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Abstract. The local intrinsic dimensionality (LID) model enables
assessment of the complexity of the local neighbourhood around a spe-
cific query object of interest. In this paper, we study variations in the LID
of a query, with respect to different subspaces and local neighbourhoods.
We illustrate the surprising phenomenon of how the LID of a query can
substantially decrease as further features are included in a dataset. We
identify the role of two key feature properties in influencing the LID for
feature combinations: correlation and dominance. Our investigation pro-
vides new insights into the impact of different feature combinations on
local regions of the data.
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1 Introduction

Many core operations in data-mining and machine learning are dependent on the
choice of similarity measure, as well as the choice of feature space. As the number
of features in a dataset increases, the similarity between any pair of data points
converges to the distribution mean and the similarity measure loses its discrim-
inability power, i.e., the ‘curse of dimensionality’. To overcome this challenge, a
range of dimension reduction techniques [1–3] have been developed, to search for
a lower dimensional representation that provides a good approximation of the
data. A key concept in this context is a dataset’s intrinsic dimensionality (ID),
the minimum number of latent features required to represent the data. This is
a natural measure to assess the complexity of a dataset.

In addition to considering the intrinsic dimensionality of an entire dataset,
one can also consider intrinsic dimensionality with respect to a particular query
object of interest. For this task, one can use local measures of ID [4,5], which
focus on the k-nearest neighbor distances from a specific (query) location in the
space. Recently developed local intrinsic dimensionality models, i.e., the expan-
sion dimension (ED) [6], the generalised expansion dimension (GED) [7], and
local continuous intrinsic dimension (LID) [8,9], quantify the ID in terms of the
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Fig. 1. LID values (computed using the MLE estimator [4])
of three prominent researchers, i.e., Jiawei Han, Micheline
Kamber and Vipin Kumar with respect to increasing number
of features for the data-mining community of scholars from
AMiner.

Fig. 2. Neighbour-
hoods of a query along
the individual distance
variables, i.e., X and
Y as well as their joint
distance variable XY .
(Color figure online)

growth rate of objects with the expansion in distance from a specific query loca-
tion. A wide range of applications, e.g., manifold learning, dimension reduction,
similarity search [10], local density estimation [11] and anomaly detection [12],
have benefited from the use of local ID measures.

In this paper, given a query object, our goal is to analyse how its LID esti-
mates change with respect to different size feature sets. In particular, as more
features are used, does the estimated LID of the query increase or decrease?
Intuitively, one might expect that as one adds more features, the estimated LID
of the query should either increase or remain stable. However, for some situ-
ations (in both real and synthetic data), we will demonstrate an unexpected
and somewhat counterintuitive phenomenon, that the estimated LID of a query
object can actually decrease as more features are used.

We provide a brief example to illustrate the idea. Figure 1 shows the esti-
mated LID values of three researchers (queries): Jiawei Han, Micheline Kamber
and Vipin Kumar from the data-mining community1 of scholars in the AMiner2

dataset. We observe that the LID trends are not always smooth as more features
are considered. Importantly for researcher M. Kamber, there is significant drop
in LID when going from 5 to 6 features, and going from 6 to 7 features.

Our purpose is to understand how such a drop in LID is possible and what
factors might be responsible. Intuitively, the phenomenon is related to how out-
lying or inlying the query is within a given subspace, as well as relations between
the features themselves, such as their degree of correlation and whether a prop-
erty we call feature dominance is present. Developing such an understanding may
lead to strategies for more effective feature engineering. Our contributions can
be summarised as follows.

1. We identify and illustrate the counter intuitive phenomenon of how the esti-
mated LID of a query object may decrease as more features are considered.

1 https://aminer.org/lab-datasets/soinf/.
2 https://aminer.org/data.

https://aminer.org/lab-datasets/soinf/
https://aminer.org/data
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2. We identify the role of two key factors which can influence changes in LID
and local neighbourhood for a query: feature dominance and correlation.

3. Given a query object, we study the estimated LID and neighbourhood vari-
ations within a feature space and its subspaces, using carefully controlled
experiments.

2 Background and Preliminaries

We will first define local intrinsic dimensionality [9] and its estimator [4], and
introduce the concept of neighbourhood.

Local Intrinsic Dimensionality: Classical expansion models [6,8] evaluate
the growth rate of the number of data points as the distance to an object of
interest increases. E.g., in Euclidean space, when the size of a d-dimensional ball
increases by r, it’s volume increases by rd. It is possible to deduce the expansion
dimension d from this growth rate of volume with respect to the size/distance
as follows.

