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Abstract. Clustering non-Euclidean data is difficult, and one of the
most used algorithms besides hierarchical clustering is the popular algo-
rithm Partitioning Around Medoids (PAM), also simply referred to as
k-medoids.

In Euclidean geometry the mean—as used in k-means—is a good esti-
mator for the cluster center, but this does not exist for arbitrary dissim-
ilarities. PAM uses the medoid instead, the object with the smallest
dissimilarity to all others in the cluster. This notion of centrality can
be used with any (dis-)similarity, and thus is of high relevance to many
domains and applications.

A key issue with PAM is its high run time cost. We propose modifi-
cations to the PAM algorithm that achieve an O(k)-fold speedup in the
second (“SWAP”) phase of the algorithm, but will still find the same
results as the original PAM algorithm. If we slightly relax the choice of
swaps performed (while retaining comparable quality), we can further
accelerate the algorithm by performing up to k swaps in each itera-
tion. With the substantially faster SWAP, we can now explore faster
intialization strategies. We also show how the CLARA and CLARANS
algorithms benefit from the proposed modifications.

Keywords: Cluster analysis · k-Medoids · PAM · CLARA ·
CLARANS

1 Introduction

Clustering is a common unsupervised machine learning task, in which the data
set has to be automatically partitioned into “clusters”, such that objects within
the same cluster are more similar, while objects in different clusters are more
different. There is not (and likely never will be) a generally accepted definition
of a cluster, because “clusters are, in large part, in the eye of the beholder” [7],
meaning that every user may have different enough needs and intentions to want
a different algorithm and notion of cluster. And therefore, over many years of
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research, hundreds of clustering algorithms and evaluation measures have been
proposed, each with their merits and drawbacks. Nevertheless, a few seminal
methods such as hierarchical clustering, k-means, PAM [9], and DBSCAN [6]
have received repeated and widespread use. One may be tempted to think that
these classic methods have all been well researched and understood, but there
are still many scientific publications trying to explain these algorithms better
(e.g., [19]), trying to parallelize and scale them to larger data sets, trying to
better understand similarities and relationships among the published methods
(e.g., [18]), or proposing further improvements – and so does this paper for the
widely used PAM algorithm.

A classic method taught in textbooks is k-means (for an overview of the
complicated history of k-means, refer to [3]), where the data is modeled using k
cluster means, that are iteratively refined by assigning all objects to the nearest
mean, then recomputing the mean of each cluster. This converges to a local
optimum because the mean is the least squares estimator of location, and both
steps reduce the same quantity, a measure known as sum-of-squared errors:

SSQ :=
∑k

i=1

∑
xj∈Ci

||xj − μi||22 . (1)

In k-medoids, the data is modeled similarly, using k representative objects mi

called medoids (chosen from the data set; defined below) that serve as “proto-
types” for the clusters in order to allow using arbitrary other dissimilarities and
arbitrary input domains, using the absolute error criterion (“total deviation”,
TD) as objective:

TD :=
∑k

i=1

∑
xj∈Ci

d(xj ,mi) , (2)

which is the sum of dissimilarities of each point xj ∈ Ci to the medoid mi of
its cluster. If we use squared Euclidean as distance function (i.e., d(x,m) =
||x − m||22), we almost obtain the usual SSQ objective used by k-means, except
that k-means is free to choose any μi ∈ R

d, whereas in k-medoids mi ∈ Ci

must be one of the original data points. For squared Euclidean distances and
Bregman divergences, the arithmetic mean is the optimal choice for μ. For L1

distance (i.e,
∑ |xi − yi|), also called Manhattan distance, the component-wise

median is a better choice in R
d [4]. For unsquared Euclidean distances, we get

the much harder Weber problem [14], which has no closed-form solution [4]. For
other distance functions, finding a closed form to compute the best mi would
require a separate mathematical analysis. Furthermore, our input domain is not
necessarily a R

d vector space. In k-medoids clustering, we therefore constrain
mi to be one of our data samples. The medoid of a set C is defined as the object
with the smallest sum of dissimilarities (or, equivalently, smallest average) to all
other objects in the set:

medoid(C) := arg minxi∈C

∑
xj∈C d(xi, xj) .
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This definition does not require the dissimilarity to be a metric, and by using
arg max it can also be applied to similarities. The algorithms discussed below
all can trivially be modified to maximize similarities rather than minimizing dis-
tances, and none assumes the triangular inequality. Partitioning Around Medoids
(PAM, [9]) is the most widely known algorithm to find a good partitioning using
medoids, with respect to TD (Eq. 2).

