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Abstract. Nowadays, with the continuously increasing volume of spa-
tial data, it is difficult to execute spatial queries efficiently in spatial data-
intensive applications, because of the limited computational capability
and storage resources of centralized environments. Due to that, shared-
nothing spatial cloud infrastructures have received increasing attention
in the last years. SpatialHadoop is a full-edged MapReduce framework
with native support for spatial data. SpatialHadoop also supports spa-
tial indexing on top of Hadoop to perform efficiently spatial queries (e.g.,
k-Nearest Neighbor search, spatial intersection join, etc.). The Reverse
k-Nearest Neighbor (RkNN) problem, i.e., finding all objects in a dataset
that have a given query point among their corresponding k-nearest neigh-
bors, has been recently studied very thoroughly. RkNN queries are of par-
ticular interest in a wide range of applications, such as decision support
systems, resource allocation, profile-based marketing, location-based ser-
vices, etc. In this paper, we present the design and implementation of
an RkNN query MapReduce algorithm, so-called MRSLICE, in Spatial-
Hadoop. We have evaluated the performance of the MRSLICE algorithm
on SpatialHadoop with big real-world datasets. The experiments have
demonstrated the efficiency and scalability of our proposal in compari-
son with other RkNNQ MapReduce algorithms in SpatialHadoop.

Keywords: RNNQ · SpatialHadoop · MapReduce · Spatial data
processing

1 Introduction

Large-scale data analysis and processing is currently the core of many scientific
research groups and enterprises. Nowadays, with the development of modern
mobile applications, the increase of the volume of available spatial data is huge
world-wide. Recent developments of big spatial data systems have motivated the
emergence of novel technologies for processing large-scale spatial data on clusters
of computers in a distributed environment. Parallel and distributed computing
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using shared-nothing clusters on extreme-scale data is becoming a dominant
trend in the context of data processing and analysis. MapReduce [3] is a frame-
work for processing and managing large-scale datasets in a distributed cluster.
MapReduce was introduced with the goal of supplying a simple yet powerful
parallel and distributed computing paradigm, providing scalability mechanisms.

However, MapReduce has weaknesses related to efficiency when it needs to be
applied to spatial data. A main deficiency is the lack of an indexing mechanism
that would allow selective access to specific regions of spatial data, which would
in turn yield more efficient spatial query processing algorithms. A recent solution
to this problem is an extension of Mapreduce, called SpatialHadoop [4], which
is a mature and robust framework that inherently supports spatial indexing on
top of Hadoop. Moreover, the generated spatial indexes enable the design of
efficient spatial query processing algorithms that access only part of the data
and still return the correct result query. That is, SpatialHadoop is an efficient
MapReduce distributed spatial query processing system that supports spatial
indexing and allows to work on distributed spatial data without worrying about
computation distribution and fault-tolerance.

A Reverse k-Nearest Neighbor query (RkNNQ) [8] returns the data objects
that have the query object in the set of their k-nearest neighbors. It is the
complementary problem to that of finding the k-Nearest Neighbors (kNN) of
a query object. The goal of a RkNNQ is to identify the influence of a query
object on the whole dataset; several real examples are shown in [8]. Although
the RkNN problem is the complement of the kNN problem, the relation between
kNNQ and RkNNQ is not symmetric and the number of the RkNNs of a query
object is not known in advance. A naive solution to the RkNN problem requires
O(n2) time, since the k-nearest neighbors of all of the n objects in the dataset
have to be found [8]. Obviously, more efficient algorithms are required, and thus,
the RkNN problem has been studied extensively in the past few years [8,9,13].
As shown in a recent experimental study [14], SLICE [15] is the state-of-the art
RkNN algorithm for two dimensional location data, since it is the best algorithm
in terms of CPU cost. Most of the research works in this topic have been devoted
to improve the performance of this query by proposing efficient algorithms in
centralized environments [14]. But, with the fast increase in the scale of the big
input datasets, processing such datasets in parallel and distributed frameworks is
becoming a popular practice. For this reason, parallel and distributed algorithms
for RkNNQ [1,6,7] have been designed and implemented in MapReduce, and a
naive approach [5] has been implemented in SpatialHadoop and LocationSpark.

