 (1990)

13. Ferrarotti, F., Schewe, K.-D., Tec, L.: A behavioural theory for reflective sequential
algorithms. In: Petrenko, A.K., Voronkov, A. (eds.) PSI 2017. LNCS, vol. 10742, pp.
117–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74313-4 10

14. Ferrarotti, F., Schewe, K., Tec, L., Wang, Q.: A new thesis concerning synchronised
parallel computing - simplified parallel ASM thesis. Theor. Comput. Sci. 649, 25–
53 (2016)

15. Fleck, G., et al.: Experience report on building ASTM based tools for multi-
language reverse engineering. In: IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering, SANER 2016, Suita, Osaka, Japan, 14–18
March 2016, vol. 1, pp. 683–687 (2016)

16. Grädel, E., Nowack, A.: Quantum computing and abstract state machines. In:
Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003. LNCS, vol. 2589, pp.
309–323. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36498-6 18

17. Grieskamp, W., Gurevich, Y., Schulte, W., Veanes, M.: Generating finite state
machines from abstract state machines. In: Proceedings of the International Sym-
posium on Software Testing and Analysis, ISSTA 2002, Roma, Italy, 22–24 July
2002, pp. 112–122. ACM (2002)

18. Gurevich, Y.: Reconsidering turing’s thesis: toward more realistic semantics of
programs. Technical Report CRL-TR-36-84, January 1984

19. Gurevich, Y.: A new thesis. Technical Report 85T–68-203, abstracts, American
Mathematical Society (1985)

20. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.
ACM Trans. Comput. Logic 1(1), 77–111 (2000)

http://www.univ-paris12.fr/lacl/dima/asm05/DesignPattern.ps
http://www.univ-paris12.fr/lacl/dima/asm05/DesignPattern.ps
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-540-30101-1_3
https://doi.org/10.1007/978-3-540-30101-1_3
https://doi.org/10.1007/978-3-319-74313-4_10
https://doi.org/10.1007/3-540-36498-6_18

Extracting High-Level System Specifications from Source Code 283

21. Habrias, H., Frappier, M.: Software Specification Methods. ISTE (2006)
22. Izquierdo, J.L.C., Molina, J.G.: Extracting models from source code in software

modernization. Softw. Syst. Model. 13(2), 713–734 (2014)
23. Lano, K., Breuer, P.T., Haughton, H.P.: Reverse-engineering COBOL via formal

methods. J. Softw. Maintenance 5(1), 13–35 (1993)

	Extracting High-Level System Specifications from Source Code via Abstract State Machines
	1 Introduction
	2 Abstract State Machines
	3 The Stepwise Abstraction Method
	3.1 Ground Specification Extraction
	3.2 Iterative High-Level Specification Extraction

	4 Dijkstra's Shortest Path Algorithm: Extracting High-Level Specifications from a Java Implementation
	5 Conclusion
	References

