
Pruning Algorithms for Low-Dimensional
Non-metric k-NN Search: A Case Study

Leonid Boytsov(B) and Eric Nyberg

Carnegie Mellon University, Pittsburgh, PA, USA
{srchvrs,enh}@cs.cmu.edu

Abstract. We focus on low-dimensional non-metric search, where tree-based
approaches permit efficient and accurate retrieval while having short indexing
time. These methods rely on space partitioning and require a pruning rule to avoid
visiting unpromising parts. We consider two known data-driven approaches to
extend these rules to non-metric spaces: TriGen and a piece-wise linear approxi-
mation of the pruning rule. We propose and evaluate two adaptations of TriGen to
non-symmetric similarities (TriGen does not support non-symmetric distances).
We also evaluate a hybrid of TriGen and the piece-wise linear approximation
pruning. We find that this hybrid approach is often more effective than either of
the pruning rules. We make our software publicly available.

Keywords: k-NN search · Non-metric distance · VP-tree · TriGen

1 Introduction and Problem Definition

We consider a k nearest neighbor (k-NN) search, which is a popular technology used
in many domains including, machine learning (ML), data mining, information retrieval,
and natural language processing. Informally, k-NN search is a task of retrieving k data
set entries closest to a query point with respect to some distance or similarity func-
tion. This problem originated from the real-world spatial search. In particular, Knuth
famously formulated k-NN search as the (nearest) post-office problem [14]. With sub-
sequent developments of the vector-space abstraction, the problem was generalized to
searching in a multi-dimensional vector and/or generic metric space, where the latter
may lack the structure of the vector space [10,21]. Motivated by emergence of use-
ful non-metric distances—such as Bregman divergences [7]—the problem was recently
generalized to more challenging domains [5,8,23,27].

Formally, we assume to have a possibly infinite domain containing objects x, y, z,
. . . , which are commonly called data points or simply points. The domain—sometimes
called a space—is equipped with a distance function d(x, y), which is used to measure
dissimilarity of objects x and y. The value of d(x, y) is interpreted as a degree of dis-
similarity. The larger is d(x, y), the more dissimilar points x and y are. Some distances

Authors gratefully acknowledge the support by the NSF grant #1618159: “Matching and Ranking
via Proximity Graphs: Applications to Question Answering and Beyond”.

c© Springer Nature Switzerland AG 2019
G. Amato et al. (Eds.): SISAP 2019, LNCS 11807, pp. 72–85, 2019.
https://doi.org/10.1007/978-3-030-32047-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32047-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-32047-8_7

Pruning Algorithms for Low-Dimensional Non-metric k-NN Search 73

Table 1. Distance functions

Denotation/Name d(x, y)

Euclidean distance (L2) ||x − y||2 =

[∑
i

(xi − yi)
2

]1/2

Lp (p > 0)

[
m∑

i=1

(xi − yi)
p

]1/p

Squared euclidean (L2
2) ||x − y||22 =

∑
i

(xi − yi)2

Cosine distance 1 −
∑

i xiyi

||x||2||y||2
Kullback-Leibler diverg. (KL-div.) [15]

m∑
i=1

xi log
xi

yi

Itakura-Saito distance [13]
m∑

i=1

[
xi
yi

− log xi
yi

− 1
]

Rényi diverg. [20] 1
α−1

log

[
m∑

i=1

xα
i y1−α

i

]
, α > 0 and α �= 0

are non-negative and become zero only when x and y have the highest possible degree
of similarity. The metric distances are additionally symmetric and satisfy the triangle
inequality. However, in general, we do not impose any restrictions on the value of the
distance function (except that smaller values represent more similar objects).

We further assume that there is a data set D containing a finite number of domain
points and a set of queries that belong to the domain but not to D. We then consider
a standard top-k retrieval problem. Given a query q, a retrieval task consists in finding
k data set points {xi} with smallest values of distances to the query among all data
set points (ties are broken arbitrarily). Data points {xi} are called nearest neighbors. A
search should return {xi} in the order of increasing distance to the query. If the distance
is not symmetric, two types of queries can be considered: left and right queries. In a left
query, a data point compared to the query is always the first (i.e., the left) argument of
d(x, y). For simplicity of exposition we consider only the case of left queries.

We employ a space-partitioning method VP-tree [19,24,26], but many other space-
partitioning approaches can be used. Importantly, applying space-partitioning methods
to non-metric data of even moderate dimensionality entails two problems. First, exact
space-partitioning methods can degenerate to a brute-force search for just a dozen of
dimensions [1,25]. Second, many generic space-partitioning methods incorporate prun-
ing rules that crucially rely on the triangle inequality, which does not generally hold in
non-metric spaces. Most existing non-metric space-partitioning methods employ spe-
cialized extensions specific to a concrete class of distances, e.g., to Bregman diver-
gences [8,27] or Ptolemaic distances [12]. However, in a more general case we clearly
need to resort to empirically derived analogs of the triangle inequality, which are
inferred from data with a certain degree of approximation.

