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LN
CS

 1
18

07

12th International Conference, SISAP 2019
Newark, NJ, USA, October 2–4, 2019
Proceedings

Similarity Search 
and Applications



Lecture Notes in Computer Science 11807

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693


More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409


Giuseppe Amato • Claudio Gennaro •

Vincent Oria • Miloš Radovanović (Eds.)

Similarity Search
and Applications
12th International Conference, SISAP 2019
Newark, NJ, USA, October 2–4, 2019
Proceedings

123



Editors
Giuseppe Amato
ISTI-CNR
Pisa, Italy

Claudio Gennaro
ISTI-CNR
Pisa, Italy

Vincent Oria
New Jersey Institute of Technology
Newark, NJ, USA

Miloš Radovanović
University of Novi Sad
Novi Sad, Serbia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-32046-1 ISBN 978-3-030-32047-8 (eBook)
https://doi.org/10.1007/978-3-030-32047-8

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-0171-4315
https://orcid.org/0000-0002-3715-149X
https://orcid.org/0000-0003-2225-7803
https://doi.org/10.1007/978-3-030-32047-8


Preface

This volume contains the papers presented at the 12th International Conference on
Similarity Search and Applications (SISAP 2019) held in Newark, NJ, USA, during
October 2–4, 2019.

SISAP is an annual forum for researchers and application developers in the area of
similarity data management. It focuses on the technological problems shared by
numerous application domains, such as data mining, information retrieval, multimedia,
computer vision, pattern recognition, computational biology, geography, biometrics,
machine learning, and many others that make use of similarity search as a necessary
supporting service.

From its roots as a regional workshop in metric indexing, SISAP has expanded to
become the only international conference entirely devoted to the issues surrounding the
theory, design, analysis, practice, and application of content-based and feature-based
similarity search. The SISAP initiative has also created a repository (http://www.sisap.
org/) serving the similarity search community, for the exchange of examples of
real-world applications, source code for similarity indexes, and experimental test beds
and benchmark data sets.

The call for papers welcomed full papers, short papers, as well as demonstration
papers, with all manuscripts presenting previously unpublished research contributions.
All contributions were presented both orally and in a poster session, which facilitated
fruitful exchanges between the participants. In addition, SISAP 2019 featured a doc-
toral consortium, accepting papers describing doctoral research and work in progress,
providing students valuable feedback from experienced researchers in similarity search
and related fields.

We received 42 submissions from authors based in 17 different countries. The
Program Committee (PC) was composed of 63 international members. The papers and
reviews were thoroughly discussed by the chairs and PC members: Each submission
received three reviews. Based on these reviews and discussions among PC members,
the PC chairs accepted 12 full papers to be included in the conference program and
proceedings, resulting in an acceptance rate of 28% for the full papers. In addition, 18
short papers were accepted, and after separate review by SISAP chairs, two doctoral
consortium papers were included in the program and proceedings as well.

The proceedings of SISAP are published by Springer as a volume in the Lecture
Notes in Computer Science (LNCS) series. For SISAP 2019, as in previous years,
extended versions of selected excellent papers were invited for publication in a special
issue of the journal Information Systems. The conference also conferred a Best Paper
Award, as judged by the PC co-chairs and Steering Committee.

Besides the presentations of the accepted papers, the conference program featured
three keynote talks by exceptional researchers: Fabrizio Silvestri from Facebook, UK,
Divesh Srivastava from AT&T Labs-Research, USA, and Prof. Alexander Tuzhilin
from New York University, USA.

http://www.sisap.org/
http://www.sisap.org/


We would like to thank all the authors who submitted papers to SISAP 2019, as well
as all members of the PC and the external reviewers for their effort and contribution to
the conference. We want to extend our gratitude to the members of the Organizing
Committee for the enormous amount of work they invested in making the SISAP series
of conferences possible.

We also thank our sponsors and supporters for their generosity. All the submission,
reviewing, and proceedings generation processes were made much easier through the
EasyChair platform.
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Keynote Abstracts



Applications of Similarity Search to Socially
Relevant Problems

Fabrizio Silvestri

Facebook, UK

Abstract. The Facebook AI team in London deals with applying artificial
intelligence techniques to address societal problems such as the spread of online
misinformation, or the integrity of election processes around the world. To do
so, we have developed throughout the last years a set of tools that exploit
similarity search technologies to efficiently and effectively run a very high
number of classification tasks on a massive set of data.
In this talk, we are going to review some of the problems we have studied in

the last year and we are going to show some of the solutions we have adopted in
order to make the system run efficiently. We are also going to showcase some
details of an internal project that uses similarity search as a core operation to
allow efficient and effective inference operations.



Repairing Noisy Graphs

Divesh Srivastava

AT&T Labs-Research, USA

Abstract. Graphs are a flexible way to represent data in a variety of applica-
tions, with nodes representing domain-specific entities (e.g., records in record
linkage, products and types in an ontology) and edges capturing a variety of
relationships between these entities (e.g., an equivalence relationship between
records in record linkage, a type-subtype relationship between types in an
ontology). Often, the edges in this graph are inferred based on similarities
between nodes and are noisy, in that some edges are missing (i.e., real-world
relationships that do not have corresponding edges in the graph) and some edges
are spurious (i.e., edges in the graph that do not have corresponding real-world
relationships). Directly analyzing such graphs can lead to undesirable outcomes,
making it important to repair noisy graphs. In this talk, we describe an approach
that takes advantage of properties of real-world relationships and their estimated
probabilities to ask oracle queries (an abstraction of crowdsourcing) to effi-
ciently repair the noisy graphs. We illustrate this approach for the case of graphs
that are unions of cliques (which is the case for record linkage) and graphs that
are trees (which is the case for ontologies), and present theoretical and empirical
results for these cases.



On Similarity Measures
in Recommender Systems

Alexander Tuzhilin

New York University, USA

Abstract. Measures of similarity between users and between items to be rec-
ommended to the users lie at the core of many recommendation algorithms, and
numerous metrics have been proposed in the recommender systems field since
its inception. This talk will explore evolution of various similarity-based mea-
sures from the initial class of rating-based measures to the more recently pro-
posed latent metrics and the metric learning methods. We will also explore
possible future research directions and novel applications of similarity measures
in recommender systems.
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Fast Locality-Sensitive Hashing
Frameworks for Approximate Near

Neighbor Search

Tobias Christiani(B)

Maersk Line, Copenhagen, Denmark
tobiaschristiani@gmail.com

Abstract. The Indyk-Motwani Locality-Sensitive Hashing (LSH)
framework (STOC 1998) is a general technique for constructing a data
structure to answer approximate near neighbor queries by using a distri-
bution H over locality-sensitive hash functions that partition space. For
a collection of n points, after preprocessing, the query time is dominated
by O(nρ log n) evaluations of hash functions from H and O(nρ) hash
table lookups and distance computations where ρ ∈ (0, 1) is determined
by the locality-sensitivity properties of H. It follows from a recent result
by Dahlgaard et al. (FOCS 2017) that the number of locality-sensitive
hash functions can be reduced to O(log2 n), leaving the query time to be
dominated by O(nρ) distance computations and O(nρ log n) additional
word-RAM operations. We state this result as a general framework and
provide a simpler analysis showing that the number of lookups and dis-
tance computations closely match the Indyk-Motwani framework. Using
ideas from another locality-sensitive hashing framework by Andoni and
Indyk (SODA 2006) we are able to reduce the number of additional
word-RAM operations to O(nρ).

1 Introduction

The approximate near neighbor problem is the problem of preprocessing a col-
lection P of n points in a space (X,dist) into a data structure such that, for
parameters r1 < r2 and given a query point q ∈ X, if there exists a point x ∈ P
with dist(q, x) ≤ r1, then the data structure is guaranteed to return a point
x′ ∈ P such that dist(q, x′) < r2.

Indyk and Motwani [24] introduced a general framework for constructing
solutions to the approximate near neighbor problem using a technique known
as locality-sensitive hashing (LSH). The framework takes a distribution over
hash functions H with the property that near points are more likely to collide
under a random h ∼ H. During preprocessing a number of locality-sensitive hash
functions are sampled from H and used to hash the points of P into buckets.

The research leading to these results has received funding from the European
Research Council under the European Union’s 7th Framework Programme (FP7/2007-
2013)/ERC grant agreement no. 614331.

c© Springer Nature Switzerland AG 2019
G. Amato et al. (Eds.): SISAP 2019, LNCS 11807, pp. 3–17, 2019.
https://doi.org/10.1007/978-3-030-32047-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32047-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-32047-8_1
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The query algorithm evaluates the same hash functions on the query point and
looks into the associated buckets to find an approximate near neighbor.

The locality-sensitive hashing framework of Indyk and Motwani has had a
large impact in both theory and practice (see surveys [3] and [32] for an introduc-
tion), and many of the best known solutions to the approximate near neighbor
problem in high-dimensional spaces, such as Euclidean space [2], the unit sphere
under inner product similarity [4], and sets under Jaccard similarity [7] come in
the form of families of locality-sensitive hash functions that can be plugged into
the Indyk-Motwani LSH framework.

Definition 1 (Locality-sensitive hashing [24]). Let (X,dist) be a distance
space and let H be a distribution over functions h : X → R. We say that H is
(r1, r2, p1, p2)-sensitive if for x, y ∈ X and h ∼ H we have that:

– If dist(x, y) ≤ r1 then Pr[h(x) = h(y)] ≥ p1.
– If dist(x, y) ≥ r2 then Pr[h(x) = h(y)] ≤ p2.

The Indyk-Motwani framework takes a (r1, r2, p1, p2)-sensitive family H and
constructs a data structure that solves the approximate near neighbor problem
for parameters r1 < r2 with some positive constant probability of success. We
will refer to this randomized approximate version of the near neighbor problem
as the (r1, r2)-near neighbor problem, where we require queries to succeed with
probability at least 1/2 (see Definition 2). To simplify the exposition we will
assume throughout the introduction, unless otherwise stated, that 0 < p1 <
p2 < 1 are constant, that a hash function h ∈ H can be stored in n/ log n words
of space, and for ρ = log(1/p1)/ log(1/p2) ∈ (0, 1) that a point x ∈ X can be
stored in O(nρ) words of space. The assumption of a constant gap between p1
and p2 allows us to avoid performing distance computations by instead using
the 1-bit sketching scheme of Li and König [26] together with the family H to
approximate distances (see Sect. 4.1 for details). In the remaining part of the
paper we will state our results without any such assumptions to ensure, for
example, that our results hold in the important case where p1, p2 may depend
on n or the dimensionality of the space [2,4].

Theorem 1 (Indyk-Motwani [23,24], simplified). Let H be (r1, r2, p1, p2)-
sensitive and let ρ = log(1/p1)

log(1/p2)
, then there exists a solution to the (r1, r2)-near

neighbor problem using O(n1+ρ) words of space and with query time dominated
by O(nρ log n) evaluations of functions from H.

The query time of the Indyk-Motwani framework is dominated by the num-
ber of evaluations of locality-sensitive hash functions. To make matters worse,
almost all of the best known and most widely used locality-sensitive fami-
lies have an evalution time that is at least linear in the dimensionality of
the underlying space [2,4,7,11,17]. Significant effort has been devoted to the
problem of reducing the evaluation complexity of locality-sensitive hash fam-
ilies [4,15,16,19,25,28,29,31], while the question of how many independent
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locality-sensitive hash functions are actually needed to solve the (r1, r2)-near
neighbor problem has received relatively little attention [1,15].

This paper aims to bring attention to, strengthen, generalize, and simplify
results that reduce the number of locality-sensitive hash functions used to solve
the (r1, r2)-near neighbor problem. In particular, we will extract a general frame-
work from a technique introduced by Dahlgaard et al. [15] in the context of set
similarity search under Jaccard similarity, showing that the number of locality-
sensitive hash functions can be reduced to O(log2 n) in general. We further
show how to reduce the word-RAM complexity of the general framework from
O(nρ log n) to O(nρ) by combining techniques from Dahlgaard et al. and Andoni
and Indyk [1]. Reducing the number of locality-sensitive hash functions allows
us to spend time O(nρ/ log2 n) per hash function evaluation without increasing
the overall complexity of the query algorithm — something which is particularly
useful in Euclidean space where the best known LSH upper bounds offer a trade-
off between the ρ-value that can be achieved and the evaluation complexity of
the locality-sensitive hash function [2,4,25].

1.1 Related Work

Indyk-Motwani. The Indyk-Motwani framework uses L = O(nρ) independent
partitions of space, each formed by overlaying k = O(log n) random partitions
induced by k random hash functions from a locality-sensitive family H. The
parameter k is chosen such that a random partition has the property that a
pair of points x, y ∈ X with dist(x, y) ≤ r1 has probability n−ρ of ending up in
the same part of the partition, while a pair of points with dist(x, y) ≥ r2 has
probability n−1 of colliding. By randomly sampling L = O(nρ) such partitions
we are able to guarantee that a pair of near points will collide with constant
probability in at least one of them. Applying these L partitions to our collection
of data points P and storing the result of each partition of P in a hash table we
obtain a data structure that solves the (r1, r2)-near neighbor problem as outlined
in Theorem 1 above. Sections 3 and 3.1 contains a more complete description of
LSH-based frameworks and the Indyk-Motwani framework.

Andoni-Indyk. Many locality-sensitive hash functions have a super-constant
evaluation time. This motivated Andoni and Indyk to introduce a replacement to
the Indyk-Motwani framework in a paper on substring near neighbor search [1].
The key idea is to re-use hash functions from a small collection of size m � L
by forming all combinations of

(
m
t

)
hash functions. This technique is also known

as tensoring and has seen some use in the work on alternative solutions to the
approximate near neighbor problem, in particular the work on locality-sensitive
filtering [6,12,18]. By applying the tensoring technique the Andoni-Indyk frame-
work reduces the number of hash functions to O(exp(

√
ρ log n log log n)) = no(1)

as stated in Theorem 2.

Theorem 2 (Andoni-Indyk [1], simplified). Let H be (r1, r2, p1, p2)-
sensitive and let ρ = log(1/p1)

log(1/p2)
, then there exists a solution to the (r1, r2)-near
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neighbor problem using O(n1+ρ) words of space and with query time dominated
by O(exp(

√
ρ log n log log n)) evaluations of functions from H and O(nρ) other

word-RAM operations.

The paper by Andoni and Indyk did not state this result explicitly as a
theorem in the same form as the Indyk-Motwani framework; the analysis made
some implicit restrictive assumptions on p1, p2 and ignored integer constraints.
Perhaps for these reasons the result does not appear to have received much
attention, although it has seen some limited use in practice [30]. In Sect. 3.2
we present a slightly different version of the Andoni-Indyk framework together
with an analysis that satisfies integer constraints, providing a more accurate
assessment of the performance of the framework in the general, unrestricted
case.

Dahlgaard-Knudsen-Thorup. The paper by Dahlgaard et al. [15] introduced
a different technique for constructing the L hash functions/partitions from a
smaller collection of m hash functions from H. Instead of forming all combina-
tions of subsets of size t as the Andoni-Indyk framework they instead sample k
hash functions from the collection to form each of the L partitions. The paper
focused on a particular application to set similarity search under Jaccard simi-
larity, and stated the result in terms of a solution to this problem. In Sect. 3.3
we provide a simplified and tighter analysis to yield a general framework:

Theorem 3 (DKT [15], simplified). Let H be (r1, r2, p1, p2)-sensitive and let
ρ = log(1/p1)

log(1/p2)
, then there exists a solution to the (r1, r2)-near neighbor problem

using O(n1+ρ) words of space and with query time dominated by O(log2 n) eval-
uations of functions from H and O(nρ log n) other word-RAM operations.

The analysis of [15] indicates that the Dahlgaard-Knudsen-Thorup frame-
work, when compared to the Indyk-Motwani framework, would use at least 50
times as many partitions (and a corresponding increase in the number of hash
table lookups and distance computations) to solve the (r1, r2)-near neighbor
problem with success probability at least 1/2. Using elementary tools, the anal-
ysis in this paper shows that we only have to use twice as many partitions as
the Indyk-Motwani framework to obtain the same guarantee of success.

Number of Hash Functions in Practice. To provide some idea of what
the number of hash functions H used by the different frameworks would be in
practice, Fig. 1 shows the value of log2 H that is obtained by actual implementa-
tions of the Indyk-Motwani (IM), Andoni-Indyk (AI), and Dahlgaard-Knudsen-
Thorup (DKT) frameworks according to the analysis in Sect. 3 for p1 = 1/2 and
every value of 0 < p2 < 1/2 for a solution to the (r1, r2)-near neighbor prob-
lem on a collection of n = 230 points. Figure 1 reveals that the number of hash
functions used by the Indyk-Motwani framework exceeds 230, the size of the
collection of points P , as p2 approaches p1. In addition, locality-sensitive hash



Fast Locality-Sensitive Hashing for Nearest Neighbors 7

Fig. 1. The exact number of locality-sensitive hash functions from a (r1, r2, 0.5, p2)-
sensitive family used by different frameworks to solve the (r1, r2)-near neighbor problem
on a collection of 230 points according to the analysis in this paper.

functions used in practice such as Charikar’s SimHash [11] and p-stable LSH [17]
have evaluation time O(d) for points in R

d. These two factors might help explain
why a linear scan over sketches of the entire collection of points is a popular app-
roach to solve the approximate near neighbor problem in practice [21,33]. The
Andoni-Indyk framework reduces the number of hash functions by several orders
of magnitude, and the Dahlgaard-Knudsen-Thorup framework presents another
improvement of several orders of magnitude. Since the word-RAM complexity
of the DKT framework matches the number of hash functions used by the IM
framework, the gap between the solid line (DKT) and the dotted line (IM) gives
some indication of the time we can spend on evaluating a single hash function in
the DKT framework without suffering a noticeable increase in the query time.

1.2 Contribution

Improved Word-RAM Complexity. In addition to our work on the Andoni-
Indyk and Dahlgaard-Knudsen-Thorup frameworks as mentioned above, we show
how the word-RAM complexity of the DKT framework can be reduced by a log-
arithmic factor. The solution is a simple combination of the DKT sampling
technique and the AI tensoring technique: First we use the DKT sampling tech-
nique twice to construct two collections of

√
L partitions. Then we use the AI

tensoring technique to form L =
√

L × √
L pairs of partitions from the two col-

lections. Below we state our main Theorem 4 in its general form where we make
no implicit assumptions about H (p1 and p2 are not assumed to be constant and
can depend on for example n) or about the complexity of storing a point or a
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hash function, or computing the distance between pairs of points in the space
(X,dist).

Theorem 4. Let H be (r1, r2, p1, p2)-sensitive and let ρ = log(1/p1)/ log(1/p2),
then there exists a solution to the (r1, r2)-near neighbor problem with the follow-
ing properties:

– The query complexity is dominated by O(log21/p2
(n)/p1) evaluations of func-

tions from H, O(nρ) distance computations, and O(nρ/p1) other word-RAM
operations.

– The solution uses O(n1+ρ/p1) words of space in addition to the space required
to store the data and O(log21/p2

(n)/p1) functions from H.

Under the same simplifying assumptions used in the statements of Theorems 1,
2, and 3, our main Theorem 4 can be stated as Theorem 3 with the word-RAM
complexity reduced by a logarithmic factor to O(nρ). This improvement in the
word-RAM complexity comes at the cost of a (rather small) constant factor
increase in the number of hash functions, lookups, and distance computations
compared to the DKT framework. By varying the size m of the collection of
hash functions from H and performing independent repetitions we can obtain a
tradeoff between the number of hash functions and the number of lookups.

Distance Sketching Using LSH. Finally, we combine Theorem 4 with the
1-bit sketching scheme of Li and König [26] where we use the locality-sensitive
hash family to create sketches that allow us to leverage word-level parallelism
and avoid direct distance computations. This sketching technique is well known
and has been used before in combination with LSH-based approximate similarity
search [13], but we believe there is some value in the simplicity of the analysis and
in a clear statement of the combination of the two results as given in Theorem 5,
for example in the important case where 0 < p2 < p1 < 1 are constant.

Theorem 5. Let H be (r1, r2, p1, p2)-sensitive and let ρ = log(1/p1)/ log(1/p2),
then there exists a solution to the (r1, r2)-near neighbor problem with the follow-
ing properties:

– The query complexity is dominated by O(log2(n)/(p1 − p2)2) evaluations of
hash functions from H and O(nρ/(p1 − p2)2) other word-RAM operations.

– The solution uses O(n1+ρ/p1 + n/(p1 − p2)2) words of space in addition to
the space required to store the data and O(log2(n)/(p1 − p2)2) hash functions
from H.

2 Preliminaries

Problem and Dynamization. We begin by defining the version of the approx-
imate near neighbor problem that the frameworks presented in this paper will
be solving:
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Definition 2. Let P ⊆ X be a collection of |P | = n points in a distance space
(X,dist). A solution to the (r1, r2)-near neighbor problem is a data structure that
supports the following query operation: Given a query point q ∈ X, if there exists
a point x ∈ P with dist(q, x) ≤ r1, then, with probability at least 1/2, return a
point x′ ∈ P such that dist(q, x′) < r2.

We aim for solutions with a failure probability that is upper bounded by 1/2. The
standard trick of using η independent repetitions of the data structure allows us
to reduce the probability of failure to 1/2η. For the sake of simplicity we restrict
our attention to static solutions, meaning that we do not concern ourselves with
the complexity of updates to the underlying set P , although it is simple to
modify the static solutions presented in this paper to dynamic solutions where
the update complexity essentially matches the query complexity [23,27].

LSH Powering. The Indyk-Motwani framework and the Andoni-Indyk frame-
work will make use of the following standard powering technique described in
the introduction as “overlaying partitions”. Let k ≥ 1 be an integer and let H
denote a locality-sensitive family of hash functions as in Definition 1. We will
use the notation Hk to denote the distribution over functions h : X → Rk where

g(x) = (h1(x), . . . , hk(x))

and h1, . . . , hk are sampled independently at random from H. It is easy to see
that Hk is (r1, r2, pk

1 , p
k
2)-sensitive. To deal with some special cases we define H0

to be the family consisting of a single constant function.

Model of Computation. We will work in the standard word-RAM model
of computation [22] with a word length of Θ(log n) bits where n denotes the
size of the collection P to be searched in the (r1, r2)-near neighbor problem.
During the preprocessing stage of our solutions we will assume access to a source
of randomness that allows us to sample independently from a family H and
to seed pairwise independent hash functions [9,10]. The latter can easily be
accomplished by augmenting the model with an instruction that generates a
uniformly random word in constant time and using that to seed the tables of a
Zobrist hash function [34].

3 Frameworks

Overview. We will describe frameworks that take as input a (r1, r2, p1, p2)-
sensitive family H and a collection P of n points and constructs a data structure
that solves the (r1, r2)-near neighbor problem. The frameworks described in this
paper all use the same high-level technique of constructing L hash functions
g1, . . . , gL that are used to partition space such that a pair of points x, y with
dist(x, y) ≤ r1 will end up in the same part of one of the L partitions with
probability at least 1/2. That is, for x, y with dist(x, y) ≤ r1 we have that
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Pr[∃l ∈ [L] : gl(x) = gl(y)] ≥ 1/2 where [L] is used to denote the set {1, 2, . . . , L}.
At the same time we ensure that the expected number of collisions between pairs
of points x, y with dist(x, y) ≥ r2 is at most one in each partition.

Preprocessing and Queries. During the preprocessing phase, for each of the
L hash functions g1, . . . , gL we compute the partition of the collection of points
P induced by gl and store it in a hash table in the form of key-value pairs
(z, {x ∈ P | gl(x) = z}). To reduce space usage we store only a single copy of
the collection P and store references to P in our L hash tables. To guarantee
lookups in constant time we can use the perfect hashing scheme by Fredman et
al. [20] to construct our hash tables. We will assume that hash values z = gl(x)
fit into O(1) words. If this is not the case we can use universal hashing [8] to
operate on fingerprints of the hash values.

We perform a query for a point q as follows: for l = 1, . . . , L we compute
gl(q), retrieve the set of points {x ∈ P | gl(x) = gl(q)}, and compute the
distance between q and each point in the set. If we encounter a point x′ with
dist(q, x′) < r2 then we return x′ and terminate. If after querying the L sets no
such point is encountered we return a special symbol ∅ and terminate.

We will proceed by describing and analyzing the solutions to the (r1, r2)-near
neighbor problem for different approaches to sampling, storing, and computing
the L hash functions g1, . . . , gL, resulting in the different frameworks as men-
tioned in the introduction.

3.1 Indyk-Motwani

To solve the (r1, r2)-near neighbor problem using the Indyk-Motwani framework
we sample L hash functions g1, . . . , gL independently at random from the family
Hk where we set k = �log(n)/ log(1/p2)� and L = �(ln 2)/pk

1�. Correctness of
the data structure follows from the observation that the probability that a pair
of points x, y with dist(x, y) ≤ r1 does not collide under a randomly sampled
gl ∼ Hk is at most 1 − pk

1 . We can therefore upper bound the probability that a
near pair of points does not collide under any of the hash functions by (1−pk

1)
L ≤

exp(−pk
1L) ≤ 1/2.

In the worst case, the query operation computes L hash functions from Hk

corresponding to Lk hash functions from H. For a query point q the expected
number of points x′ ∈ P with dist(q, x′) ≥ r2 that collide with q under a ran-
domly sampled gl ∼ Hk is at most npk

2 ≤ np
log(n)/ log(1/p2)
2 = 1. It follows from

linearity of expectation that the total expected number of distance computations
during a query is at most L. The result is summarized in Theorem 6 from which
the simplified Theorem 1 follows.

Theorem 6 (Indyk-Motwani [23,24]). Given a (r1, r2, p1, p2)-sensitive fam-
ily H we can construct a data structure that solves the (r1, r2)-near neighbor
problem such that for k = �log(n)/ log(1/p2)� and L = �(ln 2)/pk

1� the data
structure has the following properties:
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– The query operation uses at most Lk evaluations of hash functions from H,
expected L distance computations, and O(Lk) other word-RAM operations.

– The data structure uses O(nL) words of space in addition to the space required
to store the data and Lk hash functions from H.

Theorem 6 gives a bound on the expected number of distance computations
while the simplified version stated in Theorem 1 uses Markov’s inequality and
independent repetitions to remove the expectation from the bound by treating
an excessive number of distance computations as a failure.

3.2 Andoni-Indyk

In 2006 Andoni and Indyk, as part of a paper on the substring near neigh-
bor problem, introduced an improvement to the Indyk-Motwani framework that
reduces the number of locality-sensitive hash functions [1]. Their improvement
comes from the use of a technique that we will refer to as tensoring: setting the
hash functions g1, . . . , gL to be all t-tuples from a collection of m functions sam-
pled from Hk/t where m � L. The analysis in [1] shows that by setting m = nρ/t

and repeating the entire scheme t! times, the total number of hash functions can
be reduced to O(exp(

√
ρ log n log log n)) when setting t =

√
ρ log n
log log n . This anal-

ysis ignores integer constraints on t, k, and m, and implicitly place restrictions
on p1 and p2 in relation to n (e.g. 0 < p2 < p1 < 1 are constant). We will
introduce a slightly different scheme that takes into account integer constraints
and analyze it without restrictions on the properties of H.

Assume that we are given a (r1, r2, p1, p2)-sensitive family H. Let the param-
eters η, t, k1, k2,m1,m2 be non-negative integers. Each of the L hash functions
g1, . . . , gL will be formed by concatenating one hash function from each of t
collections of m1 hash functions from Hk1 and concatenating a last hash func-
tion from a collection of m2 hash functions from Hk2 . We take all mt

1m2 hash
functions of the above form and repeat η times for a total of L = ηmt

1m2 hash
functions constructed from a total of H = η(m1k1t+m2k2) hash functions from
H. See the Appendix of the online version of this paper for a more complete
analysis [14].

Setting t. It remains to show how to set t to obtain a good bound on the number
of hash functions H. Note that in practice we can simply set t = arg mintH by
trying t = 1, . . . , k. If we ignore integer constraints and place certain restrictions
of H as in the original tensoring scheme by Andoni and Indyk we want to set
t to minimize the expression ttnρ/t. This minimum is obtained when setting t
such that t2 log t = ρ log n. We therefore cannot do much better than setting
t =

√
ρ log(n)/ log log n which gives the bound H = O(exp(

√
ρ log(n) log log n))

as shown in [1]. To allow for easy comparison with the Indyk-Motwani framework
without placing restrictions on H we set t = �√k�, resulting in Theorem 7.
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Theorem 7. Given a (r1, r2, p1, p2)-sensitive family H there exists a solution
to the (r1, r2)-near neighbor problem such that for k = �log(n)/ log(1/p2)�, H =
k(

√
k/p1)

√
k, and L = �1/pk

1� the data structure has the following properties:

– The query operation uses O(H) evaluations of functions from H, O(L) dis-
tance computations, and O(L + H) other word-RAM operations.

– The data structure uses O(nL) words of space in addition to the space required
to store the data and O(H) hash functions from H.

Thus, compared to the Indyk-Motwani framework we have gone from using
O(k(1/p1)k) locality-sensitive hash functions to O(k(

√
k/p1)

√
k) locality-

sensitive hash functions. Figure 1 shows the actual number of hash functions
of the revised version of the Andoni-Indyk scheme when t is set to minimize H.

3.3 Dahlgaard-Knudsen-Thorup

In a recent paper Dahlgaard et al. [15] introduce a different technique for reduc-
ing the number of locality-sensitive hash functions. The idea is to construct each
hash value gl(x) by sampling and concatenating k hash values from a collection
of km pre-computed hash functions from H. Dahlgaard et al. applied this tech-
nique to provide a fast solution for the approximate near neighbor problem for
sets under Jaccard similarity. In this paper we use the same technique to derive
a general framework solution that works with every family of locality-sensitive
hash functions, reducing the number of locality-sensitive hash functions compard
to the Indyk-Motwani and Andoni-Indyk frameworks.

Let [n] denote the set of integers {1, 2, . . . , n}. For i ∈ [k] and j ∈ [m] let
hi,j ∼ H denote a hash function in our collection. To sample from the collection
we use k mutually independent and pairwise independent hash functions [10] of
the form fi : [L] → [m] and set

gl(x) = (h1,f1(l)(x), . . . , hk,fk(l)(x)).

To show correctness of this scheme we will make use of an elementary one-sided
version of Chebyshev’s inequality stating that for a random variable Z with mean
μ > 0 and variance σ2 < ∞ we have that Pr[Z ≤ 0] ≤ σ2/(μ2 + σ2). We will
apply this inequality to lower bound the probability that there are no collisions
between close pairs of points. For two points x and y let Zl = 1{gl(x) = gl(y)}
so that Z =

∑L
l=1 Zl denotes the sum of collisions under the L hash functions.

To apply the inequality we need to derive an expression for the expectation
and the variance of the random variable Z. Let p = Prh∼H[h(x) = h(y)] then
by linearity of expectation we have that μ = E[Z] = Lpk. To bound σ2 =
E[Z2] − μ2 we proceed by bounding E[Z2] where we note that Zl = Πk

i=1Yl,i for
Yl,i = 1{hi,fi(l)(x) = hi,fi(l)(x)} and make use of the independence between Yl,i

and Yl′,i′ for i �= i′.
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E[Z2] =
∑

l,l′∈[L]
l �=l′

E[ZlZl′ ] +
L∑

l=1

E[Zl] = (L2 − L)E[ZlZl′ ] + μ

≤ L2E
[
Πk

i=1Yl,iYl′,i
]
+ μ = L2 (E[Yl,iYl′,i])

k + μ.

We have that E[Yl,iYl′,i] = Pr[fi(l) = fi(l′)]p + Pr[fi(l) �= fi(l′)]p2 = (1/m)p +
(1 − 1/m)p2, i.e., with probability 1/m we have that our pairwise independent
hash functions choose the same underlying locality sensitive hash function from
our pool of m functions and the probability of collision (Yl,i = 1 and Yl′,i = 1)
is given by the collision probability of a single locality-sensitive hash function
p. With probability 1 − 1/m we sample two independent locality-sensitive hash
function and the probability that they both collide is then given by p2.

Let ε > 0 and set m = � 1−p1
p1

k
ln(1+ε)� then for p ≥ p1 we have (E[Yl,iYl′,i])

k ≤
(1+ε)p2k. This allows us to bound the variance of Z by σ2 ≤ εμ2+μ resulting in
the following lower bound on the probability of collision between similar points.

Lemma 1. For ε > 0 let m ≥ � 1−p1
p1

k
ln(1+ε)�, then for every pair of points x, y

with dist(x, y) ≤ r1 we have that

Pr[∃l ∈ [L] : gl(x) = gl(y)] ≥ 1 + εμ

1 + (1 + ε)μ
.

By setting ε = 1/4 and L = �(2 ln(2))/pk
1� we obtain an upper bound on the

failure probability of 1/2. Setting the size of each of the k collections of pre-
computed hash values to m = �5k/p1� is sufficient to yield the following solution
to the (r1, r2)-near neighbor problem where provide exact bounds on the number
of lookups L and hash functions H:

Theorem 8 (Dahlgaard-Knudsen-Thorup [15]). Given a family H that is
(r1, r2, p1, p2)-sensitive we can construct a data structure that solves the (r1, r2)-
near neighbor problem such that for k = �log(n)/ log(1/p2)�, H = k�5k/p1�, and
L = �(2 ln(2))/pk

1� the data structure has the following properties:

– The query operation uses at most H evaluations of hash functions from H,
expected L distance computations, and O(Lk) other word-RAM operations.

– The data structure uses O(nL) words of space in addition to the space required
to store the data and H hash functions from H.

Compared to the Indyk-Motwani framework we have reduced the number of
locality-sensitive hash functions H from O(k(1/p1)k) to O(k2/p1) at the cost of
using twice as many lookups. To reduce the number of lookups further we can
decrease ε and perform several independent repetitions. This comes at the cost
of an increase in the number of hash functions H.
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4 Reducing the Word-RAM Complexity

One drawback of the DKT framework is that each hash value gl(x) still takes
O(k) word-RAM operations to compute, even after the underlying locality-
sensitive hash functions are known. This results in a bound on the total number
of additional word-RAM operations of O(Lk). We show how to combine the DKT
universal hashing technique with the AI tensoring technique to ensure that the
running time is dominated by O(L) distance computations and O(H) hash func-
tion evaluations. The idea is to use the DKT scheme to construct two collections
of respectively L1 and L2 hash functions, and then to use the AI tensoring app-
roach to form g1, . . . , gL as the L = L1 × L2 combinations of functions from the
two collections. The number of lookups can be reduced by applying tensoring
several times in independent repetitions, but for the sake of simplicity we use a
single repetition. For the usual setting of k = �log(n)/ log(1/p2)� let k1 = �k/2�
and k2 = �k/2�. Set L1 = �6(1/p1)k1� and L2 = �6(1/p1)k2�. According to
Lemma 1 if we set ε = 1/6 the success probability of each collection is at least
3/4 and by a union bound the probability that either collection fails to contain
a colliding hash function is at most 1/2. This concludes the proof of our main
Theorem 4.

4.1 Sketching

The theorems of the previous section made no assumptions on the word-RAM
complexity of distance computations and instead stated the number of distance
computations as part of the query complexity. We can use a (r1, r2, p1, p2)-
sensitive family H to create sketches that allows us to efficiently approximate
the distance between pairs of points, provided that the gap between p1 and p2 is
sufficiently large. In this section we will re-state the results of Theorem 4 when
applying the family H to create sketches using the 1-bit sketching scheme of Li
and König [26]. Let b be a positive integer denoting the length of the sketches
in bits. The advantage of this scheme is that we can use word level parallelism
to evaluate a sketch of b bits in time O(b/ log n) in our word-RAM model with
word length Θ(log n).

For i = 1, . . . , b let hi : X → R denote a randomly sampled locality-sensitive
hash function from H and let fi : R → {0, 1} denote a randomly sampled uni-
versal hash function. We let s(x) ∈ {0, 1}b denote the sketch of a point x ∈ X
where we set the ith bit of the sketch s(x)i = fi(hi(x)). For two points x, y ∈ X
the probability that they agree on the ith bit is 1 if the points collide under
hi and 1/2 otherwise. The probability that two sketch bits collide is therefore
given by Pr[s(x)i = s(y)i] = Pr[hi(x) = hi(y)] + (1 − Pr[hi(x) = hi(y)])/2 =
(1 + Pr[hi(x) = hi(y)])/2. We will apply these sketches during our query proce-
dure instead of direct distance computations when searching through the points
in the L buckets, comparing them to our query point q. Let λ ∈ (0, 1) be a
parameter that will determine whether we report a point or not. For sketches
of length b we will return a point x if ‖s(q) − s(x)‖1 > λb. An application of
Hoeffiding’s inequality gives us the following properties of the sketch:
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Lemma 2. Let H be a (r1, r2, p1, p2)-sensitive family and let λ = (1 + p2)/2 +
(p1 − p2)/4, then for sketches of length b ≥ 1 and for every pair points x, y ∈ X:

– If dist(x, y) ≤ r1 then Pr[‖s(x) − s(y)‖1 ≤ λb] ≤ e−b(p1−p2)
2/8.

– If dist(x, y) ≥ r2 then Pr[‖s(x) − s(y)‖1 > λb] ≤ e−b(p1−p2)
2/8.

If we replace the exact distance computations with sketches we want to avoid
two events: Failing to report a point with dist(q, x) ≤ r1 and reporting a point
x with dist(q, x) ≥ r2. By setting b = O(ln(n)/(p1 − p2)2) and applying a union
bound over the n events that the sketch fails for a point in our collection P we
obtain Theorem 5.

5 Conclusion and Open Problems

We have shown that there exists a simple and general framework for solving the
(r1, r2)-near neighbor problem using only few locality-sensitive hash functions
and with a reduced word-RAM complexity matching the number of lookups. The
analysis in this paper indicates that the performance of the Dahlgaard-Knudsen-
Thorup framework is highly competitive compared to the Indyk-Motwani frame-
work in practice, especially when locality-sensitive hash functions are expensive
to evaluate, as is often the case.

An obvious open problem is the question of whether the number of locality-
sensitive hash functions can be reduced even below O(k2/p1). Another possible
direction for future research would be to obtain similar framework results in the
context of solutions to the (r1, r2)-near neighbor problem that allow for space-
time tradeoffs [5,12].
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Abstract. Since the publication of M-tree, several enhancements were
proposed to its structure. One of the most exciting is the use of additional
global pivots that resulted in the PM-tree. In this paper, we revisit both
M-tree and PM-tree to propose a new construction algorithm that stores
data elements once in their trees hierarchies. The main challenge is to
select data elements when an inner node split is needed. The idea is
that as a data element is evaluated for pruning during traversal, it can
become part of the result set, allowing faster convergence of nearest
neighbor algorithms. The new insert and query algorithms enable faster
retrieval, the decrease in node occupation of trees built with the same
parameters, and also a reduction in the overlap among nodes, as shown
in the experimental evaluation.

Keywords: Metric access method · Ball partitioning indexing ·
M-tree · PM-tree · k-nearest neighbor query

1 Introduction

Since the development of B+trees focused on secondary storage, even though
some keys are used as routing information in the inner nodes, all keys are stored
in the leaf nodes of tree-based methods. The motivation for this tree organization
is that the space in an inner node is so valuable that it is better to use it to
partition the data than to store the location of the data represented by that
key [4]. Moreover, the leaves are connected and form a sequential set, which is
of great interest when searching for a range of keys based on the total ordering
relation.

M-tree stores all data elements in the leaf nodes, although a few are also
stored in the inner nodes for routing purposes. The leaves are not interconnected.
For indexes built for similarity search, rather than having numeric or small text
keys, metric data elements may occupy up to a few kilobytes. Although the
purpose of an inner node is to allow data partitioning, storing an 8 bytes numeric
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identifier with each entry may result in a minimal disturbance in the indexing
structure and allows retrieving the full tuples after retrieving the metric instances
in a range or k-nearest neighbor query.

In this paper, we propose not to duplicate elements promoted during node
splits. Instead, the pair of elements promoted to the upper level during a split
is removed from their respective nodes. This algorithm is easily defined for leaf
nodes by removing the elements selected for promotion. When splitting an inner
node, it is not possible to remove a local pivot that needs to be promoted, as it
represents a branch. Instead, we have the opportunity to select a better pivot
to be promoted. We propose the use of an aggregate nearest query to solve
this issue, aiming to find an element that better minimizes the covering radius
considering the set of ball entries (each composed of an element and a radius)
that form an inner node.

The contributions of the work described in this paper can be summarized as:

– a new indexing algorithm for M-tree and PM-tree that allows building more
efficient indexes for k-nearest neighbor querying operations;

– a refined aggregate nearest neighbor algorithm that allows finding better ele-
ments to be promoted during inner node splits;

– an extensive experimentation and discussion that evaluates diverse aspects of
the use of the new indexing algorithms in the state-of-the-art methods.

The remaining of the paper is organized as follows. In Sect. 2 we describe
the fundamental concepts. Section 3 details the new construction algorithms.
Section 4 discusses the experimental results. Section 5 presents the final consid-
erations.

2 Fundamental Concepts

A metric space is a pair < S, δ() >, where S is a data domain, and δ() is a
distance function that satisfies the following axioms for any element of x, y, z
in S: δ(x, x) = 0 (identity); δ(x, y) = δ(y, x) (symmetry); 0 ≤ δ(x, y) < ∞ (non-
negativity); and δ(x, y) ≤ δ(x, z) + δ(z, y) (triangle inequality). The triangle
inequality is used to determine if a ball defined by a data element and a radius
covers another element or intersects another ball. It is employed to avoid reading
data and computing distances from data elements that certainly the user is not
looking for.

Existing metric access methods are divided into compact partitioning tech-
niques and pivot-based techniques [2]. M-tree [3] is the landmark of the compact
partitioning techniques. It is a ball-partitioning method that results in a hier-
archy composed of inner and leaf nodes, built in a bottom-up fashion, such as
the B+tree. An inner node contains a set of entries of the form <pivot, radius>,
where pivot is a data element and radius is the branch covering radius. Each
entry defines a ball that covers all the data elements in the tree branch it repre-
sents. The leaf nodes contain all data elements.
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The tree is created with an empty leaf node initially defined as the root. In
the case of leaf overflow, a split algorithm is used to create a new node and to
distribute the elements between them. Each node promotes one element to the
upper level, that stores it and the coverage radius. The upper levels may be
updated recursively, if necessary. This process guarantees the structure is always
balanced. After the first split, the insertion process starts finding out a path
from the root to a leaf. Space is not exclusively partitioned as node coverage
may intersect other nodes.

Insertion on leaf nodes may result in an overflow. In case of overflow, a split
algorithm is employed to distribute the elements between the node and a new
node. In the same way, promotion may result in an inner node overflow and thus,
an inner node split. The work [3] proposes the use of m RAD, an algorithm that
finds a pair of pivots that splits a node by minimizing the sum of the covering
radii. Its time complexity is O(n2), where n is the number of elements of a node.
Another interesting split strategy [20] computes a minimum spanning tree and
removes its longest edge to split a node with time complexity of O(n · log n).

Several related works have been proposed to enhance the M-tree performance.
Among them, there are works that explored the reorganization of the trees [20],
the reinsertion of elements [8] and the use of short-term memories during the
construction [13]. There are also other works that aimed to explore the met-
ric properties to propose interesting new data structures, such as the Dynamic
Spatial Approximation Trees [10], iDistance [6], GroupSim [14], Omni-R [19],
M-Index [11], and PM-tree [7,17]. All of them presented great performance con-
sidering different scenarios. A comprehensive review of pivot-based methods can
be found at [2] and an extensive review of the area can be found at [15].

Pivot-based techniques consider a static dataset to find a constant set of piv-
ots. A naive pivot selection algorithm is to randomly select n elements as pivots.
Finding the optimal pivot set takes polynomial time, thus unpractical. Several
heuristics with linear time complexity were proposed recently, such as Maximum
of Minimum Distances (MMD) and Maximum of Sum of Distances (MSD) [18].
These heuristics start by randomly selecting the first pivot and then they select
pivots incrementally, maximizing pi = argmaxs∈T−{p1,...,pi−1} mini−1

j=1 δ(s, pj)
(MMD) or pi = argmaxs∈T−{p1,...,pi−1}

∑i−1
j=1 δ(s, pj) (MSD) regarding the pre-

viously selected pivots.
In addition to creating hierarchies based on local minimum bound rectan-

gles (spatial) or pivot (metric) representations, Omni-R [19] and PM-tree [17]
proposed the use of a set of static global pivots to dynamically store cut-region
information applied to R-tree and M-tree, respectively. The cut-region concepts
and algorithms were later formalized in [7]. PM-tree is the state-of-the-art of
dynamic ball-partitioning metric access methods.

3 New M-tree and PM-tree Algorithms

A metric index is an instance of a metric access method that organizes the
elements si of a dataset S ∈ S regarding the metric δ(). Both M-tree and PM-
tree allow dynamic insertion of elements and allow the optimization of similarity
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range and k-nearest neighbor queries from a query element sq ∈ S based on
the limit � that is either the radius τ or the number of neighbors (k). The
construction of a PM-tree also considers a set of static global pivots P ∈ S.

In order to store data elements once in the hierarchy of a M-tree or a PM-
tree, we must propose a new insert algorithm. When inserting a new element, the
algorithm starts from the root node and searches for a leaf to hold the element,
employing a heuristic to choose the suitable branch to follow. If the node has
enough space, the element is inserted and the coverage radius may be updated
in the upper levels, if necessary. So far, the same behavior of the original M-tree
and PM-tree insert algorithms. However, in case of a leaf overflow, the element
promoted to the upper level is removed from the leaf node, as it will be stored
in the upper level.

When inserting the first elements in a new tree, the leaf node is also the
root. In case of overflow, a new leaf is created and data is distributed between
them. A new inner node is also created and will receive the pivots promoted
from the pair of leaves. From this moment on, for every leaf split, there will be a
prior pivot that used to represent that leaf. Instead of maintaining the original
pivot, we propose to select a new one, allowing to find an element that better
represents that portion of the data that remained in the node, considering that
part of the entries was distributed to the new node. For the new node, its pivot
is promoted, while for the original node, we must replace the promoted pivot.
In this case, as there is no other copy of the original pivot in any leaf node, we
propose to reinsert it, allowing it to find a suitable leaf node. In the recursive
version of the insert algorithm, this is performed when the function returns from
every recursion, as a split may promote an element that may cause another split
in the upper level until we get to the root.

The main challenge is to select a pair of pivots when an inner node split
is needed. When splitting an inner node, selecting an element to be promoted
and remove it from the node is not possible, as each element is a pivot that
represents a branch. The algorithm employs the aggregate nearest neighbor query
to solve this issue, in order to find an element that minimizes the covering radius
considering the set of ball entries (each composed of an element and a radius)
that form an inner node. The algorithm searches the branch for this element and
removes it from its leaf. The aggregate nearest neighbor query allows finding, for
instance, the element in the branch that minimizes the sum of distances to the
set of ball pivots, among other aggregation functions. Following, this element is
promoted and stored in the upper level. This strategy can be applied to both
M-tree and PM-tree insert algorithms.

Figure 1 illustrates the selection of promoted pivots when splitting an inner
node. It represents the set of balls stored in the node. In (a) the node entries
{<s1, r1>, <s2, r2>, <s3, r3>} represent the pivots and the covering radii, each
one covering a branch of the tree. In the standard M-tree (b), s1 is also promoted
to the upper level with radius rp, as among the options {s1, s2, s3}, the element
s1 results in the minimization of rp that covers all entries in this node. The new
strategy (c) searches downward to find the aggregate first-nearest neighbor p
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regarding the query Q = {s1, s2, s3} by minimizing an aggregation of distances,
such as the sum or the mean square distance.

Fig. 1. M-tree inner node representation. (a) Node entries {<s1, r1>, <s2, r2>,
<s3, r3>}. (b) in the standard M-tree, s1 is also promoted to the upper level with
radius rp: among the options {s1, s2, s3}, promoting s1 results in the minimization of
rp. (c) New strategy: search downward to find the aggregate first-nearest neighbor p
regarding the query Q = {s1, s2, s3}, remove it from its leaf and promote with radius rq.

Notice the promoted radius rp from (b) is greater than the promoted radius
rq from (c), thus (c) results in less dead space. The optimization of the aggregate
nearest neighbor query employs the triangle inequality to prune branches that
certainly do not overlap with the search space, thus it is straightforward to
implement a general best-first aggregate k-nearest neighbor query algorithm, as
presented in Sect. 3.1.

3.1 The Aggregate k-Nearest Neighbor Query

An aggregate similarity query [12] is a relational selection operation that retrieves
the most similar elements of a dataset S ∈ S to a query composed of the constant
values Q (called the query set) taken from the domain S. The ranking requires the
definition of a similarity aggregation function dg(), which evaluates the aggregate
similarity of each element si ∈ S regarding its similarity measured by the metric
δ() to every element sq ∈ Q. Limits can be expressed as a similarity threshold
ξ (aggregated radius) or based on a number k of elements. In this paper, we
present a refined version of the general algorithm.

In this generalization, the well-known similarity range and k-nearest neighbor
queries turn into special cases of the aggregate queries, where the set of query
centers has only one element Q = {sq} and the limit � is either the range or the
number of neighbors. As the set of query centers Q may have more than one
element, the distances δ(si, sq) from each query center sq ∈ Q to the element si ∈
S must be aggregated. Consider δ() is a distance function, Q is the set of query
centers, si is a dataset element, and the power g ∈ R

∗ is a non-zero real value, the
similarity aggregation function dg() is defined in Eq. 1. The aggregation provides
interesting functions, such as: g = 1 defines the minimization of the sum of the
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distances; g = 2 defines the minimization of the mean square distance; g = ∞
defines the minimization of the maximum distance; and g = −∞ defines the
minimization of the minimum distance.

dg(Q, si) = g

√
√
√
√

∑

sq∈Q

δ(sq, si)
g (1)

The time complexity of a sequential scan to solve the aggregate range and
aggregate k-NN is O(n ∗ |Q|) distance calculations, where n is the number of
elements in the dataset and |Q| is the cardinality of Q. As a generalization
of range queries, the triangle inequality property can be employed to discard
branches of ball-partitioning based metric access methods, and so the composite
triangle inequalities related to the set Q. Consider Fig. 2 as an example of an
aggregate range query in a 2-dimensional Euclidean space, the query centered at
{q1, q2} and a branch centered at st with covering radius rt. Also, let h1 be an
unknown element that minimizes dg() with respect to q1 and q2. The challenge
is to compute the lower bound aggregate similarity from centers q1 and q2 to h1

to decide if the aggregate range overlaps the region covered by the ball centered
at st.

s ball

a

rt

b
cd

st

h1

aggregate 

ball

w x

q1 q2

aggregate 
query

x

Fig. 2. Ball region and aggregate range, Q = {q1, q2} (query), st is a branch represen-
tative and radius rt. Adapted from [12].

From Fig. 2, rt is known and {a, c} can be computed, but {b, d} cannot. To
assure that a branch centered at st with covering radius rt can be pruned, we
need to determine if dg(Q,h1) = g

√
bg + dg is less than or equal to the limiting

aggregated radius ξ = g
√

wg + xg that generates the query region, i.e., if the two
regions overlap. If they do not overlap, the branch centered at st can be pruned.
From the definition of distance functions on a metric space, the following triangle
inequality property always holds. For g = 1, dg = b + d:
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b ≥ |a − rt| (2)

d ≥ |c − rt| (3)

b + d ≥ |a − rt| + |c − rt| (4)

Generalizing, it can be stated that, for g �= 0:

bg ≥ |a − rt|g (5)

dg ≥ |c − rt|g (6)

bg + dg ≥ |a − rt|g + |c − rt|g (7)

From Eq. 7 we built Eq. 8, where Q is the set of query centers, ξ is aggregate
query radius, st is a branch representative, and rt is a branch covering radius. It
allows verifying if an aggregated range overlaps a ball with no false dismissals,
providing exact answers. Its use is straightforward to replace the single center
triangle inequality comparisons to discard branches during a depth-first traver-
sal in a range query or in a best-first approach employed for nearest-neighbor
algorithms.

g

√
√
√
√

∑

sq∈Q

| δ(sq, st) − rt |g ≤ ξ (8)

4 Experiments

The access methods were implemented in C++ [1]. We run the experiments
on a Linux 64 bits personal computer with 8 GB of main memory, Intel Core
i7−4770@3.40GHz processing unit, and 1 TB hard disk.

Table 1 presents the datasets. Nasa and Colors are available at [5] while Cloud
is a synthetic 20-dimensional dataset built with 1000 clusters of randomized
points. We present the embedded dimension E as the number of dimensions of
their spaces. The existing correlations between dimensions decrease the intrinsic
dimensionality, that is, the intrinsic characteristics of the data, regardless of the
space where it is embedded. The approximation of the intrinsic Hausdorff dimen-
sionality D can be computed by the Distance Exponent (DEX) algorithm [21].
We employed DEX to determine the number of global pivots (	D
+1), as stated
in [9,21]. DEX is based on the box-counting method, which divides each dimen-
sion several times, creating n-dimensional boxes in a hierarchical structure. At
each level, it counts the number of boxes that contain data instances. As the size
of the boxes becomes very small, logN(r)/log(1/r) converges to a finite value,
i.e., the Hausdorff dimension D [16].

Considering it is not possible to compute the volume of the intersections of
generic metric spaces, we computed the relative fat-factor [20], a measurement
based on counting the elements in the intersections of overlapped leaf nodes. The
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Table 1. Datasets.

Dataset Cardinality Embedded
dimensionality E

Distance
exponent D

Number of pivots
(�D� + 1)

Nasa 40,150 20 1.7 3

Colors 112,682 112 4.8 6

Clouds 1,000,000 20 5.2 7

relative fat-factor of index T takes into consideration the minimum theoretical
number of nodes (Mmin), the minimum theoretical height (Hmin), the number
of nodes read to answer a point query Ic, the height H, the number of nodes
M , and the total number of elements N : fatrel(T ) = Ic−Hmin.N

N
1

Mmin−Hmin .
All experiments were run with the Euclidean distance. We employed the

MaxSum algorithm [18] to select 	D
 + 1 global pivots for the experiments
presented in Sects. 4.1 and 4.2. In the experiments of Sect. 4.3 we built indexes
varying the number of pivots from 3 up to 10.

In the next sections, we refer to the standard algorithms as M-tree and PM-
tree, and the newly proposed algorithms as M#tree and PM#tree. All indexes
were built considering the optimistic forced reinsertions strategy with parameters
maxRemoved = 5 and recursionDepth = 10 [8]. PM-tree and PM#tree also
employed SingleWayForCutRegions strategy [7].

4.1 Effect of the Size of the Nodes

In this experiment, we evaluate the methods regarding the size of the nodes
during index construction and searches. Each node is stored in a disk page and
as the size grows there may be more elements per node, potentially resulting in
hierarchies with lower heights. On the other hand, node split becomes expensive,
due to the time complexity of the split strategies. Figure 3 presents the heights
of the indexes. In these experiments, the proposed strategy resulted in indexes
with the same height of the standard algorithms, allowing a fair comparison of
the query features. Although they presented the same height, the indexes overlap
decreased. Figure 4 presents their relative fat-factors.

Figure 5 presents the indexes file sizes. Although PM-tree and PM#tree
indexes store more information on inner nodes (the cut-regions) than M-tree and
M#tree, they resulted in more compact indexes. As it was expected, M#tree
and PM#tree spent less space than the standard algorithms.

Figure 6 presents the time spent to build. Although the new indexes are more
compact, the new algorithms did not reduce the time spent to build them.

Figures 7 and 8 present the average number of distance calculations and the
time to run 100 k-nearest neighbor queries with k = 10. We randomly selected
100 elements of each dataset as the query elements. In Fig. 7, the average number
of distances computed by PM#tree reduced up to 31.6% for Nasa, up to 40.6%
for Colors, and up to 60.7% for Cloud datasets, when compared to PM-tree.
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Fig. 3. Heights regarding different disk page sizes. (a) Nasa. (b) Colors. (c) Cloud.

Fig. 4. Fat-factors regarding different disk page sizes. (a) Nasa. (b) Colors. (c) Cloud.

Fig. 5. File sizes regarding different disk page sizes. (a) Nasa. (b) Colors. (c) Cloud.

Fig. 6. Time to build the indexes. (a) Nasa. (b) Colors. (c) Cloud.
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In Fig. 8, the total time to run 100 queries in PM#tree reduced up to 30.3%
for Nasa, up to 40.8% for Colors, and up to 78.6% for Cloud datasets, when
compared to PM-tree.

Fig. 7. Average number of distance calculations to run 100 k-nearest neighbor queries
with k = 10 regarding different disk page sizes. (a) Nasa. (b) Colors. (c) Cloud.

Fig. 8. Query total time to run 100 k-nearest neighbor queries with k=10 regarding
different disk page sizes. (a) Nasa. (b) Colors. (c) Cloud.

4.2 Effect of k

In this set of experiments, we evaluate the k-nearest neighbor queries with
respect to k. The indexes were created with page sizes of 4 KB for Nasa, 16
KB for Colors, and 8 KB for Cloud, i.e., the second page size variation of the
experiments described in Sect. 4.1 (see the abscissa of Figs. 3, 4, 5, 6, 7 and 8). In
Fig. 9, the average number of distance calculations computed by PM#tree when
compared to PM-tree decreased 18.0%, 32.1% and 55.4% for k = 10, as well as
13.6%, 27.1%, and 84.8% for k = 100, for Nasa, Colors and Cloud, respectively.
Accordingly, in Fig. 10, the time spent to run these queries by PM#tree when
compared to PM-tree decreased 16.6%, 31.4%, and 59.6% for k = 10, as well as
12.5%, 26.9%, and 73.9% for k = 100, for Nasa, Colors and Cloud, respectively.
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Fig. 9. Average number of distance calculations to run 100 k-nearest neighbor queries
regarding k. (a) Nasa. (b) Colors. (c) Cloud.

Fig. 10. Total time to run 100 k-nearest neighbor queries regarding k. (a) Nasa. (b)
Colors. (c) Cloud.

4.3 Effect on the Number of Pivots

In this set of experiments, we evaluate the behavior of PM-tree and PM#tree
while increasing the number of pivots. We also compare them with the embedding
methods Omni-B [19] and iDistance [6]. Omni-B and iDistance employ B+trees
to optimize similarity queries based only on a static set of global pivots. In these
methods, the data elements offsets (element position or address in a random
access file) are indexed by the distances of the elements to the set of global
pivots. The triangle inequality applied to the intersection of multiple embeddings
allows the retrieval of the offsets, such as in the computation of the cut-regions.
While Omni-B index each embedding in a B+tree, iDistance partitions space
and employs a single B+tree for all partitions. The selected offsets that were not
discarded by triangle inequality are employed to retrieve the real data elements
from a random access file.

We compute a distance as double precision floating point, (8 bytes). The
space needed to store a cut-region on index nodes is 2 ∗ |P | ∗ 8 bytes for each
routing entry, where |P | is the cardinality of the set of global pivots. Thus, a
PM-tree built with 10 global pivots stores an extra 160 bytes of data for each
entry of an inner node. As the number of global pivots that form a cut-region
increases, the pruning ability increases but the routing capacity (the number of
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entries) of an inner node decreases. We aim at finding a trade-off between |P |
and construction/query performance.

In this experiment, we built PM-tree and PM#tree using 8 KB pages for
Nasa and Cloud datasets. For Colors dataset, we employed 16 KB pages. Fig-
ures 11 and 12 presents the total time for construction and for querying the
indexes. Notice the ordinate axes are presented in log scale. If we consider con-
struction, we can notice in Fig. 11 that indexing <distance, offset> in B+trees
and appending the real data element to a file is faster than maintaining a hierar-
chical ball-partitioning index. On the other hand, Fig. 12 shows that the higher
build cost of PM-tree and PM#tree compared to Omni-B and iDistance allows
faster retrieval of k-nearest neighbor queries.