2 Partitioning Around Medoids (PAM) and Its Variants

The “Program PAM” [9] consists of two algorithms, BUILD to choose an initial
clustering, and SWAP to improve the clustering towards a local optimum (finding
the global optimum of the k-medoids problem is, unfortunately, NP-hard). The
algorithms require a dissimilarity matrix, which requires O(n2) memory and
typically O(n2d) time to compute (but much more for expensive distances such
as earth movers distance).

In order to find a good initial clustering, BUILD chooses k times the point
which yields the smallest distance sum TD (this means first choosing the point
with the smallest distance to all others; afterwards always adding the point that
reduces TD most). The motivation here was to find a good starting point, in
order to require fewer iterations of the refinement procedure. The second part,
SWAP, improves the clustering by considering all possible simple changes to the
set of k medoids, which effectively means replacing (swapping) some medoid
with some non-medoid, which gives k(n−k) candidate swaps. If it reduces TD ,
the best such change is then applied, in the spirit of a greedy steepest-descent
method, and this process is repeated until no further improvements are found.

The algorithm CLARA [10]) repeatedly applies PAM on a subsample with
n′ � n objects, with the suggested value n′ = 40+2k. Afterwards, the remaining
objects are assigned to their closest medoid. The run with the least TD (on the
entire data) is returned. If the sample size is chosen n′ ∈ O(k) as suggested, the
run time reduces to O(k3), which explains why the approach is typically used
only with small k [12].

Lucasius et al. [12] propose a genetic algorithm for k-medoids, by performing
a randomized exploration based on “mutation” of the best solutions found so far.
The algorithm CLARANS [13] interprets the search space as a high-dimensional
hypergraph, where each edge corresponds to swapping a medoid and non-medoid.
On this graph it performs a randomized greedy exploration, where the first
edge that reduces the loss TD is followed until no edge can be found with p =
1.25% · k(n − k) attempts. Other proposals include optimizations for Euclidean
space and tabu search heuristics [8].

Reynolds et al. [16] discuss an interesting trick to speed up PAM. They show
how to decompose the change in the loss function into two components, where
the first depends only on the medoid removed, the second part only on the new
point. This decomposition forms the base for our approach, and we will thus
discuss it in Sect. 3 in more detail.

Park and Jun [15] propose a “k-means like” algorithm for k-medoids (actu-
ally already considered by [16] before), where in each iteration the medoid is
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chosen to be the object with the smallest distance sum to other members of the
cluster, then each point is assigned to the nearest medoid until TD no longer
decreases. This is, unfortunately, not very effective at improving the clustering:
new medoids are only chosen from within the cluster, and have to cover the
entire current cluster. This misses many improvements where cluster members
can be reassigned to other clusters with little cost; such improvements are con-
sidered by SWAP. Furthermore, the discrete nature of medoids makes this much
more likely to get stuck in a local optimum. In our experiments this approach
produced much worse results than PAM, as previously observed by [16].

3 Finding the Best Swap

The algorithm SWAP evaluates every swap of each medoid mi with any non-
medoid xj . Recomputing the resulting TD using Eq. 2 every time requires finding
the nearest medoid for every point, which causes many redundant computations.
Instead, PAM only computes the change in TD for each object xo if we swap
mi with xj :

ΔTD =
∑

xo
Δ(xo,mi, xj) (3)

In the function Δ(xo,mi, xj) we can often detect when a point remains
assigned to its current medoid (if ck �= ci, and this distance is also smaller than
the distance to xj), and then immediately return 0. Because of space restrictions,
we do not repeat the original “if” statements used in [9], but instead condense
them into the equation:

Δ(xo,mi, xj) =

{
min{d(xo, xj), ds(o)} − dn(o) if i = nearest(o)
min{d(xo, xj) − dn(o), 0} otherwise

, (4)

where dn(o) is the distance to the nearest medoid of o, and ds(o) is the distance
to the second nearest medoid. Computing them on the fly increases the runtime
by a factor of O(k), but we can cache these values, and only update them when
performing a swap.