For these reasons, we focus only on approximate search methods. We also restrict
our attention to low- and moderate-dimensional methods, because even approximate
pruning methods are not effective in truly high dimensions. There has been a tremen-
dous effort put into design of metric space-partitioning algorithms [10,21], but many

74 L. Boytsov and E. Nyberg

Table 2. Data sets

Name Max. # of rec. Dimensionality Source

RandHist-d 0.5 × 106 d = 8 Histograms sampled uniformly from a simplex

RCV-d 0.5 × 106 d ∈ {8, 32, 128} d-topic LDA [2] RCV1 [16] histograms

Wiki-d 2 × 106 d ∈ {8, 32, 128} d-topic LDA [2] Wikipedia histograms

fewer methods are designed for non-metric domains. We aim to fill this gap by making
the following contribution, which we detail in the rest of the paper:

– We carry out the first experimental comparison of two existing generic pruning algo-
rithms, which include the piecewise linear approximation of the pruning rule [5] and
TriGen [22].

– Unlike most prior work, many of our distances are non-symmetric. To deal with non-
symmetry, we propose two adaptation of TriGen to non-symmetric distances and
demonstrate that the choice of the symmetrization algorithm can be quite important.

– In our comprehensive evaluation, which includes 40 combinations of data sets and
distances, we demonstrate the feasibility of accurate non-metric k-NN search for
data of moderate dimensionality.

– We demonstrate that often best results can be achieved by combining these pruning
methods.

– We find that on data of moderate dimensionality, the pruning algorithm needs to be
quite efficient.

2 Methods and Materials

2.1 Data Sets and Distances

In our experiments, we use the following non-metric distances: L2
2 (squared Euclidean)

Lp distance, cosine distance, KL-divergence, the Itakura-Saito distance, and the family
of Rényi divergence distances. The first three distances are symmetric. The remaining
distances are statistical distances defined over probability distributions. For expository
purposes, we also use the Euclidean metric distance L2. Distances are listed in Table 1.

Statistical distances in general and, KL divergence in particular, play an important
role in ML [8,17]. They are typically non-symmetric. Both the KL-divergence and the
Itakura-Saito distances were used in prior work [8]. The Rényi divergence is a single-
parameter family of distances, which are not symmetric when the parameter α �= 0.5.
By changing the parameter we can vary the degree of symmetry. In particular, large
values of α and close-to-zero values result in highly non-symmetric distances. This
flexibility allows us to “stress-test” retrieval methods on challenging non-symmetric
distances.

The data sets are listed in Table 2. Wiki-d and RCV-d data sets consist of dense vec-
tors of topic histograms with d topics. RCV-d set are created by Cayton [8] by applying
the latent Dirichlet allocation (LDA) method [2] to the RCV1 collection [16]. These

Pruning Algorithms for Low-Dimensional Non-metric k-NN Search 75

data sets have only 500K entries. Thus, we created larger sets from Wikipedia follow-
ing a similar methodology. RandHist-d is a synthetic set of topics sampled uniformly
from a d-dimensional simplex.

2.2 Pruning Algorithms for Space-Partitioning Methods

We employ a simple approach called a vantage-point tree (VP-tree) [19,24,26]. There
are two reasons for this choice: for low- and moderate-dimensional data, it is often a
hard-to-beat method. For example, in a preliminary experiment with L2 on Wiki-8 data
set for exact 10-NN search using NMSLIB [4], SA-tree [18], GH-tree [24], MVP-tree
(binary version) [6], and VP-tree are respectively 70×, 210×, 1200×, 1600× faster
than the brute-force search. This comparison was done using the leaf bucket of size 50
for all methods (except SA-tree, which does not easily support bucketing) and with-
out using any specific optimizations for any of the methods. We can see that VP-tree
can outperform fancier alternatives including MVP-tree, which carries out 3× fewer
distance computations in this experiment.

VP-tree is a hierarchical space-partitioning method, which divides the space using
hyperspheres. The output of an indexing algorithm is a hierarchical partitioning of the
data set represented by a binary tree. This algorithm is a recursive procedure that oper-
ates on a subset of data—which we call an active subset—and on a partially built tree.
At each step of recursion, the indexing algorithm checks if the number of active data
points is below a certain threshold called the bucket size. If this is the case, the active
data points are simply stored as a single bucket. Otherwise, the algorithm divides the
active subset into two nearly equal parts, each of which is further processed recursively.

Division of the active subset starts with selecting a pivot π (e.g., randomly) and
computing the distance from π to every other data point in the active subset. Assume
that R is the median distance. Then, the active subset is divided into two subsets by
the hypersphere with radius R and center π. Two subtrees are created. Points inside
the pivot-centered hypersphere are placed into the left subtree. Points outside the pivot-
centered hypersphere are placed into the right subtree. Points on the separating hyper-
sphere may be placed arbitrarily. Because R is the median distance, each of the subtrees
contains approximately half of active points.

In VP-tree k-NN search can be seen as a range search with a shrinking radius. The
search algorithm is a best-first traversal procedure that starts from the root of the tree
and proceeds recursively. It updates the search radius r as it encounters new close data
points. Let us consider one step of recursion. If the search algorithm reaches a leaf of
the tree, i.e., a bucket, all bucket elements are compared against the query. In other
words, elements in the buckets are searched via brute-force search.

If the algorithm reaches an internal node X , there are exactly two subtrees rep-
resenting two spaces partitions. The query belongs to exactly one partition. This is
the “best” partition and the search algorithm always explores this partition recursively
before deciding whether to explore the other partition. While exploring the best par-
tition, we may encounter new close data points (pivots or bucket points) and further
shrink the search radius. On completing the sub-recursion and returning to node X , we
make a decision about pruning or exploring the other partition.

76 L. Boytsov and E. Nyberg

π

R

Fig. 1. Three types of
query balls in VP-tree.