Fig. 11. Time (seconds) to build the indexes regarding different number of global
pivots. (a) Nasa. (b) Colors. (c) Cloud.

Fig. 12. Time (seconds) to run 100 k-nearest neighbor queries with k = 10 regarding
different number of global pivots. (a) Nasa. (b) Colors. (c) Cloud.

5 Conclusion

The design of efficient dynamic metric access methods is fundamental for many
search and analysis processes based on similarity comparison operations. We pro-
pose a new construction strategy for M-tree and PM-tree that does not duplicate
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elements during the split of nodes. To achieve this goal, we employed an aggre-
gate k-nearest neighbor query to select the elements to be promoted during an
inner node split. We also present an optimized algorithm to solve this query,
based on the aggregation of the triangle inequality relations.

In our experiments, we compared the standard M-tree and PM-tree against
these indexing methods built with our new strategy. We empirically show that
our strategy allows building compact indexes that increase the performance of
k-nearest neighbors. This is achieved due to the faster convergence of the query
algorithms.
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Abstract. With today’s dynamic multimedia collections, maintenance
of high-dimensional indexes is an important, yet understudied topic.
Extended Cluster Pruning (eCP) is a highly-scalable approximate index-
ing approach based on clustering, that is targeted at stable performance
in a disk-based scenario. In this work, we propose an index maintenance
strategy for the eCP index, which utilizes the tree structure of the index
and its approximate nature. We then develop a cost model for the strat-
egy and evaluate its cost using a simulation model.

Keywords: High-dimensional indexing · Index maintenance · eCP

1 Introduction

In recent years, the scale and availability of multimedia collections has grown
rapidly, spurring interest in scalable high-dimensional indexing methods. In
some cases, including copyright protection and multimedia analytics applica-
tions, these media collections can be quite dynamic, with the most recently
added material of particular interest. It is thus of interest to propose and study
methods for dynamic index maintenance [7].

Overall, high-dimensional indexing structures fall into one of three main cat-
egories: tree-based, quantization-based, and hashing-based [7]. As many tree-
based indexes inherit properties of their lower-dimensional counterparts, index
maintenance has been discussed in some early works based on the seminal R-trees
and kd-trees, as well as some more recent works [3,11]. In particular, dynamic
index maintenance with transactional properties has been proposed for the NV-
tree, the most scalable tree-based indexing structure [6,8]. Dynamic maintenance
of index structures in the other categories, however, remains understudied.

Quantization-based methods have shown significant promise for scalability [1,
5,10]; exploring strategies for dynamic maintenance is therefore of interest. In
this paper, we consider dynamic maintenance of the Extended Cluster Pruning
(eCP) indexing strategy [2,4]. Unlike many other quantization-based methods,
eCP focuses on disk-based scalability scenarios by targeting a balanced cluster
size and using an approximate hierarchical index to facilitate access to clusters.
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In this paper, we propose a new strategy for maintaining eCP clusters that
relies on the approximate nature of the hierarchical index. The strategy main-
tains the balanced distribution of cluster sizes while also allowing gradual re-
organization of the high-dimensional space. We describe this new strategy and
show, using a cost model-based simulator, that the strategy is efficient.

The remainder of the paper is organized as follows. In Sect. 2 we review the
eCP high-dimensional indexing strategy. In Sect. 3 we outline the index main-
tenance strategy and its cost model. We briefly outline and analyze the perfor-
mance of the strategy in Sect. 4, and give concluding remarks in Sect. 5.

2 Extended Cluster Pruning

Extended Cluster Pruning (eCP) is an approximate clustering-based high-dim-
ensional search index. This index takes a dataset D of n vectors, where each
vector consists of Sv bytes (including an identifier), and forms a set of clusters by
randomly selecting a set of l cluster leaders. All vectors in D are then assigned
to the closest leader; this process is essentially a single round of the k-means
algorithm. When the collection is queried with a query vector q, the query vector
is compared to the l cluster leaders to find the nearest leader l′. Then q is
compared to all the feature vectors in the cluster of l′ to find the (approximate)
k nearest neighbors. Additionally, eCP has a parameter b used to expand the
cluster search process, such that a search of the index returns the b clusters
nearest to q, from which the k nearest neighbors then are found.

The motivation of eCP is to perform well in disk-based scenarios, where data
only partially fits in memory and must thus often be read from disk. The overall
goal of eCP is that each cluster read should typically result only in a single disk
read, and three main techniques are used to achieve this goal.

First, the eCP targets a well balanced distribution of data across clusters by
only performing a single round of assignments to cluster leaders. Experimental
results with real datasets have shown that using a full k-means algorithm results
in a highly skewed cluster size distribution, which in turn results in sub-optimal
performance [4,9].

Secondly, eCP tries to have most clusters fit within the size of a single disk
block read Sio, which has a default value of 128 KB for Unix systems.1 In order
to find this “optimal cluster size” in which we can fit the most possible feature
vectors within the size of one Sio, one must calculate the following:

Sc = �Sio/Sv� (1)

This will then give the maximum number of feature vectors that can fit within
a singular Sio. Then, to find the necessary amount of cluster leaders l, which
would fit all n vectors, one must determine this by utilizing the Sc value. This
gives the equation:

l =
⌈
n

Sc

⌉
(2)

1 E.g., see: https://git.savannah.gnu.org/cgit/coreutils.git/tree/src/ioblksize.h.

https://git.savannah.gnu.org/cgit/coreutils.git/tree/src/ioblksize.h
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The third method to ensure efficiency and accuracy is the creation of an
index tree of cluster leaders in the eCP. When the l cluster leaders have been
determined, the actual structure of the index tree can be chosen and created. The
eCP has a height parameter L, which is set at indexing time, that determines
how the index should be structured internally.

Each level in the tree is based on a similar clustering approach as with the
feature vectors. Each leader in the index structure represents on average

Sn = L
√
l (3)

leaders below itself, which are either actual cluster leaders or leaders of internal
nodes. The process works by first selecting l/Sn group leaders from the collection
of cluster leaders, and assigning each cluster leader to the nearest group leader,
thus grouping the l cluster leaders into groups of (on average) Sn cluster leaders.
These internal nodes are then also grouped into groups of Sn leaders; this process
continues recursively until the top internal group has fewer than Sn leaders and
becomes the root of the index tree.

The L parameter indirectly controls how large the internal nodes should be
in the structure. A too-large L value would lead to many small internal nodes
in the structure, which would incur a large overhead cost and a loss of result
quality [2], while a too-small L would create large internal nodes leading to
worse performance, as this would cause more comparisons performed within
each internal node during query processing.

3 Index Maintenance Strategy

We now consider the scenario where additional vectors are inserted into the
eCP index after the initial index construction has completed. The goal of any
index maintenance strategy should be that query processing is affected as little as
possible both in terms of efficiency and accuracy. Consider a strategy where these
vectors are simply inserted into the appropriate clusters without updating the
local structure in the index. The clusters would eventually become overly large,
leading to an increase in query processing time and loss of accuracy. Therefore
it is paramount that the clustering is dynamically maintained along with the
index of cluster leaders in order to keep the cluster sizes and the distribution of
data as stable as possible.

A second goal of an index maintenance strategy is that the index mainte-
nance itself should be efficient. This goal in turn implies two things: (a) that the
insertion operations should be aggregated in order to avoid the costs associated
with repeatedly updating the same clusters and (b) that the structure of the
index itself should be maintained, rather than rebuilt. Therefore it is necessary
to perform local maintenance of the index in order to avoid having to make
global changes to the clustering and the index structure.

The main topic of this section is a proposal for such a maintenance strategy.
In Sect. 3.1 the procedure of aggregating insertions is detailed and in Sect. 3.2
the maintenance strategy for the cluster index is described. A cost model for
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this maintenance strategy is then developed in Sect. 3.3 and then the potential
impacts on the effectiveness of the eCP is briefly outlined in Sect. 3.4.

3.1 Insertions

When a cluster is chosen for insertions in eCP, there are two different scenarios
that can happen in terms of IO operations. The first scenario is that the insertion
is performed directly to disk, which means that the insertion operation will
require a disk read and a disk write operation in order to update the chosen
cluster with the inserted data. Since this cluster may be anywhere on the disk,
this will incur a random read operation and a random write operation.

Alternatively, insertions could be buffered, where a given number of inserted
feature vectors is buffered in RAM. When the buffer is then filled, some (or all)
of the buffered data must be written to disk. In this case, multiple insertions
to the same cluster would only require one disk read and one disk write, thus
saving some IOs compared to direct insertions.

3.2 Index Maintenance

In order to maintain the index, the index structure must grow. This implies
firstly that L cannot be a static parameter. Instead, the average size of the
internal nodes Sn is given as a parameter and used to determine a suitable L,
by reversing Eq. 3:

L =
⌈
logSn

(l)
⌉

(4)

As the size n of the data collection grows, then so does l and therefore L will
also eventually grow, resulting in a deeper index. Based on previous results with
eCP, a suitable value for Sn is about 100 [4].

A dynamically growing index implies secondly that we should over-allocate
the number of cluster leaders, to leave free space in the clusters for insertions. We
propose using a new percentage parametrer lo, such that clusters (and internal
nodes) are only filled to lo capacity; based on industry experience with index
maintenance, a decent lo value is about 70% of full capacity. Likewise, to avoid
aggressively reorganizing clusters, we propose using a corresponding hi param-
eter, which is used to determine when to re-cluster a part of the index tree.
Together, the two parameters help to avoid frequent local re-clustering.

The index maintenance strategy we propose is indeed based on local re-
organization of a sub-tree in the index. Consider a set of cluster leaders, which
are grouped together under the same internal node. If an insertion into any of
these clusters causes the average cluster size in the group to grow beyond hi×Sc,
then all of the clusters in the internal node are re-clustered together.

This re-clustering process works by determining the number of feature vectors
represented in that internal node, by summing the number of feature vectors in
each cluster in the group; this sum is called n∗. Then the number of clusters l∗,
which should be represented in the internal node, is determined using a variant
of Eq. 2, modified to use n∗:
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l∗ =
⌈

n∗

�Sc�
⌉

(5)

The l∗ cluster leaders are selected randomly and the feature vectors are assigned
to them, as in the original clustering process. These new l∗ cluster leader vectors
now form the updated internal node.

It is possible that the internal node grows so much that the parent node
now has more than hi× Sn nodes on average. Then the parent node can also be
reorganized in the exact same manner, by determining how many internal nodes
should be used and grouping the representatives into these new internal nodes.
This process can propagate all the way to the top of the index structure; if the
root node grows to have more than hi× Sn children, then it must be split using
the same reorganization process with a new root node created at the top of the
tree; when this happens, the height of the tree L grows.

There are some important properties of this process worth noting. First, every
re-clustering is local, as only one internal node and its children are reorganized
at a time. The index maintenance therefore only flows upwards in the index
tree and never downwards. As a result, the only clusters of feature vectors,
that are affected, are the ones that originally caused the re-clustering that then
propagated up the tree. Second, the reorganization of internal nodes can cause
clusters to move within the tree to a closer parent node, which then will make
the cluster more likely to be correctly found during the search process. This
strategy should therefore maintain overall result quality over time.

3.3 Cost Model

We now describe a simple cost model for this strategy, that we will use to evaluate
the efficiency of the strategy. As previously discussed, we assume each disk oper-
ation reads or writes Sio = 128 KB. The IO operations may be either sequential
or random in nature, and we denote the costs of the operations CSR and CSW for
sequential reads and writes, respectively, and CRR and CRW for random reads
and writes.

Direct insertions of a feature vector into a cluster requires reading of that
cluster from disk, adding the new feature vector, and then writing the cluster
back to disk. Assuming that the cluster contains n feature vectors, the cost of
an insertion is:

CI = �n/Sc� ∗ CRR + �(n+ 1)/Sc� ∗ CRW (6)

When a feature vector is inserted into the aggregation buffer, no cost is
assigned. Once the buffer is full, in our cost model a full flush of the insertion
buffer is forced. We model two different types of flushes, where (a) individ-
ual clusters are read as needed and updated, with the same cost as above, or
(b) where all the clusters are read and written sequentially, resulting in a cost
of l × (CSR + CSW ).

If a cluster forces a re-clustering, the leader will take all of its ln clusters and
their n∗ descriptors and re-cluster these into l∗n new clusters. The cost associated
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Table 1. IO latencies for the two devices modelled in our experiment.

Device CRR CRW CSR CSW

Toshiba 7200RPM HDD 4.930 ms 2.110 ms 0.642 ms 0.645 ms
Intel P3700 PCI-E SSD 0.055 ms 0.122 ms 0.056 ms 0.121 ms

with such a re-clustering is modelled as:

CR = ln × CRR + l∗n × CRW (7)

In the case where a internal node forces a re-clustering of its parent, the
parent node will then take its ln representatives and reorganize them into l∗n
new leader groups. Assuming that each node fits within one disk IO, the cost of
such reorganization is also given by Eq. 7. The cost of reorganizing the root is
similar.

3.4 Discussion

We have proposed a new insertion strategy for the eCP high-dimensional index.
As the analysis of the next section shows, the strategy achieves our two efficiency
goals: the strategy itself can be implemented efficiently and it leads to a balanced
cluster size distribution, which is key to the retrieval efficiency. We have also
argued that because both feature vectors and clusters can dynamically move
within the index tree, the result quality is likely to be maintained. Testing this
latter hypothesis is part of our future work.

4 Experiments

In order to explore the performance of the index maintenance strategy, we have
implemented a simulation model, which is a modified edition of the one used in
previous experiments with the NV-tree [6,8].

The simulator starts by instantiating an index in an initial state, with a given
number of feature vectors. Then the simulator inserts vectors into the index,
using the index maintenance strategy, as long as desired. During this process
the simulator uses the cost model above to keep track of the total IO cost.

For the experiment reported below, an IO size of Sio = 128KB is used.
The initial index contains 50 million feature vectors, with 1.5 billion subsequent
insertions performed to measure efficiency. We consider disk IO latencies for the
two devices presented in Table 1, which represent a competitive HDD and SSD,
respectively [6]. We model SIFT feature vectors (sv = 132 bytes) and set the
internal node parameter Sn = 100, which has been shown to give good results [4].
The simulator can model both types of insertion buffer flushes, but for eCP a
full scan of the index was more efficient.
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Table 2. Simulation results: total time to insert 1.5 billion feature vectors.

Index HDD SSD

NV-tree 895.3 h 2.8 h
eCP 396.4 h 20.6 h

4.1 NV-tree

As a baseline, we compare to the NV-tree, which was already implemented in the
simulator [6]. The NV-tree is a tree-based high-dimensional index, which utilizes
a combination of projection of data points along random lines, and partitioning of
the projected space, to separate the dataset into partitions which are designed
to fit within a single IO. In order to maintain the index while insertions are
performed, the NV-tree must select new random lines and re-project the data
contained within its partitions, in order to maintain the small partitions.

The NV-tree only stores the feature vector identifier in the leaves of the
tree. To re-project feature vectors, they must therefore be retrieved from disk
separately. For an SSD, the most efficient way to do this is simply to issue many
small reads for the feature vectors, as small random reads are efficient with SSDs.
For an HDD, however, the NV-tree must maintain an auxiliary data-structure,
called partition files, which contain the feature vectors for each partition. This
leads to significant additional cost of maintaining this auxiliary structure.

4.2 Results

Table 2 shows the estimated time for inserting 1.5 billion feature vectors into
both the eCP index and the NV-tree index. Overall, the results show that the
newly proposed strategy for eCP index maintenance is competitive; with a HDD,
eCP outperforms the NV-tree, while the NV-tree performs better on an SSD.

The reason why eCP performs better for the HDD is due to the overhead
for the NV-tree, which has to maintain both the index and the partition files
separately during re-projection maintenance, which is very costly in terms of
IOs. Meanwhile, the eCP is a simpler index which stores the features within
the index, which is acceptable on an HDD. With eCP, nearly 1 billion disk
operations are issued (20% are random reads, 40% are sequential reads, and
40% are sequential writes) while for the NV-tree, about 5 billion operations are
issued (evenly split between sequential reads and writes). The reason why the
NV-tree is more efficient than eCP on an SSD, is more complex. Even though
the NV-tree still requires more disk operations (about 3.2 billion), almost all
these operations are small reads, which are very efficient on an SSD.

We also considered the cluster size distribution for eCP. After inserting 1.5
billion vectors, the smallest cluster contained 688 vectors and the largest 1083
vectors, with an average of 894 vectors. As the intended average cluster size is
Sc = 992 vectors, these results indicate that the strategy will maintain a good
cluster size distribution.
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5 Conclusion

In this paper we argued for the importance of dynamic maintenance of high-
dimensional index structures. We presented a novel index maintenance strategy
for the scalable eCP index structure. This strategy aims at maintaining the
balanced cluster sizes, which are crucial for the eCP to maintain its disk per-
formance, while also implementing local reorganizations of clusters to reduce
maintenance cost and preserve the accuracy of the index. We have implemented
this strategy in a simulation model and compared it to the very efficient NV-tree
structure, showing that while index maintenance of the NV-tree is more efficient
with SSDs, the new index maintenance strategy for eCP is nevertheless quite
competitive, with only ≈ 21h required to insert 1.5 billion feature vectors.
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Abstract. Many approaches for approximate metric search rely on a
permutation-based representation of the original data objects. The main
advantage of transforming metric objects into permutations is that the
latter can be efficiently indexed and searched using data structures such
as inverted-files and prefix trees. Typically, the permutation is obtained
by ordering the identifiers of a set of pivots according to their dis-
tances to the object to be represented. In this paper, we present a
novel approach to transform metric objects into permutations. It uses
the object-pivot distances in combination with a metric transformation,
called n-Simplex projection. The resulting permutation-based represen-
tation, named SPLX-Perm, is suitable only for the large class of metric
space satisfying the n-point property. We tested the proposed approach
on two benchmarks for similarity search. Our preliminary results are
encouraging and open new perspectives for further investigations on the
use of the n-Simplex projection for supporting permutation-based index-
ing.

Keywords: Approximate metric search ·
Permutation-based indexing · Metric embedding · n-point property ·
n-Simplex projection

1 Introduction

Searching a data set for the most similar objects to a given query is a fun-
damental task in computer science. Over the years several methods for exact
similarity search were proposed in the literature. These approaches guarantee
to find the true result set. However, they scale poorly with the dimensionality
of the data (a phenomenon known as “curse of dimensionality”) and mostly
they are not convenient to deal with very large data sets. To overcome these
c© Springer Nature Switzerland AG 2019
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issues, the research community has developed a wide spectrum of techniques for
approximate similarity search, which have higher efficiency though at the price
of some imprecision in the results (e.g. some relevant results might be missing or
some ranking errors might occur). Among them, we can distinguish between (1)
approaches specialised for a particular kind of data (e.g. Euclidean vectors), and
(2) techniques applicable to generic metric data objects. assessing the dissimilar-
ity of any two objects. The advantage of the former class of approaches, like the
Product Quantization [13] and the Inverted Multi-Index [5], is that they have
very high efficiency and effectiveness. However, the engineering effort to design
a method specialised for any particular data or application is typically too high.
The metric approaches, instead, overcome this issue since they are applicable to
generic metric objects without assuming a prior knowledge of the nature of the
data. Successful examples of metric approximate indexing and searching tech-
niques are the Permutation-based Indexing (PBI) ones, such as [4,7,14].

PBI techniques leverage the idea of transforming each metric object into a
permutation of a finite set of integers in such a way that similar objects have
similar permutations. The main advantage is that the permutations can be effi-
ciently indexed and searched, e.g., using inverted files. The similarity queries are
then performed in the permutation space by selecting objects whose permuta-
tions are the most similar to the query permutation. The common approach to
generate a permutation-based representation of a data object is based on select-
ing a finite set of pivots (reference objects) and measuring the distances of each
pivot to the object to be represented: the permutation is obtained as the list of
the pivot identifiers ordered according to their distance to the object.

The main contribution of this paper is describing a novel approach to gener-
ate permutations associated with metric data objects. The proposed technique
is applicable only to the large class of metric spaces satisfying the so-called n-
point property [6,8]. This class encompasses many commonly used metric spaces,
such as Cartesian spaces of any dimensionality regarded with the Euclidean,
Cosine, Jensen-Shannon or Quadratic Form distances, and more generally any
Hilbert-embeddable space [6]. Our technique exploits the n-Simplex projection
[10], which is a metric transformation that allows projecting the data objects
into a finite-dimensional Euclidean space. Starting from the idea that this space
transformation maps similar objects into similar Euclidean vectors, we propose
to process each projected vector to further generate a permutation-based repre-
sentation. We show that, in most of the tested cases, our permutations are more
effective than traditional permutations. Therefore, we believe that our technique
may be relevant for many permutation-based indexing and searching techniques,
even though we are aware that it may require more work to mature.

2 Background

We are interested in searching a (large) finite subset of a metric space (D, d),
where D is a domain of objects and d : D × D → R

+ is a metric function
[15]. Many methods for approximate metric search rely on transforming the
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original data objects into a more tractable space, e.g. by exploiting the distances
to a set of pivots. In the following, we summarise key concepts of two pivot-
based approaches that transform metric objects into permutations and Euclidean
vectors, respectively.

Permutation-Based Representation. For a given metric space (D, d) and
a set of pivots {p1, . . . , pn} ⊂ D, the traditional permutation-based representa-
tion Πo (briefly permutation) of an object o ∈ D is the sequence of the pivots
identifiers {1, . . . , n} ordered by their distance to o. Formally, the permutation
Πo = [Πo(1),Πo(2), ...,Πo(n)] lists the pivot identifiers in an order such that
∀ i ∈ {1, . . . , n − 1}, d(o, pΠo(i)) ≤ d(o, pΠo(i+1)). An equivalent representation
is the inverted permutation Π−1

o whose i-th element denotes the position of the
pivot pi in the permutation Πo.

Most of the PBI methods, e.g. [4,11,14], use only a fixed-length prefix of
the permutations to represent and compare objects. It means that only the
positions of the nearest l out of n pivots are used for the data encoding. In
this work, we do the same since often the prefix-permutations have better or
similar effectiveness than the full-length permutations [4], resulting also in a
more compact data encoding. The prefix permutations are compared using top-l
distances [12]. We use the Spearman Rho with location parameter l, defined as
Sρ,l(Πo1 ,Πo2) = �2(Π−1

o1,l,Π
−1
o2,l), where Π−1

o,l is the inverted prefix permutation:

Π−1
o,l (i) =

{
Π−1

o (i) if Π−1
o (i) ≤ l

l + 1 otherwise
. (1)

n-Simplex Projection. Recently, Connor et al. [8–10] investigated how to
enhance the metric search on a class of spaces meeting the so-called n-point
property, which is a geometrical property stronger than the triangle inequal-
ity. A metric space has the n-point property if for any finite set of n objects
there exists an isometric embedding of those objects into a (n − 1)-dimensional
Euclidean space. They exploited this property to define a space transformation,
called n-Simplex projection, that allows a metric space to be trasformed into
a finite-dimensional Euclidean space. It uses the distances to a set of pivots
Pn = {p1, . . . , pn} for mapping metric objects to Euclidean vectors. Formally,
the n-Simplex projection associated with the pivot set Pn is the transformation

φPn
: (D, d) → (Rn, �2)

o �→ vo

where vo is the only vector with a positive last component that preserves the dis-
tances of the data object to the pivots, i.e. �2(vo, vpi

) = d(o, p), ∀ i ∈ {1, . . . , n}.
The algorithm to compute the n-Simplex projected vectors is described in [10].

We recall that one interesting outcome of this space transformation is that
the Euclidean distance between any two projected vectors is a lower-bound of the
actual distance, and that the lower-bound converges to the actual distance for
increasing number of pivots n. Thus, the larger the n the better the preservation
of the similarities between the data objects.
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Algorithm 1. SPLX-Perm computation
Input : Pn = {p1, . . . , pn} ⊂ D, o ∈ D
Output: The SPLX-Perm Πo associated to the the object o

1 vo ← φPn(o); // n-Simplex projection into R
n

2 vo ← R vo ; // Rotate the vector using a random rotation matrix R
3 [vsorted, vindex] = sort(vo, ascending) ; // sorts the vector elements of vo

in ascending order; vsorted is the sorted array, vindex is the sort

index vector describing the rearrangement of each element of vo
4 Πo ← vindex

3 SPLX-Perm Representation

As recalled above, the traditional approach to associate a permutation to a data
object is sorting a set of pivot identifiers in ascending order with respect to
the distances of those pivots to the object to be represented. This approach is
justified by the observation that objects very close to each other should have
similar relative distances to the pivots, and thus, similar permutations.

The main goal of such kind of metric transformation is that the similarity
between the permutations reflects as much as possible the similarity of the orig-
inal data objects. Starting from this concept we observe that, on one hand, the
traditional permutation representation takes in consideration only the relative
distances to the pivots, i.e. which is the closest pivot, the second closest pivot,
etc. On the other hand, the recently proposed n-Simplex projection maps the
data objects to Euclidean vectors by taking into consideration both object-pivot
and pivot-pivot distances. Moreover, the Euclidean distance between those pro-
jected vectors well approximates the actual distance, especially when using a
large number of pivots. Therefore, our idea is to start from these good approx-
imations of the data objects and further transform them into permutations.
Since we are now working in a Euclidean space, and the Euclidean distance does
not mix the contribution of values in different dimensions of the vectors, it is
reasonable to think that two vectors are very close to each other if they have
similar components in each dimension. By exploiting this idea, we propose to
generate the permutations by ordering the dimensional indexes of the n-Simplex
projected vectors in ascending order with respect to their corresponding values.
For example, the Euclidean vector [0.4, 1.6, 0.3, 0.5] is transformed into the per-
mutation [3, 1, 4, 2], since the third element of the vector is the smallest one, the
first element is the second smallest one, and so on.

The idea of generating a permutation from a Euclidean vector by ordering
its dimensional indexes was investigated also in [2], where only the case of fea-
tures extracted from images using a deep Convolutional Neural Network was
analysed. Moreover, in [2] the intuition was that individual dimensions of the
deep feature vectors represent some sort of visual concepts and that the value
of each dimension specifies the importance of that visual concept in the image.
Here we observe that a similar approach can be applied to Euclidean data in
general, and thanks to the use of the n-Simplex projection it can be extended



44 L. Vadicamo et al.

to a large class of metric objects as well. The only problem on applying this
approach on general Euclidean vectors is that the variance of the values in a
given dimensional position might be very different when varying the considered
position. This happens, for example, in the case of vectors obtained using the
Principal Component Analysis where elements in the first dimensional positions
have higher variance than elements in the other dimensions. Other examples are
the vectors obtained with the n-Simplex projection that, by construction, have
higher values in top position and values that decrease to zero in the last compo-
nents. To overcome this issue we propose to randomly rotate the vectors before
transforming them into permutations. In facts, the random rotation distributes
the information equally along all the dimensions of the vectors while preserving
the Euclidean distance.

In summary, given a set of pivots Pn, the proposed approach to associate a
permutation to an object o ∈ D is (1) compute the n-Simplex projected vector
φPn

(o); (2) randomly rotate the obtained vector (the same rotation matrix is
used for all the data objects); (3) generate the permutation by ordering the
values of the rotated vectors. We use the term SPLX-Perms for referring to the
so obtained permutations (a pseudo-code is reported in Algorithm 1).

4 Experiments

We compared our permutation representations (SPLX-Perms) with the tradi-
tional permutation-based representations (Perms) in an approximate similarity
search scenario. The experiments were conducted on two publicly available data
sets:

SISAP colors is a benchmark for metric indexing. It contains about 113 K color
histograms of medical images, each represented as 112-dimensional vector.

YFCC100M is a collection of almost 100M images from Flickr. We used a subset
of 1M deep Convolutional Neural Network features extracted by Amato et
al. [1] and available at http://www.deepfeatures.org/. Specifically, we used
the activations of the fc6 layer of the HybridNet [16] after ReLu and �2
normalization. The resulting features are 4,096-dimensional vectors.

The metrics used in the experiments are the Jensen-Shannon distance for the
SISAP colors data, and the Euclidean distance for the YFCC100M deep features.
For each data set, we considered 1,000 randomly selected queries and we built
the ground-truth for the exact k-NN query search. The approximate results set
for a given query is selected by performing the k-NN search in the permutation
space. The quality of the approximate results was evaluated using the recall@k,
that is |R ∩ RA|/k where R is the result set of the exact k-NN search, and RA

is the set of the k approximate results.
To have a better overview of the tested approaches, we also consider the case

in which the permutations are used to select a candidate result set to be re-
ranked using the original distance d. In such cases, a k′-NN search (with k′ > k)
is performed in the permutation space in order to select the candidate result set.

http://www.deepfeatures.org/
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Fig. 1. Recall@10 varying the location parameter l (i.e. the prefix length).

Then the candidate results are re-ranked according to the actual distance d, and
the top-k objects are selected to form the final approximate result set RA. In
the experiments, we used k′ = 100 and k = 10, if not specified otherwise.

To generate the permutation-based representations we used n = 1, 000 pivots
for the SISAP Colors data set, and n = 4, 000 pivots for the YFCC100M data
set. We tested the quality of the results obtained using either the full-length
permutations or a fixed-length prefix of the permutations. The metric used in
the permutation space is the Spearman’s rho with location parameter l, where
the location parameter l is the length of the prefix permutation.

4.1 Results

Figure 1a and b show the recall@10 for the SISAP Colors and YFCC100M
data sets, respectively. Lines “Perms” and “SPLX-Perms” refer to the cases in
which the permutations are used to select the approximate result set by per-
forming a 10-NN search in the permutation space. Lines “Perms, re-rank(d)”
and “SPLX-Perms, re-rank(d)” refer to the cases in which the permutation-
representation are used to select a candidate result set (obtained by performing
a 100-NN search) that is then re-ranked using the actual distance d. It is inter-
esting to note that on YFCC100M data, our full-length SPLX-Perms represen-
tation allowed us to achieve a recall that not only is better than that achieved
using the traditional full-length permutation, but it is even better than that
obtained by the re-ranked approach. However, we also observe that for very short
prefix-lengths the traditional permutations shown better performance than our
technique. Another interesting aspect is that when considering the traditional
permutation-based representation there is usually an optimal prefix length l < n
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Fig. 2. Recall@k varying k (fixed location parameter l)

for which the best recall is achieved or for which the recall curve shows a plateau.
This is evident in Fig. 1, where the recall lightly decrease as the location param-
eter l grows. This is a phenomenon experimentally observed also in other data
sets as shown in several works (see e.g., [3,4]). Our SPLX-Perms seems to be not
affected by this phenomenon since its recall increases when considering larger l.
Moreover, the re-ranking of candidate results selected using our permutations
achieved a recall very close to one for large prefix-lengths.

In Fig. 2, we also report the recall@k with k ranging from 1 to 100 for the
baselines approaches (i.e. without considering the re-ranking phase) using a fixed
prefix-length l. We can see that the improvement of the proposed approach over
the traditional permutation-based representation holds for all ks. Our SPLX-
Perm representation seems also to be more stable and provides recall values that
are up to 1.6 times higher than that obtained using traditional permutations.

5 Conclusions

In this paper, we presented a novel permutation-based representation for metric
objects, called SPLX-Perm. It exploits the n-Simplex projection to map the data
object to Euclidean vectors, which are in turn transformed into permutations.
The approach used to transform the Euclidean vectors into permutations has
some analogies with the Deep Permutation approach that was proposed in [2]
for associating permutations to visual deep features. To some extent, our work
can be viewed as a generalisation of this technique to the large class of met-
ric space meeting the n-point property. Our preliminary results show that our
SPLX-Perms are more effective than the traditional permutations, even if there
are some drawbacks with respect to the traditional permutations: (1) worse per-
formance for very small prefix permutation; (2) higher cost for generating the
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SPLX-Perm since for each object we need to compute both the object-pivot dis-
tances and the n-Simplex projection. Nevertheless, we believe that our technique
as a lot of potentialities and deserves further investigations. In this perspective,
we plan to extend our experimental evaluation on more data sets and metrics,
using a different prefix length for the query object (to reduce the search cost)
and using a pivot selection specifically designed for the n-simplex projection.
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Abstract. A growing interest has been witnessed recently from both
academia and industry in building nearest neighbor search (NNS) solu-
tions on top of full-text search engines. Compared with other NNS sys-
tems, such solutions are capable of effectively reducing main memory
consumption, coherently supporting multi-model search and being imme-
diately ready for production deployment. In this paper, we continue the
journey to explore specifically how to empower full-text search engines
with fast and exact NNS in Hamming space (i.e., the set of binary
codes). By revisiting three techniques (bit operation, subs-code filter-
ing and data preprocessing with permutation) in information retrieval
literature, we develop a novel engineering solution for full-text search
engines to efficiently accomplish this special but important NNS task. In
the experiment, we show that our proposed approach enables full-text
search engines to achieve significant speed-ups over its state-of-the-art
term match approach for NNS within binary codes.

Keywords: Full-text search engine · Nearest neighbor search ·
Hamming space · Semantic binary embedding · Elasticsearch · Lucene

1 Introduction

Full-text search engines, based on first-order document-term statistics such as
TF-IDF and Okapi BM25, have been deployed ubiquitously in nowadays web
applications to help customers find textual documents that match their specified
keywords.

Recently, active efforts from both academia and industry [1,7,9,13,14] have
been witnessed to empower full-text search engines with the capability of nearest
neighbor search (NNS). Compared with other NNS solutions (e.g., Annoy [2],
FLANN [10] and FAISS [5]), such full-text search engine based ones have a
number of clear advantages.
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Implemented in Secondary Memory. As demonstrated by Amato et al. [1], unlike
other NNS solutions implemented in main memory, due to the highly optimized
disk-based index mechanics behind full-text search engines, NNS systems estab-
lished on full-text search engines substantially reduce main-memory consump-
tion. This makes such systems more cost-effective and thus more suitable to
big-data applications.

Flexible in Multi-model Search. As highlighted by Mu et al. [9], enabling full-text
search engines with NNS paves a coherent way for multi-model searches (e.g.,
allowing users to express their interests in both visual and textual queries), at
which most of other NNS systems fall short.

Ready for Production. Last but not least, as emphasized by Rygl et al. [14],
NNS systems built upon full-text search engines are extremely well-prepared
for production deployment. Due to the cutting-edge engineering designs from
full-text search engines (e.g., Elasticsearch and Solr), important features like
horizontal scaling, I/O and cache optimization, security configuration, index and
cluster management, real-time monitoring and RESTful APIs are immediately
ready to be consumed by such NNS systems, so that engineers can effectively
avoid reinventing the wheel themselves.

Blessed by all the above major benefits, we continue this journey to explore
specifically effective ways to achieve exact nearest neighbor search in Hamming
space (i.e., the set of binary codes) on top of full-text search engines.

Problem Statement. Specifically, with the following dataset of binary codes

B = {b1, b2, . . . , bn} ⊂ {0, 1}m
, (1)

the goal of our paper is to enable full-text search engines with the capability of
efficiently finding all r-neighbors of q in B, namely

BH(q, r) := {b ∈ B | dH(b, q) ≤ r} , (2)

where dH(b, q) :=
∑m

i=1 1{bi �=qi} denotes the Hamming distance between binary
code b and q.1 Similar to previous works [1,9,13,14], without the loss of gen-
eral applicability to other full-text search engines, we elaborate our core ideas
concretely using Elasticsearch–one of the most popular full-text search engines
built upon Apache Lucene.

Organization. The rest of the paper is organized as follows. In Sect. 2, we first
review the term match approach–a technique widely used by nowadays full-
text search engines to find nearest neighbors among binary codes. In Sect. 3, we
propose a better one for full-text search engines to accomplish this task. Specif-
ically, we implement an Elasticsearch-based solution called FENSHSES (Fast
1 It is worth noting that the r-neighbor search problem studied by the paper can also

be easily adapted to conduct k-NN (k-nearest neighbors) search by progressively
increasing the Hamming search radius r until k neighbors are found.
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Exact Neighbor Search in Hamming Space on Elasticsearch) to conduct nearest
neighbor search in Hamming space. We incorporate three techniques into FEN-
SHSES: bit operation, which enables Elasticsearch to compute Hamming distance
with just a few bit operations; sub-code filtering, which instructs Elasticsearch to
conduct a simple but effective screening process before any Hamming distance
calculation and therefore empower FENSHSES with sub-linear search times; data
preprocessing with permutation, which preprocesses binary codes with appropri-
ate permutation to maximize the effect of sub-code filtering. In Sect. 4, we show
that FENSHSES outperforms the term match approach dramatically in terms
of search latency.

2 Term Match from LIRE

Based on its definition, Hamming distance is nothing but the number of positions
at which two binary codes vary. As a result, full-text search engines can naturally
compute this through term match. Specifically, for each binary code b, we can
index its positions corresponding to ones and zeros; and when the query binary
code q arrives, full-text search engines can simply calculate its Hamming distance
to each binary code b ∈ B by matching its zero and one positions with b′s. This
term match approach, firstly developed by Lux and Marques [7] in their Java
library called LIRE (Lucene Image Retrieval) to find visually similar images
(based on their binary visual features), is currently the cutting-edge approach
for full-text search engines to find nearest neighbors within binary codes. Some
of its variants (e.g., using fuzzy query based on Levenshtein edit distance) are
also widely used on full-text search engines nowadays.

3 Proposed Approach: FENSHSES

The term match approach treats each binary digit (i.e., bit) in a textual way,
which heavily overlooks the intrinsic and special properties of binary codes. By
making better uses of these properties, we introduce a novel approach called
FENSHSES (Fast Exact Neighbor Search in Hamming Space on Elasticsearch),
whose complete JSON-encoded Elasticsearch request body can be found in JSON
2. In essence, FENSHSES integrates three techniques: bit operation, sub-code
filtering and data preprocessing with permutation, which should be generally
applicable to other full-text search engines besides Elasticsearch. These three
techniques are pervasively used in nearest neighbors search for binary codes; but
as far as we know, this is the first-time such techniques are seamlessly integrated
into full-text search engines, and thus leads to a novel NNS solution with minimal
main memory consumption, full support in multi-modal search and extreme
readiness to be deployed in production (per our discussions in Sect. 1).

3.1 Bit Operation

Motivated by the well-known fact that hamming distances between binary codes
can be computed extremely fast using bit operations, in this part, we will explore
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how we can replace term match by natively empowering Elasticsearch to calcu-
late hamming distances through bit operations.

For an m-bit binary code b, we will first segment it into s sub-codes:2

[b1, . . . , bm
s︸ ︷︷ ︸

b1

, bm
s +1, . . . , b 2m

s︸ ︷︷ ︸
b2

, . . . . . . , bm−m
s +1, . . . , bm

︸ ︷︷ ︸
bs

]. (3)

Since dH(q, b) =
∑

i∈[s] dH(qi, bi), the Hamming distance calculation is reduced
into s ones with binary codes of much shorter length. In JSON 1, We re-
implement the assembly codes found in the notable HAKMEM memo [3] to
compute the Hamming distance between two short binary codes of length 64
or less into Painless–a simple and secure scripting language designed specifi-
cally for Elasticsearch. When the query binary code q is issued, we will invoke
hmd64bit s times to calculate

{
dH(qi, bi)

}s

i=1
by specifying qi and bi as param-

eters accordingly and then sum them up. The whole process can be efficiently
implemented in Elasticsearch using the function score query, where several func-
tions are combined to calculate the score of each document (see lines 15–26 in
JSON 2).

JSON 1 Create the script called hmd64bit into Elasticsearch.
1 POST _scripts/hmd64bit

2 {

3 "script": {

4 "lang": "painless",

5 "source": """

6 long u = params.subcode^doc[params.field].value;

7 long uCount = u-((u>>>1)&-5270498306774157605L)

8 -((u>>>2)&-7905747460161236407L);

9 return ((uCount+(uCount>>>3))&8198552921648689607L)%63;

10 """

11 }}

3.2 Sub-Code Filtering

So far, regardless of the term match approach or the bit operation one, we have
to exhaustively compute the Hamming distance between q and each binary code
in B. This expensive linear scan is not desirable for many applications where
the number of codes in B is in the order of millions or even billions [17]. As a
remedy, in this part, we will borrow a simple but powerful counting argument
from Norouzi et al. [11] to conduct a screening process before any Hamming
distance calculation, which successfully empowers our FENSHSES approach with
sub-linear search times.

Suppose binary codes are segmented into s sub-codes as in (3). Then for two
codes b and q within r Hamming distance, among all their s sub-code pairs

2 For simplicity, we assume s divides m.
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{
(bi, qi)

}s

i=1
, there must be at least one pair with Hamming distance no larger

than � r
s�, which mathematically implies

BH(q, r) ⊆
s⋃

i=1

{
b ∈ B

∣
∣
∣ bi ∈ BH

(
qi, �r

s
�
)}

. (4)

This simple counting argument yields great potentials in reducing the number of
Hamming distance calculations needed to find all r-neighbors q in B. Specifically,
according to relationship (4), it is safe to just consider binary codes belonging to
the set on the right side of (4), whose size could be substantially smaller than n
for r � m. It is worth noting that similar ideas have been frequently revisited in
many different contexts–e.g., multi-index hashing [11] and string similarity joins
[6], and a generalized version of (4) is also derived recently [12].

Due to the inverted-indexing nature of full-text search engines, this sub-code
filtering step is extremely suitable and straightforward to be implemented on
full-text search engines. Specifically, on Elasticsearch, we can simply leverage the
filter context (see lines 8–14 in JSON 2), within which each sub-code Hamming
ball BH

(
qi, � r

s�) is obtained by the terms query (e.g., line 11 in JSON 2), and
the union is achieved through a boolean combination of should clauses.

3.3 Data Preprocessing with Permutation

The effectiveness of sub-code filtering will be maximized if bits within the same
sub-code group are statistically independent. Since hamming distance is invari-
ant to permutation transformation, it is tempting to transform binary codes in B
with appropriate permutation towards this desired group independence property.

For two Bernoulli random variables x and y, they are independent if and
only if their correlation coefficient ρ(x, y) = 0. Therefore, it is natural to find
a permutation π̄ to minimize correlation effects among each sub-code segment.
This immediately leads to the following optimization problem essentially solved
by Wan et al. [16] to improve the performance of [11]:

min
π:[m]→[m]

〈
D,PπMBP�

π

〉
s.t. π is a permutation. (5)

Here D = diag (Id×d, . . . , Id×d) ∈ R
m×m is a block diagonal matrix with Id×d

as a matrix of ones and d = m/s, Pπ is the permutation matrix induced by π

Pπ =
[
eπ(1) eπ(2) · · · eπ(m)

]T and M is a matrix in R
m×m whose (i, j)-entry is

obtained from B as the absolute value of the correlation between the i-th and
the j-th bits.

4 Experiment

We compare search latencies between the term match approach and FENSHSES
with semantic binary codes generated from Jet.com’s catalog images. To bet-
ter understand the contribution of each technique involved in FENSHSES, we
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experiment systematically with four methods: the term match baseline, FEN-
SHSES with just bit operation, FENSHSES without data preprocessing and
FENSHSES.

JSON 2 Elasticsearch request body of the FENSHSES approach
1 {

2 "min_score": m-r,

3 "query": {

4 "function_score":{

5 "query":{

6 "constant_score":{

7 "boost": m,

8 "filter":{

9 "bool":{

10 "should":[

11 {"terms":{"b1": r/m-neighbor of q1}},

12 ......,

13 {"terms":{"bm": r/m-neighbor of qs}}

14 ]}}}},

15 "functions":[

16 {"script_score": {"script":

17 {"id": "hmd64bit",

18 "params": {"field": "b1", "subcode": q1}}},

19 "weight": -1},

20 ...

21 {"script_score": {"script":

22 {"id": "hmd64bit",

23 "params": {"field": "bm", "subcode": qm}}},

24 "weight": -1}],

25 "boost_mode": "sum",

26 "score_mode": "sum"

27 }}}

Settings. Our dataset B is generated using half a million images selected
from Jet.com’s furniture catalog through the pretrained Inception-ResNet-
V2 model [15] with iterative quantization (ITQ) [4].3 We choose the length of
binary codes to be 128 and 256 respectively. For the setting of FENSHSES, we
keep the sub-code length as 64 for bit operation and 16 for sub-code filtering
throughout the experiment, since we observe such segmentations consistently
yield satisfactory performances. Each Elasticsearch index is created with five
shards and zero replica on a single-node Elustersearch cluster deployed on a
Microsoft Azure virtual machine with 16 cores and 112 GiB of RAM. We ran-
domly select 1,000 binary codes from B to act as query codes q. For each q, we
compare the search latencies among all four methods with Hamming distance
r ∈ {5, 10, 15, 20}.

3 Note that the purpose of the experiment is not to compare different embedding
models, but to evaluate the performance of FENSHESES, which should be generally
applicable to NNS in any Hamming space.
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Table 1. Means and standard deviations (in brackets) of search latency (measured in
ms) under different scenarios. FENSHSES is dramatically faster than the term match
approach, and all of the three techniques involved in FENSHSES contribute substan-
tially to this performance improvement.

m r Term match Bit operation FENSHSES
w/o prep.

FENSHSES

128 5 641.99 (19.01) 41.38 (6.38) 2.80 (3.50) 1.08 (1.25)

10 638.20 (16.65) 42.24 (7.39) 7.40 (5.07) 3.62 (1.54)

15 637.63 (16.14) 43.08 (7.90) 7.19 (5.09) 3.45 (1.55)

20 638.41 (17.41) 42.65 (7.59) 15.51 (5.88) 9.51 (2.18)

256 5 1259.22 (30.66) 75.35 (11.87) 6.24 (6.48) 2.18 (2.02)

10 1257.04 (20.68) 75.06 (11.27) 6.28 (6.63) 2.13 (1.97)

15 1270.38 (25.88) 75.81 (12.22) 6.70 (6.93) 2.09 (1.56)

20 1278.47 (25.56) 75.50 (11.94) 18.02 (10.71) 7.67 (2.85)

Results. As shown in Table 1, FENSHSES is much faster than the term match
approach. In the following, we address the contribution of each component of
FENSHSES respectively.

– By computing the Hamming distance using bit operation instead of term
match, we consistently observe around sixteen times speedup over different
m and r.

– The amount of speed-up introduced by sub-code filtering varies with the
radius r. Specifically, as � 16r

s � heavily influence the number of data points to
be considered for Hamming distance computation (see (4)), for r’s with the
same value of � 16r

s �, the search latencies of FENSHSES w/o prep. are quite
similar. As � 16r

s � becomes larger, the sub-code filtering technique will become
less effective. In practice, since we most likely care about nearest neighbors
within a small radius, the sub-code filtering technique should be capable of
greatly reducing the search latency.

– By reshuffling binary codes to reduce their correlations within each sub-code
group, the technique of data processing with permutation not only accelerates
FENSHSES in terms of the average search latency, but also stabilizes its
overall performance with much smaller standard deviation.

– A comprehensive comparison between FENSHSES and FAISS [5] in terms of
indexing speed, search latency and RAM consumption is also conducted in
[8], where FENSHSES demonstrates competitive performance.

5 Conclusion

It has been recently demonstrated that NNS systems built upon full-text search
engines are capable of effectively reducing main memory consumption, coherently
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supporting multi-model search and being well-prepared for production deploy-
ment. Motivated by these clear advantages, in this paper, we explore how to
empower full-text search engines to efficiently find nearest neighbors in Ham-
ming space. By revisiting bit operation, sub-code filtering and data preprocessing
with permutation, we propose a novel approach to accomplish this task, which
is shown empirically to be substantially faster than the term match approach
(the state-of-art one for nowadays full-text search engines to find nearest neigh-
bors within binary codes). By implementing the proposed approach non-trivially
on the Elasticsearch platform, we delivered a cutting-edge engineering solution
called FENSHSES. In the future, we will also explore how to implement our
approach efficiently on other full-text search engines (e.g., Solr and Sphinx).
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Abstract. For a given query object, Reverse k-Nearest Neighbor queries
retrieve those objects that have the query object among their k-nearest
neighbors. However, computing the k-nearest neighbor sets for all points
in a database is expensive in terms of computational costs. Therefore,
specific index structures have been invented to apply pruning heuris-
tics which aim at reducing the search space. At time, the state-of-the-
art index structure for enabling fast RkNN query processing in general
metric spaces is the MRkNNCoP-Tree which uses linear functions to
approximate lower and upper bounds on the k-distances to prune the
search space. Storing those linear functions results in additional storage
costs in O(n) which might be infeasible in situation where storage space
is limited, e.g., on mobile devices. In this work, we present a novel index
based on the MRkNNCoP-Tree as well as recent developments in the
field of neural indexing. By learning a single neural network model that
approximates the k-nearest neighbor distance bounds for all points in
a database, the storage complexity of the proposed index structure is
reduced to O(1) while the index is still able to guarantee exact query
results. As shown in our experimental evaluations on synthetic and real-
world data sets, our approach can significantly reduce the required stor-
age space in trade-off to some growth in terms of refinement sets when
relying on exact query processing. We provide our code at www.github.
com/mberr/k-distance-prediction.

Keywords: Reverse k-nearest neighbor · k-nearest neighbor ·
Query processing · Neural indexing

1 Introduction

In many applications like resource allocation, targeted marketing or in general
decision support systems, it has proven to be very useful to have knowledge
about influence sets. Considering the example of opening a new store, one of
the decisive points when asking where to open the store obviously is the number
of customers that might be attracted by this store. However, such an influence
set, i.e. the set of potential customers, not only depends on spatial proximity,
but also on the influence of other competitors on the customers. Therefore, the
c© Springer Nature Switzerland AG 2019
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determination of influence sets is not straightforward. An established tool for
determining influence sets are Reverse k-Nearest Neighbor (RkNN) queries. A
Reverse k-Nearest Neighbor query retrieves all objects from a database having
a given query object as one of their k nearest neighbors.

In general, the problem of solving RkNN queries has been considered widely
under various conditions. However, a natural problem of these queries is that they
heavily rely on k nearest neighbor computations and hence are rather complex.
Precisely, a naive solution of the RkNN problem requires O(n2) time since the
k-nearest neighbors for all n objects in the database have to be determined. A
common approach to overcome this drawback is the usage of index structures.
The idea is to store data objects within tree-like data structures such that queries
can be processed efficiently by employing certain pruning strategies. At time,
the state-of-the-art solution for index structures that support fast RkNN query
processing for general metric data is the MRkNNCoP -Tree. This index structure
makes use of the observation that the distance distributions for data points
often follow the power-law in natural datasets. In somewhat more detail, the
MRkNNCoP-Tree approximates the k nearest neighbor distances up to some pre-
defined value kmax for each data object by computing two linear functions that
approximate the k nearest neighbor distances conservatively and progressively
in log-log-space. Using these two linear functions as upper and lower bound
for pruning, the MRkNNCoP-Tree supports fast query processing for RkNN
queries with k ≤ kmax. However, beside being limited to k ≤ kmax at query
time, the MRkNNCoP-Tree requires a storage overhead in O(n) due to storing
four additional parameters for each data object (i.e., slope and intercept for
both linear functions). The latter might become problematic when considering
modern, embedded systems where memory is potentially limited, e.g., on moving
sensor devices that for instance may have to frequently compute influence sets
to optimize sensor to sensor communication.

Therefore, we present an approach to overcome this issue and tackle the prob-
lem of k-distance approximation with focus on memory-efficient RkNN retrieval
in this work. Precisely, we state that the coefficients of the linear model func-
tions correlate spatially and based on our findings, we learn a constant space
index structure which is related to the field of neural indexing as we aim at
learning the distribution of coefficients. By training a single regression model
we can approximate the k nearest neighbor distances for all data objects in
the data base. However, since using these approximations for RkNN query pro-
cessing potentially leads to incorrect query answers, we also propose a solution
to obtain guaranteed bounds for exact answers. Our experimental evaluations
with different regression models on a variety of synthetic and real-world datasets
show that our approach can significantly reduce the required storage space in
trade-off to some growth in terms of refinement sets when relying on exact query
processing.
To summarize, the contribution of this paper are as follows:

1. The coefficients stored in the MRkNNCoP-Tree are analyzed, and the poten-
tial for compression is identified.
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2. A novel constant size index structure based upon progress made in the field
of neural indexing is proposed.

3. Thorough experiments on both, synthetic and real-world, data sets showcase
the capabilities of this index structure.

2 Preliminaries

The following section gives some fundamental definitions related to RkNN query
processing to establish an unified notation. First, as RkNN query processing
generally relies on k nearest neighbor distance calculations we formally define a
distance space as follows.

Definition 1. Let U be an arbitrary set, and dist : U ×U → R. A space (U ,dist)
is called distance space with distance d, if the following properties hold

1. Non-Negativity: dist(x, y) ≥ 0 for all x, y ∈ U ,
2. Symmetry: dist(x, y) = dist(y, x),
3. dist(x, x) = 0.

Given such a distance space, we define the k-distance and subsequently the set
of k-nearest neighbors with respect to some query object as below.

Definition 2. For a given data set D ⊆ U , the k-distance of a data point q ∈ D
can be defined as

nndist(q, k) = min
D′⊆D
|D′|=k

max
o∈D′

dist(q, o) (1)

Further, the set of k-nearest neighbors of q ∈ D are given by

nn(q, k) = {o ∈ D | dist(q, o) ≤ nndist(q, k)} (2)

Note that the set of k-nearest neighbors is not symmetric, i.e. o ∈ nn(q, k) does
not imply that q ∈ nn(o, k). Given the definition of nearest neighbors, we can
define the set of reverse k-nearest neighbors as the set of those data points that
have the query point among their k-nearest neighbors.

Definition 3. Given a data set D ⊆ U and some query object q ∈ D, the reverse
nearest neighbors of q are given as

rnn(q, k) = {o ∈ D | q ∈ nn(o, k)} = {o ∈ D | dist(o, q) ≤ nndist(o, k)} (3)

Equation (3) directly shows the necessity of calculating the distances between
any data object o ∈ D and the query object q in order to determine those data
object o whose distance to q is less or equal than the k-distance of o. Naively,
this requires O(n) distance calculations per query object. Hence, the ability to
determine the validity of dist(o, q) ≤ nndist(o, k) rapidly is crucial for efficient
RkNN query processing.

It is noteworthy that the type of RkNN query defined in Definition 3 only
considers data objects stemming from a single set of data objects D. In general,
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this kind of RkNN queries are called monochromatic RkNN queries. However,
in most applications RkNN queries are more useful when considering different
sets of data entities D and Q for the query object q ∈ Q and the result set
rnn(q, k) ⊆ D (e.g. for the store-customer example given in Sect. 1). Such kind
of RkNN queries are called bichromatic RkNN queries. Nonetheless, since we
are primarily interested in approximating the k-distances in this work, we only
focus on monochromatic RkNN queries for the sake of simplicity.

3 Related Work

Since this paper presents an approach which aims at combining methods from
neural indexing with RkNN query processing, we briefly review related work
from both fields in the following.

3.1 RkNN Query Processing

The problem of RkNN search in Euclidean and general metric spaces has already
been investigated extensively in previous work. In general, there are two kinds
of existing approaches, called self-pruning and mutual-pruning approaches. Self
pruning approaches are typically characterized by using kNN information of
the currently regarded objects to decide whether to prune them or not. Most
of these approaches are connected with hierarchically organized tree-like index
structures. The first work on RkNN is presented in [11] and proposes the concept
of RNN-Tree which is an R-Tree based index structure that stores pre-computed
NN spheres and uses them for fast query processing. Hence, the result set for
rnn(q, k) is given by the centers of all such spheres, which encompass q. For
answering queries in a dynamic setting with insertions and deletions, an addi-
tional tree, that is used to resolve kNN queries, is maintained. This idea has
been extended by the RdNN-Tree in [22] such that dynamic queries are sup-
ported by only using a single index structure. However, though the RdNN-Tree
can be applied for metric data, both concepts require a fixed value of k. To over-
come this limitation, [1–3] developed the MRkNNCoP-Tree which benefits from
progressive and conservative approximations of kNN distances for an arbitrary
value of k less or equal a fixed maximal value kmax. Assuming that distances
in (real-world) data sets often follow a power-law, they approximate the func-
tion mapping k to the k-distance of a specific point by two linear functions in
log-log space. By storing only the coefficients of the functions, they can process
RkNN queries efficiently with an index of size O(n). Another solution for RkNN
query processing in metric spaces which is based on the M-Tree structure can be
found in [19]. The approach presented there makes use of the M-Tree structure
to identify candidates which are refined subsequently.

In opposite to self-pruning approaches, mutual-pruning approaches generally
use other objects of the database to prune a given index object. In [16], the
authors present a technique which uses Voronoi cells to process R1NN queries
in Euclidean space. The work proposed in [18] overcomes the problem of being
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restricted to k = 1 and shows an approach to process RkNN queries with arbi-
trary values of k. Another mutual pruning based solution for the R1NN problem
in dynamic data sets is presented in [17]. However, like the other approaches
that follow the mutual pruning scheme, this method relies on Euclidean space
properties to partition the space for reducing the search space. This generally
limits the applicability of mutual pruning approaches, especially when consider-
ing high-dimensional data. Finally, one approach that aims at combining both
pruning paradigms with the objective to reduce I/O costs for RkNN query pro-
cessing in dynamic data bases is presented in [4].

Further, and more specialized, approaches on RkNN query processing tackle
the problem on solving RkNN queries in uncertain databases [7,13], in continuous
settings [8,20], or in spatial applications, e.g. road networks [5,6]. However, in
this work, we aim at solving the RkNN problem in the more generalized setting,
i.e. for general metric data.

3.2 Neural Indexing

The field of neural indexing combines indexing structures with the power of
Machine Learning models, as the latter have proven to be able to effectively
approximate data distributions. The first work coming up with the general idea
to replace indexes with machine learning models can be found in [12]. The
authors argue that an index, in their case a B-Tree, Hash Map or Bloom Filter,
can be interpreted as a regression, resp. classification, model in machine learning
terminology, since the goal is to map keys to specific positions with a min- and
max-error, resp. to predict the existence of a data record. By using key-position
instances for training, the regression model finally is able to predict the posi-
tion of a data record (just like it is the case for index structures like B-Trees or
Hash Maps) at inference time. Kraska et al. also point out that learned indexes
are able to manage a major requirement which is to guarantee bounds on the
min- and max-error as is given for conventional index structures. For monotonic
models in range indices for instance1, one possibility is to remember the worst
over- and underestimate for calculating the guarantee boundaries subsequently.
However, the main advantages of such learned indexes are the reduced costs
for look-up operations (in O(1) instead of O(log(n)) in the best case) and the
reduced amount of storage costs (in O(1) instead of O(n)).

The works presented in [9,23] are somehow related to neural indexing as
they propose to use associative memories based on neural networks to accelerate
(approximate) nearest neighbor query processing. The idea is to partition the
data into equi-sized classes and subsequently refine only those classes at query
time that exhibit the largest overlap with a given query object. Building upon
the ideas presented in [12], the work in [14] investigates the usefulness of learned
indexes, i.e. learned Bloom filters, for conjunctive Boolean queries by performing
term-search queries on a document database. In particular, they propose and

1 As is given in our case since we replace the linear functions serving as bounds for
the MRkNNCoP-Tree.
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evaluate various approaches each of which makes a different tradeoff between
computational costs and the amount of required storage space. The Pavo index
[21] is a learned inverted index for which the underlying hash function is replaced
by a hierarchy of recurrent neural network models.

4 Neural Indexing for RkNN Retrieval

The contribution of this work is three-fold: in the first subsection, an analysis of
the coefficients of the MRkNNCoP-Tree reveals their spatial correlation. Next,
an approximation framework is proposed where the prediction of the coefficients
is posed as a regression task with the data points given as input and the corre-
sponding coefficients given as targets. Finally, for a static setting, a methodology
similar to [12] is used to obtain guaranteed bounds that can be used for exact
query processing.