Motivated by the above observations, in this paper, we propose a novel
MapReduce version of the SLICE algorithm (the fastest RkNNQ algorithm)
in SpatialHadoop, called MRSLICE. The most important contributions of this
paper are the following:

– The design and implementation of a novel RkNNQ MapReduce algorithm,
called MRSLICE, in SpatialHadoop for efficient parallel and distributed
RkNNQ processing on big real-world spatial datasets.
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– The execution of a set of experiments for examining the efficiency and the
scalability of MRSLICE, against other RkNNQ MapReduce algorithms in
SpatialHadoop. MRSLICE has shown an excellent performance for all con-
sidered performance parameters.

This paper is organized as follows. In Sect. 2, we review related work on RkNNQ
algorithms and provide the motivation of this paper. In Sect. 3, we present pre-
liminary concepts related to RkNNQ, SLICE algorithm and SpatialHadoop. In
Sect. 4, the MRSLICE, in SpatialHadoop is proposed. In Sect. 5, we present the
most representative results of the experiments that we have performed, using
real-world datasets. Finally, in Sect. 6, we provide the conclusions arising from
our work and discuss related future work directions.

2 Related Work and Motivation

Researchers, developers and practitioners worldwide have started to take advan-
tage of the cluster-based systems and shared-nothing cloud infrastructures to
support large-scale data processing. There exist several cluster-based systems
that support spatial query processing over distributed spatial datasets. One
of the most representative is SpatialHadoop [4], which is an extension of the
Hadoop-MapReduce framework, with native support for spatial data.

RkNNQ processing has been actively investigated in centralized environ-
ments, and here we review the most relevant contributions. In [8], RkNNQ was
first introduced. Processing is based on a pre-computation process (for each
data point p ∈ P the k-Nearest Neighbor, kNN(p), is pre-computed and its dis-
tance is denoted by kNNdist(p)) and has three phases: pruning, containment
and verification. In the pruning phase, for each p ∈ P a circle centered at p with
radius kNNdist(p) is drawn, and the space that cannot contain any RkNN is
pruned by using the query point q. In the containment phase, the objects that
lie within the unpruned space are the RkNN candidates. Finally, in the verifi-
cation phase, a range query is issued for each candidate to check if the query
point is one of its kNN or not. That is, for any query point q, determine all
the circles (p, kNNdist(p)) that contain q and return their centers p. In [11],
the Six-Regions algorithm is presented, and the need for any pre-computation
is eliminated by utilizing some interesting properties of RkNN retrieval. The
authors solve RkNNQ by dividing the space around the query point into six
equal partitions of 60◦ each (R1 to R6). In each partition Ri, the k-th nearest
neighbor of the query point defines the pruned area. In [9] the multistep SFT
algorithm is proposed. It: (1) finds (using an R-tree) the kNNs of the query
point q, which constitute the initial candidates; (2) eliminates the points that
are closer to some other candidate than q; and (3) applies boolean range queries
on the remaining candidates to determine the actual RNNs. In [12], the TPL
algorithm which uses the property of perpendicular bisectors located between
the query point for facilitating pruning the search space is presented. In the
containment phase, TPL retrieves the objects that lie in the area not pruned
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by any combination of k bisectors. Therefore, TPL has to consider each com-
bination of k bisectors. To overcome the shortcomings of this algorithm, a new
method named FINCH is proposed in [13]. Instead of using bisectors to prune
the objects, the authors use a convex polygon that approximates the unpruned
area. Influence Zone [2] is a half-space based technique proposed for RkNNQ,
which uses the concept of influence zone to significantly improve the verification
phase. Influence zone is the area such that a point p is a RkNN of q if and only
if p lies inside it. Once influence zone is computed, RkNNQ can be answered
by locating the points lying inside it. In [15], the SLICE algorithm is proposed,
which improves the filtering power of Six-Regions approach while utilizing its
strength of being a cheaper filtering strategy. Recently, in [14] a comprehen-
sive set of experiments to compare some of the most representative and efficient
RkNNQ algorithms under various settings is presented and the authors propose
an optimized version of TPL (called TPL++) for arbitrary dimensionality RkN-
NQs. SLICE is the state-of-the art RkNNQ algorithm, since it is the best for all
considered performance parameters in terms of CPU cost.