Piecewise-Linear Approximation of the Decision Rule. An
essential part of this process is a decision function, which
identifies situations when pruning is possible without sacri-
ficing accuracy. Let us review the decision process. Recall
that each internal node keeps pivot π and radius R, which
define the division of the space into two subspaces. Although
there are many ways to place a query ball, all locations can be
divided into three categories, which are illustrated by Fig. 1.
The red query ball “sits” inside the inner partition. Note that
it does not intersect with the outer partition. For this reason,
the outer partition cannot have sufficiently close data points, i.e., points with radius r
from the query. Hence, this partition can be safely pruned. The blue query ball is located
in the outer partition. Likewise, it does not intersect the other, inner, partition. Thus, this
inner partition can be safely pruned. Finally, the gray query ball intersects both parti-
tions. In this situation, sufficiently close points may be located in both partitions and no
safe pruning is possible.

The pruning algorithm can be seen as the binary classification problem, which
tells us whether we should visit both partitions or only the partition that contains the
query. As we show previously [5], the problem can be solved by collecting training data
and building a non-parametric model, but a simple two-parameter approach—described
below—delivers better results. Let us first consider the case of a metric distance. From
the triangle inequality it follows that the VP-tree search algorithm visits:

– only the left subtree if d(π, q) < R − r;
– only the right subtree if d(π, q) > R + r;
– both subtrees if R − r ≤ d(π, q) ≤ R + r.

Let us rewrite these rules using notation Dπ,R(x) = |R − x|. It is easy to see that
the search algorithm has to visit both partitions if and only if r ≥ Dπ,R(d(π, q)). If
r < Dπ,R(d(π, q)), we need to visit only one partition that contains the query point
whereas the other partition can be safely pruned.

In other words, the pruning decision is made by comparing the query radius r with
the value of the function Dπ,R(x), whose only argument is the distance from the query
to the pivot d(π, q).1 This basic rule can also be learned from data for non-metric dis-
tances. Our initial approach to learn Dπ,R(x) employed a stratified sampling procedure
(see § 2 of the supplemental materials of our publication [5]). However, it was expen-
sive and not very accurate. For this reason, we also implemented a simple parametric
approximation whose parameters are selected to optimize efficiency at a given value of
recall.

To choose the right parametric representation, we examine the (approximate) func-
tions Dπ,R(x) learned by the sampling algorithm. Plots of functions Dπ,R(x) learned
from data are shown in Fig. 2. Small dots in these plots represent function values
obtained by sampling. Blue curves are fit to these dots. In these plots, we use only
topic histogram data RCV-d, where d ∈ {8, 32} and random 8-dimensional histograms
(RandHist-8).

1 Recall that k-NN search is executed as a best-first range search with a shrinking radius.

Pruning Algorithms for Low-Dimensional Non-metric k-NN Search 77

●
●

●

●

●●
●
●
●
●
●

●

●●

●

●

●
●

●●
●

●●

●

●●

●●●
●
●
●●●

●●●

●
●●●●

●

●●

●●
●●●●●●●●●

●
●●
●
●
●
●

●●
●●●

●

●●●
●●
●●
●●
●●
●●●

●●
●●
●
●
●
●
●
●
●
●
●●

●

●

●

0.2

0.4

0.6

0.0 0.3 0.6 0.9
distance to pivot

m
ax

 d
is

ta
nc

e
to

 q
ue

ry

(a) RCV-8 (L2)

●

● ●●

●

●

●
●

●

●●

●

●
●●●

●

●●●●●●●●●●
●●

●●●●
●●●
●
●●

●
●
●
●●

●
●
●●

●
●●

●
●
●

●
●
●
●

●●
●

●

0.2

0.4

0.6

0.0 0.3 0.6 0.9 1.2
distance to pivot

m
ax

 d
is

ta
nc

e
to

 q
ue

ry

(b) RCV-32 (L2)

●

●
●

●
●

●
●●

●●
●
●●

●●●
●
●
●●
●

●

●
●
●●●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●
●
●
●

●●
●●●

●●●

●
●●

●
●●

●
●
●

●
●

●

●

●

0.1

0.2

0.3

0.2 0.4 0.6
distance to pivot

m
ax

 d
is

ta
nc

e
to

 q
ue

ry

(c) RandHist-8 (L2)

●

●

●

●
●

●

●

●
●
●●

●

●●
●
●
●●●

●●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●

●
●●●

●

●●
●
●
●●

●
●●●

●●

●●
●

●
●
●
●
●●

●
●●

●

●

●

0.00

0.25

0.50

0.75

1.00

0 2 4 6
distance to pivot

m
ax

 d
is

ta
nc

e
to

 q
ue

ry

(d) RCV-8 (KL-div.)

●

●

● ●

●●

●●●●●
●
●●●●●

●
●
●
●

●
●
●●●●

●●
●●
●●●●●●●●●●●●●●●●●●

●●●●
●●●●●

●
●●●
●
●●●
●●●●●

●●●●●●
●
●●●●

●●●
●
●
●
●●●●●●●●●●●●

0.0

0.5

1.0

1.5

2.0

0 2 4 6
distance to pivot

m
ax

 d
is

ta
nc

e
to

 q
ue

ry

(e) RCV-32 (KL-div.)

●

●

●

●

●
●

●
●

●
●
●
●
●●

●

●

●●●
●
●●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●

●

●
●●

●

●●
●

●●
●

●●

●
●

●
●

●
●

●

●

●

0.1

0.2

0.3

0.4

0.5

0 1 2
distance to pivot

m
ax

 d
is

ta
nc

e
to

 q
ue

ry
(f) RandHist-8 (KL-div.)