4.1 Analysis of MRkNNCoP Tree Coefficients

Before we propose our approach to further compress the MRkNNCoP-Tree, we
first analyze the coefficients of data points in the vicinity of each other. Precisely,
we investigate the slope and offset values of the linear lower, resp. upper, bound
approximations of k-distances for each data point with respect to their local
neighborhood. Figure 1 exemplary visualizes both MRkNNCoP-Tree coefficients
of the lower bound (kmax = 256) for the Oldenburg dataset as well as for a syn-
thetic data set of multiple Gaussian blobs. The data points are plotted according
to their x and y coordinates (both datasets are two-dimensional) and the color
coding indicates the value of the corresponding coefficient. Lighter colors stand
for higher values.

For both coefficients we can observe similar values for data points that are in
similarly dense areas which indicates that the coefficients are spatially correlated.
This can be observed particularly clear for the offset value when considering the
synthetic dataset. Data points that are located within sparse areas have higher
offset values than data points in dense areas, in order to compensate for the large
1-distance. For the slope parameter we generally observe a converse behaviour,
as points in dense areas have many points in close vicinity and hence a slower
increasing k-distance.

In general, we could observe the same behaviour for each of the datasets listed
in Table 1 and in particular also for the upper bound approximations. Given this
spatial correlation, we claim that the values of the coefficients defining the lower
and upper bound approximations can be learned from the data distribution.
Based on our findings, we therefore see the potential to replace the set of linear
functions that are stored within the MRkNNCoP-Tree structure (i.e. two linear
functions for each data object) with a single trained regression model that is
able to predict the coefficients of the bounds given the location of a certain data
point.
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(a) Oldenburg: Offset (b) Oldenburg: Slope

(c) Blobs: Offset (d) Blobs: Slope

Fig. 1. MRkNNCoP-Tree coefficients of the lower bound for the real-world Oldenburg
dataset (upper two images) and a synthetic data set of multiple Gaussian blobs com-
prising approx. 200,000 points. Lighter colors indicate higher values.

4.2 k-Distance Approximation

Motivated by the correlation of the coefficients of the MRkNNCoP tree bounds
of adjacent data points, we propose to solve the regression task

φ(x) : x �→ (α0, β0, α1, β1) (4)

mapping a point to the coefficients of both bounds of the MRkNNCoP tree. For
the approximation any kind of machine learning model may be used. If we model
φ in a parametric form φ(x; θ) for some parameters θ, e.g. as regression tree or
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neural network, we can constrain the number of parameters to achieve a constant-
sized approximator. We denote with low(x, k) := exp ((φ(x))0 · log k + (φ(x))1)
the predicted lower bound, and analogously with up(x, k) the upper bound.
As the bounds of the k-distance are not approximated directly but through
regression of the MRkNNCoP tree coefficients, it is to be expected that we
can achieve at most the same quality. However, one might be able to achieve
significant reduction in the number of parameters while at the same time not
losing too much quality. In Sect. 5 we investigate different choices of regression
models as well as the influence of the number of parameters.

4.3 Obtaining Guaranteed Bounds

For a static data set D we can calculate guaranteed lower and upper bounds
of the exact k-distance, by computing the maximal deviation in positive and
negative direction over the whole dataset,

εD0 (k) = max
x∈D

{low(x, k) − nndist(x, k)} (5)

εD1 (k) = max
x∈D

{nndist(x, k) − up(x, k)} (6)

Now we have guaranteed that the true k-distance is bounded by

low(x, k) − εD0 (k) ≤ nndist(x, k) ≤ up(x, k) + εD1 (k) (7)

Notice that the maximum deviation requires storing O(kmax) values. This may
be further reduced, e.g. by storing only εDi = max

k
εDi (k) for i ∈ {0, 1} at the

cost of loosening the bounds. Also the maximum error for a specific k may be
predicted using another regression model, in addition to it’s maximum error,
which is then a scalar.

5 Experiments

The following section evaluates the proposed method on various synthetic and
real-world datasets by comparing the performance of our proposed neural index
with the MRkNNCoP-Tree by considering both the size of the index and the size
of the candidate sets that have to be refined for ensuring exact RkNN retrieval.

5.1 Setup

In order to achieve reproducibility, the following subsection describes the exper-
imental setup in detail.
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Table 1. Overview of the datasets used for evaluation. n denotes the number of sam-
ples, and d the dimensionality.

Dataset n d Type

blobs.2.12 4,096 2 Synthetic

OL 6,105 2 Real-world

TG 18,263 2 Real-world

cal 21,048 2 Real-world

blobs.2.15 32,768 2 Synthetic

blobs.4.15 32,768 4 Synthetic

blobs.8.15 32,768 8 Synthetic

SF 174,956 2 Real-world

Datasets. The experiments are conducted on synthetic datasets as well as real-
world datasets (summarized in Table 1). The synthetic ones are generated by
the make blobs routine of scikit-learn [15]. This routine generates a dataset by
drawing random samples from a uniform mixture of c Gaussian distributions
with standard deviation of one, i.e.

x ∼
c∑

i=1

1
c
N (x | μi, 1),

where the centers μi ∼ U([−10, 10]d), with U denoting the uniform distribution.
We arbitrarily chose c = log2 n for all synthetic data sets. The synthetic datasets
are as blobs.x.y with x being the dimensionality and 2y indicating the size of the
corresponding dataset.

Furthermore, we use the following road networks as real-world datasets: Old-
enburg (OL), California (cal), City of San Joaquin County (TG) and San Fran-
cisco (SF)2. For all datasets Euclidean distance is used as distance measure.

Models. The following three model classes are investigated further. For all of
them, we use the implementation as provided by scikit-learn.

– Regression Trees: We vary the parameters max depth, controlling the max-
imum depth of the tree, and min samples split, controlling the minimum
number of samples in nodes that shall be considered for splitting.

– Gradient-Boosting with regression trees: Here we vary the parameters
max depth, and learning rate, where the latter controls the step size for
the gradients.

– Fully-connected neural networks. We consider only sequential networks, i.e.
networks that are a sequence of fully-connected layers without any branches of
skip-connections. We use the ReLU activation function for the hidden layers

2 Download from https://www.cs.utah.edu/∼lifeifei/SpatialDataset.htm.

https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
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(i.e. max{0, x}). All networks are trained for 1024 epochs and we use the
Adam optimizer [10] with a learning rate of 10−3.

Evaluation Protocol. First, we evaluate the quality of the MRkNNCoP-Tree
coefficient prediction using mean absolute error (MAE). For true values yi and
predictions ŷi, for i = 1, . . . , n, the MAE is given by
MAE(y, ŷ) = 1

n

∑
i

|yi− ŷi| To reduce the computational complexity of the model

search we employ a skyline-based pruning procedure. Precisely, we only consider
those models for further evaluations that lie on the skyline of model size, in terms
of number of parameters, and model quality, in terms of MAE. For these models,
guaranteed bounds, required for exact query processing, are derived using the
procedure described in Sect. 4.3. Using the guaranteed bounds, the candidate set
size is computed as the number of data points between the upper and the lower
bound, and subsequently compared against the candidate set retrieved from
the MRkNNCoP-Tree. To compare memory consumption, we only consider the
models’ parameters, and neglect the overhead of storing, e.g. the class structure.

5.2 Results

In the following, we provide detailed results from the conducted experiments. We
begin with a qualitative example to further enhance the understanding about our
method. In Fig. 2, the approximation bounds are exemplarily shown for the cal
dataset. The black solid line shows the true k-distances for one selected point
and values of k ∈ {1, . . . , kmax}. The solid red and blue line are the optimal
bounds computed by the MRkNNCoP-Tree. With dashed line-style we can see
the predicted bounds, observing two phenomena: First, the red predicted upper
bound is correct, i.e. does not violate the upper bounding property but not as

Fig. 2. Comparison of the approximation bounds for the cal dataset. The black line
is the true k-distance for the given data point. The solid lines are the MRkNNCoP-
Tree bounds, the dashed lines the predictions, and the dotted lines the guaranteed
predictions.
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Fig. 3. Comparison of relative model size with respect to the number of parameters
of MRkNNCoP-Tree, and the relative candidate set size (upper: synthetic, lower: real-
world). The error bars show the inter-quartile range. Notice the log-log scale.

tight as the optimal one from the MRkNNCoP-Tree. Second, the blue predicted
lower bound does violate the lower bounding property for very large k. With
dotted line style the guaranteed bounds are shown, i.e. the prediction plus the
maximum error across the full dataset. The guaranteed bounds encompass a
much larger area, corresponding to a potentially larger candidate set.

Figure 3 shows a comparison of all models for all datasets. Each point corre-
sponds to one model, having a relative model size compared to the MRkNNCoP-
Tree, and a mean relative candidate set size over all query points and all values
of k, also compared to the MRkNNCoP-Tree. Furthermore, the error bar shows
the inter-quartile range of the latter value. The results presented in the figure
emphasize our expectations: Smaller models are not strong enough to accurately
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Fig. 4. Analysis of relative candidate set size across different values of k, and differ-
ent model sizes for the cal dataset. Shaded areas indicate inter-quartile range; color
corresponds to relative model size (in percentage).

fit the coefficients and hence tend to have a large relative candidate set size.
However, we can also see, for instance for the cal dataset that strong compres-
sion factors of 104 can be achieved with only increasing the mean candidate set
size by a factor of approximately 12. In general it appears that for larger datasets
it is harder to achieve good compression ratios.

In Fig. 4 we analyze the performance for different values of k. The plot shows
different models as differently colored lines, where the color corresponds to the
relative model size in percent, ranging from 48% to 0.01%. The shaded areas
are used to indicate the inter-quartile ranges. We can observe that very high
candidate set sizes occur at values of k close the kmax. This might be the case, due
to the exponential nature of the bounds. Hence, a small error in the coefficients
of the linear line in log-log space has a huge influence for large values of k.
The additional peak close to k = 1 can be explained with the high variety of
1-nearest-neighbor distances, which are not as smooth as the distances for larger
k-values.

Figure 5 shows the distribution of errors in the predicted upper bound for the
cal datasets for different values of k encoded by color. In particular when taking
the logarithmic scale of the x-axis into consideration, we can observe that the
vast majority of predictions has a relatively small error. Thus, the offset for the
guaranteed bound, and thereby the penalty in candidate set size, is dominated
by a few points with relatively bad predictions. Hence, for future research it
might be worthwhile to consider scenarios with approximate query processing,
where the bound can be guaranteed to hold for e.g. 99% of the dataset, but at
the same time is much tighter than the currently considered exact bound.
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Fig. 5. Distribution of errors for the cal dataset. The plot shows the errors of the
predicted upper bound ordered in decreasing order with logarithmic x-scale.

6 Conclusion

In this work, we presented a neural indexing approach which replaces the con-
servative and progressive k-distance approximations of the MRkNNCoP-Tree by
a trained regression model, and hence allows for reducing the required storage
space from O(n) to O(1). Based on our findings that the coefficients of the lin-
ear approximation functions are spatially correlated, we propose to substitute
the set of approximation functions by a single regression model which has been
trained with the objective to predict the offset and slope values of the approxi-
mation functions at query time. In our experiments, we discuss the performance
of the neural index compared to the original MRkNNCoP-Tree with emphasis
on the trade-off between model size and the number of candidates that must be
refined to get an exact query result. The results show that the set of candidates
increases with decreasing model size. However, the growth of the candidate set
is mainly reasoned by the fact that the prediction error of the regression model
is only for very few data points significant while it is quite low for the majority
of data objects. Therefore, it might be of special interest to investigate the pro-
posed neural index in the context of approximate RkNN query retrieval in future
work. Another (and especially in the context of approximate query processing)
promising direction is to study the possibility of supporting fast RkNN query
processing with a variant of our neural index that predicts k-distances directly.
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Abstract. We focus on low-dimensional non-metric search, where tree-based
approaches permit efficient and accurate retrieval while having short indexing
time. These methods rely on space partitioning and require a pruning rule to avoid
visiting unpromising parts. We consider two known data-driven approaches to
extend these rules to non-metric spaces: TriGen and a piece-wise linear approxi-
mation of the pruning rule. We propose and evaluate two adaptations of TriGen to
non-symmetric similarities (TriGen does not support non-symmetric distances).
We also evaluate a hybrid of TriGen and the piece-wise linear approximation
pruning. We find that this hybrid approach is often more effective than either of
the pruning rules. We make our software publicly available.

Keywords: k-NN search · Non-metric distance · VP-tree · TriGen

1 Introduction and Problem Definition

We consider a k nearest neighbor (k-NN) search, which is a popular technology used
in many domains including, machine learning (ML), data mining, information retrieval,
and natural language processing. Informally, k-NN search is a task of retrieving k data
set entries closest to a query point with respect to some distance or similarity func-
tion. This problem originated from the real-world spatial search. In particular, Knuth
famously formulated k-NN search as the (nearest) post-office problem [14]. With sub-
sequent developments of the vector-space abstraction, the problem was generalized to
searching in a multi-dimensional vector and/or generic metric space, where the latter
may lack the structure of the vector space [10,21]. Motivated by emergence of use-
ful non-metric distances—such as Bregman divergences [7]—the problem was recently
generalized to more challenging domains [5,8,23,27].

Formally, we assume to have a possibly infinite domain containing objects x, y, z,
. . . , which are commonly called data points or simply points. The domain—sometimes
called a space—is equipped with a distance function d(x, y), which is used to measure
dissimilarity of objects x and y. The value of d(x, y) is interpreted as a degree of dis-
similarity. The larger is d(x, y), the more dissimilar points x and y are. Some distances

Authors gratefully acknowledge the support by the NSF grant #1618159: “Matching and Ranking
via Proximity Graphs: Applications to Question Answering and Beyond”.

c© Springer Nature Switzerland AG 2019
G. Amato et al. (Eds.): SISAP 2019, LNCS 11807, pp. 72–85, 2019.
https://doi.org/10.1007/978-3-030-32047-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32047-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-32047-8_7


Pruning Algorithms for Low-Dimensional Non-metric k-NN Search 73

Table 1. Distance functions

Denotation/Name d(x, y)

Euclidean distance (L2) ||x − y||2 =

[∑
i

(xi − yi)
2

]1/2

Lp (p > 0)

[
m∑

i=1

(xi − yi)
p

]1/p

Squared euclidean (L2
2) ||x − y||22 =

∑
i

(xi − yi)2

Cosine distance 1 −
∑

i xiyi

||x||2||y||2
Kullback-Leibler diverg. (KL-div.) [15]

m∑
i=1

xi log
xi

yi

Itakura-Saito distance [13]
m∑

i=1

[
xi
yi

− log xi
yi

− 1
]

Rényi diverg. [20] 1
α−1

log

[
m∑

i=1

xα
i y1−α

i

]
, α > 0 and α �= 0

are non-negative and become zero only when x and y have the highest possible degree
of similarity. The metric distances are additionally symmetric and satisfy the triangle
inequality. However, in general, we do not impose any restrictions on the value of the
distance function (except that smaller values represent more similar objects).

We further assume that there is a data set D containing a finite number of domain
points and a set of queries that belong to the domain but not to D. We then consider
a standard top-k retrieval problem. Given a query q, a retrieval task consists in finding
k data set points {xi} with smallest values of distances to the query among all data
set points (ties are broken arbitrarily). Data points {xi} are called nearest neighbors. A
search should return {xi} in the order of increasing distance to the query. If the distance
is not symmetric, two types of queries can be considered: left and right queries. In a left
query, a data point compared to the query is always the first (i.e., the left) argument of
d(x, y). For simplicity of exposition we consider only the case of left queries.

We employ a space-partitioning method VP-tree [19,24,26], but many other space-
partitioning approaches can be used. Importantly, applying space-partitioning methods
to non-metric data of even moderate dimensionality entails two problems. First, exact
space-partitioning methods can degenerate to a brute-force search for just a dozen of
dimensions [1,25]. Second, many generic space-partitioning methods incorporate prun-
ing rules that crucially rely on the triangle inequality, which does not generally hold in
non-metric spaces. Most existing non-metric space-partitioning methods employ spe-
cialized extensions specific to a concrete class of distances, e.g., to Bregman diver-
gences [8,27] or Ptolemaic distances [12]. However, in a more general case we clearly
need to resort to empirically derived analogs of the triangle inequality, which are
inferred from data with a certain degree of approximation.

For these reasons, we focus only on approximate search methods. We also restrict
our attention to low- and moderate-dimensional methods, because even approximate
pruning methods are not effective in truly high dimensions. There has been a tremen-
dous effort put into design of metric space-partitioning algorithms [10,21], but many
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Table 2. Data sets

Name Max. # of rec. Dimensionality Source

RandHist-d 0.5 × 106 d = 8 Histograms sampled uniformly from a simplex

RCV-d 0.5 × 106 d ∈ {8, 32, 128} d-topic LDA [2] RCV1 [16] histograms

Wiki-d 2 × 106 d ∈ {8, 32, 128} d-topic LDA [2] Wikipedia histograms

fewer methods are designed for non-metric domains. We aim to fill this gap by making
the following contribution, which we detail in the rest of the paper:

– We carry out the first experimental comparison of two existing generic pruning algo-
rithms, which include the piecewise linear approximation of the pruning rule [5] and
TriGen [22].

– Unlike most prior work, many of our distances are non-symmetric. To deal with non-
symmetry, we propose two adaptation of TriGen to non-symmetric distances and
demonstrate that the choice of the symmetrization algorithm can be quite important.

– In our comprehensive evaluation, which includes 40 combinations of data sets and
distances, we demonstrate the feasibility of accurate non-metric k-NN search for
data of moderate dimensionality.

– We demonstrate that often best results can be achieved by combining these pruning
methods.

– We find that on data of moderate dimensionality, the pruning algorithm needs to be
quite efficient.

2 Methods and Materials

2.1 Data Sets and Distances

In our experiments, we use the following non-metric distances: L2
2 (squared Euclidean)

Lp distance, cosine distance, KL-divergence, the Itakura-Saito distance, and the family
of Rényi divergence distances. The first three distances are symmetric. The remaining
distances are statistical distances defined over probability distributions. For expository
purposes, we also use the Euclidean metric distance L2. Distances are listed in Table 1.

Statistical distances in general and, KL divergence in particular, play an important
role in ML [8,17]. They are typically non-symmetric. Both the KL-divergence and the
Itakura-Saito distances were used in prior work [8]. The Rényi divergence is a single-
parameter family of distances, which are not symmetric when the parameter α �= 0.5.
By changing the parameter we can vary the degree of symmetry. In particular, large
values of α and close-to-zero values result in highly non-symmetric distances. This
flexibility allows us to “stress-test” retrieval methods on challenging non-symmetric
distances.

The data sets are listed in Table 2. Wiki-d and RCV-d data sets consist of dense vec-
tors of topic histograms with d topics. RCV-d set are created by Cayton [8] by applying
the latent Dirichlet allocation (LDA) method [2] to the RCV1 collection [16]. These
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data sets have only 500K entries. Thus, we created larger sets from Wikipedia follow-
ing a similar methodology. RandHist-d is a synthetic set of topics sampled uniformly
from a d-dimensional simplex.

2.2 Pruning Algorithms for Space-Partitioning Methods

We employ a simple approach called a vantage-point tree (VP-tree) [19,24,26]. There
are two reasons for this choice: for low- and moderate-dimensional data, it is often a
hard-to-beat method. For example, in a preliminary experiment with L2 on Wiki-8 data
set for exact 10-NN search using NMSLIB [4], SA-tree [18], GH-tree [24], MVP-tree
(binary version) [6], and VP-tree are respectively 70×, 210×, 1200×, 1600× faster
than the brute-force search. This comparison was done using the leaf bucket of size 50
for all methods (except SA-tree, which does not easily support bucketing) and with-
out using any specific optimizations for any of the methods. We can see that VP-tree
can outperform fancier alternatives including MVP-tree, which carries out 3× fewer
distance computations in this experiment.

VP-tree is a hierarchical space-partitioning method, which divides the space using
hyperspheres. The output of an indexing algorithm is a hierarchical partitioning of the
data set represented by a binary tree. This algorithm is a recursive procedure that oper-
ates on a subset of data—which we call an active subset—and on a partially built tree.
At each step of recursion, the indexing algorithm checks if the number of active data
points is below a certain threshold called the bucket size. If this is the case, the active
data points are simply stored as a single bucket. Otherwise, the algorithm divides the
active subset into two nearly equal parts, each of which is further processed recursively.

Division of the active subset starts with selecting a pivot π (e.g., randomly) and
computing the distance from π to every other data point in the active subset. Assume
that R is the median distance. Then, the active subset is divided into two subsets by
the hypersphere with radius R and center π. Two subtrees are created. Points inside
the pivot-centered hypersphere are placed into the left subtree. Points outside the pivot-
centered hypersphere are placed into the right subtree. Points on the separating hyper-
sphere may be placed arbitrarily. Because R is the median distance, each of the subtrees
contains approximately half of active points.

In VP-tree k-NN search can be seen as a range search with a shrinking radius. The
search algorithm is a best-first traversal procedure that starts from the root of the tree
and proceeds recursively. It updates the search radius r as it encounters new close data
points. Let us consider one step of recursion. If the search algorithm reaches a leaf of
the tree, i.e., a bucket, all bucket elements are compared against the query. In other
words, elements in the buckets are searched via brute-force search.

If the algorithm reaches an internal node X , there are exactly two subtrees rep-
resenting two spaces partitions. The query belongs to exactly one partition. This is
the “best” partition and the search algorithm always explores this partition recursively
before deciding whether to explore the other partition. While exploring the best par-
tition, we may encounter new close data points (pivots or bucket points) and further
shrink the search radius. On completing the sub-recursion and returning to node X , we
make a decision about pruning or exploring the other partition.
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π

R

Fig. 1. Three types of
query balls in VP-tree.

Piecewise-Linear Approximation of the Decision Rule. An
essential part of this process is a decision function, which
identifies situations when pruning is possible without sacri-
ficing accuracy. Let us review the decision process. Recall
that each internal node keeps pivot π and radius R, which
define the division of the space into two subspaces. Although
there are many ways to place a query ball, all locations can be
divided into three categories, which are illustrated by Fig. 1.
The red query ball “sits” inside the inner partition. Note that
it does not intersect with the outer partition. For this reason,
the outer partition cannot have sufficiently close data points, i.e., points with radius r
from the query. Hence, this partition can be safely pruned. The blue query ball is located
in the outer partition. Likewise, it does not intersect the other, inner, partition. Thus, this
inner partition can be safely pruned. Finally, the gray query ball intersects both parti-
tions. In this situation, sufficiently close points may be located in both partitions and no
safe pruning is possible.

The pruning algorithm can be seen as the binary classification problem, which
tells us whether we should visit both partitions or only the partition that contains the
query. As we show previously [5], the problem can be solved by collecting training data
and building a non-parametric model, but a simple two-parameter approach—described
below—delivers better results. Let us first consider the case of a metric distance. From
the triangle inequality it follows that the VP-tree search algorithm visits:

– only the left subtree if d(π, q) < R − r;
– only the right subtree if d(π, q) > R + r;
– both subtrees if R − r ≤ d(π, q) ≤ R + r.

Let us rewrite these rules using notation Dπ,R(x) = |R − x|. It is easy to see that
the search algorithm has to visit both partitions if and only if r ≥ Dπ,R(d(π, q)). If
r < Dπ,R(d(π, q)), we need to visit only one partition that contains the query point
whereas the other partition can be safely pruned.

In other words, the pruning decision is made by comparing the query radius r with
the value of the function Dπ,R(x), whose only argument is the distance from the query
to the pivot d(π, q).1 This basic rule can also be learned from data for non-metric dis-
tances. Our initial approach to learn Dπ,R(x) employed a stratified sampling procedure
(see § 2 of the supplemental materials of our publication [5]). However, it was expen-
sive and not very accurate. For this reason, we also implemented a simple parametric
approximation whose parameters are selected to optimize efficiency at a given value of
recall.

To choose the right parametric representation, we examine the (approximate) func-
tions Dπ,R(x) learned by the sampling algorithm. Plots of functions Dπ,R(x) learned
from data are shown in Fig. 2. Small dots in these plots represent function values
obtained by sampling. Blue curves are fit to these dots. In these plots, we use only
topic histogram data RCV-d, where d ∈ {8, 32} and random 8-dimensional histograms
(RandHist-8).

1 Recall that k-NN search is executed as a best-first range search with a shrinking radius.
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(a) RCV-8 (L2)
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(b) RCV-32 (L2)
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(c) RandHist-8 (L2)
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(d) RCV-8 (KL-div.)
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(e) RCV-32 (KL-div.)
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(f) RandHist-8 (KL-div.)

Fig. 2. The empirically obtained (approximate) pruning decision function Dπ,R(x)

For the Euclidean data (Panels 2a–2c in Fig. 2), Dπ,R(x) resembles a piecewise lin-
ear function close to the exact metric pruning function |R − x|. For the KL-divergence
data (Panels 2d–2f in Fig. 2), Dπ,R(x) looks like either a U-shape or a hockey-stick
curve. These observations originally motivated the use of a piecewise polynomial deci-
sion function, which is formally defined as:

Dπ,R(x) =
{

αleft|x − R|βleft , if x ≤ R
αright|x − R|βright , if x ≥ R

, (1)

where βi are positive integers. However, preliminary experiments convinced us to
switch to a simple piece-wise linear variant. First, we learned that using different βi

did not make our pruning function sufficiently more accurate. However, it made the
optimization problem harder due to additional parameters (so we set β = β1 = β2).
Second, we found that in many cases a polynomial approximation was not better than a
piecewise linear one, especially when dimensionality was high.

This is not very surprising: Due to the concentration of measure, for most data points
the distance to the pivot π is close to the median distance R (which corresponds to the
boundary between two VP-tree partitions). If we explore the shape of Dπ,R(x) in Pan-
els 2a and 2e around the median, we can see that a piecewise linear shape approximation
is quite reasonable. To sum up, we ended up using the piecewise linear parametric deci-
sion rule defined as:

Dπ,R(x) =
{

αleft|x − R|, if x ≤ R
αright|x − R|, if x ≥ R

(2)
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This is similar to stretching of the triangle inequality proposed by Chávez and
Navarro [9]. There are two crucial differences, however. First, we utilize different val-
ues of αi, i.e., αleft �= αright, while Chávez and Navarro used αleft = αright. Second,
we devise a simple training procedure to obtain values of αi that maximize efficiency
at a given recall value. For details, we address the reader to relevant publications [3,5].

TriGen. TriGen consists in “stretching” the distance function using a monotonic con-
cave transformation [22] that reduces non-metricity of the distance. TriGen is designed
only for bounded, semimetric distances, which are crucially symmetric, non-negative,
and become zero only for identical data points. We are not aware of any prior extensions
to non-symmetric distances except a straightforward filter-and-refine approach.

Let x, y, z be an arbitrary ordered triple of points such that d(x, y) is the largest
among three pairwise distances, i.e., d(x, y) ≥ max(d(x, z), d(z, y)). If d(x, y) is a
metric distance, the following conditions should all be true:

d(x, y) ≤ d(x, z) + d(z, y)
d(y, z) ≤ d(y, x) + d(x, z)
d(x, z) ≤ d(x, y) + d(y, z)

(3)

Because d(x, y) ≥ max(d(x, z), d(z, y)), the second and the third inequalities in (3)
are trivially satisfied for (not necessarily metric) symmetric and non-negative distances.
However, the first condition can be violated if the distance is non-metric. The closer
is the distance to the metric distance, the less frequently we encounter such violations.
Thus, it is quite reasonable to assess the degree of deviation from metricity by estimat-
ing a probability that the triangle inequality is violated (for a randomly selected triple),
which is exactly what is suggested by Skopal [22].

Skopal proposes a clever way to decrease non-metricity by constructing a new dis-
tance f(d(x, y)), where f() is a monotonically increasing concave function. The con-
cave function “stretches” the distance and makes it more similar to a true metric com-
pared to the original distance d(x, y). At the same time, due to the monotonicity of such
a transformation, the k-NN search using the modified distance produces the same result
as the k-NN search using the original distance. Thus, the TriGen strategy to dealing
with non-metric data consists in (1) employing a monotonic transformation that makes
a distance approximately metric while preserving the original set of nearest neighbors,
and (2) indexing data using an exact metric-space access method.

A TriGen mapping f(x)—defined for 0 ≤ x ≤ 1—is selected from the union of
two parametric families of concave functions, which are termed as bases:

– A fractional power base FP (x,w) = x
1

1+w ;
– A Rational Bézier Quadratic (RBQ) base RBQ(a,b)(x,w), 0 ≤ a < b ≤ 1. The

exact functional form of RBQ is not relevant to this discussion (see [22] for details).

Note that parameters w, a, and b are treated as constants, which define a specific func-
tional form. By varying these parameters we can design a necessary stretching function.
The larger is the value of w the more concave is the transformation and the more “met-
ric” is the transformed distance. In particular, as w → ∞, both RBQ and FP converge to
one minus the Dirac delta function. This limit function of all bases is equal to zero for
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x = 0 and to one for 0 < x ≤ 1. As noted by Skopal [22], applying such a degenerate
transformation produces a trivial metric space where d(x, x) = 0 and d(x, y) = C for
some constant C > 0 and all x �= y.

A learning objective of TriGen, however, is to select a single concave function
that satisfies the accuracy requirements while allowing for efficient retrieval. The frac-
tion of violations is computed for a set of trigenSampleTripletQty ordered
data point triples sampled from a set of trigenSampleQty data points, which are,
in turn, selected randomly from the data set (uniformly and without replacement).
The fraction of violations is required to be above the threshold trigenAcc. Val-
ues trigenSampleTripletQty, trigenSampleQty, and trigenAcc are all
parameters in our implementation of TriGen. To assess efficiency Skopal uses the value
of an intrinsic dimensionality as a proxy metric (see [22] for details). The idea is that
the modification of the distance with the lowest intrinsic dimensionality should result
in the fast retrieval method.

Because it is not feasible to optimize over the infinite set of transformation func-
tions, TriGen employs a finite pool of bases, which includes FB and multiple RBQ
bases for all possible combinations of parameters a and b such that 0 ≤ a < b ≤ 1. For
each base, TriGen uses a binary search to find the minimum parameter w such that the
transformed distance deviates from a metric distance within specified limits. Then the
base with minimum intrinsic dimensionality is selected.

TriGen has two major limitations: In addition to be non-negative, the dis-
tance should be symmetric and bounded. Bounding can be provided by using
min(d(x, y)/Dmax, 1) instead of the original distance.2 Note that Dmax is an empiri-
cally estimated maximum distance (obtained by computing d(x, y) for a sample of data
set point pairs).

As noted by Skopal [22], searching with a non-symmetric distance can be par-
tially provided by a filter-and-refine approach where a fully min-symmetrized distance
min(d(x, y), d(y, x)) is used during the filtering step. However, as we learn from our
prior work §§ 2.3.2.3–2.3.2.4 [3], the filtering step has to carry out a kc-NN search with
kc (sometimes substantially) larger than k. This is required to compensate for the lack
of accuracy due to replacing the original distance with the symmetrized one. In that,
using kc > k leads to reduced efficiency. Thus, instead of the complete filter-and-refine
symmetrization, we consider two simple alternatives. In both cases we first apply the
TriGen algorithm to the min-symmetrized distance. As a result, we obtain a mapping
that makes this min-symmetrized distance to be closer to a metric distance. However,
this mapping is used differently in the two modifications of TriGen.

Recall that in a typical space-partitioning method, we divide the data into reasonably
large buckets (50 in our experiments). The k-NN search is simulated as a range search
with a shrinking radius. In the case the first modification of TriGen, while we traverse
the tree, we compute the original and the min-symmetrized distance for two purposes:

– shrinking the dynamic radius of the query using the symmetrized distance;
– checking if the original distance is small enough to update the current set of k nearest

neighbors.

2 For efficiency reasons this is simulated via multiplication by inverse maximum distance.
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Table 3. Efficiency-effectiveness results for metric VP-tree on non-metric data for 10-NN search
(using complete data sets).

RCV-8 Wiki-8 RandHist-8 Wiki-128

Recall Impr. in
eff.

Recall Impr. in
eff.

Recall Impr. in
eff.

Recall Impr. in
eff.

Lp(p = 0.125) 0.41 1065 0.66 15799 0.45 136 0.07 14845

Lp(p = 0.25) 0.61 517 0.78 14364 0.66 115 0.09 396

Lp(p = 0.5) 0.91 926 0.94 14296 0.92 174 0.50 33

L2
2 0.69 1607 0.78 5605 0.56 1261 0.55 114

Cosine dist 0.67 1825 0.62 3503 0.58 758 0.73 55

Rényi div. (α = 0.25) 0.66 5096 0.70 24246 0.50 3048 0.48 1277

Rényi div. (α = 0.75) 0.61 9587 0.66 35940 0.50 4673 0.50 468

Rényi div. (α = 2) 0.40 22777 0.66 46122 0.38 11762 0.71 55

KL-div. 0.52 1639 0.67 5271 0.46 610 0.56 41

Itakura-Saito 0.46 706 0.69 4434 0.41 1172 0.14 384

When we reach a bucket, for every data point in the bucket, we can compute both the
original and the symmetrized distance. The symmetrized distance is used to update the
query radius, while the original distance is used to update the set of k nearest neighbors.
This is our first modification of TriGen which we refer to as TriGen 0.

In the second variant of TriGen, which we refer to as TriGen 1, we use only the
original distance to compute the distance from the query to bucket data points. When
we compute the distance to the pivots, we compute the min-symmetrized distance and
apply a metrizing transformation. However, when we process bucket data points, we
compute only the original distance. Consequently, we shrink the dynamic query radius
using values of f(d(x, y)) instead of min (f(d(x, y)), f(d(y, x))), In TriGen 1, we
expect the query radius to shrink somewhat slower compared to TriGen 0, which, in
turn, can reduce the effectiveness of pruning. However, we hope that nearly halving the
number of distance computations would have a larger effect on overall retrieval time.

3 Experiments

3.1 Experimental Setup and Preliminary Experiments

We compare TriGen and the piecewise-linear pruning approach using the NMSLIB [4]
implementation of the VP-tree (method vptree trigen)3. Experiments are run on a
laptop (i7-4700MQ @ 2.40GHz with 16GB of memory). The accuracy of retrieval is
measured via recall (equal to the average fraction of neighbors found).

We use two variants of TriGen (TriGen 0 and TriGen 1), but for symmetric dis-
tances, we use only TriGen 1. The TriGen algorithm that finds an optimal mapping
function was downloaded from the author’s website4 and incorporated into NMSLIB.

3 https://github.com/nmslib/nmslib/tree/nmslib4a bigger reruns.
4 http://siret.ms.mff.cuni.cz/skopal/download.htm.

https://github.com/nmslib/nmslib/tree/nmslib4a_bigger_reruns
http://siret.ms.mff.cuni.cz/skopal/download.htm
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(j) RandHist-8 (KL-div.)
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0.4 0.5 0.6 0.7 0.8 0.9 1

100

101

102

Recall@10

Im
pr

ov
.

in
effi

ci
en

cy
(l

og
.

sc
al

e)
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Fig. 3. Improvement in efficiency vs recall for VP-tree based methods in 10-NN search. Best
viewed in color.
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0.75 0.8 0.85 0.9 0.95 1

102

103

Recall@10

R
ed

uc
t.

in
di

st
co

m
p.

(l
og

.
sc

al
e)
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(i) Wiki-8 (Rényi div. α = 0.75)

0.6 0.7 0.8 0.9 1

101

102

103

Recall@10

R
ed

uc
t.

in
di

st
co

m
p.

(l
og

.
sc

al
e)

(j) RandHist-8 (KL-div.)

0.4 0.5 0.6 0.7 0.8 0.9 1

101

102

Recall@10

R
ed

uc
t.

in
di

st
co

m
p.

(l
og

.
sc

al
e)
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Fig. 4. Reduction in the number of distance computations vs recall for VP-tree based methods in
10-NN search. Best viewed in color.
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The optimization procedure employs a combination of parameters a and b, where a are
multiples of 0.01, b are multiples of 0.05, and 0 ≤ a < b ≤ 1. The sampling parameters
are set as follows: trigenSampleTripletQty = 10000, trigenSampleQty =
5000.

TriGen is compared against two variants of NMSLIB VP-tree, which rely on the
piecewise-linear pruner. The second variant uses a clever TriGen idea of applying a
concave mapping to make the distance more similar to a metric one. However, unlike
TriGen [22], we do not carry an extensive search for an optimal transformation but
rather apply, perhaps, the simplest and fastest monotonic concave transformation pos-
sible, which consists in taking a square root. On Intel the square root is computed the
instruction sqrtss, which typically takes less than 10 cycles [11].

In our main experiments, we employ 40 combinations of data sets and distances.
All distances are non-metric: We experiment with both symmetric and non-symmetric
ones. Due to space limitations, we do not present all the results here and refer the reader
to our unpublished technical report for the complete set of results (§ 2.3.3 [3]).

Before we proceed, we must answer the following question: “How difficult are these
data sets and distances”? To ensure we do not deal with mildly non-metric data, we
attempted to index this data using a metric variant VP-tree without adapting the pruning
rule to non-metric distances. Results for randomly selected 1K queries are presented
in Table 3 (for a subset of distances and data sets), where we show improvement in
efficiency and respective recall.

It can be seen that nearly all the combinations of data and distance functions are
substantially non-metric: Searching using a metric VP-tree is usually fast, but the accu-
racy is unacceptably low. In particular, this is true for Wiki-8 and Wiki-128 data sets
with KL-divergence (which are also used in our main experiments). One exception,
is the Lp distance for p = 0.5, where recall of about 90% is achieved for three low-
dimensional data sets. However, as p decreases, the recall decreases sharply, i.e., the
distance function becomes “less” metric. To summarize, we clearly deal with challeng-
ing non-metric data sets, where both accurate and efficient retrieval is not possible to
achieve by a straightforward application of metric-space search methods.

3.2 Main Experiments

Experimental results for 16 out of 40 cases are presented in Figs. 3 and 4. The remaining
results can be found in the technical report (§ 2.3.3 [3]). In Fig. 3, we measure efficiency
directly in terms of wall-clock time improvement over the brute-force search. In Fig. 4,
we show improvement in the number of distance computations (again compared to the
brute-force search).

First and foremost, we can see that VP-tree with a data-adapted pruning rule can
enable accurate non-metric k-NN search for data of moderate dimensionality. When
comparing TriGen against the piecewise linear pruner in terms of pure efficiency, the
results are a bit of the mixed bag. Yet, the piecewise linear pruner is typically better (in
23 cases out of 40 on the full set, see § 2.3.3 [3]).

However, the piecewise linear pruner combined with the square-root distance trans-
form is nearly always better than the basic piecewise linear pruner. In Panels 3d, 3e,
3a, 3b, 3c the improvement is up to one order of magnitude. The combination of the
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piecewise linear pruner with the square root transform outperforms TriGen in all but
two cases, sometimes by an order of magnitude. In Panels 3g and 3f, however, TriGen
can also be an order of magnitude faster than the piecewise linear pruner.

It is important to note, however, that there is often little to no difference between
the hybrid pruning approach and TriGen in terms of the reduction in the number of
distance computations (see Fig. 4). The most likely explanation for this discrepancy is
that the transformation functions used in the adopted TriGen implementation are quite
expensive to compute.

Finally, we can see that TriGen 1 is never less efficient than TriGen 0. Furthermore,
TriGen 1 is up two times more efficient in four cases (see Panels 3h, 3i, 3k, 3l). This is
somewhat unsurprising, because TriGen 0 computes both d(x, q) and d(q, x) for every
data point visited by the search. Although this may permit a more effective pruning, the
cost of extra distance computations outweigh the benefits (at least on our data).

4 Conclusion

We carry out the first comparison of two generic pruning approaches for non-metric
data. Our approach is comprehensive and involves 40 combinations of data sets and dis-
tances, which cannot be handled by a classic metric-space access method. We extend
TriGen to the case of non-symmetric distances and demonstrate that VP-tree with a
data-adapted pruning rule can enable accurate non-metric k-NN search for data of
moderate dimensionality by using the modified TriGen, the piecewise linear approx-
imation of the metric pruning rule, or by the hybrid approach. In that, we find that this
hybrid approach is often more effective than either of the pruning rules. Our software
is publicly available: NMSLIB branch nmslib4a bigger reruns, search method
vptree trigen.5
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Abstract. The metric space model is a popular and extensible model for
indexing data for fast similarity search. However, there is often need for
broader concepts of similarities (beyond the metric space model) while
these cannot directly benefit from metric indexing. This paper focuses on
approximate search in semi-metric spaces using a genetic variant of the
TriGen algorithm. The original TriGen algorithm generates metric mod-
ifications of semi-metric distance functions, thus allowing metric indexes
to index non-metric models. However, “analytic” modifications provided
by TriGen are not stable in predicting the retrieval error. In our app-
roach, the genetic variant of TriGen – the TriGenGA – uses genetically
learned semi-metric modifiers (piecewise linear functions) that lead to
better estimates of the retrieval error. Additionally, the TriGenGA mod-
ifiers result in better overall performance than original TriGen modifiers.

Keywords: Approximate similarity search · Semi-metric space ·
Genetic TriGen

1 Introduction

The similarity search models stand in the center of methods for content-based
retrieval in datasets of multimedia and other unstructured data. For decades,
the metric space model [7] has been widely accepted as the standard model
for similarity search applications. The metric space model is both extensible
(supporting black-box descriptors and similarities) as well as indexable (due to
metric properties), thus providing efficient similarity search by metric access
methods (MAMs) [2,7].

In the era of Big data – with the increasing diversity and complexity of data
and algorithms for entity matching – there is a need for more general schemes
of similarity modeling. The metric space properties could be too restrictive in
many fields [6], for example in bioinformatics/cheminformatics. At the same
time, the datasets grow to sizes that are not possible to query without indexing.
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G. Amato et al. (Eds.): SISAP 2019, LNCS 11807, pp. 86–93, 2019.
https://doi.org/10.1007/978-3-030-32047-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32047-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-32047-8_8


Non-metric Similarity Search Using Genetic TriGen 87

Hence, it is extremely challenging to provide scalability in both retrieval aspects
– the effectiveness (retrieval quality) and efficiency (system performance). There
have been many approaches developed, trading effectiveness for efficiency, e.g.,
approximate search methods. However, most of the results were based on the
metric space model. Only a few approaches considered a more general non-metric
case, one of which is the TriGen algorithm [5]. In this paper, we build on the
idea of TriGen-based modification of non-metric space into approximate metric
space, that enables metric indexing of (initially) non-metric data models for
approximate search. As a contribution, we introduce a variant of TriGen based
on genetic algorithm, that produces more robust semimetric-to-metric modifiers
and better efficiency-effectiveness tradeoffs.

2 Non-metric/Approximate Similarity Search by TriGen

When talking about non-metric similarities, we usually consider distance func-
tions that do not satisfy some of the metric axioms (reflexivity, non-negativity,
symmetry, triangle inequality). Most of the practical non-metric distances actu-
ally miss just one of the axioms, like pseudo-metrics (reflexivity), quasi-metrics
(symmetry), or semi-metrics (triangle inequality). As the lack of reflexivity and
symmetry can be solved easily in the design of indexing/query algorithms, the
real challenging problem is the semi-metric case; the lack of triangle inequality.

The TriGen algorithm [5] was developed to transform a semi-metric space
(dataset- and distance-specific) into an equivalent (approximate) metric space.
The idea behind TriGen is to use an increasing modifying function f : R → R

that preserves query-induced similarity ordering when applied to a semi-metric
distance function δ. Having a query object q ∈ U and database objects xi ∈ S ⊂
U, then ordering/ranking of the database objects based on δ(q, xi) is the same
as when based on f(δ(q, xi)). Whereas all modifying functions behave the same
with regard to the similarity ordering (thus to sequential similarity search), they
are dramatically different in terms of the degree of triangle inequality exhibited
by f(δ(·, ·)). Consider three objects x1, x2, x3 ∈ U and the distances δ(xi, xj)
among them – a distance triplet δ(x1, x2), δ(x2, x3), δ(x1, x3). In semi-metric
spaces, some triplets form triangles and some do not (one distance is larger than
the sum of the others). It is easy to show that concave modifiers increase the
degree of triangle inequality by turning more distance triplets into triangles. A
concave function magnifies short distances more than large distances, so that
any distance triplet can be f -modified to a triangle if f is concave enough. On
the other hand, convex modifiers do the opposite (break triangles).

From practical point of view, concave modifiers increase the degree of trian-
gle inequality, hence eventually turn the semi-metric space into a metric space
(indexable by MAMs). Unfortunately, they also increase the intrinsic dimen-
sionality [2] of the space by decreasing the variance of distance distribution
(up to equilateral triangles). Convex modifiers decrease the intrinsic dimension-
ality but also decrease the degree of triangle inequality, increasing thus retrieval
error when such a semi-metric space is indexed by a MAM.
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The TriGen algorithm finds the optimal level of concavity/convexity of a
modifier in order to minimize intrinsic dimensionality of the resulting space,
while keeping the expected retrieval error (degree of triangle inequality viola-
tion) below user-defined threshold. Hence, TriGen not only provides a solution
for efficient (approximate) search in semi-metric spaces, but also fast approx-
imate search in metric spaces. Specifically, TriGen utilizes a set of similarity-
preserving T-base modifiers with convexity/concavity parameter w (see Fig. 1).
Using binary search on w, such T-base f and w is found that exhibits the low-
est intrinsic dimensionality for a given T-error threshold (where T-error is the
proportion of non-triangles in all sampled distance triplets).

Fig. 1. T-bases of TriGen [5], parameterized by covexity/concavity weights w.

3 Genetic TriGen

In this paper, we present the TriGenGA (developed from an experiment [1]),
a variant of TriGen that replaces the binary-search algorithm of finding mod-
ifiers by a genetic algorithm. The original TriGen algorithm finds just one T-
base parameter w determining the concavity/convexity weight of the respective
modifier function. In the genetic variant, we have implemented a new modifier
gv : 〈0, 1〉 �→ 〈0, 1〉 represented by a piecewise linear function (Eq. 1, Fig. 3).
As in TriGen, the modifier is a strictly increasing continuous function with
gv (0) = 0, gv (1) = 1. However, instead of a predefined pool of T-base func-
tions (i.e., FP-base, RBQ-bases), each parameterized by w, the genetic modi-
fier gv is composed by n linear segments, given n − 1 parameters (n is defined
by user). The starting/ending points (x, y) of the i-th/(i − 1)-th segment are
defined as (i/n,vi), where vector v = [v1,v2, ...,vn−1] stores the parameters.
The genetic algorithm is then used to find the n parameters of the modifier,
given a dataset S and a distance function δ. Unlike the original TriGen where
modifiers are strictly concave or convex (due to the single-parameter w optimiza-
tion), the multi-parameter optimization provided by genetic TriGen is able to
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generate locally convex/concave modifiers. We anticipate such modifiers could
better control the degree of triangle inequality (achieving lower T-error for the
same or lower intrinsic dimensionalities), resulting in better precision/efficiency
tradeoff exhibited by MAMs when searching.

gv (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v1(n − 1)x 0 ≤ x ≤ 1
n

v1 + (v2 − v1)((n − 1)x − 1) 1
n ≤ x ≤ 2

n
...

vi + (vi+1 − vi)((n − 1)x − i) i
n ≤ x ≤ i+1

n

vn−1 + (1 − vn−1)(n − 1)(x − 1) n−1
n ≤ x ≤ 1

(1)

3.1 The Algorithm

The genetic algorithm (GA) consists of an evolution cycle described by Algo-
rithm 1. The population is a set of vectors representing the modifiers (piece-
wise linear functions). For the selection of potentially successful individuals, we
implemented the Tournament selector with variable size of the tournament k,
because it performed better than other selectors. The selector randomly samples
k individuals, and the best individual (with the highest fitness) is chosen in the
selection. The one-point crossover of two parents (potentially successful individ-
uals v and u) randomly generates a breakpoint bp. The new individual (child)
is generated as

childi =

{
vi for 1 ≤ i < bp,

ui for bp ≤ i ≤ n − 1.

Mutation with probability pM randomly chooses one parameter and moves it
down or up randomly (still keeping the modifier gv monotonous).

As there were several cases when the fitness of the population degenerated
quickly, we have implemented the catastrophic scenario. When the best fitness
score has not changed for several generations, part of the generation is replaced
by randomly generated. This process should bring a different kind of genomes
into the population. If the catastrophic scenario is repeatedly not successful
(the best fitness score is the same) or the maximum number of generations is
reached, the genetic algorithm terminates. Such modifier gv is selected from the
final population for which the intrinsic dimensionality of (S, gv (δ)) is minimal.

3.2 The Fitness Function

The most important part of TriGenGA is the fitness function, which is the
optimization criterion. As it is not possible to optimize (U, δ) space globally,
we have taken over the idea of triplet sampling from TriGen where a random
subset of the dataset S

∗ ⊂ S is used. However, we sample the triplets (x, y, z)
in a different way. First, a distance matrix on S

∗ is computed, i.e., all distances
δ(x, y) x, y ∈ S

∗. Then, a fraction of pairs are selected for construction of the
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Algorithm 1. TriGenGA
Result: modifier gv with the best fitness score
Population ←− GenerateRandom(pop size)
while UnsuccessfulCatastrophe() ≤ max. # of catastrophes do

Parents ←− TournamentSelectork(Population)
for ∀pair of Parents do

/* combine modifiers */

Child ←− Crossover(pair)
if mutation probability succeeded then

/* modify modifier */

Mutate(Child)

Population ←− Population ∪ {Child}
keep only pop size best individuals in Population
if best fitness score does not change for last l iterations then

CatastropheScenario(Population)

return best individual in Population

sample. For every selected pair (x, y), the third object z ∈ S
∗ is found that

maximizes δ(x,z)
δ(x,y)+δ(y,z) (with δ(x, z) maximal). This way we obtain as many

non-triangle triplets (x, y, z) in the sample as possible.
The fitness function fit(v) consists of two parts, it takes into account the

T-error (the proportion of non-triangle triplets in all triplets) as well as the index-
ability (e.g., intrinsic dimensionality). In preliminary experiments, we found that
modifiers gv with small number of alternating concave and convex segments per-
form better. Based on that observation, we have proposed the ConFactor indica-
tor (Eq. 2) which is part of the fitness function. The number of concave segments
is defined as c+v = | {i|2vi > vi−1 + vi+1} |, and number of convex segments is
defined c−

v = | {i|2vi < vi−1 + vi+1} |, for both 1 < i < n − 1. We utilized the
idea of TriGen, which assumes more triangle-preserving modifiers imply worse
indexability (higher intrinsic dimensionality), so the current implementation of
fit is described by Eq. 3, where εT is the T-error and εthreshold is the T-error
threshold (expected retrieval error specified by user at query time).

ConFactor(v) =
|c+v − c−

v |
c+v + c−

v

(2)

fit(v) =

{
1 − εT (v) for εT (v) > εthreshold,

1 + εT (v) · ConFactor(v) otherwise
(3)

4 Experimental Results

We have experimented with kNN queries, where pivot tables (LAESA [4]) were
used with TriGen and TriGenGA, as well as the sequential search. There were
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randomly sampled 400 10NN queries from the respective dataset and efficiency
and retrieval error was measured. The efficiency was defined as the proportion
of distance computations needed with respect to sequential search. The real
retrieval error was defined as |E∩O|

max{|E|,|O|} , where E were the expected objects (a
result of sequential search) and O were observed objects (result of LAESA).

For all experiments, we have used the same configuration. The size of the
database subset used by TriGen/TriGenGA was |S∗| = 1000. Triplet sample size
was 25000. 15%, 30%, 45%, 60%, 75%, and 90% triplets were selected by the
algorithm maximizing the ratio of erroneous triplets; the other part was sampled
randomly. The size of the GA population was 150 individuals. Probability of
mutation was set to 5%. The catastrophe scenario was invoked after 10 iterations
without the best fitness score improvement. The algorithm terminates after 1000
iterations or ten catastrophe scenarios, without improvement of fitness score. The
dimensions n = 5 and n = 7 were used for piecewise linear modifiers.

4.1 Datasets

SISAP NASA dataset [3] (40150 objects with 20 dimensions) was used for vector-
based descriptors with metric Minkowski Lp and semi-metric Fractional Lp dis-
tances (L3, L2, L0.75, L0.5, L0.25 and L0.125), SISAP English dictionary [3] (69069
English words) for string-based descriptors with metric Levenshtein distance,
and an industrial dataset of ATM withdrawal time series (5985 ATM’s time-
series with 168 dimensions) with semi-metric dynamic time warping (DTW)
distance bounded by Sakoe-Chiba band of size 5. We have tested the T-error
threshold εthreshold in five different ranges (0.0, 0.025, 0.05, 0.1 and 0.2).

4.2 Results

Figure 2 summarizes the results. Note that TriGen with FP-modifier has a
smooth progress as only one parameter defines the modifier. In contrast, the
non-linear and non-deterministic optimization in TriGenGA can generate two
modifiers with the same retrieval error but different efficiency. However, the stan-
dard deviation of repeated experiments with different random seed was 1% for
both the retrieval error and distance computations. TriGenGA performs better
than original TriGen for DTW distance on ATM dataset, as well as for metric
Minkowski and most of the semi-metric Fractional distance measures (NASA
dataset). On the other hand, for the Levenshtein distance and L0.125 the TriGen
algorithm dominates TriGenGA.

We evaluated not only the error/efficiency tradeoff but also the T-error
threshold vs. real retrieval error dependency. Figure 3 shows this difference –
the x coordinate of a circle shows the T-error threshold, while left endpoint of
the connected line shows the real retrieval error (y coordinate is the efficiency).
Hence, TriGenGA behaves better in terms of real retrieval error estimation.

The distance computation cost is the same for both approaches. The dis-
tance matrix on S

∗ is precomputed (see Sect. 3.2). In terms of complexity, both
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Fig. 2. Comparison of TriGen and TriGenGA on various datasets/distances

Fig. 3. Left figure shows difference between T-error threshold and retrieval error. Right
figure illustrates examples of modifiers generated by TriGen/GA.

approaches can limit the number of iterations. The difference is only in the
type of algorithm, the binary search versus the genetic algorithm. Intuitively,
the genetic variant has larger requirements for learning parameters because the
binary search has only one parameter with only one optimum. However, these



Non-metric Similarity Search Using Genetic TriGen 93

Fig. 4. Effects of TriGenGA early termination (limited number of generations).

computations are done only once before the querying. In Fig. 4, see the evolution
convergence and the effects of sub-optimal modifier obtained by early termina-
tion (i.e., fitness achieved and distance computations of LAESA search).

5 Conclusion

We proposed a genetic variant of the TriGen algorithm for approximate similar-
ity search in semi-metric spaces. Experiments proved that the piecewise linear
modifier generated by the genetic algorithm can outperform the original Tri-
Gen algorithm with FP-modifier, as TriGenGA in some cases provides modifiers
exhibiting both lower retrieval error and lower number of distance computations
(LAESA-based search). The TriGenGA-generated modifiers also provide better
retrieval error estimation given a user-specified T-error threshold.

Acknowledgments. This research has been supported in part by the Czech Science
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Abstract. Many methods have been proposed to compute the similarity
score α ← S(A, B) in between two plain documents A and B. However,
when their contents are confidential, special processing is required to
protect privacy. A great extent of the solutions offered to date is mostly
based on homomorphic encryption or secure multi-party computation
techniques, where their computational cost inhibits the practical usage,
especially on massive sets. In this study we propose an alternative by
encoding the documents with non-prefix-free (NPF) coding before apply-
ing the preferred similarity metric S(). The NPF coding simply repre-
sents the symbols with variable-length codewords, where the codeword
set is generated without the prefix-free restriction. Thus, a codeword
may be a prefix of another, and without the explicit codeword bound-
ary information, retrieving the original data from the encoded stream
becomes hard due to the lack of unique decodability in non-prefix-free
codes. We provide the combinatorial analysis of this hardness, and exper-
imentally compare the similarity scores obtained on NPF encoded docu-
ments and on original plain text versions. We have considered normalized
compression distance (NCD) and Jaccard coefficient (JC) for the simi-
larity metric S(). When A′ and B′ denote the NPF-encoded documents,
experiments conducted on METER corpus revealed that the difference
between α′ ← S(A′, B′) and α ← S(A, B) lie in the range of 0.5% and
3% for both NCD and JC.

1 Introduction

Similarity computation between documents [18] has many applications such as
plagiarism detection, copyright management, duplicate report detection, doc-
ument classification/clustering, and search engines, just to list a few. Many
solutions [2,4,6,12,17] have appeared assuming that the contents of the doc-
uments are public, where the general tendency here is to first compute a feature
vector that is mainly based on the number of occurrences of words or n-gram
frequencies in the document. Those features, or the fingerprint values extracted
from them, are then compared to compute the similarity score. The necessity
for the privacy preserving similarity detection appears when the owners of the
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documents want to keep their contents secret. Some example scenarios include
duplicate submission control between the related academic venues, information
sharing between the insurance companies or intelligence agencies, and etc. The
methods [3,5,14,20] proposed to date for that problem mostly relied on multi-
party homomorphic encryption schemes [10] such that the features extracted
from the documents are encrypted, and then the comparison in between them
are achieved by using the homomorphic properties. The practical difficulties of
the homomorphic schemes [21] unfortunately inhibit the usage of these solutions
particularly on large document collections.

In this work, we propose an alternative approach by using non-prefix-free
(NPF) coding of the input documents as a privacy-preserving transformation
with the observation that the NPF encoded documents are hard to be decoded in
absence of the codeword boundaries, while the syntactic structures are preserved,
giving us the opportunity to run some standard similarity calculations on the
encoded versions of the documents. It had been previously shown that the cipher-
text only attacks on non-prefix-free codes [19] and even on prefix codes [9,11,22]
are hard.

The performance of the privacy preserving similarity score calculation can
be measured by observing how much the similarity scores obtained between
the encoded documents deviate from the ones obtained on plain versions. We
considered normalized compression distance (NCD) [7] and Jaccard coefficient
(JC) [13,15] for the similarity measurements. When A′ and B′ denote the NPF-
encoded documents, experiments conducted on METER corpus [8] revealed that
the difference between α′ ← S(A′,B′) and α ← S(A,B) lie in the range of 0.5%
and 3% for both NCD and JC.

2 Preliminaries and Primitives

Let A = a1a2 . . . ap and B = b1b2 . . . bq represent two documents of respectively
p and q symbols long, where each character ai and bj is drawn from the alphabet
Σ = {ε1, ε2, . . . , εσ} for 1 ≤ i ≤ p and 1 ≤ j ≤ q. The similarity score computed
with the method S() is denoted by S(A,B).

Non-Prefix-Free (NPF) Coding: We encode the documents with a NPF coding
scheme. Assume W = {w1, w2, . . . , wσ} is a code-word set generated for the
alphabet Σ. Each wi is a bit sequence of arbitrary length, which can be a prefix
of another code-word wj from W . Given a sequence T = t1t2 . . . tn for ti ∈ Σ, the
NPF : Σ → W coding replaces all occurrences of εi with its corresponding wi on
T . Figure 1 demonstrates a sample NPF coding on a given T = NONPREFIXFREE.

Since the code-words in W are not prefix free, the code-word boundaries on
the encoded stream cannot be determined. Therefore, a NPF encoded stream
can have many possible parses according to the code-word set W , e.g., the initial
bits 0011111 of the sample in Fig. 1 can also represent the sequence PFXX, and
many others as well.



96 M. O. Külekci et al.

T = NONPREFIXFREE

Σ = { E, R, F, N, I, O, P, X }
W = { 01, 0, 111, 001, 010, 1111, 00, 1 }

NPF (T ) = 0011111001000111010111100101

Fig. 1. An example non-prefix-free coding of the sequence T = NONPREFIXFREE.

Due to that lack of unique decodability, the non-prefix-free codes have not
been found interesting in terms of data compression. Though, there had been
some recent efforts [1,16] to solve this problem efficiently.