V2

V1
=

(
r2

r1

)d

⇒ d =
ln(V2/V1)
ln(r2/r1)

(1)

The notion of volume is analogous to the probability measure for continuous
random variables. The expansion models can be adapted for distance distribu-
tions for a given query by replacing the ball set size with the probability of the
lower tails of the distribution (Extreme Value Theory), providing a local view
of the dimensional structure of the data, as their estimation is restricted to a
neighbourhood around the object of interest. Houle et. al. [9] provides the formal
definition of LID in light of this theory.

Definition 1. Assume a reference object q ∈ R. Let X > 0 be a random variable
representing distances from q to other objects.3 If F (x) represents the cumulative
distance distribution function of X such that F (x) is continuously differentiable
at distance x ∈ X, the local intrinsic dimensionality (LID) of the query q at
distance x is defined as:

LIDX(x) = lim
ε→0

ln(F ((1 + ε)x))/F (x)
ln((1 + ε)x/x)

= lim
ε→0

ln(F ((1 + ε)x))/F (x)
ln(1 + ε)

(2)

whenever the limit exists.

Applying L’Hopital’s rule to the limits of Eq. 2, LID can be expressed as fol-
lows [9].

Theorem 1 ([9]). If F (x) represents the cumulative distribution function for a
distance variable X and F (x) is continuously differentiable such that F (x) > 0
for x > 0, then

LIDX(x) =
x · F ′(x)

F (x)
(3)

3 Suppose q = 0 ∈ R and x1 = 2 ∈ X are 1 dimensional data values. Then, x1 directly
represents a distance value from q to itself along the X axis.
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Thus, when x ∈ X tends to zero, the LID of q can be defined in terms of the
limit:

LIDX = lim
x→0

LIDX(x) (4)

LID gives a rough indication of the dimensionality of the submanifold containing
q that would best fit the distribution of data in the vicinity of q. Comprehensive
theory regarding the LID model can be found in [8,9,13,14].

LID Estimation: The k nearest neighbour distances can be considered as
extreme events associated with the lower tail of the distance distribution accord-
ing to the Extreme Value Theory. The tails of the continuous probability dis-
tributions converge to the Generalized Pareto Distribution (GPD), under some
reasonable assumption [15]. Amsaleg et. al. [4,5] developed several estimators of
LID to heuristically approximate the actual underlying distance distribution by
a transformed GPD. The Maximum Likelihood Estimator (MLE) has showed a
useful trade-off between efficiency and complexity. For a query object q from a
data distribution, the MLE estimator of LID(q) is,

L̂ID(q) = −
(

1
k

k∑
i=1

log
ri(q)
rk(q)

)−1

(5)

where ri(q) denotes the distance between q and its i-th nearest neighbour in the
sample.

Neighbourhood: Given two features FX , FY
4 and a query object q, we define

random variables, X, Y that represent the distance distributions from q to other
objects using either FX or FY . The joint distribution XY represents the distance
distribution from q in the joint space {FX , FY }. Let LIDX , LIDY and LIDXY

be the estimates of the LID for q using X, Y and XY , respectively. The nearest
neighbours, nX , nY and nXY that are used to estimate the individual and joint
LIDs, are shown as circles in Fig. 2. nXY is a mixture of data objects from nX ,
nY and U (the whole region).

We use sX to represent the nearest neighbours within X, that are common
with the neighbours in the joint space XY and not with the neighbours in Y
(shown in yellow color in Fig. 2). Similarly for sY . Thus, sX = (nX ∩ nXY ) \
nY and sY = (nY ∩ nXY ) \ nX . Also, sX,Y (the green region) represents the
neighbours that are common in both the individual and joint dimensions, sX,Y

= nX ∩ nY ∩ nXY . The nearest neighbours in the joint space XY that are not
common with any of the neighbours in the individual dimensions are represented
as sφ, sφ = nXY \ (sX

⋃
sY

⋃
sX,Y ) (the pink region).

For the rest of the paper, we refer the estimate of the LID value using
Eq. 5 as the LID of a query.

4 In fact, our model allows FX (or FY ) to be a set of features, rather than a single
feature, but for simplicity we will present in the context of being a single feature.
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(a) Independence (b) Correlation (c) Dominance & Independence (d) Dominance & Correlation

Fig. 3. Four different scenarios of the neighbourhoods for a given query along two
distance variables, i.e., X and Y as well as their joint distance variable XY .