Reynolds et al. [16] note that we can decompose ΔTD into: (i) the loss of
removing medoid mi, and assigning all of its members to the next best alter-
native, which can be computed as

∑
o∈Ci

ds(o) − dn(o) (ii) the (negative) loss
of adding the replacement medoid xj , and reassigning all objects closest to this
new medoid. Since (i) does not depend on the choice of xj , we can make the
loop over all medoids mi outermost, reassign all its points to the second near-
est medoid (cache the distance to the now nearest neighbor), and compute the
resulting loss. We then iterate over all non-medoids and compute the benefit
of using them as the missing medoid instead. In the Δ function, we no longer
have to consider the second nearest now (we virtually removed the old medoid
already). The authors observed roughly a two-fold speedup using this approach.

Our approach is based on a similar idea of exploiting redundancy in these
computations (by caching shared computations), but we instead move the loops
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over the medoids mi into the innermost for loop. The reason for this is to further
remove redundant computations. This becomes apparent when we realize that in
Eq. 4, the second case does not depend on the current medoid i. If we transform
the second case into an if statement, we can often avoid to iterate over all k
medoids.

3.1 Making PAM SWAP Faster: FastPAM1

Algorithm 1 shows the improved SWAP algorithm. In lines 4–5 we compute the
benefit of making xj a medoid. As we do not yet decide which medoid to remove,
we use an array of ΔTDs for each possible medoid to replace. We can now for
each point compute the benefit when removing its current medoid (line 9), or
the benefit if the new medoid is closer than the current medoid (line 10), which
corresponds to the two cases in Eq. 4. Because the second case does not depend
on i, we can replace the min statement with an if conditional outside of the loop
in lines 10–12. After iterating over all points, we choose the best medoid, and
remember the overall best swap. If we always prefer the smaller index i on ties,
we choose exactly the same swap as the original PAM algorithm.

Assuming that the new medoid is closest in O(1/k) cases on average, we can
compute the change for all k medoids with O(k ·1/k) = O(1) effort, by saving on
the innermost loop. Therefore, we expect a typical speedup on the order of O(k)
compared to the original PAM SWAP (but it may be hard to guarantee this
for any useful assumption on the data distribution; the worst case supposedly
remains unaffected) at the slight cost of storing one ΔTD for each medoid mi

(compared to the cost of the distance matrix and the distances to the nearest
and second nearest medoids, the cost of this is negligible).

Algorithm 1. FastPAM1: Improved SWAP algorithm
1 repeat
2 (ΔTD∗, m∗, x∗) ← (0, null, null) ; // Empty best candidate storage

3 foreach xj �∈ {m1, . . . , mk} do
4 dj ← dnearest(xj) ; // Distance to current medoid

5 ΔTD ← (−dj , −dj , . . . , −dj) ; // Change if making j a medoid

6 foreach xo �= xj do
7 doj ← d(xo, xj) ; // Distance to new medoid

8 (n, dn, ds) ← (nearest(o), dnearest(o), dsecond(o)) ; // Cached values

9 ΔTDn ← ΔTDn + min{doj , ds} − dn ; // Loss change

10 if doj < dn then // Reassignment check

11 foreach mi ∈ {m1, . . . , mk} \ mn do
12 ΔTD i ← ΔTD i + doj − dn; // Update loss change

13 i ← arg min ΔTD i ; // Choose best medoid i

14 if ΔTD i < ΔTD∗ then (ΔTD∗, m∗, x∗) ← (ΔTD i, mi, xj) ; // Store

15 break loop if ΔTD∗ ≥ 0;
16 swap roles of medoid m∗ and non-medoid x∗ ;
17 TD ← TD + ΔTD∗ ;

18 return TD , M, C;
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3.2 Swapping Multiple Medoids: FastPAM2

A second technique to make SWAP faster is based on the following observation:
PAM will always identify the single best swap, then restart search; whereas the
classic k-means updates all means in each iteration. Choosing the best swap has
the benefit that this makes the algorithm independent of the data order [9] as
long as there are no ties, and it means we need to execute fewer swaps than
if we would greedily perform any swap that yields an improvement (where we
may end up replacing the same medoid several times). But on the other hand, in
particular for large k, we can assume that many clusters will be independent, and
we could therefore update the medoids of these clusters in the same iteration,
hence reduce the number of iterations by up to a factor of k.

Based on this observation, we propose to consider the best swap for each
medoid, i.e., perform up to k swaps. This is a fairly simple modification shown
in Algorithm 2, as we can use an array of swap candidates (ΔTD∗

i, x
∗
i) in line 3,

storing the best candidate for each current medoid mi, and update these in
line 15. After evaluating all possible swaps, we find the best swap within these
up to k candidates (if we did not find a candidate, the algorithm has converged).
We perform the best of these swaps in line 18. Then we recompute in line 22 for
each remaining swap candidate if it still improves the clustering, otherwise this
additional swap is not performed.