Fig. 2. The empirically obtained (approximate) pruning decision function Dπ,R(x)

For the Euclidean data (Panels 2a–2c in Fig. 2), Dπ,R(x) resembles a piecewise lin-
ear function close to the exact metric pruning function |R − x|. For the KL-divergence
data (Panels 2d–2f in Fig. 2), Dπ,R(x) looks like either a U-shape or a hockey-stick
curve. These observations originally motivated the use of a piecewise polynomial deci-
sion function, which is formally defined as:

Dπ,R(x) =
{

αleft|x − R|βleft , if x ≤ R
αright|x − R|βright , if x ≥ R

, (1)

where βi are positive integers. However, preliminary experiments convinced us to
switch to a simple piece-wise linear variant. First, we learned that using different βi

did not make our pruning function sufficiently more accurate. However, it made the
optimization problem harder due to additional parameters (so we set β = β1 = β2).
Second, we found that in many cases a polynomial approximation was not better than a
piecewise linear one, especially when dimensionality was high.

This is not very surprising: Due to the concentration of measure, for most data points
the distance to the pivot π is close to the median distance R (which corresponds to the
boundary between two VP-tree partitions). If we explore the shape of Dπ,R(x) in Pan-
els 2a and 2e around the median, we can see that a piecewise linear shape approximation
is quite reasonable. To sum up, we ended up using the piecewise linear parametric deci-
sion rule defined as:

Dπ,R(x) =
{

αleft|x − R|, if x ≤ R
αright|x − R|, if x ≥ R

(2)

78 L. Boytsov and E. Nyberg

This is similar to stretching of the triangle inequality proposed by Chávez and
Navarro [9]. There are two crucial differences, however. First, we utilize different val-
ues of αi, i.e., αleft �= αright, while Chávez and Navarro used αleft = αright. Second,
we devise a simple training procedure to obtain values of αi that maximize efficiency
at a given recall value. For details, we address the reader to relevant publications [3,5].

TriGen. TriGen consists in “stretching” the distance function using a monotonic con-
cave transformation [22] that reduces non-metricity of the distance. TriGen is designed
only for bounded, semimetric distances, which are crucially symmetric, non-negative,
and become zero only for identical data points. We are not aware of any prior extensions
to non-symmetric distances except a straightforward filter-and-refine approach.

Let x, y, z be an arbitrary ordered triple of points such that d(x, y) is the largest
among three pairwise distances, i.e., d(x, y) ≥ max(d(x, z), d(z, y)). If d(x, y) is a
metric distance, the following conditions should all be true:

d(x, y) ≤ d(x, z) + d(z, y)
d(y, z) ≤ d(y, x) + d(x, z)
d(x, z) ≤ d(x, y) + d(y, z)

(3)

Because d(x, y) ≥ max(d(x, z), d(z, y)), the second and the third inequalities in (3)
are trivially satisfied for (not necessarily metric) symmetric and non-negative distances.
However, the first condition can be violated if the distance is non-metric. The closer
is the distance to the metric distance, the less frequently we encounter such violations.
Thus, it is quite reasonable to assess the degree of deviation from metricity by estimat-
ing a probability that the triangle inequality is violated (for a randomly selected triple),
which is exactly what is suggested by Skopal [22].

Skopal proposes a clever way to decrease non-metricity by constructing a new dis-
tance f(d(x, y)), where f() is a monotonically increasing concave function. The con-
cave function “stretches” the distance and makes it more similar to a true metric com-
pared to the original distance d(x, y). At the same time, due to the monotonicity of such
a transformation, the k-NN search using the modified distance produces the same result
as the k-NN search using the original distance. Thus, the TriGen strategy to dealing
with non-metric data consists in (1) employing a monotonic transformation that makes
a distance approximately metric while preserving the original set of nearest neighbors,
and (2) indexing data using an exact metric-space access method.

A TriGen mapping f(x)—defined for 0 ≤ x ≤ 1—is selected from the union of
two parametric families of concave functions, which are termed as bases:

– A fractional power base FP (x,w) = x
1

1+w ;
– A Rational Bézier Quadratic (RBQ) base RBQ(a,b)(x,w), 0 ≤ a < b ≤ 1. The

exact functional form of RBQ is not relevant to this discussion (see [22] for details).

Note that parameters w, a, and b are treated as constants, which define a specific func-
tional form. By varying these parameters we can design a necessary stretching function.
The larger is the value of w the more concave is the transformation and the more “met-
ric” is the transformed distance. In particular, as w → ∞, both RBQ and FP converge to
one minus the Dirac delta function. This limit function of all bases is equal to zero for

Pruning Algorithms for Low-Dimensional Non-metric k-NN Search 79

x = 0 and to one for 0 < x ≤ 1. As noted by Skopal [22], applying such a degenerate
transformation produces a trivial metric space where d(x, x) = 0 and d(x, y) = C for
some constant C > 0 and all x �= y.

A learning objective of TriGen, however, is to select a single concave function
that satisfies the accuracy requirements while allowing for efficient retrieval. The frac-
tion of violations is computed for a set of trigenSampleTripletQty ordered
data point triples sampled from a set of trigenSampleQty data points, which are,
in turn, selected randomly from the data set (uniformly and without replacement).
The fraction of violations is required to be above the threshold trigenAcc. Val-
ues trigenSampleTripletQty, trigenSampleQty, and trigenAcc are all
parameters in our implementation of TriGen. To assess efficiency Skopal uses the value
of an intrinsic dimensionality as a proxy metric (see [22] for details). The idea is that
the modification of the distance with the lowest intrinsic dimensionality should result
in the fast retrieval method.

