
Klaus-Dieter Schewe
Neeraj Kumar Singh (Eds.)

LN
CS

 1
18

15

9th International Conference, MEDI 2019
Toulouse, France, October 28–31, 2019
Proceedings

Model and
Data Engineering

Lecture Notes in Computer Science 11815

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Klaus-Dieter Schewe • Neeraj Kumar Singh (Eds.)

Model and
Data Engineering
9th International Conference, MEDI 2019
Toulouse, France, October 28–31, 2019
Proceedings

123

Editors
Klaus-Dieter Schewe
UIUC Institute
Zhejiang University
Zhejiang, China

Neeraj Kumar Singh
INPT-ENSEEIHT/IRIT
Toulouse, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-32064-5 ISBN 978-3-030-32065-2 (eBook)
https://doi.org/10.1007/978-3-030-32065-2

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8309-1803
https://orcid.org/0000-0002-1124-0179
https://doi.org/10.1007/978-3-030-32065-2

Preface

The International Conference on Model and Data Engineering (MEDI) is an interna-
tional forum for the dissemination of research accomplishments on database modeling
and data management. Specifically, MEDI provides a stimulating environment for the
presentation of research on database models, database theory, data processing, database
systems technology, and advanced database applications. This international scientific
event, initiated by researchers from Euro-Mediterranean countries, also aims at
promoting the creation of North–South scientific networks, projects as well as
faculty/student exchanges.

In recent years, MEDI has taken place in Marrakesh, Morocco (2018), Barcelona,
Spain (2017), Almería, Spain (2016), Rhodes, Greece (2015), Larnaca, Cyprus (2014),
Armantea, Italy (2013), Poitiers, France (2012), and Óbidos, Portugal (2011). The ninth
edition of MEDI took place in Toulouse during October 28–31, 2019. The Program
Committee (PC) received 41 submissions from 30 countries around the world. The
selection process was rigorous, where each paper received at least four reviews.
The PC, after careful discussions, decided to accept 11 full papers, two application
papers, one vision paper, and seven short papers. Accepted papers cover broad research
areas on both theoretical, systems, and practical aspects. Some trends found in accepted
papers include mining complex databases, concurrent systems, machine learning,
swarm optimization, query processing, Semantic Web, graph databases, formal
methods, model-driven engineering, blockchain, cyber physical systems, IoT applica-
tions, and smart systems.

Four keynotes were presented at MEDI 2019. César A. Muñoz from NASA gave a
keynote on the “Formal Methods in the Development of Highly Assured Software for
Unmanned Aircraft Systems.” His talk first advocated the use of expressive logics to
specify the operational and functional requirements of unmanned systems and to prove
the correctness of these requirements, then gave an overview of the formal methods
developed at NASA LaRC, and illustrated their use in the design, validation, and
verification of highly assured autonomous unmanned aircraft systems. Jan Van den
Bussche from Hasselt University presented “Fully Generic Queries: Open Problems
and Some Partial Answers” dealing with the highly relevant and up-to-date problem of
capturing manipulations on nested big data, where output can be generated without a
need for looking in detail at the atomic data elements. The keynote by Bernhard
Thalheim from Christian Albrechts University of Kiel was dedicated to “Semiotics in
Databases” discussing foundations of syntax, semantics, and pragmatics in databases
based on first-order predicate logic, highlighting the usefulness and pointing out
problematic issues. He surveyed the beauty of classic database constraint theory and
developed alternative approaches to some constraints including the handling of
constraint sets, visual reasoning on constraints, and calculi for robust reasoning and

object-relational reasoning. Finally, Rémi Delmas from ONERA presented a keynote
on “Reinforcement Learning-Based Methods for Falsification: A New Trend in Critical
Controllers Verification” emphasizing the use of reinforcement learning algorithms for
property falsification together with an illustration of the novel approach on a significant
Airbus case study.

MEDI 2019 was organized and supported by INP-ENSEEIHT. The conference
would not have been possible without the contributions and support of the Institut de
Recherche en Informatique de Toulouse (IRIT).

The main event was preceded by three workshops: the Workshop on Modeling,
Verification and Testing of Dependable Critical Systems (DETECT), the Workshop on
Data Science for Social Good in Africa (DSSGA), and the Workshop on Security
Privacy in Models and Data (TRIDENT).

We would like to thank all the authors who submitted their work to MEDI 2019. In
addition, we would like to thank the PC members and the external reviewers who
carefully reviewed all submissions and selected the best contributions. Finally, we
extend our thanks to the Organizing Committee members and local organizers who
contributed to the success of MEDI 2019.

The EasyChair conference management system was set up for MEDI 2019. We
thank EasyChair for providing a platform for managing the submissions, reviewing
process, and proceedings production.

October 2019 Klaus-Dieter Schewe
Neeraj Kumar Singh

vi Preface

Organization

Program Committee

El Hassan Abdelwahed University Cadi Ayyad Marrakech, Marocco
Alberto Abello Universitat Politècnica de Catalunya, Spain
Yamine Aït Ameur IRIT/INPT-ENSEEIHT, France
Idir Aït Sadoune LRI, Centrale Supélec, France
Christian Attiogbe University of Nantes, France
Ladjel Bellatreche LIAS/ENSMA, France
Sidi Mohamed Benslimane Ecole Superieure en Informatique, Algeria
Jorge Bernardino ISEC, Polytechnic Institute of Coimbra, Portugal
Drazen Brdjanin University of Banja Luka, Bosnia and Herzogovina
Francesco Buccafurri UNIRC, Italy
Wellington Cabrera University of Houston, USA
Antonio Corral University of Almeria, Spain
Florian Daniel Politecnico di Milano, Italy
Alex Delis University of Athens, Greece
Georgios Evangelidis University of Macedonia, Greece
Ylies Falcone University of Grenoble Alpes, CNRS, Inria, France
Alfio Ferrara University of Milan, Italy
Flavio Ferrarotti Software Competence Centre Hagenberg, Austria
Mamoun Filali-Amine IRIT, France
Enrico Gallinucci University of Bologna, Italy
Matteo Golfarelli University of Bologna, Italy
Raju Halder Indian Institute of Technology Patna, India
Brahim Hamid IRIT, University of Toulouse, France
Slimane Hammoudi ESEO, France
Luis Iribarne University of Almería, Spain
Mirjana Ivanovic University of Novi Sad, Serbia
Nadjet Kamel University Ferhat Abbes Setif, Tunisia
Selma Khouri Ecole Supérieure d’Informatique (ESI), Algeria
Adamantios Koumpis University of Passau, Germany
Eva Kühn Vienna University of Technology, Austria
Regine Laleau Paris Est Creteil University, France
Yves Ledru Université Grenoble Alpes, France
Sebastian Link The University of Auckland, New Zealand
Zhiming Liu Southwest University, China
Ivan Luković University of Novi Sad, Serbia
Hui Ma Victoria University of Wellington, New Zealand
Sofian Maabout LaBRI, University of Bordeaux, France
Yannis Manolopoulos Open University of Cyprus, Cyprus

Dominique Mery Université de Lorraine, LORIA, France
Mohamed Mosbah LaBRI, University of Bordeaux, France
Chokri Mraidha CEA LIST, France
Yassine Ouhammou LIAS/ENSMA, France
Marc Pantel IRIT/INPT, Université de Toulouse, France
Oscar Pastor Lopez Universitat Politècnica de València, Spain
Jaroslav Pokorný Charles University in Prague, Czech Republic
Giuseppe Polese University of Salerno, Italy
S. Ramesh General Motors R&D, USA
Elvinia Riccobene University of Milan, Italy
Oscar Romero Universitat Politècnica de Catalunya, Spain
Manoranjan Satpathy IIT Bhubaneswar, India
Milos Savic University of Novi Sad, Serbia
Klaus-Dieter Schewe Zhejiang University, UIUC Institute, China
Timos Sellis Swinburne University of Technology, Australia
Neeraj Singh INPT-ENSEEIHT/IRIT, France
Bernhard Thalheim Christian Albrechts University of Kiel, Germany
Riccardo Torlone Roma Tre University, Italy
Ismail Toroslu Middle East Technical University, Turkey
Goce Trajcevski Iowa State University, USA
Javier Tuya University of Oviedo, Spain
Michael Vassilakopoulos University of Thessaly, Greece
Panos Vassiliadis University of Ioannina, Greece
Hao Wang University of Science and Technology, Norway
Qing Wang The Australian National University, Australia
Alan Wassyng McMaster University, Canada
Robert Wrembel Poznan University of Technology, Poland

Additional Reviewers

Bilalli, Besim
Caruccio, Loredana
Crass, Stefan
Fernández-García, Antonio J.

Haq, Anam
Mallios, Nikolaos
Mammar, Amel

Local Organization

Yamine Aït Ameur
Sarah Benyagoub
Guillaume Dupont
Raphaele Esculier

Marc Pantel
Annabelle Sansus
Neeraj Singh

viii Organization

Abstracts of Keynote
Presentations

Formal Methods in the Development of Highly
Assured Software for Unmanned Aircraft

Systems

César Muñoz

NASA Langley Research Center, Hampton, Virginia, USA
cesar.a.munoz@nasa.gov

Abstract. In traditional software development methodologies, operational and
functional requirements of systems are often specified in structured natural
language notations. These restricted notations provide good documentation
support, but only provide limited support for semantic analysis. These notations
are not rich enough to unambiguously specify the requirements of safety-critical
systems that, for example, involve complex numerical computations or that
interact with the physical environment. Examples of these safety-critical systems
are autonomous vehicles such as unmanned aircraft systems. This talk advocates
the use of expressive formal logics, such as higher-order logic, to specify the
operational and functional requirement of unmanned systems and to prove the
correctness of these requirements. Semantic analysis of requirements written in
higher-order logic is supported through the use of interactive theorem provers.
Formal models serve as ideal reference implementations of functional require-
ments. Hence, formal logics enable software validation techniques where soft-
ware implementations can be checked against functional requirements in a
mechanical way. The Formal Methods group in the Safety-Critical Avionics
Systems Branch at NASA Langley Research Center (LaRC) has conducted
research on the development and application of formal methods technology to
safety-critical applications of interest to NASA for more than 30 years. This talk
provides an overview of the formal methods technology developed at NASA
LaRC and illustrates its use in the design, validation, and verification of
highly-assured autonomous unmanned aircraft systems.

Reinforcement Learning-Based Methods
for Falsification: A New Trend in Critical

Controllers Verification

Rémi Delmas

ONERA, The French Aerospace Lab, Toulouse, France
remi.delmas@onera.fr

Abstract. The talk gives an overview of a relatively recent trend in critical
embedded controller verification: the use of (possibly deep) reinforcement
learning algorithms for property falsification. The central idea is to use temporal
logics with real-valued robust semantics to formulate safety objectives, and to
formulate the property falsification problem as reward optimization problem,
which can be solved using reinforcement learning algorithms for optimal
planning or optimal policy synthesis. After introducing basic definitions and
concepts, we review a collection of landmark papers, then we illustrate the
approach with results obtained on an significant Airbus case study. Last, we
outline current challenges and future research directions.

Contents

Keynote Articles

Semiotics in Databases . 3
Bernhard Thalheim

Fully Generic Queries: Open Problems and Some Partial Answers 20
Dimitri Surinx, Jan Van den Bussche, and Jonni Virtema

Data Analysis

Keeping the Data Lake in Form: DS-kNN Datasets Categorization
Using Proximity Mining . 35

Ayman Alserafi, Alberto Abelló, Oscar Romero, and Toon Calders

Lavoisier: High-Level Selection and Preparation of Data for Analysis 50
Alfonso de la Vega, Diego García-Saiz, Marta Zorrilla,
and Pablo Sánchez

Discovering Platform Government Research Trends Using
Topic Modeling . 67

Sun-Young Shin and Chang-Kyo Suh

J2J-GR: Journal-to-Journal References by Greek Researchers 83
Leonidas Pispiringas, Dimitris A. Dervos, and Georgios Evangelidis

Deep Learning for French Legal Data Categorization. 96
Eya Hammami, Imen Akermi, Rim Faiz, and Mohand Boughanem

Metadata Discovery Using Data Sampling and Exploratory Data Analysis . . . 106
Hiba Khalid, Robert Wrembel, and Esteban Zimányi

Modelling

Conceptual Models and Their Foundations . 123
Bernhard Thalheim

Building Formal Semantic Domain Model: An Event-B Based Approach 140
Idir Ait-Sadoune and Linda Mohand-Oussaid

Social-Based Collaborative Recommendation: Bees Swarm Optimization
Based Clustering Approach . 156

Lamia Berkani

Hyperledger Fabric Blockchain as a Service for the IoT:
Proof of Concept . 172

Saša Pešić, Miloš Radovanović, Mirjana Ivanović, Milenko Tošić,
Ognjen Iković, and Dragan Bošković

GraphQL Schema Generation for Data-Intensive Web APIs 184
Carles Farré, Jovan Varga, and Robert Almar

Digital Dices: Towards the Integration of Cyber-Physical Systems Merging
the Web of Things and Microservices . 195

Manel Mena, Javier Criado, Luis Iribarne, and Antonio Corral

A Smart Living Framework: Towards Analyzing Security
in Smart Rooms . 206

Walid Miloud Dahmane, Samir Ouchani, and Hafida Bouarfa

Database Theory and Rigorous Methods

Concurrent Computing with Shared Replicated Memory 219
Klaus-Dieter Schewe, Andreas Prinz, and Egon Börger

MRSLICE: Efficient RkNN Query Processing in SpatialHadoop 235
Francisco García-García, Antonio Corral, Luis Iribarne,
and Michael Vassilakopoulos

Should We Be Afraid of Querying Billions of Triples in a Graph-Based
Centralized System? . 251

Abdallah Khelil, Amin Mesmoudi, Jorge Galicia, and Mohamed Senouci

Extracting High-Level System Specifications from Source Code
via Abstract State Machines . 267

Flavio Ferrarotti, Josef Pichler, Michael Moser, and Georg Buchgeher

Data Warehousing

Thinking the Incorporation of LOD in Semantic Cubes
as a Strategic Decision. 287

Selma Khouri, Abdessamed Réda Ghomari, and Yasmine Aouimer

Implementing Window Functions in a Column-Store
with Late Materialization . 303

Nadezhda Mukhaleva, Valentin Grigorev, and George Chernishev

xiv Contents

Applications of Model and Data Engineering

A Machine Learning Model for Automation of Ligament Injury
Detection Process . 317

Cheikh Salmi, Akram Lebcir, Ali Menaouer Djemmal,
Abdelhamid Lebcir, and Nasserdine Boubendir

Robust Design of a Collaborative Platform for Model-Based System
Engineering: Experience from an Industrial Deployment 333

Christophe Ponsard, Robert Darimont, and Mounir Touzani

Author Index . 349

Contents xv

Keynote Articles

Semiotics in Databases

Bernhard Thalheim(B)

Department of Computer Science, Christian-Albrechts University at Kiel,
24098 Kiel, Germany

thalheim@is.informatik.uni-kiel.de

http://www.is.informatik.uni-kiel.de/~thalheim

Abstract. In database research and practice, syntax is commonly con-
sidered a “firstness” property, while semantics is a “secondness” prop-
erty (in the sense of Peirce); pragmatics is largely neglected. This paper
discusses foundations in first-order predicate logic, highlights its useful-
ness, but also point out its problematic issues. These cover in particu-
lar safe expressions in the relational tuple calculus, rigid normalisation
emphasising atomicity of attributes, and a large body of knowledge on
database constraints. Database theory is still oriented on flat relational
structures although systems became object-relational. We first survey
the goodliness of classical database constraint theory and then develop
an alternative approach to some constraints including (α) the handling of
constraint sets instead of homogeneous classes of constraints, (β) visual
reasoning on constraints and structures, and (γ) calculi for robust rea-
soning, in particular for “exceptions” and object-relational reasoning.

Keywords: Constraints · Dependencies · Database theory · Semiotics

1 Introduction

1.1 Semiotics: Syntax �� Semantics �� Pragmatics

Semiotics is the study of signs and sign-using behaviour. According to Peirce,
signs are icons, indexes, or symbols. The structuralist approach to semiotics dis-
tinguishes syntax as the arrangement of words and the study of formation of
sentences, semantics as the study of meaning in natural and artificial languages,
and pragmatics as the study of relations between languages and their users,
e.g. the use of languages in communication. Morphology studies the internal
construction of words. Natural languages use typically semantically fixed base
elements from a vocabulary and have general purpose means for expressions.
They use a manifoldness of expression forms and speech acts. They have a high
error tolerance, use a metalanguage on its own, don’t distinguish abstraction lev-
els, interpret connectives and quantifies in a variable way, widely use ambiguities
and ellipses, apply indefiniteness as a concept for later focusing, and use tempus
and modality as well as metaphoric elements with an embedment of context.

Therefore, semiotics in linguistics is far more broad than in computer sci-
ence and database research. Main elements of semiotics are, however, inherited
c© Springer Nature Switzerland AG 2019
K.-D. Schewe and N. K. Singh (Eds.): MEDI 2019, LNCS 11815, pp. 3–19, 2019.
https://doi.org/10.1007/978-3-030-32065-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_1&domain=pdf
http://orcid.org/0000-0002-7909-7786
https://doi.org/10.1007/978-3-030-32065-2_1

4 B. Thalheim

for computer science research. For instance, database semantics considers how
meaning is constructed, interpreted, clarified, obscured, illustrated, simplified,
negotiated, contradicted and paraphrased. Formal semantics is typically given in
the Fregean and Quine sense by (1) by an interpreter that maps syntactic types
to semantic types, (2) by a context abstraction that is based on an aggregation
of values which remain fixed in certain temporal and spatial intervals, (3) by
states that provide a means of representing changes over time and space, (4) by
an configuration that is based on an association of contexts and states, (5) by
an interpretation function that yields state results based on certain computa-
tion, (6) by an evaluation function that yield some value results for the syntactic
types, and (7) by an elaboration function that yield both state and some other
value results. Computer sciences uses a small set of syntax constructors instead
of using a larger number of constructors. English language has, for instance, 25
sentence construction pattern with the SPO pattern as the hyper-simplistic one.

1.2 Database Semiotics

Database semiotics and especially database semantics uses a strict form with
exact matching of syntax and semantics, without context consideration, without
state restrictions beside finiteness, with exact interpretation, with full evalua-
tion of variables, and full elaboration. Database pragmatics is the study how
languages are used for intended deployment functions in dependence on the
purposes and goals within a community of practice. It is of interest for concep-
tualisation and conceptual modelling but not for database semiotics.

The variety of competing viewpoints within a community of practice might
lead to a conglomerate of meanings. Database research has been considering
semantic specification languages in the past. These semantic database modelling
languages have, however, not found their way to implementations. A typical
example is the simplification of the meaning of Is-A constructions.

Database semiotics does not consider the variety of abstraction level, i.e. user
worlds and agreements among users in a community. Instead, the solution world
of DBMS and the performance criterion have taken over. Database semiotics has
been toggling between a rich structuring with less expressive power of seman-
tics (e.g. object-relational languages such as the higher-order entity-relationship
modelling language [20]) and poor structuring with the need for a rich seman-
tical system (e.g. relational languages). Each of these languages have their own
‘music’.

The main – sometimes the only one – quality characteristics for DBMS is
storage and computation performance. For this reason, database semiotics is
based on the harmonising container (or class) typing instead of object (or data)
semiotics. Database semiotics has to compromise with (I) performance or rich-
ness, (II) full semantics or sufficient semantics, (III) stable semantics or robust
semantics, (IV) static semantics or dynamic and evolving semantics, and (V)
full service or fast and sufficient service.

Semiotics in Databases 5

1.3 The Special Case of Database Constraints

The theory of database dependencies and constraints is fairly rich (e.g. [7,17,
19]). We know almost hundred classes of static integrity constraints. They can
be categorised into constraints for partial identification of values, constraints
declaring relative independence of objects, existence constraints, and redundancy
constraints. Typically constraints are defined in languages at the conceptual or
implementation layer. We might also consider user constraints.

Identification Independence Existence Redundancy

Conceptual
layer

Functional,
equality-
generating

Multivalued,
hierarchical,
join, exclusion,
Tuple-ge-
nerating
constraint,
horizontal
decomposition

NULL-marker-
free, union
constraint,
numerical,
cardinality

Inclusion,
exclusion
constraint

Implementa-
tion
layer

Key,
uniqueness,
trigger, check

Decompo-
sition, stored
procedures,
trigger

no NULL,
stored
procedures,
trigger

Referential
integrity,
surrogate,
capsules

User layer Identification Structuring! no NULL Elementary
facts

The theory of database constraints and dependencies has mainly been devel-
oped in the 70ies, 80ies, and early 90ies. Later it has been considered to be a
“dying swan” (DOOD91 conference talk). Many of the results from this time
are forgotten. Some theories have later been re-developed using different nota-
tions and names, e.g. conditional functional dependencies [12]. The list of open
problems [18,20,21] is fairly long and – surprisingly – relatively stable.

Static integrity constraints are typically realised as dynamic transition con-
straints, i.e. they support transition from one valid state to another valid
database state. Beside transition constraints we might consider also temporal
and general dynamic constraints.

1.4 The Storyline and Database Semiotics Research

We start first with a discussion of the state-of-art for database semiotics. Next
we reconsider the body of knowledge for a small number of problems. Finally,
we draw lessons. We discuss some of the results and refer to database research
for a deeper discussion of the issues.

This paper is a keynote paper and thus presents our experience we gained
from research that started already 40 years ago, reflects our thoughts and insights

6 B. Thalheim

into the topic, and should stimulate future research. We select a narrative style
for explanation of suggestions and recommendations.

We restrict the paper to database constraints. Further, we cannot survey the
entire body of knowledge on database constraints. A detailed introduction and
consideration of constraint classes would result in a full textbook (e.g. a revision
and extension of [19]). We refer to [1,12,19,20] or the survey [7] for the defini-
tion of constraints. We consider in this paper only six main classes of constraints
that are used in almost all textbooks: keys, functional dependencies, multival-
ued dependencies, inclusion constraints, exclusion constraints, and cardinality
constraints.

2 Goodliness of Mathematical Logic

2.1 Components of (Meta-semiotic) Logics

The classical mould to specification follows the meta-semiotic approach

– The syntactic constituent defines which symbols are going to be used in the
language, which combinations (word) of these symbols are allowed, and which
constructors can be (partially) used. Syntax is typically constructed induc-
tively

– The semantic constituent defines what is the purpose of the language, which
structures are of interest, and what is going to be expressed.

– The two constituents are interrelated syntax and semantics. Mathematical
logics uses syntax as firstness and semantics as secondness, i.e. truth values
(or appropriateness) allow to define which structures or expressions are true
or meaningful or potentially meaningful.

– The pragmatic constituent can define which meaning can be canonically
assigned to words, which restrictions must be considered, and which closure
operators are applicable.

This approach defines the playground of Mathematics Logics by starting with
a signature of the language and structure and then by deploying construction
rules for the construction of words (or expressions) of the language. Seman-
tics in the Fregean and Quine sense canonically uses the same construction
rules. Beside canonical semantics in mathematical logic we might also con-
sider ideational, behaviourist, referential, possible-world, verificationist, truth-
conditional, conceptual-role, and Gricean belief semantics. Computer science
uses a number semantics beside canonical semantics [14]: lexical (e.g. Web 3.0),
statistical, prototype, program, dynamic, operational, denotational, axiomatic,
transformational, algebraic, and macro-expansion (e.g. λ calculus) semantics.
These frames also follow the meta-semiotic approach. We might also use second-
order construction of languages [23]. Logics can also be defined based on other
meta-approaches, e.g. [8,11,22].

Semiotics in Databases 7

2.2 Forgotten and Supplanted Properties

Static database constraints are classically defined by expression that can be
translated to expressions in first-order predicate logics.

Typical forgotten properties of constraints are the following ones: Hierarchi-
cal dependencies can be based on reasoning through the tableau calculus. They
are not invariant for most operations. Similar observations can be made for
universally quantified formulas. For instance, functional dependencies are pre-
served for join operations, are subset-invariant, are intersection-invariant, are
restricted union-invariant, and are not complement-invariant. There is a seman-
tical gap between functional and multivalued dependencies. Both can be con-
sidered to be structuring constraints. All specification languages use implicit
language assumptions (e.g. component inclusion condition, identifiability for set
semantics, cycles and finiteness assumptions). Normalization is considered to be
structurally instead of behavioral optimization.

Supplanted properties in constraint specification are finiteness properties
(finite implication, finite calculi, finite representation of potentially infinite sets,
finite computation (‘safety’)), parallel execution (with transaction based concur-
rent semantics, causal semantics of processes, predicative semantics for engines)
uncertainty of data (represented by NULL markers (overloaded, logics, com-
putation, identification), fuzzy data with error models, aggregated macro-data
instead of micro-data), completeness of specification, and weak constraints (e.g.
deontic maintenance, temporal maintenance, default values).

Alternative definitions provide an insight to constraints. For instance, func-
tional dependencies can be differently treated:

Quantity matrices: The functional dependency X → Y can also be defined as
an algebraic expression |πX(RC)| = |πXY (RC)| for a relational class.

Equality sets: For a given relational class we consider the set of value-equivalence
classes of object ERC (A) = {{t′ ∈ RC |t =A t′} | t ∈ RC} for an attribute
A ∈ UR and ERC (X) = {{t′ ∈ RC |t =X t′} | t ∈ RC} for a subset of
attributes X ⊆ UR.

Lattices of closed sets: Instead of reasoning on functional dependencies we can
construct the set of all closures X+ on subsets X of attributes as a lattice
L(RC) of equality sets of a relation class RC . It forms a sub-cylindric lattice
L(M,∩,∪,�,⊥,≤) and thus can be considered as a lattice.

Pair algebra reasoning: Functional dependencies X → Y can be represented by
a pair (X,Y) with a specific order (X,Y)
 (X ′, Y ′) if X ⊆ X ′ and Y ⊇ Y ′.
The left and right sides of pairs form two lattices (L1,+, ·,≤) and (L2,+, ·,≤)
which are interrelated by a Galois correspondence.

3 Revising Approaches to Constraints

3.1 Constraints Brilliance and Syntax Glory

Constraint set axiomatisation can be developed for each variant of syntax. For
instance, there are Armstrong style axiomatisations for the basic relational

8 B. Thalheim

modelling language and for its extensions by lists, by sets, by multi-sets, by
multi-lists, and by powersets. Advanced modelling languages such as the higher-
order entity-relationship modelling language have also an axiomatisation. All
these axiomatisations are similar.

Based on pair algebra reasoning it is easy to prove the following theorem:
General deduction theory for closed Horn formulas: A sound and complete axioma-
tisation for closed Horn formulas ∀...(α → β) consists of

axioms α→β for all facets of substructures β
 α

augmentation rules for super/sub-structures α→β
α′→β′

for either β′
 β and α
 α′ or as well as α′ = α γ and β′ = β γ , and
transitivity rules for all connecting pairs (α → β, β → γ).

The order
 and the union are defined for the lattices of the pair algebra.
The simplest case for this theorem is the classical Armstrong axiomatisation

for functional dependencies in the basic relational modelling language:

Axiom X ∪ Y → Y

Rules (1)
X −→ Y

X ∪ V −→ Y ∪ V
(2)

X −→ Y , Y −→ Z

X −→ Z

The advantage of such Horn formula systems is the inversion of constraints to
their excluded variants. For instance, an excluded functional dependency X −→
/ Y is valid for a collection of classes if the functional dependency X −→ Y is
not valid in one of the classes of the collection.

For instance, the transitivity rule may be rephrased for negations of con-
straints:

X −→ Y , Y −→ Z

X −→ Z

X −→ Y , X −→/ Z

Y −→/ Z

The following Hilbert-type deductive system is sound and complete for func-
tional dependencies and excluded functional dependencies.

Axiom X ∪ Y → Y

Rules (1)
X −→ Y

X ∪ V −→ Y ∪ V
(2)

X −→ Y , Y −→ Z

X −→ Z

(3)
X −→ Y , X −→/ Z

Y −→/ Z
(4)

X −→/ Y

X −→/ Y ∪ Z
(5)

X ∪ Z −→/ Y ∪ Z

X ∪ Z −→/ Y

(6)
X −→ Z , X −→/ Y ∪ Z

X −→/ Y
(7)

Y −→ Z , X −→/ Z

X −→/ Y

Semiotics in Databases 9

The deductive system is not minimal due to the union rule (6), the advancement
rule (5), and the subset rule (4). It is, however, more convenient.

3.2 The Boon of the Propositional Logic

Propositional logic is far simpler than predicate logic. The reasoning procedures
use a Boolean calculus. Propositional logics is best fitted to cases when the
implication is based on a two-object property, i.e. two-object classes can be used
as a counterexample for validity of a constraint. Propositional representation
also allows to derive simple counterexamples for a set of constraints.

Functional dependencies X −→ Y for X = {A1, ..., Ak}, Y = {Ak+1, ...Al}
can be represented by a Boolean implication p1 ∧ ...∧ pk → pk+1 ∧ ...∧ pl or by
a set of implications with a singleton right side pX → pj for pX := p1 ∧ ... ∧ pk

and k + 1 ≤ j ≤ l . A functional dependency follows from a set of functional
dependencies if and only if this is valid for the Boolean implications.

Another propositional approach can be used for full multivalued dependencies
X →→ Y |Z by a Boolean implication pX → pY ∨ pZ . W.l.o.g. we may assume
Y ∩Z = ∅. Functional and multivalued dependencies can be represented together
using these forms. The implication problems for sets of these constraints and for
sets of Boolean implications are equivalent.

This propositional representation is also valid for generalised types of func-
tional dependencies like the Hungarian functional dependencies. This approach
can also be used for handling of functional dependencies with one of their negated
forms (i.e. either afunctional dependencies or excluded functional dependencies).
This representation is however an either-or form since we change semantical
meaning of the constraints. Hungarian functional dependencies that are not sys-
tems of functional dependencies and multivalued dependencies use also different
meaning and cannot be handled this way.

This Boolean representation of constraints allows to derive complexity
results. For instance, the maximal size of a system of minimal keys in relational
types with n attributes or components is

(
n

�n
2 �

)
. A similar exponential bound-

ary can be derived for the maximal size of independent functional dependencies:
�n
2 �(n

�n
2 �

)
[5].

Minimal keys form a Sperner system on attr(R), i.e. X �⊆ Y for all minimal
keys X and Y . The set of antikeys is the set of maximal subsets of attr(R) which
are not keys. Antikeys and minimal keys characterise each other. The antikey
characterisation can be used for construction of Armstrong relations which obey
all minimal keys and only those. The set of all minimal keys is represented by a
monotone Boolean formula.

Formulas of first-order predicate logics that are generalisations can be repre-
sented by an open first-order predicate logics without quantifiers. For this reason,
these formulas may also be represented by Boolean formulas.

10 B. Thalheim

3.3 The Boon and Bane of First-Order Predicate Logic

Almost all classes of static database constraints can be expressed as tuple-
generating or equality-generating formulas in first-order predicate logics. For
instance, equality generating dependencies are constraints of the following form:
∀(x1,1, ..., xm,n) ((PR(x1,1, ..., x1,n) ∧ ... ∧ PR(xm,1, ..., xm,n) ∧ F (x1,1, ..., xm,n))

−→ G(x1,1, ..., xm,n))

where F (x1,1, ..., xm,n), G(x1,1, ..., xm,n) are conjunctions of equalities of the form
xi,j = xi′,j′ and PR is the predicate symbol associated with R.

Full tuple-generating dependencies are constraints
∀(x1,1, ..., xm,n)((PR(x1,1, ..., x1,n) ∧ ... ∧ PR(xm,1, ..., xm,n) ∧ F (x1,1, ..., xm,n))

−→ (PR(x
′
1,1, ..., x

′
1,n) ∧ ... ∧ PR(x

′
k,1, ..., x

′
k,n)))

where x′
i,j ∈ {x1,j , ..., xm,j} for 1 ≤ j ≤ n , 1 ≤ i ≤ k .

Temporal and dynamic constraints can be specified on extensions of these
logics. Therefore, this logic seems to be sufficient for reasoning on constraints.
This kind of reasoning is supported by the CHASE procedure for full tuple-
generating and equality-generating formulas [1]. It seems thus that deduction is
thus well-founded.

One of the main negative results in database theory is the theorem on non-
axiomatisability of functional dependencies and inclusion dependencies:

“For each k there is a database schema DB for which there is no k-ary1

sound and complete axiomatization for finite implication of functional depen-
dencies and inclusion constraints over DB.” (e.g. [1], page 205)

This theorem has however a definitional flaw. In reality the statement must be
read as follows:

There is no finite Hilbert-type axiomatisation in first-order predicate logics
for functional dependencies and inclusion constraints.

We could ask whether there exist a Gentzen-type axiomatisation or whether we
have to stick to first-order predicate logics. [9] could prove that there is a rather
simple axiomatisation in a weak second-order logics for these two classes of con-
straints. Join dependencies are a typical example of non-Hilbert-style axiomati-
sability but Gentzen-style axiomatisability.

First-order predicate logic has been used for a brute-force definition of a
relational query language. A formula with free variables might be considered as a
relational tuple calculus query. The result can be a finite but also an infinite set of
tuples. Databases and queries must, however, be finite. This finiteness restriction
results in a different semantics. The tuple calculus is considered to be a genuine
piece of junk: safe formulas which safety property cannot be recursively decided.
If we use a strongly typed first-order logic [2] then unsafe formulas cannot be
declared.

1 The number k is the maximal number of premises in a Hilbert-type deduction rule.

Semiotics in Databases 11

A third flaw is the difference between set semantics that is used for the
relational database model and the multi-set semantics that is used in DBMS.
The identification property and the uniqueness property are different for multi-
set semantics. A fourth crap is the identification requirement for object-oriented
databases [3].

3.4 Constraint Classes or Real-Application Constraints

The constraint research has been concentrating on a separation of concern by
classification into constraint classes. The deduction of constraints is handled
according to the constraint class. In order to provide a homogenised handling
for all objects in a class, we target on classes which have a small and easy to man-
age class of constraints. This classical approach has been used for most DBMS
which supported keys, specific inclusion constraints (referential constraints), and
domain constraints. The normalisation of structures lead to a Salami-slice app-
roach in which the semantics for all classes uses only these constraints.

Real-application constraints typically co-occur in a structure, i.e. we should
consider the constraints for a given class instead of constraint classes in general.
We might use a unit-oriented approach. A semiotic and pragmatistic unit is
defined by its structure and its constraints.

The component-oriented approach uses such semiotic components with spe-
cific specialisations and generalisations form a component network. This separa-
tion of semantics to components results in a ‘Venetian glassware’ representation
instead of Salami slice representation. A similar uni-oriented approach is based
on pivoting of constructs in extended ER approaches (HERM)[20]. Sets of func-
tional dependencies can be handled by an constraint equivalence reasoning. For
instance, we define an abstraction [A,B,C] for {A → B, B → C, C → A}
and represent the attributes A,B,C by their abstraction. The set of functional
dependencies becomes simpler. Additionally we avoid the normalisation trap by
equivalence set reasoning.

Reasoning by abstraction on attributes is far simpler than reasoning on basic
attributes. For instance, the set of functional dependencies {AB → C, C →
[A,D,E]} with {A ↔ D ↔ E} has 45 canonical minimal covers {[A,D,E]B →
C → [A,D,E]}. So, selecting a good normalisation variant becomes an art.

Another reasoning system can be developed for an integrated development
of sets of constraints. For instance, types with a smaller component set allow a
holistic treatment of the entire constraint set instead of reasoning constraint by
constraint [6]. This reasoning system allows to reason on the impact a constraint
has. For instance, the rule

C → A supported by A ∪ C → B

C → B

states that one constraint which is supported by another constraint allows to
conclude a third constraint. This rule explains transitivity of constraints.

12 B. Thalheim

4 Calculi Beyond Classical Mathematical Logics

4.1 Visual Reasoning

Calculi must not necessarily be logical ones. They can also be graphical [16].
A typical example is the graphical representation of functional dependencies by
edges from subsets of the set of attributes to singleton attributes at the right side.
These graphs may be enhanced by subset edges (dotted) for a simpler detection
which subsets are contained in another one.

Let us consider a simple example: given attributes UR = {A,B,D, F,G, I}
and a set of functional dependencies ΣR = {A −→ IG,D −→ FG, IAB −→
D, IF −→ AG}. This set can be represented by the graph on the left side
of the following picture. This set can be reduced by deleting IF −→ G from
the graph since it is derivable through the edges representing IF −→ A and
A −→ G. Furthermore, the set ABI can be reduced since the edge representing
A −→ Isupports subset reduction. No other reduction can be applied to the
graph. The calculus for graphical reasoning [6] is complete.

I

IF

A

ABI

F

D

G

�
�

�
�

�

�
�

I

IF

A

AB

F

D

G

�
�

�
�

�

�

We may directly derive a normalisation according to this graph reduction.
Each constraint must be covered. We arrive with the synthesis algorithm to:

R1 = ({A,G} , {A −→ G, R1[A] ⊆⊇ R2[A], }) ,
R2 = ({A,F, I} , {A −→ I, FI −→ A, R2[F] ⊆⊇ R4[F]}) ,
R3 = ({A,B,D} , {AB −→ D, R3[D] ⊆⊇ R4[D], R1[A] ⊆⊇ R3[A]}) ,
R4 = ({D,F,G} , {D −→ FG, R1[G] ⊆⊇ R4[G]}) .

Classical normalisation would result in another normalised relation type:
R′

1 = ({A,G, I} , {A −→ GI, R′
1[AI] ⊆⊇ R2[AI]}).

4.2 Numerical Calculi

Cardinality constraints of the form (0,1), (1,1), (1,n) essentially express func-
tional dependencies (through upper bound restrictions (0,1), (1,1)) and inclu-
sion constraints (through lower bound restrictions (1,1), (1,n)). For this reason,
the axiomatisation result discussed above applies also to cardinality constraints.
Therefore, logical calculi have either to use weak second-order calculi or to turn
to other kinds of calculi. The simplest calculus is in this case a numerical one.

Consider, for instance the following simple schema with the cardinality con-
straints: card(Prerequisite, hasPrerequisite) = (0,2)

and card(Prerequisite, isPrequisiteOf) = (3,4).

Semiotics in Databases 13

Module Prerequisite

�

�

hasPrerequisite

isPrerequisiteOf

(0,2)

(3,4)

This schema is inconsistent for non-empty finite object sets. Its inconsistency
can directly be concluded with the numerical calculus [20]:

3 ∗ |M | ≤ |R| , 1
2 ∗ |R| ≤ |M |

3
2 |M | ≤ 1|M | �

This calculus allows to derive two repairs: (3,4) � (2,y) (for y ≥ 2) or
(0,2) � (x,3) (for x ≥ 0).

It also allows to derive weaker systems as long as the conclusion is weaker than
the premise.

4.3 Structural Reasoning

Multivalued dependencies X →→ Y |Z on a relational type R and the corre-
sponding R-classes RC are defined as generalisations of functional dependencies
by a condition: for all t, t′ ∈ RC with t =X t′ exists an object t′′ ∈ RC with
t′′ =X∪Y t and t′′ =X∪Y t′ where X ∪ Y ∪ Z = attr(R) .

This mathematical definition is difficult to handle. Four other equivalent
definitions are based on a decomposition property, on independence of Y -values
from Z-values for each X-value, on product constructor, and on non-first-order
structuring of R. The simplest equivalent definition is based on a separation of
concern into an XY and an XZ concern in the entity-relationship modelling
language.

Y � �XY X � �XZ Z

4.4 Divide and Conquer

Constraints have also a pragmatical meaning that should be considered. For
instance, functional dependencies X −→ Y have their own structural and
pragmatical meaning:

Explicit declaration of partial identification: The functional dependency explicitly
declares a identification of Y -values through X-values.

Tight functional coupling: There exists potentially a function from X-values to
Y -values. It is a specific cardinality constraint.

14 B. Thalheim

Semantic constraint specific for the given application: The functional dependency
is specific for the given application and thus stronger than in other applica-
tions.

Semantical or structural unit with functional coupling: The X–Y association
forms a semantical units and can thus be represented in a separate form.

The axiomatisation for functional dependencies can be refined according to these
meanings. For instance, tight functional coupling hints on pivoting. Semantical
and structural units can be considered on their own.

Inclusion, exclusion, and domain constraints have also a pragmatical mean-
ing. Classical normalisation theory does not consider this meaning. The result
of a normalisation process might result in inappropriate solutions that destroy
the associations with more important pragmatical meaning.

4.5 Exception Handling

Exception handling is one of the great lacunas in computer science research. We
may approach exception problems by a separation of concern approach [4,10].
There are five types of exceptions for database management: errors, incomplete-
ness, insufficiency, deviation from normality (e.g. dynamic changes or hidden
cases), and operational nondeterminism. The management of exceptions can
be based on (i) conceptualisation of solutions to exceptions, (ii) on enhance-
ment of conceptual schemata by exception templates, and (iii) on development
of control and measurement practices. A number of exception handling mecha-
nisms on the basis of constraints and macro-constraints have been realised: (a)
multi-layering of applications separates objects in a good state, bad state, and
exceptional state; (b) state-based separation applies special macro-states (nor-
mal state, intermediate states, final states, etc.) (c) business rule injection into
exception handling is based on extended transaction or trigger models; (d) auto-
matic exception containers use orthogonal ‘ghost’ schemata based on horizontal
decomposition; (e) multi-shell exception handling is based on explicit shell mod-
elling; (f) tolerance/toleratability with provenance allow temporary constraint
set violations.

NULL markers (originally called NULL values) are one kind of exceptions
[15]. NULL is a special marker used in SQL to indicate that a value for an
attribute of an object does not exist in the database. There are many reasons for
this non-existence: the value is currently unknown but exists; the attribute is not
applicable for the object; the value does not exist at all for the given object; the
value never exists for this object; ... The SQL standard assigns for a comparison
of an existing value to a NULL marker the value unknown what is completely
counterintuitive. For instance, if a NULL marker has a meaning that a value
never exists then a comparison does not make sense. In this case, the logical
value is neither false nor true. It is worse than false, i.e. it is nonsense. The
corresponding logics must be revised by redefining logical connectives (negation,
conjunction, disjunction, etc.) and quantifiers. The logics used becomes then
a paraconsistent. The notions of keys, functional dependencies, etc. must be
redefined too.

Semiotics in Databases 15

4.6 Viewpoint-Oriented Treatment of Semiotics

Classical DBMS handle constraint satisfaction on the basis of the global (or
central) data. Views are derived by queries applied to these data. Views might
however also be interrelated. Therefore, view might form their own viewpoint
schema. These viewpoint schemata are often the basis for database interfacing.
Instead of handling constraints at the basic data level, we can separate constraint
sets into those that can be handled and supported at the viewpoint level and
those that must be enforced in the global database. This approach results in a
better computational behaviour of the system since constraint enforcement is
often a performance trap. This separation of enforcement can be refined by a
separation into declarative constraints that are supported by DBMS structuring
and into complexes of procedural constraints that are supported by triggers or
stored procedures.

4.7 Constraint Acquisition and Negated Constraints

Most optimisation algorithms and especially normalisation assume fully defined
semantics. All potentially valid constraints of a given kind must either be deriv-
able from a given constraint set or explicitly marked as not valid for the given
application case. This approach is neither feasible nor realistic for real applica-
tions since the size of a set of logically independent constraints can be exponential
for the number of type components (attributes). Types with 20 attributes require
therefore a procedure for constraint check that is far beyond time constraints.

One approach might be the development of a robust constraint specification
that does not consider all potentially valid constraints but only essential ones.
The separation by pragmatical meaning and the orientation on those constraints
which validity must be guaranteed is one option.

This option is supported by results on the average complexity of constraint
sets [20]. For instance, the length of a minimal key in an average class is bounded
by a multiple of the logarithm on the number n of attributes where the basis of
the logarithm depends on the size of the domains for the attributes. This size k
is less then �n

2 � for larger n. The number of minimal keys is then about
(
n
k

)
.

Constraint acquisition is heuristically organised by considering constraints
which validity and invalidity has the most influence of potentially derivable or
rejectable constraint. We can simultaneously consider the set of valid constraints
Σ1 and of invalid constraints Σ0.

Unknown
validity

Σ0

Σ1

Unknown
validity

Σ0

Σ1

Unknown
validity

Σ0

Σ1

Σ0

Σ1

... ...

Initial step Intermediate steps Final step

16 B. Thalheim

For instance, for functional dependencies the procedure would be then the
following one:

1. Basic step: Design obvious constraints.
2. Recursion step: Repeat until the constraint sets Σ0 and Σ1 do not change.

• Find a functional dependency α that is neither in Σ1 nor in Σ0.
– If α is valid then add α to Σ1.
– If α is invalid then add α to Σ0.

• Generate the logical closures of Σ0 and Σ1.

5 Lessons to Learn and to Consider

5.1 Holistic Treatment of Syntax and Semantics

Natural languages use a holistic approach to semiotics. Some languages (e.g.
German) allow word-based interpretation. Others (e.g. English) also use a
context-biased interpretation. Some languages follow a rule-based approach (e.g.
Indo-European with verb-based sentence structure) while others (e.g. Semitic,
Japanese and other Asian languages) use a network approach.

Computer Science uses formal languages which definitional frame reuses the
one from Mathematical Logics, i.e. syntax is defined first and then semantics
is defined based on the syntax structure. Peirce considers syntax as some kind
of “firstness” property and semantics as some kind of “secondness”. Pragmatics
and pragmatism are neglected. This approach simplifies compiler and interpreter
construction.

We observed however that structuring and interpretation cannot be separated
for applications. They are interleaved. Due to the classical approach, database
constraints are often difficult to handle, e.g. multivalued dependencies (wrong
specification language; sixth (and fifth or fourth) definition are appropriate).
Constraint maintenance might become a nightmare and becomes an incubus with
big data. Normalisation theory is based on doubtful assumptions and has become
obsolesce for object-relational structures. Optionality (e.g. NULL markers) is not
properly understood and supported. Moreover, semantics is also dynamic.

5.2 Maintenance: From Ugly Duckling to Beautiful Swan

Constraint maintenance is based on answering the following question: Provided
the database DB is in a consistent state specified by the integrity constraints Σ
before running the transition and given a transition TA, what is the best solution
to the requirement that the application of the transition t to the database D does
not invalidate the constraints in Σ?

SQL and DBMS systems provide a number of mechanisms for constraint
maintenance: (A) refusal of modification by the transition TA (e.g. no action
or forbidden action); (B) transformation of the transition TA to a correct one
(by repair actions, by transformation to the greatest consistent specialisation
[13], or by effect preserving specialisations); (C) reduction of the transition; (D)

Semiotics in Databases 17

repairing the database (by terminating, confluent, and effect preserving triggers);
(E) normalisation approaches; (E) modification of interfaces (e.g. on the basis
of stored procedures); (F) maintenance layering inside the database; and (G)
hybrid approaches (e.g. restricting the application domain of operations and of
modifications).

A general constraint handling framework supports validity of constraints at
different levels:

1. At the specification level: the description of the constraints properties is
enhanced by validation, policies for evaluation, specific policies, and trans-
formations of constraint properties to others constraints.

2. At the control or technical level: The application of the constraint, of the
constraint property portfolio, of techniques and of methods is added.

3. At the application or technology level: The management of constraint han-
dling is embedded into the DBMS management.

4. The establishment or organisational level is based on a methodology and
constraint maintenance system.

Level 5 adds facilities for handling satisfaction of constraints and for predicting
changes of satisfaction. Level 6 optimises the constraint management. Level 7
uses experiences for modernisation, modification and adaptation of constraint
handling.

5.3 Lessons to Consider

Finally, we conclude:

+ Hierarchical structuring or inductive composition of types leads to a gener-
alized first-order predicate logics. It is simple but might be too simple for
applications.

+− First-order axiomatisability: A deductive Hilbert-type system exists if and
only if the implication operator is reflexive, monotone, closed, and compact.

+− Functional, key, inclusion and exclusion dependencies are constraints that
are natural in the relational model but not natural for object-relational
database models. Key-based inclusion dependencies are handicapped for more
complex structuring. Multi-valued dependencies are far better expressed in
the ER modelling language. Cardinality constraints are overloaded. We should
treat maximal and minimal cardinalities in separate systems. Join dependen-
cies are mainly representational constraints.

−− Combinatorial problems might limit the use and the usability of constraints.
Constraint specification is thus often incomplete. Since normalisation theory
requires completed constraint specification it is useful only for simple cases.

−+ Logical reasoning should be combined with other calculi such as graphical
and numerical ones.

18 B. Thalheim

We also arrive with a number of lessons:

Rigidity of validity: Some integrity constraints are very important in an applica-
tion area. Others are less important. Users can often “live” with temporary
violations of the latter. Soft constraints are constraints whose satisfaction is
desirable, but not essential.

Behaviour in presence of NULL markers: NULL markers carry a variety of differ-
ent semantics. Most constraints are not defined on null values. The behaviour
of some types of constraints such as functional dependencies becomes cum-
bersome if null values are permitted.

Weakening validity temporarily: In the daily operation of a database exceptions
may arise due to various reasons. In some cases a constraint may be allowed
to be invalid within a time interval. Weakening validity may be supported by
special extensions transaction and temporary classes.

Enforcement time: Validity of constraints may be enforced at different points of
time. This situation has been taken into account to some extent. For instance,
SQL:1999, allows one to specify that constraints are to be enforced whenever
a tuple that might violate the constraint is modified, or at the end of the
transaction, or based on the occurrence of some events. But the consistent
management of constraint enforcement time is still an open problem.

Partial satisfaction of constraints: Constraints may be partially or totally satis-
fied. We may collect all those objects for which a constraint is not satisfied
into a separate database unit.

Execution time deadlines: Constraints may be violated due to the late arrival
of data or events. A contingency plan or contingency transactions may be
invoked with guaranteed execution time characteristics.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. AlBdaiwi, B., Thalheim, B.: Revisiting the definition of the relational tuple cal-
culus. In: Morzy, T., Valduriez, P., Bellatreche, L. (eds.) ADBIS 2015. CCIS, vol.
539, pp. 3–11. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23201-
0 1

3. Beeri, C., Thalheim, B.: Identification as a primitive of database models. In: Pro-
ceedings FoMLaDO 1998, pp. 19–36. Kluwer, London (1999)

4. Berztiss, A., Thalheim, B.: Exceptions in information systems. In: Digital Libaries:
Advanced Methods and Technologies, RCDL 2007, pp. 284–295 (2007)

5. Demetrovics, J., Katona, G.O.H., Miklós, D., Thalheim, B.: On the number of
independent functional dependencies. In: Dix, J., Hegner, S.J. (eds.) FoIKS 2006.
LNCS, vol. 3861, pp. 83–91. Springer, Heidelberg (2006). https://doi.org/10.1007/
11663881 6

6. Demetrovics, J., Molnár, A., Thalheim, B.: Graphical reasoning for sets of func-
tional dependencies. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.)
ER 2004. LNCS, vol. 3288, pp. 166–179. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-30464-7 14

https://doi.org/10.1007/978-3-319-23201-0_1
https://doi.org/10.1007/978-3-319-23201-0_1
https://doi.org/10.1007/11663881_6
https://doi.org/10.1007/11663881_6
https://doi.org/10.1007/978-3-540-30464-7_14
https://doi.org/10.1007/978-3-540-30464-7_14

Semiotics in Databases 19

7. Godfrey, P., Grant, J., Gryz, J., Minker, J.: Integrity constraints: semantics and
applications. In: Chomicki, J., Saake, G. (eds.) Logics for Databases and Informa-
tion Systems, pp. 265–306. Springer, Boston (1998). https://doi.org/10.1007/978-
1-4615-5643-5 9

8. Gurevich. Y.: On Kolmogorov machines and related issues. In: Current Trends In
Theoretical Computer Science: Essays and Tutorials, pp. 225–234. World Scientific
(1993)

9. Hannula, M., Kontinen, J.: A finite axiomatization of conditional independence
and inclusion dependencies. In: Beierle, C., Meghini, C. (eds.) FoIKS 2014. LNCS,
vol. 8367, pp. 211–229. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
04939-7 10

10. Jaakkola, H., Thalheim, B.: Exception-aware (information) systems. In: Informa-
tion Modelling and Knowledge Bases, vol. XXIV, pp. 300–313. IOS Press (2013)

11. Kolmogorov, A.N., Dragalin, A.G.: Mathematical Logics. KomKniga, Moscov
(2006). (in Russian)

12. Paredaens, J., De Bra, P., Gyssens, M., Van Gucht, D.: The Structure of the
Relational Database Model. Springer, Heidelberg (1989)

13. Schewe, K.-D.: Fundamentals of consistency enforcement. In: Information Mod-
elling and Knowledge Bases X, vol. 51. Frontiers in Artificial Intelligence and
Applications, pp. 275–291. IOS Press (1998)

14. Schewe, K.-D., Thalheim, B.: Semantics in data and knowledge bases. In: Schewe,
K.-D., Thalheim, B. (eds.) SDKB 2008. LNCS, vol. 4925, pp. 1–25. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-88594-8 1

15. Schewe, K.-D., Thalheim, B.: NULL value algebras and logics. In: Information
Modelling and Knowledge Bases, vol. XXII, pp. 354–367. IOS Press (2011)

16. Sörensen, O., Thalheim, B.: Semantics and pragmatics of integrity constraints.
In: Schewe, K.-D., Thalheim, B. (eds.) SDKB 2011. LNCS, vol. 7693, pp. 1–17.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36008-4 1

17. Thalheim, B.: Bibliographie zur Theorie der Abhängigkeiten in relationalen Daten-
banken, 1970–1984. Technical Report 566/85, TU Dresden (1985)

18. Thalheim, B.: Open problems in relational database theory. Bull. EATCS 32, 336–
337 (1987)

19. Thalheim, B.: Dependencies in Relational Databases. Teubner, Leipzig (1991)
20. Thalheim, B.: Entity-Relationship Modeling - Foundations of Database Technol-

ogy. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-662-04058-4
21. Thalheim, B.: Open problems of information systems research and technology. In:

Kobyliński, A., Sobczak, A. (eds.) BIR 2013. LNBIP, vol. 158, pp. 10–18. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40823-6 2

22. Uspensky, V.A.: Kolmogorov and mathematical logic. J. Symbolic Logic 57(2),
385–412 (1992)

23. Van Wijngaarden, A.: Orthogonal Design and Description of a Formal Language.
MR 76, October 1965

https://doi.org/10.1007/978-1-4615-5643-5_9
https://doi.org/10.1007/978-1-4615-5643-5_9
https://doi.org/10.1007/978-3-319-04939-7_10
https://doi.org/10.1007/978-3-319-04939-7_10
https://doi.org/10.1007/978-3-540-88594-8_1
https://doi.org/10.1007/978-3-642-36008-4_1
https://doi.org/10.1007/978-3-662-04058-4
https://doi.org/10.1007/978-3-642-40823-6_2

Fully Generic Queries: Open Problems
and Some Partial Answers

Dimitri Surinx, Jan Van den Bussche(B) , and Jonni Virtema

Hasselt University, Hasselt, Belgium
jan.vandenbussche@uhasselt.be

Abstract. The class of fully generic queries on complex objects was
introduced by Beeri, Milo and Ta-Shma in 1997. Such queries are still
relevant as they capture the class of manipulations on nested big data,
where output can be generated without a need for looking in detail at,
or comparing, the atomic data elements. Unfortunately, the class of fully
generic queries is rather poorly understood. We review the big open
questions and formulate some partial answers.

1 Introduction

For the task of querying a database, database systems offer a database query
language. Unlike a general-purpose programming language, a database query
language allows us to formulate queries on the logical level of the data model
on which the database system is based. Working on that higher, logical level
has many advantages. First, programs can be correct independently of how the
data is physically stored. Moreover, it makes it easier for the database query
processor to recognize “tractable” parts of queries that can be processed more
efficiently. Tractability here can mean many things: a selection on an attribute
for which an index is available; a join operation for which a specific algorithm
can be used; and so on [17].

Historically, the logical nature of database queries was explicated indepen-
dently by several researchers [5,8,23]. In the relational data model, a database
instance I is viewed as a relational structure. Moreover, a query Q may involve
additional predicates and functions on the atomic values that can appear in I.
For example, consider the following SQL query over relations R(A,B) and S(C):

select A from R, S where B <= C

This query can be applied to instances that are logical structures involving, in
addition to the database relations R and S, a less-than relation ≤.

The logical nature of queries then amounts to the general principle that a
database query commutes with permutations of the atomic values that preserve
all the relations over which the query is formulated. Such permutations are
nothing else than isomorphisms of the relational structures. Thus, concisely, the
principle can be stated as follows: if Q is a query, I is an instance, and f is
c© Springer Nature Switzerland AG 2019
K.-D. Schewe and N. K. Singh (Eds.): MEDI 2019, LNCS 11815, pp. 20–31, 2019.
https://doi.org/10.1007/978-3-030-32065-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_2&domain=pdf
http://orcid.org/0000-0003-0072-3252
http://orcid.org/0000-0002-1582-3718
https://doi.org/10.1007/978-3-030-32065-2_2

Fully Generic Queries 21

an isomorphism, then Q(f(I)) = f(Q(I)). Chandra and Harel [16] later called
this principle “the consistency criterion” for database queries. The principle
became finally known under the name genericity [2,20]. Genericity can be easily
adapted to data models other than the relational model, simply by adopting the
appropriate notion of an isomorphism. Interestingly, genericity coincides with
the definition Tarski proposed in 1966 of “logical notions” [25].

Commuting with isomorphisms is thus a property expected from all database
queries, even the most complex ones. Simpler queries, however, may have
stronger commutation properties. Well known, for example, is the class of queries
that can be formulated without invoking the equality predicate; these queries
can be characterized as those commuting not only with all isomorphisms, but
more generally with all strong surjective homomorphisms [15].1

One the most stringent commutation property of queries one can consider
was proposed by Beeri, Milo and Ta-Shma under the name of full genericity [9].
Recall that a query Q is generic in the classical sense if, for every instance I and
permutation f of atomic values, we have Q(f(I)) = f(Q(I)). Now a query Q is
called fully generic if the same holds for all functions f from atomic values to
atomic values; so f does not need to be a permutation.

In order to get a feeling for full genericity, let us consider the operations of
the relational algebra. Union, projection and cartesian product are fully generic,
but selection, intersection and difference are not. More generally, one can develop
the intuition that the fully generic database queries are those that combine or
restructure the data without really having to look at the concrete data values. In
particular, a fully generic query is not sensitive to the presence of duplicates in
the input. Fully generic queries may produce a lot of output, but the amount of
processing relative to the output size is typically minimal. For example, consider
a Big Data setting, where data is distributed over different compute nodes. When
performing a join, we need to ensure that joinable tuples reside on a common
node [4]. For fully generic queries, however, no such requirement seems to be
necessary.

A form of full genericity is also found in provenance queries, which track or
propagate provenance annotations from the input to the output. Semantic char-
acterizations of provenance queries [12] involve the property that annotations
can be copied (or omitted), but are not to be compared with each other. Such a
property is similar to full genericity, but applied only to the annotations.

In the relational data model, full genericity is a rather poor notion. Indeed,
if we fix the input database schema and the output relation schema, there are
only finitely many different fully generic queries. All we can do is form cartesian
products of projections of database relations that produce results of the right
output width, and take unions of these. When moving to the complex-object
data model, however, the situation changes.

1 Madelaine [22] has given a complete overview of the classes of morphisms correspond-
ing to classes of queries expressible in different fragments of first-order logic, formed
by the possible combinations of allowed features among existential quantification,
universal quantification, conjunction, disjunction, negation, and equality.

22 D. Surinx et al.

The complex-object data model is a generalization of the relational data
model. A relational database instance is essentially a tuple of relations, where
each relation is a set of tuples of atomic values. The width of the database
instance, i.e., the number of relations, and the widths of these relations, are
given by the database schema. Note that the way tuple and set formations can be
nested is completely fixed in the relational model: we have a tuple of sets of tuples
of atomic values, nothing more, nothing less. Now moving to the complex-object
model [2], we are allowed arbitrary combinations of tuple and set formation.
Complex objects have been around since the early 1980s, and remain relevant
for modern database systems. For example, the data model underlying Apache
Spark [7,26] is essentially that of complex objects, and also JSON databases
such as MongoDB essentially store complex objects [11].

When thus considering queries over complex objects, where the types of
inputs and outputs can be nested more and more deeply, the class of fully generic
queries grows substantially. For a simple example, let k be a natural number.
Given as input a set of atomic values, we may output the set of all subsets of the
input having at most k elements. Each value of k gives rise to a different query,
and all of these queries are fully generic. Note that all these queries have the
same signature {d} → {{d}}, i.e., they take as input a set of atomic values and
they output a set of sets of atomic values (the symbol d stands for the atomic
value type).

The goal of this paper is to draw attention to the fascinating class of fully
generic queries. We find this class indeed fascinating because, while full genericity
is a very stringent requirement, we still do not understand it well, especially when
input and output types are deeply nested. What exactly are the fully generic
queries? Some very basic questions about them remain unanswered:

1. Is every fully generic query effectively computable?
2. Can we effectively decide, given an input–output pair (A,B) of complex

objects, whether there exists a fully generic query that maps A to B?
3. Is there a query language that captures the fully generic queries? (I.e., a

language in which only fully generic queries can be expressed, but that is also
complete, in that every computable fully generic query can be expressed.)

In contrast, the corresponding questions for classical generic queries have readily
available answers: obviously negative for the first; affirmative for the second (just
check if every automorphism of A is also an automorphism of B [8,23]); and again
affirmative for the third [16].

Question 3 originates from Beeri, Milo and Ta-Shma [9], who proposed as
a candidate language the classical powerset algebra for complex objects [1,21],
from which we remove equality testing, and to which we add the intriguing
operator one-each. Ta-Shma shows in her PhD thesis [24] that the resulting
language, called L, indeed captures the fully generic queries in two special but
interesting cases: the case where the output is a flat relation, and the case where
the signature is {{d}} → {{d}}. Unfortunately, the given arguments are hard
to verify. We will be able to offer a more transparent proof of the first result,
and also of the special case {d} → {{d}}. The language L also prompts various

Fully Generic Queries 23

further interesting questions, some already posed by Ta-Shma, which will be
expounded below.

2 Complex Objects, Queries, and Genericity

In order to discuss the issues presented in the Introduction more formally, we
start by defining the complex-object data model, the notion of a query, and the
notions of classical and full genericity.

A type is an expression τ conforming to the following grammar:

τ ::= d | [τ, . . . , τ] | {τ},

where d is a fixed symbol denoting the atomic value type. So, a type is either d,
a tuple of types, or of the form {τ} with τ a type.

We assume, as given, a countably infinite domain dom of atomic values, or
atoms for short. In examples, we will often use natural numbers for atoms. The
set of objects is the smallest set such that

– every atom is an object;
– every tuple [o1, . . . , ok] of objects is an object; and
– every finite set {o1, . . . , on} of objects is an object.

We will work only with well-typed objects. Informally, these are objects
where in every set, all its elements are of the same kind. For example, the set
{1, [2], [1, 2], {1, 2, 3}} is very badly typed: its four elements are all of different
kinds (an atom, a one-tuple, a two-tuple, and a set of atoms, respectively). For-
mally, an object o is said to be of type τ if one of the following holds:

– τ is d and o is an atom;
– τ is a tuple type [τ1, . . . , τk] and o is a k-tuple [o1, . . . , ok] with oi of type τi

for i = 1, . . . , k;
– τ is a set type {τ ′} and o is a finite set of objects of type τ ′.

We will denote the set of objects of type τ by �τ�.
For types τin and τout, we now define a query of signature τin → τout, quite

simply, to be a total function q from �τin� to �τout�. We will denote this by
q : τin → τout. We say that q is

– generic if we have q(f(D)) = f(q(D)), for every object D of type τin and
every permutation f of dom.

– fully generic if we have q(f(D)) = f(q(D)), for every object D of type τin
and every function f : dom → dom.

Here, by f(D), we naturally mean the object obtained from D by replacing each
atom x by the atom f(x).

The notion of genericity is classical and, for extensive discussion and moti-
vation, we refer to the literature cited in the Introduction, and also to the work
by Abiteboul and Vianu on generic computation [3] and by Blass, Gurevich

24 D. Surinx et al.

and Shelah on Choiceless Polynomial Time [10], on which quite a bit of recent
follow-up work has been performed [18].

In order to get a feeling for full genericity, let us look at two simple examples.
First, consider the query q : {[d, d]} → {[d, d, d]} that takes as an input a binary
relation of atoms. It outputs the ternary relation obtained from the input by
swapping the two columns, and duplicating the second column in a third column.
So, formally, q(D) = {[y, x, y] | [x, y] ∈ D}. We may view q as the projection
operator π2,1,2 from relational algebra. This query is readily verified to be fully
generic:

q(f(D)) = {[y, x, y] | [x, y] ∈ f(D)}
= {[f(v), f(u), f(v)] | [u, v] ∈ D}
= f(q(D)).

In contrast, the query q : [{d}, {d}] → {d} that takes as an input two sets of
atoms, and outputs their intersection, is not fully generic. Indeed, just consider
the input D = [{1}, {2}]. Then q(D) is empty, so also f(q(D)) is empty for any f .
However, for f that maps both 1 and 2 to 1, we obtain q(f(D)) = q([{1}, {1}]) =
{1}, which is nonempty.

3 Computability

The standard notion of computability, through Turing machines, is only defined
as such for functions from Σ∗ to Σ∗, for some finite alphabet Σ. Consequently,
computability of queries needs a proper definition [2], which we recall next.

We first need to fix some encoding of atoms as strings; as usual, binary
strings will suffice. So, assume some bijection enc : dom → {0, 1}∗. We can now
consider the finite alphabet obtained by extending {0, 1} with the punctuation
symbols needed to write down objects: the comma, the square brackets, and
the curly brackets. So, Σ = {0, 1} ∪ {,, [,], {, }}. We can similarly consider
the infinite alphabet Λ obtained by adding these punctuation symbols to dom
directly. For any object o, an enumeration of o is a string over Λ that describes
o when interpreted in the obvious manner. For example,

– The only enumeration of the object [9, 7] is the string [9,7].
– The three strings {1,2,3}, {3,2,1}, and {2,1,2,1,3,3} all enumerate the

same object {1, 2, 3}.

When we apply enc to an enumeration of an object o, we obtain what we call
an encoding of o. For example, we can take again the first example above, and
assume enc is the standard binary representation of natural numbers. Then the
string [1001,111] encodes the object [9, 7].

We now agree that a query q : τin → τout is computable under enc if there
exists a Turing machine M that, whenever started on an input that is an encod-
ing of some object o of type τin, will eventually halt and produce an encoding of
q(o) as output. In this case we also say that M computes q under enc.

Fully Generic Queries 25

The nice thing about generic queries is that the choice of encoding does not
matter:

Proposition 1. Let q be a generic query and let enc : dom → {0, 1}∗ be a
bijection. Let M be a Turing machine. If M computes q under enc, then M also
computes q under any other bijection enc′ : dom → {0, 1}∗.

In line with the above proposition, Hull and Su [19] proposed the notion
of a domain Turing machine, which can work directly over the alphabet Λ.
Thereto, the machine is equipped with a register that can hold an arbitrary
atom. The machine can copy the atom from the current tape cell into the reg-
ister, and conversely can copy the atom from the register into the current tape
cell. Furthermore, the machine can test for equality between the atom in the reg-
ister and the atom in the current tape call. Since domain Turing machines can
directly take enumerations of objects as inputs, and can produce such enumer-
ations as outputs, we no longer need encodings. Now Hull and Su showed that
if a domain Turing machine computes a query q, then q must be generic, and
conversely, every computable generic query can be computed by some domain
Turing machine.

For fully generic queries, we can strengthen the Hull-Su result as follows. A
domain-oblivious Turing machine is a restricted domain Turing machine that
lacks the facility to test for equality in the sense described in the previous para-
graph.

Theorem 1. If query q is computed by a domain-oblivious Turing machine,
then q is fully generic. Conversely, every fully generic computable query can be
computed by some domain-oblivious Turing machine.

The above result provides some insight into the notion of a fully generic query.
It confirms the intuition that to process a fully generic query, we never need to
inspect atoms in detail. We merely copy them or omit them altogether. Good
examples are the relational algebra operations union, projection, and cartesian
product. Furthermore, a fully generic query should not be sensitive to duplicates
in the input, as these are allowed in enumerations as defined above.

Example 1 (Duplicates) . To illustrate the sensitivity to duplicates, consider the
query q1 : {{d}} → {{d}} defined as follows. Let D be an input object, D =
{s1, . . . , sn}, where all the sets si are distinct. Then q1(D) consists of all the
sets that can be written as {o1, . . . , on} such that oi ∈ si for i = 1, . . . , n.
Note that the ois picked need not be all distinct; for example, assuming D =
{{1, 2}, {1, 3}}, we can pick o1 = 1 ∈ {1, 2} and o2 = 1 ∈ {1, 3}. Thus, the set
{1, 1} = {1} belongs to q1({{1, 2}, {1, 3}}).

This query is not fully generic, intuitively, because the given prescription
for computing q1 assumes that all the si are distinct. For example, suppose
D = {{1, 2}}. Then q1(D) = {{1}, {2}}. However, if we had presented D as an
input with duplicates, say {{1, 2}, {1, 2}}, the above prescription could generate
{1, 2} as a possible element of the result, which is wrong.

26 D. Surinx et al.

We can formalize the above observation as follows. Let D′ = {{1, 2}, {3, 4}}
and take some f : dom → dom such that f(1) = 1, f(2) = 2, f(3) = 1,
and f(4) = 2. Since {1, 4} ∈ q1(D′), we have f({1, 4}) = {1, 2} ∈ f(q1(D′)).
However, f(D′) = {{1, 2}} and {1, 2} /∈ q1(f(D′)). Hence, q1 is not fully generic.

Theorem 1 begs the following question, which is embarrassingly open:

Question 1. Do there exist fully generic queries that are not computable?

The conjecture is that the answer is negative. We even dare to conjecture
that every fully generic query is computable in time linear in the output size.
(Here, to get a useful notion of linear time, we would need to move from a Turing
machine model to a RAM model of computation.) This conjecture is in line with
the intuition that the processing is done in a manner that is oblivious to the
actual identities of the atoms. Thus, all the processing time can be devoted to
producing the output.

Boolean Queries and Canonical Forms. Restricted to Boolean queries, the above
question has quite readily a negatie answer. A Boolean query has just a yes/no
answer and can be modeled as a query q : τ → {[]}. Indeed, there are only two
objects of type {[]}: the empty set and the singleton set containing the empty
tuple. The empty set can be taken to represent ‘no’ and the other set ‘yes’.

To see that any fully generic q : τ → {[]} is computable, let D be an object of
type τ and let 1 be the mapping that maps every atom to 1. We have q(1(D)) =
1(q(D)) = q(D). Consequently, we fully know the behavior of q once we know the
behavior of q on objects in which only the atom 1 occurs. Such objects are called
canonical forms [24]. For any given type τ , there are only finitely many canonical
forms of type τ . Thus, every fully generic Boolean query can be summarized in
a finite table and hence is always computable.

As an example, consider the type {{d}}. There are only four canonical forms:
∅; {∅}; {{1}}; and {∅, {1}}. For example, the canonical form of the object
{{1, 2}, {2, 3, 4}, ∅} is {∅, {1}}; the canonical form of {{1, 2}, {2, 3, 4}, {5}} is
{{1}}. As a consequence, there are exactly 24 = 16 fully generic Boolean queries
with input type {{d}}.

We can characterize when two objects have the same canonical form in terms
of a pre-order A ≤ B on objects of the same type. We define A ≤ B to hold
when there exists a function f : dom → dom such that A = f(B). We can now
show the following.

Proposition 2. Let A and B be objects of the same type. Then 1(A) = 1(B) if
and only if A and B have a common upper bound w.r.t. ≤, i.e., if there exists
an object C such that A ≤ C and B ≤ C.

The ‘if’ implication is immediate; if A = f(C) then 1(A) = 1(f(C)) = 1(C),
and similarly for B. The ‘only if’ implication is less trivial.2

2 A comparable result was shown by Ta-Shma [9, Claim 3.4], [24, Proposition 4.2.4].

Fully Generic Queries 27

The Definability Question. Another computability question concerns definability
by a fully generic query. This is the following problem:

Problem: Fully generic definability
Input: Two objects A and B
Decide: Does there exist a fully generic query q such that q(A) = B?

Question 2. Is the fully generic definability problem decidable?

In contrast, the corresponding classically generic definability problem is well
understood. For simplicity, assume B is of some set type. Then A and B qualify
if and only if B has only atoms from A, and every automorphism of A is also an
automorphism of B.3 In that case, the generic query mapping A to B can even
taken to be expressible in first-order logic [6,8,23].

4 Query Language

More concrete insight in the fully generic queries can be gained by studying
the language L already mentioned in the Introduction [9]. This language is an
algebra of queries, similar to the powerset algebra of Abiteboul and Beeri [1],
presented in monad style [13]. The algebra is built up from the following list of
primitive queries, for all types τ , σ, τ1, . . . , τk:

– The identity query id : τ → τ : o �→ o.
– The unit query [] : τ → [] : o �→ [] which always outputs the empty tuple on

every input.
– For each i ∈ {1, . . . , k}, the projection πi : [τ1, . . . , τk] → τi : [o1, . . . , ok] �→ oi.
– The empty-set query ∅ : τ → {σ} : o �→ ∅, which always outputs the empty

set of type σ.
– The singleton query {·} : τ → {τ} : o �→ {o}.
– The flatten query

⋃
: {{τ}} → {τ} : o �→ ⋃

o.
– The union query ∪ : [{τ}, {τ}] → {τ} : [o1, o2] �→ o1 ∪ o2.
– The cartesian product × : [{τ}, {σ}] → {[τ, σ]} : [o1, o2] �→ o1 × o2.
– The emptiness test

ifempty : [{σ}, τ, τ] → τ : [s, o1, o2] �→
{

o1 if s is empty
o2 if s is not empty.

Moreover, we close the algebra under composition, tuple construction, and map,
as follows:

– If q1 : τ1 → τ2 and q2 : τ2 → τ3 belong to L, then so does the composition
q2 ◦ q1 : τ1 → τ3.

3 Here, an automorphism of A is a permutation f of the atoms occurring in A such
that f(A) = A.

28 D. Surinx et al.

– If q : τ → σ belongs to L, then so does

map(q) : {τ} → {σ} : o �→ {q(o′) | o′ ∈ o}.

– If, for i = 1, . . . , k, we have qi : σ → τi in L, then also [q1, . . . , qk] : σ →
[τ1, . . . , τk] : o �→ [q1(o), . . . , qk(o)] belongs to L.

So far, we have done nothing else than described the standard nested relational
algebra [13], without equality test. However, the definition of the language L
must be completed by adding to the above list of primitive queries, for every
type τ , the query one-each : {{τ}} → {{τ}} defined by

{s1, . . . , sn} �→ {s′
1 ∪ · · · ∪ s′

n | ∅ 	= s′
i ⊆ si for i = 1, . . . , n}.

The query one-each is quite intriguing and, compared to the powerset algebra
mentioned above, the only novel aspect of the language L. Actually, a more
correct name would be at-least-one-each, but we stick to the original name. The
query one-each is certainly primitive in L, as it is the only query from L that can
produce exponential-sized outputs. Indeed, when applied to just a singleton {s},
the output is already the powerset of s, except for the empty set. Conversely,
however, it is conjectured that one-each can not be replaced by the powerset
query, but a proof is lacking so far:

Question 3. Let Lpow denote the variant of L where we replace one-each by the
powerset query pow : {τ} → {{τ}} : s �→ 2s. Does one-each belong to Lpow?

Of course, the million-dollar question is the following:

Question 4. Does L contain all the fully generic queries?

An affirmative answer to this question would immediately yield a negative answer
to Question 1 on the existence of noncomputable fully generic queries.

The only investigation on Question 4 so far was done in the PhD thesis by
Paula Ta-Shma [24]. Her main result is that L does contain all the fully generic
queries of signature {{d}} → {{d}}. While her arguments are rich in valuable
ideas, the arguments are also very intricate, and at some point no longer fully
rigorous. We have failed to verify the arguments in detail; nevertheless, the thesis
is a must-read for anyone interested in solving the above open question.

In our attempt to find more transparent arguments, we could prove the fol-
lowing result. For any natural number k, define the k-powerset of a set s as the
set of all subsets of s of cardinality at most k.

Theorem 2. The only fully generic queries of signature {d} → {{d}} are:

– the powerset query;
– for any k, the k-powerset query;
– for any of the above queries q, also the queries q(0) : s �→ q(s) − {∅}; q(1) :

s �→ q(s) ∪ {s}; and q(2) : s �→ (q(s) − {∅}) ∪ {s}.

Fully Generic Queries 29

Note that all queries mentioned in the above theorem belong to L, so this answers
Question 4 for the special case of the signature {d} → {{d}}.

As already mentioned, the language L without one-each is the standard
nested relational algebra without equality test. Equivalence of nested relational
algebra expressions is well known to be undecidable. When emptiness test is
removed, and equality test is restricted to atoms, equivalence becomes decidable
[14]. However, the equivalence problem when keeping emptiness test, but remov-
ing equality test altogether, seems to have escaped attention so far. We have the
following interesting questions:

Question 5. Is the equivalence problem for expressions in L without one-each
decidable? What about L including one-each? And what about Lpow?

5 Technical Observations

A possible approach to comprehending the fully generic queries better is to
investigate how large inputs we must consider to show the difference between
two fully generic queries. For example, we cannot see the difference between the
5-powerset and the 6-powerset by considering only input sets with at most five
elements. We can also investigate how many different atoms must come into play.

Consider, for example, the behavior of one-each : {{d}} → {{d}} on inputs
in which at most two distinct atoms can occur. We can show:

Proposition 3. Let q′ : {{d}} → {{d}} be fully generic, such that q′(D) =
one-each(D) for every D in which at most two distinct atoms appear. Then q′

equals one-each.

We summarize the above result by saying that one-each is 2-determined. In
general, we say that a query q is k-determined if no other fully generic query
agrees with q on all inputs involving at most k distinct atoms. If q is k-determined
for some k, we also say that q is finitely determined.

For example, the k-powerset query of signature {d} → {{d}} is (k + 1)-
determined. In contrast, the powerset query is not finitely determined, because
for any k, it agrees up to k atoms with the k-powerset query.

A special class of queries, also considered by Ta-Shma, are the flat-output
queries, defined as those of signature of the form τ → {[d, . . . , d]} (the output is
a flat relation). We can show:

Theorem 3. Let q be a fully generic flat-output query and let k be the width of
its output tuple type. Then q is (k + 1)-determined.

As a corollary, we obtain a more transparent proof of the result by Ta-Shma to
the effect that every fully generic flat-output query belongs to L. We only sketch
the argument in this conference paper. Fix some � atoms and, for a signature
τin → τout, define �τin�

(�) and �τout�
(�) as the (finite) subsets of �τin� and �τout�

consisting of the objects involving only the � given atoms. There are only finitely

30 D. Surinx et al.

many fully generic functions q : �τin�
(�) → �τout�

(�), and these can be represented
in L.

In general, the usefulness of finite determinacy remains unclear, as it is not
preserved by composition. For example, both {·} and one-each are finitely deter-
mined, but their composition, the powerset query, is not.

6 Conclusion

This paper is an invitation, a “call to arms”, for a renewed investigation of the
forgotten, but very natural and fascinating class of fully generic queries. Indeed,
we have characterized these queries as those that can be processed in a domain-
oblivious manner, and are insensitive to duplicates in the input. Various data
transformations or restructurings have this property. We have posed the main
open questions and have proposed some possible approaches. We are looking
forward to answers appearing in the near future.

It should also be investigated how full genericity behaves in a setting where
collections are bags instead of sets. For example, the bag version of the query
q1 from Example 1, where we do not assume that all the si are distinct, is fully
generic in the bag setting. Some of the questions we have posed may become
easier in the bag setting, but others (e.g., Question 5) may become more difficult.

References

1. Abiteboul, S., Beeri, C.: On the power of languages for the manipulation of complex
objects. VLDB J. 4(4), 727–794 (1995)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

3. Abiteboul, S., Vianu, V.: Computing with first-order logic. J. Comput. Syst. Sci.
50(2), 309–335 (1995)

4. Afrati, F., Ullman, J.: Optimizing multiway joins in a map-reduce environment.
IEEE Trans. Knowl. Data Eng. 23(9), 1282–1298 (2011)

5. Aho, A., Ullman, J.: Universality of data retrieval languages. In: Conference
Record, 6th ACM Symposium on Principles of Programming Languages, pp. 110–
120 (1979)

6. Arenas, M., Diaz, G.: The exact complexity of the first-order logic definability
problem. ACM Trans. Database Syst. 41(2), 13:1–13:14 (2016)

7. Armbrust, M., Xin, R., et al.: Spark SQL: relational data processing in Spark.
In: Proceedings 2015 International Conference on Management of Data, pp. 1383–
1394. ACM (2015)

8. Bancilhon, F.: On the completeness of query languages for relational data bases. In:
Winkowski, J. (ed.) MFCS 1978. LNCS, vol. 64, pp. 112–123. Springer, Heidelberg
(1978). https://doi.org/10.1007/3-540-08921-7 60

9. Beeri, C., Milo, T., Ta-Shma, P.: Towards a language for the fully generic queries.
In: Cluet, S., Hull, R. (eds.) DBPL 1997. LNCS, vol. 1369, pp. 239–259. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-64823-2 14

10. Blass, A., Gurevich, Y., Shelah, S.: Choiceless polynomial time. Ann. Pure Appl.
Logic 100, 141–187 (1999)

https://doi.org/10.1007/3-540-08921-7_60
https://doi.org/10.1007/3-540-64823-2_14

Fully Generic Queries 31

11. Botoeva, E., Calvanese, D., Cogres, B., Xiao, G.: Expressivity and complexity
of MongoDB queries. In: Kimelfeld, B., Amsterdamer, Y. (eds.) Proceedings 21st
International Conference on Database Theory. LIPIcs, vol. 98, pp. 9:1–9:23. Schloss
Dagstuhl-Leibniz Center for Informatics (2018)

12. Buneman, P., Cheney, J., Vansummeren, S.: On the expressiveness of implicit
provenance in query and update languages. ACM Trans. Database Syst. 33(4),
28:1–28:47 (2008)

13. Buneman, P., Naqvi, S., Tannen, V., Wong, L.: Principles of programming with
complex objects and collection types. Theor. Comput. Sci. 149(1), 3–48 (1995)

14. Van den Bussche, J., Van Gucht, D., Vansummeren, S.: Well-definedness and
semantic type checking for the nested relational calculus. Theor. Comput. Sci.
371(3), 183–199 (2007)

15. Chandra, A.: Programming primitives for database languages. In: Conference
Record, 8th ACM Symposium on Principles of Programming Languages, pp. 50–62
(1981)

16. Chandra, A., Harel, D.: Computable queries for relational data bases. J. Comput.
Syst. Sci. 21(2), 156–178 (1980)

17. Garcia-Molina, H., Ullman, J., Widom, J.: Database Systems: The Complete Book.
Prentice Hall, Upper Saddle River (2009)

18. Grädel, E., Grohe, M.: Is polynomial time choiceless? In: Beklemishev, L.D., Blass,
A., Dershowitz, N., Finkbeiner, B., Schulte, W. (eds.) Fields of Logic and Compu-
tation II. LNCS, vol. 9300, pp. 193–209. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-23534-9 11

19. Hull, R., Su, J.: Algebraic and calculus query languages for recursively typed com-
plex objects. J. Comput. Syst. Sci. 47(1), 121–156 (1993)

20. Hull, R., Yap, C.: The format model, a theory of database organization. J. ACM
31(3), 518–537 (1984)

21. Kuper, G., Vardi, M.: The logical data model. ACM Trans. Database Syst. 18(3),
379–413 (1993)

22. Madelaine, F.: Mémoire d’habilitation à diriger des recherches, Université Blaise
Pascal, Clermond-Ferrand (2012). https://tel.archives-ouvertes.fr/tel-01096078

23. Paredaens, J.: On the expressive power of the relational algebra. Inf. Process. Lett.
7(2), 107–111 (1978)

24. Ta-Shma, P.: Genericity in Database Query Languages. Ph.D. thesis, Hebrew Uni-
versity (1997)

25. Tarski, A.: What are logical notions? History and philosophy of logic 7, 143–154
(1986). Edited by J. Corcoran

26. Zaharia, M., et al.: Spark: cluster computing with working sets. In: Proceedings
2nd USENIX Workshop on Hot Topics in Cloud Computing (2010)

https://doi.org/10.1007/978-3-319-23534-9_11
https://doi.org/10.1007/978-3-319-23534-9_11
https://tel.archives-ouvertes.fr/tel-01096078

Data Analysis

Keeping the Data Lake in Form: DS-kNN
Datasets Categorization Using Proximity

Mining

Ayman Alserafi1,2(B), Alberto Abelló1, Oscar Romero1, and Toon Calders3

1 Universitat Politècnica de Catalunya - BarcelonaTech, Barcelona, Catalunya, Spain
{alserafi,aabello,oromero}@essi.upc.edu

2 Université Libre de Bruxelles (ULB), Brussels, Belgium
3 Universiteit Antwerpen (UAntwerp), Antwerp, Belgium

toon.calders@uantwerp.be

Abstract. With the growth of the number of datasets stored in data
repositories, there has been a trend of using Data Lakes (DLs) to store
such data. DLs store datasets in their raw formats without any trans-
formations or preprocessing, with accessibility available using schema-
on-read. This makes it difficult for analysts to find datasets that can
be crossed and that belong to the same topic. To support them in this
DL governance challenge, we propose in this paper an algorithm for cat-
egorizing datasets in the DL into pre-defined topic-wise categories of
interest. We utilise a k-NN approach for this task which uses a proximity
score for computing similarities of datasets based on metadata. We test
our algorithm on a real-life DL with a known ground-truth categoriza-
tion. Our approach is successful in detecting the correct categories for
datasets and outliers with a precision of more than 90% and recall rates
exceeding 75% in specific settings.

Keywords: Data lake categorization · k-Nearest-Neighbour · Metadata
management · Proximity mining

1 Introduction

Today, a lot of data is generated covering different heterogeneous topics and
domains. Those data are frequently stor ed as tabular datasets which describe
different entities (in the rows) with information about them stored as attributes
(in the columns). A collection of such raw datasets which are stored in their
original schema without preprocessing or transformations is called a Data Lake
(DL) [3,16]. Over its lifetime, a DL becomes very diverse and can cover differ-
ent topics, making it difficult to find and retrieve relevant datasets for analysis.
Therefore, it is a challenge for the users to govern the DL by detecting the group-
ings and underlying structures of similar datasets covering relevant topics for
analytics [3,4,11]. To tackle this challenge, we propose an automated approach
called DS-kNN to detect such groupings using k-nearest-neighbour (k-NN). The
c© Springer Nature Switzerland AG 2019
K.-D. Schewe and N. K. Singh (Eds.): MEDI 2019, LNCS 11815, pp. 35–49, 2019.
https://doi.org/10.1007/978-3-030-32065-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-32065-2_3

36 A. Alserafi et al.

approach relies on collecting relevant metadata about the datasets when they
are ingested, then we compute proximity models of dataset similarities based on
supervised machine learning, and apply those models on new datasets to com-
pute their similarity scores with datasets stored in the DL. Once we computed
the similarities, we apply a k-NN algorithm to categorize the ingested datasets
into the groupings already present in the DL or to classify them as outliers. An
example of the expected results can be seen in Fig. 1. Here, we visualise the DL
as a proximity graph having datasets as nodes and edges connecting the nodes
showing the similarity scores (R ∈ [0, 1]) computed using the proximity model.
Datasets in the same category (cluster) are shown in the same colour. We only
show edges between datasets in the same category. In Fig. 1(a) we show an exam-
ple of a complete DL proximity graph and in (b) we zoom-in on the specific part
highlighted with a box for showing more details.

anneal

kr-vs-kp

letter

liver-disorders

lymph

mfeat-factors

mfeat-fourier

mfeat-karhunen

bridges

mfeat-morphological

bridges

mfeat-pixel

mfeat-zernike

cmc

mushroom

colic

optdigits

credit-approval

page-blocks

pendigits

postoperative-patient-data

segment

sonar

glass

haberman

spambase

hepatitis

vote

ionosphere

covertype
electricity

molecular-biology_promoters

primary-tumor

shuttle-landing-control

adult

covertype

abalone

baseball

wine

kin8nm

autoMpg
cpu_act

lowbwt

sleep

detroit

longley
diabetes_numeric

elevators

echoMonths

breastTumor

puma8NH

cpu_small

machine_cpu

fishcatch

flags

wine_quality

isolet

ozone_level

vowel

puma32H

spectrometer

us_crime

bridges

bridges

hayes-roth

white-clover

poker

JapaneseVowels

ipums_la_99-small

ipums_la_98-smallipums_la_97-small

irish

profb

cjs

fl2000

prnn_viruses

iq_brain_size

colleges_aaup

dj30-1985-2003

newton_hema

wind_correlationswind

tecator

space_ga

sleep

plasma_retinol

cps_85_wages

houses

colleges_usnews

socmob

pollution

transplant

detroit

mnist_784

cpu

cpu_small

kdd_el_nino-small

kdd_coil_1

kdd_coil_2

kdd_coil_3

delta_elevators

cpu_act

kdd_coil_4

kdd_coil_5

kdd_coil_6

kdd_coil_7

rmftsa_ladata

rmftsa_sleepdata

rmftsa_ctoarrivals

ESL

LEV

ERA

ESL

sylva_agnostic

ada_prior

gina_agnostic

sylva_prior

gina_prior

eye_movements

kc1-top5

pc4

pc3
cocomo_numeric

jm1

mc2

mc1

ar1

kc2
ar6

kc3

kc1-binary

kc1

pc2

kc1-numeric

mw1

datatrieve

USCrime

MercuryinBass

SMSA
Brainsize

Acorns

Cereals

FacultySalaries

ICU

pubexpendat

EgyptianSkulls

KDDCup09_appetency

KDDCup09_upselling

adult-census electricity_prices_ICON

bank-marketing

banknote-authentication

blogger

blood-transfusion-service-center

breast-tissuecardiotocography

dresses-sales

eeg-eye-state

energy-efficiency

gas-drift

gas-drift-different-concentrations

har

kr-vs-k

ldpa

ozone-level-8hr

phoneme

planning-relaxqualitative-bankruptcy

wall-robot-navigation

seeds

seismic-bumps
semeion

skin-segmentation

spoken-arabic-digit

steel-plates-fault

tamilnadu-electricity

walking-activity

wdbc

wholesale-customers

robot-failures-lp1

robot-failures-lp2

robot-failures-lp3

robot-failures-lp4

robot-failures-lp5

vertebra-column

vertebra-column

wall-robot-navigation

wall-robot-navigation

abalone

poker-hand

adult

covertype

creditcard

Amazon_employee_access

higgs

PhishingWebsites

GeographicalOriginalofMusic

BuzzinsocialmediaTomsHardware

Buzzinsocialmedia_Twitter

BachChoralHarmony

SpokenArabicDigit

Physical_Activity_Recognition_Dataset_Using_Smartphone_Sensors

LoanDefaultPrediction

0.51

0.63

0.46

0.52
0.20

0.46

0.39
0.29

0.29

0.57

0.28

0.28

0.28

0.20
0.20

0.57

0.29

0.20

0.51

0.28 0.40

0.57

0.51

0.57

0.78

0.63

0.78

0.510.51 0.40 0.63

0.63

0.78

0.63

0.63

0.78

0.63

0.63

0.63

0.63

0.63

0.75

0.75

0.80
0.75

0.86

0.63

0.40

0.28

0.28

0.28
0.28

0.29

0.39

0.160.65

0.75
0.75

0.75

0.63

0.52

0.39

0.39

0.39
0.39

0.57

0.39

0.160.75
0.75

0.75

0.78

0.40

0.39

0.39

0.39
0.39

0.57

0.39

0.10

0.75

0.78

0.63

0.63

0.66

0.65

0.63

0.63

0.63

0.63

0.29
0.52

0.39

0.29

0.29

0.63

0.78

0.51

0.75

0.63

0.52

0.63

0.63

0.39
0.63

0.29

0.57

0.160.51

0.78

0.57

0.57

0.57
0.57

0.39

0.39

0.28

0.52

0.29

0.51

0.28

0.28
0.28

0.85

0.85

0.39

0.85

0.29

0.630.29

0.29

0.39

0.29

0.63

0.63

0.63

0.39

0.63

0.39

0.63

0.39

0.63

0.39

0.51

0.51

0.51

0.20
0.51

0.57

0.39

0.20

0.63
0.40

0.63
0.57

0.57

0.46
0.46

0.28

0.29

0.46

0.63

0.63

0.78

0.63

0.63

0.63

0.63

0.63

0.78

0.69
0.69

0.51

0.63

0.69

0.78
0.28

0.39

0.57

0.63

0.57

0.78

0.28

0.78

0.57

0.63

0.78

0.78

0.51

0.78

0.78

0.39

0.39

0.28

0.63

0.18
0.29

0.52

0.52

0.23

0.75

0.63

0.63

0.63

0.63

0.63

0.29

0.52

0.22

0.29

0.58

0.29
0.29

0.52

0.29

0.57

0.63

0.29

0.780.20

0.29

0.78

0.86

0.45
0.46

0.69

0.78

0.38

0.78

0.29
0.29

0.52
0.70

0.40

0.57

0.86

0.86
0.570.29

0.16

0.16

0.29

0.29
0.57

0.57

0.86

0.39

0.39

0.86

0.86

0.39 0.78

0.39

0.78

0.28

0.51

0.63

0.51

0.780.78 0.69 0.63

0.78
0.70

0.52

0.28

0.86
0.63

0.39

0.58

0.29
0.29

0.29

0.29

0.69

0.29

0.63

0.460.57

0.39

0.38

0.22
0.39

0.28

0.39

0.28

0.20

0.39

0.28

0.390.39 0.20 0.39

0.51

0.78

0.51

0.78

0.78

0.51

0.78

0.78

0.86
0.570.29

0.16

0.16

0.29

0.58
0.57

0.57

0.29

0.29

0.86

0.86

0.86

0.29

0.39

0.57
0.52

0.69

0.50

0.46

0.29
0.39

0.39

0.54

0.51

0.39
0.28

0.51

0.570.29

0.20

0.20

0.29

0.58
0.57

0.57

0.28
0.28

0.75

0.63
0.51

0.28

0.57
0.57

0.63

0.63

0.29

0.39

0.39

0.390.39

0.39

0.29

0.29

0.40

0.40

0.40

0.39

0.26

0.86

0.39
0.46

0.78

0.51
0.51

0.39

0.39

0.68

0.39

0.29

0.680.52

0.52

0.68

0.58

0.57

0.39

0.39

0.39

0.39

0.29

0.390.29

0.29

0.39

0.29

0.39

0.39

0.29

0.39

0.29

0.390.52

0.63

0.39

0.29

0.78

0.29

0.78

0.20

0.390.29

0.57

0.29

0.29

0.57

0.57

0.78

0.46

0.29

0.63

0.78

0.28

0.40

0.63

0.78

0.690.69 0.69 0.63

0.39

0.28

0.29

0.39

0.78

0.57

0.39

0.57

0.280.28 0.20 0.39

0.46

0.46

0.29

0.57

0.39

0.29

0.28

0.51

0.63

0.78

0.780.78 0.69 0.63

0.29

0.57

0.39

0.390.39

0.28

0.29

0.29
0.39

0.52

0.570.20

0.29

0.57

0.57

0.29

0.630.29

0.29

0.63

0.63

0.290.39

0.28

0.29

0.29

0.57

0.39

0.28

0.280.28 0.20 0.39

0.63

0.69
0.69

0.51

0.63

0.69

0.29

0.39

0.86

0.28

0.86

0.86
0.86

0.86

0.86
0.86

0.57

0.86
0.86

0.86

0.86
0.86

0.57

0.86

0.86

0.86
0.86

0.57

0.86

0.86
0.86

0.57

0.86
0.86

0.57
0.86

0.57

0.57

0.52

0.69

0.510.51 0.51 0.52

0.78

0.86

0.29

0.57

0.78

0.86

0.28

0.69

0.20

0.29

0.78

0.78

0.86

0.40

0.63

0.50

0.28

0.69

0.40

0.63

0.50

0.52

0.40
0.20

0.40

0.690.69
0.63

0.46

0.78

0.69
0.51

0.57

0.51

0.78 0.86

0.20

0.40

0.86

0.51
0.28

0.78
0.51

0.78

0.78

0.78
0.51

0.78

0.51

0.78 0.69

0.78

0.51

0.69

0.78
0.51

0.51
0.78

0.78

0.78
0.51

0.78

0.51

0.78 0.69

0.51

0.51

0.69

0.78
0.51

0.40

0.63

0.40
0.51

0.51

0.78

0.51 0.63

0.40

0.69

0.63

0.51
0.78

0.46

0.78
0.20

0.69

0.20

0.46 0.46

0.51

0.28

0.46

0.69
0.40

0.46
0.51

0.57

0.51

0.78 0.78

0.20

0.40

0.78

0.51
0.280.69

0.78

0.46

0.69 0.69

0.78

0.78

0.69

0.69
0.51

0.28

0.78

0.78 0.51

0.46

0.69

0.51

0.78
0.57

0.28

0.57 0.57

0.78

0.28

0.57

0.78
0.51

0.78 0.51

0.46

0.69

0.51

0.78
0.57

0.78

0.57

0.78

0.78

0.78
0.28

0.20

0.40

0.86

0.51
0.28

0.57

0.20

0.78
0.78

0.40

0.78
0.57

0.51
0.28

0.51

0.63

0.20

0.20

0.63

0.520.63 0.52 0.63

0.38

0.29

0.780.78 0.40 0.63

0.29

0.29

0.86

0.39

0.39

0.78

0.52

0.40

0.78 0.78 0.63

0.78 0.63

0.39

0.52

0.86

0.52
0.16

0.33

0.28

0.51

0.29

0.39

0.52

0.39

0.79

0.40

0.40

0.79

0.69
0.86

0.86

0.33

0.57

0.57

0.51

0.51

0.51

0.51

0.78

0.78
0.33

0.52

0.86

0.78

0.51
0.33

0.33

0.78

0.51
0.33

0.33

0.78
0.33

0.52

0.79

0.79

0.86

0.86

0.29

0.46

0.20

hepatitis

shuttle-landing-control

autoMpg
act

detroit

elevators

us_crime

colleges_aaup

detroit

cpu

delta_elevators

cpu_act

LEV

USCrime

FacultySalaries

ions

vertebra-column

Amazon_employee_access

0.78
0.51

0.78

0.29

0.52

9

0.39

86

0.86

0.28

0.86
0.63

0.51

0.29

0.86

9
0.28

0.28
0.39

0.28

0.29

0.63

.29

0.39

0.86

0.29

0.57

0.29

(a)

(b)

Fig. 1. A visualisation of the output from DS-kNN data lake (DL) categorization. A
proximity graph shows the datasets as nodes and the proximity scores as edges between
nodes. (a) complete DL and (b) a zoomed-in view highlighted by the red box in (a)
(Color figure online)

DS-kNN Datasets Categorization Using Proximity Mining 37

The main contributions of this paper are: (1) We propose a kNN-based prox-
imity mining algorithm for finding the correct categories for datasets based on
existing categories in the DL, (2) we evaluate the algorithm in a real-world set-
ting to prove its effectiveness in assigning correct categories to new datasets
ingested in the DL, (3) we experimentally test the effect of different DL settings
on the performance of our approach.