Algorithm 2. FastPAM2: SWAP with multiple candidates

1 repeat
2 foreach xo do compute nearest(o), dnearest(o), dsecond(o); ;
3 ΔTD∗, x∗ ← [0, . . . , 0], [null, . . . , null] ; // Empty best candidates array

4 foreach xj �∈ {m1, . . . , mk} do
5 dj ← dnearest(xj) ; // Distance to current medoid

6 ΔTD ← (−dj , −dj , . . . , −dj) ; // Change for making j a medoid

7 foreach xo �= xj do
8 doj ← d(xo, xj) ; // Distance to new medoid

9 (n, dn, ds) ← (nearest(o), dnearest(o), dsecond(o)) ; // Cached

10 ΔTDn ← ΔTDn +min{doj , ds} − dn ; // Loss change for xo

11 if doj < dn then // Reassignment check

12 foreach mi ∈ {m1, . . . , mk} \ mn do
13 ΔTDi ← ΔTDi + doj − dn; // Update loss change

14 foreach i where ΔTDi < ΔTD∗
i do

15 (ΔTD∗
i, x

∗
i) ← (ΔTDi, xj) ; // Remember the best swap for i

16 break loop if minΔTD∗ ≥ 0 ; // Stop if no improvements were found

17 while i ← argminΔTD∗ and ΔTD∗
i < 0 do // Execute all improvements

18 swap roles of medoid mi and non-medoid x∗
i ;

19 TD ← TD + ΔTD∗
i ;

20 ΔTD∗
i ← 0 ; // Disable the swap just performed

21 foreach j where ΔTD∗
j < 0 do // For remaining swap candidates

22 ΔTD∗
j ← ∑

xo �∈{m1,...,mk}\mj
Δ(xo, mj , x

∗
j) ; // Recompute TD

23 return TD , M, C;
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The improvements of this strategy are, unsurprisingly, much smaller than
those of FastPAM1. In early iterations we see multiple swaps being executed, but
in the later iterations it is common that only few medoids change. Nevertheless,
this simple modification yields another measurable performance improvement.
However—in contrast to the first improvement—this no longer guarantees to
yield the same result. From a theoretical point of view, both the original PAM,
and FastPAM2 perform a steepest descent optimization strategy; where PAM
only permits descends consisting of a single swap, whereas FastPAM2 can per-
form multiple swaps at once as long as they use different medoids. Therefore,
both are able to find results of equivalent quality. In our experiments, FastPAM2
would often find marginally better results than PAM, and faster.

3.3 Faster Initialization with Linear Approximative BUILD (LAB):
FastPAM

With these optimizations to SWAP, reducing the time from O(k(n − k)2) to
O((n − k)2), the bottleneck of PAM becomes the BUILD phase. In our experi-
ments with large k, PAM would spend 99% of the run time in SWAP. With above
optimizations this reduces to about 15%. About 16% is the time to compute the
distance matrix, and 69% of the time is spent in BUILD. The complexity of
BUILD is in O(kn2), so for large k this is expected to happen. Because we
made SWAP much faster, we can afford to begin with slightly worse starting
conditions, even if we need more iterations of SWAP afterwards.

Algorithm 3. FastPAM LAB: Linear Approximate BUILD initialization.
1 (TD , m1) ← (∞, null);
2 S ← subsample of size 10 + �√n	 from X ; // Subsample

3 foreach xj ∈ S do // First medoid

4 TDj ← 0 ;
5 foreach xo ∈ S ∧ xo �= xj do TDj ← TDj + d(xo, xj);
6 if TDj < TD then (TD , m1) ← (TDj , xj); // Smallest distance sum

7 for i = 1 . . . k − 1 do // Other medoids

8 (ΔTD∗, x∗) ← (∞, null);
9 S ← subsample of size 10 + �√n	 from X \ {m1, . . . , mi} ; // Subsample

10 foreach xj ∈ S do
11 ΔTD ← 0 ;
12 foreach xo ∈ S ∧ xo �= xj do
13 δ ← d(xo, xj) − mino∈m1,...,mi d(xo, o);
14 if δ < 0 then ΔTD ← ΔTD + δ;