There is not much work in developing efficient RkNNQ algorithms in parallel
and distributed environments. The only contributions that have been imple-
mented in MapReduce frameworks are [1,5–7]. In [1], the MRVoronoi algorithm
is presented, which adopts the Voronoi diagram partitioning-based approach and
applies MapReduce to answer RNNQ and other queries. In [6], the Basic MapRe-
duce RkNNQ method based on the inverted grid index over large scale datasets
is investigated. An optimization method, Lazy-MapReduce RkNNQ algorithm,
that prunes the search space when all data points are discovered, is also pro-
posed. In [7] several improvements of [6] have been presented. For instance, a
novel decouple method is proposed to decomposes pruning-verification into inde-
pendent steps and it can increase opportunities for parallelism. Moreover, new
optimizations to minimize the network and disk input/output cost of distributed
processing systems have been also investigated. Recently, in [5], parallel and dis-
tributed RkNNQ algorithms have been proposed for SpatialHadoop and Loca-
tionSpark. These parallel and distributed algorithms are based on the multistep
SFT algorithm [9]. The experimental results demonstrated that LocationSpark
is the overall winner for the execution time, due to the efficiency of in-memory
processing provided by Spark. However, MRSFT, the SpatialHadoop version,
shows interesting performance trends due to the nature of the proposed RkNNQ
MapReduce algorithm, since it consists of a series of MapReduce jobs.

As we have seen above, the SLICE algorithm is the fastest algorithm for
RkNNQ [14], and there is no MapReduce design and implementation of such
an algorithm in parallel and distributed frameworks. Moreover, RkNNQs have
received significant research attention in the past few years for centralized
environments, but not for parallel and distributed data management systems.
Motivated by these observations, the efficient design and implementation of
MRSLICE (MapReduce SLICE version) in SpatialHadoop is the main objec-
tive of this research work.
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3 Preliminaries and Background

In this section, we first present the basic definitions of the kNNQ and RkNNQ,
followed by a brief introduction of preliminary concepts of SpatialHadoop and,
next, we review the most relevant details of the SLICE algorithm for RkNNQ.

3.1 The Reverse k-Nearest Neighbor Query

We know the RkNNQ retrieves the data points which have the query point as
one of their respective kNNs. We can deduce that the RkNNQ is based on the
kNNQ, and we are going to define it.

Given a set of points P, the kNNQ discovers the k points that are the nearest
to a given query point q (i.e., it reports only the top-k points of P from q). It is
one of the most important and studied spatial operations. The formal definition
of the kNNQ for points is the following:

Definition 1. k-Nearest Neighbor query, kNN
Let P = {p1, p2, · · · , pn} be a set of points in Ed (d-dimensional Euclidean space).
Then, the result of the k-Nearest Neighbor query, with respect to a query point q
in Ed and a number k ∈ N

+, is an ordered set, kNN(P, q, k) ⊆ P, which contains
the k (1 ≤ k ≤ |P|) different points of P, with the k smallest distances from q:
kNN(P, q, k) = {p1, p2, · · · , pk} ⊆ P, such that ∀p ∈ P \ kNN(P, q, k) we have
dist(pi, q) ≤ dist(p, q), 1 ≤ i ≤ k.

For RkNNQ, given a set of points P and a query point q, a point p is called the
Reverse k Nearest Neighbor of q, if q is one of the k closest points of p. A RkNNQ
issued from point q returns all the points of P whose k nearest neighbors include
q. Note that, this query is also called Monochromatic RkNNQ [8]. Formally:

Definition 2. Reverse k-Nearest Neighbor query, RkNN [13]
Let P = {p1, p2, · · · , pn} be a set of points in Ed. Then, the result of the Reverse
k-Nearest Neighbor query, with respect to a query point q in Ed and a number
k ∈ N

+, is a set, RkNN(P, q, k) ⊆ P, which contains all the points of P whose k
nearest neighbors include q:
RkNN(P, q, k) = {pi ∈ P, such that q ∈ kNN(P ∪ q, pi, k)}

3.2 SpatialHadoop

SpatialHadoop [4] is a fully fledged MapReduce framework with native support
for spatial data. It is an efficient disk-based distributed spatial query process-
ing system. Note that MapReduce [3] is a scalable, flexible and fault-tolerant
programming framework for distributed large-scale data analysis. A task to be
performed using the MapReduce framework has to be defined as two phases: the
Map phase, which is specified by a Map function, takes input (typically from
Hadoop Distributed File System (HDFS) files), possibly performs some compu-
tations on this input, and distributes it to worker nodes; and the Reduce phase
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which processes these results as specified by a Reduce function. An important
aspect of MapReduce is that both the input and the output of the Map step are
represented as key-value pairs, and that pairs with same key will be processed
as one group by the Reducer. Additionally, a Combiner function can be used to
run on the output of Map phase and perform some filtering or aggregation to
reduce the number of keys passed to the Reducer.