3 Research Questions

The local intrinsic dimensionality (LID) of the query in the joint space XY
varies with respect to changes in the local joint neighbourhood (nXY ). We next
characterise the relationship between the nearest neighbours in the joint space
XY and the nearest neighbours in the individual variables, i.e., X and Y , w.r.t.
the following two properties:

– Correlation: When the two distance variables, X and Y , are positively cor-
related, one expects that a significant portion of the nearest neighbours in
the joint space XY overlap with the nearest neighbours in both X and Y .
One also expects that this phenomenon is absent when X and Y are not
correlated. i.e. | scor.

X,Y | � | suncor.
X,Y |.

– Dominance: A dominant distance variable is one which has a strong influ-
ence in determining the nearest neighbours of the query in the joint space
XY . If X dominates Y , then a major portion of the nearest neighbours in
the joint space XY overlap with the nearest neighbours in X as compared to
Y . i.e., | sX | � | sY |.
We will assess in what circumstances LIDXY can be less than the individual

estimated LID values, LIDX and LIDY . We particularly focus on the role of a
dominant distance variable and/or the presence of a strong correlation between
X and Y . We consider the following four research questions (RQ1–RQ4):

RQ1: Given a query, when two distance variables are independent (uncorre-
lated), how can LIDXY and nXY be characterised with respect to LIDs and
neighbourhoods of the individual dimensions (LIDX , LIDY , nX , nY )?

For RQ1, we will analyse a query’s characteristics, i.e., inlying-
ness/outlyingness, in terms of its estimated LID in 2D spaces, when the individ-
ual distance variables have no dependency between them. Figure 3(a) illustrates
this scenario, where we observe | sX,Y | � 0 and | sX | � | sY |.
RQ2: Given a query object, when two distance variables are dependent (cor-
related), how can LIDXY and nXY be characterised with respect to LIDs and
neighbourhoods of the individual dimensions (LIDX , LIDY , nX , nY )?

Correlation between two distance variables can lead to significant changes in
the joint neighbourhood in comparison to the uncorrelated case and we expect
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the joint LID (estimated) to behave differently from the scenario in RQ1 (see
Fig. 3(b)). To demonstrate the impact of correlation on the neighbourhood, con-
sider the top 100 nearest neighbours of a query in XY space, if the correlation
between X and Y is 1.0, we can expect that | sX,Y | � 100.

RQ3: How are LIDXY and nXY influenced when one of the distance variables
dominates the other? (X dominates Y or vice versa)

A dominating distance variable can strongly influence the formation of neigh-
bourhood in the joint space. In Fig. 3(c) we note, a significant part of nXY over-
laps with nX and a small part of it overlaps with nY . In this case, we have
assumed that the distance variables are independent, i.e., | sX,Y | � 0. In this
case, we expect the query to have neighbourhood characteristics for the joint
space that are similar to those for the individual variable X, due to the domi-
nance property of X.

RQ4: In the presence of both correlation and dominance, how can LIDXY and
nXY be characterised in terms of (LIDX , LIDY , nX , nY )?

Figure 3(d) illustrates this scenario where we observe a positive correlation
between X and Y as | sX,Y | � 0. We find | sX | > | sY |, meaning that X still
dominates Y .

4 Experimental Study Using Synthetic Data

We observe the behaviour of LID in multiple univariate (Sect. 4.1) and bivariate
(Sects. 4.2–4.4) synthetic datasets that are generated to model the scenarios
in the research questions RQ1-RQ4. We will later investigate a real dataset in
Sect. 5. For our experiments, we model the distance distribution instead of the
actual data distribution, i.e., the generated data values represent the distances
from a query that is located at the origin. Note that the query is not generated
by the data generation process. Since we always ensure that the generated values
of the synthetic datasets are greater than or equal to 0, the data values along
each dimension directly represent the distances from the query to themselves.
The Euclidean Norm (‖ · ‖2) is used to measure distance. We use k = 100
neighbours in the MLE estimator of LID (see Eq. 5). Unless otherwise stated,
z-score normalisation has been applied on both synthetic and real data (i.e. on
the raw feature values for FX or FY ) before estimating the LIDs of a given query.