Although the NPF codes has not made much sense in terms of data compres-
sion, they provide an opportunity in terms of security. It had been previously
shown that the prefix-free codes, such as the Huffman, are difficult to cryptana-
lyze [11]. In prefix-free coding, none of the codewords can be a prefix of another,
and this property indeed can be used in crypt-analysis of a sequence that is
known to be variable-length prefix-free encoded. Even in that case it is hard to
extract the original sequence from the prefix-free encoded version [9,22]. In case
of non-prefix-free codes there is no such restriction, and actually every parse of
the input bit stream defines a valid possible source. Recently, [19] has considered
using NPF as a substitution cipher, and has shown that a cipher-text only attack
is difficult. The difficulty stems from the fact that the codeword boundaries in
the non-prefix-free encoded bit-stream cannot be determined analytically, and
any arbitrarily selected boundary actually maps to a symbol assuming that the
NPF codeword set is designed appropriately.

Despite the difficulty for extracting the original sequence, the NPF coding
scheme actually preserves the syntactic structures of the documents. The por-
tions that are equal to each other in distinct documents are mapped to the same
bit stream. Thus, the shared information content is preserved after the NPF
transform.

This observation has led us to the motivating idea of this study as the
NCD and the Jaccard Coefficient (JC) between the documents should also
be preserved in their NPF transformed versions. More formally, |S(A,B) −
S

(
NPF (A), NPF (B)

)
| is expected to be small. We now provide the definitions

of NCD and JC below.

Normalized Compression Distance (NCD): The NCD similarity metric intro-
duced in [7] is based on the fact that if two documents are similar then each of
them should be able to be compressed well with the model extracted from the
other. In other words, when one of them is concatenated to the end of the other
document, and send to a compressor, the compression ratio obtained should be
reflecting their similarity. Normalizing the compression ratio by respecting pos-
sible different lengths of the documents, the NCD similarity score is represented
by the formula

NCD(A,B) =
C(AB) − min

(
C(A), C(B)

)

max
(
C(A), C(B)

)
.
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Here, C() is an arbitrary compressor and AB is the concatenation of the docu-
ments A and B. The score is between 0 and 1. The similarity increases towards
0 and decreases towards 1.

Jaccard Coefficient (JC): Jaccard Coefficient is used to measure similarity
between finite sample sets. It is also known as the intersection over union which
basically assumes that the more elements two sets have in common the closer
they are. JC is measured using the below formula [15], where WA and WB are
two sets whose elements are the n-grams of documents A and B respectively.
The similarity according to JC between documents A and B increases towards
1 and decreases towards 0.

J (A,B) =
| WA ∩ WB |
| WA ∪ WB |

3 The Method

Assume Alice has document A and Bob has B, where both have the same source
alphabet Σ. Protocol 1 describes the proposed schema that computes the simi-
larity of A and B without revealing their contents by the help of a trusted third
party. The formal definition of the NPF encoding is given below.

Protocol 1. Privacy-Preserving Text Similarity Protocol
Required:
Alice and Bob agree on seed and random function to use;
Alice,
(I) generates P = {p1, p2, . . . , pσ} based on random(seed),
(II) shuffles the alphabet Σ = {ε1, ε2, . . . εσ} using P ,
(III) generates W = {w1, w2, . . . , wσ} such that wi = MBR(pi),
(IV) generates NPF (A) by substituting pi with wi,
(V) sends NPF (A) to a trusted entity for similarity calculation.
Bob,
(I) generates P = {p1, p2, . . . , pσ} based on random(seed),
(II) shuffles the alphabet Σ = {ε1, ε2, . . . εσ} using P ,
(III) generates W = {w1, w2, . . . , wσ} such that wi = MBR(pi),
(IV) generates NPF (B) by substituting pi with wi,
(V) sends NPF (B) to a trusted entity for similarity calculation.
Third Party,
(I) receives NPF (A) and NPF (B),
(II) computes the similarity score S between both documents by using
either the NCD or the Jaccard distance metrics,
(III) shares the similarity score S with Alice and Bob.

Definition 1. Let P = {p1, p2, . . . , pσ} be a random permutation of {2, . . . , σ +
1}, where σ denotes the number of symbols in the source alphabet Σ =
{ε1, ε2, . . . εσ}. W = {w1, w2, . . . , wσ} is a codeword set such that the codeword
that represents εi is NPF (εi) = wi = MBR(pi), where MBR(i) is the binary
representation of integer i omitting its leftmost 1 bit (e.g., MBR(5) = 01 as
5 = (101)2).
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Assuming an input sequence T = t1t2 . . . tn, where ti ∈ Σ for all 1 ≤
i ≤ n, the non-prefix-free encoding of T by codeword set W is denoted by
NPF (T ) = c1c2 . . . cn, where ci = NPF (ti), for ci ∈ W and ti ∈ Σ.

The pseudo-random permutation P can be obtained by shuffling the sequence
X = 〈2, . . . , σ + 1〉 with the help of a pseudo-random number generator PRNG.
The seed of the PRNG in that case becomes the secret key of the scheme, since
the permutations, hence the codeword set W , obtained by using the same seed
will be identical. Thus, the Alice and Bob agrees on the PRNG and share the
same seed in Protocol 1.

4 The Hardness of Decoding NPF

We consider the hardness of decoding the original T from its NPF encoded
version NPF (T ). There appears two difficulties based on the lack of informa-
tion regarding the codeword set W and the codeword boundaries on NPF (T ).
Due to the Definition 1, the lengths of the codewords in W vary between 1 and

log(σ + 1)�. Let f� denotes the number of symbols that are represented by
�-bits long codewords, for 1 ≤ � ≤ 
log(σ + 1)�, in NPF (T ). Assuming that
an attacker has the knowledge of the input alphabet Σ, and correctly guessed
f1, f2, . . . f�log(σ+1)�, the number of possible parses of the NPF (T ) is,

n!
f1!f2! . . . f�log(σ+1)�!

, (1)

where n = f1 + f2 + . . . + f�log(σ+1)�. This is akin to counting the anagrams of a
word with repeated letters1. In NPF (T ) sequence, there are n codewords that
are of 
log(σ + 1)� different lengths. When fi is the number of length-i code-
words, then the number of different permutations of such a set can be computed
with Eq. 1.

Since the correct codeword boundaries that are used in the encoding phase are
not available, it will be hard for the attacker to generate all possible candidates.
Excluding the exaggerated cases that set the Eq. 1 value becomes small enough
for a brute-force analysis (e.g., small input size n), the number of possible parses
is large, and thus, computationally hard to enumerate.

Assuming that the statistical distribution of the input data is available, the
attacker will consider evaluating the appropriateness of any generated candidate
by observing how close it is to that distribution, such as considering the expected
k-gram counts. However, there appears yet another difficulty here since the code-
word set W is not public, and it is not straight forward to reconstruct the symbol
sequence from the parsed codewords. There are σ! possible codeword set W as
each permutation defines a unique W , where the secret seed used in the PRNG
determines the correct one. Thus, besides the huge number of candidate NPF

1 For example, the number of anagrams of word MISSISSIPPI is 11!
4!1!2!4!

as letters i,

m, p, s appears 4, 1, 2, and 4 times respectively.
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a) NCD difference b) JC difference

Fig. 2. Absolute difference of the similarity scores on plain and NPF-encoded files
computed with NCD and JC metrics.

stream parses, mapping codewords to symbols introduce an additional difficulty
of around σ!.

It may seem more feasible to try sequential decoding of the NPF stream sym-
bol by symbol. In this case the attacker still suffers from the unknown codeword
assignments as well as unknown codeword boundaries. The codeword assigned
to a symbol can be of 
log(σ + 1)� different lengths, and any of the σ symbols
may map to these codewords. For example, on a byte alphabet with σ = 256,
the lengths of the codewords vary between 1 to 8, and each encoded symbol
then has 8 · 256 = 211 possible assignments. In such a sample case, consecutive
r characters would bring 2r·11 possibilities to analyze. Notice also the fact that
since the codeword stream is variable-length, wrong decision on a symbol effects
all the remaining ones. Therefore, one-by-one incremental decoding of the NPF
stream is still difficult to achieve.

5 Experimental Results

We observed the absolute differences |NCD(A,B) − NCD(A′,B′)| and
|J C(A,B) − J C(A′,B′)|, where A′ = NPF (A) and B′ = NPF (B), on a set
of file pairs obtained from the METER corpus [8] to evaluate the performance
of the proposed scheme. The METER corpus was originally designed to eval-
uate the schemes for text reuse detection and includes news text appeared in
the newspapers and also the source of those news published by the news agen-
cies. We have sampled 770 documents from the METER corpus and computed
the similarity of one document with all others both in plain and NPF encoded
versions. Thus, in total we have

(
770
2

)
� 300K file pairs.

In the implementation of our scheme in C language, we simply used the
rand() function as the PRNG, which is seeded by an arbitrarily selected seed
value x via the srand(x). The permutation P is simply computed by shuffling the
number from 2 to 257 via this PRNG assuming a one-byte-alphabet consisting
of 256 symbols. The NPF transform of each document is accordingly achieved
and stored as binary strings. Before applying the NPF encoding on a file, the
punctuation symbols are removed and all letters are converted to lowercase.
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While computing the NCD similarity score on all pairs we used the
Python script available at https://github.com/DavyLandman/ncd, which uses
the LZMA2 algorithm as the compression function. For the JC calculation, we
considered 5-grams on plain versions and 30-grams (which is roughly 5 times the
average NPF codeword length on text files) on NPF encoded bit streams.

We observed that the scores computed for the plain and NPF-encoded ver-
sions are very close to each other. The absolute differences |NCD(A,B) −
NCD(A′,B′)| and |JC(A,B) − JC(A′,B′)| are plotted on the y-axis in Fig. 2,
where the file pair indices are shown on the x-axis. On average the NPF-encoded
scores are only 0.0356 points different than the scores obtained on plain docu-
ments. The standard deviation and the maximum are 0.0189 and 0.124 respec-
tively. For the JC case, we observed that the JC difference between the plain and
NPF encoded documents are within the range of 0 and 0.0343 with an average
of 0.005 and standard deviation 0.0032.

Overall, for both the JC and NCD metrics, the similarity scores computed
on NPF encoded files deviate around 3 percent from the scores computed on
original plain versions.

Table 1. Average results of the experiment

Class 0–0.25 0.25–0.5 0.5–0.75 0.75–1

NCD Avg. plain score 0.0793 0.3017 0.575 0.984

Avg. NPF score 0.1144 0.2853 0.5622 0.9595

Difference 0.0351 0.0164 0.0098 0.0245

Count 297489 862 24 770

JC Avg. plain score 0.0258 0.3168 0.594 1

Avg. NPF score 0.0308 0.3358 0.6113 1

Difference 0.005 0.019 0.0173 0

Count 294967 248 24 770

In Table 1 we have also summarized the results by classifying the file pairs
into 4 clusters according to their plain text similarities. For instance, on the set
of 862 file pairs whose plain similarity scores with NCD are between 0.25 and
0.5, the absolute difference of NCD scores on NPF encoded versions is 0.0164 on
the average.

6 Conclusion

We have presented a novel privacy preserving document similarity detection
method. The privacy in the proposed method is based on the lack of unique
decodability in non-prefix-free codes, which is different from the solutions offered
to date that rely on mostly the homomorphic schemes and multi-party secure

https://github.com/DavyLandman/ncd


Privacy–Preserving Text Similarity via NPF Codes 101

computation methods. Besides the similarity computation, the intrinsic decod-
ability problem of non-prefix-free codes might also provide further results on
secure data search, distributed data storage on the cloud, and compressed secure
text indexes.
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Abstract. There is a large quantity of datasets available as Open Data
on the Web. However, it is challenging for users to find datasets relevant
to their needs, even though the datasets are registered in catalogs such
as the European Data Portal. This is because the available metadata
such as keywords or textual description is not descriptive enough. At the
same time, datasets exist in various types of contexts not expressed in
the metadata. These may include information about the dataset pub-
lisher, the legislation related to dataset publication, language and cul-
tural specifics, etc. In this paper we introduce a similarity model for
matching datasets. The model assumes an ontology/knowledge graph,
such as Wikidata.org, that serves as a graph-based context to which
individual datasets are mapped based on their metadata. A similarity of
the datasets is then computed as an aggregation over paths among nodes
in the graph. The proposed similarity aims at addressing the problem of
explainability of similarity, i.e., providing the user a structured explana-
tion of the match which, in a broader sense, is nowadays a hot topic in
the field of artificial intelligence.

Keywords: Similarity · Datasets · Search · Graph

1 Introduction and Motivation

There is an enormous volume of datasets available on the Web as Open Data.
Open Data is data which can be freely re-used by anyone without any restric-
tions. The key prerequisite is that datasets can be easily found by their poten-
tial consumers. There are so-called Open Data catalogs1 available today which
enable data consumers to search for datasets. However, they provide only basic
search features based on descriptive metadata recorded in a catalog such as full
text search in dataset titles, descriptions and keywords. These classical search
methods presume that potential consumers know exactly what they search for
1 E.g., European Data Portal https://www.europeandataportal.eu.
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and what search query leads to the expected search result. However, consumers
are able to formulate only some search queries which return only a subset of the
datasets of their interest. There are usually other useful datasets but consumers
cannot find them because they do not know the necessary search query (i.e.,
leading to low recall).

A possible solution is to search for datasets similar to datasets a consumer
found interesting. In general, we can measure the similarity of two datasets by
measuring the similarity of their content as it is common in the world of docu-
ments. Documents are homogeneous as they can all be considered as sequences
of words which makes content-based similarity a well-defined problem. In this
sense, datasets are very heterogeneous. Datasets exist in different formats and are
structured differently. Their content is mostly formed by primitive data values
such as numbers, dates and short strings (e.g., names). These values have their
meaning which is however hidden in the semantics of schemas of the datasets.
This makes measuring content-based dataset similarity harder and the general
findability of datasets in Open data catalogs is seriously limited.

To demonstrate the problem, consider data consumers who want to show
sports grounds in European cities on a map. There is no central database of
sports grounds in Europe and, therefore, the consumers need to find datasets
published by different publishers. For example, they can find a dataset with
sports grounds in Prague 82 or Northern Ireland3. The first dataset can be
found only with a search query containing the words sports grounds in Czech.
The other can be found with English words active places or sport facilities. Both
datasets encode data about sports grounds in different tabular structures and
there are no direct or indirect links between entities encoded in the datasets.
Also titles and descriptions of the datasets are available in different languages.
Moreover, even when we translate all textual information to a single language we
get different terms (e.g., sports ground vs. facility or active place). It is clear that
finding all datasets about sports grounds in Europe is extremely difficult in such
heterogeneous environment with only existing search capabilities of the current
catalogs. It would be helpful to let consumers find an initial set of datasets
about sports grounds and then find similar datasets even though they are called,
described and structured differently.

1.1 Paper Contribution

In this paper, we present an approach based on considering so-called dataset con-
texts. We consider datasets which are registered in Open Data catalogs. Catalogs
provide records, i.e., metadata descriptions comprising dataset title, description,
keywords, etc. Such descriptions are homogeneous in their structure across dif-
ferent datasets. However, they are not so rich compared to content of documents

2 https://data.gov.cz/zdroj/datové-sady/http—opendata.praha.eu-api-3-action-pack
age show-id-praha8-sportoviste.

3 https://www.opendatani.gov.uk/dataset/active-places-ni-sports-facilities-
database.

https://data.gov.cz/zdroj/datov%c3%a9-sady/http---opendata.praha.eu-api-3-action-package_show-id-praha8-sportoviste
https://data.gov.cz/zdroj/datov%c3%a9-sady/http---opendata.praha.eu-api-3-action-package_show-id-praha8-sportoviste
https://www.opendatani.gov.uk/dataset/active-places-ni-sports-facilities-database
https://www.opendatani.gov.uk/dataset/active-places-ni-sports-facilities-database
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used for measuring document similarity. Therefore, we enrich the model with
semantic contexts of entities found in the metadata descriptions encoded in a
given knowledge graph, e.g., Wikidata. We then compute the similarity of two
datasets as an aggregation of similarities of the entities. Similarity of two entities
is based on the paths connecting them via their lowest common ancestor in a
certain hierarchy encoded in the knowledge graph.

Moreover, we claim that in addition to the similarity itself consumers also
need an explanation of that similarity. They need to further process (i.e., inte-
grate, cleanse and transform) the datasets in their consumption process and
therefore, they need to know the details why the datasets are similar. There-
fore, we not only compute the similarity but we also extract the structure from
the knowledge graph which explains the similarity. This structure includes the
connecting paths but also information related to the entities and edges on the
path, e.g., their labels, their semantic definitions in the knowledge graph or sam-
ple instances of entities which represent category concepts (i.e., concepts which
categorize other concepts).

2 Related Work

The attributed graphs [4,5] were developed as a graph-theoretic model, where
vertices are equipped by a set of attributes. Although in literature the attributed
graphs were mainly used for clustering and segmentation of attribute/entity-
augmented graphs (e.g., social networks), we consider this model as suitable
also for representation of knowledge graphs and for similarity search of entities
represented as graph vertices. The attributes in vertices allow to map vertices of
the graphs to non-graph elements, such as features of datasets we aim at.

The techniques for enriching entities found in unstructured texts such as
dataset titles or descriptions with their semantic contexts in a given knowledge
graph are generally called entity linking techniques. In [3] the authors provide a
comprehensive survey of entity linking techniques.

In [2], the authors propose a method for measuring document similarity based
on semantic relationships between document annotations. Documents are anno-
tated with entities from DBPedia. The similarity of two documents is aggregated
similarity of pairs of annotating entities. The similarity of two entities e1 and
e2 comprises so called hierarchical and transversal similarity. The hierarchi-
cal similarity builds on the hierarchical structure of entity categories encoded
in DBPedia. It combines the distance of e1 and e2 from their lowest common
ancestor category and their depth in the hierarchy while the traversal similarity
represents a weighted distance of e1 and e2 where only non-hierarchical paths
connecting e1 and e2 are considered. Similarity according to [2] is therefore based
on distances where no other characteristics of paths between e1 and e2 (e.g. edge
semantics, etc.) are considered. This simple approach has a reason in [2] as the
authors aim at performance of their technique. Our approach presented in this
paper introduces a generic framework for measuring similarities of datasets. On
one hand, the similarity techniques introduced in [2] can be adopted as concrete
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techniques for our framework for measuring similarities between annotations
(with a change that instead of documents we annotate datasets). On the other
hand, other similarity techniques may be used in our framework as well. There
are also other works which propose techniques for measuring similarity of entities
from a knowledge graph which can be incorporated to our framework as well.
E.g., [6] derives similarity on the base of a shortest path between two entities
and considers also semantic labels of the edges on the path.

3 Model Framework for Explainable Dataset Similarity

In our framework, we consider notions from the area of similarity search. X is
the dataset universe, where element x ∈ X is a dataset. F is the feature universe,
where a feature f ∈ F could be, e.g. a vector, a number or a string/keyword.
D = 2F is the descriptor universe, where d ∈ D is descriptor, i.e. a feature
descriptor associated to a dataset. Finally, e : X → D is the feature extraction
procedure transforming a dataset into a descriptor.

3.1 Knowledge Graph Model

For the model of a knowledge graph we adopt the concept of attributed graphs
from the graph theory (see Sect. 2) restricted to directed acyclic graphs for
our purposes. Hence, we consider a directed attributed acyclic graph (DAAG)
G(V,E,A), where V is a set of vertices, E is a set of directed edges without
cycles and A is a set of attributes associated with vertices in V describing ver-
tex properties. The DAAG concept was chosen to provide edges of generaliza-
tion/specialization hierarchy, i.e. the subClassOf relation. In future, we plan
to extend the concept to more general knowledge (multi)graph models where
semantic and other types of edges will also take place.

A crucial part of the model is mapping descriptors to the graph vertices. In
particular, we define mapping of individual features into vertices as map : F →
2V , and mapping of descriptors as mapD : D → 2V , where

mapD(s) =
⋃

fi∈s

map(fi)

and s ∈ D. The mapping definition itself is left to domain-specific implemen-
tations, however, using the DAAG model we assume the dataset features are
to be mapped by means of attributes in DAAG vertices using an entity linking
method (see Sect. 2).

3.2 Navigational Similarity

As the basis for measuring the similarity between datasets, we consider their
mapping to DAAG and evaluating an aggregated distance between the mapped
vertices. In particular, we define the set of common ancestors for a pair of vertices
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dataset A dataset B

ontology
(DAAG)

fdA = (fA1, fA2, …, fAn) fdB = (fB1, ..., fBm)
m

ap
(f A

n)
1

Fig. 1. Explainable similarity between datasets based on aggregation of paths in the
knowledge graph. (Color Figure online)

v1, v2 as ca : V × V → 2V , such that ca(v1, v2) = W while it holds ∀u ∈
W : path(v1, u) �= ∅ ∧ path(v2, u) �= ∅, where path(v, u) returns a set of edges
connecting the vertices v, u, starting in v and ending in u. A set of lowest common
ancestors is then defined as lca : V × V → 2V such that

lca(v1, v2) = arg min
w∈ca(v1,v2)

(|path(v1, w)| + |path(v2, w)|)

A navigational distance between descriptors is defined as δnav : D × D → R,
where

δnav(d1, d2) = AGG
vi∈mapD(d1),vj∈mapD(d2)

(lca(vi, vj)).distance

The AGG function acts as an aggregation operator over the set of lowest com-
mon ancestors among datasets’ mapped features. Where the AGG component
.distance refers to the numerical distance score, the component .structure refers
to a subgraph structure providing a visualization/explanation of the numeric
distance as motivated in Subsect. 1.1. The definition of AGG is left to domain-
specific applications of the model. It could be a simple max/sum/average of path
lengths or a combined distance also taking into account the vertex attributes.

For mapping the feature descriptors of some datasets A and B to the DAAG
see Fig. 1. Also note the blue and yellow paths to lowest common ancestors
of fA1, fB1 and fA2, fB1, respectively, that illustrate the visualization of the
similarity evaluated by a domain-specific function AGG (as AGG.structure).
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4 Early Proof of Concept

We demonstrate our approach on an example of measuring the similarity of a
pair of datasets from the Czech National Open Data catalog [1] based on their
textual metadata, which follows the DCAT-AP European standard for dataset
metadata4. The textual metadata is entered into the catalog manually by the
individual dataset publishers, which is one of the main reasons why semantically
similar datasets often have different textual metadata. In this proof of concept
we show the similarity of such datasets using Wikidata5 as the knowledge graph
to which the dataset descriptors will be mapped.

We utilized Wikidata dump from 2018-12-176 and we extracted labels and
aliases for all entities. Also, we extracted the position of every entity in a category
hierarchy. The hierarchy of an entity in Wikidata is represented using the P2797

(subclass of) property. When it is not present, we use the P318 (instanceof) prop-
erty instead. Note that we use Czech datasets with Czech metadata and Czech
Wikidata labels and aliases. For the purpose of this paper we translated the
labels into English using Google Translate or, when available, used the English
Wikidata labels.

The first dataset DBohumin
9 is called “What, when, where”. It covers cul-

tural, sports and free-time events in the Bohumı́n city in Moravian-Silesian
Region. The second dataset DTheater

10 is called “Program of the National
Moravian-Silesian Theater” and contains the program of the National Moravian-
Silesian Theater. The datasets are related because they both contain informa-
tion about cultural events. At the same time, their textual metadata does not
share common words. Therefore, they would not be found by traditional full-text
search methods.

In the following paragraphs we demonstrate how we utilized the model frame-
work defined in Sect. 3 to evaluate the dataset similarity. The feature space F is
represented by the dataset title, description and keywords. Function e transforms
each feature into a bag of words using the following steps: remove punctuation
and acute accents, make all characters lowercase, tokenize the string and remove
all stop-words.

The mapping function map maps a bag of words to a set of Wikidata entities.
Before mapping, we apply e to the Wikidata labels and aliases as well, getting
multiple bags of words. We map the dataset to an entity when the entity’s bag
of words is a subset of any dataset’s bag of words. This mapping method is
simple, based on the exact match of strings only, while they obviously can have
different meanings. The mapping is, however, not the main focus of this paper,
4 https://joinup.ec.europa.eu/release/dcat-ap/121.
5 https://wikidata.org.
6 https://dumps.wikimedia.org/other/wikidata/20181217.json.gz.
7 https://www.wikidata.org/wiki/Property:P279.
8 https://www.wikidata.org/wiki/Property:P31.
9 https://data.gov.cz/zdroj/datové-sady/Bohumin/3384768.

10 https://data.gov.cz/zdroj/datové-sady/https—opendata.ostrava.cz-api-3-action-pac
kage show-id-program-narodniho-divadla-moravskoslezskeho.

https://joinup.ec.europa.eu/release/dcat-ap/121
https://wikidata.org
https://dumps.wikimedia.org/other/wikidata/20181217.json.gz
https://www.wikidata.org/wiki/Property:P279
https://www.wikidata.org/wiki/Property:P31
https://data.gov.cz/zdroj/datov%c3%a9-sady/Bohumin/3384768
https://data.gov.cz/zdroj/datov%c3%a9-sady/https---opendata.ostrava.cz-api-3-action-package_show-id-program-narodniho-divadla-moravskoslezskeho
https://data.gov.cz/zdroj/datov%c3%a9-sady/https---opendata.ostrava.cz-api-3-action-package_show-id-program-narodniho-divadla-moravskoslezskeho
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Fig. 2. Example of mapping two datasets DTheater and DBohumin into the Wikidata
hierarchy. Nodes in the displayed graph represent Wikidata entities and edges represent
subClassOf or instanceOf relationships between the entities. The colors present the
mapping of the datasets to the entities. DTheater and DBohumin are mapped to blue
and green nodes, respectively. (Color Figure online)

and we are going to improve the matching using commonly used NLP methods
in future.

DBohumin and DTheater map to 335 Wikidata entities which we show on
Fig. 2. For the purpose of distance computation we implemented AGG as a
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max/average/sum/min of distances between the closest pair of mapped entities
(vi, vj). The computed δ is equal to 10, 2.31, 762 and 1 respectively. The numer-
ical distance does not explain the distance, but the mapping into the knowledge
graph (see Fig. 2) does.

We can see from the mapping that the 1 min distance is caused by the entities
“event” and “performance” that are connected with an edge. Not only does
this relation causes the distance, the relation also explains the distance. The
explanation aligns perfectly with our explanation of why the datasets are related.

Due to the simple approach used for entity linking we got clusters of mapped
entities around street, Wikimedia disambiguation page and family name. These
have high influence on the results of avg/max implementation of AGG. This is
clearly wrong as in all three examples the mapped entities do not represent any
semantic concept in the datasets. Thanks to the explainability of the model this
issue is easy to discover.

5 Conclusions and Future Work

In this paper we introduced a framework for measuring similarity of open
datasets by means of knowledge graph model in an explainable way. In future
work, we plan to develop domain-specific instances of the model to provide
semantic search in Open Data catalogs.
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Abstract. This paper reconsiders common benchmarking approaches
to nearest neighbor search. It is shown that the concept of local intrin-
sic dimensionality (LID) allows to choose query sets of a wide range of
difficulty for real-world datasets. Moreover, the effect of different LID dis-
tributions on the running time performance of implementations is empir-
ically studied. To this end, different visualization concepts are introduced
that allow to get a more fine-grained overview of the inner workings of
nearest neighbor search principles. The paper closes with remarks about
the diversity of datasets commonly used for nearest neighbor search
benchmarking. It is shown that such real-world datasets are not diverse:
results on a single dataset predict results on all other datasets well.

1 Introduction

Nearest neighbor (NN) search is a key primitive in many computer science appli-
cations, such as data mining, machine learning and image processing. For exam-
ple, Spring and Shrivastava very recently showed in [25] how nearest neighbor
search methods can yield large speed-ups when training neural network models.
In this paper, we study the classical k-NN problem. Given a dataset S ⊆ R

d, the
task is to build an index on S to support the following type of query: For a query
point x ∈ R

d, return the k closest points in S under some distance measure D.
In many practical settings, a dataset consists of points represented as high-

dimensional vectors. For example, word representations generated by the glove
algorithm [23] associate with each word in a corpus a d-dimensional real-valued
vector. Common choices for d are between 50 and 300 dimensions. Finding
the true nearest neighbors in such a high-dimensional space is difficult, a phe-
nomenon often referred to as the “curse of dimensionality” [8]. In practice, it
means that finding the true nearest neighbors, in general, cannot be solved much
more efficiently than by a linear scan through the dataset (requiring time O(n)
for n data points) or in space that is exponential in the dimensionality d, which
is impractical for large values of d.

While we cannot avoid these general hardness results [1], most datasets that
are used in applications are not truly high-dimensional. This means that the

c© Springer Nature Switzerland AG 2019
G. Amato et al. (Eds.): SISAP 2019, LNCS 11807, pp. 113–127, 2019.
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dataset can be embedded onto a lower-dimensional space without too much
distortion. Intuitively, the intrinsic dimensionality (ID) of the dataset is the
minimum number of dimensions that allows for such a representation [11]. There
exist many explicit ways of finding good embeddings for a given dataset. For
example, the Johnson-Lindenstrauss transformation [16] allows us to embed n
data points in R

d into Θ((log n)/ε2) dimensions such that all pairwise distances
are preserved up to a (1 + ε) factor with high probability. Another classical
embedding often employed in practice is given by principal component analysis
(PCA), see [17].

In this paper, we put our focus on “local intrinsic dimensionality” (LID),
a measure introduced by Houle in [11]. We defer a detailed discussion of this
measure and its estimation to Sect. 2. Intuitively, the LID of a data point x at
a distance threshold r > 0 measures how difficult it is to distinguish between
points at distance r and distance (1+ε)r in a dataset. Most importantly for this
study, LID is a local measure that can be associated with a single query. It was
stated in [12] that the LID might serve as a characterization of the difficulty of
k-NN queries. One purpose of this paper is to shed light on this statement.

A focus of this paper is an empirical study of how the LID influences the
performance of NN algorithms. To be precise, we will benchmark four different
implementations [18] which employ different approaches to NN search. Three of
them (HNSW [21], FAISS-IVF [15], Annoy [6]) stood out as most performant in
the empirical study conducted by Aumüller et al. in [4]. Another one (ONNG) was
proposed very recently [13] and shown to be competitive to these approaches.
We base our experiments on [4] and describe their benchmarking approach and
the changes we made to their system in Sect. 3. We analyze the LID distribution
of real-world datasets in Sect. 4. We will see that there is a substantial differ-
ence between the LID distributions among datasets. We will next conduct two
experiments: First, we fix a dataset and choose as query set the set of points
with smallest, medium, and largest estimated LIDs. In addition, we choose a
set of “diverse” query points w.r.t. their LID estimates. As we will see, there
is a clear tendency such that the larger the LID, the more difficult the query
for all implementations. Next, we will study how the different LID distributions
between datasets influence the running time performance. In a nutshell, it cannot
be concluded that LID by itself is a good indicator for the relative performance
of a fixed implementation over datasets. These statements will be made precise
in the evaluation that is discussed in Sect. 5.

In the first part of our evaluation, we work in the “classical evaluation setting
of nearest neighbor search”. This means that we relate a performance measure
(such as the achieved throughput measured in queries per second) to a quality
measure (such as the average fraction of true nearest neighbors found over all
queries). While this is the most commonly employed evaluation method, we rea-
son that this way of representing results in fact hides interesting details about the
inner workings of an implementation. Using non-traditional visualization tech-
niques provide new insights into their query behavior on real-world datasets. As
one example, we see that reporting average recall on the graph-based approaches
from [13,21] hides an important detail: For a given query, they either find all
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true nearest neighbors or not a single one. This behavior is not shared by the
two other approaches that we consider; both yield a continuous transition from
“finding no nearest neighbors” to “finding all of them”.

As a final point, we want, ideally, to benchmark on a collection of
“interesting” datasets that show the strengths and weaknesses of individual
approaches [24]. We will conclude that there is little diversity among the consid-
ered real-word datasets: While the individual performance observations change
from dataset to dataset, the relative performance between implementations stays
the same.

Our Contributions. The main contributions of this paper are

– a detailed evaluation of the LID distribution of many real-world datasets used
in benchmarking frameworks,

– an evaluation of the influence of the LID on the performance of NN search
implementations,

– considerations about the result diversity, and
– an exploration of different visualization techniques that shed light on individ-

ual properties of certain implementation principles.

A preliminary workshop version of this paper appeared as [5]. In this paper
we expand the experimental study with the correlation between LID and recall;
we also consider different ways of generating synthetic datasets to investigate
the relationship between LID and performance.

Related Work on Benchmarking Frameworks for NN. We use the benchmarking
system described in [4] as the starting point for our study. Different approaches
to benchmarking nearest neighbor search are described in [9,10,20]. We refer
to [4] for a detailed comparison between the frameworks.

2 Local Intrinsic Dimensionality

We consider a distance-space (Rd,D) with a distance function D : Rd ×R
d → R.

As described in [2], we consider the distribution of distances within this space
with respect to a reference point x. Such a distribution is induced by sampling
n points from the space R

d under a certain probability distribution. We let
F : R → [0, 1] be the cumulative distribution function of distances to the refer-
ence point x.

Definition 1 ([11]). The local continuous intrinsic dimension of F at distance
r is given by

IDF (r) = lim
ε→0

ln(F ((1 + ε)r)/F (r))
ln((1 + ε)r/r)

,

whenever this limit exists.
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The measure relates the increase in distance to the increase in probability mass
(the fraction of points that are within the ball of radius r and (1+ε)r around the
query point). Intuitively, the larger the LID, the more difficult it is to distinguish
true nearest neighbors at distance r from the rest of the dataset. As described
in [12], in the context of k-NN search we set r as the distance of the k-th nearest
neighbor to the reference point x.

Estimating LID. We use the Maximum-Likelihood estimator (MLE) described
in [2,19] to estimate the LID of x at distance r. Let r1 ≤ . . . ≤ rk be the sequence
of distances of the k-NN of x. The MLE ˆIDx is then

ˆIDx = −
(

1
k

k∑
i=1

ln
ri

rk

)−1

. (1)

Amsaleg et al. showed in [2] that MLE estimates the LID well. We remark that
in very recent work, Amsaleg et al. proposed in [3] a new MLE-based estimator
that works with smaller k values than (1).

3 Overview over the Benchmarking Framework

We use the ann-benchmarks system described in [4] to conduct our experimental
study. Ann-benchmarks is a framework for benchmarking NN search algorithms.
It covers dataset creation, performing the actual experiment, and storing the
results of these experiments in a transparent and easy-to-share way. Moreover,
results can be explored through various plotting functionalities, e.g., by creating
a website containing interactive plots for all experimental runs.

Ann-benchmarks interfaces with a NN search implementation by calling its
preprocess (index building) and search (query) methods with certain parameter
choices. Implementations are tested on a large set of parameters usually provided
by the original authors of an implementation. The answers to queries are recorded
as the indices of the points returned. Ann-benchmarks stores these parame-
ters together with further statistics such as individual query times, index size,
and auxiliary information provided by the implementation. See [4] for more
details.

Compared to the system described in [4], we added tools to estimate the
LID based on Eq. (1), pick “challenging query sets” according to the LID of
individual points, and added new datasets and implementations. Moreover, we
implemented a mechanism that allows an implementation to provide further
query statistics after answering a query. To showcase this feature, all implemen-
tations in this study report the number of distance computations performed to
answer a query.1

1 We thank the authors of the implementations for their help and responsiveness in
adding this feature to their library.
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Table 1. Datasets under consideration with their average local intrinsic dimensionality
(LID) computed by MLE [2] from the 100-NN of all the data points.

Dataset Data points Dimensions LID Metric

avg median

SIFT [14] 1 000 000 128 21.9 19.2 Euclidean

MNIST 65 000 784 14.0 13.2 Euclidean

Fashion-MNIST [26] 65 000 784 15.6 13.9 Euclidean

GLOVE [23] 1 183 514 100 18.0 17.8 Angular/Cosine

GLOVE-2M [23] 2 196 018 300 26.1 23.4 Angular/Cosine

GNEWS [22] 3 000 000 300 21.1 20.1 Angular/Cosine

4 Algorithms and Datasets

4.1 Algorithms

Nearest neighbor search algorithms for high dimensions are usually graph-, tree-,
or hashing-based. We refer the reader to [4] for an overview over these princi-
ples and available implementations. In this study, we concentrate on the three
implementations considered most performant in [4], namely HNSW [21], Annoy [6]
and FAISS-IVF [15] (IVF from now on). We consider the very recent graph-based
approach ONNG [13] in this study as well.

HNSW and ONNG are graph-based approaches. This means that they build a
k-NN graph during the preprocessing step. In this graph, each vertex is a data
point and a directed edge (u, v) means that the data point associated with v
is “close” to the data point associated with u in the dataset. At query time,
the graph is traversed to generate candidate points. Algorithms differ in details
of the graph construction, how they build a navigation structure on top of the
graph, and how the graph is traversed.

Annoy is an implementation of a random projection forest, which is a collec-
tion of random projection trees. Each node in a tree is associated with a set of
data points. It splits these points into two subsets according to a chosen hyper-
plane. If the dataset in a node is small enough, it is stored directly and the node
is a leaf. Annoy employs a data-dependent splitting mechanism in which a split-
ting hyperplane is chosen as the one splitting two “average points” by repeatedly
sampling dataset points. In the query phase, trees are traversed using a priority
queue until a predefined number of points is found.

IVF builds an inverted file based on clustering the dataset around a predefined
number of centroids. It splits the dataset based on these centroids by associating
each point with its closest centroid. During query it finds the closest centroids
and checks points in the dataset associated with those.

We remark we used both IVF and HNSW implementations from FAISS2.

2 https://github.com/facebookresearch/faiss.

https://github.com/facebookresearch/faiss
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4.2 Datasets

Table 1 presents an overview over the datasets that we consider in this study.
We restrict our attention to datasets that are usually used in connection with
Euclidean distance and Angular/Cosine distance. For each dataset, we com-
pute the LID distribution with respect to the 100-NN as discussed in Sect. 2.
SIFT, MNIST, and GLOVE are among the most-widely used datasets for bench-
marking nearest neighbor search algorithms. Fashion-MNIST is considered as a
replacement for MNIST, which is usually considered too easy for machine learn-
ing tasks [26].

Figure 1 provides a visual representation of the estimated LID distribution
of each dataset, for k = 100. While the datasets differ widely in their original
dimensionality, the median LID ranges from around 13 for MNIST to about
23 for GLOVE-2M. The distribution of LID values is asymmetric and shows a
long tail behavior. MNIST, Fashion-MNIST, SIFT, and GNEWS are much more
concentrated around the median compared to the two glove-based datasets.

Fig. 1. LID distribution for each dataset. Ticks below the distribution curves represent
single queries. Lines within each distribution curve correspond to the 25, 50 and 75
percentile. The red line marks the 10 000 largest estimated LID, which we use as a
threshold value to define hard query sets. (Color figure online)

5 Evaluation

This section reports on the results of our experiments. Due to space constraints,
we only present some selected results. More results and plots can be explored via
interactive plots at http://ann-benchmarks.com/sisap19/, which also contains a

http://ann-benchmarks.com/sisap19/
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link to the source code repository. For a fixed implementation, the plots presented
here consider the Pareto frontier over all parameter choices [4]. Tested parameter
choices and the associated plots are available on the website.

Experimental Setup. Experiments were run on 2x 14-core Intel Xeon E5-2690v4
(2.60 GHz) with 512 GB RAM using Ubuntu 16.10 (kernel 4.4.0). Index building
was multi-threaded, queries where answered in a single thread.

Quality and Performance Metrics. As quality metric we measure the individual
recall of each query, i.e., the fraction of points reported by the implementation
that are among the true k-NN. As performance metric, we record individual
query times and the total number of distance computations needed to answer
all queries. We usually report on the throughput (the average number of queries
that can be answered in one second, in the plots denoted as QPS for queries per
second), but we will also inspect individual query times.
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Fig. 2. Recall-QPS (1/s) tradeoff – up and to the right is better; top: SIFT, bottom:
GLOVE-2M; left: easy, middle: middle, right: hard.

Objectives of the Experiments. Our experiments are tailored to answer the fol-
lowing questions:

(Q1) How does the LID of a query set influence the running time performance?
(Sect. 5.1)

(Q2) How diverse are measurements obtained on datasets? Do relative differ-
ences between the performance of different implementations stay the same
over multiple datasets? (Sect. 5.2)
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Fig. 3. Recall-QPS (1/s) tradeoff – up and to the right is better; left: ONNG, right:
Annoy; (E) — easy, (M) — medium, (H) — hard, (D) — diverse.

(Q3) How well does the number of distance computations reflect the relative
running time performance of the tested implementations? (Sect. 5.2)

(Q4) How concentrated are quality and performance measures around their
mean for the tested implementations? (Sect. 5.3)

Choosing Query Sets. For each dataset, we select four different query sets: The
query set that contains the 10 000 points with the lowest estimated LID (which
we denote easy), 10 000 points around the data point with median estimated LID
(denoted medium), 10 000 points with the largest estimated LID (dubbed hard),
and 5 000 points chosen uniformly according to (integer) LID values (denoted
diverse). For the latter, we split all data points up into buckets, where bucket i
represents all data points that have an estimated LID of i (rounded down). For
each query, we pick a non-empty bucket uniformly at random, and inside the
bucket we pick a random point (with repetition). Figure 1 marks with a red line
the LID used as a threshold to build the hard queryset.

5.1 Influence of LID on Performance

Figure 2 shows results for the influence of using only points with low, middle,
and large estimated LID as query points, in SIFT and GLOVE-2M. We observe
a clear influence of the LID of the query set on the performance: the larger the
LID, the more down and to the left the graphs move. This means that, for higher
LID, it is more expensive, in terms of time, to answer queries with good recall.
For all datasets except GLOVE-2M, all implementations were still able to achieve
close to perfect recall with the parameters set. This means that all but one of
the tested datasets do not contain too many “noisy queries”. Already the queries
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Fig. 4. Ranking of algorithms on five different datasets, according to recall ≥0.75 and
≥0.9, and according to two different performance measures: number of queries per
second (left) and number of distance computations (right). Both plots report the ratio
with the best performing algorithm on each dataset: for the queries per second metric
a larger ratio is better, for the number of distance computations metric, a smaller ratio
is better.

around the median prove challenging for most implementations. For the most
difficult queries (according to LID), only IVF and ONNG achieve close to perfect
recall on GLOVE-2M.

Figure 3 reports on the results of ONNG and Annoy on selected datasets. Com-
paring results to the LID measurements depicted in Fig. 1, the estimated median
LID gives a good estimate on the relative performance of the algorithms on the
data sets. As an exception, SIFT (M) is much easier than predicted by its LID
distribution. In particular for Annoy, the hard SIFT instance is as challenging as
the medium GLOVE version. The easy version of GLOVE-2M turns out to be effi-
ciently solvable by both implementations (taking about the same time as it takes
to answer the hard instance of Fashion-MNIST, which has a much higher LID).
From this, we cannot conclude that LID as a single indicator explains perfor-
mance differences of an implementation across different datasets. However, more
careful experimentation is need before drawing a final conclusion. In our setting,
the LID estimation is conducted for k = 100, while queries are only searching
for the 10 nearest neighbors. Moreover, the estimation using MLE might not be
accurate enough on these datasets, since it is very dependent on the parameter
k being used. We leave the investigation of these two directions as future work.

In general, the diverse query set is more difficult than the medium query set.
In particular, at high recall it generally becomes nearly as difficult as the difficult
dataset. The reason for this behavior is that none of the implementations can
adapt to the difficulty of a query. They only achieve high average recall when
they can solve sufficiently many queries with high LID. The parameter settings
that allow for such guarantees slow down answering the easy queries by a lot. We
believe that the “diverse” query sets thus allow for challenging benchmarking
datasets for adaptive query algorithms.

As a side note, we remark that Fashion-MNIST is as difficult to solve as MNIST
for all implementations, and is by far the easiest dataset for all implementations.
Thus, while there is a big difference in the difficulty of solving the classification
task [26], there is no measurable difference between these two datasets in the
context of NN search.
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5.2 Diversity of Results

Figure 4 gives an overview over how algorithms compare to each other among all
“medium difficulty” datasets. We consider two metrics, namely the number of
queries per second (left plot), and the number of distance computations (right
plot). For two different average recall thresholds (0.75 and 0.9) we then select,
for each algorithm, the best performing parameter configuration that attains
at least that recall. For each dataset, the plots report the ratio with the best
performing algorithm on that dataset, therefore the best performer is reported
with ratio 1. Considering different dataset, we see that there is little variation in
the ranking of the algorithms. Only the two graph-based approaches trade ranks,
all other rankings are stable. Interestingly, Annoy makes much fewer distance
computations but is consistently outperformed by IVF.3

Comparing the number of distance computations to running time perfor-
mance, we see that an increase in the number of distance computations is not
reflected in a proportional decrease in the number of queries per second. This
means that the candidate set generation is in general more expensive for graph-
based approaches, but the resulting candidate set is of much higher quality and
fewer distance computations have to be carried out. Generally, both graph-based
algorithms are within a factor 2 from each other, whereas the other two need
much larger candidate lists to achieve a certain recall. The relative difference
usually ranges from 5x to 30x more distance computations for the non-graph
based approaches, in particular at high recall. This translates well into the per-
formance differences we see in this setting: consider for instance Fig. 2, where
the lines corresponding to HNSW and ONNG upper bound the lines relative to the
other two algorithms.

5.3 Reporting the Distribution of Performance

In the previous sections, we made extensive use of recall/queries per second plots,
where each configuration of each algorithm results in a single point, namely the
average recall and the inverse of the average query time. As we shall see in
this section, concentrating on averages can hide interesting information in the
context of k-NN queries. In fact, not all queries are equally difficult to answer.
Consider the plots in Fig. 5, which report performance of the four algorithms4 on
the GLOVE-2M dataset, medium difficulty. The top four plots report the recall
versus the number of queries per second, and black dots correspond to the aver-
ages. Additionally, for each configuration, we report the distribution of the recall
scores: the baseline of each recall curve is positioned at the corresponding queries
per second performance. Similarly, the bottom plots report on the inverse of the
3 We note that IVF counts the initial comparisons to find the closest centroids as

distance computations, whereas Annoy did not count the inner product computations
during tree traversal.

4 In order not to clutter the plots, we fixed parameters as follows: IVF — number of
lists 8192; Annoy — number of trees 100; HNSW — efConstruction 500, M 8; ONNG —
edge 100, outdegree 10, indegree 120.



The Role of LID in Benchmarking Nearest Neighbor Search 123

HNSW ONNG

Annoy FAI-IVF

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

1e+01

1e+02

1e+03

1e+04

1e+05

1e+01

1e+02

1e+03

1e+04

1e+05

recall

Q
P
S
(1
/s
)

Recall

HNSW ONNG

Annoy FAI-IVF

10 100 1000 10000 10 100 1000 10000

0.3

0.6

0.9

0.3

0.6

0.9

Queries per second

re
ca
ll

Queries per second

Fig. 5. Distribution of performance for queries on the GLOVE-2M (medium difficulty)
dataset. Looking just at the average performance can hide interesting behaviour.
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Fig. 6. Distribution of Recall vs. LID plot on the GLOVE dataset. Intensity reflects
number of queries that achieve a combination of recall vs. LID.

individual query times (the average of these is the QPS in the left plot) against
the average recall. In both plots, the best performance is achieved towards the
top-right corner.

Plotting the distributions, instead of just reporting the averages, uncovers
some interesting behaviour that might otherwise go unnoticed, in particular with
respect to the recall. The average recall gradually shifts towards the right as the
effect of more and more queries achieving good recalls. Perhaps surprisingly, for
graph-based algorithms this shift is very sudden: most queries go from having
recall 0 to having recall 1, taking no intermediate values. Taking the average
recall as a performance metric is convenient in that it is a single number to
compare algorithms with. However, the same average recall can be attained
with very different distributions: looking at such distributions can provide more
insight.

For the bottom plots, we observe that individual query times of all the algo-
rithms are well concentrated around their mean.

Figure 6 gives another distributional view on the achieved result quality. The
plots shows two runs of IVF and ONNG with fixed parameters on the GLOVE
dataset with diverse queries. On the top we see the distribution of estimated
LID values for the diverse query set, on the right we see the distribution of
recall values achieved by the implementation. Each of the queries corresponds
to a single data point in the recall/LID plot and data points are summarized
through hexagons, where the color intensity of a hexagon indicates the number
of data points falling into this region. The plots show that the higher the LID
of a query, there is a clear tendency for the query to achieve lower recall.

For space reasons, we do not report other parameter configurations and
datasets, which nonetheless show similar behaviours. All of them can be accessed
at the website.
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6 Summary

In this paper we studied the influence of LID to the performance of nearest
neighbor search algorithms. We showed that LID allows to choose query sets of
a wide range of difficulty from a given dataset. We also showed how different
LID distributions influence the running time performance of the algorithms. In
this respect, we could not conclude that the LID alone can predict running time
differences well. In particular, SIFT is usually easier for the algorithms, while
GLOVE’s LID distribution would predict it to be the easier dataset of the two.

With regard to challenging query workloads, we described a way to choose
diverse query sets. They have the property that for most implementations it
is easy to perform well for most of the query points, but they contain many
more easy and difficult queries than query workloads chosen randomly from
the dataset. We believe this is a very interesting benchmarking workload for
approaches that try to adapt to the difficulty of an individual query.

We introduced novel visualization techniques to show the uncertainty within
the answer to a set of queries, which made it possible to show a clear difference
between the graph-based algorithms and the other approaches.

We hope that this study initiates the search for more diverse datasets, or
for theoretical reasoning why certain algorithmic principles are generally better
suited for nearest neighbor search. On a more practical side, Casanova et al.
showed in [7] how dimensionality testing can be used to speed up reverse k-
NN queries. We would be interested in seeing whether the LID can be used at
other places in the design of NN algorithms to guide the search process or the
parameter selection. While we know from [2] that the LID estimation of MLE
with k = 100 works well on their datasets, it would be interesting to see whether
the other estimators mentioned there are also able to characterize the relative
performance of queries.

Acknowledgements. The authors would like to thank the anonymous review-
ers for their useful suggestions, which helped to improve the presentation of the
paper. The research leading to these results has received funding from the European
Research Council under the European Union’s 7th Framework Programme (FP7/2007-
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Abstract. We demonstrate that a graph-based search algorithm—
relying on the construction of an approximate neighborhood graph—can
directly work with challenging non-metric and/or non-symmetric dis-
tances without resorting to metric-space mapping and/or distance sym-
metrization, which, in turn, lead to substantial performance degrada-
tion. Although the straightforward metrization and symmetrization is
usually ineffective, we find that constructing an index using a modified,
e.g., symmetrized, distance can improve performance. This observation
paves a way to a new line of research of designing index-specific graph-
construction distance functions.

Keywords: k-NN search · Non-metric distance · Neighborhood graph

1 Introduction and Problem Definition

In this paper we focus on k nearest neighbor (k-NN) search, which is a widely
used computer technology with applications in machine learning, data mining,
information retrieval, and natural language processing. Formally, we assume to
have a possibly infinite domain containing objects x, y, z, . . . , which are com-
monly called data points or simply points. The domain—sometimes called a
space—is equipped with a distance function d(x, y), which is used to measure
dissimilarity of objects x and y. The value of d(x, y) is interpreted as a degree
of dissimilarity. The larger is d(x, y), the more dissimilar points x and y are.

Some distances are non-negative and become zero only when x and y have
the highest possible degree of similarity. The metric distances are additionally
symmetric and satisfy the triangle inequality. However, in general, we do not
impose any restrictions on the value of the distance function (except that smaller
values represent more similar objects). Specifically, the value of the distance
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function can be negative and negative distance values indicate higher similarity
than positive ones.

We further assume that there is a data subset D containing a finite number
of domain points and a set of queries that belongs to the domain but not to D.
We then consider a standard top-k retrieval problem. Given a query q it consists
in finding k data set points {xi} with smallest values of distances to the query
among all data set points (ties are broken arbitrarily). Data points {xi} are
called nearest neighbors. A search should return {xi} in the order of increasing
distance to the query. If the distance is not symmetric, two types of queries can
be considered: left and right queries. In a left query, a data point compared to
the query is always the first (i.e., the left) argument of d(x, y). Henceforth, for
simplicity of exposition we consider only the case of left queries.

Exact methods degenerate to a brute-force search for just a dozen of dimen-
sions [35]. Due to diversity of properties, non-metric spaces lack common and
easily identifiable structural properties such as the triangle inequality. There is,
therefore, little hope that fully generic exact search methods can be devised.
Thus, we focus on the approximate version of the problem where the search
may miss some of the neighbors, but it may not change the order. The accuracy
of retrieval is measured via recall (equal to the average fraction of neighbors
found). We cannot realistically devise fast exact methods, but we still hope that
our approximate methods are quite accurate having a recall close to 100%.

There has been a staggering amount of effort invested in designing new and
improving existing k-NN search algorithms (see e.g., [8,29,30,34]). This effort has
been placed disproportionately on techniques for symmetric metric distances, in
particular, on search methods for the Euclidean space. Yet, search methods for
challenging non-symmetric and non-metric spaces received very little attention.
A filter-and-refine approach is a common way to deal with an unconventional
distance. To this end one would map data to a low-dimensional Euclidean space.
The goal is to find a mapping without large distortion of the original similarity
measure [14,17]. Jacobs et al. [17] review various projection methods and argue
that such a coercion is often against the nature of a similarity measure, which
can be, e.g., intrinsically non-symmetric. Yet, they do not provide experimental
evidence. We fill this gap and demonstrate that both metric learning and distance
symmetrization are, indeed, suboptimal approaches.

Alternatively the metric distance can be learned from scratch [3]. In that,
Chechik et al. [9] contended that in the task of distance learning enforcing sym-
metry and metricity is useful only as a means to prevent overfitting to a small
training set. However, when training data is abundant, it can be more efficient
and more accurate to learn the distance function in an unconstrained bilin-
ear form. Yet, this approach does not necessarily results in a symmetric metric
distance [9]. We, in turn, demonstrate that a graph-based retrieval algorithm—
relying on the construction of approximate neighborhood/proximity graphs—can
deal with challenging non-metric distances directly without resorting to a low-
dimensional mapping or full symmetrization. In that, unlike prior work [24,25],
as we show in Sect. 3, several of our distances are substantially non-symmetric.
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Whereas the filter-and-refine symmetrization approach is detrimental, we
find that constructing an index using the symmetrized distance can improve
results. Furthermore, we show that the index construction algorithm can be
quite sensitive to the order of distance function arguments. In most cases, chang-
ing the argument order is detrimental. However, this is not a universal truth:
Quite surprisingly, we observe small improvements in some cases by building
the graph using the argument-reversed distance function. We believe this obser-
vations motivates the line of research to design indexing distance functions—
different from original distance functions—that result in better performance.
The remaining paper contains the description of employed retrieval algorithms
and related experimental results.

2 Methods and Materials

2.1 Retrieval Algorithms

We consider two types of retrieval approaches: the filter-and-refine method using
brute-force search and indexing using the graph-based retrieval method Small
World Graph (SW-graph) [22]. In the filter-and-refine approach, we use a proxy
distance to generate a list of kc candidate entries (closest to the query with
respect to the proxy distance) via the brute-force, i.e., exhaustive, search. For
kc candidate entries xi we compute the true distance values d(xi, q)—or d(q, xi)
for right queries—and select k closest entries.

The filter-and-refine approach can be slow even if the proxy distance is quite
cheap [24], whereas indexing can dramatically speed up retrieval. In particu-
lar, state-of-the-art performance can be achieved by using graph-based retrieval
methods, which rely on the construction of an exact or approximate neighborhood
graph (see, e.g., [2,24]). The neighborhood graph is a data structure in which
data points are associated with graph nodes and sufficiently close nodes are con-
nected by edges. A search algorithm is a graph-traversal routine exploiting a
property “the closest neighbor of my closest neighbor is my neighbor as well.”
The neighborhood graph is often defined as a directed graph [11,12], where the
edges go from a vertex to its neighbors (or vice versa), but undirected edges
have been used too [20,22] (undirected nodes were also quietly introduced in
kgraph1). In a recent study, the use of undirected neighborhood graphs lead to
a better performance [20].

Constructing an exact neighborhood graph is hardly feasible for a large
high-dimensional data set, because, in the worst case, the number of distance
computations is O(n2), where n in the number of data points. An approximate
neighborhood graph can be constructed substantially more efficiently [11,22]. To
improve performance, one can use various graph pruning methods [13,20,23]: In
particular, it is not useful to keep neighbors that are close to each other [13,20].

Neighborhood graphs have a long history. Toussaint published a pioneering
paper where he introduced neighborhood graphs on the plane in 1980 [33]. Arya

1 https://github.com/aaalgo/kgraph.

https://github.com/aaalgo/kgraph
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Table 1. Data sets

Name Max. # of rec. Dimensionality Source

RandHist-d 0.5 × 106 d ∈ {8, 32} Histograms sampled uniformly from a
simplex

RCV-d 0.5 × 106 d ∈ {8, 128} d-topic LDA [4] RCV1 [19] histograms

Wiki-d 2 × 106 d ∈ {8, 128} d-topic LDA [4] Wikipedia histograms

Manner 1.46 × 105 1.23 × 105 Question and answers from L5
collection in Yahoo WebScope

Table 2. Distance functions

Denotation/Name d(x,y) Notes

Kullback-Leibler
diverg. (KL-div.) [18]

m∑

i=1

xi log
xi

yi

Itakura-Saito distance
[16]

m∑

i=1

[
xi
yi

− log xi
yi

− 1
]

Rényi diverg. [27] 1
α−1

log

[
m∑

i=1

xα
i y1−α

i

]

,

0 < α < ∞
We use α ∈ 0.25, 0.75, 2

BM25 similarity [28] − ∑
xi=yi

TFq(xi) ·
TFd(yi) · IDF(yi)

TFq(x) and TFd(y) are
(possibly scaled) term
frequencies in a query and
document

and Mount were first to apply neighborhood graphs to the problem of k-NN
search in a high-dimensional space [1]. Houle and Sakuma proposed the first
hierarchical, i.e., multi-layer, variant of the neighborhood graph called SASH,
where data points at layer i are connected only to the nodes at layer i + 1
[15]. Malkov and Yashunin proposed an efficient multi-layer neighborhood-graph
method called a Hierarchical Navigable Small World (HNSW) [23]. It is a gener-
alization and improvement of the previously proposed method navigable Small
World (SW-graph) [22], which has been shown to be quite efficient in the past
[22,24]

Although there are different approaches to construct a neighborhood graphs,
all retrieval strategies known to us rely on a simple semi-greedy graph-traversal
algorithm with (possibly) multiple restarts. Such an algorithm keeps a priority
queue of elements, which ranks candidates in the order of increasing distance to
the query. At each step, the search retrieves one or more elements from the queue
that are closest to the query and explores their neighborhoods. Previously unseen
elements may be added to the queue. For a recent experimental comparison of
several retrieval approaches see [32].

Although, HNSW is possibly the best retrieval method for generic distances
[20,23], in our work we use a modified variant of SW-graph, where retrieval
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starts from a single point (which is considerably more efficient compared to
multiple starting points). The main advantage of HNSW over the older version
of SW-graph is due to (1) introduction of pruning heuristics, (2) using a single
starting point during retrieval. We want to emphasize that comparison of HNSW
against SW-graph in [23] is not completely fair, because it basically uses an
undertuned SW-graph. Furthermore, gains from using a hierarchy of layers are
quite small: see Figs. 3–5 from [23]. At the same time pruning heuristics introduce
another confounding factor in measuring the effect of distance symmetrization
(and proxying), because symmetrization method used in the pruning approach
can be different from the symmetrization method used by k-NN search employed
at index time. Thus—as we care primarily about demonstrating usefulness (or
lack thereof) of different distance modifications during construction of the graph
rather than merely achieving maximum retrieval efficiency—we experiment with
a simpler retrieval algorithm SW-graph. The employed algorithm has three main
parameters. Parameter NN influences (but does not define directly) the number
of neighbors in the graph. Parameters efConstruction and efSearch define the
depth of the priority queue used during index and retrieval stages, respectively.