In the rest of this paper, we define the DL and the scenario we consider in
Sect. 2, we present the DS-kNN algorithm in Sect. 3, then we test the algorithm
on a real-life DL and we experiment with our algorithm in Sect. 4, we present
related work in Sect. 5, and we conclude in Sect. 6.

2 Preliminaries

We consider a DL consisting of tabular datasets. Those are large heterogeneous
repositories of flat structured data (i.e., CSV, web tables, spreadsheets, etc.).
Such datasets are structured as groups of instances describing real-world entities,
where each instance is expressed as a set of attributes describing the properties of
the entity. We formally define a dataset D as a set of instances D = {I1, I2, ...In}.
The dataset has a set of attributes S = {A1, A2, ...Am}, where each attribute
Ai has a fixed type, and every instance has a value of the right type for each
attribute. We focus on two types of attributes: continuous numeric attributes
with real numbers and categorical nominal attributes with discrete values.

For each dataset, we collect different statistics about their content which we
call content meta-features:

– Nominal attributes: their data profile mainly involves frequency distribu-
tions of their distinct values.

– Numeric attributes: their data profile mainly involves aggregated statistics
like mean, min, max, and standard deviations.

We compute similarity scores between pairs of datasets [Da,Db], as follows:

– Sim(Da,Db): an estimation (R ∈ [0, 1]) of the similarity based on the com-
parison of the content meta-features we collect about the datasets and their
attributes. Typically, the information contained in highly similar datasets
would overlap. An example would be a pair of datasets having similar numeric
values and distribution of values, or nominal attributes having the same
number of values. Alternatively, it could be based on name string-similarity
between datasets and their attributes.

Scenario. We aim at governing the DL by incrementally maintaining the clusters
of datasets defined for them. We consider the scenario where we initially have an
existing DL for which we know all clusters of datasets based on their categories.
However, given the dynamic nature of DLs, new datasets are frequently ingested.
Thus, we need to compare these new datasets against the datasets already in the
DL to find their similarity with them, and then to find their most appropriate

38 A. Alserafi et al.

Data Lake

new
D?

M

i

DS-Prox

C5C4C3
C2C1

Fig. 2. The data lake categorization scenario using k-NN proximity mining

category based on the similar datasets found in the DL, or to assign them to a
separate category as an outlier.

This shapes the main problem for this research paper: given a collection of
datasets in a DL and a newly ingested dataset, find all pairs of highly simi-
lar datasets, and based on their categories, assign a new category for the new
dataset, or if no highly similar datasets are found then indicate that the dataset
is an outlier. To compute the similarity between the datasets, we use a prox-
imity model, which we call MDS−Prox. We discuss how we create this model in
Subsect. 2.1.

The scenario discussed is visualized in Fig. 2. Consider that there is a
DL having a group of datasets (white circles) which have annotations of all
their Sim(Da,Db) relationships between pairs (as seen by the lines linking the
datasets). Groups of datasets with linkages are segmented into categories (seen
by the encompassing black circles). Those categories are the groupings of the
subject-areas or domains-of-knowledge we have in the DL. We need to auto-
matically use this DL and its known annotations to create a model MDS−Prox

which can automatically annotate relationships of a new dataset Di with the
Sim(Di,Db) similarity scores. Therefore, we need to learn a model from the
DL and apply it to estimate the similarity between a new dataset and all other
datasets already in the DL, in order to find the top-k neighbours.

Based on the similarity scores we assign a category to Di. The highlighted
edges between the new dataset Di and some nodes in the DL are those hav-
ing the highest similarity scores computed by the model (in this case, we give
an arbitrary example where we use top-3 nearest-neighbours). In our proposed
approach, each of those top neighbours proposes its category as the correct one
for Di, and the most proposed category should be assigned, or if no such similar
datasets are found then Di is marked as an outlier without any relevant category
found. In the case of tied categories among the proposed ones from the top-k
similar datasets, then all of them are assigned to Di. In the example in Fig. 2,

DS-kNN Datasets Categorization Using Proximity Mining 39

category ‘C1’ would be assigned as the final category as it has 2 votes, compared
to only 1 vote by category ‘C3’.

To learn the MDS−Prox model we use supervised machine learning as
described in Subsect. 2.1.

2.1 Proximity Mining: Meta-features Metrics and Models

For all the datasets in the DL, we collect two metadata types: A. Content-
based and B. Name-based meta-features. The name-based techniques are the
most commonly used metadata in previous research [7,11,13,14]. In our DS-kNN
approach, we propose content-based meta-features as an alternative to name-
based metadata when computing similarity scores. Such content meta-features
include data profiling statistics about the content of the datasets. Thus, we use
two types of metadata for similarity computations:

– Name-based metadata: the naming of datasets and their attributes.
– Content-based metadata: profiling statistics about the data stored in the

datasets. The collected meta-features (described in Table 1) include statistics
concerning all attributes collectively, the attribute types found and the overall
number of instances. Those form a concise list of meta-features that have been
proved in our previous work [4] to be effective in predicting related datasets
with similar schemata and stored information. Our purpose for those meta-
features is to describe the general structure and content of the datasets for an
approximate comparison using our proximity mining classification models.

To compute similarity scores Sim(Da,Db) from name-based metadata, we
use the Levenshtein distance as a standard string comparison metric [12].
The output from this comparison is considered as the similarity score from
MDS−Prox. For content meta-features, we construct the MDS−Prox model using
the proximity mining approach from our previous work [4]. First, we compute
distances for each meta-feature mi from Table 1 between each pair of datasets
[Da,Db] using Eq. 1 which gives the relative difference as a number between 0
and 1. We compute this for all dataset pairs [Da,Db] in the training sample.

distmi
(Da, Db) =

max{mi(Da),mi(Db)} − min{mi(Da),mi(Db)}
max{mi(Da),mi(Db)}

(1)

Once we have the metadata collected and their distances computed, we feed
them to a supervised machine learning algorithm to produce a classification
model which identifies those dataset pairs in the same assigned category. This
creates the proximity mining model to compute similarity scores. For this initial
training sample of datasets we have in the DL, a data analyst should have
incrementally assigned a category cluster to each dataset based on their topics.
The target variable for those classifiers is a binary value whether the datasets in
the pair belong to the same category or not.

We use the two top performing ensemble learning algorithms from [4] to learn
the model, which are the boosting machine learning algorithms AdaBoost [15]

40 A. Alserafi et al.

Table 1. DS-Prox meta-features

Type Meta-feature Description

General Number of instances The number of instances in the dataset

Number of attributes The number of attributes in the dataset

Dimensionality The ratio of number of attributes to number

of instances

Attributes by type Number per type The number of attributes per type (nominal

or numerical)

Percentage per type The percentage of attributes per type

(Nominal or Numerical)

Nominal attributes Average number of values The average number of distinct values per

nominal attribute

Standard deviation of number of

values

The standard deviation in the number of

distinct values per nominal attribute

Minimum/Maximum number of

values

The minimum and maximum number of

distinct values per nominal attribute

Numeric attributes Average Numeric Mean The average of the means of all numeric

attributes

Standard Deviation of the Numeric

Mean

The standard deviation of the means of the

numeric attributes

Minimum/Maximum numeric mean The minimum and maximum mean of

numeric attributes

Missing values Missing attribute count The number of attributes with missing

values

Missing attribute percentage The percentage of attributes with missing

values

Minimum/Maximum number of

missing values

The minimum and maximum number of

instances with missing values per attribute

Minimum/Maximum missing values

percentage

The minimum and maximum percentage of

instances with missing values per attribute

Mean number of missing values The mean number of missing values from

each attribute

Mean Percentage of Missing Values The mean percentage of missing values from

each attribute

and LogitBoost [6]. Those algorithms were compared in our previous work to
other algorithms and were found to be the best in finding related schemata. The
positive-class distribution produced by the ensemble model is used as the simi-
larity score Sim(Da,Db) [15]. Finally, we apply the learnt MDS−Prox model on
pairs of one new ingested dataset and each existing datasets in the DL to gen-
erate the similarity scores. We compare the score against a minimum threshold
like in Eq. 2. Only pairs passing the threshold are considered as candidate top-k
nearest neighbours to a dataset in our DS-kNN algorithm. We discuss this in
detail in Sect. 3. Different similarity thresholds lead to a different performance of
the algorithm, so we test multiple threshold values in our experiments to discover
the best one to use.

Top(Da, Db) =

{
1, Sim(Da, Db) > crel
0, otherwise

(2)

DS-kNN Datasets Categorization Using Proximity Mining 41

3 DS-kNN: A Proximity Mining Based k-
Nearest-Neighbour Algorithm for Categorizing
Datasets

Algorithm 1: DS-kNN Categorization of a dataset ingested in a Data Lake
Input: A new ingested dataset Da, each existing dataset Db in the data lake

DL, Dataset-level meta-features distance metrics MF for each pair of
datasets {Da, Db}, the category CatDb for each existing dataset in the
DL, the classification model Mds−prox, algorithmic parameters: the
number k of nearest neighbours, and the similarity score threshold crel

Output: The set SP of the ingested dataset and its similarity scores
Sim(Da, Db) and category CatDb for each pair {Da, Db} passing crel,
the set SP -Top of top matching k datasets and their categories, the
assigned category for the new dataset CatDa

SP ← ∅;
SP -Top ← ∅;
foreach {Da, Db} ⊂ DL and a �= b do

[Da, Db, Sim(Da, Db)] = Mds−prox(MF{Da,Db});
if Sim(Da, Db) > crel then

SP ← SP ∪ {[Da, Db, Sim(Da, Db), CatDb]};
end

end
SP -Top = Top-k Nearest Neighbours(SP , k); \\Retrieve the subset of the
highest ranking k-pairs by similarity score
CatDa = Top-category(SP -Top); \\Get category with majority vote from Top-k
if (CatDa = NULL) then

CatDa =′ Outlier′;
end

We propose an algorithm for computing the categories of an ingested dataset
as described in the scenario in Sect. 2. After learning the classification model
MDS−Prox, we apply the classifier to each new pair [Da,Db] where Da is any
new ingested dataset and Db is each of the existing datasets in the DL, in order
to achieve the similarity score Sim(Da,Db) with all datasets in the DL. Then,
we apply k-NN in our proposed DS-kNN Algorithm 1 to compute the category
for a new dataset. k-NN was also successful in similar categorization problems,
like in free-text document categorization [8].

First, our algorithm applies the MDS−Prox model on all the dataset pairs
for the new dataset Da to compute their similarity scores, and those passing
the minimum threshold are stored in the set SP . To improve efficiency, a heap
data structure could be used to store the datasets with their similarity scores for
quick search and retrieval of top-k nearest-neighbours. The next step involves
finding those top-k nearest-neighbours which are existing datasets in the DL
with the highest similarity scores to Da. Finally, we assign the category with the

42 A. Alserafi et al.

most number of pairs in the top-k nearest neighbours as the assigned category
based on simple majority voting by top-k nearest neighbours. If no top-k nearest
neighbours are found then the dataset is marked as an ‘outlier’ with no proposed
category.

The algorithm has the following parameters as input:

– The number of neighbours (k): the top-k number of nearest neighbours
which our algorithm uses to predict the new category for an ingested dataset.

– The proximity model (Mds−prox): this is the proximity mining model cre-
ated using our approach described in Sect. 2. We use different models depend-
ing on the metadata, i.e. content-based, dataset-name based or attribute-
name based.

– The similarity threshold (crel): the minimum allowed similarity score to
consider a dataset pair as candidate nearest neighbour.

4 Experimental Evaluation

We test our proposed categorization algorithm on a real-life DL. We describe the
dataset used, the experimental setup and our results with a detailed discussion
of the performance of DS-kNN.

4.1 Dataset: OpenML DL Ground-Truth

We created a ground-truth based on manual annotations of 203 datasets from a
real-life DL called OpenML1. It consists of different datasets covering heteroge-
neous topics, each having a name and a description. The categories found in the
ground-truth are visualised in Fig. 1.

The sample of datasets collected from OpenML is scraped to extract datasets
having a description of more than 500 characters. The descriptions helped the
manual annotators deciding on the assigned topic for each dataset. Out of the 514
datasets retrieved, we selected 203 with meaningful descriptions (i.e., excluding
datasets whose descriptions do not allow to interpret its content and to assign
a topic). A domain expert and one of the authors collaborated to manually
label the datasets with their topic. The datasets were labelled by both their
broad subject (e.g., ‘social demographics’) and their more specific entity they
describe (e.g., ‘citizens census data’). The interested reader can download the
two annotated datasets from GitHub2.

Table 2 shows the number of datasets per category assigned based on topic
grouping type. We only show the top 10 categories found by size for each group-
ing. The total number of categories is also given and the number of categories
bigger than a specific size (i.e., with at least this number of members), and the
number of outliers (datasets with their own specific category without any other
members). As can be seen in the table, the datasets in the DL we use in the
experiments cover heterogeneous topics and different category sizes.
1 http://www.openml.org.
2 https://github.com/AymanUPC/ds-knn.

http://www.openml.org
https://github.com/AymanUPC/ds-knn

DS-kNN Datasets Categorization Using Proximity Mining 43

Table 2. A description of the 203 OpenML categorized datasets collected. Datasets
are categorized by subject and by entity.

Category
type

No. of
categories

Categories by type Categories by size Outliers

Subject 53 Computer Software (17),
Social Demographics (17),
Image Recognition (16),
Health (14), Robot (11),
Disease (11), Natural Water
(8), Ecology (8), Computer
Hardware (6), Motion
Sensing (5)

8+ members (8),
5+ members (14),
3+ members (25)

21

Entity 77 Computer Software defects
(16), Citizens Census Data
(12), Digit Handwriting
Recognition (12), Diseases
(11), Robot Motion
Measurements (11), Health
Measurements (10),
Chemical Contamination (8),
Plantation Measurements
(8), CPU Performance Data
(6), Animal Profile (5)

8+ members (8),
5+ members (12),
3+ members (21)

47

4.2 Experimental Setup

Our goal is to test the performance of the DS-kNN algorithm in correctly assign-
ing the right category to datasets. We compare the performance of the DS-Prox
content-based models when applied in DS-kNN against the baseline models of
dataset-names and attribute-names, which are the commonly used metadata in
previous work [7,11,13,14] (see Sect. 5). We implement DS-kNN based on those
different models in Java using a Postgres SQL database as its backend for stor-
ing the metadata, and we feed it with the datasets from the OpenML DL. We
initially tested the algorithm on a random sample of datasets using different
values for k ∈ {3, 5, 7, 9, 11, 13} and found the best performing value under the
same settings was k = 3, so we conduct all our trials in the experiments using
k = 3. To test the generalizability and adaptability of DS-kNN under different
DL settings, we also conduct trials with the algorithm under the following dif-
ferent settings which affect the ground-truth used in the training and testing of
Mds−prox:

– Different category sizes: we test DS-kNN with all the datasets (including
outliers where category size is just 1 dataset) and with categories that at least
contain the following number of members (3,5,8). We test different sizes of
categories to check if the algorithm is affected by category sizes.

44 A. Alserafi et al.

– Different ground-truth types: We test the algorithm with the broad (1)
subject-based categories and the more detailed (2) entity-based categories.

For each DL setting, we compare the performance of the DS-kNN algorithm
using the following input parameters:

– Different models (Mds−prox): we test the different models generated by
different metadata, which are (1) Dataset Name, (2) Attribute Name and (3)
DS-Prox Content.

– Different similarity thresholds: we use different thresholds for Sim(Da,
Db) including (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)

We test the different combinations of the above parameters and settings
which resulted in the execution of a total of 240 independent trials. We utilise
a leave-one-out experimental setup to test our categorization algorithm in each
trial, as seen in Fig. 2, so for each experimental trial we train the model under
the same settings and with the same parameters 203 times, where for each run
we keep a single dataset out from the training of the model and treat it as the
new test dataset. We train the proximity model with all the datasets in the
DL except the test dataset, we apply the proximity model on the test dataset
with all dataset pairs found in the DL, and we run our algorithm to compute
its allocated category or to mark it as an outlier. We apply Algorithm 1 on the
test dataset and we find the top categories it should be allocated to. The goal is
to maximise the number of correctly assigned categories based on top-k nearest
neighbours.

To evaluate the effectiveness, we consider our algorithm as an example of
a multi-class classification problem. We evaluate whether each dataset gets
assigned the correct category based on top-k nearest neighbours. We compute
the number of correctly annotated categories and outliers by measuring recall,
precision and F1-scores which are commonly used for evaluation in similar set-
tings [1,2,11]. We compute the F1 score as the harmonic mean of the recall
and the precision [12]. The evaluation metrics are described in Eqs. (3), (4) and
(5) respectively. Here, TP means true-positives which are the datasets correctly
classified to their category. FN are false negatives, and FP are false positives.
We compute the evaluation metrics per category and average the final scores
from all categories to achieve macro-averaging scores [12]. For example, consider
we have in the ground-truth two categories C1 and C2 consisting of 10 datasets
each. C1 had 9 TPs and 1 FP (i.e. a dataset from a different category incorrectly
assigned to it by DS-kNN) while C2 had 8 TPs and 2 FPs, therefore they will
have a precision of 0.9 and 0.8 respectively. Therefore, the macro-precision will
be 0.8+0.9

2 = 0.85.
recall =

TP

TP + FN
(3)

precision =
TP

TP + FP
(4)

F1−score = 2 × (Recall × Precision)

Recall + Precision
(5)

DS-kNN Datasets Categorization Using Proximity Mining 45

Fig. 3. Performance of DS-kNN using different models, different ground-truths, and
different category sizes

46 A. Alserafi et al.

4.3 Results

We present the precision-recall curves from our experiments in Fig. 3. Each
graph plots the macro-averaging performance resulting from leave-one-out cross-
validation of a specific model for a specific ground-truth type and category sizes
(which are labelled above the chart). For all our results we use percentages for the
performance metrics. Here, we plot recall against precision for each of the differ-
ent model types used in DS-kNN and the different minimum category sizes we use
in the experiment. The numbers annotated on the points indicate the similarity
threshold (also indicated by the size of the points, where bigger size indicates a
higher similarity threshold). We show the results for the non-restricted (category
size = 1+) which includes outliers and the biggest category sizes (category size
= 8+). Each model type has a different symbol and colour. For DS-Prox, circles
indicate AdaBoost-based model and stars indicate LogitBoost-based model. We
also present in Table 3 the evaluation metrics for the top performing parameters
for DS-kNN (in terms of F1-scores) for each model type, category sizes, and
ground-truth type.

As could be seen from the results, DS-kNN performs comparatively well with
the attribute-name and the DS-Prox content-based models for category size 1+,
but for larger category sizes the DS-Prox content models are better in assigning
the correct categories. For example, DS-Prox content leads to a precision of about
90% and recall higher than 80% for category sizes of at least 8 members and the
entity-based ground-truth, while attribute-name model can only achieve 82%
precision and 75% recall. Dataset-name based model performs worse in terms of
recall with 64% but much better precision with 98%. The results also indicate
that the choice of the similarity threshold can affect the performance of DS-kNN.

In general, DS-kNN performs better with bigger category sizes than smaller
category sizes as it becomes easier for the algorithm to find relevant top-k nearest
neighbours. However, it is still good in detecting outliers and other categories
as seen for the performance for ‘min. category size’ = 1, for example a recall
of 75% and precision of 95% for dataset-name based model. The dataset-name
model performs better in detecting outliers as seen from this result. The DS-kNN
algorithm performed equally good with both ground-truth types under the same
settings and with the same parameters, yet slightly better with the more specific
entity-based ground-truth with small category sizes and outliers. This indicates
the adaptability of DS-kNN to different DL settings and properties.

5 Related Work

Categorization of datasets from heterogeneous domains is an emerging research
topic, and relevant previous research include [11], where they utilise the attribute
names to cluster the datasets into categories using a probabilistic model.
Datasets are assigned to different categories using different probabilities. They
tackle the multi-label classification of datasets and retrieval of datasets from
relevant domains by querying systems. Our approach improves this approach by
using a machine-learning based approximate proximity mining technique instead

DS-kNN Datasets Categorization Using Proximity Mining 47

Table 3. The evaluation of DS-kNN for k = 3 and different model types, ground-
truth types and minimum category sizes. For each setting, we only show here the best
performing similarity threshold based on F1-scores.

Model type Ground
truth type

Min.
category
size

Similarity
threshold

Recall Precision F1-score

Attribute Name Entity 1 0.7 67.9 91.3 77.9

Attribute Name Entity 3 0.3 55.8 75.3 64.1

Attribute Name Entity 5 0.3 57.5 78.3 66.3

Attribute Name Entity 8 0 74.6 81.5 77.9

Attribute Name Subject 1 0.7 56.5 88.6 69

Attribute Name Subject 3 0.4 47.2 67 55.4

Attribute Name Subject 5 0.3 55.1 71.4 62.3

Attribute Name Subject 8 0.1 70.9 76.7 73.7

Dataset Name Entity 1 0.6 74.7 94.4 83.4

Dataset Name Entity 3 0.4 49.9 90.1 64.4

Dataset Name Entity 5 0.4 59.6 98.5 74.3

Dataset Name Entity 8 0.4 64 98 77.4

Dataset Name Subject 1 0.6 58 90.8 70.7

Dataset Name Subject 3 0.4 47.9 74.5 58.3

Dataset Name Subject 5 0.4 55.7 98.9 71.3

Dataset Name Subject 8 0.4 62.1 98.3 76.1

DS-Prox Content Entity 1 0.9 66.8 90.5 76.8

DS-Prox Content Entity 3 0.2 53.9 61.2 57.4

DS-Prox Content Entity 5 0.3 68.4 81.9 74.6

DS-Prox Content Entity 8 0 85.9 87.8 86.8

DS-Prox Content Subject 1 0.9 52.8 84.8 65.1

DS-Prox Content Subject 3 0.1 44.5 54.4 48.9

DS-Prox Content Subject 5 0.2 58.7 70 63.9

DS-Prox Content Subject 8 0.5 86.8 89.4 88.1

of the Jaccard similarity of exact values. We also use content-based metadata
for categorizing and not only name-based metadata. This is important for DLs
where datasets are not well maintained with meaningful attribute names.

Clustering could also be applied to other types of semi-structured datasets like
ontologies [1] and XML documents [2,10], etc. In [1], they propose an algorithm
to cluster instances from different ontologies based on their structural properties
in the ontology graphs. Their goal is to facilitate ontology matching rather than
domains discovery. Similarly, in [2,10] they cluster the semi-structured documents
based on their structure similarity and linguistic matchers.

48 A. Alserafi et al.

Clustering free-text without any structure is also possible. For example,
[5] aims to cluster short text messages by computing TF-IDF word similar-
ity between free-text documents. Similarly, [8] categorizes free-text documents
using a k-NN based algorithm by first extracting TF-IDF weighted labels and
feeding them to the algorithm. Another specific application would be clustering
streaming data where a sliding window algorithm could be used [9], where they
also use k-NN when finding relevant clusters for a given data instance ingested
in a stream of data points.

6 Conclusion

We proposed DS-kNN, a categorization algorithm for classifying datasets into
pre-defined topic-wise groups. Our algorithm can be applied in a DL environment
to support users in finding relevant datasets for analysis. Our algorithm uses
extracted metadata from datasets to compute their similarities to other datasets
in the DL using a proximity mining model and name strings comparisons. Those
similarity scores are fed to DS-kNN to decide on the most relevant category for
a dataset based on its top-k nearest neighbours. Our algorithm was effective
in categorizing the datasets in a real-world DL and detecting outliers, yet our
results can be improved to achieve better performance. In the future, we will test
the same k-NN algorithm but using different proximity models based on finer
granularity metadata extracted about the content of attributes in the datasets.
We also seek to improve our algorithm with semantic analysis of values found
in the attributes to complement the syntactical comparisons we compute in the
proximity models.

References

1. Algergawy, A., Massmann, S., Rahm, E.: A clustering-based approach for large-
scale ontology matching. In: Eder, J., Bielikova, M., Tjoa, A.M. (eds.) ADBIS
2011. LNCS, vol. 6909, pp. 415–428. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-23737-9 30

2. Algergawy, A., Schallehn, E., Saake, G.: A schema matching-based approach to
XML schema clustering. In: Proceedings of the International Conference on Infor-
mation Integration and Web-based Applications & Services, pp. 131–136. ACM
(2008)

3. Alserafi, A., Abelló, A., Romero, O., Calders, T.: Towards information profiling:
data lake content metadata management. In: DINA Workshop, ICDM (2016)

4. Alserafi, A., Calders, T., Abelló, A., Romero, O.: DS-prox: Dataset proximity min-
ing for governing the data lake. In: Beecks, C., Borutta, F., Kröger, P., Seidl,
T. (eds.) SISAP 2017. LNCS, vol. 10609, pp. 284–299. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68474-1 20

5. Baralis, E., Cerquitelli, T., Chiusano, S., Grimaudo, L., Xiao, X.: Analysis of Twit-
ter data using a multiple-level clustering strategy. In: Cuzzocrea, A., Maabout,
S. (eds.) MEDI 2013. LNCS, vol. 8216, pp. 13–24. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-41366-7 2

https://doi.org/10.1007/978-3-642-23737-9_30
https://doi.org/10.1007/978-3-642-23737-9_30
https://doi.org/10.1007/978-3-319-68474-1_20
https://doi.org/10.1007/978-3-642-41366-7_2

DS-kNN Datasets Categorization Using Proximity Mining 49

6. Friedman, J., Hastie, T., Tibshirani, R., et al.: Additive logistic regression: a sta-
tistical view of boosting (with discussion and a rejoinder by the authors). Ann.
Stat. 28(2), 337–407 (2000)

7. Gallinucci, E., Golfarelli, M., Rizzi, S.: Schema profiling of document-oriented
databases. Inf. Syst. 75, 13–25 (2018)

8. Han, E.-H.S., Karypis, G., Kumar, V.: Text categorization using weight adjusted
k -nearest neighbor classification. In: Cheung, D., Williams, G.J., Li, Q. (eds.)
PAKDD 2001. LNCS (LNAI), vol. 2035, pp. 53–65. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45357-1 9

9. Hentech, H., Gouider, M.S., Farhat, A.: Clustering heterogeneous data streams
with uncertainty over sliding window. In: Cuzzocrea, A., Maabout, S. (eds.) MEDI
2013. LNCS, vol. 8216, pp. 162–175. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-41366-7 14

10. Lee, M.L., Yang, L.H., Hsu, W., Yang, X.: XClust: clustering XML schemas for
effective integration. In: Proceedings of the International Conference on Informa-
tion and Knowledge Management, pp. 292–299. ACM (2002)

11. Mahmoud, H.A., Aboulnaga, A.: Schema clustering and retrieval for multi-domain
pay-as-you-go data integration systems. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 411–422. ACM (2010)

12. Manning, C.D., Raghavan, P., Schütze, H.: An Introduction to Information
Retrieval, no. c (2009)

13. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4), 334–350 (2001)

14. Shvaiko, P.: A survey of schema-based matching approaches. J. Data Semant. 3730,
146–171 (2005)

15. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Edu-
cation, New York (2006)

16. Terrizzano, I., Schwarz, P., Roth, M., Colino, J.E.: Data wrangling: the challenging
journey from the wild to the lake. In: 7th Biennial Conference on Innovative Data
Systems Research CIDR 2015 (2015)

https://doi.org/10.1007/3-540-45357-1_9
https://doi.org/10.1007/978-3-642-41366-7_14
https://doi.org/10.1007/978-3-642-41366-7_14

Lavoisier: High-Level Selection and
Preparation of Data for Analysis

Alfonso de la Vega(B), Diego Garćıa-Saiz, Marta Zorrilla, and Pablo Sánchez

Software Engineering and Real-Time, University of Cantabria, Santander, Spain
{delavegaa,garciasad,zorrillm,p.sanchez}@unican.es

Abstract. Most data mining algorithms require their input data to
be provided in a very specific tabular format. Data scientists typically
achieve this task by creating long and complex scripts, written in data
management languages such as SQL, R or Pandas, where different low-
level data transformation operations are performed. The process of writ-
ing these scripts can be really time-consuming and error-prone, which
decreases data scientists’ productivity. To overcome this limitation, we
present Lavoisier, a declarative language for data extraction and for-
matting. This language provides a set of high-level constructs that allow
data scientists to abstract from low-level data formatting operations.
Consequently, data extraction scripts’ size and complexity are reduced,
contributing to an increase of the productivity with respect to using
conventional data manipulation tools.

Keywords: Data selection · Domain-specific languages · Data mining

1 Introduction

Despite the current popularity of data mining techniques, executing data min-
ing processes still requires dealing with multiple low-level details [15]. Conse-
quently, data scientists must work at a very low abstraction level, which decreases
their productivity. This phenomena is noticeable from the very first stages of a
data mining process, where data to be analysed is selected and processed to be
digested by data mining algorithms. Most of these algorithms require their input
data to be arranged in a very specific two-dimensional tabular format, where all
the information related to each entity under analysis must be placed in a single
row. For instance, if we were analysing businesses, all the information about each
one of these businesses has to appear in a single row of the table describing input
data. This means that these algorithms cannot work with hierarchical or linked
data such as JSON files, XML files, or relational tables connected by means of
foreign keys, which are common examples of representations in which informa-
tion is typically made available. Therefore, to execute a data mining algorithm,
we first need to transform data stored in these representations into the specific
tabular format that these algorithms can process.

c© Springer Nature Switzerland AG 2019
K.-D. Schewe and N. K. Singh (Eds.): MEDI 2019, LNCS 11815, pp. 50–66, 2019.
https://doi.org/10.1007/978-3-030-32065-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-32065-2_4

Lavoisier: High-Level Selection and Preparation of Data for Analysis 51

Data scientists achieve this transformation task by creating long and com-
plex scripts, written in data management languages such as SQL (Structured
Query Language) [1] or Pandas (i.e. a well-known Python data manipulation
library) [10]. These scripts extract data from the sources and, through a set of
low-level operations, arrange these data into the required tabular format. The
correct elaboration of these scripts, which is very important for the outcome of
any analysis [3,11], can be a tedious, time-consuming and error-prone process.

To alleviate this situation, we present Lavoisier, a language that provides a
set of high-level constructs to specify which data, among the available in a certain
domain, should be included in a concrete analysis. These high-level constructs
are automatically transformed into a set of data transformation operations that
arrange the selected data into an appropriate tabular format. Therefore, using
this language, data scientists can focus on the selection of relevant data for
an analysis and forget about the technical details of the process required to
transform the selected data, which contributes to increase their productivity.

To define Lavoisier, we needed to determine how the data available in a
domain is represented. We opted for using object-oriented models, since these
models are nowadays widely used to specify domain models [6].

Expressiveness and effectiveness of Lavoisier were assessed using a data min-
ing open challenge belonging to the domain of business reviews [16]. Using
this challenge, we specified different data selection and transformation pro-
cesses. Then, we compared the generated Lavoisier specifications with their
SQL and Pandas counterparts. As a result of this comparison, we concluded
that Lavoisier’s dataset specifications are more compact, less verbose and allow
working at a higher abstraction level.

After this introduction, the article is structured as follows: Sect. 2 exposes
the motivation behind this work. Section 3 presents the different features of the
Lavoisier language. Next, Sect. 4 comments on related work, and Sect. 5 discusses
strengths and weaknesses of Lavoisier. Finally, Sect. 6 summarises this article and
outlines future work.

2 Case Study and Problem Statement

This section describes with more detail the motivation behind this work. To
illustrate it, we used the Yelp Dataset Challenge, which is introduced next.

2.1 Running Example: The Yelp Dataset Challenges

Yelp is a company that provides an online business review service. Using this
service, owners can describe and advertise their businesses and customers can
write their opinions about these businesses. Yelp periodically collects and makes
available bundles of data for academic usage in the form of data analysis chal-
lenges1. We use these data and challenges as running example throughout this
article.
1 https://www.yelp.com/dataset/challenge.

https://www.yelp.com/dataset/challenge

52 A. de la Vega et al.

Fig. 1. Conceptual Model of the Yelp Dataset Challenge.

Yelp provides their data as a bundle of interconnected JSON (JavaScript
Object Notation) files. To help visualise these files, we inferred the concep-
tual object-oriented model to which these files would conform to. This model
is depicted in Fig. 1.

As it can be seen, for each registered business, Yelp provides information
about its location; the different features it offers, such as the availability of Wi-
Fi or a smoking area; and the categories which best describes it, e.g., Cafes,
Restaurant, Italian, Gluten-Free, and so on. Users can review these businesses,
rate them and introduce a text describing their experience. Additionally, users
can write tips, which are small pieces of advice about a business, such as do not
miss its salmon! Yelp also provides some social network capabilities, so users
can have friends or fans. Users can also receive votes in their reviews in case
other users found these reviews funny, useful or cool.

Using these data, Yelp proposes as challenges analysis tasks like identifying
reasons behind a business becoming successful, or finding what kind of opinions
are most likely to set a new trend.

2.2 The Data Reformatting Problem

Before executing a data mining algorithm over Yelp’s data to, for instance, seek
for the reasons that made a business successful, we need to transform the data to
be used for that analysis into the previously mentioned tabular format. It must
be remembered that this format, in addition to being tabular, imposes a non-
trivial constraint: all the information about each instance of the domain entity
being analysed must be placed in a single row of the data table to be analysed.
In the data mining community, this table is usually referred to as a dataset.

To clarify this problem, let us suppose that, in the context of the Yelp chal-
lenge, we want to identify business features, or combinations of features, that
might lead a business to have a high stars rating. We decide to use as informa-
tion for the analysis the businesses name, so they can be identified; their stars

Lavoisier: High-Level Selection and Preparation of Data for Analysis 53

Fig. 2. (a) Yelp model fragment; (b) JSON data conforming to (a).

Fig. 3. A tabular dataset of businesses’ data.

rating as a success measure; and their set of available features2. Figure 2(a)
shows the fragment of the original domain model that contains this information,
whereas Fig. 2(b) shows some data, in JSON format, conforming to this model
fragment. As it can be seen, this information is hierarchical, and each business
might include several features nested in their data structure. Therefore, we need
to face the problem of how to convert this hierarchical information into a single
vector of data that can occupy a dataset row, such as depicted in Fig. 3.

To address this formatting problem, data scientists currently rely on data
management languages or libraries, such as SQL [1] or Pandas [10]. Using these
technologies, data scientists perform several low-level operations, such as filters,
joins, pivots or aggregations.

As an example, Listing 1.1 shows a SQL script where, by employing a CASE
operator in an aggregation query, the tabular representation of Fig. 3(a) can be
obtained from the equivalent relational tables to the domain model fragment of
Fig. 2(a). As it can be seen, this script is quite complex for this toy example
and it does not scale appropriately, since we need to add a new aggregation
query per each new feature included to the system. Thus, this strategy might
be prohibitive when processing a larger number of features. The same or similar
problems are found when other data management languages, such as Pandas [10]
or R [12], are used.

2 The Features inheritance of Fig. 1 has been omitted from this initial example.

54 A. de la Vega et al.

Listing 1.1. SQL flattening operation using aggregation queries and the case operator.

1 select b.b_id, b.name, b.stars,
2 max(case features.name when ’Parking’
3 then available end) as feature_parking,
4 max(case features.name when ’WiFi’
5 then available end) as feature_wifi,
6 max(case features.name when ’Smoking’
7 then available end) as feature_smoking
8 from business as b
9 left join features on b.b_id = features.b_id

10 group by b.b_id, b.name, b.stars

To alleviate this situation, we studied the following ideas: first, a mechanism
to increase the abstraction at which users select data for an analysis should
allow working over a high level representation (i.e. a conceptual model) of the
available data. From the different notations that could be used to represent these
data, we focused on object-oriented models such as the one in Fig. 1, because of
their popularity to define domain models [6]. However, other conceptual model
notations could also have been employed.

Second, if we had a way to automatically convert selections performed by data
scientists over the conceptual model into the dataset format required by data
mining algorithms, then these data scientists would be relieved of this repetitive
and prone-to-errors task.

As a result of our work, we have created a new language, called Lavoisier,
which provides high-level declarative primitives to specify which elements of an
object-oriented domain model should be considered for an analysis. These spec-
ifications are then processed by the language interpreter, which automatically
transforms [14] the employed primitives into a set of low-level data transfor-
mation operations that produces as output the required tabular representation.
This language is described in the next section.

3 Lavoisier: Dataset Extraction Language

We describe Lavoisier by example, showing how the language can deal with data
transformation scenarios of increasing complexity.

3.1 Single Class Selection

Listing 1.2 shows the most basic Lavoisier snippet. In Lavoisier, data selection
processes are expressed by defining dataset specifications, which are expressed
with the dataset keyword followed by the name for the dataset (for instance,
yelp reviews in Listing 1.2), and a body block surrounded by braces (lines 1–3).

Lavoisier: High-Level Selection and Preparation of Data for Analysis 55

A dataset specification must always declare a main class (line 2), which is the
class whose instances would be placed in the rows of the output dataset.

Listing 1.2. Lavoisier’s simplest dataset specification.

1 dataset yelp_reviews {
2 mainclass Review
3 }

By default, if we do not provide any further information, Lavoisier considers
that all attributes of a class must be included in the output dataset, whereas
references to other classes are excluded. Taking into account these considera-
tions, the process for generating a dataset from the specification of Listing 1.2 is
straightforward: a table is created with a column for each attribute contained in
the Review class. Then, each instance of the Review class is processed, generating
a new table row where the instance attributes are assigned to the corresponding
columns.

If we do not want to include all attributes of a class in the resulting dataset,
we must specify those of our interest as a list after the class name, between
brackets, such as illustrated in Listing 1.3. In this example, just the r id and
stars attributes would be selected. The resulting dataset is created following the
previous process, but this time only columns for those attributes specified in the
list between brackets would be generated.

Listing 1.3. Dataset specification with attribute selection.

1 dataset yelp_reviews {
2 mainclass Review [r_id, stars]
3 }

Finally, it might also be the case that we are not interested in including all
instances of a class in a particular dataset. For these cases, Lavoisier provides
filters. A filter is specified after a class name using the where keyword, and it
must contain a predicate that is evaluated for each class instance. If the predi-
cate evaluates to true, then the instance is processed; otherwise it is discarded.
Listing 1.4 shows an example of filter for considering just reviews belonging to
businesses placed in Edinburgh (line 3).

Listing 1.4. Dataset specification with a filter.

1 dataset yelp_reviews {
2 mainclass Review [r_id, stars]
3 where business.location.city = "Edinburgh"
4 }

56 A. de la Vega et al.

3.2 Single-Bounded Reference Inclusion

The inclusion of references is more challenging than the selection of attributes
because of two main reasons: (1) referenced types might have their own extra
attributes and nested references that we may need to manage; and (2) data of the
referenced class must be combined with the main class in order to create a unique
table containing all the information. The complexity of this data merging process
depends on the cardinality of the included references. We distinguish between
two cases: single-bounded references, i.e., references with 1 as upper bound; and
multi-bounded ones, i.e., references with an upper bound greater than 1.

Single-bounded references can be incorporated to a dataset through the
include keyword. For example, in Listing 1.5, line 3, the user reference of the
Review class is included in the dataset through the include user statement. As
in previous section, if no extra information is given, all attributes of the included
class (e.g. User in this case) would be placed in the output dataset.

Listing 1.5. Reviews data with some attribute and reference selections.

1 dataset yelp_reviews {
2 mainclass Review [r_id, stars]
3 include user
4 }

The data merging process in the case of single-bounded references is rather
simple. Attributes of the reference class are added to the main class, and then
the resulting class is processed as a single one, following the procedure described
in the previous section. Conceptually, this would be equivalent to performing
a left outer join between the main class and the referenced class, and then
transforming the resulting class to a table.

3.3 Multi-bounded Reference Inclusion

The problem when processing references with upper bounds greater than one is
that each instance of the main class might be related with several instances of the
referenced class. This can be seen in Fig. 2(a), where each business has several
associated features. To combine both classes, as all the information about each
instance of the main class must be placed in a single row, we need to spread the
information about the referenced instances on different columns of the output
table, so that it ends up flattened. This is, for each business, we need to spread
the information about each potential feature it may have over different columns.
To achieve this goal, Lavoisier performs a join between both classes, followed
by a pivot. A pivot is an operation that reshapes tabular data, so that data
information scattered over several rows is condensed in a single one by generating
new columns.

These concepts are illustrated with the help of Fig. 4. Figure 4(a) shows, for
the data of Fig. 2(b), the result of joining each business with their associated
features. As it can be seen, after performing this join several rows refer to the

Lavoisier: High-Level Selection and Preparation of Data for Analysis 57

(a) After join: business information ends
in several rows.

BName Stars Feature Available

Pete’s Pizza 4.5 WiFi true
Pete’s Pizza 4.5 Parking false
Sushi & Go 3.8 WiFi false

...

(b) After join and pivot: Information of
each business placed in a single row.

BName Stars WiFi Parking

Pete’s Pizza 4.5 true true
Sushi & Go 3.8 false true
Wine Heaven 4.0 true

Fig. 4. Data merging by combining join and pivot operations.

same business, which violates the constraint of requiring all the information of
each business in a single row. To solve this issue, we execute a pivot, which
accepts three parameters: a set of static properties, a set of pivoting properties,
and a set of pivoted properties. In our case, the static properties will be always
the properties of the main class, the pivoting properties a set of properties that
can identify each instance of the referenced class, and the pivoted properties the
remaining properties of the referenced class. For the concrete example of Fig. 4,
we used as pivoting property the name of the feature, so available would be the
pivoted property.

With these parameters, the pivot works as follows. Firstly, the structure of
the output table is determined. To do it, all static properties, which would be
BusinessName and Stars in our example, are added as columns to the out-
put table. Then, all distinct tuples of the pivoting properties are calculated. In
the example, these tuples would be (WiFi) and (Parking). Then, each one of
these tuples is combined with the pivoted properties to conform the new set of
columns that should be created. If we perform this process, we would add the
WiFi available and Parking available columns to the output table.

Once this table structure is created, it is populated with data. Each distinct
tuple for the static properties is added as a new row in the output table. In our
example, the tuples (Pete’s Pizza, 4.5), (Sushi & Go, 3.8), and (Wine Heaven,
4.0) would be added. At this point, these rows are incomplete, as the newly
created columns, i.e., WiFi available and Parking available, would still need
to be filled. For this purpose, the pivot operator checks, for each newly added
row, whether the input table contains a row that has the static values plus the
corresponding pivoting column value. If such a row is found, the pivot operator
copies the value of the pivoted column of this row into the corresponding cell
of the output table. For instance, continuing with our example, to calculate the
value of the WiFi column for the (Pete’s Pizza, 4.5) row, the pivot operator
checks if the input table has a row containing the values (Pete’s Pizza, 4.5,
WiFi). If so, the value of the available column for that row is copied into the
cell corresponding to the WiFi available column.

58 A. de la Vega et al.

Listing 1.6. Including references of different cardinalities.

1 dataset yelp_reviews {
2 mainclass Business
3 include location
4 include features by name
5 }

As it can be seen, by pivoting the result of a join between classes with one or
more properties of the referenced class as pivoting column, an appropriate tab-
ular representation of the input data is obtained. Oppositely to single-bounded
references, in this case we need to explicitly specify which property or properties
of the referenced class should be used as pivoting ones. For that reason, Lavoisier
requires these properties to be specified after including an unbounded reference,
such as illustrated in Listing 1.6 (line 4), which corresponds to the Lavoisier
specification for producing the dataset of Fig. 4(b). These pivoting properties
are indicated as a list after the by keyword.

Listing 1.7. Lavoisier’s calculate construct to perform aggregations.

1 dataset yelp_businesses {
2 mainclass Business[name, stars]
3 calculate numReviews
4 as count(reviews)
5 calculate numPositiveReviews
6 as count(reviews) where stars >= 4
7 }

Finally, it is worth to mention that Lavoisier allows selecting multiple ref-
erences from a type by using an include primitive for each reference, such as
it is shown in Listing 1.6 (lines 3–4). If that is the case, each reference is pro-
cessed individually by the interpreter with the appropriate pattern for each case,
resulting in the generation of a new set of columns for each processed reference.

3.4 Aggregated Values

It could be the case that we are not interested in analysing individually each
instance of an unbounded reference, but in summarising the information con-
tained in these instances by means of some formulae. For this purpose, Lavoisier
provides the calculate primitive and some pre-built aggregation functions. List-
ing 1.7 shows an example where this primitive is used.

In this example, together with the business name and stars, two columns,
numReviews and numPositiveReviews, are added to the output dataset. These
columns collect global information about each business’s review, specifically, the
number of reviews received by each business, and the number these reviews

Lavoisier: High-Level Selection and Preparation of Data for Analysis 59

Listing 1.8. Reviews data with nested references.

1 dataset yelp_reviews {
2 mainclass Review [r_id, stars]
3 include user
4 include business {
5 include location[address, postalCode]
6 include categories by name
7 }
8 }

that were positive (i.e. those that at least have a 4-stars rating). To make these
calculations, the count function and a filter are used.

3.5 Nested References

As commented, when including a reference, the default behaviour involves
appending all attributes of the target class in the output dataset, whereas ref-
erences are ignored. Nevertheless, we might be interested in customising which
information of a reference is included to, for instance, omit certain target class’
attributes, or to include some nested reference to yet another class. We can do
this by adding a block to the include construct. Inside this block, we can use the
same modifiers as in the main class to include more references. These include
blocks can be consecutively used to select references up to the required nesting
level for the extraction.

For instance, in Listing 1.8, inside the business inclusion block, the location
and categories references are included (lines 5 and 6). From the location refer-
ence, just the address and postal code attributes are selected. If the Location or
Category classes had references of their own, we could also select them by using
new inclusion blocks.

3.6 Inheritance Management

When a class that appears in a Lavoisier specification is included in an inheri-
tance hierarchy, as expected, all the attributes and references of their superclasses
are considered attributes and references of that class. Therefore, they can be
managed by Lavoisier as regular ones. In addition, all attributes belonging to
subclasses are also merged with the class being processed, following a strategy
similar to the Single Table pattern of Object-Relational Mappers (ORMs) [8].

We can customise this default behaviour to: (1) include just some subclasses in
the resulting dataset; (2) include some references belonging to certain subclasses;
or (3) select just a subset of attributes from certain subclass for their inclusion.
For these purposes, a new pair of constructs were introduced: as and only as. List-
ing 1.9 shows a dataset specification example where the only as construct is used.

60 A. de la Vega et al.

Listing 1.9. Selection of only two subclasses from the inheritance for the reduction.

1 dataset yelp_businesses {
2 mainclass Business[name, stars]
3 include features by name {
4 only as GroupedFeature {
5 include group
6 }
7 }
8 }

In this example, features is a reference to a class, Feature, which belongs to an
inheritance hierarchy. For the extraction, we only want to include information
from the GroupedFeature subclass and we indicate it using the only as keyword
inside an inclusion block. Once a subclass is added to the inclusion block, we can
customise it as in the case of the main class or a reference. For instance, in List-
ing 1.9, a include clause is used to specify that the group reference of the Grouped-
Feature must be also added to the output dataset (line 4).

If we were interested in customising a subclass without excluding other sub-
classes from the output dataset, we must use the as keyword alone, instead of
only as. For example, in Listing 1.9, using as in line 4, both the ValuedFeature
and AvailableFeature subclasses would be also included in the output dataset,
while at the same time customising the inclusion of the GroupedFeature subclass.

3.7 Implementation

The code that conforms the Lavoisier language is available in an external reposi-
tory under a free license3. Lavoisier has been implemented with the Xtext frame-
work [7]. By using Xtext, we obtain a full-fledged editor where it is easy to include
facilities such as syntax highlighting or autocompletion.

The execution of a Lavoisier script generates a CSV (Comma-Separated Val-
ues) file for each dataset specification. First, the instances of the main class
to be included in this output dataset file are gathered, taking into account the
specified filters. Then, the attribute and reference inclusion constructs are pro-
cessed to determine the different sets of columns that must be generated, in the
same order that they were defined. Lastly, these columns are calculated for each
gathered instance of the main class, and placed as rows in the output dataset.

4 Related Work

To the best of our knowledge, this is the first language designed to select data
from domain models and generate tabular datasets from them. Nevertheless,
the issue of how to automatically reduce multi-relational data to a single-table

3 https://github.com/alfonsodelavega/lavoisier.

https://github.com/alfonsodelavega/lavoisier

Lavoisier: High-Level Selection and Preparation of Data for Analysis 61

structure that can be digested by data mining algorithms, which is known in
the community as propositionalisation, has been previously addressed by differ-
ent researchers [2,9,13]. Generally speaking, these approaches work as follows:
starting from an entity of interest, e.g., Business of the Yelp case study, an algo-
rithm randomly generates dataset columns by applying aggregation functions,
such as count, average, max or min, over the relationships between the selected
entity and other ones in the model.

This random exploration has the potential to discover previously unknown
aggregate values that might be relevant for data analysis. On the other hand,
domain experts and data scientists cannot have a fine-grained control of which
data would be included in the output dataset. In addition, unbounded references
cannot be analysed at the instance level, since their information needs always to
be summarised by means of aggregation functions. This limitation might hamper
finding patterns related to values of these individual instances, such as that most
of successful pubs have happy hours from 20:00 to close. Moreover, it should be
taken into account that this random exploration might exhibit scalability and
performance problems. The exploration takes place over an enormous search
space of candidate columns, from which many of them may not be useful at all.

Other researchers have tackled the problem from a different angle. Instead of
focusing on producing tabular datasets from linked and hierarchical data, they
have modified some data mining algorithms so that they accept data in their
original structure as input, which is known as Multi-Relational Data Mining
(MRDM) [5]. However, at the time of writing this work, most of these modified
algorithms are not as powerful and versatile as those data mining algorithms that
work with single-table datasets. While this is the case, we consider that a lan-
guage like Lavoisier can be helpful for assisting data scientists in the generation
of tabular datasets.

5 Discussion

Lavoisier allows data scientists to create scripts for data selection, extraction and
preparation using a set of primitives that abstract from the low-level operations
often used for this purpose. We comment here on the benefits offered by this lan-
guage when compared to other state-of-the-art technologies that are commonly
used to perform dataset extractions.

For example, we might be interested in studying business’ reviews of the city
of Edinburgh, to find whether the final score of a review is related to any of
the following indicators: (i) the user performing the review; (ii) the business’
location in the city; (iii) the features that the reviewed business offers (or not);
and (iv) the number of positive reviews that the business has previously received.
Moreover, in the case of Grouped Features, we might also want to study if the
feature group has any influence on the review score. This data can be selected
and tabulated using the script of Listing 1.10.

As commented over the paper, Lavoisier’s primitives allow data scientists to
rid of performing low-level operations such as filters, join and pivots manually.

62 A. de la Vega et al.

Listing 1.10. Lavoisier script for analysing review scores.

1 dataset yelp_reviews {
2 mainclass Review
3 where business.location.city = "Edinburgh"
4 include user
5 include business {
6 include location[address, postalCode]
7 include features by name {
8 as GroupedFeature {
9 include group

10 }
11 }
12 calculate numPositiveReviews
13 as count(business.reviews) where stars >= 4
14 }
15 }

If the same data selection and extraction task of Listing 1.10 had been specified
using SQL or Pandas, we would have had to manually perform one pivot, nine
joins and two filters. In addition, we should also have taken into account the order
in which these operations are executed, and of storing the intermediate results.
It is also worth mentioning that these low-level operations are more verbose than
Lavoisier’s primitives, which leads to larger and more complex scripts.

For instance, to process a single-bounded reference in Lavoisier, we only need
to specify a keyword and the name of the reference, i.e., include user in line 4 of
Listing 1.10. In the SQL counterpart, we would need to specify an SQL query
over the tables to be joined and the name of the joining columns.

In the case of unbounded references, the situation becomes worse. First of all,
unbounded references need to be processed by means of two operations, these
are, a join and a pivot; whereas in Lavoisier we only need to specify the reference
to be processed and the properties of the referenced class to be used as pivot-
ing ones. In those data management languages that provide a full-fledged pivot
implementation [4,10], a pivot operation can be specified in the best-case sce-
nario by using two parameters: the set of static columns, and the set of pivoting
columns. Nevertheless, most data management languages provides limited imple-
mentations of the pivot operator that add some extra complexity. For instance,
SQL Server [4] extends the SQL standard with a proprietary version of the pivot
operator, where the structure of the output table is not calculated by the oper-
ator itself, but it has to be manually specified. Listing 1.11 illustrates how an
unbounded reference can be managed in SQL Server by pivoting the result of
a join between two tables. As it can be observed, in the pivot operation (lines
8–11) we must explicitly specify the values of the pivoting properties for which
new columns would be generated, these are, the WiFi and Parking available

Lavoisier: High-Level Selection and Preparation of Data for Analysis 63

Listing 1.11. SQL Server’s pivot operation example.

1 select bName, stars, "Wifi", "Parking"
2 from (
3 select b.name as bName, b.stars,
4 f.name as fName, f.available
5 from Business b, Feature f
6 where f.business = b.id
7) as p
8 pivot (
9 max(p.available)

10 for p.fName in ("Wifi","Parking")
11) as pivotTable;

Table 1. Character count of SQL, Python Pandas and Lavoisier when performing
different dataset extraction scenarios over the Yelp Dataset Challenge Data.

Scenario Extraction Description SQL Pandas Lavoisier

Single Class Just Reviews 17 7 33

Unary Reference Reviews and user 54 30 45

Multi-Bounded Reference Business and categories 294 155 66

Multi-Bounded Reference Business and AvailableFeatures 240 115 65

Inheritance Features Inheritance 132 200 71

Inheritance Business and Features 591 649 101

Nested References Review, Business and Categories 359 181 82

Geometric mean of Lavoisier’s script size reduction: 58.6% 36.2%

features that a business may have in this example. Unfortunately, if new fea-
ture values are added to the system, we must update this script to deal with
them, which is clearly a less maintainable solution as compared to Lavoisier or
other implementations of the pivot operator. Finally, in the case where a data
management language does not provide a pivot operator, different workarounds,
such as the one illustrated in Listing 1.1, might be required. These workarounds
clearly have a higher complexity than the alternatives offered by Lavoisier.

Summarising, as it has been discussed, Lavoisier helps reduce size and com-
plexity of data selection and transformation scripts. This contributes to increase
data scientists’ productivity, who can use a more compact and high-level syn-
tax, avoiding caring about technical details of the data transformation operations
required to generate each particular dataset.

To provide with an objective validation of the discussion presented above, we
are in the process of performing a more systematic evaluation where Lavoisier is
compared against two well-known technologies often used for dataset extraction
operations: the SQL language [1] and the Pandas data management library [10].

64 A. de la Vega et al.

As a starting point in this evaluation, we have used language conciseness
as an indirect indicator of the abstraction level provided by the language. In
our case, a higher conciseness might indicate that some low-level operations are
hidden to the end user by the language. So, we have assessed Lavoisier’s bet-
ter conciseness by measuring the script size in characters (ignoring whitespace)
of Lavoisier, SQL and Pandas scripts for different dataset extraction scenarios
of increasing complexity. These scenarios took place over data from the Yelp
Dataset Challenge [16]. In the case of SQL and Pandas, as these technologies do
not allow working directly against object-oriented domain models such as the one
depicted in Fig. 1, their dataset extraction scripts operated over an equivalent
relational database. This relational counterpart has been created following the
typical object-to-relational transformation rules [8]. The obtained character-size
measurements can be consulted in Table 1.

According to these results, Lavoisier can reduce scripts’ sizes on average by
58% when compared with SQL, and by 36% with respect to Pandas. Lavoisier
performs clearly better in those cases with unbounded references, nested struc-
tures or where dealing with inheritance hierarchies is required. In those cases,
Lavoisier can achieve size reductions of up to ∼80%.

As commented, this is an ongoing work, and the current resources correspond-
ing to the presented evaluation can be found in an external repository4. We are
working on increasing the number of case studies employed in the evaluation, so
that the obtained results can be better generalised no matter the domain where
Lavoisier is being employed. Also, the usability and learning curve of the lan-
guage are important aspects to evaluate when comparing the process of learning
and using Lavoisier against existing solutions, so we plan to perform empirical
experiments to determine whether end users find Lavoisier’s high-level primitives
easier to apply when carrying out dataset extraction operations.

6 Summary and Future Work

This work has presented Lavoisier, a language for assisting data scientists during
the creation of datasets according to the format accepted by data mining algo-
rithms. Firstly, the data selection and transformation problem was presented. As
it was commented, data mining algorithms can only receive data arranged in a
specific tabular format. Therefore, before executing a data mining algorithm, we
need to select and rearrange the data to be analysed into the accepted format.
Data scientists typically perform this task by writing scripts in a data man-
agement language such as SQL or Pandas, which means they have to perform
several low-level data transformation operations manually and take care about
their details. This leads to the creation of large and complex scripts, which might
be hard to maintain.

As a solution to alleviate this problem, we have created a language that
provides a set of high-level constructs for selecting data from object-oriented
domain models. These constructs, when processed by the language interpreter,
4 https://github.com/alfonsodelavega/lavoisier-evaluation.

https://github.com/alfonsodelavega/lavoisier-evaluation

Lavoisier: High-Level Selection and Preparation of Data for Analysis 65

are transformed in a set of low-level data transformation operations that generate
tabular datasets ready to be digested by data mining algorithms. Lavoisier is
able to deal with the different transformation scenarios that can be found in
a object-oriented model, such as the processing of single-bounded references,
multi-bounded references, nested structures or inheritance hierarchies.

When compared with data management languages, Lavoisier allows working
at a higher abstraction level and reducing script size and complexity, achieving
average reductions of ∼50%, and of up to 80% in some cases. Related to other
research approaches, such as multi-relational data mining [5] or propositionalisa-
tion [9], Lavoisier provides a more fine-grained control of the data to be analysed,
can deal with multi-bounded references at the instance level and allows using
robust and well-known data mining algorithms.

As future work, we plan to perform some empirical experiments to assess
Lavoisier’ usability and syntax, as well as to study how to extend this language
in order to cover other formalisms to represent domain data.

Acknowledgements. Funded by the University of Cantabria’s Doctorate Program,
and by the Spanish Government under grant TIN2017-86520-C3-3-R.

References

1. Beighley, L.: Head First SQL. O’Reilly (2007)
2. Boullé, M., et al.: A scalable robust and automatic propositionalization approach

for Bayesian classification of large mixed numerical and categorical data. Mach.
Learn. (2018). https://doi.org/10.1007/s10994-018-5746-9

3. Crone, S.F., Lessmann, S., Stahlbock, R.: The impact of preprocessing on data
mining: an evaluation of classifier sensitivity in direct marketing. Eur. J. Oper.
Res. 173(3), 781–800 (2006). https://doi.org/10.1016/j.ejor.2005.07.023

4. Cunningham, C.: PIVOT and UNPIVOT: optimization and execution strategies in
an RDBMS. In: International Conference on Very Large Data Bases, pp. 998–1009
(2004)

5. Džeroski, S.: Relational data mining. In: Maimon, O., Rokach, L. (eds.) Data Min-
ing and Knowledge Discovery Handbook, pp. 887–911. Springer, Boston (2010).
https://doi.org/10.1007/978-0-387-09823-4 46

6. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Professional, Boston (2004)

7. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick
and dirty way. In: Companion to the 25th Annual Conference on Object-Oriented
Programming, Systems, Languages, and Applications (SPLASH/OOPSLA), pp.
307–309 (2010). https://doi.org/10.1145/1869542.1869625

8. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Long-
man Publishing Co., Inc., Boston (2002)

9. Knobbe, A.J., de Haas, M., Siebes, A.: Propositionalisation and aggregates. In: De
Raedt, L., Siebes, A. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 277–288.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44794-6 23

10. McKinney, W.: Data structures for statistical computing in Python. In: Proceed-
ings of the 9th Python in Science Conference, pp. 51–56 (2010)

https://doi.org/10.1007/s10994-018-5746-9
https://doi.org/10.1016/j.ejor.2005.07.023
https://doi.org/10.1007/978-0-387-09823-4_46
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1007/3-540-44794-6_23

66 A. de la Vega et al.

11. Munson, M.A.: A study on the importance of and time spent on different model-
ing steps. SIGKDD Explor. Newsl. 13(2), 65–71 (2012). https://doi.org/10.1145/
2207243.2207253

12. R: The R Project for Statistical Computing. https://www.r-project.org/
13. Samorani, M.: Automatically generate a flat mining table with dataconda. In:

IEEE International Conference on Data Mining Workshop, pp. 1644–1647 (2016).
https://doi.org/10.1109/ICDMW.2015.100

14. de la Vega, A., Garćıa-Saiz, D., Zorrilla, M., Sánchez, P.: On the automated trans-
formation of domain models into tabular datasets. ER FORUM 1979 (2017)

15. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine
Learning Tools and Techniques, 4th edn. Morgan Kaufmann Publishers Inc., San
Francisco (2016)

16. Yelp: Dataset Challenge. https://www.yelp.com/dataset challenge

https://doi.org/10.1145/2207243.2207253
https://doi.org/10.1145/2207243.2207253
https://www.r-project.org/
https://doi.org/10.1109/ICDMW.2015.100
https://www.yelp.com/dataset_challenge

Discovering Platform Government Research
Trends Using Topic Modeling

Sun-Young Shin and Chang-Kyo Suh(&)

Kyungpook National University, 80 Daehakro, Bukgu, Daegu, Korea
kitty13210@gmail.com, ck@knu.ac.kr

Abstract. Platform government is a key trend in the 4th industrial revolution.
This paper presents an empirical analysis of 5810 articles in the Science Direct
Database yielded by a search for the keyword ‘platform government’ from 1998
to 2017. Applying topic modeling to the article abstracts identified 9 key topics
that were both representative and meaningful, and essentially corresponded to
established sub-fields in platform government research. Measuring the variation
of topic distributions over time revealed various rising research trends, such as
data analytics and IoT, and a recent increasing popularity of business and
governance. The identified key topics and Korean platform government projects
were also compared. In conclusion, this study attempted to improve the iden-
tification, quantification, and understanding of the themes and trends in platform
government over the last 20 years in order to provide a valuable tool for
researchers and government agencies to make more informed decisions.

Keywords: Platform � Government � Topic modeling � Text mining � Research
trends

1 Introduction

The reason why artificial intelligent (AI) was able to emerge as a general-purpose
technology for the 4th industrial revolution was because the Internet of Things (IoT),
big data, and the development of cloud computing all played an important role in the
development and use of information. Thus, the 4th industrial revolution and spread of
intelligent information technology have heralded the current transformation into a data-
driven society. ICT (Information Communication Technology) is changing beyond the
means of government efficiency to expand the platform of open innovation and creative
cooperation. Data is generating information, this information is gathered to form
knowledge, and that knowledge lives in an environment where decisions are based on
such platforms. As a result, platform-based government operation and management are
very important factors. In 2018, the Korean government emphasized the importance of
creating an environment that includes envisioning and developing an infrastructure for
Korea to develop a cycle of innovative growth. Moreover, a platform economy, which
is critical for the 4th industrial revolution, requires an infrastructure, technology, and
ecosystem for utilizing big data and AI [1]. Accordingly, this study analyzed the
concept changes and policy point changes related to platform government using a
content analysis of previous related research. Text mining was used to search the

© Springer Nature Switzerland AG 2019
K.-D. Schewe and N. K. Singh (Eds.): MEDI 2019, LNCS 11815, pp. 67–82, 2019.
https://doi.org/10.1007/978-3-030-32065-2_5

http://orcid.org/0000-0001-9374-5009
http://orcid.org/0000-0001-5764-5561
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-32065-2_5

Science Direct DB for platform government-related research papers. Topic modeling
was then applied to identify and compare the trends and changing focus of platform
government-related research over time. As a result, this study is important for inter-
preting the meaning of market interest in platform government and its changing
directions.

This paper is organized as follows. The Introduction explains why platform gov-
ernment is an interesting issue and government trend. The Background introduces the
concept of topic modeling, Latent Dirichlet Allocation (LDA), and Structural Topic
Model (STM) to quantify the topic distribution by aggregating the results from journal
abstracts over time. Various findings are also presented about platform and platform
government. The Research Design introduces the article/abstract data extracted from
the Science Direct DB, the key research questions, and R package used for the topic
modeling. The Research Results provide an extensive analysis of the extracted topics
and word distributions using defined measures. The Discussion suggests some themes
and topic trends in platform government over the last 20 years as a valuable tool for
researchers and government agencies to make more informed decisions. Finally, the
Conclusion summarizes our study and suggests some future research directions.

2 Background

2.1 Topic Modeling

Text mining is a typical method for analyzing data, covering a buzz analysis, topic
frequency analysis, and topic modeling. In particular, Latent Dirichlet Allocation
(LDA) topic modeling is an algorithm for locating topics in a large unstructured
document set. LDA uses probabilistic clue values to group words with similar mean-
ings in an unsupervised model [2]. Widely used in research to derive issues or track
research trends and technology trends, LDA is a post-conference method that analyzes
the distribution of words in a given document using probability calculations to generate
a semantic coherent theme for the words and thereby determine the topics in that
document. Figure 1 shows the graph models of the LDA documentation process, where
a shaded node is an observation variable, a non-shaded node is a random variable, a
non-node is a potential variable, a node-to-node relationship is shown by an arrow, and
a rectangle shows the number of each document, topic, and word. This is a stochastic
generation model for finding potentially meaningful topics in many documents. As
such, the probabilities that the words in the text document are included in a certain
topic are calculated, where each document is stochastically represented by several
topics rather than one topic [3]. The subject of each document is composed of a small
number of word mixtures, and topic modeling is performed assuming that each word is
determined by the document subject. In other words, the algorithm performs a prob-
abilistic calculation assuming that the words in a specific document constitute a set of
specific topics and then extracts the results as a set of topic words. In topic modeling,
posterior probabilities are inferred according to word generation conditions based on
the assumption that words are not stand-alone (Dirichlet distribution), and they are
expressed as probabilistic graph models [2, 4].

68 S.-Y. Shin and C.-K. Suh

Qualitative research methods, such as literature reviews and expert evaluation, are
conventionally used to identify new areas of interest and trend analyses. However, this
requires a lot of time and resources to derive results from large amounts of information,
plus it is essentially a subjective evaluation. Thus, a paradigm shift in qualitative
research methodology is being attempted that is complementary to quantitative research
methods, such as text mining [5]. Topic modeling techniques have already been applied
to analyze scientific trends and hot topics in 2,620 abstracts from the PNAS (Pro-
ceedings of the National Academy of Sciences), and interestingly the results were
reflected in the 2002 Nobel Prizes [4]. The Topics over Time (TOT) model also uses
LDA topic modeling to view how topics change over time in literature and information
research trends [3]. The current authors also applied the TOT model to identify the
topics and time series trends of personal e-mails, the presentations at the Natural
Information Processing Systems (NIPS) conferences from 1987 to 2003, and speeches
by the U.S. President over 200 years. Mimno and McCallum [6] demonstrated that a
topic model can also be useful in measuring influence when applying TNG (Topical N-
Grams), a phrase-based topographic model, to 300,000 papers in the field of computer
science collected from an automated human index system [6]. Meanwhile, Blei [7] used
the LDA model to analyze 17,000 papers in the journals ‘Science’ and ‘Yale Law’, and
showed that a topic model can be used for both social science and quantitative analyses
[7]. Plus, Reich et al. [8] applied the Structural Topic Model (STM) that use LDA
natively to compare time series topics and topics, and also utilized metadata for ana-
lyzing additional statistics [8, 9]. Gohr et al. [10] applied Probabilistic Latent Semantic
Analysis (PLSA) to the SIGIR conference paper from 2000-2007, indicating that new
words and topics emerged every year. Through Dynamic Topic Modeling, this paper
shows the trend of key words on a 10-year basis for the Science magazine from 1880 to
2000. It also showed topics changes by the time such as Darwin and Einstein word
[11]. Topic evolution maps were created from large corpus of 120,000 ACM papers
from 1952 to 2007. Unlike general topic modeling, Jo et al. [12] created maps for each
topic by using 290,000 citation links. This makes it easy for the person who starts this
area research to recognize the emerging fields.

The STM method has been recently utilized to analyze various meta information,
such as dates and politics, in documents. If the composition or weight of a topic
changes in a specific way according to this kind of meta information, for example, if

Fig. 1. Graph models of LDA

Discovering Platform Government Research Trends 69

the proportion of the topic changes systematically over time, or if the organization of
the topic changes according to the organization that produced the document, it is
reasonable and accurate to estimate the composition and weight of the topic. The STM
technique extracts topics using additional information when compared to the LDA
model by inserting the assumption that various information in a document may affect
the weight and composition of topics [6, 13]. In topic modeling, the number K of all the
topics should be determined. In this case, STM provides a semantic coherence method
for the optimal K by obtaining semantic consistency [14]. As such, topic modeling
involves analyzing data to derive the major issues by period, studying the process of
dynamic variation between individual issues, and analyzing the changes after extracting
issues from various sources, such as news articles and Twitter. In order to grasp
research trends in individual fields, topic modeling is utilized in various fields, such as
library information science, information systems, aviation, industrial engineering, and
marketing [5]. However, few studies have yet applied topic modeling to international
research trends in order to contribute to government policies.

2.2 Platform and Platform Government

The original meaning of the word platform is a segmented area of land. In other words,
a platform provides a framework for the values and interests that stakeholders can
interrelate with each other, and can be defined as a medium for creating added value
through mutual linkage [15]. A business is a platform where a facility or infrastructure
is built up that can be used simultaneously by many customers. Through the platform,
the interconnections of stakeholders can create network effects and form ecosystems
that cooperate with one another. In other words, the interconnection function allows the
subject to establish a platform so that consumers and suppliers can connect and
exchange mutually owned values [16]. The use of the platform reduces costs or creates
new added value that has not occurred before, which is the most important element of
the platform. The platform defines an open infrastructure to encourage outside pro-
ducers and consumers to interact and create value, and corresponding governance to
create value for all participants [17, 18]. Platforms are defined from a manufacturing
perspective to a transaction point in the ICT industry. Platforms are also sometimes
expressed as components, modules, parts, objects, subsystems, interfaces, and struc-
tures, where products, services, and technology serve as intermediaries for groups of
more than platform [19, 20].

A government provides various types of digital services to the public and builds
platforms to use data and information as a source for new value-added production.
Therefore, a ‘platform government’ is where the functions and roles of the government
are constructed and used on a platform basis. This suggests the promotion of gov-
ernment digitization, reduced processes, and increased public participation [21]. Since
O’Reilly [22] claimed Government as a Platform, the terms Open Gov and Gov 2.0
have been widely used [22]. Gartner’s technology for government, announced in 2018,
is also an emerging technology related to platform government [23]. Platform-based
government claims much more than existing technology-driven government by
inducing public participation, including participation in civil society. Moreover, the
existing developers, service providers, private platforms, and sustainable orchestra

70 S.-Y. Shin and C.-K. Suh

roles among the people are most important for platform-based governments. Platform-
based governments also believe that the role of a small but intelligent government is
important to create information from existing governments, namely various services
using data [24, 25]. Currently, automation and efficiency are emphasized in the intel-
ligent information society, and the demand for greater government ability to solve
problems and efficiency in providing public services is increasing. As an alternative to
this, the role and response of platform government are emphasized [26]. Using a
platform, the government maximizes the effects of interacting with the private sector
based on networks and data. In order to continuously create new value, the key is to
create a platform that connects the stakeholders related to the public service in one
chapter. To improve the problem-solving ability and efficiency of the government in
various changing environments, a platform government needs to strengthen and cope
with various governmental capacities [27]. When analyzing the present government
service type in terms of setting up the government role as a platform, the results
emphasize the importance of interactive communication so the opinions of the citizens
are not made as policy by concentrating only on unilateral information provision. In
order to participate in online citizenship, a paradigm shift is required, such as a plat-
form government that can lead to innovation in government services based on public
data [15, 28, 29]. The Korea National Informatization Strategy Committee, which
discussed the direction of e-government, classified the components of a platform
government as infrastructure, governance, and services including technology, and
defined the requirements for each component [30].

A platform government is based on the establishment of collaboration and a gov-
ernance system of the main categories of government and the people. This will require
systematic support, interdepartmental collaboration, private-public cooperation, gov-
ernment and civilian cooperation, standardized work to induce a natural ecosystem, and
the preparation of exemplary agreements. A previous study already classified gov-
ernment information based on the timing of informatization, which classified 1998 and
thereafter as e(lectronic)-government, and t(ransformational)-government after 2005 as
the time after the expansion of services, and l(ean)-government after 2010 with process
establishment and the expansion of governance discussions as platform-based data and
citizen participation became important [31]. There are some activity between citizen
and government though platform after the e-government. Therefore collected data
period is 1998–2017 for 20 years in this paper.

Gartner suggests a government maturity model that is divided into five phases: 1.
Initial, 2. Development, 3. Defined, 4. Managed, 5. Optimizing, where the elements
measuring platform government are identified as IT-centric, customer-centric, things-
centric, and ecosystem-centric [23]. As shown in Fig. 2, there are nine main compo-
nents of platform government: Customers/Business, Partners, Things, Employees,
Customer-Experience, Ecosystems, Data & Analytics, IoT, and Information Systems
[23].

Discovering Platform Government Research Trends 71

3 Research Design

3.1 Research Topic

This study investigated the changes in platform government using data analysis
approaches from previous studies. In particular, we looked at the emergence of the term
“platform,” which first appeared in terms of private services, along with how
researchers have interpreted the meaning of “platform government”, which could give
meaning to the direction of the implementation of platform government. So it was
discussed as research questions when the platform government was actively debated,
the classification of the discussion topic, and how the classification changed over time.
Therefore, the research project was conducted as follows:

Research Question 1: Is the discussion on platform government increasing?
Research Question 2: What are the key topics related to platform government?
Research Question 3: What are the changes over time in the key topics related to
platform government?

3.2 Data Collection and Analysis

To analyze the research trends on platform government, an initial search for the key-
word ‘platform government’ in the Science Direct DB over a 20–year period (1998–
2017) collected 5,810 paper titles and abstracts. The research trends were then analyzed
using topic modeling and a crawling engine, and the analysis infrastructure for col-
lecting papers utilized the Korea Information Agency big data analysis system and text
mining topic modeling packages, such as tm, ldavis, and stm based on R. For the data
pre-processing process, non-English language removal and NLP (Natural Language
Process) were used. This study also conducted a basic frequency analysis using existing
research results in the field of platform government, and then extracted topics on
platform government using a topic analysis text mining technique. STM is similar to
LDA but provides more useful statistical data. In particular, statistical significance can
be verified through the prevalence from STM. In this paper, prevalence was used the

Fig. 2. Platform government components

72 S.-Y. Shin and C.-K. Suh

possibility of expressing the topic over time. It also provides a textprocessor() function
to preprocess text for text minig. There are several graphical functions that are basically
provided to compare topics. It is also known that STM is usually three times faster than
LDA [8].

Based on the keyword ‘platform government’, 40,412 words were extracted from
5,810 papers that appeared during the last 20 years (1998–2017) after removing the
stop words. Next, the relationship between the word frequency in each abstract and the
subcategories of platform government was analyzed (Fig. 3).

4 Research Results

Research Question 1: Discussions about platform government are on the rise.
In terms of platform government as a keyword: 2017 (1,235 cases), 2016 (1,177 cases),
2015 (888 cases), 2014 (602 cases), 2013 (482 cases), 2012 (338 cases), and 2011 (242
cases). Platform-related contents appeared in earnest in 2005 (65 cases), and in 2008
(118 cases) the term platform government was already widely used. Research on
platform government has since continued to increase, with the largest number of ref-
erences in 2017 at 1,235 and 1,117 in 2016. Thus, active debate on platforms has been
ongoing from 2010 until 2017. Moreover, the government has shown an increasing
interest in platform government since 2008, which is consistent with the findings about
UK platform government, which started in 2003 and became active after 2008 [25].

Research Question 2: Platform government-based data were classified into nine
subtopics.

To determine the optimal number of topics for the topic modeling, two indicators of
Held-out Likelihood and Semantic Coherence were simultaneously reviewed. The
increase in Held-out Likelihood, considered a stable topic as the number increases,
slowed down after nine, while the semantic coherence index, which shows a high value
in the case semantic cohesion, indicated semantic cohesion at four and nine semantic
when calculating the number of topics [4, 14] (Fig. 4).

In addition to dividing the components of platform government found in the
platform government literature study, the value determined by the above Optimal Index
was also applied, optimal K = 9 [11]. Topic models library was used for LDA and set a
using K. The alpha value was set to a = 50/K by previous studies. Therefore, the value

Fig. 3. Research and analysis procedure

Discovering Platform Government Research Trends 73

of a was derived by substituting K derived from various indicators [9]. It took 205.71 s
using LDA. Also EM (Expectation-Maximization) algorism use 76 times for making
topic modeling. As the amount of documents grows, or the number of topics increases,
so does the need for parallel processing. In this paper, we do not need to consider
experiments or parallel processing such as WisdomLDA. WisdomLDA is one of
methods should provide better performance for larger word topic table [32].

The distribution of the collected documents by topic was as follows. Topic 1:
Customer Experience (11.77%), Topic 2: Things (10.76%), Topic 3: Partners (9.47%),
Topic 4: Information Systems (13.87%), Topic 5: Data & Analytics (8.41%), Topic 6:
IoT (7.57%), Topic 7: Business (12.69%), Topic 8: Ecosystems (14.22%) and Topic 9:
Employees (11.23%). The keywords for each topic are listed below in the order of an
increasing beta value per topic. The length of the small straight line in the table shows
the proportions by topic. The word next to the topic shows the word with the highest
frequency per topic (Fig. 5).

The distribution of each topic is shown in the figure below using LDAvis, together
with the frequency of the keywords [33]. The distribution of topics derived from the
LDAvis is shown on the left side of Fig. 6, and the top 30 words such as data, local,
innovation, market, and governance are shown on the right side.

Fig. 4. Diagnostic values by the number of topics

74 S.-Y. Shin and C.-K. Suh

Some details of the topics were as follows. Ecosystem (Topic 8) showed a high
frequency of such words as national, policy, governance of platform government. The
word probability distributions of education and economy related to platform gover-
nance were also high, which was attributed to the fact that this emphasizes the eco-
nomic aspect of the platform structure [18, 34]. Plus, important discussions were
included on governance-related policies, costs, and the role of government, along with
the construction of information management systems, policies, services to manage
information, linkage between government and industry, and an evaluation of the level

Fig. 5. Topics with keywords

Fig. 6. Topics with LDAvis

Discovering Platform Government Research Trends 75

of information governance construction. The Employees (Topic 9) topic analysis
suggested an interim compatibility between central and local government services
needed to be considered [35]. Plus, cloud computing and the emergence of a mobile
computing environment have had a great impact on the platform government service
environment. The distribution of e-government and its management often included
discussions on the services of platform government [20], while discussions related to
various stakeholders, such as suppliers and users, and control over information such as
the Internet, security, and information access management were also found. The central
government should be transformed into a cloud-centric sharing and cooperation
structure, local governments should compete in good faith through responsibility and
innovation, central government should be decentralized to become platform-based
government, and local administrative information should be as open as possible to
encourage the participation of residents [35]. Information Systems (Topic 4) high-
lighted many words, such as process, system, and management, along with references
to systems, technology, design and organization for information services, information
management, references to quality assurance, and utilization of data. Moreover, the
Korean government and other governments are in the process of promoting the open
use of public data and promoting the establishment of a data platform for scientific
administrative and government innovation [36].

A comparison of the major topics can be summarized as follows. Topic 1 (Cus-
tomer Experience) and Topic 5 (Data & Analytics) show that sharing and using
information and word platform are connected and two topics, so data open and sharing
by platform users is important. The comparison results between topics are shown in
Fig. 7 below.

Research Question 3: What are the time-based changes in key areas of platform
government?

Fig. 7. Comparison between topics

76 S.-Y. Shin and C.-K. Suh

Topic modeling was used to investigate the temporal flow of each topic over 20
years using STM. Jassen and Estevez [31] divided government developments into three
phases, e-government emphasizing technologies from 1998 to 2005, t-government
focused on process from 2005 to 2010, and l-government using platforms for strong
empowerment following the financial crisis in 2010 [31]. These time periods are shown
by a dotted line in the table below. Topic 9 (Employees) shows a steady increase in
interest over time, with a growing need to improve sustainability, such as cross-
platform policies and relationships with stakeholders. Information Systems (Topic 4)
shows a continuous decrease over time due to the appearance of new technologies,
such as cloud computing and mobiles, indicating technical stability. This is consistent
with the results of Jassen and Estevez [31] who reported a reduced importance of
information systems as lean government uses platforms to engage the surrounding
partners (Fig. 8).

Fig. 8. Topics over time (1998–2017)

Discovering Platform Government Research Trends 77

5 Discussion

This study investigated the trends of platform government based on a topic model
analysis of interest areas and changes in related research. The trend analysis of platform
government discussions showed a continuous increase from 2008, with an active
increase from 2010 that has been sustained until 2017 [25]. This means a growing
interest in platform government, a search for ways to effectively build and utilize
platform government, and a market need for effective operation with a platform gov-
ernment base. A recent OECD report discussed platforms in the context of govern-
ments Going Digital, and that the role of future central government should be a
platform for creating, evaluating, and coordinating competition rules between local
governments, with major agendas at its heart: civic engagement, public data utilization,
and sharing cloud, policy, and institutional practices [37].

For the topics related to research question 2, platform government was classified
into 9 topics: Customer Experience, Things, Partners, Information Systems, Data &
Analytics, IoT, Business, and Ecosystem. For Ecosystem, which is the governance part
of platform government, there was a high frequency of the words policy, government,
the roles related to government, and service interoperability. The topic modeling also
revealed the need to make use of various stakeholders and organizations. For Infor-
mation Systems, the keywords were process, system, and management, along with
references to relevant systems and equipment, technology, structure and organization
for information services, information management, and quality assurance. In a com-
parative analysis of the two topics, Topic1 (Customer Experience) and Topic 5 (Data &
Analytics) were highly related with information and openness, indicating the impor-
tance of data sharing to platform users.

Research question 3 examined the trends of the topics, including expression over
time using the STM prevalence in existing literature on government research. The
results showed that existing platforms changed the characteristics of government in
2005 and 2010 [31, 34]. In particular, the field of interest shifted from platform con-
struction to utilization of the data coming through the platform. This also reflects the
shift of Korean government, which recently opened a data platform to provide more
public information [36]. Moreover, the government use of social media is also effective
for platform government [38]. The topic trends showed an increasing interest for each
topic over 20 years, suggesting that monitoring and benchmarking the driving topics in
other countries can be useful for making decisions. As shown in Fig. 9, the red arrows
next to certain topics indicate a recent increase of interest based on the current topic
analysis. The following table also shows a comparison of the topics derived in this
study and pilot innovation projects to promote platform government by Korean gov-
ernment. This type of analysis can be valuable when making major policy decisions,
especially in the case of longer trends and extensive data.

78 S.-Y. Shin and C.-K. Suh

6 Conclusion

Various efforts for more efficient government operation have been made using tech-
nological development. The present study analyzed the market perception of platform
government by analyzing previous studies on platform government, analyzing the data
of related research papers, and analyzing the operation of platform government and
present future directions. A search for the keyword ‘platform government’ in the titles
and abstracts of the Science Direct DB for the period 1998–2017 yielded 5,810 papers,
and the research trends were then analyzed using text mining and topic modeling as
tools for big data analysis.

First, the text mining showed an active increase in discussions on platforms from
2010 to 2017, indicating that platform government is being perceived as an important
element and requires continued application and research on how to utilize it efficiently.

Second, the topic modeling revealed nine topics and multiple indicators for plat-
form government. The keywords for each topic were determined using a probability
distribution, and the relative interest among the topics was shown based on text mining.
The implications for the growing ecosystem of platform government were focused on
managing the relationship with stakeholders related to the progress of informatization,
the regulation of industry based on new technology, and the role of the government and
enhancing transparency. This is clearly a shift from discussing the provision of sub-
stantial services in a government-led infrastructure to balancing central and local
government through the role of platforms and the range of control over the role of the
government to reflect the needs of diverse stakeholders.

Third, the trend of each topic over 20 years showed a recent increased interest in
platform government and the key focus of related research. In particular, platform
government under the 4th industrial revolution emphasized the importance of IoT,
considering the relationship between data and other stakeholders and objects. However,
recent changes in the 4th industrial revolution are taking more advantage of data due to
the development of relevant technologies, indicating that platform government should

Fig. 9. Matching platform government topics and Korea platform projects (Color figure online)

Discovering Platform Government Research Trends 79

pay more attention to data rather than existing information and seek ways to open and
utilize data so it can be used by more people and actively engage citizens.

In this paper, topic modeling is applied to the research area of platform government,
but it can be border another area. Also future research will consider clustering or
labeling using such as citation information and visualizing evolution map creation. The
results of this study on platform government can also be used to understand the content
landscape, as a starting point for discussions and inquiry of the field at large, and as a
model for other fields to perform a similar analysis. Platform government is not a
specific technology, so the number of documents was initially relatively small. While
this data analysis of 20 years of research was able to provide the flow of one field, the
results can also be extended by trawling thesis DBs, adding other papers, and com-
paring with other related data such as newspaper articles. Thus, further investigation
and analysis are required in future studies.

References

1. The Innovation Growth Engine. Korea Government, Seoul (2018)
2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. J. Mach. Learn. Res. 3, 993–

1022 (2003). https://doi.org/10.1145/1015330.1015439
3. Wang, X., McCallum, A.: Topics over time: a non-Markov continuous-time model of topical

trends. In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge
Discovery and Data Mining, pp. 424–433, ACM (2006). https://doi.org/10.1145/1150402.
1150450

4. Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proc. Natl. Acad. Sci. 101, 5228–5235
(2004). https://doi.org/10.1073/pnas.0307752101

5. Amado, A., Cortez, P., Rita, P., Moro, S.: Research trends on big data in marketing: a text
mining and topic modeling based literature analysis. Eur. Res. Manage. Bus. Econ. 24, 1–7
(2018). https://doi.org/10.1016/j.iedeen.2017.06.002

6. Mimno, D., McCallum, A.: Topic models conditioned on arbitrary features with Dirichlet-
multinomial regression. UAI, pp. 401–418, arXiv preprint (2008)

7. Blei, D.M.: Probabilistic topic models. Commun. ACM 55, 77–84 (2012). https://doi.org/10.
1145/2133806.2133826

8. Reich, J., Tingley, D., Leder-Luis, J., Roberts, M., Stewart, B.: Computer-assisted reading
and discovery for student generated text in massive open online courses. J. Learn. Anal. 2,
156–184 (2014). https://doi.org/10.2139/ssrn.2499725

9. Steyvers, M., Griffiths, T.: Probabilistic topic models. In: Handbook of Latent Semantic
Analysis, vol. 427, pp. 424–440 (2007). https://doi.org/10.4324/9780203936399.ch21

10. Gohr, A., Hinneburg, A., Schult, R., Spiliopoulou, M.: Topic evolution in a stream of
documents. In: Proceedings of the 2009 SIAM International Conference on Data Mining,
pp. 859–870. Society for Industrial and Applied Mathematics (2009). https://doi.org/10.
1137/1.9781611972795.74

11. Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: Proceedings of the 23rd International
Conference on Machine Learning, pp. 113–120. ACM (2006). https://doi.org/10.1145/
1143844.1143859

12. Jo, Y., Hopcroft, J.E., Lagoze, C.: The web of topics: discovering the topology of topic
evolution in a corpus. In: Proceedings of the 20th International Conference on World Wide
Web, pp. 257–266. ACM (2011). https://doi.org/10.1145/1963405.1963444

80 S.-Y. Shin and C.-K. Suh

http://dx.doi.org/10.1145/1015330.1015439
http://dx.doi.org/10.1145/1150402.1150450
http://dx.doi.org/10.1145/1150402.1150450
http://dx.doi.org/10.1073/pnas.0307752101
http://dx.doi.org/10.1016/j.iedeen.2017.06.002
http://dx.doi.org/10.1145/2133806.2133826
http://dx.doi.org/10.1145/2133806.2133826
http://dx.doi.org/10.2139/ssrn.2499725
http://dx.doi.org/10.4324/9780203936399.ch21
http://dx.doi.org/10.1137/1.9781611972795.74
http://dx.doi.org/10.1137/1.9781611972795.74
http://dx.doi.org/10.1145/1143844.1143859
http://dx.doi.org/10.1145/1143844.1143859
http://dx.doi.org/10.1145/1963405.1963444

13. Margaret, E., Roberts, B., Dustin, T., Christopher, L., Jetson, L., Shana, K., David, G.: Rand
structural topic models for open-ended survey responses. Am. J. Polit. Sci. 1, 1–19 (2014).
https://doi.org/10.1111/ajps.12103

14. Mimno, D., Wallach, H.M., Talley, E., Leenders, M., McCallum, A.: Optimizing semantic
coherence in topic models. In: Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pp. 262–272. Association for Computational Linguistics
(2012)

15. Lathrop, D., Ruma, L.: Open Government: Collaboration, Transparency, and Participation in
Practice. O’Reilly Media, Inc. (2010)

16. David, S.E., Hagiu, A., Richard, S.: How Software Platforms Drive Innovation and
Transform Industries. The MIT Press, Cambridge (2006)

17. Baldwin, C.Y., Woodard, C.J.: The Architecture of Platforms: A Unified View. Platforms
Markets Innovation, pp. 19–44 (2009). https://doi.org/10.2139/ssrn.1265155

18. Gawer, A.: Platforms, Markets and Innovation. Edward Elgar Publishing (2011). https://doi.
org/10.4337/9781849803311

19. Choi, B.S.: Value creation platform. Donga Business Review: Platform Leadership, 2 (2012)
20. Galloway, S.: The Four: The Hidden DNA of Amazon, Apple, Facebook, and Google.