4.1 LID in Univariate Synthetic Datasets

To model the distance distributions, we have selected the Weibull distribution
as it is lower bounded (given x≥0). Equation 6 shows the Weibull probability
density and cumulative distribution functions. We generate three uniscaled (λ =
1) Weibull distributions for different values of shape parameter (κ) in Fig. 4. For
shape values, 1 < κ < 2.6, the Weibull pdf is positively skewed (right tail), for
2.6 < κ < 3.5 its coefficient of skewness approaches zero (no tail) and for κ > 3.5
it is negatively skewed (left tail) [16].
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Fig. 4. Histograms of three Weibull(κ,λ) distributed distance variables, i.e., X, Y
and Z.

fw(x;κ, λ) =
κ

λ

(
x

λ

)κ−1

exp−( x
λ )κ

Fw(x;κ, λ) = 1 − exp−( x
λ )κ

F−1
w (x;κ, λ) = λ[− ln(1 − x)]

1
κ (6)

LIDX = lim
x→0

x · fw(x;κ, λ)
Fw(x;κ, λ)

= lim
x→0

d
dx (x · fw(x;κ, λ))

d
dx (Fw(x;κ, λ))

= κ (7)

The theoretical LID of a Weibull distributed distance variable is derived in Eq. 7
and is equal to the shape value. Also, experimentally the query (at origin) obtains
LID values 1.66, 3.72 and 7.47, corresponding to κ values, i.e., 1.5, 3.4, 7.5,
respectively. Thus, the larger the shape value of the Weibull distribution, the
higher the LID and the more outlying the query is relative to other objects.

Table 1. Description of distribution and correlation parameters of synthetic bivariate
datasets.

Scenarios Title Name of datasets Distribution
type

Description of the
parameters

Rank correlation

Scenario 1 D1. ND-Independent Weibull κX = 4, λX = 1,
κY = 6, λY = 1

αs = 0

D2. ND-Correlated same as D1 same as D1 αs = 0.89

Scenario 2 D3. D-Independent same as D1 κX = 4, λX = 8,
κY = 6, λY = 1

αs = 0

D4. D-Correlated same as D1 same as D3 αs = 0.89

D5. ED-Independent Pearson μX = 7, σ2
X = 0.5,

βX = −1.75,
γX = 9 μY = 8,
σ2

Y = 1, βY = 0,
γY = 3

αs = 0

D6. ED-Correlated same as D5 same as D5 αs = 0.89
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4.2 Bivariate Synthetic Datasets Generation

We generate six bivariate synthetic datasets. Each dataset consists of 10, 000
data points. Four datasets, i.e., D1:ND-Independent, D2:ND-Correlated, D3:D-
Independent, and D4: D-Correlated, are generated using the lower bounded
Weibull distribution. Thus, the generated random variables, i.e., X and Y , can
be treated as continuous distance variables for a query at origin (0, 0). To achieve
control over the mean (μ), variance (σ2), skewness (β) (i.e., measure of symme-
try), and kurtosis (γ) (i.e., measure of whether the data is heavy-tailed or not in
relation to the normal distribution) of the distance distributions, we generate two
further datasets, D5:ED-Independent and D6:ED-Correlated, using the Pearson
distribution family, which is effective in modelling skewed observations [17]. In
this case, we ensure that all data values are greater or equal to 0, so that the
generated data values correspond to distances from the query.

We consider two scenarios, Scenario 1 and Scenario 2, where we model dom-
inance and non-dominance between two distance variables. For each scenario we
generate two different types of datasets, i.e., uncorrelated and correlated, using
a Gaussian Copula (described below). Datasets D1 and D2, model the scenarios
stated in RQ1 and RQ2, respectively, whereas D3 and D4, model the scenarios
in RQ3 and RQ4, respectively. Datasets D5 and D6 illustrate the LID behaviour
for the same phenomena as D3 and D4, using extremely skewed and heavy-tailed
distance distributions.

When generating the bivariate distance distributions, our goal is to illustrate
the circumstances where the query has different LID values in individual dimen-
sions. We investigate the properties of the 2D local neighbourhood around the
query, where LIDXY may show an expected increase or unexpected decrease
with respect to the individual LIDs LIDX and LIDY . To ensure that we have
different LID values in X and Y dimensions, we use smaller values for the shape
parameter in X than Y , making LIDX < LIDY , leveraging our observations in
Sect. 4.1.

We use a copula [18,19] to generate both the correlated and uncorrelated
datasets. Copulas (C) provide a way to model correlated multivariate data.
According to Sklar’s Theorem [18], any multivariate cumulative distribution
function can be expressed in terms of the marginal cumulative distribution func-
tions of the random variables, together with a copula describing their dependence
structure (α) (see Eq. 8).