SpatialHadoop is a comprehensive extension to Hadoop that injects spatial
data awareness in each Hadoop layer, namely, the language, storage, MapRe-
duce, and operations layers. MapReduce layer is the query processing layer that
runs MapReduce programs, taking into account that SpatialHadoop supports
spatially indexed input files. The Operation layer enables the efficient implemen-
tation of spatial operations, considering the combination of the spatial indexing
in the storage layer with the new spatial functionality in the MapReduce layer.
In general, a spatial query processing in SpatialHadoop consists of four steps [4]:
(1) Preprocessing, where the dataset is partitioned according to a specific par-
titioning technique, generating a set of partitions. (2) Pruning, when the query
is issued, where the master node examines all partitions and prunes (by a Filter
function) those ones that are guaranteed not to include in any possible result
of the spatial query. (3) Local Spatial Query Processing, where a local spatial
query processing (Map function) is performed on each non-pruned partition in
parallel on different nodes (machines). And finally, (4) Global Processing, where
the results are collected from all nodes in the previous step and the final result
of the concerned spatial query is computed. A Combine function can be applied
in order to decrease the volume of data that is sent from the Map task. The
Reduce function can be omitted when the results from the Map phase are final.

3.3 SLICE Algorithm

Like most of the RkNNQ algorithms, SLICE consists of two phases namely fil-
tering phase and verification phase. SLICE’s filtering phase dominates the total
query processing cost [15].

Filtering Phase. SLICE divides the space of a set of points P around the
query point q into multiple equally sized regions based on angle division. The
experimental study in [15] demonstrated that the best performance is achieved
when the space is divided into 12 equally sized regions. Given a region R and
a point p ∈ P, we can define the half-space that divides them as Hp:q. The
intersection of this half-space with the limits of the region R allows us to obtain
the upper arc of p w.r.t. R (rUp:R) and the lower arc of p w.r.t. R (rLp:R) whose radii
meet the condition of rU > rL. In [15], it is shown that a point p′ in the region R
can be pruned by the point p if p′ lies outside its upper arc, i.e., dist(p′, q) > rUp:R.
Note that a point p′ ∈ R cannot be pruned by p if p′ lies inside its lower arc,
i.e., dist(p′, q) < rLp:R. The bounding arc of a region R, denoted as rBR , is the
k-th smallest upper arc of that region and it is used to easily prune points or
set of points. Note that any point p′ that lies in R with dist(p′, q) > rBR can be
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pruned by at least k points. A point p is called significant for the region R if it
can prune points inside it, i.e., only if rLp:R < rBR . Therefore, SLICE maintains
a list of significant points for each region that will be used in the verification
phase. The following lemmas are used in this phase to reduce the search space
by pruning non significant points.

Lemma 1. A point p ∈ R cannot be a significant point of R if dist(p, q) > 2rBR .

Proof. Shown in [15] as Lemma 4.

Lemma 2. A point p /∈ R cannot be a significant point of R if dist(M,p) > rBR
and dist(N, p) > rBR where M and N are the points where the bounding arc of
R intersects the boundaries of R.

Proof. Shown in [15] as Lemma 5.

These lemmas can be easily extended to a complex entity e (i.e., e does not
contain any significant point), by comparing mindist(q, e) with the bounding
arc of each region that overlaps with e.

Verification Phase. First, SLICE tries to reduce the search space by using the
following lemma:

Lemma 3. A point p prunes every point p′ ∈ R for which dist(p′, q) > rUp:R
where 0◦ < maxAngle(p,R) < 90◦.

Proof. Shown in [15] as Lemma 1.

To do this, each point p ∈ P is checked against several derived pruning rules:
(1) if dist(q, p) > rBR , p is not part of the RkNNQ answer; (2) if dist(q, p) is
smaller than the k-th lower arc of R, p cannot be pruned; and (3) if once the
maximum and minimum angles have been calculated of p w.r.t. q, there is at
least one region R with rBR > dist(q, p), p can be part of the RkNNQ answer.
Once the search space has been reduced, each candidate point is verified as a
result of RkNNQ if at most there are k-1 significant points closest to the query
object in the region R in which it is located.