Penguin (2017)
21. Deloitte Consulting: Gov2020: A Journey into the Future of Government (2015)
22. O’Reilly, T.: Government as a Platform. Open Government: Collaboration, Transparency,

and Participation in Practice. O’Reilly Media, Sebastopol (2010)
23. A Digital Government Technology Platform is Essential to Government Transformation

Gartner (2018)
24. Chun, S., Stuart, W.S., Eduard, H.: Government 2.0: making connections between citizens,

data and government. Inf. Polity 2, 1–9 (2010)
25. Brown, A., Fishenden, J., Thompson, M., Venters, W.: Appraising the impact and role of

platform models and Government as a Platform (GaaP) in UK government public service
reform: towards a Platform Assessment Framework (PAF). Gov. Inf. Q. 34, 167–182 (2017).
https://doi.org/10.1016/j.giq.2017.03.003

26. Master Plan for the intelligent information society. Ministry of Science and ICT (2017)
27. Lee, G.: An Exploration of Next Generation’s eGovernment Focused on Platform

Perspectives: The Possibilities and Limits in Korea. Korean Public Administration
Association (2012)

28. Robinson, D.G., Yu, H., Zeller, W.P., Felten, E.W.: Government data and the invisible hand.
Yale J. Law Tech. 11, 159 (2008)

29. Danneels, L., Viaene, S., Van den Bergh, J.: Open data platforms: discussing alternative
knowledge epistemologies. Gov. Inf. Q. 34, 365–378 (2017). https://doi.org/10.1016/j.giq.
2017.08.007

30. Shin, I.H.: e-Gov Platform Policy for Future Governments. The Korea National Informa-
tization Strategy Committee (2012)

31. Janssen, M., Estevez, E.: Lean government and platform-based governance—doing more
with less. Gov. Inf. Q. 30, 1–8 (2013). https://doi.org/10.1016/j.giq.2012.11.003

32. Wisdom LDA: https://github.com/crabyh/WisdomLDA. Accessed 10 Aug 2019
33. Sievert, C., Shirley, K.: LDAvis: a method for visualizing and interpreting topics. In:

Proceedings of the Workshop on Interactive Language Learning, Visualization, and
Interfaces, pp. 63–70 (2014). https://doi.org/10.3115/v1/w14-3110

34. Martin Kenney, J.Z.: Choosing a future in the platform economy: the implications and
consequences of digital platforms. In: Proceeding of Conference Kauffman Foundation New
Entrepreneurial Growth (2015). https://doi.org/10.4324/9781315717128-8

35. Lee, M.H.: Innovation policy for local government. CREN (2017)

Discovering Platform Government Research Trends 81

http://dx.doi.org/10.1111/ajps.12103
http://dx.doi.org/10.2139/ssrn.1265155
http://dx.doi.org/10.4337/9781849803311
http://dx.doi.org/10.4337/9781849803311
http://dx.doi.org/10.1016/j.giq.2017.03.003
http://dx.doi.org/10.1016/j.giq.2017.08.007
http://dx.doi.org/10.1016/j.giq.2017.08.007
http://dx.doi.org/10.1016/j.giq.2012.11.003
https://github.com/crabyh/WisdomLDA
http://dx.doi.org/10.3115/v1/w14-3110
http://dx.doi.org/10.4324/9781315717128-8

36. Data Platform using Public Data. Ministry of the interior and safety of Korea (2018)
37. Measuring online Platforms and Cloud Computing in National Accounts. OECD (2018)
38. Panagiotopoulos, P., Bowen, F., Brooker, P.: The value of social media data: Integrating

crowd capabilities in evidence-based policy. Gov. Inf. Q. 34, 601–612 (2017). https://doi.
org/10.1016/j.giq.2017.10.009

82 S.-Y. Shin and C.-K. Suh

http://dx.doi.org/10.1016/j.giq.2017.10.009
http://dx.doi.org/10.1016/j.giq.2017.10.009

J2J-GR: Journal-to-Journal References
by Greek Researchers

Leonidas Pispiringas1 , Dimitris A. Dervos2(B) , and Georgios Evangelidis1

1 University of Macedonia, 54636 Thessaloniki, Greece
lpispir@gmail.com, gevan@uom.gr

2 International Hellenic University, 57400 Sindos, Greece
dimitris.dervos@gmail.com

Abstract. The Hellenic Academic Libraries Link (HEAL-Link, https://
www.heal-link.gr/) operates since 1998. Its members include all the
academic and/or research institutions operating under the auspices of
the Hellenic Ministry of Education, plus the Academy of Athens, the
National Library, and the Institute of Educational Policy. The present
paper reports on the research effort undertaken in order to facilitate the
decision-making process and the development of a HEAL-Link strategy
plan. The focus is on scientific journals the Greek academic/research
community publish their works with, and on the journals they reference.
It is assumed that when a researcher makes a reference to an article in a
scientific journal, the latter is considered to comprise a valuable source
of information. The more references made to articles published with a
given journal, the higher the value of the latter as a source of scien-
tific information to the HEAL-Link user community. In order to exploit
the aforementioned research goal, bibliographic metadata from nearly
63,000 research publications have been collected and pre-processed. The
publications involve at least one (co-)author affiliated to a Greek aca-
demic/research institution. They span over a period of nine years (2010–
2018), and nearly 10,000 journals. The bibliographic data include meta-
data on subject (discipline) area(s). The findings are made public via
a Web application (http://j2j.heal-link.gr/). The latter utilizes interac-
tive graphs that facilitate the interpretation of the relevant bibliography
data, and it is seen to comprise a springboard for conducting further
data analytic and mining tasks.

Keywords: Bibliography metadata · Journal-to-Journal references ·
Data visualization · Journal evaluation

1 Introduction

The HEAL-Link Consortium actively participates in projects, initiatives, and
relevant developments that shape the scientific publications landscape in Greece.
This is done in a way that is beneficial to its members and to the scientific
community, in general. Its main goals are:
c© Springer Nature Switzerland AG 2019
K.-D. Schewe and N. K. Singh (Eds.): MEDI 2019, LNCS 11815, pp. 83–95, 2019.
https://doi.org/10.1007/978-3-030-32065-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_6&domain=pdf
http://orcid.org/0000-0002-7111-094X
http://orcid.org/0000-0002-5441-0086
http://orcid.org/0000-0003-1639-2152
https://www.heal-link.gr/
https://www.heal-link.gr/
http://j2j.heal-link.gr/
https://doi.org/10.1007/978-3-030-32065-2_6

84 L. Pispiringas et al.

– to establish common policies on journals subscriptions, and promote the ratio-
nal growth of its journals collection,

– to combine financial savings with access to a large number of electronic
resources that meet the educational and research needs of its user community,
and

– to negotiate the signing of joint subscription agreements with publishers,
and provide/manage remote access to electronic resources and information
services (the electronic journals included) to its members.

The HEAL-Link Consortium receives central funding from the Hellenic Min-
istry of Education to provide access to electronic scientific subscriptions to its
members. In 2019, the latter represent 661,647 users, 13,536 of which are aca-
demic faculty members. During the 1998–2018 period, the HEAL-Link users
have conducted nearly 85 million article downloads from a total of 17,100 scien-
tific journal titles1. Access to the latter is made possible via license agreements
made with twenty-three (23) e-journal publishers. To effectively negotiate with
the latter, HEAL-Link elaborate on a strategy plan involving the evaluation of
journals on the basis of their usage as reference (source) material by the Greek
academic/research community.

In order for the HEAL-Link consortium to exploit its financial resources and
meet the needs of its academic community when it comes to accessing scientific
publications, a set of criteria have been depicted that are taken into consideration
and shape HEAL-Link’s actions in relation with the evaluation of the value a
scientific journal represents to the Consortium’s members and user community.
Criteria that relate to the drafting of a strategic plan for HEAL-Link when
it comes to negotiating with the publishers who provide access to electronic
subscriptions. The scientific journals evaluation process emphasizes on the usage
of each journal as reference (source) material by the Greek academic/research
community. The criteria used include:

– What journals do the Greek researchers publish with, and what (other) jour-
nals do they reference in the works? Once this question is addressed, its
outcome could very well comprise a means for “quantifying” the value a jour-
nal represents to the Greek research community. Having done so, it will then
become possible to quantify the effect/impact the discontinuation of a sub-
scription will have to HEAL-Link members.

– The number of full-text downloads per scientific journal, conducted by HEAL-
Link users over given time periods. This information is provided by the cor-
responding publishers.

– The journal’s interdisciplinary value.

A journal can be rated to be important for HEAL-Link by also considering its
scientific impact at the international level. It represents added value for HEAL-
Link when Greek researchers reference its articles in their works, and, to a lesser
extent, when they publish their works with it. The present paper focuses on
1 HEAL-Link, https://www.heal-link.gr/.

https://www.heal-link.gr/

J2J-GR: Journal-to-Journal References by Greek Researchers 85

scientific journals the Greek academic/research community publish their works
with, and on the journals they reference in their works. The terms “citation” and
“reference” are often used interchangeably. Some researchers define them as two
complementary actions: “reference” as “acknowledgement to” and “citation”
as “acknowledgment from” [7]. It is assumed that when a researcher makes a
reference to a scientific article in his work, the journal the latter is published
with deserves the credit for being a valuable source of scientific information.
In this respect, the more references made by researchers to articles published
with a given journal, the higher is the value the latter as a source of scientific
information to the HEAL-Link user community.

2 Related Work

Data visualization is important because it gives the data a specific form of expres-
sion so that they are broadly readable and understandable, and it helps to inter-
pret and analyze results. Data visualization is the interpretation of information
in visual terms by forming a mental picture based on data and the application of
suitable methods to put data into visible form [5]. Additionally, [1] defines data
visualization as “the use of computer supported, interactive, visual representa-
tions of data to amplify cognition”, while [8] point out that “data visualization
is for exploration, for uncovering information, as well as for presenting informa-
tion. It is certainly a goal of data visualization to present any information in
the data, but another goal is to display the raw data themselves, revealing their
inherent variability and uncertainty.”

Most related research work in this field and especially in bibliometrics
has been done on science mapping. Science mapping aims to build sci-
ence/bibliometric maps that describe how specific disciplines, scientific domains,
or research fields are conceptually, intellectually, and socially structured [3]. It
comprises an important research topic in the field of bibliometrics [4]. Science
mapping involves a number of discrete steps: data retrieval, preparation and
preprocessing, network extraction, mapping, analysis and visualization [3]. The
preprocessing step is the most critical one. Different types of maps have been
studied, some revealing relations among authors, documents, journals, or key-
words, usually constructed by utilizing citations, co-citations, or bibliography
coupling based on co-occurrences of keywords in documents [4]. Many software
tools on science mapping have been developed, reviewed, analyzed and evaluated
[3]. The ones most widely used in the literature can be found in [2] and [3].

Visualization tools have always been key elements not only in science and
research, but also in any industry relating to the production of data that can be
visualized [6]. The aim is to assist anyone who is involved in the production of
knowledge, or in the decision making process. Visualization reveals information
that cannot be found as such in raw data. The ability to see data clearly creates
a capacity for building intuition that is unsurpassed by summary statistics [6].

86 L. Pispiringas et al.

The two most popular subscription-based bibliographic databases are (a) the
Web of Science2, an online subscription-based scientific citation indexing service
maintained by Clarivate Analytics, and (b) Scopus3, Elsevier’s abstracts and
citations database. Both vendors have built online applications for data visual-
ization on various aspects of the scientific environment, and on their publications.

InCites from Clarivate Analytics4 is a citation-based evaluation tool for aca-
demic and government administrators to analyze institutional productivity and
benchmark output against peers and aspirational peers in the national or inter-
national context. It provides the means to gather and analyze data with multi-
ple visualization types that communicate effectively the collected information,
helping the subscribers make informed decisions, and assisting strategic initia-
tives. In higher education, an institution may specify various criteria in order to
determine its peer and aspirational peer institutions. Peer institutions are other
institutions that are at a similar institutional level and they have similar institu-
tional characteristics. Aspirational peer institutions are institutions with similar
institutional characteristics, yet they have better key performance indicators,
such as significantly higher graduation rates and higher level performance. They
are a want to be state of the institutions that set them as asparational. Peer and
aspirational peer institutions can be defined for the overall institution, but they
can also be defined for different schools or departments. Peer and aspirational
peer institutions are appropriate for benchmarking purposes.

SCImago Journal & Country Rank from Elsevier5 is a publicly available
portal that includes journal and national scientific indicators developed from
the information contained in the Scopus database. These indicators can be used
to assess and analyze scientific domains from journals to country rankings. The
SCImago Journal & Country Rank network visualization tools maps multiple
networks based on each journal selection. The information visualization projects
Shape of Science, Subject Bubble Chart and World Report aim to reveal the
structure of science. They involve the construction of real time maps and bubble
charts offering detailed information for the analysis of the world as whole, plus
for each one of eight large geographic regions.

3 Data Collection, Preparation and Unification

In the direction of exploiting the aforementioned research goal, bibliographic
metadata from nearly 63,000 research publications have been collected and pro-
cessed. The collection consisted of research publications involving at least one
(co-)author affiliation to a Greek HEAL-Link member academic/research institu-
tion. The Scopus database was used to retrieve research publications spanning
a period of nine years (2010–2018) and involving nearly 10,000 journals. The
PostgreSQL RDBMS was used to organize the bibliographic data collection.
2 https://clarivate.com/products/web-of-science.
3 https://www.scopus.com.
4 https://clarivate.com/products/incites.
5 https://www.scimagojr.com/.

https://clarivate.com/products/web-of-science
https://www.scopus.com
https://clarivate.com/products/incites
https://www.scimagojr.com/

J2J-GR: Journal-to-Journal References by Greek Researchers 87

A number of models exist that classify scientific journals (Library of Congress
classification, Web of Science, Scopus ASJC schema, etc.). We adopted the Sco-
pus ASJC (All Science Journal Classification System) schema6. Our decision was
based on the fact that the ASJC schema involves a small and manageable number
of subject areas facilitating the handling of important cognitive areas/categories.
ASJC is a formal model used by many researchers. It involves 3 levels of classi-
fication. We have decided to use the second level which comprises of 27 subject
categories. Bibliographic data are coupled with metadata on subject (discipline)
area(s). This information will be used to identify journals of interdisciplinary
value during the next stages of our research.

To harvest the publications made during the 2010–2018 period by Greek
researchers as well as the references they make to other journals, two API services
were used: the Crossref REST API7, and the Scopus APIs8.

In order to make the dataset consistent and to further improve the accuracy
of our research results, a set of data preparation/cleansing tasks were conducted.
During the data harvesting stage, the Scopus APIs service was used to harvest
all publications involving at least one (co-)author who is affiliated to a Greek
academic/research institution.

Table 1 presents the number of publications retrieved, grouped by publication
type.

Table 1. Information about the publications

Publication type Count

Article 47035

Article in Press 1320

Book 341

Chapter 3437

Conference Paper 15271

Editorial 1644

Erratum 242

Letter 813

Note 467

Review 4094

Short Survey 96

Total 74760

The book and chapter type publications, plus any other publication not
assigned ISSN number were removed from the dataset. ISSN is a unique 8-
6 https://service.elsevier.com/app/answers/detail/a id/15181/supporthub/scopus/.
7 https://api.crossref.org.
8 https://dev.elsevier.com/sc apis.html.

https://service.elsevier.com/app/answers/detail/a_id/15181/supporthub/scopus/
https://api.crossref.org
https://dev.elsevier.com/sc_apis.html

88 L. Pispiringas et al.

digit identifier assigned to periodical publications, irrespective of their medium
(print or electronic)9. For the publications data used, ISSN primarily identifies
scientific journals.

The publications harvesting stage was followed by the harvesting of metadata
relating to the references made by the published works. The references harvesting
process was split into two sub-processes. One for works published with Elsevier
journals, and one for all other publications. This became necessary due to Else-
vier’s not making available to the Crossref REST API the references data of
their published works. A separate data harvesting stage was conducted using
the Scopus API in order to harvest the Elsevier journals references data. Most
of the publications data records retrieved via the Crossref REST API include
the corresponding references lists. The latter are of a diverse format, one that
lacks a specific pattern even for works published with the same publisher. As an
example, the digital object identifier (DOI)10, which is the most important field
as it is explained below, is either not present in the Crossref record, or it exists
in a field of its own, or it is incorporated alongside with other information in
other fields.

Today, nearly all published works are assigned a unique DOI. The latter is a
unique alphanumeric string assigned by a registration agency (the International
DOI Foundation11). It is used to identify content and provide a persistent link to
its location on the Internet. As such, the DOI identifier facilitates the retrieval
of the corresponding scientific journal metadata. In this respect, for the Crossref
records that would not conform to a pre-specified pattern, the DOI identifiers
were used to track down and retrieve the corresponding (referenced) journal
metadata. For the Crossref records that lacked a DOI identifier, a separate data
harvesting stage was conducted in order to retrieve the ISSN number of the
journal each (referenced) work was published with.

The Scopus API is more coherent than the Crossref REST API. Almost all of
Scopus API retrieved works include the corresponding references list, including
unique identifiers for each one member of the latter (DOI, or Scopus identifier12).
Unfortunately, it imposes quotas that restrict API-based data retrieval opera-
tions for an extended number of records. This is the reason why the Scopus APIs
were used for all the references that could not be harvested from the Crossref
REST API. An effort was made to use the Scopus APIs for as small of a number
of records as possible and by doing so remain within the Scopus imposed quotas.

The next stage involved the harvesting of journal ISSNs, for journals the ref-
erenced works are published with. For references with DOIs, the ISSN identifiers
were harvested from the Crossref REST API. For references lacking their DOI
identifiers, data harvesting was conducted by using the Scopus APIs, plus the
Arxiv electronic preprints repository13. Additional checking was conducted to

9 https://www.issn.org/understanding-the-issn/what-is-an-issn/.
10 https://en.wikipedia.org/wiki/Digital object identifier.
11 https://www.doi.org.
12 https://www.elsevier.com/solutions/scopus/how-scopus-works/high-quality-data.
13 https://arxiv.org.

https://www.issn.org/understanding-the-issn/what-is-an-issn/
https://en.wikipedia.org/wiki/Digital_object_identifier
https://www.doi.org
https://www.elsevier.com/solutions/scopus/how-scopus-works/high-quality-data
https://arxiv.org

J2J-GR: Journal-to-Journal References by Greek Researchers 89

ensure that each sought for bibliographic record existed in the harvested dataset.
As a follow up, additional techniques were applied during the ISSN harvesting
stage. They included similarity checking on other fields, e.g. the journal title.
When the number of records to be checked was reduced to a small value, even
manual checking was conducted in order to identify the target journal.

4 The J2J-GR Service

In addition to conducting the relevant data (pre-)processing and unification
tasks, a Web application has been developed and implemented utilizing inter-
active graphs to facilitate the interpretation of the findings14. Aiming for the
development of a powerful and informative Journal-to-Journal (J2J) associa-
tions service, the current version comprises one first step. It involves a dynam-
ically generated set of graph networks from the journal to journal references
data, focusing on references originating from publications involving at least one
(co-)author who is affiliated to a Greek HEAL-Link member institution (target
authors population). In this respect, the current version of the service targets
a specific population of authors by considering scientific publications the latter
have made during the 2010–2018 years period. The interactive graphs gener-
ated present the references made by the published works of the targeted authors
population.

The application has been coded in R15, utilizing the RStudio16 project devel-
opment environment. To construct the interactive Web apps straight from R, the
Shiny17 R package and shinydashboard18 have been adopted.

As it is shown in Fig. 1, the user interface involves two sections. The sidebar
on the left, where the publication year, the subject area and the journal title are
set together with some relevant fine tuning parameters, and the main section
where the generated graph is presented.

The sidebar, marked as (1) in Fig. 1, includes three selection menus: one
for the publication year, one for the subject area, and one for the journal title
of interest. In addition, the sidebar includes three filters for narrowing down
the scope of the journals referenced by works published with the journal of
interest. Filter number one is used to specify a range for the number of references
made to other journal publications by the works of the target authors group
published with the set journal during the set publication year. Filter number
two enables the user to specify whether or not the list of referenced journals
includes publications of the target authors group during the set publication
year. Filter number three enables the user to include or exclude HEAL-Link
subscriptions/journals.

14 http://j2j.heal-link.gr/.
15 https://www.r-project.org.
16 https://www.rstudio.com.
17 https://shiny.rstudio.com.
18 https://rstudio.github.io/shinydashboard.

http://j2j.heal-link.gr/
https://www.r-project.org
https://www.rstudio.com
https://shiny.rstudio.com
https://rstudio.github.io/shinydashboard

90 L. Pispiringas et al.

F
ig
.
1
.
T

h
e

J
2
J
-G

R
W

eb
a
p
p
li
ca

ti
o
n

u
se

r
in

te
rf

a
ce

sc
re

en
(C

o
lo

r
fi
g
u
re

o
n
li
n
e)

J2J-GR: Journal-to-Journal References by Greek Researchers 91

The main page displays the graph generated in accordance with the settings
made in the sidebar. The graph consists of four parts: the journal’s title and
information marked as (2), a drop down list of referenced journals marked as
(3), the graph itself marked as (4), and its informative legend marked as (5) in
Fig. 1.

The journal selected in the sidebar becomes the central node in the graph.
Its title section lists the year of interest, the years that this journal includes
publications made by Greek researchers, the subject area(s) covered, and the
total number references made to other journals from works (co-)authored by
Greek researchers during the selected year. The graph is re-generated each time
a (new) filter is applied on the sidebar.

The thickness of the graph’s edges in Fig. 1 encodes the number of references
made to the corresponding journals. By hovering the mouse over any (target)
journal the user can see information, such as its title, the number of works (co-)
authored by Greek researchers published with it in the year of interest (if any)
as well as the number of such publications during the 2010–2018 period, plus the
number of references the central node (reference) journal makes to the journal
in question.

The content of the dropdown list marked as number 2 in Fig. 1 is displayed
in Fig. 2. It involves the same information displayed in the interactive graph,
this time presented in textual form. When the user selects a (target) list ele-
ment/journal, the corresponding graph node gets highlighted for the user to
click on and have it become the new central node, if so desired. In this respect,
the interactive graph supports a fan-out type of functionality. This is useful
especially in cases of the user having to navigate himself in a large numbers of
referenced (target) journals.

Fig. 2. The dropdown list. (Color figure online)

The graph’s legend marked as element number 5 on the screen shown in Fig. 1
encodes characteristics of the graph’s nodes/journals. Journal characteristics are

92 L. Pispiringas et al.

encoded by combining geometrical shapes and colors. Geometrical shapes depict
the inclusion or not of the journal in the HEAL-Link subscriptions list: a cir-
cle indicates a journal that HEAL-Link members have access to. This includes
HEAL-Link paid subscriptions, and HEAL-Link listed Open Access (OA) jour-
nals. On the other hand, a triangle indicates a journal outside the HEAL-Link
paid subscriptions and OA list. Colors encode additional journal characteristics
as follows: (a) blue indicates a journal that shares a common discipline area with
the central node in the graph the Greek researchers have published works with
in the year considered/selected, (b) turquoise indicates a journal that shares no
common discipline area with the central node, yet one where Greek researchers
have published works with in the year considered/selected, (c) red indicates a
journal that shares a common discipline area with the central node with no works
published by Greek researchers in the year considered/selected, and (d) yellow
indicates a journal that shares no common discipline area with the central node
with no works published by Greek researchers in the year considered/selected.

All journal nodes in the graph are clickable. When a user clicks on a node,
a new graph is generated with the clicked journal as the (new) selected central
node/journal. When this happens, the year selected remains the same, and the
(new selected) journal title appears in the areas marked (1) and (2) in Fig. 1.
If the new central node shares the same subject (discipline) area considered
so far then the name of the latter remains selected in the area marked (1) in
Fig. 1, otherwise a new subject area name (of the new central node) is selected
automatically. Lastly, the three filter settings in the area marked (1) in Fig. 1 they
are all reset. Figures 3 and 4 demonstrate the stated fan-out type of functionality
of the interactive graph shown in Fig. 1.

5 Future Work

Our next goal is to conduct exploratory analysis and data mining operations
on the HEAL-Link bibliographic dataset. It will be interesting, for example,
to consider the journals Greek researchers reference to next to the references
made by of all the authors who publish in the same journals with the former.
The exploratory analysis outcome could then be used to proceed and conduct
predictive analytics in order to identify new potential additions to the HEAL-
Link journals subscriptions list. Equally well, the same type of processing could
facilitate the HEAL-Link decision making process for cancelling subscriptions
dictated by budget cutbacks. Last but not least, the aforementioned analyti-
cal processing is expected to reveal journals of an interdisciplinary value to the
HEAL-Link user community, i.e. journals used as a scientific information source
material by researchers representing diverse scientific discipline areas. Such jour-
nals usually represent a high reference value to the HEAL-Link user community.

J2J-GR: Journal-to-Journal References by Greek Researchers 93

F
ig
.
3
.

G
ra

p
h

g
en

er
a
ti

o
n

a
ft

er
cl

ic
k
in

g
o
n

a
re

fe
re

n
ce

d
jo

u
rn

a
l
G

re
ek

re
se

a
rc

h
er

s
h
av

e
p
u
b
li
sh

ed
w

it
h

d
u
ri

n
g

th
e

se
le

ct
ed

y
ea

r.
(C

o
lo

r
fi
g
u
re

o
n
li
n
e)

F
ig
.
4
.
G

ra
p
h

g
en

er
a
ti

o
n

a
ft

er
cl

ic
k
in

g
o
n

a
re

fe
re

n
ce

d
jo

u
rn

a
l
G

re
ek

re
se

a
rc

h
er

s
h
av

e
n
o
t
p
u
b
li
sh

ed
w

it
h

d
u
ri

n
g

th
e

se
le

ct
ed

y
ea

r.
(C

o
lo

r
fi
g
u
re

o
n
li
n
e)

94 L. Pispiringas et al.

6 Conclusion

We report on the current of a research undertaken in order to exploit journal-to-
journal references by considering publications made by a specific target authors
group, namely researchers affiliated with academic institutions and research cen-
ters in Greece. The usage value each scientific journal represents is quantified by
considering the references made to it by published works involving at least one
(co-)author affiliation to a Greek academic and/or research institution. It should
be borne in mind that a specific journal may represent a different usage value
when considered in relation with the references received by works published by
Greek researchers, as compared to when the same journal is considered in rela-
tion with the references received by all works published in journals the Greek
researchers publish with. This possibility is worth exploiting further by con-
ducting exploratory and predictive analytics type of processing to bibliographic
datasets the Hellenic Academic Libraries Link (HEAL-Link) Consortium has
access to.

The work reported herewith comprises a first step towards the research goal
outlined in the previous paragraph. Having collected and pre-processed a first
collection of releveant bibliographic data, an attempt has been made to realize
the inherent journal-to-journal associations with respect to the references they
make to one another. A first (beta) version of the J2J-GR Web application has
been implemented and it is publicly available on the Internet. The focus is on
works published in the 2010–2018 years period, and the references made by Greek
researchers in works they have published with research journals during the stated
period. It is anticipated that the presentation of the relevant information in the
form of interactive graphs as in19 will evolve into a bibliographic data exploratory
tool useful to both the HEAL-Link Consortium and its user community.

References

1. Arnheim, R.: Visual Thinking. University of California Press, Berkeley (1969)
2. Borner, K., et al.: Rete-netzwerk-red: analyzing and visualizing scholarly networks

using the network workbench tool. Scientometrics 83, 863–876 (2010). https://doi.
org/10.1007/s11192-009-0149-0

3. Cobo, M.J., Lopez-Herrera, A.G., Herrera-Viedma, E., Herrera, F.: Science mapping
software tools: review, analysis, and cooperative study among tools. J. Am. Soc. Inf.
Sci. Technol. 62(7), 1382–1402 (2011). https://doi.org/10.1002/asi.21525

4. van Eck, N.J., Waltman, L., Dekker, R., van den Berg, J.: A comparison of two
techniques for bibliometric mapping: multidimensional scaling and VOS. J. Am.
Soc. Inf. Sci. Technol. 61(12), 2405–2416 (2010). https://doi.org/10.1002/asi.21421

5. Hinterberger, H.: Data visualization. In: Liu, L., ÖzsU, M.T. (eds.) Encyclopedia of
Database Systems, pp. 652–657. Springer, Boston (2009). https://doi.org/10.1007/
978-0-387-39940-9

6. Moody, J., McFarland, D., BenderdeMoll, S.: Dynamic network visualization. Am.
J. Sociol. 110(4), 1206–1241 (2005). https://doi.org/10.1086/421509

19 http://j2j.heal-link.gr/.

https://doi.org/10.1007/s11192-009-0149-0
https://doi.org/10.1007/s11192-009-0149-0
https://doi.org/10.1002/asi.21525
https://doi.org/10.1002/asi.21421
https://doi.org/10.1007/978-0-387-39940-9
https://doi.org/10.1007/978-0-387-39940-9
https://doi.org/10.1086/421509
http://j2j.heal-link.gr/

J2J-GR: Journal-to-Journal References by Greek Researchers 95

7. Narin, F., Carpenter, M.P.: National publication and citation comparisons. J. Am.
Soc. Inf. Sci. 26(2), 80–93 (1975). https://doi.org/10.1002/asi.4630260203

8. Unwin, A., Theus, M.: Graphics of a Large Dataset, pp. 227–249. Springer, New
York (2006). https://doi.org/10.1007/0-387-37977-0 11

https://doi.org/10.1002/asi.4630260203
https://doi.org/10.1007/0-387-37977-0_11

Deep Learning for French Legal Data
Categorization

Eya Hammami1(B), Imen Akermi2, Rim Faiz1, and Mohand Boughanem2

1 LARODEC Laboratory, University of Manouba, Manouba, Tunisia
eyahammami9@gmail.com

2 IRIT Laboratory, University of Toulouse 3, Toulouse, France
imen.akermi@irit.fr

Abstract. In current years, deep learning has showed promising results
when used in the field of natural language processing (NLP). Neural Net-
works (NNs) such as convolutional neural network (CNN) and recurrent
neural network (RNN) have been utilized for different NLP tasks like
information retrieval, sentiment analysis and document classification. In
this paper, we explore the use of NNs-based method for legal text classi-
fication. In our case, the results show that NN models with a fixed input
length outperforms baseline methods.

Keywords: Natural Language Processing · Deep learning ·
Convolutional Neural Networks · Document categorization · Legal
domain

1 Introduction

An automatic text classification system is a significant task. Indeed, there are
several applications that require the partition of natural language data into
groups, e.g. classifying opinions retrieved from social media sites, or filtering
spam emails, etc. In this work, we assert that law professionals would consider-
ably gain advantage from the type of automation supplied by machine learning.
This is especially the case of legal research, where the preparation of a legal
practitioner has to be assumed before defending a case, law professionals have
to take complicated decision regarding several aspects of a given case. Given
the data accessible on court decisions and machine learning techniques, it is
possible to train text categorization systems to predict some of these decisions.
Such system can act as a decision support system for law professionals. Many
popular approaches have been utilized in text classification like, Naive Bayes
classifier, Support Vector Machine, Logistic Regression... and most recently deep
learning methods such as Convolutional Neural Network (CNN) [7], Recurrent
Neural Network and Long-Short Term Memory (LSTM) [24,25]. Most of these
approaches are not particularly designed for the legal domain and are usually
trained with English text, which make them not appropriate to be used for
French text and particularly legal French text. Indeed, French is a language
c© Springer Nature Switzerland AG 2019
K.-D. Schewe and N. K. Singh (Eds.): MEDI 2019, LNCS 11815, pp. 96–105, 2019.
https://doi.org/10.1007/978-3-030-32065-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-32065-2_7

Deep Learning for French Legal Data Categorization 97

with a richer morphology and a more flexible word order, for this we need more
pre-processing to achieve good accuracy results and capture the hidden seman-
tics specially when dealing with legal texts.

In this paper, we propose NN-based model with dynamic input length layer
to process French legal data. We also present a comparative study between the
proposed approach and several baseline models.

This paper is organized as follows: we present in Sect. 2 a literature review
that examines the different approaches for text classification. In Sect. 3, we
describe our proposed model. Experiments are presented in Sect. 4.

2 Related Work

Text classification is a necessary task in Natural Language Processing. Tradition-
ally, linear classifiers are frequently used for text classification [1,2]. Joulin et al.
[3] indicate that linear models could scale up to a very huge dataset rapidly with
a proper rank constraint and a fast loss approximation. Recently deep learning
methods, such as recurrent neural networks: [5,6] and, Long short Term Mem-
ory (LSTM) have been used in language modeling. Those methods are adapted
to natural language processing because of their ability to extract features from
sequential data. Convolutional Neural Network (CNN) [7–9], usually used for
computer vision tasks, has been adopted in NLP for the first time in [4]. The
authors presented a new global max-pooling operation, which is revealed to be
efficient for text, as an alternative to the conventional local max pooling of the
original LeNet architecture [10]. Furthermore, they suggested to transfer task-
specific information by co-training different deep models on many tasks. Inspired
by the original work of kim [7], Ronan et al. [11] introduced a simpler architec-
ture with modifications consisting of fixed pretraining word2vec embeddings [12].
The author demonstrates that this model can already achieve state-of-the-art
performances on many small datasets. Dynamic Convolutional Neural Network
(DCNN) is a type of CNN which is introduced by [13]. Their approach outper-
forms other methods on sentiment classification. They use a new pooling layer
called a dynamic K-max pooling. This dynamic k-max pooling is a generaliza-
tion of the max pooling operator, which computes a new adapted K value for
each iteration. Thus, their network can read any length of an input. Zhang et
al. [14] introduced a character-level Convolutional Neural Network (Char-CNN);
Fig. 1 gives an illustration of their approach. Their model yields a better result
than other methods including a word-level CNN on sentiment analysis and text
classification. A one-hot encoding has been utilized as an input for this network.

Koomsubha et Vateekul [15] proposed a new Char-CNN model inspired by
the work presented in [14] with a capability to accept any length of input by
employing k-max pooling before a fully connected layer to categorize Thai news
from a newspaper. Kim et al. [16] presented a character aware neural language
model by combining a CNN on character embeddings with a highway LSTM on
subsequent layers. In addition, [17] analyzed a multiplicative LSTM (mLSTM)
on character embeddings and found that a basic logistic regression learned on

98 E. Hammami et al.

Fig. 1. Char-CNN introduced by Zhang et al. [14].

this representation can reach state-of-the art results on the Sentiment Tree Bank
dataset [18] with a few hundred labeled examples. We have found a rather small
body of previous works about automatic text classification of legal documents.
For example, support vector machines (SVMs) have been used to classify legal
documents like legal docket entries [19]. Sulea et al. [20] developed a mean prob-
ability ensemble system combining the output of multiple SVM classifiers to
classify French legal texts. Wei et al. [23] note preliminary studies in utilizing
deep learning for text classification in legal documents. They organized their
researches to compare deep learning results with results obtained using SVM
algorithm on four datasets of real legal documents. Results demonstrated that
CNN present better accuracy score with training dataset of larger size and can
be improved for the text classification in legal industry. Furthermore Neural Net-
works such as CNN, LSTM and RNN have been used for classifying English legal
court opinions of Washington University School of Law Supreme Court Database
(SCDB) [21]. The authors compared a few of machine learning algorithms with
the late Neural Networks systems and they found that a CNN network with
Word2vec vector performed better compared to the other and gave an accuracy
around 72.7%. Silva et al. [22] applied CNN on Brazilian court’s document and
they achieved good results. However, all of these works are generally based on
CNN model for text classification in legal domain and usually use static input
length. Therefore, we propose to experiment this model with dynamic input
length on French legal data. Experiments on real datasets highlight the rele-
vance of our proposal and open up many perspectives.

3 Proposed Model

Our suggested CNN is based on Undavia’s model [21]. In this model there is a
max pooling layer called temporal max pooling. It carries out an operation on
1-D. It is calculated by the following formula [15]:

Pr,c = maxs
j=1Mr,s(c−1)+j

where:

Deep Learning for French Legal Data Categorization 99

– M is an input matrix with a dimension of n × l
– s is a pooling size
– P is an output matrix with a dimension of n × l

s
– c is a column cell of matrix P
– r is a row cell of matrix P

Our contribution regards the pooling layer. We use k-max pooling layer rather
than max-pooling layer. The k-max pooling operation enables to pool the k max-
imum active features in p. It keeps the order of the features, but it is insensitive
to their accurate positions. It can also detect more delicately the number of times
where the feature is very activated in p. The k-max pooling operator is used in
the network after the highest convolutional layer. This allows the input to the
fully connected layers to be separate from the length of the input sentence. In
the middle of convolutional layers, the pooling parameter k is not fixed, but is
selected in a dynamic way to enable a sleek extraction of longer-range and higher
order features [13]. This pooling layer is calculated by the following formula [15]:

Pr,∗ = kmaxl
j=1Mr,j

where:

– M is an input matrix with a dimension of n × l
– K is an integer value
– P is an output matrix with a dimension of n × k
– ∗ shows that all columns in a row are calculated together
– r is a row cell of matrix P

The main differences between these two types of pooling layer consists in the
use of a gliding window. Max pooling is a method for down sampling data by
utilizing a gliding window on a row of data and choosing a cell which includes
a maximum value to be moved to the next layer. Differently, k-max pooling
doesn’t have a window. But it has a choosing operation carries out all data in a
row. Then, top k cells which have maximum value are chosen to be utilized in
the upcoming layer [15].

By applying K-max pooling in a convolutional neural network, as we propose,
we can definitely have a matrix which is able to fit into a fully connected layer
regardless of the length of an input. Figure 2 illustrates our proposed method.
On the convolutional and pooling layers, the length of data belongs to the input.
Whereas after the k-max pooling layer, the length of data in each document is
coequal. Thus, our neural network classification model is a little bit similar to the
one introduced by kim [24], but we modified the layers, by adding other layers
and modifying some of the original hyperparameters. Our model first makes an
embedding layer using word2vec as a pre-trained word embeddings, and next
makes a matrix of documents represented by 300 dimensional word embeddings.
We incorporate three sets of the following: a dropout of 0.5, a convolution layer
of 128 filters with a filter size of 3, and we set k value of k-max pooling to 5.
We also add a dense layer consisting of 128 units between two dropouts of 0.5
to prevent overfitting. Finally, the last layer is a dense layer with size of 6 equal
to the number of labels (categories) of our corpus.

100 E. Hammami et al.

Fig. 2. Proposed-CNN-architecture.

4 Experiments and Results

4.1 Dataset

We train and test our model on French legal dataset collected from data.gouv.fr,
it is a documentary collection of case law decision from the French courts of
appeal and the courts of the first degree which is composed of a selection of
decisions in civil matter and criminal. The dataset includes 452 documents (txt
files) organized into 6 legal categories, see Table 1. The number of documents
was limited because the project is in progress, and the annotation of documents
is done manually and exclusively by legal experts. Work is underway to try
to expand the corpus of learning. After the processing, the vocabulary size is
794659. We randomly divides it into training and test set with 80% and 20%
split.

Table 1. Legal categories (denomination of the classes was carried out by a legal
expert)

Number of
documents

Label

198 danais

91 dcppc

59 doris

50 styx

30 concdel

24 acpa

4.2 Pre-processing

Our model first removes special characters like punctuation, stopwords, numbers
and whitespaces. Second, we use French Spacy and NLTK modules of Python to
recognize the named entity, then we remove it from our corpus, on the assump-
tion that a smarter text categorization technique would be able to interpret the
layout more accurately. Third, we also use the TreetaggerWrapper module of

Deep Learning for French Legal Data Categorization 101

Python for lemmatization (the process of converting a word to its base form). The
reason why we choose lemmatization rather than stemming is because lemmati-
zation considers the context and converts the word to its meaningful base form,
whereas stemming just removes the last few characters, often leading to incor-
rect meanings and spelling errors. Finally, each word in the corpus is mapped
to a word2vec vector (we use pretrained word2vec models) before being fed into
the convolutional neural network for categorization.

4.3 Experiments

In this paper, we use accuracy as a measure in order to evaluate the proposed
model and the baseline models, which is calculated by:

Accuracy =
number of correctly classified documents

total number of classified documents

We also compare our results by F1. Given F1,i is F1 of class i. Suppose there are
C classes. The F1 using macro average is calculated by:

F1 =
∑C

i=1 F1,i

|C|
Where:

F1,i = 2 · precisioni · recalli
precisioni + recalli

We experimented 3 CNN based architectures: proposed approach (CNN-k-
max pooling), (CNN-max pooling) and (CNN-global max pooling). In CNN
with max pooling we use the same hyperparameters as CNN with global max
pooling, but we change the pooling size to 3. The implementation of this three
architecture is done using Keras which allows users to choose whether the models
they build are running on Theano or TensorFlow. In our case the models run on
TensorFlow

Regularization of Hyperparameters: In our experiments, we tested our
model with a set of various hyperparameters. The model performed best when
using 128 filters for each of the convolutional layers. For these settings we expe-
rienced values of 32, 64, 128 and 256. Fundamentally, the 128 gave better results
than the inferior settings. It is likely that 128 is simply the largest setting that is
convenient to use given the available dateset. In addition, each of the models are
adjusted with a dropout [26], which works by “dropping out” a proportion p of
hidden units throughout training. We discovered that a dropout of 0.5 and batch
size of 256 worked best for our CNNs models, along with the Adem optimizer
[27].

102 E. Hammami et al.

Table 2. Result of different CNNs architectures

Method Accuracy (%) F1 (%)

CNN with k-max pooling 80,35 80,20

CNN with max pooling 84,46 84.46

CNN with global max pooling 81,94 82,10

Fig. 3. CNN with max pooling: line plot of Cross Entropy Loss and Classification
Accuracy over Training Epochs

Fig. 4. CNN with k-max pooling: line plot of Cross Entropy Loss and Classification
Accuracy over Training Epochs

Results 1: The results are shown in Table 2. The best model in this experiment
is CNN with max pooling. It can achieve accuracy of 84,46%, which outperforms
our proposed approach, the CNN with k-max pooling and the CNN with global
max pooling.

The plots in the Figs. 3 and 4 illustrates that the models seems to have
converged. The line plots for both cross-entropy and accuracy both show perfect
convergence behavior for the two models, despite somewhat bumpy. The models
probably well configured given no sign of over or under fitting.

Results 2: We also compared the CNN based models to two traditional methods
Naive Bayes Classifier (with TF-IDF) and Word2vec embedding with Logistic
Regression . The results are shown in Table 3. CNN with max pooling also
outperforms non NN based models.

Deep Learning for French Legal Data Categorization 103

Table 3. Result of different CNNs methods

Method Accuracy (%) F1 (%)

Naive Bayes class, TF-IDF 41,91 42,00

Word2vec and Logistic Regression 80,88 80,01

CNN with k-max pooling 80,35 80,20

CNN with max pooling 84,46 84,46

CNN with global max pooling 81,94 82,10

5 Discussion

Dynamic max pooling [13,15], usually proved to perform much better compared
to classic max pooling and other baseline methods. But surprisingly, in our case,
the static (max pooling) outperforms all other methods with an accuracy of
84,46%. We think that this is due to given as input the pre-trained word2vec
model. In this paper we considered that the words contained in the pre-trained
word embedding may not capture the specificity of languages in our specific
legal domain. So maybe for this reason our results may not be optimal due to
the generality of the downloaded word embedding model.

6 Conclusion

In this paper, we experienced the use of CNN with dynamic input length to
French legal data classification. In our case, our suggested approach, which can
accept a longer input, didn’t outperform the original model with a fixed input
length in terms of accuracy. Therefore, we plan to re-adjust the network archi-
tecture, so it can better capture the characteristic of our French legal data.

References

1. Joachims, T.: Text categorization with support vector machines: learning with
many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS,
vol. 1398, pp. 137–142. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0026683

2. McCallum, A., Nigam, K., et al.: A comparison of event models for naive bayes
text classification. In: AAAI-1998 Workshop on Learning for Text Categorization,
vol. 752, pp. 41–48. Citeseer (1998)

3. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of Tricks for Efficient
Text Classification. CoRR, abs/1607.01759 (2016). http://arxiv.org/abs/1607.
01759, arXiv:1607.01759. https://dblp.org/rec/bib/journals/corr/JoulinGBM16,
dblp computer science bibliography, https://dblp.org. Accessed 13 Aug 2018

4. Collobert, R., Weston, J.: A unified architecture for natural language processing:
deep neural networks with multitask learning. In: Proceedings of the 25th Inter-
national Conference on Machine Learning, pp. 160–167. ACM (2008)

https://doi.org/10.1007/BFb0026683
https://doi.org/10.1007/BFb0026683
http://arxiv.org/abs/1607.01759
http://arxiv.org/abs/1607.01759
http://arxiv.org/abs/1607.01759
https://dblp.org/rec/bib/journals/corr/JoulinGBM16
https://dblp.org

104 E. Hammami et al.

5. Yogatama, D., Dyer, C., Ling, W., Blunsom, P.: Generative and discriminative
text classification with recurrent neural networks. arXiv preprint arXiv:1703.01898
(2017)

6. Xiao, Y., Cho, K.: Efficient Character-Level Document Classification by Com-
bining Convolution and Recurrent Layers, CoRR, abs/1602.00367 (2016). http://
arxiv.org/abs/1602.00367, arXiv:1602.00367, https://dblp.org/rec/bib/journals/
corr/XiaoC16, dblp computer science bibliography, https://dblp.org. Accessed 13
Aug 2018

7. Kim, Y.: Convolutional Neural Networks for Sentence Classification, CoRR,
abs/1408.5882 (2014). http://arxiv.org/abs/1408.5882, arXiv:1408.5882, https://
dblp.org/rec/bib/journals/corr/Kim14f, dblp computer science bibliography,
https://dblp.org. Accessed 13 Aug 2018

8. Zhang, X., Zhao, J.J., LeCun, Y.: Character-Level Convolutional Networks for Text
Classification, CoRR, abs/1509.01626 (2015). http://arxiv.org/abs/1509.01626,
arXiv:1509.01626, https://dblp.org/rec/bib/journals/corr/ZhangZL15, dblp com-
puter science bibliography, https://dblp.org. Accessed 13 Aug 2018

9. Conneau, A., Schwenk, H., Barrault, L., LeCun, Y.: Very Deep Convo-
lutional Networks for Natural Language Processing, CoRR, abs/1606.01781
(2016). http://arxiv.org/abs/1606.01781, arXiv:1606.01781, https://dblp.org/rec/
bib/journals/corr/ConneauSBL16, dblp computer science bibliography, https://
dblp.org. Accessed 13 Aug 2018

10. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning
applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

11. Collobert, R., Weston, J.: A unified architecture for natural language processing:
deep neural networks with multitask learning. In: Proceedings of the 25th Interna-
tional Conference on Machine Learning, ICML 2008, Helsinki, Finland, vol. 8, pp.
160–167. ACM, New York (2008). http://doi.acm.org/10.1145/1390156.1390177,
https://doi.org/10.1145/1390156.1390177.1390177. ISBN: 978–1-60558-205-4

12. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

13. MKalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network
for modelling sentences. arXiv preprint arXiv:1404.2188 (2014)

14. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text
classification. In: Advances in Neural Information Processing Systems, pp. 649–657
(2015)

15. Koomsubha, T., Vateekul, P.: A character-level convolutional neural network with
dynamic input length for Thai text categorization. In: 2017 9th International Con-
ference on Knowledge and Smart Technology (KST), pp. 101–105. IEEE (2017)

16. Kim, Y., Jernite, Y., Sontag, D., Rush, A.M.: Character-aware neural language
models. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

17. Radford, A., Jozefowicz, R., Sutskever, I.: Learning to generate reviews and dis-
covering sentiment. arXiv preprint arXiv:1704.01444 (2017)

18. Socher, R., et al.: Recursive deep models for semantic compositionality over a
sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pp. 1631–1642 (2013)

19. Nallapati, R., Manning, C.D.: Legal docket-entry classification: Where machine
learning stumbles. In: Proceedings of the Conference on Empirical Methods in Nat-
ural Language Processing, pp. 438–446. Association for Computational Linguistics
(2008)

http://arxiv.org/abs/1703.01898
http://arxiv.org/abs/1602.00367
http://arxiv.org/abs/1602.00367
http://arxiv.org/abs/1602.00367
https://dblp.org/rec/bib/journals/corr/XiaoC16
https://dblp.org/rec/bib/journals/corr/XiaoC16
https://dblp.org
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1408.5882
https://dblp.org/rec/bib/journals/corr/Kim14f
https://dblp.org/rec/bib/journals/corr/Kim14f
https://dblp.org
http://arxiv.org/abs/1509.01626
http://arxiv.org/abs/1509.01626
https://dblp.org/rec/bib/journals/corr/ZhangZL15
https://dblp.org
http://arxiv.org/abs/1606.01781
http://arxiv.org/abs/1606.01781
https://dblp.org/rec/bib/journals/corr/ConneauSBL16
https://dblp.org/rec/bib/journals/corr/ConneauSBL16
https://dblp.org
https://dblp.org
http://doi.acm.org/10.1145/1390156.1390177
https://doi.org/10.1145/1390156.1390177.1390177
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1404.2188
http://arxiv.org/abs/1704.01444

Deep Learning for French Legal Data Categorization 105

20. Sulea, O.-M., Zampieri, M., Malmasi, S., Vela, M., Dinu, L.P., van Genabith,
J.: Exploring the use of text classification in the legal domain. arXiv preprint
arXiv:1710.09306 (2017)

21. Undavia, S., Meyers, A., Ortega, J.E.: A Comparative study of classifying legal
documents with neural networks. In: 2018 Federated Conference on Computer
Science and Information Systems (FedCSIS), pp. 515–522. IEEE (2018)

22. Da Silva, N.C., et al.: Document type classification for Brazil’s supreme court
using a convolutional neural network. In: The Tenth International Conference on
Forensic Computer Science and Cyber Law-ICoFCS, pp. 7–11 (2018)

23. Wei, F., Qin, H., Ye, S., Zhao, H.: Empirical study of deep learning for text classi-
fication in legal document review. In: 2018 IEEE International Conference on Big
Data (Big Data), pp. 3317–3320. IEEE (2018)

24. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882 (2014)

25. Wang, X., Liu, Y., Chengjie, S.U.N., Wang, B., Wang, X.: Predicting polarities of
tweets by composing word embeddings with long short-term memory. In: Proceed-
ings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Vol-
ume 1: Long Papers), vol. 1, pp. 1343–1353 (2015)

26. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014). JMLR.org

27. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

http://arxiv.org/abs/1710.09306
http://arxiv.org/abs/1408.5882
https://JMLR.org
http://arxiv.org/abs/1412.6980

Metadata Discovery Using Data Sampling
and Exploratory Data Analysis

Hiba Khalid1,2(B), Robert Wrembel2, and Esteban Zimányi1

1 Université Libre de Bruxelles, Brussels, Belgium
{hiba.khalid,esteban.zimanyi}@ulb.ac.be

2 Poznan University of Technology, Poznań, Poland
robert.wrembel@cs.put.poznan.pl

Abstract. Metadata discovery is a prominent contributor towards
understanding the semantics of data, relationships between data, and
fundamental data features for the purpose of data management, query
processing, and data integration. Metadata discovery is constantly evolv-
ing with the help of data profiling and manual annotators, resulting in
various good quality data profiling techniques and tools. Even though,
there are different metadata standards specified for distinct fields such
as finance, biology, experimental physics, medicine, there is no generic
method that discovers metadata automatically or presents them in a
unified way. In this paper, we present a technique for discovering and
generating metadata for data sources that do not provide explicit meta-
data. To this end, we apply exploratory data analysis to produce two
kinds of metadata, i.e., administrative and technical, in order to find
similarities between resources, w.r.t. their structures and contents. Our
technique was evaluated experimentally. The results show that the tech-
nique allows to identify similar data sources and compute their similarity
measures.

Keywords: Data profiling · Metadata management · Discovery ·
Enrichment

1 Introduction

Data Integration is an inevitable technique for data analysis and data prepara-
tion processes. For standard (relational) data integration virtual [5,12,33], and
physical (i.e., data warehouse) architectures [20] have been proposed. However
with advent of big data, the data integration complexity has increased due to
data heterogeneity and data complexity [6,29]. Some big data integration archi-
tectures have already been developed [9]. The most viable and industry accepted
architecture for physical integration of big data is a data lake (DL) [27,30].
Data lakes have their own challenges (volume, heterogeneity, data quality, data
duplication). For data integration, the query engine needs to interpret the data
context [9,24] as well as standards and formats that are comprehensible for a
c© Springer Nature Switzerland AG 2019
K.-D. Schewe and N. K. Singh (Eds.): MEDI 2019, LNCS 11815, pp. 106–120, 2019.
https://doi.org/10.1007/978-3-030-32065-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-32065-2_8

Metadata Discovery Using Data Sampling and Exploratory Data Analysis 107

DL query engine [9,24] with appropriate visualization for user/client [7]. This
is mostly referred to as metadata. Metadata types (administrative, descriptive,
structural) are crucial in comprehending the information structure and align-
ment. Metadata offer a number of advantages such as data organization, consis-
tency, efficiency analysis [16,22,32], and provenance [34,35]. The availability of
metadata is however a very tedious task, the industry accepted methodology to
discover metadata is called data profiling [2,11,14].

Data integration for distributed and heterogeneous datasets can be further
facilitated by metadata catalogs similar to relational database concept called
Common Warehouse Metamodel [26]. Unfortunately, in the context of big data
ecosystems, such an industry accepted and deployed standard for metadata is
still under development, i.e., only recently, IEEE has started a standardization
project on metadata catalog for big data [18]. In most cases metadata has to
be manually rendered, this can be replaced by automatic learning algorithms
that can learn and understand by metadata samples or use cases. In such cases,
metadata must be inferred (discovered) by applying typically statistical analysis
or machine learning algorithms. Collecting, defining, and discovering complete,
clean, consistent, and easy to use metadata is still one of challenges in data inte-
gration and management, cf. Sect. 2. This challenge requires much more sophis-
ticated solutions in the context of big data integration architectures, like data
lakes.

In this paper we provide a first step towards semi-automatic metadata dis-
covery for the purpose of data integration, cf. Sect. 3. Our goal is to be able to
answer the following questions: (1) Is there any relevance between domains of
the considered datasets? (2) Are any of the datasets duplicate of each other? (3)
Does any of the datasets fall under an integration case? (4) What is the com-
mon topic of datasets analyzed? In our approach, we propose to use exploratory
data analysis (EDA) [3] in conjunction with simplistic data profiling. Our app-
roach was tested on road safety dataset retrieved from UK Gov and Kaggle. The
experiments show that the proposed method functions adequately for metadata
discovery as it can find relevance between different metadata features based on
similarity measures, cf. 4. We conclude that with the help of selective labelling
of data samples, more enriched metadata can be attained as a part of the EDA
process. We also conclude that with the help of EDA and data profiling we were
able to discover descriptive and technical metadata.

2 Related Work

Despite the growing interest in metadata, the existing related work and tech-
nologies do not provide amble and generic solution to automatic metadata dis-
covery and automatic metadata assisted data integration. The most practical
and eminent technique of discovering metadata in practice is data profiling [1].
Standard data profiling [2] techniques allow to discover numerous data char-
acteristics, e.g., ranges of values, histograms, missing and wrong values, out-
liers, unique values, integrity constraints, functional dependencies, and inclusion

108 H. Khalid et al.

dependencies [2,4,11,25]. [25] proposes to apply an inverted index for finding
unary inclusion dependencies (UIND) by means of data mining, this improves
upon methods from strict data profiling techniques. Similarly, [4] proposes a
comparison between SQL (join variant) queries and two algorithms for inclu-
sion dependencies (IND) discovery. The algorithms outperform the traditional
SQL statements at the cost of high comparison of dependent values. This cost
can be reduced with the use of heuristic algorithms (e.g., random sampling)
that can scale down the IND comparisons and by defining properties over inclu-
sion dependencies. [11] proposes an algorithm, called MUDS, that is capable
of discovering three types of metadata, namely: inclusion dependencies (IND),
multi-column combinations (UCCs), and functional dependencies (FDs), simul-
taneously using depth-first search approach. The MUDS algorithm starts with
SPIDER [4] for INDs, and after this, the DUCC algorithm is applied for discov-
ering UCCs. MUDS does not discover any other type of metadata besides depen-
dencies. [15] propose to discover metadata with the principle of uncertainty in
metadata discovery, identify foreign and primary keys as a post-hoc metadata
discovery technique. Once ingested, generated, or discovered, metadata must be
stored in a repository. To this end, some standard metadata representations were
developed. The most frequently referenced ones include: IEEE LOM [17](used
for collections definitions, items and learning objects), SCORM [28] is useful for
tracking distributed learning systems incorporated with learning objects, Dublin
Core [8] provides development of machine readable schema(XML, RDF) for for-
mal structure and syntax of metadata, and Learning Objects (LO) [19] defines
metadata structure using conceptual schema for any type of learning object. [10]
proposes two approaches(document content analysis, document context analysis)
for automated metadata generation (AMG), to classify and retrieve text docu-
ments based on rule sets that can understand a data source to infer a schema
design from stored and available metadata. This approach is specific to textual
metadata inside documents. After analyzing the state of the art, we conclude
that the need to develop automated metadata generation techniques for general
purpose metadata discovery is still to be developed.

3 Selective Ingestion Technique

It is imperative to distinguish between metadata categories and data features
(e.g., attribute names, patterns inside data, foreign keys, primary keys) that
are necessary for data integration and analysis. There are some categories of
metadata that tend to contribute more towards data integration as compared
to others. The decision about the category of metadata required should depend
upon the nature of the task. For example, if a simple summary of datasets is
required then descriptive metadata is suitable. However, if a feature analysis
is required then technical and administrative metadata are more suitable. The
challenge, however, resides in the availability of metadata. The problem that we
are addressing with this research is to find smart and effective ways to discover
metadata without having to annotate or administer metadata manually. Unfor-
tunately, in practice a substantial amount of metadata is still created manually.

Metadata Discovery Using Data Sampling and Exploratory Data Analysis 109

We respond to this challenge by the use of exploratory data analysis for
metadata discovery. Figure 1 overviews our approach. In the first step, metadata
availability in a data source is assessed. A positive assessment results in execut-
ing the lower flow, which is: (1) metadata (MD) pre-processing, whose purpose
is to ensure that there are no misspelled or incorrect metadata, it validates
headers, labels, or any other kind of metadata, (2) MD annotation with context
words to provide meaning for feature names, labels, or sections in a metadata
file. A negative assessment results in executing an upper flow, whose task is to
discover missing metadata. To this end, the following tasks are executed: (1)
data sampling to ensure that minimum data is accessed for understanding and
discovering metadata, (2) feature extraction to further minimize the actual data
access, we focus on extracting features from the dataset for creating reference
lists (attribute, keyword) that can be compared with textual descriptions, query
text, and query lists, and (3) data analysis and profiling to provide statistical
insights, possible dependencies, and integrity constraints. Both flows result in a
set of metadata that is stored in a repository.

Fig. 1. The overall process for metadata discovery

Data Sources. In this research we use data sources on road safety (as flat
files), provided by the UK Gov (2015–17) [31] and Kaggle [21] open data pub-
lishing facilities. The data files from UK GOV do not contain detailed metadata
files, but only an overall dataset summary is provided with three primary files,
(i.e. accidents, vehicles, and casualties) and a secondary context file containing
labels and variables used inside the data. Kaggle (2005–2015) data files did con-
tain partial metadata files containing information such as the total number of
columns, data types, row count, creation date, and label definitions along with
textual metadata(description, the domain of a dataset, the origin of a dataset,
files inside a dataset). The metadata extraction and management is based on the
identification of headers. Thus, for example, words as context, content, inspira-
tion, and manifest are treated as metadata headers.

3.1 Step 1: Data and Metadata Acquisition

The very first step in the metadata discovery process is to ingest datasets and
metadata files (if they exist) from different sources into one common repository.

110 H. Khalid et al.

Second, a mandatory metadata file search is carried throughout the repository.
These metadata files have to be identified and tagged to ensure they are evalu-
ated before the datasets are analyzed. These files are typically named as context
files, descriptions, and read-me. The naming convention of metadata files helps
in distinguishing them from the source file.

All of these are the available metadata and are tagged by our technique in a
descriptor table. Each dataset has a descriptor table that gets populated based on
the available metadata content, i.e., column descriptions, previews, data types,
date of creation, data variables, and data labels. If there is no metadata, then
it has to be discovered and filled accordingly. In our approach, we apply the so-
called truth table. It represents the existence of various metadata types that are
present in different data sources. If the dataset has a specific kind of metadata,
the truth table adds a true value against its entry. If it doesn’t have a partic-
ular metadata type, it adds a false value against the data source entry. Each
metadata category is evaluated against data file, for example File Accidents2017
Administrative MD: 1, Technical MD: 0, Descriptive MD: 0. Similarly, for each
file the truth table is populated accordingly. Once the truth table is filled, a
need for metadata discovery is evaluated based on the context and domain. This
means, that before discovering metadata, a straightforward and short prelimi-
nary investigation among datasets titles, files, and label evaluations are made to
conclude if there is a possibility of relevance between the datasets.

3.2 Step 2: Feature Extraction

Feature extraction is one of the most important and contributing factors when
it comes to understanding datasets with no predefined metadata. In this step,
we analyze and manage attributes from different data sources and identify sim-
ilarities that might be present among data features. For each data file in the
repository, data feature extraction is initiated. The extracted lists consist of
attribute names that are mostly strings or abbreviated letters. Each data source
file is provided a unique ID through which its attribute names can be accessed
for evaluation. Since attribute names are primarily composed of strings, an eval-
uation between different string elements can reflect the degree of similarity or
dissimilarity. The techniques utilized to find the degree of similarity between two
elements from different feature lists are the standard Jaccard [13] and Leven-
shtein [13].

In details, feature extraction is run as follows. First, all columns from each
data file are extracted separately into a feature list and keyword list - for simi-
larity matching. A feature list is derived from attributes and may store combi-
nations of words and special characters, e.g., Accident Index. This list consists
of pairs, triples, quadruples, ... of words that are combined together to represent
meaningful information such as Accident Index, indicating that the column con-
tains index for all recorded accidents. An example feature list is shown below and
it consists of composite words. Second, a keyword list is created that contains
separate keywords (no pairs, triples, ...of words). For example, the keyword list
given below was created by breaking the word pairs, triples and quadruples in

Metadata Discovery Using Data Sampling and Exploratory Data Analysis 111

the feature list. only singleton elements are permissible in the keyword list. The
keyword list is connected with a dictionary that allocates synonyms to a selected
keyword. For example, if the keyword ‘casualties’ was selected for comparison,
the synonym dictionary would present five most commonly associated words
with casualties. The keyword list is used for: (1) identifying if other datasets
have similar words occurring in textual metadata or in their keyword lists, (2)
checking if a given dataset includes data that could be used for answering a
given user query. Let us assume that a user wants to answer the following query:
How much road quality contributes to the rate of accidents in EU as compared
to rest of the world? or How does gender play a role in accidents in the UK?.
To this end, a query is decomposed and a query indicators list is generated,
by breaking the query sentence into singleton words, excluding pronouns and
stop words, by means of text mining rules and standards. Once the query list is
populated automatically, we compare it with keyword list (including suggestions
from synonym dictionary) and feature list.
feature list : {Accident Index, . . . , Vehicle Reference, . . . Number of Casualties}
keyword list : {Accident, Index, Number, Casualties. . . , Vehicle, Reference,. . . ,
Longitude,}
query indicators list : {how, much, road, quality, contributes, rate, accidents, EU,
compared, world, rest}

The keyword list and query indicator list can then be compared with feature
lists and metadata descriptions to find approximate or exact match. The query
list is compared with the keyword list first to find the possibility of similar words
indicating there might be relevance between the two lists. The query list and the
keyword lists are then matched with textual metadata description (if available)
to identify if there are any similar words appearing in the data descriptions, tags,
and annotations. As discussed earlier, similarity matching and distance measures
[13] are used for these evaluations. Once the evaluations are complete a judge-
ment is provided whether the metadata from these lists are similar, partially
similar, dissimilar, partially dissimilar or represent and exact match, based on
a given similarity measures. As demonstrated in Fig. 2, the metadata descrip-
tion table (MDT) is created for each dataset. The data description table (DDT)
is composed of a unique data source ID, a unique attribute ID, and attribute
name. Each DDT has a corresponding metadata description table. The MDT
is composed of the following columns: (1) Metadata type that defines the cate-
gory of metadata (technical, administrative, descriptive, structural, customized),
(2) Metadata value that represents the content or value of the metadata, e.g.,
Accident Index is a metadata value, (3) Metadata description defines the value
and its properties and, (4) Data type provides type specifications for data value
and the metadata description. For example, the first dataset in DDT has a data
source ID: DS01RSACC, with a corresponding attribute ID: ADS01 C04, i.e.,
Accident Index.

It can be understood from Fig. 2 that there is a possible match in the second
dataset with data source ID: DS02RSACC an attribute ID: ADS01 C02. Also,
in the indicator list, the first letter for index[1], i.e., ‘Accident rate’ is a 50%

112 H. Khalid et al.

match, meaning that word ‘accident’ appears in the indicator list, column list,
and keyword list. Thus, after the first match, the process is continued and fur-
ther metadata is analyzed to identify more similar context based keywords with
column names and indicators. The column lists are also compared among each
other by the same evaluation measure.

Fig. 2. An overview of descriptor tables and feature evaluations

If a similar attribute is identified between two or more datasets, the attribute
is regarded as a qualifying feature, e.g., Accident Index, which appears in more
than one data file, and therefore the state of the feature is maintained tem-
porarily. This state represents that there is an approximate or an exact feature
in another dataset. Thus, a simple directed graph is created for that particular
attribute, indicating its presence in different datasets. Once all the feature lists
under consideration have been evaluated for similarity, the attribute analysis
report is generated with their calculated similarities (Jaccard and Levenshtein).
Next, we re-analyze the attribute truth table. This is done to make sure that
metadata are properly managed and their changes over time are maintained. It
also helps in identifying any change in attribute names, data type, values.

To manage a coherent system for attributes from different data sources, we
follow IBM guide [23] on attribute management. Not all attribute management
guidelines were incorporated as a part of our study. However, the most prominent
guidelines were included, namely: (1) define attribute domain details, (2) add or
correct attribute titles, (3) manage missing or incorrect value of an attribute, (4)
create an attribute group, (5) modify an attribute group, (6) delete an attribute
group, (7) delete an attribute, (8) create an attribute, and (9) define value for
Boolean attributes.

As an example, let us consider the attribute management for Accident Index,
as shown in Table 1. For each attribute the management aspects are evaluated
and populated accordingly Accident IndexDomain (accidents file [01 01] [01 02],
[01 03]), (Value: Not Null string), (Management: Convert to string), (Group:
NA), (Modify: NA), (Delete: NA), (Delete Group: NA), (Create: NA), (Bool:

Metadata Discovery Using Data Sampling and Exploratory Data Analysis 113

NA). If there is a data type change required, it is validated and recorded. Sim-
ilarly, after data profiling attribute groups and dependencies such as FD, IND
become available for use. These can further be utilized to populate metadata files,
define data structure and allocate textual descriptions for discovered dependen-
cies. Once all these feature lists have been created, we generate an attribute
management table to find the change in attributes across different files of these
datasets. In our example, three attribute management tables are formed, one for
each category of data, i.e., casualties, accidents, and vehicles. Additionally, an
attribute reference table is created. It indicates the presence of attributes for all
datasets and their sub-categories (accidents, vehicles, casualties). For example
for column Accident Index the value for truth table would be (2017:1), (2016:1),
(2015:1), (2014:1), (2005–2015:1) Once all attribute reference tables are popu-
lated automatically, the very first metadata is now available and, a simple com-
parison indicates a presence, absence, and change of an attribute across different
data files.

Table 1. An example attribute management table

Text Domain Value Mgmt. Group Modify Delete Del. Group Create Bool

Accident Index Accidents file

[01 01]

[01 02]

[01 03]

[01 04]

Not Null

String

Convert

to

string

NA NA NA NA NA False

3.3 Step 3: Data Analysis and Profiling

As the result of this step, selective data are analyzed to discover metadata. In
order to avoid analyzing large datasets for metadata discovery, we propose to
extract samples of data for analysis (in our experiments we select data portions
ranging from 1% to 5% of all data in a given file). Furthermore, it is crucial to
analyze the extracted data and extend the metadata files with annotations.

First, data analysis involves standard data profiling tasks such as primary
key identification, foreign key identification, value types, ranges, minimum value,
maximum value, categories, standard deviation, and missing values. The results
are stored in a metadata file. Second, textual metadata, which describe the dis-
covered metadata, are manually tagged in the header of a metadata file. This
newly generated metadata file is stored in a metadata repository for compari-
son with other discovered metadata files using a similarity measure. Now, the
discovered metadata are used as follows. First schema metadata are evaluated
in order to decide whether the compared data files describe the same domain.
If the similarity of schema metadata is above a given threshold (in the current
evaluation 40%), it suggests that the files may come from the same domain.
Second, the contents of these files are evaluated based on data samples. If the
samples contain a given percentage of the same data (in the current evaluation
90%), it means that these files represent the same sets of data (with a high

114 H. Khalid et al.

probability). Notice that, estimating the right threshold is not trivial and it is
part of our forthcoming work. Step 3 ends the process of metadata discovery and
annotation. Now, the data sources (data files) under evaluation are described by
descriptive and technical metadata. These metadata can be accessed in order to
decide which sources potentially could be used to answer user queries.

4 Experimental Results

The approach presented in this paper was evaluated by experiments. They were
designed to test the ability to discover descriptive and technical metadata with
minimum data analysis and a degree of uncertainty. In particular, the goals
of the experiments were to: (1) discover (gather) structural and descriptive
metadata as a part of EDA and data profiling, (2) attain textual metadata
to facilitate keyword based matching, (3) analyze how the discovered metadata
influence the possibility of identifying similarity between different datasets and
queries. All experiments were designed in Python including data cleaning, prepa-
ration, and metadata pre-processing based on the numpy, scipy, pandas, and
pandas profiling libraries. The experiments were run on a PC: Intel(R) Core i7,
16 GB of RAM, and Windows 10.

4.1 Gathering Structural and Descriptive Metadata

We start by gathering different data files to classify them under categories (e.g.,
road safety data) and sub-categories (e.g., vehicles, casualties, accidents). To
be able to identify data files that could provide data to answer some queries
(without fetching data), we collect descriptive metadata (e.g., title, categories,
file names, dates) along with the total row count of data file, as potentially
duplicate datasets can be characterized by similar metadata and the number of
rows. For each file we collect two measures, i.e., row count and the title of the
file and create a set. This is the very first discovery of data characteristics.

The obtained metadata are shown in Table 2. In our experiment, we extract
a total number of columns per file and then arrange these according to cate-
gories for the generated metadata file. The categories in the metadata file are
the necessary descriptive metadata, i.e., context and associated time/date of a
dataset creation, and publication.

4.2 Gathering Textual Metadata

The goal of this experiment was to gather textual metadata. They can be
acquired through data and resource descriptions, entity documentations, schema
definitions, to name a few. In particular our experiments collected textual meta-
data from attribute names, file names, and query texts. Based on the gathered
textual metadata, we compared and cross examined these metadata to provide
a measure of similarity for attributes, descriptions, domain names, genre, topic,

Metadata Discovery Using Data Sampling and Exploratory Data Analysis 115

Table 2. Data identification for metadata collection

Data file name Data file year Rows, columns

Accidents2017 2017 (129982, 32)

Vehicles2017 2017 (238926, 23)

Casualties2017 2017 (170993, 16)

Acc2016 2016 (136621, 32)

Vcc2016 2016 (252500, 23)

Ccc2016 2016 (181384, 16)

Accidents2015 2015 (140056, 32)

Vehicles2015 2015 (257845, 23)

Casualties2015 2015 (186189, 16)

Accidents2005–2015 2005–2015 (1780653, 32)

and file names of different data sources under consideration. Table 3 presents
the selected results from comparison of attribute lists. The attribute names were
extracted and converted into the keyword list and the attribute list. These lists
were compared with each other to identify similarity between them, using the
Jaccard and Levenshtein distances.

Table 3. Attribute similarities comparison by means of the Jaccard and Levenshtein
distances

Column from DS 1 Column from DS 2 Jaccard dist. Levenshtein dist.

Accident Index Accident Index 0.0 0

Local Authority (District) Local Authority (District) 0.0 0

2nd Road Class 2nd Road Class 0.0 0

Junction Detail Junction Detail 0.0 0

Pedestrian Crossing-
Physical Facilities

Road Surface
Conditions

0.478 31

Road Surface
Conditions

Road Surface
Conditions

0.0 0

id Police Officer

Attend Scene of Accident

Did Police Officer

Attend Scene of Accident

0.063 1

As discussed earlier, for understanding our data better and to discover differ-
ent types of metadata we used data sampling. The random data sampling range
was between 1% and 5%. The intuition behind selecting a small sample rate was
to analyze limited data to attain metadata or develop understanding of data.
Our mission is to discover the metadata possibilities such as keywords, sample
data types etc. It is thus counter-intuitive to analyze large complex datasets.
Thus, we opted for a small sampling percentage. Also, to manage the sampling

116 H. Khalid et al.

bias we used ensemble techniques but that is beyond the context of this paper.
Table 4 identifies the first pass, which selected only 1% from all accidents file
considered from each year (only some results are shown). The table indicates
some of the ranges of data selected for different data files from a collection of
datasets. It also provides the selected sample data count, the total keywords
selected for each sample and a list of features evaluated.

Finally, we run simple (standard) exploratory data analysis to analyze
attributes in the test files, w.r.t.: their data types and Null/Not Null charac-
teristic. Figure 3 describes the process of row feature discovery with increasing
samples to support our sampling strategy. Also, it provides analytical similarity
between query and selected metadata files.

Table 4. The results of 1% data sampling

File name Total rows Data sample % Total selected rows Keywords List

Accidents2017 129982 1.5% 1949 82 32 features

Accidents2016 136621 1.5% 2049 82 32 features

Accidents2015 140056 1.5% 2100 82 32 features

Accidents2005–2015 1780653 1.5% 26709 82 32 features

Fig. 3. The overview of data sampling and keyword discovery.

4.3 Metadata Applicability

To verify the applicability of the collected metadata for answering queries, we
designed 24 queries that were evaluated against metadata files that our method
created. The queries represent 6 different patterns, asking for: (1) the role of
gender in accidents in time (queries Q01 to Q05), (2) numbers of accidents in
time (Q09 to Q11), (3) increase/decrease in the number of accidents over time
(Q06 to Q08), (4) the impact on road quality on accidents (Q14 to Q18), (5)
the impact of weather conditions on accidents (Q15, Q19 to Q22), (6) accident
analysis in regions over time (Q12, Q13).

Metadata Discovery Using Data Sampling and Exploratory Data Analysis 117

Each metadata file was evaluated for each query to see if there were any
similarity between the semantics (represented by its predicates) of the query and
the content of a metadata file. Table 5 presents the obtained similarity results.
Each query is defined by a unique query ID such as Q01, followed by a metadata
file ID, e.g., MD 001. The final column indicates the similarity between the
semantics of the query and the metadata files. This is attained by evaluating
keywords, description paragraphs, the attribute lists, and the dependency list
(the list storing all discovered dependency metadata, i.e, inclusion, functional,
multi-column).

Table 5. A sample of evaluation by percentage similarity between different metadata
files using generated metadata files

Query ID MD file Similarity Query ID MD file Similarity

Q01 MD 001 15% Q13 MD 006 16.87%

Q02 MD 002 14.3% Q14 MD 007 1.04%

Q03 MD 003 22.5% Q15 MD 008 2.6%

Q04 MD 004 43.5% Q16 MD 009 0%

Q05 MD 005 32.5% Q17 MD 010 0.4%

Q06 MD 006 18.9% Q18 MD 011 0.005%

Q07 MD 007 54% Q19 MD 012 19.8%

Q08 MD 001 34.6% Q20 MD 013 45.6%

Q09 MD 002 33.2% Q21 MD 014 34.6%

Q10 MD 003 25.6% Q22 MD 015 44.5%

Q11 MD 004 24.8% Q23 MD 016 22.5%

Q12 MD 005 51.45% Q24 MD 017 19.07%

The results clearly demonstrate the advantage of using EDA and data pro-
filing for discovering metadata and for identifying the cases of data integration.
To prove that discovered metadata is coherent and relevant, we created manual
descriptions for each metadata file associated with a dataset. To evaluate the
discovered keywords and description we matched the manual descriptions with
our discovered keywords. The discovered keywords for different datasets had dif-
ferent outcomes. For instance, the discovered keywords from year 2017 were a
65% match with the manual descriptions. Similarly, the keywords from year 2015
were a 76.89% match with the manual descriptions.

5 Conclusion and Future Work

In this paper, we proposed the first step towards a (semi-)automatic metadata
discovery and generation that allows users to analyze samples of data to pro-
duce metadata collectively and provide sufficient annotations. To the best of

118 H. Khalid et al.

our knowledge, there are no automatic or semi-automatic tools and algorithms
that generate or discover metadata in heterogeneous data sources. In this first
attempt, we applied our technique to data sources implemented as data files
without or with some metadata available. With the experiments that assessed
our method, we demonstrated that descriptive and technical metadata can be
automatically discovered with the help of exploratory data analysis and data
profiling, identifying similar aspects, features, and constructs. We were able to
identify similarities between different files, and we were able to identify domains
or topics of various data files. Thus, we were able to suggest (with a given simi-
larity measure) data sources that were the most suitable for given queries, based
on query semantics. While metadata discovery should not confine to certain cat-
egories, the discovery of essential characteristics with a given uncertainty factor
is far more valuable and usable then the case of having no metadata. To be
able to discover metadata automatically or semi-automatically for large repos-
itories of heterogeneous data is a fundamental functionality [6,29], required in
big data integration architectures, especially in a data lake [27]. Since our app-
roach turned out to provide a promising functionality (although yet simple in
this first attempt), in the future we will extend it to apply more advanced meta-
data discovery techniques based on: (1) clustering to automatically distinguish
metadata categories and (2) artificial intelligence, active learning in particular,
for automatic data labelling discovered by means of clustering.

Acknowledgements. The work of Hiba Khalid is supported by the European Com-
mission through the Erasmus Mundus Joint Doctorate project Information Technolo-
gies for Business Intelligence-Doctoral College (IT4BI-DC).

The work of Robert Wrembel is supported from the grant of the Polish National
Agency for Academic Exchange, within the Bekker programme.

References

1. Sakr, Sherif, Zomaya, Albert Y. (eds.): Encyclopedia of Big Data Technologies.
Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77525-8

2. Abedjan, Z., Golab, L., Naumann, F.: Data profiling. In: IEEE International Con-
ference on Data Engineering (ICDE), pp. 1432–1435 (2016)

3. Aindrila Ghosh, J.M., Nashaat, M.: A comprehensive review of tools for exploratory
analysis of tabular industrial datasets. Vis. Inform. 2, 235–253 (2018)

4. Bauckmann, J., Leser, U., Naumann, F.: Efficiently computing inclusion depen-
dencies for schema discovery. In: International Conference on Data Engineering
Workshops, p. 2 (2006)

5. Bouguettaya, A., Benatallah, B., Elmargamid, A.: Interconnecting Heterogeneous
Information Systems. Springer, Boston (1998). https://doi.org/10.1007/978-1-
4615-5567-4. Kluwer Academic Publishers, ISBN 0792382161

6. Ceravolo, P., et al.: Big data semantics. J. Data Semant. 7(2), 65–85 (2018)
7. Chen, C.L.P., Zhang, C.: Data-intensive applications, challenges, techniques and

technologies: a survey on big data. Inf Sci. 275, 314–347 (2014)
8. DublinCore: Dublin core metadata initiative. http://dublincore.org/specifications/

dublin-core/

https://doi.org/10.1007/978-3-319-77525-8
https://doi.org/10.1007/978-1-4615-5567-4
https://doi.org/10.1007/978-1-4615-5567-4
http://dublincore.org/specifications/dublin-core/
http://dublincore.org/specifications/dublin-core/

Metadata Discovery Using Data Sampling and Exploratory Data Analysis 119

9. Duggan, J., et al.: The BigDAWG polystore system. SIGMOD Rec. 44(2), 11–16
(2015)

10. Edvardsen, L.F.H.: Using the structural content of documents to automatically
generate quality metadata. Ph.D. thesis, Norwegian University of Science and Tech-
nology (2013)

11. Ehrlich, J., Roick, M., Schulze, L., Zwiener, J., Papenbrock, T., Naumann, F.:
Holistic data profiling: simultaneous discovery of various metadata. In: Interna-
tional Conference on Extending Database Technology (EDBT), pp. 305–316 (2016)

12. Elmagarmid, A., Rusinkiewicz, M., Sheth, A. (eds.): Management of Heterogeneous
and Autonomous Database Systems. Morgan Kaufmann, San Francisco (1999)

13. Gali, N., Mariescu-Istodor, R., Frnti, P.: Similarity measures for title matching. In:
International Conference on Pattern Recognition (ICPR) (2016)

14. Gallinucci, E., Golfarelli, M., Rizzi, S.: Schema profiling of document-oriented
databases. Inf. Syst. 75, 13–25 (2018)

15. Halevy, A.Y., et al.: Goods: organizing google’s datasets. In: ACM SIGMOD Inter-
national Conference on Management of Data, pp. 795–806 (2016)

16. Hewasinghage, M., Varga, J., Abelló, A., Zimányi, E.: Managing polyglot systems
metadata with hypergraphs. In: International Conference on Conceptual Modeling
(ER), pp. 463–478 (2018)

17. IEEE: IEEE LOM: IEEE standard for learning object metadata. https://
standards.ieee.org/standard/1484 12 1-2002.html

18. IEEE Standards Association: IEEE Big Data Governance and Metadata Man-
agement (BDGMM). https://standards.ieee.org/industry-connections/BDGMM-
index.html

19. IEEELO: IEEE standard for learning object metadata. https://ieeexplore.ieee.org/
document/1032843

20. Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P.: Fundamentals of Data Ware-
houses. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05153-5

21. Kaggle: UK car accidents 2005–2015. https://www.kaggle.com/silicon99/dft-
accident-data

22. Kolaitis, P.G.: Reflections on schema mappings, data exchange, and metadata
management. In: ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS), pp. 107–109 (2018)

23. Kunz, M., Puchta, A., Groll, S., Fuchs, L., Pernul, G.: Attribute quality manage-
ment for dynamic identity and access management. J. Inf. Secur. Appl. 44, 64–79
(2019)

24. Liu, M., Wang, Q.: Rogas: a declarative framework for network analytics. In: Inter-
national Conference on Very Large Data Bases (VLDB), vol. 9, no. 13, pp. 1561–
1564 (2016)

25. March, F.D., Lopes, S., Petit, J.-M: Efficient algorithms for mining inclusion depen-
dencies. In: International Conference on Extending Database Technology (EDBT),
pp. 464–476 (2002)

26. Poole, J., Chang, D., Tolbert, D., Mellor, D.: Common Warehouse Metamodel.
Wiley, Developer’s Guide (2003)

27. Russom, P.: Data lakes: purposes, practices, patterns, and platforms (2017). TDWI
white paper

28. SCORM: Scorm metadata structure. https://scorm.com/scorm-explained/
technical-scorm/content-packaging/metadata-structure/

29. Stefanowski, J., Krawiec, K., Wrembel, R.: Exploring complex and big data. Appl.
Math. Comput. Sci. 27(4), 669–679 (2017)

https://standards.ieee.org/standard/1484_12_1-2002.html
https://standards.ieee.org/standard/1484_12_1-2002.html
https://standards.ieee.org/industry-connections/BDGMM-index.html
https://standards.ieee.org/industry-connections/BDGMM-index.html
https://ieeexplore.ieee.org/document/1032843
https://ieeexplore.ieee.org/document/1032843
https://doi.org/10.1007/978-3-662-05153-5
https://www.kaggle.com/silicon99/dft-accident-data
https://www.kaggle.com/silicon99/dft-accident-data
https://scorm.com/scorm-explained/technical-scorm/content-packaging/metadata-structure/
https://scorm.com/scorm-explained/technical-scorm/content-packaging/metadata-structure/

120 H. Khalid et al.

30. Terrizzano, I., Schwarz, P., Roth, M., Colino, J.E.: Data wrangling: the challenging
journey from the wild to the lake. In: Conference on Innovative Data Systems
Research (CIDR) (2015)

31. UK Gov.: Road safety data. https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-
9277-47e5ce24a11f/road-safety-data

32. Varga, J., Romero, O., Pedersen, T.B., Thomsen, C.: Analytical metadata model-
ing for next generation BI systems. J. Syst. Softw. 144, 240–254 (2018)

33. Wiederhold, G.: Mediators in the architecture of future information systems. IEEE
Comput. 25(3), 38–49 (1992)

34. Wu, D., Sakr, S., Zhu, L.: HDM: optimized big data processing with data prove-
nance. In: International Conference on Extending Database Technology (EDBT),
pp. 530–533 (2017)

35. Wylot, M., Cudré-Mauroux, P., Hauswirth, M., Groth, P.T.: Storing, tracking,
and querying provenance in linked data. IEEE Trans. Knowl. Data Eng. (TKDE)
29(8), 1751–1764 (2017)

https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data
https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data

Modelling

Conceptual Models and Their
Foundations

Bernhard Thalheim(B)

Department of Computer Science, Christian-Albrechts University at Kiel,
24098 Kiel, Germany

thalheim@is.informatik.uni-kiel.de

http://www.is.informatik.uni-kiel.de/~thalheim

Abstract. There is no common agreement which artifact should (not)
be considered to be a conceptual model although the term ‘conceptual
model’ is used for more than for five decades in computer science and
for more than one century in science and engineering. A team from all
faculties at our university has been able to develop a notion of model
that covers all model notions known in the disciplines of this team. We
now introduce three notions of conceptual model in this paper: light,
slim, and concise versions of the notion of conceptual model.

The paper answers the following questions: Are all models also con-
ceptual models? What is a conceptual model? Is there a formal notion
of a conceptual model? What is not yet a conceptual model? What will
never be a conceptual model? What is a concept? Which philosophical
and scientific foundations we should consider while modelling? Is the
existence of an ontology a necessary prerequisite for the being as con-
ceptual model?

Keywords: Conceptual model · Conceptualisation · Concept ·
Conceptions · Model theory

1 The Model

Humans have learned to use instruments for handling their issues, tasks, and
problems in daily life. Sciences and engineering also widely use instruments.
Human evolution, sciences, and engineering have been enabled by wide instru-
ment utilisation. The language is one of these instruments – often seen as one of
the main. Models are another main instrument in modern computer science and
computer engineering (CS&CE). They are often material artifacts. They might,
however, also be immaterial or virtual.

It is surprising that models and modelling (and its variants such as conceptual
models) have not yet properly founded. This paper contributes to close this
lacuna.

c© Springer Nature Switzerland AG 2019
K.-D. Schewe and N. K. Singh (Eds.): MEDI 2019, LNCS 11815, pp. 123–139, 2019.
https://doi.org/10.1007/978-3-030-32065-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_9&domain=pdf
http://orcid.org/0000-0002-7909-7786
https://doi.org/10.1007/978-3-030-32065-2_9

124 B. Thalheim

1.1 Models Are Main Artifacts and Universal Instruments

Models have become one of the main artifacts in CS&CE. This wide usage has not
led to a common agreement about the notion of a model. The same observation
can be made for other scientific disciplines, for engineering, and for daily life. In
our area models became as artifacts the main instrument for system and software
construction.

Models might be combined with other artifacts1. Concept and conception
development might be integrated into models. In this case, models might be
considered as conceptual models.

A Notion of Model

What is a Model? According to [9,32,35] we define the model notion as follows:
“A model is a well-formed, adequate, and dependable instrument that rep-

resents origins and that functions in utilisation scenarios.
Its criteria of well-formedness, adequacy, and dependability must be com-

monly accepted by its community of practice (CoP) within some context and
correspond to the functions that a model fulfills in utilisation scenarios.”

Well-formedness is often considered as a specific modelling language require-
ment. The criteria for adequacy are analogy (as a generalisation of the mapping
property that forms a tight kind of analogy), being focused (as a generalisation
of truncation or abstraction), and satisfying the purpose (as a generalisation of
classical pragmatics properties). The generalisation of [12,19,21,28] is necessary
for consideration of model-being.

The model has another constituents that are often taken for granted. The
model is based on a background, represents origins, is accepted by a commu-
nity of practice, and follows the accepted context. The model thus becomes
dependable, i.e. it is justified or viable and has a sufficient quality. Justification
includes empirical corroboration, rational coherence, falsifiability (in our area
often treated as validation or verification), and relative stability. In our area
the quality characteristics can be based on software quality characteristics and
procedures for evaluating these characteristics.

Scenarios Determine Functions of Models as Instruments. A model is utilised.
This utilisation is bound to scenarios in which a model functions. Typical sce-
narios are system construction (with description, prescription, and coding sub-
scenarios), communication, negotiation, conceptualisation, documentation, and

1 Due to the utilisation of artifacts as instrument we will concentrate on the instrument
being of artifacts. This approach allows us to additionally consider virtual ‘artifacts’
such as mental models. An artifact is “something created by humans, usually for
practical purpose. It is a product of artificial character due to extraneous (as human)
agency”. [4]. Furthermore, models can be real artifacts as well as thoughts. An
additional difficulty is the negative usage of “artifact” in engineering as artificially
introduced change (e.g. in presentation, miss or imperfection).

Conceptual Models and Their Foundations 125

learning. The model might have several functions in complex scenarios. For
instance, a model functions as a blueprint for realisation in a prescription sce-
nario. Other typical functioning are the usage as an informative means, as a
companion, as a guide for development. The quality of a model must be suffi-
cient for this usage. Therefore, models used for description and models used for
prescription might be different.

The main qualification of models is the potential utilisation as an instrument.
This utilisation is based on methods which are developed in the discipline.

Models Are Used in Sciences, Engineering, and Daily Life

Models and Model Suites. There is no CS&CE subdiscipline that does not use
models. Since models are abstractions and more generally are focused they are
far better to use for investigation and system development. They are used in
problem solving scenarios, in social scenarios, in engineering scenarios, and in
science scenarios in a wide variety of forms. Often, models either consist of sub-
models or form a model suite what is a well associated ensemble of sub-models.
The models in a model suite [6,7] coexist, co-evolve, and support solutions of
subtasks.

Models Are One of the First Instruments Before Languages. [11] Daily life util-
isation of models is often unconscious, subconscious or preconscious. One of the
first models that is learned by everybody is the ‘model of mother’. It is used
before we spell the word ‘mother’. It has is variety of interpretations depending
on the kind of behaviour of the mother. Models might be perception models that
allow to summarise observations.

Matrices and Deep Models. Models typically consist of a relative stable part
and of a part that is dependent on the actual circumstances. Typical modelling
languages in CS&CE are predefined, use a limited vocabulary, have a relatively
fixed – at least lexical – semantics, and allow to express certain aspects. They
use their own techniques in some stereotype way, i.e. their utilisation follows
some mould. Origins of models are often mental models such as perception or
domain-situation models. The model background forms the deep sub-model [34].
The current model is then the ‘rest’, i.e. a normal model. The utilisation and
the mould form the matrix of the model.

Memes as Basic and Deep Models. Humans reason, memorise, and express their
thoughts based on memory chunks. Some of the chunks are relatively persistent
and become memes [3,29] which are then units of cultural evolution and selection.
These memes are combined with some identification facilities. They represent a
number of properties. They may be combined with other memes. They may
be activated and deactivated. They can be grouped. They become reasoning
instruments. Memes are thus already models, in most cases primitive or basic
mental ones.

126 B. Thalheim

1.2 Why There Is No Commonly Accepted Notion of a Conceptual
Model: 1001 Notions and 101 Scenarios

Why the Large Variety of Notions of Model? Database and information sys-
tems research communities are extensively using the term “conceptual model”2.
Already [33] discusses 60 different notions of conceptual model. Although ER
conferences are organised since 40 years3, no notion of conceptual model has
been coined by this community.

The variety of notions of model in CS&CE is far larger. Each of these notions
concentrates on some aspects and implicitly assumes other properties. Simulation
research found a common definition: “The conceptual model is a concise and
precise consolidation of all goal-relevant structural and behavioral features of the
system under investigation (SUI) presented in a predefined format.” [26]

The implicit and hidden usage of deep models and the corresponding matrices
is one – if not the main – cause for the manifold of model notions in CS&CE.

May We Develop a Common Understanding of the Notion of Model? The two
main sources for the variety of notions allow a systematic harmonisation of model
notions. The definition given above is a result of a discussion on models in
agriculture, archeology, arts, biology, chemistry, computer science, economics,
electrotechnics, environmental sciences, farming, geosciences, historical sciences,
languages, mathematics, medicine, ocean sciences, pedagogical science, philos-
ophy, physics, political sciences, sociology, and sports at Kiel university that
continues now for almost 10 years. The discussion is summarised in the com-
pendium [36]. We got a shared understanding of the notion of model, of model
activities and of modelling. So, we can envision that a common understanding
and a coherent collection of notions of model can be developed. The collection
supports a coherent notion that allows to concentrate on the specific utilisation
scenario and the specific functions that a model has to fulfill.

1.3 The Storyline of the Paper and Our Agenda

Tasks and Foundations of a Theory of Conceptual Models. This paper bases
the notion of conceptual models on four observations: (I) Conceptual models
integrate concept(ion)s from a conceptualisation into a models. A notion of con-
ceptual model might be a slim, light, or concise one depending on the level of

2 Facetted search for the term “conceptual model” in DBLP results in more than 6.000
hits for titles in papers (normal DBLP search also above 3.500 titles).

3 The ER modelling language has been introduced in 1976. The first and primary util-
isation scenario was documentation of relational structure. Later, conceptualisation
has been considered to be the main issue. The conferences on conceptual modelling
started in 1979 (First as ER conferences; since 1996 the series got its name with
the ER acronym.) The formalisation and a proper definition of the ER modelling
language occurred more than 15 years later [30]. One might claim that it is nowadays
too early to define the notion of conceptual model.

Conceptual Models and Their Foundations 127

detail we need in model utilisation. (II) A conceptualisation is based on a collec-
tion of concepts. (III) Origins of conceptual models are perception models and
domain-situation models. (IV) These origins are formed by our understanding
of the world, i.e. our observations and our compilations of these observations.
We shall answer questions 2, 3, 6–8 from the abstract in Sects. 3 and 4 and use
these answers for answering questions 1, 4, and 5 at the end.

We start with the last observation that leads us back to Ancient Greece.
Next we develop an enhanced theory of concepts for an understanding of a
conceptualisation. We may now define what are the components of perception
and domain-situation models. Finally we arrive with three notions of conceptual
model. We thus head forward to a science and culture of modelling in Fig. 1.