F (x, y) = C(F 1(x), F 2(y);α) (8)

The Gaussian Copula (Cg) generates correlated uniformly distributed values
from a multivariate normal distribution with a given linear correlation (αp).
Thus, a correlated multivariate distribution with the same or different marginal
distributions can be obtained by applying the desired inverse cumulative distri-
bution functions (ICDF ) to the corresponding uniform variables. We follow this
technique to generate the four bivariate datasets, i.e., D1, D2, D3 and D4, using
the following steps.
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– Step 1:We use a Gaussian copula Cg with selected linear correlation param-
eter to sample bivariate uniformly distributed values U = [U1,U2] for U ∈
[0, 1].

– Step 2: We apply the ICDF of the Weibull distribution (F−1
w ) to U1 and U2,

with the given parameters for each dimension i.e., κX , κY , λX , and λY , and
obtain the desired marginal (Weibull) distributions for X and Y ; the process
is known as inverse transform sampling [20].

Though we need to provide the linear correlation (αp) as an input to Cg, this
linear correlation is not preserved during the inverse sampling because F−1

w is a
non-linear function (see Eq. 6). However, F−1

w (u) is monotonically increasing for
u ∈ U and κ, λ > 0, and under any monotonic transformation, rank correlation,
e.g., Spearman’s correlation coefficient (αs), is preserved [18]. There remains a
one-to-one mapping between αp and αs for normally distributed data [21] (see
Eq. 9). Hence, the value of αs between the Weibull distributed variables is almost
identical to the initial value of αp specified in Cg, since Cg is constructed from
normally distributed data.

αs = (6/π) ∗ sin−1(αp/2) (9)

For generating the uncorrelated datasets, i.e., D1 and D3, we use αp=0
(αs=0) for Cg. We use the same scale (λ = 1) and different shapes (κ), i.e.,
4 and 6, for X and Y in the D1 dataset. In D3, we use a larger value of scale
for X (λ=8) than Y (λ=1), so that X can be treated as a dominating distance
variable. In fact, we intend to observe how X with its heavily-tailed neighbours,
dominates Y in selecting the neighbours in the 2D space (XY ). On the other
hand, we use αp=0.9 (αs=0.89) to Cg for the generation of correlated datasets
in both non-dominance and dominance cases, i.e., D2 and D4. We use the same
Weibull parameters as D1 and D2, for D3 and D4, respectively.

We model extreme scenarios of dominance in both the absence and pres-
ence of correlation using D5 and D6 datasets, respectively. The data values are
sampled from a Pearson distribution family [17]. In D5, X follows a negatively
skewed (βX = −1.75) heavy-tailed (γX = 9) distribution whereas Y models sym-
metric (βY = 0) light-tailed (γY = 0) distribution (see Table 1). Since both of
them are independently sampled, they are uncorrelated. Due to the very skewed
distribution along X, we are able to see the drop of joint LID even after apply-
ing the z-score normalisation in these datasets. Since it is not straightforward
to obtain the ICDF for the X dimension with the given Pearson parameters, we
generate the correlated Pearson numbers in the following step5.

– Step 1: We generate independent (uncorrelated) Pearson values, P1 and P2

using the same parameters as D5 and sort them in ascending order.
– Step 2: We generate the correlated uniform values, i.e., U1 and U2, with

αp = 0.9 (equivalent to αs=0.89) from the Gaussian copula Cg.

5 https://au.mathworks.com/help/stats/generate-correlated-data-using-rank-
correlation.html.

https://au.mathworks.com/help/stats/generate-correlated-data-using-rank-correlation.html
https://au.mathworks.com/help/stats/generate-correlated-data-using-rank-correlation.html
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– Step 3: After sorting the uniform values in ascending order, we obtain two
indices, in1 and in2, describing the rearranged order of U1 and U2, respec-
tively.

– Step 4: We position the sorted values of P1 and P2 in the same order as
the indices, in1 and in2, to obtain the final Pearson variables, P c

1 and P c
2 for

dimensions X and Y , respectively, in D6 dataset.

4.3 Scenario 1 (Non-dominance)

D1 and D2 are generated in a setting where there is no dominant feature
(Table 1). Figure 5(a) and (b) provide the scatter plots and nearest neighbour
distance graphs for D1 and D2, respectively. It is clearly notable from the scatter
plots that the data values are correlated in D2 (elliptical shape) whereas in D1
they are not (circular shape).