2.2 Data Sets and Distances

In our experiments, we use the following distances (see Table 2): KL-divergence,
the Itakura-Saito distance, the Rényi divergence, and BM25 similarity [28]. The
first three distances are statistical distances defined over probability distribu-
tions. Statistical distances in general and, KL divergence in particular, play an
important role in ML [7,31]. Both the KL-divergence and the Itakura-Saito dis-
tances were used in prior work [7]. BM25 similarity is a popular and effective
similarity metric commonly used in information retrieval. It is a variant of a
TF×IDF similarity computed as

∑

xi=yi

TFq(xi) · TFd(yi) · IDF(yi), (1)

where TFq(x) and TFd(y) are term frequencies of terms x and y in a query and a
document, respectively. IDF is an inverse document frequency (see [28] for more
details). When we use BM25 as a distance, we take the negative value of this
similarity function. Although BM25 is expressed as an inner product between
query and document TF×IDF vectors, this distance is not symmetric. Term
frequencies are computed differently for queries and documents and the value of
the similarity normally changes when we swap function arguments.

The Rényi divergence is a single-parameter family of distances, which are
not symmetric when the parameter α �= 0.5. By changing the parameter we can
vary the degree of symmetry. In particular, large values of α as well as close-to-
zero values result in highly non-symmetric distances. This flexibility allows us
to stress-test retrieval methods by applying them to challenging non-symmetric
distances.

The data sets are listed in Table 1. Wiki-d and RCV-d data sets consists
of dense vectors of topic histograms with d topics. RCV-d set are created by
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Cayton [7] from the RCV1 newswire collection [19] using the latent Dirichlet
allocation (LDA) method [4]. These data sets have only 500 K entries. Thus, we
created larger sets from Wikipedia following a similar methodology. RandHist-d
is a synthetic set of topics sampled uniformly from a d-dimensional simplex.

The Manner data set is a collection of TF×IDF vectors generated from data
set L5 in Yahoo WebScope2. L5 is a set of manner, e.g., how-to, questions posted
on the Yahoo answers webite together with respective answers. Note that we
keep only a single best answer—as selected by a community member—for each
question.

3 Experiments

We carry out two experimental series. In the first series, we test the efficacy of the
filter-and-refine approach (using collection subsets) where the distance function
is obtained via metrization or symmetrization of the original distance. One of
the important objectives of this experimental series is to demonstrate that unlike
some prior work [24,25] we deal with substantially non-symmetric data. In the
second series, we carry out a fully-fledged retrieval experiment using SW-graph
[22] with different index- and query-time symmetrization approaches. Overall, we
have 31 combination of data sets and distance functions (see Sect. 2.2). However,
due to space limitations, we had to omit some experimental results and minor
setup details. A fuller description is available in §2.3.2 of the unpublished tech
report [5].

Proxying Distance via Metrization and Symmetrization. In this section,
we use a proxy distance function to generate a list of kc candidates, which are
compared directly to the query. The candidate generation step employs an exact
brute-force k-NN search with the proxy distance. On one hand, the larger is kc,
the more likely we find all true nearest neighbors. On the other hand, increasing
kc entails a higher computational cost. We consider two types of proxy distances:
a learned distance (which is a metric in four out of five cases), and a symmetrized
version of the original non-symmetric distance.

Distance Learning. We considered five approaches to learn a distance and a
pseudo-learning approach where we simply use the Euclidean L2 distance as a
proxy. Computing L2 between data points is a strong baseline, which sometimes
outperforms true distance learning methods, especially for high-dimensional
data. Four of the distance-learning methods [10,21,26,36] learn a global linear
transformation of the data, which is commonly referred to as the Mahalanobis
metric learning. The value of the L2 distance between transformed vectors is
used as a proxy distance function. The learned distance, is clearly a metric. We
also use a non-linear Random Forest Distance (RFD) method that employs a
random-forest classifier [37] and produces generally non-metric, but symmetric,

2 https://webscope.sandbox.yahoo.com.

https://webscope.sandbox.yahoo.com
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Table 3. Loss of effectiveness due to symmetrization and distance learning for 10-NN
search (using at most 200K points for distance learning and at most 500K points for
symmetrization)

Data set Distance Symmetrization Distance learning

kc (cand. k) Recall
reached

kc (cand. k) Recall
reached

Wiki-8 Itakura-Saito 20 99 2560 99

Wiki-8 KL-div 40 99 640 99

Wiki-8 Rényi div. α = 0.25 20 100 640 100

Wiki-8 Rényi div. α = 2 20 99 640 99

RCV-128 Itakura-Saito 80 99 20480 58

RCV-128 KL-div 40 100 20480 94

RCV-128 Rényi div. α = 0.25 80 100 5120 99

RCV-128 Rényi div. α = 2 80 99 20480 66

Wiki-128 Itakura-Saito 20 99 20480 80

Wiki-128 KL-div 40 99 20480 99

Wiki-128 Rényi div. α = 0.25 160 99 5120 99

Wiki-128 Rényi div. α = 2 80 99 20480 87

RandHist-32 Itakura-Saito 5120 96 20480 99

RandHist-32 KL-div 160 100 2560 99

RandHist-32 Rényi div. α = 0.25 20 100 1280 100

RandHist-32 Rényi div. α = 2 2560 99 20480 100

Manner BM25 1280 100 N/A N/A

distance. Note that we do not learn a distance function for the Manner data set
that contains extremely high dimensional sparse TF×IDF vectors.

In all cases, the distance is trained as a classifier that learns to distinguish
between close and distant data points. More specifically, we create sets of positive
and negative examples. A positive example set contains pairs of points that
should be treated as similar, i.e., near points, while the negative example set
contains pairs of points that should be treated as dissimilar ones. The underlying
idea is to learn a distance that (1) pulls together points from the positive example
set and (2) pushes points from the negative example set apart. More details are
given in [5].

Symmetrization. Given a non-symmetric distance, there are two folklore
approaches to make it symmetric, which use the value of the original distance
d(x, y) as well as the value of the distance function obtained by reversing argu-
ments: dreverse(x, y) = d(y, x). Informally, we call the latter an argument-reversed
distance. In the case of an average-based symmetrization, we compute the sym-
metrized distance as an average of the original and argument-reversed distances:

dsym =
d(x, y) + dreverse(x, y)

2
=

d(x, y) + d(y, x)
2

(2)
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In the case of a min-based symmetrization, we use their minimum:

dsym = min (d(x, y), dreverse(x, y)) = min (d(x, y), d(y, x)) (3)

Symmetrization techniques given by Eqs. (2) and (3) are suboptimal in the
sense that a single computation of the symmetrized distance entails two compu-
tations of the original distance. We can be more efficient when a distance function
permits a more natural symmetrization, in particular, in the case of BM25 (see
Eq. 1) we can compute the query term frequency using the same formula as the
document term frequency. Furthermore, we can “share” a value of IDFi between
the query and the document vectors by “assigning” each vector the value

√
IDFi.

Although the resulting function is symmetric, it is not equivalent to the original
BM25. More formally, in this “shared” setting a query vector is represented by
the values TF(xi) · √IDF(xi), whereas a document vector is represented by the
values TF(yi) ·√IDF(yi). The pseudo-BM25 similarity is computed as the inner
product between query and document vectors in the following way:

d(x, y) = −
∑

xi=yi

(
TF(xi)

√
IDF(xi)

)
·
(
TF(yi)

√
IDF(yi)

)
(4)

Discussion of Results. All the code in this section is implemented in Python.
Thus, for efficiency reason, we limit the number of data points to 200K in the
symmetrization experiment and to 500K in the distance learning experiment.
Experimental results for k = 10 are presented in Table 3, where we measure how
many candidates kc we need to achieve a nearly perfect recall with respect to the
original distance (we test all kc = k·2i, i ≤ 7). We employ several symmetrization
and distance learning methods: Yet, in the table, we show only the best recall
for a given kc. More specifically, we post the first kc for which recall reaches
99%. If we cannot reach 99%, we post the maximum recall reached. We omit
most low-dimensional results, because they are similar to Wiki-8 results (again,
see [5] for a more detailed report).

From Table 3 we can immediately see that distance learning results in a
much worse approximation of the original distance than symmetrization. For
high-dimensional data, it is not always possible to achieve the recall of 99% for
10-NN search. When it is possible we need to retrieve from one thousand to
20 thousand candidate entries! Even for the low-dimensional Wiki-8 data set,
achieving such high recall requires at least 640 candidate entries. We conclude
that using distance learning is not a promising direction, because retrieving that
many candidate entries accurately is hardly possible without resorting to the
brute force search with the proxy distance (which is, in turn, not efficient).

In contrast, in the case of symmetrization, the number of required candi-
date entries is reasonably small except for Manner and RandHist-32 data sets.
We, therefore, explore various symmetrization approaches in more details in the
following section. Also note that KL-divergence can be symmetrized with little
loss in accuracy, i.e., on the histogram-like data KL-divergence is only mildly
non-symmetric. There is prior work on non-metric k-NN search that demon-
strated good results specifically for KL-divergence [24,25] for Wiki-d and RCV-d
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data sets. However, as our experiments clearly show, this work does not use a
substantially non-symmetric distance.

Experiments with Index- and Query-Time Symmetrization for SW-
Graph. In this section, we evaluate the effect of the distance symmetrization
in two scenarios (for 10-NN search):

– A symmetrized distance is used for both indexing and retrieval. We call this
a full symmetrization scenario. The search procedure is carried out using an
SW-graph index [22] (see Sect. 2.1). This search generates a list of kc can-
didates. Then, candidates are compared exhaustively with the query. This
filter-and-refine experiment is analogous to the previous-subsection experi-
ments except here we use approximate instead of the exact brute-force search.

– The second scenario relies on a partial, i.e., index-time only, symmetrization.
Specifically, the symmetrized distance is used only to construct a proxim-
ity/neighborhood graph via SW-graph. Then, the search procedure uses the
original, non-symmetrized distance to “guide” the search through the prox-
imity graph.

Overall, we have 31 combinations of data sets and distances, but in this paper
we present the results for most interesting cases (again see [5] for a complete set
of plots). We randomly split data three times into queries and indexable data
set points. For all distances except Rényi divergence we use 1 K queries for each
split, i.e., the total number of queries is 3K. Because Rényi divergence is slow to
compute, we use only 200 queries per split (i.e., the overall number of queries is
600).

Experiments are carried out using a nmslib4a bigger reruns branch3 of
NMSLIB [6]. We did not modify the standard NMSLIB code for SW-graph:
Instead, we created a new implementation (file small world rand symm.cc).

In the second scenario, we experiment with index- and query-time sym-
metrization in an actual indexing algorithm SW-graph rather than relying on
the brute-force search. This approach generates a final list of k nearest neigh-
bors rather than kc candidates. No further re-ranking is necessary. We use two
actual symmetrization strategies (the minimum- and the average-based sym-
metrization) as well as two types of quasi -symmetrization. For the first quasi-
symmetrization type, we build the proximity graph using the Euclidean distance
between vectors. The second quasi-symmetrization consists in building the prox-
imity graph using the argument-reversed distance (see p. 6).

We verified that none of these quasi-symmetrization approaches would pro-
duce a better list of candidates in the filter-and-refine scenario (where the brute-
force search is used to produce a candidate list). For example, for Wiki-128 and
KL-divergence, it takes kc = 40 candidates to exceed a 99% recall in a 10-NN
search for the minimum-based symmetrization. For the L2-based symmetriza-
tion, it takes as many as kc = 320 candidates. The results are even worse for the

3 https://github.com/nmslib/nmslib/tree/nmslib4a bigger reruns.

https://github.com/nmslib/nmslib/tree/nmslib4a_bigger_reruns
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(c) RandHist-8 (Itakura-Saito)

0.5 0.6 0.7 0.8 0.9 1

101

102

Recall@10

Im
pr

ov
.

in
effi

ci
en

cy
(l

og
.

sc
al

e)
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(i) RandHist-8 (Rényi div.α = 0.25)
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(k) Wiki-8 (Rényi div. α = 0.75)
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(l) RandHist-8 (Rényi div.α = 0.75)

Fig. 1. Efficiency/effectiveness trade-offs of symmetrization in 10-NN search (part I).
The number of data points is at most 500K. Best viewed in color.
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(b) Wiki-128 (Itakura-Saito)
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(c) RandHist-32 (Itakura-Saito)
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(h) Wiki-128 (Rényi div. α = 0.75)
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(i) RandHist-32 (Rényi div. α =
0.75)
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(j) RCV-128 (Rényi div. α = 2)
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(k) Wiki-128 (Rényi div. α = 2)

0 0.2 0.4 0.6 0.8 1
100

101

102

103

Recall@10

Im
pr

ov
.

in
effi

ci
en

cy
(l

og
.

sc
al

e)

(l) RandHist-32 (Rényi div. α = 2)

Fig. 2. Efficiency/effectiveness trade-offs of symmetrization in 10-NN search (part II).
The number of data points is at most 500K. Best viewed in color.
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filtering based on the argument-reversed distance: By using as many as kc = 1280
candidates we obtain a recall of only 95.6%. It clearly does not make sense to
evaluate these quasi-symmetrization methods in the complete filter-and-refine
scenario. Yet, we need to check if it is beneficial to build the graph using a
distance different from the original one.

Discussion of Results. Experiments were run on a laptop (i7-4700MQ @
2.40 GHz with 16 GB of memory). Results are presented in Fig. 1 (low-
dimensional data) and Fig. 2 (high-dimensional data). These are efficiency-
effectiveness plots: Recall@10 is shown on the x-axis, improvement in efficiency—
i.e., the speed up over the brute-force search—is shown on the y-axis. Higher and
to the right is better. We test several modifications of SW-graph each of which
has an additional marker in the form: a-b, where a denotes a type of index-time
symmetrization and b denotes a type of query-time symmetrization. Red plots
represent the original SW-graph, which is labeled as SW-graph (none-none).

Black plots represent modifications, where symmetrization is used only dur-
ing indexing: SW-graph (avg-none), SW-graph (min-none), SW-graph (l2-none),
SW-graph (reverse-none), and SW-graph (natural-none). The first two types
of symmetrization are average- and minimum-based. SW-graph (l2-none) is a
quasi-symmetrization approach that builds the graph using L2, but searches
using the original distance. SW-graph (reverse-none) builds the graph using the
reversed-argument distance, but searches using the original distance. SW-graph
(natural-none) is a natural symmetrization of BM25 described by Eq. (4), which
is used only for Manner.

Blue plots represent the case of full (both query- and index-time) symmetriza-
tion. The index is used to carry out a kc-NN search, which produces a list of
kc candidates for further verification. Depending on which symmetrization app-
roach was more effective in the first series experiments (with brute-force search),
we use either SW-graph (min-min) or SW-graph (avg-avg), which stand for full
minimum- or average-based symmetrization. Because we do not know an opti-
mum number of candidate records, we experiment with kc = k · 2i for successive
integer values i. The larger is i, the more accurate is the filtering step and the
less efficient is retrieval. However, it does not make sense to increase i beyond the
point where the filtering accuracy reaches 99%. For this reason, the minimum
value of kc is k and the largest value of kc is taken from Table 3.

For the remaining parameters of SW-graph we choose values that are
known to perform well in other experiments: NN=15, efConstruction=100, and
efSearch = 2j for 0 ≤ j ≤ 12. Analogous to the first scenario (with brute-
force search), we use 31 combination of data sets and distances. In each test, we
randomly split data (into queries and indexable data) three times and average
results over three splits.

From Figs. 1 and 2, we can see that in some cases there is little difference
among best runs with the fully symmetrized distance (a method SW-graph
(min-min) or SW-graph (avg-avg)) the runs produced by methods with true
index-time symmetrization (SW-graph (min-none), SW-graph (avg-none)), and
the original unmodified search algorithm (SW-graph (none-none)). Furthermore,
we can see that there is often no difference between SW-graph (min-none),
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SW-graph (avg-none), and SW-graph (none-none). However, sometimes all fully-
symmetrized runs (for all values of kc) are noticeably less efficient (see, e.g., Pan-
els 1h and k). This difference is more pronounced in the case of high-dimensional
data. Here, full symmetrization leads to a substantial (up to an order of magni-
tude) loss in performance in most cases.

Effectiveness of index-time symmetrization varies from case to case and there
is no definitive winner. First, we note that in four cases index-time symmetriza-
tion is beneficial (Panels 2a, b, j, k). In particular, in Panels 2a, b, k, there is
an up to 10× speedup. Note that it can sometimes be achieved by using an
argument-reversed distance (Panels 2a, b) or L2 (2k). This a surprising find-
ing given that these quasi-symmetrization approaches do not perform well in
the re-ranking–filter-and-refine—experiments. In particular, for L2 and Wiki-
128 reaching a 99% recall requires kc = 640 compared to kc = 80 for min-based
symmetrization. For the Itakura-Saito distance and data sets RCV-128 and Wiki-
128, it takes kc ≤ 80 to get a 99% recall. However, using the argument-reversed
distance, we do not even reach the recall of 60% despite using a large kc = 1280.
It is worth noting, however, that in several cases using argument-reversed dis-
tance at index time leads to substantial degradation in performance (see, e.g.,
Panels 1b and f).

To conclude the section, we emphasize that in all cases the best perfor-
mance is achieved using either the unmodified SW-graph or the SW-graph with
an index-time proxy distance. However, there is not a single case where perfor-
mance is improved by using the fully symmetrized distance (at both indexing and
querying steps). Furthermore, in three especially challenging cases: Itakura-Saito
distance with RandHist-32, Rényi divergence with RandHist-32, and BM25 with
Manner, SW-graph has excellent performance. In all three cases (see Panels 2c,
l, f), there is more than a 10× speed up at 90% recall compared to the brute-
force search. Note that in these three cases data is substantially non-symmetric:
Depending on the case, to accurately retrieve 10 nearest neighbors with respect
to the original metric, it requires to obtain 1–5K nearest neighbors using its
symmetrized variant (see Table 3). Thus, in these challenging cases, a brute-
force filter-and-refine symmetrization solution would be particularly ineffective
or inefficient whereas SW-graph has strong performance.

4 Conclusion

We systematically evaluate effects of distance metrization, symmetrization and
quasi-symmetrization on performance of brute-force and index-based k-NN
search (with a graph-based retrieval method SW-graph). Unlike previous work
[24,25] we experiment with substantially non-symmetric distances. Coercion of
the non-metric distance to a metric space leads to a substantial performance
degradation. Distance symmetrization causes a lesser performance loss. How-
ever, in all the cases a full filter-and-refine symmetrization is always inferior to
either applying the graph-based retrieval method directly to a non-symmetric
distance or to building an index (which is a neighborhood graph) with a modified,
e.g. symmetrized, distance. Quite surprisingly, sometimes the best performing
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index-time distance is neither the original distance nor its symmetrization. This
observation motivates a new line of research of designing index-specific graph-
construction distance functions.
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32. Tellez, E.S., Ruiz, G., Chávez, E., Graff, M.: Local search methods for fast near
neighbor search. CoRR abs/1705.10351 (2017). http://arxiv.org/abs/1705.10351

33. Toussaint, G.T.: The relative neighbourhood graph of a finite planar set. Pattern
Recogn. 12(4), 261–268 (1980)

34. Wang, J., Shen, H.T., Song, J., Ji, J.: Hashing for similarity search: a survey. CoRR
abs/1408.2927 (2014)

35. Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In: VLDB, vol. 98, pp.
194–205 (1998)

36. Weinberger, K.Q., Blitzer, J., Saul, L.K.: Distance metric learning for large margin
nearest neighbor classification. In: NIPS 2005, pp. 1473–1480 (2005)

37. Xiong, C., Johnson, D.M., Xu, R., Corso, J.J.: Random forests for metric learning
with implicit pairwise position dependence. In: KDD 2012, pp. 958–966. ACM
(2012)

http://arxiv.org/abs/1705.10351


Indexability-Based Dataset Partitioning

Angello Hoyos1, Ubaldo Ruiz1, Stephane Marchand-Maillet2,
and Edgar Chávez1(B)
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Abstract. Indexing exploits assumptions on the inner structures of a
dataset to make the nearest neighbor queries cheaper to resolve. Datasets
are generally indexed at once into a unique index for similarity search.
By indexing a given dataset as a whole, one faces the parameters of its
global structure, which may be adverse. A typical well-studied example
is a high global dimensionality of the dataset, making any indexing strat-
egy inefficient due to the curse of dimensionality.

We conjecture that a dataset may be partitioned into subsets of vari-
able indexability. The strategy is, therefore, to define a procedure to
extract parts of the dataset with predictable indexability and to adapt
the index structure to this parameter.

In this paper, we define and discuss indexability related to the curse
of dimensionality and propose a related heuristic to partition the dataset
into low-dimensional parts. Each data object is ranked according to its
degree centrality, under a connected sparse graph, the Half-Space Proxi-
mal Graph (HSP). We postulate centrality measures are good predictors
of dimensionality and indexability.

In view of validation, we conducted an experiment using the degree
centrality of the HSP graph as unique dimensionality/indexability mea-
sure. We ranked the data objects by their respective centrality degree
under the HSP graph, then extracted the lower dimensional subsets,
recomputed the HSP and repeated. Subsets were then indexed with an
exact method in increasing, decreasing and random order. We measured
the complexity of a fixed set of queries for each of the three arrange-
ments. For each set we used a fixed dataset with 250 queries.

The above single experiment demonstrated that the heuristic can
extract low dimensional subsets, and also that those subsets are eas-
ier to index.

This initial results demonstrate the validity of our conjecture and
motivate the need for exploring further the notion of indexability and
related dataset partitioning strategies.

Keywords: Indexability · Dataset partitioning · Spanning graph ·
Centrality measure · Curse of dimensionality
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1 Introduction

The nearest neighbor search in a dataset is at the core of data analysis because
it is via neighborhoods that the data makes sense, as opposed to being a set of
arbitrary unrelated items. Resolving effectively range queries or the k-nearest
neighbor problem has countless applications in machine learning, data mining
and many other fields of data processing. It is therefore critical to make this step
both effective and accurate. It is well-known that the effectiveness of indexing
structures is reduced as a function of the dimensionality of the dataset. In this
paper we present a study that takes an alternative approach to the general index
structure improvement proposed in most of the literature. Under the assumption
that effective index structures exist for “well-behaved” datasets, we propose to
attack the dataset rather than the index structure and make it suitable to be
indexed by state-of-the-art structures (e.g. [14]).

In Sect. 2, we briefly review related work and introduce the notion dataset
indexability, that will be our criterion for adapting the dataset to index struc-
tures. In Sect. 3, we present our strategy to boost indexability, resulting into our
main conjecture that is initially tested in Sect. 4 and discussed in Sect. 5.

2 Indexability

Measuring the performance of an index structure generally means evaluating the
performance of an indexing strategy over standard benchmarks (datasets, queries
and measures). Measuring the indexability of a dataset takes the problem upside
down and looks at whether or not a given dataset can benefit from an index
structure to answer nearest neighbor queries. Intuitively, a dataset is said to be
indexable if one can build an exact index able to answer reasonably selective
queries in time that is not proportional to the size of the dataset. A trivial
example of an indexable dataset is a set of points on a line, the plane or with
“small” dimension in general. In this example case, a classical data structure
like the kd-tree [3], can handle the indexing task.

There are several dimensions to index fitness. Any index computes an index
distance that approximates the true metric while being cheaper to compute.
The effectiveness of the index measures how good the index distance bounds
the original distance. The efficiency measures how fast the index distance can
be computed for the entire dataset. These two measures are complemented with
the memory usage and the speed at which the index can be constructed. It is
usually the case that the effectiveness of an index can be boosted at the expense
of its efficiency and memory usage or construction speed.

2.1 The Importance of Local Dimensionality

Indexability is therefore related to the deep foundations of distance-based index-
ing, essentially related to distance computation. From this perspective, index-
ability has been studied in relation to the curse of dimensionality and much
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has been discussed around this concept. Essentially, the main result of [4] and
subsequent papers (e.g., [13,17,19]) is that, as defined in [20] (Definition 2.2), a
workload W = (S, F, n, d) consisting of a dataset S of n objects drawn iid from
a distribution F and measured via distance function d(., .) can be made into a
series Wi which will be said to have vanishing variance if there exists α > 0 such
that

lim
m→∞ var

(
Dα

m

E[Dα
m]

)
= 0,

where Dm is the distance distribution of Wm (i.e. the distribution of distances
between points in Sm). In that case, ([4], Theorem 1), for every ε > 0

lim
m→∞ P [Dmax

m ≤ (1 + ε)Dmin
m ] = 1.

Simply said, all distance values become indistinguishable as m increases. This
is even more true in a fixed precision environment. A typical example of such a
workload is a dataset with coordinates iid distributed in all m dimensions. As a
result, the use of sum-based distance functions (such as Minkowski metrics) for
high-dimensional datasets impedes their indexability.

Directly considering the global dimensionality of the dataset therefore
appears as a crude approximation for indexability. Rather, provided one knows
how to exploit local structures from within the data, the effective indexability
should be boosted. The workload may have high representational dimension but
an intrinsic low dimension, and be indexable using a classic metric indexing
method like the BK-tree [6]. For other cases of intrinsic high dimension, the
dataset would not be indexable, even in the approximate sense, as stated in a
recent theoretical result on the conditional hardness of nearest neighbor search
using polynomial preprocessing time [19]. In that paper the authors prove that
computing a (1 + ε)-approximation to the nearest neighbor requires Ω(N − δ)
time, with N the size of the dataset.

It is therefore critical to obtain a proper understanding of what dimensional-
ity means locally. There are several proposals to measure local intrinsic dimen-
sion. An excellent review is provided by Michael Houle [10], who also proposed
the expansion dimension for that purpose. The idea is to measure locally how
many points are contained in a ball as its radius increases. Since in Euclidean
spaces the volume of a ball of radius r is about rm with m the number of
dimensions, fitting the increase of the number of points contained in a ball of
increasing radius allows for the estimation of the local intrinsic dimension. In
this line of work, authors [2,11] advocate for feature selection for removing “spu-
rious” dimensions while preserving original distances. The aim is to provide an
equivalent but better indexable dataset. Alternatively, ranks may also be used
as a robust replacement to distance values [7,12].

2.2 Dataset Shattering

An interesting alternative avenue for investigation is that of the VC dimension
[22]. The relationship between the VC dimension and indexing has already been
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put forward by Pestov in [18]. Although the VC dimension is related to mea-
suring the complexity of a class of functions, the notion of shattering is easily
related to that of indexing. If a dataset is shattered, any of its elements can be
particularized as a result of such shattering. Indexing has a similar objective.
For example, the capabilities of permutation-based indexing schemes to shatter
a dataset are explored in [1,15].

3 Boosting Dataset Indexability

In this exploratory work, we propose an alternative approach to combat the curse
of dimensionality. Rather than considering the dataset as an integral entity, we
seek a decomposition that will extract parts with higher indexability than the
whole. Indexes can then be built over these parts individually and a query sent
to the multiple index structures and recomposed globally.

3.1 Dataset Layering

We assume we are given a non-indexable dataset. Our aim is to decompose it
into easily indexable parts. From the above discussion, non-indexability allows
us to model the dataset as a blob of high dimension, which we will partition into
fragments of low dimension.

Hence, we construct a partition by iteratively peeling the dataset (blob)
into layers corresponding to surfaces of points equidistant from the blob cen-
ter. We therefore inherit from the notion of centrality measures to define the
layers which will be indexable. Centrality is classically defined in relation to a
spanning graph. Various definitions of centrality exist [5,9], from the simplest
based on node degree, to those exploiting a spectral decomposition of the graph
(such as PageRank and others [21]).

We initially base our study on a degree-based centrality measure applied over
the Half Space Proximal (HSP) graph constructed over the dataset, as detailed
next.

3.2 The Half Space Proximal Graph

The Half Space Proximal is a local test for building a directed graph, which
is a bounded dilation spanner over a set of objects in a metric space. Without
needing synchronization, each node can compute its neighbors using the simple
rule described below.

Let S a finite subset of a metric space. Let u ∈ S, we take its nearest element
v ∈ S and add an edge from u to v. We remove all the elements that are closer
to v than to u. The region of objects closer to v than to u is called the forbidden
region from the point u with respect to v. From the remaining points we take
the nearest point to u and repeat until we have removed all points in S. We
do this process for every point in S. In the end, we will have a directed graph
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with vertex set S and the edges found with the previous mechanism. The HSP,
presented in [8], has maximum out-degree of six for points in the plane.

We conjecture that the out-degree of each node in the HSP depends only on
the local intrinsic dimension of the node. Hence, in particular, it can be used
as an estimator of the indexability of a point collection. The rationale behind
this conjecture is related to the test conducted at each step of the construction.
Every edge from the node is associated to an hyperplane, and the out-degree
will be related to the number of hyperplanes needed to isolate the node.

Please notice that the HSP test in each node requires searching for the nearest
neighbor of the node, then splitting the set into two parts and repeat until the set
is empty. A careful implementation will require a quadratic number of distance
computations. This imposes a severe limitation in practice, because interesting
datasets are quite large.

4 Layered Indexing with the HSP

As an empirical validation of the above stated conjecture, we conducted an
experiment using a set of 100’000 deep feature vectors of 4’096 real values. For
this set we computed the HSP and ranked the nodes according to their degree.
After this, we removed the 1’000 nodes with the smallest degree in the graph,
recomputed the HSP in the remaining objects, and repeated. Note that the nodes
linked to the removed objects are the most likely to have its out-degree modified.
We only recomputed the edges of those nodes in the next iteration. Figure 1
shows the evolution of the average degree centrality when adding different layers
in the dataset.

In this experiment, we noted that the number of changes in the out-degree
of the touched nodes was slowly decreasing, and after some 40% of the dataset,
stopped changing. This supports the existence of a hard kernel in the dataset.
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Fig. 2. Layered indexing of a dataset of 100,000 deep feature vectors of dimension 4096
with two exact indices, with the SAT (top) and with the VP-tree (bottom). Note the
large difference for the low and large degree nodes. See text for more details.

The result of this layered indexing experiment is summarized in Fig. 2. In the
plot, chunks of increasing size (horizontal axis) are indexed independently with
an exact indexing method (SAT [16] and VP-Tree [23] respectively). Increasing
the size of the dataset from 10’000 to 90’000 objects was first done by adding
nodes of decreasing degree. According to our conjecture, this corresponds to
going from least to most indexable subsets (least favorable indexing setup). We
compare to the case of increasing degree, again varying the size from 10’000 to
90’000 objects, hoping to create the most favorable setup. We also included a
control plot with a random selection of the dataset of the same size. For the rest,
we kept the same index and the same set of 250 queries not included at indexing
time. The results plotted correspond to the average over 250 queries in the index.
The differences become apparent, in some places it was almost twice the number
of distance computations (indicated by the percentage of the dataset visited on
vertical axis). This difference becomes smaller when the subset is almost the
entire dataset.
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Notice that the difference in indexability persists across different indexes.
The SAT is more sensitive the centrality of the collection, while the VP-tree is
almost not affected when the dataset excludes its 10% least indexable part.

5 Discussion

The preliminary experimental results discussed in this communication are
encouraging. They are an empirical corroboration of the intuition that indexabil-
ity, local intrinsic dimensionality and centrality are related. This paper certainly
does not propose a new indexing method, mainly because of the large cost of
computing the degree centrality of the HSP graph. It rather motivates the quest
for a faster-to-compute latent graph of the dataset and gives some hope in deal-
ing with the curse of dimensionality.

Some open questions remain. What type of guarantees is it possible to give
in a layered index? In other words, assume each part, from the most to least
indexable, is indexed independently using a mixture of exact and approximate
methods, and then queried at once, there will be an answer from each one of the
indexes, some from the exact and some from the approximate methods. Even if
the nearest neighbor belongs to an exact index, it is not sure that it is the true
global nearest neighbor. What is then a good heuristic to assign a probability
to the global answer?

It is also interesting to explore additional properties of the most or least
indexable parts of the dataset. In the case of such deep features of images, what
are the most representative objects of a class? Is it the most central, i.e. the least
indexable? Or is it the opposite? Is it possible to build a classifier based only on
the centrality of the objects in a class?
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Abstract. In a multimedia database, similarity searching is the only
significant way to retrieve the most similar objects to a given query. The
usual approach to efficiently solve this kind of search is building an index,
which allows reducing the response time of online queries. Recently, the
permutation-based algorithms (PBA) were presented, and from then on,
this technique has been very successful. A PBA index consists of storing
the permutation of any database element with respect to a set of permu-
tants. If the cardinality of the set of permutants is β, any permutation
needs storing a sequence of β small integers, whose values are between 1
to β. However, if we have space restrictions over the index, the only way
of reducing its size is by considering fewer permutants. Hence, the index
performance could be severely affected.

We present in this paper a novel way to reduce the index size of PBA,
without removing any permutant, by storing instead of the permutation
of each element its signature regarding pairs of permutants from the set.
Furthermore, our proposal achieves a good search performance, regarding
both time and quality of solving a query. We can reduce almost 50% of
the space needed for the index. Moreover, according to our experimental
evaluation, we can reduce the original technique costs while preserving
its exceptional answer quality.

Keywords: Similarity searching · Nearest neighbor ·
Permutation-based algorithm

1 Introduction

Similarity searching is one of the most important problems to solve in multimedia
databases. In this context, elements should be comparable, hopefully with a
distance function between them to calculate how similar are. The simplest way
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to solve these queries is by using brute-force algorithms (sequential scan), which
in huge databases it is unthinkable. Hence, considering that there is a distance
function, the problem can be modeled as a metric space.

A metric space is a pair (X, d), where X is the universe of valid of objects and
d is a distance function which defines how similar objects are; that is, d : X×X →
R

+. Usually, d is expensive to compute. The distance function must satisfy the
following properties, which make d a metric; that is, let x, y, z ∈ X, d: symmetry
d(x, y) = d(y, x), reflexivity d(x, x) = 0, strict positiveness d(x, y) > 0 ⇔ x �= y,
and triangle inequality d(x, y) ≤ d(x, z)+d(z, y). The database is a finite subset
of valid objects U ⊆ X, n = |U|.

The kind of queries can be solved in a metric space are basically two: range
query consists of retrieving the elements from U within a given radius to the
query q; that is, R(q, r) = {d(u, q) ≤ r, ∀ u ∈ U}; and k-nearest neighbors
query retrieves k elements of U that are closest to q, |NNk(q)| = k, and ∀ v ∈
NNk(q), u ∈ U−NNk(q), d(v, q) ≤ d(u, q). In case of ties we choose any k-element
set that satisfies the query.

In order to solve the queries more efficiently, several interesting algorithms
have been proposed. Some of these algorithms are unquestionably effective in low
dimensional spaces; however, their performance worsens as the intrinsic dimen-
sion increases (this problem is known as curse of dimensionality [4]). On the
other hand, there are also algorithms designed for high dimension, but their
performance tends to do a sequential scan [5].

Basically, there are few effective algorithms to face searches on high - dimen-
sional metric spaces without making sequential scan. Usually, these proposals
identify quickly some relevant elements within the correct answer, however the
answer set returned could contains some irrelevant objects. In this context, one
of the techniques which works in high dimension with a remarkable performance
are the Permutation-Based Algorithms (PBA) [1,3,8].

In this paper, we present a novel way to use the distances between the
database objects and the set of permutants in order to improve the perfor-
mance of the permutant-based algorithms. With this proposal, we obtain a good
search performance, both in search costs and in answer quality, while reduce
significantly the space needed to store the index.

The rest of this paper is organized as follows. Section 2 reviews the PBA’s
basic concepts and some related work. We introduce our proposal in Sect. 3,
and show its experimental evaluation in Sect. 4. Finally, we give some conclusion
remarks and mention some lines of future work in Sect. 5.

2 Related Works

There are several algorithms for similarity searching in metric spaces [5]. Most of
them, if the size of its index is reduced, the algorithm’s performance gets worse.
Basically, there are three families of indexes: pivot-based, partition-based, and
permutation-based algorithms. For lack of space, we just describe the third one.

Permutation-based algorithms (PBA) [3] selects a set of elements
P = {p1, p2, . . . , pβ} (called permutants). Each element of the space u ∈ U
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defines a permutation Πu, by ordering the permutants according to the distances
to them. That is, for all 1 ≤ i < β, it satisfies d(Πu(i), u) ≤ d(Πu(i + 1), u).
Where Πu(i) is the permutant in the i-th postion. During the query, the compar-
ison is between query’s permutation and objects’s permutations using Spearman
Footrule distance. The idea is that the permutations closest to the query’s per-
mutation, considering Spearman Footrule distance [6], are probably the closest
elements to q according to d. This method provides an approximate answer to
the query, and it has proved to be unbeatable in high dimensional spaces.

In the literature of PBA, there are some proposals that uses auxiliary data
structures to avoid the examination of the whole dataset. For example, in [1] the
authors propose to use an inverted index to avoid the sequential scan between
permutations. Unfortunately, they work with a big set of permutants, in order
to increase its recall. In [7], the authors suggest using a suffix tree to find the
most similar permutations improving the search costs.

There have been some proposals to reduce the size of the index on PBA.
In [9] authors proposes a bit-encoding of the permutation; that is, let be Πu a
permutation of u ∈ U and Π−1

u its inverse, and α a threshold, for each permutant
pi ∈ P if |i−Π−1

u (i)| > α they used 1 to code the information of this permutant
for u, otherwise, they used 0 (the details of α can be observed at [9]). Hence, each
element codes its permutation by a sequence of bits. Then, they used Hamming
distance to classify permutations and to answer the query. Authors reported
good performance however they had to use a lot of permutants (at least 512).

3 Proposed Algorithm

In this article, we propose a new way to represent the information obtained from
the distances between u ∈ U and P. It allows reducing significantly the needed
space of the index while maintaining a good search performance, both in search
costs and answer quality.

As the usually methods proceed, our algorithm also considers two stages:
building an index and solving queries. The first stage can be made off-line, while
the second stage is performed on-line.

3.1 Building the Index

Let U the database, and P = {p1, p2, . . . , pβ} ⊆ U a random selected permutants,
β = |P|. Each u ∈ U computes all distances to the set of permutants P. Let
be Qu = {d(u, p1), . . . , d(u, pβ)}. We set a parameter r, which is considered a
tolerable difference of distances between an element and two permutants. With
this information we define a signature of u. Formally, the signature Su of an
element u is a concatenation of some Bu(pi, pj) pair of bits, where Bu(pi, pj) is
defined as follows:

Let be pi, pj ∈ P and an r the parameter, there are 3 cases:
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Bu(pi, pj) =

⎧
⎪⎨

⎪⎩

1 1 if |d(pi, u) − d(pj , u)| <= r

1 0 if d(pi, u) < d(pj , u)
0 1 if d(pi, u) > d(pj , u)

(1)

As it can be noticed, the value of each possible Bu(pi, pj) is one element of
the set {11, 10, 01}, which represents: 11 means that u is at the almost as nearby
(r-near) to pi as pj ; 10 represents that u is closest to pi than to pj , and 01
in other case. Of course, it is known that there are n × (n − 1) possible pairs
of permutants (i.e. pairs (pi, pj) is the same for (pj , pi)) and therefore, there
would be calculated all of them only knowing the distances of the set Qu. If we
use all the possible Bu(pi, pj), we do not reduce so much the space needed to
store the signature with respect to the space needed to store the permutation.
Consequently, we propose to use only the following set of permutants pairs R =
{(p1, p2), (p2, p3), . . . , (pβ−1, pβ)}, and R

′ = {(p1, p3), (p2, p4), . . . , (pβ−2, pβ)} to
form the signature of an element.With this restriction, the signature is formally
defined as:

Su = Bu(p1, p2)|Bu(p2, p3)| . . . |Bu(pβ−1, pβ)|Bu(p1, p3)|Bu(p2, p4)| . . . |Bu(pβ−2, pβ)

Therefore, all the Bu(pi, pj) are using only 2 bits each, and the concatenation
of them forms the signature of u. It can be regarded that for values of β > 3,
each signature will need more than one byte of storage. In general, the size in
bytes of the signature Su of any u ∈ U is γ = 	 (β∗2−3)∗2

8 
. Hence, the size of the
whole index will be n × γ bytes.

The main idea of this signature is to keep the information represented in
permutations. Two equal elements will have the same order by each pair; while
two similar objects could keep almost the same orders for all proposed pairs.

As an example, let be consider the set of permutants P =
{p1, p2, p3, p4, p5, p6}, the parameter r = 2, and the set of distances Qu =
{3, 2, 5, 7, 2, 4}. The resulting signature Su will be the following sequence of bits
and it occupies γ = 3 bytes of space:

Su = 1 1
︸︷︷︸

Bu(p1,p2)

1 0
︸︷︷︸

Bu(p2,p3)

1 1
︸︷︷︸

Bu(p3,p4)

0 1
︸︷︷︸

Bu(p4,p5)
︸ ︷︷ ︸

first byte

1 1
︸︷︷︸

Bu(p5,p6)

1 0
︸︷︷︸

Bu(p1,p3)

1 0
︸︷︷︸

Bu(p2,p4)

0 1
︸︷︷︸

Bu(p3,p5)
︸ ︷︷ ︸

second byte

0 1
︸︷︷︸

Bu(p4,p6)
︸ ︷︷ ︸

third byte

3.2 Searching

For a given query q, let be Qq the set of distances between q and all pi ∈ P.
The signature Sq of the query q is also computed by using Bq(pi, pj), with the
pair of permutants in R ∪ R

′. With this information (Sq) and the signatures of
the elements stored into the index, we hopefully could retrieve the most similar
elements to q.
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In order to select just the relevant objects from the database, the signature
of the query Sq is compared with all signatures Su, u ∈ U. If an element u is
very similar to q, possibly the signature Su will be similar to Sq. In order to
determine this similarity, the main idea is counting how many pairs of bits are
in the same order. We consider as candidate those signatures with at least two
equal pairs per byte. The Algorithm 1 exposes this idea.

Algorithm 1. Compare2signatures (Sq, Su)
let be Sq and Su the signatures of a query q and an element u, respectively
let be sizeSig the size of the signature
let be masks= {0xC0,0x30,0x0C,0x03}
let be count = 0
for i = 0 to sizeSig do

for m in masks do
if ((Sq[i]&m) == (Su[i]&m)) then

count + +
end if

end for
end for
Return count

As an example, we consider the same set of permutants P =
{p1, p2, p3, p4, p5, p6}, the parameter r = 2, and a query q whose set of distances
from P is Qq = {3, 3, 5, 7, 2, 3}. The signature Sq will be:

Sq = 1 1︸︷︷︸
Bq(p1,p2)

1 1︸︷︷︸
Bq(p2,p3)

1 1︸︷︷︸
Bq(p3,p4)

0 1︸︷︷︸
Bq(p4,p5)

1 1︸︷︷︸
Bq(p5,p6)

1 0︸︷︷︸
Bq(p1,p3)

1 0︸︷︷︸
Bq(p2,p4)

0 1︸︷︷︸
Bq(p3,p5)

0 1︸︷︷︸
Bq(p4,p6)

Therefore, the invocation of Compare2signatures (Sq, Su) will return the
count of 8, because Bq(pi, pj) ≈ Bu(pi, pj) eight times. The only pair of per-
mutants where these signatures do not coincide is: (p2, p3). For all the other
eight pairs of permutants considered they have the same value.

Then by using the Algorithm 1, Compare2signatures (Sq, Su) is computed
and order the elements considering an decreasing order of the returned value.
Hence, to answer any kind of query we compare a fraction of the first elements
(in the ordered list) directly by using the distance d from q, and return the
relevant elements seen.

In order to solve ties between the values returned for Compare2signatures
with two different elements and q, we use the Hamming distance HD
between the signatures. That is, if for two different elements u, v ∈ X,
Compare2signatures (Sq, Su) = Compare2signatures (Sq, Sv), then we use
HD(Sq, Su) and HD(Sq, Sv) to solve the tie, or any order will be valid. For
this purpose, we define HD as:

HD(Sq, Su) =
2(2β−3)∑

i=1

(Sqi ⊕ Sui
)
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Fig. 1. Performance of the indexes for 2 and 4 NN, using the space in dimension 8.

where Sqi and Sui
are the i-th bit of Sq and Su respectively, and ⊕ is the exclusive

or operator between bits.

4 Experimental Results

In order to evaluate the performance of the proposed algorithm, it was tested
with synthetic databases in several dimensions (8, 32). This kind of dataset was
randomly generated in the unitary hypercube with a uniformly distribution.
All these spaces have 100,000 vectors. Although they are vector spaces, they are
treated as any other metric space, disregarding the information of the coordinates
of each vector. These collections allow us to control the exact dimensionality of
the space we are working with. Euclidean distance was used for all these spaces.
For each dataset there are 500 objects as queries (synthetic also).

In Fig. 1(a) and (b) the dataset in dimension 8 was used and the queries were
for 2−NN, and 4-NN (left and right). In the axis x, the number of permutants
is changing. The axis y shows the number of computed distances to retrieve the
answer. In order to make a comparison of the proposed index performance, it
is also shown the performance of PBA algorithm. However, the tiny line (serie
marked as PBA) is an unfair comparison, because our proposal uses less than
50% of PBA space. Hence, to make a fair comparison, we need to use the same
amount of memory for the index; the serie labeled as PBA equal mem is the per-
formance of the PBA that utilizes the same size of our index. As it was expected,
as r is higher more candidates have to be reviewed (more calculations of the dis-
tance function are needed to get the correct answer). In both figures, at Fig. 1,
we show that with the radii r less than 0.2 we can improve the performance,
otherwise only with 64 permutants PBA equal mem overcomes our technique. It
can be noticed that with r = 0 and with 32 or 64 permutants PBA equal mem
can beat us. Moreover, the Fig. 2 illustrate the same type of experiments con-
sidering the dataset of vectors in dimension 32. As it can be seen, the behavior
of our technique stays also better than PBA equal mem in most of the values of
r, showing that it also resists the increasing of the space dimension.
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Fig. 2. Performance of the indexes for 2 and 4 NN, using the space in dimension 32.
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Fig. 3. Performance of the indexes for retrieving 8 nearest neighbors of the database.

4.1 Real Databases

In order to also test the performance of our proposal on real databases, we
consider a database consisting of 40,150 vectors, from NASA images http://www.
dimacs.rutgers.edu/Challenges/Sixth/software.html. Each element is a feature
vectors in R

20. The Euclidean distance is used to compare the objects.
At Fig. 3(a) the number of distances needed to retrieve some nearest neigh-

borh is shown. The novel proposal has a competitive performance as oracle of
which elements are similar. In some experiments, the proposal is better up to
66% (5NN). On the other hand, at Fig. 3(b) the performances of using more pairs
is shown. At axis x = 1 is using only the 1st pair, x = 2 is using the 1st and 2st

pairs, and so on. As it is expected, using more pairs improve the performance.

5 Conclusions and Future Works

As we have mentioned, the Permutation Based Algorithm (PBA) is a novel
technique to solve approximate similarity searching.

In order to use more efficiently the space, we propose a new alternative for
PBA that allows reducing the index space and obtains a competitive perfor-
mance. For this purpose, we introduce the signature of each element regarding

http://www.dimacs.rutgers.edu/Challenges/Sixth/software.html
http://www.dimacs.rutgers.edu/Challenges/Sixth/software.html
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the set of permutants. Each signature concatenates several pairs of bits that
represent how the element sees some pairs of permutants. By this way, we need
to store fewer bytes per element than the space needed to maintain the relation
between some permutants.

Furthermore, our index do not degrade its search performance due this space
reduction. The basic idea is to represent in a simple way the information given
for some pairs of permutants, based on that the similar objects could see these
pairs of permutants in a similar way.

As it can be shown, this new alternative of PBA obtains a good performance,
both in search costs and answer quality, while allows us to save more than
the 50% of the space needed for the original PBA with the same number of
permutants. Moreover, we also save CPU time at evaluating the dissimilarity
between signatures, with respect to evaluate distances between permutations.
Hence, we consider that the impact of our proposal is significant for the similarity
search community.

As future works, we plan to evaluate the performance of using different sets
of pairs to conform the signatures. We also consider studying how to combine
permutations and signatures, in order to take advantage when we have available
storage space. Moreover, we can consider how to affect another ways to select the
set of permutants the search performance of our proposal. For example, we can
select the permutants by using the technique of Sparse Spatial Selection (SSS)
[2]. Also, the proposal in this article can be used instead Spearman Footrule for
other indexes.
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Abstract. Distance concentration is a phantom menace for the labeling
of high dimensional data by distance-based classifiers. Filter methods
reduce data dimensionality, but they also add their ranking bias indi-
rectly into the classification procedure. In this study, we examine the
filtering problem from another perspective, in which multiple filters are
aggregated according to classifiers’ constraints. Our approach, named
S-Filter, is designed as a top-k skyline (k-skyband) search over mul-
tiple rankings by relying on the concept of F–dominance for weighted
and monotone linear functions. Unlike existing approaches, S-Filter

provides a deterministic strategy for joining multiple filters and avoids
the semantic problem of breaking top-k ties. S-Filter’s first stage uses
labeling-driven measures, e.g., F1-Score, for assessing the quality of each
filter with regards to a particular classifier, whereas range-tolerance inter-
vals around the initial quality measures define the partial search weights.
Next, S-Filter applies the FSA instance-optimal algorithm for select-
ing all the dimensions that can be among the top-k for a weight within
the range-tolerance intervals. Experiments on high dimensional datasets
show that S-Filter outperforms state-of-the-art filters in two scenarios:
(i) exploratory analysis on varying k and range-tolerance intervals, and
(ii) data reduction to its intrinsic dimensionality.

Keywords: Feature selection · Filters · Skyline queries · Classification

1 Introduction

Distance concentration is a counter-intuitive phenomenon that affects the
behavior of several metric distance functions under certain conditions [10].
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Fig. 1. (a) Scores of WINE dimensions ranked by 3 filters (higher values are better).
(b) Plot of top-2 dimensions from Filter 1 (LASSO). (c) Plot of top-2 dimensions by
MedianRank. (d) Plot of dimensions selected by S-Filter.

Consequently, distance-based classifiers may struggle in the handling of high
dimensional datasets [7]. Supervised filter methods enable choosing the most
relevant dimensions1 from the high dimensional set according to several statisti-
cal criteria (scores), which softens concentration as a classification pre-processing
step [1]. While several studies discuss whether a filter criterion outperforms oth-
ers [11], a more comprehensive approach is the joining of multiple filters into a
single ranking [4]. Apart from data-driven approaches, e.g., ensembles, the find-
ing of the dimensions with best aggregate scores from a list of filters resemble the
optimization problem in [5], in which the result set is constructed by a monotone
scoring function applied upon two or more rankings produced by distinct filters.

Figure 1 presents an example for the 13-dimensional UCI2 WINE dataset and
three different filters that assign a ranking rij to dimension di according to cri-
terion j, e.g., r23 = 8. On a reference classifier C1, the top-2 dimensions selected
by the LASSO filter (Fig. 1(b)), i.e., d10 and d4, correspond to an average F1-
Score of 0.703, whereas if method MedianRank [6] is applied for aggregating the
rankings (Fig. 1(c)), then the top-2 dimensions are d3 and d4, with a comparable
F1-Score of 0.700. MedianRank assumes rankings are equally relevant, which, in
some sense, is similar in spirit to using a linear aggregation function f in which
all weights are equal, i.e., f(di) =

∑3
j=1 wj · rij , with w1 = w2 = w3 = 1/3.

Uneven weights can be drawn from labeling-driven measures whenever classi-
fiers are used for assessing the quality of dimensions within each ranking. For
instance, suppose weights w1 = 0.31, w2 = 0.41, w3 = 0.28 are assigned to the
rankings in Fig. 1(a) through classifier C1, then the top-2 dimensions are d4 and
d2. However, different weights could result by using a different classifier, say,
C2, e.g., w1 = 0.25, w2 = 0.35, w3 = 0.4, thereby determining d4 and d3 as the

1 The most relevant dimensions for a particular set of points are the most prominent
data features. Accordingly, we use the terms dimensions and features alternately.

2 archive.ics.uci.edu/ml/datasets.

http://archive.ics.uci.edu/ml/datasets
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top-2 dimensions. A viable approach we propose for handling such uncertainty
is the relaxation of the weights through a set of constraints that determine the
compatibility of the result with the maximization of f . Accordingly, a range-
tolerance parameter ξ can be used for the exploration of results around initial
weights. In the example of Fig. 1(a), if C1’s weights are used with ξ = 0.01 then
the possible top-2 dimensions are d4, d2, and d3. By using these dimensions, the
average F1-Score rises to 0.753 (Fig. 1(d)).

In this paper, we study the problem of aggregating filters as a deterministic
k-skyband search whenever range-tolerance intervals are imposed as weighting
constraints. Accordingly, we design an embedded approach, named S-Filter,
that takes advantage of a user-provided classifier for assigning initial weights to
each filter, whereas range-tolerance intervals define the query setup. We investi-
gate S-Filter with varying k values and range-tolerance intervals, and results
indicate our method outperforms state-of-the-art filters.

2 Preliminaries and Related Work

Dimensionality Reduction by Filtering. Consider a dataset S =
{s1, . . . , sn} where each element si is described in a d-dimensional normalized
space, i.e., si ∈ [0, 1]d and associated with a categorical label. A supervised filter
ranks labeled features dj of the elements si in S by assigning a real value to them
so that top-valued dimensions can be seen as the best data features according
to the filter perspective. Additionally, a classifier can be employed for the evalu-
ation of ranked features, which results in an embedded approach that uses both
filter and classifier bias for finding the most suitable subset of dimensions [1,4].

Although we take advantage of such an embedded pipeline, our goal is rather
determining the dominant dimensions (in the skyline sense [2]) within multi-
ple rankings. Accordingly, we build upon representative filters, such as FISHER,
M-INFFS, CFS, RELIEFF, LASSO, ECFS, UDFS, INFFS, and ILFS [1,11].

Choosing the Number of Relevant Dimensions. The intrinsic dimension
is a common measure employed for estimating the number of relevant features
within a dataset. As the asymptotic approximation of statistical learning theory
indicates, the generalization of distance-based classifiers depends on the intrinsic
representation of the data [7,9]. Two groups of estimators stand out regarding
their computational efficiency and quality of predictions: (i) methods of power-
law approximation, and (ii) methods of concentration of measure [8]. A power-
law approximation is based on the notion that the number of possible elements
under the same distance range grows exponentially with dimensions. An effective
strategy for quantifying such behavior is the use of a Distance Plot that depicts
the joint pairwise distance distribution in the logarithm scale. The trimmed
points in the plot are interpolated by a line whose linear slope is the distance
exponent D that approximates the intrinsic dimension [8]. On the other hand,
an efficient approach for quantifying the concentration of measure is the ρ-score
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of Pestov [10], calculated as ρ = μ2
T /2 · σ2

T , where functions μT and σT are the
mean and standard deviation of the distance distribution, respectively.

Multiple Ranking Aggregation. If m filters are applied upon a labeled
dataset S then a list of rankings R = {rij}, i = 1, . . . , d, j = 1, . . . ,m is
obtained. Higher scores indicate better features so that an order of relevancy
can be inferred for each filter j. A scoring function f assigns a score to each
dimension di by aggregating the m rankings of di, i.e., f(di) = f(ri1, . . . , rim).
Function f is monotone if f(di) ≥ f(d′

i) for pairs of dimensions di, d
′
i in which

rij ≥ r′
ij , j = 1, . . . ,m. The number of monotone functions is infinite, and the

whole set of such functions is noted M. A top-k query on R returns the k dimen-
sions with the highest scores according to a function f ∈ M. A dimension di
dominates another dimension d′

i, denoted di � d′
i, whenever rij ≥ r′

ij holds for
all filters j = 1, . . . , m and at least one of the inequalities is strict. Dominance is
at the core of skyline queries, since the skyline of R is the set of non-dominated
dimensions in R, i.e., Sky(R) = {di ∈ R | �d′

i ∈ R, d′
i � di}. Notice Sky(R)

equals the set of dimensions that can be the top-1 result according to any mono-
tone function [2], i.e., di ∈ Sky(R) ⇔ ∃f ∈ M. ∀d′

i ∈ R \ {di}. f(di) > f(d′
i).

Dominance can be generalized to F-dominance by considering an arbitrary set
of monotone functions F , which generalizes the concept of skyline as well [2].

Definition 1 (F-dominance). Given a set of monotone functions F , a dimen-
sion di F-dominates dimension d′

i, denoted by di �F d′
i, iff ∀f ∈ F . f(di) ≥

f(d′
i) and ∃f ∈ F . f(di) > f(d′

i).

Definition 2 (Non-F-dominated skyline). Given a set of monotone func-
tions F , the non-F-dominated skyline of R, denoted ND(R,F) is the set of
non-F-dominated dimensions, i.e., ND(R,F) = {di ∈ R| �d′

i ∈ R, d′
i �F di}.

Note that, since F ⊆ M, then ND(R,F) ⊆ Sky(R). In particular,
ND(R,M) = Sky(R) and ND(R, {f}) is the set of possible top-1 dimensions
according to f [2]. The k-skyband of R, Skyk(R), is the set of dimensions in R
that are dominated by less than k dimensions and, therefore, includes all possible
top-k dimensions. The generalization of ND(R,F) is provided by Definition 3.

Definition 3. Given a set of monotone functions F , the (non-F-dominated) k-
skyband, NDk(R,F), contains all the dimensions that are F-dominated by less
than k dimensions.

The authors in [3] show that NDk(R,M) = Skyk(R), whereas NDk(R,F) ⊆
Skyk(R) whenever F ⊂ M. If F contains a single function f then NDk(R, {f})
is the set of all possible top-k dimensions according to f . Clearly, if a dimension
di 
∈ NDk(R,F), then no scoring function f ∈ F can make di a top-k dimension.
From a computational viewpoint, the cost of computing NDk(R,F) using the
instance-optimal FSA algorithm [3] is comparable to that of top-k queries.
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Fig. 2. S-Filter pipeline. Features are ranked by filtering criteria and evaluated by a
wrapped classifier defining the initial weights for the NDk(R,F) query.

3 A Two-Worlds Skyline: Embedding Filters
and Classifiers

Our approach evaluates multiple filter rankings from a user-provided classifier
perspective, in which the most relevant features are the non-F-dominated ones.
Figure 2 summarizes all steps related to the execution of the embedded method,
which was named S-Filter. The main idea behind S-Filter is the aggregation
of multiple filters according to a non-F-dominated k-skyband query, in which
weights depend on labeling-driven measures indicated by a wrapped classifier
and user-provided range-tolerance intervals. Such a parameterization enables
users to tune two important classification aspects, namely (i) choose the levels
and importance of classification “hits” and “misses” by changing labeling-driven
measures, e.g., F1-Score and Kappa Coefficient, according to characteristics of
the problem at hand, and (ii) delimit the uncertainty of the measures through
range-tolerance intervals. S-Filter applies the user-provided classifier for the
calculation of labeling-driven measures by relying on a holdout data split. These
values are then employed as the initial search weights for the NDk(R,F) query.

A cross-validation execution of the classifier runs for the ranking list produced
by each filter, in which the number of employed features is defined by the data
intrinsic dimension, i.e., the top-k features of each ranking are selected by setting
k as the round value of either D or ρ. An average labeling-driven value aj is
assigned to each filter j = 1, . . . , m at the end of the classification stage, and
S-Filter estimates the initial search weights proportional to such measures,
i.e., wj = aj/

∑m
j=1 aj . S-Filter’s last step is the execution of a NDk(R,F)

query on the rankings, where F is determined by (i) the set of initial weights
wj , and (ii) range-tolerance intervals ξ, as in Eq. 1.

F = {f(di) = 1/d ·
∑

j

w′
j · rij}, where (1 − ξ) · wj ≤ w′

j ≤ (1 + ξ) · wj . (1)

The set of all non-F-dominated dimensions is returned by the FSA algorithm.
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Table 1. Datasets employed in the experiments.