Laying the foundation,
conditioning
socialising

Enabling,
making possible,

imitate

Comprehending
establishing,
creating

Organising,
designing,

modernising

Treasuring,
appreciating,

critical
distance

Daily life
intelligence

Problem-solving
intelligence

Self-reflective
intelligence

Design
intelligence

Wisdom

Background

Art

Science

Culture

Fig. 1. The five levels of modelling as art, science, and culture

Towards a Science and Culture of Models, Modelling Activities, and Modelling.
Modelling is currently a creative art, i.e. a skill acquired by experience and
observation, and may potentially be enhanced by study. The art extends daily
life intelligence that is a part which lays the foundations for modelling, condi-
tions, and socialises. The first level of modelling is based on daily life intelligence
between humans or of humans with their environment. Humans become intro-
duced to the deep model and especially the background – in most cases at some
preconscious level.

Model science is based on a system of knowledge that is concerned with
modelling art and that entails unbiased observations and systematic experimen-
tation. The foundation we envision orients on fundamental laws. We understand,
establish, deliberately apply the knowledge, and formalise it. Modelling culture
is shared in a community of practice, is based on well-developed principles and
methods as well as on established guidelines and practices. Wisdom requires the
sapience of schools and matured modelling.

128 B. Thalheim

2 Model Theory and Its Philosophical Foundations

The earliest source of systematic model consideration we know is Heraclitus
[18] with his concept of λóγoς (logos). Explicit model development and model
deployment is almost as old as the mankind, however. For instance, Ancient
Egyptians already made sophisticated use of models [8]. So, essentially, it is an
old subdiscipline of most natural sciences and engineering with a history of more
than 5000 years [22]. The notion of model has not been explicitly used at that
historic time. It was, however, the basis of understanding, manipulation, and
engineering.

2.1 Plato’s Three Analogies

Plato’s Republica (for a survey on Politeia see [2] or Lafrance [16]) uses in the
sixth book three analogies which can essentially be understood as the underpin-
ning of the concept of model. We follow here Lattmann’s [17] investigation that
led to a deep revision of the interpretation by Aristoteles.

The three analogies provide a general understanding of the model-being, of
models, and of modelling. We may only observe phenomena of reality, form then
trusts in beliefs and observations, next develop conjectures, might next judge
and hypothise, and finally provide explanations.

The analogy of the sun distinguishes the ‘good’ visible world and the intelli-
gible world. The sun stands for the visible things (i.e. ‘empirical’, ‘physical’,
and ‘material’ world) and gives the light. The opposite world is the world of
reasoning, of beliefs, conjectures, ideas, and explanations.

The analogy of the divided line distinguishes the visible world and the reasoning
about this world as the thinkable (called intelligible world). The visible world can
be separated into the physical things themselves (beliefs (pistis) about physical
things) and the reflections and observations about them (called shadows) (eikasia
as the illusion of human experience). The intelligible world consists of (mathe-
matical) reasoning and thought (dianoia) and of deep understanding (moesis).

Plato represented these four dimensions by a line (reflections (AB) - phys-
ical things (BC) - thoughts (CD) - understanding (DE)). We shall see in the
sequel that a six plane representation allows deeper understanding.

The analogy of the cave explains why humans can only interpret the world
based on their observations, i.e. shadows that we can see. The reality cannot be
observed.

2.2 Revisiting the Analogies for Understanding the Model World

The four segment line presentation in Plato’s analogies (AB, BC, CD, DE) can
be transferred to a six plane meta-model with

Conceptual Models and Their Foundations 129

– a separation into a quantitative area and a qualitative area for meaning and
opinion (doxa) and a qualitative area for thoughts (noesis) from one dimension
and

– a separation into a perception and pre-image area and an area for conceptu-
alisation from the other dimension.

The intelligible world thus consists of the mental world and the real intelligible
world. This observation allows us to reconsider the model-being in the approach
depicted in Fig. 2.

The visible model world mainly reflects the observations and their perception
as phenomena. So, we can consider models of the visible world as models of the
first generation.

BC

AB ((CD))

CD

DE

observable
physical
things,
proxies

(pistis)

shadows,
reflections,
phenomena

(eikasia)

model beliefs,
intuitions,

probable predictions,
perception
models

model conjecture
and exploration,
exploring existing,
domain-situation

model

formation,
ideas, amalgams,
concept(ion)s,

concept granules,
signs of things,

conceptual
models

(dianoia)

theoretical
models,
forms

(reine noesis,
episteme)

Visible world Mental world Intelligible world

quantitative qualitative

Observation
kingdom

Opinion
kingdom (doxa)

Thought
kingdom (noesis)

Fig. 2. The model world with the separation of concern into visible, mental, and intel-
ligible worlds

The mental model world consists already of compilations to perception models
that reflect someone’s understanding or domain-situation models that represent
a commonly accepted understanding of a state of affairs within some application
domain.

The intelligible model world includes conceptualisations and theory develop-
ment.

130 B. Thalheim

3 Concepts and Conceptualisations

The separation of model worlds in Fig. 2 provides a means to distinguish clearly
between models and conceptual models. With this distinction we may now
neglect the hypothesis [24] that any model is a conceptual model. We thus
solved the demarkation problem for distinction of models into perception, domain-
situation, conceptual, and theoretical models.

3.1 Conceptualisation

Conceptualisation is a reflection and understanding of the world on the basis of
concepts from some commonly accepted concept spaces. Similar to ontologies, a
conceptualisation is never unique. There is no universal conceptualisation such
that every other one can be transformed from it. Conceptualisation means to
find adequate concepts and conceptions for representation of a visible and mental
world. It aims at the development of knowledge about these worlds. It is based on
derivation of abstract concepts and experience, of (scientific) understanding and
perception that can be applied in similar worlds, of (pragmatical) experience
for modelling, and of reference models for model-driven development (MDD)
approaches.

Weakening the Rigidity of Classical Concept Theory

The word ‘conceptual’ is linked to concepts and conceptions. Conceptual
means that a thing, e.g., artifact is characterised by concepts or their conceptions.
The word ‘conceptional’ associates a thing as being or of the nature of a notion
or concept. Therefore, we distinguish the ‘conceptual model’ from ‘conceptional
modelling’. Classical concept theory and concept systems in mathematical logics
are based on a Galois relationship between extensions and intensions of concepts,
i.e. a concept is defined as a pair of an intention and of an extension where
the intention is fully characterised by the extension and the extension is fully
described by the intention. Each definition of a concept is a logical equation
consisting of a definiendum and a definiens. We will use here an extension of
the classical theory of concepts (e.g. [23]) by R. Kauppi’s theory of concept
properties [13,31]).

Brentano, Bolzano and Twardowski (e.g. [5,20]) distinguish three kinds of men-
tal phenomena and inner consciousness: ideas, judgements, and volitions. Con-
cepts and conceptions might be based on prototypes that allow to partially
characterise the current understanding of the intention but do not provide a
complete characterisation. Mental phenomena, beliefs, and intuitions have their
prototype view and a representation through best (counter-)examples that a per-
son has been observing. Moreover, they can be represented by an exemplary view
that characterises exemplars through similarity relation with measures, weights,
and stimuli for their acceptance.

Conceptual Models and Their Foundations 131

Conceptions are Systems or Networks of Explanation. White [38] has already
observed that concepts are not the same as conceptions. Concepts can be used
in the meaning of classification and as an abstraction of a set of knowledge a
person associates with the concept’s name. Conceptions are however systems or
networks of explanation. Conceptions are thus far more complex and difficult to
define than the either meanings of the concept.

Conceptional modelling is modelling with associations to concepts. A concep-
tual model incorporates concepts into the model. Conceptual structures include
conceptions (concepts, theoretical statements (axioms, laws, theorems, defini-
tions), models, theories, and tools). Concepts are linked together in a complex
multi-dimensional network (is-a-kind-of, is-a-part-of, ...). The links are of vari-
able strength.

3.2 Concepts for Conceptualisation

An advanced concept notion must allow to define a concept in a variety of ways.
Some definitions might be preferred over others. They can be application and
time dependent, might have different level of rigidity, have their validity area,
and can only be used with a number of restrictions. We combine R. Kauppi’s
theory of concept features with the concept treatment by Murphy [23].

The Definition Frame for Concepts [27]: Concepts are given by tree-structured
structural expression of the following form

ConceptTree(StructuralTreeExpression (Feature, Modality(Sufficiency, Necessity),

Fuzziness, Importance, Rigidity, GraduationWithinExpression, Category))) .

Features are elements of a concept with some modality, some Fuzziness,
importance, rigidity, some graduation and some category. A feature is either
a basic feature or is a concept.

Concepts are typically hierarchically ordered by the way how they are defined
and can thus be layered. We assume that this ordering is strictly hierarchical
and that the concept space can be depicted by a set of concept trees.

A Concept Might be Given by Several Definitions. A concept is also depen-
dent on the community that prefers this concept. Consider, for instance, the
mathematical concept of a set by an enumeration of its elements, by inductive
definition of its elements, by an algorithm for the construction of the set, or by
explicit description of the properties of the set. Which of the definitions is more
appropriate depends on the application domain.

Interleaved Meta-hypergraphs form Hyper-networks of Concepts: Our definition
frame has the advantage that concepts which share features can be decomposed
into the shared feature collection and the rest. Therefore, we may base our
concept collection on a number of basic concepts.

The network of concepts is a meta-hypergraph [25]

MG = (MGV ,MGMV ,MGE , FMG, ΣMG) (1)

132 B. Thalheim

with a set of meta-hypergraph vertices MGV , a set of meta-hypergraph meta-
vertices MGMV which are subsets of meta-hypergraph vertices, a set of meta-
hypergraph edges MGE connecting vertices. A vertex and an edge is described
by a set of features FMG. The semantic restrictions are given by ΣMG. An
example of a meta-hypergraph is displayed in Fig. 34.

Conceptions Can Now be Defined as a Layered Ensemble of Meta-hypergraphs.
We start with a primary network at layer 0 and associate next layer networks by
embedding mappings to a hyper-simplex from networks at lower layer. A simple
example is displayed in Fig. 4.

3.3 Meta-hypergraph Concept Worlds

Many sciences such as archaeology start with an explorative and investigative
theory development [1], i.e. with an investigation of data sources. A middle-range
theory offer is going to be developed based on some proxy-based observation con-
cepts. The CRC 1266 [1,15] aims at exploring and explaining transformations in
societies as “processes leading to a substantial and enduring re-organisation” [1]
of any or all aspects of the human social, cultural, economic, and environmen-
tal relations. These concepts are interrelated, partially overlapping, and form

Fig. 3. A meta-hypergraph with vertices v1, ...v5, meta-vertices mv1, mv2, mv3, and
edges e1, ..., e7 without explicit features.

Fig. 4. A meta-hypergraph ensemble associating a simple primary network simplex PS
and a first-order network simplex that associates via Φ1 the vertex v5 with a hyper-
simplex of vertices v4, v3.

4 We acknowledge the communication with J. E. Gapanyuk from Bauman Moscow
State Technical University (10.10.2018) who proposed this illustrations in Figs. 3
and 4.

Conceptual Models and Their Foundations 133

more complex concepts as a combination of less complex ones. A typical concept
map is displayed in Fig. 5. It is an example of a meta-hypergraph with concepts
that partially form a hypernode which is again interrelated to sub-nodes of a
hypernode by meta-hypergraph vertices.

3.4 Concept Granules as Basic Constructs of Conceptualisations

Concept granules are collections of concepts and/or conceptions given as meta-
hypergraphs and ensembles with specified typicality of features (typical, moder-
ately typical, atypical, borderline), with specified relevance of concept features,
and with assigned importance of concept features.

Conceptualisation enhancements of a given model consist of

(1) a context given for various aspects in dependence on the matrix,
(2) a concept granule with several interrelated expressions as alternatives (com-

peting, ...), with abstracts, with extensions (motivation, explanation, ...), and
(3) witnesses as collections of illustrating best (counter-)examples (potentially

with several concept trees) mainly based on images/observations on origins.

Fig. 5. The network of main concepts investigated in the CRC 1266

134 B. Thalheim

4 Conceptual Models

Mental models and their elements may be associated to concepts. The elements of
a model are interpreted by concepts and conceptions. This interpretation is based
on a judgement by a partner that conceives model elements as concept(ion)s
within a certain model utilisation scenario. If the scenario changes then the
association to concepts changes as well. [33] categorises more than 50 notions of
conceptual model depending on the function that a conceptual model has in a
given scenario. We use this categorisation and develop now three complementary
notions of conceptual model. Which one is used depends on the complexity of
models in scenarios considered.

4.1 Perception and Domain-Situation Models as Origins

Perception and domain-situation models [33] in Fig. 2 are specific mental models
either of one member (e.g. perception model) or of the community of practice
(domain-situation models) within one application area. It is not the real world
or the reality what is represented in a perception model. It is the common con-
sensus, world view and perception what is represented. Perception models are
dependent on the observations, imaginations, and comprehension a human has
made. Domain-situation models describe the understanding, observation, and
perception of a domain situation, e.g. of an application domain. The description
is commonly accepted within a community of practice.

4.2 The Notion of Conceptual Model

The large variety of notions of conceptual model is caused by the scope of mod-
elling, by the application case under consideration, by the main scenario in which
the model functions, by the variety of origins that are represented by the con-
ceptual model, by modelling languages, by the stand-alone orientation instead
of integration into a model suite, and by the focus on normal models without
mentioning the underpinning by a deep model. It is now our goal to consolidate
three versions in such a way that they form a view depending on the level of
detail and abstraction. The notions can be refined to an application domain,
e.g. to database modelling: “A conceptual database model is a conceptual model
that represents the structure and the integrity constraints of a database within a
given database system environment.” [35]

The Slim, Light, and Concise Notion of Conceptual Model

Slim Version: Conceptual Model � Model � Concept(ion)s5 [35]: A conceptual
model incorporates concepts into the model.

That means that models are enhanced by concepts from a number of con-
cept(ion) spaces.
5 � is depicts the disjoint union. ⊕ denotes the combination. �� denotes the integration

(e.g. join) (see [30] for database operations).

Conceptual Models and Their Foundations 135

Light Version: Conceptual Model � Model
⊕

Concept(ion)s [33]: A conceptual
model is a concise and function-oriented model of a (or a number of) perception
and/or domain-situation model(s) that uses a concept(ion) space.

This notion generalises and enhances a notion that is used in simulation
research [26]: “A conceptual model is a concise and precise consolidation of all
goal-relevant structural and behavioural features of a system under investigation
presented in a predefined format.”

Concise Version: Conceptual Model � (Model
⊕

Concept(ion)s) �� Enabler
[10]: A conceptual model is a model that is enhanced by concept(ion)s from a con-
cept(ion) space, is formulated in a language that allows well-structured formulations,
is based on mental/perception/situation models with their embedded concept(ion)s,
and is oriented on a matrix that is commonly accepted.

The conceptual model of an information system consists of a conceptual
schema and of a collection of conceptual views that are associated (in most cases
tightly by a mapping facility) to the conceptual schema [37]. Conceptual mod-
elling is either the activity of developing a conceptual model or the systematic
and coherent collection of approaches to model, to utilise models, etc.

Literate programming [14] considers a central program together with its satel-
lite programs, esp. for interfacing and documenting. This paradigm has become
the basis for GitHub and model suites. Conceptual modelling is typically explicit
modelling by a model suite. Association of conceptual and other models in a
model suite might follow the layered approach to model coherence maintenance
and to co-evolution of models.

Descriptive and Prescriptive Conceptual Models

A Model Functions in a Number of Scenarios. For instance, the conceptual model
is used in documentation, negotiation, learning, communication, explanation,
discovery, inspiration, modernisation, reflection, and experience propagation sce-
narios. We may categorise and enhance the notion of conceptual model depending
on given scenarios. The system construction scenario integrates description and
prescription scenarios beside specification and coding scenarios.

One Main Scenario for Conceptual Database Models Is the Description Sce-
nario. A conceptual model as a descriptive conceptual model is a deliverable
of an understandable (may be, ready to apply or to practise) and formalised
(or well-formed) [concept-based], unconditionally acceptable conceptualisation
of perception and domain-situation models for interaction and discourses.

For database applications it is thus a model suite consisting of a conceptual
database model (or schema), of a collections of conceptual views for support
of business users, and of a collection of commonly accepted domain-situation
models with explicit associations to views (see [37]).

136 B. Thalheim

The Second Main Scenario for Conceptual Database Models Is the Prescription
Scenario. A conceptual model as a prescriptive conceptual model is a coding
supporter as an analysed or synthesised, ready-to-apply blueprint because it
can be deployed, it is unconditionally accepted, and appraised in a deliberately
and precise practice as a tacit tool which provides notion explanations [from
descriptive conceptual models].

For database applications it is thus a model suite consisting of a conceptual
database model (or schema), of a collection of views for both support of business
users and system operating, and of realisation templates (see [37]).

4.3 Models, Languages, and Ontologies

The major goal of an ontology [20] is to determine what exists and what not.
It is independent of humans to conceive it and what kinds of existing things
there are. It is independent of perception models although it can be shared
among humans. Languages might be textual, visual or audio ones. The classical
modelling approach often assumes artificial or partially formal languages.

Languages as Enablers for Conceptual Models: Most models are language based.
The language is an instrument similar to models. Moreover, the first models that
a human develops are preconscious or subconscious, e.g. the model of a ‘mother’.
Languages are however enablers since the words in languages can be used for
denoting concepts. Many conceptual languages integrate several languages, e.g.
ER modelling uses the vocabulary from a domain and a graphical language for
schema representation.

Conceptual Models Do Not Have to be Based on an Ontology: The notion of
ontology is overloaded similar to the notion of model. Ontologies are considered
as shared and commonly agreed vocabularies.

A controlled and thus matured ontology must combine a controlled vocabu-
lary, a thesaurus, a dictionary, and a glossary. There is not real need for associ-
ating such ontologies with models.

Languages Are Not Necessary Preconditions for Conceptual Models: Social mod-
els are often used for teaching human behaviour. They are based on concepts
which might also be not explicit or integrated into the deep model. They are thus
conceptual models. We observe however that in most cases conceptual normal
models use some language.

5 Conclusion

We developed an approach to conceptual modelling with an explicit integration
of concepts into the model. This explicit integration is based on a theory of con-
cepts, conceptions, and conceptualisation. Concepts are developed for our under-
standing of the world we observe. Therefore, perception and domain-situation
models become the origins of our conceptual models.

Conceptual Models and Their Foundations 137

There Are Models that Are Not Conceptual Models: Sciences and engineering use
models without explicit integration of concepts. It is often also difficult to use
concepts within the model. A model performs a function in a scenario. Explicit
conceptualisation would make the model more complex and thus less useful.

What Is Not Yet a Conceptual Model: Middle-range theories are essentially medi-
ator models. They are used for mediation between qualitative theories (e.g. their
conceptualisations) and quantitative observations. For instance, sciences such as
archeology make use of modern or medieval concepts without having yet an
appropriate concept for prehistoric time, e.g. the concept of settlement or a vil-
lage. Another typical model that might be enhanced by concepts is the graph
model for the Königsberg bridge problem that uses pathes within a graph for
solving this problem. The topographical model for the bridge problem uses the
concepts of islands and bridges and thus allows to explain the solution.

What Will Never Be a Conceptual Model: Most life situations do not need con-
scious models since we can live with what we have learned. Preconscious, uncon-
scious, and subconscious models guide life, emotions, and intuitions. Conscious
models require efforts and thus must have an explicit need. Concept(ion)s do
not to be explicated since there might be no necessity in that.

Remark: More detailed information on our research papers can be found
on research gate in collections https://www.researchgate.net/profile/Bernhard
Thalheim.

References

1. CRC 1266. Scales of transformation - Human-environmental interaction in prehis-
toric and archaic societies. Collaborative Research Centre. http://www.sfb1266.
uni-kiel.de/en/. Accessed 13 May 2018

2. Annas, J.: An Introduction to Plato’s Republic. Clarendon Press, Oxford (1981)
3. Blackmore, S.: The Meme Machine. Oxford University Press, Oxford (1999)
4. Bosco, S., Braucher, L., Wiechec, M.: Encyclopedia Britannica. Ultimate Reference

Suite, Merriam-Webster, USA (2015)
5. Brentano, F.: Psychologie vom empirischen Standpunkte. Dunker & Humblot,

Leipzig (1874)
6. Dahanayake, A.: An environment to support flexible information modelling. Ph.D.

thesis, Delft University of Technology (1997)
7. Dahanayake, A., Thalheim, B.: Co-evolution of (information) system models. In:

Bider, I., et al. (eds.) EMMSAD 2010. LNBIP, vol. 50, pp. 314–326. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13051-9 26

8. Deicher, S.: KunstModell in Ancient Egypt. BMBF Project description, University
of Applied Sciences, Wismar (2018)

9. Embley, D., Thalheim, B. (eds.): The Handbook of Conceptual Modeling: Its Usage
and Its Challenges. Springer, Berlin (2011)

10. Jaakkola, H., Thalheim, B.: Cultures in information systems development. In:
Information Modelling and Knowledge Bases XXX, pp. 61–80. IOS Press, Amster-
dam (2019)

https://www.researchgate.net/profile/Bernhard_Thalheim
https://www.researchgate.net/profile/Bernhard_Thalheim
http://www.sfb1266.uni-kiel.de/en/
http://www.sfb1266.uni-kiel.de/en/
https://doi.org/10.1007/978-3-642-13051-9_26

138 B. Thalheim

11. Kangassalo, M.: Changes in children’s conceptual models and the development of
children’s exploration strategies in the PICCO environment. In: Information Mod-
elling and Knowledge Bases XI. Frontiers in Artificial Intelligence and Applications,
vol. 61, pp. 251–255. IOS Press, Amsterdam (2000)

12. Kaschek, R.: Konzeptionelle Modellierung. Ph.D. thesis, University Klagenfurt
(2003). Habilitationsschrift

13. Kauppi, R.: Einführung in die Theorie der Begriffssysteme. Acta Universitatis
Tamperensis, Ser. A, vol. 15, Tampereen yliopisto, Tampere (1967)

14. Knuth, D.E.: Literate programming. Comput. J. 27(2), 97–111 (1984)
15. Kropp, Y., Thalheim, Y.: Data mining design and systematic modelling. In: Pro-

ceedings of the DAMDID/RCDL’17, Moscov, pp. 349–356 (2017). FRC CSC RAS
16. Lafrance, Y.: Pour interpréter Platon: La Ligne en République VI, 509d–511e.

Bilan analytique des études, 1804–1984, vol. 114. Les Editions Fides (1986)
17. Lattmann, C.: Vom Dreieck zu Pyramiden - Mathematische Modellierung bei Pla-

ton zwischen Thales und Euklid. Habilitation thesis, Kiel University, Kiel (2017)
18. Lebedev, A.V.: The Logos Heraclitus - A reconstruction of thoughts and words;

full commented texts of fragments. Nauka, Moskva (2014). (in Russian)
19. Mahr, B.: Information science and the logic of models. Softw. Syst. Model. 8(3),

365–383 (2009)
20. Mahr, B.: Intentionality and modeling of conception. In: Bab, S., Robering, K.

(eds.) Judgements and Propositions - Logical, Linguistic and Cognitive Issues,
pp. 61–87. Logos Verlag, Berlin (2010)

21. Mahr, B.: Modelle und ihre Befragbarkeit - Grundlagen einer allgemeinen Mod-
elltheorie. Erwägen-Wissen-Ethik (EWE) 26(3), 329–342 (2015)

22. Müller, R.: Model history is culture history. From early man to cyberspace. http://
www.muellerscience.com/ENGLISH/model.htm (2016). Assessed 29 October 2017

23. Murphy, G.L.: The Big Book of Concepts. MIT Press, Cambridge (2001)
24. Pastor, O.: Conceptual modeling of life: Beyond the homo sapiens (2016). http://

er2016.cs.titech.ac.jp/assets/slides/ER2016-keynote2-slides.pdf. Keynote given at
ER’2016 (Nov. 15)

25. Popkov, G.P., Popkov, V.K.: A system of distributed data processing. Vestnik
Buryatskogo Gosudarstvennogo Universiteta 9, 174–181 (2013). (in Russian)

26. Robinson, S., Arbez, G., Birta, L.G., Tolk, A., Wagner, G.: Conceptual modeling:
definition, purpose and benefits. In: Proceedings of the 2015 Winter Simulation
School, pp. 2812–2826. IEEE (2015)

27. Schewe, K.-D., Thalheim, B.: Semantics in data and knowledge bases. In: Schewe,
K.-D., Thalheim, B. (eds.) SDKB 2008. LNCS, vol. 4925, pp. 1–25. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-88594-8 1

28. Stachowiak, H.: Allgemeine Modelltheorie. Springer, New York (1973)
29. Tanaka, Y.: Meme Media and Meme Market Architectures: Knowledge Media for

Editing, Distributing, and Managing Intellectual Resources. Wiley, Hoboken (2003)
30. Thalheim, B.: Entity-Relationship Modeling - Foundations of Database Technol-

ogy. Springer, Berlin (2000)
31. Thalheim, B.: The conceptual framework to user-oriented content management.

In: Information Modelling and Knowledge Bases. Frontiers in Artificial Intelligence
and Applications, vol. XVIII. IOS Press (2007)

32. Thalheim, B.: The conceptual model ≡ an adequate and dependable artifact
enhanced by concepts. In: Information Modelling and Knowledge Bases. Frontiers
in Artificial Intelligence and Applications, vol. XXV, 260, pp. 241–254. IOS Press
(2014)

http://www.muellerscience.com/ENGLISH/model.htm
http://www.muellerscience.com/ENGLISH/model.htm
http://er2016.cs.titech.ac.jp/assets/slides/ER2016-keynote2-slides.pdf
http://er2016.cs.titech.ac.jp/assets/slides/ER2016-keynote2-slides.pdf
https://doi.org/10.1007/978-3-540-88594-8_1

Conceptual Models and Their Foundations 139

33. Thalheim, B.: Conceptual model notions - a matter of controversy; conceptual
modelling and its lacunas. EMISA Int. J. Conceptual Model. 13, 9–27 (2018)

34. Thalheim, B.: Normal models and their modelling matrix. In: Models: Concepts,
Theory, Logic, Reasoning, and Semantics, Tributes, pp. 44–72. College Publica-
tions, London (2018)

35. Thalheim, B.: Conceptual modeling foundations: the notion of a model in concep-
tual modeling. In: Encyclopedia of Database Systems. Springer, US (2019)

36. Thalheim, B., Nissen, I. (eds.): Wissenschaft und Kunst der Modellierung: Modelle,
Modellieren. Modellierung. De Gruyter, Boston (2015)

37. Thalheim, B., Tropmann-Frick, M.: The conception of the conceptual database
model. In: ER 2015. LNCS, vol. 9381, pp. 603–611. Springer, Berlin (2015)

38. White, R.T.: Commentary: conceptual and conceptional change. Learn. Instruction
4, 117–121 (1994)

Building Formal Semantic Domain
Model: An Event-B Based Approach

Idir Ait-Sadoune(B) and Linda Mohand-Oussaid

LRI - CentraleSupelec - Paris-Saclay University, Plateau de Saclay, France
{idir.aitsadoune,linda.mohandoussaid}@centralesupelec.fr

Abstract. Ontologies are structured data models used to describe a set
of concepts related to a specific domain, they describe also the semantic
properties of these concepts. Formal development process aims to develop
a system with respect to properties or constraints. The IMPEX project is
interested in involving domain constraints as soon as possible into formal
development process, it proposes to integrate the ontologies descriptions
in an Event-B development process. This approach assumes to develop a
transformation step of the ontologies constructs from their initial descrip-
tion in an ontological language (OWL, OntoML ...) to Event-B. A first
version of this transformation approach for OWL ontologies based on a
generic and extensible architecture has been developed, it is supported by
the OntoEventB tool. An evolution of this approach to include OntoML
ontologies and new features is presented in this paper.

Keywords: Ontology · Formal domain model · Measure data types
description · Event-B

1 Introduction

When designing a hardware or a software system, the integration of domain
or/and environment constraints becomes a determining factor to ensure a great
match with the system requirements. This domain or/and environment knowl-
edge is most often described using knowledge models, named ontologies [9], that
allow to express the domain or/and environment properties.

In a system design process, several relevant properties can be checked using
the formal methods. These properties are expressed according to the semantics
associated to the formal technique being used: type checking, proofs theory, logic
based reasoning, rewriting, refinement, model checking, trace analysis, simula-
tion, etc. When considering these properties in their domain or/and environment
with the associated semantics, these properties may be no longer respected. As a
very simple example, take two formally developed systems that are composed to
exchange length measures data represented by a float. This system is no longer
consistent if one system refers to Meter unit and the other to Inch unit.

This work was supported by grant from the French national research agency ANR
(IMPEX ANR-13-INSE-0001: http://impex.loria.fr).

c© Springer Nature Switzerland AG 2019
K.-D. Schewe and N. K. Singh (Eds.): MEDI 2019, LNCS 11815, pp. 140–155, 2019.
https://doi.org/10.1007/978-3-030-32065-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_10&domain=pdf
http://impex.loria.fr
https://doi.org/10.1007/978-3-030-32065-2_10

Building Formal Semantic Domain Model: An Event-B Based Approach 141

In the IMPEX project1, we have proposed an approach to integrate domain
or/and environment constraints into a system development process based on
Event-B formal method [1]. It consists in annotating Event-B models using the
ontology concepts [3–5,10]. We suggest to integrate domain constraints as a part
of design models and we propose to model domain concepts using ontologies to
annotate systems and to formalise the obtained design models in Event-B. This
assumes a formalisation of the domain ontology by using the Event-B formal
method. The formalisation of the domain ontology within Event-B models allows
to constrain the system under design with the domain or/and environment prop-
erties. Therefore, we have proposed an extensible generic transformation app-
roach which develops an Event-B specification based on an ontology described in
an ontological language [14]. A Rodin plug-in [2], named OntoEventB, was devel-
oped to support an automatic generation of Event-B contexts from ontologies
descriptions.

In our previous work [14], we have proposed an approach using an architec-
ture composed of three components: Input component, Pivot component and
Output component. The most important component is the Pivot Model which
is an extensible independent representation of ontologies which summarizes the
common pertinent concepts used by different ontology description languages. For
example, we have treated all generic concepts describing Web ontologies that we
can find in languages like OWL [17].

In this paper, we present the second version of our approach that extends
the proposed architecture to integrate new generic concepts used to describe
engineering ontologies that we can find in ontologies description languages like
OntoML/Plib [15]. This extension impacts the three components of the proposed
architecture in the following way: we have the possibility to process OntoML
files as input at the level of the Input component, we have extended the Pivot
model of the Pivot component to capture all OntoML concepts that are not
formalised in the first version, and we have defined new rules to formalise and
to integrate the new OntoML concepts in the generated Event-B model at the
Output component level.

This paper is organised as follows: Sect. 2 presents the proposed approach for
integrating ontologies descriptions into Event-B formal method, Sect. 3 reminds
the OntoEventB architecture and Sects. 4, 5, 6 and 7 detail the extensions made
to different components of the proposed architecture. Finally, Sect. 8 is devoted
to the related works.

2 The Proposed Approach

This paper deals with domain constraints integration into a system development
process based on Event-B. During an Event-B development process, the system
behaviour is modelled by a set of Machine containing a set of variables whose
values change within events. The variables are usually typed by using predefined
types or built sets declared in a static component, the Context [1].
1 http://impex.loria.fr.

http://impex.loria.fr

142 I. Ait-Sadoune and L. Mohand-Oussaid

Regardless the describing language, ontologies [9] share a set of modelling
concepts to describe domain constraints. An ontology describes individuals
(instances) grouped into collections called classes (concepts). Classes are charac-
terised by typed attributes and linked to other classes using properties. A class
can be built by combining other classes using algebraic operators or by constrain-
ing a class using a logical predicate established on a property. Classes can be
linked by inheritance relationships. Ontology modelling languages use set theory
and predicate logic to describe ontologies, they involve deduction mechanisms
to infer new assertions and answer queries about ontology components.

In order to integrate domain or/and environment constraints in Event-B
development process, we have proposed to formalise the ontology as a system
data model within a Context component [3–5]. Thus, the variables of the Event-
B models take their values in ontology concepts and inherit domain or/and
environment constraints.

The development of a translation approach emerges as a natural choice for
the expression of an ontology description in the Event-B formal method. This
approach allows to formalise an ontology described with an ontology language
into an Event-B specification. It takes as input an ontology description and
generates as output the corresponding Event-B model. The translation approach
is based on correspondences between the ontology languages constructs and the
Event-B formal semantics. The OntoEventB plug-in [14] has been developed
to automatically support the translation of ontologies description into Event-B
formalisation. It takes as input an ontology description file and generates the
corresponding Event-B Context component.

3 The OntoEventB Architecture

The OntoEventB plug-in is developed according to an architecture composed of
three components: Input Models, Pivot Model and Output Models (Fig. 1).

Fig. 1. The OntoEventB architecture.

Building Formal Semantic Domain Model: An Event-B Based Approach 143

Input Models Component. This component is devoted to treat ontology files
provided as input. It browses the received files as input models in order to extract
ontological concepts descriptions (classes, properties, data types, ...) intended to
be processed by the Pivot Model component.

Pivot Models Component. This component contains an intermediate model
which summarises common pertinent concepts used by a great number of ontol-
ogy description languages. It defines generic concepts that integrate all specific
concepts that can be received from the Input Model component. Following the
receipt of different ontological concepts derived from the Input Model compo-
nent, the Pivot Model component translates them into its generic concepts. After
this first translation step, the obtained generic concepts are ready to be treated
by the next process handled by the Output Model component.

Output Models Component. This component receives generic concepts computed
by the Pivot Model component, and translates them into Event-B Context ele-
ments (sets, constants and axioms). This process uses translation rules, proposed
in [14], that formalise each ontological concept by an Event-B definition.

The use of this architecture allows us to extend the OntoEventB approach
by processing new input ontology description languages without updating all
defined Event-B formalisation of the Pivot Model concepts. If the added language
contains new concepts that are not yet defined in the Pivot Model, the Pivot
model will be extended to integrate this new concepts. Indeed, as soon as the
new concepts defined by these new languages are added into the Pivot model,
they will be directly formalised with Event-B definitions without redefining all
transformation rules.

Thus, in this article, we propose to extend the proposed architecture to take
into account input ontologies described by OntoML/Plib language [15]. This
extension constitute an update into the OntonEventB architecture by adding
new ontological concepts into the Pivot Model, and by defining new Event-B
formalisation rules for the added concepts. These extensions concern the pro-
cessing of Currency and Measure data type definitions. They are detailed in the
following sections.

4 The Input Model Component Extension

The Input Models component of the first version of the OntoEventB approach
was able to treat Web ontologies described using OWL language. In the new
version of the OntoEventB architecture, the Input Model component is updated
to process Plib ontologies [15] described with OntoML representation [16]. The
Input Model component browses the OntoML files, extracts concepts descrip-
tions (classes, properties, data types, ...) and sends them to the Pivot Model
component (cf. Fig. 1).

144 I. Ait-Sadoune and L. Mohand-Oussaid

The Listing 1.1 presents an extract of an OntoML file describing the ISO23768
Plib ontology/norm2. This Ontology specifies a reference dictionary for all con-
cepts described in the various International Standards relevant to rolling bear-
ings, together with their descriptive properties and domains of values. The List-
ing 1.1 defines a class named ball bearing as subclass of another class named
rolling bearing. The ball bearing class contains a set of properties, one of them is
named material treatment.

Listing 1.1. An extract of an OntoML/Plib description of the ISO23768 norm.

1 <dictionary type=”DICTIONARY IN STANDARD FORMAT Type”>
2 <contained classes>
3 <class type=”ITEM CLASS Type”
4 id=”0112−1−−−23768 1#01−23768AAA028#001”>
5 . . .
6 <preferred name>ba l l bear ing</preferred name>
7 <i ts superclass c las s re f=”0112−1−−−23768 1#01−23768AAA007#001”/>
8 <described by>
9 <property property ref=”0112−1−−−23768 1#02−23768BAA018#001”/>

10 <property property ref=”0112−1−−−23768 1#02−23768BAA023#001”/>
11 <property property ref=”0112−1−−−23768 1#02−23768BAA001#001”/>
12 </described by>
13 . . .
14 </ class>
15

16 <class type=”ITEM CLASS Type”
17 id=”0112−1−−−23768 1#01−23768AAA007#001”>
18 . . .
19 <preferred name>r o l l i n g bear ing</preferred name>
20 . . .
21 </ class>
22 . . .
23 </contained classes>
24 <contained properties>
25 <property type=”NON DEPENDENT P DET Type”
26 id=”0112−1−−−23768 1#02−23768BAA018#001”>
27 . . .
28 <preferred name>mate r i a l treatment</preferred name>
29 . . .
30 <domain type=”NON QUANTITATIVE CODE TYPE Type”>
31 . . .
32 <i ts values>
33 <dic value type=”STRING DIC VALUE Type”>
34 <preferred name>bear ing s t e e l</preferred name>
35 </dic value>
36 . . .
37 </ i ts values>
38 </domain>
39 </property>
40 . . .
41 </contained properties>
42 </dictionary>

5 The Pivot Model Component Extension

Following the receipt of different ontological concepts obtained from the Input
Model component, the Pivot Model component interprets them as one of its
concepts. The Pivot Model component contains a model defining the common
2 Reference dictionary for rolling bearings https://www.iso.org/standard/41845.html.

https://www.iso.org/standard/41845.html

Building Formal Semantic Domain Model: An Event-B Based Approach 145

concepts used by a great number of ontology description languages. The Fig. 2
presents an UML model formalising the mains concepts that are defined in the
proposed Pivot Model component. An Ontology is defined by a set of classes
definitions, a set of properties definitions, and a set of data types definitions.
The detail of the Pivot Model was defined and can be found in our previous
contribution [14].

ClassModel PropertyModel DataTypeModel

containedClass
*

containedProperty * containedDataType

*

Ontology

ClassDefinition Property DataType

Fig. 2. The main concepts of the Pivot Model.

As indicated in Sect. 3, the Pivot Model can be extended to integrate new
generic concepts that can be identified if new ontology description languages
are traited by the Input Model component. Therefore, in the new version of the
OntoEventB approach, the Pivot Model is extended to handle Plib concepts that
are not yet included, essentially Currency and Measure data types description.

The NumercType concept, that is a case of a DataType definition on the Pivot
Model (Fig. 2), is used to formalise the currency and the measure data types. In
concrete terms, the NumercType class of Data Type Model part is extended by
two classes: CurrencyType class and MeasureType class (Fig. 3).

1. The CurrencyType class describes the numeric currency types representation.
It contains a currency attribute that gives the associated code of the described
currency expressed according ISO 42173 (could be “CHF” for Swiss Francs,
“CNY” for Yuan Renminbi (Chinese), “JPY” for Yen (Japanese), “SUR” for
SU Rouble, “USD” for US Dollars, “EUR” for Euros etc ...).

2. The MeasureType class describes the numeric measure types representation.
It contains an association with a UnitType class that gives the reference unit
associated to the described measure. The UnitType class defines two types of
units: NamedUnit (Millimeter or Pascal are kinds of named unit) and Derive-
dUnit (Newton per square millimeter is a derived unit).

– The NamedUnit class is a unit associated with the word, or group of
words, by which the unit is identified. It can represent:

3 ISO 4217 is the International Standard for currency codes: https://www.iso.org/iso-
4217-currency-codes.html.

https://www.iso.org/iso-4217-currency-codes.html
https://www.iso.org/iso-4217-currency-codes.html

146 I. Ait-Sadoune and L. Mohand-Oussaid

unit
1

derivedUnitElement1..*

unit
1

unitComponent 1

NumericType

CurrencyType

currency:PredefinedCurrency
MeasureType

UnitType

NamedUnit

exponent:int

DerivedUnit

DerivedUnitElement

name:string
exponent:int

StandardUnit

name:UnitName
prefix:PrefixeType

NonStandardUnit

name:string

ContextDependentUnit

name:string

ConversionBasedUnit

name:string
valueComponent:int

Fig. 3. The NumerciType class definition of the Data Type Model part.

• the fixed quantity used as a standard in terms of which items are
measured as defined by ISO 10004 (Millimeter is a internationally
standardized unit) (StandardUnit class),

• units that are not standard units, nor conversion based units, nor
length units (NonStandardUnit class),

• a unit defined on the base of another unit (inch is a conversion based
unit) (ConversionBasedUnit class),

• or a unit which is not related to the standard system (The number
of parts in an assembly is a physical quantity measured in units that
may be called “parts”) (ContextDependentUnit class).

– The DerivedUnit class is a unit that stands for an expression of units.
It contains a set of DerivedUnitElement which makes up a derived unit
(Newton per square millimeter is a derived unit. It would then be repre-
sented by two DerivedUnitElement: the former for representing the New-
ton unit, the latter for representing the millimeter unit).

4 ISO 1000 describes the International System of Units SI:
https://www.iso.org/standard/5448.html.

https://www.iso.org/standard/5448.html

Building Formal Semantic Domain Model: An Event-B Based Approach 147

Finally, after translating different ontological concepts obtained from the
Input Model component into the Pivot Model component, the next process han-
dled by the Output Model component is ready to treat all the obtained generic
concepts.

6 The Output Model Component Extension

The main function of the Output Model component is to formalise using Event-
B formal method (contexts, sets, constants and axioms) the generic concepts
defined within the Pivot Model component. This process uses transformation
rules, proposed in [14], that formalise each ontological concept by an Event-B
definition.

The novelty within the new Output Model component is the possibility of
generating a PM file (Pivot Model textual representation) that contains all Pivot
Model concepts. Moreover, as showed in the previous section, the Pivot Model
was extended to handle Plib/OntoML concepts that are not already defined in
the first version of the OntoEventB approach, essentially the currency and the
measure data types description. The Event-B formalisation of these parts is also
one of the main updates of the Output Model component. All these extensions
are detailed in the following sections.

6.1 Generating a Pivot Model (PM) File

As announced in the previous paragraph, the Output Model component offers
the possibility to generate a PM file that contains the Pivot Model definitions.
The purpose of this feature is to provide a better and more readable textual
representation of ontologies than XML used by OWL and OntoML languages,
and to provide the ability to extend and supplement OWL or OntoML ontologies
with new definitions not intended by these languages. For example, we can add
measurements definitions to an OWL ontology or define a new class as a union
of two OntoML classes.

Listing 1.2. The PM extract of the OntoML ISO23768 norm.

1 Ontology ISO23768{
2 containedClasses{
3 SimpleClass Bal lBear ing {
4 subClassOf (Ro l l ingBear ing)
5 describedBy (materialTreatment , . . .)
6 } ,
7 SimpleClass Rol l ingBear ing {
8 describedBy (. . .)
9 } ,

10 . . .
11 }
12 containedProperties{
13 SimpleProperty materialTreatment{
14 range St r ing
15 } ,
16 . . .
17 }
18 }

148 I. Ait-Sadoune and L. Mohand-Oussaid

We specify that the obtained PM file can be reloaded by the Input Model
component to be used by the Pivot Model and the Output Model components
in order to generate an Event-B formalisation corresponding to the PM file
content. The Listing 1.2 shows an extract of the PM content obtained from the
OntoML description of the ISO23768 norm given in Listing 1.1. This extract
contains a class named BallBearing that is a subclass of another class named
RollingBearing. The BallBearing class is described by a set of properties, one of
them is named materialTreatment.

6.2 Event-B Modelling of Currency and Measure Data Types

The second main updates of the Output Model component is the definition of
an Event-B formalisation of some Plib/OntoML concepts that are not already
defined in the first version of the OntoEventB approach, essentially the currency
and the measure data types definitions.

Due to the limitation of the pages number, we present only the Event-B
formalisation of the StandardUnit class, describing measurements standard units,
defined within the Pivot Model (Fig. 3). The same principle is used to model all
the other concepts defined by the UnitType class of the Pivot Model (Fig. 3).

Listing 1.3. Event-B formalisation of the measurements standard units.

1 SETS
2 Prede f i n edPre f i x Predef inedStandardUnit
3 CONSTANTS
4 KILO NONE MILLI . . . METRE GRAM SECOND . . . Prede f inedUnit
5 AXIOMS
6 @axm1 : partition(PredefinedPrefix, {KILO}, {NONE}, {MILLI}, ...)
7 @axm2 : partition(PredefinedStandardUnit, {METRE}, {GRAM}, {SECOND}, ...)
8 @axm3 : PredefinedUnit = PredefinedPrefix × PredefinedStandardUnit

To formalise measurements standard units with Event-B definitions, we have
taken over the ISO 1000 specification. More precisely, we have defined two enu-
merated sets: PredefinedPrefix and PredefinedStandardUnit (cf. Listing 1.3). The
PredefinedPrefix set contains all prefixes that may be associated with an interna-
tionally standardised unit (axiom axm1), and the PredefinedStandardUnit con-
tains all names of internationally standardised units (axiom axm2). Finally, an
internationally standardised unit is described through a prefix and a unit name.
It is defined by the PredefinedUnit set (axiom axm3).

Listing 1.4. Event-B Dimensional definition of a measurements standard units

1 SETS
2 Dimension
3 CONSTANTS
4 LENGTH MASS TIME dimensionOfUnit
5 AXIOMS
6 @axm4 : partition(Dimension, {LENGTH}, {MASS}, {TIME}, ...)
7 @axm5 : dimensionOfUnit ∈ PredefinedStandardUnit → Dimension
8 @axm6 : dimensionOfUnit = {METRE �→ LENGTH,GRAM �→ MASS,
9 SECOND �→ TIME, ...}

Each measurements standard units is associated to its dimension. A dimen-
sion is defined and formalised by the Dimension set containing an enumeration

Building Formal Semantic Domain Model: An Event-B Based Approach 149

of the most used dimensions (axm4 of Listing 1.4). The association between the
standard unit and its dimension is defined by the dimensionOfUnit function
(axioms axm5 and axm6 of Listing 1.4).

The main concept of the proposed approach is the definition of a numerical
measure type that is formalised by the measurements set (axiom axm7 of List-
ing 1.5). This type associates (or annotates) an integer value with its dimension
and measurement unit definitions. Moreover, we have defined four getter func-
tions that are associated with the measurements type to get all information for
a measurement: getValue, getPrefix, getUnit and getDimension (axioms axm8 to
axm15 of Listing 1.5).

Listing 1.5. Event-B numerical measure type definition

1 CONSTANTS
2 measurements getValue g e tP r e f i x getUnit getDimension
3 AXIOMS
4 @axm7 : measurements = Z × (Dimension × PredefinedUnit)
5 @axm8 : getV alue ∈ measurements → Z

6 @axm9 : ∀v, u·(v �→ u ∈ measurements) ⇒ getV alue(v �→ u) = v
7 @axm10 : getDimension ∈ measurements → Dimension
8 @axm11 : ∀v, d, u·(v �→ (d �→ u) ∈ measurements) ⇒ getDimension(v �→ (d �→ u)) = d
9 @axm12 : getPrefix ∈ measurements → PredefinedPrefix

10 @axm13 : ∀v, d, p, u·(v �→ (d �→ (p �→ u)) ∈ measurements)
11 ⇒getPrefix(v �→ (d �→ (p �→ u))) = p
12 @axm14 : getUnit ∈ measurements → PredefinedStandardUnit
13 @axm15 : ∀v, d, p, u·(v �→ (d �→ (p �→ u)) ∈ measurements)
14 ⇒getUnit(v �→ (d �→ (p �→ u))) = u

To have a possibility to write expressions/actions that use integer variables
or constants annotated as measure, we must override all basic operators/func-
tions that interact with the numerical types, essentially the arithmetic operators
(addition, subtraction, multiplication, division, ...). This part of the generated
context is not produced from the ontology.

Listing 1.6. Event-B definition of the addition operator

1 CONSTANTS
2 addMeasure
3 AXIOMS
4 @axm16 : addMeasure ∈ (measurements × measurements) �→ measurements
5 @axm17 : ∀m1,m2·(m1 ∈ measurements ∧ m2 ∈ measurements ∧
6 getDimension(m1) = getDimension(m2) ∧
7 getPrefix(m1) = getPrefix(m2) ∧
8 getUnit(m1) = getUnit(m2))
9 ⇔

10 m1 �→ m2 ∈ dom(addMeasure)
11 @axm18 : ∀m1,m2·(m1 �→ m2 ∈ dom(addMeasure))
12 ⇒ getV alue(addMeasure(m1 �→ m2)) = getV alue(m1) + getV alue(m2)

The Listing 1.6 shows the Event-B definition of the addition operation cal-
culating the sum of two measures (addMeasure function defined by the axm16
axiom). The axiom axm17 gives the well-definedness condition of the addMea-
sure operator and the axiom axm18 gives the result computed by this operator.
The same formalisation is done to define the others arithmetic operators like
subtraction, multiplication and division.

In addition to the proposed measurement type definition, we have provided
the possibility to convert a measured quantity to a different unit of measure

150 I. Ait-Sadoune and L. Mohand-Oussaid

without changing the relative amount. To accomplish this, we have defined an
Event-B function called convert (axm19 axiom on the Listing 1.7).

Listing 1.7. Event-B definition of the conversion function

1 CONSTANTS
2 convert
3 AXIOMS
4 @axm19 : convert ∈ (measurements × (PredefinedUnit)) �→ measurements
5 @axm20 : ∀m, p, u·(m ∈ measurements ∧ (p �→ u) ∈ PredefinedUnit ∧
6 getDimension(m) = dimensionOfUnit(u))
7 ⇒ (m �→ (p �→ u)) ∈ dom(convert)
8 @axm21 : ∀m, p, u·((m �→ (p �→ u)) ∈ dom(convert)) ⇒
9 getPrefix(convert(m �→ (p �→ u))) = p ∧

10 getUnit(convert(m �→ (p �→ u))) = u ∧
11 getDimension(convert(m �→ (p �→ u))) = getDimension(m)

In addition, this definition is strengthened by two axioms: the axm20 axiom
gives the well-definedness conditions of the convert function, and the axm21
axiom states that the obtained measure has the same dimension as the converted
measure and it is annotated with the measurement unit given as input of the
convert function.

6.3 Example of Using Event-B Definition of Measurements Units

As a very simple example, we take two systems that are composed to exchange
length measures data represented by integer. The Listing 1.8 shows the Event-B
model applying the measurements formalisation proposed by our approach. It
contains three integer variables named length 1, length 2 and length 3 anno-
tated with the LENGTH dimension. The length 1 and length 2 variables are
expressed with the MILLI METRE unit, and the length 3 variable is expressed
with the KILO METRE unit (inv1, inv2 and inv3 invariants).

Listing 1.8. Event-B model of systems composed to exchange length measures

1 VARIABLES
2 length 1 length 2 length 3 value 1 value 2
3 INVARIANTS
4 @inv1 : length 1 ∈ Z × ({LENGTH} × ({MILLI} × {METRE}))
5 @inv2 : length 2 ∈ Z × ({LENGTH} × ({MILLI} × {METRE}))
6 @inv3 : length 3 ∈ Z × ({LENGTH} × ({KILO} × {METRE}))
7 @inv4 : value 1 ∈ Z

8 @inv5 : value 2 ∈ Z

9 EVENTS
10 co r r e c t compos i t i on =̂
11 Begin
12 @act : value 1 := getV alue(addMeasure(length 1 �→ length 2))
13 End
14 wrong composit ion =̂
15 Begin
16 @act : value 2 := getV alue(addMeasure(length 1 �→ length 3))
17 End

The Listing 1.8 contains two events: the correct composition event using the
addMeasure operator to compose (by addition) two length measures contained
into the length 1 and the length 2 variables, and the wrong composition event
using the same operator to compose the length 1 variable with the length con-
tained into the length 3 variable.

Building Formal Semantic Domain Model: An Event-B Based Approach 151

Listing 1.9. The PO of the addMeasure operator used by the wrong composition event

1 length 1 ∈ Z × ({LENGTH} × ({MILLI} × {METRE}))
2 length 3 ∈ Z × ({LENGTH} × ({KILO} × {METRE}))
3 ∀m1,m2·(m1 ∈ measurements ∧ m2 ∈ measurements ∧
4 getDimension(m1) = getDimension(m2) ∧
5 getPrefix(m1) = getPrefix(m2) ∧
6 getUnit(m1) = getUnit(m2))
7 ⇔m1 �→ m2 ∈ dom(addMeasure)
8 ⇒length 1 �→ length 3 ∈ dom(addMeasure)

By launching the AtelierB prover of the Rodin platform [2], we obtain
a set of proof obligations (PO) that are proved except the well-definedness
proof obligation (WD PO) associated to the addMeasure operator used by the
wrong composition event (Listing 1.9). This means that the axm17 axiom of the
Listing 1.6 is not established by the wrong composition event. This system is not
consistent because we compose one variable that refers to the Milli-Meter unit
and other to the Kilo-Meter unit.

Listing 1.10. The correct version of composing two measures with different units.

1 cor rec ted wrong compos i t i on =̂

2 Begin

3 @a : value 2 := getV alue(addMeasure(length 1 �→ convert(length 3 �→ (MILLI �→ METRE))))

4 End

On the other hand, we give on the Listing 1.10 how we can compose the two
length measures by converting the length 3 variable into the same measure unit
as the length 1 variable by using convert function defined on the Listing 1.7.
After this correction, the defined system becomes consistent.

7 The OntoEventB Plug-In

The OntoEventB plugin implements the proposed approach (Fig. 1) and it has
been developed to automatically support the formalisation of ontologies using
the Event-B method. The OntoEventB tool is developed as an Eclipse plug-in to
be integrated into the Rodin platform [2] which is an Eclipse IDE (Integrated
Development Environment) supporting the Event-B developments.

Unlike the first version of the plugin [14] (it proposes only the OWL �→
Event-B feature), this second version proposes five features:

1. the OntoML �→ Event-B feature that generates an Event-B context from
an OntoML ontology,

2. the OntoML �→ PM feature that generates Pivot Model textual file from an
OntoML ontology,

3. the OWL �→ Event-B feature that generates an Event-B context from an
OWL ontology,

4. the OWL �→ PM feature that generates Pivot Model textual file from an
OWL ontology, and

5. the PM �→ Event-B feature that generates an Event-B context from a Pivot
Model file.

152 I. Ait-Sadoune and L. Mohand-Oussaid

7.1 Installing the OntoEventB Plug-In

To use OntoEventB plug-in in your Rodin platform instance, you must, first
install xText plugin5, and then OntoEventB plugin6. After installing these plu-
gins in your Rodin platform instance, the OntoEventB sub-menu becomes avail-
able by right clicking on a file with a .owl, .xml, or .pm extensions in the project
explorer.

7.2 Example of Using the OntoEventB Plug-In

The presented approach was applied to the ISO23768 norm. The Listing 1.11
presents an OntoML extract of this norm containing an example of a property
definition named outside diameter. The outside diameter property has as domain
the Millimeter Standard Unit Type.

Listing 1.11. The OntoML definition of the outside diameter property.

1 <property . . .>
2 <preferred name>out s ide diameter</preferred name>
3 <domain type=”REAL MEASURE TYPE Type”>
4 <unit>
5 <structured representation type=”SI UNIT Type”>
6 <prefix>MILLI</prefix><name>METRE</name>
7 </ structured representation>
8 </unit>
9 </domain>

10 </property>

By using the OntoML �→ PM feature of the OntoEventB plugin, we obtain
the Listing list12 containing an example of a property definition with the case
of measure data type definition. This property is named pOutsideDiameter and
it has as range the millimeter unit type (MILLI METRE Measure data type).
This definition corresponds to the Pivot Model formalisation of the MeasureType
proposed in the Sect. 2.

By using the PM �→ Event-B or the OntoML �→ Event-B feature, and the
Event-B formalisation of currency and measure data type defined in the List-
ings 1.3, 1.4 and 1.5, the pOutsideDiameter property is defined on the Listing 1.13
by the axm11 axiom and its range the MILLI METRE Measure data type is
defined by the axm8 axiom.

Listing 1.12. The PM definition of the outside diameter property.

1 containedProperties{
2 . . .
3 SimpleProperty pOutsideDiameter {
4 range MILLI METRE Measure
5 }
6 }
7 containedDataTypes {
8 . . .
9 MeasureType MILLI METRE Measure {

5 xText update site:
http://download.eclipse.org/modeling/tmf/xtext/updates/composite/releases/.

6 OntoEventB update site: http://wdi.supelec.fr/OntoEventB-update-site/.

http://download.eclipse.org/modeling/tmf/xtext/updates/composite/releases/
http://wdi.supelec.fr/OntoEventB-update-site/

Building Formal Semantic Domain Model: An Event-B Based Approach 153

10 basedOn INTEGER
11 unit StandardUnit {
12 prefix MILLI
13 name METRE
14 }
15 }
16 }

Listing 1.13. The Event-B definition of pOutsideDiameter property

1 CONSTANTS
2 . . . MILLI METRE Measure . . . pOutsideDiameter . . .
3 AXIOMS
4 @. . .
5 @axm8 MILLI METRE Measure ⊆ (Z × {LENGTH �→ {MILLI �→ METRE}})
6 @. . .
7 @axm11 pOutsideDiameter ∈ Thing ↔ MILLI METRE Measure

8 Related Work

Integration of domain constraints into design processes has attracted lately great
interest in the software engineering community. Many proposed approaches uses
ontology descriptions as design models for these domain constraints. We focus
in this overview on integration approaches devoted to formal development pro-
cesses. In [18], an ontology axioms transformation into Z notation is proposed to
express application domain rules. In [12], an integration of domain constraints is
proposed for cyber-physical systems, it is performed by interpretation of comput-
ing platform components on real-world types to derive properties specification
and validation. In [8], authors propose to define real-world systems semantics
using domain ontologies. A domain specific description of the system is coupled
to a domain ontology, the two are formalized into logic theories and conformity
validation is conducted using the Alloy formal method. In [13], an Event-B spec-
ification of an OWL domain ontology is integrated to goal-based model during
requirements engineering phase, this approach aims to construct a data structure
for typing. In [11], domain knowledge is integrated to a development process by
annotation using two approaches: an MDE approach mixing ontology and OCL
constraints and a theorem proving approach based on Event-B specifications.
The proposed Event-B modelling approach for ontologies is based on an own
definition of ontological constructs in an ontology model context combined to
instantiation mechanisms. In [6], a derivation approach is proposed to gener-
ate Event-B models from OWL ontologies through the ACE controlled natural
language.

In comparison with the approaches cited above, our approach is distin-
guished, on the one hand, by its genericity assured by the Pivot Model which fed-
erates several ontological description languages (OWL and OntoML/Plib) and
ensures the integration of new languages, on the other hand, by the broad cov-
erage of the ontological languages primitives allowing a total ontology support.
Finally, our approach is tooled in order to automatically support the transfor-
mation of ontologies in Event-B.

154 I. Ait-Sadoune and L. Mohand-Oussaid

9 Conclusion

Our results show that it is possible to handle formally domain knowledge in
formal system developments with Event-B and the Rodin platform. Ontologies
have been formalised within Event-B as contexts and a Rodin plugin has been
developed for this purpose. The proposed approach consists in defining models
allowing to handle formal verification techniques and make it possible to handle
explicit domain knowledge in such formal models.

The presented approach gave rise to several extensions. We are currently
working on:

1. Extending the Pivot Model for providing the possibility to express properties
by using predicates in all supported concepts (classes, properties, data defin-
tions,). This point is usually omitted by the languages used for describing
ontologies. This extension can be exploited to generate automatically invari-
ants properties expressed at the ontological level.

2. Extending the OntoEventB approach to emphasis other formal methods at
the level of the Output Model. Actually we are developing an Isabelle/HOL
framework to support the integration of ontologies [7].

References

1. Abrial, J.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–466
(2010). https://doi.org/10.1007/s10009-010-0145-y

3. Aı̈t-Ameur, Y., et al.: On the importance of explicit domain modelling in
refinement-based modelling design. Experiments with Event-B. In: 6th Interna-
tional Conference, ABZ 2018, Southampton, UK, 5–8 June 2018, Proceedings, pp.
425–430 (2018). https://doi.org/10.1007/978-3-319-91271-4 35

4. Aı̈t-Ameur, Y., Aı̈t-Sadoune, I., Hacid, K., Mohand-Oussäıd, L.: Formal modelling
of ontologies: an Event-B based approach using the rodin platform. In: Proceedings
Joint Workshop IMPEX and FM&MDD, Xi’An, China, 16th November 2017, pp.
24–33 (2017). https://doi.org/10.4204/EPTCS.271.2

5. Aı̈t-Ameur, Y., Méry, D.: Making explicit domain knowledge in formal system
development. Sci. Comput. Program. 121, 100–127 (2016). https://doi.org/10.
1016/j.scico.2015.12.004

6. Alkhammash, E.H.: Derivation of event-b models from owl ontologies. In: MATEC
Web of Conferences, vol. 76, p. 04008. EDP Sciences (2016)

7. Brucker, A.D., Aı̈t-Sadoune, I., Crisafulli, P., Wolff, B.: Using the isabelle ontology
framework - linking the formal with the informal. In: 11th International Confer-
ence, CICM 2018, Hagenberg, Austria, 13–17 August 2018, Proceedings, pp. 23–38
(2018). https://doi.org/10.1007/978-3-319-96812-4 3

8. de Carvalho, V.A., Almeida, J.P.A., Guizzardi, G.: Using reference domain ontolo-
gies to define the real-world semantics of domain-specific languages. In: Jarke, M.,
et al. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 488–502. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-07881-6 33

https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1007/978-3-319-91271-4_35
https://doi.org/10.4204/EPTCS.271.2
https://doi.org/10.1016/j.scico.2015.12.004
https://doi.org/10.1016/j.scico.2015.12.004
https://doi.org/10.1007/978-3-319-96812-4_3
https://doi.org/10.1007/978-3-319-07881-6_33

Building Formal Semantic Domain Model: An Event-B Based Approach 155

9. Gruber, T.: Ontology. In: Encyclopedia of Database Systems, 2nd edn. (2018).
https://doi.org/10.1007/978-1-4614-8265-9 1318

10. Hacid, K., Aı̈t-Ameur, Y.: Annotation of engineering models by references to
domain ontologies. In: 6th International Conference, MEDI 2016, Almeŕıa, Spain,
21–23 September 2016, Proceedings, pp. 234–244 (2016). https://doi.org/10.1007/
978-3-319-45547-1 19

11. Hacid, K., Aı̈t-Ameur, Y.: Strengthening MDE and formal design models by ref-
erences to domain ontologies. A model annotation based approach. In: 7th Inter-
national Symposium, ISoLA 2016, Imperial, Corfu, Greece, 10–14 October 2016,
Proceedings, Part I, pp. 340–357 (2016). https://doi.org/10.1007/978-3-319-47166-
2 24

12. Knight, J., Xiang, J., Sullivan, K.: A rigorous definition of cyber-physical systems.
In: Trustworthy Cyber-Physical Systems Engineering, p. 47 (2016)

13. Mammar, A., Laleau, R.: On the use of domain and system knowledge modeling in
goal-based event-B specifications. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016.
LNCS, vol. 9952, pp. 325–339. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47166-2 23

14. Mohand-Oussäıd, L., Aı̈t-Sadoune, I.: Formal modelling of domain constraints in
Event-B. In: 7th International Conference, MEDI 2017, Barcelona, Spain, 4–6
October 2017, Proceedings, pp. 153–166 (2017). https://doi.org/10.1007/978-3-
319-66854-3 12

15. Pierra, G.: Context-explication in conceptual ontologies: the PLIB approach. In:
Proceedings of the 10th ISPE International Conference on Concurrent Engineering
(ISPE CE 2003), Madeira, Portugal, 26–30 July 2003, pp. 243–253 (2003)

16. Pierra, G., Sardet, E.: Proposal for an XML representation of the PLIB ontology
model: OntoML. Technical report, LIAS Laboratory (2007)

17. Sengupta, K., Hitzler, P.: Web ontology language (OWL). In: Alhajj, R., Rokne,
J. (eds.) Encyclopedia of Social Network Analysis and Mining, pp. 2374–2378.
Springer, New York (2014). https://doi.org/10.1007/978-1-4614-6170-8 113

18. Vasilecas, O., Kalibatiene, D., Guizzardi, G.: Towards a formal method for the
transformation of ontology axioms to application domain rules. Information Tech-
nology and Control 38(4) (2015)

https://doi.org/10.1007/978-1-4614-8265-9_1318
https://doi.org/10.1007/978-3-319-45547-1_19
https://doi.org/10.1007/978-3-319-45547-1_19
https://doi.org/10.1007/978-3-319-47166-2_24
https://doi.org/10.1007/978-3-319-47166-2_24
https://doi.org/10.1007/978-3-319-47166-2_23
https://doi.org/10.1007/978-3-319-47166-2_23
https://doi.org/10.1007/978-3-319-66854-3_12
https://doi.org/10.1007/978-3-319-66854-3_12
https://doi.org/10.1007/978-1-4614-6170-8_113

Social-Based Collaborative Recommendation:
Bees Swarm Optimization Based Clustering

Approach

Lamia Berkani(&)

Laboratory for Research in Artificial Intelligence (LRIA), Department
of Computer Science, USTHB University, 16111 Bab Ezzouar, Algiers, Algeria

lberkani@usthb.dz

Abstract. This paper focuses on the recommendation of items in social net-
works, through which the social information is formalized and combined with
the collaborative filtering algorithm using an optimized clustering method. In
this approach, users are clustered from the views of both user similarity and trust
relationships. A Bees Swarm optimization algorithm is designed to optimize the
clustering process and therefore recommend the most appropriate items to a
given user. Extensive experiments have been conducted, using the well-known
Epinions dataset, to demonstrate the effectiveness of the proposed approach
compared to the traditional recommendation algorithms.

Keywords: Social recommendation � Collaborative filtering � Clustering �
Optimization � Bees Swarm Optimization algorithm � BSO

1 Introduction

Collaborative Filtering (CF) is a widely-exploited technique in recommender systems
to provide users with items that well suit their preferences [1]. The basic idea is that a
prediction for a given item can be generated by aggregating the ratings of users with
similar interest.

However, although the popularity of the CF, the time-consuming process of
searching for similar users is considered as a big challenge when facing large-scale data
sets, which characterizes the Web 2.0 and the social media contexts in particular.
Moreover, one of the shortcomings of memory-based methods is the sparsity and cold
start problems due to insufficient rating [2]. In contrast, model-based methods can
address these issues by training a prediction model offline using all the rating data.

In order to boost the CF algorithm, other information is often combined with it,
such as the social information in the context of social networks. The study of social
network-based recommender systems has become an active research topic. On the other
hand, recommender systems using clustering-based approaches offer an alternative to
model-based methods [3]. Instead of decomposing the rating matrix into matrices with
small ranks, these approaches reduce the search space by clustering similar users or
items together. Most previous works focus on clustering users or items from the view
of similarity [4]. However, the state of the art shows that these approaches suffer from

© Springer Nature Switzerland AG 2019
K.-D. Schewe and N. K. Singh (Eds.): MEDI 2019, LNCS 11815, pp. 156–171, 2019.
https://doi.org/10.1007/978-3-030-32065-2_11

http://orcid.org/0000-0003-3601-2698
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-32065-2_11

low accuracy and coverage. To address these issues, Guo et al. [4] developed a multi-
view clustering method through which users are iteratively clustered from the views of
both rating patterns (user similarity) and social trust relationships (social similarity).

We focus in this paper by this same issue for the social recommendation of items.
The proposed algorithm considered an optimized clustering, where users are clustered
from the views of both user similarity and trust relationships. A Bees Swarm opti-
mization algorithm is designed to optimize the clustering and therefore recommend the
most appropriate items to a given user.

The remainder of this paper is organized as follows: Sect. 2 presents some related
work on trust-based and clustering-based recommender systems. Section 3 proposes a
novel social recommender system of items using a Bees Swarm optimization-based
clustering approach (BSO-C). Then in Sect. 4, experiments are conducted using the
well-known Epinions1 dataset. Finally, Sect. 5 highlights the most important results
and draws some future perspectives.

2 Related Work

2.1 Trust-Based Recommendation

Trust-based recommendations can improve the performance of traditional recom-
mender systems as people trusting each other usually share similar preferences [5].
Trust information has been widely used as an additional dimension to support model
user preference in recommender systems. It has been combined in both types of rec-
ommendation: (1) in memory-based methods [6, 7]; and (2) in model-based methods
[8, 9].

Due to data sparsity of the input ratings matrix, Massa and Avesani [10] replaced
the step of finding similar users with the use of a trust metric. They proposed an
algorithm that propagate trust over the trust network and estimate a trust weight that
can replace the similarity weight. Guo et al. [11] incorporated trusted neighbors into the
CF, by merging the ratings of trusted neighbors. The objective is to form a more
complete rating profile for the active users in order to resolve the cold start and data
sparsity problems. On the other hand, Ma et al. [12] developed two methods: a matrix
factorization framework with social regularization and a factor analysis approach based
on probabilistic matrix factorization that exploits users’ social network. Based on the
two methods proposed in [12], Wang and Huang [13] included the friendships as the
regularization term to enhance the prediction accuracy.

2.2 Clustering-Based Recommendation

Clustering-based approaches are being demonstrated to be efficient and scalable to
large-scale data sets. As a dimension-reduction method, they are capable of alleviating
the sparsity of rating data [14]. Recent works report that by applying more advanced
clustering method, the accuracy can be further improved and even outperform the other

1 Epinions.com.

Social-Based Collaborative Recommendation 157

http://Epinions.com

CF approaches [15]. Salah et al. [16] proposed a novel incremental collaborative
filtering system, based on a weighted clustering approach, to provide a high quality of
recommendations with a very low computation cost.

Few works have tried to integrate social relationships into clustering-based methods
with the aim of better performance of CF. Sun et al. [17] proposed a social regular-
ization approach that incorporates social network information, namely the users’
friendships and rating records (tags) for the prediction of the recommendations. They
used a bi-clustering algorithm to identify the most suitable group of friends for gen-
erating different final recommendations. DuBois et al. [18] combined a correlation
clustering algorithm and trust models together to derive trust from the connection
distance in a trust network. However, only limited improvement is observed.

According to Guo et al. [4] previous clustering-based approaches suffer from rel-
atively low accuracy and, especially, coverage. To alleviate these issues, they devel-
oped a multi-view clustering method through which users are iteratively clustered on
the basis of rating patterns in one view and social trust relationships in the other [4].
Sheugh and Alizadeh [19] proposed a multi-view clustering based on Euclidean dis-
tance, merging similarity and trust relationships including explicit and implicit trusts.
He et al. [20] proposed a web items recommendation system based on a multi-content
clustering CF model. According to the authors, a multi-view clustering can be applied
to the mining of the similarity and relevance of items to improve the classic CF.
Different views such as user ratings and user comments have been considered and
users’ preferences were analyzed by their historical interaction features and additional
behaviour features for an appropriate recommendation.

On the other hand, Selvi and Sivasankar [21] considered a model-based CF based
on a fuzzy c-means clustering approach. Because model-based CF suffers by higher
error rate and takes more iterations for convergence, the authors proposed a modified
cuckoo search algorithm to optimize the data points in each cluster in order to provide
an effective recommendation.

2.3 Discussion

Our study of related work confirmed the contribution of integrating social information
with CF to enhance the recommendation accuracy. On the other hand, the multi-view
clustering has been adopted in some works, as clustering-based approaches suffer from
relatively low accuracy and, especially, coverage. Finally, to our best knowledge no
work has yet applied multi-view clustering with optimization. Indeed, it is not always
easy to have the best partitioning for a given clustering. Therefore, we are interested by
this issue and we try to solve it by proposing a new approach, based on optimized
clustering. In the following section we present our clustering solution based on the use
of Bees Swarm Optimization algorithm.

158 L. Berkani

3 BSOC–Based Recommendation

Several algorithms have been implemented for CF and social filtering (SocF):
(1) Cf/SocF; (2) CF/SocF based on clustering algorithms; and (3) CF/SocF based on
optimized clustering algorithm. Moreover, some hybridizations have been proposed.

3.1 Collaborative and Social Recommendation Algorithms

Collaborative Filtering. We chose a memory-based CF approach and used the user-
user based recommendation. In this approach, the system offers the possibility of
identifying the best neighbors for a given user, using the ratings of users on items. We
adopted the Pearson Correlation coefficient [1] to compute the similarity between users,
i.e. SimPearson u1; u2ð Þ.
Social Filtering. The SocF is based on social community which is identified using the
social similarity between users. This similarity, SimSocðui; uj), computes the Jaccard
similarity weight between two users ui and uj, based on their social relationships, which
is defined as the size of the intersection divide by the size of the union of friend:

Simsoc u1; u2ð Þ ¼ F u1Þ \ Fðu2ð Þ
F u1Þ [Fðu2ð Þ ð1Þ

where: F u1ð Þ; respectivelyF u2ð Þ: is the number of friends of u1; respectively u2.

CF-SocF Hybrid Algorithms. The hybridization of the CF and SocF combines the
interests based similarity of users with their social similarity weight to compute the
overall similarity between two users as follows:

SimHyb u1; u2ð Þ ¼ a SimPearson u1; u2ð Þþ b SimSoc u1; u2ð Þ ð2Þ

where: a and b are weights that express a priority level, with aþ b ¼ 1.
The prediction will be calculated on the basis of the community which is identified

using the hybrid similarity between users.
Another way to generate hybrid recommendations is to consider a’ items generated

by the CF and b’ items generated from the SocF, where a0and b0 are weights that
express an importance degree, with a0 þ b0 ¼ 1.

3.2 Clustering-Based Collaborative and Social Recommendation
Algorithms

Clustering–Based CF. We used two classification techniques: an unsupervised
technique that uses the K-means and the K-medoids algorithms; and a supervised
technique that uses the K-Nearest Neighbors algorithm (KNN). The KNN-based CF

Social-Based Collaborative Recommendation 159

algorithm allows predictions using the ratings of the K nearest neighbors of the active
user. On the other hand, the K-means-based CF algorithm, allows predictions based on
clusters that are generated by the application of the K-means algorithm. The K-means
partitioning algorithm is applied to build clusters of users with similar interests. The
algorithm randomly selects k initial cluster centroids and repeats the following
instructions until reaching the stability of the centroids: (1) Assign each user to the
cluster whose centroid is the closest according to a collaborative distance measure (the
Pearson correlation function is used as a similarity function); and (2) update the cen-
troids of the k clusters. The following is the K-means-based CF algorithm:

Finally, the K-medoids-based CF allows predictions based on clusters that are
generated by the application of the Partitioning Around Medoïd (PAM) algorithm (the
most common realization of k-medoid clustering). The K-medoids algorithm is more
robust to noise and outliers as compared to K-means because it minimizes a sum of
pairwise dissimilarities instead of generating a centroid by calculating the average of all
the values of each attribute of the cluster. PAM uses a greedy search which may not
find the optimum solution, but it is faster than exhaustive search [22]. The following is
the PAM algorithm:

160 L. Berkani

where:

• Swap (M, O): replaces the medoid M by the user O;
• Undo (M, O): cancel the swap of M by O;
• Distribution: Find the closest cluster for each user in the matrix by calculating the

Pearson correlation between the user and the K Medoids;
• Cost: is an objective function that is intended to be minimized.

Cost ¼ min
X

c2C
X

u;v2C d u; vð Þ ð3Þ

where: C is the set of clusters (partitions) resulting from the K-medoïds algorithm;
u, v are two users, where v belongs to the cluster and u is the medoid of the latter.

Clustering–Based SocF. In the CF algorithm, partitioning was based on assessments
of users with similar interests. However, the social relationship between users can also
be used to create partitions, based on friendships. A classification algorithm has been
used to create clusters that represent groups of users who are friends or have friendships
in common. The prediction will be based on the vote of the neighboring users who are
in the same cluster. The following is the clustering algorithm:

Social-Based Collaborative Recommendation 161

Clustering–Based Hybrid Algorithm. We developed the hybrid algorithm that
combines the KNN-based CF and the SocF algorithms. The principle is to find among
all the friends of a given user, whose who are similar to him (k more similar) in terms
of interests. To illustrate this classification, let’s consider an active user u with ten
friends and K equal to 4. The following Fig. 1 shows the classification that distin-
guishes the k friends (the most similar in terms of interests to the user u) among the ten
friends:

3.3 BSOC-Based Collaborative and Social Recommendation Algorithms

BSOC-Based CF. The Bee colony optimization manipulates a set of bees where each
bee corresponds to a feasible solution to a given problem. In order to make the best use
of the meta-heuristic and prove its effectiveness, it would be necessary to consider a
codification that allows modeling the problem. The purpose of applying this meta-
heuristic is to improve the clustering quality resulting from the classification algorithm
(k-means/k-medoids) and then to ensure a better recommendation.

Coding and Initialization of the Solution: Each possible partitioning represents a
solution, where each bee corresponds to a feasible partitioning. The solution can be
represented by a vector containing the different existing clusters. The indices of the
vector represent the keys of each user in a hash table. Each box of the vector contains
the identifier of the cluster to which the user belongs, where the user having as key the
index of this box. The algorithm starts with an initial solution which is a solution vector
built from the clusters, resulting after the application of the K-means or K-medoid
algorithm, which represents a partitioning of the users into k clusters.

Example: Let’s consider 15 users with K = 4. Figure 2 represents the partitioning
(obtained after the application of K-Means or K-medoids algorithm), and the repre-
sentation of the initial solution:

As illustrated in Fig. 2, the users who belong, for example, to cluster 1 are u2; u8;
u10 and u4 will respectively have as keys the indices 1; 2; 3 and 4 of the table.
Similarly, the users of the other three clusters will have keys corresponding to the
indices of the linked boxes, given that the users will be classified in order class by class.

Fig. 1. Clustering-based hybrid algorithm

162 L. Berkani

The BSOC-based CF algorithm describes the application of the BSO algorithm
adapted to our problem. Note that whenever a reference solution is added, it must be
verified that it did not already exist in the taboo list.

Fig. 2. Example of BSO clustering.

Social-Based Collaborative Recommendation 163

Search Space. The main idea is to change n/Flip value of the vector representing the
solution and keep the rest of the vector values unchanged, starting from the beginning.
Note that n is the size of the vector and Flip (used to determine the different search
areas), is a parameter that determines the number of variables to change n/Flip of Sref.
It allows diversification from a feasible solution. Too little value given to the flip
implies that Sref is close to the region already exploited, i.e. the diversification. A very
large value can guide the swarm to very remote research areas.

Fitness Function and Dance Quality. To evaluate the quality of the solution’s vector
we need to evaluate the constructed clustering. The objective is to evaluate how the
elements of the same cluster are homogeneous with each other. The intra-class inertia
has been used for this evaluation. A good classification must have a low index of intra-
class inertia. The quality of the dance will be represented by this index which is a
function which is supposed to be minimized.

Example: Let’s consider a solution of n = 15 values (Fig. 3).

After generating the search areas, each bee conducts a local search and commu-
nicates its local optimum to the other bees, in order to select the Sref of the next
iteration. At the end of the process, the final solution will have a small fitness value,
function close to or equal to zero (optimal = true).

Fig. 3. Example of a solution.

164 L. Berkani

where: Max-chance: is an empirical parameter that designates the maximum number of
chances given to find a reference solution Sref when there is stagnation.

BSOC-Based SocF. The principle is similar of that of the CF algorithm. The changes
are related to the dance and its quality.

Quality of social clustering (the quality of a bee’s dance): to evaluate the social
clustering, we used the following formula:

Dance ¼
X

c2C
1
n

X
v2C

1
2m

sim C;Vð Þ ð4Þ

with:

n: is the number of users and m is the number of the user in a cluster, this is the
center of the cluster,
v: a user of the latter.

This formula is supposed to be maximized (the bigger it is, the more the users of the
cluster are socially linked).

BSOC-Based CF-SocF Hybrid Recommendation. The main idea is to apply a
multiview clustering, which should be optimized in parallel using the BSO meta-
heuristics. Multiview clustering has been adapted from (Guo et al. 2015). This method
considers a clustering according to both views: interests (ratings) and friendships.

4 Experiments

We conducted empirical experiments in order to evaluate the proposed optimized
recommendation approach. Two main research questions have been studied: (1) show
the contribution of combining social information with the user-based CF using clus-
tering techniques; and (2) demonstrate the added value of using the BSO optimization
on the clustering process and then on the recommendations.

Social-Based Collaborative Recommendation 165

4.1 Dataset

The experiments have been done using the Epinions dataset. The usage matrix was
constructed using the Review table. The trust matrix was built using the trust table by
taking only bidirectional relationships. A sample of 1052 users was considered for the
evaluations.

4.2 Metrics

We used the Mean absolute error (MAE) metric as it is the most popular predictive
metric to measure the closeness of predictions relative to real scores.

MAE ¼
P

u;i2X ru;i � pu;i
�� ��
Xj j ð5Þ

where:

X: set of test assessments and Xj j indicates the cardinality of the set X;
ru;i: is the rating given by the user u on the item i; and
pu;i: is the rating prediction of the user u on the item i.

4.3 Evaluation Results

Contribution of Social Information and Clustering on CF. A preliminary assess-
ment was performed on the CF-based user-user to set the best value of the similarity
threshold. The best value of MAE was obtained with a threshold equal to 0.4 (Table 1).

Then, we varied the number of clusters for the CF and SocF algorithms, for the
different clustering algorithms. We present the results obtained with the K-means
algorithm. The best value of MAE was obtained with k = 30 for CF and K = 60 for
SocF:

Finally, we evaluated the weighted hybrid algorithm that combines the CF and
SocF algorithms, and which are based in this evaluation on the application of the K-
means classification. We have varied the value of the weight a (which is the degree of
importance of the CF) in order to find the value that gives the best recommendation.
The evaluation of the hybrid algorithm with a variation of a shows that we obtained the
best value of MAE with a = 0.1 (see Table 2).

Table 1. K-means-based CF/SocF evaluation

K 10 20 30 40 50 60

CF 0,890 0,892 0,870 0,888 0,897 0,884
SocF 1,261 1,260 1,090 1,098 1,094 1,093

166 L. Berkani

Contribution of BSOC on CF. We present the evaluation related to the application of
the BSOC-based CF, using the K-means/K-medoids classification algorithms in order
to show the contribution of the meta-heuristic on the performances of the CF. The BSO
meta-heuristics has several empirical parameters, namely: the Flip, the number of
iterations (nbIter) as well as the maximum number of chances. It is important to vary
these parameters to find the best values to consider in our assessments.

1. The BSO-Kmeans-based CF evaluation

• Variation of the number of iterations: The evaluation of BSO-Kmeans-based
CF with a variation of the number of iterations shows that we obtained the best
value of MAE with nbIter = 30 (Table 3).

• Variation of the Flip: The evaluation of BSO-Kmeans-based CF with a vari-
ation of the Flip shows that we obtained the best value of MAE with Flip = 3
(Table 4).

• Variation of chance number: This parameter represents the number of chances
given to a reference solution to avoid stagnation. The evaluation of BSO-
Kmeans-based CF with a variation of the chance number shows that we obtained
the best value of MAE with maxChance = 3 (Table 5).

Table 2. Evaluation of the weighted hybrid algorithm

a MAE

0.1 0.877
0.2 0.891
0.3 0.907
0.4 0.911
0.5 0.926
0.6 0.926
0.7 0.926
0.8 0.950
0.9 0.926

Table 3. Variation of nbIter-BSO-Kmeans based CF

nbIter 10 20 30 40 50

MAE 0.832 0.810 0.761 0.813 0.896

Table 4. Variation of the Flip-BSO-Kmeans based CF

Flip 2 3 4 5

MAE 0.802 0.766 0.757 0.797

Social-Based Collaborative Recommendation 167

2. The BSO-Kmedoids-based CF evaluation

The same previous evaluations were performed with the BSO-Kmedoids-based CF.
The results obtained are presented below:

• Variation of the number of iterations: The evaluation of BSO-Kmedoids-based CF
with a variation of the number of iterations shows that we obtained the best value of
MAE with nbIter = 30 (Table 6).

• Variation of the Flip: The evaluation of BSO-Kmedoids-based CF with a variation
of the Flip shows that we obtained the best value of MAE with Flip = 4 (Table 7).

• Variation of chance number: The evaluation of BSO-Kmedoids-based CF with a
variation of the chance number shows that we obtained the best value of MAE with
maxChance = 3 (Table 8).

Results Summary for the CF Algorithm. To demonstrate the contribution of the
optimized clustering on the CF recommendation, we presented the results by the fol-
lowing table, where the value of MAE represents the best value obtained in the pre-
vious preliminary assessments. For the KNN-based CF, the best value of MAE was
obtained with K = 70. On the other hand with the unsupervised algorithms, the best
value of MAE was obtained with K = 30 for K-means and K-medoids (Table 9).

Table 5. Variation of maxChance-BSO-Kmeans based CF

maxChance 1 3 5 7

MAE 0.797 0.779 0.789 0.801

Table 6. Variation of nbIter-BSO-Kmedoids based CF

nbIter 10 20 30 40

MAE 0.723 0.710 0.681 0.712

Table 7. Variation of the Flip-BSO-Kmedoids based CF

Flip 2 3 4 5 6

MAE 0.726 0.710 0.686 0.729 0.749

Table 8. Variation of maxChance-BSO-Kmedoids based CF

maxChance 1 3 5 7

MAE 0.721 0.691 0.733 0.735

168 L. Berkani

As illustrated in Fig. 4, we can easily see that the supervised classification algo-
rithm was more efficient, in terms of recommendation accuracy compared to the two
unsupervised algorithms. On the other hand the integration of the optimization has
surpassed all the algorithms of recommendation, where we can notice a clear
improvement of the value of MAE with BSO-Kmeans-based CF compared to Kmeans-
based CF and also with BSO-Kmedoids-based CF compared to Kmedoids-based CF.

In this evaluation, the K-medoids algorithm performed better than K-means, but in
order to confirm this result, it is necessary to carry out other more in-depth evaluations
on larger databases, in order to better see the contribution of optimization on the
different algorithms.

BSOC-Based Hybrid Recommendation. We evaluated the different hybrid recom-
mendation algorithms (see Fig. 5): (1) the clustering-based hybrid algorithm (the
weighted hybrid algorithm using the k-means or K-medoids algorithms and the multi-
view clustering algorithm); and (2) the BSOC-based Hybrid algorithm.

Table 9. Summary of the results obtained for the CF.

Algorithm MAE

KNN-based CF 0.731
Kmeans-based CF 0.870
Kmedoids-based CF 0.733
BSO-Kmeans-based CF 0.761
BSO-Kmedoids-based CF 0.681

Fig. 4. Contribution of the BSO meta-heuristic on CF.

Social-Based Collaborative Recommendation 169

The results we have obtained show the contribution of integrating the social
information with the CF, the contribution of the multi-view clustering algorithm
compared to the weighted hybrid algorithm, and finally the contribution of the opti-
mized multi-view clustering algorithm compared to multi-view clustering algorithm
that outperformed all other results by providing the best accuracy in terms of MAE.

5 Conclusions

This paper proposes a novel recommendation approach which applies an optimized
clustering method for the recommendation of items. First the CF has been integrated
with social information, using supervised and unsupervised classification algorithms.
Then in order to optimize the recommendation accuracy, the Bees Swarm Optimization
algorithm was applied in the classification process. The results of the evaluations we
carried out using the Epinions dataset show the effectiveness of our system compared to
the CF in terms of accuracy using the MAE metric.

In our future work, we plan to perform additional evaluations with larger databases,
use other optimization and classification algorithms especially those non-k dependent,
and consider other aspects of the social information (e.g. influence, implicit trust).

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a
survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng.
(TKDE) 17, 734–749 (2015)

2. Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P.,
Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 325–341. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72079-9_10

Fig. 5. Contribution of the BSO meta-heuristic on the hybrid recommendation algorithm.

170 L. Berkani

http://dx.doi.org/10.1007/978-3-540-72079-9_10

3. Sarwar, B., Karypis, G., Konstan, R.J.: Recommender systems for large-scale e-commerce:
scalable neighborhood formation using clustering. In: Proceedings of the 5th International
Conference on Computer and Information Technology, pp. 158–167 (2002)

4. Guo, G., Zhang, J., Yorke-Smith, N.: Leveraging multi-views of trust and similarity to
enhance clustering-based recommender systems. Knowl.-Based Syst. 74, 14–27 (2015)

5. Singla, P., Richardson, M.: Yes, there is a correlation: from social networks to personal
behavior on the web. In: Proceedings of the 17th International Conference on World Wide
Web (WWW), pp. 655–664 (2008)

6. Massa, P., Avesani, P.: Trust-aware recommender systems. In: Proceedings of the 2007
ACM Conference on Recommender Systems (RecSys), pp. 17–24 (2007)

7. Guo, G., Zhang, J., Thalmann, D.: Merging trust in collaborative filtering to alleviate data
sparsity and cold start. Knowl.-Based Syst. 57, 57–68 (2014)

8. Ma, H., King, I., Lyu, M.: Learning to recommend with social trust ensemble. In:
Proceedings of the 32nd International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), ACM, pp. 203–210 (2009)

9. Jamali, M., Ester, M.: A matrix factorization technique with trust propagation for
recommendation in social networks. In: Proceedings of the 4th ACM Conference on
Recommender Systems (RecSys), pp. 135–142 (2010)

10. Massa, P., Avesani, P.: Trust-aware collaborative filtering for recommender systems. In:
Federated International Conference on the Move to Meaningful Internet (2004)

11. Guo, G., Zhang, J., Thalmann, D.: Merging trust in collaborative filtering to alleviate data
sparsity and cold start. Knowl.-Based Syst. (KBS) 57, 57–68 (2014)

12. Ma, H., Zhou, D., Liu, C., Lyu, M., King, I.: Recommender systems with social
regularization. In: Proceedings of the Fourth ACM International Conference on Web Search
and Data Mining, pp. 287–296. ACM, New York (2011)

13. Wang, X., Huang, W.: Research on social regularization-based recommender algorithm.
Math. Comput. Modell. 1, 77–80 (2014)

14. Pham, M., Cao, Y., Klamma, R., Jarke, M.: A clustering approach for collaborative filtering
recommendation using social network analysis. J. Univ. Comput. Sci. 17, 583–604 (2011)

15. Bellogín, A., Parapar, J.: Using graph partitioning techniques for neighbour selection in user-
based collaborative filtering. In: Proceedings of the 6th ACM Conference on Recommender
Systems (RecSys), pp. 213–216 (2012)

16. Salah, A., Rogovschi, N., Nadif, M.: A dynamic collaborative filtering system via a weighted
clustering approach. Neuro Comput. 175, 206–215 (2016)

17. Sun, Z., et al.: Recommender systems based on social networks. J. Syst. Softw. 99, 109–119
(2015)

18. DuBois, T., Golbeck, J., Kleint, J., Srinivasan, A.: Improving recommendation accuracy by
clustering social networks with trust. Recommender Systems Social Web, pp. 1–8 (2009)

19. Sheugh, L., Alizadeh, S.H.: Merging similarity and trust based social networks to enhance
the accuracy of trust-aware recommender systems. J. Comput. Robot. 8(2), 43–51 (2015)

20. He, X., Kan, M.Y., Xie, P., Chen, X.: Comment-based multi-view clustering of web 2.0
items. In: International World Wide Web Conference WWW 2014, Seoul, Korea, 7–11 April
2014, pp. 771–781. ACM (2014)

21. Selvi, C., Sivasankar, E.: A novel optimization algorithm for recommender system using
modified fuzzy C-means clustering approach. Soft Comput. 23(6), 1–16 (2017)

22. Kaufman, L., Rousseeuw, P.J.: Clustering by means of Medoids. In: Dodge, Y. (ed.)
Statistical Data Analysis Based on the Norm and Related Methods, pp. 405–416. North-
Holland, The Netherlands (1987)

Social-Based Collaborative Recommendation 171

Hyperledger Fabric Blockchain as a
Service for the IoT: Proof of Concept

Saša Pešić1(B), Miloš Radovanović1, Mirjana Ivanović1, Milenko Tošić2,
Ognjen Iković2, and Dragan Bošković2

1 Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
{sasa.pesic,radacha,mira}@dmi.uns.ac.rs
2 VizLore Labs Foundation, Novi Sad, Serbia

{milenko.tosic,ognjen.ikovic,dragan.boskovic}@vizlore.com

Abstract. Blockchain as a Service for the Internet of Things is an
emerging topic in the blockchain research and industrial community,
especially relating to increased system consistency, security, and pri-
vacy. Blockchains represent highly distributed and autonomous decision-
making systems with distributed data and process management. Inter-
net of Things systems share these characteristics, while also bringing the
cyber-physical dimension and machine-to-machine interaction concept to
the ecosystem of devices and users. Blockchain infrastructure setup and
smart contract prototyping are cumbersome tasks. Onboarding an exist-
ing system to a blockchain network takes a significant amount of time
and manual effort, and incorporating business logic requires a series of
complex steps. For IoT systems, these task needs to be carried out hav-
ing in mind the typical characteristics of such systems: low hardware,
storage, and networking capabilities and high node churn and transac-
tion volume. Moreover, these tasks need to be semi to fully automated
in terms of workflows that support easy-to-use integration mechanisms
for onboarding of diverse IoT infrastructures and on-demand business
logic generation. In this paper, we present a Hyperledger Fabric-based
Blockchain as a Service for addressing the identified challenges. Specif-
ically, the framework is tailored to answer to specific requirements of
IoT systems through three major services: Hyperledger Fabric Infrastruc-
ture Configuration Generator, Hyperledger Fabric Chaincode Builder
and Hyperledger Fabric Operator Modules.

Keywords: Blockchain · Internet of Things · Distributed systems

1 Introduction

Driven by artificial intelligence, cognitive computing and new solutions for device-
to-device connectivity as well as rising technologies concerning big data and data
analytics, the adoption of the Internet of Things (IoT) is accelerating rapidly.
IoT applications are distributed by nature. Hence, distributed ledger technology
(DLT) such as blockchain has the potential to play a big role in how devices
c© Springer Nature Switzerland AG 2019
K.-D. Schewe and N. K. Singh (Eds.): MEDI 2019, LNCS 11815, pp. 172–183, 2019.
https://doi.org/10.1007/978-3-030-32065-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-32065-2_12

Hyperledger Fabric Blockchain as a Service for the IoT: Proof of Concept 173

communicate in IoT. Since blockchains are designed as systems that provide the
basis for transaction processing or semantically richer smart contracts, they can
be leveraged to model IoT processes. This way, blockchains can improve not just
data integrity, confidentiality, and compliance in the IoT, but also enhance IoT
features and cost-efficiency.