4 MRSLICE Algorithm in SpatialHadoop

In this section, we present how RkNNQ using SLICE can be implemented in
SpatialHadoop. In general, our parallel and distributed MRSLICE algorithm is
based on SLICE algorithm [15] and it consists of three of MapReduce jobs:

– Phase 1. The Filtering phase of SLICE is performed on the partition in
which the query object is located.

– Phase 1.B (optional). The filtering process is continued on those partitions
that are still part of the search space.
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Fig. 1. Overview of MRSLICE in SpatialHadoop.

– Phase 2. The Verification phase is carried out with those partitions that
have not been pruned as a result of applying Phases 1 and 1.B.

From Fig. 1, and assuming that P is the set of points to be processed and
q is the query point, the basic idea is to have P partitioned by some method
(e.g., grid) into n blocks or partitions of points (PP denotes the set of partitions
from P). The Filtering phase consists of two MapReduce jobs, being optional
the second one, since in the case of all significant points were found by the first
job, the execution of the second job is not necessary. Finally, the Verification
phase is a MapReduce job that will check if the non pruned points are part of
the RkNNQ answer.

4.1 MRSLICE Filtering Algorithm

In the first job (Algorithm 1), the Filter function selects the partition of P

in which q is found. Then, in the Map phase, the Filtering phase is applied as
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Algorithm 1. MRSLICE Filtering - Phase 1
1: function FILTER(PP: set of partitions from P, q: query point)

2: return FindPartition(PP,q)
3: end function

4: function MAP(MBR: Minimum Bounding Rectangle of P, r: root of R-tree of actual partition,
q: query point, k: number of points, t: number of equally sized regions)

5: RegionsData.regions ← DivideSpace(MBR,q,t)
6: RegionsData ← SliceFiltering(r,q,k,RegionsData)
7: return RegionsData
8: end function

9: function SliceFiltering(r: root of R-tree, q: query point, k: number of points, RegionsData:
SLICE Regions Data)

10: Insert(Heap,null,r)
11: while Heap is not empty do
12: entry ← Pop(Heap)
13: if !facilityPruned(entry,q,k,RegionsData) then
14: if isLeaf(entry) then
15: pruneSpace(entry,q,k,RegionsData)
16: else
17: for all child ∈ entry.children do
18: key ← mindist(q,child)
19: Insert(Heap,key,child)
20: end for
21: end if
22: end if
23: end while
24: for all region ∈ RegionsData.regions do
25: region.boundingArc ← FindkUpperArc(region)
26: end for
27: RegionsData.minLowerArc ← ComputeMinLowerArc(RegionsData.regions)
28: return RegionsData
29: end function

Algorithm 2. MRSLICE Filtering - Phase 1.B
1: function FILTER(PP: set of partitions from P, q: query point, RegionsData: SLICE Regions

Data)

2: for all p ∈ PP do
3: if !facilityPruned(p,q,RegionsData) then
4: Insert(Result, p)
5: end if
6: end for
7: return Result
8: end function

9: function MAP(r: root of R-tree of actual partition, q: query point, k: number of points,
RegionsData: SLICE Partition Data)

10: RegionsData′ ← SliceFiltering(r,q,k,RegionsData)
11: return RegionsData′

12: end function

13: function REDUCE(RegionsDataArray: Array of SLICE Partition Data)
14: RegionsData′ ← RegionsDataArray[0]
15: for all RegionsData ∈ RegionsDataArray do
16: RegionsData′.P ← Merge(RegionsData.regions, RegionsData′.P )
17: end for
18: for all partition ∈ RegionsData′.P do
19: partition.kUpperArc ← FindkUpperArc(partition)
20: end for
21: RegionsData′.minLower ← ComputeMinLower(RegionsData′.P )
22: return RegionsData′

23: end function
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described in SLICE, that is, P is divided into t regions of equal space and the list
of k smallest upper arcs is obtained for each Ri region along with its rBRi

and its
list of significant points, that will be returned as RegionsData for further use. To
accelerate the Filtering phase, an R-tree index is used per partition and a heap is
utilised to store the nodes based on their minimum distance to q. As the R-tree
nodes are traversed, the facilityPruned function from [15] is used (Algorithm 1
line 13), which prunes the nodes which with the current RegionsData do not
contain significant points. In the case of leaf nodes, the points are processed by
the pruneSpace function from [15] (Algorithm 1 line 15), which is responsible for
updating the RegionsData information. Finally the k-th lower arc is calculated
for using in the next phase.