Because it is not feasible to optimize over the infinite set of transformation func-
tions, TriGen employs a finite pool of bases, which includes FB and multiple RBQ
bases for all possible combinations of parameters a and b such that 0 ≤ a < b ≤ 1. For
each base, TriGen uses a binary search to find the minimum parameter w such that the
transformed distance deviates from a metric distance within specified limits. Then the
base with minimum intrinsic dimensionality is selected.

TriGen has two major limitations: In addition to be non-negative, the dis-
tance should be symmetric and bounded. Bounding can be provided by using
min(d(x, y)/Dmax, 1) instead of the original distance.2 Note that Dmax is an empiri-
cally estimated maximum distance (obtained by computing d(x, y) for a sample of data
set point pairs).

As noted by Skopal [22], searching with a non-symmetric distance can be par-
tially provided by a filter-and-refine approach where a fully min-symmetrized distance
min(d(x, y), d(y, x)) is used during the filtering step. However, as we learn from our
prior work §§ 2.3.2.3–2.3.2.4 [3], the filtering step has to carry out a kc-NN search with
kc (sometimes substantially) larger than k. This is required to compensate for the lack
of accuracy due to replacing the original distance with the symmetrized one. In that,
using kc > k leads to reduced efficiency. Thus, instead of the complete filter-and-refine
symmetrization, we consider two simple alternatives. In both cases we first apply the
TriGen algorithm to the min-symmetrized distance. As a result, we obtain a mapping
that makes this min-symmetrized distance to be closer to a metric distance. However,
this mapping is used differently in the two modifications of TriGen.

Recall that in a typical space-partitioning method, we divide the data into reasonably
large buckets (50 in our experiments). The k-NN search is simulated as a range search
with a shrinking radius. In the case the first modification of TriGen, while we traverse
the tree, we compute the original and the min-symmetrized distance for two purposes:

– shrinking the dynamic radius of the query using the symmetrized distance;
– checking if the original distance is small enough to update the current set of k nearest

neighbors.

2 For efficiency reasons this is simulated via multiplication by inverse maximum distance.

80 L. Boytsov and E. Nyberg

Table 3. Efficiency-effectiveness results for metric VP-tree on non-metric data for 10-NN search
(using complete data sets).

RCV-8 Wiki-8 RandHist-8 Wiki-128

Recall Impr. in
eff.

Recall Impr. in
eff.

Recall Impr. in
eff.

Recall Impr. in
eff.

Lp(p = 0.125) 0.41 1065 0.66 15799 0.45 136 0.07 14845

Lp(p = 0.25) 0.61 517 0.78 14364 0.66 115 0.09 396

Lp(p = 0.5) 0.91 926 0.94 14296 0.92 174 0.50 33

L2
2 0.69 1607 0.78 5605 0.56 1261 0.55 114

Cosine dist 0.67 1825 0.62 3503 0.58 758 0.73 55

Rényi div. (α = 0.25) 0.66 5096 0.70 24246 0.50 3048 0.48 1277

Rényi div. (α = 0.75) 0.61 9587 0.66 35940 0.50 4673 0.50 468

Rényi div. (α = 2) 0.40 22777 0.66 46122 0.38 11762 0.71 55

KL-div. 0.52 1639 0.67 5271 0.46 610 0.56 41

Itakura-Saito 0.46 706 0.69 4434 0.41 1172 0.14 384

When we reach a bucket, for every data point in the bucket, we can compute both the
original and the symmetrized distance. The symmetrized distance is used to update the
query radius, while the original distance is used to update the set of k nearest neighbors.
This is our first modification of TriGen which we refer to as TriGen 0.

In the second variant of TriGen, which we refer to as TriGen 1, we use only the
original distance to compute the distance from the query to bucket data points. When
we compute the distance to the pivots, we compute the min-symmetrized distance and
apply a metrizing transformation. However, when we process bucket data points, we
compute only the original distance. Consequently, we shrink the dynamic query radius
using values of f(d(x, y)) instead of min (f(d(x, y)), f(d(y, x))), In TriGen 1, we
expect the query radius to shrink somewhat slower compared to TriGen 0, which, in
turn, can reduce the effectiveness of pruning. However, we hope that nearly halving the
number of distance computations would have a larger effect on overall retrieval time.

3 Experiments

3.1 Experimental Setup and Preliminary Experiments

We compare TriGen and the piecewise-linear pruning approach using the NMSLIB [4]
implementation of the VP-tree (method vptree trigen)3. Experiments are run on a
laptop (i7-4700MQ @ 2.40GHz with 16GB of memory). The accuracy of retrieval is
measured via recall (equal to the average fraction of neighbors found).

We use two variants of TriGen (TriGen 0 and TriGen 1), but for symmetric dis-
tances, we use only TriGen 1. The TriGen algorithm that finds an optimal mapping
function was downloaded from the author’s website4 and incorporated into NMSLIB.

3 https://github.com/nmslib/nmslib/tree/nmslib4a bigger reruns.
4 http://siret.ms.mff.cuni.cz/skopal/download.htm.

https://github.com/nmslib/nmslib/tree/nmslib4a_bigger_reruns
http://siret.ms.mff.cuni.cz/skopal/download.htm

Pruning Algorithms for Low-Dimensional Non-metric k-NN Search 81

VP-tree (picewise-linear pruner) VP-tree (picewise-linear pruner+square root transform.)