Integrating a full blockchain framework into an existing industrial IoT sys-
tem is a cumbersome task. It requires setting up an entirely separate infrastruc-
ture, that also often requires specific technologies, protocols, but also hardware
requirements in terms of storage space, CPU utilization and RAM consumption.
For applications in IoT, systems, frameworks, mechanisms, and technologies that
leave a small CPU/RAM footprint are preferred, but are also often an impera-
tive. Blockchains typically requires larger processing capabilities than that of a
typical node in an IoT ecosystem (e.g. smartwatch, embedded device, Raspberry
Pi). For the integration between IoT and blockchains to be successful, Blockchain
as a Service (BCaaS) should enable most of IoT devices to participate in the
blockchain ecosystem, through tailored communication modules. Automation of
existing tasks in blockchain deployment and operation presents a set of chal-
lenging tasks for BCaaS since blockchains represent highly distributed systems
which are hard to deploy, manage, and operate on. Lastly, another relevant issue
connected specifically to IoT devices is the lack of support for 64-bit operating
systems (OS), as nodes in most blockchain frameworks require 64-bit OS.

BCaaS for IoT should allow multiple classes of heterogeneous devices to seam-
lessly communicate in a homogeneous blockchain environment. A BCaaS frame-
work should be able to support integrating with heterogeneous environments –
systems running on multiple physical machines with different technological foot-
prints. That is why BCaaS aimed at IoT should have designated mechanisms
to support deployment even to most resource-constrained devices (embedded
devices, sensors, etc.). Creating and deploying a blockchain network is not a sim-
ple task – thus BCaaS should handle creating network infrastructure and later
deployment in an easy, user-friendly manner through specific interfaces. Imple-
mentation of business logic should be enabled with tools and processes aimed at
helping users, devices, or processes in generating and deploying the smart con-
tract. Furthermore, efforts in BCaaS must be also directed towards monitoring -
specifically blockchain exploration (transactions, blocks, users), device’s health
inspection (cpu/ram stats, tps, etc.) and topology changes capture, resource
sharing and computational offloading and managing complex privacy models,
but these concepts will not be the focus of this paper.

In this paper, we plan to address the above-mentioned challenges through
showing that semi-automated blockchain deployment, business logic prototyping
and integration with existing IoT systems can be easily managed through specif-
ically tailored deployment workflows and mechanisms with Hyperledger Fabric
(HF) blockchain technology. Specifically, our contributions rest in the follow-
ing: Building an automated blockchain infrastructure specification and deploy-
ment component with Docker containerization (Hyperledger Fabric Infrastruc-
ture Configuration Generator - HFICG); Building an automated smart contract

174 S. Pešić et al.

prototyping component with deployment mechanisms in-place (Hyperledger Fab-
ric Chaincode Builder - HFCB); and Building a Hyperledger Fabric Opera-
tor Module (HFOM) to offer protected REST API-based communication with
the underlying blockchain network (with a version of the module for resource-
constrained devices). These components are implemented as parts of a commer-
cial product [15].

The rest of the paper is structured as follows: In Sect. 2 we will discuss related
work; in Sect. 3 we explain Hyperledger Fabric infrastructure and vital compo-
nents; in Sect. 4 we elaborate on our proof-of-concept implementation; Sect. 5
offers a discussion over the solutions presented in Sect. 4; finally, we conclude
the paper with Sect. 6.

2 Related Work

Integration of blockchain and IoT ecosystems has become an overarching indus-
trial and academic topic covering many use-cases: IoT access control [8], secure
firmware updates [5], energy systems [6], and so on. Concepts of collaboration
frameworks for blockchain and IoT have been of research interest in terms of
digital asset management [11], management and configuration of IoT devices [4],
secure information distribution [9], and so on.

Concerning HF, however, much of the actual research is focused on perfor-
mance benchmarking models [10,14]. While it is important to maximize the
performance of the blockchain, enabling automated frameworks for generating
configurations and deploying nodes is necessary, since HF brings a lot of com-
plexity in configuration [3,17]. Use cases like industrial IoT deployments (micro-
controllers, sensors, etc.) benefit from automated processes since they rely on
machine-to-machine communication with little to none human interaction.

Although there are an abundance of commercial BCaaS tools (i.e by Google,
Amazon, Oracle, IBM and others SMBs [2,16], etc.), none of them is equipped
to tackle the challenges in using private blockchains in IoT systems through
creating mechanisms for easy deployment, business-logic maintenance and high
node churn resilience. To the best of our knowledge, this is a novel approach
to addressing proof-of-concept tools, implementations, and discussion on the
topic of autonomous onboarding of distributed systems to private permissioned
blockchains, and automated business logic prototyping using Hyperledger Fabric,
for IoT.

3 Hyperledger Fabric

Hyperledger Fabric is an enterprise-grade distributed ledger based on blockchain
that leverages smart contracts to enforce trust between parties. It is a platform
for distributed ledger solutions, underpinned by a modular architecture deliver-
ing high degrees of confidentiality, resiliency, flexibility and scalability [7].

Most important components of a HF blockchain are the domain, organiza-
tions, peers, orderers and certificate authorities. Domain represents a top-level

Hyperledger Fabric Blockchain as a Service for the IoT: Proof of Concept 175

network and project name. The organizations are the containers for the peers and
respective certificate authorities (CA). Organizations are used for physical sep-
aration of the blockchain network to participating entities. The peers are nodes
which are connected to clients and are responsible for committing transactions
to the world state. Each peer has its copy of all transactions, and an organiza-
tion can have multiple peers (i.e. for redundancy, physical separation). Ordering
service provides a shared communication channel to clients and peers, offering
a broadcast service for messages containing transactions. CA is responsible for
creating HF certificates. It is used for verifying ownership in the network. Each
certificate authority is tied to an organization. Other relevant concepts include
channels and chaincode. Channels represent separate instances of ledgers and
they are independent. A channel has a list of peers joined to it and instanti-
ated chaincodes. Chaincode is the HF term for a smart contract. It represents
the business logic behind a blockchain application written in programming code
that can read from the ledger and write to the ledger. Chaincode is the only
component that can manipulate the ledger. When the chaincode is created an
endorsement policy must be provided. The policy can be any boolean logic (all
peers, one peer from each organization, etc.) explaining who has to endorse a
transaction. Policies are created per chaincode and are checked by the orderer
service.

3.1 Addressing IoT BCaaS Requirements with Hyperledger Fabric

In our previous paper, we have identified 12 important BCaaS requirements for
integration with IoT systems, categorizing them to 5 groups: Easy Network Spec-
ification and Deployment, Rapid Business Logic Prototyping, Resource Sharing,
Complex Privacy Management Support, External Interoperability and Data Fed-
eration [13]. This paper focuses on the first two categories and four requirements
(see Fig. 1), directly connecting these requirements with the Hyperledger Fabric
DLT technology and highlight implementation directives for BCaaS. A proof-
of-concept design and implementation for these requirements will be presented
in Sect. 3, focusing on HFICG, HFCB, and HFOM. The tools addressed in this
paper are implemented independently (and can be tested online) as part of a
commercial product called ChainRider [15] (code not available publicly).

HF is suitable for BCaaS-IoT framework due to its in-built modularity of
components, allowing them to be physically and logically distributed through
the entire deployment ecosystem (IoT platform). The cost of running HF com-
ponents (ordering service, peers, chaincodes) are rather small in comparison with
Ethereum or Quorum. Specific tools can be built around automated HF infras-
tructure specification, generation, and deployment. Especially, leveraging HF
binaries for cryptographic material generation can be automated, and complex
networks can be built in a matter of seconds, provided that the tool has input
about: blockchain network participants (organizations and peers), ordering ser-
vice and certificate authority specifications, channels and chaincodes. Fast and
easy writing and deployment of smart contracts can be enabled through specific
software modules enabling input-based creation of Node.js, Golang or Java smart

176 S. Pešić et al.

contracts with a basic interface and CRUD (and other) functions - similarly how
you can inherit the basic token smart contract in Ethereum and build upon it.
Deployment mechanisms, although not complex, can be automated by specifying
channels and specific endorsement policies per chaincode.

Fig. 1. Hyperledger Fabric BCaaS IoT requirements addressed in this paper

4 Proof-of-Concept BCaaS Design and Implementation

This section covers implementation details of HFOM, HFICG, and HFCB. In
this Section, we address REQ1, REQ2, REQ4 and REQ6 from our previous
paper [13] (see Fig. 1). REQ1 and REQ2 belong in the Easy Network Specifica-
tion and Deployment category. Their combined aim is the effortless specification
of HF blockchain infrastructure and automated deployment. REQ4 and REQ6
belong in the Rapid Business Logic Prototyping category, and their objective is
to enable fast writing of complex enterprise business logic through automated
workflows with instant-deployment enabled. The rest of the requirements will be
addressed with implementation as part of our future work, and we do not provide
implementation details nor discussion at this point. All of these requirements
address key IoT challenges: complex and distributed IoT topologies with het-
erogeneous devices having multiple technological footprints should have access
to create and join a HF blockchain in a straightforward, guided workflow; IoT
devices can create on-demand business logic components leading to rapid busi-
ness functions modeling.

4.1 Hyperledger Fabric Operation Module

The Hyperledger Fabric Operation Module (HFOM) is a core component that
handles secure communication between users, applications and the underlying
blockchain infrastructure. The HFOM is a Node.js REST application that is
designed to operate on any operating system with minimal CPU/RAM foot-
print. It is a dockerized service whose resources are accessible through a set of

Hyperledger Fabric Blockchain as a Service for the IoT: Proof of Concept 177

asynchronous token-based REST APIs. The design of the components and its ser-
vices is completely asynchronous - as the underlying blockchain system naturally
processes transactions asynchronously. To address the low resource requirements
for IoT, HFOM offers three distinct deployment types:

1. Full HFOM with HF components running locally (on the same machine) - this
HFOM requires HF peer node(s) to be deployed on the device running the
HFOM. This deployment option offers fastest ledger Read/Write operations
capabilities since it directly communicates with a locally running peer node.
HFOM has all cryptographic materials of the network locally stored. It is
implemented in Node.js. It is suitable for devices capable of addressing at
least 1 Gb of RAM memory and a 1.3 GHz CPU, such as the Raspberry Pi
3B. The capabilities also depend on the HF components running locally.

2. Full HFOM without HF components running locally - HFOM is connecting
to a specific set of functioning peer nodes in the local IoT system. HFOM has
all cryptographic materials of the network locally stored. It is implemented
in Node.js. It is suitable for all devices with a minimum of 256 Mb of RAM
(such as Raspberry Pi 0, or Orange Pi 0).

3. Soft HFOM - connects to the closest full HFOM (1 or 2) and delivers its
request using curl and HTTP or HTTPS. Its size is insignificant and it
leaves the minimal CPU/RAM footprint and is suitable for most resource-
constrained devices. It is implemented in Node.JS, Python, and Bash. It can
run as a dockerized service, or as standalone service. It is suitable for devices
that have under 128 Mb of RAM (such as Onion Omega 2).

To run properly the HFOM needs a blockchain network specification in yaml
format. The specification is generated as part of the HFICG (Fig. 2). HFOM on
all levels can perform the following actions: enroll blockchain users, create chan-
nels, join peers to channels, install chaincodes, instantiate chaincodes, invoke
chaincode functions, query ledger data, fetch specific blocks, fetch specific trans-
actions, query installed/instantiated chaincodes on a specific channel and fetch
channel information. HFOM on all levels have access to the HFICG and HFCB,
as well as ledger data. Applications never directly interact with the core compo-
nents (Peer, Orderer). All communication is proxied through the HFOM, build-
ing another security layer on top of already existing blockchain layer. Lastly,
HFOM takes care of identity management on different levels of blockchain oper-
ation. By interacting with a Certificate Authority tied to the specific part of
the network (usually organization), HFOM deals with certificate generation and
revocation and transacting identities creation and removal on the blockchain.
HFOM stores app certificates at any point in time until the access token tied to
the certificate is expired, or the app’s certificate has been revoked by the Certifi-
cate Authority. Access tokens are refreshed on a 10-minute basis, to minimize
token hijacking probabilities.

178 S. Pešić et al.

4.2 Hyperledger Fabric Infrastructure Configuration Generator

HFICG is used for the creation of all necessary configuration and cryptographic
material for an IoT system that is ready to join a HF blockchain network.
HFICG component is designed to incorporate effortless creation of complex HF
blockchain networks, with multiple organizations, channels, and various peer-
channel connections, as well as provisioning all of these components to any
desired number of physical machines. For any given system description that
is provided to the HFICG, the component will generate a set of files and folders
necessary for instant deployment and starting of the blockchain network, includ-
ing HFOM deployment options of choice per physical machine. The workflow of
HFICG is displayed in Fig. 2.

Fig. 2. Hyperledger Fabric Infrastructure Configuration Generator

Step 1 of Fig. 2 indicates how infrastructure is specified in HFICG. The HF
network infrastructure to be generated is described with two graphs, one being
the device-level topology graph and the other organization-level topology graph.
Through a simple user interface, these two graphs are made using drag-and-
drop for adding HF and BCaaS components. In the same step, the graphs are
transformed into an adequate JSON representation and passed to step 2. If an
IoT system is to be a part of the Hyperledger IoT fabric network, a set of con-
figuration files is required to be deployed together with the core Hyperledger
Fabric components on each of the devices of an IoT system (step 2). All con-
figuration and cryptographic material must be created on one machine, and
later distributed to all parts of the system. The generated HF blockchain net-
work deployment materials include: docker-compose file for the Ordering service,
cryptographic material, genesis block, and a Bash startup script to bring up the
Ordering service containers; docker-compose file (including: peers, state database
and Certificate Authority - CA containers), cryptographic materials, channel cre-
ation and anchor peer configuration files, and a Bash startup script to bring up
peers, state database and CA server configuration (including: channel creation
commands, anchor peer update commands, channel join command per peer) per
machine; HFOM/HFCB docker-compose files per machine and a Bash startup

Hyperledger Fabric Blockchain as a Service for the IoT: Proof of Concept 179

script to bring up the HFOM/HFCB services. To answer to the requirement of
IoT systems having significant node churn, HFICG offers an easy extension of
existing networks in terms of adding new organizations, devices, channels, and
HF and BCaaS components, through the same mechanism displayed in Fig. 2.

4.3 Hyperledger Fabric Chaincode Builder

Business logic in HF is specified through smart contracts or chaincodes in HF
terminology. Chaincodes can be written in multiple programming languages:
Golang, NodeJS, and Java. HFCB is designed as a fully-automated chaincode
generation and deployment component. It handles all steps from describing the
smart contact in a predefined format, to having the chaincode up and running
on the blockchain network. This means that if there is an application interacting
with the blockchain (case 1), and it is in need for a new smart contract that han-
dles a new data stream, it can autonomously ask for a chaincode to be created
through HFCB. Once the chaincode it is created by the HFCB the application
is notified, and it can start interacting with the new chaincode. If there is a
system user (human) interacting with the blockchain (case 2), this procedure is
semi-automated with additional steps to cover on-the-fly smart contract editing.
Both HFCB workflow cases are displayed on Fig. 3.

Fig. 3. Hyperledger Fabric Chaincode Builder

Both workflow cases start with the description of the digital asset/record, cen-
tral to the chaincode, available functions, and the programing language (step 1).
A ledger record is usually specified as an arbitrary Javascript (JSON) object.
Essentially, when generating a smart contract, we are specifying two things: (1)
how this record object will look like (its attributes and their types) and (2) what

180 S. Pešić et al.

functions are going to be performed with it. For illustration, let us consider a sim-
ple IoT use case: we have a smart home environment with temperature sensors
collecting data from different rooms in the house. To record these sensory data on
the HF blockchain we need to have a chaincode that will represent temperature
reading objects and allow for sensory data to be written on the blockchain. Every
temperature reading that is going to be written to the blockchain will contain
the room where it was recorded, the value that was recorded, and a unique key.
Room will be a string such as a kitchen or living room, value is the temperature
value. HFCB offers to include following functions on the given asset: insert asset,
update asset, update asset by attribute value, associate asset with a different
key, remove asset from the state, query asset by key, query asset by key range,
query asset by CouchDB query string. An application can use a subset of the
functions. Programing languages of choice are Node.js, Golang, and Java. Both
workflows continue to the generation of code and dependency files (step 2).

Once the chaincode files have been generated, the application/device is asked
to supply the deployment channel and the endorsement policy (step 3, case 2).
After that (step 4, case 2) the chaincode is up and running, and ready to serve
requests.

The case 1 workflow continues by presenting the generated chaincode to the
user (step 3, case 1). On the chaincode, a user can perform many edits (step 4,
case 1) to add new functions, change existing ones, etc. When editing is complete
user is presented with the final version (step 5, case 1). This final version is
then compiled (step 6, case 1) and if the compilation succeeds the chaincode is
deployed and tested in a testnet blockchain (step 7, case 1). If the compilation
fails, the error messages are presented to the user (step 8, case 1), and the user
is back at step 3 of case 1. Outputs from step 7 of case 1 are presented to the
user, and if not satisfied, the user can go back to the editing step (step 4, case 1).
While step 6 eliminates all possible syntax errors, step 7 makes sure that there
are no chaincode runtime errors. If deployment tests finished without errors, the
user is asked to select a channel where the chaincode will be deployed and the
endorsement policy (step 9, case 1). Once that step is completed the chaincode
is up and running and begins accepting transactions (step 10, case 1).

5 Discussion

The implemented components are used and tested in three real-world IoT deploy-
ments: Agile IoT platform (see Acknowledgement Section), the Arizona State
University Blockchain Research Laboratory Carbon trading IoT platform [1]
and our Asset Tracking fog computing solution [12]. During development and
testing, we have generated 50 HF infrastructure configurations with varying com-
plexity, and 150 chaincodes for deployed IoT solutions mentioned in the previous
sentence.

The most complex example we have tested with HFICG is the following
infrastructure specification: 30 organisations with 40 channels (1 channels per
organisation, and 10 channels shared between multiple organisations); Kafka

Hyperledger Fabric Blockchain as a Service for the IoT: Proof of Concept 181

Ordering service (7 Kafka nodes, 5 Zookeeper nodes); a CouchDB state database
Docker container per machine (omitted for low machine CPU/RAM capabili-
ties); a HFOM per machine (with the suitable deployment option (see Sect. 4.3)
depending on the machine CPU/RAM capabilities); a Certificate Authority con-
tainer per organisation; Each organisation runs 5 machines, making a total of 150
machines for this deployment; Each machine runs 0–2 endorsing peers (depend-
ing on the machine CPU/RAM capabilities), making a total of 300 peers. This
HF configuration is generated with HFICG within 7 min. With network infor-
mation supplied for all participating machines, we have measured the amount
of time necessary to: 1. deploy configuration files; 2. start HF components in
Docker containers; 3. Perform channel creation, peer channel joins, and anchor
peer updates. For example, on a Raspberry Pi 3 B+ device, steps (1), (2) and
(3) are done within 3 min. Note that this is the time in an ideal scenario. Due to
network issues and deployment retry-policies, the deployment time varies.

We have simulated the above-mentioned deployment on the Azure Cloud
Platform. Virtual machine specifications regarding CPU and RAM were set to
lowest to mimic typical IoT devices – two machines types were randomly assigned
to each device: first having 1 CPU and 0.5 Gb RAM, second having 1 CPU
and 1 Gb of RAM. The machines with lower settings run 0–1 peers (assigned
randomly), HFOM with deployment option 3 (see Sect. 4.1), and no CouchDB
container. The Ordering service node was deployed to a stronger machine (8
CPUs, 32 Gb RAM). Since deployment is done in parallel for all machines, the
entire blockchain network was deployed, set up and running in under 15 min.
Note, that most of the time is spent on machines downloading necessary Docker
images to run HF components and setting up HFOM (approx. 70%).

The most complex example we have tested with HFCB is a chaincode for a
digital asset with 30 attributes, having all functions (CRUD and three different
query functions) with a CouchDB index created for 15 attributes when perform-
ing inserts. The chaincode is generated within 3 seconds, and deployed (through
a HFOM setup on a Raspberry Pi 3 B+), up and running within another 100
seconds, making a total execution time under 2 min.

In conclusion, one can have a complex, fully functional HF network with
on-demand business logic up and running in under 25 min with HFICG, HFCB
and HFOM. Furthermore, with HFICG and HFCB the time required to deploy
infrastructure and business logic is significantly diminished over manual writing
of configuration files, moving files to dedicated machines and starting all HF
components.

Lastly, we argue that security and privacy of IoT systems can be strengthened
through using a blockchain infrastructure such as HF. Transparency levels for data
can be adjusted according to the desired use case through channels modeling or pri-
vate data specification. Since channels represent physically separate data ledgers,
data privacy and security can be managed within a certain set of organisations,
even peers. User/Device level attributes can be tied to user/device certificates and
access policies for data can be enforced through chaincodes at runtime. To ensure
proper transaction validation, chaincode endorsement policies can be set to have

182 S. Pešić et al.

varying endorsement requirements. Data access is secured via strict checking of sig-
natures/certificates at all steps: HFOM/HFICG/HFCB, peer level and chaincode
level. Unauthenticated reads and writes are thus automatically discarded. Having
a supportive HF infrastructure makes on-demand traceability and auditability of
actions simpler. Malicious actors and actions can be detected, and machines/users
blacklisted.

6 Conclusion

In this paper we have built a proof-of-concept BCaaS system using Hyperledger
Fabric blockchain technology. This paper showcases implementation details from
a set of BCaaS requirements for IoT systems defined in our previous paper on
the topic [13].

We have discussed BCaaS in IoT, and provided an implementation of several
functionalities, making this PoC the first, relevant BCaaS PoC that considers:
automated blockchain network infrastructure generation and deployment in a
physically distributed system environment and rapid business logic prototyping
through hastened smart contract writing and deployment. With HFICG config-
uration specification, infrastructure setup and deployment time are significantly
diminished. HFCB makes a large impact where fully-automated on-demand
chaincode generation and deployment is necessary. Lastly, HFOM makes a move
towards providing a tool for fast and secure communication with the underlying
blockchain infrastructure. This framework of tools has been already validated
through integration with Agile IoT platform. Furthermore, our framework has
been used by Arizona State University Blockchain Research Laboratory in con-
text of their Carbon trading IoT platform development and is providing a HF
blockchain network for our BLEMAT Asset Tracking IoT solution. The tools
mentioned in the paper are offered as parts of a commercial solution [15].

As part of the future work our focus will be complementing the BCaaS frame-
work until the complete set of BCaaS services from our previous paper is imple-
mented. We will aim for integration with other IoT platforms, while also carefully
reviewing new BCaaS requirements, implementation recommendations and end
objectives. Lastly, IoT platforms are always subject to a degree of uncertainties,
particularly as regards as their number of components and the frequency that
they are running. As part of future work we will work on larger experimental
studies to see how the BCaaS could work in an environment when new compo-
nents are frequently added or removed over time.

Acknowledgement. The research and outcomes behind this paper are a part of the
open call research project for Agile IoT, H2020-EU.2.1.1. - INDUSTRIAL LEADER-
SHIP - Project ID: 688088. The authors also thank the Ministry of Education, Science
and Technological Development of the Republic of Serbia for support through project
no. OI174023 – “Intelligent techniques and their integration into wide-spectrum decision
support”.

Hyperledger Fabric Blockchain as a Service for the IoT: Proof of Concept 183

References

1. Arizona State University Blockchain Research Laboratory: Carbon trading on
a blockchain (2018). https://blockchain.asu.edu/carbon-trading-on-a-blockchain.
Accessed 18 May 2019

2. ChainStack: Managed blockchain infrastructure. https://chainstack.com/.
Accessed 10 August 2019

3. Gaur, N., Desrosiers, L., Ramakrishna, V., Novotny, P., Baset, S.A., O’Dowd, A.:
Hands-On Blockchain with Hyperledger: Building Decentralized Applications with
Hyperledger Fabric and Composer. Packt Publishing Ltd., UK (2018)

4. Huh, S., Cho, S., Kim, S.: Managing IoT devices using blockchain platform. In: 2017
19th International Conference on Advanced Communication Technology (ICACT),
pp. 464–467. IEEE (2017)

5. Lee, B., Lee, J.H.: Blockchain-based secure firmware update for embedded devices
in an internet of things environment. J. Supercomputing 73(3), 1152–1167 (2017)

6. Li, Z., Kang, J., Yu, R., Ye, D., Deng, Q., Zhang, Y.: Consortium blockchain for
secure energy trading in industrial internet of things. IEEE Trans. Industr. Inf.
14(8), 3690–3700 (2018)

7. Linux Foundation: Hyperledger fabric blockchain (2019). https://hyperledger-
fabric.readthedocs.io. Accessed 18 May 2019

8. Ouaddah, A., Abou Elkalam, A., Ait Ouahman, A.: Fairaccess: a new blockchain-
based access control framework for the internet of things. Secur. Commun. Net-
works 9(18), 5943–5964 (2016)

9. Polyzos, G.C., Fotiou, N.: Blockchain-assisted information distribution for the inter-
net of things. In: 2017 IEEE International Conference on Information Reuse and
Integration (IRI), pp. 75–78. IEEE (2017)

10. Pongnumkul, S., Siripanpornchana, C., Thajchayapong, S.: Performance analysis
of private blockchain platforms in varying workloads. In: 2017 26th International
Conference on Computer Communication and Networks (ICCCN), pp. 1–6. IEEE
(2017)

11. Samaniego, M., Deters, R.: Blockchain as a service for IoT. In: 2016 IEEE Interna-
tional Conference on Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), pp. 433–436. IEEE (2016)

12. Pešić, S., et al.: Blemat-context modeling and machine learning for indoor posi-
tioning systems (2019), submitted for review in International Journal on Artificial
Intelligence Tools (ISSN: 0218–2130)

13. Pešić, S., et al.: Conceptualizing a collaboration framework between blockchain
technology and the internet of things (2019). Accepted to CompSysTech’19

14. Thakkar, P., Nathan, S., Viswanathan, B.: Performance benchmarking and opti-
mizing hyperledger fabric blockchain platform. In: 2018 IEEE 26th International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems (MASCOTS), pp. 264–276. IEEE (2018)

15. VizLore: Chainrider blockchain as a service. https://chainrider.io/. Accessed 10
August 2019

16. Worldsibu: Worldsibu: The enterprise blockchain development platform. https://
worldsibu.tech/. Accessed 10 August 2019

17. Yewale, A.: Study of Blockchain-as-a-Service Systems with a Case Study of Hyper-
ledger Fabric Implementation on Kubernetes. Ph.D. thesis, University of Nevada,
Las Vegas (2018)

https://blockchain.asu.edu/carbon-trading-on-a-blockchain
https://chainstack.com/
https://hyperledger-fabric.readthedocs.io
https://hyperledger-fabric.readthedocs.io
https://chainrider.io/
https://worldsibu.tech/
https://worldsibu.tech/

GraphQL Schema Generation for
Data-Intensive Web APIs

Carles Farré(B), Jovan Varga, and Robert Almar

Universitat Politècnica de Catalunya, BarcelonaTech, Barcelona, Spain
{farre,jvarga}@essi.upc.edu, robert.almar@est.fib.upc.edu

Abstract. Sharing data as a (non-)commercial asset on the web is typ-
ically performed using an Application Programming Interface (API).
Although Linked Data technologies such as RDF and SPARQL enable
publishing and accessing data on the web, they do not focus on mediated
and controlled web access that data providers are willing to allow. Thus,
recent approaches aim at providing traditional REST API layer on top
of semantic data sources. In this paper, we propose to take advantage of
the new GraphQL framework that, in contrast to the dominant REST
API approach, exposes an explicit data model, described in terms of the
so-called GraphQL schema, to enable precise retrieving of only required
data. We propose a semantic metamodel of the GraphQL Schema. The
metamodel is used to enrich the schema of semantic data and enable
automatic generation of GraphQL schema. In this context, we present a
prototype implementation of our approach and a use case with a real-
world dataset, showing how lightly augmenting its ontology to instantiate
our metamodel enables automatic GraphQL schema generation.

Keywords: GraphQL · Data-Intensive Web APIs · Semantic
metamodel

1 Introduction

Ontology-driven approaches have proven successful to deal with data integration
challenges thanks to the inherent simplicity and flexibility of ontologies, which
make them suitable to define the required unified view [9]. Ontologies may be
represented in the form of Resource Description Framework (RDF) [4] triples
and then made web-accessible via SPARQL endpoints [3]. Nevertheless, web data
access at SPARQL endpoints is uncontrolled and unpredictable, compromising
the performance, the response time, and even the availability of the service
[2]. Moreover, exposing data directly as RDF triples is quite distinct and even
disconnected from the “mainstream” Web API development built on HTTP and
JSON [8]. Therefore, it is unsurprising that recent approaches aim at providing
a REST API layer on top of semantic data sources [5,7,8].

The GraphQL framework proposed by Facebook [6] represents an alternative
to the REST APIs. One of its key benefits is that it enables the retrieval of only
c© Springer Nature Switzerland AG 2019
K.-D. Schewe and N. K. Singh (Eds.): MEDI 2019, LNCS 11815, pp. 184–194, 2019.
https://doi.org/10.1007/978-3-030-32065-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-32065-2_13

GraphQL Schema Generation for Data-Intensive Web APIs 185

required data with a single request. This feature is enabled by describing the
available data in terms of a GraphQL schema. In this way, instead of using
several REST method calls, the user of a GraphQL service can define custom
requests that precise the data to be retrieved by using the schema information.
Therefore, the GraphQL Schema is a foundation for the flexibility introduced.

In this paper, we couple GraphQL and ontologies to take the most out of the
two technologies. In particular, we propose GQL as an RDF-formalized semantic
metamodel for GraphQL schema and explain how to take advantage of this
metamodel to support the semi-automatic generation of a GraphQL schema
from a given RDF ontology. Our contributions can be summarized as follows.

– We define GQL, a semantic metamodel for GraphQL Schema.
– We provide a prototype that, given a semantic schema model instantiating

GQL, automatically generates the corresponding GraphQL Schema.
– We present a use case with a real-world dataset in order to demonstrate

the feasibility of our approach. The use case shows how lightly augment-
ing the dataset ontology to instantiate our metamodel enables automatic
GraphQL schema generation. Moreover, we explain how our prototype is also
able to generate a proof-of-concept GraphQL runtime service that answers
the queries posed against its GraphQL schema using the available data.

The rest of the paper is structured as follows. Section 2 summarizes the key
aspects of GraphQL. Section 3 describes our semantic metamodel for GraphQL
Schema: the GQL Metamodel. Section 4 demonstrates, through a use case,
how to take advantage of the GQL Metamodel to enable the generation of
GraphQL schemas and services. Section 5 discusses the related work. Finally,
Sect. 6 presents the conclusions and further work.

2 GraphQL

This section provides a short introduction on GraphQL that we have synthesized
from the original documentation published by Facebook [6]. A GraphQL service
provides web-based access to its underlying data sources. The GraphQL query
language allows defining the request payloads to be sent to the GraphQL service
unique endpoint. Such payloads are JSON-like sentences that may contain one
or more operations. There are three types of operations: queries, mutations, and
subscriptions. In this paper, we focus on the querying capabilities of GraphQL.

GraphQL queries must be written in terms of the GraphQL schema that
describes the data sources that the GraphQL service exposes. A GraphQL
schema defines a set of object types, which are similar to object classes but
without operations. In this way, an object type specifies a list of attributes,
named fields, each of which yields one or more values of a specific type. This
latter may be either a scalar type (String, Integer, etc.) or another object type.

For the sake of an example, Fig. 1(a) presents a (fragment of the) GraphQL
schema that we obtain for our use case dataset about movies (for further details
see Sect. 4). Figure 1(b) presents a corresponding GraphQL query that, for a

186 C. Farré et al.

type film {
genre : [film_genre]
director : director
title : String
actor : [actor]
date : String
country : country
filmid : Int
performance : [performance]
idInstance : String!

}

type director {
director_name : String
director_directorid : Int
idInstance : String!

}

type film_genre {
film_genre_name : String
film_genre_film_genreid : Int
idInstance : String!

}

type country {...}
type actor {...}
type performance {...}

type Query {
allfilms: [film]
getfilm(id: String!): film
...

}

getfilm (id: ".../film/100") {
title
date
director {

director_name
}
genre {

film_genre_name
}

}

{
"data": {

"getfilm": {
"title": "Disraeli",
"date": "1929",
"director": {

"director_name": "Alfred Green"
},
"genre": [

{
"film_genre_name": "Indie"

},
{

"film_genre_name": "Biographical"
},
{

"film_genre_name": "Drama"
}

]
}

}
}(a)

(b)

(c)

Fig. 1. Example GraphQL schema (a), query (b), and result (c).

given film (id: "../film/100"1), returns its title, date, director’s name
(director name), and the names of the genres (film genre name) to which it
belongs. Finally, Fig. 1(c) shows a JSON result returned by the GraphQL service
after processing the GraphQL query in Fig. 1(b). This example illustrates two
of the main features of the GraphQL query language:

1. GraphQL queries define templates for the data to be retrieved by selecting
the specific scalar fields that are of interest to the user.

2. GraphQL queries can be nested, i.e., for each field of the object type
in a GraphQL query, even if it is a list of objects, a GraphQL (sub)
query can be defined. The query displayed in Fig. 1(b) contains two sub-
queries: director { director_name } and genre { film_genre_name },
which retrieve the names of the objects director and genre associated with
a film.

The GraphQL schema in Fig. 1(a) defines several “normal” object types
(film, director, . . .) together with the Query type. Every GraphQL schema
1 Shorthand for “http://data.linkedmdb.org/resource/film/100”.

http://data.linkedmdb.org/resource/film/100

GraphQL Schema Generation for Data-Intensive Web APIs 187

must provide a Query type to define the available entry points for querying the
GraphQL service. Consequently, any valid GraphQL query needs to be rooted
in one of the supplied entry points. In the example, we show two possible entry
points, namely allfilms and getfilm. The former entry point allows querying
the whole collection of films, whereas the latter one allows the direct access to
just one film giving its id, as it is the case of the query shown in Fig. 1(b).

3 A Semantic Metamodel

In this section, we define GQL as a semantic metamodel for GraphQL schema.
The metamodel abstraction level is needed as each API has its own model
(i.e., schema) defined in terms of GraphQL schema, which in turn, has its data
instances, and such setting can strongly benefit from metamodeling [12]. The
metamodel is formalized in RDF and, given the challenge of metamodeling,
we first explain the modeling principles, after which we explain the metamodel
design and its elements.

3.1 Modeling Principles

As GraphQL schema represents the data model of the data exposed by an API,
we designed GQL by following the modeling principles already applied in similar
cases. Our approach is inspired by the RDF Data Cube vocabulary, which is the
W3C recommendation, and its extension the QB4OLAP vocabulary that aim at
representing multidimensional schema to enable OLAP analysis on the SW [13].

GQL includes the following kinds of elements – class, class instance, schema
property, and data property (see Fig. 3). The class and schema property elements
are used to define an API schema and, thus, they are instantiated only once. In
RDF, the former is defined as an instance (via rdf:type) of RDFS class (i.e.,
rdfs:Class), while latter is an instance of RDFS property (i.e., rdf:Property), e.g.,
see lines 1 and 2 in Fig. 2. The class instance elements are predefined instances
(via rdf:type) of a previously defined class kind in the API schema, e.g., see line 3
in Fig. 2. Finally, the data property elements are instantiated at the API schema
level and, if data are also represented with RDF, can be used to retrieve the data
instances automatically. For this reason, a data property element is defined as an
instance (i.e., via rdf:type) of both the RDFS class (so that it can be instantiated
at the schema level) and the subclass of RDFS property so that it can be used
as the property in GQL, e.g., see lines 4 and 5 in Fig. 2. At the schema level,
a data property element is instantiated as an RDFS property that can be used
to retrieve concrete data instances with which it is used and we provide further
details on this in the following subsections.

188 C. Farré et al.

1 gql:Scalar rdf:type rdfs:Class .

2 gql:hasModifier rdf:type rdf:Property .

3 gql:Int rdf:type gql:Scalar .

4 gql:Field rdf:type rdfs:Class .

5 gql:Field rdfs:subClassOf rdf:Property .

Fig. 2. Example of instance level triples

gql:ScalarField

gql:Object

gql:ObjectField

gql:Field

gql:Scalar

gql:Int gql:Float

gql:Boolean gql:ID

gql:String
gql:NonNullgql:List

gql:Modifier
gql:hasModifier

rdf:typerdfs:domain

rdfs:range

rdfs:range

GQL: GraphQL Seman c Vocabulary

gql:combinedWith

gql:Argument

gql:hasArgument

gql:hasArgumentType

gql:Interface

gql:Union

gql:implementsInterface

gql:includes
Object

gql:Enum

gql:hasEnum
Value

gql:EnumField
rdfs:range

gql:InputFieldgql:InputObject

gql:InputScalarFieldgql:InputObjectField gql:InputEnumField

rdfs:domain

rdfs:range

rdfs:range rdfs:range

Class Data Property Sub-property Schema PropertyLegend Class Instance

gql:includesField

Fig. 3. GQL vocabulary

3.2 GQL Metamodel

GraphQL Schema is organized around GraphQL types. To define our GQL meta-
mode, we first introduce the gql:Type class as the superclass for all GraphQL
types. Then, we introduce the following classes:

– gql:Scalar representing primitive values such as string.
– gql:Object organizing scalars or other objects in a single struct.
– gql:Enum representing a set of allowed scalar values.
– gql:InputObject representing complex structs to be used with field arguments

(see the next subsection for more details on field arguments).
– gql:Interface representing an abstract type defining a list of fields to be imple-

mented by an object.
– gql:Union representing a list of possible types for a certain field.
– gql:List representing a list of elements of a certain type.
– gql:NonNull denoting that a certain filed cannot take a null value.

For the last two GraphQL types above we introduce the superclass
gql:Modifier as they represent modifiers over the other types.

The complete GQL metamodel (excluding gql:Type) is depicted in Fig. 3.2

In addition to classes for the previously introduced types, the gql:Argument
class represents an argument for an object field that determines the value to
be returned for that object field. Next, we introduce the data property elements

2 Metamodel triples: http://www.essi.upc.edu/∼jvarga/gql/gql.ttl.

http://www.essi.upc.edu/~jvarga/gql/gql.ttl

GraphQL Schema Generation for Data-Intensive Web APIs 189

of GQL. As in RDF, each property is directed, a property has its source and tar-
get, defined via domain (i.e., rdfs:domain) and range (i.e., rdfs:range) properties.

An object can have different fields that are represented with the gql:Field
data property element. A field is always related to an object as its domain,
and can relate to another object, scalar, or enum as its range. Thus we define
three gql:Field sub-properties – gql:ObjectField having another object as range,
gql:ScalarField having a scalar as range, and gql:EnumField having an enum
as range. In the same way, we define gql:InputField with its sub-properties
gql:InputObjectField, gql:InputScalarField, and gql:InputEnumField that define field
for gql:InputObject.

Furthermore, GQL defines the following data properties. If object imple-
ments an interface, gql:implementsInterface is used to link the two. Moreover,
a union of objects is defined via gql:includesObject that links a union with an
object that it includes. The argument for a field is specified via gql:hasArgument
linking a field with an argument. Furthermore, the argument is linked with
its scalar type via gql:hasArgumentType. Each field can also be linked to a
modifier via gql:hasModifier where modifiers can be mutually interlinked via
gql:combinedWith, e.g., a field can be a list of non-null values. An enum can
be linked to a string value via gql:hasEnumValue.

Considering the predefined class instances, the primitive values considered
by GraphQL are defined as instances of gql:Scalar via rdf:type. These include
gql:Int, gql:Float, gql:String, gql:Boolean and qgl:ID, and we explicitly define all
of them to comply with the GraphQL specification. Note that gql:ID represents
a unique identifier used to identify objects.

4 Automation

In this section, we explain how using the GQL Metamodel enables the semi-
automatic generation of GraphQL schemas from a given ontology. The generation
process consists of three steps:

1. Annotation of the dataset schema with the GQL Metamodel so that it
becomes a valid instantiation of the metamodel.

2. Automatic generation of a GraphQL schema from the annotated ontology.
3. Automatic generation of a GraphQL service that exposes the generated

GraphQL schema and the available data related to the annotated ontology.

The automation of step 1 is a non-trivial task that would require the defini-
tion and identification of many mappings from ontology patterns to GraphQL
constructs. Nevertheless, a user familiar with the dataset (e.g., dataset publisher)
requires small manual efforts to perform this task as it involves only the ontology
TBox (i.e., the dataset schema) that is typically only a small part of the whole
dataset (see the sequel for the details in our use case). Thus, currently step 1 is
manually performed, while its automation is part of the future work.

190 C. Farré et al.

To automate steps 2 and 3, we implemented a prototype. This prototype is a
Web application with a simple interface to provide the required inputs, namely
the necessary parameters to connect to the RDF triple store where the input
ontology is stored. As an output, the prototype produces a GraphQL schema
and a ready-to-deploy GraphQL service implementation.3

To illustrate the feasibility of our approach, we present a use case with the
real-world dataset from the Linked Movie Database4, which contains a total of
6,148,121 triples. This dataset contains information on 53 different concepts with
a total of 222 different properties. For the purpose of the use case example, we
have selected 7 concepts, namely Director, Person, Performance, Country, Film,
Film genre, and Actor, as it is shown in Fig. 4. For these concepts, we consider a
total of 20 properties whose names label the arrows in Fig. 4: filmid, title, genre,
etc. Notice that the range of these properties can either be a concept (e.g.,
Film genre in the case of the property genre of Film) or a scalar field (e.g., String
in the case of the property title of Film).

FilmContry

Director

Actor

Film_genre

Person Performance

performance

performance

Integer

filmid
Integer

String
tle

date genre

actorcountry

director

film_genre_film_genreid

String
film_genre_name

Integer
actor_name

String

actor_actorid

country_con nent
Integer

String

country_id

country_name

director_name
Integer

String

director_directorid

String

performance_id

performance_character
Integer

EXAMPLE: Linked Movie DB

Fig. 4. Use Case dataset

4.1 Step 1: Annotation of the Dataset

The purpose of this step it to add the necessary meta-data annotations (i.e.,
TBox statements) in the form of extra RDF triples so that the resulting ontology
is an instance of our GQL metamodel. Accordingly, for each concept of the input
ontology, we should add a triple of the form: concept rdf:type gql:Object.

For example, Fig. 5 shows the triples added for two properties (dc:title and
movie:genre) that have a film (movie:film) as their domain. Notice that the triples
added in lines 1–2 and 5–7 are not part of the annotation with any GQL con-
cept but are generic meta-data annotations defining the schema for the dataset.

3 Prototype available at https://github.com/genesis-upc/Ontology2GraphQL.
4 https://old.datahub.io/dataset/linkedmdb.

https://github.com/genesis-upc/Ontology2GraphQL
https://old.datahub.io/dataset/linkedmdb

GraphQL Schema Generation for Data-Intensive Web APIs 191

As this schema information was missing in the dataset, we defined it based on the
data instances (i.e., ABox). The semantic enrichment specific for GQL extension
is presented in lines 3–4 and 8–10 in Fig. 5, and this enriched schema information
is necessary for the automation procedures that we describe below. In general,
the number of triples to be added depends on the semantic quality of the origi-
nal ontology (i.e., if the schema information is available) but should generally be
small. In particular, for our use case, the resulting annotated ontology5 consists
of 91 new triples, where only 46 triples are related to GQL-specific annotations.
The remaining 45 triples correspond to the definition of the ontology TBox (i.e.,
dataset schema) that was in missing.

1 dc:title rdf:type rdf:Property .

2 dc:title rdfs:domain movie:film .

3 dc:title rdf:type gql:ScalarField .

4 dc:title rdfs:range gql:String .

5 movie:genre rdf:type rdf:Property .

6 movie:genre rdfs:domain movie:film .

7 movie:genre rdfs:range movie:film_genre .

8 movie:genre rdf:type gql:ObjectField .

9 movie:genre gql:hasModifier ex:l2 .

10 ex:l2 rdf:type gql:List .

Fig. 5. Example of added triples

4.2 Step 2: Automatic Generation of a GraphQL Schema

Taking the annotated ontology, our prototype generates a GraphQL schema. For
example, Fig. 1(a) depicts a fragment of the GraphQL schema generated from
the annotated ontology obtained in the previous subsection.6

The GraphQL schema generation is fully automated following the next steps:

– For each gql:Object in the ontology, a GraphQL Type is produced.
– For each gql:ScalarField, the corresponding scalar field is produced.
– For each gql:ObjectField, the corresponding object field is produced with its

modifiers (i.e., single object or list).

In addition, our prototype also deals with the following enrichments:

– Identifiers. The prototype adds a scalar field idInstance to each Type. This
field is required by the GraphQL service implementation in order to properly
identify each object that can be retrieved.

– Query entry points. As we explained in Sect. 2, GraphQL schemas must
define the so-called entry points. Our prototype automatically generates a
pair of entry points for each Type: one to retrieve all the instances of the
type and the other one to retrieve a single instance given its identifier.

5 https://git.io/linkedmdb.ttl.
6 The whole GraphQL schema can be found at https://git.io/linkedmdb.graphql.

https://git.io/linkedmdb.ttl
https://git.io/linkedmdb.graphql

192 C. Farré et al.

4.3 Step 3: Automatic Generation of a GraphQL Service

Our prototype is also able to produce a proof-of-concept GraphQL-service imple-
mentations for the GraphQL schemas that it generates. This is again a fully
automatic procedure. These GraphQL service implementations are based on
the graphql-java framework7. Assuming that all the data is stored in an RDF
triple store such as Virtuoso, resolvers are automatically implemented in terms
of SPARQL queries against the triple store. Such resolvers are functions that
specify how the types, fields and entry points in the schema are connected to the
data sources, and they are called at runtime to fetch the corresponding data. Our
current implementation allows generating resolvers for the following GraphQL-
schema elements: scalar fields, object fields, interfaces, lists of scalar fields, lists
of object fields, list of interfaces, and nulls. The following elements are not yet
supported: unions, input types, non-id field arguments, and enumerations.

In the context of our use case, the prototype is able to generate a GraphQL
service able of answering any GraphQL query posed to the GraphQL Schema
that it supports. Consequently, the resulting GraphQL service can retrieve data
for 7 types with their 20 properties stored in 1,287,354 triples.

5 Related Work

Providing “a GraphQL interface for querying and serving linked data on the
Web” is the aim of the tool HyperGraphQL8. However, in this case, the GraphQL
Schema itself needs to be generated manually with additional custom (i.e., tool-
specific) annotations to link the exposed data with the underlying Linked Data
sources (SPARQL endpoints and or local files with RDF dumps).

GraphQL-LD [11] represents another proposal aimed at providing a bridge
between GraphQL users and Linked Data publishers. In this case, the approach
consists of two complementary methods: one for transforming GraphQL queries
to SPARQL, and a second one for converting SPARQL results to a “GraphQL
query compatible response”. In the case of GraphQL-LD, no GraphQL Schema is
generated nor made available to end users. In this way, one of the key foundations
of the whole GraphQL approach, the GraphQL Schema, is entirely missing.

In [10] we find the so far unique proposal that has addressed the automatic
generation of GraphQL schemas, to the best of our knowledge. The approach
consists in defining one-to-one mappings from elements of UML Class diagrams
to GraphQL schema constructs. However, in our case, the ability to have both
the meta-data and the data in the same triple store allows us to generate proof-
of-concept GraphQL services automatically that can expose such data.

7 https://github.com/graphql-java/graphql-java.
8 https://www.hypergraphql.org.

https://github.com/graphql-java/graphql-java
https://www.hypergraphql.org

GraphQL Schema Generation for Data-Intensive Web APIs 193

6 Conclusions and Further Work

In this paper we have presented a semantic-based approach to generate GraphQL
schemas. At the core of this approach lies the definition of a semantic metamodel
for GraphQL Schema. We have also shown how with some little initial effort, e.g.,
manually adding just 91 triples into a 6M-triple dataset, we can automatically
generate a GraphQL schema and service able of retrieving the data stored in
1,287,354 triples.

As future work, we plan to advance towards the automation of the annotation
of ontologies. In a broader context, we want to integrate our approach and tool
in the framework described in [1] to tackle the generation and evolution of data-
intensive Web APIs.

Acknowledgements. This work is funded by the Spanish project TIN2016-79269-R.

References

1. Abelló, A., Ayala, C.P., Farré, C., Gómez, C., Oriol, M., Romero, O.: A data-driven
approach to improve the process of data-intensive API creation and evolution. In:
Proceedings of the CAiSE-Forum-DC, pp. 1–8 (2017)

2. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.-Y.: SPARQL web-
querying infrastructure: ready for action? In: Alani, H., et al. (eds.) ISWC 2013.
LNCS, vol. 8219, pp. 277–293. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-41338-4 18

3. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic
Web Inf. Syst. 5(3), 1–22 (2009). https://doi.org/10.4018/jswis.2009081901

4. Cyganiak, R., et al.: Resource description framework (RDF): Concepts and abstract
syntax (2014). http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

5. Daga, E., Panziera, L., Pedrinaci, C.: A basilar approach for building web APIs
on top of SPARQL endpoints. In: Third Workshop on Services and Applications
over Linked APIs and Data, pp. 22–32 (2015)

6. Facebook Inc: GraphQL, June 2018. http://facebook.github.io/graphql
7. Groth, P.T., Loizou, A., Gray, A.J.G., Goble, C.A., Harland, L., Pettifer, S.: Api-

centric linked data integration: the open PHACTS discovery platform case study.
J. Web Sem. 29, 12–18 (2014). https://doi.org/10.1016/j.websem.2014.03.003

8. Meroño-Peñuela, A., Hoekstra, R.: Automatic query-centric API for routine access
to linked data. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp.
334–349. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4 30

9. Nadal, S., Abelló, A.: Integration-oriented ontology. In: Encyclopedia of Big Data
Technologies, pp. 1–5. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
63962-8 13-1

10. Rodriguez-Echeverria, R., Cánovas Izquierdo, J.L., Cabot, J.: Towards a UML
and IFML mapping to GraphQL. In: Garrigós, I., Wimmer, M. (eds.) ICWE 2017.
LNCS, vol. 10544, pp. 149–155. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-74433-9 13

11. Taelman, R., Sande, M.V., Verborgh, R.: Graphql-ld: linked data querying with
graphql. In: ISWC 2018 Posters & Demonstrations, Industry and Blue Sky Ideas
Tracks (2018). http://ceur-ws.org/Vol-2180/paper-65.pdf

https://doi.org/10.1007/978-3-642-41338-4_18
https://doi.org/10.1007/978-3-642-41338-4_18
https://doi.org/10.4018/jswis.2009081901
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://facebook.github.io/graphql
https://doi.org/10.1016/j.websem.2014.03.003
https://doi.org/10.1007/978-3-319-68204-4_30
https://doi.org/10.1007/978-3-319-63962-8_13-1
https://doi.org/10.1007/978-3-319-63962-8_13-1
https://doi.org/10.1007/978-3-319-74433-9_13
https://doi.org/10.1007/978-3-319-74433-9_13
http://ceur-ws.org/Vol-2180/paper-65.pdf

194 C. Farré et al.

12. Varga, J., Romero, O., Pedersen, T.B., Thomsen, C.: Analytical metadata model-
ing for next generation BI systems. J. Syst. Softw. 144, 240–254 (2018). https://
doi.org/10.1016/j.jss.2018.06.039

13. Varga, J., Vaisman, A.A., Romero, O., Etcheverry, L., Pedersen, T.B., Thomsen,
C.: Dimensional enrichment of statistical linked open data. J. Web Sem. 40, 22–51
(2016). https://doi.org/10.1016/j.websem.2016.07.003

https://doi.org/10.1016/j.jss.2018.06.039
https://doi.org/10.1016/j.jss.2018.06.039
https://doi.org/10.1016/j.websem.2016.07.003

Digital Dices: Towards the Integration
of Cyber-Physical Systems Merging
the Web of Things and Microservices

Manel Mena(B), Javier Criado, Luis Iribarne, and Antonio Corral

Applied Computing Group (TIC-211), University of Almeŕıa, Almeŕıa, Spain
{manel.mena,javi.criado,luis.iribarne,acorral}@ual.es

Abstract. One of the main issues of devices and platforms related to
Internet of Things (IoT) is that there exists a broad spectrum of different
protocols addressing those devices. Management and connection to those
things create integrability and usability issues. Hence, there is a need for
a solution that facilitates the communication between different devices
and platforms. The Web of Things (WoT) tries to handle interoperability
issues by describing interfaces and interaction patterns among things.
Thanks to the models proposed by the WoT, it is possible to decouple
the description of things from the protocols handling the communication
and implementation strategies. This article proposes Digital Dice as an
abstraction of IoT devices inspired by the concept of Digital Twin, but
capable of leveraging the advantages of microservices architectures. We
focus on the creation of Digital Dices from WoT models. A Digital Dice
consists in different facets that are able to handle a particular aspect of
a thing, hence different WoT descriptions models will result in different
microservices related to that particular thing. An architecture to handle
multiple Digital Dices and their replicas is also proposed.

Keywords: Cyber-physical systems · IoT · Microservices · Web of
Things · Digital Twins

1 Introduction

Different protocols related to the Internet of Things (IoT) must be taken into
account to establish an ecosystem of devices capable of handling different aspects.
Those protocols are usually divided into different layers [1], and their great
number, heterogeneity and use of different technologies brings about the problem
of interoperability between devices and/or platforms.

Related to the interoperability, there are solutions that try to support the
integration of IoT devices in Smart Space environments [2], such as Node-RED,
Eclipse Kura, Prodea, etc. These approaches are designed to control a limited

This work was funded by the EU ERDF and the Spanish MINECO under Project TIN2017-83964-R.
Manel Mena has been funded by a Grant of the Spanish Government FPU17/02010.

c© Springer Nature Switzerland AG 2019
K.-D. Schewe and N. K. Singh (Eds.): MEDI 2019, LNCS 11815, pp. 195–205, 2019.
https://doi.org/10.1007/978-3-030-32065-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-32065-2_14

196 M. Mena et al.

number of devices, and are build as monolithic applications, so they lack a good
scalability. Another common problem is to have bottlenecks in the communica-
tion due to the restrictions on most IoT devices (e.g., low energy consumption,
low computing power). In addition, there is a need to virtualize this type of
devices for the purpose of carrying out tests without influencing the business
processes [3]. To solve this last problem, the concept of Digital Twin (DT) was
introduced as a virtual representation of a physical element, system or device,
which can be used for different purposes [4]. However, this concept focuses on
a monolithic approach for the management and representation of devices, and
lacks of multiple levels that specifically addresses each facet of a device.

In this paper, we introduce the concept of Digital Dice (DD), an abstraction
of IoT devices or cyber-physical systems capable of leveraging the advantages
of microservices architectures. Furthermore, we explain how Digital Dices are
closely related to the Web of Things (WoT) framework [5]. The WoT was cre-
ated to define a common definition schema for Things. In particular, our pro-
posal makes use of the Thing Description (TD) defined by the WoT. The Thing
Description offers an overview of the features of a thing, as well as the endpoints
to request those features. The TD gives a solution to the problem of feature
discovery on things. The Digital Dices are a software abstraction of things that
make use of TD to establish a connection to the thing as well as generate another
Thing Description with new endpoints, offering a common communication pro-
tocol for the final user no matter the protocols used internally by the IoT device
or the Cyber-physical System. Besides, we study the conversion between Things
Description models and the different facets that are used by our DD.

The main contributions of Digital Dices are (i) the definition of a common
communication protocol to control all kind of devices, a behaviour capable of
lessening the number of requests on a IoT device; (ii) the capability of handling
numerous request just replicating the facets needed; and (iii) the possibility
using our Digital Dice as a Thing in other systems compatible with WoT.

This paper is structured as follows. In Sect. 2 we describe our Digital Dices as
a solution to solve the problems described above. In Sect. 3 we study the Thing
Description model [5] and how to convert Thing Descriptions to Digital Dices.
Section 4 describes an example scenario. Section 5 offers a overview of related
work, solutions and systems found in the literature. Finally, Sect. 6 describes the
advantages of our Digital Dices and propose the future work.

2 Background

Digital Dices, like Digital Twins, are virtual representations of physical elements,
but they offer several improvements. A digital dice proposes a virtual abstraction
of IoT devices, cyber-physical systems or other virtual devices that is based on
microservices, and aims to be agnostic to the protocols used by said devices.
This DD should be compatible with the Web of Things framework, specifically
the Thing Description model. Thanks to this fact, our digital dices can be totally
compatible with different systems that make use of the standard, like Mozilla
Web Thing framework [6].

DD: Towards the Integration of CPS Merging the WoT and Microservices 197

The concept of dice (multiple faces) is given by how the microservices that
represent our devices are characterized. These microservices oversee different
aspects of the devices as follows:

(a) Controller. This microservice handles the communication with the user, and
it is the one that manages the orchestration with the rest of the facets or
directly to the IoT device as need.

(b) Data Handler. This facet is the one that handles the communication with
the underlying database. This database has two main functions; it can log
different requests done by the user so we can trace possible problems orig-
inated in our Digital Dices, and it can act as a buffer for the IoT device.
This is done as follows. First, it tries to recover the requested data from the
database before obtaining it from the physical device; if the data requested
is newer than the time threshold configured (by default 10 s) by our DD,
then this data will sent as response.

(c) Event Handler. This aspect processes the events generated in the IoT device.
At the same time, it also will manage the connection with a future possible
Complex Event Processing (CEP) subsystem [7].

(d) User Inteface (UI). The user interface established a micro-frontend for each
feature controlled by our DD. The features can offer a UI that will be
declared in the TD model that supersedes our DD. Besides those individual
interfaces for each feature, we have a method in our UI microservice that
can make a composition of all the individual features that have a UI. We
call it the global UI of our Digital Dice. This approach provides the user
with a reusable UI to interact with the device.

It is important to note that not all the facets will be always part of a DD.
Furthermore, these facets can be extended, for instance, to include a Voice Acti-
vated Interface or an Open Data Handler capable of proactively send data dumps
of a time frame worth of information into an Open Data system.

The connection of facets with IoT devices is one of the main problems that
must be addressed. With this aim, a library capable of managing multiple pro-
tocols is required. Moreover, we need to establish what microservices have a
direct connection with the IoT devices. To that end, we classified them in: (a)
Hard Related Facets, with a direct connection with the IoT device (e.g., Data
Handler, Controller, Event Handler), and (b) Soft Related Facets, representing
those that do not establish a direct connection with the IoT device (e.g., UI).

The facets of the Digital Dices establish communication with the users follow-
ing the standards, mechanisms and technologies by the W3C. One of the chal-
lenges that we face is to establish a system architecture for Digital Dices. This
architecture has to be capable of sustaining multiple copies of the same microser-
vices, having load balancing between them and detecting when a microservice is
being over used so it can start a replica of it.

The microservice architecture [8] that we propose for the management of
our Digital Dices is shown in the Fig. 1. It establishes a possible configuration
proposed for the architecture. First, the Edge layer is composed basically by two

198 M. Mena et al.

Fig. 1. Digital Dice architecture

types of microservices: (a) Gateways that will be in charge of redirecting the
relevant requests to our Digital Dices, and (b) Discovery services, that keeps
a register of each microservice contained in our Digital Dice Architecture. The
Discovery Service allows our Gateways to redirect the request to the appropriate
instance when necessary, allowing load balancing between the different replicas
of said instances. Besides the Edge, the architecture has the Core of our system,
which is where our Digital Dices and a series of auxiliary microservices are
framed, such as authentication services or microservices for CEP. In addition,
we will have the Persistence layer, which is composed of databases and possible
services associated with them, for example different Open Data services. The
Things layer of the architecture represents the physical devices associated with
our Digital Dices, as well as external services, virtual components, etc.

Figure 1 illustrates the management of three Digital Dices. The DD #1 has
the four facets described and it is responsible of handling an actuator to turn a
switch on and off. The DD #2 only has two facets active because the interaction
with the climatological information service is done through the Data Handler
and Controller facets. The DD #3 has a duplicate Data Handler facet because
the threshold number of accesses has been exceeded.

3 Thing Description to Digital Dice

In this section we describe how the conversion between a Thing Description
(TD) and a Digital Dice (DD) is handled. First, we need to describe the formal
model and a common representation for a TD, that can be considered as the
entry point of a thing. This model is used as a centerpiece of our proposal as
it helps us to define the actions, properties and events managed by our DD. At

DD: Towards the Integration of CPS Merging the WoT and Microservices 199

the same time, this model can be used as a starting point to generate a DD
semi-automatically, by applying Model-to-Text transformation [9].

Fig. 2. Thing Description Model

Figure 2 shows an overview of the TD model. A thing is made up by the
properties, actions and events. All the features defined by the TD are subclasses
of interaction affordance, and it is made up by one or more forms. These forms
will help us to define the methods that compose the DD generated by the TD.
Figure 2 shows three fields in the form model that are mandatory, those three
fields will be used to create our DD. The different possible values of each field can
be consulted in the WoT TD definition [5]. Sometimes, those fields are omitted,
that just means that they get their default value:

(a) op (operation) field has an array of string with the elements readproperty and
writeproperty, if the feature is a PropertyAffordance. Furthermore, it will
be an invokeaction, if it is an instance of ActionAffordance. Subscribeevent
will be used as a default if it is an instance of EventAffordance;

(b) contentType field has as default value application/json.

The URIs generated in our DD will follow the pattern https://
{ip-address}:{port}/{thing.name}/{property|action|event}/{IntAffor
dance.title}/. Besides the features defined in our DD, we have to offer an
URI with the Thing Description Model that defines our DD, this can be accessed
through https://{ip-address}:{port}/{thing.name}/.

Figure 3 describes the microservices or facets generated by the conversion of
a TD into a DD. Properties always define a controller microservice, but the data
handler will only be created if the property contains the operation writeprop-
erty. In the same figure, we can depict how actions generate two microservices, a
controller and a data handler. Nevertheless, if the thing has already a property

200 M. Mena et al.

created, it will only add the necessary methods to the corresponding microser-
vices. In the case of the events, a controller and an event handler will be created.

Fig. 3. Thing Description to Digital Dice.

As we explained in Sect. 2, our Digital Dice has another facet, the UI, that
will be generated as a microservice. This microservice will be only generated if
a property, action or event contains in contentType the parameter ui= true.
This flag establishes that the DD has to create a visualization based on the data
type of such feature. The visualization will be a micro-frontend, generated as
an <iframe>, <portal> or <component> form. If our DD has one or more
UI components (Fig. 4), a new method will be created in the UI microservice.
This method will show a composition of all the generated components, and it
will appear as a link in the TD that represents our DD.

Figure 4 shows how a Thing Description defines different actions, properties
and events, and how those features can have associated different micro-frontend
components. In this case, properties pi and p2, and action a3 have associated

Fig. 4. Global UI composition.

DD: Towards the Integration of CPS Merging the WoT and Microservices 201

UIs. Besides those three UIs, a global one will be generated as a link on the
Thing Description with a composition of every UI component.

4 Example Scenario

In order to evaluate or approach, we propose an example scenario to transform a
thing description into a digital dice. Figure 5 shows a temperature sensor repre-
sented by a TD and the respective microservices and methods created after the
translation. The thing description represents a device with one property temp
(number type) and contains a form with the address for obtaining the value from
the physical device. The field op is established as readproperty, that means that
only a controller will be created (because it is not writeproperty). Furthermore,
the contentType has the parameter ui= true, which represents that our digital
dice needs a UI microservice for the property.

As we can see in Fig. 5, two microservices are created. In the controller, a
GET method responding with a simple number for the temp is deployed. The
fact of being a GET method is because readproperty is bound to a GET method.
The temp method builds a response with the data recovered from the IoT device.
The UI microservice will make use of the same method of the controller to create
a visual component that shows the value of temp. Since our DD has a feature
with an UI, a composition with it will be created as a link in the TD of our DD.
It should be stressed that the thing description depicting our digital dice does
not has to be the same as the one from the original TD. It will probably have
the same number of features, but with different href (the ones from our DD)
and data related to the global UI composed by the declared UI features.

Fig. 5. TD to DD - TempSensorWithUI

202 M. Mena et al.

Listing 1.1 shows the code generated for the Controller microservice. We
use Java even though the process can be extended to any other programming
language. The code utilizes of a set of properties (lines 3 and 5), first the env
variable has the configuration of the microservice, with parameters such as the
Thing Description of the represented device, ports, Discovery Service address,
and parameters related to the database connection, among others. Secondly the
propertiesMongoRepository (line 5) includes all the properties found in the
related device, in this case the temperature. Furthermore, we can see the two
methods generated (lines 7–14 and lines 15–22) following the specification defined
in Sect. 3. The first method returns the TD managed by the DD. The second
method recovers the temperature and generate a response with the default con-
tent type (application/json) for the user. The other microservice will make
use of this last method to generate the UI.
1 public class Controller {

2 @Autowired

3 private Environment env;

4 @Autowired

5 private PropertyRepository propertiesMongoRepository;

6 @GetMapping("/TempSensorWithUI ",produces="application/json")

7 public ResponseEntity returnTD () {

8 try {

9 String td=env.getProperty("td");

10 return new ResponseEntity(td , HttpStatus.OK);

11 } catch (Exception e) {

12 return new ResponseEntity(e, HttpStatus.INTERNAL_SERVER_ERROR);

13 }

14 }

15 @GetMapping("/TempSensorWithUI /property/temp",produces="application/json")

16 public ResponseEntity getPropertyTemp () {

17 try {

18 PropertyData temp=propertiesMongoRepository.findPropertyTemp ();

19 return new ResponseEntity(temp , HttpStatus.OK);

20 } catch (Exception e) {

21 return new ResponseEntity(e, HttpStatus.INTERNAL_SERVER_ERROR);

22 }...

Listing 1.1. Controller generated code (TempSensorWithUI)

5 Related Works

Linking IoT devices with the Web is not a new idea. Authors like Guinard
et al. [10] are working actively in make this a fact. They propose a Web of
Things architecture and best-practices based on the RESTful principles. Our
approach of DD tries to go a step further leveraging the latest trends in the Web
Services architecture, i.e., the use of microservices as a building block of our
solution. As we explained, Digital Dices are closely related to the WoT [5], being
this a reference framework that seeks to counter the gap found in the IoT world.
The idea of using the WoT comes from the need of making our DD concept
compatible with other systems and software, such as Mozilla WebThings [6],
which offers a unifying application layer and links together multiple underlying
IoT protocols using existing web technologies. The Digital Dices can be used as
virtual devices in said system.

More closely related to our approach, the authors in [11] propose a solution
based on Jolie and Java programming languages to manage a prototype platform

DD: Towards the Integration of CPS Merging the WoT and Microservices 203

supporting multiple concurrent applications for smart buildings. This proposal
uses an advanced sensor network as well as a distributed microservices architec-
ture. The solution has the caveat of being focused on a specific domain thus not
really giving a broad solution to the management different devices.

Other proposals such as [12] and [13] offer a general solution to the use of
microservices in a non-domain specific approach. The solution proposed by [12]
makes use of 8 different microservices to separate aspects of an IoT centric sys-
tems, such as security, events, devices, etc. But, from our point of view, this
solution does not really take advantage of the power of microservices. In con-
trast, the Digital Dice Architecture is a more fine grained solution, because our
proposal handles each aspect of a device independently as a microservice.

At a higher level, Niflheim approach [14] proposes an end-to-end middle-
ware for a cross-tier IoT infrastructure that provides modular microservice-
based orchestration of applications to enable efficient use of IoT infrastructure
resources. We see Niflheim as a complementary system, since it could provide
a reliable architecture for the deployment of our Digital Dice Architecture. The
IoT-A project [15] is an Architectural Reference Model (ARM) that establishes a
common understanding of the IoT domain and provides to developers a common
technical foundation and a set of guidelines for deriving a concrete IoT archi-
tecture. This ARM is taken into account in both the WoT and the Digital Dice
architectures to establish the communication between different sets of devices.

6 Conclusions and Future Work

The aim of this proposal is to improve interoperability, integration and manage-
ment between both real and virtual IoT systems and devices. To do this, the
functionality of IoT devices will be abstracted to a set of microservices making
use of the standards set by the WoT.

The use of microservices architectures allows us to establish choreography
mechanisms that take into account the requirements of the system, permits a
better use of resources and facilitates the maintenance. This article offers a
solution that let us establish a way to convert external IoT devices described as
a WoT Thing Description into Digital Dices. At the same time, Digital Dices
offer a Thing Description themselves so they can be used by external systems
seamlessly. The example scenario was designed to understand conversion process.

There are multiple advantages when using Digital Dices. Being a software
abstraction let us define a common communication language no matter which
device our Digital Dice is representing, thus defining a common pattern to con-
nect to features defined by said device. The internal behaviour of our Digital
Dice lessens the number of request received by the device, in some cases there
is actually no need for us to connect with the device when we want to recover a
property value. Our system, by definition, is based on microservices, this allows
us to replicate only the facets of the system that receive more requests, this
give our system flexibility, thus always trying to minimize the use of resources.
Another advantages is the compatibility of our solution with the WoT definition

204 M. Mena et al.

Schema, this offers other systems like the Mozilla IoT Gateway the possibility
of making use of the schema defined by our Digital Dice to interact with.

The main disadvantages of using Digital Dices are mainly inherent to the use
of microservices. First, the architectural complexity that microservices usually
requires. It is easier to develop a monolithic application than a software based
in microservices. Furthermore this kind of software requires outside gateways,
discovery and other auxiliary software to choreograph the communication inside
our system. Besides this fact, in some circumstances DD can be slower to respond
than direct connection to IoT devices but usually more reliable.

For future work, we want to develop Digital Dices with different programming
languages so we can analyze which ones offer a better performance. Comparing
the Digital Dice performance and reliability with IoT devices and other software
solutions is also one of the next steps of our further work. The possible extension
of the WoT Thing description model to better suit our concept of Digital Dice
is our next research objective, especially trying to define complex events in the
model and keeping the compatibility of the Thing Description of W3C.

References

1. Postscapes: IoT Standards and Protocols. https://bit.ly/2iAWbky. Accessed 24
May 2019

2. Ngu, A., Gutierrez, M., Metsis, V., Nepal, S., Sheng, Q.: IoT middleware: a survey
on issues and enabling technologies. IEEE Internet Things J. 4(1), 1–20 (2016)

3. Shetty S.: How to Use Digital Twins in Your IoT Strategy. https://gtnr.it/
2FFU4al. Accessed 24 May 2019

4. Tuegel, E., Ingraffea, A., Eason, T., Spottswood, M.: Reengineering aircraft struc-
tural life prediction using a digital twin. Int. J. Aerosp. Eng. 2011, 14 p, (2011).
Article ID 154798

5. W3C: Web of Things. https://www.w3.org/WoT/. Accessed 28 May 2019
6. Mozilla Foundation: Mozilla IoT Web of Things. https://iot.mozilla.org/. Accessed

28 May 2019
7. Angsuchotmetee, C., Chbeir, R.: A survey on complex event definition languages

in multimedia sensor networks. In: Proceedings of the 8th International Conference
on Management of Digital EcoSystems, pp. 99–108. ACM (2016)

8. Nadareishvili, I., et al.: Microservice Architecture: Aligning Principles, Practices,
and Culture. O’Reilly Media Inc., Sebastopol (2016)

9. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches.
IBM Syst. J. 45(3), 621–645 (2006)

10. Guinard, D., Trifa, V.: Building the Web of Things: With Examples in Node.js
and Raspberry Pi. Manning Publications Co., New York (2016)

11. Khanda, K., Salikhov, D., Gusmanov, K., Mazzara, M., Mavridis, N.: Microservice-
based IoT for smart buildings. In: 31st International Conference on Advanced
Information Networking and Applications Workshops, pp. 302–308. IEEE (2017)

12. Long, S., Yan, L., Memon, R.H.: An open IoT framework based on microservices
architecture. China Commun. 14(2), 154–162 (2017)

13. Vresk, T., Čavrak, I.: Architecture of an interoperable IoT platform based on
microservices. In: 39th International Convention on Information and Communi-
cation Technology, Electronics and Microelectronics, pp. 1196–1201 (2016)

https://bit.ly/2iAWbky
https://gtnr.it/2FFU4al
https://gtnr.it/2FFU4al
https://www.w3.org/WoT/
https://iot.mozilla.org/

DD: Towards the Integration of CPS Merging the WoT and Microservices 205

14. Small, N., Akkermans, S., Joosen, W., Hughes, D.: Niflheim: an end-to-end mid-
dleware for applications on a multi-tier IoT infrastructure. In: IEEE 16th Inter-
national Symposium on Network Computing and Applications (NCA), pp. 1–8.
IEEE (2017)

15. Bauer, M., et al.: Internet of Things – Architecture IoT-A Deliverable D1.5 – Final
architectural reference model for the IoT v3.0 (2013)

A Smart Living Framework: Towards
Analyzing Security in Smart Rooms

Walid Miloud Dahmane1(B), Samir Ouchani2(B), and Hafida Bouarfa1(B)

1 Computer Science Department, Saad Dahlab University, Blida, Algeria
walid.miloud.dahmane@gmail.com, hafidabouarfa@hotmail.com

2 LINEACT, École d’Ingénieur CESI, 13545 Aix-en-Provence, France
souchani@cesi.fr

Abstract. Indoor environments play a main role on people living, work,
social life, and health. Especially, recent statistics show that people who
are often most susceptible to the adverse health effects tend to spend
more time indoors. To overcome these issues, modern rooms are well
equipped with different kind of connected objects (IoT) in order to facil-
itate the life of inhabitants and to manage better the indoor environment
by automatically controlling the indoors problems (humidity, tempera-
ture, noise, light ...) with respect to the experts recommendations and
inhabitants hopes. So, the quality of indoor living depends mainly on
the environments properties, their precise measurements through IoT,
and how safely manage and control them. In this context, we propose
a smart living framework covering a global architecture of smart rooms
and their related components (sensors, actuator, server . . .), and also a
management system for a secure communication network respecting the
existing safety and security standards. Further, we present the appro-
priate semantics for each part of the framework in the form of state
machines. Further, we ensure the functional correctness of the proposed
framework by implementing the developed state machines in the valida-
tion and verification tool Uppaal, where it gives us a satisfactory result
for different scenarios.

Keywords: Smart environment · Indoor living · Smart room · IoT ·
UPPAAL · Simulation

1 Introduction

For a better living quality, the smart spaces paradigm aims at construct-
ing advanced service infrastructures that follow the ubiquitous computing
approaches where smart objects are executed on a variety of digital devices and
services are constructed as interaction of agents in a communication environ-
ment [1]. The main feature of this technology is the integration of heterogeneous
and action elements (actuators) in a distributed system which performs differ-
ent actions based on the information gathered by the sensors combined with

c© Springer Nature Switzerland AG 2019
K.-D. Schewe and N. K. Singh (Eds.): MEDI 2019, LNCS 11815, pp. 206–215, 2019.
https://doi.org/10.1007/978-3-030-32065-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_15&domain=pdf
https://doi.org/10.1007/978-3-030-32065-2_15

A Smart Living Framework: Towards Analyzing Security in Smart Rooms 207

the requirements of the particular application. Intelligent information systems
enable the processing of multimodal data collected by the sensors, so as to rec-
oncile heterogeneous information and safe conclusions on the facts giving rise
to the activation of the necessary actions to address the consequences of these
events [2].

The room has several factors that can affect it or the life of inhabitants or
both at the same time (temperature, humidity, noise, light, etc). Nowadays dif-
ferent numerical models are available to describe the vapor balance of transient
water in a room and predict indoor humidity [3]. In general, sensors commu-
nicate directly with the home gateway and feed the system information with
regards to the obtained environment measures, for example light intensity inside
a particular room, temperature inside and outside the home and motion sensing
to name a few [4].

In this paper, we propose a smart living framework by modeling the different
components needed for an indoor environment and developing a trustworthy
architecture that ensure the well functioning correctness of such system, and
also its configuration and control. First, we rely on the existing limitations and
the requirements for a room that can affect the inhabitant like humidity, the
temperature, loud noise, the challenges of handicapped, dangerous natural and
artificial phenomena such as earthquake and fire.

The proposed framework is a web service based solution where sensitive nodes
are indoor planted and their measures change in real time. The architecture pro-
posed for the framework considers different classes of nodes. A database node
containing the collected data by sensors, a server node that ensures the commu-
nication and the reliability between nodes, and reacts when necessary by sending
the appropriate control commands; the actuator node executes the received com-
mands from server (actuator) and external actors who can extract or edit room
data. The architecture uses MQTT protocol [5] to ensure a reliable communica-
tion between the predefined internal nodes. Further, the architecture implements
a precise constraints and requirements for the communication and during exe-
cuting actions. Otherwise, the nodes do not respecting certain conditions are
considered as Unacceptable nodes. Finally we ensure the functional correctness
of the nodes and their safe communication by simulation in, the verification
and validation tool, Uppaal [6] by creating different scenarios. The results show
that the proposed framework is a deadlock free and respecting the indoor living
requirements.

Outlines. The remainder of this paper is organized as follows. Section 2
presents the related work and compares it with the proposed framework detailed
in Sect. 3. Then, the implementation with the experimental results are shown in
Sect. 4. Finally, Sect. 5 concludes this paper and provides hints on the possible
future works.

2 Related Work

In literature, we review the existing work related to IoT modeling, functional
analysis, network architectures, and application in real life with concrete cases.

208 W. Miloud Dahmane et al.

Ouchani et al. [7] proposes a security analysis framework for IoT that covers
the probability and costs of actions, formalizes IoT, analyzes the correctness
and measures their security level by relying on the probabilistic model checking
PRISM. To ensure the functional correctness of an IoT-based system, Ouchani
develops five steps: defines the IoT components, formalizes the architecture in
a process algebra expression. Then, it expresses the IoT requirements in PCTL
and transforms the IoT model into the PRISM input language. Finally, PRISM
checks how much a requirement is ensured on the IoT model. However, the
proposed framework involves a large amount of data and messages which make
the probabilistic model checking expensive in terms of time and memory.

Moreno-Salinas et al. [8] proposes a method that detects the optimal posi-
tion of sensors to receive information from several targets. To find the perfect
place, they rely on FIM1 to measure the amount of information that a random
variable (sensor) carries about a parameter that is sometimes unknown (target).
After several progressive tests, they use two separated tests, the first tries to
find the optimal position for a sensors that receives from a target transmitter
with a known placement. The second one finds the optimal positions of sensors
with unknowns positions. However, FIM showed significant results for a small
amount of objects but the cost of calculation time is expensive when the target
is unknown in a known area.

Centenaro et al. [9] studies a start topology of LPWANs2 in smart cities where
the used network LoRaTM. The goal is to know the number of gateways needed
to cover the city (inexpensive or not), and to know the benefits in return after
deployment. They experimented two tests, the first installs LoRaTM network
in a 19-history building to measure building temperature and humidity, using
one single gateway and 32 nodes. The second estimates the number of gateways
required to cover the city of Padova. They placed a gateway with no antenna
gain at the top of two storey buildings to assess the ‘worst case’ coverage of the
topology, LoRaTM technology allows to cover a cell of about 2 km of radius. With
simple calculations they concluded that to cover Padova city witch has about
100 km2, it needs to 30 gateways. At present, LoRaTM has acceptable coverage
in worst cases, but the number of gateway ports is limited and does not satisfy
progressive evolution of IoT technology.

Sanchez et al. [10] try to rend Santander city (Spain) smart by controlling air
quality, noise, temperature, luminosity, irrigation monitoring and environmental
station. They build an architecture based on three levels: the IoT object level
encloses IoT peripherals like IoT sensors and APIs, the gateway level, and the
IoT server level related to cloud services. They did experiments to organize
the irrigation of plants by measuring temperature and humidity of soil. The
architecture allows users to monitor and control their resources using OTAP
technology since the proposed solution is not a wired.

Zanella et al. [11] apply the principles of smart city for Padova city to
collect environmental data. The architecture is composed of constrained IoT

1 Fisher information matrix.
2 LowPower Wide Area Networks.

A Smart Living Framework: Towards Analyzing Security in Smart Rooms 209

sensors, a database server which use technologies CoAP3, 6LoWPAN4, uncon-
strained devices that use traditional technologies like HTML. The interconnec-
tion between users and sensors is made by an intermediary gateway and HTTP-
CoAP proxy-grown that plays the role of translator between the two sides. Dur-
ing a week of tests, the results show how do people react with different situations
and phenomena, for example benzene consumption at the end of weeks. This
architecture allows the compatibility between constrained and unconstrained
devices by a cross proxy. In general, the constrained physical and link layer
technologies are characterized by a low energy consumption, the transfer rate
and data processing in constrained devices is relatively low, but the dependence
on unconstrained ones increase in cost.

Based on the reviewed literature, we found few works that detail well the
components of an indoor environment and their formal semantics, and less of
them discussing a trustworthy communication between components. The pro-
posed contribution considers these issues and we believe it is easy to extend.

3 Framework

This section details the proposed secure network and communication system for
smart rooms. First, we present the overall system architecture and the compo-
nents related to the system, then we detail the semantic of each used object and
node, Finally we describe the communication protocol and the data management
in the proposed system.

3.1 Architecture

Figure 1 depicts the main components of the proposed architecture, which is
based on three levels, detection, analysis, and action level. The detection level
allows to sense the status of a room in real time then it makes a declaration
in case a contradictory status (fire, noise, humidity, etc.), the nodes of this
level are mainly the sensors. The analysis level has nodes that import the data
(input data) to analyze them then extract the commands (output data). Nodes
of this level can be either: web server, broker, database, and smartphone. The
action level contains actuators that execute the physical actions according to the
received commands form analysis level.

3.2 Smart Objects

An object can be defined by its static attributes and dynamic behavior. The
static attributes can be: identification [12], connectivity [13], battery life [14],
powered by electricity, data security [15], small size, high product quality, con-
strained device [16], price [17], service availability [18], minimum error [19], easy

3 Constrained Application Protocol.
4 IPv6 Low power Wireless Personal Area Networks.

210 W. Miloud Dahmane et al.

Fig. 1. Architecture of smart room.

to maintain, required a low connection rate [20], interoperability of nodes [21].
The dynamic defines its behavior that relies on its proper actions, mainly: turn
on [22], turn off [22], send [23], receive [23], collect data [23], apply action [23],
encrypt, decrypt, and authenticate. Definition 1 defines formally a general smart
node can be a Sensor, Actuator, Broker, Database, Server or Smartphone.

Definition 1 (Smart node).
A smart node is a tuple of 〈O,Propo, Fonco, Behavo〉, where:

1. O is a finite set of IoT objects written in the form {Oi | i ∈ N} where o∅ ∈ O
is an empty object.

2. Propo: O: → 2A is a function returning an object properties where A= {Id,
Co, BLi, PEl, DSe, SSi, HPr, CDe, LPr, SAv, MEr, EMa, RLo, INo} that
precise respectively: identification, connectivity, battery life, powered by elec-
tricity, data security, small size, high product quality, constrained device, low
price, service availability all the time, minimum error, easy to maintain,
required a low connection rate, interoperability of nodes

3. Fonco are the set of functionali-
ties/actions of objects, where fonco = {turn ono, turn offo, sendo(Oi, Oj),
receiveo(Oi, Oj), collect datao, apply actiono, consume energyo, encrypto,
decrypto, authenticateo(Oi, Oj) où Oi, Oj ∈ O}. turn ono and turn offo
to turn on or turn off the object, sendo(Oi, Oj) et receiveo(Oi, Oj) to
send or receive the information from Oi to Oj, collect datao to collect the
received information, apply actiono to apply an action after getting command,
consume energyo the ability to raise the energy level, encypto and decrypto
encrypt or decrypt the message, authenticateo(Oi, Oj) the object Oi authenti-
cate in the object Oj.

4. Behavo: O → Eo returns the expression Eo that defines the behavior of an
object in the dominant case; where: Eo =Start.Action.End; where Action =
Fonci|Fonci.Action, i ∈ N

A Smart Living Framework: Towards Analyzing Security in Smart Rooms 211

3.3 Measurements

We describe here a selection of natural measurements from others that we took
into consideration.

– Light: if the noise level measured by the noise sensor in the room reaches a
high limit and the room has a low light level as at night, the lights automati-
cally turn on, this case solves the problem of crying the children in the room.
In another case, if an inhabitant wants to light a room, the sensor of the light
placed on the outer face of the window senses the degree of the sunlight, and
if it is enough, the windows will be opened with a turn off of the lamps. This
action helps in saving energy.

– intelligent doors and windows: persons with reduced mobility that move by
a trolley find it difficult to open the door, so a detector is placed on the door
in order to detect the patient trolley. Also other vibration sensors are placed
on the wall to detect the earthquake, and if the level is strong, the actuators
receive commands that allow the opening of doors and windows to facilitate
the exit and to decrease the pressure which can cause a burst of glass, and
the another actuators cut the electricity.

– Temperature: to control the energy, the room must contain two temperature
sensors, indoor and outdoor. If the temperature service in the server receives
the air information from the sensors, the server sends a command to the air
conditioner to adjust the temperature level or turn off.

– Humidity: the humidity sensors are placed on the room walls and periodically
they measure the level of humidity. If it exceeds the required limit, the sensors
declare the humidity service which informs the resident by email for this case,
then it gives orders to the actuators to open the windows of the room, and
turn on a fan for air circulation in the room.

– Fire: fire sensors trigger automatically the case of fire by measuring the pro-
portion of smoke, and it sends a signal to the fire service in the server, which
send commands to the actuator to open doors and windows, spraying water,
and the owner of the house and firefighters receive an alert message.

3.4 Communication Protocols

The communication between client-server nodes is based on two protocols:
MQTT and HTTP. The former, a publish-subscribe mail protocol, is used when
sensors and actuators are clients; and the latter is applied for other clients like
smartphones which is based on Internet. Figure 2 shows the whole communica-
tion between nodes, where the main steps are described as follows.

1. A sensor publish the data to the broker.
2. The database subscribes into the Broker in order to periodically keep track

of the retrieved data.
3. The server subscribes in the Broker and receives the published sensors data.
4. The web server, including smart applications, presents the appropriate com-

mand, and pulls it onto the MQTT Broker.

212 W. Miloud Dahmane et al.

5. The actuators subscribe in the Broker then it receive and execute the com-
mands.

6. The application retrieves or updates the database values.
7. External actors, through web and smart applications, communicate securely

with web server by encryption method like RSA.

Fig. 2. The communication steps.

4 Experimental Results

In this section, we show the effectiveness of the proposed framework on two real
cases scenarios. As mentioned, we use Uppaal, an integrated tool environment for
modeling, validation and verification of real-time systems modeled as networks of
timed automata extended with data types. For each real scenario, we instantiate
from the predefined state machines the proper ones for each scenario. The first
scenario shows the correct functioning of the architecture, and it is about how
it reacts in case of a fire (for example) and the second is about security.

The First Scenario: Here, we will check a general case, where a fire is in a
smart room, and we will look to the reaction of sensors, then we exploit collected
information submitted to server and smartphones, and also retrieved data from
database. The scenario is unfolded as follows.

1. We turn on all smart room device, and we make both the server, database,
and actuator subscribe in the Broker to receive the acknowledgment messages
from it. Then, we make the Smart-phone authenticate to the server in order
to exchange the messages between them (client-server).

2. We increase a parameter that represents the degree of smoke, and when
it is greater than or equal to a threshold already defined, the condition
which identifies that there is a fire is verified, then the sensor goes to the
transmission state after sending a message to Broker.

A Smart Living Framework: Towards Analyzing Security in Smart Rooms 213

3. When the Broker receive the message, it sends values to database to store
current changes, and it sends to the server if the last two machines are
subscribe in Broker, else the transmission process will be stopped.

4. When the server receive the message, it discover its type (Broker message), it
reacts with the new value and it delivers a signal command to the Broker. As
the smart-phone authenticate to the server, the server can send an encrypted
alert message to it.

5. Broker passes the command to the specified actuator according to the topic,
and as a result, it will be in the action state.

6. At this point, we test the ability of the smart-phone to access and retrieve
the stored values from the database, as also the user wants to see the his-
tory events recorded within a period of time. So the Smart-phones send an
encrypted select command to the Server.

7. The server checks the command and the authentication of the Smart-phone,
if they are true it receives the command and delivers it to the database in
the form of SQL command, else it stops the transmission process.

8. When the database receives command, it detects its type (select command),
then it sends the data to the server without changing the stored data.

9. The server receives the database request, then it sends to the smart-phone
the encrypted request that allows the smart-phone application displays the
message after decryption.

10. Then, the smart-phone wants to update the data in the database. To do
that, the smart-phone sends the encrypted message to the server if it is
authenticated.

11. The server receives the command and identifies its type of command. Then
it decrypts the message and delivers the SQL command to the database.

12. The Database detects the update command and resends the data to the
server with changing of data stored in the Database.

13. The server receives Database request, then it delivers to the Smart-phone his
encrypted message to inform the user of access the operation, The Smart-
phone decrypts and displays the message.

The Second Scenario: This part checks the exactitude two security concepts.
We check the confidentiality of information published by the broker and the
subscribe objects (server in this case).

1. Turn on all smart room devices, we make the smart-phone authenticates into
the server, and for the subscription in the broker we only subscribe both the
database and the actuator (without server).

2. We increase a smoke parameter to move the sensor detection state then pub-
lication state.

3. The broker sends the received information only to the database.
4. The server cannot receive the information from the broker, because it has not

subscription in the broker.

From this experiment results, we observe that the states machine work very
well, together and in communication. All scenarios progress without deadlock

214 W. Miloud Dahmane et al.

and with a correct behavior. We conclude that all state machines form a correct
and complete system, they execute without errors, and easy to deploy.

5 Conclusion

The present contribution develops a smart living framework that ensures the
well correctness of a web based solution controlling smart rooms and checks its
accuracy in real time. The architecture is complete in terms of components and
safe communication, as well it is easy to modify, to extend, and to deploy. The
framework defines precisely with an adequate semantics the most possible nodes
needed for a smart living environment that facilitate easily their deployment and
implementation. Further, the framework proposes an automatic way to check
the well correctness of the developed smart living environment which reduce any
unexpected failure. The experiments by simulation shows a significant where
all implemented scenarios are free from deadlocks in the normal scenarios and
respect the needed requirements.

As future work, we intend to extend the current work in several directions.
First, we will show the flexibility and the scalability of the proposed solution to
cover smart homes and buildings. We will also target the optimization problem
for different smart objects parameters, like cost, position devices, coverage, etc.
Further, we look to propose a blockchain solution to secure the communication
of the proposed architecture and apply it on real cases.

References

1. Korzun, D.G., Balandin, S.I., Gurtov, A.V.: Deployment of smart spaces in inter-
net of things: overview of the design challenges. In: Balandin, S., Andreev, S.,
Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2013. LNCS, vol. 8121, pp. 48–59.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40316-3 5

2. Sfikas, G., Akasiadis, C., Spyrou, E.: Creating a smart room using an IoT approach,
May 2016

3. Janssens, A., De Paepe, M.: Effect of moisture inertia models on the predicted
indoor humidity in a room. In: Proceedings of the 26th AIVC Conference, January
2005

4. Tejani, D., Al-Kuwari, A., Potdar, V.: Energy conservation in a smart home, May
2011

5. Tang, K., Wang, Y., Liu, H., Sheng, Y., Wang, X., Wei, Z.: Design and implemen-
tation of push notification system based on the MQTT protocol. In: 2013 Inter-
national Conference on Information Science and Computer Applications (ISCA
2013). Atlantis Press, October 2013

6. Uppaal (2019). http://www.uppaal.org/
7. Ouchani, S.: Ensuring the functional correctness of IoT through formal modeling

and verification. In: Abdelwahed, E.H., Bellatreche, L., Golfarelli, M., Méry, D.,
Ordonez, C. (eds.) MEDI 2018. LNCS, vol. 11163, pp. 401–417. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00856-7 27

https://doi.org/10.1007/978-3-642-40316-3_5
http://www.uppaal.org/
https://doi.org/10.1007/978-3-030-00856-7_27

A Smart Living Framework: Towards Analyzing Security in Smart Rooms 215

8. Moreno-Salinas, D., Pascoal, A.M., Aranda, J.: Optimal sensor placement for mul-
tiple target positioning with range-only measurements in two-dimensional scenar-
ios. Sensors 13(8), 10674–10710 (2013)

9. Centenaro, M., Vangelista, L., Zanella, A., Zorzi, M.: Long-range communications
in unlicensed bands: the rising stars in the IoT and smart city scenarios. IEEE
Wirel. Commun. 23, 60–67 (2016)

10. Sanchez, L., et al.: Smartsantander: IoT experimentation over a smart city testbed.
Comput. Netw. 61, 217–238 (2014). Special issue on Future Internet Testbeds –
Part I

11. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for
smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)

12. Devasena, C.L.: IPv6 low power wireless personal area network (6LoWPAN) for
networking internet of things (IoT) - analyzing its suitability for IoT. Indian J.
Sci. Tech. 9, 30 (2016)

13. Andreev, S., Galinina, O., Pyattaev, A., Gerasimenko, M., Tirronen, T., Torsner,
J., Sachs, J., Dohler, M., Koucheryavy, Y.: Understanding the IoT connectivity
landscape: a contemporary M2M radio technology roadmap. IEEE Commun. Mag.
53(9), 32–40 (2015)

14. Fafoutis, X., Elsts, A., Vafeas, A., Oikonomou, G., Piechocki, R.: On predicting
the battery lifetime of IoT devices: experiences from the sphere deployments. In:
Proceedings of the 7th International Workshop on Real-World Embedded Wireless
Systems and Networks, RealWSN 2018, pp. 7–12. ACM, New York, NY, USA
(2018)

15. Babar, S., Mahalle, P., Stango, A., Prasad, N., Prasad, R.: Proposed security
model and threat taxonomy for the internet of things (IoT). In: Meghanathan, N.,
Boumerdassi, S., Chaki, N., Nagamalai, D. (eds.) CNSA 2010. CCIS, vol. 89, pp.
420–429. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14478-
3 42

16. Sehgal, A., Perelman, V., Kuryla, S., Schonwalder, J.: Management of resource
constrained devices in the internet of things. IEEE Commun. Mag. 50(12), 144–
149 (2012)

17. Aazam, M., Huh, E.: Fog computing micro datacenter based dynamic resource
estimation and pricing model for IoT. In: 2015 IEEE 29th International Conference
on Advanced Information Networking and Applications, pp. 687–694, March 2015

18. Desai, P., Sheth, A., Anantharam, P.: Semantic gateway as a service architecture
for IoT interoperability. In: 2015 IEEE International Conference on Mobile Ser-
vices, pp. 313–319, June 2015

19. Kingatua, A.: IoT system tests: checking for failure
20. Chen, Y., Kunz, T.: Performance evaluation of IoT protocols under a constrained

wireless access network. In: 2016 International Conference on Selected Topics in
Mobile Wireless Networking (MoWNeT), pp. 1–7, April 2016

21. Xiao, G., Guo, J., Xu, L.D., Gong, Z.: User interoperability with heterogeneous
iot devices through transformation. IEEE Trans. Industr. Inf. 10(2), 1486–1496
(2014)

22. IoT sensors (2019). https://fiware-tutorials.readthedocs.io/en/latest/iot-sensors/
23. Zhu, Q., Wang, R., Chen, Q., Liu, Y., Qin, W.: IoT gateway: bridgingwireless sensor

networks into internet of things. In: 2010 IEEE/IFIP International Conference on
Embedded and Ubiquitous Computing, pp. 347–352, December 2010

https://doi.org/10.1007/978-3-642-14478-3_42
https://doi.org/10.1007/978-3-642-14478-3_42
https://fiware-tutorials.readthedocs.io/en/latest/iot-sensors/

Database Theory and Rigorous Methods

Concurrent Computing with Shared
Replicated Memory

Klaus-Dieter Schewe1(B), Andreas Prinz2, and Egon Börger3

1 UIUC Institute, Zhejiang University, Haining, China
kdschewe@acm.org

2 Department of ICT, University of Agder, Agder, Norway
andreas.prinz@uia.no

3 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
boerger@di.unipi.it

Abstract. Any concurrent system can be captured by a concurrent
Abstract State Machine (cASM). This remains valid, if different agents
can only interact via messages. It even permits a strict separation
between memory managing agents and other agents that can only access
the shared memory by sending query and update requests. This paper
is dedicated to an investigation of replicated data that is maintained
by a memory management subsystem, where the replication neither
appears in the requests nor in the corresponding answers. We specify the
behaviour of a concurrent system with such memory management using
concurrent communicating ASMs (ccASMs), provide several refinements
addressing different replication policies and internal messaging between
data centres, and analyse their effects on the runs with respect to consis-
tency. We show that on a concrete level even a weak form of consistency
is only possible, if view serialisability can be guaranteed.