The second job (Algorithm 2) runs only if the function Filter returns some
partition, that is, the facilityPruned [15] function is executed on each of the
partitions by comparing its minimum distance to q with the bounding arc of
each region Ri with which it overlaps. Note that the upper left partition of
P in Fig. 1 is in the shaded area, and therefore can be pruned. However, the
other partitions can contain significant points, and the Filtering phase must be
applied to them during the Map phase. The result of each of the partitions will
be merged on the Reduce phase to obtain the k-th upper arcs, bounding arcs
and final significant points (RegionsData’ ).

Theorem 1 (Completeness). MRSLICE Filtering Algorithm returns all the
significant points.

Proof. It suffices to show that MRSLICE Filtering does not discard significant
points. A point p is discarded by MRSLICE Filtering only if it is pruned by
the facilityPruned function by either applying Lemma1 or 2. In any of these
cases, it was shown in [15] that any point that is not inside the area defined by
these lemmas is not a significant point. Points that are discarded can be split in
different categories:

Phase 1. Points are pruned in this phase like in the non distributed SLICE
version using Algorithm 1.

Phase 1.B - Partition granularity. Using the FILTER function in Algo-
rithm 2, partitions that do not contain any significant point are pruned by apply-
ing both Lemmas 1 and 2 to the partition as a complex entity.

Phase 1.B - Point granularity. Points are discarded in the Map Phase in
the same way that in Phase 1 only on non pruned partitions.

Phase 1.B - Merging RegionsData. Finally when merging RegionsData
in the Reduce Phase, both Lemmas 1 and 2 are again used to discard non sig-
nificant points.

4.2 MRSLICE Verification Algorithm

Finally, in the Verification phase, a MapReduce job (Algorithm 3) is executed on
the partitions that are not pruned by the Filter function when applying the prun-
ing rules described in the Subsect. 3.3 in the userPruned function (Algorithm 3
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Algorithm 3. MRSLICE Verification - Phase 2
1: function FILTER(PP: set of partitions from P, q: query point, RegionsData: SLICE partition

data)

2: for all p ∈ PP do
3: if !userPruned(p,q,RegionsData) then
4: Insert(Result, p)
5: end if
6: end for
7: return Result
8: end function

9: function MAP(r: root of R-tree of actual partition, q: query point, k: number of points,
RegionsData: SLICE Partition Data)

10: Insert(Stack,r)
11: while Stack is not empty do
12: entry ← Pop(Stack)
13: if !userPruned(entry,q,RegionsData) then
14: if isLeaf(entry) then
15: if isRkNN(entry,q,k,RegionsData) then
16: Output(entry)
17: end if
18: else
19: for all child ∈ entry.children do
20: Insert(Stack,child)
21: end for
22: end if
23: end if
24: end while
25: end function

26: function isRkNN(entry: candidate point, q: query point, k: number of points, RegionsData:
SLICE Partition Data)

27: region ← FindRegion(entry,q,RegionsData)
28: counter ← 0
29: for all p ∈ region do
30: if dist(entry,q) ≤ rLp:R then
31: return true
32: end if
33: if dist(entry,p) < dist(entry,q) then
34: counter ← counter + 1
35: if counter ≥ k then
36: return false
37: end if
38: end if
39: end for
40: return true
41: end function

line 3). That is, the algorithm is executed on those partitions that contain some
white area. In the Map phase, the R-tree, that indexes each partition, is tra-
versed with the help of a stack data structure and the search space is reduced by
using the userPruned function again. Furthermore, the pruning rules are applied
again to the points that are in the leaf nodes and, finally, they are verified if
they are part of the final RkNNQ answer. The isRkNN function (Algorithm 3
line 15) verifies a candidate point p as part of the answer if there are at most
k-1 significant points closer to p than q in the region Ri in which it is located.