15 if ΔTD < ΔTD∗ then (ΔTD∗, x∗) ← (ΔTD , xj); // best reduction

16 (TD , mi+1) ← (TD + ΔTD∗, x∗);
17 return TD , {m1, . . . , mk};
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An elegant way of initializing k-means is k-means++ [2]. The beautiful idea
of this approach is to choose seeds with the probability proportional to their
squared distance to the nearest seed (the first seed is picked uniformly). If we
assume there is a cluster of points and no seed nearby, the probability mass
of this cluster is substantial, and we are likely to place a seed there; afterwards
the probability mass of this cluster reduces. Furthermore, this initialization is (in
expectation) O(log k) competitive to the optimal solution, so it will theoretically
generate good starting conditions. But as seen in our experiments, this guarantee
is pretty loose; and BUILD empirically produces much better starting conditions
than k-means++ (we are not aware of a detailed theoretical analysis). The reason
is that k-means++ picks random points (usually) from different clusters, but
makes no effort to find good centers of the clusters (which is not that important
for k-means, where the mean is in between of the data points). Therefore, with
k-means++-style initialization we need around k additional swaps to pick the
medoid of each cluster (and hence, k iterations of original PAM SWAP, although
much fewer with FastPAM2). Because a single iteration of swap used to take as
much time as BUILD, the k-means++ initialization only begins to shine if we use
FastPAM1 to reduce the cost of iterating together with the FastPAM2 strategy
of doing as many swaps as possible.

We experimented with k-means++, but eventually settled for a different
strategy we call LAB (Linear Approximative BUILD). What we title “FastPAM”
then is the combination of LAB with the optimizations of FastPAM2. As the
name indicates, LAB is a linear approximation of the original PAM BUILD. In
order to achieve linear runtime in n, we simply subsample the data set. Before
choosing each medoid, we sample 10 + �√n� points from all non-medoid points.
From this subsample we choose the one with the largest decrease ΔTD with
respect to the current subsample only. Results were slightly better with sampling
k times, and not just once; since each object has k chances of being in the sample,
and if we draw a bad sample it only affects a single medoid. A pseudocode of
LAB is given as Algorithm 3. Clearly, the complexity is down to O(kn).

3.4 Integration: FastCLARA and FastCLARANS

Since CLARA [10] uses PAM as a subroutine, we can trivially use our improved
FastPAM with CLARA. In the experiments we will denote this variant as
FastCLARA.

CLARANS [13] uses a randomized search instead of considering all possible
swaps. For this, it chooses a random pair of a non-medoid object and a medoid,
computes whether this improves the current loss, and then greedily performs this
swap. Adapting the idea from FastPAM1 to the random exploration approach
of CLARANS, we pick only the non-medoid object at random, but can consider
all medoids at a similar cost to looking at a single medoid. This means we can
either explore k times as many edges of the graph, or we can reduce the number
of samples to draw by a factor of k. In our experiments we opted for the second
choice, to make the results comparable to the original CLARANS in the number
of edges considered; but as the edges chosen involve the same non-medoids, we
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Fig. 1. Run time of PAM SWAP (SWAP only, without DAISY, without BUILD)

expect a slight loss in quality that should be easily countered by increasing the
subsampling rate of non-medoids. By varying the subsampling rate, the user can
control the tradeoff between computation time and exploration.

4 Experiments

Theoretical considerations show that we must expect an O(k) speedup of Fast-
PAM1 over the original PAM algorithm, so our experiments primarily need to
verify that there is no trivial error (in contrast to much work published in recent
years, the speedup is not just empirical). Nevertheless constant factors and imple-
mentation details can make a big difference [11], and we want to ensure that we
do not pay big overheads for theoretical gains that would only manifest for infi-
nite data.1 For FastPAM2 the speedup is expected to be only a small factor due
to the reduction in iterations. In contrast to FastPAM1, it does not guarantee
the exact same results; therefore we also want to verify that they are of the
expected equivalent quality. The worse starting conditions of LAB should not
affect the final result, but will require additional iterations of SWAP. We observed
increased runtimes when using k-means++ for PAM initialization, therefore it
needs to be verified experimentally that LAB does not require excessive addi-
tional iterations.