1 Introduction

Abstract State Machines (ASMs) have been used successfully to model sequen-
tial, parallel and concurrent systems [7]. They are mathematically grounded in
behavioural theories of sequential algorithms [10], parallel algorithms [3,8] and
concurrent algorithms [4], by means of which it is proven that they capture the
corresponding, axiomatically defined class of algorithms.

In particular, the behavioural theory of asynchronous concurrent systems
shows that every concurrent system can be step-by-step simulated by a con-
current Abstract State Machine (cASM) [4]. The theory provides an impor-
tant breakthrough in the theory of concurrent and distributed system, as it
avoids mimicking concurrent behaviour by means of sequentiality using tech-
niques such as interleaving and choice by an unspecified super-agent (see the
semantics defined in [12]). This modernised theory of concurrency is so far only
realised in cASMs. The proof of the concurrent ASM thesis was first only con-
ducted for families of sequential algorithms, but the generalisation to families of
parallel algorithms does not cause serious difficulties as sketched in [16].
c© Springer Nature Switzerland AG 2019
K.-D. Schewe and N. K. Singh (Eds.): MEDI 2019, LNCS 11815, pp. 219–234, 2019.
https://doi.org/10.1007/978-3-030-32065-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-32065-2_16

220 K.-D. Schewe et al.

The theory can be applied to many different models of concurrent computa-
tion (see e.g. [1,2,9,13,18,19]). It also remains valid, if different agents can only
interact via messages [5]. This includes the case of a strict separation between
memory managing agents and other agents that can only access the shared mem-
ory by sending query and update requests. Naturally, the expectation of an agent
a sending a request to a memory management agent b is that the returned result
is the same as if the agent a executed its request directly on the shared locations.
This is challenged, if the memory management subsystem replicates the data as
e.g. in the noSQL database system Cassandra [15].

In this paper we investigate the case of replicated data maintained by a
memory management subsystem, where the replication should not appear in the
requests nor in the corresponding answers, which is a standard requirement in
distributed databases with replication [14, Chap. 13]. Our objective is that the
behaviour of the memory management subsystem must be understandable from
the specification so that additional consistency assurance measures can be added
if necessary.

For instance, consider four agents a1, . . . , a4 having the following respective
programs (where; denotes sequential execution, and Print(x) means to read the
value x and to copy it to some output):

x := 1 | y := 1 | Print(x);Print(y) | Print(y);Print(x)

Then there is no concurrent run where (1) initially x = y = 0, (2) each agent
makes once each possible move, (3) a3 prints x = 1, y = 0, and (4) a4 prints
x = 0, y = 1. However, if x and y are replicated, say that there are always two
copies, and an update by the programs a1 or a2 affects only a single copy, such
an undesirable behaviour will indeed be enabled.

We assume a rather simple model, where shared data is logically organised
in relations with primary keys, and data can only be accessed by means of the
primary key values. We further assume relations to be horizontally fragmented
according to values of a hash function on the primary key values, and these frag-
ments are replicated. Replicas are assigned to different nodes, and several nodes
together form a data centre, i.e. they are handled by one dedicated data man-
agement agent. In addition, values in replicas carry logical timestamps set by the
data centres and stored in the records in the nodes of the memory management
subsystem. This allows us to formulate and investigate policies that guarantee
consistency.

For retrieval of a set of records a specified number of replicas has to be read,
and for each record always the one with the latest timestamp will be returned.
Depending on how many replicas are accessed the returned records may be (in
the strict sense) outdated or not. Likewise, for the update of a set of records
timestamps will be created, and a specified number of replicas of the records will
be stored. Success of retrieval or update will be returned according to specified
read- and write-policies.

In Sect. 2 we will first specify the behaviour of a concurrent system with
shared data requiring that all agents interact with this subsystem for data

Concurrent Computing with Shared Replicated Memory 221

retrieval and updates using appropriate SEND and RECEIVE actions. The memory
management subsystem is specified by a separate collection of agents. In Sect. 3
we investigate a refinement concerning policies how many replicas are to be read
or updated, respectively. We show that some combinations of replication poli-
cies enable view compatibility, which formalises the expectation above. In Sect. 4
we refine our specification taking the communication between data centres into
account, and address the enforcement of the read and write policies. We obtain a
complete, though not necessarily correct refinement, and as a consequence view
compatibility cannot be guaranteed anymore. We even show that view compati-
bility implies view serialisability. Finally, we conclude with a brief summary and
outlook.

This paper contains only a short version of our work on the subject, but a
technical report with full details is available in [17]. In particular, proofs are only
sketched here, but full-length proofs appear in this technical report.

2 Shared Memory Management with Replication

We assume some familiarity with Abstract State Machines (ASMs) (see [7,
Sect. 2.2/4]). The signature Σ of an ASM is a finite set of function symbols f , each
associated with an arity arf . A state S is a set of functions fS of arity n = arf

over some fixed base set B, given by interpretations of the corresponding func-
tion symbol f . Each pair (f, (v1, . . . , vn)) comprising a function symbol and argu-
ments vi ∈ B is called a location, and each pair (�, v) of a location � and a value
v ∈ B is called an update. A set of updates is called an update set. The evaluation
of terms is defined as usual by valS(f(t1, . . . , tn)) = fS(valS(t1), . . . , valS(tn)).
ASM rules r are composed using

assignments. f(t1, . . . , tn) := t0 (with terms ti built over Σ),
branching. IF ϕ THEN r+ ELSE r−,
parallel composition. FORALL x WITH ϕ(x) r(x),
bounded parallel composition. r1 . . . rn,
choice. CHOOSE x WITH ϕ(x) IN r(x), and
let. LET x = t IN r(x).

Each rule yields an update set Δ(S) in state S. If this update set is consistent,
i.e. it does not contain two updates (�, v), (�, v′) with the same location � and
different values v �= v′, then applying this update set defines a successor state
S + Δ(S).

2.1 Concurrent Communicating Abstract State Machines

A concurrent ASM (cASM) CM is defined as a family {(a, asma)}a∈A of pairs
consisting of an agent a and an ASM asma. Let Σa denote the signature of the
ASM asma. Taking the union Σ =

⋃
a∈A Σa we distinguish between CM-states

built over Σ and local states for agent a built over Σa; the latter ones are simply
projections of the former ones on the subsignature.

222 K.-D. Schewe et al.

A concurrent run of a concurrent ASM CM = {(a, asma)}a∈A is a sequence
S0, S1, S2, . . . of CM-states, such that for each n ≥ 0 there is a finite set An ⊆
A of agents such that Sn+1 results from simultaneously applying update sets
Δa(Sj(a)) for all agents a ∈ An yielded by asma in some preceding state Sj(a)

(j(a) ≤ n depending on a), i.e. Sn+1 = Sn+
⋃

a∈An
Δa(Sj(a)) and a /∈ ⋃n−1

i=j(a) Ai.
In order to isolate agents responsible for a memory management subsystem

we exploit communicating concurrent ASMs (ccASM) [5]. In a ccASM the only
shared function symbols take the form of mailboxes. Sending of a message m
from a to b means to update the out-mailbox of a by inserting m into it. This
mailbox is a set-valued shared location with the restriction that only the sender
can insert messages into it and only the environment, i.e. the message processing
system, can read and delete them. The message processing system will move the
message m to the in-mailbox of the receiver b. Receiving a message m by b
means in particular that b removes m from its in-mailbox and performs some
local operation on m. Therefore, in ccASMs the language of ASM rules above is
enriched by the following constructs (see [5] for further details):

Send. SEND(〈message〉, from:〈sender〉, to:〈receiver〉),
Receive. RECEIVE(〈message〉, from:〈sender〉, to:〈receiver〉),
Received. RECEIVED(〈message〉, from:〈sender〉, to:〈receiver〉), and
Consume. CONSUME(〈message〉, from:〈sender〉, to:〈receiver〉).

If all shared data is organised in relations with a unique primary key, this
can be modelled by a set of function symbols Σmem = {p1, . . . , pk}, where each
pi has a fixed arity ai, and a fixed co-arity ci, such that in each state S we obtain
partial functions1 pS

i : Bai → Bci .
A read access by an agent a ∈ A aims at receiving a subset of relation

pi containing those records with key values satisfying a condition ϕ, i.e. eval-
uate a term pi[ϕ] = {(k , v) | ϕ(k) ∧ v �= undef ∧ pi(k) = v}. As pi is
not in the signature Σa, the agent a must send a read-request and wait for
a response, i.e. it executes SEND(read(pi, ϕ),from:a,to:home(a)) and waits until
RECEIVED(answer(ans, pi, ϕ),from:home(a),to:a) becomes true. Then it can exe-
cute RECEIVE(answer(ans, pi, ϕ), from:home(a),to:a) to obtain the requested
value.

We abstract from the details of the communication but assume the commu-
nication to be reliable. If there is no confusion, we omit the sender and receiver
parameters in SEND and RECEIVE. The ans in the message must be a relation
of arity ai + ci satisfying the key property above. The agent can store such an
answer using a non-shared function pa

i or process it in any other way, e.g. aggre-
gate the received values. This is part of the ASM rule in asma, which we do not
consider any further.

In the SEND and RECEIVE rules we use a fixed agent home(a) with which
the agent a communicates. It will be unknown to the agent a, whether this

1 In ASMs partial functions are captured by total functions using a dedicated value
undef .

Concurrent Computing with Shared Replicated Memory 223

agent home(a) processes the read-request or whether it communicates with other
agents to produce the answer.

Analogously, for bulk write access an agent a may want to execute the oper-
ation pi :& p to update all records with a key defined in p to the new values
given by p. As this corresponds to an ASM rule FORALL (k , v) ∈ p pi(k) := v ,
the agent a must send a write-request and wait for a response, i.e. it executes
SEND(write(pi, p),to:home(a)) and waits to receive an acknowledgement, i.e. to
RECEIVE(acknowledge(pi, p), from:home(a)).

We use the notation CM0 = {(a, asmc
a)}a∈A ∪ {(db, asmdb)} for the ccASM

with a single memory agent db and home(a) = db for all a ∈ A. Thus, the rule
of asmdb looks as follows:

IF RECEIVED(read(pi, ϕ),from:a) THEN
CONSUME(read(pi, ϕ),from:a)
LET ans = {(k , v) | ϕ(k) ∧ pi(k) = v ∧ v �= undef } IN

SEND(answer(ans, pi, ϕ),to:a)
IF RECEIVED(write(pi, p),from:a) THEN

CONSUME(write(pi, p),from:a)
FORALL (k , v) ∈ p pi(k) := v
SEND(acknowledge(pi, p),to:a)

2.2 Memory Organisation with Replication

For replication we use several data centres, and each data centre comprises several
nodes. The nodes are used for data storage, and data centres correspond to
physical machines maintaining several such storage locations. Let D denote the
set of data centres. Then instead of a location (pi, k) there will always be several
replicas, and at each replica we may have a different value.

Let us assume that each relation pi is fragmented according to the values of
a hash-key. That is, for each i = 1, . . . , k we can assume a static hash-function
hi : Bai → [m,M] ⊆ Z assigning a hash-key to each key value. We further
assume a partition [m,M] =

⋃qi

j=1 rangej such that rangej1 < rangej2 holds for
all j1 < j2, so each range will again be an interval. These range intervals are
used for the horizontal fragmentation into qi fragments of the to-be-represented
function pi: Fragj,i = {k ∈ Bai | hi(k) ∈ rangej}.

All these fragments will be replicated and their elements associated with a
value (where defined by the memory management system), using a fixed replica-
tion factor ri. That is, each fragment Fragj,i will be replicated ri-times for each
data centre. A set of all pairs (k , v) with key k ∈ Fragj,i and an associated value
v in the memory management system is called a replica of Fragj,i.

Assume that each data centre d consists of ni nodes, identified by d and a
number j′ ∈ {1, . . . , ni}. Then we use a predicate copy(i, j, d, j′) to denote that
the node with number j′ in the data centre d ∈ D contains a replica of Fragj,i.
We also use Di = {d ∈ D|∃j, j′.copy(i, j, d, j′)}. To denote the values in replicas
we use dynamic functions pi,j,d,j′ of arity ai and co-arity ci +1 (functions we call
again replicas). So we use function symbols pi,j,d,j′ with j ∈ {1, . . . , qi}, d ∈ D

224 K.-D. Schewe et al.

and j′ ∈ {1, . . . , ni}, and we request hi(k) ∈ rangej for all k ∈ Bai , whenever
copy(i, j, d, j′) holds and pi,j,d,j′(k) is defined. For the associated values we have
pi,j,d,j′(k) = (v , t), where t is an added timestamp value, and values v may differ
from replica to replica.

Each data centre d maintains a logical clock clockd that is assumed to advance
(without this being further specified), and clockd evaluates to the current time
at data centre d. Timestamps must be totally ordered, differ if set by different
data centres, and respect the inherent order of message passing, i.e. when data
with a timestamp t is created at data centre d and sent to data centre d′, then
at the time the message is received the clock at d′ must show a time larger than
t. This condition can be enforced by adjusting clocks according to Lamport’s
algorithm [11]. For this let us define adjust clock(d, t) = clockd := t′, where t′ is
the smallest possible timestamp at data centre d with t ≤ t′.

2.3 Internal Request Handling for Replicated Memory

When dealing with replication the request messages sent by agents a remain
the same, but the internal request handling by the memory management sub-
system changes. This will define a refined ccASM CM1 = {(a, asmc

a)}a∈A ∪
{(d, asmd)}d∈D. We will use the notions of complete and correct refinement as
defined in [7, pp. 111ff.].

Let M and M∗ be cASMs (or ccASMs). We fix a correspondence relation ∼
between some states of M and some states of M∗. Then M∗ is called a correct
refinement of M iff for each run S∗

0 , S∗
1 , . . . of M∗ there is a run S0, S1, . . . of

M together with sequences 0 = i0 < i1 < . . . and 0 = j0 < j1 < . . . such that
Sik

∼ S∗
jk

holds for all k, and if both runs are finite with final states S∗
f and Sf ,

respectively, then there exists an index � with Si�
= Sf and S∗

i�
= S∗

f . We call
M∗ a complete refinement of M iff M is a correct refinement of M∗.

Consider a read request read(pi, ϕ) received from agent a by data centre d. As
data is horizontally fragmented, we need to evaluate several requests read(pi,j , ϕ)
concerning keys k with hi(k) ∈ rangej , one request for each fragment index j,
and then build the union so that pi[ϕ] =

⋃qi

j=1 pi,j [ϕ]. In order to evaluate pi,j [ϕ]
several replicas of Fragj,i will have to be accessed. Here we will leave out any
details on how these replicas will be selected and accessed, but the selection of
replicas must comply with a read-policy that is left abstract for the moment.

When reading actual data, i.e. evaluating pi,j,d,j′(k) for selected key values
k , we obtain different time-stamped values (v , t), out of which a value v with
the latest timestamp is selected and sent to a as the up-to-date value of pi(k).
The requirement that timestamps set by different data centres differ implies that
for given k the value v with the latest timestamp is unique. All records obtained
this way will be returned as the result of the read request to the issuing agent
a. Thus, we obtain the following ASM rule AnswerReadReq:

AnswerReadReq =
IF RECEIVED(read(pi, ϕ), from:a) THEN

CONSUME(read(pi, ϕ), from:a)

Concurrent Computing with Shared Replicated Memory 225

FORALL j ∈ {1, . . . , qi} CHOOSE Gi,j WITH complies(Gi,j , read-policy)
∧ Gi,j ⊆ {(d′, j′) | copy(i, j, d′, j′) ∧ d′ ∈ Di ∧ 1 ≤ j′ ≤ ni}

LET tmax(k) = max{t | ∃v ′, d̄, j̄.(d̄, j̄) ∈ Gi,j ∧ pi,j,d̄,j̄(k) = (v ′, t)} IN
LET ansi,j = {(k , v) | ϕ(k) ∧ hi(k) ∈ rangej ∧ v �= undef ∧

∃d′, j′.((d′, j′) ∈ Gi,j ∧ pi,j,d′,j′(k) = (v , tmax(k)))} IN
LET ans =

⋃qi

j=1 ansi,j IN SEND(answer(ans, pi, ϕ), to:a)

Note that the unique value v with pi,j,d′,j′(k) = (v , tmax(k)) may be undef
and that the returned ans may be the empty set.

For a write request write(pi, p) sent by agent a to data centre d we proceed
analogously. In all replicas of Fragj,i selected by a write-policy the records with
a key value in p will be updated to the new value provided by p—this may be
undef to capture deletion—and a timestamp given by the current time clockd.
However, the update will not be executed, if the timestamp of the existing record
is already newer. In addition, clocks that “are too late” will be adjusted, i.e. if
the new timestamp received from the managing data centre d is larger than the
timestamp at data centre d′, the clock at d′ is set to the received timestamp.
Thus, we obtain the following ASM rule PerformWriteReq to-be-executed by
any data centre d upon receipt of an update request from an agent a:

PerformWriteReq =
IF RECEIVED(write(pi, p), from:a) THEN

CONSUME(write(pi, p), from:a)
FORALL j ∈ {1, . . . , qi} CHOOSE Gi,j WITH complies(Gi,j ,write-policy)

∧ Gi,j ⊆ {(d′, j′) | copy(i, j, d′, j′) ∧ d′ ∈ Di ∧ 1 ≤ j′ ≤ ni}
LET tcurrent = clockself IN

FORALL (d′, j′) ∈ Gi,j

FORALL (k , v) ∈ p WITH hi(k) ∈ rangej

IF ∃v ′, t.pi,j,d′,j′(k) = (v ′, t) ∧ t < tcurrent THEN
pi,j,d′,j′(k) := (v , tcurrent)

IF clockd′ < tcurrent THEN adjust clock(d′, tcurrent)
SEND(acknowledge(pi, p), to:a)

Proposition 1. The ccASM CM1 = {(a, asmc
a)}a∈A∪{(d, asmd)}d∈D is a com-

plete refinement of CM0 = {(a, asmc
a)}a∈A ∪ {(db, asmdb)}.

Proof (sketch, see also [17]). The only differences between the ccASMs CM0

and CM1 are that home(a) ∈ D differs in the refinement, but in both cases the
handling of a request is done in a single step. For both cases the determination
of the answer requires a more sophisticated rule in the refinement. ��

3 Refinement Using Replication Policies

We define view compatibility formalising the intuitive expectation of the agents
that answers to sent requests remain the same in case of replication as with-
out, because replication is completely transparent. We show that for particular
combinations of concrete read- and write-policies CM1 guarantees view compat-
ibility, which further implies that the refinement of CM0 by CM1 is correct.

226 K.-D. Schewe et al.

3.1 View Compatibility

Informally, view compatibility is to ensure that the system behaves in a way
that whenever an agent sends a read- or write-request the result is the same as if
the read or write had been executed in a state without replication. For a formal
definition we need the notion of an agent view of a concurrent run S0, S1, . . .
of the cASM {(a, asmc

a)}a∈A for an arbitrary agent a ∈ A. Its view of the run
is the subsequence of states Sa,0, Sa,1, . . . in which a makes a move (restricted
to the signature of a). For any state Sk = Sa,n its successor state in the a-view
sequence depends on the move a performs in Sa,n.

If a in Sa,n performs a send step, it contributes to the next state Sk+1 by an
update set which includes an update of its out-mailbox, which in turn yields an
update of the mailbox of home(a). But Sk+1 is not yet the next a-view state,
in which a will perform its next move. This move is determined by the atomic
request/reply assumption for agent/db runs: If in a run an agent performs a send
step, then its next step in the run is the corresponding receive step, which can
be performed once the answer to the sent request has been received. By this
assumption the next a-view state Sa,n+1 = Sl is determined by (what appears
to a as) an environment action enabling the receive step by inserting the reply
message into a’s mailbox.

If a in Sa,n = Sk performs a receive or an internal step, then besides the
mailbox update to consume the received message it yields only updates to non-
shared locations so that its next a-view state is the result of applying these
updates together with updates of other agents to form Sk+1 = Sa,n+1.

We further need the notion of a flattening which reduces the multiple values
associated with replicas of a location � to a single value: If S0, S1, S2, . . . is a
run of CM1 = {(a, asmc

a)}a∈A ∪ {(d, asmd)}d∈D, then we obtain a flattening
S′
0, S

′
1, S

′
2, . . . by replacing in each state all locations (pi,j,d′,j′ , k) by a single

location (pi, k) and letting the value associated with (pi, k) be one of the values
in {v | ∃j, d′, j′.∃t.pi,j,d′,j′(k) = (v , t)}.

Obviously, a flattening is a sequence of states of the concurrent ASM
{(a, asmc

a)}a∈A, but in most cases it will not be a run. Therefore, take an arbi-
trary subsequence S′

j0
, S′

j1
, . . . of an arbitrary flattening S′

0, S
′
1, . . . (restricted

to the signature of the agent a) of S0, S1, Then S′
j0

, S′
j1

, . . . is called a flat
view of agent a of the run S0, S1, . . . if the following conditions hold: When-
ever a performs a request in state Sk there is some S′

ji
such that k = ji. If the

corresponding reply is received in state Sm for some m > k, then S′
ji+1

= Sm.
Furthermore, there exists some n with k < n ≤ m such that if the request is a
write-request, then for each location � with value v in this request valS′

n
(�) = v

holds, provided there exists an agent reading the value v, and if the request is
a read-request, then for each location � with value v in the answer valS′

n
(�) = v

holds. Whenever a performs a RECEIVE or an internal move in state Sk there
is some ji such that Sk = S′

ji
and Sk+1 = S′

ji+1
.

We say that {(a, asmc
a)}a∈A∪{(d, asmd)}d∈D is view compatible with the con-

current ASM {(a, asmc
a)}a∈A ∪ {(db, asmdb)} iff for each run R = S0, S1, S2, . . .

of {(a, asmc
a)}a∈A ∪ {(d, asmd)}d∈D there exists a subsequence of a flattening

Concurrent Computing with Shared Replicated Memory 227

R′ = S′
0, S

′
1, S

′
2, . . . that is a run of {(a, asmc

a)}a∈A ∪{(db, asmdb)} such that for
each agent a ∈ A the agent a-view of R′ coincides with a flat view of R by a.

3.2 Specification of Replication Policies

In the specification of ASM rules handling read and write requests by a fixed
data centre d we used sets Gi,j ⊆ Ci,j with Ci,j = {(d′, j′) | copy(i, j, d′, j′)} as
well as an abstract predicate complies(Gi,j ,policy). Let us now define the most
important policies All, One, and Quorum—more policies are handled in [17].
These policies differ in the number of replicas that are to be accessed. As the
name indicates, the predicate complies(Gi,j ,All) can be defined by Gi,j = Ci,j ,
i.e. all replicas are to be accessed. For One at least one replica is to be accessed,
which defines complies(Gi,j ,One) by |Gi,j | ≥ 1. For Quorum(q) we use a value
q with 0 < q < 1, and complies(Gi,j ,Quorum(q)) is defined by q · |Ci,j | < |Gi,j |.

For consistency analysis we need appropriate combinations of read- and write-
policies. If the write-policy is Quorum(q) and the read-policy is Quorum(q′)
with q+q′ ≥ 1, then the combination is appropriate. Furthermore, a combination
of the write policy (or read-policy) ALL with any other policy is also appropriate.

Proposition 2. If the combination of the read and write policies is appropri-
ate, then CM1 is view compatible with the cASM {(a, asmc

a)}a∈A and a correct
refinement of CM0.

Proof (sketch, a full proof is available in [17]). If the write-policy is Quorum(q),
then for each location � the multiplicity of replicas considered to determine the
value with the largest timestamp is at least �m+1

2 � with m being the total number
of replicas. Consequently, each read access with a policy Quorum(q′) (with
q + q′ ≥ 1) reads at least once this value and returns it. That is, in every state
only the value with the largest timestamp for each location uniquely determines
the run, which defines the equivalent concurrent run. ��

4 Refinement with Internal Communication

We will now address a refinement of the memory management subsystem taking
into account that data centres refer to different physical machines, whereas in
CM1 we abstracted from any internal communication. The gist of the refinement
is therefore to treat the handling of a request as a combination of direct access to
local nodes, remote access via messages to the other relevant data centres, and
collecting and processing return messages until the requirements for the read- or
write-policies are fulfilled. That is, the validation of the policy accompanies the
preparation of a response message and is no longer under control of the home
agent.

228 K.-D. Schewe et al.

4.1 Request Handling with Communicating Data Centres

In Sect. 2 we specified how a data centre agent d handles a request received
from an agent a. Now, we first specify an abstract rule which manages external
requests, i.e. coming from an agent a and received by a data centre d, where
request is one of these read or write requests. An external request is forwarded
as internal request to all other data centres d′ ∈ Di, where it is handled and
answered locally (see the definition of HandleLocally below), whereas collecting
(in answera′) and sending the overall answer to the external agent a is delegated
to a new agent a′. SELF denotes the data centre agent d which executes the rule.

To Initialize a delegate a′ it is equipped with a set answera′ , where to col-
lect the values arriving from the asked data centres and with counters counta′(j)
(for the number of inspected replicas of the j-th fragment). The counters are used
for checking compliance with the policies. The mediator and requestor infor-
mation serves to retrieve sender and receiver once the delegate completes the
answer to the request.

DelegateExternalReq =
IF RECEIVED(request , from:a) THEN
CONSUME(request , from:a)
LET tcurrent = clockSELF, a′ = new(Agent) IN

Initialize(a′)
HandleLocally(request , a′, tcurrent)
ForwardToOthers(request , a′, tcurrent)

WHERE
ForwardToOthers(request , a′, tcurrent)=

FORALL d′ ∈ Di WITH d′ �= SELF SEND((request , a′, tcurrent), to:d′)
Initialize(a′) =

answera′ := ∅
FORALL 1 ≤ j ≤ qi counta′(j) := 0
IF request = read(pi, ϕ)
THEN asma′ := CollectRespondToRead
ELSE asma′ := CollectRespondToWrite
requestora′ := a
mediatora′ := SELF
requestTypea′ := request

In this way the request handling agent d simply forwards the request to
all other data centre agents and in parallel handles the request locally for all
nodes associated with d. The newly created agent (a ‘delegate’) will take care of
collecting all response messages and preparing the response to the issuing agent
a. Request handling by any other data centre d′ is simply done locally using the
following rule:

ManageInternalReq =
IF RECEIVED((request , a′, t), from:d) THEN

HandleLocally(request , a′, t)
CONSUME((request , a′, t), from:d)

Concurrent Computing with Shared Replicated Memory 229

Each data centre agent d is equipped with the following ASM rule, where the
components HandleLocally and the two versions of CollectRespond are defined
below.

asmd = DelegateExternalReq ManageInternalReq

For local request handling policy checking is not performed by the data
centre agent but by the delegate of the request; check the predicates
all messages received and sufficient(policy) below. We use a predicate alive
to check, whether a node is accessible or not. For a read request we specify
HandleLocally(read(pi, ϕ), a′, tcurrent) as follows:

HandleLocally(read(pi, ϕ), a′, t) =
LET d′ = SELF IN
LETGi,j,d′ = {j′ | copy(i, j, d′, j′) ∧ alive(d′, j′)} IN
LET tmax(k) = max({t | ∃v ′, j̄.j̄ ∈ Gi,j,d′ ∧ pi,j,d′,j̄(k) = (v ′, t)}) IN
LET ansi,j,d′ = {(k , v , tmax(k)) | ϕ(k) ∧ hi(k) ∈ rangej ∧

∃j′ ∈ Gi,j,d′ .pi,j,d′,j′(k) = (v , tmax(k))} IN
LET ans =

⋃qi

j=1 ansi,j,d′ , x = (|Gi,1,d′ |, . . . , |Gi,qi,d′ |) IN
SEND(answer(ans,x), to:a′)

Here we evaluate the request locally, but as the determined maximal timestamp
may not be globally maximal, it is part of the returned relation. Also the number
of replicas that contributed to the local result is returned, such that the delegate
a′ responsible for collection and final evaluation of the request can check the sat-
isfaction of the read-policy. Therefore, the created partial result is not returned
to the agent d that issued this local request, but instead to the delegate.

Rule HandleLocally(write(pi, p), a′, tcurrent) handles write requests:

HandleLocally(write(pi, p), a′, t′) =
LET d′ = SELF IN
IF clockd′ < t′ THEN adjust clock(d′, t′)
LETGi,d′(j) = {j′ | copy(i, j, d′, j′) ∧ alive(d′, j′)} IN
FORALL j ∈ {1, . . . , qi} FORALL j′ ∈ Gi,d′(j)

FORALL (k , v) ∈ p WITH hi(k) ∈ rangej

IF ∃v ′, t.pi,j,d′,j′(k) = (v ′, t) ∧ t < t′ THEN pi,j,d′,j′(k) := (v , t′)
LET x = (|Gi,1,d′ |, . . . , |Gi,qi,d′ |) IN SEND(ack write(pi, p,x), to:a′)

Again, the partial results acknowledging the updates at the nodes associated
with data centre d′ are sent to the collecting agent a′ to verify the compliance
with the write-policy. For the delegate a′ that has been created by d to collect
partial responses and to create the final response to the agent a issuing the
request we need predicates sufficient(policy) for policy checking, in which case
the response to a is prepared and sent:

sufficient(All) ≡ ∀j.(1 ≤ j ≤ qi ⇒ count(j) = γi,j)
with γi,j = |{(d′, j′) | copy(i, j, d′, j′)}|

sufficient(One) ≡ ∀j.(1 ≤ j ≤ qi ⇒ count(j) ≥ 1)

230 K.-D. Schewe et al.

sufficient(Quorum(q)) ≡ ∀j.(1 ≤ j ≤ qi ⇒ γi,j · q < count(j))

It remains to specify the delegate rules CollectRespondToRead and
CollectRespondToWrite, i.e. the programs associated with the agent a′ cre-
ated upon receiving a request from an agent a. The CollectRespond action
is performed until all required messages have been received and splits into two
rules for read and write requests, respectively.

The delegate a′ collects the messages it receives from the data cen-
tres d′ to which the original request had been forwarded to let them
HandleLocally(request, a′). If the set of collected answers suffices to respond,
the delegate sends an answer to the original requester and kills itself.

Thus each of the rules CollectRespondToRead and CollectRespondToWrite
has a subrule Collect and a subrule Respond with corresponding parameter for
the type of expected messages.

CollectRespondToRead=
IF RECEIVED(answer(ans,x), from:d′) THEN

CONSUME(answer(ans,x), from:d′)
Collect((ans,x), from:d′)

IF sufficient(read-policy) THEN
Respond(requestTypeSELF)

WHERE
Respond(read(pi, ϕ)) =

LET d =mediator(SELF), a= requestor(SELF) IN
LET ans = {(k , v) | ∃t. (k , v , t) ∈ answerSELF} IN

SEND(answer(ans, pi, ϕ), from:d, to:a)
DELETE(SELF,Agent)

Collect((ans,x), from : d′) =
FORALL k WITH ∃v , t. (k , v , t) ∈ ans

LET (k , v , t) ∈ ans IN
IF ∃v ′, t′. (k , v ′, t′) ∈ answerSELF THEN
LET (k , v ′, t′) ∈ answerSELF IN

IF t′ < t THEN
DELETE((k , v ′, t′), answerSELF
INSERT((k , v , t), answerSELF

ELSE INSERT((k , v , t), answerSELF)
LET (x1, . . . , xqi

) = x IN
FORALL j ∈ {1, . . . , qi}

count(j) := count(j) + xj

The analogous collection of messages for write requests is simpler, as the final
response is only an acknowledgement.

CollectRespondToWrite=
IF RECEIVED(ack write(pi, p,x), from:d′) THEN

Collect(ack write(pi,x), from:d′)
CONSUME(ack write(pi, p,x), from:d′)

Concurrent Computing with Shared Replicated Memory 231

IF sufficient(write-policy) THEN
SEND(acknowledge(pi, p), from:mediator(SELF), to:requestor(SELF))
DELETE(SELF,Agent)

WHERE
Collect(ack write(pi,x), from:d′) =

LET (x1, . . . , xqi
) = x IN

FORALL j ∈ {1, . . . , qi}
count(j) := count(j) + xj

Note that our specification does not yet deal with exception handling. We may
tacitly assume that eventually all requested answers will be received by the
collecting agent.

4.2 Analysis of the Refinement

Let CM2 denote the refined ccASM {(a, asmc
a)}a∈A ∪ {(d, asm ′

d)}d∈D∪Ext

together with the dynamic set Ext of delegates. Note that the delegates are
created on-the-fly by the agents d ∈ D, needed for collecting partial responses
for each request and preparing the final responses (a full proof is given in [17]).

Proposition 3. CM2 is a complete refinement of CM1.

Proof (sketch). Take a concurrent run of CM1 and first look at it from the
perspective of a single agent a ∈ A. Updates brought into the state S by a
are read and write requests. If a continues in some state S′ = Si+x, then the
transition from S to S′ is achieved by means of a step of asmd for d = home(a).
Therefore, there exist states S̄, S̄′ for CM2, in which the asmc

a brings in the
same read and write requests and receives the last response, respectively. In a
concurrent run for CM2 the transition from S̄ to S̄′ results from several steps
by the subsystem {(d, asm ′

d)}d∈D∪Ext.
With respect to each of the requests received from a the agent d = home(a)

contributes to a state S̄1 with requests for each agent d′ ∈ D, d′ �= d, the creation
and initialisation of a response collecting agent a′, and the local handling of
the request at nodes associated with data centre d. Then each agent d′ ∈ D
contributes to some state S̄k (k > 1), in which the partial response to the
request sent to d′ is produced. Concurrently the collection agent a′ on receipt
of a partial response updates its own locations, and thus contributes to some
state S̄j (j > 1). Finally, a′ will also produce and send the response to a. This
response will be the same as the one in state S′, if the refined run from S̄ to
S̄′ uses the same selection of copies for each request referring to pi and each
fragment Fragj,i.

This implies that CM2,a = {(a, asmc
a)} ∪ {(d, asm ′

d)}d∈D∪Ext is a complete
refinement of CM1,a = {(a, asmc

a)}∪{(d, asmd)}d∈D, from which the proposition
follows immediately. ��

232 K.-D. Schewe et al.

Unfortunately, view compatibility cannot be preserved, unless additional con-
ditions are enforced in the specification. Any such condition already implies
serialisability (a full proof is given in [17]).

Proposition 4. If CM2 is view compatible with the cASM CM0, then every
run R of CM2 is view serialisable. If all runs of CM2 are view serialisable and
an appropriate combination of a read and a write policy is used, then CM2 is
also view compatible with the concurrent ASM CM0.

Proof (sketch). For a run R = S0, S1, . . . of CM2 view compatibility implies
that there exists a subsequence of a flattening R′ = S′

0, S
′
1, . . . that is a run of

{(a, asmc
a)}a∈A ∪ {(db, asmdb)} such that for each agent a ∈ A the agent a-view

of R′ coincides with a flat view of R by a. Let Δ′
� be the update set defined by

S′
� + Δ′

� = S′
�+1, and define Δ� =

{((pi,j,d,j′ , k), (v , t�)) | ((pi, k), v) ∈ Δ′
� ∧ copy(i, j, d, j′) ∧ hi(k) ∈ rangej}

using timestamps t0 < t1 < t2 < This defines a run R̄ = S̄0, S̄1, . . . of CM2

with S̄0 = S0 and S̄�+1 = S̄� + Δ�, which implies that R′ is serial.
Furthermore, the runs R and R̄ contain exactly the same requests and

responses, for each agent a the sequence of its requests and responses is identical
in both runs, and hence R and R̄ are view equivalent.

Conversely, for a run R′ of CM2 and a view equivalent serial run R′ =
S0, S1, . . . it suffices to show that there exists a subsequence of a flattening
R′ = S′

0, S
′
1, S

′
2, . . . that is a run of {(a, asmc

a)}a∈A ∪{(db, asmdb)} such that for
each agent a ∈ A the agent a-view of R′ coincides with a flat view of R by a. For
this we only have to consider states, in which a request or a response is issued
to obtain the desired subsequence, and the flattening is defined by the answers
to the write requests, which follows immediately from R being serial. ��

5 Concluding Remarks

Concurrent ASMs (cASMs) have been introduced to show that truly concurrent
algorithms can be captured by an extension of ASMs [4]. In particular, cASMs
overcome limitations in the theory of concurrency associated with the presence
of interleaving and unspecified selection agents that enable several agents to
perform steps synchronously. This specification and refinement study in this
paper shows that concurrent ASMs are well suited to capture all requirements
in distributed, concurrent systems.

We demonstrated the application of concurrent communicating ASMs
(ccASMs) [5] for the specification, refinement and consistency analysis of concur-
rent systems in connection with shared replicated memory. We first specified a
ground model, in which all access to replicas is handled synchronously in parallel
by a single agent, then refined it addressing the internal communication in the
memory management subsystem. This refinement significantly changed the way
requests are handled, as replicas are not selected a priori in a way that complies

Concurrent Computing with Shared Replicated Memory 233

with the read- or write-policies, but instead the acknowledgement and return of
a response depends on these policies. These refinements could be taken further
to capture also the means for handling inactive nodes and for recovery. Due to
space limitations for this conference version some explanations remain terse and
proofs are only sketched, but details are available in an extended technical report
[17].

We further showed that consistency, formalised by the notion of view com-
patibility, cannot be preserved by the last refinement. We could show that even
such a rather weak notion of consistency can only be obtained, if view serialis-
ability is assured. Serialisability can be achieved by adopting transactions for at
least single requests. For instance, one might integrate a transactional concur-
rent system [6] with the specification of a replicative storage system as done in
this paper.

References

1. Agha, G.: A Model of Concurrent Computation in Distributed Systems. MIT Press,
Cambridge (1986)

2. Best, E.: Semantics of Sequential and Parallel Programs. Prentice Hall, Upper
Saddle River (1996)

3. Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms. ACM
Trans. Comput. Logic 4(4), 578–651 (2003)

4. Börger, E., Schewe, K.-D.: Concurrent abstract state machines. Acta Inf. 53(5),
469–492 (2016)

5. Börger, E., Schewe, K.-D.: Communication in abstract state machines. J. Univ.
Comp. Sci. 23(2), 129–145 (2017)

6. Börger, E., Schewe, K.-D., Wang, Q.: Serialisable multi-level transaction control:
a specification and verification. Sci. Comput. Program. 131, 42–58 (2016)

7. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
642-18216-7

8. Ferrarotti, F., Schewe, K.-D., Tec, L., Wang, Q.: A new thesis concerning synchro-
nised parallel computing - simplified parallel ASM thesis. Theor. Comp. Sci. 649,
25–53 (2016)

9. Genrich, H.J., Lautenbach, K.: System modelling with high-level Petri nets. Theor.
Comput. Sci. 13, 109–136 (1981)

10. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.
ACM Trans. Comput. Logic 1(1), 77–111 (2000)

11. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

12. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, USA (1996)
13. Mazurkiewicz, Antoni: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G.

(eds.) ACPN 1986. LNCS, vol. 255, pp. 278–324. Springer, Heidelberg (1987).
https://doi.org/10.1007/3-540-17906-2 30

14. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 3rd edn.
Springer, New York (2011). https://doi.org/10.1007/978-1-4419-8834-8

15. Rabl, T., Sadoghi, M., Jacobsen, H.-A., Gómez-Villamor, S., Muntés-Mulero, V.,
Mankowskii, S.: Solving big data challenges for enterprise application performance
management. PVLDB 5(12), 1724–1735 (2012)

https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1007/978-1-4419-8834-8

234 K.-D. Schewe et al.

16. Schewe, K.-D., Ferrarotti, F., Tec, L., Wang, L., An, W.: Evolving concurrent sys-
tems - behavioural theory and logic. In: Proceedings of the Australasian Computer
Science Week Multiconference (ACSW 2017), pp. 77:1–77:10. ACM (2017)

17. Schewe, K.-D., Prinz, A., Börger, E.: Concurrent computing with shared replicated
memory. CoRR, abs/1902.04789 (2019)

18. Tanenbaum, A.S., Van Steen, M.: Distributed Systems. Prentice-Hall, Upper Sad-
dle River (2007)

19. Winskel, G., Nielsen, M.: Models for concurrency. In: Abramsky, S., Gabbay, D.,
Maibaum, T.S.E. (eds.) Handbook of Logic and the Foundations of Computer
Science: Semantic Modelling, vol. 4, pp. 1–148. Oxford University Press, Oxford
(1995)

MRSLICE: Efficient RkNN Query
Processing in SpatialHadoop

Francisco Garćıa-Garćıa1, Antonio Corral1(B), Luis Iribarne1,
and Michael Vassilakopoulos2

1 Department of Informatics, University of Almeria, Almeria, Spain
{paco.garcia,acorral,liribarn}@ual.es

2 Department of Electrical and Computer Engineering, University of Thessaly,
Volos, Greece

mvasilako@uth.gr

Abstract. Nowadays, with the continuously increasing volume of spa-
tial data, it is difficult to execute spatial queries efficiently in spatial data-
intensive applications, because of the limited computational capability
and storage resources of centralized environments. Due to that, shared-
nothing spatial cloud infrastructures have received increasing attention
in the last years. SpatialHadoop is a full-edged MapReduce framework
with native support for spatial data. SpatialHadoop also supports spa-
tial indexing on top of Hadoop to perform efficiently spatial queries (e.g.,
k-Nearest Neighbor search, spatial intersection join, etc.). The Reverse
k-Nearest Neighbor (RkNN) problem, i.e., finding all objects in a dataset
that have a given query point among their corresponding k-nearest neigh-
bors, has been recently studied very thoroughly. RkNN queries are of par-
ticular interest in a wide range of applications, such as decision support
systems, resource allocation, profile-based marketing, location-based ser-
vices, etc. In this paper, we present the design and implementation of
an RkNN query MapReduce algorithm, so-called MRSLICE, in Spatial-
Hadoop. We have evaluated the performance of the MRSLICE algorithm
on SpatialHadoop with big real-world datasets. The experiments have
demonstrated the efficiency and scalability of our proposal in compari-
son with other RkNNQ MapReduce algorithms in SpatialHadoop.

Keywords: RNNQ · SpatialHadoop · MapReduce · Spatial data
processing

1 Introduction

Large-scale data analysis and processing is currently the core of many scientific
research groups and enterprises. Nowadays, with the development of modern
mobile applications, the increase of the volume of available spatial data is huge
world-wide. Recent developments of big spatial data systems have motivated the
emergence of novel technologies for processing large-scale spatial data on clusters
of computers in a distributed environment. Parallel and distributed computing
c© Springer Nature Switzerland AG 2019
K.-D. Schewe and N. K. Singh (Eds.): MEDI 2019, LNCS 11815, pp. 235–250, 2019.
https://doi.org/10.1007/978-3-030-32065-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_17&domain=pdf
https://doi.org/10.1007/978-3-030-32065-2_17

236 F. Garćıa-Garćıa et al.

using shared-nothing clusters on extreme-scale data is becoming a dominant
trend in the context of data processing and analysis. MapReduce [3] is a frame-
work for processing and managing large-scale datasets in a distributed cluster.
MapReduce was introduced with the goal of supplying a simple yet powerful
parallel and distributed computing paradigm, providing scalability mechanisms.

However, MapReduce has weaknesses related to efficiency when it needs to be
applied to spatial data. A main deficiency is the lack of an indexing mechanism
that would allow selective access to specific regions of spatial data, which would
in turn yield more efficient spatial query processing algorithms. A recent solution
to this problem is an extension of Mapreduce, called SpatialHadoop [4], which
is a mature and robust framework that inherently supports spatial indexing on
top of Hadoop. Moreover, the generated spatial indexes enable the design of
efficient spatial query processing algorithms that access only part of the data
and still return the correct result query. That is, SpatialHadoop is an efficient
MapReduce distributed spatial query processing system that supports spatial
indexing and allows to work on distributed spatial data without worrying about
computation distribution and fault-tolerance.

A Reverse k-Nearest Neighbor query (RkNNQ) [8] returns the data objects
that have the query object in the set of their k-nearest neighbors. It is the
complementary problem to that of finding the k-Nearest Neighbors (kNN) of
a query object. The goal of a RkNNQ is to identify the influence of a query
object on the whole dataset; several real examples are shown in [8]. Although
the RkNN problem is the complement of the kNN problem, the relation between
kNNQ and RkNNQ is not symmetric and the number of the RkNNs of a query
object is not known in advance. A naive solution to the RkNN problem requires
O(n2) time, since the k-nearest neighbors of all of the n objects in the dataset
have to be found [8]. Obviously, more efficient algorithms are required, and thus,
the RkNN problem has been studied extensively in the past few years [8,9,13].
As shown in a recent experimental study [14], SLICE [15] is the state-of-the art
RkNN algorithm for two dimensional location data, since it is the best algorithm
in terms of CPU cost. Most of the research works in this topic have been devoted
to improve the performance of this query by proposing efficient algorithms in
centralized environments [14]. But, with the fast increase in the scale of the big
input datasets, processing such datasets in parallel and distributed frameworks is
becoming a popular practice. For this reason, parallel and distributed algorithms
for RkNNQ [1,6,7] have been designed and implemented in MapReduce, and a
naive approach [5] has been implemented in SpatialHadoop and LocationSpark.

Motivated by the above observations, in this paper, we propose a novel
MapReduce version of the SLICE algorithm (the fastest RkNNQ algorithm)
in SpatialHadoop, called MRSLICE. The most important contributions of this
paper are the following:

– The design and implementation of a novel RkNNQ MapReduce algorithm,
called MRSLICE, in SpatialHadoop for efficient parallel and distributed
RkNNQ processing on big real-world spatial datasets.

MRSLICE: Efficient RkNN Query Processing in SpatialHadoop 237

– The execution of a set of experiments for examining the efficiency and the
scalability of MRSLICE, against other RkNNQ MapReduce algorithms in
SpatialHadoop. MRSLICE has shown an excellent performance for all con-
sidered performance parameters.

This paper is organized as follows. In Sect. 2, we review related work on RkNNQ
algorithms and provide the motivation of this paper. In Sect. 3, we present pre-
liminary concepts related to RkNNQ, SLICE algorithm and SpatialHadoop. In
Sect. 4, the MRSLICE, in SpatialHadoop is proposed. In Sect. 5, we present the
most representative results of the experiments that we have performed, using
real-world datasets. Finally, in Sect. 6, we provide the conclusions arising from
our work and discuss related future work directions.

2 Related Work and Motivation

Researchers, developers and practitioners worldwide have started to take advan-
tage of the cluster-based systems and shared-nothing cloud infrastructures to
support large-scale data processing. There exist several cluster-based systems
that support spatial query processing over distributed spatial datasets. One
of the most representative is SpatialHadoop [4], which is an extension of the
Hadoop-MapReduce framework, with native support for spatial data.

RkNNQ processing has been actively investigated in centralized environ-
ments, and here we review the most relevant contributions. In [8], RkNNQ was
first introduced. Processing is based on a pre-computation process (for each
data point p ∈ P the k-Nearest Neighbor, kNN(p), is pre-computed and its dis-
tance is denoted by kNNdist(p)) and has three phases: pruning, containment
and verification. In the pruning phase, for each p ∈ P a circle centered at p with
radius kNNdist(p) is drawn, and the space that cannot contain any RkNN is
pruned by using the query point q. In the containment phase, the objects that
lie within the unpruned space are the RkNN candidates. Finally, in the verifi-
cation phase, a range query is issued for each candidate to check if the query
point is one of its kNN or not. That is, for any query point q, determine all
the circles (p, kNNdist(p)) that contain q and return their centers p. In [11],
the Six-Regions algorithm is presented, and the need for any pre-computation
is eliminated by utilizing some interesting properties of RkNN retrieval. The
authors solve RkNNQ by dividing the space around the query point into six
equal partitions of 60◦ each (R1 to R6). In each partition Ri, the k-th nearest
neighbor of the query point defines the pruned area. In [9] the multistep SFT
algorithm is proposed. It: (1) finds (using an R-tree) the kNNs of the query
point q, which constitute the initial candidates; (2) eliminates the points that
are closer to some other candidate than q; and (3) applies boolean range queries
on the remaining candidates to determine the actual RNNs. In [12], the TPL
algorithm which uses the property of perpendicular bisectors located between
the query point for facilitating pruning the search space is presented. In the
containment phase, TPL retrieves the objects that lie in the area not pruned

238 F. Garćıa-Garćıa et al.

by any combination of k bisectors. Therefore, TPL has to consider each com-
bination of k bisectors. To overcome the shortcomings of this algorithm, a new
method named FINCH is proposed in [13]. Instead of using bisectors to prune
the objects, the authors use a convex polygon that approximates the unpruned
area. Influence Zone [2] is a half-space based technique proposed for RkNNQ,
which uses the concept of influence zone to significantly improve the verification
phase. Influence zone is the area such that a point p is a RkNN of q if and only
if p lies inside it. Once influence zone is computed, RkNNQ can be answered
by locating the points lying inside it. In [15], the SLICE algorithm is proposed,
which improves the filtering power of Six-Regions approach while utilizing its
strength of being a cheaper filtering strategy. Recently, in [14] a comprehen-
sive set of experiments to compare some of the most representative and efficient
RkNNQ algorithms under various settings is presented and the authors propose
an optimized version of TPL (called TPL++) for arbitrary dimensionality RkN-
NQs. SLICE is the state-of-the art RkNNQ algorithm, since it is the best for all
considered performance parameters in terms of CPU cost.

There is not much work in developing efficient RkNNQ algorithms in parallel
and distributed environments. The only contributions that have been imple-
mented in MapReduce frameworks are [1,5–7]. In [1], the MRVoronoi algorithm
is presented, which adopts the Voronoi diagram partitioning-based approach and
applies MapReduce to answer RNNQ and other queries. In [6], the Basic MapRe-
duce RkNNQ method based on the inverted grid index over large scale datasets
is investigated. An optimization method, Lazy-MapReduce RkNNQ algorithm,
that prunes the search space when all data points are discovered, is also pro-
posed. In [7] several improvements of [6] have been presented. For instance, a
novel decouple method is proposed to decomposes pruning-verification into inde-
pendent steps and it can increase opportunities for parallelism. Moreover, new
optimizations to minimize the network and disk input/output cost of distributed
processing systems have been also investigated. Recently, in [5], parallel and dis-
tributed RkNNQ algorithms have been proposed for SpatialHadoop and Loca-
tionSpark. These parallel and distributed algorithms are based on the multistep
SFT algorithm [9]. The experimental results demonstrated that LocationSpark
is the overall winner for the execution time, due to the efficiency of in-memory
processing provided by Spark. However, MRSFT, the SpatialHadoop version,
shows interesting performance trends due to the nature of the proposed RkNNQ
MapReduce algorithm, since it consists of a series of MapReduce jobs.

As we have seen above, the SLICE algorithm is the fastest algorithm for
RkNNQ [14], and there is no MapReduce design and implementation of such
an algorithm in parallel and distributed frameworks. Moreover, RkNNQs have
received significant research attention in the past few years for centralized
environments, but not for parallel and distributed data management systems.
Motivated by these observations, the efficient design and implementation of
MRSLICE (MapReduce SLICE version) in SpatialHadoop is the main objec-
tive of this research work.

MRSLICE: Efficient RkNN Query Processing in SpatialHadoop 239

3 Preliminaries and Background

In this section, we first present the basic definitions of the kNNQ and RkNNQ,
followed by a brief introduction of preliminary concepts of SpatialHadoop and,
next, we review the most relevant details of the SLICE algorithm for RkNNQ.

3.1 The Reverse k-Nearest Neighbor Query

We know the RkNNQ retrieves the data points which have the query point as
one of their respective kNNs. We can deduce that the RkNNQ is based on the
kNNQ, and we are going to define it.

Given a set of points P, the kNNQ discovers the k points that are the nearest
to a given query point q (i.e., it reports only the top-k points of P from q). It is
one of the most important and studied spatial operations. The formal definition
of the kNNQ for points is the following:

Definition 1. k-Nearest Neighbor query, kNN
Let P = {p1, p2, · · · , pn} be a set of points in Ed (d-dimensional Euclidean space).
Then, the result of the k-Nearest Neighbor query, with respect to a query point q
in Ed and a number k ∈ N

+, is an ordered set, kNN(P, q, k) ⊆ P, which contains
the k (1 ≤ k ≤ |P|) different points of P, with the k smallest distances from q:
kNN(P, q, k) = {p1, p2, · · · , pk} ⊆ P, such that ∀p ∈ P \ kNN(P, q, k) we have
dist(pi, q) ≤ dist(p, q), 1 ≤ i ≤ k.

For RkNNQ, given a set of points P and a query point q, a point p is called the
Reverse k Nearest Neighbor of q, if q is one of the k closest points of p. A RkNNQ
issued from point q returns all the points of P whose k nearest neighbors include
q. Note that, this query is also called Monochromatic RkNNQ [8]. Formally:

Definition 2. Reverse k-Nearest Neighbor query, RkNN [13]
Let P = {p1, p2, · · · , pn} be a set of points in Ed. Then, the result of the Reverse
k-Nearest Neighbor query, with respect to a query point q in Ed and a number
k ∈ N

+, is a set, RkNN(P, q, k) ⊆ P, which contains all the points of P whose k
nearest neighbors include q:
RkNN(P, q, k) = {pi ∈ P, such that q ∈ kNN(P ∪ q, pi, k)}

3.2 SpatialHadoop

SpatialHadoop [4] is a fully fledged MapReduce framework with native support
for spatial data. It is an efficient disk-based distributed spatial query process-
ing system. Note that MapReduce [3] is a scalable, flexible and fault-tolerant
programming framework for distributed large-scale data analysis. A task to be
performed using the MapReduce framework has to be defined as two phases: the
Map phase, which is specified by a Map function, takes input (typically from
Hadoop Distributed File System (HDFS) files), possibly performs some compu-
tations on this input, and distributes it to worker nodes; and the Reduce phase

240 F. Garćıa-Garćıa et al.

which processes these results as specified by a Reduce function. An important
aspect of MapReduce is that both the input and the output of the Map step are
represented as key-value pairs, and that pairs with same key will be processed
as one group by the Reducer. Additionally, a Combiner function can be used to
run on the output of Map phase and perform some filtering or aggregation to
reduce the number of keys passed to the Reducer.

SpatialHadoop is a comprehensive extension to Hadoop that injects spatial
data awareness in each Hadoop layer, namely, the language, storage, MapRe-
duce, and operations layers. MapReduce layer is the query processing layer that
runs MapReduce programs, taking into account that SpatialHadoop supports
spatially indexed input files. The Operation layer enables the efficient implemen-
tation of spatial operations, considering the combination of the spatial indexing
in the storage layer with the new spatial functionality in the MapReduce layer.
In general, a spatial query processing in SpatialHadoop consists of four steps [4]:
(1) Preprocessing, where the dataset is partitioned according to a specific par-
titioning technique, generating a set of partitions. (2) Pruning, when the query
is issued, where the master node examines all partitions and prunes (by a Filter
function) those ones that are guaranteed not to include in any possible result
of the spatial query. (3) Local Spatial Query Processing, where a local spatial
query processing (Map function) is performed on each non-pruned partition in
parallel on different nodes (machines). And finally, (4) Global Processing, where
the results are collected from all nodes in the previous step and the final result
of the concerned spatial query is computed. A Combine function can be applied
in order to decrease the volume of data that is sent from the Map task. The
Reduce function can be omitted when the results from the Map phase are final.

3.3 SLICE Algorithm

Like most of the RkNNQ algorithms, SLICE consists of two phases namely fil-
tering phase and verification phase. SLICE’s filtering phase dominates the total
query processing cost [15].

Filtering Phase. SLICE divides the space of a set of points P around the
query point q into multiple equally sized regions based on angle division. The
experimental study in [15] demonstrated that the best performance is achieved
when the space is divided into 12 equally sized regions. Given a region R and
a point p ∈ P, we can define the half-space that divides them as Hp:q. The
intersection of this half-space with the limits of the region R allows us to obtain
the upper arc of p w.r.t. R (rUp:R) and the lower arc of p w.r.t. R (rLp:R) whose radii
meet the condition of rU > rL. In [15], it is shown that a point p′ in the region R
can be pruned by the point p if p′ lies outside its upper arc, i.e., dist(p′, q) > rUp:R.
Note that a point p′ ∈ R cannot be pruned by p if p′ lies inside its lower arc,
i.e., dist(p′, q) < rLp:R. The bounding arc of a region R, denoted as rBR , is the
k-th smallest upper arc of that region and it is used to easily prune points or
set of points. Note that any point p′ that lies in R with dist(p′, q) > rBR can be

MRSLICE: Efficient RkNN Query Processing in SpatialHadoop 241

pruned by at least k points. A point p is called significant for the region R if it
can prune points inside it, i.e., only if rLp:R < rBR . Therefore, SLICE maintains
a list of significant points for each region that will be used in the verification
phase. The following lemmas are used in this phase to reduce the search space
by pruning non significant points.

Lemma 1. A point p ∈ R cannot be a significant point of R if dist(p, q) > 2rBR .

Proof. Shown in [15] as Lemma 4.

Lemma 2. A point p /∈ R cannot be a significant point of R if dist(M,p) > rBR
and dist(N, p) > rBR where M and N are the points where the bounding arc of
R intersects the boundaries of R.

Proof. Shown in [15] as Lemma 5.

These lemmas can be easily extended to a complex entity e (i.e., e does not
contain any significant point), by comparing mindist(q, e) with the bounding
arc of each region that overlaps with e.

Verification Phase. First, SLICE tries to reduce the search space by using the
following lemma:

Lemma 3. A point p prunes every point p′ ∈ R for which dist(p′, q) > rUp:R
where 0◦ < maxAngle(p,R) < 90◦.

Proof. Shown in [15] as Lemma 1.

To do this, each point p ∈ P is checked against several derived pruning rules:
(1) if dist(q, p) > rBR , p is not part of the RkNNQ answer; (2) if dist(q, p) is
smaller than the k-th lower arc of R, p cannot be pruned; and (3) if once the
maximum and minimum angles have been calculated of p w.r.t. q, there is at
least one region R with rBR > dist(q, p), p can be part of the RkNNQ answer.
Once the search space has been reduced, each candidate point is verified as a
result of RkNNQ if at most there are k-1 significant points closest to the query
object in the region R in which it is located.

4 MRSLICE Algorithm in SpatialHadoop

In this section, we present how RkNNQ using SLICE can be implemented in
SpatialHadoop. In general, our parallel and distributed MRSLICE algorithm is
based on SLICE algorithm [15] and it consists of three of MapReduce jobs:

– Phase 1. The Filtering phase of SLICE is performed on the partition in
which the query object is located.

– Phase 1.B (optional). The filtering process is continued on those partitions
that are still part of the search space.

242 F. Garćıa-Garćıa et al.

Fig. 1. Overview of MRSLICE in SpatialHadoop.

– Phase 2. The Verification phase is carried out with those partitions that
have not been pruned as a result of applying Phases 1 and 1.B.

From Fig. 1, and assuming that P is the set of points to be processed and
q is the query point, the basic idea is to have P partitioned by some method
(e.g., grid) into n blocks or partitions of points (PP denotes the set of partitions
from P). The Filtering phase consists of two MapReduce jobs, being optional
the second one, since in the case of all significant points were found by the first
job, the execution of the second job is not necessary. Finally, the Verification
phase is a MapReduce job that will check if the non pruned points are part of
the RkNNQ answer.

4.1 MRSLICE Filtering Algorithm

In the first job (Algorithm 1), the Filter function selects the partition of P

in which q is found. Then, in the Map phase, the Filtering phase is applied as

MRSLICE: Efficient RkNN Query Processing in SpatialHadoop 243

Algorithm 1. MRSLICE Filtering - Phase 1
1: function FILTER(PP: set of partitions from P, q: query point)

2: return FindPartition(PP,q)
3: end function

4: function MAP(MBR: Minimum Bounding Rectangle of P, r: root of R-tree of actual partition,
q: query point, k: number of points, t: number of equally sized regions)

5: RegionsData.regions ← DivideSpace(MBR,q,t)
6: RegionsData ← SliceFiltering(r,q,k,RegionsData)
7: return RegionsData
8: end function

9: function SliceFiltering(r: root of R-tree, q: query point, k: number of points, RegionsData:
SLICE Regions Data)

10: Insert(Heap,null,r)
11: while Heap is not empty do
12: entry ← Pop(Heap)
13: if !facilityPruned(entry,q,k,RegionsData) then
14: if isLeaf(entry) then
15: pruneSpace(entry,q,k,RegionsData)
16: else
17: for all child ∈ entry.children do
18: key ← mindist(q,child)
19: Insert(Heap,key,child)
20: end for
21: end if
22: end if
23: end while
24: for all region ∈ RegionsData.regions do
25: region.boundingArc ← FindkUpperArc(region)
26: end for
27: RegionsData.minLowerArc ← ComputeMinLowerArc(RegionsData.regions)
28: return RegionsData
29: end function

Algorithm 2. MRSLICE Filtering - Phase 1.B
1: function FILTER(PP: set of partitions from P, q: query point, RegionsData: SLICE Regions

Data)

2: for all p ∈ PP do
3: if !facilityPruned(p,q,RegionsData) then
4: Insert(Result, p)
5: end if
6: end for
7: return Result
8: end function

9: function MAP(r: root of R-tree of actual partition, q: query point, k: number of points,
RegionsData: SLICE Partition Data)

10: RegionsData′ ← SliceFiltering(r,q,k,RegionsData)
11: return RegionsData′

12: end function

13: function REDUCE(RegionsDataArray: Array of SLICE Partition Data)
14: RegionsData′ ← RegionsDataArray[0]
15: for all RegionsData ∈ RegionsDataArray do
16: RegionsData′.P ← Merge(RegionsData.regions, RegionsData′.P)
17: end for
18: for all partition ∈ RegionsData′.P do
19: partition.kUpperArc ← FindkUpperArc(partition)
20: end for
21: RegionsData′.minLower ← ComputeMinLower(RegionsData′.P)
22: return RegionsData′

23: end function

244 F. Garćıa-Garćıa et al.

described in SLICE, that is, P is divided into t regions of equal space and the list
of k smallest upper arcs is obtained for each Ri region along with its rBRi

and its
list of significant points, that will be returned as RegionsData for further use. To
accelerate the Filtering phase, an R-tree index is used per partition and a heap is
utilised to store the nodes based on their minimum distance to q. As the R-tree
nodes are traversed, the facilityPruned function from [15] is used (Algorithm 1
line 13), which prunes the nodes which with the current RegionsData do not
contain significant points. In the case of leaf nodes, the points are processed by
the pruneSpace function from [15] (Algorithm 1 line 15), which is responsible for
updating the RegionsData information. Finally the k-th lower arc is calculated
for using in the next phase.

The second job (Algorithm 2) runs only if the function Filter returns some
partition, that is, the facilityPruned [15] function is executed on each of the
partitions by comparing its minimum distance to q with the bounding arc of
each region Ri with which it overlaps. Note that the upper left partition of
P in Fig. 1 is in the shaded area, and therefore can be pruned. However, the
other partitions can contain significant points, and the Filtering phase must be
applied to them during the Map phase. The result of each of the partitions will
be merged on the Reduce phase to obtain the k-th upper arcs, bounding arcs
and final significant points (RegionsData’).

Theorem 1 (Completeness). MRSLICE Filtering Algorithm returns all the
significant points.

Proof. It suffices to show that MRSLICE Filtering does not discard significant
points. A point p is discarded by MRSLICE Filtering only if it is pruned by
the facilityPruned function by either applying Lemma1 or 2. In any of these
cases, it was shown in [15] that any point that is not inside the area defined by
these lemmas is not a significant point. Points that are discarded can be split in
different categories:

Phase 1. Points are pruned in this phase like in the non distributed SLICE
version using Algorithm 1.

Phase 1.B - Partition granularity. Using the FILTER function in Algo-
rithm 2, partitions that do not contain any significant point are pruned by apply-
ing both Lemmas 1 and 2 to the partition as a complex entity.

Phase 1.B - Point granularity. Points are discarded in the Map Phase in
the same way that in Phase 1 only on non pruned partitions.

Phase 1.B - Merging RegionsData. Finally when merging RegionsData
in the Reduce Phase, both Lemmas 1 and 2 are again used to discard non sig-
nificant points.

4.2 MRSLICE Verification Algorithm

Finally, in the Verification phase, a MapReduce job (Algorithm 3) is executed on
the partitions that are not pruned by the Filter function when applying the prun-
ing rules described in the Subsect. 3.3 in the userPruned function (Algorithm 3

MRSLICE: Efficient RkNN Query Processing in SpatialHadoop 245

Algorithm 3. MRSLICE Verification - Phase 2
1: function FILTER(PP: set of partitions from P, q: query point, RegionsData: SLICE partition

data)

2: for all p ∈ PP do
3: if !userPruned(p,q,RegionsData) then
4: Insert(Result, p)
5: end if
6: end for
7: return Result
8: end function

9: function MAP(r: root of R-tree of actual partition, q: query point, k: number of points,
RegionsData: SLICE Partition Data)

10: Insert(Stack,r)
11: while Stack is not empty do
12: entry ← Pop(Stack)
13: if !userPruned(entry,q,RegionsData) then
14: if isLeaf(entry) then
15: if isRkNN(entry,q,k,RegionsData) then
16: Output(entry)
17: end if
18: else
19: for all child ∈ entry.children do
20: Insert(Stack,child)
21: end for
22: end if
23: end if
24: end while
25: end function

26: function isRkNN(entry: candidate point, q: query point, k: number of points, RegionsData:
SLICE Partition Data)

27: region ← FindRegion(entry,q,RegionsData)
28: counter ← 0
29: for all p ∈ region do
30: if dist(entry,q) ≤ rLp:R then
31: return true
32: end if
33: if dist(entry,p) < dist(entry,q) then
34: counter ← counter + 1
35: if counter ≥ k then
36: return false
37: end if
38: end if
39: end for
40: return true
41: end function

line 3). That is, the algorithm is executed on those partitions that contain some
white area. In the Map phase, the R-tree, that indexes each partition, is tra-
versed with the help of a stack data structure and the search space is reduced by
using the userPruned function again. Furthermore, the pruning rules are applied
again to the points that are in the leaf nodes and, finally, they are verified if
they are part of the final RkNNQ answer. The isRkNN function (Algorithm 3
line 15) verifies a candidate point p as part of the answer if there are at most
k-1 significant points closer to p than q in the region Ri in which it is located.

Theorem 2 (Correctness). MRSLICE Verification Algorithm returns the cor-
rect RkNNQ set.

246 F. Garćıa-Garćıa et al.

Proof. It suffices to show that MRSLICE Verification does not (a) discard
RkNNQ points, and (b) return non RkNNQ points. First, the MRSLICE Ver-
ification Algorithm only prunes away those points or/and entries by using the
pruning rules derived from Lemma 3, by using the information identified by the
MRSLICE Filtering Algorithm, which guarantees no false negatives. Second,
every non pruned point is verified by the isRkNN function, which ensures no
false positives. We prove that these points are guaranteed to be RkNNQ points
by contradiction. Assume a point p returned by MRSLICE Algorithm is not
a RkNNQ point. Then, there exist k significant points closer to p than q, and
p is also returned as part of the RkNNQ answer. But then p could not be in
the RkNNQ answer, since it would have been evicted in line 35 of the isRkNN
function in Algorithm 3.

5 Experimentation

In this section, we present the most representative results of our experimental
evaluation. We have used real-world 2d point datasets to test our RkNNQ algo-
rithms, that is, our previous MRSFT based algorithm [5] and the new MRSLICE
algorithm in SpatialHadoop. We have used datasets from OpenStreetMap1:
LAKES (L) which contains 8.4M records (8.6 GB) of boundaries of water areas
(polygons), PARKS (P) which contains 10M records (9.3 GB) of boundaries
of parks or green areas (polygons), ROADS (R) which contains 72M records
(24 GB) of roads and streets around the world (line-strings), BUILDINGS (B)
which contains 115M records (26 GB) of boundaries of all buildings (polygons),
and ROAD NETWORKS (RN) which contains 717M records (137 GB) of road
network represented as individual road segments (line-strings) [4]. To create sets
of points from these five spatial datasets, we have transformed the MBRs of
line-strings into points by taking the center of each MBR. In particular, we
have considered the centroid of each polygon to generate individual points for
each kind of spatial object. Furthermore, all datasets have been previously par-
titioned by SpatialHadoop using the STR partitioning technique with a local
R-tree index per partition. The main performance measure that we have used in
our experiments has been the total execution time (i.e., total response time). In
order to get a representative execution time, a random sample of 100 points from
the smallest dataset (LAKES) has been obtained and the average of the execu-
tion time of the RkNNQ of these points has been calculated, since this query
depends a lot on the location of the query point with respect to the dataset.

All experiments were conducted on a cluster of 12 nodes on an OpenStack
environment. Each node has 4 vCPU with 8 GB of main memory running Linux
operating systems and Hadoop 2.7.1.2.3. Each node has a capacity of 3 vCores
for MapReduce2/YARN use. Finally, we used the latest code available in the
repositories of SpatialHadoop2.

1 Available at http://spatialhadoop.cs.umn.edu/datasets.html.
2 Available at https://github.com/aseldawy/spatialhadoop2.

http://spatialhadoop.cs.umn.edu/datasets.html
https://github.com/aseldawy/spatialhadoop2

MRSLICE: Efficient RkNN Query Processing in SpatialHadoop 247

6 12 18 24 30
0

50

100

150

200

250

300

t: # of regions

T
ot
al

E
xe
cu

ti
on

T
im

e
(i
n
s)

BUILDINGS - SpatialHadoop MRSLICE

k = 10
k = 50

Fig. 2. MRSLICE execution times con-
sidering different t values.

LAKES PARKS ROADS BUILDINGS RN
0

100

200

300

400

500

600

700

Datasets

T
ot
al

E
xe
cu

ti
on

T
im

e
(i
n
se
c)

RkNNQ of real datasets

SpatialHadoop MRSFT
SpatialHadoop MRSLICE

Fig. 3. RkNNQ execution times con-
sidering different datasets.

The first experiment aims to test the best t value (number of regions) for
MRSLICE, using the BUILDINGS dataset and the k values of 10 and 50. In
Fig. 2 we can see that there is a little difference in the results obtained when the
t value is varied, especially for k = 10, being greater differences when a larger
k value is used (i.e., k = 50). On one hand, for k = 10, smaller values of t get
faster times (e.g., t = 6 has an execution time of 67 s which is 4 s faster than
t = 12). On the other hand, for k = 50, t = 12 gets the smallest execution time
(221 s) and for t < 12 and t > 12, the execution time increases. Although there
are no large differences, the value of t that shows better performance for both k
values is t = 12, reaching the same conclusion as in [15] but now in a distributed
environment (from now on, we will use t = 12 in all our experiments).

Our second experiment studies the scalability of the RkNNQ MapRe-
duce algorithms (MRSLICE and MRSFT [5]), varying the dataset sizes. As
shown in Fig. 3 for the RkNNQ of real datasets (LAKES, PARKS, ROADS,
BUILDINGS and RN) and a fixed k = 10. The execution times of MRSLICE
are much lower than those from MRSFT (e.g., it is 477 s faster for the largest
dataset RN) thanks to how the search space is reduced and the limited number
of MapReduce jobs. Note that for MRSFT at least k ∗ 20 + 1 jobs are executed
while for the case of MRSLICE, 3 jobs are launched at most. In both algorithms,
the execution times do not increase too much, showing quite stable performance,
mainly for MRSLICE. This is due to the indexing mechanisms provided by Spa-
tialHadoop that allow fast access to only the necessary partitions for the query
processing. Furthermore, this behavior shows that the number of candidates for
MRSLICE is almost constant (the expected number of candidates is less than
3.1 ∗ k as stated in [15]), only showing a visible increment in the execution time
for the RN dataset, due to the increase in the density of partitions and its dis-
tribution causes the need to execute the optional job (phase 1.b) of the Filtering
phase.

248 F. Garćıa-Garćıa et al.

1 5 10 15 20 25 50
0

500

1,000

1,500

2,000

k: # of closest pairs

T
ot
al

E
xe
cu

ti
on

T
im

e
(i
n
se
c)

BUILDINGS - RkNNQ

SpatialHadoop MRSFT
SpatialHadoop MRSLICE

1 2 4 6 8 10 12
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

η: # of available computing nodes

T
ot
al

E
xe
cu

ti
on

T
im

e
(i
n
se
c)

BUILDINGS - RkNNQ

SpatialHadoop MRSFT
SpatialHadoop MRSLICE

Fig. 4. RkNNQ cost (execution time) vs. K values (left). Query cost with respect to
the number of computing nodes η (right).

The third experiment aims to measure the effect of increasing the k value
for the dataset (BUILDINGS). The left chart of Fig. 4 shows that the total
execution time grows as the value of k increases, especially for MRSFT. This
is because as the value of k increases, the number of candidates k ∗ 20 also
grows and for each of them a MapReduce job is executed. On the other hand,
MRSLICE limits the number of MapReduce jobs to 3, obtaining a much smaller
increment and more stable results since the disk accesses are reduced significantly
by traversing the index of the dataset a reduced number of times. Note that the
small increment in the execution times when k = 25, mainly due to the fact that
when reaching a certain k value, the result of the first job of the Filtering phase
is not definitive and it has been necessary to execute the optional job (phase
1.b), in this case the number of involved partitions in the query increases as
well. Finally, the execution time for k = 50 increases slightly.

The fourth experiment studies the speedup of the RkNNQ MapReduce algo-
rithms, varying the number of computing nodes (η). The right chart of Fig. 4
shows the impact of different number of computing nodes on the performance of
RkNNQ MapReduce algorithms, for BUILDINGS with a fixed value of k = 10.
From this chart, we can deduce that for MRSFT, better performance would be
obtained if more computing nodes are added. MRSLICE is still outperforming
MRSFT and it is not affected despite reducing the number of available comput-
ing nodes. This is because MRSLICE is an algorithm in which both the number
of partitions involved in obtaining the result of the query and the number of
MapReduce jobs are minimized. That is, depending on the location of the query
point q and the k value, the number of partitions is usually one, and varying the
number of computing nodes does not affect the execution time. However, the
use of the computing resources of the cluster is quite small, which allows us the
execution of several RkNNQs in parallel, taking advantage of the distribution of
the dataset into the cluster nodes. On the other hand, MRSFT executes different
kNNQs in parallel, using all computing nodes completely for large k values.

MRSLICE: Efficient RkNN Query Processing in SpatialHadoop 249

By analyzing the previous experimental results, we can extract several con-
clusions that are shown below:

– We have experimentally demonstrated the efficiency (in terms of total exe-
cution time) and the scalability (in terms of k values, sizes of datasets and
number of computing nodes (η)) of the proposed parallel and distributed
MRSLICE algorithm for RkNNQ and we have compared it with the MRSFT
algorithm in SpatialHadoop.

– As stated in [15], the value of t (the number of equally sized regions in which
the dataset is divided) that shows the best performance is 12.

– MRSLICE outperforms MRSFT several orders of magnitude (around five
times faster), thanks to its pruning capabilities and the limited number of
MapReduce jobs.

– The larger the k values, the greater the number of candidates to be veri-
fied, but for MRSLICE the number of jobs and partitions involved are quite
restricted and the total execution time increases less than for MRSFT.

– The use of computing nodes by MRSLICE is small, allowing the execution
of several queries in parallel, unlike MRSFT that can leave the cluster busy.

6 Conclusions and Future Work

In this paper, we have proposed a novel RkNNQ MapReduce algorithm, called
MRSLICE, in SpatialHadoop, to perform efficient parallel and distributed
RkNNQ on big spatial real-world datasets. We have also compared this algo-
rithm with our previous MRSFT algorithm [5] in order to test its performance.
The execution of a set of experiments has demonstrated that MRSLICE is the
clear winner for the execution time, due to the efficiency of its pruning rules and
the reduced number of MapReduce jobs. Furthermore, MRSLICE shows inter-
esting performance trends due to the low requirements of computing nodes that
allows the execution of multiple RkNNQs on large spatial datasets. Our current
MRSLICE algorithm in SpatialHadoop is an example for the study of regions-
based pruning on parallel and distributed environments. Therefore, future work
might include the adaptation of half-space pruning algorithms [15] to this kind
of environments so as to compare them. Other future work might cover study-
ing other types of RkNNQs like the Bichromatic RkNNQ [15]. Finally, we are
planning to improve the query cost of MRSLICE by using the guardian set of a
rectangular region [10], that improves the original SLICE algorithm.

Acknowledgments. Research of all authors is supported by the MINECO research
project [TIN2017-83964-R].

References

1. Akdogan, A., Demiryurek, U., Kashani, F.B., Shahabi, C.: Voronoi-based geospa-
tial query processing with MapReduce. In: CloudCom Conference, pp. 9–16 (2010)

250 F. Garćıa-Garćıa et al.

2. Cheema, M.A., Lin, X., Zhang, W., Zhang, Y.: Influence zone: efficiently processing
reverse k nearest neighbors queries. In: ICDE Conference, pp. 577–588 (2011)

3. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
In: OSDI Conference, pp. 137–150 (2004)

4. Eldawy, A., Mokbel, M.F.: Spatialhadoop: a mapreduce framework for spatial data.
In: ICDE Conference, pp. 1352–1363 (2015)

5. Garćıa-Garćıa, F., Corral, A., Iribarne, L., Vassilakopoulos, M.: RkNN query pro-
cessing in distributed spatial infrastructures: a performance study. In: Ouham-
mou, Y., Ivanovic, M., Abelló, A., Bellatreche, L. (eds.) MEDI 2017. LNCS, vol.
10563, pp. 200–207. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66854-3 15

6. Ji, C., Hu, H., Xu, Y., Li, Y., Qu, W.: Efficient multi-dimensional spatial RkNN
query processing with MapReduce. In: ChinaGrid Conference, pp. 63–68 (2013)

7. Ji, C., Qu, W., Li, Z., Xu, Y., Li, Y., Wu, J.: Scalable multi-dimensional RNN query
processing. Concurrency Comput.: Pract. Experience 27(16), 4156–4171 (2015)

8. Korn, F., Muthukrishnan, S.: Influence sets based on reverse nearest neighbor
queries. In: SIGMOD Conference, pp. 201–212 (2000)

9. Singh, A., Ferhatosmanoglu, H., Tosun, A.S.: High dimensional reverse nearest
neighbor queries. In: CIKM Conference, pp. 91–98 (2003)

10. Song, W., Qin, J., Wang, W., Cheema, M.A.: Pre-computed region guardian sets
based reverse kNN queries. In: DASFAA Conference, pp. 98–112 (2016)

11. Stanoi, I., Agrawal, D., El Abbadi, A.: Reverse nearest neighbor queries for
dynamic databases. In: ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery, pp. 44–53 (2000)

12. Tao, Y., Papadias, D., Lian, X.: Reverse kNN search in arbitrary dimensionality.
In: VLDB Conference, pp. 744–755 (2004)

13. Wu, W., Yang, F., Chan, C.Y., Tan, K.: FINCH: evaluating reverse k-nearest-
neighbor queries on location data. PVLDB 1(1), 1056–1067 (2008)

14. Yang, S., Cheema, M.A., Lin, X., Wang, W.: Reverse K nearest neighbors query
processing: Experiments and analysis. PVLDB 8(5), 605–616 (2015)

15. Yang, S., Cheema, M.A., Lin, X., Zhang, Y.: SLICE: reviving regions-based pruning
for reverse k nearest neighbors queries. In: ICDE Conference, pp. 760–771 (2014)

https://doi.org/10.1007/978-3-319-66854-3_15
https://doi.org/10.1007/978-3-319-66854-3_15

Should We Be Afraid of Querying Billions
of Triples in a Graph-Based Centralized

System?

Abdallah Khelil1,3(B), Amin Mesmoudi1,2, Jorge Galicia1,
and Mohamed Senouci3

1 LIAS/ISAE-ENSMA, Chasseneuil-du-Poitou, France
{abdallah.khelil,jorge.galicia}@ensma.fr

2 University of Poitiers, Poitiers, France
amin.mesmoudi@univ-poitiers.fr
3 University Oran 1, Oran, Algeria

m.senouci@mesrs.dz

Abstract. Data representation facilities offered by RDF (Resource
Description Framework) have made it very popular. It is now considered
as a standard in several fields (Web, Biology, ...). Indeed, by lighten-
ing the notion of schema, RDF allows a flexibility in the representation
of data. This popularity has given rise to large datasets and has conse-
quently led to the need for efficient processing of these data. In this paper,
we propose a novel approach that we name QDAG (Querying Data as
Graphs) allowing query processing on RDF data. We propose to combine
RDF graph exploration with physical fragmentation of triples. Graph
exploration makes possible to exploit the structure of the graph and
its semantics while the fragmentation allows to group the nodes of the
graph having the same properties. Compared to the state of the art (i.e.,
gStore, RDF3X, Virtuoso), our approach offers a compromise between
efficient query processing and scalability. In this regard, we conducted
an experimental study using real and synthetic datasets to validate our
approach with respect to scalability and performance.

Keywords: RDF · Graph exploration · Fragmentation · Scalability ·
Performance

1 Introduction

Storage and data collection methods have been largely impacted by recent appli-
cations based on modern observation and simulation instruments. In several
areas, the pay-as-you-go philosophy has been adopted in the production and
storage environments processing data. As a result, the traditional data man-
agement approach, defining a schema (a structure) of the data before storing it
accordingly, has become very constraining.

c© Springer Nature Switzerland AG 2019
K.-D. Schewe and N. K. Singh (Eds.): MEDI 2019, LNCS 11815, pp. 251–266, 2019.
https://doi.org/10.1007/978-3-030-32065-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_18&domain=pdf
https://doi.org/10.1007/978-3-030-32065-2_18

252 A. Khelil et al.

In this context, new designs of data representation have emerged. RDF is part
of the efforts led by the W3C to depict web data and its linkage. RDF is based
on the notion of triples, making statements about resources with expressions
of the form < subject, predicate, object >. This feature gives flexibility in data
collection and its success has resulted in many large-scale datasets, for example
Freebase1 that has 2.5 billion triples [4] and DBpedia2 with more than 170 million
triples [11]. The Linked Open Data Cloud (LOD) now connects over 10,000
datasets and currently has more than 150 billion triples3. The number of data
sources has doubled in the last three years (2015–2018).

The development of the SPARQL language facilitated the exploitation of
RDF data and enforced the growth of novel query processing approaches. Indeed,
several studies have shown that conventional relational data management sys-
tems are not adapted to manage triples. In particular, they are unable to guar-
antee scalability and performance. The lack of an explicit RDF schema for a
dataset, and the number of joins involved in a SPARQL query are the two main
reasons for this limitation.

Among the solutions proposed to process RDF data, we find two types of
approaches available in the literature. The first one (e.g. [14,16]) takes advan-
tage of relational database techniques for storage and query evaluation. These
works use traditional optimization strategies (e.g. fragmentation and indexing)
to process queries on RDF datasets. However, they suffer from many overheads
(e.g. large number of self-joins) since a relational database is meant to inter-
rogate data stored according to a relational schema and not linked RDF data
necessarily stored as a relation. The second type of approaches (e.g., gStore
[17]) considers the query evaluation problem as a graph matching inquiry, main-
taining the original representation of the RDF data. Unfortunately, this type of
approach does not guarantee scalability and performance.

In this paper, we propose to take advantage of both types of approaches. We
rely on indexing and fragmentation to minimize the I/O’s and on the exploration
of the graph to take into account its structure. Unlike graph matching approaches
our evaluation strategy uses the Volcano [9] model, which allows to control the
memory use and to avoid any possible overflow. The rest of this paper is orga-
nized as follows. We discuss in Sect. 2 the related work. Then, in Sect. 3 we give
an overview and formalize of our work. In Sect. 4, we present our experimental
study and finally, in Sect. 5 we conclude and discuss some future research.

2 Related Work and Background

The amount of data collected from the Web and other domains like Biology and
Astronomy has exponentially grown. The schema of the data collected in these
domains is frequently unknown or it is likely to change. Database Management
Systems (DBMSs) have been used to store and process these new incoming data,
1 http://www.freebase.com/.
2 http://wiki.dbpedia.org.
3 http://lodstats.aksw.org/.

http://www.freebase.com/
http://wiki.dbpedia.org
http://lodstats.aksw.org/

QDAG a Scalable Centralized RDF Processing System 253

however they do not guarantee good performances for data without a pre-defined
scheme. Besides, in these domains the data are frequently represented as graphs.
The RDF model, originally developed to describe Web resources, represents data
as triples interconnected with directed links as shown in Fig. 1a.

SPARQL, the standard query language for RDF graphs, use graph patterns
(e.g. Fig. 1c) to retrieve and manipulate data stored in an RDF graph. The
solution to a SPARQL query is found traversing the graph from a node’s forward
or backward edges. The approaches built on top of the relational model lose the
notion of graph traversal and are constrained to join many tables (that could be
the same table) to find a solution. In this section we briefly overview the most
relevant approaches.

x1 z1

y1

l1

k1

n1

x2

y2

m1

p1

a

b

c

c

a

d

e

h

(a) Logical Graph

S P O
x1 a y1

x1 b z1

x1 c l1

x2 c l1

x2 a x1

y1 d k1

y1 e n1

m1 h p1

(b) Triple table

?x ?z

?y

?l

?k

?n

a

c

b

d

e

(c) Query

Fig. 1. Examples of RDF representation

The first approach used to treat RDF data proposed to store and query triples
based on traditional DBMSs [6]. In this strategy the data are stored in a single
very large table of three attributes that correspond to Subject, Predicate and
Object (e.g. Fig. 1b). The problem with this approach is the number of generated
self-joins. Indeed, there is a join for each graph pattern and the necessity to scan
the entire table many times has a negative impact in the performance.

The second category of approaches (e.g. RDF-3x [14], Hexastore [16]) rely
on excessive indexing of data. In these systems, strings of triples are mapped to
ids. These ids are then stored and indexed using different orders (e.g. SPO, OPS,
PSO). Each order is stored as a clustered B+-Tree. In these systems, triple pat-
terns can be answered by a range query and the joins are very effective through
the use of merge joins on indexed data. The drawbacks of this approach are: (1)
the use of extra space due to excessive data replication, and (2) the exorbitant
cost generated by the complete analysis of the structures used (e.g. SPO).

Another approach, called Property table, was proposed in the framework of
Jena [12] and DB2-RDF [5]. A variant of this proposal is called clustered property
table which groups the properties that tend to occur in the same (or similar)
subjects. Another variant, called Property-class table, clusters the subjects with

254 A. Khelil et al.

the same type of property into one property table. This kind of approach allows
to avoid some joins for Subject-Subject queries. However, it faces some problems
in the processing of other kinds of joins. Also, this approach does not support
the storage of subjects with multi-valued properties.

The next approach, based on Binary tables [1], has been proposed to over-
come the disadvantage of property tables approaches. Indeed, for each property,
a table of two columns is built containing both subject and object, ordered by
subjects. This approach is also called vertical partitioned tables. The strategy
builds n two-column tables (n is the number of unique properties in the data).
Column storage is used to speed up the evaluation of queries. This approach
supports multi-valued properties. Only relevant data are stored, i.e., no need to
manage NULL values. Also, good performances are granted for subject-subject
joins. Unfortunately, this approach is not relevant in the case of subject-object
joins.

The last category of approaches represents the data as graph. The system
gStore [17] for instance, uses an adjacency list to store the properties. The app-
roach is quite similar to the property table, but it uses the adjacency list to
skip the null properties of the subject. An index, based on S-Tree [7], is used
to speed up the evaluation of graph matching operations. Unfortunately, this
type of approach does not control the amount of memory used, which induces
an overflow when processing certain queries unlike join-based approaches.

In our work, we adopt a graph storage strategy. As we have queries with
constant predicates, we store only forward and backward edges as SPO and
OPS. We then split SPO and OPS into many fragments storing a set of subjects
(in the case of SPO) or objects (in the case of OPS) that have the same edges
(predicates). Each fragment is then stored as a separated clustered B+Tree. We
also offer an evaluation mechanism that allows to exploit different types of data
structures. Our evaluation operations consider the amount of available memory
which allows to avoid any overflow.

3 Our Approach

We begin by presenting our formal framework for Select-Project-Join (SPJ)
queries. Our approach only considers queries with constant predicates. We
present graph storage techniques and then we discuss the query evaluation tech-
niques used by our system. In our research report4, we explain how to extend
this framework to other queries (i.e., Group by, Order By, ...).

3.1 Graph Storage

Several approaches have been proposed to efficiently manage data graphs. As
it was mentioned in last section, RDF-3X [14], HexaStore [16] and Virtuoso [8]
propose to store graphs in the form of SPO and OPS. Seen from a graph perspec-
tive, storing the data with the SPO format implies storing a node together with
4 https://www.lias-lab.fr/publications/32823/RapportderechercheKHELIL.pdf.

https://www.lias-lab.fr/publications/32823/RapportderechercheKHELIL.pdf

QDAG a Scalable Centralized RDF Processing System 255

its forward edges. For example, in Fig. 2a each line represents a node’s forward
edge (e.g. the node x1 and its forward edges to the nodes y1, z1 and l1). On the
other hand, OPS approaches store a node together with its backward edges.

The choice of the storage structure contributes at query runtime, as confirmed
by the performance differences of the approaches detailed previously. In our work
we consider a graph-based data representation. Since our workload only considers
queries with constant predicates, we choose to use both SPO and OPS structures.

SPO
S P O

x1 a y1
x1 b z1
x1 c l1
x2 c l1
x2 a x1
y1 d k1
y1 e n1
m1 h p1

abc
S P O

x1 a y1
x1 b z1
x1 c l1

ac
S P O

x2 c l1
x2 a y2

de
S P O

y1 d k1
y1 e n1

h
S P O

m1 h p1

(a) SPO splitting

OPS
O P S

y1 a x1
z1 b x1
l1 c x1
l2 c x2
x2 a x2
k1 d y1
n1 e y1
p1 h m1

c
O P S

l1 c x1
l1 c x2

a
O P S

y1 a x1
b

O P S

z1 b x1
d

O P S

k1 d y1
e

O P S

n1 e y1
h

O P S

p1 h m1

(b) OPS splitting

Fig. 2. Data splitting

SPO and OPS are generally stored as a clustered B+Tree, which allows triples
retrieval in log(n) disk access. Full scan is not necessary for selective queries.
Storing triples in a single SPO (or OPS) file can lead to certain issues. Basically
due to the heterogeneous data found in a single RDF graph. For example, one can
find, in the same graph, information on soccer games and also information about
stock transactions. In spite of that, SPARQL queries are usually more specific
targeting data characterized by a theme defined by the query’s predicates.

We propose to split SPO and OPS triples, in fragments (that we later named
segments) with respect to the predicates that cover subjects in the case of SPO
(or object in the case of OPS). This corresponds to the idea of characteristic
sets [13], except that the characteristic sets are used only to collect statistics on
data. An example of this splitting for SPO and OPS fragments for the data of
Fig. 1a is given in Fig. 2a and b respectively.

Definition 1. (Segment) A segment is a part of SPO (or OPS) that satisfies a
set of predicates.

In our work, data are physically stored as segments. In the rest of this paper
we use the word segment instead of characteristic sets to design the physical split
of SPO or OPS. In the case of a (non-selective) query where we have to perform
a full scan, only relevant segments (which satisfy the query) are scanned.

256 A. Khelil et al.

Let us consider the following query which is a subset of the one shown in
Fig. 1c:

SELECT ?x ?y ?z
WHERE { ?x a ?y AND ?x c ?z }

To avoid a full scan of all segment files, we firstly check the predicates involved
in the query (a and c). Supposing that only SPO segments are available, there
are two candidate segment files to be scanned according to Fig. 2a (abc and ac).
To answer the query both segments must be scanned. To efficiently find relevant
segments to a query, we created an index on segment (SPO or OPS) labels as a
lattice [2]. Figure 3 illustrates an example of an SPO lattice for the data splitting
of Fig. 2a.

a c b d e h

ac
abc de

Fig. 3. Example: SPO lattice

In the following section, we propose a technique of compression of the data
stored as segments.

Compression: As explained previously, data are fragmented into segments.
Each segment is stored as a clustered B+Tree. For each triple, our evaluation
methods need to locate the segments hosting the subject and the object of the
triple.

Each triple is extended as follows:

< node1, sg, predicate, node2, sgin, sgout >

where:

– node1: is the subject in the case of forward triple or object in the case of
backward triple.

– sg: is the id of segment storing forward edges in the case where node1 is a
subject or backward edges where node1 is an object.

– node2: is the object in the case of forward triple or subject in the case of
backward triple.

– sgin: is the segment storing backward edges of node2.
– sgout: is the segment storing forward edges of node2.

QDAG a Scalable Centralized RDF Processing System 257

Indicator Predicate
17 bits 1 bit

Node1 Segment Node2 Segment (in) Segment (out)
0-8 bytes 0-4 bytes 0-8 bytes 0-4 bytes 0-4 bytes

Fig. 4. Compression illustration

node1 and node2 are represented using 64-bit (8 bytes), whereas sg, sgin and
sgout are represented using 32 bits (4 bytes). We use only one bit to represent
the change of the predicate. Indeed, as data are sorted in the order subject,
predicate and object and for all data stars of the segment we have the same
set of predicates, we propose to use only one bit to indicate the change of the
predicate.