Theorem 2 (Correctness). MRSLICE Verification Algorithm returns the cor-
rect RkNNQ set.
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Proof. It suffices to show that MRSLICE Verification does not (a) discard
RkNNQ points, and (b) return non RkNNQ points. First, the MRSLICE Ver-
ification Algorithm only prunes away those points or/and entries by using the
pruning rules derived from Lemma 3, by using the information identified by the
MRSLICE Filtering Algorithm, which guarantees no false negatives. Second,
every non pruned point is verified by the isRkNN function, which ensures no
false positives. We prove that these points are guaranteed to be RkNNQ points
by contradiction. Assume a point p returned by MRSLICE Algorithm is not
a RkNNQ point. Then, there exist k significant points closer to p than q, and
p is also returned as part of the RkNNQ answer. But then p could not be in
the RkNNQ answer, since it would have been evicted in line 35 of the isRkNN
function in Algorithm 3.

5 Experimentation

In this section, we present the most representative results of our experimental
evaluation. We have used real-world 2d point datasets to test our RkNNQ algo-
rithms, that is, our previous MRSFT based algorithm [5] and the new MRSLICE
algorithm in SpatialHadoop. We have used datasets from OpenStreetMap1:
LAKES (L) which contains 8.4M records (8.6 GB) of boundaries of water areas
(polygons), PARKS (P) which contains 10M records (9.3 GB) of boundaries
of parks or green areas (polygons), ROADS (R) which contains 72M records
(24 GB) of roads and streets around the world (line-strings), BUILDINGS (B)
which contains 115M records (26 GB) of boundaries of all buildings (polygons),
and ROAD NETWORKS (RN ) which contains 717M records (137 GB) of road
network represented as individual road segments (line-strings) [4]. To create sets
of points from these five spatial datasets, we have transformed the MBRs of
line-strings into points by taking the center of each MBR. In particular, we
have considered the centroid of each polygon to generate individual points for
each kind of spatial object. Furthermore, all datasets have been previously par-
titioned by SpatialHadoop using the STR partitioning technique with a local
R-tree index per partition. The main performance measure that we have used in
our experiments has been the total execution time (i.e., total response time). In
order to get a representative execution time, a random sample of 100 points from
the smallest dataset (LAKES ) has been obtained and the average of the execu-
tion time of the RkNNQ of these points has been calculated, since this query
depends a lot on the location of the query point with respect to the dataset.

All experiments were conducted on a cluster of 12 nodes on an OpenStack
environment. Each node has 4 vCPU with 8 GB of main memory running Linux
operating systems and Hadoop 2.7.1.2.3. Each node has a capacity of 3 vCores
for MapReduce2/YARN use. Finally, we used the latest code available in the
repositories of SpatialHadoop2.

1 Available at http://spatialhadoop.cs.umn.edu/datasets.html.
2 Available at https://github.com/aseldawy/spatialhadoop2.

http://spatialhadoop.cs.umn.edu/datasets.html
https://github.com/aseldawy/spatialhadoop2
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Fig. 2. MRSLICE execution times con-
sidering different t values.
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Fig. 3. RkNNQ execution times con-
sidering different datasets.

The first experiment aims to test the best t value (number of regions) for
MRSLICE, using the BUILDINGS dataset and the k values of 10 and 50. In
Fig. 2 we can see that there is a little difference in the results obtained when the
t value is varied, especially for k = 10, being greater differences when a larger
k value is used (i.e., k = 50). On one hand, for k = 10, smaller values of t get
faster times (e.g., t = 6 has an execution time of 67 s which is 4 s faster than
t = 12). On the other hand, for k = 50, t = 12 gets the smallest execution time
(221 s) and for t < 12 and t > 12, the execution time increases. Although there
are no large differences, the value of t that shows better performance for both k
values is t = 12, reaching the same conclusion as in [15] but now in a distributed
environment (from now on, we will use t = 12 in all our experiments).

Our second experiment studies the scalability of the RkNNQ MapRe-
duce algorithms (MRSLICE and MRSFT [5]), varying the dataset sizes. As
shown in Fig. 3 for the RkNNQ of real datasets (LAKES, PARKS, ROADS,
BUILDINGS and RN) and a fixed k = 10. The execution times of MRSLICE
are much lower than those from MRSFT (e.g., it is 477 s faster for the largest
dataset RN) thanks to how the search space is reduced and the limited number
of MapReduce jobs. Note that for MRSFT at least k ∗ 20 + 1 jobs are executed
while for the case of MRSLICE, 3 jobs are launched at most. In both algorithms,
the execution times do not increase too much, showing quite stable performance,
mainly for MRSLICE. This is due to the indexing mechanisms provided by Spa-
tialHadoop that allow fast access to only the necessary partitions for the query
processing. Furthermore, this behavior shows that the number of candidates for
MRSLICE is almost constant (the expected number of candidates is less than
3.1 ∗ k as stated in [15]), only showing a visible increment in the execution time
for the RN dataset, due to the increase in the density of partitions and its dis-
tribution causes the need to execute the optional job (phase 1.b) of the Filtering
phase.
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Fig. 4. RkNNQ cost (execution time) vs. K values (left). Query cost with respect to
the number of computing nodes η (right).