We showcase results from the “one-hundred plant species leaves” data set
(texture features only) from the well-known UCI repository [5], but we verified

1 Clearly, our O(k) fold speedup must be immediately measurable, not just asymp-
totically, because the constant overhead for maintaining the fixed array cache is
small.
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Fig. 2. Run time comparison of different variations and derived algorithms.

the results on additional data sets (not included because of space restrictions).
We chose this data set because it has 100 classes, and 1600 instances, a fairly
small size that PAM can still easily handle. Naively, one would expect that
k = 100 is a good choice on this data set, but some leaf species are likely not
distinguishable by unsupervised learning. We used the ELKI open-source data
mining toolkit [20] in Java to develop our version. For comparison, we also ported
FastPAM2 to the R cluster package, which is based on the original PAM source
code and written in C. Experiments were run on an Intel i7-7700 at 3.6 GHz with
turbo boost disabled. We perform 25 runs, and plot the average, minimum and
maximum. Both implementations and all data sets show similar behavior, so we
are confident that the results are not just due to implementation differences [11].

4.1 Run Time Speedup

In Fig. 1, we vary k from 2 to 200, and plot the run time of the PAM SWAP
phase only (the cost of computing the distance matrix and the BUILD phase is
not included), using the original PAM, the Reynolds version, and the proposed
improvements. Figure 1a shows the run time in linear space, to visualize the
drastic run time differences observed. Reynolds’ was quite consistently two times
faster than the original PAM; but our proposed methods were faster by a factor
that grows approximately linearly with the number of clusters k. In log-log-space,
Fig. 1b, we can differentiate the three variants studied.

In Fig. 1c we plot the speedup over PAM. Reynolds’ SWAP clearly was about
twice as fast as the original PAM. The FastPAM1 improvement gives an empirical
speedup factor of about 1

2k, while the second improvement contributed an addi-
tional speedup of about 2–2.5× by reducing the number of iterations. Because of
the multiplicative effect of these savings, the linear plot in Fig. 1c gives the false
impression that this second contribution yields the larger benefit. The logspace
plot in Fig. 1d more accurately reflects the contribution of the two factors, result-
ing in a speedup of over 250 times at k = 150; while at k = 2 and k = 3 the
speedup was just 1.4× resp. 1.75×, and less than our implementation of Reynolds
(in R, our method is as fast as Reynolds for k = 2). In the most extreme case
tested, a speedup of about 1000× at k = 200 is measured – but because the
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Fig. 3. Number of iterations for PAM vs. FastPAM2 and BUILD vs. LAB initialization

Fig. 4. Runtime impact of k-means++ and LAB initialization

speedup depends on O(k), the exact values are meaningless, furthermore, we
excluded the distance matrix computation and initialization in this experiment.

In Fig. 2, we study the run time of approximations to PAM (including the
distance matrix computation and initialization time now). We only present the
log-log space plots, because of the extreme differences. The run time of CLARA,
as k increases, approaches the run time of PAM. This is expected, because the
subsample size for CLARA is chosen as 40 + 2k, and necessary because the sub-
sample size needs to be sufficiently larger than k. For CLARA x2 we also eval-
uate doubling this value to 80 + 4k, and we also double the number of restarts
from 5 to 10. CLARA x2 is thus expected to take 8 times longer, but should
give better results. FastCLARA is CLARA using our FastPAM approach, and
performs much better, but for large k also eventually becomes slower than Fast-
PAM. The run time of CLARANS on this data set (see later for CLARANS
problems) is in between the original PAM and CLARA, and with our optimiza-
tions FastCLARANS becomes the fastest method tested (at similar quality to
CLARANS, and with the same problems). Park and Jun’s [15] approach is sim-
ilarly fast to FastCLARANS for large k, but its quality is quite poor, as we will
see and discuss in Sect. 4.3.
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4.2 Number of Iterations

We are not aware of theoretical results on the number of iterations needed for
PAM. Based on results for k-means, we must assume that the worst case is
superpolynomial like k-means [1], albeit in practice a “few” iterations are usu-
ally enough. Because of this, we are also interested in studying the number of
iterations.