Name |S| d Lp D ρ Labels Description

DAILY 9,120 5,625 L1 3 7 480/480 Sensor measures for daily activities

GISETTE 13,500 5,000 L1 9 21 6,750/6,750 Handwritten digits “4” and “9”

MFEAT 2,000 649 L1 2 13 200/200 Features from handwritten numerals

SMART 7,767 561 L2 4 4 23/1,223 Smartphone sensors for human activity

UJIN 19,935 520 L2 5 19 1,102/5,048 Characters in a UNIPEN-like format

4 Experiments

This section compares the performance of S-Filter and state-of-the-art filters
FISHER, M-INFFS, CFS, RELIEFF, LASSO, ECFS, UDFS, INFFS and ILFS regarding:
(i) parameter exploration, which aims at investigating the impact of varying
top-k and range-tolerance values, and (ii) labeling quality impact, whose goal is
assessing the gains of S-Filter when data are reduced to its intrinsic dimension.

Datasets. We used five UCI datasets (see Table 1) in association with different
distance functions. In all experiments, F1-Scores of top-k features were used as
labeling-driven measures to assess the quality of individual rankings, and the
intrinsic dimension was calculated by the ρ-score.

Classifiers. We evaluated three classifiers that are impacted in different ways
by high-dimensional datasets. First, we employed the baseline Instance-based
Learning (IBL) classifier, which depends on the distance function for defining
its search space [1]. We also evaluated the Discriminant Analysis (DA) classifier
since the error of its internal regression is affected by the number of dimen-
sions [7]. Finally, we experimented with pruned Decision-Trees (DT), whose
number of levels and construction are impacted by data dimensionality [7].

Parameter Exploration. We evaluated the impact of S-Filter parameters in
data classification by performing 3-fold cross-validations on the test portion of
the datasets. We varied parameter k exponentially from top-2 features to top-256
features, while range-tolerance intervals were set from 0 to 50% of uncertainty,
i.e., ξ ± {0.0, . . . , 0.5}. Figure 3 reports the average classification ratio as blue-
to-yellow heatmaps of F1-Score (also employed for S-Filter training). Results
show that S-Filter not only outperformed the competitors in most cases for
increasing values of range-tolerance but also reached a stable (absolute variation
≤ 1%) ratio with fewer dimensions in comparison to other methods. In particular,
S-Filter outperformed all filters on set DAILY (D = 3) for k = {2, 4} and
ξ±{0.0, 0.1} in up to 13.4% with regards to the closest competitor (CFS). Intrinsic
high-dimensional datasets GISETTE and SMART showed that S-Filter required a
larger uncertainty ratio ξ ≥ 0.3 for surpassing the RELIEFF filter. Such findings
indicate that S-Filter demanded fewer expected dimensions to reach better
quality, whereas range-tolerance restrained the weight estimation error.
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Fig. 3. F1-Scores for varying k and range-tolerance intervals.

Reduction to Data Intrinsic Dimension. We examined the filter-based com-
petitors in the practical case where the number of features is set to the intrin-
sic dimension. Figure 4 reports the average and standard deviation F1-Scores
obtained by the classifiers IbL, DT, and DA and the nine compared filters as
a single heatmap. Results indicate S-Filter outperformed the competitors for
ξ±0.0 considering most of the scenarios, whereas S-Filter with ξ±0.3 either tied
or outperformed isolated filters. In particular, S-Filter without range-tolerance
achieved 15.3%, 17.6%, and 23.4% higher F1–Scores, on average, regarding IbL,
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Fig. 4. F1-Scores for data reduction to the intrinsic dimension.

DT, and DA, respectively. Such outcomes reinforce the findings of the previous
evaluation, where S-Filter provided better F1-Scores than the competitors.

Conclusions. Our solution, S-Filter, is an embedded and deterministic k-
skyband-based approach that aggregates multiple filters with classifier-estimated
weights, mitigating estimation uncertainty via tolerance intervals. Experiments
show that S-Filter attains a higher classification ratio than existing filters.

References

1. Aggarwal, C.C.: Data Mining: The Textbook. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-14142-8

2. Ciaccia, P., Martinenghi, D.: Reconciling skyline and ranking queries. PVLDB
10(11), 1454–1465 (2017)

3. Ciaccia, P., Martinenghi, D.: FA + TA < FSA: flexible score aggregation. In:
CIKM, pp. 57–66. ACM (2018)

4. Drotár, P., Gazda, M., Vokorokos, L.: Ensemble feature selection using election
methods and ranker clustering. Inf. Sci. 480, 365–380 (2019)

5. Fagin, R.: Combining fuzzy information from multiple systems. In: PODS, pp.
216–226 (1996)

6. Fagin, R., Kumar, R., Sivakumar, D.: Efficient similarity search and classification
via rank aggregation. In: SIGMOD, pp. 301–312. ACM (2003)

https://doi.org/10.1007/978-3-319-14142-8
https://doi.org/10.1007/978-3-319-14142-8


168 M. Bedo et al.

7. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statisti-
cal Learning, vol. 112. Springer, New York (2013). https://doi.org/10.1007/978-1-
4614-7138-7

8. Navarro, G., Paredes, R., Reyes, N., Bustos, C.: An empirical evaluation of intrinsic
dimension estimators. Inf. Syst. 64, 206–218 (2017)

9. Pestov, V.: An axiomatic approach to intrinsic dimension of a dataset. Neural
Netw. 21(2–3), 204–213 (2008)

10. Pestov, V.: Lower bounds on performance of metric tree indexing schemes for exact
similarity search in high dimensions. Algorithmica 66(2), 310–328 (2013)

11. Roffo, G., Melzi, S., Castellani, U., Vinciarelli, A.: Infinite latent feature selection:
a probabilistic latent graph-based ranking approach. In: CVPR (2017)

https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1007/978-1-4614-7138-7


Clustering and Outlier Detection



Faster k-Medoids Clustering:
Improving the PAM, CLARA,
and CLARANS Algorithms

Erich Schubert1(B) and Peter J. Rousseeuw2

1 Technische Universität Dortmund, Dortmund, Germany
erich.schubert@tu-dortmund.de

2 Department of Mathematics, KU Leuven, Leuven, Belgium
peter@rousseeuw.net

Abstract. Clustering non-Euclidean data is difficult, and one of the
most used algorithms besides hierarchical clustering is the popular algo-
rithm Partitioning Around Medoids (PAM), also simply referred to as
k-medoids.

In Euclidean geometry the mean—as used in k-means—is a good esti-
mator for the cluster center, but this does not exist for arbitrary dissim-
ilarities. PAM uses the medoid instead, the object with the smallest
dissimilarity to all others in the cluster. This notion of centrality can
be used with any (dis-)similarity, and thus is of high relevance to many
domains and applications.

A key issue with PAM is its high run time cost. We propose modifi-
cations to the PAM algorithm that achieve an O(k)-fold speedup in the
second (“SWAP”) phase of the algorithm, but will still find the same
results as the original PAM algorithm. If we slightly relax the choice of
swaps performed (while retaining comparable quality), we can further
accelerate the algorithm by performing up to k swaps in each itera-
tion. With the substantially faster SWAP, we can now explore faster
intialization strategies. We also show how the CLARA and CLARANS
algorithms benefit from the proposed modifications.

Keywords: Cluster analysis · k-Medoids · PAM · CLARA ·
CLARANS

1 Introduction

Clustering is a common unsupervised machine learning task, in which the data
set has to be automatically partitioned into “clusters”, such that objects within
the same cluster are more similar, while objects in different clusters are more
different. There is not (and likely never will be) a generally accepted definition
of a cluster, because “clusters are, in large part, in the eye of the beholder” [7],
meaning that every user may have different enough needs and intentions to want
a different algorithm and notion of cluster. And therefore, over many years of
c© Springer Nature Switzerland AG 2019
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research, hundreds of clustering algorithms and evaluation measures have been
proposed, each with their merits and drawbacks. Nevertheless, a few seminal
methods such as hierarchical clustering, k-means, PAM [9], and DBSCAN [6]
have received repeated and widespread use. One may be tempted to think that
these classic methods have all been well researched and understood, but there
are still many scientific publications trying to explain these algorithms better
(e.g., [19]), trying to parallelize and scale them to larger data sets, trying to
better understand similarities and relationships among the published methods
(e.g., [18]), or proposing further improvements – and so does this paper for the
widely used PAM algorithm.

A classic method taught in textbooks is k-means (for an overview of the
complicated history of k-means, refer to [3]), where the data is modeled using k
cluster means, that are iteratively refined by assigning all objects to the nearest
mean, then recomputing the mean of each cluster. This converges to a local
optimum because the mean is the least squares estimator of location, and both
steps reduce the same quantity, a measure known as sum-of-squared errors:

SSQ :=
∑k

i=1

∑
xj∈Ci

||xj − μi||22 . (1)

In k-medoids, the data is modeled similarly, using k representative objects mi

called medoids (chosen from the data set; defined below) that serve as “proto-
types” for the clusters in order to allow using arbitrary other dissimilarities and
arbitrary input domains, using the absolute error criterion (“total deviation”,
TD) as objective:

TD :=
∑k

i=1

∑
xj∈Ci

d(xj ,mi) , (2)

which is the sum of dissimilarities of each point xj ∈ Ci to the medoid mi of
its cluster. If we use squared Euclidean as distance function (i.e., d(x,m) =
||x − m||22), we almost obtain the usual SSQ objective used by k-means, except
that k-means is free to choose any μi ∈ R

d, whereas in k-medoids mi ∈ Ci

must be one of the original data points. For squared Euclidean distances and
Bregman divergences, the arithmetic mean is the optimal choice for μ. For L1

distance (i.e,
∑ |xi − yi|), also called Manhattan distance, the component-wise

median is a better choice in R
d [4]. For unsquared Euclidean distances, we get

the much harder Weber problem [14], which has no closed-form solution [4]. For
other distance functions, finding a closed form to compute the best mi would
require a separate mathematical analysis. Furthermore, our input domain is not
necessarily a R

d vector space. In k-medoids clustering, we therefore constrain
mi to be one of our data samples. The medoid of a set C is defined as the object
with the smallest sum of dissimilarities (or, equivalently, smallest average) to all
other objects in the set:

medoid(C) := arg minxi∈C

∑
xj∈C d(xi, xj) .
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This definition does not require the dissimilarity to be a metric, and by using
arg max it can also be applied to similarities. The algorithms discussed below
all can trivially be modified to maximize similarities rather than minimizing dis-
tances, and none assumes the triangular inequality. Partitioning Around Medoids
(PAM, [9]) is the most widely known algorithm to find a good partitioning using
medoids, with respect to TD (Eq. 2).

2 Partitioning Around Medoids (PAM) and Its Variants

The “Program PAM” [9] consists of two algorithms, BUILD to choose an initial
clustering, and SWAP to improve the clustering towards a local optimum (finding
the global optimum of the k-medoids problem is, unfortunately, NP-hard). The
algorithms require a dissimilarity matrix, which requires O(n2) memory and
typically O(n2d) time to compute (but much more for expensive distances such
as earth movers distance).

In order to find a good initial clustering, BUILD chooses k times the point
which yields the smallest distance sum TD (this means first choosing the point
with the smallest distance to all others; afterwards always adding the point that
reduces TD most). The motivation here was to find a good starting point, in
order to require fewer iterations of the refinement procedure. The second part,
SWAP, improves the clustering by considering all possible simple changes to the
set of k medoids, which effectively means replacing (swapping) some medoid
with some non-medoid, which gives k(n−k) candidate swaps. If it reduces TD ,
the best such change is then applied, in the spirit of a greedy steepest-descent
method, and this process is repeated until no further improvements are found.

The algorithm CLARA [10]) repeatedly applies PAM on a subsample with
n′ � n objects, with the suggested value n′ = 40+2k. Afterwards, the remaining
objects are assigned to their closest medoid. The run with the least TD (on the
entire data) is returned. If the sample size is chosen n′ ∈ O(k) as suggested, the
run time reduces to O(k3), which explains why the approach is typically used
only with small k [12].

Lucasius et al. [12] propose a genetic algorithm for k-medoids, by performing
a randomized exploration based on “mutation” of the best solutions found so far.
The algorithm CLARANS [13] interprets the search space as a high-dimensional
hypergraph, where each edge corresponds to swapping a medoid and non-medoid.
On this graph it performs a randomized greedy exploration, where the first
edge that reduces the loss TD is followed until no edge can be found with p =
1.25% · k(n − k) attempts. Other proposals include optimizations for Euclidean
space and tabu search heuristics [8].

Reynolds et al. [16] discuss an interesting trick to speed up PAM. They show
how to decompose the change in the loss function into two components, where
the first depends only on the medoid removed, the second part only on the new
point. This decomposition forms the base for our approach, and we will thus
discuss it in Sect. 3 in more detail.

Park and Jun [15] propose a “k-means like” algorithm for k-medoids (actu-
ally already considered by [16] before), where in each iteration the medoid is
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chosen to be the object with the smallest distance sum to other members of the
cluster, then each point is assigned to the nearest medoid until TD no longer
decreases. This is, unfortunately, not very effective at improving the clustering:
new medoids are only chosen from within the cluster, and have to cover the
entire current cluster. This misses many improvements where cluster members
can be reassigned to other clusters with little cost; such improvements are con-
sidered by SWAP. Furthermore, the discrete nature of medoids makes this much
more likely to get stuck in a local optimum. In our experiments this approach
produced much worse results than PAM, as previously observed by [16].

3 Finding the Best Swap

The algorithm SWAP evaluates every swap of each medoid mi with any non-
medoid xj . Recomputing the resulting TD using Eq. 2 every time requires finding
the nearest medoid for every point, which causes many redundant computations.
Instead, PAM only computes the change in TD for each object xo if we swap
mi with xj :

ΔTD =
∑

xo
Δ(xo,mi, xj) (3)

In the function Δ(xo,mi, xj) we can often detect when a point remains
assigned to its current medoid (if ck �= ci, and this distance is also smaller than
the distance to xj), and then immediately return 0. Because of space restrictions,
we do not repeat the original “if” statements used in [9], but instead condense
them into the equation:

Δ(xo,mi, xj) =

{
min{d(xo, xj), ds(o)} − dn(o) if i = nearest(o)
min{d(xo, xj) − dn(o), 0} otherwise

, (4)

where dn(o) is the distance to the nearest medoid of o, and ds(o) is the distance
to the second nearest medoid. Computing them on the fly increases the runtime
by a factor of O(k), but we can cache these values, and only update them when
performing a swap.

Reynolds et al. [16] note that we can decompose ΔTD into: (i) the loss of
removing medoid mi, and assigning all of its members to the next best alter-
native, which can be computed as

∑
o∈Ci

ds(o) − dn(o) (ii) the (negative) loss
of adding the replacement medoid xj , and reassigning all objects closest to this
new medoid. Since (i) does not depend on the choice of xj , we can make the
loop over all medoids mi outermost, reassign all its points to the second near-
est medoid (cache the distance to the now nearest neighbor), and compute the
resulting loss. We then iterate over all non-medoids and compute the benefit
of using them as the missing medoid instead. In the Δ function, we no longer
have to consider the second nearest now (we virtually removed the old medoid
already). The authors observed roughly a two-fold speedup using this approach.

Our approach is based on a similar idea of exploiting redundancy in these
computations (by caching shared computations), but we instead move the loops
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over the medoids mi into the innermost for loop. The reason for this is to further
remove redundant computations. This becomes apparent when we realize that in
Eq. 4, the second case does not depend on the current medoid i. If we transform
the second case into an if statement, we can often avoid to iterate over all k
medoids.

3.1 Making PAM SWAP Faster: FastPAM1

Algorithm 1 shows the improved SWAP algorithm. In lines 4–5 we compute the
benefit of making xj a medoid. As we do not yet decide which medoid to remove,
we use an array of ΔTDs for each possible medoid to replace. We can now for
each point compute the benefit when removing its current medoid (line 9), or
the benefit if the new medoid is closer than the current medoid (line 10), which
corresponds to the two cases in Eq. 4. Because the second case does not depend
on i, we can replace the min statement with an if conditional outside of the loop
in lines 10–12. After iterating over all points, we choose the best medoid, and
remember the overall best swap. If we always prefer the smaller index i on ties,
we choose exactly the same swap as the original PAM algorithm.

Assuming that the new medoid is closest in O(1/k) cases on average, we can
compute the change for all k medoids with O(k ·1/k) = O(1) effort, by saving on
the innermost loop. Therefore, we expect a typical speedup on the order of O(k)
compared to the original PAM SWAP (but it may be hard to guarantee this
for any useful assumption on the data distribution; the worst case supposedly
remains unaffected) at the slight cost of storing one ΔTD for each medoid mi

(compared to the cost of the distance matrix and the distances to the nearest
and second nearest medoids, the cost of this is negligible).

Algorithm 1. FastPAM1: Improved SWAP algorithm
1 repeat
2 (ΔTD∗, m∗, x∗) ← (0, null, null) ; // Empty best candidate storage

3 foreach xj �∈ {m1, . . . , mk} do
4 dj ← dnearest(xj) ; // Distance to current medoid

5 ΔTD ← (−dj , −dj , . . . , −dj) ; // Change if making j a medoid

6 foreach xo �= xj do
7 doj ← d(xo, xj) ; // Distance to new medoid

8 (n, dn, ds) ← (nearest(o), dnearest(o), dsecond(o)) ; // Cached values

9 ΔTDn ← ΔTDn + min{doj , ds} − dn ; // Loss change

10 if doj < dn then // Reassignment check

11 foreach mi ∈ {m1, . . . , mk} \ mn do
12 ΔTD i ← ΔTD i + doj − dn; // Update loss change

13 i ← arg min ΔTD i ; // Choose best medoid i

14 if ΔTD i < ΔTD∗ then (ΔTD∗, m∗, x∗) ← (ΔTD i, mi, xj) ; // Store

15 break loop if ΔTD∗ ≥ 0;
16 swap roles of medoid m∗ and non-medoid x∗ ;
17 TD ← TD + ΔTD∗ ;

18 return TD , M, C;
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3.2 Swapping Multiple Medoids: FastPAM2

A second technique to make SWAP faster is based on the following observation:
PAM will always identify the single best swap, then restart search; whereas the
classic k-means updates all means in each iteration. Choosing the best swap has
the benefit that this makes the algorithm independent of the data order [9] as
long as there are no ties, and it means we need to execute fewer swaps than
if we would greedily perform any swap that yields an improvement (where we
may end up replacing the same medoid several times). But on the other hand, in
particular for large k, we can assume that many clusters will be independent, and
we could therefore update the medoids of these clusters in the same iteration,
hence reduce the number of iterations by up to a factor of k.

Based on this observation, we propose to consider the best swap for each
medoid, i.e., perform up to k swaps. This is a fairly simple modification shown
in Algorithm 2, as we can use an array of swap candidates (ΔTD∗

i, x
∗
i) in line 3,

storing the best candidate for each current medoid mi, and update these in
line 15. After evaluating all possible swaps, we find the best swap within these
up to k candidates (if we did not find a candidate, the algorithm has converged).
We perform the best of these swaps in line 18. Then we recompute in line 22 for
each remaining swap candidate if it still improves the clustering, otherwise this
additional swap is not performed.

Algorithm 2. FastPAM2: SWAP with multiple candidates

1 repeat
2 foreach xo do compute nearest(o), dnearest(o), dsecond(o); ;
3 ΔTD∗, x∗ ← [0, . . . , 0], [null, . . . , null] ; // Empty best candidates array
4 foreach xj �∈ {m1, . . . , mk} do
5 dj ← dnearest(xj) ; // Distance to current medoid
6 ΔTD ← (−dj , −dj , . . . , −dj) ; // Change for making j a medoid
7 foreach xo �= xj do
8 doj ← d(xo, xj) ; // Distance to new medoid
9 (n, dn, ds) ← (nearest(o), dnearest(o), dsecond(o)) ; // Cached

10 ΔTDn ← ΔTDn +min{doj , ds} − dn ; // Loss change for xo

11 if doj < dn then // Reassignment check
12 foreach mi ∈ {m1, . . . , mk} \ mn do
13 ΔTDi ← ΔTDi + doj − dn; // Update loss change

14 foreach i where ΔTDi < ΔTD∗
i do

15 (ΔTD∗
i, x

∗
i) ← (ΔTDi, xj) ; // Remember the best swap for i

16 break loop if minΔTD∗ ≥ 0 ; // Stop if no improvements were found
17 while i ← argminΔTD∗ and ΔTD∗

i < 0 do // Execute all improvements
18 swap roles of medoid mi and non-medoid x∗

i ;
19 TD ← TD + ΔTD∗

i ;

20 ΔTD∗
i ← 0 ; // Disable the swap just performed

21 foreach j where ΔTD∗
j < 0 do // For remaining swap candidates

22 ΔTD∗
j ← ∑

xo �∈{m1,...,mk}\mj
Δ(xo, mj , x

∗
j) ; // Recompute TD

23 return TD , M, C;
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The improvements of this strategy are, unsurprisingly, much smaller than
those of FastPAM1. In early iterations we see multiple swaps being executed, but
in the later iterations it is common that only few medoids change. Nevertheless,
this simple modification yields another measurable performance improvement.
However—in contrast to the first improvement—this no longer guarantees to
yield the same result. From a theoretical point of view, both the original PAM,
and FastPAM2 perform a steepest descent optimization strategy; where PAM
only permits descends consisting of a single swap, whereas FastPAM2 can per-
form multiple swaps at once as long as they use different medoids. Therefore,
both are able to find results of equivalent quality. In our experiments, FastPAM2
would often find marginally better results than PAM, and faster.

3.3 Faster Initialization with Linear Approximative BUILD (LAB):
FastPAM

With these optimizations to SWAP, reducing the time from O(k(n − k)2) to
O((n − k)2), the bottleneck of PAM becomes the BUILD phase. In our experi-
ments with large k, PAM would spend 99% of the run time in SWAP. With above
optimizations this reduces to about 15%. About 16% is the time to compute the
distance matrix, and 69% of the time is spent in BUILD. The complexity of
BUILD is in O(kn2), so for large k this is expected to happen. Because we
made SWAP much faster, we can afford to begin with slightly worse starting
conditions, even if we need more iterations of SWAP afterwards.

Algorithm 3. FastPAM LAB: Linear Approximate BUILD initialization.
1 (TD , m1) ← (∞, null);
2 S ← subsample of size 10 + �√n	 from X ; // Subsample

3 foreach xj ∈ S do // First medoid

4 TDj ← 0 ;
5 foreach xo ∈ S ∧ xo �= xj do TDj ← TDj + d(xo, xj);
6 if TDj < TD then (TD , m1) ← (TDj , xj); // Smallest distance sum

7 for i = 1 . . . k − 1 do // Other medoids

8 (ΔTD∗, x∗) ← (∞, null);
9 S ← subsample of size 10 + �√n	 from X \ {m1, . . . , mi} ; // Subsample

10 foreach xj ∈ S do
11 ΔTD ← 0 ;
12 foreach xo ∈ S ∧ xo �= xj do
13 δ ← d(xo, xj) − mino∈m1,...,mi d(xo, o);
14 if δ < 0 then ΔTD ← ΔTD + δ;

15 if ΔTD < ΔTD∗ then (ΔTD∗, x∗) ← (ΔTD , xj); // best reduction

16 (TD , mi+1) ← (TD + ΔTD∗, x∗);
17 return TD , {m1, . . . , mk};
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An elegant way of initializing k-means is k-means++ [2]. The beautiful idea
of this approach is to choose seeds with the probability proportional to their
squared distance to the nearest seed (the first seed is picked uniformly). If we
assume there is a cluster of points and no seed nearby, the probability mass
of this cluster is substantial, and we are likely to place a seed there; afterwards
the probability mass of this cluster reduces. Furthermore, this initialization is (in
expectation) O(log k) competitive to the optimal solution, so it will theoretically
generate good starting conditions. But as seen in our experiments, this guarantee
is pretty loose; and BUILD empirically produces much better starting conditions
than k-means++ (we are not aware of a detailed theoretical analysis). The reason
is that k-means++ picks random points (usually) from different clusters, but
makes no effort to find good centers of the clusters (which is not that important
for k-means, where the mean is in between of the data points). Therefore, with
k-means++-style initialization we need around k additional swaps to pick the
medoid of each cluster (and hence, k iterations of original PAM SWAP, although
much fewer with FastPAM2). Because a single iteration of swap used to take as
much time as BUILD, the k-means++ initialization only begins to shine if we use
FastPAM1 to reduce the cost of iterating together with the FastPAM2 strategy
of doing as many swaps as possible.

We experimented with k-means++, but eventually settled for a different
strategy we call LAB (Linear Approximative BUILD). What we title “FastPAM”
then is the combination of LAB with the optimizations of FastPAM2. As the
name indicates, LAB is a linear approximation of the original PAM BUILD. In
order to achieve linear runtime in n, we simply subsample the data set. Before
choosing each medoid, we sample 10 + �√n� points from all non-medoid points.
From this subsample we choose the one with the largest decrease ΔTD with
respect to the current subsample only. Results were slightly better with sampling
k times, and not just once; since each object has k chances of being in the sample,
and if we draw a bad sample it only affects a single medoid. A pseudocode of
LAB is given as Algorithm 3. Clearly, the complexity is down to O(kn).

3.4 Integration: FastCLARA and FastCLARANS

Since CLARA [10] uses PAM as a subroutine, we can trivially use our improved
FastPAM with CLARA. In the experiments we will denote this variant as
FastCLARA.

CLARANS [13] uses a randomized search instead of considering all possible
swaps. For this, it chooses a random pair of a non-medoid object and a medoid,
computes whether this improves the current loss, and then greedily performs this
swap. Adapting the idea from FastPAM1 to the random exploration approach
of CLARANS, we pick only the non-medoid object at random, but can consider
all medoids at a similar cost to looking at a single medoid. This means we can
either explore k times as many edges of the graph, or we can reduce the number
of samples to draw by a factor of k. In our experiments we opted for the second
choice, to make the results comparable to the original CLARANS in the number
of edges considered; but as the edges chosen involve the same non-medoids, we
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Fig. 1. Run time of PAM SWAP (SWAP only, without DAISY, without BUILD)

expect a slight loss in quality that should be easily countered by increasing the
subsampling rate of non-medoids. By varying the subsampling rate, the user can
control the tradeoff between computation time and exploration.

4 Experiments

Theoretical considerations show that we must expect an O(k) speedup of Fast-
PAM1 over the original PAM algorithm, so our experiments primarily need to
verify that there is no trivial error (in contrast to much work published in recent
years, the speedup is not just empirical). Nevertheless constant factors and imple-
mentation details can make a big difference [11], and we want to ensure that we
do not pay big overheads for theoretical gains that would only manifest for infi-
nite data.1 For FastPAM2 the speedup is expected to be only a small factor due
to the reduction in iterations. In contrast to FastPAM1, it does not guarantee
the exact same results; therefore we also want to verify that they are of the
expected equivalent quality. The worse starting conditions of LAB should not
affect the final result, but will require additional iterations of SWAP. We observed
increased runtimes when using k-means++ for PAM initialization, therefore it
needs to be verified experimentally that LAB does not require excessive addi-
tional iterations.

We showcase results from the “one-hundred plant species leaves” data set
(texture features only) from the well-known UCI repository [5], but we verified

1 Clearly, our O(k) fold speedup must be immediately measurable, not just asymp-
totically, because the constant overhead for maintaining the fixed array cache is
small.
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Fig. 2. Run time comparison of different variations and derived algorithms.

the results on additional data sets (not included because of space restrictions).
We chose this data set because it has 100 classes, and 1600 instances, a fairly
small size that PAM can still easily handle. Naively, one would expect that
k = 100 is a good choice on this data set, but some leaf species are likely not
distinguishable by unsupervised learning. We used the ELKI open-source data
mining toolkit [20] in Java to develop our version. For comparison, we also ported
FastPAM2 to the R cluster package, which is based on the original PAM source
code and written in C. Experiments were run on an Intel i7-7700 at 3.6 GHz with
turbo boost disabled. We perform 25 runs, and plot the average, minimum and
maximum. Both implementations and all data sets show similar behavior, so we
are confident that the results are not just due to implementation differences [11].

4.1 Run Time Speedup

In Fig. 1, we vary k from 2 to 200, and plot the run time of the PAM SWAP
phase only (the cost of computing the distance matrix and the BUILD phase is
not included), using the original PAM, the Reynolds version, and the proposed
improvements. Figure 1a shows the run time in linear space, to visualize the
drastic run time differences observed. Reynolds’ was quite consistently two times
faster than the original PAM; but our proposed methods were faster by a factor
that grows approximately linearly with the number of clusters k. In log-log-space,
Fig. 1b, we can differentiate the three variants studied.

In Fig. 1c we plot the speedup over PAM. Reynolds’ SWAP clearly was about
twice as fast as the original PAM. The FastPAM1 improvement gives an empirical
speedup factor of about 1

2k, while the second improvement contributed an addi-
tional speedup of about 2–2.5× by reducing the number of iterations. Because of
the multiplicative effect of these savings, the linear plot in Fig. 1c gives the false
impression that this second contribution yields the larger benefit. The logspace
plot in Fig. 1d more accurately reflects the contribution of the two factors, result-
ing in a speedup of over 250 times at k = 150; while at k = 2 and k = 3 the
speedup was just 1.4× resp. 1.75×, and less than our implementation of Reynolds
(in R, our method is as fast as Reynolds for k = 2). In the most extreme case
tested, a speedup of about 1000× at k = 200 is measured – but because the
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Fig. 3. Number of iterations for PAM vs. FastPAM2 and BUILD vs. LAB initialization

Fig. 4. Runtime impact of k-means++ and LAB initialization

speedup depends on O(k), the exact values are meaningless, furthermore, we
excluded the distance matrix computation and initialization in this experiment.

In Fig. 2, we study the run time of approximations to PAM (including the
distance matrix computation and initialization time now). We only present the
log-log space plots, because of the extreme differences. The run time of CLARA,
as k increases, approaches the run time of PAM. This is expected, because the
subsample size for CLARA is chosen as 40 + 2k, and necessary because the sub-
sample size needs to be sufficiently larger than k. For CLARA x2 we also eval-
uate doubling this value to 80 + 4k, and we also double the number of restarts
from 5 to 10. CLARA x2 is thus expected to take 8 times longer, but should
give better results. FastCLARA is CLARA using our FastPAM approach, and
performs much better, but for large k also eventually becomes slower than Fast-
PAM. The run time of CLARANS on this data set (see later for CLARANS
problems) is in between the original PAM and CLARA, and with our optimiza-
tions FastCLARANS becomes the fastest method tested (at similar quality to
CLARANS, and with the same problems). Park and Jun’s [15] approach is sim-
ilarly fast to FastCLARANS for large k, but its quality is quite poor, as we will
see and discuss in Sect. 4.3.
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4.2 Number of Iterations

We are not aware of theoretical results on the number of iterations needed for
PAM. Based on results for k-means, we must assume that the worst case is
superpolynomial like k-means [1], albeit in practice a “few” iterations are usu-
ally enough. Because of this, we are also interested in studying the number of
iterations.

Figure 3 shows the number of iterations needed with different methods, both
in linear space and log space. In line with previous empirical results, only few
iterations are necessary. Because PAM only performs the best swap in each
iteration, a linear dependency on k is to be assumed; interestingly enough we
usually observed much less than k iterations, so many medoids remain unchanged
from their initial values (note that this may be due to the rather small data
set size, too). The k-means++ initialization required roughly 2–4× as many
iterations for PAM; with the original algorithm where each iteration would cost
about as much as the BUILD initialization, this choice is detrimental even for
small k. With the improvements of this paper, these additional iterations are
cheaper than the rather slow BUILD initialization by a factor of O(k) now,
hence we can now begin with a worse but cheaper starting point. Furthermore,
the FastPAM2 approach which performs up to k swaps in each iteration does
reduce the number of iterations substantially. FastPAM2 with BUILD performed
the second-lowest numbers of iterations. Our proposed LAB initialization of
FastPAM saves a few extra iterations compared to the k-means++ strategy,
at better initial quality, and hence is measurably faster in the end. Park and
Jun [15] at first seems to perform very well in this figure, with slightly fewer
iterations than FastPAM2 with BUILD. Unfortunately, this is because the “k-
means style” algorithm misses many improvements to the clustering, and hence
produces much worse results as we will observe next.

In Fig. 4 we revisit the runtime experiment, and focus on initialization. As we
can see, the increased number of iterations hurts runtime with the original PAM
algorithm as well as its Reynolds variant substantially (the reasons for this are
explained in Sect. 3.3); for FastPAM1, the use of k-means++ only comes at a
small performance penalty (while it still needs as many iterations as the original
PAM, these have become O(k) times faster, and the initialization cost begins to
matter much more), and with FastPAM2’s ability to perform multiple swaps per
iteration, a linear-time initialization such as the proposed LAB clearly becomes
the preferred initialization method, in particular for large k.

4.3 Quality

Any algorithmic change and optimization comes at the risk of breaking some
things, or negatively affecting numerics (see, e.g., [17] on how common numerical
issues are even with basic statistics such as variance in SQL databases). In
order to check for such issues, we made sure that our implementations pass
the same unit tests as the other algorithms in both ELKI and R. We do not
expect numerical problems, and Reynolds’ variant and FastPAM1 are supposed
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Fig. 5. Loss (TD) compared to PAM

to give the same result (and do so in the experiments, so we exclude them from
the plot). The FastPAM2 algorithm is greedy in performing swaps, and may
therefore converge to a different solution, but of the same quality.

In Fig. 5a we visualize the loss, i.e., the objective TD , of different approxima-
tions compared to the solution found by the original PAM approach (which is not
necessarily the global minimum). For large k, the solution found by the approach
of Park and Jun [15] is over 25% worse here, for the reasons discussed before.
Our strategy FastPAM2 gives results comparable to PAM as expected (some-
times slightly better, sometimes slightly worse). The cheaper LAB initialization
(full FastPAM) does not cause a noticeable loss in quality either, but further
improves the total run time. CLARA (which only uses a subsample of the data)
finds considerably worse results. By doubling the subsample size to 80 + 4k and
doing twice as many restarts (CLARA x2) the results only improve slightly for
large k (but much more for small k). CLARA x2 is until about k = 70 as good as
CLARANS here, but faster; for larger k it becomes even better than CLARANS,
but also slower. FastCLARA has the same quality as CLARA x2 (we use the x2
parameters, too), but it was much faster. FastCLARANS is slightly better than
CLARANS, and was considerably faster. All the CLARANS results degrade with
increasing k, so it may become necessary to increase the subsample size there,
which will increase the run time (it is up to the user to choose his preferences,
quality or runtime). In conclusion, all our “Fast” approaches perform as well as
their older counterparts, but are O(k) times faster.

In Fig. 5b, we evaluate the quality of LAB, k-means++, and BUILD initial-
ization compared to the converged PAM result. As seen in the previous exper-
iments, all three initializations will yield similar results after PAM, but we can
compare the quality of the initial medoids to the full PAM result. As we can
see, the BUILD approach produces the best initial results (and as noted by [9],
the BUILD result may be usable without further refinement). While k-means++
offers some theoretical advantages (c.f., Sect. 3.3), the initial result is quite bad
as this strategy only attempts to pick a random point from each cluster, and
not the medoids. Our proposed LAB initialization is in between k-means++ and
BUILD, and by itself performs similar to CLARA. As it only considers a subset
of the data, its medoids will be worse than BUILD; but because it chooses the
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Fig. 6. Results on MNIST data with k = 10 (left) and k = 100 (right)

best medoid of the sample it performs better than k-means++. As it reduces the
runtime for O(n2k) to O(nk) it is the preferred choice for FastPAM nevertheless.

4.4 Scalability Experiments

Just as PAM, our method also requires the entire distance matrix to be pre-
computed. This will require O(n2) time and memory, making the method as-is
unsuitable for big data (for real big data problems, it will however often be
enough to cluster a subsample that fits into memory). Our improvements focus
on reducing the dependency on k, but we nevertheless experimented with scal-
ability in n, too (and we already included FastCLARA and FastCLARANS in
the previous experiments). The behavior of the PAM variants is as expected
O(n2), but we see nevertheless quite big differences between PAM, FastPAM,
and sampling-based approaches. In this experiment, we use the well-known
MNIST data set from the UCI repository [5], which has 784 variables (each
corresponding to a pixel in a 28 × 28 grid) and 60000 instances. We used the
first n = 5000, 10000, . . . , 35000 instances with a time limit of 6 h and compare
k = 10 and k = 100. The high number of variables makes this data set expensive
for CLARANS.
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The problem of quadratic runtime is best seen in the linear scale plots
Fig. 6a and d. As a reference, we give the time needed for computing the dis-
tance matrix as dotted line, which is also quadratic. Except for CLARA and
FastCLARANS, the runtime is dominated by computing the distance matrix
(and hence CLARA, which only uses a constant-size sample, shines for large n).
The original CLARANS suffers from excessive distance re-computations. The
authors assumed that distances are cheap to compute, and noted that it may be
necessary to cache the distances. FastCLARANS reduces the number of distance
computations of CLARANS by a factor of O(k), and is still cheaper than the
full distance matrix here. For more expensive distances such as dynamic time
warping, FastPAM will outperform FastCLARANS, and it will almost always
give better results. For k = 10, only CLARANS, PAM and Reynolds’ variant
are problematic at this data size, but at k = 100 the benefits of our improve-
ments become very noticeable. The CLARA methods are squeezed to the axis
in the linear plot, and hence we also provide log-log plots in Fig. 6b and e. For
k = 10, the lines of CLARA and FastCLARA x2 almost coincide by chance
(note that FastCLARA x2 produces a result comparable to the slower CLARA
x2 method; expected to be 8 times slower), but at k = 100 it is faster than
CLARA demonstrating that our improvements also accelerate CLARA.

While the scalability in n is quadratic, we observe that if you can afford
to compute the pairwise distance matrix, then you will now also be able to
run FastPAM. For k = 10, the additional runtime of FastPAM was about 30%
the runtime of computing the distance matrix computation, and at k = 100
FastPAM took about as much time as the distance matrix. Hence, if you can
compute the distance matrix, you can also run FastPAM for reasonable values
of k � n, and the main scalability problem is the memory consumption of the
distance matrix.

If computing the distance matrix is prohibitive, it may still be possible to use
FastCLARA, which is O(k) times faster than CLARA, and will scale linearly in
n. But as seen in Fig. 6c and f, CLARA will usually give worse results (about
10% in our experiments). For many users this difference will be acceptable, as
a clustering result is never “perfect”. For large data sets, FastCLARANS will
usually give better results, unless the sample size of CLARA is increased consid-
erably. But on the other hand, FastCLARANS is only advisable for inexpensive
distance functions such as (low-dimensional) Euclidean distance, and requires a
non-trivial distance cache otherwise.
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5 Conclusions

In this article we proposed a modification of the popular PAM algorithm that
typically yields an O(k) fold speedup, by clever caching of partial results in order
to avoid recomputation. This caching was enabled by changing the nesting order
of the loops in the algorithm, showing once more how much seemingly minor
looking implementation details can matter [11]. As a second improvement, we
propose to find the best swap for each medoid, and execute as many as possible
in each iteration, which reduces the number of iterations needed for convergence
without loss of quality.

The major speedups obtained enable the use of this classic clustering method
on much larger data, in particular with large k. With the faster refinement
procedure, it now pays off to use cheaper initialization methods with PAM. For
this, we propose LAB initialization, a linear-time approximation of the original
PAM BUILD algorithm.

Methods based on PAM, such as CLARA, CLARANS, and the many parallel
and distributed variants of these algorithms for big data, all benefit from this
improvement, as they either use PAM as a subroutine (CLARA), or employ a
similar swapping method (CLARANS) that can be modified accordingly as seen
in Sect. 3.4.

The proposed methods are included in the open-source framework
ELKI 0.7.5 [20], and FastPAM2 (but not yet LAB, FastCLARA, nor
FastCLARANS) is included in the R cluster package 2.0.9, to make it easy for
others to benefit from these improvements. With the availability in two major
clustering tools, we hope that many users will find using PAM possible on much
larger data sets with higher k than before.
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Abstract. MORe++ is a k-Means based Outlier Removal method
working on high dimensional data. It is simple, efficient and scalable.
The core idea is to find local outliers by examining the points of differ-
ent k-Means clusters separately. Like that, one-dimensional projections
of the data become meaningful and allow to find one-dimensional outliers
easily, which else would be hidden by points of other clusters. MORe++
does not need any additional input parameters than the number of clus-
ters k used for k-Means, and delivers an intuitively accessible degree
of outlierness. In extensive experiments it performed well compared to
k-Means-- and ORC.

Keywords: Outlier detection · High-dimensional · Histogram-based ·
K-means

1 Introduction

As outlier detection in general delivers valuable results for fraud detection, med-
ical problems, or finding errors in data, most techniques do not regard the
plethora of attributes which is gathered for each data point in modern appli-
cations. An outlier, which is often defined as “an observation which deviates so
much from the other observations as to arouse suspicions that it was generated
by a different mechanism” [14], is more difficult to find in high-dimensional data
than in low-dimensional, since the mechanisms generating data are difficult to
identify in high-dimensional data due to the curse of dimensionality. Thus, most
classic outlier detection algorithms are not applicable to high-dimensional data.
Density based algorithms for example, are not meaningful in high-dimensional
data, which usually is per se sparse. Also angular based outlier factors like, e.g.,
ABOD [18], are not interpretable anymore for high-dimensional data. Moreover,
most of those algorithms do not scale with the number of dimensions.

Thus we introduce MORe++ (k-M eans-based Outlier Removal using k-
Means++), a fast method to score outliers in high-dimensional data. We achieve
scalability w.r.t. the number of dimensions and retain explainability of the scores
by regarding each dimension separately. In contrast to other methods we can
even find clusters or outliers overlapping in some dimensions, since we do not
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Fig. 1. Histogram of complete dataset in black, in contrast to histograms of points
belonging to the same centroid according to k-means in green, yellow and purple.
(Color figure online)

regard all points at once, but only those which are in one cluster according to
k-Means. Using histograms, we accelerate our algorithm even further in regards
to the number of points. Figure 1 shows how overlapping in a dimension prevents
finding outliers if regarding the whole dataset at once, which is why we regard
only a part of the datapoints at once.

Summarizing, our main contributions are:

1. We introduce a meaningful score for outliers in high-dimensional data
2. Our method is fast and scales linearly with the number of dimensions and

points
3. It is based on k-Means and compatible to a lot of k-Means extensions
4. It is easy to implement
5. It is easily parallelizable and suitable for high-dimensional data, since it does

not rely on distance measures operating on the full-dimensional space.

The remainder is structured as follows: in Sect. 2 we give an overview over
other k-Means extensions and outlier detection methods using k-Means or a
histogram-based approach. We also investigate diverse approaches of histogram
segmentation. The complete algorithm is explained in detail in Sect. 3. In Sect. 4
we examine our algorithm regarding a plethora of aspects in overall 40 synthetic
as well as real data experiments. Section 5 concludes this paper giving a short
summary and prospect to promising future work.

2 Related Work

We first give the foundations looking at k-Means Clustering and existing recent
extensions in Sect. 2.1. As there are already several methods combining k-Means
and outlier removal, we give an overview over those in Sect. 2.2 and discuss the
advantages of MORe++ in contrast to them. In Sect. 2.3 we look at histograms
and outlier detection algorithms using them. We note that regarding only the
projections of the complete dataset at once cannot lead to an effective outlier
detection.
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2.1 K-Means Clustering and Extensions

k-Means [19,20] is one of the most famous clustering algorithms and is still fre-
quently used for diverse tasks. Given the number of clusters k, centers are ran-
domly initialized in the original algorithm. All points are assigned to their closest
center and the cluster centers are recomputed. Those two steps are repeated until
no point changes its cluster membership any more and the algorithm converges
against a local minimum of the mean distance from points to their cluster cen-
ters.

There exist several improvements of k-Means. For example, k-Means++ [2]
optimizes the initial cluster centers by regarding the shortest distance to already
chosen cluster centers. We will use this extension for our algorithm MORe++, as
it usually improves the quality of clustering and reduces the variance of results.
Another improvement is k-Median [5], which uses the median instead of the mean
when calculating the new cluster centers to minimize the negative impact of out-
liers. Nevertheless, this comes at the cost of an increased runtime. On the other
hand, kmeans|| [3] reduces runtime by parallelizing k-Means++. Instead of sam-
pling single points for the initialization like k-Means++, O(k) points are sampled
O(log n) times. Also high-dimensional data can be clustered better with diverse
variants of k-Means developed for subspace clustering, like NR-kmeans [22] or
Sub-kmeans [21]. Where Sub-kmeans finds a “clustered” space containing all
structural information and a noise space, NR-kMeans looks for an optimal arbi-
trarily oriented subspace for each partition. Those improvements, of which we
apply only k-Means++ in this paper, are compatible to MORe++ and will be
regarded in future work.

2.2 Outlier Detection and K-Means

There are several algorithms combining k-Means and outlier removal, of which
we introduce the most common ones in the following. In Sect. 4 we will compare
MORe++ to the first both introduced, k-means-- [7] and ORC [13].

k-means-- [7] combines outlier removal and k-Means by alternately remov-
ing outliers and performing k-Means iterations. In every step l points which are
farthest away from their center are removed from the dataset for the next calcu-
lation of cluster centers, where l is given by the user. Even for k = 1, its running
time is O(nd3

), which is infeasible for high-dimensional data.
ORC (Outlier Removal Clustering) [13] assigns an outlyingness factor oi to

every point after a complete pass of k-Means. Points with oi higher than a user
given threshold T are removed from the set of points, and k-Means is performed
again. oi is, similar to k-means--, based on the distance to the nearest cluster
center, and normalized by division by the highest distance between a point and
its center. The algorithm is quite sensitive to the choice of T , and our experiments
will show that ORC cannot handle high dimensional data well.

NEO-K-Means [28] considers outliers and overlapping clusters, for which
it requires two parameters α and β. Using those parameters, it strives for a
“trade-off between a clustering quality measure, overlap among the clusters, and
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non-exhaustiveness (the number of outliers not assigned to any group)” [28]
in every k-Means step. Reaching this trade-off requires iterations until conver-
gence, there seems to be neither an upper bound for the running time, nor do the
authors perform a complexity analysis. The main criterion is again the distance
between points and their closest center, which becomes more and more useless
with increasing number of dimensions.

KMOR [10] uses an additional cluster for all outliers, needing two parameters
to control the number of outliers. A point is considered an outlier if the distance
to all cluster centers is at least γ × davg, which forbids finding local outliers.

Other methods combining k-Means and outlier detection are, e.g., ODC (Out-
lier Detection and Clustering) [1], where outliers are points having a distance to
their cluster centers larger than p times the average distance. CBOD [17] and
[16] are two-stage algorithms, where [16] additionally creates a minimum span-
ning tree on which they work on. [29] is a three stage algorithm first finding local
outliers, then global outliers, and lastly combining clusters with similar densities
and overlapping clusters.

All mentioned algorithms have in common that they rely on distance mea-
sures in the full-dimensional space, usually the Euclidean distance. As with
increasing number of dimensions, all distances become similar due to the curse
of dimensionality [4], the results get distorted for high-dimensional data. In
contrast, MORe++ does not need any distance measure working on high-
dimensional space. Additionally, due to the separate consideration of each dimen-
sion, it is already faster than these methods plus it is easy parallelizable.

2.3 Outlier Detection with Histograms

As using histograms is an established way to simplify data, several construction
possibilities regarding the bin-width and bin-quantity exist: One of the most
common possibilities, Sturges’ rule [15], tends to oversmooth histograms and
does not work well with large datasets and not normally distributed data. Other
common rules are Scott’s rule [26] and Freedman and Diaconis’s rule [9], which
are both better for larger samples. MORe++ uses Scott’s rule which suggests h
as the number of bins: h = 3.45σ̂

n1/3 , where σ̂ is the sample standard deviation.
There are methods using histograms to find outliers: HBOS [12] constructs

a histogram for each dimension and calculates an anomaly score for each data
instance using the inverse estimated densities and supposing feature indepen-
dence. [11] finds sparse regions in the dataset using histograms and a nearest
neighbour approach. Based on those regions, local outlier candidates are identi-
fied, which can be removed from the set of outliers in a later optional reconsid-
eration phase.

Looking at higher dimensional datasets and subspace clustering, objects may
belong to different clusters in different subspaces, thus they could be outliers in
some subspaces, but not in others. OutRank [27] addresses this issue by intro-
ducing a “degree of outlierness”, the outlier rank. With that, points which are
only in a subset of attributes anomalies, can also be detected as outliers [23].
In contrast, many outlier detection algorithms, like for example, LOCI (local
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correlation integral) [24], look for outliers in the full dimensional space, or even
micro-clusters. LOF [6], the local outlier factor, is another approach return-
ing the degree of outlierness. It regards the isolation of a point with respect
to the surrounding neighborhood, and was even extended for high-dimensional
data [18,30].

3 MORe++

In the following we describe and analyze the outlier detection algorithm
MORe++ in detail: Sect. 3.1 gives an overview, Sect. 3.2 explains how we find
one-dimensional outliers in histograms, and Sect. 3.3 gives a complexity analysis.

3.1 Outline of MORe++

Based on the idea already shown in Fig. 1, MORe++ regards the points of
every k-Means cluster separately. Like that, one-dimensional projections already
enable the detection of outliers. Section 3.2 explains how to get one-dimensional
outliers based on the according histogram. The higher the number of dimensions
in which a point is considered an outlier, the higher is its outlier score. Thus,
MORe++ finds a degree of outlierness. Algorithm1 describes our approach in
detail: on the basis of the clustering returned by k-Means++, we build a his-
togram for every dimension for every cluster. The method calculate1dOutliers
returns one-dimensional outliers for each dimension and each cluster given the
according histogram, as explained in Sect. 3.2. The outlier score is the relation
between the number of dimensions in which the point is considered a (one-
dimensional) outlier and the total number of dimensions. Users can now either
use this degree of outlierness, or give a threshold ost (outlier score threshold), so
that points with an outlier score higher than ost are outliers in the full dimen-
sional space. This approach delivers several advantages:

1. Our distance measure does not get skewed with increasing number of dimen-
sions, as we regard every dimension separately

2. We can easily parallelize the calculation of outliers as we regard all clusters
and also all dimensions independently. Thus, MORe++ is suitable for many
points as well as for high- dimensional data.

3. Users do not have to know the number of outliers beforehand
4. A degree of outlierness gives more information than a hard classification
5. The threshold users can give is quite intuitive, as it is simply the minimal

percentage of dimensions in which a point should be a one-dimensional outlier.
As experiments will show, MORe++ is quite robust w.r.t. ost (we use the
same value ost = 0.2 for 35 out of 40 experiments in total), thus a hard
classification using a fixed ost is also a promising idea for future work

6. MORe++ is very fast with only O(nd), where, e.g., k-means-- is exponential.
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Algorithm 1. Pseudo-Code of MORe++
Data: Data X, number of clusters k
Result: Clustering labels, outlierScore for data points

1 foreach x ∈ X do
2 numberOfOutlierDims[x] ← 0 ;
3 end
4 foreach c ∈ clusters do
5 foreach d ∈ range(dimensions) do
6 Build histogram;
7 1dOutliers ← calculate1dOutliers(histogram);
8 foreach 1dOutlier ∈ 1dOutliers do
9 numberOfOutlierDims[1dOutlier] + +;

10 end

11 end

12 end
13 foreach x ∈ X do
14 outlierScore ← numberOfOutlierDims[x]/dimensions ;
15 end

3.2 Detecting One-Dimensional Outliers in Histograms

To detect one-dimensional outliers in histograms, it is important that we only
look at points assigned to one cluster by k-Means. Else, points of other clusters
would cover outliers in the one-dimensional projections, as Fig. 1 already showed:
see for example the outlier in the bottom middle, which is later in the first, purple
cluster. Using histograms of the complete data, it is covered in both dimensions
by the purple resp. the yellow cluster. Looking at the histogram of only the
points assigned to the first (purple) cluster for dimension 1 (horizontal), it can
be detected quite easily using the following approach:

If there are empty bins in the histogram, as shown in Fig. 2 on the left, then
we partition the data along these empty bins. If there are no empty bins, we
split the data where the height of the bins changes most from one bin to the
next, relatively to the higher bin of both, as can be seen in Fig. 2 on the right.
If there are several changes s0, ..., sj which are (relatively) equally high, then we
perform the split in the middle at s�j/2�. After the dataset is partitioned, all
points which are not in the partition containing the majority of the points are
marked as outliers for this dimension.

3.3 Complexity Analysis

For n points of dimensionality d the complexity of k-Means itself is O(nkdi)
with i the number of iterations until convergence and k the number of clusters.
We build a histogram for every cluster and every dimension, which sums up to
O(kdb) for histograms with b < n bins. Using Scott’s rule for the construction of
histograms (see Sect. 2.3), b ∈ O(n− 1

3 ). One-dimensional outliers are calculated
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Fig. 2. Outliers (marked red) are detected using either empty bins or the highest
relative difference between two adjacent bins. (Color figure online)

in O(b+n) ⊆ O(n) and the calculation of all outlier scores can be done in O(nd).
Thus, MORe++ lies with O(nd+kdn− 1

3 ) ⊆ O(nd) in a smaller complexity class
than k-Means itself and is only linear in the number of dimensions as well as in
the number of points. Furthermore, it is easily parallelizable.

In contrast, the running time of k-means– is with O(nd3) much larger. ORC,
which delivers clearly worse results than MORe++, needs to run j iterations of
k-Means alternately with determining the outlyingness factor, which is in O(nd),
resulting in a total runtime of O(j ∗ (nkdi + nd)) ⊂ O(j ∗ nkdi).

4 Experiments
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Fig. 3. 2d-projection of the base
case experiment

We performed several experiments regarding
the quality of outlier detection compared to
ORC and k-Means-- (see Sect. 2), based on the
ROC AUC (Area Under the Receiver Operat-
ing Characteristic Curve) value [8]1 and F1-
measure; due to the lack of space and a high
similarity of the results we only show the former
here. All synthetic datasets were constructed
using cluster centers drawn from a uniform dis-
tribution function and generating Gaussian dis-
tributed clusters around them. Outliers were
added following a uniform distribution function.

In Sect. 4.1 we examine the influence of the
following aspects onto the results of MORe++: size of dataset n, number of
dimensions dim, percentage of outliers out, variance of clusters var, number of
clusters k, and percentage of additional noise dimensions dimn. For that, we
created a base-case shown in Fig. 3 from which we kept all parameters but one
at a time to investigate MORe++’s behaviour regarding that one aspect. In
Sect. 4.2 we regard the behaviour of the algorithms on some real world datasets.
They show, that even though MORe++ and k-Means-- deliver similar results

1 Reminder: ROC AUC ranges from 0 to 1, where a perfect outlier prediction is 1. It
regards the true positive rate vs. false positive rate. If ROC AUC is 0.5, the model
has no class separation capacity.
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in most of the previous test series, MORe++ clearly outperforms k-Means-- for
real world data.

4.1 Influence of Various Aspects

To evaluate the behaviour of MORe++ regarding several aspects, we created a
base case experiment as explained above with the following parameters: size of
dataset n = 1000, number of dimensions dim = 5, percentage of outliers out =
5%, variance of clusters var = 1.2, number of clusters k = 5, and percentage of
additional noise dimensions dimn = 0. Figure 3 shows two arbitrary dimensions
of the base-case, where the ground truth outliers are marked by red crosses and
clusters by colored shapes other than crosses. In each test series we changed
exactly one parameter of that base case and compared the results to those of
ORC and k-means--, where the base case is always marked with box brackets
in the x-axis. To improve comparability, we also kept the (initially randomly
chosen) cluster centers of the generated clusters the same, where possible.

As k-means-- is non-deterministic, we took the average of 100 executions.
MORe++ and ORC are deterministic due to the use of cluster centers as in
k-Means++ [2]. For each test series and each algorithm, we chose the parameter
resulting in the best ROC AUC value after testing values from 0 to 1 in steps
of 0.1 for the parameter ost in MORe++ and T in ORC, which resulted for
both parameters and most of the test series in a value of 0.2, otherwise the best
parameter settings are given in the according experiments. For k-Means-- the
parameter l was taken from the ground truth (i.e. l = 50 for all experiments but
the ones were the percentage of outliers or the size of the dataset was changed).

Experiments Regarding Number of Points. To examine MORe++’s
behaviour with respect to the size of the dataset, we tested the base case with
different values for the number of points n = 500, 1000, 2500, 5000, 10000, 100000.
The results can be seen in Fig. 4 and show that MORe is better or comparable
to ORC and k-Means-- in most cases. For 10000 points and only 5 dimensions,
relatively many outliers are overlapping with the cluster itself, which explains
the slight decline of results for a very high ratio between dimensions and points.

500 [1000] 2500 5000 10000 100000

0

0.5

1

R
O
C

A
U
C

MORe++
ORC

k-means--

Fig. 4. ROC AUC Score for increasing number of points n



196 A. Beer et al.

As MORe++ was developed for high-dimensional data, and especially for a high
dimension to data ratio, this slight decline is predictable as well as manageable.

Experiments Regarding Number of Dimensions. We increased the num-
ber of dimensions up to 3000, which is a ratio of dimensions to data points of
3. For a lot of use cases, like data mining of textual data or image process-
ing, the number of dimensions usually exceeds the number of data points. That
often constitutes a problem for outlier detection algorithms as ORC: for a higher
dimensionality than 30, the results of ORC2, like it can be seen in Fig. 5 worsen
a lot and from 1000 dimensions on, a constant ROC AUC of 0.6 is reached,
which is only slightly better than guessing (which would be a ROC AUC of 0.5).
k-Means-- on the other hand performs effectively as good as MORe++, and for
both of them there is no decrease of quality subject to the dimensionality; they
both perfom almost perfectly in high-dimensional space. For dim ≥ 5, the ROC
AUC for MORe++ is always at least 0.99, for k-Means-- the same holds for
dim ≥ 30. Note, that all clusters in this test series are in the full dimensional
space, thus very similar results of MORe++ and k-Means-- were expectable.
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Fig. 5. ROC AUC Score for increasing number of dimensions dim

Experiments Regarding Percentage of Outliers. As Fig. 6 shows,
MORe++ becomes less accurate for increasing number of outliers as well as
ORC. A high percentage of outliers is difficult to handle well using our approach
of finding one-dimensional outliers in histograms, as high amounts of outliers
smoothen the one-dimensional histograms. But those high percentages of outliers
constitute rather noise than some interesting, outlying points, which MORe++
aims to find, thus, this is more a question of where “outlierness” ends and “noise”
starts.