The third experiment aims to measure the effect of increasing the k value
for the dataset (BUILDINGS). The left chart of Fig. 4 shows that the total
execution time grows as the value of k increases, especially for MRSFT. This
is because as the value of k increases, the number of candidates k ∗ 20 also
grows and for each of them a MapReduce job is executed. On the other hand,
MRSLICE limits the number of MapReduce jobs to 3, obtaining a much smaller
increment and more stable results since the disk accesses are reduced significantly
by traversing the index of the dataset a reduced number of times. Note that the
small increment in the execution times when k = 25, mainly due to the fact that
when reaching a certain k value, the result of the first job of the Filtering phase
is not definitive and it has been necessary to execute the optional job (phase
1.b), in this case the number of involved partitions in the query increases as
well. Finally, the execution time for k = 50 increases slightly.

The fourth experiment studies the speedup of the RkNNQ MapReduce algo-
rithms, varying the number of computing nodes (η). The right chart of Fig. 4
shows the impact of different number of computing nodes on the performance of
RkNNQ MapReduce algorithms, for BUILDINGS with a fixed value of k = 10.
From this chart, we can deduce that for MRSFT, better performance would be
obtained if more computing nodes are added. MRSLICE is still outperforming
MRSFT and it is not affected despite reducing the number of available comput-
ing nodes. This is because MRSLICE is an algorithm in which both the number
of partitions involved in obtaining the result of the query and the number of
MapReduce jobs are minimized. That is, depending on the location of the query
point q and the k value, the number of partitions is usually one, and varying the
number of computing nodes does not affect the execution time. However, the
use of the computing resources of the cluster is quite small, which allows us the
execution of several RkNNQs in parallel, taking advantage of the distribution of
the dataset into the cluster nodes. On the other hand, MRSFT executes different
kNNQs in parallel, using all computing nodes completely for large k values.
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By analyzing the previous experimental results, we can extract several con-
clusions that are shown below:

– We have experimentally demonstrated the efficiency (in terms of total exe-
cution time) and the scalability (in terms of k values, sizes of datasets and
number of computing nodes (η)) of the proposed parallel and distributed
MRSLICE algorithm for RkNNQ and we have compared it with the MRSFT
algorithm in SpatialHadoop.

– As stated in [15], the value of t (the number of equally sized regions in which
the dataset is divided) that shows the best performance is 12.

– MRSLICE outperforms MRSFT several orders of magnitude (around five
times faster), thanks to its pruning capabilities and the limited number of
MapReduce jobs.

– The larger the k values, the greater the number of candidates to be veri-
fied, but for MRSLICE the number of jobs and partitions involved are quite
restricted and the total execution time increases less than for MRSFT.

– The use of computing nodes by MRSLICE is small, allowing the execution
of several queries in parallel, unlike MRSFT that can leave the cluster busy.

6 Conclusions and Future Work

In this paper, we have proposed a novel RkNNQ MapReduce algorithm, called
MRSLICE, in SpatialHadoop, to perform efficient parallel and distributed
RkNNQ on big spatial real-world datasets. We have also compared this algo-
rithm with our previous MRSFT algorithm [5] in order to test its performance.
The execution of a set of experiments has demonstrated that MRSLICE is the
clear winner for the execution time, due to the efficiency of its pruning rules and
the reduced number of MapReduce jobs. Furthermore, MRSLICE shows inter-
esting performance trends due to the low requirements of computing nodes that
allows the execution of multiple RkNNQs on large spatial datasets. Our current
MRSLICE algorithm in SpatialHadoop is an example for the study of regions-
based pruning on parallel and distributed environments. Therefore, future work
might include the adaptation of half-space pruning algorithms [15] to this kind
of environments so as to compare them. Other future work might cover study-
ing other types of RkNNQs like the Bichromatic RkNNQ [15]. Finally, we are
planning to improve the query cost of MRSLICE by using the guardian set of a
rectangular region [10], that improves the original SLICE algorithm.
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