VP-tree (Trigen 0) VP-tree (Trigen 1)

0.75 0.8 0.85 0.9 0.95 1

101

102

103

Recall@10

Im
pr

ov
.

in
effi

ci
en

cy
(l

og
.

sc
al

e)

(a) RCV-8 (KL-div.)

0.7 0.75 0.8 0.85 0.9 0.95 1

102

103

Recall@10

Im
pr

ov
.

in
effi

ci
en

cy
(l

og
.

sc
al

e)

(b) RCV-8 (Rényi div. α = 0.25)

0.75 0.8 0.85 0.9 0.95 1

102

103

Recall@10

Im
pr

ov
.

in
effi

ci
en

cy
(l

og
.

sc
al

e)

(c) RCV-8 (Rényi div. α = 0.75)

0.6 0.65 0.7 0.75

103

103.5

Recall@10

Im
pr

ov
.

in
effi

ci
en

cy
(l

og
.

sc
al

e)

(d) Wiki-8 (Cosine dist.)

0.75 0.8 0.85 0.9 0.95 1

103

103.5

Recall@10

Im
pr

ov
.

in
effi

ci
en

cy
(l

og
.

sc
al

e)

(e) Wiki-8 (L2
2)

0.85 0.9 0.95 1

100

101

102

103

Recall@10

Im
pr

ov
.

in
effi

ci
en

cy
(l

og
.

sc
al

e)

(f) Wiki-8 (Itakura-Saito)

0.8 0.85 0.9 0.95 1

102

103

Recall@10

Im
pr

ov
.

in
effi

ci
en

cy
(l

og
.

sc
al

e)

(g) Wiki-8 (KL-div.)

0.75 0.8 0.85 0.9

103

104

Recall@10

Im
pr

ov
.

in
effi

ci
en

cy
(l

og
.

sc
al

e)

(h) Wiki-8 (Rényi div. α = 0.25)

0.7 0.75 0.8 0.85

103

104

Recall@10

Im
pr

ov
.

in
effi

ci
en

cy
(l

og
.

sc
al

e)

(i) Wiki-8 (Rényi div. α = 0.75)

0.6 0.7 0.8 0.9 1

100

101

102

Recall@10

Im
pr

ov
.

in
effi

ci
en

cy
(l

og
.

sc
al

e)

(j) RandHist-8 (KL-div.)

0.4 0.5 0.6 0.7 0.8 0.9 1

101

102

Recall@10

Im
pr

ov
.

in
effi

ci
en

cy
(l

og
.

sc
al

e)

(k) Wiki-128 (Rényi div. α = 0.25)

0.4 0.5 0.6 0.7 0.8 0.9 1

100

101

102

Recall@10

Im
pr

ov
.

in
effi

ci
en

cy
(l

og
.

sc
al

e)

(l) Wiki-128 (Rényi div. α = 2)

Fig. 3. Improvement in efficiency vs recall for VP-tree based methods in 10-NN search. Best
viewed in color.

82 L. Boytsov and E. Nyberg

VP-tree (picewise-linear pruner) VP-tree (picewise-linear pruner+square root transform.)

VP-tree (Trigen 0) VP-tree (Trigen 1)

0.75 0.8 0.85 0.9 0.95 1
101

102

103

Recall@10

R
ed

uc
t.

in
di

st
co

m
p.

(l
og

.
sc

al
e)

(a) RCV-8 (KL-div.)

0.7 0.75 0.8 0.85 0.9 0.95 1

102

103

Recall@10

R
ed

uc
t.

in
di

st
co

m
p.

(l
og

.
sc

al
e)

(b) RCV-8 (Rényi div. α = 0.25)

0.75 0.8 0.85 0.9 0.95 1

102

103

Recall@10

R
ed

uc
t.

in
di

st
co

m
p.

(l
og

.
sc

al
e)

(c) RCV-8 (Rényi div. α = 0.75)

0.6 0.65 0.7 0.75

103.2

103.4

103.6

103.8

Recall@10

R
ed

uc
t.

in
di

st
co

m
p.

(l
og

.
sc

al
e)

(d) Wiki-8 (Cosine dist.)

0.75 0.8 0.85 0.9 0.95 1

103.5

104

104.5

Recall@10

R
ed

uc
t.

in
di

st
co

m
p.

(l
og

.
sc

al
e)

(e) Wiki-8 (L2
2)

0.85 0.9 0.95 1

100

101

102

103

104

Recall@10

R
ed

uc
t.

in
di

st
co

m
p.

(l
og

.
sc

al
e)

(f) Wiki-8 (Itakura-Saito)

0.8 0.85 0.9 0.95 1

102

103

104

Recall@10

R
ed

uc
t.

in
di

st
co

m
p.

(l
og

.
sc

al
e)

(g) Wiki-8 (KL-div.)

0.75 0.8 0.85 0.9

103

104

Recall@10

R
ed

uc
t.

in
di

st
co

m
p.

(l
og

.
sc

al
e)

(h) Wiki-8 (Rényi div. α = 0.25)

0.7 0.75 0.8 0.85

103

104

Recall@10

R
ed

uc
t.

in
di

st
co

m
p.

(l
og

.
sc

al
e)

(i) Wiki-8 (Rényi div. α = 0.75)

0.6 0.7 0.8 0.9 1

101

102

103

Recall@10

R
ed

uc
t.

in
di

st
co

m
p.