2 Best values for T : 0.8 for dim = {50, 100}, 0.9 for dim = {100, 500}, else T = 0.2.
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Fig. 6. ROC AUC Score for different outlier percentages

Experiments Regarding Variance of Clusters. For different variances
var = 0.7, 1.0, 1.2, 1.5, 2.0 of the clusters MORe++ reached almost constant
results, where ORC and k-Means-- get noteably worse with increasing variance,
as Fig. 7 shows. That is, because with increasing variance the (full-dimensional)
distances from points to their centers increase, too, thus they are more similar
to the distances from outliers to cluster centers. As MORe++ does not rely on
distinguishing high-dimensional distances of non-outliers and outliers to cluster
centers, it is able to cope very well with diverse variances, in contrast to the
comparative methods.
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Fig. 7. ROC AUC Score for different cluster variances var

Experiments Regarding Number of Clusters. With increasing number of
clusters, there are more overlapping clusters, thus k-Means and also all of the
tested outlier detection algorithms3 become worse, as can be seen in Fig. 8. But
in contrast to k-means--, MORe++ gains an advantage, as the dataset is divided
into more subsets (clusters found by k-Means) on which the outlier detection is
performed separately. Thus, the outliers become more obvious in those smaller
subsets, which counteracts the before mentioned negative effects. That results
in a relative improvement to k-means--, although the quality of outlier detection

3 Best values for T : 0.4 for k = {8, 10}, 0.6 for k = {25, 50}, else T = 0.2.
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decreases noteably even for MORe++ for datasets with a higher number of
clusters than k ≥ 25.
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Fig. 8. ROC AUC Score for different numbers of clusters k

Experiments Regarding Noise Dimensions. Subspace clustering is based
on the assumption, that with increasing number of dimensions more and more
dimensions become “noise dimensions”. According to that, we added noisy
dimensions to our dataset, for which the results can be seen in Fig. 94. With
an increase of noise dimensions, distance measures in the full-dimensional space
become more and more meaningless according to the curse of dimensionality,
and the noise of some dimensions distorts the outlierness in other dimensions for
algorithms using distances on the full-dimensional space. As MORe++ regards
every dimension separately and counts the number of dimensions in which a
point is an outlier, it is clearly more robust to additional noise dimension than
its competitors.
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Fig. 9. ROC AUC Score for different number of noise dimensions

4 Best ROC AUC values for ORC were achieved with T = 0.5 for dimn = 0.2, T = 0.7
for dimn = 1.0, and T = 0.6 else. For MORe++ ost = 0.3 delivered best results for
dimn = {0.8, 1.0}, else ost = 0.2.
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Evaluation of Systematic Experiments. The biggest difference of results
could be seen for high-dimensional data, where ORC was clearly outperformed
by MORe++ and k-Means--. As many results seem to be similar or only slightly
better than k-Means--, we want to emphasize the difference in runtime, where
MORe++ only needs (including running the k-Means) O(nkdi) and k-Means--
needs O(nd3

). Further, MORe++ persuaded especially in the following points:

– For datasets of high dimensionality
– For datasets with clusters of higher variances
– For datasets with noise dimensions

4.2 Real World Datasets

We tested some real world datsets with different properties: sizes ranged between
148 and almost 95000, dimensionalities between 3 and 166, percentage of outliers
between 0.4 and 7 and number of clusters between 1 and 5. Table 1 gives an
overview over size, number (and percentage) of outliers, and number of clusters
of the real world datasets which we used and which can be found in the ODDS
library [25]. Table 2 gives the parameters chosen for all algorithms, where we
used the parameter resulting in the best ROC AUC, resp. the ground truth
value as number of outliers l for k-means--. For MORe++ and ORC we tested
values between 0 and 1 in steps of 0.1. As in the previous section, we took the
average of 100 executions of k-means-- due to its non-determinism. Figure 10
shows the results of the experiments: for Lympho, Shuttle, and Smtp MORe++
clearly outperforms both other algorithms. Glass is an interesting experiment, as
ORC is the best performing algorithm here, followed by MORe++. For Musk,
MORe++ achieved the best results, closely followed by k-means-- and ORC. So,
even though MORe++ performed quite similar to k-means-- in most cases in
the previous section, it seems to be more suitable for real world scenarios plus it
is by far faster. ORC performed well on the Glass dataset, but cannot deal with
very high number of dimensions as shown in Sect. 4.1. Thus, for outlier detection
in high-dimensional datasets, MORe++ is preferable.

Table 1. Overview of real world
datasets

Dataset n dim outlier k

Glass 214 9 9 (4.2%) 5

Lympho 148 18 6 (4.1%) 2

Musk 3062 166 97 (3.2%) 3

Shuttle 49097 9 3511 (7%) 1

Smtp 95156 3 2211 (0.4%) 1

Table 2. Chosen parameters for real
world datasets

MORe++ ORC k-means–

ost T l

Glass 0.1 0.3 9

Lympho 0.4 0.7 6

Musk 0.3 0.7 97

Shuttle 0.3 0.3 3511

Smtp 0.4 0.5 2211
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Fig. 10. ROC AUC for real world datasets

5 Conclusion

In conclusion we developed the outlier detection algorithm MORe++, which is
based on histograms of one-dimensional projections of separately regarded k-
Means clusters. By projecting onto single dimensions, we can circumvent some
aspects of the curse of dimensionality: neither do we need a distance measure
working in high-dimensional space nor is our runtime exponential in the number
of dimensions. Users do not have to know the number of outliers beforehand and
local outliers can easily be detected. The algorithm is easily parallelizable and
easy to implement. A plethora of variations and improvements of k-Means could
be used to further improve our already good results, and also using another
algorithm than k-Means as foundation for the partitioning of the data could be
tried.
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Abstract. Nowadays, as lots of data is gathered in large volumes and
with high velocity, the development of algorithms capable of handling
complex data streams in (near) real-time is a major challenge. In this
work, we present the algorithm CorrStream which tackles the problem
of detecting arbitrarily oriented subspace clusters in high-dimensional
data streams. The proposed method follows a two phase approach, where
the continuous online phase aggregates data points within a proper
microcluster structure that stores all necessary information to define a
microcluster’s subspace and is generic enough to cope with a variety of
offline procedures. Given several such microclusters, the offline phase is
able to build a final clustering model which reveals arbitrarily oriented
subspaces in which the data tend to cluster. In our experimental evalua-
tion, we show that CorrStream not only has an acceptable throughput
but also outperforms static counterpart algorithms by orders of magni-
tude when considering the runtime. At the same time, the loss of accuracy
is quite small.

1 Introduction

A common approach to discover knowledge in high-dimensional data is
subspace clustering. Among the subspace clustering algorithms, correlation clus-
tering methods generally aim at detecting interesting dependencies between dif-
ferent features and thus reducing the feature space such that clusters can be
clearly distinguished from other clusters by only considering the found combi-
nations of features, i.e., so called arbitrarily oriented subspaces.

Several subspace clustering methods have been proposed in the past but
most of them are limited to static databases and the few algorithms that can
deal with streaming data basically concentrate on detecting subspace clusters
in axis-parallel subspaces. However, in many applications it might happen that
complex relationships in form of correlations between different features appear.
Finding such correlations can be beneficial in many applications, e.g., having
knowledge about hidden dependencies that occur during standard operation of
a machine can be very useful in monitoring systems.
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In this work, we present a generic framework for PCA-based correlation clus-
tering called CorrStream which is able to cope with data streams. Therefore,
we propose a generic microcluster structure, that summarizes all the necessary
statistical information of the incorporated data points during the online phase.
In the offline phase, which can be initiated on demand or periodically, the infor-
mation stored in the microclusters can be reused by any PCA-based clustering
technique to generate a final correlation clustering model. An aging mechanism
allows to “forget” the information contributed by stale data and hence keeps the
microcluster model up-to-date.

2 Related Work

There has been a variety of work on subspace clustering algorithms that are
applicable to high dimensional data. Some of the presented techniques [6,8]
limit themselves to the detection of axis-parallel correlation clusters. One class
of algorithms that are able to find arbitrarily oriented correlation clusters are
PCA-based correlation clustering algorithms. These algorithms use the principal
component analysis (PCA) to detect low dimensional subspaces defined by inter-
attribute correlations. The ORCLUS algorithm [7] is a k-means based clustering
that is able to identify arbitrarily oriented subspace clusters in high dimensional
data. The 4C algorithm [9], the COPAC algorithm [3] and the ERiC algorithm
[2] are density-based approaches that tackle the problem of correlation clustering.
The approaches presented in [1,14] follow a different and global approach and
rely on hough transformation. Further approaches that consider correlation clus-
tering but use slightly different concepts are presented in [4,10,11,17,19,20,22].
We refer to [15] for more detailed information on existing solutions for corre-
lation clustering. However, none of the aforementioned methods can be applied
to our problem because they all require multiple passes over the data, or costly
learning procedures, which leads to infeasible costs when considering a streaming
environment.

A very fundamental work on stream clustering can be found in [23], where
the authors introduce the concept of Microclusters, i.e., data structures that
encapsulate the information of a set of points such that it serves as a compact
representative of these points. By maintaining the microclusters during an online
phase, the BIRCH algorithm finally refines the clustering model in an offline step
to identify spherical clusters. This computing framework has been widely used
in adopted forms for several stream clustering algorithms in the past, e.g. the
k-means based CluStream algorithm [5], the density-based DenStream algorithm
or the axis-parallel subspace methods HDDStream [18], or PreDeConStream [13].
There have been several other stream clustering algorithms proposed (see [21]
for a survey). Although they all reveal interesting data processing schemes and
summary structures, none of them is applicable when considering the problem
of detecting arbitrarily oriented subspace clusters.
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3 PCA-Based Correlation Clustering on Data Streams

As this work concentrates on streaming data, we define a data stream S as an
ordered and possibly infinite sequence of data objects x1, x2, ..., xi, ... that must
be accessed in the order they arrive and can be read only in one linear scan. To
be able to deal with such streams appropriately, a proper algorithm requires a
few design decision with respect to the data processing scheme, the data aggre-
gation strategy and the data aging mechanism. Since our PCA-based correlation
clustering algorithm shall be able to deliver up-to-date subspace clustering mod-
els at any time, CorrStream processes each incoming data object individually
rather than relying on batch processing. As it is infeasible to keep all data objects
in memory we propose the following summary structure that captures the key
statistics of the yet found clusters compactly.

Definition 1. A microcluster CCMicro at time t for a set of d-dimensional
points C = {p1, p2, ..., pn} arriving at different points in time is defined as
CCMicro(C, t) = (V (t), E(t), μ(t), ts) with

– V (t) being the eigenvector matrix of the covariance matrix of C at time t,
– E(t) being the corresponding eigenvalues of the eigenvectors in V (t),
– μ(t) being the mean of the data points contained in C at time t, and
– ts being the timestamp of the update of this microcluster.

We design this data structure with the objective to compress correlation clus-
ters. At the same time this data structure must be generic enough so that it
can be used for any PCA-based correlation clustering technique. Another major
criterion for such microcluster structures is the ability to be processed in an
incremental manner since they may absorb further data objects or need to be
merged eventually. We therefore borrow an incremental principal component
analysis approach from [16]. As aging mechanism, we employ the damped win-
dow model on each microcluster structure. Since recent data is typically more
important than old data objects, it is useful to “forget” stale data. We therefore
employ the exponential fading function for data aging. This technique assigns a
weight to each data object which decreases exponentially with time t by using
the fading function f(t) = 2−λ·t. λ > 0 is the decay rate and determines the
impact of stale data to the application. A high value of λ means low importance
of old data and vice versa.

In general, the CorrStream framework consists of two phases, i.e., an online
phase in which microclusters are generated, maintained and/or discarded due
to temporal expiration, and an offline phase to extract on demand clustering
models of the current state of the stream. During the continuous online phase,
the data stream is consumed and for each data object o a rangeNN query is
performed to detect the closest microcluster. The rangeNN query retrieves the
closest microcluster within a maximum distance of ε. If such a microcluster exists,
it absorbs the current data object o, otherwise a new microcluster is created.
Note that the rangeNN query uses two distance measures, i.e., the Euclidean
distance and the correlation distance. This is due to the fact that we first collect
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(a) Microcluster model. (b) Macrocluster model.

Fig. 1. Micro- and macrocluster models on a toy dataset as retrieved by CorrStream.
Differently colored and shaped point sets describe different micro- resp. macroclusters.
(Color figure online)

a bunch of spatially close (wrt. the Euclidean distance) data objects for each
microcluster within a small buffer before we run an initial PCA to initialize
the microcluster. This is necessary since the correlation distance relies on a
microcluster’s eigensystem and hence becomes only meaningful if eigenvectors
and -values are determined with respect to a few points. Once the buffer is full,
we initialize the microcluster and maintain its components that enable the usage
of the correlation distance.

Definition 2. Given a microcluster mc with mean point μmc and a data object
o, the correlation distance between both is defined as

distancecorr(mc, o) =
√

(μmc − o) · M̂mc · (o − μmc)

with similarity matrix M̂mc = VmcÊmcV
T
mc, where Êmc is the adopted eigenvector

matrix

Êmc(i, i) =

{
1 if Emc(i, i) ≥ α

κ else.

Here, α ∈ [0; 1] is a threshold that defines the amount of variance that must be
captured along the corresponding eigenvector for the eigenvector to be considered
strong. For weak eigenvectors the value in Êmc is set to a constant value κ � 1.

The constant value κ specifies the allowed degree of deviation from the correla-
tion subspace. Following [9], we set this value to κ = 50.

After determining the closest microcluster mc of the incoming data object o,
the latter must be incorporated into mc properly. The proposed algorithm differs
between adding the data object to the buffer of a microcluster that has not been
initialized yet and adding the object to an already initialized microcluster. In the
first case, the mean and the current timestamp of the microcluster are updated
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(a) Runtime experiments for various
database sizes.

(b) Runtime experiments for varying di-
mensionalities.

Fig. 2. Runtime measurements for varying database sizes, resp. dimensionalities.

additionally, and in the second case the existing components of the microcluster
are reused and the incremental PCA procedure is invoked to generate the new
eigenvectors and -values additionally.

The offline phase of CorrStream aims at constructing a high quality
clustering model that describes correlation subspaces appearing in the data.
Figure 1(a) exemplary depicts the outcoming microcluster model of the online
phase for a small synthetic, 3-dimensional data set. As can be seen, some of the
microclusters can be grouped so that finally two separated subspace clusters,
i.e., a 1-dimensional cluster and a 2-dimensional one (cf. Fig. 1(b)), are formed.
Finding such groupings of microclusters is the goal of the offline phase and the
generic structure of the microclusters allows that a variety of static correlation
clustering algorithms can be adopted to build the final clustering model.

Using the clustering scheme of the ERiC algorithm for the offline procedure
for instance requires minor adaptations. After partitioning the set of microclus-
ters into disjoint partitions according to their subspace dimensionality that can
be derived from the eigenvalue matrices, the algorithm determines macroclus-
ters within each partition. Therefore, we apply a DBSCAN [12] variant capable
of dealing with the structure of the microclusters. The basic idea is to use the
orientation of the microclusters given by the eigenvectors to group those micro-
clusters whose eigenvectors span a similar subspace. According to [2], we use
their correlation distance as the composition of the approximate linear depen-
dency and the affine distance between two microclusters. Using this distance
measure for DBSCAN within each partition finally yields a density-based cor-
relation clustering model for each partition.

As for ERiC, the adaptations that have to be made for the ORCLUS algo-
rithm are quite small. First, the parameter k0, i.e., the initial number of seeds
that the algorithm starts with, has to be set to a fraction of the number of
microclusters since the user usually do not know the exact number in advance.
Further, as the algorithm has to work with the mean points of the microclusters
as well as their eigenvectors, we propose to incorporate the orientations of both
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affected eigensystems when measuring the distance between two microclusters. If
just assigning by measuring the projected pairwise distance of the mean points,
as given in [7], it might happen that two microclusters that have a different sub-
space orientation are grouped because the mean of the one microcluster fits into
the subspace of the other one although their subspace preferences are different.

4 Experiments

Since CorrStream is the first method for detecting arbitrarily oriented sub-
space clusters in data streams, we compare it with the static equivalents, i.e.,
ERiC and ORCLUS, in terms of runtime and clustering quality. We further
present the throughput of CorrStream. We consider different database sizes,
i.e., various numbers of objects delivered by the data stream, and various dimen-
sionalities of the data points. All data points are distributed among 5 equi-sized
clusters. For the experiments using variously sized data sets, each cluster has a
random dimensionality between 1 and 2, and one full-dimensional noise cluster
spanned over the entire normalized R

3 space. For the experiments that investi-
gate the performance under varying dimensionalities, the number of data points
is fixed to 12’000 and except of one full-dimensional noise cluster, the correlation
clusters have a random dimensionality which is below the full dimensionality. For
all experiments, we report the results when using the best considered parame-
ter setting. We consider different parameter settings by performing grid search
over buff size ∈ {10, 15, 20}; ε ∈ {0.1, 0.15, 0.2, 0.3}; minMcs ∈ {1, 2, 3}. The
parameters that were already introduced by previous methods are fixed.

Figure 2(a) shows the run times for varying numbers of data objects. The
y-axis shows the measured runtime in log scale. While the static methods both
show rather fast increasing runtimes, even for moderately sized databases, the
CorrStream variants are able to process 42’000 data objects within only a
few seconds. When ranging the dimensionality of the feature space from 4 to
24 dimensions, the outcome is quite similar. As depicted in Fig. 2(b), the static
algorithms need much more time compared to our method.

Next, we investigate the considered methods in terms of clustering quality.
Therefore, we compare the resulting clusterings of each approach to the ground
truth labels and use precision and recall values to examine the performance.
Figure 3(a) and (b) compare the results of CorrStream using the ERiC app-
roach for the offline phase against the static ERiC algorithm. In both plots the
ERiC algorithm shows higher precision and recall values than CorrStream.
This might be reasoned by aging as well as by treating microclusters as noise
if their buffers have not been filled. Figure 3(c) and (d) show the correspond-
ing results when using ORCLUS for the offline procedure. Interestingly, the
CorrStream results are better in the experiments when increasing the dimen-
sionality. This might be due to the fact that during the first iteration of ORCLUS,
all data points are assigned to the closest cluster center with respect to the
Euclidean distance. This leads to a situation where clusters, or points that are
treated as intermediate clusters during the iterations, are spanned across sev-
eral actual clusters. Such intermediate clusters, that typically occur if differently
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(a) Varying numbers of data objects. (b) Varying dimensionalities.

(c) Varying numbers of data objects. (d) Varying dimensionalities.

Fig. 3. Precision and recall measurements.

oriented correlation clusters intersect, finally form a “false” subspace and thus
might absorb data points that actually belong to another cluster. CorrStream
reduces this problem due to using the correlation distance for the assignment of
a data point as soon as a microcluster is initialized.

Finally, as the throughput is one of the major criterions for streaming algo-
rithms, we evaluate CorrStream in terms of the number of data objects pro-
cessed per millisecond. The plot in Fig. 4 shows the throughput of the online
phase by using different dimensionalities for the feature space. As can be seen,
the throughput of the algorithm decreases with increasing dimensionalities.

Fig. 4. The throughput of the
online phase.

Nevertheless, the decline of the throughput
decreases for higher dimensionalities and still
is about 363 data objects per second for 24
dimensional feature spaces.

5 Conclusion

In this work we presented the first stream-
ing algorithm capable of detecting arbitrarily
oriented subspace clusters. We applied the
established two-step approach by dividing the
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procedure in an online and an offline phase. A newly proposed microcluster struc-
ture is used to aggregate similar data objects and thus compressing the volume
of data significantly while providing all necessary statistical information to com-
pute a correlation clustering model during an offline procedure. Our experimen-
tal evaluation showed that CorrStream outperforms its static counterparts
clearly in terms of computational costs by just suffering a small loss concerning
the clustering quality.
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Abstract. Distributed computing technologies have opened the door for a wide
range of organizations to analyze massive amounts of data. Grouping (fast but
based on exact semantics) and clustering (relatively slow but based on
similarity-aware semantics) are among the most useful data analysis operations.
Previous work introduced the Similarity Grouping (SG) operator, which aims to
integrate the best features of grouping and clustering, i.e., fast execution times
and similarity-aware grouping semantics. The SG operators, however, were
proposed for single node relational database systems. This paper introduces the
Distributed Similarity Grouping (DSG) operator, a highly parallel operator for
identifying similarity groups in big datasets. DSG enables the identification of
groups where all the elements are within a given threshold from each other. This
paper presents DSG’s design details, implementation guidelines on Spark and
Hadoop (two important Big Data systems), and extensive performance and
scalability evaluation.

Keywords: Similarity grouping � Big data systems � Performance evaluation �
MapReduce � Spark � Hadoop � Clustering

1 Introduction and Related Work

In many business and scientific scenarios, organizations accumulate large amounts of
data. While organizations could gain many insights from integrating and analyzing
these big datasets, in many cases their dimensions prevent their efficient processing on
single-node systems. Big data systems such as Hadoop [1], Spark [2] and Bigtable [4]
represent an answer to the requirement of highly distributed and parallelized data
analysis of big datasets. Many of these systems are now supported on cloud-based
platforms. Hadoop and Spark are two popular Big Data systems. Hadoop [1] and its
programming framework, MapReduce [3], support two key operations: map and
reduce. Multiple map tasks process input chunks in parallel. Each map call is given a
pair (k1,v1) and produces a list of (k2,v2) pairs. The output of the map calls is trans-
ferred to the reduce nodes (shuffle phase) in a way that guarantees that all the inter-
mediate records with the same intermediate key (k2) are sent to the same reducer node.
At each reduce node, the received intermediate records are sorted and grouped. Then,
each formed group is processed in a single reduce call. Spark [2] is a more recent Big
Data system that uses Resilient Distributed Datasets (RDDs) as its core data structure
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and supports a wider range of operations (including variants of map and reduce as well
as grouping, filtering and set operations). Spark operations are performed in a dis-
tributed fashion primarily using the main-memory resources of a computer cluster.

Grouping operations are among the most useful data analytics operations. The
standard grouping operator (Group-by) [5] is extensively supported in relational
databases and was extended to perform subset aggregation (where grouping is per-
formed at various levels) via the Roll-Up and Cube database operators [6]. While
Group-by is very fast, its use is limited to equality-based grouping (all the records with
the same grouping attribute values form the same group). Multiple sophisticated
clustering operators have been proposed in data mining [11], e.g., K-Means [7] and
DBSCAN [8]. They seek to find more complex patterns in data, but often at a steep
increase in execution time. Single-scan versions of the well-known clustering algo-
rithms K-Means and Cobweb are proposed in [12] and [13]. CURE [14] is an alter-
native algorithm based on sampling. Extensions of common clustering algorithms have
also been proposed for big data platforms. The work in [15] presents an adaptation of
K-Means for the Hadoop framework. K-Means is also supported in the Spark frame-
work [16]. Considering the advantages and limitations of grouping and clustering,
previous work introduced the Similarity Grouping (SGB) operator for numeric data
[9, 17] to integrate the advantages of both types of operators, i.e., fast execution times
and similarity-based grouping. SGB allows the specification of the desired grouping
using descriptive properties such as group size and compactness. Tang et al. extended
SGB operators to support multi-dimensional data [10]. While SGB operators cannot
identify all the complex forms of clusters identified by clustering algorithms, they
identify groups that are useful in many scenarios.

Considering that SGB operators were proposed for single-node relational databases,
this paper introduces the Distributed Similarity Grouping (DSG) operator, a highly
parallel and scalable approach for identifying similarity groups in big datasets. DSG
identifies a particularly useful type of similarity groups where all the elements of a
group are within a given threshold from each other. The proposed algorithm can be
used with any distance function and data type. We also present guidelines to implement
DSG in Spark and Hadoop and extensively assess its performance and scalability
properties. We show that DSG performs significantly better than K-Means for identi-
fying similarity groups and maintains execution times that are close to those of standard
grouping.

2 The Distributed Similarity Grouping Algorithm

This section presents the algorithmic details of DSG. The type of similarity groups
identified by this algorithm are groups where given any pair of elements (r1, r2)
of a group, their separation is no larger than a parameter threshold (Ɛ), i.e.,
distance(r1, r2) � Ɛ. Like many clustering algorithms, DSG is non-deterministic, i.e.,
it is possible that different executions of the algorithm on the same dataset could
generate slightly different solutions. Unlike K-Means, DSG does not require advance
knowledge of the number of clusters. DSG uses pivot-based data partitioning to dis-
tribute and parallelize the computational tasks. The goal is to divide a large dataset into
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partitions that can be processed independently and in parallel. The pivots are a subset of
input data records and each pivot is associated with a partition. Each input record is
assigned to the partition associated with its closes pivot. In addition, DSG replicates the
records at the boundary between partitions to ensure that similarity groups located in
these regions are properly detected. Figure 1 shows an example of how DSG partitions
and identifies the similarity groups using two pivots (P0 and P1). The left image
represents the initial dataset with seven clusters or similarity groups (G1 to G7). The
right image represents the two generated partitions (Part0 and Part1). Observe that
regions A and C contain the records that are closer to P0 than to P1, while B and D the
points that are closer to P1 than to P0. Regions A + C and B + D are referred to as base
partitions. Observe that the records in A + C and B + D are assigned to partitions
Part0 and Part1, respectively. Also, the regions at the boundary between the base
partitions (points within Ɛ from the boundary) are replicated, i.e., region D is added to
Part0 and C to Part1. Regions C and D are referred to as window partitions. The only
problem is that some of the groups (G2 to G6) are partially or fully contained in both
partitions. Our approach needs a mechanism to output each similarity group only once
and ensure that a group is outputted in the partition that contains the entire group. To
this end, DSG applies the following guidelines: (1) during partitioning, each record r in
a given partition P is augmented with information of its base partition (partition of its
closes pivot) and assigned partition (P), and (2) given any generated similarity group g,
the group will be outputted only in the partition matching the smallest base partition
among all the records in g. In Fig. 1, G1, G2, G3, and G4 are outputted in Part0 while
G5, G6, and G7 in Part1.

Algorithm 1 presents DSG’s main algorithmic steps. After pivots are generated
(line 1), the data is partitioned in parallel (lines 3–11). The partitioning phase is
implemented using map operations in Spark and Hadoop. Each input record r is
assigned to the partition of its closes pivot Pc (lines 4–5) and all the partitions p where
r belongs to the window regions between the partitions of p and Pc (lines 6–10). In
general, the records in the window region between two partitions should be a superset
of the records whose distance to the hyperplane that separates the partitions is at

P0 P1
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Fig. 1. Example of partitioning and similarity group generation using two pivots.

214 Y. N. Silva et al.



most Ɛ. Unfortunately, this hyperplane does not always explicitly exist in a metric
space. Instead, the hyperplane is implicit and known as a generalized hyperplane. Since
the distance of a record r to the generalized hyperplane between two partitions
for pivots P0 and P1 cannot always be computed exactly, a lower bound is used [18]
(line 7): genHyperplaneDist(r, P0, P1) = (distance(r, P0) - distance(r, P1))/2. This
distance can be replaced by an exact distance when this can be calculated, e.g., with
Euclidean distance, genHyperplaneDist can be replaced by euclideanHyperplaneDist
(r, P0, P1) = |(distance(r, P0)

2 - distance(r, P1)
2| /(2 � distance(P0, P1). The partitioning

phase records the information of base and assigned partitions of each record. The
intermediate records generated during partitioning are grouped in the shuffle phase (line
12) such that all the records that belong to the same partition will form a single
group. This is performed automatically in the shuffle phase of Hadoop and is imple-
mented using the grouping operator in Spark. In the similarity group formation and
output generation phase (lines 14–30), similarity groups are identified and outputted in
each partition and in parallel. We first check if a partition is small enough to be
efficiently processed in a single node (line 15–16). If this is not the case, the partition is
stored for further processing using the same SGB algorithm. While this feature guar-
antees that the algorithm will be able to effectively partition datasets with high con-
centration of records in certain regions, in practice, we can increase the number of
pivots and thus decrease the size of partitions to guarantee a single round. If a partition
is small enough to be processed in a single node, the algorithm runs a single-node
algorithm (findSimGroups) to identify the similarity groups of a single partition (line
18). The output of this algorithm is a set of clusters and each cluster is composed of its
data records and information needed to ensure non-duplicated cluster generation
(flags). The flags component of a given cluster C maintains a sequence of flag arrays
(one array per round where the cluster was processed). For instance, if four pivots are
being used (P0, P1, P2, P3) and a single round is needed, the content of C.flags has
the form {[f0_0, f0_1, f0_2, f0_3]}. The content of this structure could be for example
{[0, 1, 0, 1]}. A value of 1 at index i indicates that cluster C contains at least one record
whose base partition is the one associated with pivot Pi. The flags component is used to
determine if a given cluster should be outputted while processing the current partition
or not (lines 21–28). A given cluster of partition Pi will be outputted only if the
minimum index on the corresponding flag array matches i (lines 25–27). The similarity
group formation phase is performed using the reduce operations in Hadoop and Spark.
The details of the findSimGroups method are presented in Algorithm 2. For every
record r, the algorithm tries to identify a suitable cluster among the ones that were
already formed (lines 2–17). If Euclidean distance is used, a centroid-based filter is
used to discard non-suitable clusters (line 5). For a potentially suitable cluster, the
algorithm checks the similarity group condition between r and each element of the
cluster (lines 9–13). If this check is successful, r can be added to this cluster (lines 14–
19). If the process ends without finding a cluster, a new cluster is created and r is added
to it. After processing the input records, the method generates the flags components
(line 28–30).

Similarity Grouping in Big Data Systems 215



Algorithm 1 DistSimGrouping
Input: inputData, eps, numPivots, memT 
Output: similarity groups in inputData
pivots = selectPivots(numPivots, inputData)
//Partitioning - r: 〈ID, value,
assignedPartitionSeq, basePartitionSeq〉
for each record r in a chunk of inputData do

Pc = getClosestPivot(r, pivots)
output 〈Pc, r〉 //intermediate output
for each pivot p in {pivots-Pc} do

if (dist(r, p) - dist(r, Pc))/2 ≤ eps then
output 〈p, r〉 //intermediate output

end if
end for

end for
//Shuffle: records with same key => partition
//Group Formation
for each partition Pi do

if size of Pi > memT then
store Pi for processing in subsequent round

else
Ci = findSimGroups(Pi, eps) //Ci:{Ci_k}, 
//Ci_k:〈records, flags〉, flags:{Fm}, Fm:{fm_n}
//Output Generation (without duplication)
for each cluster Ci_k in partition Pi do

generate minFlags //minFlags[o]={index 
//of 1st element in Ci.flags[o] equal to 1}
aPartitionSeq = r.assignedPartitionSeq 
//r is any record in Pi

if ∀o,minFlags[o]=aPartitionSeq[o] then
output Ci_k //final output

end if
end for

end if
end for
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Algorithm 2  findSimGroups
Input: S (data records), eps
Output: C (list of clusters or similarity groups)
C={}
for each record r in S do

clusterFound = False 
for each cluster Ci in C do

if distance(r, Ci.getCentroid()) > eps then
//r cannot belong to this cluster

else //r may or may not belong to Ci
withinEps = True  // r is within eps of 
Ci’s centroid, now verify all points in Ci
for each record x in Ci do 

if distance(r, x) > eps then 
//r does not belong to Ci
withinEps = False
break

end for
if (withinEps =True) then//r belongs to Ci

Ci.add(r) //adds to Ci.records
Ci.updateCentroid()
clusterFound=True
break

end if
end for
if (clusterFound = False)

Create Cluster Cnew
Cnew.add(r)
Cnew.updateCentroid()
C.add(Cnew);

end if
end for
for each cluster Ci in C do

generateFlags(Ci) //updates Ci.flags
end for
return C
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Alg. 1. Main DSG algorithm.                          Alg. 2. findClusters method.

The implementation of DSG in Hadoop uses the job configuration (jobConf) object
to distribute atomic parameters, e.g., eps, memT, and numPivots, to all the nodes. It also
uses the random sampling and distributed cache facilities to generate the pivots and
distribute them to the nodes. The partitioning and group formation phases are imple-
mented through the map and reduce operations of Hadoop’s MapReduce framework.
Furthermore, customized MapReduce grouping and sorting operations were created to
support the specific data structures of our solution during the shuffle stage. The Spark
implementation uses the RDDAPI and is significantly shorter due to its robust support of
data processing operations. In this case, the sample operation is used to select the pivots.
Then, the mapPartitionsToPair operation is used to implement the partitioning phase
and the groupByKey operation to group the records that belong to the same partition.
Finally, the flatMap operation is used to perform the clustering generation phase.
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3 Performance Evaluation

We implemented DSG, standard grouping (StandG), and K-Means clustering in
Hadoop 2.9.1 and Spark 2.3.2. The experiments were executed on Google Cloud
Platform. Unless otherwise stated, the cluster consisted of one master and ten worker
nodes. Each node had 4 virtual CPUs, 15 GB of memory and 500 GB of disk space.
The number of reducers per Hadoop job was set to 0.95 � (# of worker nodes) � (# of
vCPUs per node - 1) and the number of splits per Spark job was 2 � (# of worker
nodes) � (# of vCPUs). We implemented a parametrized synthetic dataset generator
that enabled us to evaluate the algorithms under a variety of conditions. The datasets
were composed of multidimensional vector-based similarity groups separated by 2Ɛ.
Given this dataset, DSG and K-Means were expected to have the same output while
StandG only identified equality-based groups. Each data record consisted of an ID, an
aggregation attribute, and a randomly generated multidimensional vector (100D–
500D). The dataset for scale factor N (SFN) had 200,000 � N records. The SF1 datasets
contained about 13,000 groups and each of them contained 50–100 records. Each
record was duplicated between 1–3 times. We set DSG’s numPivots = 40 � SF and
memT = 50,000 based on preliminary tests.

Increasing Scale Factor. Figure 2 shows the execution time (lines) and the number of
groups (bars) identified by DSG, StandG and K-Means as the scale factor increases.
The execution times of DSG and StandG increase slowly as the scale factor increases.
K-Means’ execution time, on the other hand, is significantly larger than those of DSG
and StandG. In Spark, DSG is about 13 times faster than K-Means while in Hadoop,
about 8 times faster. While StandG generates a very large number of equality-based
groups, DSG and K-Means identify the same similarity groups.

Fig. 2. Execution time when increasing dataset size.
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Increasing Scale Factor and Number of Cluster Nodes. Figure 3 compares the
execution time and the number of identified groups of DSG, StandG, and K-Means as
the data size and number of nodes increase. In this experiment, we increase the scale
factor and number of nodes available to the cluster from (SF1, 2 nodes) to (SF5, 10
nodes). DSG and StandG maintain near constant execution times while K-Means’
performance increases significantly. In Hadoop, DSG’s execution time for (SF5, 10
nodes) is approximately 1.25 times that of (SF1, 2 nodes). In Spark, it is practically
constant.

Increasing Number of Dimensions. We executed each algorithm with 200D-500D
datasets while fixing the scale factor. Because SF is fixed, the number of groups in each
dataset is nearly equal. Figure 4 shows that the execution time of all algorithms
increases when dimensionality increases. As expected, StandG has the best execution
times, K-Means the worst ones, and DSG execution times are closer to those of StandG
than to the ones of K-Means. In Spark, at 200D, DSG is 26 times faster than K-Means
while at 500D, 39 times faster. The difference in execution times witnessed in Hadoop
is less acute. At 200D, DSG is 9 times faster than K-Means while at 500D, 3.5 times
faster.

Fig. 3. Execution time when increasing dataset size and number of cluster nodes.
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4 Conclusions

This paper introduces the Distributed Similarity Grouping (DSG) operator to efficiently
identify similarity groups in very large datasets. The paper presents the general algo-
rithmic details of DSG and the guidelines for its implementation in two popular big
data systems. An extensive performance evaluation shows that DSG is successful at
identifying similarity groups identified by the K-Means clustering algorithm while
having small execution times that are in general very close to those of standard
grouping. Future work in this area includes (1) the study of alternative ways of
selecting the pivots, (2) the development of distributed similarity algorithms for other
types of similarity groups, and (3) studying optimization techniques for non-vector
data, e.g., text and sets.
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Abstract. While explainable AI (XAI) is gaining in popularity, other
more traditional machine learning algorithms can also benefit from
increased explainability. A semi-supervised approach to correlation clus-
tering opens up a promising design space that might provide such
explainability to correlation clustering algorithms. In this work, semi-
supervised linear correlation clustering is defined as the task of finding
arbitrary oriented subspace clusters using only a small sample of super-
vised background knowledge provided by a domain experts. This work
describes a first foray into this novel approach and provides an imple-
mentation of a basic algorithm to perform this task. We have found
that even a small amount of supervised background knowledge can sig-
nificantly improve the quality of correlation clustering in general. With
confidence it can be stated, the results of this work have the potential to
inspire several more semi-supervised approaches to correlation clustering
in the future.

Keywords: Clustering · Subspace · Correlation · Semi-supervised ·
Background knowledge

1 Introduction

Explainable Artificial Intelligence (XAI) is rapidly gaining popularity among the
data science community [6]. XAI is mainly motivated by the fact that neural net-
works, especially deep neural networks are often times treated as “black boxes”,
i.e. procedures and errors can be close to impossible to be comprehended by
humans [8]. This creates problems that are interdisciplinary and manifold. For
example, one major issue is the lack of trust in machine learning algorithms,
both concerning the input and the results. XAI could help to build trust in AI,
not only concerning the general population, but also researchers from domains
other than computer science, i.e. users of such algorithms [8]. Even these domain
experts want to be assured that the results they are seeing are direct and uncon-
taminated answers to their input and therefore require explainable results and
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processes [13]. But outside of AI and deep learning, other data mining tasks and
algorithms could also benefit from increased explainability [14].

Exploring the design space at the core of this work, a semi-supervised app-
roach to correlation clustering, has the potential of producing explainable cor-
relation clustering algorithms. In this context linear correlation clustering is
defined as the task of finding arbitrary oriented subspace clusters [15]. This is,
firstly, because quantitative models explaining the results of correlation clus-
tering algorithms can easily be derived and made interpretable by domain
experts [2]. Secondly, because semi-supervised algorithms such as constrained k-
means clustering and similar algorithms allow for background knowledge driven
machine learning, i.e. human ideas and opinions can influence the results of such
algorithms. This allows domain experts to more accurately raise their intended
queries towards the data [9]. Since to the best of our knowledge there has not
been any semi-supervised algorithm that tackles the data mining task of corre-
lation clustering, the goal of this work is to design, implement and evaluate an
algorithm that detects linear correlated clusters given a small subset of a priori
labeled data instances. The major contributions of this work are the introduction
of SIDEKICK (SupervIseD Expert Knowledge Influenced Correlation Cluster-
ing), a first semi-supervised correlation clustering algorithm and a novel notion
of correlation in the context of clustering (φ-correlated clusters).

2 Related Work

Since we are introducing the first linear correlation clustering algorithm that
considers supervised background knowledge, we owe definitions as well as an
overview on the related work in both fields, namely (a) linear correlation clus-
tering and (b) clustering with supervised background knowledge. The task of
linear correlation clustering is defined as finding clusters within a given data set
that are located within interesting subspaces which are arbitrarily oriented [15].
It further means that the data objects within each of the clusters exhibit a linear
correlation between a subset of their features. In this context a broad range of
related work exists. ORCLUS [7] was the first of its kind tailored for detection
of such clusters, followed by other algorithms such as 4C [10], HiCO [5], ERiC
[4], COPAC [3] and CASH [1].

All named methods so far excel at certain aspects, but are not capable of deal-
ing with supervised background knowledge. This is an aspect which our method
is addressing. On the other hand there are semi-supervised methods for other
types of clustering. Such clustering tasks, where results are influenced by seman-
tic decisions by domain experts or data analysts are called constrained clustering
tasks. The earliest algorithm tackling this task, Constrained K-means, performs
a variation of the classic k-means algorithm under the restriction that instances
have to be members of their corresponding clusters using a must-link constraint
and two instances are not allowed to be in the same cluster, i.e. a cannot-link
constraint [19]. There are multiple categories of constraints. At the time of this
work we know of other contributions introducing instance-level, cluster-level
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and model-level constraints. Instance-level constraints are constraints specified
between two instances, for example the must-link and cannot-link constraints
from above. Cluster-level constraints are specified for multiple instances belong-
ing to a cluster. For example ε- and δ-constraints [11]. Model-level constraints
use a different approach. Here a user is shown the result of a certain clustering
algorithm. Then the user can decide whether they like this specific result or not.
If they do not like it, the algorithm is repeated but with automatic constraints
that ensure that the result does not resemble the undesired results from earlier
iterations [12].

2.1 Deriving Quantitative Models for Correlation Clusters

The main inspiration and basis of SIDEKICK is a 2006 paper with the title
“Deriving Quantitative Models for Correlation Clusters” [2]. The primary idea
behind this publication was to add an additional post-processing step to existing
correlation clustering algorithms. In essence, a model is derived by using PCA
on each cluster. The smallest number of Eigenvectors of this cluster Ci that
explain a percentage higher than a predefined threshold α are called strong
Eigenvectors V̌C of VC . The remaining Eigenvectors are the weak Eigenvectors
V̂C of VC . The the weak eigenvectors are used to derive a Hesse Normal Form
hyperplane equation system, that can be solved by Gauß-Jordan Elimination
for better readability. The paper also suggests a method of using the generated
models to predict the cluster membership of additional instances. In order to
predict the cluster membership of an arbitrary point p the distance between p
and the correlation hyperplane of each Cluster Ci needs to be calculated. The
distance is equal to the length of the vector between the orthogonal projection
of p onto the correlation hyperplane and the point p itself. The projection can
be calculated using the strong eigenvectors s1, s2, ..., sλεV̌Ci

and the point, both
normalized by the mean vector c̄i, in the following fashion:

d(p,Ci) = ||p −
λ∑

j=1

〈p, sj〉sj ||

By calculating the distance of all cluster instances to the corresponding
hyperplane the standard deviation σi can be derived. Assuming that the devi-
ations of each cluster Ci fit to a Gaussian Distribution Gi, we can derive an
equation to calculate the probability of a point p belonging to a distribution of
a certain cluster Ci:

Gi(p, σi) =
1

σi

√
2π

e− (d(p,Ci))2

2σ2
P (Ci|p, σi) =

Gi(p, σi)∑n
j=1 Gj(p, σj)

3 Semi-supervised Correlation Clustering

As stated in the introduction, the goal of this work is to design an algorithm that
provides a solution to a very specific problem. A domain expert has found cor-
relations in a R-dimensional database DR and specified certain instances which
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belong to these different correlations. The set of sets of the instances belonging
to a correlation is called the background knowledge BK, while each single cor-
relation cluster derived from the background knowledge is denoted as BKi. The
cardinality of BKi is thought to be significantly smaller than the cardinality of
DR. While the dimensionality of BK is equal to R, the correlation dimension-
ality of each individual background knowledge cluster λBKi

has to be strictly
smaller than R. Simply said the task is to utilize the background knowledge pro-
vided by a domain expert to decide which other unlabeled instances in D belong
to each of the correlation clusters BKi, while adhering to the restrictions set by
the expert knowledge. To be more concise, the opinion of the domain expert is
extrapolated and applied to D\{BK}.

This task can be designated as semi-supervised, because it is an traditionally
unsupervised task – correlation clustering – but includes preexisting supervised
expert knowledge that influences the results. Additionally the resulting models
can be simplified as described in Subsect. 2.1 and the domain expert can com-
pare the models derived from the expert knowledge to the results. Thereby they
receive feedback about how accurately the correlations can be extrapolated onto
the unlabeled instances and how much the resulting model deviates from their
provided background knowledge. Furthermore all subspace clustering algorithms
are usually categorized as either top down or bottom up, because of the circular
dependency inherent to the task [15]. In the case of semi-supervised correlation
clustering the background knowledge already provides an a priori clustering.
Thus the algorithm can work similarly to top-down algorithms using the back-
ground knowledge as a starting point. The task we are left with is finding the
relevant subspace for each cluster and searching for other instances that are sit-
uated in these subspaces. In order to find these subspaces and predict additional
points, this work contains a semi-supervised extension of the algorithm from
Subsect. 2.1.

3.1 SIDEKICK

SIDEKICK follows four main steps. At the beginning we calculate the corre-
lation hyperplanes for each background knowledge cluster using the algorithm
from [2], which corresponds to derive model(X). Additionally in accordance with
Sect. 2.1 the standard deviation σ of distances between the cluster instances and
the corresponding correlation hyperplane is calculated for each cluster. Each cor-
relation cluster Ci is thereby clearly defined by its model, which is at this point
defined as consisting of its eigenvectors – split into weak and strong (i.e. ) –
and the standard deviation σi and mean vector μi. The strong eigenvectors are
needed to calculate the distance between an instance and the hyperplane. The
standard deviation is needed to derive the normal distribution that is assumed
to have produced the noise along the weak components. In summary:

1. Derive the underlying models for the each of the ground truth clusters
2. Predict the labels for all unlabeled instances
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3. Assign either all or a subset of the predicted instances to their corresponding
cluster

4. Deriving updated models for each resulting cluster and simplifying the hyper-
plane equation to highlight the underlying correlations

3.2 Unlimited SIDEKICK

The basic algorithm is called unlimited SIDEKICK since at step 3 all unla-
beled instances are added to their corresponding cluster. This performs well with
highly correlated clusters. Generally if a cluster is 100% correlated, i.e. it only
possesses variance along the strong components SIDEKICK is expected to clas-
sify unlabeled instances correctly, even when only using a background knowledge
consisting very few instances. However, missclassifications at the intersections of
different clusters can occur, but only in cases where the correct membership of
an instance is indeterminable anyways. Generally the Winner-Takes-All princi-
ple is applied, i.e. every instance is always classified as a member of the most
probable cluster. On the other hand the biggest short-coming of the unlimited
SIDEKICK algorithm is that whenever there are instances that were generated
by a process not belonging to a cluster that was included in the background
knowledge, almost all of these outliers are added to the cluster with the high-
est variance along the weak components, i.e. the lowest density along the weak
components. This effect can be explained by the properties of the Gaussian dis-
tributions that are used to assign instances to a cluster. A slight difference of σ
between two clusters has a huge impact on the normalized probability for a sin-
gle instance and thereby it will be classified as highly likely to belong to the first
cluster, even though it most probably does not belong to either correlation. In
conclusion the resulting problem is how to find a suitable subset of the predicted
points for each cluster to be assigned.

3.3 φ-correlated SIDEKICK

Our approach to solve this problem is to work with the definition of strong com-
ponents and α from [2]. Then only using a new hyperparameter φ and the sum of
the strong eigenvalues ě of a background knowledge cluster, we can approximate
the standard deviation l along the weak components of the resulting cluster:

l =
√

(
1
φ

− 1) ·
∑

∀ei∈ě

ei

This cluster is then φ-correlated, in accordance to the original definition of
α. Which is the minimum ratio of the total variance that can be explained by
the strong components. Using the eigenvalues e of a cluster it holds:

∑λ
i=1 ei∑d
i=1 ei

≥ α
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Additionally, the number of strong components is equal to the correlation
dimensionality λ of a cluster. That means, if the variance of the weak compo-
nents becomes to high, they might become strong components. Therefore, the
maximum variance ê that the weak eigenvectors can explain while still resulting
in a φ-correlated cluster is therefore equal to

ê =
ě

φ
− ě

According to the Three Sigma Rule [17] about 68% of all instances belonging
to a normal distribution are situated within a distance of one standard deviation
from the mean and 99.7% at triple the standard deviation. That means if we
only include the subset of instances for which the distances are lower than three
times the square root of this variance, we can find about 99.7% of the instances
that would be included in a normal distribution of a cluster that is φ-correlated.
Which would mean that step 3 of SIDEKICK now involves only the subset of the
predicted instances that are part of a certain correlation with a strength of φ.
Therefore, as long as the direction of the hyperplane is close to the background
knowledge, a domain expert can now specify the exact strength of correlation
they are searching for.

3.4 Runtime Complexity

If we denote n as the total number of instances, c as the total number of clusters
and bk as the amount of instances used as background knowledge the complexity
of SIDEKICK for all clusters can be computed as O(c · n), if bk is significantly
smaller than n or O(c · bk2) if not. We came to this conclusion by simplifying
the overall runtime complexity per cluster, that can be computed as the sum of
the complexities of:

– Performing PCA on the background knowledge; Using Power Iteration [16]
this would be O(bk2)

– Computing the standard deviation of the distances between the background
knowledge objects and their corresponding clusters; This is O(bk)

– Computing the probability of each object belonging to a cluster model; This
is O(2(n − bk)) for each unlabeled object, since we need to make two compu-
tations per object (c.f. Sect. 2.1)

In summary the overall complexity can be denoted as:

c∑

i

(

PCA︷ ︸︸ ︷
O(bk2i )+

Compute standard deviation︷ ︸︸ ︷
O(bki) +

Probability for single cluster︷ ︸︸ ︷
O(n− bki) +

Normalized Probability over all clusters︷ ︸︸ ︷
O(n− bki))

The different variants only add a single step with a complexity of O(n) and
therefore do not have a significant effect on the overall complexity.
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4 Experiments and Discussion

In this section we evaluate SIDEKICK using two synthetic data sets. One data
set contains 3000 three dimensional instances segmented into six linear correlated
clusters, five with a correlation dimensionality of one and a single cluster with
a correlation dimensionality of two. What makes this data set especially chal-
lenging is the fact that the linear correlated clusters exhibit different densities.
The second data set is equal to the first one, except for a set of 1250 randomly
generated outlier objects that were added to it. Using these two datasets we
compared SIDEKICK against five established correlation clustering algorithms
from the related work section (Sect. 2). Suitable Hyperparameter settings for
each of the five algorithms have been determined through either a grid-based or
a sequential scan (ERiC) for both data sets. The experiments were conducted
using the ELKI [18] data mining framework. Furthermore, we have provided all
the hyperparameter settings in Tables 1 and 2 and made the source code for
SIDEKICK and the test data sets publicly available1 to ensure reproducibility.
Table 1 illustrates that the correlation clustering algorithm 4 C achieved the best
results with an Adjusted Rand Index (ARI) of 78,93%. When we used the same
hyperparameter settings on the data set that contains outliers, 4C remained the
best performing correlation clustering algorithm. Its ARI decreased from 0.7893
to 0.7074 while other competing methods achieve a by far lower ARI score as
seen in Table 2.

Table 1. ARI results and hyperparameter settings of competitive methods on the
synthetic data set

Dataset Algorithm ARI Hyperparameter settings

Without noise CASH 0.5998 minpts: 370, maxlvl: 20, jitter: 2.5

Without noise 4C 0.7893 ε: 8.0, minpts: 15

Without noise COPAC 0.5691 ε: 8.0, minpts: 15, kNN: 81

Without noise ORCLUS 0.7351 k: 6, l:2

Without noise ERiC 0.2260 k: 6

To evaluate SIDEKICK we started by using only unlimited SIDEKICK to
cluster the data set without outliers, since all other variants were specifically
designed to deal with outliers. We chose the background knowledge randomly
from each cluster, mimicking a domain scientists expertise. To avoid the influence
of the random choice, we repeated the experiment one hundred times using
different random seeds. Our method achieved an average ARI of 95%. To cluster
the data set that contains outliers, we used the φ algorithm, setting φ individually
for each cluster. We started by using only 1% background knowledge per cluster,
which equals to 3 instances per cluster. This yielded an average ARI of 69%
1 https://github.com/huenemoerder/SIDEKICK.

https://github.com/huenemoerder/SIDEKICK
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Table 2. ARI results and hyperparameter settings of competitive methods on the
synthetic data set with noise

Dataset Algorithm ARI Hyperparameter settings

With noise CASH 0.5348 minpts: 400, maxlvl: 30, jitter: 4.5

With noise 4C 0.7074 ε: 8.0, minpts: 15

With noise COPAC 0.3786 ε: 8.0, minpts: 15, kNN: 89

With noise ORCLUS 0.2465 k: 6, l:2

With noise ERiC 0.146 k: 6

Table 3. ARI results and hyperparameter settings of SIDEKICK on the synthetic data
set with and without noise

Setting Algorithm Average ARI Max. ARI Min. ARI Variance ARI

Without noise, 0.99 BK Unlimited 0.9569 1.0000 0.5634 0.0064

With noise, 0.99 BK φ 0.6957 0.9644 0.2941 0.0248

With noise, 0.96 BK φ 0.9381 0.9747 0.8568 0.0007

with a variance of 2% which means it was on average as good as 4C. When
we increased the amount of background knowledge to 4%, which means that
we used 20 instances as domain expert knowledge per cluster, the average ARI
rose to 93%. This is superior to any of the state-of-the-art correlation clustering
methods in our experiments. Even in the worst case, we got an ARI of 85%,
which is still above any of the competing methods (Table 3).

Finally we want to highlight, that it was not our intention to show whether
SIDEKICK is better than any of its competitors, since these competitors do
not use any background knowledge. Rather the core message we want to convey
is, that even a small amount of background knowledge is sufficient to boost
the performance of solving a correlation clustering task significantly. Adding
a further hyperparameter like φ can increase the robustness against noise and
outliers.

5 Conclusion and Future Work

In conclusion the algorithm discussed in this work demonstrates the prospects
of a semi-supervised approach to correlation clustering. As we have seen and
discussed in the experiments using just a small amount of background knowl-
edge can drastically improve the results of solving a correlation clustering task.
Therefore any correlation clustering algorithm could theoretically benefit from
such background knowledge.

Generally, SIDEKICK and its different variants should provide a useful
toolkit for data exploration. In relation to the different variants of SIDEKICK
itself we have learned that when working with a data set without outliers unlim-
ited SIDEKICK is always the best choice. When working with a data set that
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contains many outliers choosing individual φ’s for each cluster should be the best
solution. The only complication that revealed itself is the dependence on correct
background knowledge. But, firstly, this is intentional, because the goal of the
algorithm was to trust the knowledge of the domain experts and only change
it slightly at best. Secondly, this conclusion is somewhat diminished by the fact
that during evaluation, the background knowledge for each cluster was sampled
randomly from that cluster. Background knowledge provided by humans should
usually be much closer to the truth and thereby provide better results even when
using small amounts of instances as background knowledge.

Acknowledgement. This work has been funded by the German Federal Ministry of
Education and Research (BMBF) under Grant No. 01IS18036A. The authors of this
work take full responsibilities for its content.
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Edgar Chávez1, Richard Connor2(B), and Lucia Vadicamo3

1 Centro de Investigación Cient́ıfica y de Educación Superior de Ensenada
(CICESE), Ensenada, Mexico

elchavez@cicese.mx
2 Division of Mathematics and Computer Science, University of Stirling,

Stirling, Scotland
richard.connor@stir.ac.uk

3 Institute of Information Science and Technologies (ISTI), CNR,
Via Moruzzi 1, 56124 Pisa, Italy
lucia.vadicamo@isti.cnr.it

Abstract. The concept of local pivoting is to partition a metric space
so that each element in the space is associated with precisely one of a
fixed set of reference objects or pivots. The idea is that each object of
the data set is associated with the reference object that is best suited to
filter that particular object if it is not relevant to a query, maximising
the probability of excluding it from a search. The notion does not in itself
lead to a scalable search mechanism, but instead gives a good chance of
exclusion based on a tiny memory footprint and a fast calculation. It is
therefore most useful in contexts where main memory is at a premium,
or in conjunction with another, scalable, mechanism.

In this paper we apply similar reasoning to metric spaces which pos-
sess the four-point property, which notably include Euclidean, Cosine,
Triangular, Jensen-Shannon, and Quadratic Form. In this case, each ele-
ment of the space can be associated with two reference objects, and a
four-point lower-bound property is used instead of the simple triangle
inequality. The probability of exclusion is strictly greater than with sim-
ple local pivoting; the space required per object and the calculation are
again tiny in relative terms.

We show that the resulting mechanism can be very effective. A con-
sequence of using the four-point property is that, for m reference points,
there are

(
m
2

)
pivot pairs to choose from, giving a very good chance of a

good selection being available from a small number of distance calcula-
tions. Finding the best pair has a quadratic cost with the number of ref-
erences; however, we provide experimental evidence that good heuristics
exist. Finally, we show how the resulting mechanism can be integrated
with a more scalable technique to provide a very significant performance
improvement, for a very small overhead in build-time and memory cost.
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1 Introduction

In a metric space, the distances among a set of any three objects may be used
to construct a triangle in Euclidean space, with corresponding vertices and edge
lengths. If any two of these distances are known, the triangle inequality property
can be used to determine upper and lower bounds for the third.

For any supermetric space [12], the distances among a set of any four objects
can be used to construct a tetrahedron in Euclidean space, with corresponding
vertices and edge lengths. An equivalent lower-bound calculation can be made
for a final edge length, given any four objects, when any five of the six distances
among them are known. In simple terms, the five distances can be used to fix
two adjacent faces of a tetrahedron, and lower and upper bounds for the last
edge can be easily determined by considering the rotation of the two triangles
around their common edge.

We show a novel way of exploiting this situation, as follows. From a finite
metric space S, a relatively small set of reference objects P is selected. For all
pi, pj ∈ P , the distance d(pi, pj) is calculated and stored. For each element si
in S, a single pair of reference objects 〈px, py〉 is selected, and the the distances
d(si, px) and d(si, py) are stored. Thus the space S is represented as a set of tuples
〈x, y, d(si, px), d(si, py)〉, indexed by i, therefore requiring only a few bytes per
object.

When a query is executed, the distances d(q, pi) for each pi ∈ P are first
calculated. At this point, considering the objects q, px, py and any si ∈ S, five
of the six distances among them can be retrieved, leaving only d(q, si) as an
unknown. Therefore, for each element of si a lower-bound for d(q, si) can be cal-
culated, with a cheap geometric calculation, without any requirement to access
the original value si ∈ S.

The approach we take is based on the observation that, for a selection of n
reference points, there exist

(
n
2

)
pairs from which the representation of each data

point can be selected. This number, of course, becomes rapidly very large even
with modest increases in n. If for each element of S we can find a particularly
effective pair pi, pj , within this large space, then this tiny representation of S can
be used as a powerful threshold query filter. This exclusion mechanism leads to
a sequential scan, which is virtually unavoidable in light of a recent conditional
hardness result in [18] for nearest neighbor search, even in the approximate setup,
computing a (1 + ε)-approximation to the nearest neighbor requires Ω(N − δ)
time, with N the size of the database.

The above hardness result has been suspected for a long time by the indexing
community, and it has been named the curse of dimensionality. It is known, for
example, that a metric inverted index [1] has high recall rates only if a substantial
part of the candidate results is revised. We aim our approach at this final part
of query filtering or re-ranking.

The contributions of this paper are as follows:
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1. We show that the outline mechanism is viable. For the well-known SISAP
benchmark data sets we show exclusion rates of over 99% can be achieved
using our small memory footprint and cheap calculations.

2. We examine the problem of finding the best pair of reference points per
datum; this can be done perfectly, but expensively, by an exhaustive search
of the pair space. We show that much cheaper heuristics are also effective.

3. Finally, we show one example of how the mechanism can be combined with
another, by describing its incorporation with the List of Clusters index. We
use a pragmatic selection of pivot pairs to ensure that no new distances are
measured at either construction or query time, and show a halving of overall
query cost.

2 Related Work

Pivot based indexes have populated the metric indexing scene for long time.
A pivot table, with the triangle inequality, is just the direct product of one
dimensional projections obtained from a single pivot at a time. Each coordinate
gives a lower bound to the actual distance from database points to the query. A
safe choice is to take the maximum over all the available lower bounds. The most
competitive algorithm published for searching is AESA [21], which proceeds as
following. All the O(n2) distances between every object in the database of n
elements is pre-computed. With this, every object in the database is a potential
pivot. At query time a subset of the n pivots is selected, one at a time, using a
heuristic which consist in selecting the j +1 pivot, the closest to the query, using
as bound the j pivots known so far and the first pivot at random. The output
of this heuristic is both a set of good pivots for the query, and the nearest object
to it. Two things can be noticed from this basic approach, first, the number of
pivots actually used is way smaller than n, and second, they are tailored for each
query on the fly. Since the space usage is quadratic, the approach is impractical.
Also notice that a sequential scan is implied to obtain the closest next pivot in
the interaction. Linear space approaches of the same idea were used in [17], and
a better heuristic for selecting the next pivot is proposed in [14]. The sequential
scan can be avoided using a tree [2,5].

Selecting the best pivot for a given query is not possible offline. A weaker
alternative is to select the best pivot for each database object, increasing the
probability of exclusion at query time. Two options have been explored in the
literature, in [6] each pivot in the pool only keep distances to objects in the
extreme of the distribution, those objects near and far the pivot. This process
is sub-optimal and may end with a few objects guarded by many pivots, and
many objects guarded by a few or none pivots. A second alternative, ensuring
some fairness in the coverage, was proposed in [19], this time each object can
select the best pivot. This latter approach is called extreme pivoting. In those
heuristics the gain is in filtering power, when the amount of available memory
is fixed. Pivot tables are useful for post filtering in a hierarchical metric index,
as in [20], or they can be used as a stand alone index using directly the table as
in [7,9].
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The exclusion based on the four point property was firstly proposed in [11],
and generalized to n + 1 polytopes in [13]. The exclusion increased with the
dimension of the polytope.