Figure 3 shows the number of iterations needed with different methods, both
in linear space and log space. In line with previous empirical results, only few
iterations are necessary. Because PAM only performs the best swap in each
iteration, a linear dependency on k is to be assumed; interestingly enough we
usually observed much less than k iterations, so many medoids remain unchanged
from their initial values (note that this may be due to the rather small data
set size, too). The k-means++ initialization required roughly 2–4× as many
iterations for PAM; with the original algorithm where each iteration would cost
about as much as the BUILD initialization, this choice is detrimental even for
small k. With the improvements of this paper, these additional iterations are
cheaper than the rather slow BUILD initialization by a factor of O(k) now,
hence we can now begin with a worse but cheaper starting point. Furthermore,
the FastPAM2 approach which performs up to k swaps in each iteration does
reduce the number of iterations substantially. FastPAM2 with BUILD performed
the second-lowest numbers of iterations. Our proposed LAB initialization of
FastPAM saves a few extra iterations compared to the k-means++ strategy,
at better initial quality, and hence is measurably faster in the end. Park and
Jun [15] at first seems to perform very well in this figure, with slightly fewer
iterations than FastPAM2 with BUILD. Unfortunately, this is because the “k-
means style” algorithm misses many improvements to the clustering, and hence
produces much worse results as we will observe next.

In Fig. 4 we revisit the runtime experiment, and focus on initialization. As we
can see, the increased number of iterations hurts runtime with the original PAM
algorithm as well as its Reynolds variant substantially (the reasons for this are
explained in Sect. 3.3); for FastPAM1, the use of k-means++ only comes at a
small performance penalty (while it still needs as many iterations as the original
PAM, these have become O(k) times faster, and the initialization cost begins to
matter much more), and with FastPAM2’s ability to perform multiple swaps per
iteration, a linear-time initialization such as the proposed LAB clearly becomes
the preferred initialization method, in particular for large k.

4.3 Quality

Any algorithmic change and optimization comes at the risk of breaking some
things, or negatively affecting numerics (see, e.g., [17] on how common numerical
issues are even with basic statistics such as variance in SQL databases). In
order to check for such issues, we made sure that our implementations pass
the same unit tests as the other algorithms in both ELKI and R. We do not
expect numerical problems, and Reynolds’ variant and FastPAM1 are supposed
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Fig. 5. Loss (TD) compared to PAM

to give the same result (and do so in the experiments, so we exclude them from
the plot). The FastPAM2 algorithm is greedy in performing swaps, and may
therefore converge to a different solution, but of the same quality.

In Fig. 5a we visualize the loss, i.e., the objective TD , of different approxima-
tions compared to the solution found by the original PAM approach (which is not
necessarily the global minimum). For large k, the solution found by the approach
of Park and Jun [15] is over 25% worse here, for the reasons discussed before.
Our strategy FastPAM2 gives results comparable to PAM as expected (some-
times slightly better, sometimes slightly worse). The cheaper LAB initialization
(full FastPAM) does not cause a noticeable loss in quality either, but further
improves the total run time. CLARA (which only uses a subsample of the data)
finds considerably worse results. By doubling the subsample size to 80 + 4k and
doing twice as many restarts (CLARA x2) the results only improve slightly for
large k (but much more for small k). CLARA x2 is until about k = 70 as good as
CLARANS here, but faster; for larger k it becomes even better than CLARANS,
but also slower. FastCLARA has the same quality as CLARA x2 (we use the x2
parameters, too), but it was much faster. FastCLARANS is slightly better than
CLARANS, and was considerably faster. All the CLARANS results degrade with
increasing k, so it may become necessary to increase the subsample size there,
which will increase the run time (it is up to the user to choose his preferences,
quality or runtime). In conclusion, all our “Fast” approaches perform as well as
their older counterparts, but are O(k) times faster.

In Fig. 5b, we evaluate the quality of LAB, k-means++, and BUILD initial-
ization compared to the converged PAM result. As seen in the previous exper-
iments, all three initializations will yield similar results after PAM, but we can
compare the quality of the initial medoids to the full PAM result. As we can
see, the BUILD approach produces the best initial results (and as noted by [9],
the BUILD result may be usable without further refinement). While k-means++
offers some theoretical advantages (c.f., Sect. 3.3), the initial result is quite bad
as this strategy only attempts to pick a random point from each cluster, and
not the medoids. Our proposed LAB initialization is in between k-means++ and
BUILD, and by itself performs similar to CLARA. As it only considers a subset
of the data, its medoids will be worse than BUILD; but because it chooses the
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Fig. 6. Results on MNIST data with k = 10 (left) and k = 100 (right)

best medoid of the sample it performs better than k-means++. As it reduces the
runtime for O(n2k) to O(nk) it is the preferred choice for FastPAM nevertheless.