(l
og

.
sc

al
e)

(j) RandHist-8 (KL-div.)

0.4 0.5 0.6 0.7 0.8 0.9 1

101

102

Recall@10

R
ed

uc
t.

in
di

st
co

m
p.

(l
og

.
sc

al
e)

(k) Wiki-128 (Rényi div. α = 0.25)

0.4 0.5 0.6 0.7 0.8 0.9 1

100

101

Recall@10

R
ed

uc
t.

in
di

st
co

m
p.

(l
og

.
sc

al
e)

(l) Wiki-128 (Rényi div. α = 2)

Fig. 4. Reduction in the number of distance computations vs recall for VP-tree based methods in
10-NN search. Best viewed in color.

Pruning Algorithms for Low-Dimensional Non-metric k-NN Search 83

The optimization procedure employs a combination of parameters a and b, where a are
multiples of 0.01, b are multiples of 0.05, and 0 ≤ a < b ≤ 1. The sampling parameters
are set as follows: trigenSampleTripletQty = 10000, trigenSampleQty =
5000.

TriGen is compared against two variants of NMSLIB VP-tree, which rely on the
piecewise-linear pruner. The second variant uses a clever TriGen idea of applying a
concave mapping to make the distance more similar to a metric one. However, unlike
TriGen [22], we do not carry an extensive search for an optimal transformation but
rather apply, perhaps, the simplest and fastest monotonic concave transformation pos-
sible, which consists in taking a square root. On Intel the square root is computed the
instruction sqrtss, which typically takes less than 10 cycles [11].

In our main experiments, we employ 40 combinations of data sets and distances.
All distances are non-metric: We experiment with both symmetric and non-symmetric
ones. Due to space limitations, we do not present all the results here and refer the reader
to our unpublished technical report for the complete set of results (§ 2.3.3 [3]).

Before we proceed, we must answer the following question: “How difficult are these
data sets and distances”? To ensure we do not deal with mildly non-metric data, we
attempted to index this data using a metric variant VP-tree without adapting the pruning
rule to non-metric distances. Results for randomly selected 1K queries are presented
in Table 3 (for a subset of distances and data sets), where we show improvement in
efficiency and respective recall.

It can be seen that nearly all the combinations of data and distance functions are
substantially non-metric: Searching using a metric VP-tree is usually fast, but the accu-
racy is unacceptably low. In particular, this is true for Wiki-8 and Wiki-128 data sets
with KL-divergence (which are also used in our main experiments). One exception,
is the Lp distance for p = 0.5, where recall of about 90% is achieved for three low-
dimensional data sets. However, as p decreases, the recall decreases sharply, i.e., the
distance function becomes “less” metric. To summarize, we clearly deal with challeng-
ing non-metric data sets, where both accurate and efficient retrieval is not possible to
achieve by a straightforward application of metric-space search methods.

3.2 Main Experiments

Experimental results for 16 out of 40 cases are presented in Figs. 3 and 4. The remaining
results can be found in the technical report (§ 2.3.3 [3]). In Fig. 3, we measure efficiency
directly in terms of wall-clock time improvement over the brute-force search. In Fig. 4,
we show improvement in the number of distance computations (again compared to the
brute-force search).

First and foremost, we can see that VP-tree with a data-adapted pruning rule can
enable accurate non-metric k-NN search for data of moderate dimensionality. When
comparing TriGen against the piecewise linear pruner in terms of pure efficiency, the
results are a bit of the mixed bag. Yet, the piecewise linear pruner is typically better (in
23 cases out of 40 on the full set, see § 2.3.3 [3]).

However, the piecewise linear pruner combined with the square-root distance trans-
form is nearly always better than the basic piecewise linear pruner. In Panels 3d, 3e,
3a, 3b, 3c the improvement is up to one order of magnitude. The combination of the

84 L. Boytsov and E. Nyberg

piecewise linear pruner with the square root transform outperforms TriGen in all but
two cases, sometimes by an order of magnitude. In Panels 3g and 3f, however, TriGen
can also be an order of magnitude faster than the piecewise linear pruner.

It is important to note, however, that there is often little to no difference between
the hybrid pruning approach and TriGen in terms of the reduction in the number of
distance computations (see Fig. 4). The most likely explanation for this discrepancy is
that the transformation functions used in the adopted TriGen implementation are quite
expensive to compute.

Finally, we can see that TriGen 1 is never less efficient than TriGen 0. Furthermore,
TriGen 1 is up two times more efficient in four cases (see Panels 3h, 3i, 3k, 3l). This is
somewhat unsurprising, because TriGen 0 computes both d(x, q) and d(q, x) for every
data point visited by the search. Although this may permit a more effective pruning, the
cost of extra distance computations outweigh the benefits (at least on our data).

4 Conclusion

We carry out the first comparison of two generic pruning approaches for non-metric
data. Our approach is comprehensive and involves 40 combinations of data sets and dis-
tances, which cannot be handled by a classic metric-space access method. We extend
TriGen to the case of non-symmetric distances and demonstrate that VP-tree with a
data-adapted pruning rule can enable accurate non-metric k-NN search for data of
moderate dimensionality by using the modified TriGen, the piecewise linear approx-
imation of the metric pruning rule, or by the hybrid approach. In that, we find that this
hybrid approach is often more effective than either of the pruning rules. Our software
is publicly available: NMSLIB branch nmslib4a bigger reruns, search method
vptree trigen.5

Acknowledgments. This work was done while Leonid Boytsov was a PhD student at CMU.
Authors gratefully acknowledge the support by the NSF grant #1618159.