(a) D1:ND-Independent

(b) D2:ND-Correlated

Fig. 5. Scatter plots and normalised distance graphs of datasets D1 and D2 modelling
the uncorrelated and correlated variables, respectively, in the non-dominance setting.
(Color figure online)

In Fig. 5(a), we observe that the distances of the local neighbours with respect
to X variable are relatively smaller than that of Y . This happens because Y has
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a larger shape than X. Hence the distribution of Y is skewed more to the left
in comparison to X. As a result, LIDY is larger than LIDX . We further note
that there is no common neighbour between the joint space and the individual
dimensions, i.e., sX,Y =0 (no green dots). The distances of the neighbours along
the joint variable XY are far in comparison to the individual variables. Hence,
the query obtains a very high LID value, LIDXY = 10.18, that is approximately
the summation of the individual LIDs, LIDX = 4.87 and LIDY = 6.35, which
matches with results mentioned in [8].

Figure 5(b) corresponds to the correlated variables X and Y of dataset D2.
We observe that 48% of the neighbours, nXY are overlapped with both nX and
nY , i.e., sX,Y = 48 (green dots). We found LIDX = 3.78, LIDY = 6.35 and
LIDXY = 6.46. Note that the joint LID in the correlated case is 6.46 which
is smaller than the joint LID(=10.18) of the uncorrelated case with the same
parameter settings. Thus, if the continuous distance variables are positively cor-
related, the query finds its 2D neighbours to be more common with the neigh-
bours of the individual dimensions and thus obtains a smaller LID in comparison
with the independent case. This observation answers RQ1 and RQ2 for the
independent and correlated distance variables in the non-dominance
setting.

4.4 Scenario 2 (Dominance)

For the dominance scenario, we consider D3:D-Independent and D4:D-Correlated
datasets. In order to observe the dominance property of a distance variable, we
do not standardise these datasets. We note from the scatter plots that the data
shows greater variance in X compared to Y and the distances of the nearest
neighbours for Y remain almost constant, whereas there is a steady increase in
the distances for X as the number of nearest neighbours grows (see Fig. 6). For
the query at the origin, LIDY is 6.35 for both D3 and D4 datasets while LIDX

is 4.87 and 3.80 in D3 and D4, respectively.
For D3 dataset, we observe a drop in LID value with respect to the joint

distance variable XY compared to Y , i.e., LIDXY = 5.70 while LIDY = 6.35. We
note that a major portion of the neighbours in XY overlap with the neighbours
from X, i.e., sX = 95 (the orange dots). There is no overlapping between the
neighbours of XY and the individual dimensions X and Y , i.e., sX,Y = 0. As
a result, the distances along XY are following the similar trend of along X
(Fig. 6(a)). Thus in scenarios where one of the features X is dominant and has
a lower LID value in comparison to the non-dominant feature Y , the LID value
in the joint space LIDXY becomes smaller than that of LIDY . However, if the
dominant variable does not have such property (low LID), we do not observe
this reduction of LID value in the joint space (answering question RQ3).
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(a) D3:D-Independent

(b) D4:D-Correlated

Fig. 6. Scatter plots and nearest neighbours distance graphs of D3 and D4 datasets
modelling the uncorrelated and correlated variables, respectively, in the dominance
setting. (Color figure online)

We demonstrate the correlated scenario of D4 in Fig. 6(b). We find 99%
(sX+sX,Y = 51%+48%) of nXY are overlapped with nX and 48% of them are
common with nY (green dots). The uniformity of the distances of nX has a signif-
icant influence on the distances of the neighbours in the joint space (XY ), caus-
ing significant reduction in the LID of XY , i.e., LIDXY (=3.93) 	 LIDY (=6.35).
n.b. the joint LID in D4 (3.93) is smaller than the joint LID of the uncorrelated
case in D3 (5.70) (answering question RQ4).

Extreme Distributions: D5:ED-Independent and D6:ED-Correlated illustrate
the extreme case of dominance for uncorrelated and correlated Pearson random
variables, respectively (see Fig. 7). Here, X has a negative long tailed asymmetric
distribution whereas Y follows a short tailed symmetric distribution. The query
is an outlier in both dimensions, but it obtains smaller LID in X (LIDX =
7.63) than Y (LIDY = 16.59) for both datasets. This phenomenon occurs since
the query is surrounded by a group of outliers in X, whereas all the nearest
neighbours are quite far away from the query in Y .
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(a) D5:ED-Independent

(b) D6:ED-Correlated

Fig. 7. Scatter plots and nearest neighbours distance graphs of D5 and D6 datasets
modelling the uncorrelated and correlated variables, respectively, in the dominance
setting. (Color figure online)

Table 2. Changes in local neighbourhood and LID estimation w.r.t. the distance vari-
ables X, Y and XY for all six synthetic datasets in absence(/presence) of dominance
and correlation.