Our approach to data compression is inspired by the one used in RDF-3X [14].
The number of bytes used to represent this information varies according to the
number of bytes used to encode each element of the triple. For the node1 we
have 9 states. 0 to indicate that the node1 does not change with respect to the
previous triple. i ∈ [1..8] to indicate the number we used to encode the new
node1. So, we need 4 bits to represent the 9 states.

For sg, sgin and sgout, we need 5 states. 0 to indicate that this information
does not change or NULL. i ∈ [1..4] to indicate the number we used to encode the
new segment id. So, we need 3 bits to represent the 5 states. For node2 we use
i ∈ [1..8] to indicate the number we used to encode the new node2. So, we need
4 bits to represent the 8 states. For the predicate we need only 1 bit to indicate
the change. We do not need to store the predicate. As shown in Fig. 4, in total
we need 18 bits. Those bits represent the indicator of the number of bytes used
to encode each triple and only leaf pages are compressed.

B+Tree Access: In this section, we discuss our bulk search strategy using the
B+Tree. Our evaluation operators use the B+tree structure to find relevant data
organized as data stars defined as:

Definition 2. (Stars) A data star is a set of nodes and edges related to a given
node in the data graph. The set of forward edges related to a node is called a
“forward data star”. We use the symbol: SDf (x), where x ∈ Vc, to denote the
forward data star obtained from x. In this case, x is called the head of the star.
Similarly, the set of incoming nodes and edges to a node in the graph is called
a backward data star symbolized as SDb(x). We apply the same principle to
distinguish stars in a query. We use forward query star (SQf (x)) and backward
query star (SQb(x)), where x ∈ Vc ∪ Vp denote stars obtained from forward and
backward triples respectively.

The naive algorithm consists in performing a search on B+Tree for every head
we need. If we have n heads, then we need n ∗ log(n) time to find all needed data
stars. We changed the searching strategy as follows. We start by finding the first
data star. During this operation, we memorize the non leaf keys used. We pass
them to the next data stars. We compare with the key previously memorized, and

258 A. Khelil et al.

we trigger a partial find if we violate the memorized key. The input of our algo-
rithm is a vector of data star heads and the output is a set of data stars.

3.2 Query Evalaution

In this section we present the structures used to formally describe our evaluation
approach. Then, we describe the operations performed by the query execution
engine of our system. Let us firstly define a graph database:

Definition 3. (Graph Database) A Graph Database denoted as G =
〈Vc, LV , E, LE〉 where Vc is a collection of vertices corresponding to all subjects
and objects in a data graph, LV is a collection of vertex labels, E is a collection
of directed edges that connect the corresponding subjects and objects, and LE is
a collection of edge labels. Given an edge e ∈ E, the edge’s label corresponds to
its property.

Figure 5a shows an example of a graph database with ten triples describing the
“Righteous Kill” film. A query of this graph is shown in Fig. 5b.

(a) RDF data graph (b) Graph query

Fig. 5. Example of data graph and query

Definition 4. (Graph query) A query graph is denoted as Q = 〈V,LV , E, LE〉,
where V = Vp ∪ Vc is a collection of vertices that correspond to all subjects and
objects in a Graph query, where Vp is a collection of parameter vertices, and Vc

is as defined in the previous definition. As a naming convention, we distinguish
variables from elements in Vc through a leading question mark symbol (e.g.,
?name, ?x), LV is a collection of vertex labels. For a vertex v ∈ Vp, its vertex
label is φ5. A vertex v ∈ Vc, E and LE are discussed in Definition 3.

5 φ is used to denote an empty element.

QDAG a Scalable Centralized RDF Processing System 259

Forward data stars extend the tuple definition from relational databases. In
the relational model, we cannot represent more than one value for an attribute.
We use an attribute as head if and only if the attribute is the primary key,
otherwise we use the record id.

Proposition 1. Given a set of predicates linked to a node and a set of predi-
cates in a star SQ, a lattice node S satisfies (|=) the star SQ iff predicates(SQ)
⊆predicates(S).

From our query example we extract the stars shown in Table 1. The next def-
inition explains how to evaluate a query by evaluating individually star queries.

Table 1. Query stars of Fig. 5b

SQf (?movie) {(?movie,genre,drama),(?movie,starring,?actor1),(?movie,starring,?actor2)}
SQf (?actor1) {(?actor1,win,“oscar”),(?actor1,bornIn,?city)}
SQf (?actor2) {(?actor2,bornIn,?city)}
SQb(“oscar”) {(?actor1,win,“oscar”)}
SQb(?city) {(?actor1,bornIn,?city),(?actor2,bornIn,?city)}
SQb(?actor1) {(?movie,starring,?actor1)}
SQb(?actor2) {(?movie,starring,?actor2)}
SQb(drama) {(?movie,genre,drama)}

Definition 5. (Mapping and Mapping universe) [15] A mapping is a partial
function μ: Vp → Vc from a subset of variables Vp to constant nodes Vc. The
domain of a mapping μ, written as dom(μ), is defined as the subset of Vp for
which μ is defined. By M we denote the universe of all mappings.

We now define the main notion of compatibility between mappings. In a straight-
forward way, two mappings are compatible if they do not contain contradicting
variable bindings, i.e. if shared variables always map to the same value in both
mappings:

Definition 6. (Compatibility of Mappings) Given two mappings μ1, μ2, we say
μ1 is compatible with μ2 iff μ1(?x) = μ2(?x) for all ?x ∈ dom(μ1) ∩ dom(μ2).
We write μ1 ∼ μ2 if μ1 and μ2 are compatible, and μ1 �∼ μ2 otherwise.

We denote as vars the function that returns variables of the element passed as a
parameter. For instance, we denote by vars(t) all variables in the triple pattern
t, while vars(SQf (x)) denotes all variables of the query star SQf (x).

We write μ(t) to denote the triple pattern obtained when replacing all vari-
ables ?x ∈ vars(t) in t by μ(?x). In the following definition, we use �x�G to
denote the process to find relevant mappings of x with respect to G.

260 A. Khelil et al.

Definition 7. (Triple Evaluation) We call �t�G the process allowing to find the
mapping related to a triple pattern t with respect to a graph G. �t�G is formally
defined as follows: �t�G := {μ|dom(μ) = vars(t) and μ(t) ∈ G}.
From a simple viewpoint, the evaluation process consists in finding mappings
such that when we replace the variable nodes by the corresponding constants,
the triple obtained is in the data graph.

In the following, we use the triple evaluation definition to characterize the
query star evaluation. The evaluation of query star allows to find mappings
for variables in the query star with respect to a data graph. For each triple t
in the star, we try to find the set of mappings satisfying t. Then, we build the
mappings of a query star by joining mappings extracted from triples of the query
star. Formally:

Definition 8. (Query Star Evaluation) The evaluation of a query star SQ(x)
with respect to the data graph G is defined as:

�SQ(x)�G := {�t1�G �� �t2�G �� ... �� �tn�G|n = card(SQ(x)}

Where:

�ti�G �� �tj�G = {μl ∪ μr|μl ∈ �ti�G and μr ∈ �tj�G, μl ∼ μr and μl(ti) �= μr(tj)}

From this definition, we designate the evaluation of the JOIN operator
between two star queries. Indeed, JOIN will be used as basic operator of the
query evaluation. The JOIN of two star queries allows to assembly the map-
pings obtained by evaluating two star queries. Formally:

Definition 9. (Stars Join) The evaluation of a join between two star queries is
defined as following:

�SQi�G �� �SQj�G = {μl ∪ μr|μl ∈ �SQi�G, μr ∈ �SQj�G and μl ∼ μr}

We take a mapping obtained from the left query star and another from the right
query star, we check if the two mappings are compatible, the union of those
mappings is a valid mapping for the JOIN of the two star queries.

Before presenting query evaluation using star queries, we will define the cover
concept. Indeed, we use this concept to guarantee that a given set of star queries
allows the correct evaluation of the query.

Definition 10. (Star cover) We denote by Coverq(SQ) the set of query triples
shared with the query star.

Coverq(SQ) = {t|t ∈ Triples(q) ∪ Triples(SQ)}

QDAG a Scalable Centralized RDF Processing System 261

From previous definitions, we can define query evaluation using a set of star
queries as follows:

Proposition 2. Given a set of stars {SQ1, SQ2, ...,SQn} that cover the query,
i.e., Coverq(SQ1) ∪ Coverq(SQ2) ∪ ... ∪ Coverq(SQn) = Triples(q), the evalu-
ation of q using the set of star queries is defined as follows:

�q�G = �SQ1�G �� �SQ2�G �� ... �� �SQn�G

With respect to segments, we can define the query evaluation as follows:

�q�G =
⋃

sg|=SQ1

�SQ1�sg ��

⋃

sg|=SQ2

�SQ2�sg �� ... ��

⋃

sg|=SQn

�SQn�sg

sg1 sg3

sg4

sg6 sg9

sg7 sg10

sg5 sg8sg2

SQ1 SQ2 SQ3 SQ4

Fig. 6. Execution plan

Let us consider that one result of the evaluation of a triple, a query star and
a query is a set of mappings. For the rest of this manuscript we denote by ω
this set of mappings. A set of mappings, that represent all results obtained by
evaluating a triple, a query star or a query is denoted by Ω (i.e., Ω = {ω}).

Given a query and the stars obtained from backward forward edges, we can
easily show that the set of star queries allowing to evaluate the query is not
unique. We use the word “Plan” to refer to a set of star queries allowing to
evaluate a given query. Formally, a plan is defined as follows:

Proposition 3. A plan is a order function on a Set of Query Stars allowing
to evaluate queries. We denote by p = [SQ1, SQ2, ..., SQn] the plan formed by
executing SQ1, then SQ2,..., and finally SQn.

The choice of the star queries and the order of evaluation allow to optimize
the query evaluation process.

Let us illustrate all of these concepts using the data graph in Fig. 5a and the
query in Fig. 5b. As explained previously, we process the query by extracting
forward and backward stars. Those stars are shown in Table 1. Let us consider

262 A. Khelil et al.

only one way (i.e., one plan) to evaluate the query. We consider the following
plan:

[SQf (?movie), SQf (?actor1), SQb(?city)]
As shown in Fig. 6, each plan is linked to a set of segments. We propose to prune
in real time. Indeed, an intermediate segment is evaluated only if this segment
is referenced by a segment that has been evaluated by another query star. By
Joining the mappings obtained from the different star queries of the plan, we
obtain the final result shown in Fig. 7.

4 Experimental Evaluation

We evaluated the performance of our approach using two well known RDF bench-
marks: (Watdiv and LUBM). We assessed firstly the ability of the systems to
load data greater than the available main memory. Then, we evaluate the per-
formance of query processing.

Fig. 7. Execution plan schema

4.1 Experimental Setup

Hardware: We conducted all experiments on a machine with an Intel(R)
Xeon(R) Gold 5118 CPU @ 2.30 GHz CPU, 1TB hard disk and 32 GB of RAM.
Ubuntu server 16.04 LTS is used as an operating system.

Software: The main components of our system (i.e. fragmentation, allocation
and indexing modules) are implemented in Java. The extraction of the data stars
is coded with C++.

Compared Systems: Our system was compared with three state-of-the-art
approaches that apply different execution paradigms. The compared systems
are: gStore6 which is an execution system based on graphs matching, Virtuoso
a relational-based system7, and RDF-3X [14] an intensive-index system.
6 https://github.com/pkumod/gStore.
7 https://github.com/openlink/virtuoso-opensource.

https://github.com/pkumod/gStore
https://github.com/openlink/virtuoso-opensource

QDAG a Scalable Centralized RDF Processing System 263

Datasets: We evaluate and compare the performance of the systems using the
Watdiv [3] and LUBM [10] benchmarks. We compare the execution time to solve
queries with different configurations (Linear, Star, Snowflake and Complex). The
list of queries is not here for space reasons but it is found in our technical report8.
Also, we compare the ability of the systems to deal with datasets of different
sizes. We generated datasets with 100 and 1 billion triples for Watdiv and 20
and 500 million triples for LUBM. The size of each dataset is detailed in Table 2.

4.2 Pre-processing Evaluation

We tested first the ability of the systems to pre-process and load raw RDF
datasets (in the N-Triples format). QDAG, Virtuoso and RDF-3X were able to
load all of the tested datasets. On the contrary, gStore was able to load the 100
million triples Watdiv and 20 million LUBM. This is mainly due to the fact
that gStore performs the pre-processing in main memory and is unable to load
RDF graphs that do not fit into it. Virtuoso loads the dataset to a relational
database, RDF-3X into the indexes (e.g. PSO, SPO) and QDAG creates files
of segments (SPO and OPS). The number of SPO and OPS segments on each
dataset is shown in Table 2. The number of segments SPO and OPS does not
grow exponentially and their number remains reasonable to the size of the data.

Table 2. Experimental datasets

Dataset Size (GB) # Segments SPO # Segments OPS

Watdiv 100M 14.5 39,855 1,088

Watdiv 1B 149 96,344 4,724

LUBM 20M 3.22 11 13

LUBM 500M 83 18 17

4.3 Query Performance

Watdiv. The query performance for linear (L), star (S), snowflake (F) and
complex (C) queries is shown in Fig. 8. We plot using a logarithmic scale since
the performance of QDAG is on average 300x better than gStore, leaving the
original execution times would have led to unreadable graphs. The results for 100
million triples of Watdiv are shown in Fig. 8a, even if QDAG obtains very similar
performance than Virtuoso and RDF-3X for star and linear queries, our model
ensures scalability for more complex datasets and queries. This is shown with
the complex and snowflakes queries in which our system is on average 1.6X times
faster. The behaviour of the same queries in a 100 million dataset is very similar,
QDAG is able to solve much more complex queries that are hardly transformed
into SQL with a reasonable performance.
8 https://www.lias-lab.fr/publications/32595/khelil rdf processing report.pdf.

https://www.lias-lab.fr/publications/32595/khelil_rdf_processing_report.pdf

264 A. Khelil et al.

C1C2C3F1F2F3F4F5L1L2L3L4L5S7S2

0

1

2

3

4

L
og

ar
it
hm

ic
ti
m
e
in

s

RDF-3X Virtuoso QDAG gStore

(a) 100 million

C1C2C3F1F2F3F4F5L1L2L3L4L5S7S2

1

2

3

4

5

6

L
og

ar
it
hm

ic
ti
m
e
in

s

RDF-3X Virtuoso QDAG

(b) 1 billion

Fig. 8. Query performance for Watdiv

1 2 3 4 5 6 7 8 9 10 11 12 13

0

1

2

3

4

L
og

ar
it
hm

ic
ti
m
e
in

s

RDF-3X Virtuoso QDAG gStore

(a) 20 million

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

L
og

ar
it
hm

ic
ti
m
e
in

s

RDF-3X Virtuoso QDAG

(b) 500 million

Fig. 9. Query performance for LUBM benchmark

LUBM. Similarly to what was done for Watdiv, we evaluated the ability of the
systems to load different sizes of datasets. gStore was unable to load the dataset
of 500 million triples since it is greater than the available main memory. The
query performance for the datasets of 20, 500 million triples are shown in Fig. 9.
In all cases, our system outperforms gStore (up to 10x faster). The performance
in the dataset of 20 million triples is quite similar to the other state-of-the-art
systems. However, in the 500M dataset our system showed a better performance
for most of the queries, especially complex queries joining many basic graph
patterns.

QDAG a Scalable Centralized RDF Processing System 265

5 Conclusion

In this paper, we propose a new technique for evaluating queries on RDF data.
Its main particularity is that it allows combining graph exploration and frag-
mentation – crucial issues in RDF data repositories. Our results are encouraging
and showed that our proposal outperforms gStore system considered as the state
of the art in the processing of RDF data.

This work opens several research directions. Currently, we are conducting
intensive experiments to evaluate the scalability of our approach. Another direc-
tion consists in studying the ordering of the star queries study, by proposing ade-
quate cost models. Finally, we plan to parallelize our approach. Since it already
includes the fragmentation process, a new module that has to be developed con-
cerns the management of the transfer of intermediate results between fragments.

References

1. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable semantic web data
management using vertical partitioning. In: Proceedings of the 33rd International
Conference on Very Large Data Bases, pp. 411–422. VLDB Endowment (2007)

2. Aı̈t-Kaci, H., Boyer, R., Lincoln, P., Nasr, R.: Efficient implementation of lattice
operations. ACM Trans. Program. Lang. Syst. (TOPLAS) 11(1), 115–146 (1989)

3. Aluç, G., Hartig, O., Özsu, M.T., Daudjee, K.: Diversified stress testing of RDF
data management systems. In: The Semantic Web - ISWC 2014–13th International
Semantic Web Conference, Riva del Garda, Italy, 19–23 October, pp. 197–212
(2014)

4. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collabo-
ratively created graph database for structuring human knowledge. In: Proceedings
of ACM SIGMOD, pp. 1247–1250. ACM (2008)

5. Briggs, M.: DB2 NoSQL graph store what, why & overview (2012)
6. Cyganiak, R.: A relational algebra for SPARQL. Digital Media Systems Laboratory

HP Laboratories Bristol. HPL-2005-170, p. 35 (2005)
7. Deppisch, U.: S-tree: a dynamic balanced signature index for office retrieval. In:

Proceedings of the 9th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 77–87. ACM (1986)

8. Erling, O.: Virtuoso, a hybrid RDBMS/graph column store. IEEE Data Eng. Bull.
35(1), 3–8 (2012)

9. Graefe, G.: Volcano - an extensible and parallel query evaluation system. IEEE
Trans. Knowl. Data Eng. 6(1), 120–135 (1994)

10. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems.
J. Web Semant. 3(2–3), 158–182 (2005)

11. Lehmann, J., et al.: DBpedia-a large-scale, multilingual knowledge base extracted
from wikipedia. Semant. Web 6(2), 167–195 (2015)

12. McBride, B.: Jena: a semantic web toolkit. IEEE Internet Comput. 6, 55–59 (2002)
13. Neumann, T., Moerkotte, G.: Characteristic sets: accurate cardinality estimation

for RDF queries with multiple joins. In: Data Engineering (ICDE), pp. 984–994
(2011)

14. Neumann, T., Weikum, G.: RDF-3x: a risc-style engine for RDF. Proc. VLDB
Endowment 1(1), 647–659 (2008)

266 A. Khelil et al.

15. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. In:
Cruz, I., et al. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg
(2006). https://doi.org/10.1007/11926078 3

16. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web
data management. Proc. VLDB Endowment 1(1), 1008–1019 (2008)

17. Zou, L., Mo, J., Chen, L., Özsu, M.T., Zhao, D.: gStore: answering SPARQL queries
via subgraph matching. Proc. VLDB Endowment 4(8), 482–493 (2011)

https://doi.org/10.1007/11926078_3

Extracting High-Level System
Specifications from Source Code
via Abstract State Machines

Flavio Ferrarotti(B), Josef Pichler, Michael Moser, and Georg Buchgeher

Software Competence Center Hagenberg, Hagenberg, Austria
{flavio.ferrarotti,josef.pichler,michael.moser,georg.buchgeher}@scch.at

Abstract. We are interested in specifications which provide a consis-
tent high-level view of systems. They should abstract irrelevant details
and provide a precise and complete description of the behaviour of the
system. This view of software specification can naturally be expressed by
means of Gurevich’s Abstract State Machines (ASMs). There are many
known benefits of such an approach to system specifications for soft-
ware engineering and testing. In practice however, such specifications
are rarely generated and/or maintained during software development.
Addressing this problem, we present an exploratory study on (semi) auto-
mated extraction of high-level software specifications by means of ASMs.
We describe, in the form of examples, an abstraction process which starts
by extracting an initial ground-level ASM specification from Java source
code (with the same core functionality), and ends in a high-level ASM
specification at the desired level of abstraction. We argue that this pro-
cess can be done in a (semi) automated way, resulting in a valuable tool
to improve the current software engineering practices.

1 Introduction

We consider good software specifications to be much more than just prototypes
to build systems. In our view, they should also enable us to explore, reuse, debug,
document and test systems, and to explain their construction in a verifiable way.
In particular if these specification (models) are meant to help practitioners to
manage complex software-intensive systems.

There are many formal and semi-formal software specification methods which
realize this view, have been around for many year, and have successfully been
applied in practice. See [21] for an overview with practical focus of the main
methods, including ASM, UML, Z, TLA+, B and Estelle among others.

The research reported in this paper results from the project Higher-Order Logics and
Structures supported by the Austrian Science Fund (FWF: [I2420-N31]). It was fur-
ther supported by the Austrian Ministry for Transport, Innovation and Technology,
the Federal Ministry of Science, Research and Economy, and the Province of Upper
Austria in the frame of the COMET center SCCH.

c© Springer Nature Switzerland AG 2019
K.-D. Schewe and N. K. Singh (Eds.): MEDI 2019, LNCS 11815, pp. 267–283, 2019.
https://doi.org/10.1007/978-3-030-32065-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_19&domain=pdf
https://doi.org/10.1007/978-3-030-32065-2_19

268 F. Ferrarotti et al.

Software specifications should serve both, the client and the developer. The
client should be able to understand the specification so that she/he can validate
it. The developer should have as much freedom as possible to find the best
implementation that conforms to the specification. Thus, it is fundamentally
important for a good specification to present a consistent high-level description
of the system abstracting away irrelevant details. Let us illustrate this point with
an example.

Example 1. Suppose we are given the task of specifying an algorithm for sorting a
sequence of elements in-place. The algorithm must proceed sequentially, making
exactly one swap in each step until the sequence is in order. The abstract state
machine (ASM) in Listing 1.1 provides a formal, yet high-level specification of
such algorithm. Provided we are aware that lines 3 and 4 are executed in parallel
and thus there is no need to save the value of array(i) into a temporary variable,
this formal specification should be self-explanatory. It is not the most efficient
algorithm for the task at hand, but it is the most general and gives freedom
to the developer to refine it into an implementation of her/his choice such as
bubble sort, insertion sort or Shell sort, among others.

1 rule Sort =
2 choose i, j ∈ indices(array) with i < j and array(i) > array(j)
3 array(i) := array(j)
4 array(j) := array(i)

Listing 1.1. ASM High-Level Specification of Sort Algorithm.

Despite the many benefits that good high-level formal software specifications
bring to software design, verification by reasoning techniques, validation by sim-
ulation and testing, and documentation, they are still a rare occurrence in the
software industry, except in the case of mission critical systems. The commonly
cited problems for their adoption in practice are the restrictive time and money
constraints under which software is developed, and the dynamic nature of soft-
ware evolution which makes difficult to keep design and documentation up to
date. The need for good software specifications is further underlined by the fact
that most programmers need to work on software which was not designed or
developed by them, and the growing demand to document and reimplement
legacy software systems.

In order to alleviate these problems, since early on [12] a considerable amount
of effort have been put into reverse engineering higher level abstractions from
existing systems. Nowadays the common approach in the literature (see for
instance [22]) is to transform a given program P which conforms to a given
grammar G into a high-level model M which conforms to a meta model MM .
During this transformation P is usually represented by an abstract syntax tree or
a concrete syntax tree. The extraction process relies in the specification of map-
pings between elements of G and MM . Independently for the specific details, this
transformation is done in one big step from P to M , and the level of abstraction
of M is fixed, determined by the mappings from G to MM .

Extracting High-Level System Specifications from Source Code 269

In this paper we propose a different approach. Instead of relying on a big
step transformation from the source code to a model at the desired level of
abstraction, we propose to derive formal software specifications by a sequence of
(semi) automated transformations, in which each transformation increases the
level of abstraction of the previous specification in the sequence. We argue that
this process can be done in a (semi) automated way and thus result in a valuable
tool to improve the current software (reverse) engineering practices.

The method for high-level system design and analysis known as the ASM
method [9] inspired our idea of extracting high-level specifications from soft-
ware following an organic and effectively maintainable sequence of rigorous and
coherent specifications at stepwise higher abstraction levels. The simple but key
observation to this regard is that the process of stepwise refinement from high-
level specification down to implementation provided by the ASM method, can
be applied in reverse order and thus used for the (semi) automated extraction
of high-level software specifications from source code.

The idea of using formal methods to reverse engineering formal specifications
is of course not new. Already in the nineties, Z notation was used to extract
formal specifications from COBOL [11,23]. Declarative specifications such as Z
imply a fixed level of abstraction for design and verification, completely indepen-
dent of any idea of computation. This is unsuitable for the multi-step abstrac-
tion approach proposed in this paper. In this sense, ASMs provide us with the
required unifying view of models of computation and declarative frameworks [5].

The paper is organized as follows. In Sect. 2 we argue why ASMs provide the
correct foundations for the method presented in this work for high-level software
specification extraction. The actual method for stepwise abstraction of software
specifications is presented in Sect. 3. In Sect. 4 we show how the method works
in practice through a complete example. We conclude our work in Sect. 5.

2 Abstract State Machines

A distinctive feature of the ASM method which is not shared by other formal
and semi-formal specification methods such as B, Event-B and UML is that,
by the ASM thesis (first stated in [18,19] as project idea for a generalization of
Turing’s thesis), ASMs can step-by-step faithfully model algorithms at any level
of abstraction. This thesis has been theoretically confirmed for most well known
classes of algorithms, including sequential [20], parallel [2,3,14], concurrent [8],
reflective [13], and even quantum [16] algorithms. Moreover, it has long been
confirmed in practice (see [4] and Chapter 9 in [9] for a survey). This distinctive
feature is a key component of the approach that we propose in this paper to
extract specifications from source code. Moreover, ASMs provide simple founda-
tions and a uniform conceptual framework (see Section 7.1 in [9]).

This paper can be understood correctly by reading our ASM rules as pseu-
docode over abstract data types. Nevertheless, we review some of the basic ASM
features in order to make the paper self-contained. The standard reference book
for this area is [9].

270 F. Ferrarotti et al.

The states of ASMs are formed by a domain of elements or objects and a
set of functions defined over this domain. That is, states are arbitrary universal
structures. Predicates are just treated as characteristic functions. The collection
of the types of the functions (and predicates) which can occur in a given ASM
is called its signature.

In its simplest form an ASM of some signature Σ can be defined as a finite
set of transition rules of the form if Condition then Updates which transforms
states. The condition or guard under which a rule is applied is an arbitrary
first-order logic sentence of signature Σ. Updates is a finite set of assignments
of the form f(t1, . . . , tn) := t0 which are executed in parallel. The execution
of f(t1, . . . , tn) := t0 in a given state S proceeds as follows: first all parame-
ters t0, t1, . . . , tn are assigned their values, say a0, a1, . . . , an, then the value of
f(a1, . . . , an) is updated to a0, which represents the value of f(a1, . . . , an) in the
next state. Such pairs of a function name f , which is fixed by the signature,
and optional argument (a1, . . . , an) of dynamic parameters values ai, are called
locations. They represent the abstract ASM concept of memory units which
abstracts from particular memory addressing. Location value pairs (l, a), where
l is a location and a is a value, are called updates and represent the basic units
of state change.

The notion of ASM run (or equivalently computation) is an instance of the
classical notion of the computation of transition systems. An ASM computa-
tion step in a given state consists in executing simultaneously all updates of all
transition rules whose guard is true in the state. If these updates are consistent,
the result of their execution yields a next state, otherwise it does not. A set
of updates is consistent if it contains no pairs (l, a), (l, b) of updates to a same
location l with a �= b. Simultaneous execution, as obtained in one step through
the execution of a set of updates, provides a useful instrument for high-level
design to locally describe a global state change. This synchronous parallelism is
further enhanced by the transition rule forall x with ϕ do r which expresses
the simultaneous execution of a rule r for each x satisfying a given condition
ϕ. Similarly, non-determinism as a convenient way of abstracting from details
of scheduling of rule executions can be expressed by the rule choose x with ϕ
do r, which means that r should be executed with an arbitrary x chosen among
those satisfying the property ϕ.

3 The Stepwise Abstraction Method

In this section we present a stepwise abstraction method to extract high-level
specifications from source code. The method comprises the following two phases:

1. Ground specification extraction: This is the first step consisting on parsing
the source code of the system in order to translate it into a behaviourally
equivalent ASM. Here we use the term behaviourally equivalent in the pre-
cise sense of the ASM thesis (see [2,3,8,13,14,20] among others), i.e., in the
sense that behaviourally equivalent algorithms have step-by-step exactly the

Extracting High-Level System Specifications from Source Code 271

same runs. Thus the ground specification is expected to have the same core
functionality as the implemented system.

2. Iterative high-level specification extraction: After the first phase is completed,
the ground ASM specification is used as a base to extract higher-level specifi-
cations, by means of a semi-automated iterative process. The implementation
of the method must at this point present the user with different options to
abstract away ASM rules and/or data.

A detailed analysis of these phases follows.

3.1 Ground Specification Extraction

In this phase we focus on how to extract an ASM behaviourally equivalent to a
source code implementation in a given programming language. In our research
center, we have a positive industrial experience in parsing and extracting knowl-
edge from source code1. We have built and applied several reverse engineering
tools around the Abstract Syntax Tree Metamodel (ASTM) standard2. In par-
ticular, we have shown its potential for multi-language reverse engineering in
practice [15].

Using this approach and adapting our previous results, we have determined
that it is possible extract the desired ground specifications in the form of
a behaviourally equivalent ASM by automated means. The idea is to trans-
form the source code into an ASM model in two steps. First, by means of
eKnows3, the source code is parsed into a language-agnostic canonical AST rep-
resentation. Besides concrete language syntax, this intermediate representation
also abstracts from language-specific semantics with regard to control-flow. For
instance, the switch statement occurs in different forms, namely with or with-
out fall-through semantics. eKnows constructs an AST representation with a
standardized semantic (e.g. explicit break statements even for non-fall-through
languages) that allows homogeneous subsequent analysis/transformation steps.
Furthermore, eKnows resolves unstructured control-flow (e.g. break and continue
within loop statements, or goto statement) by means of refactoring resulting in
well-structured control-flow, i.e. single entry/exit points of statements.

In the second step, we provide rewriting rules for AST nodes specifically
related to control-flow (e.g. for loops, conditional statements) and assignment
statements. Rewriting rules for control-flow nodes can be applied in a straight-
forward way to individual nodes independent of any context information. The
subsequent examples illustrate the idea for the transformation of loop state-
ments. The transformation of assignment statements, however, need semantic
analysis of the source code due to the difference between strict sequential exe-
cution order of program code and simultaneous execution of ASM update rules.
We can leverage symbolic execution (also part of eKnows) in order to eliminate
intermediate variables and construct assignment statements that only contain
1 http://codeanalytics.scch.at/.
2 https://www.omg.org/spec/ASTM/1.0/.
3 https://www.scch.at/de/eknows.

http://codeanalytics.scch.at/
https://www.omg.org/spec/ASTM/1.0/
https://www.scch.at/de/eknows

272 F. Ferrarotti et al.

input/output parameters of the analyzed algorithms. In this transformed repre-
sentation, the strict execution sequence becomes irrelevant and statements can
be transformed into behaviorally equivalent ASM update rules executed in par-
allel.

Next we present a simple example of ground level ASM specifications
extracted from a Java implementation of the bubble sort algorithm.

Example 2. Let us analyse the very simple and compact bubble sort algorithm
implemented by the Java method in Listing 1.2.

1 public stat ic void bubbleSort (int array []) {
2 for (int n = array . l ength − 1 ; n > 0 ; n−−) {
3 for (int i = 0 ; i < n ; i++) {
4 i f (array [i] > array [i +1]) {
5 int temp = array [i] ;
6 array [i] = array [i +1] ;
7 array [i +1] = temp ;} } } }

Listing 1.2. Bubble sort algorithm as Java method.

Let for be the following iterative turbo ASM rule which first executes the
rule R0, and then repeats the execution of its body rule R2 followed by R1 as
long as they produce a non-empty update set and the condition cond holds.

for (R0 ; cond ; R1) R2 =
R0 seq iterate (i f cond then R2 seq

R1)

The turbo ASM in Listing 1.3 can easily be obtained from the Java code in
Listing 1.2 by mostly simple syntactic rewriting, except for the value swap done
in parallel in lines 5 and 6 which requires a simple semantic abstraction of lines 5–
7 in Listing 1.2. Using the symbolic approach described above, the Java variable
temp in the assignment in line 7 of Listing 1.2 would get substituted by the
previous assignment (line 5) resulting in the ASM rule array(i + 1) := array(i).

1 rule bubbleSort0 =
2 for (n := array.length − 1 ; n > 0 ; n := n − 1)
3 for (i := 0 ; i < n ; i := i + 1)
4 i f array(i) > array(i + 1) then
5 array(i) := array(i + 1)
6 array(i + 1) := array(i)

Listing 1.3. Turbo ASM extracted from Java method bubbleSort.

Alternatively, we can extract from Listing 1.2 the control state ASM in List-
ing 1.4. Same as in the case of the turbo ASM, the transformation from the Java
method bubbleSort to the control state ASM only requires simple rewriting
techniques.

Extracting High-Level System Specifications from Source Code 273

1 rule bubbleSort1 =
2 i f state = s0 then
3 n := array.length − 1
4 state := s1
5 i f state = s1 then
6 i f n > 0 then
7 i := 0
8 state := s2
9 i f state = s2 then

10 i f i < n then
11 i f array(i) > array(i + 1) then
12 array(i) := array(i + 1)
13 array(i + 1) := array(i)
14 i := i + 1
15 else
16 n := n − 1
17 state := s1

Listing 1.4. Control State ASM abstracted from Java code of bubbleSort.

Although the control state ASM in Listing 1.4 has more lines of code than
the turbo ASM in Listing 1.3 (and that the original Java code), it has certain
advantages. It can for instance be represented graphically as the UML-style
diagram in Fig. 1. Furthermore, the control state ASM presents a transparent
white-box view of the states while the turbo ASM presents a black-box view
which hides internal sub-computations. Which of these views is more useful
depends on the desired specification level and the application at hand, and can
be decided by the user. For instance, at low levels of abstraction, control ASMs
can lead to complex UML-style diagrams which might share the usual drawbacks
of UML activity diagrams, unnecessarily replacing elegant structured code by
control flow based in states (a kind of “hidden goto” if viewed as a program).

s1 s2

n := n − 1

i := i+ 1

s0 n > 0 i < ni := 0

noyes

no

yes

array(i+ 1) := array(i)
array(i) := array(i+ 1) array(i) > array(i+ 1)

n := array.length − 1

Fig. 1. bubbleSort1

3.2 Iterative High-Level Specification Extraction

Without entering into technical details, which are nevertheless well explained
in Section 3.2 in [9], we note that the schema of ASM refinement step, can also

274 F. Ferrarotti et al.

be viewed as describing an abstraction step if it is used for extracting a high-
level model. In this sense, the re-engineering project in [1] confirms this idea in
practice and it is a source of inspiration for our proposal.

Thus, when abstracting an ASM M ′ from an ASM M , there is a lot of
freedom. In particular, it is possible to perform diverse kinds of abstractions by
combining the following items:

– The notion of an abstracted state, obtained by changing (usually reducing)
the signature.

– The notion of state of interest and correspondence between states, obtained
by changing (usually reducing) the states of interest in M ′ with respect to
M , and determining the pairs of states of interest in the runs of M and M ′

that we want to relate through the abstraction.
– The notion of abstract computation segments, obtained by changing (usually

reducing) the number of abstract steps that lead to states of interest of M ′

with respect to M .
– The notion of locations of interest and of corresponding locations, obtained by

changing (usually reducing) the locations of interest of M ′, and determining
the pairs of corresponding locations of interest of M and M ′ that we want to
relate through abstraction. Recall that in ASM terminology the term location
refer to abstract data container.

– The notion of equivalence of the data in the locations of interest, obtained
by changing (usually reducing) the number of different classes of equivalence,
and thus also changing the notion of equivalence of corresponding states of
interest of M and M ′.

The aim of this phase is to semi-automatically extract high-level system
specifications starting from the ground ASM specification built in the previous
phase. In this paper we present a proof of concept through examples. We show
that very simple heuristic analyses of ASM rules can already lead to useful
abstractions. Of course, much more sophisticated abstraction mechanisms such
as abstract interpretations are certainly possible, opening what would constitute
an interesting research project.

Example 3. Note that it is clear from the ASM ground specifications extracted
in Example 2 that the order in which the values in the sequence are swapped
does not really matter from a conceptual high-level perspective. That is, if we
keep swapping the values of array(i) and array(i + 1) as long as array(i) >
array(i + 1) for some index i, then the algorithm still works correctly. We thus
can abstract the ASM in Listing 1.5. After at most 2n steps, where n is the
length of the array, we have that for every index i the condition in the choose
rule no longer holds. At that point the machine stops and, for every index i, it
holds that array(i) ≤ array(i + 1), i.e., the array is in order. Clearly, the ASM
in Listing 1.5 is not only an abstraction of the bubble sort algorithm, it is also
an specialization of the in place sorting algorithm specified by the ASM rule in
Listing 1.1.

Extracting High-Level System Specifications from Source Code 275

1 rule bubbleSort2 =

2 choose i with 0 ≤ i < array.length − 1 and array(i) > array(i + 1)

3 array(i) := array(i + 1)

4 array(i + 1) := array(i)

Listing 1.5. Abstraction from control state ASM bubbleSort1.

Admittedly, high-level specifications such as the one in Listing 1.5 are not
trivial to abstract following mechanical procedures, since they are not decid-
able in the general case. We can however analyse and classify programming
patterns, applying engineering and AI techniques such as heuristics, symbolic
execution, machine learning, theorem provers etc. to identify appropriate and
correct abstractions of this kind.

4 Dijkstra’s Shortest Path Algorithm: Extracting
High-Level Specifications from a Java Implementation

In this section we showcase a step-by-step formal process of abstraction from
a Java implementation of the famous Dijkstra’s shortest path algorithm, up to
a high-level ASM specification of the underpinning graph traversal algorithm.
The correctness of each step of this abstraction process can be formally proven
following similar arguments to those in the refinement proofs of Sect. 3.2 of the
ASM book [9]. Automated proving would also be possible in some cases, but
that is not the focus of this work.

We start from a Java implementation (slightly adapted from the one
in https://www.baeldung.com/java-dijkstra) of the shortest path algorithm.
Rather surprisingly we show that applying our method we can extract very
similar high-level specifications to those in Sect. 3.2 of the ASM book [9].

In the Java implementation of the algorithm graph are represented as sets of
nodes. Each node is an object of the class in Listing 1.6 which has a name, an
upper bound for its distance from source, and a list of adjacent nodes.

1 public class Node {
2 private St r ing name ;
3 private I n t eg e r upbd = In t eg e r .MAX VALUE;
4 private Map<Node , Integer> adj = new HashMap<>() ;
5 public Node (St r ing name) {
6 this . name = name ;
7 }
8 public void addDest inat ion (Node de s t ina t i on , int

weight) {
9 adjacentNodes . put (de s t i na t i on , weight) ;

10 }
11 // g e t t e r s and s e t t e r s . . .
12 }

Listing 1.6. Class Node.

https://www.baeldung.com/java-dijkstra

276 F. Ferrarotti et al.

It is not difficult to see that the Java method in Listing 1.7 actually imple-
ments Dijkstra’s shortest path algorithm. This is the case mainly because: (a)
the algorithm is well known, (b) the implementation is quite standard, and (c)
the code is quite short. If either of (a), (b) or (c) does not hold, then the task
of understanding the program would certainly be more time consuming and
challenging.

1 public stat ic Graph shortes tPath (Graph graph , Node source)
2 { source . setUpbd (0) ;
3 Set<Node> v i s i t e d = new HashSet<>() ;
4 Set<Node> f r o n t i e r = new HashSet<>() ;
5 f r o n t i e r . add (source) ;
6 while (f r o n t i e r . s i z e () != 0) {
7 Node u = LowestDistanceNode (f r o n t i e r) ;
8 f r o n t i e r . remove (u) ;
9 for (Entry<Node , Integer> pa i r :

10 u . getAdj () . entrySet ()) {
11 Node v = pa i r . getKey () ;
12 I n t eg e r weight = pa i r . getValue () ;
13 LowerUpbd(u , v , weight) ;
14 i f (! v i s i t e d . conta in s (v)) {
15 v i s i t e d . add (v) ;
16 f r o n t i e r . add (v) ;}}}
17 return graph ;}
18

19 private stat ic void LowerUpbd(Node u , Node v , I n t eg e r
weight) {

20 i f (u . getUpbd () + weight < v . getUpbd ()) {
21 v . setUpbd (u . getUpbd () + weight) ;}}

Listing 1.7. Shortest path algorithm as Java program.

Let us now abstract the code of shortestPath by transforming it into a
control state ASM. We follow a very simple procedure which consists mostly
on syntactic rewriting. First we note that we can represent the omnipresent
binding or instantiation of methods and operations to given objects, by means
of parametrized functions [7]. The schema can be expressed by the equation
self .f(x) = f(self , x) or f(x) = f(self , x). The parameter self is used to denote
an agent, typically the one currently executing a given machine. This is similar
to the object-oriented current class instance this with respect to which methods
of that class are called (executed). In an object oriented spirit the parameter
self is often left implicit.

The state in which the control state ASM will operate is easily abstracted
from the input parameters to the method shortestPath, i.e., the Graph and
Node classes. We omit a detailed description here since it will be clear from the
context.

Extracting High-Level System Specifications from Source Code 277

The rewriting of shortestPath into a behavioural equivalent ASM control
state machine ShortestPath proceeds as follow:

1. Lines 2–4 in Listing 1.7 translate to simple updates of the current upper
bound value of the node source to 0 (initially set to Integer.MAX VALUE, or
∞ in ASM notation) and the values of visited and frontier to empty sets.
These three updates can be done in parallel and thus in the initial control
state s0. The update to frontier in Line 5 cannot be done in parallel with
that of Line 4. Nevertheless, a simple heuristic can easily discover that these
two updates can be collapsed into one. Thus Lines 2–5 can be translated to
the parallel updates shown in lines 3–5 in Listing 1.8.

2. The while-loop starting in line 6 requires a new control state to which the
ASM can return. If we are in this state and the condition in the while-loop
is satisfied, then the rule corresponding to the code inside the while-loop is
applied and the machine remains in control state s1. See lines 3–5 in List-
ing 1.8.

3. Lines 7–8 can be done in parallel since they require updates to different
locations. See lines 9–10 in Listing 1.8.

4. Same as the while-loop, the for-loop in line 9 calls for a new control state
and to keep track of the nodes adjacent to LowestDistanceNode(frontier)
which have not been visited yet. Once the for-loop is done, i.e., there is no
more adjacent nodes to visit, we need to return to the control state s1, since
this for-loop is nested in the while-loop being represented in that control
state. The result is shown in lines 11–16 and 22–23 of Listing 1.8.

5. The values of v and weight are only defined and used locally in lines 10–
15. In addition, lines 12–15 update disjoint state locations, and there is no
interdependency among them. Thus, we can replace lines 10–11 by a let-rule
and process lines 12–15 in parallel. See lines 17–21 in Listing 1.8.

6. Finally, the ASM rule LowerUpbd is almost identical to the LowerUpbd
method, except for the trivial differences in notation. In LowerUpbd, parame-
ter u is a location variable while parameters v and weight are logical variables.
See lines 25–27 in Listing 1.8.

1 rule ShortestPath0 =
2 i f state = s0 then
3 upbd(source) := 0
4 visited := ∅
5 frontier := {source}
6 state := s1
7 i f state = s1 then
8 i f frontier �= ∅ then
9 u := LowestDistanceNode(frontier)

10 frontier(LowestDistanceNode(frontier)) := false
11 neighb := getAdj(LowestDistanceNode(frontier))
12 state := s2
13 i f state = s2 then

278 F. Ferrarotti et al.

14 i f neighb �= ∅ then
15 choose pair ∈ neighb
16 neighb(pair) := false
17 let v = getKey(pair), weight = getV alue(pair) in
18 LowerUpbd(u, v, weight)
19 i f v �∈ visited then
20 visited(v) := true
21 frontier(v) := true
22 else
23 state := s1
24

25 rule LowerUpbd(u, v, weight) =
26 i f upbd(u) + weight < upbd(v) then
27 upbd(v) := upbd(u) + weight

Listing 1.8. Control State ASM extracted from the Java code of shortestPath.

Being ShortestPath0 a control state ASM, we can represent it using UML-
style graphical notation. This gives us the self explanatory Fig. 2.

s1 frontier �= ∅visited := ∅
frontier := {source}

upbd(source) := 0
s0

s2neighb �= ∅

choose pair ∈ neighb

no

yes
neighb := getAdj(LowestDistanceNode(frontier)
frontier(LowestDistanceNode(frontier)) := false
u := LowestDistanceNode(frontier)

neighb(pair) := false
let v = getKey(pair), weight = getV alue(pair) in

LowerUpbd(u, v, weight)
if v �∈ visited then

visited(v) := true
frontier(v) := true

Fig. 2. ShortestPath0

Examining the code in lines 15–21 in Listing 1.8 plus the rule LowerUpbd, it
is not difficult to conclude that instead of extending the frontier by one neighbour
of u at a time, we can extend it as a wave, i.e., in one step we can in parallel
extend the frontier to all neighbours of u. This is so because the choose rule that
select the neighbour to be processes in each round, implies that the order in
which this is done does not affect the result. Furthermore, there is no possibility
of clashes since the updated locations visited(v), frontier(v) and upbd(v) are all
disjoint for different values of v. Thus we can abstract from ShortestPath0 the
control state ASM ShortestPath1 in Listing 1.9 , where we replace the choose
rule by a for all rule.

Extracting High-Level System Specifications from Source Code 279

1 rule ShortestPath1 =
2 i f state = s0 then
3 upbd(source) := 0
4 visited := ∅
5 frontier := {source}
6 state := s1
7 i f state = s1 then
8 i f frontier �= ∅ then
9 u := LowestDistanceNode(frontier)

10 frontier(LowestDistanceNode(frontier)) := false
11 neighb := getAdj(LowestDistanceNode(frontier))
12 state := s2
13 i f state = s2 then
14 f o ra l l pair ∈ neighb
15 let v = getKey(pair), weight = getV alue(pair) in
16 LowerUpbd(u, v, weight)
17 i f v �∈ visited then
18 visited(v) := true
19 frontier(v) := true
20 state := s1

Listing 1.9. Abstraction of the ShortestPath0 ASM rule.

As a next step, we can simply eliminate control state s2 by using a let rule,
changing u and neighb from state locations to logical variables. The result is
shown in Listing 1.10.

1 rule ShortestPath1 =
2 i f state = s0 then
3 upbd(source) := 0
4 visited := ∅
5 frontier := {source}
6 state := s1
7 i f state = s1 then
8 i f frontier �= ∅ then
9 let u = LowestDistanceNode(frontier) ,

10

neighb = getAdj(LowestDistanceNode(frontier))
11 in frontier(u) := false
12 f o ra l l pair ∈ neighb
13 let

v = getKey(pair), weight = getV alue(pair) in
14 LowerUpbd(u, v, weight)
15 i f �∈ visited(v) then
16 visited(v) := true
17 frontier(v) := true

Listing 1.10. Abstraction of the ShortestPath1 ASM rule.

280 F. Ferrarotti et al.

At this point we have quite an abstract view of the shortest path algorithm.
We can nevertheless continue this abstraction process. An interesting possibility
to this regard is to eliminate the information regarding edge weights. In this way,
we get the ASM in Listing 1.11. It is not difficult to see that the resulting ASM
no longer calculates the shortest path from the source. It has been transformed
into an ASM that specifies the graph traversal algorithm which underpins the
shortest path algorithm.

1 rule GraphrTraversal0 =
2 i f state = s0 then
3 upbd(source) := 0
4 visited := ∅
5 frontier := {source}
6 state := s1
7 i f state = s1 then
8 i f frontier �= ∅ then
9 choose u ∈ frontier

10 frontier(u) := false
11 f o ra l l v ∈ getAdj(u)
12 i f v �∈ visited(v) then
13 visited(v) := true
14 frontier(v) := true

Listing 1.11. Abstraction of the ShortestPath2 ASM rule.

We can further abstract GraphrTraversal0 by processing all the nodes in
the frontier in parallel instead of one-by-one. This is the same idea that we use
to abstract ShortestPath1 from ShortestPath0. In this way, we get the ASM
in Listing 1.12.

1 rule GraphrTraversal1 =
2 i f state = s0 then
3 upbd(source) := 0
4 visited := ∅
5 frontier := {source}
6 f o ra l l u ∈ frontier
7 frontier(u) := false
8 f o ra l l v ∈ getAdj(u)
9 i f v �∈ visited(v) then

10 visited(v) := true
11 frontier(v) := true

Listing 1.12. Abstraction of the GraphTraversal0 ASM rule.

A somehow more abstract view can still be obtained if we simply replace
lines 8–10 in Listing 1.12 by a function defined by a sub-machine.

Extracting High-Level System Specifications from Source Code 281

5 Conclusion

We have argued that it is possible to derive high-level formal software specifica-
tions in the form of ASMs by a sequence of (semi) automated transformations,
in which each transformation increases the level of abstraction of the previous
specification in the sequence. This provides a new tool to improve the current
software (reverse) engineering practices as shown by the encouraging results of
the small experimental examples presented in this paper. The proposed approach
to software re-engineering have several advantages, including:

– Precise, yet succinct and easily understandable specifications at desired levels
of abstraction.

– Each abstraction/refinement step can be proven correct if needed. This
enables for instance to prove that the implementation satisfies the require-
ment.

– Only the first abstraction from source code to ASM rules depends from the
programming language of the implementation. Subsequent abstractions only
rely on general principles and transformations of ASM rules.

– The initial abstraction from source code to ASM can potentially be done
entirely automatically via rewriting rules.

– Enables the exploitation of abstraction for specification reuse.
– Specifications are executable for instance in CoreASM or Asmeta.
– Can be used for reverse engineering/understanding (legacy) source code.
– Can be used to produce finite state machines for model based testing. For

instance by means of refinement of the extracted high-level ASM models to
finite state machines [17].

– Interactive exploration of the design on all abstraction levels, enabling the
discovery of high-level bugs.

The natural next step is to confirm the observations in this paper within
the context of large software implementations, in the style of [1], but using
our semi-automated approach instead. For that, we aim to extend our eKnows4

platform to extract ground ASM specification from source code and experiment
with software systems of our industrial partners. In parallel, we plan to carry on
a systematic study of heuristics for the automated extraction of high-level ASM
specifications, starting from detailed ground ASM specifications. In this sense,
references [6,10] are a good starting point.

References

1. Barnett, M., Börger, E., Gurevich, Y., Schulte, W., Veanes, M.: Using abstract
state machines at microsoft: a case study. In: Gurevich, Y., Kutter, P.W., Odersky,
M., Thiele, L. (eds.) ASM 2000. LNCS, vol. 1912, pp. 367–379. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-44518-8 21

4 https://www.scch.at/de/eknows.

https://doi.org/10.1007/3-540-44518-8_21
https://www.scch.at/de/eknows

282 F. Ferrarotti et al.

2. Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms. ACM
Trans. Comput. Logic 4(4), 578–651 (2003)

3. Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms: cor-
rection and extension. ACM Trans. Comput. Logic 9(3), 19:1–19:32 (2008)

4. Börger, E.: The origins and the development of the ASM method for high level
system design and analysis. J. UCS 8(1), 2–74 (2002)

5. Börger, E.: Abstract state machines: a unifying view of models of computation and
of system design frameworks. Ann. Pure Appl. Logic 133(1–3), 149–171 (2005)

6. Börger, E.: Design pattern abstractions and abstract state machines. In: Proceed-
ings of the 12th International Workshop on Abstract State Machines, ASM 2005,
8–11 March 2005, Paris, France, pp. 91–100 (2005). http://www.univ-paris12.fr/
lacl/dima/asm05/DesignPattern.ps

7. Börger, E., Cisternino, A., Gervasi, V.: Ambient abstract state machines with
applications. J. Comput. Syst. Sci. 78(3), 939–959 (2012)

8. Börger, E., Schewe, K.: Concurrent abstract state machines. Acta Inf. 53(5), 469–
492 (2016)

9. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
642-18216-7

10. Börger, E., Stärk, R.F.: Exploiting abstraction for specification reuse. the Java/C#
case study. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2003. LNCS, vol. 3188, pp. 42–76. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30101-1 3

11. Bowen, J.P., Breuer, P.T., Lano, K.: Formal specifications in software maintenance:
from code to z++ and back again. Inf. Softw. Technol. 35(11–12), 679–690 (1993)

12. Chikofsky, E.J., II, J.H.C.: Reverse engineering and design recovery: a taxonomy.
IEEE Softw. 7(1), 13–17 (1990)

13. Ferrarotti, F., Schewe, K.-D., Tec, L.: A behavioural theory for reflective sequential
algorithms. In: Petrenko, A.K., Voronkov, A. (eds.) PSI 2017. LNCS, vol. 10742, pp.
117–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74313-4 10

14. Ferrarotti, F., Schewe, K., Tec, L., Wang, Q.: A new thesis concerning synchronised
parallel computing - simplified parallel ASM thesis. Theor. Comput. Sci. 649, 25–
53 (2016)

15. Fleck, G., et al.: Experience report on building ASTM based tools for multi-
language reverse engineering. In: IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering, SANER 2016, Suita, Osaka, Japan, 14–18
March 2016, vol. 1, pp. 683–687 (2016)

16. Grädel, E., Nowack, A.: Quantum computing and abstract state machines. In:
Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003. LNCS, vol. 2589, pp.
309–323. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36498-6 18

17. Grieskamp, W., Gurevich, Y., Schulte, W., Veanes, M.: Generating finite state
machines from abstract state machines. In: Proceedings of the International Sym-
posium on Software Testing and Analysis, ISSTA 2002, Roma, Italy, 22–24 July
2002, pp. 112–122. ACM (2002)

18. Gurevich, Y.: Reconsidering turing’s thesis: toward more realistic semantics of
programs. Technical Report CRL-TR-36-84, January 1984

19. Gurevich, Y.: A new thesis. Technical Report 85T–68-203, abstracts, American
Mathematical Society (1985)

20. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.
ACM Trans. Comput. Logic 1(1), 77–111 (2000)

http://www.univ-paris12.fr/lacl/dima/asm05/DesignPattern.ps
http://www.univ-paris12.fr/lacl/dima/asm05/DesignPattern.ps
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-540-30101-1_3
https://doi.org/10.1007/978-3-540-30101-1_3
https://doi.org/10.1007/978-3-319-74313-4_10
https://doi.org/10.1007/3-540-36498-6_18

Extracting High-Level System Specifications from Source Code 283

21. Habrias, H., Frappier, M.: Software Specification Methods. ISTE (2006)
22. Izquierdo, J.L.C., Molina, J.G.: Extracting models from source code in software

modernization. Softw. Syst. Model. 13(2), 713–734 (2014)
23. Lano, K., Breuer, P.T., Haughton, H.P.: Reverse-engineering COBOL via formal

methods. J. Softw. Maintenance 5(1), 13–35 (1993)

Data Warehousing

Thinking the Incorporation of LOD in
Semantic Cubes as a Strategic Decision

Selma Khouri(B), Abdessamed Réda Ghomari, and Yasmine Aouimer

Ecole Nationale Supérieure d’Informatique, BP 68M, 16309 Oued-Smar, Algeria
{s khouri,a ghomari,ey aouimeur}@esi.dz

Abstract. With the advent of Linked Open Data (LOD) initiatives,
organizations have seen the opportunity of augmenting their internal
data cube systems with these external data. While IT actors manage
technical issues of internal and external sources, a new actor has emerged
“the Chief Data Officer” (CDO), the role of which is to align and priori-
tize data activities with key organizational priorities and goals. Existing
literature managing the incorporation of LOD in internal Data cubes
mainly focus on technical aspects of the LOD source and ignores the
CDO role in this strategy. In this paper, we claim that technical actions
should be conducted by the managerial level, which is reflected through
the goals of the organization data cube and their related Key Perfor-
mance Indicators (KPIs). For doing this, we first propose a metamodel
aligning the three models: the data-flow model, the goal model and the
KPI model. Then, we propose a process for specifying KPIs into Sparql
language, the standard language for querying LOD sources. Experiments
are conducted to measure the impact of the decision of integrating exter-
nal LOD sources at KPI/goal level and on the technical data level. A
case tool dedicated to the CDO is implemented to conduct the proposed
approach.

Keywords: Cube & DW · Design approach · CDO · LOD · Goal ·
KPI · Managerial level · Technical level

1 Introduction

Because companies have to survive in a competitive world, they continuously
look for new information and insights collected from their internal and exter-
nal sources. The Data Warehouse (DW) of a company integrates and unifies
data from internal sources. Different studies demonstrated that valuable infor-
mation for the company DW can be found in external sources. The Linked
Open Data (LOD) are an example of representative external sources for cube
and DW projects [1,2,10,17]. LOD are a set of design principles for sharing
machine-readable data on the Web for public administrations, business and cit-
izens usages1. They use Semantic Web standards like RDF and Sparql query
1 https://www.w3.org/DesignIssues/LinkedData.html.

c© Springer Nature Switzerland AG 2019
K.-D. Schewe and N. K. Singh (Eds.): MEDI 2019, LNCS 11815, pp. 287–302, 2019.
https://doi.org/10.1007/978-3-030-32065-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_20&domain=pdf
https://www.w3.org/DesignIssues/LinkedData.html
https://doi.org/10.1007/978-3-030-32065-2_20

288 S. Khouri et al.

languages. YAGO and DBpedia2 are examples of most popular LOD portals.
When the DW integrates data from outside the company, it can provide to deci-
sion makers a unified view of their internal and external environment which
allows identifying new insights from data. To master the data of the company,
a new profile has been created which is the Chief Data Officer (CDO) who is
responsible of the development and execution of an overall data strategy for
leveraging enterprise data to drive business value3. A Data Strategy aligns and
prioritizes data and analytics activities with key organizational priorities and
goals4. In this way, the CDO connects the business strategy to its IT capabil-
ities and IT actors5 achieving concrete tasks like cleaning of data, integration
of sources, generation of reports, etc. An increasing number of tools are being
developed to help technical and IT actors by new tools relying on advanced
techniques (like ETL tools augmented on ML techniques6 or DBMS advisors for
the optimization and the tuning of the cube7). In some cases, such tools tend
to replace existing IT actors. However, these technical actions are preceded by
executive’s strategic decisions (the CDO in the foreground) concerning the rele-
vance of considering the chosen fragment of external LOD sources. CDO actors
need methods and tools to assist them for taking the appropriate decisions.

In the context of cube design alimented by LOD sources, only technical issues
have been investigated [1,2,6,9]. This is explained by the fact that existing stud-
ies assume that the CDO has decided about the relevance of external LOD source
to consider for the data strategy executed. Consequently, these studies deal with
the issue of LOD incorporation from a source-driven perspective, essentially
because they had to deal with a new data source. However these studies neglected
the managerial-driven perspective, where adding new external resources to the
DW has an impact on the organization strategy, and thus should be considered
carefully. Note that managerial level includes strategic & tactical levels [11]. Our
proposal claims for a come-back to the essence of requirements driven approach
philosophy (goal-oriented), where requirements engineering studies an organiza-
tion as a whole and is not restricted to studying technical artifacts [21]. The
evaluation of a strategy is achieved through the evaluation of the fulfillment of
defined goals. This evaluation is crucial for measuring the success of an organiza-
tion and is commonly carried out by analyzing metrics such as key performance
indicators (KPIs) that must be identified from the beginning of the design pro-
cess [20]. Our aim is to provide a bridge between the CDO vision connected to
the company strategy with the IT vision connected to data managed. The incor-
poration of external data sources is seen in this paper as a trade-off between
the added value at the managerial level and design complexity induced by the

2 http://wiki.dbpedia.org/.
3 https://www.ibm.com/downloads/cas/MQBM7GOW.
4 https://www.dataversity.net/chief-data-officer-challenge-build-data-strategy/.
5 https://www.ibm.com/downloads/cas/MQBM7GOW.
6 https://www.tamr.com/blog/three-generations-of-ai/.
7 https://aws.amazon.com/fr/blogs/machine-learning/tuning-your-dbms-

automatically-with-machine-learning/.

http://wiki.dbpedia.org/
https://www.ibm.com/downloads/cas/MQBM7GOW
https://www.dataversity.net/chief-data-officer-challenge-build-data-strategy/
https://www.ibm.com/downloads/cas/MQBM7GOW
https://www.tamr.com/blog/three-generations-of-ai/
https://aws.amazon.com/fr/blogs/machine-learning/tuning-your-dbms-automatically-with-machine-learning/
https://aws.amazon.com/fr/blogs/machine-learning/tuning-your-dbms-automatically-with-machine-learning/

Thinking the Incorporation of LOD in Semantic Cubes 289

opening of frontiers and the consideration of external resources. This complexity
is present in different design tasks like source unification (e.g. graph formal-
ism present for LOD sources), continuously checking the availability of external
sources, verifying the veracity of the source, tracking its evolution, etc. If the
decision of integrating external sources is connected to the managerial level, the
CDO will be provided by relevant indicators that indicates if these efforts are
worthy to deploy.

The problem is stated as follows: (a) considering a set of goals structured in a
goal hierarchy, (b) their related KPIs, (c) and a semantic cube schema, our app-
roach aims to answer the following question: what is the impact of incorporating
external LOD sources at the managerial and the technical levels. Note that the
existence of a semantic cube schema is an assumption made by different studies
dealing with internal and external semantic sources [6]. In our vision, the esti-
mated performance value of goals (estimated by their related KPIs) reflects the
managerial level, and the technical level is reflected by the data design-artifacts
of the semantic DW impacted by the introduction of external resources, i.e. con-
cepts, instances and data-flows. For doing this, we first propose a meta-model
aligning the three models: the goal model, the KPI model and the data model
(concepts and data-flow) of the target cube. The performance value of KPIs is
evaluated from the data sources (internal and external), and then propagated
through the goal hierarchy to evaluate the degree of satisfaction of the global goal
and thus to evaluate the organization strategy. From this vision, KPIs are central
components linking data sources to the evaluation of defined goals reflecting the
managerial situation adopted. The evaluation of KPIs performance using seman-
tic web technologies required a thorough analysis for bridging the gap between
proposed grammars for conventional KPI specification and the semantic web lan-
guages. Experiments are conducted based on QBAirbase8, a multidimensional
dataset presenting air pollution metrics. A case tool is also developed dedicated
to the CDO for monitoring the incorporation of LOD through metrics illustrat-
ing both facets discussed (technical and managerial). The paper is structured
as follows: Sect. 2 presents the related work. Section 3 presents the background
related to goals and KPIs performance. Section 4 details the proposed meta-
model. Section 5 describes the proposed approach. Section 6 presents different
experiments conducted and the case tool implementing the approach. Section 7
concludes the paper.

2 Related Work

Literature related to the design of conventional DWs identified two maim
approaches [18]: source-driven and requirements-driven approaches. Historically,
the first category of approaches has been proposed before the second category
each time a new source (Relational, XML, Tweets, LOD, etc.) emerged as a can-
didate for DW systems. This can be explained by the fact that designers have
to investigate the source first for evaluating its worthiness. On the one hand, we
8 http://qweb.cs.aau.dk/qboairbase/.

http://qweb.cs.aau.dk/qboairbase/

290 S. Khouri et al.

have proposed different studies that demonstrate the usability of requirements
for different components of the DW system [7]. On the other hand, since the
worthiness of LOD for DW projects has been established, we claim to a return
to a requirements-driven approach when considering this external source.

Different studies have been devoted to the incorporation of LOD technology
into OLAP space. Most of studies focused on solving some technical issues iden-
tified in this source, these issues are identified during the design or during the
querying of the cube.

(i) During the design: some studies focus on the definition of the cube schema
by managing: the unification of internal and external schemas [6] or the identifi-
cation of the multidimensional role of the new external resources to integrate [1].
While other studies focus on the integration process by managing the definition
of the ETL process used to unify internal and external sources. For example,
[2] proposes an incremental fetching and storing of LOD and other external
resources on-demand using an optimization process that determines a set of
extractions that cover all the missing information with a minimum cost. [6] pro-
poses a programmable semantic ETL framework from internal relational sources
and linked data sources. (ii) During querying: these studies mainly focus on
the definition of OLAP operators adapted for LOD datasets [17,19]. The result
of OLAP queries defined on the DW are merged with results of Sparql queries
defined on the LOD.

Because these studies are mainly source-driven, they only consider techni-
cal issues related to some defined design tasks. Contrary to existing studies,
our proposal reconnects LOD sources incorporation to the goals conducting the
cube design. Note that the proposed approach can be seen as complementary
to existing studies cited, in the sense that it provides a complementary and
managerial view of the decision of LOD incorporation in the OLAP cube of the
company. For ensuring the usability of our approach with existing studies, we
defined it at the conceptual level. This study is also complementary to our pre-
vious study [13] where a goal-driven approach has been defined for calculating
the organizational value of LOD. This paper completes the study by managing
the trade-off between technical and managerial levels, and proposes a method
and a tool dedicated to the CDO.

3 Background

This section defines the main concepts related to goals and related KPIs.

Goals and Related KPIs. Goals represent a desired state-of-affairs, defined
during strategic planning and pursued during business operation [3]. A Key Per-
formance Indicator (KPI), is an industry term for a measure or metric (quanti-
tative or qualitative) that evaluates performance with respect to some objective
[3]. Indicators are used to measure the fulfillment of strategic goals. For example,
the indicator “The rate of decrease/increase in annual mean of NO2 concentra-
tions observed at traffic stations compared to year X-1” can measure the goal
“Lower annual mean of NO2 concentrations observed at traffic stations in year

Thinking the Incorporation of LOD in Semantic Cubes 291

X”. Choosing the right indicators for a given goal is a complex issue that has
been treated in literature. In the current study, we assume that goals and their
related KPIs are well defined.

The goals (resp. their related indicators) can be presented as hierarchies
(Fig. 1) modeled using AND/OR tree hierarchies of sub-goals (resp. KPIs) to
reflect a decisional situation. In the goal hierarchy, the satisfaction of a goal
depends thus on the satisfaction of its subgoals. Influence relationships (also
called contribution relationships) can be defined between goals, meaning that a
goal’s satisfaction may be affected positively or negatively by defined goals other
than its subgoals.

Fig. 1. Goals and related KPIs hierarchies

Indicators Values. The value of an indicator for an object depend on the
values of indicators for objects one level lower in the hierarchy [3]. Values of
indicators from a lower level to a higher level in a hierarchy are calculated using
propagation technique, similar to label propagation in goal reasoning, where the
satisfaction of a goal can be inferred from that of others in the same goal model.
Each indicator, being a composite or component, has a current value which is
evaluated using a set of parameters: target value, threshold value and worst value
[3]. The current value is either supplied by users to conduct what-if analysis sce-
narios, or it can be extracted from data analysis which is the scenario considered
in our approach. By this mean, indicators analysis are the bridge between data
sources (internal and external) considered and the goals to achieve, which is the
main statement of our study. Considering a hierarchy of indicators (Fig. 1), the
current values of leaf indicators is extracted from data sources, and the values
of non-leaf indicators is calculated using metric expressions (when possible) or
estimated following a qualitative approach. The propagation of indicators values
in the hierarchy from a lower level to higher levels (i.e. composite indicators) can

292 S. Khouri et al.

be done using different quantitative and qualitative techniques depending on the
availability of the domain information. Different studies present in detail three
well-known techniques: conversion factors, range normalization, and qualitative
reasoning [12]. In our approach, we use the qualitative reasoning because metric
expressions are not always available and because this approach allows highlight-
ing inconsistencies by identifying conflicts among goals, which is an important
design indicator when dealing with external sources.

KPIs Values Propagation. Qualitative reasoning relies on two variables: pos-
itive performance (per+) and negative performance (per+) that are assigned to
each indicator, and that take their values ranging in (“full”, “partial”, “none”).
These values are assigned according to mapping rules defined in [12] and illus-
trated in Fig. 2. For instance, when the current value of an indicator is between
its threshold value TH and the target value t, (per+) is set to “none” and (per-)
is set to “partial”, indicating that an evidence that the indicator is partially
non-performant. The propagation of values to higher levels indicators is based
on propagation rules defined in Fig. 3 [12]. For example, assuming that indicators
I1, I2 and I3 are associated to goals G1, G2 and G3, and an AND relationship is
defined G1: G2 AND G3, we need to identify the values of variables (per+ and
per-) of the composite indicator I1 from its component indicators I2 and I3. In
this case, (per+) of I1 is equal to the minimum(per+(I2), per+(I3)), and (per-)
is equal to max(per-(I2), per-(I3)). Note that in this table, the (or), (+D), (-D),
(++D), (- -D) cases are dual w.r.t. (and), (+S), (-S), (++S), (- -S) respectively
[12].

Fig. 2. Calculation of performance and result for indicators (t = target value, cv =
current value, th = threshold value, w = worst value) [12]

In our approach, the set of leaf goals is considered incrementally to reflect
the real situation where a company must integrate new requirements, which
may require external resources in the cases in which internal resources are not
sufficient to express the goal. The goal of our approach is to provide indicators
reflecting the impact of considering external resources. For each goal, a KPI
is defined. The performance of KPIs corresponding to leaf goals is calculated
against data sources using Sparql queries, then propagated to higher level goals
(see Fig. 1). The technical impact is evaluated by tracing data design artifacts
impacted from the goal considered to the target cube.

Thinking the Incorporation of LOD in Semantic Cubes 293

Fig. 3. Propagation of indicators performance values (N indicates None, P Partial) [12]

4 Proposed Metamodel for Connecting the Incorporation
of LOD to the Managerial Level

The proposed metamodel is illustrated in Fig. 4. KPIs are the core component of
this model since they provide the link between the decision of incorporating the
LOD and the managerial level reflected by goals. The KPI model is borrowed
from [15], it is mainly composed of the set of KPIs characterized by a name,
status values and the Sparql query defining the schema which, when evaluated on
the source, provides the current value of the KPI. Each KPI is defined to measure
the performance of a goal, the KPI class is thus connected to the goal class. We
have provided in previous studies [14] a detailed analysis of the DW design
cycle, which allows us to have a global picture of connection between the various
design artifacts used. Each goal is characterized by two coordinates (result and
criteria). The goal model is connected to the data source model (internal and
external) where each goal coordinates require a fragment of the data source for
its definition (concept, property or expression using concepts and properties).
The data flow model represents the process for integrating data sources into
the target cube schema of the cube. This data flow (ETLWorkflow class) is
defined by mappings identified by the designer. Each mapping is described on
the basis of extraction operators, contextualization (from the external concept to

Fig. 4. Metamodel connecting Goal, KPI, Data and Data-flow models

294 S. Khouri et al.

an internal concept), transformation and loading (e.g. context, extract, retrieve,
union, merge, etc.).) (class ETLOperator) ([4]).

Because the main language underlying LOD datasets is RDF, we defined
data model (underlying sources and target cube) based on RDF model artifacts
mainly composed of Concepts (class, property and instance), a multidimensional
annotation (for the target schema), and the dataset to which the concept belongs.
Each dataset is described by a unique URI. Different studies relies on the defini-
tion of an unified semantic schema (existing or constructed) to unify the sources
[1,4,6]. It is this semantic scheme that we use to evaluate the actual values of the
indicators. The process for constructing this schema is out of the scope of this
study. Following a requirements driven approach philosophy, the set of goals are
defined by decision makers and projected on the set of data sources, first internal
sources and external sources when necessary. The goal model is thus connected
to the data source model, where each goal coordinate (result and criteria) is
defined using a data source artifact. The ETL model reflects the data flow from
the set of sources to the target cube.

5 Proposed Approach for Measuring the Impact of LOD
Incorporation in the Semantic Cube

Based on the proposed metamodel that aligns technical and managerial levels,
we propose an approach illustrated in Fig. 5 which aim is to measure the impact
of LOD incorporation in the semantic cube.

Fig. 5. General Approach to measure the impact of LOD incorporation in the semantic
cube

5.1 Approach Overview

The following algorithm provides the main steps of measuring the impact of LOD
incorporation at technical and managerial level. Assuming the existence of:

Thinking the Incorporation of LOD in Semantic Cubes 295

(1) a semantic Cube, and more precisely we assume the existence of the semantic
schema of cube defined in RDF, unifying internal and required external schema.
Note that this asumption is required and present in most studies defined a cube
from external sources [6].
(2) the set of goals and related KPIs identifying the fragments of sources required.
The algorithm starts by tracing the impact of each goal inserted on the fragments
of sources using the metamodel proposed. Then, it defines the impact of each
goal on the KPI level.

5.2 Impact at Technical Level

Algorithm 13 starts by tracing the impact of each goal inserted on the fragments
of sources (presented by SemCube) using the model proposed in Fig. 4.

Using the following transitivity rule: If object x is related to object y and
object y is in turn related to object z, then object x is also related to object z,
SemCube can infer the different traces to consider. The rule is formalized in
SemCube using SWRL9 language.

Inputs: Goals and KPIs hierarchy (Set Goals and Set KPIs), semantic schema of the cube (SemCube)
- External resources
Result: Technical & managerial Traces

1: for all Gi ∈ Goals (and associated KPI) do
2: Add leaf Goal to hierarchy

� Impact at technical level, cf. section 5.2
3: Concepts := TraceConcepts (Gi)
4: Extract TraceNodes (Gi) � Extract Nodes (i.e. concepts and properties of the data model)

related to each goal
5: Identify internal and external nodes by their URI
6: Extract TraceMappings (Gi) � Extract mappings related to concepts of each goal
7: Extract TraceInstances (Gi) � Extract instances related to concepts of each goal

� Impact at managerial level
8: Formalize KPI � cf. section 5.3
9: Translate KPI to Sparql query on SemCube � cf. section 5.3
10: Measure positive and negative performance (Per+ and Per-) of the KPI � cf. section 5.3
11: Values propagation in KPIs hierarchy � cf. section 5.3
12: Identify conflictual goals � cf. section 5.3
13: end for

Trace(?T1, ?T2), Trace(?T2, ?T3) -> Trace(?T1, ?T3)

Each goal is related through its coordinates (result and criteria) to concepts
and properties of the global schema (that are directly related to other concepts),
these results and criteria are defined following the target schema, and they are
alimented by data-flows defined in the meta-schema of SemCube. Following these
connections, we can infer the set of traces to consider by introducing a new
goal requiring internal and external resources. These traces present a relevant
indicator to evaluate the design complexity of considering these resources.

9 https://www.w3.org/Submission/SWRL/.

https://www.w3.org/Submission/SWRL/

296 S. Khouri et al.

5.3 Impact at Managerial Level

The impact at the organization level is based on the core component linking
technical and managerial levels: the KPIs.

1. KPIs Specification. An Indicator is defined as an expression that can be
optionally projected using the multiple axis in the analysis cube or restricted to
a certain data subspace [16]. For example, “Annual mean NO2 concentrations
observed at traffic stations in year X compared to year X-1” is an indicator
expression. Maté et al. [16] proposed a specification (in a structured natural
language) for KPIs that we use in our approach. First, a restriction constrains
the calculus of the KPI to define a data subspace (a subcube) in which the
KPI value is calculated. The specification defines a KPI expression as simple
or complex values that are obtained by applying successive binary operators
(for example, “minus” in the previous example). Each KPI value is calculated
by applying an optional unary operator (“mean” in the previous example) to a
value across a set of dimension levels (e.g. “Year”). Values can be constrained to
meet certain boolean conditions independently from the set of levels (e.g. “equal
to 2008”).

Note that the KPI of the new goal is evaluated on SemCube which is extended
by new external resources. The extension is achieved by the designer (on the
ontology schema). The most intuitive extension is to consider the result as a new
fact and the criteria as dimensions for this fact. However, this issue is related
to multidimensional annotation of semantic cube which has been extensively
studied. The goal of evaluating KPIs at this semantic level is to obtain indicators
about the relevance of considering these new goals (requiring external resources),
before effectively considering them at the effective physical cube usually stored
in a semantic DBMS and exploited by OLAP tools. Another advantage is that
data-flow processes can be defined (to identify the technical impact of the new
goal), but can be executed an optimized once the relevance of incorporating the
new goal is effectively proven.

2. Translating KPIs to Sparql queries. The proposed specification facil-
itates communication between CDO and decision makers, but it is still difficult
to translate such specification (in structured natural language) to a formal lan-
guage like Sparql. Our goal was to find a suitable intermediate OLAP conceptual
language that can support all constructs of the KPI specification defined in the
previous section, and that can be easily translated into Sparql language. We
chose cube query language (CQL) as an intermediary language, to achieve the
translation of KPIs to Sparql queries. CQL is proposed in [5] as a conceptual
language for querying data cubes for OLAP analysis, using the Semantic Web
technologies, and provides a simplified way for expressing queries that can be
translated into SPARQL expressions, following a nave approach. We use CQL to
express KPIs at a conceptual level, KPIs are then translated into Sparql queries
following study [8]. Note that in [8], CQL is expressed over QB4OLAP cubes,
but can be easily adapted to RDF cubes.

Thinking the Incorporation of LOD in Semantic Cubes 297

We start by presenting CQL briefly. CQL provides a set of operators classified
into two groups: (1) instance preserving operations (IPO) that navigate the cube
instance to which the input cuboid belongs; and (2) instance generating operations
(IGO) that generate a new cube instance. The Roll-up and Drill-down operations
belong to the first group, while Slice, Dice and Drill-across belong to the second.
Considering the following sets: C is the set of all the cuboids in a cube instance, D
is the set of dimensions, M is the set of measures, L is the set of dimension levels,
and B is the set of Boolean expressions over level attributes and measures. The
operators are defined as follows: DICE(cube name, Phy), ROLL-UP(cube name,
Dimension→level, (measure, aggregate function)*), SLICE(cube name,
Dimension, ROLL-UP(cube name, Dimension All, Aggregate function)),
DRILL-ACROSS(cube name 1, cube name 2) and MAP(cube name, (measure,
function)*).

For example, a dimension cube of QBOAirbase is defined in CQL as follows:
CUBE QBOAirbase

DIMENSION Station LEVEL Station LEVEL City LEVEL Country

Station ROLL-UP to City City ROLL-UP to Country For example, the following
goal of QBOAirbase: “maintain average concentration by type of station, city
and year, expressed in g/m, under threshold X ”, has as related KPI: “average
concentration by type of station, city and year, expressed in g/m”

This KPI is translated into CQL language as follows: C1 ← Slice(SemCube,

Sensor) C5 ← RollUp(C1, (Station → City, Time → Year), AVG (Observation))

This query is translated into the following Sparql query (using the algorithm
we defined in [13], based on study [8]):

select avg(?avgno2) where {

SELECT ?type ?city ?pollutant (avg(?no2) as ?avgno2) WHERE {

?s property:type ?type . ?obs schema:station ?s .

?obs rdf:type qb:Observation . ?obs ?p ?no2 .

?s schema:inCity ?city . ?obs schema:sensor ?sen .

?sen schema:measures ?comp . ?comp property:caption ?pollutant .}

GROUP BY ?type ?city ?pollutant}

3. KPIs values propagation. In our approach, we use qualitative reason-
ing to propagate values of composite KPIs to component KPIs. We have detailed
in Sect. 3 the details of this technique. We illustrate it in the next section through
the proposed case study. Conflicts can be identified when an indicator is an evi-
dence of an indicator is identified as “fully performant” from one path (for
instance I1: I2 AND I3) and another evidence is identified as “non performant”
from another path (for instance I4 influences I1, and following Fig. 2, the indi-
cator is identified as “non performant”). Such information when the composite
indicator is calculated relying on external source is important for the CDO, since
she can decide to materialize these external resources until the indicator is fully
performant.

298 S. Khouri et al.

6 Case Study

Our experiments are based on the following case study using QBAirbase10, a mul-
tidimensional provenance-augmented version of the Airbase dataset. QBOAir-
base represents air pollution information as an RDF data cube, which has been
linked to the YAGO and DBpedia knowledge bases. QBOAirbase is based on
the version 8 of the Airbase dataset11. In QBOAirbase an observation is asso-
ciated to a measurement of a single pollutant and is defined by its coordinates
in a set of dimensions. For instance, in QBOAirbase the concentration of an
air pollutant is measured at a location, at certain time, and under some sensor
configurations. The QBOAirbase’s cube structure is defined in http://qweb.cs.
aau.dk/qboairbase/QBOAirbase.ttl and its visual representation is illustrated in
http://qweb.cs.aau.dk/qboairbase/. QBOAirbase proposes a set of queries that
we used as the set of goals. Some queries have been adapted to rely on external
sources and mainly on YAGO. Based on these queries, we have constructed the
goal hierarchy illustrated in Fig. 1. Some examples of leaf goals are: “Decrease
the annual mean NO2 concentrations observed at traffic stations” or “Decrease
the ratio of urban population that has been exposed to more than 18 um/g3
of O3”. Our experiments was conducted by considering the set of goals incre-
mentally, to analyze the impact of adding new goals, requiring internal and/or
external resources, on the cube design at both levels (managerial and technical
levels). Table 1 illustrates the impact of goals consideration at the managerial
level. The table contains for each leaf goal: (1) the KPIs identified for each goals,
(2–5) the set of values: worst value, threshold value, target value (that we esti-
mated randomly) and current values calculated from the internal and external
sources (more precisely on the semantic schema of the cube SemCube). (6 & 7)
Per+ and Per- values of leaf goals (calculated based on Fig. 2), (8) KPI result of
leaf goals, (9–11) KPI result of intermediate goals in the hierarchy (SubGoal1,
SubGoal2 & SubGoal3) calculated using Fig. 3, (13) KPI result of the global goal
also calculated based on Fig. 3, (14) the identification of a conflict due to the
incorporation of the goal (recall that goals are considered incrementally which is

Table 1. Calculate performance and result for indicators (t = target value, cv =
current value, th = threshold value, w = worst value)

KPIs Worst value Threshold value Target Value Current value Per+ Per- Goal result SubGoal1 result SubGoal2 result SubGoal3 result Global goal result new conflicts
1 -2 -3 -5 -1,77 none full FNP FNP / / fully non performant no
2 -1 -2 -3 -1,02 none partial PNP FNP PNP / fully non performant no
3 -1 -2 -3 -1,57 none partial PNP FNP PNP / fully non performant no
4 -2 -3 -5 -2,75 none partial PNP FNP PNP / fully non performant no
5 -2 -3 -5 -1,93 none partial PNP FNP PNP / fully non performant no
6 -1 -2 -3 0,78 none full FNP FNP FNP / fully non performant no
7 40 45 50 40,92 none partial PNP FNP Conflict / fully non performant yes
8 190 170 160 173,61 partial none PP FNP FNP PP fully non performant no
9 >0 0 <0 -387,00 full none FP FNP FNP PP fully non performant no
10 > 0 0 <0 0 partial none PP FNP FNP PP fully non performant no
11 2 0 -2 -2 full none FP FNP FNP PP fully non performant no
12 300 280 270 268,85 none partial PNP FNP FNP conflict conflict yes

10 http://qweb.cs.aau.dk/qboairbase/.
11 https://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-

quality-database-8.

http://qweb.cs.aau.dk/qboairbase/QBOAirbase.ttl
http://qweb.cs.aau.dk/qboairbase/QBOAirbase.ttl
http://qweb.cs.aau.dk/qboairbase/
http://qweb.cs.aau.dk/qboairbase/
https://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-8
https://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-8

Thinking the Incorporation of LOD in Semantic Cubes 299

the most usual scenario). Note that, in the content of the table and in the next
figures, PP indicates Partially Performant, PNP: Partially Non Performant, FP:
Fully performant and FNP: Fully non performant.

The table illustrates to the CDO how the incremental incorporation of goals
affects the design based on the KPIs results. The table indicates that the global
goal becomes mainly fully non performant for all goals, meaning that the set
of goals should be monitored until their fulfillment. The CDO might decide to
materialize the external source fragment until the goals are fulfilled. KPIs val-
ues of intermediate goals (SubGoal1 & SubGoal2) are usually non performant
whereas SubGoal3 is partially performant. The consideration of Goal7 intro-
duces a conflict in the goal hierarchy. The conflict occurred because the interme-
diate goal (SubGoal2) is performant when propagating the values of leaf goals
(Goal2, Goal3 and Goal6), and it is performant when propagating the influence
of (Goal7) (see Fig. 1). Goal12 also introduces a conflict in the goals hierar-
chy. These conflicts indicate to the CDO that either her goal strategy must be
reviewed (one branch cannot be satisfied), or that she must consider the goal
(and its external fragment) causing the non performance of the goal and thus
the conflict until the satisfaction of the goal. Figure 6 illustrates the KPI per-
formance values for each leaf goal, and the impact on the KPIs performance of
subgoals (intermediate) and of the global goals.

Fig. 6. KPIs performance values for leaf goals, subgoals and the global goal

We have also developed a case tool dedicated to the CDO to illustrate our
approach of considering RDF cubes alimented by internal and external sources.
Our goal is to provide the CDO a fully requirement-driven approach that pro-
vides indicators to the CDO about the impact of considering new requirements
that require external sources, on her design process. The tool is based on the
definition of SemCube schema, the set of goals and their KPIs (provided by the
CDO or the designer). Figure 7 illustrates the main interfaces of the tool. Both
aspects (managerial and technical) are illustrated in the tool. The first part of
the tool shows the impact of goals at technical level (requirements, nodes and
mappings considered), the second part of the tool illustrate the performance of

300 S. Khouri et al.

KPIs for each goal. Concerning the performance values of KPIs, we have rep-
resented the last iteration in the tool, and the goal that caused a conflict. The
tool also allows the CDO to redefine design tasks by adding/modifying the set of
requirement, nodes and ETL processes. The tool is developed in Java, SemCube
schema is accessed using Jena API.

Fig. 7. Case tool interfaces

7 Conclusion

In this paper, we first proposed a metamodel aligning managerial and technical
levels of cube design. Based on this metamodel, we proposed an approach and a
tool dedicated to the CDO for assisting her during the process of LOD incorpo-
ration in the DW system of the company. Considering external sources like LOD
is an organization decision that should be connected to the goals and strategy
of the company, before considering technical aspect of LOD incorporation. Our
approach identified KPIs as key components that connects the company strategy
and the data sources that are considered. One key step in this approach is the
transition of a KPI specification on LOD sources. Experiments and a tool for
the CDO are presented that measure using different metrics the tradeoff between
the technical efforts required by the consideration of a LOD fragment and its
impact on the strategy represented by a set of goals. This study should be com-
pleted by a materialization strategy according to the indicators provided, the
management of complex goal hierarchies including weights in the branches and
by the validation of the approach on some real companies DW.

References

1. Abelló Gamazo, A., Gallinucci, E., Golfarelli, M., Rizzi Bach, S., Romero Moral,
O.: Towards exploratory OLAP on linked data. In: SEBD, pp. 86–93 (2016)

2. Baldacci, L., Golfarelli, M., Graziani, S., Rizzi, S.: Qetl: an approach to on-demand
etl from non-owned data sources. DKE 112, 17–37 (2017)

Thinking the Incorporation of LOD in Semantic Cubes 301

3. Barone, D., Jiang, L., Amyot, D., Mylopoulos, J.: Reasoning with key perfor-
mance indicators. In: Johannesson, P., Krogstie, J., Opdahl, A.L. (eds.) PoEM
2011. LNBIP, vol. 92, pp. 82–96. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24849-8 7

4. Berkani, N., Khouri, S., Bellatreche, L.: Value-driven approach for designing
extended data warehouses. In: DOLAP (2019)

5. Ciferri, C., Ciferri, R., Gómez, L., Schneider, M., Vaisman, A., Zimányi, E.: Cube
algebra: a generic user-centric model and query language for olap cubes. Int. J.
Data Warehouse. Min. (IJDWM) 9(2), 39–65 (2013)

6. Deb Nath, R.P., Hose, K., Pedersen, T.B.: Towards a programmable semantic
extract-transform-load framework for semantic data warehouses. In: DOLAP, pp.
15–24 (2015)

7. Djilani, Z.: Donner une autre vie à vos besoins fonctionnels : une approche dirigée
par l’entreposage et l’analyse en ligne. (Give Another Life to Your Functional
Requirements : An Approach Drvicen by Warehousing and Online Anaysis). Ph.D.
thesis, École nationale supérieure de mécanique et d’aérotechnique, France (2017)

8. Etcheverry, L., Vaisman, A.: Querying semantic web data cubes. In: AMW, pp.
11–23 (2016)

9. Etcheverry, L., Vaisman, A., Zimányi, E.: Modeling and querying data warehouses
on the semantic web using QB4OLAP. In: Bellatreche, L., Mohania, M.K. (eds.)
DaWaK 2014. LNCS, vol. 8646, pp. 45–56. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10160-6 5

10. Gallinucci, E., Golfarelli, M., Rizzi, S., Abell, A., Romero, O.: Interactive multi-
dimensional modeling of linked data for exploratory olap. Inf. Syst. 77, 86–104
(2018)

11. Gray, C.S.: Modern Strategy, vol. 42. Oxford University Press, Oxford (1999)
12. Horkoff, J., et al.: Strategic business modeling: representation and reasoning. SSM

13(3), 1015–1041 (2014)
13. Khouri, S., Aouimer, Y., Bellatreche, L., Ghomari, A.R.: Intgrer les LOD dans

un cube de données : transformer une action technique en une dcision organisa-
tionnelle. In: To appear in Journes Entrepts de Donnes et Analyse en ligne (EDA
2019). RNTI (2019)

14. Khouri, S., Semassel, K., Bellatreche, L.: Managing data warehouse traceability: a
life-cycle driven approach. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.)
CAiSE 2015. LNCS, vol. 9097, pp. 199–213. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-19069-3 13

15. Maté, A., Trujillo, J., Mylopoulos, J.: Conceptual modeling for indicator selection.
Conceptual Modeling Perspectives, pp. 55–68. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67271-7 5

16. Maté, A., Trujillo, J., Mylopoulos, J.: Specification and derivation of key perfor-
mance indicators for business analytics: a semantic approach. DKE 108, 30–49
(2017)

17. Matei, A., Chao, K.-M., Godwin, N.: OLAP for multidimensional semantic web
databases. In: Castellanos, M., Dayal, U., Pedersen, T.B., Tatbul, N. (eds.) BIRTE
2013-2014. LNBIP, vol. 206, pp. 81–96. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46839-5 6

18. Rizzi, S., Abelló, A., Lechtenbörger, J., Trujillo, J.: Research in data warehouse
modeling and design: dead or alive? In: DOLAP, pp. 3–10 (2006)

19. Saad, R., Teste, O., Trojahn, C.: OLAP manipulations on RDF data following a
constellation model. In: 1st International Workshop on Semantic Statistics (2013)

https://doi.org/10.1007/978-3-642-24849-8_7
https://doi.org/10.1007/978-3-642-24849-8_7
https://doi.org/10.1007/978-3-319-10160-6_5
https://doi.org/10.1007/978-3-319-10160-6_5
https://doi.org/10.1007/978-3-319-19069-3_13
https://doi.org/10.1007/978-3-319-19069-3_13
https://doi.org/10.1007/978-3-319-67271-7_5
https://doi.org/10.1007/978-3-319-67271-7_5
https://doi.org/10.1007/978-3-662-46839-5_6
https://doi.org/10.1007/978-3-662-46839-5_6

302 S. Khouri et al.

20. Silva Souza, V.E., Mazn, J.N., Garrigs, I., Trujillo, J., Mylopoulos, J.: Monitoring
strategic goals in data warehouses with awareness requirements. In: ACM SAC,
pp. 10–75 (2012)

21. Tort, F., Teulier, R., Grosz, G., Charlet, J.: Ingénierie des besoins, ingénierie des
connaissances: similarités et complémentarités des approches de modélisation. In:
Journées francophones d’ingénierie des connaissances, pp. 263–275 (2000)

Implementing Window Functions in a
Column-Store with Late Materialization

Nadezhda Mukhaleva2 , Valentin Grigorev1,2 ,
and George Chernishev1,2,3(B)

1 Information Systems Engineering Lab, JetBrains Research,
Saint Petersburg, Russia

valentin.d.grigorev@gmail.com, chernishev@gmail.com
2 Saint Petersburg University, Saint Petersburg, Russia

nmukhaleva@gmail.com
3 National Research University Higher School of Economics, Moscow, Russia

https://research.jetbrains.org/groups/information lab,

http://english.spbu.ru/, https://spb.hse.ru/en/

Abstract. A window function is a generalization of the aggregation
operation. Unlike aggregation, the cardinality of its output is always the
same as the cardinality of input. That is, the semantics of this operator
imply computing values for extra attributes for each row, depending on
its context, either expressed by a sliding window or a previously eval-
uated row. Window functions are a very powerful tool, which is also
popular among data analysts and supported by the majority of indus-
trial DBMSes. It allows to gracefully express quite complex use-cases,
such as running sums and averages, local maximum and minimum, and
different types of ranking. Since they can be expressed without self-joins
and correlated subqueries, their evaluation can be performed much more
efficiently.

In this paper we discuss an implementation of window functions inside
a disk-based column-store with late materialization. Late materialization
is a technique that aims to keep tuple reconstruction back from individual
columns as long as possible. Initially popular in the late 00’s, it is rarely
considered nowadays. However, in case of window functions it allows to
substantially lower memory footprint. Another contribution of this paper
is the application of a segment tree to computing RANGE-based window
functions.

Keywords: Window function · Analytical function · Aggregation ·
Column-store · Query processing · Late materialization · OLAP ·
PosDB

1 Introduction

A column-store is a type of DBMS designed specifically for handling analytic
applications. Its core idea is to store each attribute separately, either on disk or in
c© Springer Nature Switzerland AG 2019
K.-D. Schewe and N. K. Singh (Eds.): MEDI 2019, LNCS 11815, pp. 303–313, 2019.
https://doi.org/10.1007/978-3-030-32065-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_21&domain=pdf
http://orcid.org/0000-0002-8552-9274
http://orcid.org/0000-0003-4235-3712
http://orcid.org/0000-0002-4265-9642
https://doi.org/10.1007/978-3-030-32065-2_21

304 N. Mukhaleva et al.

memory. This type of storage allows to implement the so-called lightweight com-
pression schemes [9] efficiently due to the resulting data homogeneity. Column-
stores both store and operate on data in columnar form. Processing style allows
to classify column-stores into early and late materializing systems [2]. In the for-
mer, data is stored and processed in columnar form only on the lowest levels of
the operator tree [8]. Usually, it happens as follows: each column is read, decom-
pressed and filtered. Then, all columns corresponding to attributes of a single
table are “glued” together (i.e. tuples are reconstructed), after which processing
continues similarly to a row-store. In the latter, tuple reconstruction is delayed
to the latest possible time. Up until this moment, the system operates on posi-
tions. The majority of existing column-stores employ early materialization, and
there is only a handful of systems that support late materialization [2].