References

1. Beyer, K.S., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor” mean-
ingful? In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49257-7 15

2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–
1022 (2003)

3. Boytsov, L.: Efficient and accurate non-metric k-NN search with applications to text match-
ing. Ph.D. thesis, Carnegie Mellon University (2017)

4. Boytsov, L., Naidan, B.: Engineering efficient and effective non-metric space library. In:
Brisaboa, N., Pedreira, O., Zezula, P. (eds.) SISAP 2013. LNCS, vol. 8199, pp. 280–293.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41062-8 28

5. Boytsov, L., Naidan, B.: Learning to prune in metric and non-metric spaces. In: Proceedings
of NIPS 2013, pp. 1574–1582 (2013)

5 https://github.com/nmslib/nmslib/tree/nmslib4a bigger reruns.

https://doi.org/10.1007/3-540-49257-7_15
https://doi.org/10.1007/978-3-642-41062-8_28
https://github.com/nmslib/nmslib/tree/nmslib4a_bigger_reruns

Pruning Algorithms for Low-Dimensional Non-metric k-NN Search 85

6. Bozkaya, T., Özsoyoglu, Z.M.: Indexing large metric spaces for similarity search queries.
ACM Trans. Database Syst. 24(3), 361–404 (1999). https://doi.org/10.1145/328939.328959

7. Bregman, L.: The relaxation method of finding the common point of convex sets and its
application to the solution of problems in convex programming. USSR Comput. Math. Math.
Phys. 7(3), 200–217 (1967)

8. Cayton, L.: Fast nearest neighbor retrieval for bregman divergences. In: Proceedings of the
25th International Conference on Machine Learning, pp. 112–119. ACM (2008)

9. Chávez, E., Navarro, G.: Probabilistic proximity search: fighting the curse of dimensionality
in metric spaces. Inf. Process. Lett. 85(1), 39–46 (2003)

10. Chávez, E., Navarro, G., Baeza-Yates, R.A., Marroquı́n, J.L.: Searching in metric spaces.
ACM Comput. Surv. 33(3), 273–321 (2001)

11. Fog, A.: Instruction tables: Lists of instruction latencies, throughputs and micro-operation
breakdowns for intel, AMD and VIA CPUs (2011)

12. Hetland, M.L., Skopal, T., Lokoč, J., Beecks, C.: Ptolemaic access methods: challenging the
reign of the metric space model. Inf. Syst. 38(7), 989–1006 (2013)

13. Itakura, F., Saito, S.: Analysis synthesis telephony based on the maximum likelihood method.
In: Proceedings of the 6th International Congress on Acoustics, pp. C17–C20 (1968)

14. Knuth, D.E.: The Art of Computer Programming: Volume 3: Sorting and Searching. Atmo-
spheric Chemistry & Physics (1973)

15. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86
(1951)

16. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: a new benchmark collection for text cate-
gorization research. J. Mach. Learn. Res. 5, 361–397 (2004)

17. Markatou, M., Chen, Y., Afendras, G., Lindsay, B.G.: Statistical distances and their role in
robustness. In: Chen, D.-G., Jin, Z., Li, G., Li, Y., Liu, A., Zhao, Y. (eds.) New Advances in
Statistics and Data Science. IBSS, pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-69416-0 1

18. Navarro, G.: Searching in metric spaces by spatial approximation. VLDB J. 11(1), 28–46
(2002)

19. Omohundro, S.M.: Five balltree construction algorithms (1989). iCSI Technical Report TR-
89-063. http://www.icsi.berkeley.edu/icsi/publication details?ID=000562

20. Rényi, A.: On measures of entropy and information. In: Proceedings of the Fourth Berkeley
Symposium on Mathematical Statistics and Probability, vol. 1, pp. 547–561 (1961)

21. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann
Publishers Inc., San Francisco (2005)

22. Skopal, T.: Unified framework for fast exact and approximate search in dissimilarity spaces.
ACM Trans. Database Syst. 32(4), 29 (2007)

23. Skopal, T., Bustos, B.: On nonmetric similarity search problems in complex domains. ACM
Comput. Surv. 43(4), 34 (2011)

24. Uhlmann, J.K.: Satisfying general proximity/similarity queries with metric trees. Inf. Pro-
cess. Lett. 40(4), 175–179 (1991)

25. Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces. In: VLDB, vol. 98, pp. 194–205
(1998)

26. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general metric
spaces. In: Proceedings of ACM/SIGACT-SIAM 1993, pp. 311–321 (1993)

27. Zhang, Z., Ooi, B.C., Parthasarathy, S., Tung, A.K.H.: Similarity search on Bregman diver-
gence: towards non-metric indexing. PVLDB 2(1), 13–24 (2009)

https://doi.org/10.1145/328939.328959
https://doi.org/10.1007/978-3-319-69416-0_1
https://doi.org/10.1007/978-3-319-69416-0_1
http://www.icsi.berkeley.edu/icsi/publication_details?ID=000562

	Pruning Algorithms for Low-Dimensional Non-metric k-NN Search: A Case Study
	1 Introduction and Problem Definition
	2 Methods and Materials
	2.1 Data Sets and Distances
	2.2 Pruning Algorithms for Space-Partitioning Methods

	3 Experiments
	3.1 Experimental Setup and Preliminary Experiments
	3.2 Main Experiments

	4 Conclusion
	References