4.4 Scalability Experiments

Just as PAM, our method also requires the entire distance matrix to be pre-
computed. This will require O(n2) time and memory, making the method as-is
unsuitable for big data (for real big data problems, it will however often be
enough to cluster a subsample that fits into memory). Our improvements focus
on reducing the dependency on k, but we nevertheless experimented with scal-
ability in n, too (and we already included FastCLARA and FastCLARANS in
the previous experiments). The behavior of the PAM variants is as expected
O(n2), but we see nevertheless quite big differences between PAM, FastPAM,
and sampling-based approaches. In this experiment, we use the well-known
MNIST data set from the UCI repository [5], which has 784 variables (each
corresponding to a pixel in a 28 × 28 grid) and 60000 instances. We used the
first n = 5000, 10000, . . . , 35000 instances with a time limit of 6 h and compare
k = 10 and k = 100. The high number of variables makes this data set expensive
for CLARANS.
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The problem of quadratic runtime is best seen in the linear scale plots
Fig. 6a and d. As a reference, we give the time needed for computing the dis-
tance matrix as dotted line, which is also quadratic. Except for CLARA and
FastCLARANS, the runtime is dominated by computing the distance matrix
(and hence CLARA, which only uses a constant-size sample, shines for large n).
The original CLARANS suffers from excessive distance re-computations. The
authors assumed that distances are cheap to compute, and noted that it may be
necessary to cache the distances. FastCLARANS reduces the number of distance
computations of CLARANS by a factor of O(k), and is still cheaper than the
full distance matrix here. For more expensive distances such as dynamic time
warping, FastPAM will outperform FastCLARANS, and it will almost always
give better results. For k = 10, only CLARANS, PAM and Reynolds’ variant
are problematic at this data size, but at k = 100 the benefits of our improve-
ments become very noticeable. The CLARA methods are squeezed to the axis
in the linear plot, and hence we also provide log-log plots in Fig. 6b and e. For
k = 10, the lines of CLARA and FastCLARA x2 almost coincide by chance
(note that FastCLARA x2 produces a result comparable to the slower CLARA
x2 method; expected to be 8 times slower), but at k = 100 it is faster than
CLARA demonstrating that our improvements also accelerate CLARA.

While the scalability in n is quadratic, we observe that if you can afford
to compute the pairwise distance matrix, then you will now also be able to
run FastPAM. For k = 10, the additional runtime of FastPAM was about 30%
the runtime of computing the distance matrix computation, and at k = 100
FastPAM took about as much time as the distance matrix. Hence, if you can
compute the distance matrix, you can also run FastPAM for reasonable values
of k � n, and the main scalability problem is the memory consumption of the
distance matrix.

If computing the distance matrix is prohibitive, it may still be possible to use
FastCLARA, which is O(k) times faster than CLARA, and will scale linearly in
n. But as seen in Fig. 6c and f, CLARA will usually give worse results (about
10% in our experiments). For many users this difference will be acceptable, as
a clustering result is never “perfect”. For large data sets, FastCLARANS will
usually give better results, unless the sample size of CLARA is increased consid-
erably. But on the other hand, FastCLARANS is only advisable for inexpensive
distance functions such as (low-dimensional) Euclidean distance, and requires a
non-trivial distance cache otherwise.
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5 Conclusions

In this article we proposed a modification of the popular PAM algorithm that
typically yields an O(k) fold speedup, by clever caching of partial results in order
to avoid recomputation. This caching was enabled by changing the nesting order
of the loops in the algorithm, showing once more how much seemingly minor
looking implementation details can matter [11]. As a second improvement, we
propose to find the best swap for each medoid, and execute as many as possible
in each iteration, which reduces the number of iterations needed for convergence
without loss of quality.

The major speedups obtained enable the use of this classic clustering method
on much larger data, in particular with large k. With the faster refinement
procedure, it now pays off to use cheaper initialization methods with PAM. For
this, we propose LAB initialization, a linear-time approximation of the original
PAM BUILD algorithm.

Methods based on PAM, such as CLARA, CLARANS, and the many parallel
and distributed variants of these algorithms for big data, all benefit from this
improvement, as they either use PAM as a subroutine (CLARA), or employ a
similar swapping method (CLARANS) that can be modified accordingly as seen
in Sect. 3.4.

The proposed methods are included in the open-source framework
ELKI 0.7.5 [20], and FastPAM2 (but not yet LAB, FastCLARA, nor
FastCLARANS) is included in the R cluster package 2.0.9, to make it easy for
others to benefit from these improvements. With the availability in two major
clustering tools, we hope that many users will find using PAM possible on much
larger data sets with higher k than before.
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