Scenarios Title Name of the datasets Neighbourhood in (XY ) LID estimates

sX sY sX,Y sφ LIDX LIDY LIDXY

Scenario 1 D1. ND-Independent 9 35 0 56 4.87 6.35 10.18

D2. ND-Correlated 13 38 48 01 3.78 6.35 6.46

Scenario 2 D3. D-Independent 95 01 0 04 4.87 6.35 5.70

D4. D-Correlated 51 01 48 0 3.80 6.35 3.93

D5. ED-Independent 75 04 00 21 7.63 16.59 13.74

D6. ED-Correlated 44 05 51 0 7.63 16.59 9.80

In D5, the uncorrelated dataset, the neighbours along XY mostly intersect
with the neighbours along X as we find sX = 75. Since they are uncorrelated
there is no overlap among the neighbours in the joint space XY and the indi-
vidual dimensions X and Y . Here, X has a bigger influence on LIDXY since the
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nearest neighbours of the query in X are having the dominant distances. We
find LIDXY = 13.74 which is smaller than LIDY (=16.59). We obtain a similar
LID behaviour in D6. However, due to the correlation between X and Y , 51%
of nXY overlaps with both nX and nY in D6. A significant portion of nXY is
coming only from nX , i.e., sX = 44%, which causes a drop in LIDXY = 9.80 as
compared to LIDY (=16.59). Note that for the correlated case the reduction of
LID value in the joint space is much greater than the uncorrelated case.

Our results for synthetic datasets are summarised in Table 2.

5 Experiments with Real Data

The AMiner dataset is a large academic social network comprising 1.7M authors,
2.1M papers and 4.3M coauthor relationships. We consider 7 numerical fea-
tures: publications (pub), citations (ct), h-index (hi), papers/year (ppy), co-
authors, co-authors/paper (avgco), and research experience. We analysed the
LID behaviour in this dataset by considering different authors as the query and
estimating the LID value for various combinations of features. We consider two
prominent researchers, i.e., Micheline Kamber and Jeffrey Xu Hu from the data-
mining community consisting of 641 researchers, as queries to model different
phenomena described in Sects. 4.3–4.4. We use k = 100 in the MLE estimator,
but obtained similar results (not reported) for k = 30, 60.

Case Study 1- Dominance: Given M. Kamber as the query, and the three
features, ct, hi and avgco, we illustrate how dominance influences the LID value.
In this scenario, the dominant variable X corresponds to the distances from the
query to other authors on the feature avgco. While the non-dominant variable
Y corresponds to the distances between query to others with respect to the two
features citations and hindex. We find that LIDX = LID(avgco) = 3.39 and
LIDY = LID(ct, hi) = 10.85.

Figure 8 provides the 3D scatter plot and the normalised distance graph of
100 nearest neighbours that are used to estimate the LID along the distance

Fig. 8. The left figure is a scatter plot of the data-mining community of researchers
from AMiner for the query M. Kamber and the three features ct, hi and avgco. Nearest
neighbours distance graph is shown on the right. M. Kamber obtains LID(ct, hi) =
10.85 < LID(ct, hi, avgco) = 5.2. (Color figure online)
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variables, X, Y and XY . It is evident that the query is an outlier in both X and
Y . We find that 81% of the neighbours (the orange dots) in XY are coming only
from X, i.e., sX = 81 (see Table 3), which is the reason for obtaining a smaller
LID value of 5.2 for the 3D feature-set (ct, hi, avgco), i.e., LIDXY = 5.2, after
adding avgco to the 2D feature-set (ct, hi).

Case Study 2- Correlation: We observe the LID behaviour on AMiner dataset
in terms of the correlation of the features. In our experiments, we also explored
the effect of decorrelation on the LID value. Consider the query: Jeffrey and
the two features papers/year and publications. Here, X represents the distances

(a) Before Decorrelation

(b) After Decorrelation

Fig. 9. Scatter plots of the data-mining community of researchers, and distance graphs
of the query Jeffrey Xu Hu before and after decorrelation of the features papers/year
and publications. Jeffrey obtains LID values of 3.4 and 4.2 before and after decorrela-
tion, respectively. (Color figure online)

Table 3. Joint neighbourhood and LID values for the distance variables X, Y and XY
in the dominance, correlation and decorrelation scenarios. The second column describes
the query values for the features.