Window function (or analytic function) is a concept that was proposed in
reference [3] and later became a part of the SQL:2003 standard. Its evaluation
is as follows: similarly to aggregation, data is partitioned into several groups.
Next, a sort may be applied to data from each group. The third step depends
on the specific window function. One class of window functions uses framing,
which is a process described as follows: (1) a sliding window is determined for
each row, (2) an aggregation is performed for the data in the window, (3) the
result is “added” to the current row. Another class operates on an entire group:
it computes new values for each row using the ones of the previously processed
row (e.g. RANK).

In this paper, we discuss the implementation of window functions inside a
column-store with late materialization that supports on-demand reading of indi-
vidual columns. Employing late materialization may allow to speed up processing
of such queries and reduce memory footprint, which is very important for this
operation. We validate our approach by implementing it inside PosDB [5,6]—a
distributed disk-based column-store with late materialization—and comparing
it with PostgreSQL.

Overall, the contribution of this paper is the following:

1. An adaptation of the window function processing approach for column-stores
with late materialization. We present three different strategies which are suf-
ficiently generalized to be implemented in any column-store that allows per-
attribute data reading.

2. A model for estimating memory requirements for each of these strategies.
3. An enhancement of the segment tree technique for processing RANGE-based

window functions.

2 Window Function Processing: Approaches
and Algorithms

In this section, we discuss how to design the operator for window function evalu-
ation. A comprehensive overview of existing approaches can be found in the arti-
cle [11]. Overall, Window Operator can be implemented using two algorithms:

Window Functions in Column-Store 305

classic and segment tree-based. These algorithms have a significant common part
which is as follows: at first, partitioning and in-group ordering is performed.
Next, groups are iterated over and each of them is processed independently of
others. The distinction between these two algorithms is the group processing
itself. The classic algorithm goes through tuples belonging to a single group
while performing the following. For each tuple it computes frame bounds and
then evaluates the window function over the data belonging to the frame. There
are two possible approaches to this: naive and cumulative. The naive approach is
straightforward: it calculates data from scratch for every frame instance. On the
other hand, the idea of cumulative approach is to store the results of processing
of the previous frame and to reuse them to evaluate current frame faster. It is
very efficient in case of the SUM window function: the result for the previous
frame is saved and using only one or two (one if any border of the frame is
fixed and two otherwise) arithmetic operations allows to obtain a result for the
current frame1.

In case of the MIN and MAX window functions, the cumulative approach can
be implemented by preserving the previous frame using a binary search tree.
This is not as promising, but still can be useful, especially for large windows. It
is straightforward to find window bounds defined by the ROWS clause while for
the RANGE one they can be found using binary search.

As it was already mentioned earlier, another way of window processing is
based on the segment tree data structure [1]. This approach is relatively novel:
it has been proposed in 2015 in the paper [11]. This approach is as follows: at
first, a segment tree is created from group data, and then tuples are iterated over.
However, instead of computing over the current frame, a request is issued to the
segment tree. This approach allows to efficiently evaluate window functions that
have frame borders depending on the current row and to implement intra-group
parallelism.

In the original paper, it was considered only for the ROWS framing. In our
paper, we propose a slightly generalized segment tree that can be utilized for
RANGE-based window functions too. Details of this generalization are described
in the Sect. 3.2. Window functions that do not require framing can be evaluated
with a simplified version of the classic algorithm.

3 Proposed Approach

3.1 Adapting Classic Algorithm for PosDB

While in row-stores and column-stores with early materialization, the algorithm
of the Window Operator is defined quite clearly, systems with late materializa-
tion can offer a variety of options. The variations are largely associated with the
point of materialization inside the operator.

1 Note that it is assumed here that frame offset does not depend on the current row
value. Otherwise, the cumulative approach is still attractive, but not as dramatically.

306 N. Mukhaleva et al.

In PosDB, every query plan consists of two parts: positional- and tuple-
oriented. If Window Operator is located after aggregation in a query plan, then
its inputs are tuple blocks, and evaluation can be performed by one of previously
described algorithms without any changes. But if Window Operator receives
positional data, we have to decide when tuples should be materialized. This task
is not as simple as it may seem. There are several approaches possible.

Strategy 1. Tuples are materialized during hash table population. All of the
subsequent stages of the algorithm are identical to the row-store case.

The next one has only keys materialized during hash table population, and
at the same time positional data is stored as values. In some cases, this allows
to significantly reduce the size of the hash table. It is important to emphasize
that the ordering step ceases to be a separate step of processing and becomes a
part of the evaluation step. Thus, for each group, processing should start with
the ordering. Further steps can be done in a number of ways.

Strategy 2a. At the beginning of group processing, all required attributes
are materialized. Afterwards, tuples are sorted and window functions evaluation
is performed as usual. Tuples are materialized only for one group at a time.

Strategy 2b. At the beginning of group processing, only attributes required
for ordering are materialized and ordering is performed. After this we can move
through associated positions and materialize data on demand. This strategy
is not implemented yet since it requires a new execution model for efficient
implementation, but still, it looks quite promising for window functions over a
fixed-size frame.

It is reasonable to use Strategy 1 if positions received by the Window
Operator are ordered, since corresponding values can be read by a sequential
scan. For example, such situation occurs when window functions are evaluated
on a single table, i.e. the query does not contain joins. In other cases all these
strategies require an equal number of I/O operations, so there should be no sig-
nificant difference between them in terms of processing time. At the same time,
the amount of required memory can vary substantially.

Let us estimate the amount of memory required by all these strategies. It is
necessary to introduce several variables and functions for estimation:

– A—a set of all attributes which have to be materialized in some way;
– Ak—a set of partitioning attributes;
– Asort—a set of sorting attributes;
– Aaggr—a set of attributes for which window functions are being evaluated2;
– N—number of logical rows in the input;
– Gkey—group corresponding to partitioning key key as a list of logical rows;
– |Gkey |—number of logical rows in the group Gkey ;
– Gmax = arg max

Gkey

|Gkey |
– M—number of groups;
– function sizet—returns size of tuple from the corresponding set of attributes;

2 In our implementation, several window functions can be processed at once if they
are defined over the same window.

Window Functions in Column-Store 307

– function sizep—returns size of logical row of positions for corresponding set
of attributes; actually it is determined by the amount of tables joined before
Window Operator.

In Strategy 1, materialized data is stored in the hash table and processing
is run directly on it. It requires

hash table keys
︷ ︸︸ ︷

M × sizet(Ak) +

hash table data
︷ ︸︸ ︷

N × sizet(Asort ∪ Aaggr) .

In Strategy 2a, only tuples for keys are materialized during hash table
population. The data itself is stored in the positional representation. Other
attributes are being materialized during group processing, while dynamically
deleting already read positions. Thus, this strategy requires

hast table keys
︷ ︸︸ ︷

M × sizet(Ak) +

hash table data
︷ ︸︸ ︷

N × sizep(Asort ∪ Aaggr) +
Δ for materialization with dropping processed positions

︷ ︸︸ ︷

Gmax ×
(

sizet(Asort ∪ Aaggr) − sizep(Asort ∪ Aaggr)
)

.

Utilizing this strategy to process several window functions with the same win-
dow but over different attributes can result in significant performance improve-
ment.

Strategy 2b is a further enhancement of the same idea. Here, on the group
processing stage only sorting attributes are materialized and thus, even better
results are obtained:
hash table keys

︷ ︸︸ ︷

M × sizet(Ak) +

hash table data
︷ ︸︸ ︷

N × sizep(Asort ∪ Aaggr) +
materialized sorting attributes

︷ ︸︸ ︷

Gmax × sizet(Asort) +

other attributes materialized for the window
︷ ︸︸ ︷

sizet(Aaggr) × window size

3.2 RANGE-Based Window Functions

At first, let us discuss implementation details of the segment tree data struc-
ture [1]. In literature, it is usually described for specific operations, such as SUM,
MIN or MAX. But here, a general solution is required and this leads to conspicuous
implications.

It is common to implement the segment tree on the base of an array with an
implicit tree structure, since the segment tree is always a complete tree. For a
complete tree, an array is the most space-efficient representation3.

However, an issue arises: if the tree is not a perfect4 binary tree (i.e. the last
level is not completely filled, or, in other words, the original array size is not a
3 In an array-based implementation, we store just data without auxiliary information

such as pointers to children which are necessary to describe an arbitrary binary tree.
4 https://xlinux.nist.gov/dads//HTML/perfectBinaryTree.html.

https://xlinux.nist.gov/dads//HTML/perfectBinaryTree.html

308 N. Mukhaleva et al.

power of 2), then some cells in the array are left uninitialized. Usually, when a
segment tree data structure is being discussed, it is considered in a form tuned
for a particular operation. Here, however, it is necessary to consider a number
of operations. First of all, in order to properly initialize this array, an identity
element should be chosen. Obviously, it depends on the operation: 0 for SUM,
−∞ for MAX, +∞ for MIN, etc.

It is reasonable to not store a chunk of the tree that consists only of identity
elements. Instead, it is convenient to “overload” the access to tree elements and
return a “virtual” value if an out-of-real-bounds element is requested.

Furthermore, it is easy to see that employing a segment tree leads to reorder-
ing of the sequence of operations. Thus, it is necessary to require associativity
of the operation for which the segment tree is built. As the result, a segment
tree requires an underlying data type with the corresponding operation to be a
monoid [10].

It is quite obvious that having a tuple of monoids, we can create a new monoid
whose operation works with tuples by applying corresponding operations in an
element-wise manner. This approach allows to efficiently process queries with
several different window functions defined over the same OVER clause in case of
ROWS framing. For the RANGE framing, it is only reasonable to utilize this approach
if several window functions over the same attribute need to be evaluated.

Next, having discussed data organization in the segment tree, we are going
to consider data processing. The construction of a segment tree is quite straight-
forward. A detailed description of this process can be found in the reference [1].

Now, let us consider processing of queries in a segment tree. It is performed
via a recursive function evaluateSegment, whose pseudocode and description
are given later. To correctly start it, the evaluateFrame function shown in the
Listing 1 is used. It initiates a recursive function on the root of tree that has
the current segment covering the whole bottom level of the tree. Next, consider
evaluateSegment function—the classic recursive algorithm. As input, it receives
the current position in the tree index, a monoid (data type, identity, and oper-
ation), segment borders corresponding to the current node cLeft and cRight,
and borders of the requested frame fLeft and fRight. Its output is a set of
requested values over the specified frame. The algorithm itself is very simple: if
current segment is correct and is not equal to the requested frame, then we split
it in half and transfer control to children recursively. In this listing, monoid.op
is the corresponding operation of monoid, e.g. SUM, MAX, etc.

To support RANGE-based window function processing with segment tree, we
have to generalize the algorithm described above. The interface modification
is straightforward—we have to replace integer-valued fLeft and fRight with
parameters corresponding to the processed attribute type. Also, several addi-
tional functions and variables have to be defined:

– nLeaves—number of existing leaves on the bottom level, equal to the size of
original array;

– getLeafValue function—get k-th element of the bottom level;

Window Functions in Column-Store 309

– getLeafOrMax function—call getLeafValue if index corresponds to existing
value and return the last element of the bottom level if index is out-of-range.

Listing 1. Classic evaluateSegment algorithm
// Recursion initialization
function evaluateFrame(monoid, fLeft, fRight)

return evaluateSegment(0, monoid, 0, 2�log2 array size� - 1, fLeaft, fRight)
end function

function evaluateSegment(index, monoid, cLeft, cRight, fLeft, fRight)
if fLeft > fRight then

return monoid.identity
end if
if fLeft = cLeft and fRight = cRight then

return getValue(index)
end if
m ← (cLeft + cRight)/2
return monoid.op(

evaluateSegment(2 · index + 1, cLeft, m, fLeft, min(fRight, m)),
evaluateSegment(2 · index + 2, m + 1, cRight, max(fLeft, m + 1), fRight)

)
end function

The idea of recurrent tree traversal remains largely the same, but several
changes are introduced. Firstly, we return the identity element if the left bound
of the frame comes out of bounds. In comparison to the classic algorithm, it is
necessary to explicitly check this. Furthermore, an equality check between the
current segment and the requested frame should be replaced with an inclusion
check, since it is a part of RANGE behavior. Furthermore, all comparisons require
to wrap the current segment borders in getLeafOrMax calls. The resulting algo-
rithm is presented in Listing 2.

The introduced changes are very straightforward. Nevertheless, the authors of
paper [11] where the segment tree based algorithm was suggested did not consider
the RANGE case. It is rather peculiar since the RANGE case looks inherently more
suitable for processing with the segment tree based algorithm. ROWS framing
with “floating” borders is very rare, while RANGE features such borders by its
definition.

Moreover, the following simple optimization can be applied to RANGE-based
window functions. The RANGE case requires ordering on a working attribute, so if
attribute values are not unique, then equal values are co-located and evaluation
should be run only once per unique value. For low cardinality data, this opti-
mization may result in dramatic performance improvement. This idea is quite
similar to the cumulative approach, but it allows to not compute frame borders
for each value.

310 N. Mukhaleva et al.

4 Experiments

Experimental evaluation was performed on a PC with the following character-
istics: 4-core Intel R©CoreTM i5-7300HQ CPU @ 2.50 GHz, 8 GB RAM, running
Ubuntu Linux 18.04.2 LTS. We have used PostgreSQL 11.3 as a baseline for
comparison. For our experiment, we have constructed the query template shown
below. It is based on the LINEORDER table from the SSB benchmark [12].

Listing 2. evaluateSegment algorithm for value ranges
function evaluateSegment(index, monoid, cLeft, cRight, fLeft, fRight)

if fLeft > fRight or cLeft >= nLeaves then
return monoid.identity

end if
if fLeft <= getLeafValue(cLeft) and

fRight >= getLeafOrMax(cRight) then
return getValue(index)

end if
m ← (cLeft + cRight)/2
return monoid.op(

evaluateSegment(2 · index + 1, cLeft, m, fLeft, min(fRight, getLeafOr-
Maxm))),

evaluateSegment(2 · index + 2, m + 1, cRight, max(fLeft, getLeafOr-
Max(m + 1), fRight))
end function

@offt DBMS SF=1 SF=3 SF=5 SF=7

10
PosDB 10611 32888 57484 84935
Postgres 11498 37205 73003 116160

100
PosDB 11454 35979 63658 93743
Postgres 11536 38046 65834 111100

1K
PosDB 11543 36390 64042 95245
Postgres 11828 38192 66061 113689

10K
PosDB 12116 38001 67239 100130
Postgres 11909 38460 67449 113798

100K
PosDB 12713 39973 70159 105051
Postgres 11924 38552 N/A N/A

1M
PosDB 13272 41552 72982 107273
Postgres N/A N/A N/A N/A

10M
PosDB 12693 39580 69677 101774
Postgres N/A N/A N/A N/A

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

·105

Scale Factor

T
im

e
(m

s)

PosDB with Segment Tree
PostgreSQL

SELECT l o o r d e r p r i o r i t y , SUM(l o o r d t o t a l p r i c e) OVER (
PARTITION BY l o o r d e r p r i o r i t y ORDERBY l o o r d t o t a l p r i c e
RANGE BETWEEN @of f t PRECEDING AND @of f t FOLLOWING) AS sum

FROM l i n e o r d e r ORDERBY l o o r d e r p r i o r i t y ASC

where @offt varies in range of [10, . . . , 10 M].

Window Functions in Column-Store 311

This experiment is quite simple and only demonstrates the attractiveness of
a segment tree-based approach for processing of RANGE-based window functions.
We believe that for a detailed performance analysis, a special benchmark has to
be developed.

The aforementioned queries were run on PosDB and PostgreSQL with the
SSB scale factors 1–7. The results of our experiments are presented in the table.

PosDB and PostgreSQL show approximately equal results on small scale
factors (SF): PosDB wins for a small @offt, and PostgreSQL wins for large.
Increasing SF leads to increasing advantage of PosDB and increasing @offt
allows PostgreSQL to catch up, but not to outperform. At the same time, hav-
ing a large @offt leads to unresponsive behavior of PostgreSQL (timeout was
set to 10 min). Increasing SF leads to freezing on smaller window sizes. To the
right of the table we present a graph comparing performances of the systems at
@offt=10. It demonstrates the benefits of column-stores with late materializa-
tion.

Note that since this query favours a sequential scan, we implement it using
Strategy 1. A detailed evaluation of Strategies 1, 2a, and 2b, as well as
assessment of performance impact of “wide” join indexes is the subject of future
work. Currently, we anticipate that random data accesses spawned by Strate-
gies 2a, 2b threaten to degrade query performance in some cases. However, it
depends on a number of parameters: attribute sizes, selectivities of predicates,
data distribution, and so on. We believe that at least in a part of cases our
approach will still be beneficial, and a proper cost model will highlight it.

5 Related Work

Despite the fact that window functions were proposed almost 20 years ago, there
is a surprisingly low number of works on the subject. They can be classified into
two groups:

Designing the Operator Itself. Cao et al. [4] consider a case when a single
query contains several window functions. The proposed approach is to reuse
grouping and ordering steps. At first, the authors consider two methods of tuple
ordering for a single window—hashed sort and segmented sort. They discuss
their properties and applicability. Finally, they propose an optimization scheme
for handling several window functions, which generates an evaluation schedule.
Wesley and Xu [13] propose to reuse the internal state between adjacent frames
for computing holistic windowed aggregates. A holistic function is a function
that cannot be decomposed using other functions. Therefore, MEDIAN or COUNT
DISTINCT are holistic and SUM or MIN are not. Speeding up the evaluation of such
window aggregates is a relevant problem since their computation requires looking
at all data at once. A paper by Leis et al. [11] describes an efficient algorithm
for the whole window function operator. It considers existing approaches for
aggregate computation, as well as proposes a novel one, based on a segment
tree. Finally, an efficient parallelization of all steps is discussed.

312 N. Mukhaleva et al.

Window Functions and External Optimization. Coelho et al. [7] addresses
reshuffling in a distributed environment for efficient processing of window func-
tions. The authors utilized histograms to assess the size of the prospective groups
and their distribution between the nodes. Zuzarte et al. [14] discuss how and
when it is possible to rewrite a correlated subquery using window functions.
Such rewriting can significantly improve query performance.

6 Conclusion

In this study, we have discussed the implementation of window functions in a
column-store with late materialization. We have proposed three different strate-
gies, and for each of them we have provided a model for estimating the amount
of required memory. We also present an enhancement of the segment tree tech-
nique for processing RANGE-based window functions. Experimental comparison
with PostgreSQL has demonstrated the viability of this technique.

References

1. CP-Algorithms: Segment Tree. https://cp-algorithms.com/data structures/seg-
ment tree.html

2. Abadi, D., Boncz, P., Harizopoulos, S.: The Design and Implementation of Modern
Column-Oriented Database Systems. Now Publishers Inc., Hanover (2013)

3. Bellamkonda, S., Bozkaya, T., Gupta, B.G.A., Haydu, J., Subramanian, S.,
Witkowski, A.: Analytic Functions in Oracle 8i. Technical report (2000).
http://infolab.stanford.edu/infoseminar/archive/SpringY2000/speakers/agupta/
paper.pdf

4. Cao, Y., Chan, C.Y., Li, J., Tan, K.L.: Optimization of analytic window functions.
Proc. VLDB Endow. 5(11), 1244–1255 (2012)

5. Chernishev, G.A., Galaktionov, V.A., Grigorev, V.D., Klyuchikov, E.S., Smirnov,
K.K.: PosDB: an architecture overview. Programm. Comput. Softw. 44(1), 62–74
(2018)

6. Chernishev, G., Galaktionov, V., Grigorev, V., Klyuchikov, E., Smirnov, K.:
PosDB: a distributed column-store engine. In: Petrenko, A.K., Voronkov, A. (eds.)
PSI 2017. LNCS, vol. 10742, pp. 88–94. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-74313-4 7

7. Coelho, F., Pereira, J., Vilaça, R., Oliveira, R.: Holistic shuffler for the parallel
processing of SQL window functions. In: Jelasity, M., Kalyvianaki, E. (eds.) DAIS
2016. LNCS, vol. 9687, pp. 75–81. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-39577-7 6

8. Graefe, G.: Query evaluation techniques for large databases. ACM Comput. Surv.
25(2), 73–169 (1993)

9. Harizopoulos, S., Abadi, D., Boncz, P.: Column-Oriented Database Systems, VLDB
2009 Tutorial 2(2), 1664–1665 (2009). http://nms.csail.mit.edu/∼stavros/pubs/
tutorial2009-column stores.pdf

10. Jacobson, N.: Semi-Groups and Groups, pp. 15–48. Springer, New York (1951).
https://doi.org/10.1007/978-1-4684-7301-8 2

https://cp-algorithms.com/data_structures/segment_tree.html
https://cp-algorithms.com/data_structures/segment_tree.html
http://infolab.stanford.edu/infoseminar/archive/SpringY2000/speakers/agupta/paper.pdf
http://infolab.stanford.edu/infoseminar/archive/SpringY2000/speakers/agupta/paper.pdf
https://doi.org/10.1007/978-3-319-74313-4_7
https://doi.org/10.1007/978-3-319-74313-4_7
https://doi.org/10.1007/978-3-319-39577-7_6
https://doi.org/10.1007/978-3-319-39577-7_6
http://nms.csail.mit.edu/~stavros/pubs/tutorial2009- column_stores.pdf
http://nms.csail.mit.edu/~stavros/pubs/tutorial2009- column_stores.pdf
https://doi.org/10.1007/978-1-4684-7301-8_2

Window Functions in Column-Store 313

11. Leis, V., Kundhikanjana, K., Kemper, A., Neumann, T.: Efficient processing of
window functions in analytical SQL queries. Proc. VLDB Endow. 8(10), 1058–
1069 (2015)

12. O’Neil, P., Chen, X.: Star Schema Benchmark, June 2009. http://www.cs.umb.
edu/∼poneil/StarSchemaB.PDF

13. Wesley, R., Xu, F.: Incremental computation of common windowed holistic aggre-
gates. Proc. VLDB Endow. 9(12), 1221–1232 (2016)

14. Zuzarte, C., Pirahesh, H., Ma, W., Cheng, Q., Liu, L., Wong, K.: Winmagic:
subquery elimination using window aggregation. In: SIGMOD 2003, pp. 652–656.
ACM, New York (2003)

http://www.cs.umb.edu/~poneil/StarSchemaB.PDF
http://www.cs.umb.edu/~poneil/StarSchemaB.PDF

Applications of Model and Data
Engineering

A Machine Learning Model
for Automation of Ligament Injury

Detection Process

Cheikh Salmi1(B), Akram Lebcir2, Ali Menaouer Djemmal2,
Abdelhamid Lebcir3, and Nasserdine Boubendir3

1 LIMOSE, University of M’Hamed Bougarra, Boumerdes, Algeria
c.salmi@boumerdes-univ.dz

2 University of M’Hamed Bougarra, Boumerdes, Algeria
3 HCA Kouba, Algiers, Algeria

Abstract. Good exploitation of medical data is very useful for patient
assessment. It requires a diversity of skills and expertise since it concerns
a large number of issues. Traumatic pathology is by far the most frequent
problem among young athletes. Sport injuries represent a large part of
these accidents, and those of the knee are the most important, domi-
nated by meniscal and ligamentous lesions including that of the anterior
cruciate ligament (ACL). Magnetic Resonance Imaging (MRI) is the
reference for knee exploration, the number of knee MRI exams is in a
perpetual increase thus of its contribution in the patient assessment and
MRI machines availability. Therefore, radiologist’s time has become a
limiting factor because of the large number of images to examine, in addi-
tion to the possibility of error in the interpretation. The possibility of
automating certain interpretation functions is currently possible in order
to limit the amount of errors and inter-observer variability. Deep learning
is useful for disease detection in clinical radiology because it maximizes
the diagnostic performance and reduces subjectivity and errors due to
distraction, the complexity of the case, the misapplication of rules, or lack
of knowledge. The purpose of this work is to generate a model that can
extract ACL from MRI input data and classify its different lesions. We
developed two convolutional neural networks (CNN) for a dual-purpose,
the first is to isolate the ACL and the second to classify it according to the
presence or absence of lesions. We investigate the possibility of automat-
ing the ACL tears diagnostic process by analyzing the data provided by
cross sections of patient MRI images. The analysis and experiments
based on real MRI data show that our approach substantially outper-
forms the existing deep learning models such as support vector machine
and Random Forest Model, in terms of injury detection accuracy. Our
model achieved an accuracy rate equal to 97.76%.

Keywords: Machine learning · Deep learning · Neural network ·
MRI · ACL

c© Springer Nature Switzerland AG 2019
K.-D. Schewe and N. K. Singh (Eds.): MEDI 2019, LNCS 11815, pp. 317–332, 2019.
https://doi.org/10.1007/978-3-030-32065-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_22&domain=pdf
https://doi.org/10.1007/978-3-030-32065-2_22

318 C. Salmi et al.

1 Introduction

The management of common diseases is complex but represents a major public
health issue. Computer-aided diagnostic (CAD) are interactive computer systems
designed to assist physicians or other health professionals in choosing between
certain relationships or variables in order to make a diagnostic or therapeutic
decision. These systems were born in the 70’s through the famous MYCIN [1]
expert system whose purpose was to help physicians to perform the diagno-
sis and care of blood infectious diseases. More efficient systems can be devel-
oped by exploiting the advances made on both technology and computer science
techniques such as MRI, molecular imaging, 4D ultrasound, flat-plate detec-
tors, liquid metal bearings, PACS picture archiving and communication sys-
tems), RIS (radiology information systems), computing infrastructure (redun-
dant server technology), data mining, image segmentation algorithms and artifi-
cial intelligence. By efficient systems, we mean automated system that can help
to reduce the analysis time and human errors which will increase the diagnostics
precision.

Machine learning (ML) is a research field in full expansion and promised a
great future. Its applications, which concern all human activities, make it possible
to improve healthcare. ML is indeed at the heart of the medicine of the future,
with robot-assisted surgery, personalized treatment and smart prostheses, etc.
The alliance between ML and Big Data can lead to the development of smart
CADs.

The anterior cruciate ligament (ACL) provides stability in anterior transla-
tion and rotation. It contributes to the stability of the human knee and provides
meniscus protection. Because of its frequent solicitation, the ACL is often subject
to tear in particular among athletes practicing football, skiing, handball, judo
and basketball. Typically, patients with anterior cruciate ligament (see Fig. 1)
tear experience instability and knee discomfort, particularly in activities involv-
ing changes of direction or pivots on the affected leg. About 50% of anterior
cruciate ligament lesions are accompanied by meniscus injury, cartilage, or other
ligament injury. In such case, a surgery is necessary for the purpose of recon-
structing the ligament at its exact location [2,3]. Radiologist evaluates whether
the ligament is torn or not by performing different clinical tests and perform-
ing an MRI. This examination determines also other associated meniscal and
articular cartilage lesions.

The goal of this research is to build an intelligent framework to automate the
ligament injury detection process based on MRI images data sets. The data
set images will be classified into two sub-classes: injured and non-injured. Deep
learning techniques are used to perform both the detection and classification
tasks, as convolutional neural networks have proven to be an effective approach
in complex image classification and segmentation problems in general.

The paper is organised as follows. In Sect. 2, we present a brief overview of the
neuronal network. Our proposal is detailed in Sect. 3. It includes the description
of the main used layers, the training process before presenting the final optimal

A Machine Learning Model for Automation 319

Fig. 1. Anterior cruciate ligament injury. (https://orthoinfo.aaos.org/en/diseases--
conditions/anterior-cruciate-ligament-acl-injuries/)

model. Next, in Sect. 4, experimental results and discutions are presented. The
last section emphasizes the conclusion and perspectives for future work.

2 Artificial Neural Network

Artificial Neural Networks (ANN) [4] are inspired by the human brain and its
central nervous system. It consists of an abstracted model of interconnected neu-
rons called units or nodes; whose special arrangement and linking can be used to
solve computer-based problems (e.g., image, voice and pattern recognition, con-
trol and simulation of complex processes, economic models, biometric systems,
etc.). As shown in Fig. 2, an ANN is a directed network where the informa-
tion travels in one direction from the input layers and modulated forward to
other neurons or output as a final result. Basically, a distinction can be made
between input neurons, hidden neurons and output neurons. The input neurons
receive information in the form of patterns or signals from the outside world.
The hidden neurons are located between the input and output neurons and map
internal information patterns. Output neurons relay information and signals to
the outside world as a result. The different neurons are connected to each other
via the so-called edges. Thus, the output of one neuron can become the input
of the next neuron. Depending on the strength and meaning of the connection,
the edge has a certain weighting which play an important role in controling the
operation of the network: The stronger the weighting, the greater the influence
a neuron can exert on the connection to another neuron. Convolutional net-
works (CNN s) are a particular form of multilayer neural network that is
well suited to image processing. It is today, the most powerful class of algorithms
for classifying images. There are four types of layers five a convolutional neural
network: convolutional layer, pooling layer, correction layer, loss layer and the

https://orthoinfo.aaos.org/en/diseases--conditions/anterior-cruciate-ligament-acl-injuries/
https://orthoinfo.aaos.org/en/diseases--conditions/anterior-cruciate-ligament-acl-injuries/

320 C. Salmi et al.

fully-connected layer (for more details see [5]). The first convolutional layers are
based on the mathematical principle of convolution, and seek to identify the
presence of a motif in an image (the coutour for example). Other layers that
are not necessarily convolutional can be used to classify the different types of
images.

I1

I2

I3

I4

Output 1

Output 2

Hidden
layer

Output
layer

Input
layer

Fig. 2. Basic neural network architecture.

3 Convolutional Neural Network for ACL

In the following section we present our convolutional neuronal network model
to detect anterior cruciate ligament on knee MRI exam. It is composed of two
CNN s that perform selection and classification tasks. The classification task
allows the distinction between normal and pathological (total or partial lesion)
ACLs, while the selection task locates the image section that contains the ACL
(see Figs. 3 and 4), a size image 100 × 100 × 32 (height × width × depth) from
native 320 × 320 × 32 volumes.

In general, the neuron number in each hidden layer can vary according to the
complexity of the problem and the dataset. Hence, CNN architectures vary in
the number and type of layers depending on its application. For instance, the net-
work should contain a fully connected regression layer at its end for continuous
answers, whereas for decisional answers it must include a fully connected classifi-
cation layer. However, there are no pre-established rules for selecting an optimal
CNN configuration. Thus, an empirical result driven approach (trial and error)
is used to select the optimal CNN global architecture (depth, breadth, activation

A Machine Learning Model for Automation 321

Fig. 3. ACL region selection

Fig. 4. ACL location

functions, connections, optimization algorithm and its parameters and loss func-
tion for a specific dataset). The main idea of our network architecture design is
to minimize the number of parameters and maximize its learning ability. To this
end, several techniques are used: convolution process to extract image features,
non-linear activation (e.g., Relu) functions are used to deal with complexity
varying parameters of image input data, pooling layers to handle the sensitivity
of the output feature maps to the location of the features in the input, cross-
entropy for performance measurement, softmax for classification and gradient
decent combined with efficient optimization algorithms such as ADAM [6] are
used for backpropagation. A basic convolutional neural network composed of 8
convolutional layers, a layer of max pooling placed after each series of 2 convo-
lutive layers and finally a 3-layer MLPs (Multilayer Perceptron) is learned. The
network has 1195074 learnable parameters. For faster learning, ReLu [7] is used
as an activation function. This basic CNN is enhanced by adding other hidden

322 C. Salmi et al.

layers. In each layer, activation volumes are altered with the use of differentiable
functions.

3.1 Loss Layer

This layer specifies some measure of error between computed outputs and the
desired target outputs of the training data. Many research results suggest using
different measure such as mean squared and cross entropy errors. We use cate-
gorical cross-entropy loss which is a softmax activation plus a cross-entropy loss.
The softmax function calculates the probabilities of each class and the target
class will have the highest probability. The Cross-Entropy cost function repre-
sents the sum of the separate loss for each class label per observation. Hence,
the softmax and the cross-entropy functions can be written as:

f(s)i =
esi

∑C
j esj

(1)

CE = −
C∑

i=1

to,clog(po,c) (2)

Where C is the number of classes (total injury, partial injury, no injury), sj

are the scores inferred by the net for each class cj ∈ C, ti is a one-hot vector
meaning that the class label c is the correct classification for observation o, p is
the result of the softmax function which denotes the predicted probability that
observation o is of class c.

3.2 Learning Optimization

Many techniques exist to optimize the learning process speed and its prediction
accuracy. This can be done by optimizing a different objective function J(θ).
Gradient descent (GD) based approaches update the parameters θ in the opposite
direction of the objective function gradient. The learning rate η determines the
importance of the step that will be taken to reach the local. This strategy can
be described by the following equation:

θj = θj − η∇θJ(θ) (3)

An other variant of the gradient descent is the stochastic gradient descent
(SGD)[8]. As in GD, this approach updates a set of parameters in an iterative
manner to minimize an error function using only a sample of examples to correct
the parameters. Hence, SGD converges much faster but the error function is not
as well minimized as in the case of GD. However, in all GD variants, choosing a
proper learning rate η can be difficult. Many approaches called adaptative algo-
rithms were proposed to improve the gradient descent by adjusting the learning
rate during training. In this work, we use ADAM (Adaptive Moment Estimation)
which is essentially a combination of the gradient descent with momentum [9]

A Machine Learning Model for Automation 323

and RMSProp algorithms (Root Mean Square Prop is an unpublished, adaptive
learning rate method proposed by Geoff Hinton). ADAM uses previous historical
gradients (values calculated in past times < t). It uses the decaying averages of
past and past squared gradients:

mt = β1mt−1 + (1 − β1)gt

vt = β2vt−1 + (1 − β2)g2t
(4)

where mt and vt are estimates of the first moment (the mean) and the second
moment (the uncentered variance) of the gradients respectively. During the ini-
tialization steps the momentums are biased to zero (m0 = 0 and v0 = 0). Hence,
bias-corrected momemnts became:

m̂t =
mt

1 − βt
1

v̂t =
vt

1 − βt
2

(5)

θt+1 = θt − η√
v̂t + ε

m̂t (6)

as recommended in [6], we used in our implementation, default values of 0.9 for
β1, 0.999 for β2, and 10−8 for ε. Several other techniques have been used to
improve the architecture of our model such as dropout [10] as a regularization
technique to avoid overfitting due to the presence of many fully connected layers.

3.3 Network Architecture

The ACL injury detection is a complex problem. It is divided into subparts,
and for each part, a cluster of neurons is created to study that specific portion.
Hence, the network structure consists of two cascaded CNN s layers: localization
and classification (see Fig. 5).

The first CNN isolates the ACL, it allows to predict a rectangular box of
(100 × 100) coordinates centered on the inter-condylar notch, from the native
images of (320 × 320) after their downsizing to (120 × 120) for CNN entry.

This CNN contains:

• 5 convolution-layers each one contains (conv2D, ReLU, Maxpool)
• A layer of global Maximum pooling
• Two fully connected layers: containing respectively 4096 and 2048 nodes each

layer contains an output of 4 nodes (for the 4 coordinates) with a Dropout
function inter-posed.

Based on the images produced by the first localisation CNN , the second
CNN allows to decide if ACL is pathological. This CNN contains:

324 C. Salmi et al.

Fig. 5. Architecture model

• 8 convolution layers each contains (conv2D, BN, eLU) and Maxpool
• A layer of global Avgpooling
• A layer of neurons containing 96 nodes with an output of 2 nodes with a

sofmax to calculate the probability according to the mapping of crossing of
the connections of the input.

The detailed architecture of our network, the stack of layers and the different
parameters of the two CNN s are presented in the Table 1. The two CNN s
models are respectively:

• Input → Conv2D → Relu → Maxpool → Conv2D → Relu → Maxpool →
Conv2D → Relu → Maxpool → Conv2D → Relu → Maxpool → Conv2D →
Relu → GlobalMaxpool → Dropout → FC → Dropout → FC → FC

• Input → Conv2D → BN → elu → Maxpool → Conv2D → BN → elu →
Maxpool → Conv2D → BN → elu → Maxpool → Conv2D → BN →elu →
Maxpool → Conv2D → BN → elu → Maxpool → Conv2D → BN → elu →
Maxpool → Conv2D → BN → elu → Maxpool → Conv2D → BN → elu →
Maxpool→ GlobAvgPool → Flatten → FC → FC → Softmax

In Table 2, we give a brief description of the layers used in the proposed
network architecture. For more details see [5,11].

A Machine Learning Model for Automation 325

Table 1. Detailed location and classification CNN s

Localisation network Classification network

Input (120 120 3 grayscale image) Input (100 100 3 grayscale image)

Conv2D (32 3 × 3 filters), ReLU Conv2D (32 2 × 2 filters), BN, Elu

Maxpool (window size 2 × 2) Maxpool (window size 2 × 2, stripe size 2)

Conv2D (128 3 × 3 filters), ReLU Conv2D (32 3 × 3 filters), BN, Elu

Maxpool (window size 2 × 2) Conv2D (64 5 × 5 filters), BN, Elu

Conv2D (256 3 × 3 filters), ReLU Maxpool (window size 3 × 3, stripe size 2)

Maxpool (window size 2 × 2) Conv2D (64 3 × 3 filters), BN, Elu

Conv2D (512 3 × 3 filters), ReLU Conv2D (64 3 × 3 filters), BN, Elu

Maxpool (window size 2 × 2) Maxpool (window size 2 × 2, stripe size 2)

Conv2D (1024 3 × 3 filters), ReLU Conv2D (96 3 × 3 filters), BN, Elu

GlobalMaxpool (window size 2 × 2) Conv2D (96 3 × 3 filters), BN, Elu

Dropout Maxpool (window size 2 × 2, stripe size 2)

FC (4096 nodes), ReLU GlobAvgPool

Dropout Flatten

FC (2048 nodes), ReLU FC (96 nodes)

FC (4 nodes), ReLU FC (2 nodes)

Softmax (2 classes)

Table 2. Layers descriptions

Layer Description

Input Input layer

Conv2D Two-dimensional convolution

%pool Layer for image sub-sampling (compression)

ReLU Rectified-linear unit

Dropout Regularization layer to avoid the problem of over-learning

FC Fully connected layer

Softmax Multinomial logistic regression layer

Flatten Data adaptation for inputting it to the next layers.

BN Batch normalization layer

Elu Exponential linear unit

4 Experimental Results and Discussion

4.1 Dataset

In the present work, the dataset is based on 12-bit grayscale volumes of either
left or right knees. This dataset has been defined in [2] and used in many other

326 C. Salmi et al.

research papers such as [12]. It consists of 917 exams, with sagittal T1-weighted
series and labels for ACL injury from Clinical Hospital Centre Rijeka, Croatia.
The dataset labels are extracted for 3 levels of ACL lesions defined as: non-
injured (690 exams), partially injured (172 exams) and completely torne (55
exams). Image pre-processing is a crucial step because it makes it possible to
standardize the input data and the treatment sequence. An MRI exam is a
320 × 320 × 32 (height × width × depth) image, each one contains 32 sagittal
images. The area encompassing the ACL is an image portion with a size of (100
× 100 × 32). When importing the labeled dataset, the training and validation
subsets are made up respectively of 80% and 20% of the entire collected dataset
using stratified random sampling. This means that 80% of the data is used to
train the network, and 20% of the data is used in the validation phase. After
reaching a consistent validation accuracy, a 20% additional dataset is used to
test the performance of the network.

4.2 Evaluation

In order to evaluate the performance of our CNN model we have implemented
it on TensorFlow which is an open source framework developed by Google. First,
to understand how well training is currently proceeding, training and validation
accuracy and loss are plotted over training epochs. As shown respectively in
Figs. 6 and 7 we can easily see that the accuracy of training and validation
increases with the number of epochs, this reflects that in each epoch the model
learns more information. Similarly, the learning and validation errors decrease
with the number of epochs.

Fig. 6. Model precision

A Machine Learning Model for Automation 327

Fig. 7. Model error

We compared then, our model with 2 well known models for image recogni-
tion: Inspection-V3 [13] and Mobile-Net [14] and 2 other models in the state of
the art for detection of cruciate ligament injury: MRNet [12] and tajduhar et al.
[2]. The percentage of classification P is the ratio between the recognized images
and the total number of images. To evaluate the performance of the models com-
pared in the present study, three indices are adopted: sensibility, specificity and
AUC (Area under the curve). They are listed below:

Sensibility = TP/(TP + FN)
Specificity = TN/(TN + FP)

(7)

Where TP, TN, FP and FN denote respectively True Positive, True Negative,
False Positive (type 1 error) and False Negative (type 2 Error). Recall that
predicted values are described as Positive and Negative and actual values are
described as True and False. The AUC is a measure of separability. It represents
the probability that a classifier will rank a randomly chosen positive instance as
positive and negative as negative. More formally:

AUC =
∑

i

Si

Si = (FPRi − FPRi−1) × TPRi − TPRi−1

2

(8)

Where TPR is the Sensibility (true positif rate) and FPR is the false positif
rate (equal to: 1 - Specificity). Estimations variability is assessed using a 95%
Wilson score confidence interval (CI) [15] for all metrics (sensitivity, specificity
and AUC). This interval is defined by a lower and an upper bounds which are
respectively (P − α × sp) and (P + α × sp) where:

sp =

√
P (1 − P)

T
(9)

328 C. Salmi et al.

P is the percentage of classification, T is the sample size and α is an error risk
(5% in our settings).

Table 3 compares the sensitivity, specificity and AUC of our model against
Mobile-Net and Inspection-V3 to determine the presence or absence of an ACL
tear according to the dataset taken as reference for the ACL tear classification
system. Our model performed well with estimated sensitivity, specificity and
AUC at the optimal threshold of the Youden index [16]. It has the highest over-
all diagnostic performance compared to the other models. Table 3 depicts the
detailed values for each metric.

Table 3. Models sensitivity, specificity and AUC

Model Sensitivity Specificity AUC

Our model 99.31

(95% CI: 98.6; 1)

93.8

(95% CI: 91.7; 95.9)

96.6

(95% CI: 95; 98.2)

Mobile-Net 92.29

(95% CI: 89.94; 94.64)

92.61

(95% CI: 90.31; 94.91)

92.5

(95% CI: 90.18; 94.82)

Inspection-V3 92.5

(95% CI: 90,18; 94, 82)

92.72

(95% CI: 89.78; 94.46)

92.6

(95% CI: 89.95; 94.65)

Fig. 8. Sensitivity Fig. 9. Specificity

Figures 8, 9 and 10 show respectively a graphical comparison of the sensi-
tivity, specificity and AUC for different models. To show the different models
predective performance under various discriminative thresholds, we use instead
ROC curve (receiver operating characteristics) which represents the plotting of
TPR against FPR.

Figure 11 show the ROC curve giving the rate of successful classification
of all the compared models used in ACL tear classification. According to the
graphics, it is clear that the AUC for our model ROC curve is higher than other
models.

A Machine Learning Model for Automation 329

Fig. 10. Area under the curve Fig. 11. Area under the curve-ROC

4.3 Discussion

In this study we compared four CNN s, our model, and three other reference
models, InceptionV3 and MobileNet. Our model provides the best diagnostic
performance to classify ACL tears because it allows simple communication inside
the network compared to the two others (MobileNet and InceptionV3). Informa-
tion is propagated directely across the different layers of the network and thus
reduces the number of the necessary learning parameters in spite of the small
used dataset. MobileNet and InceptionV3 have a complex network structure
(4.3, 23.8) million parameters; therefore, it is necessary to have a large dataset
to obtain optimal performance, probably because of low diagnostic performance.
The InceptionV3 model is superior to MobileNet because of the extended blocks
of filters and concatenation layers. As a result, it is likely to provide better
performance in classifying ACL tears.

5 Related Work

Artificial intelligence has been used in the CADs as a technique of knowledge
organization and human reasoning parallelization [17]. In [18], Kulikowski et al.
have used pattern-matching methods in work on a medical diagnostic task. In
[19], a rule-based physiological model has been develpped as the basis for diag-
nostic consultations of glaucoma, which is represented as linguistic structures
and explicitly displaying reasoning procedures. In [20], a fuzzy-based rule sys-
tem for detecting early stage glaucoma, especially for large-scale screening is
proposed.

The literature review confirmed that, there has been growing interest from
academics and practitioners on machine learning as a new paradigm for CADs
to address the diagnostic process of a wide range of deseases. This new orienta-
tion is motivated by (1) the developpement of MRI which is a medical imaging
technique that provides two or three-dimensional views of the body’s interior
without radiation with relatively high contrast resolution. MRI provides infor-
mation on lesions that are not visible on plain X-rays, ultrasound or CT Scanner

330 C. Salmi et al.

(Computed Tomography). The proliferation of MR units over medical centers,
provides more highly detailed images which increase the ability to diagnose and
to treat through the guidance of therapeutic acts by imaging but also to exploit
this data images in research area (2) the developpment of good evaluation mea-
sures for image segmentation performance [21].

There already exists scientific research which aim at automating the detection
of cruciate ligament injury, some of which are presented here. A semi-automated
approach to detect the presence of anterior cruciate ligament injury in a human
knee was proposed in [2]. Two machine-learning models were used namely, sup-
port vector machine (SVM) and random forests model. The image area to be
analyzed were selected manually and used to generate histogram of oriented gra-
dient (HOG) and gist descriptors. The best results obtained were 89.4% for the
injury-detection problem and 94.3% for the complete-rupture-detection problem
using a linear-kernel SVM learned from HOG descriptors.

In [22], Fang Liu et al. developped a model for the evaluation of cartilage
lesions on knee MRI images using deep learning algorithms, which introduced a
double convolutional network (CNN , see Sects. 2 and 3) for segmentation and
classification of cartilages damages. In [12], Nicholas Bien et al. developped a
deep learning model for detecting anterior cruciate ligament and meniscal tears
on knee MRI exams. The model is based on a convolutional neural network
called (CNN) called MRNet. They introduced 3D concept and used a combina-
tion of multi-planar series predictions using logistic regression. Therefore, there
is a demand for the development of a new approach to automate the detection
process. For this purpose, in an original way, a CNN approach is proposed to
detect anterior cruciate ligament lesion with supervised learning.

6 Conclusion

This paper presents an application of convolutional neural networks model for
the classification and detection of knee lesion based on MRIimages. Two CNN s
with different architectures are used respectively for the localisation of the ACL
and the prediction of ACL injury (classification). The selection of the best model
is done by trial and error approach. Six intermediate models were implemented
and tested. Implementation and tests show that the perforamnce and the results
accuracy depends on many parameters such as the used layers, the network
depth and the number of epoch. These models results comparison are not shown
due to the lack of space. We presented the different layers of both localisation
and classification CNN s: convolutional layers, rectification layers, the pooling
layers and the fully connected layers. The overfitting problem is takled using
dropout layers as a regularization technique. Implementation is done using Ten-
sorFlow framework. Three hardware platforms are used to implement our net-
works trainings: CPU, GPU and cloud computation. Results show that GPU
and cloud computation improve considerably the scalability and decrease the
training time. We compared our model with several reference models such as
InceptionV3 and MobileNet. These two models are complex (4.3; 23.8) million

A Machine Learning Model for Automation 331

parameters and therefore require to have a large dataset to get more optimal
performance. Our model provides the best diagnostic performance for the ACL
classification because it allows a simple communication compared to the latter.
Our model allows a direct information propagation between the different lay-
ers of the network and thus reduces the number of parameters necessary for its
learning phase despite the small size of the used dataset. As future work, the
aim would be to:

– Improve the model (more performance),
– Add other structures to examine (tendons, muscles, etc.),
– Create 3D models,
– Implement dynamic models (auto-improvement during use).

References

1. Shortliffe, E.: Consultation systems for physicians: the role of artificial intelligence
techniques, pp. 511–527, January 1980

2. Tajduhar, I., Mamula, M., Mileti, D., Ünal, G.: Semi-automated detection of ante-
rior cruciate ligament injury from MRI. Comput. Methods Prog. Biomed. 140(C),
151–164 (2017)

3. Gottlob, C., Baker, C., Pellissier, J., Colvin, L.: Cost effectiveness of anterior cru-
ciate ligament reconstruction in young adults. Clin. Orthop. Relat. Res. (367),
272–282 (1999). https://www.ncbi.nlm.nih.gov/pubmed/10546625

4. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous
activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

5. Aghdam, H.H., Heravi, E.J.: Guide to Convolutional Neural Networks: A Prac-
tical Application to Traffic-Sign Detection and Classification, 1st edn. Springer,
Heidelberg (2017)

6. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
7–9 May 2015, Conference Track Proceedings (2015)

7. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: Proceedings of the 27th International Conference on Machine Learn-
ing (ICML 2010), pp. 807–814 (2010)

8. Mandt, S., Hoffman, M.D., Blei, D.M.: A variational analysis of stochastic gradient
algorithms. In: Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48, ICML 2016, pp. 354–363 (2016).
JMLR.org

9. Qian, N.: On the momentum term in gradient descent learning algorithms. Neural
Netw. 12(1), 145–151 (1999)

10. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15, 1929–1958 (2014)

11. Venkatesan, R., Li, B.: Convolutional Neural Networks in Visual Computing: A
Concise Guide. Data-Enabled Engineering. CRC Press, Boca Raton (2018)

12. Bien, N., et al.: Deep-learning-assisted diagnosis for knee magnetic resonance
imaging: Development and retrospective validation of mrnet. PLoS Med. 15(11),
e1002699 (2018)

https://www.ncbi.nlm.nih.gov/pubmed/10546625
http://www.JMLR.org

332 C. Salmi et al.

13. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. CoRR abs/1512.00567 (2015)

14. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: Inverted residuals
and linear bottlenecks: mobile networks for classification, detection and segmenta-
tion. CoRR abs/1801.04381 (2018)

15. Wilson, E.B.: Probable inference, the law of succession, and statistical inference.
J. Am. Stat. Assoc. 22(158), 209–212 (1927)

16. Youden, W.: Index for rating diagnostic tests. Cancer 3(1), 32–35 (1950)
17. Shortliffe, E.H., Axline, S.G., Buchanan, B.G., Merigan, T.C., Cohen, S.N.: An

artificial intelligence program to advise physicians regarding antimicrobial therapy.
Comput. Biomed. Res. 6(6), 544–560 (1973)

18. Kulikowski, C.: Pattern recognition approach to medical diagnosis. IEEE Trans.
Syst. Sci. Cybern. SSC–6, 173–178 (1970)

19. Weiss, S.M., Kulikowski, C.A., Amarel, S., Safir, A.: A model-based method
for computer-aided medical decision-making. Artif. Intell. 11(1), 145–172 (1978).
Applications to the Sciences and Medicine

20. Song, X., Song, K., Chen, Y.: A computer-based diagnosis system for early glau-
coma screening. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual
Conference, pp. 6608–6611, January 2005

21. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation
of the spatial envelope. Int. J. Comput. Vision 42(3), 145–175 (2001)

22. Liu, F., Zhou, Z., Samsonov, A., Blankenbaker, D., Larison, W., Kanarek, A., Lian,
K., Kambhampati, S., Kijowski, R.: Deep learning approach for evaluating knee
mr images: achieving high diagnostic performance for cartilage lesion detection.
Radiology 289(1), 160–169 (2018)

Robust Design of a Collaborative
Platform for Model-Based System

Engineering: Experience from
an Industrial Deployment

Christophe Ponsard1(B) , Robert Darimont2, and Mounir Touzani3

1 CETIC Research Center, Charleroi, Belgium
christophe.ponsard@cetic.be

2 Respect-IT SA, Louvain-la-Neuve, Belgium
robert.darimont@respect-it.be

3 Toulouse, France

Abstract. Model-Based System Engineering is gaining momentum in
the industry. In order to be successful, it requires adequate tooling sup-
port. In addition to functional requirements related to model edition,
verification and transformation, key non-functional requirements need
to be carefully addressed such as versioning, usability/team work, relia-
bility, security, ease of integration. In this paper, we first give an overview
of how we dealt with such requirements in the context of the development
of a real world platform for a global telecom operator, with a focus on
early steps of system modelling. We then present a more detailed design
of the tooling architecture and a high availability protocol for accessing
a mainstream model repository. The proposed protocol is modelled and
verified using the Alloy language and model-checker.

Keywords: Model-Based System Engineering · Tool support ·
Modelling · Industrial transfer · High availability · Alloy ·
Model-checking

1 Introduction

Modelling has been used for a long time across many engineering disciplines
like civil engineering, electronic systems and aeronautics. It is now increasingly
applied at system level across disciplines through Model-Based System Engineer-
ing (MBSE) with the aim to rely primarily on domain models to support the
exchange between engineers rather than documents. Model-Driven Engineering
(MDE) is a similar trend focusing only the software development process [30].
Such approaches can rely on standardised and well adopted modelling languages
like SysML [22] at system level, UML [21] for software and increasingly Domain

M. Touzani—Independent Researcher.

c© Springer Nature Switzerland AG 2019
K.-D. Schewe and N. K. Singh (Eds.): MEDI 2019, LNCS 11815, pp. 333–347, 2019.
https://doi.org/10.1007/978-3-030-32065-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32065-2_23&domain=pdf
http://orcid.org/0000-0002-5027-2114
https://doi.org/10.1007/978-3-030-32065-2_23

334 C. Ponsard et al.

Specific Languages (DSLs). They provide a visual syntax enabling the design
and communication activities of the engineers but also have precise semantics
to enable automation of parts of the System Development Life Cycle (SDLC).

Efficient modelling across the different engineering activities can only be
achieved based on reliable computer tools typically composed of a modelling
environment, a model repository and a model transformation toolchain for syn-
chronising modelling artefacts at different steps of the SDLC. Model-to-model
and model-to-text transformations are respectively used to generate detailed
models from abstract ones and code/documentation from models.

Designing a robust toolchain at industrial level is not an easy task. In
addition to functional requirements (FR) relating to various model manipula-
tions (edition, check, transformation, simulation,...), it is also very important to
cover several non-functional requirements (NFR), in order to ensure industrial
strength. Frequently cited NFR are usability, support for collaboration and ver-
sioning, scalability, highly availability, integrity, confidentiality, interoperability
and maintainability [27,29,31].

In this paper, we present an industrial feedback to cope with such non-
functional requirements by elaborating a MBSE platform for a global telecom
operator (Huawei Ltd). Our tooling is focusing on the early steps of system
development through a goal-oriented approach relying on elaborated require-
ments modelling. The contribution of this paper is twofold:

– First, we give a high level view about how we addressed important NFR
without focusing too much on the specifics of our industrial case but rather
by trying to provide adequate feedback that can be applied in a wider context.

– Second, we focus on robust operation requirements, i.e. high availability
and load balancing, by describing a generic architecture composed of sev-
eral redundant server nodes able to process multiple requests and reconfigure
in case of node failure. This protocol also involves a master node with specific
responsibilities, which must be reassigned to another node in case of failure.

The reported case was carried out over two years, with the last six months
mainly devoted to enforcing the robustness of the platform. It is more extensively
detailed from a requirements engineering perspective in [25].

This paper is structured as follows: Sect. 2 presents our industrial case and
analyses its key requirements. Then Sect. 3 elaborates on how we dealt with non-
functional requirements with a generalisation effort. Section 4 goes into details
about the specific high availability requirement. It presents a multi-server archi-
tecture and a specific protocol ensuring robust operation in presence of node fail-
ures. It is modelled and verified using the Alloy language and analyser. Section 5
discusses some related work. Finally, Sect. 6 draws some conclusions and presents
our future work.

2 Presentation of Our Industrial Case

This section gives a summary of the context and main requirements of the devel-
oped platform. We try to step away from too specific aspects of the industrial

Robust Design of a Collaborative Platform 335

case that initiate the work in order to provide a more general feedback. Another
reason is that the core of the resulting platform already proved applicable in
other domains. An extended description of the Huawei deployment is available
[25] and a demonstration version accessible at: http://demo.objectiver.cetic.be/
objectiver/client.

2.1 Context and Objectives

The context of our case is quite common to many industries with requirements
engineering practices mainly based on domain modelling, analysis of the cur-
rent solution (i.e. existing product), use case analysis and UML/SysML mod-
elling. The global process is still strongly document-based with different types of
documents flowing across the lifecycle. Domain specific languages were already
present, mainly for design and testing phases. For example, Gherkins was used to
formalise specifications using “Given-When-Then” structure which can be used
for testing [3,36].

A common long term objective of companies is also to evolve towards a wider
use of modelling across the SDLC but also across products, i.e. by modelling their
product lines and using it for better reuse through more systematic domain engi-
neering. However, this evolution should be progressive and preserve the current
flow of documents. The transition can be achieved the efficient production of
documents using model-to-text [23]. Later on, some documents could become
obsolete when direct model-to-model integration is achieved [13].

2.2 Key Requirements

As we focus on requirements modelling, the starting point was to obtain an
adequate meta-model for capturing all the knowledge related to stakeholders
goals, system properties, domain properties, assumptions on users, and informa-
tion to be exchanged. As the meta-models available in standard modelling lan-
guages such as UML and SysML are mostly poor with this respect, a specialised
meta-model was selected: KAOS [7,14], among other candidates like i* [37] or
URN [5]. In addition to concepts, different sources and targets of the model
transformations were also modelled, like diagrams or documents. Possible trans-
formations between those artefacts were also identified and are documented in
[26]. For example, requirements can be tagged in a source document and refined
using decomposition inside a diagram, then selected as part of a specific subsys-
tem and exported in a public tender or directly transferred in the development
department of the company.

In order to minimise the effort to build a model and to maximise the value
from the invested modelling effort, the proposed tooling needs to have the fol-
lowing qualities (or NFR):

– Scalability : efficient support for large models but also for several models and
multiple concurrent users.

http://demo.objectiver.cetic.be/objectiver/client
http://demo.objectiver.cetic.be/objectiver/client

336 C. Ponsard et al.

– High availability : system up and running with very reduced unplanned inter-
rupt time, meaning service reliability and server redundancy.

– Navigation across multiple versions of modelling artefacts for traceability or
better collaboration support.

– Usability (visual feedback, shortcuts,...) for productivity and adoption.
– Flexible integration: to exchange models or expose specific (web-)services.
– Security enforcement (model integrity, confidentiality, access control).
– Long term support/portability : to ease maintenance over a long time and to

enable reuse through a knowledge base or product lines.
– Reduced installation and maintenance effort to minimise operation costs.

3 Dealing with Non-functional Requirements

3.1 Global Architecture

Several NFR can be addressed through an adequate tool architecture. Our archi-
tecture is depicted in Fig. 1. We give here a short summary why it is convenient.
More information is available in [8].

Fig. 1. Global platform architecture

Our tooling architecture is composed of:

– several clients, including a full web-based client, either standalone or embed-
ded in third party tools.

– a RESTful API, called RAWET, providing services for model and diagram
edition, history, snapshots, user authentication and project management. It
also enables different kinds of integration [28].

– a back-end composed of the model repository relying on a Eclipse Modelling
Framework (EMF) store [33] and a collection of plugins enabling both web-
services and user interface extensions.

Robust Design of a Collaborative Platform 337

3.2 Scalability and High Availability

Scalability and high availability are crucial for the industrial adoption of an
MBSE tooling. This are dealt with at the architecture level an more specifically
the model repository which must be able to manage a large number of models,
possibly large in size.

In our case the Eclipse Modelling Framework is used [32]. Different solu-
tions to persist EMF are available and the selected one, Connected Data Object
(CDO), offers different possible back-ends, including a mature and scalable rela-
tional database manager also with mirroring capabilities.

The server itself is dealing with our RAWET service API. Standard web
application technologies can be used to dispatch requests on many concurrent
servers and, at the same time, allow some server to be down, thus addressing
both scalability and high availability of the service. However, our architecture
requires that the model repository access is centralised on a single server which is
thus a possible point of failure of the system. In order to cope with this problem,
we designed a specific protocol, which is detailed in Sect. 4.

3.3 Ease of Integration

Toolchain integration has started from simple import/export mechanisms and
evolved towards a more complex integration with specific tools such as text
processors and other SDLC tools. A key decision was to shape the tooling as a
series of services available for use over the company intranet. This comes at two
different levels:

– at the user interface level, the tool provides a similar experience as other
modelling tools. However, due to its modular design, web-client extensions

Fig. 2. Modular web-based user interface

338 C. Ponsard et al.

can easily be embedded. For example, Fig. 2 shows the integration of an editor
for the GWT Domain Specific Language. Conversely, specific components can
use reused inside other tools, e.g. a dashboard or read-only view.

– at the model level, a clean RESTful API is directly available to perform CRUD
(Create/Read/Update/Delete) operations both on the model elements and on
model representations inside diagrams, baselines, etc. This allows third-party
tools to directly push or query requirements inside the tool while, previously,
many import and export actions had to be initiated from the tool.

3.4 Usability

Usability was largely stressed by our Chinese customer. The standard model
edition features had to be enriched with extensions in order to:

– provide quick access to frequently used features, with minimal number of
clicks and even keyboard shortcuts.

– support batch operation over multiple concepts (e.g. move, change type).
– tune graphical representation of concepts based on meta-model extensions

(e.g. through decorations on such extended concepts).
– provide efficient default graphical layout and include filtering capabilities.

3.5 Versioning

Model versioning is required to track the model evolution. Versioning is sup-
ported by the CDO model repository [33]. However, the provided technical fea-
tures had to be translated to a more intuitive user experience. Our implementa-
tion started with the support of a single baseline and was extended to multiple
baselines with comparison and rollback capabilities. Access to concepts history
was also made easily accessible at the user interface level to ease collaboration.

4 Analysis of the High-Availability Protocol

This section studies the robustness of server operation. The server is taking care
of model manipulation initiated from the client side and implemented through
a well-defined API. Its implementation can be assumed stateless because in case
of crash, a server session can easily be restarted without impacting the client.

A standard solution for increasing availability and coping with high load
is to use multiple servers and a load balancer/monitor front-end service, like
NGINGX [34]. A typical deployment with three servers is depicted in Fig. 3(a).
An important constraint relates to the access to the model repository: each
server actually maintains a form of cache of modelling concepts related to its user
sessions. However, all the traffic to the model repository needs to be processed
by a single node which is the gateway to the model repository. This node ensures
the serialisation of changes and notifies all other nodes of the relevant changes
through a synchronisation mechanism. As this node has a specific role, we call

Robust Design of a Collaborative Platform 339

it master in our architecture. Some other unique responsibilities may also be
assigned to this node.

As the master is different from the other servers, its failure cannot be resolved
by simply redirecting the traffic to another node as this is the case for non-master
nodes as described in Fig. 3(b).

Fig. 3. (a) Fully operational system (b) Failure of a non-master server

4.1 Informal Model for Master Recovery

As depicted in Fig. 4(a), in case of crash of the master server, the access to the
repository is also lost and the whole system is going to freeze until a new master
is restored. Hence, it must happen quickly.

Fig. 4. (a) Failure of the master server (b) Recovery (new master election)

For finding a new master, we will consider the nodes form a logical ring, e.g.
from the lower to highest IP address and then back to the lowest one. Given
that setting, we could apply a standard leader election protocol such as Chang

340 C. Ponsard et al.

and Roberts [6]. However, we do not restrict communication to message passing
between adjacent nodes. We also need to consider the sub-ring formed by the
working servers because, in our algorithm, we choose to select as new master,
the first available server following the crashed master. This master will then
reconnect to the database and start synchronising will all remaining servers.
This will result in the new operational situation depicted in Fig. 4(b) where
server#2 is the new master. Note that is the crashed master is restarted, it will
start acting as a normal server and will synchronise with master server#2.

In order to achieve this, the following rules are applied: a server detecting a
master crash will start scanning the previous nodes in the logical ring

– until finding a running server, then this server has priority to become master
and the server will wait for this new master to come up and contact him.

– or finding the crashed master, then the server is the first alive server after
the master and it should become the master. It will then notify all nodes it
is now the master. All other nodes will then reinitialise their synchronisation
link with the new master.

Given the load-balancer only directs request to working nodes, if the master
is crashed, the request must go through another server and this will trigger the
change of master as soon as there is a client request. Periodic monitoring requests
internal to the platform can also be used to avoid waiting for a client request.

4.2 Formal Modelling with Alloy

In order to make sure our protocol is behaving as expected, we decided to model
it and verify it using a formal modelling. We selected Alloy because it is a
lightweight formal method [10,12]. On the tool side, the Alloy Analyser relies on
model-checking, which is fully automated contrary to theorem proving, and has
a nice way for visualising solutions with many filtering and rendering capabilities
[11]. This section first describes the static part of the model, then its behaviour
and finally, different validation experiments.

4.3 Structure of the System

The system structure is described in Listing 1.1. It relies on Time and Server
signatures which are ordered using the available ordering module. The ring
structure is enforced using a circular constraint on the time-independent succ
attribute. Three other time-dependent attributes are used: crashed, which
records at which time a server was crashed, master, which records at which
time a server was a master and link, which records who each server believes is
the master at a given time. A key requirement that needs to be checked, is that
at any given time only one master may exist.

Robust Design of a Collaborative Platform 341

Listing 1.1. Structure of the System

open util/ordering[Time] as TO -- time steps is ordered
open util/ordering[Server] as SO -- processes are ordered

sig Time {} -- Time steps (ordered)

sig Server { -- Server node (ordered)
succ : Server , -- this is a static topology
crashed : set Time , -- captures when a server is crashed
master : set Time , -- captures when a server is master
link : Time -> lone Server -- captures knowledge of a node about master

}

fact ring { -- Server nodes are constrained to form a ring
all p: Server | Server in p.^succ

}

4.4 Dynamic Modelling for Maintaining Master Node

In order to build a dynamic model, we use standard Alloy modelling guide-
lines [9], i.e. we define a trace composed of sequence of Time, starting with
some initialisation init with no crashed server and the master allocated on
the first one. Each pair of successive Time of a trace is constrained to be
either a normalOperation when the master to be up and running, or a
recoverOperation when this is not the case. The masterAvailable predicate
is used for this test.

In normalOperation, the state is globally unchanged: a crashed node remains
crashed (repair is considered later) but we allow new nodes to crash, so we can
study server unreliability. However, we do not allow all the nodes to crash (see
notFullyCrashed predicate) because in that case no solution is possible.

In recoveryOperation, the first non-crashed successor of the crashed master
is selected as new master. This node is identified in a single Time step through a
transitive closure on the succ function with domain and range filtering to discard
crashed node. All other Servers are then informed of this new master by directly
changing their link relationship. Listing 1.2 presents the full specification of this
behavioural part.

Listing 1.2. Behaviour of the System

pred init [t: Time] {
t in SO/first.master
all s: Server |

(t �∈ s.crashed)
and (s�=SO/first =\textgreater t �∈ s.master)
and (s.link[t]=SO/first)

}

pred masterAvailable(t: Time) {
all s: Server |

t in s.master =\textgreater t �∈ s.crashed
}

pred notFullyCrashed(t: Time) {
some s: Server | t �∈ s.crashed

}

342 C. Ponsard et al.

pred normalOperation [t, t’: Time , s: Server] {
masterAvailable[t]
t in s.crashed =\textgreater t’ in s.crashed -- crashed stuff remains so
-- but note that new crash may occur !
in s.master iff t’ in s.master -- nothing changed about master routing
s.link[t’]=s.link[t] -- nothing changed about master routing
notFullyCrashed[t’] -- restricting fault model

}

pred recoverOperation [t,t’: Time , s: Server] {
not masterAvailable[t]
let select=(^(crashed.t <: succ)) : > (Server -crashed.t) | -- new master !

(t’ in s.master ≤> select[s.link[t]]=s) -- new master
and s.link[t’]=master.t.(select) -- updating links

t’ in s.crashed iff t in s.crashed -- no crash during recovery
}

fact traces { -- fact for constraining traces to allowed
↪→ operations

init [first]
all t: Time -last | let t’ = t.next | all s: Server |

normalOperation [t, t’, s] or recoverOperation [t, t’, s]
}

4.5 Model Validation

Prior to model-checking, it is important to validate the consistency of the model,
i.e. that it has instances and that those instances match the intended behaviour.
In order to validate our model, we first look for SingleMasterCrash in cascade,
i.e. each time there is a master, it should be crashed the next time, as this
is allowed by our normalOperation. The expected behaviour is that the next
server should take over as master and then crash, hence the master server will
progress around the ring. Note that because crashed nodes remains crashed, no
instance will be possible if there are more time steps than the double of the size
of the ring. The resulting scenario is depicted in Fig. 5(a) for the three first time
steps and it behaves as expected.

Listing 1.3. Behaviour of the System

-- find some instance with a lot of server crashing
pred singleMasterCrash { all t: Time | all s: Server |

t in s.master => t.next in s.crashed }
run singleMasterCrash for 5 Server , 8 Time
-- find some instance with a lot of server crashing and first backup node

↪→ too
pred MasterAndBackupCrash { all t: Time | all s: Server |

t in s.master => (t.next in s.crashed and t.next in s.succ.crashed) }
run MasterAndBackupCrash for 5 Server , 5 Time

A second validation is more naughty and involves the simultaneous crash
of the master and its backup node (i.e. immediate successor). In this case, we
expect the second successor server of the master to take over. The trace in
Fig. 5(b) (limited to the three first time steps here) shows this is the observed
behaviour.

Robust Design of a Collaborative Platform 343

Fig. 5. Behaviour in case of (a) single failure (b) double failure

4.6 Model Checking

Finally, we can ask the analyser to verify the uniqueness of the master at all
times. Rather than requiring exactly one master, actually two separate verifi-
cations are performed: at least one master and at most one master (see Listing
1.4). Their conjunction yields the wished property, but each kind of violation is
more interesting to study separately.

Listing 1.4. Behaviour of the System

-- no multiple masters allowed
assert AtMostOneMaster { all t: Time | lone s: Server | t in s.master }
check AtMostOneMaster for 5 Server , 15 Time

-- at least one master allowed
assert AtLeastOneMaster { all t: Time | some s: Server | t in s.master }
check AtLeastOneMaster for 5 Server , 15 Time

Listing 1.5 recapitulates the running time of all the checks performed on a
core I7 laptop with a 64 bit Java Virtual Machine. One can see the validation
are straightforward, meaning it is easy to find instances of the model, while
the verification took much longer: about 5 s for AtMostOneMaster and about
25 s for AtLeastOneMaster for 5 servers and 15 units of Time. The verification
did not find any counter-example meaning the model might be valid. Given the
limited variety of scenarios, one might be confident the system is indeed correct.
However, the behaviour should be studied in further details by removing some
of the limitations:

344 C. Ponsard et al.

– by allowing crashed servers to become operational again during operation
mode. In this case, the verification is still fine but takes more time for
AtLeastOneMaster (about 2 min)

– by allowing failures during the restoration step. In this case, there can be
scenarios without any master beyond a given step after a crash of all servers.
When excluding fully crashed states, the verification is fine too.

Listing 1.5. Run result

Executing "Run singleMasterCrash for 5 Server , 8 Time"
Solver=sat4j Bitwidth =0 MaxSeq =0 SkolemDepth =1 Symmetry =20
7590 vars. 305 primary vars. 21359 clauses. 31ms.
Instance found. Predicate is consistent. 32ms.

Executing "Run MasterAndBackupCrash for 5 Server , 5 Time"
Solver=sat4j Bitwidth =0 MaxSeq =0 SkolemDepth =1 Symmetry =20
4773 vars. 200 primary vars. 12892 clauses. 22ms.
Instance found. Predicate is consistent. 31ms.

Executing "Check AtMostOneMaster for 5 Server , 15 Time"
Solver=sat4j Bitwidth =0 MaxSeq =0 SkolemDepth =1 Symmetry =20
14562 vars. 565 primary vars. 41731 clauses. 62ms.
No counterexample found. Assertion may be valid. 4919ms.

Executing "Check AtLeastOneMaster for 5 Server , 15 Time"
Solver=sat4j Bitwidth =0 MaxSeq =0 SkolemDepth =1 Symmetry =20
14554 vars. 565 primary vars. 41729 clauses. 63ms.
No counterexample found. Assertion may be valid. 25207ms.

4 commands were executed. The results are:
#1: .singleMasterCrash is consistent.
#2: .MasterAndBackupCrash is consistent.
#3: No counterexample found. AtMostOneMaster may be valid.
#4: No counterexample found. AtLeastOneMaster may be valid.

5 Related Work and Discussion

Several web-based tools are available to develop diagrams in different notations
such as UML, BPMN and flowcharts [4,15,17,18]. They provide an easy way to
draw diagrams from a web browser without requiring any installation, to save
them in the Cloud and to share access with other team members. Although some
may be based on Open Source [4], they all adopt a Software as a Service (SaaS)
model with pay-per-use beyond a limited basic offer, e.g. to support larger mod-
els, more concurrent users, or tool integration. The majority of those tools focus
on the graphical notations and do not stress the model behind them, nor the API
to be able to access that model. However, some tools provide such an API, for
example GenMyModel has an API to return user information, project details,
execute project commands, return project tag data, and more [16]. Cacoo pro-
vides a quite similar API [19]. However when testing those tools and analysing
their API, it appears that many of them have a weak notion of model, i.e. concept
and their representation are not distinguished making impossible to share con-
cept across diagrams. This also limits the ability to feed the model into a MDE
toolchain. An exception is GenMyModel which also provides EMF import and
export. Our approach is close the GenMyModel as we support a strong notion
of model and provide an RESTFul API with all the usual CRUD operations on

Robust Design of a Collaborative Platform 345

model concepts and representations. Beyond this, we also support project/user
level operations and more advanced operations, for example to manage model
versioning.

Our approach relies on the EMF Open Source modelling frameworks which
is actually widespread in the research community but less in the industrial
world where the majority of modelling tools are Closed Source, e.g. Rhap-
sody, MagicDraw and Enterprise Architect. This means such tools are missing
recent advanced made by research tools. Our work aims at bridging this gap by
enabling different forms of integration. Other researchers have also explored how
to address this problem through mechanisms going beyond the pure exchange of
models in standard formats like XMI [24] or through protocols like OSLC [20]. An
attempt to bridge a proprietary UML modelling tool (PTC Integrity Modeller)
with an Open Source family of languages for automated model management
(Epsilon) is discussed in [38]. The question is also crucial in Cyber Physical Sys-
tems to support model integration across domains. OpenMETA was applied for
the design and implementation of an experimental design automation tool suite
[35]. It could provide multiple level of abstraction, correctness-by-construction
in an heterogeneous context and reuse of Open Source tools assets. Our work is
following the same design principles but with a bigger priority on tool reliability
and availability.

6 Conclusion and Future Work

In this paper, we first investigated key non-functional requirements for building
a MBSE toolchain based on our industrial experience, focusing on the early
analysis steps. Although our work is driven by a specific case, the identified
NFR are of general nature and are also reported by others in the literature. So
we believe our feedback can be useful in other cases. Then, we focused on the
specific NFR of high-availability in the context of pool of servers with a single
repository access. We proposed a design to maintain a master node in a reliable
way by modelling and verifying our design using the Alloy analyser. Although
our solution was developed in the context of an EMF data store, we believe that
the problem is more general in nature and that our solution can be reused.

In our future work, we plan to keep improving availability by also investigat-
ing problems on the repository and the load-balancing components, e.g. through
mirroring or mutual monitoring. We also plan to refine our model at a finer level
of operation (i.e. message level). For example, our model does not capture the
behaviour when a server is crashing during the notification phase. Our intent is
also to investigate another formal method supporting model refinement, such as
Event-B and the Rodin toolkit [1,2]. We also plan to further analyse security
requirements, which were not within the scope of our initial work because the
tool was deployed within a secured intranet.

Acknowledgements. This research was partly supported by the SAMOBIGrow
project (nr. 1910032). We thank Respect-IT and Huawei for their feedback in the
elaboration of this tooling. We also thank the reviewers for their comments.

346 C. Ponsard et al.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York (2010)

2. Abrial, J.R., et al.: Rodin: an open toolset for modelling and reasoning in event-B.
STTT 12(6), 447–466 (2010)

3. Adzic, G.: Specification by Example: How Successful Teams Deliver the Right
Software, 1st edn. Manning Publications Co., Greenwich (2011)

4. Alder, G., Benson, D.: draw.io (2011). https://about.draw.io/integrations
5. Amyot, D., Mussbacher, G.: User requirements notation: the first ten years, the

next ten years. JSW 6(5), 747–768 (2011)
6. Chang, E., Roberts, R.: An improved algorithm for decentralized extrema-finding

in circular configurations of processes. Commun. ACM 22(5), 281–283 (1979)
7. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-

sition. Sci. Comput. Program. 20(1–2), 3–50 (1993)
8. Darimont, R., Zhao, W., Ponsard, C., Michot, A.: A modular requirements engi-

neering framework for web-based toolchain integration. In: 24th IEEE International
Requirements Engineering Conference, RE 2016, Beijing, China, 12–16 September,
pp. 405–406 (2016)

9. Dennis, G., Seater, R.: Alloy Analyzer 4 Tutorial Session 4: Dynamic Modeling
Software. Design Group. MIT (2017)

10. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256–290 (2002)

11. Jackson, D.: Alloy Analyser, Version 4 (2006). http://alloytools.org
12. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT

Press, Cambridge (2012)
13. Kahani, N., Bagherzadeh, M., Cordy, J.R., Dingel, J., Varró, D.: Survey and clas-

sification of model transformation tools. Softw. Syst. Model. 18(4), 2361–2397
(2018)

14. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-
els to Software Specifications. Wiley, Hoboken (2009)

15. Legrand, T.: Genmymodel (2012). https://www.genmymodel.com
16. Legrand, T.: GenMyModel API Documentation (2014). https://api.genmymodel.

com/doc
17. Lucid Software: Lucidchart (2008). https://www.lucidchart.com
18. Nulab Inc.: Cacoo (2009). https://cacoo.com
19. Nulab Inc.: Cacoo API Overview (2012). https://developer.nulab.com/docs/cacoo
20. OASIS: Open Services for Lifecycle Collaboration (2008). https://open-services.

net
21. OMG: Unified modeling language (1997). http://www.omg.org/spec/UML
22. OMG: System modeling language (2005). http://www.omg.org/spec/SysML
23. OMG: MOF Model to Text Transformation Language (2008). http://www.omg.

org/spec/MOFM2T
24. OMG: XML Metadata Interchange v2.5.1 (2015). https://www.omg.org/spec/XMI
25. Ponsard, C., Darimont, R.: Improving requirements engineering through goal-

oriented models and tools: feedback from a large industrial deployment. In: Pro-
ceedings of 12th International Conference on Software Technologies, ICSOFT,
Madrid, Spain, 24–26 July 2017

26. Ponsard, C., Darimont, R., Michot, A.: Combining models, diagrams and tables for
efficient requirements engineering: lessons learned from the industry. In: INFOR-
SID 2015, Biarritz, France, June 2015

https://about.draw.io/integrations
http://alloytools.org
https://www.genmymodel.com
https://api.genmymodel.com/doc
https://api.genmymodel.com/doc
https://www.lucidchart.com
https://cacoo.com
https://developer.nulab.com/docs/cacoo
https://open-services.net
https://open-services.net
http://www.omg.org/spec/UML
http://www.omg.org/spec/SysML
http://www.omg.org/spec/MOFM2T
http://www.omg.org/spec/MOFM2T
https://www.omg.org/spec/XMI

Robust Design of a Collaborative Platform 347

27. Ponsard, C., Deprez, J.C., Delandtsheer, R.: Is my formal method tool ready for the
industry? In: 11th International Workshop on Automated Verification of Critical
Systems, Newcastle, UK, 12–14 September 2011

28. Ponsard, C., Michot, A., Darimont, R., Zhao, W.: A generic rest API on top of
eclipse CDO for web-based modelling. EclipseCon France, Toulouse, June 2016

29. Ryan, M., Cook, S., Scott, W.: Application of MBSE to requirements engineer-
ing research challenges. In: Systems Engineering, Test and Evaluation Conference
SETE2013, Canberra, Australia, April 2013

30. Schmidt, D.C.: Guest editor’s introduction: model-driven engineering. Computer
39(2), 25–31 (2006). https://doi.org/10.1109/MC.2006.58

31. Soukaina, M., Abdessamad, B., Abdelaziz, M.: Model driven engineering tools: a
survey. Am. J. Sci. Eng. Technol. 3(2), 29 (2018)

32. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley Professional, Upper Saddle River (2009)

33. Stepper, E.: Connected data object (2006). https://www.eclipse.org/cdo
34. Sysoev, I.: Nginx (2004). https://nginx.org
35. Sztipanovits, J., et al.: Model and tool integration platforms for cyberphysical

system design. Proc. IEEE 106(9), 1501–1526 (2018)
36. Wynne, M., Hellesoy, A.: The Cucumber Book. The Pragmatic Programmers.

Pragmatic Bookshelf, Dallas (2012)
37. Yu, E.S.K., Mylopoulos, J.: Enterprise modelling for business redesign: the i*

framework. SIGGROUP Bull. 18(1), 59–63 (1997)
38. Zolotas, A., et al.: Bridging proprietary modelling and open-source model manage-

ment tools: the case of PTC integrity modeller and epsilon. In: Software & Systems
Modeling (2019)

https://doi.org/10.1109/MC.2006.58
https://www.eclipse.org/cdo
https://nginx.org

Author Index

Abelló, Alberto 35
Ait-Sadoune, Idir 140
Akermi, Imen 96
Almar, Robert 184
Alserafi, Ayman 35
Aouimer, Yasmine 287

Berkani, Lamia 156
Börger, Egon 219
Bošković, Dragan 172
Bouarfa, Hafida 206
Boubendir, Nasserdine 317
Boughanem, Mohand 96
Buchgeher, Georg 267

Calders, Toon 35
Chernishev, George 303
Corral, Antonio 195, 235
Criado, Javier 195

Darimont, Robert 333
de la Vega, Alfonso 50
Dervos, Dimitris A. 83
Djemmal, Ali Menaouer 317

Evangelidis, Georgios 83

Faiz, Rim 96
Farré, Carles 184
Ferrarotti, Flavio 267

Galicia, Jorge 251
García-García, Francisco 235
García-Saiz, Diego 50
Ghomari, Abdessamed Réda 287
Grigorev, Valentin 303

Hammami, Eya 96

Iković, Ognjen 172
Iribarne, Luis 195, 235
Ivanović, Mirjana 172

Khalid, Hiba 106
Khelil, Abdallah 251
Khouri, Selma 287

Lebcir, Abdelhamid 317
Lebcir, Akram 317

Mena, Manel 195
Mesmoudi, Amin 251
Miloud Dahmane, Walid 206
Mohand-Oussaid, Linda 140
Moser, Michael 267
Mukhaleva, Nadezhda 303

Ouchani, Samir 206

Pešić, Saša 172
Pichler, Josef 267
Pispiringas, Leonidas 83
Ponsard, Christophe 333
Prinz, Andreas 219

Radovanović, Miloš 172
Romero, Oscar 35

Salmi, Cheikh 317
Sánchez, Pablo 50
Schewe, Klaus-Dieter 219
Senouci, Mohamed 251
Shin, Sun-Young 67
Suh, Chang-Kyo 67
Surinx, Dimitri 20

Thalheim, Bernhard 3, 123
Tošić, Milenko 172
Touzani, Mounir 333

Van den Bussche, Jan 20
Varga, Jovan 184
Vassilakopoulos, Michael 235
Virtema, Jonni 20

Wrembel, Robert 106

Zimányi, Esteban 106
Zorrilla, Marta 50

	Preface
	Organization
	Abstracts of Keynote Presentations
	Formal Methods in the Development of Highly Assured Software for Unmanned Aircraft Systems
	Reinforcement Learning-Based Methods for Falsification: A New Trend in Critical Controllers Verification
	Contents
	Keynote Articles
	Semiotics in Databases
	1 Introduction
	1.2 Database Semiotics
	1.3 The Special Case of Database Constraints
	1.4 The Storyline and Database Semiotics Research

	2 Goodliness of Mathematical Logic
	2.1 Components of (Meta-semiotic) Logics
	2.2 Forgotten and Supplanted Properties

	3 Revising Approaches to Constraints
	3.1 Constraints Brilliance and Syntax Glory
	3.2 The Boon of the Propositional Logic
	3.3 The Boon and Bane of First-Order Predicate Logic
	3.4 Constraint Classes or Real-Application Constraints

	4 Calculi Beyond Classical Mathematical Logics
	4.1 Visual Reasoning
	4.2 Numerical Calculi
	4.3 Structural Reasoning
	4.4 Divide and Conquer
	4.5 Exception Handling
	4.6 Viewpoint-Oriented Treatment of Semiotics
	4.7 Constraint Acquisition and Negated Constraints

	5 Lessons to Learn and to Consider
	5.1 Holistic Treatment of Syntax and Semantics
	5.2 Maintenance: From Ugly Duckling to Beautiful Swan
	5.3 Lessons to Consider

	References

	Fully Generic Queries: Open Problems and Some Partial Answers
	1 Introduction
	2 Complex Objects, Queries, and Genericity
	3 Computability
	4 Query Language
	5 Technical Observations
	6 Conclusion
	References

	Data Analysis
	Keeping the Data Lake in Form: DS-kNN Datasets Categorization Using Proximity Mining
	1 Introduction
	2 Preliminaries
	2.1 Proximity Mining: Meta-features Metrics and Models

	3 DS-kNN: A Proximity Mining Based k-Nearest-Neighbour Algorithm for Categorizing Datasets
	4 Experimental Evaluation
	4.1 Dataset: OpenML DL Ground-Truth
	4.2 Experimental Setup
	4.3 Results

	5 Related Work
	6 Conclusion
	References

	Lavoisier: High-Level Selection and Preparation of Data for Analysis
	1 Introduction
	2 Case Study and Problem Statement
	2.1 Running Example: The Yelp Dataset Challenges
	2.2 The Data Reformatting Problem

	3 Lavoisier: Dataset Extraction Language
	3.1 Single Class Selection
	3.2 Single-Bounded Reference Inclusion
	3.3 Multi-bounded Reference Inclusion
	3.4 Aggregated Values
	3.5 Nested References
	3.6 Inheritance Management
	3.7 Implementation

	4 Related Work
	5 Discussion
	6 Summary and Future Work
	References

	Discovering Platform Government Research Trends Using Topic Modeling
	Abstract
	1 Introduction
	2 Background
	2.1 Topic Modeling
	2.2 Platform and Platform Government

	3 Research Design
	3.1 Research Topic
	3.2 Data Collection and Analysis

	4 Research Results
	5 Discussion
	6 Conclusion
	References

	J2J-GR: Journal-to-Journal References by Greek Researchers
	1 Introduction
	2 Related Work
	3 Data Collection, Preparation and Unification
	4 The J2J-GR Service
	5 Future Work
	6 Conclusion
	References

	Deep Learning for French Legal Data Categorization
	1 Introduction
	2 Related Work
	3 Proposed Model
	4 Experiments and Results
	4.1 Dataset
	4.2 Pre-processing
	4.3 Experiments

	5 Discussion
	6 Conclusion
	References

	Metadata Discovery Using Data Sampling and Exploratory Data Analysis
	1 Introduction
	2 Related Work
	3 Selective Ingestion Technique
	3.1 Step 1: Data and Metadata Acquisition
	3.2 Step 2: Feature Extraction
	3.3 Step 3: Data Analysis and Profiling

	4 Experimental Results
	4.1 Gathering Structural and Descriptive Metadata
	4.2 Gathering Textual Metadata
	4.3 Metadata Applicability

	5 Conclusion and Future Work
	References

	Modelling
	Conceptual Models and Their Foundations
	1 The Model
	1.1 Models Are Main Artifacts and Universal Instruments
	1.2 Why There Is No Commonly Accepted Notion of a Conceptual Model: 1001 Notions and 101 Scenarios
	1.3 The Storyline of the Paper and Our Agenda

	2 Model Theory and Its Philosophical Foundations
	2.1 Plato's Three Analogies
	2.2 Revisiting the Analogies for Understanding the Model World

	3 Concepts and Conceptualisations
	3.1 Conceptualisation
	3.2 Concepts for Conceptualisation
	3.3 Meta-hypergraph Concept Worlds
	3.4 Concept Granules as Basic Constructs of Conceptualisations

	4 Conceptual Models
	4.1 Perception and Domain-Situation Models as Origins
	4.2 The Notion of Conceptual Model
	4.3 Models, Languages, and Ontologies

	5 Conclusion
	References

	Building Formal Semantic Domain Model: An Event-B Based Approach
	1 Introduction
	2 The Proposed Approach
	3 The OntoEventB Architecture
	4 The Input Model Component Extension
	5 The Pivot Model Component Extension
	6 The Output Model Component Extension
	6.1 Generating a Pivot Model (PM) File
	6.2 Event-B Modelling of Currency and Measure Data Types
	6.3 Example of Using Event-B Definition of Measurements Units

	7 The OntoEventB Plug-In
	7.1 Installing the OntoEventB Plug-In
	7.2 Example of Using the OntoEventB Plug-In

	8 Related Work
	9 Conclusion
	References

	Social-Based Collaborative Recommendation: Bees Swarm Optimization Based Clustering Approach
	Abstract
	1 Introduction
	2 Related Work
	2.1 Trust-Based Recommendation
	2.2 Clustering-Based Recommendation
	2.3 Discussion

	3 BSOC–Based Recommendation
	3.1 Collaborative and Social Recommendation Algorithms
	3.2 Clustering-Based Collaborative and Social Recommendation Algorithms
	3.3 BSOC-Based Collaborative and Social Recommendation Algorithms

	4 Experiments
	4.1 Dataset
	4.2 Metrics
	4.3 Evaluation Results

	5 Conclusions
	References

	Hyperledger Fabric Blockchain as a Service for the IoT: Proof of Concept
	1 Introduction
	2 Related Work
	3 Hyperledger Fabric
	3.1 Addressing IoT BCaaS Requirements with Hyperledger Fabric

	4 Proof-of-Concept BCaaS Design and Implementation
	4.1 Hyperledger Fabric Operation Module
	4.2 Hyperledger Fabric Infrastructure Configuration Generator
	4.3 Hyperledger Fabric Chaincode Builder

	5 Discussion
	6 Conclusion
	References

	GraphQL Schema Generation for Data-Intensive Web APIs
	1 Introduction
	2 GraphQL
	3 A Semantic Metamodel
	3.1 Modeling Principles
	3.2 GQL Metamodel

	4 Automation
	4.1 Step 1: Annotation of the Dataset
	4.2 Step 2: Automatic Generation of a GraphQL Schema
	4.3 Step 3: Automatic Generation of a GraphQL Service

	5 Related Work
	6 Conclusions and Further Work
	References

	Digital Dices: Towards the Integration of Cyber-Physical Systems Merging the Web of Things and Microservices
	1 Introduction
	2 Background
	3 Thing Description to Digital Dice
	4 Example Scenario
	5 Related Works
	6 Conclusions and Future Work
	References

	A Smart Living Framework: Towards Analyzing Security in Smart Rooms
	1 Introduction
	2 Related Work
	3 Framework
	3.1 Architecture
	3.2 Smart Objects
	3.3 Measurements
	3.4 Communication Protocols

	4 Experimental Results
	5 Conclusion
	References

	Database Theory and Rigorous Methods
	Concurrent Computing with Shared Replicated Memory
	1 Introduction
	2 Shared Memory Management with Replication
	2.1 Concurrent Communicating Abstract State Machines
	2.2 Memory Organisation with Replication
	2.3 Internal Request Handling for Replicated Memory

	3 Refinement Using Replication Policies
	3.1 View Compatibility
	3.2 Specification of Replication Policies

	4 Refinement with Internal Communication
	4.1 Request Handling with Communicating Data Centres
	4.2 Analysis of the Refinement

	5 Concluding Remarks
	References

	MRSLICE: Efficient RkNN Query Processing in SpatialHadoop
	1 Introduction
	2 Related Work and Motivation
	3 Preliminaries and Background
	3.1 The Reverse k-Nearest Neighbor Query
	3.2 SpatialHadoop
	3.3 SLICE Algorithm

	4 MRSLICE Algorithm in SpatialHadoop
	4.1 MRSLICE Filtering Algorithm
	4.2 MRSLICE Verification Algorithm

	5 Experimentation
	6 Conclusions and Future Work
	References

	Should We Be Afraid of Querying Billions of Triples in a Graph-Based Centralized System?
	1 Introduction
	2 Related Work and Background
	3 Our Approach
	3.1 Graph Storage
	3.2 Query Evalaution

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Pre-processing Evaluation
	4.3 Query Performance

	5 Conclusion
	References

	Extracting High-Level System Specifications from Source Code via Abstract State Machines
	1 Introduction
	2 Abstract State Machines
	3 The Stepwise Abstraction Method
	3.1 Ground Specification Extraction
	3.2 Iterative High-Level Specification Extraction

	4 Dijkstra's Shortest Path Algorithm: Extracting High-Level Specifications from a Java Implementation
	5 Conclusion
	References

	Data Warehousing
	Thinking the Incorporation of LOD in Semantic Cubes as a Strategic Decision
	1 Introduction
	2 Related Work
	3 Background
	4 Proposed Metamodel for Connecting the Incorporation of LOD to the Managerial Level
	5 Proposed Approach for Measuring the Impact of LOD Incorporation in the Semantic Cube
	5.1 Approach Overview
	5.2 Impact at Technical Level
	5.3 Impact at Managerial Level

	6 Case Study
	7 Conclusion
	References

	Implementing Window Functions in a Column-Store with Late Materialization
	1 Introduction
	2 Window Function Processing: Approaches and Algorithms
	3 Proposed Approach
	3.1 Adapting Classic Algorithm for PosDB
	3.2 RANGE-Based Window Functions

	4 Experiments
	5 Related Work
	6 Conclusion
	References

	Applications of Model and Data Engineering
	A Machine Learning Model for Automation of Ligament Injury Detection Process
	1 Introduction
	2 Artificial Neural Network
	3 Convolutional Neural Network for ACL
	3.1 Loss Layer
	3.2 Learning Optimization
	3.3 Network Architecture

	4 Experimental Results and Discussion
	4.1 Dataset
	4.2 Evaluation
	4.3 Discussion

	5 Related Work
	6 Conclusion
	References

	Robust Design of a Collaborative Platform for Model-Based System Engineering: Experience from an Industrial Deployment
	1 Introduction
	2 Presentation of Our Industrial Case
	2.1 Context and Objectives
	2.2 Key Requirements

	3 Dealing with Non-functional Requirements
	3.1 Global Architecture
	3.2 Scalability and High Availability
	3.3 Ease of Integration
	3.4 Usability
	3.5 Versioning

	4 Analysis of the High-Availability Protocol
	4.1 Informal Model for Master Recovery
	4.2 Formal Modelling with Alloy
	4.3 Structure of the System
	4.4 Dynamic Modelling for Maintaining Master Node
	4.5 Model Validation
	4.6 Model Checking

	5 Related Work and Discussion
	6 Conclusion and Future Work
	References

	Author Index