Query Features Scenarios Correlation nXY LIDX LIDY LIDXY

coefficients sX sY sX,Y sφ

M. Kamber X:avgco =3.6,

Y :ct =1546,

hi =4

Dominance - 81 3 8 8 3.39 10.85 5.2

Jeffrey Xu Hu X : ppy = 10.9,

Y : pub = 228

Correlation αs = 0.96 16 7 77 0 2.5 3.1 3.4

Decorrelation αs = 0.30 31 18 44 7 2.5 3.1 4.2
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from the query to others on ppy while Y on pub. Jeffrey obtains LID values of
2.5 and 3.1 with respect to ppy and pub, respectively (see Table 3).

The features ppy and pub are highly correlated, i.e., αs(X,Y ) = 0.96, where
Jeffrey obtains LIDcorr

XY = 3.4. After removing the correlation [22], i.e., by ran-
dom permutation of objects in X and Y , yielding αs(X,Y ) = 0.3, Jeffrey obtains
LIDdecor

XY = 4.2 which is larger than LIDcorr
XY . Figure 9(a) and (b) display the scat-

ter and distance plots before and after the decorrelation, respectively. We note in
Fig. 9(b), that the no. of common neighbours between XY and the individuals,
i.e., X and Y , (sX,Y ) decreases (green dots) while the neighbours in sX and
sY increases (orange and blue dots) as compared to Fig. 9(a). The distance plot
in Fig. 9(a) shows a more uniform distance distribution, compared to Fig. 9(b)
which shows an abrupt increase at multiple locations of the plot.

6 Discussion

As a default, one might expect that the local intrinsic dimensionality of a query
should increase as more features are used. However, our studies using both real
and synthetic data indicate that under certain conditions such as dominance of
a feature or presence of correlation between features, the estimated LID of a
query can instead decrease. During the expansion of an existing feature space,
significant changes might occur in the neighborhood local to the query. Our
studies found, when a query’s local neighborhoods are dissimilar with respect to
different features, this phenomenon could occur. Some general observations are:

– Independence: When the features are independent, the LID in merged space
is approximately the summation of the LIDs of the individual features. It
matches with the theoretical observation of LID in joint space as stated in [8,
13].

– Dominance: When a dominant feature with low LID (LIDX), is combined
with a feature with high LID (LIDY ), the LID in the joint space will be lie
between LIDX and LIDY (LIDX < LIDXY ≤ LIDY ).

– Correlation: In the presence of a positive correlation, when a feature with
low LID (LIDX) is combined with another feature with high LID (LIDY ), the
joint LID is much smaller than the summation of the LIDs of the individual
dimensions (LIDXY 	 (LIDX+LIDY )). The stronger the correlation, the
larger the reduction in LIDXY .

– Dominance and Correlation: In the presence of positive correlation, when
a dominant feature with low LID (LIDX) is combined with another feature
with high LID (LIDY ), the joint LID is between LIDX and LIDY (LIDX <
LIDXY 	 LIDY ). The stronger the dominance and correlation, the larger
the reduction in LIDXY .

7 Conclusions

We have analysed the behaviour of local intrinsic dimensionality (LID) for
changes in the feature-space as well as the neighbourhood of a query. We con-
sidered two key factors, correlation and dominance, that can cause the LID to
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decrease when more features are considered. Thus, increasing the number of fea-
tures may not always result in an increase in the (local) complexity of the data
around a query object. Our observations may provide insights into the feature
selection and enumeration process, as well as object inlyingness/outlyingness
across subspaces. For the future, it will be interesting to develop further theory
to understand these findings.
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22. Gionis, A., Mannila, H., Mielikäinen, T., Tsaparas, P.: Assessing data mining
results via swap randomization. ACM TKDD 1(3), 14 (2007)

https://doi.org/10.1007/0-387-28678-0
https://doi.org/10.1007/0-387-28678-0

	Characteristics of Local Intrinsic Dimensionality (LID) in Subspaces: Local Neighbourhood Analysis
	1 Introduction
	2 Background and Preliminaries
	3 Research Questions
	4 Experimental Study Using Synthetic Data
	4.1 LID in Univariate Synthetic Datasets
	4.2 Bivariate Synthetic Datasets Generation
	4.3 Scenario 1 (Non-dominance)
	4.4 Scenario 2 (Dominance)

	5 Experiments with Real Data
	6 Discussion
	7 Conclusions
	References