For post-filtering, when a primary index is applied to filter the data and only
a small fraction of the databases should be checked against the original metric, a
table is useful. A high rate of exclusion will prevent the use of the more expensive
distance computation, and moreover, it will require to fetch a smaller number
of objects from secondary memory. Hence a small table, with just a couple of
coordinates, is an excellent trade-off because it can be kept in main memory. In
the same spirit as the extreme pivots for unidimensional mapping, in this paper
we are aiming at building a table of small memory footprint using the four point
property.

2.1 The Four-Point Property and Supermetric Spaces

Much work on finite isometric embeddings was conducted in the 20th century,
by e.g. Blumenthal [4], Wilson [22] and Menger [16]. Blumenthal uses the phrase
four-point property to mean a space that is 4-embeddable in 3-dimensional
Euclidean space: that is, that for any four objects in the original space it is
possible to construct a distance-preserving tetrahedron.

More recently we have applied these results in theoretical mathematics to the
practical domain of metric search [10–12]. For this context, the important result
is that the four-point property applies to many commonly-used distance metrics,
including Euclidean, Cosine1, Jensen-Shannon, Triangular and Quadratic Form
distances, all of which can be safely used in conjunction with the mechanisms
described here.

2.2 The Four-Point Planar Lower Bound

For two points that have not been directly compared, q and si, it is shown in
[12] how a lower bound of their distance can be established by comparing the
distances between both points and two further reference points. For reference
points p1 and p2, two triangles with a common base, �p1qp2 and �p1sip2,
can be used to form two adjacent faces of a tetrahedron. Because of the four-
point property, the unmeasured distance d(q, si) must form the sixth edge of a
tetrahedron. It is then clear, by consideration of the rotation of these triangles
around the common baseline p1p2, that upper and lower bounds for the distance
d(q, si) can be determined as the two cases where the triangles lie in the same
plane.

A lower bound of their distance can therefore be calculated by notionally
plotting Cartesian points p′

1 and p′
2 arbitrarily on 2D axes, say at positions

(0, 0) and (d(p1, p2), 0) respectively, and then plotting points q′ and s′
i, both

above the X-axis, according to their respective distances from p1 and p2. Then
the distance �2(q′, s′

i) is a lower bound of d(q, si).

1 for the correct formulation, see [10].
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The value of this is that, independently of the size of individual data values
and the cost of the distance metric, any value can be represented, for a fixed
choice of reference points, as a small 2D coordinate, and compared with a cheap
2D �2 distance; the result of this comparison may mean that there is no require-
ment for the full comparison to be made. Of course, the value of the method
depends heavily upon the probability of its success.

3 Distribution of Values in the 2D Plane

To visualise this property we use scatter diagrams constructed as follows. The
two selected reference points are plotted on the X-axis according to the distance
between them, and a data set is represented as points in the 2D space plotted
above the X-axis, according to their respective distances from these reference
points. The triangle inequality property gives the ability to create such a plot.

Fig. 1. 500 points from a generated Euclidean space plotted against randomly selected
reference points. Left and right plots show the exclusion potential based on simple
metric (left) and supermetric (right) properties. (Color figure online)

Figure 1 shows two versions of such a scatter plot created from a 10-
dimensional Euclidean space, using the same data and reference points. Although
the triangle inequality property guarantees the ability to create such a plot, the
relationship among the plotted points is more subtle.

An example query point is selected from the centre of the diagram, coloured
blue. For every other point plotted in the plane, we then consider whether it
might be within a threshold distance t from this blue-coloured point, based only
on the distances calculated to the two reference points. Here we have chosen
t = 0.24, representing around one-millionth of the volume of the generated space.

The diagrams are then colour-coded so that those points which may be within
that distance, i.e. those that cannot be excluded from a search, are highlighted,
plotted in yellow. The four-point planar lower bound is illustrated on the right-
hand side, clearly represented by a simple exclusion radius in the 2D plane. On
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the left-hand side, only the triangle inequality property is used, giving much
wider hyperbolic bounds.

These diagrams represent a situation where only two reference points have
been used, with respect to a single query. The left-hand side shows the effective-
ness of local pivoting, where this very small amount of information allows 73 out
of 500 data points to be excluded from the candidate solution space. It can be
seen on the right-hand side that, if the four-point property can be used, then 298
ex 500 potential solutions can be excluded, using exactly the same information.

4 Independence of Reference Points

It appears that, for a given choice of reference points, the distribution of other
points in the 2D plane with respect to these points is fairly predictable. However,
where individual data points land within the scatter varies widely with the choice
of reference points.

Fig. 2. 1,000 points plotted in the 2D plane based on two different, randomly selected,
pairs of reference points. The data plotted is the same in each diagram, and the colour-
coded points represent the same values. The (X,Y ) scatter is similar in both cases, close
to uncorrelated normal distributions on both axes, but it can be seen that where an
individual point lands depends on the choice of reference points. (Color figure online)

Figures 2 and 3 show some diagrams to illustrate this. In each figure, a single
set of data points is plotted in the XY plane according to their distances from
two randomly-selected reference points; the left and right sides of each figure now
represent the same data plotted against a different choice of reference points.

In the two figures, a random selection of five data points has been made and
these are highlighted in colour in the charts; that is, the coloured spots in the
left and right sides of the figure represent the same data point and its position
with respect to the different reference points. It can be seen that there is a
relationship among the positions where the coloured dots are plotted, but only
a relatively weak one.
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Fig. 3. 500 points from the colors data set plotted in the 2D plane, again with two
randomly selected pairs of reference points. It can be seen how much the distribution
changes in a non-uniform set with the choice of reference points. Again, where an
individual point lands within the scatter depends on the choice of reference point.
(Color figure online)

4.1 Choice of Reference Points

An underlying hypothesis in our work is that the distribution of queries within
U will be similar to the distribution of S within U . Thus, looking at the scatter
diagrams in Figs. 2 and 3, we could be viewing the distribution of either data or
queries with respect to those same reference points. The probability of successful
elimination, for a given q and si, therefore depends upon the choice of reference
points, and the relative position of both si and q with respect to them.

If the hypothesis is correct, then the notion of a “good” pair of reference
points for an individual si ∈ S corresponds to the (inverse) density of the region
where si lands, within a representative set. If query and datum lie further than
the query threshold within the 2D plot, then the datum cannot be a solution
to the query; this is most likely to occur when either query or datum lie within
a sparsely populated region of the plane. If queries and data follow the same
distribution patterns, then the best pair of reference points can be selected with
reference to a representative set of data points from within S.

5 Selection and Query

5.1 Selection of Best Reference Pair

It is possible to use a statistical technique to select a good reference point pair
per individual datum. A sample set of data is used, the witness set.

For a query over a finite metric space (S, d), first a set of n objects is taken
from S and used to form a set P comprising numbered reference points pi. For
a given set of n reference objects, each of the

(
n
2

)
pairs pi, pj is considered. For

each, a 2D Euclidean space is built, exactly corresponding to those depicted
in the earlier figures. Each space is built using the data from the witness set,
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according to the distances of each element to the pair of reference objects. These
spaces may be efficiently searched using normal metric indexing techniques, and
as the space is a genuine 2D space very efficient mechanisms such as the KD-Tree
[3] can be used.

Each element of the data set is now considered as a query against each of
these

(
n
2

)
metric indexes, and the one with the least local density is selected to

represent that element. There are various mechanisms for assessing local density,
for example the smallest number of results for a threshold query, or the largest
distance in the result set of a kNN query. We tested various ways over some
different data sets and found relatively little difference in the cost or outcome,
and settled on the strategy of picking the pair which gave the largest distance
to the third-nearest 2D point.

While this mechanism is effective, it is of course extremely expensive, with
a quadratic cost according to the number of reference points. In general, for
high-dimensional queries, a relatively large number of reference points will be
required. We discuss linear geometric approximations in Sect. 7.

5.2 Query

Having selected the most promising pair of reference points for each element
sk ∈ S, it is now represented as a tuple 〈i, j, x, y〉 where i and j are the identifiers
of the reference points, and x and y are the 2D coordinates of the point where
these reference points cause sk to be projected onto the corresponding plane2.
At query time, each distance d(q, pi) is first calculated; then for each tuple in
the data, i and j are used to select the appropriate distances from which xq

and yq can be calculated. Finally, the 2D Euclidean distance �2((x, y), (xq, yq))
is calculated, which gives a lower bound to the distance d(sk, q) in the original
space.

6 Initial Measurements

Table 1 shows the results of applying this strategy to the SISAP colors and nasa
data sets [15]. The figures reported represent the proportion of the data set
excluded when searched, using the reported technique, at each of the standard
thresholds3. Note that the left-hand column reports the number of reference
points used; while this represents of the number of distance calculations neces-
sary, both per datum at build time and per query at query time, the number of
available pairs is

(
n
2

)
for n reference points, thus ranging from 45 to 11,175.

It is immediately apparent that the proposed mechanism is very effective.
With only 10 reference points, already 97% of colors and 99% of nasa is success-
fully excluded at the smallest threshold. To put this in context, the top two rows
of the table give the exclusion rates reported in [12] for the Distal SAT operat-
ing with both normal metric and supermetric exclusion mechanisms. However,
2 as this is marginally more efficient than storing the distances to pi and pj .
3 colors: 0.052, 0.083, 0.131; nasa: 0.12, 0.285, 0.53.
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Table 1. Exclusion Rates for different numbers of reference points, taking the statisti-
cally best pair available. The top two rows give comparable figures for the Distal SAT
index structure (see text).

colors nasa

t0 t1 t2 t0 t1 t2

DiSAT: 3pt 0.960 0.910 0.805 0.985 0.941 0.824

DiSAT: 4pt 0.980 0.943 0.840 0.991 0.964 0.851

no. of refs

10 0.973 0.927 0.821 0.988 0.928 0.761

30 0.987 0.959 0.880 0.996 0.967 0.851

50 0.991 0.969 0.902 0.997 0.975 0.872

70 0.993 0.974 0.912 0.998 0.981 0.894

90 0.994 0.977 0.918 0.998 0.984 0.903

110 0.995 0.979 0.924 0.999 0.986 0.910

130 0.995 0.981 0.929 0.999 0.987 0.915

150 0.996 0.982 0.932 0.999 0.988 0.920

even although much better exclusion rates are achieved here, the mechanism is
explicitly sequential.

Apparently, the value of the mechanism goes on increasing as the number
of reference points is increased, with what appears to be a slow asymptotic
approach towards perfect exclusion.

6.1 Build Cost

The dominant cost is in searching the 2D pair space at build time; the tables
show results up to 150 reference points which of course also requires 150 distance
calculations per datum. However these distance calculations are likely to be
amortised within another search mechanism as shown in Sect. 8.

The cost of searching the pair space however increases quadratically with the
number of reference points, making it infeasible for larger numbers. This cost is
almost independent of the cost of distance calculations or size of data in the met-
ric space: the cost of searching

(
n
2

)
2D spaces becoming quickly predominant as n

increases. The cost is perfectly quadratic, in our experiments we have measured
the cost C(n) = 0.007n2 milliseconds for n pivots; even with only 150 reference
points this is approaching 0.2 s per datum. In the context of searching a very
large, high-dimensional, data set, then thousands of extra distance calculations
are unlikely to be significant, but this would result in a huge potential space of
reference point pairs that is intractable to search.

This leaves an interesting problem. The number of reference points does not
typically constitute a performance problem in terms of distance calculations;
the large cost is in the exhaustive search for the best pair of points. The reason
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the cost is high is because there are a huge number of potential pairs, which is
the reason the mechanisms works so well. We have shown tremendous potential
when the best pair of points is calculated from the very large number of pairs
available. If we can find a way of finding these cheaply, ideally in a manner that
scales linearly rather than quadratically with the number of reference points, the
mechanism should become even more useful.

In the context of searching a very large, high-dimensional, data set, then
thousands of extra distance calculations are unlikely to be significant, but this
would result in a huge potential space of reference point pairs that is intractable
to search; thus we seek linear-scaling solutions using geometric analysis instead.
For once, it is not reasonable to assume an arbitrary amount of pre-processing
time is acceptable in order to achieve a small improvement in query time.

7 Geometric Approach

A number of intuitively-derived methods for the selection of first and second
reference points for were tested. In all cases, sets of 10, 50, 150 and 500 objects
were chosen to act as reference points, and these were scanned linearly in two
passes according to the following strategies. The intent is to find a strategy that
gradually improves with respect to the number of reference points, but where
the construction cost remains linear.

The strategies used for each of two linear-cost scans were as follows:

1. random, to act as a benchmark
2. for each data point, associate the closest reference point
3. for each data point, associate the farthest reference point
4. for each of the n reference points, associate it with the 1

n closest subset of the
data (and do not consider these data points again)

5. for each of the n reference points, associate it with the 1
n farthest subset of

the data (and do not consider these data points again)
6. having selected a first reference point, choose the second to minimise the

altitude (Y-coordinate) of the plotted 2D apex point
7. having selected a first reference point, choose the second to minimise the

horizontal displacement (X-coordinate) of the plotted 2D apex point

The first five strategies were tried for each of first and second reference point
choice, whereas the last two were used only for the choice of the second point;
thus a total of 35 different strategies were tested.

Methods (2) and (3) in any combination proved no better than random,
and actually became slightly worse with a larger number of reference points;
we believe this is because of non-uniformity within the sets and the presence
of outliers in the reference points. This problem was fixed by use of methods
(4) and (5), where the closest or farthest 1

n of the data is associated with each
reference point.

Table 2 shows a few of the results. The first row shows a purely random
choice for comparison. The second shows method (4) used for the first point, and
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Table 2. Results shown only for the lowest threshold of the colors data set, other
results are consistent. We give the build cost (msec per object) and exclusion rate for
some of the strategies tested.

Pivot strategy Number of pivots

First Second 10 50 150 500

Random Random build cost 0.0008 0.0008 0.0010 0.0016

exclusion 0.929 0.925 0.926 0.924

Low dist Low alt build cost 0.014 0.022 0.045 0.124

exclusion 0.930 0.958 0.967 0.966

Low dist High dist build cost 0.023 0.030 0.045 0.089

exclusion 0.946 0.962 0.971 0.973

method (6) for the second. Finally the third row shows the use of method (4) for
the first point and method (5) for the second, which gives the best compromise
for these data sets and thresholds. The final effect of achieving 97% exclusion –
as much as is achieved by a very sophisticated indexing structure over the full
data set – through a linear cost construction of a 10-byte data representation is
really a significant achievement. Note that in the cost comparisons, the “random”
benchmark cost is effectively zero; at 500 pivots the cost of either mechanisms
is restricted to around 0.1 ms per datum independent of the size of the data set,
when the thorough search described in Sect. 5.1 would have cost 1.75 s.

8 Incorporation Within List of Clusters

Finally, we report results where our mechanism is incorporated with another,
scalable, indexing mechanism. We have chosen a well-known indexing structure,
and give a very simple technique which extends this using the four-point exclu-
sion mechanism as a post-filter. That is, the mechanism is embedded within the
original structure to act as an internal filter, avoiding the calculation of original-
space distances where the lower-bound calculation makes this unnecessary.

For this purpose we choose the List of Clusters [8], generally regarded as the
most scalable mechanism known. We have measured this, with and without our
optimisation, over the SISAP benchmark data sets colors and nasa, to perform
threshold search using the three standard benchmark thresholds; we show a very
significant improvement in performance.

As the list of clusters is built, at each node a pivot point is selected and a
fixed number of objects, those being closest to this pivot point, are stored in
an associated “bucket”. Especially towards the start of this process, the cover
radius of these objects from the pivot point is likely to be very small, therefore
maximising the probability of the bucket being excluded from a search. When
each cluster is constructed, the distances between every object in that cluster,
and every pivot point from the root to that point in the list, will have been to
be calculated as a part of the construction algorithm.



244 E. Chávez et al.

To this structure, we add only our small representations of the objects within
each bucket, and cause no extra distance calculations at either build or query
time. The local pivot point is used as the first reference point, and the furthest
pivot from the so-far constructed spine of the tree as the second. This gives
an approximation to the geometric technique (low dist, high dist) described in
Sect. 7, and the only extra construction-time cost is the calculation of the 2D
coordinate from these distances; in experiments, this was literally undetectable.
The extra space cost is 10 bytes per object, for the colors data set representing
an increase of around 1%.

At query time, the mechanism is used in the normal way based on the mea-
sured distance between the query and each pivot point down the spine of the
list. In cases where the local “cluster” requires to be searched, then the four-
point representations are first checked. The four-point representation of the query
requires only the calculation of the 2D representative point, as all of the distances
required have already been measured as the query algorithm progresses down the
spine of the list. The lower-bound computation then comprises a 2-dimensional
�2 distance. If the lower-bound distance is greater than the query threshold, there
is no requirement to access the corresponding object and check its true distance
against the query object. This saves not only an expensive distance calculation,
but also the movement of the object within memory.

Table 3. Improvement shown on List of Clusters using four-point post-filtering. Values
given are mean number of distance calculations per query.

Threshold Standard Optimised

t0 t1 t2 t0 t1 t2

SISAP colors 5645 11649 24401 2256 3987 10402

SISAP nasa 1381 3258 8790 1007 1402 3384

Fig. 4. SISAP benchmark space results with and without optimisation
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8.1 Experimental Results

Table 3 shows the number of distance calculations made against the original data
sets, along with the percentage improvement shown; the same values are plotted
in Fig. 4. It can be seen in almost all cases that the query cost is better than
halved, in return for only a small increase in memory size.

9 Conclusions and Future Work

We have shown how the four-point property can be used in conjunction with the
concept of a pivot table in order to produce a minimally-sized table comprising
only two reference objects identifiers, and two distances, per database object.
These are used to construct a coordinate in a two-dimensional Euclidean space
which gives a lower-bound on a query distance. The combination of the very large
space of object pairs available from a relatively small set of reference objects,
and the observation that each pair gives a significantly different projection of
the space, combines to allow a very high rate of successful exclusion for a typical
range search, with exclusion rates of 99.6 and 99.9% obtained for the SISAP
benchmark colors and nasa data sets, with only 150 reference objects being
used. For a data size of around 10 bytes per object and a cheap arithmetic check
these results are impressive.

It is remarkable that a random selection of pairs of reference points produce
exclusion rates quite close to the more expensive exhaustive search. Other linear
cost pair selection heuristics are closer to the ground truth. There is room for
trying to match the almost perfect exclusion rate with other heuristics.

Finally, since it is theoretically impossible to avoid a sequential scan for near-
est neighbour search, even in the approximate sense, a cheap exclusion mecha-
nism that is trivially parallelizable is competitive. We remark that this mech-
anism can be used in conjunction with probabilistic methods requiring post-
filtering or re-ranking, like metric inverted files. We have given one successful
example of this: for an almost immeasurably small increase in build cost and
memory, the performance of the List of Clusters indexing structure has been
shown to be radically improved. It is likely that many similar examples exist.
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search. In: Beecks, C., Borutta, F., Kröger, P., Seidl, T. (eds.) SISAP 2017. LNCS,
vol. 10609, pp. 96–109. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-319-68474-1 7
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Abstract. The local intrinsic dimensionality (LID) model enables
assessment of the complexity of the local neighbourhood around a spe-
cific query object of interest. In this paper, we study variations in the LID
of a query, with respect to different subspaces and local neighbourhoods.
We illustrate the surprising phenomenon of how the LID of a query can
substantially decrease as further features are included in a dataset. We
identify the role of two key feature properties in influencing the LID for
feature combinations: correlation and dominance. Our investigation pro-
vides new insights into the impact of different feature combinations on
local regions of the data.

Keywords: Intrinsic dimension · Neighbourhood · Subspace

1 Introduction

Many core operations in data-mining and machine learning are dependent on the
choice of similarity measure, as well as the choice of feature space. As the number
of features in a dataset increases, the similarity between any pair of data points
converges to the distribution mean and the similarity measure loses its discrim-
inability power, i.e., the ‘curse of dimensionality’. To overcome this challenge, a
range of dimension reduction techniques [1–3] have been developed, to search for
a lower dimensional representation that provides a good approximation of the
data. A key concept in this context is a dataset’s intrinsic dimensionality (ID),
the minimum number of latent features required to represent the data. This is
a natural measure to assess the complexity of a dataset.

In addition to considering the intrinsic dimensionality of an entire dataset,
one can also consider intrinsic dimensionality with respect to a particular query
object of interest. For this task, one can use local measures of ID [4,5], which
focus on the k-nearest neighbor distances from a specific (query) location in the
space. Recently developed local intrinsic dimensionality models, i.e., the expan-
sion dimension (ED) [6], the generalised expansion dimension (GED) [7], and
local continuous intrinsic dimension (LID) [8,9], quantify the ID in terms of the
c© Springer Nature Switzerland AG 2019
G. Amato et al. (Eds.): SISAP 2019, LNCS 11807, pp. 247–264, 2019.
https://doi.org/10.1007/978-3-030-32047-8_22
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Fig. 1. LID values (computed using the MLE estimator [4])
of three prominent researchers, i.e., Jiawei Han, Micheline
Kamber and Vipin Kumar with respect to increasing number
of features for the data-mining community of scholars from
AMiner.

Fig. 2. Neighbour-
hoods of a query along
the individual distance
variables, i.e., X and
Y as well as their joint
distance variable XY .
(Color figure online)

growth rate of objects with the expansion in distance from a specific query loca-
tion. A wide range of applications, e.g., manifold learning, dimension reduction,
similarity search [10], local density estimation [11] and anomaly detection [12],
have benefited from the use of local ID measures.

In this paper, given a query object, our goal is to analyse how its LID esti-
mates change with respect to different size feature sets. In particular, as more
features are used, does the estimated LID of the query increase or decrease?
Intuitively, one might expect that as one adds more features, the estimated LID
of the query should either increase or remain stable. However, for some situ-
ations (in both real and synthetic data), we will demonstrate an unexpected
and somewhat counterintuitive phenomenon, that the estimated LID of a query
object can actually decrease as more features are used.

We provide a brief example to illustrate the idea. Figure 1 shows the esti-
mated LID values of three researchers (queries): Jiawei Han, Micheline Kamber
and Vipin Kumar from the data-mining community1 of scholars in the AMiner2

dataset. We observe that the LID trends are not always smooth as more features
are considered. Importantly for researcher M. Kamber, there is significant drop
in LID when going from 5 to 6 features, and going from 6 to 7 features.

Our purpose is to understand how such a drop in LID is possible and what
factors might be responsible. Intuitively, the phenomenon is related to how out-
lying or inlying the query is within a given subspace, as well as relations between
the features themselves, such as their degree of correlation and whether a prop-
erty we call feature dominance is present. Developing such an understanding may
lead to strategies for more effective feature engineering. Our contributions can
be summarised as follows.

1. We identify and illustrate the counter intuitive phenomenon of how the esti-
mated LID of a query object may decrease as more features are considered.

1 https://aminer.org/lab-datasets/soinf/.
2 https://aminer.org/data.

https://aminer.org/lab-datasets/soinf/
https://aminer.org/data


Characteristics of Local Intrinsic Dimensionality (LID) in Subspaces 249

2. We identify the role of two key factors which can influence changes in LID
and local neighbourhood for a query: feature dominance and correlation.

3. Given a query object, we study the estimated LID and neighbourhood vari-
ations within a feature space and its subspaces, using carefully controlled
experiments.

2 Background and Preliminaries

We will first define local intrinsic dimensionality [9] and its estimator [4], and
introduce the concept of neighbourhood.

Local Intrinsic Dimensionality: Classical expansion models [6,8] evaluate
the growth rate of the number of data points as the distance to an object of
interest increases. E.g., in Euclidean space, when the size of a d-dimensional ball
increases by r, it’s volume increases by rd. It is possible to deduce the expansion
dimension d from this growth rate of volume with respect to the size/distance
as follows.

V2

V1
=

(
r2

r1

)d

⇒ d =
ln(V2/V1)
ln(r2/r1)

(1)

The notion of volume is analogous to the probability measure for continuous
random variables. The expansion models can be adapted for distance distribu-
tions for a given query by replacing the ball set size with the probability of the
lower tails of the distribution (Extreme Value Theory), providing a local view
of the dimensional structure of the data, as their estimation is restricted to a
neighbourhood around the object of interest. Houle et. al. [9] provides the formal
definition of LID in light of this theory.

Definition 1. Assume a reference object q ∈ R. Let X > 0 be a random variable
representing distances from q to other objects.3 If F (x) represents the cumulative
distance distribution function of X such that F (x) is continuously differentiable
at distance x ∈ X, the local intrinsic dimensionality (LID) of the query q at
distance x is defined as:

LIDX(x) = lim
ε→0

ln(F ((1 + ε)x))/F (x)
ln((1 + ε)x/x)

= lim
ε→0

ln(F ((1 + ε)x))/F (x)
ln(1 + ε)

(2)

whenever the limit exists.

Applying L’Hopital’s rule to the limits of Eq. 2, LID can be expressed as fol-
lows [9].

Theorem 1 ([9]). If F (x) represents the cumulative distribution function for a
distance variable X and F (x) is continuously differentiable such that F (x) > 0
for x > 0, then

LIDX(x) =
x · F ′(x)

F (x)
(3)

3 Suppose q = 0 ∈ R and x1 = 2 ∈ X are 1 dimensional data values. Then, x1 directly
represents a distance value from q to itself along the X axis.
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Thus, when x ∈ X tends to zero, the LID of q can be defined in terms of the
limit:

LIDX = lim
x→0

LIDX(x) (4)

LID gives a rough indication of the dimensionality of the submanifold containing
q that would best fit the distribution of data in the vicinity of q. Comprehensive
theory regarding the LID model can be found in [8,9,13,14].

LID Estimation: The k nearest neighbour distances can be considered as
extreme events associated with the lower tail of the distance distribution accord-
ing to the Extreme Value Theory. The tails of the continuous probability dis-
tributions converge to the Generalized Pareto Distribution (GPD), under some
reasonable assumption [15]. Amsaleg et. al. [4,5] developed several estimators of
LID to heuristically approximate the actual underlying distance distribution by
a transformed GPD. The Maximum Likelihood Estimator (MLE) has showed a
useful trade-off between efficiency and complexity. For a query object q from a
data distribution, the MLE estimator of LID(q) is,

L̂ID(q) = −
(

1
k

k∑
i=1

log
ri(q)
rk(q)

)−1

(5)

where ri(q) denotes the distance between q and its i-th nearest neighbour in the
sample.

Neighbourhood: Given two features FX , FY
4 and a query object q, we define

random variables, X, Y that represent the distance distributions from q to other
objects using either FX or FY . The joint distribution XY represents the distance
distribution from q in the joint space {FX , FY }. Let LIDX , LIDY and LIDXY

be the estimates of the LID for q using X, Y and XY , respectively. The nearest
neighbours, nX , nY and nXY that are used to estimate the individual and joint
LIDs, are shown as circles in Fig. 2. nXY is a mixture of data objects from nX ,
nY and U (the whole region).

We use sX to represent the nearest neighbours within X, that are common
with the neighbours in the joint space XY and not with the neighbours in Y
(shown in yellow color in Fig. 2). Similarly for sY . Thus, sX = (nX ∩ nXY ) \
nY and sY = (nY ∩ nXY ) \ nX . Also, sX,Y (the green region) represents the
neighbours that are common in both the individual and joint dimensions, sX,Y

= nX ∩ nY ∩ nXY . The nearest neighbours in the joint space XY that are not
common with any of the neighbours in the individual dimensions are represented
as sφ, sφ = nXY \ (sX

⋃
sY

⋃
sX,Y ) (the pink region).

For the rest of the paper, we refer the estimate of the LID value using
Eq. 5 as the LID of a query.

4 In fact, our model allows FX (or FY ) to be a set of features, rather than a single
feature, but for simplicity we will present in the context of being a single feature.



Characteristics of Local Intrinsic Dimensionality (LID) in Subspaces 251

(a) Independence (b) Correlation (c) Dominance & Independence (d) Dominance & Correlation

Fig. 3. Four different scenarios of the neighbourhoods for a given query along two
distance variables, i.e., X and Y as well as their joint distance variable XY .

3 Research Questions

The local intrinsic dimensionality (LID) of the query in the joint space XY
varies with respect to changes in the local joint neighbourhood (nXY ). We next
characterise the relationship between the nearest neighbours in the joint space
XY and the nearest neighbours in the individual variables, i.e., X and Y , w.r.t.
the following two properties:

– Correlation: When the two distance variables, X and Y , are positively cor-
related, one expects that a significant portion of the nearest neighbours in
the joint space XY overlap with the nearest neighbours in both X and Y .
One also expects that this phenomenon is absent when X and Y are not
correlated. i.e. | scor.

X,Y | � | suncor.
X,Y |.

– Dominance: A dominant distance variable is one which has a strong influ-
ence in determining the nearest neighbours of the query in the joint space
XY . If X dominates Y , then a major portion of the nearest neighbours in
the joint space XY overlap with the nearest neighbours in X as compared to
Y . i.e., | sX | � | sY |.
We will assess in what circumstances LIDXY can be less than the individual

estimated LID values, LIDX and LIDY . We particularly focus on the role of a
dominant distance variable and/or the presence of a strong correlation between
X and Y . We consider the following four research questions (RQ1–RQ4):

RQ1: Given a query, when two distance variables are independent (uncorre-
lated), how can LIDXY and nXY be characterised with respect to LIDs and
neighbourhoods of the individual dimensions (LIDX , LIDY , nX , nY )?

For RQ1, we will analyse a query’s characteristics, i.e., inlying-
ness/outlyingness, in terms of its estimated LID in 2D spaces, when the individ-
ual distance variables have no dependency between them. Figure 3(a) illustrates
this scenario, where we observe | sX,Y | � 0 and | sX | � | sY |.
RQ2: Given a query object, when two distance variables are dependent (cor-
related), how can LIDXY and nXY be characterised with respect to LIDs and
neighbourhoods of the individual dimensions (LIDX , LIDY , nX , nY )?

Correlation between two distance variables can lead to significant changes in
the joint neighbourhood in comparison to the uncorrelated case and we expect
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the joint LID (estimated) to behave differently from the scenario in RQ1 (see
Fig. 3(b)). To demonstrate the impact of correlation on the neighbourhood, con-
sider the top 100 nearest neighbours of a query in XY space, if the correlation
between X and Y is 1.0, we can expect that | sX,Y | � 100.

RQ3: How are LIDXY and nXY influenced when one of the distance variables
dominates the other? (X dominates Y or vice versa)

A dominating distance variable can strongly influence the formation of neigh-
bourhood in the joint space. In Fig. 3(c) we note, a significant part of nXY over-
laps with nX and a small part of it overlaps with nY . In this case, we have
assumed that the distance variables are independent, i.e., | sX,Y | � 0. In this
case, we expect the query to have neighbourhood characteristics for the joint
space that are similar to those for the individual variable X, due to the domi-
nance property of X.

RQ4: In the presence of both correlation and dominance, how can LIDXY and
nXY be characterised in terms of (LIDX , LIDY , nX , nY )?

Figure 3(d) illustrates this scenario where we observe a positive correlation
between X and Y as | sX,Y | � 0. We find | sX | > | sY |, meaning that X still
dominates Y .

4 Experimental Study Using Synthetic Data

We observe the behaviour of LID in multiple univariate (Sect. 4.1) and bivariate
(Sects. 4.2–4.4) synthetic datasets that are generated to model the scenarios
in the research questions RQ1-RQ4. We will later investigate a real dataset in
Sect. 5. For our experiments, we model the distance distribution instead of the
actual data distribution, i.e., the generated data values represent the distances
from a query that is located at the origin. Note that the query is not generated
by the data generation process. Since we always ensure that the generated values
of the synthetic datasets are greater than or equal to 0, the data values along
each dimension directly represent the distances from the query to themselves.
The Euclidean Norm (‖ · ‖2) is used to measure distance. We use k = 100
neighbours in the MLE estimator of LID (see Eq. 5). Unless otherwise stated,
z-score normalisation has been applied on both synthetic and real data (i.e. on
the raw feature values for FX or FY ) before estimating the LIDs of a given query.

4.1 LID in Univariate Synthetic Datasets

To model the distance distributions, we have selected the Weibull distribution
as it is lower bounded (given x≥0). Equation 6 shows the Weibull probability
density and cumulative distribution functions. We generate three uniscaled (λ =
1) Weibull distributions for different values of shape parameter (κ) in Fig. 4. For
shape values, 1 < κ < 2.6, the Weibull pdf is positively skewed (right tail), for
2.6 < κ < 3.5 its coefficient of skewness approaches zero (no tail) and for κ > 3.5
it is negatively skewed (left tail) [16].
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Fig. 4. Histograms of three Weibull(κ,λ) distributed distance variables, i.e., X, Y
and Z.

fw(x;κ, λ) =
κ

λ

(
x

λ

)κ−1

exp−( x
λ )κ

Fw(x;κ, λ) = 1 − exp−( x
λ )κ

F−1
w (x;κ, λ) = λ[− ln(1 − x)]

1
κ (6)

LIDX = lim
x→0

x · fw(x;κ, λ)
Fw(x;κ, λ)

= lim
x→0

d
dx (x · fw(x;κ, λ))

d
dx (Fw(x;κ, λ))

= κ (7)

The theoretical LID of a Weibull distributed distance variable is derived in Eq. 7
and is equal to the shape value. Also, experimentally the query (at origin) obtains
LID values 1.66, 3.72 and 7.47, corresponding to κ values, i.e., 1.5, 3.4, 7.5,
respectively. Thus, the larger the shape value of the Weibull distribution, the
higher the LID and the more outlying the query is relative to other objects.

Table 1. Description of distribution and correlation parameters of synthetic bivariate
datasets.

Scenarios Title Name of datasets Distribution
type

Description of the
parameters

Rank correlation

Scenario 1 D1. ND-Independent Weibull κX = 4, λX = 1,
κY = 6, λY = 1

αs = 0

D2. ND-Correlated same as D1 same as D1 αs = 0.89

Scenario 2 D3. D-Independent same as D1 κX = 4, λX = 8,
κY = 6, λY = 1

αs = 0

D4. D-Correlated same as D1 same as D3 αs = 0.89

D5. ED-Independent Pearson μX = 7, σ2
X = 0.5,

βX = −1.75,
γX = 9 μY = 8,
σ2

Y = 1, βY = 0,
γY = 3

αs = 0

D6. ED-Correlated same as D5 same as D5 αs = 0.89
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4.2 Bivariate Synthetic Datasets Generation

We generate six bivariate synthetic datasets. Each dataset consists of 10, 000
data points. Four datasets, i.e., D1:ND-Independent, D2:ND-Correlated, D3:D-
Independent, and D4: D-Correlated, are generated using the lower bounded
Weibull distribution. Thus, the generated random variables, i.e., X and Y , can
be treated as continuous distance variables for a query at origin (0, 0). To achieve
control over the mean (μ), variance (σ2), skewness (β) (i.e., measure of symme-
try), and kurtosis (γ) (i.e., measure of whether the data is heavy-tailed or not in
relation to the normal distribution) of the distance distributions, we generate two
further datasets, D5:ED-Independent and D6:ED-Correlated, using the Pearson
distribution family, which is effective in modelling skewed observations [17]. In
this case, we ensure that all data values are greater or equal to 0, so that the
generated data values correspond to distances from the query.

We consider two scenarios, Scenario 1 and Scenario 2, where we model dom-
inance and non-dominance between two distance variables. For each scenario we
generate two different types of datasets, i.e., uncorrelated and correlated, using
a Gaussian Copula (described below). Datasets D1 and D2, model the scenarios
stated in RQ1 and RQ2, respectively, whereas D3 and D4, model the scenarios
in RQ3 and RQ4, respectively. Datasets D5 and D6 illustrate the LID behaviour
for the same phenomena as D3 and D4, using extremely skewed and heavy-tailed
distance distributions.

When generating the bivariate distance distributions, our goal is to illustrate
the circumstances where the query has different LID values in individual dimen-
sions. We investigate the properties of the 2D local neighbourhood around the
query, where LIDXY may show an expected increase or unexpected decrease
with respect to the individual LIDs LIDX and LIDY . To ensure that we have
different LID values in X and Y dimensions, we use smaller values for the shape
parameter in X than Y , making LIDX < LIDY , leveraging our observations in
Sect. 4.1.

We use a copula [18,19] to generate both the correlated and uncorrelated
datasets. Copulas (C) provide a way to model correlated multivariate data.
According to Sklar’s Theorem [18], any multivariate cumulative distribution
function can be expressed in terms of the marginal cumulative distribution func-
tions of the random variables, together with a copula describing their dependence
structure (α) (see Eq. 8).

F (x, y) = C(F 1(x), F 2(y);α) (8)

The Gaussian Copula (Cg) generates correlated uniformly distributed values
from a multivariate normal distribution with a given linear correlation (αp).
Thus, a correlated multivariate distribution with the same or different marginal
distributions can be obtained by applying the desired inverse cumulative distri-
bution functions (ICDF ) to the corresponding uniform variables. We follow this
technique to generate the four bivariate datasets, i.e., D1, D2, D3 and D4, using
the following steps.
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– Step 1:We use a Gaussian copula Cg with selected linear correlation param-
eter to sample bivariate uniformly distributed values U = [U1,U2] for U ∈
[0, 1].

– Step 2: We apply the ICDF of the Weibull distribution (F−1
w ) to U1 and U2,

with the given parameters for each dimension i.e., κX , κY , λX , and λY , and
obtain the desired marginal (Weibull) distributions for X and Y ; the process
is known as inverse transform sampling [20].

Though we need to provide the linear correlation (αp) as an input to Cg, this
linear correlation is not preserved during the inverse sampling because F−1

w is a
non-linear function (see Eq. 6). However, F−1

w (u) is monotonically increasing for
u ∈ U and κ, λ > 0, and under any monotonic transformation, rank correlation,
e.g., Spearman’s correlation coefficient (αs), is preserved [18]. There remains a
one-to-one mapping between αp and αs for normally distributed data [21] (see
Eq. 9). Hence, the value of αs between the Weibull distributed variables is almost
identical to the initial value of αp specified in Cg, since Cg is constructed from
normally distributed data.

αs = (6/π) ∗ sin−1(αp/2) (9)

For generating the uncorrelated datasets, i.e., D1 and D3, we use αp=0
(αs=0) for Cg. We use the same scale (λ = 1) and different shapes (κ), i.e.,
4 and 6, for X and Y in the D1 dataset. In D3, we use a larger value of scale
for X (λ=8) than Y (λ=1), so that X can be treated as a dominating distance
variable. In fact, we intend to observe how X with its heavily-tailed neighbours,
dominates Y in selecting the neighbours in the 2D space (XY ). On the other
hand, we use αp=0.9 (αs=0.89) to Cg for the generation of correlated datasets
in both non-dominance and dominance cases, i.e., D2 and D4. We use the same
Weibull parameters as D1 and D2, for D3 and D4, respectively.

We model extreme scenarios of dominance in both the absence and pres-
ence of correlation using D5 and D6 datasets, respectively. The data values are
sampled from a Pearson distribution family [17]. In D5, X follows a negatively
skewed (βX = −1.75) heavy-tailed (γX = 9) distribution whereas Y models sym-
metric (βY = 0) light-tailed (γY = 0) distribution (see Table 1). Since both of
them are independently sampled, they are uncorrelated. Due to the very skewed
distribution along X, we are able to see the drop of joint LID even after apply-
ing the z-score normalisation in these datasets. Since it is not straightforward
to obtain the ICDF for the X dimension with the given Pearson parameters, we
generate the correlated Pearson numbers in the following step5.

– Step 1: We generate independent (uncorrelated) Pearson values, P1 and P2

using the same parameters as D5 and sort them in ascending order.
– Step 2: We generate the correlated uniform values, i.e., U1 and U2, with

αp = 0.9 (equivalent to αs=0.89) from the Gaussian copula Cg.

5 https://au.mathworks.com/help/stats/generate-correlated-data-using-rank-
correlation.html.

https://au.mathworks.com/help/stats/generate-correlated-data-using-rank-correlation.html
https://au.mathworks.com/help/stats/generate-correlated-data-using-rank-correlation.html
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– Step 3: After sorting the uniform values in ascending order, we obtain two
indices, in1 and in2, describing the rearranged order of U1 and U2, respec-
tively.

– Step 4: We position the sorted values of P1 and P2 in the same order as
the indices, in1 and in2, to obtain the final Pearson variables, P c

1 and P c
2 for

dimensions X and Y , respectively, in D6 dataset.

4.3 Scenario 1 (Non-dominance)

D1 and D2 are generated in a setting where there is no dominant feature
(Table 1). Figure 5(a) and (b) provide the scatter plots and nearest neighbour
distance graphs for D1 and D2, respectively. It is clearly notable from the scatter
plots that the data values are correlated in D2 (elliptical shape) whereas in D1
they are not (circular shape).

(a) D1:ND-Independent

(b) D2:ND-Correlated

Fig. 5. Scatter plots and normalised distance graphs of datasets D1 and D2 modelling
the uncorrelated and correlated variables, respectively, in the non-dominance setting.
(Color figure online)

In Fig. 5(a), we observe that the distances of the local neighbours with respect
to X variable are relatively smaller than that of Y . This happens because Y has
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a larger shape than X. Hence the distribution of Y is skewed more to the left
in comparison to X. As a result, LIDY is larger than LIDX . We further note
that there is no common neighbour between the joint space and the individual
dimensions, i.e., sX,Y =0 (no green dots). The distances of the neighbours along
the joint variable XY are far in comparison to the individual variables. Hence,
the query obtains a very high LID value, LIDXY = 10.18, that is approximately
the summation of the individual LIDs, LIDX = 4.87 and LIDY = 6.35, which
matches with results mentioned in [8].

Figure 5(b) corresponds to the correlated variables X and Y of dataset D2.
We observe that 48% of the neighbours, nXY are overlapped with both nX and
nY , i.e., sX,Y = 48 (green dots). We found LIDX = 3.78, LIDY = 6.35 and
LIDXY = 6.46. Note that the joint LID in the correlated case is 6.46 which
is smaller than the joint LID(=10.18) of the uncorrelated case with the same
parameter settings. Thus, if the continuous distance variables are positively cor-
related, the query finds its 2D neighbours to be more common with the neigh-
bours of the individual dimensions and thus obtains a smaller LID in comparison
with the independent case. This observation answers RQ1 and RQ2 for the
independent and correlated distance variables in the non-dominance
setting.

4.4 Scenario 2 (Dominance)

For the dominance scenario, we consider D3:D-Independent and D4:D-Correlated
datasets. In order to observe the dominance property of a distance variable, we
do not standardise these datasets. We note from the scatter plots that the data
shows greater variance in X compared to Y and the distances of the nearest
neighbours for Y remain almost constant, whereas there is a steady increase in
the distances for X as the number of nearest neighbours grows (see Fig. 6). For
the query at the origin, LIDY is 6.35 for both D3 and D4 datasets while LIDX

is 4.87 and 3.80 in D3 and D4, respectively.
For D3 dataset, we observe a drop in LID value with respect to the joint

distance variable XY compared to Y , i.e., LIDXY = 5.70 while LIDY = 6.35. We
note that a major portion of the neighbours in XY overlap with the neighbours
from X, i.e., sX = 95 (the orange dots). There is no overlapping between the
neighbours of XY and the individual dimensions X and Y , i.e., sX,Y = 0. As
a result, the distances along XY are following the similar trend of along X
(Fig. 6(a)). Thus in scenarios where one of the features X is dominant and has
a lower LID value in comparison to the non-dominant feature Y , the LID value
in the joint space LIDXY becomes smaller than that of LIDY . However, if the
dominant variable does not have such property (low LID), we do not observe
this reduction of LID value in the joint space (answering question RQ3).
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(a) D3:D-Independent

(b) D4:D-Correlated

Fig. 6. Scatter plots and nearest neighbours distance graphs of D3 and D4 datasets
modelling the uncorrelated and correlated variables, respectively, in the dominance
setting. (Color figure online)

We demonstrate the correlated scenario of D4 in Fig. 6(b). We find 99%
(sX+sX,Y = 51%+48%) of nXY are overlapped with nX and 48% of them are
common with nY (green dots). The uniformity of the distances of nX has a signif-
icant influence on the distances of the neighbours in the joint space (XY ), caus-
ing significant reduction in the LID of XY , i.e., LIDXY (=3.93) 	 LIDY (=6.35).
n.b. the joint LID in D4 (3.93) is smaller than the joint LID of the uncorrelated
case in D3 (5.70) (answering question RQ4).

Extreme Distributions: D5:ED-Independent and D6:ED-Correlated illustrate
the extreme case of dominance for uncorrelated and correlated Pearson random
variables, respectively (see Fig. 7). Here, X has a negative long tailed asymmetric
distribution whereas Y follows a short tailed symmetric distribution. The query
is an outlier in both dimensions, but it obtains smaller LID in X (LIDX =
7.63) than Y (LIDY = 16.59) for both datasets. This phenomenon occurs since
the query is surrounded by a group of outliers in X, whereas all the nearest
neighbours are quite far away from the query in Y .
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(a) D5:ED-Independent

(b) D6:ED-Correlated

Fig. 7. Scatter plots and nearest neighbours distance graphs of D5 and D6 datasets
modelling the uncorrelated and correlated variables, respectively, in the dominance
setting. (Color figure online)

Table 2. Changes in local neighbourhood and LID estimation w.r.t. the distance vari-
ables X, Y and XY for all six synthetic datasets in absence(/presence) of dominance
and correlation.

Scenarios Title Name of the datasets Neighbourhood in (XY ) LID estimates

sX sY sX,Y sφ LIDX LIDY LIDXY

Scenario 1 D1. ND-Independent 9 35 0 56 4.87 6.35 10.18

D2. ND-Correlated 13 38 48 01 3.78 6.35 6.46

Scenario 2 D3. D-Independent 95 01 0 04 4.87 6.35 5.70

D4. D-Correlated 51 01 48 0 3.80 6.35 3.93

D5. ED-Independent 75 04 00 21 7.63 16.59 13.74

D6. ED-Correlated 44 05 51 0 7.63 16.59 9.80

In D5, the uncorrelated dataset, the neighbours along XY mostly intersect
with the neighbours along X as we find sX = 75. Since they are uncorrelated
there is no overlap among the neighbours in the joint space XY and the indi-
vidual dimensions X and Y . Here, X has a bigger influence on LIDXY since the
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nearest neighbours of the query in X are having the dominant distances. We
find LIDXY = 13.74 which is smaller than LIDY (=16.59). We obtain a similar
LID behaviour in D6. However, due to the correlation between X and Y , 51%
of nXY overlaps with both nX and nY in D6. A significant portion of nXY is
coming only from nX , i.e., sX = 44%, which causes a drop in LIDXY = 9.80 as
compared to LIDY (=16.59). Note that for the correlated case the reduction of
LID value in the joint space is much greater than the uncorrelated case.

Our results for synthetic datasets are summarised in Table 2.

5 Experiments with Real Data

The AMiner dataset is a large academic social network comprising 1.7M authors,
2.1M papers and 4.3M coauthor relationships. We consider 7 numerical fea-
tures: publications (pub), citations (ct), h-index (hi), papers/year (ppy), co-
authors, co-authors/paper (avgco), and research experience. We analysed the
LID behaviour in this dataset by considering different authors as the query and
estimating the LID value for various combinations of features. We consider two
prominent researchers, i.e., Micheline Kamber and Jeffrey Xu Hu from the data-
mining community consisting of 641 researchers, as queries to model different
phenomena described in Sects. 4.3–4.4. We use k = 100 in the MLE estimator,
but obtained similar results (not reported) for k = 30, 60.

Case Study 1- Dominance: Given M. Kamber as the query, and the three
features, ct, hi and avgco, we illustrate how dominance influences the LID value.
In this scenario, the dominant variable X corresponds to the distances from the
query to other authors on the feature avgco. While the non-dominant variable
Y corresponds to the distances between query to others with respect to the two
features citations and hindex. We find that LIDX = LID(avgco) = 3.39 and
LIDY = LID(ct, hi) = 10.85.

Figure 8 provides the 3D scatter plot and the normalised distance graph of
100 nearest neighbours that are used to estimate the LID along the distance

Fig. 8. The left figure is a scatter plot of the data-mining community of researchers
from AMiner for the query M. Kamber and the three features ct, hi and avgco. Nearest
neighbours distance graph is shown on the right. M. Kamber obtains LID(ct, hi) =
10.85 < LID(ct, hi, avgco) = 5.2. (Color figure online)
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variables, X, Y and XY . It is evident that the query is an outlier in both X and
Y . We find that 81% of the neighbours (the orange dots) in XY are coming only
from X, i.e., sX = 81 (see Table 3), which is the reason for obtaining a smaller
LID value of 5.2 for the 3D feature-set (ct, hi, avgco), i.e., LIDXY = 5.2, after
adding avgco to the 2D feature-set (ct, hi).

Case Study 2- Correlation: We observe the LID behaviour on AMiner dataset
in terms of the correlation of the features. In our experiments, we also explored
the effect of decorrelation on the LID value. Consider the query: Jeffrey and
the two features papers/year and publications. Here, X represents the distances

(a) Before Decorrelation

(b) After Decorrelation

Fig. 9. Scatter plots of the data-mining community of researchers, and distance graphs
of the query Jeffrey Xu Hu before and after decorrelation of the features papers/year
and publications. Jeffrey obtains LID values of 3.4 and 4.2 before and after decorrela-
tion, respectively. (Color figure online)

Table 3. Joint neighbourhood and LID values for the distance variables X, Y and XY
in the dominance, correlation and decorrelation scenarios. The second column describes
the query values for the features.

Query Features Scenarios Correlation nXY LIDX LIDY LIDXY

coefficients sX sY sX,Y sφ

M. Kamber X:avgco =3.6,

Y :ct =1546,

hi =4

Dominance - 81 3 8 8 3.39 10.85 5.2

Jeffrey Xu Hu X : ppy = 10.9,

Y : pub = 228

Correlation αs = 0.96 16 7 77 0 2.5 3.1 3.4

Decorrelation αs = 0.30 31 18 44 7 2.5 3.1 4.2
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from the query to others on ppy while Y on pub. Jeffrey obtains LID values of
2.5 and 3.1 with respect to ppy and pub, respectively (see Table 3).

The features ppy and pub are highly correlated, i.e., αs(X,Y ) = 0.96, where
Jeffrey obtains LIDcorr

XY = 3.4. After removing the correlation [22], i.e., by ran-
dom permutation of objects in X and Y , yielding αs(X,Y ) = 0.3, Jeffrey obtains
LIDdecor

XY = 4.2 which is larger than LIDcorr
XY . Figure 9(a) and (b) display the scat-

ter and distance plots before and after the decorrelation, respectively. We note in
Fig. 9(b), that the no. of common neighbours between XY and the individuals,
i.e., X and Y , (sX,Y ) decreases (green dots) while the neighbours in sX and
sY increases (orange and blue dots) as compared to Fig. 9(a). The distance plot
in Fig. 9(a) shows a more uniform distance distribution, compared to Fig. 9(b)
which shows an abrupt increase at multiple locations of the plot.

6 Discussion

As a default, one might expect that the local intrinsic dimensionality of a query
should increase as more features are used. However, our studies using both real
and synthetic data indicate that under certain conditions such as dominance of
a feature or presence of correlation between features, the estimated LID of a
query can instead decrease. During the expansion of an existing feature space,
significant changes might occur in the neighborhood local to the query. Our
studies found, when a query’s local neighborhoods are dissimilar with respect to
different features, this phenomenon could occur. Some general observations are:

– Independence: When the features are independent, the LID in merged space
is approximately the summation of the LIDs of the individual features. It
matches with the theoretical observation of LID in joint space as stated in [8,
13].

– Dominance: When a dominant feature with low LID (LIDX), is combined
with a feature with high LID (LIDY ), the LID in the joint space will be lie
between LIDX and LIDY (LIDX < LIDXY ≤ LIDY ).

– Correlation: In the presence of a positive correlation, when a feature with
low LID (LIDX) is combined with another feature with high LID (LIDY ), the
joint LID is much smaller than the summation of the LIDs of the individual
dimensions (LIDXY 	 (LIDX+LIDY )). The stronger the correlation, the
larger the reduction in LIDXY .

– Dominance and Correlation: In the presence of positive correlation, when
a dominant feature with low LID (LIDX) is combined with another feature
with high LID (LIDY ), the joint LID is between LIDX and LIDY (LIDX <
LIDXY 	 LIDY ). The stronger the dominance and correlation, the larger
the reduction in LIDXY .

7 Conclusions

We have analysed the behaviour of local intrinsic dimensionality (LID) for
changes in the feature-space as well as the neighbourhood of a query. We con-
sidered two key factors, correlation and dominance, that can cause the LID to
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decrease when more features are considered. Thus, increasing the number of fea-
tures may not always result in an increase in the (local) complexity of the data
around a query object. Our observations may provide insights into the feature
selection and enumeration process, as well as object inlyingness/outlyingness
across subspaces. For the future, it will be interesting to develop further theory
to understand these findings.
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22. Gionis, A., Mannila, H., Mielikäinen, T., Tsaparas, P.: Assessing data mining
results via swap randomization. ACM TKDD 1(3), 14 (2007)

https://doi.org/10.1007/0-387-28678-0
https://doi.org/10.1007/0-387-28678-0


Metric Embedding into the Hamming
Space with the n-Simplex Projection

Lucia Vadicamo1(B), Vladimir Mic2, Fabrizio Falchi1, and Pavel Zezula2

1 Institute of Information Science and Technologies (ISTI), CNR, Pisa, Italy
{lucia.vadicamo,fabrizio.falchi}@isti.cnr.it

2 Masaryk University, Brno, Czech Republic
{xmic,zezula}@fi.muni.cz

Abstract. Transformations of data objects into the Hamming space are
often exploited to speed-up the similarity search in metric spaces. Tech-
niques applicable in generic metric spaces require expensive learning,
e.g., selection of pivoting objects. However, when searching in common
Euclidean space, the best performance is usually achieved by transforma-
tions specifically designed for this space. We propose a novel transforma-
tion technique that provides a good trade-off between the applicability
and the quality of the space approximation. It uses the n-Simplex projec-
tion to transform metric objects into a low-dimensional Euclidean space,
and then transform this space to the Hamming space. We compare our
approach theoretically and experimentally with several techniques of the
metric embedding into the Hamming space. We focus on the applicabil-
ity, learning cost, and the quality of search space approximation.

Keywords: Sketch · Metric search · Metric embedding ·
n-point property

1 Introduction

The metric search problem aims at finding the most similar data objects to a
given query object under the assumption that there exists a metric function
assessing the dissimilarity of any two objects. The broad applicability of the
metric space similarity model makes the metric search a challenging task, since
the distance function is the only operation that can be exploited to compare
two objects. One way to speed-up the metric searching is to transform the space
to use a cheaper similarity function or to reduce data object sizes [4,9,14,19].
Recently, Connor et al. proposed the n-Simplex projection that transforms the
metric space into a finite-dimensional Euclidean space [8,9]. Here, specialised
similarity search techniques can be applied. Moreover, the Euclidean distance is
more efficient to evaluate than many distance functions.

Another class of metric space transformations is formed by sketching tech-
niques that transform data objects into short bit-strings called sketches [4,
17,19]. The similarity of sketches is expressed by the Hamming distance, and
c© Springer Nature Switzerland AG 2019
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sketches are exploited to prune the search space during query executions [18,19].
While some sketching techniques are applicable in generic metric spaces, others
are designed for specific spaces [4]. The metric-based sketching techniques are
broadly applicable, but their performance is often worse than that of the vector-
based sketching approaches when dealing with the vector spaces [4,17].

We propose a novel sketching technique NSP 50 that combines advantages of
both approaches: wide applicability and good space approximation. It is appli-
cable to the large class of metric spaces meeting the n-point property [3,7], and
it consists of the projection of the search space into a low-dimensional Euclidean
space (n-Simplex projection) and the binarization of the vectors. The NSP 50
technique is particularly advantageous for expensive metric functions, since the
learning of the projection requires a low number of distance computations. The
main contribution of the NSP 50 is a better trade-off between its applicability,
quality of the space approximation, and the pre-processing cost.

2 Background and Related Work

We focus on the similarity search in domains modelled by the metric space
(D, d), with the domain of objects D and the metric (distance) function d :
D × D → R

+ [21] that expresses the dissimilarity of objects o ∈ D. We consider
the data set S ⊆ D, and the so-called kNN queries that search for the k closest
objects from S to a query object q ∈ D. Similarity queries are often evaluated
in an approximate manner since the slightly imprecise results are sufficient in
many real-life applications and they can be delivered significantly faster than the
precise ones. Many metric space transformations have been proposed to speed-up
the approximate similarity searching, including those producing the Hamming
space [4,5,11,18,19], Euclidean space [9,16] and Permutation space [1,6,20]. We
further restrict our attention to the metric embedding into the Hamming space.

2.1 Bit String Sketches for Speeding-Up Similarity Search

Sketching techniques sk(·) transform the metric space (D, d) to the Hamming
space

({0, 1}λ, h
)

to approximate it with smaller objects and more efficient
distance function. We denote the produced bit strings as sketches of length λ.
Many sketching techniques were proposed – see for instance the survey [4]. Their
main features are: (1) Quality, i.e., the ability to approximate the original metric
space; (2) Applicability to various search spaces; (3) Robustness with respect to
data (intrinsic) dimensionality; (4) Cost of the object-to-sketch transformation;
(5) Cost of the transformation learning. In the following, we summarise concepts
of three techniques that we later compare with the newly proposed NSP 50
technique. They all produce sketches with balanced bits, i.e. each bit i is set to
1 in one half of the sketches sk(o), o ∈ S. This is denoted by the suffix 50 in
their notations.

GHP 50 technique [18] uses λ pairs of reference objects (pivots), that define
λ instances of the Generalized Hyperplane Partitioning (GHP) [21] of the
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dataset S. Therefore, each GHP instance splits the dataset into two parts
according to the closer pivot, and these parts define values of one bit of
all sketches sk(o), o ∈ S. The pivots are selected to produce balanced and
low correlated bits [18]: (1) an initial set of pivots Psup ∈ D is selected in
random, (2) the balance of the GHP is evaluated for all pivot pairs using a
sample set T of S, (3) set Pbal is formed by pivot pairs that divide T into
parts balanced to at least 45 % to 55 %, and corresponding sketches skbal are
created, (4) the correlation matrix M with absolute values of the Pearson
correlation coefficient is evaluated for all pairs of bits of sketches skbal, and
(5) a heuristic is applied to select rows and columns of M which form its
sub-matrix with low values and size λ × λ. (6) Finally, the λ pivot pairs that
produce the corresponding low correlated bits define sketches sk(o), o ∈ S.

BP 50 uses the Ball Partitioning (BP) instead of the GHP [18]. BP uses one
pivot and a radius to split data into two parts, that again define the values in
one bit of sketches sk(o), o ∈ S. Pivots are selected again via a random set of
pivots Psup, for which we evaluate radii dividing the sample set T into halves.
The same heuristic as in case of the technique GHP 50 is than employed to
select λ pivots that produces low correlated bits.

PCA 50 is a simple sketching technique surprisingly well approximating the
Euclidean spaces [4,12,13,15,17]. It uses the Principal Component Analysis
(PCA) to shrink the original vectors, which are then rotated using a random
matrix and binarized by the thresholding. The i-th bit of sketch sk(o) thus
expresses whether the i-th value in the shortened vector is bigger then the
median computed on a sample set T . If sketches longer than the original vec-
tors are desired, we propose to apply the PCA and to rotate transformed vec-
tors using independent random matrices. Then we concatenate corresponding
binarized vectors.

Sketching techniques applicable to generic metric spaces, e.g., GHP 50 and
BP 50, are usually of a worse quality than vector-based sketching techniques
when dealing with the vectors spaces [4,17]. Moreover, they require an expen-
sive learning of the transformation. We propose the sketching technique NSP 50
to provide a better trade-off between the quality of the space approximation,
applicability of the sketching, and the pre-processing cost.

2.2 The n-Simplex Projection

The n-Simplex projection [9] associated with a set of n pivots Pn is a space
transformation φPn

: (D, d) → (Rn, �2) that maps the original metric space to
a n-dimensional Euclidean space. It can be applied to any metric space with
the n-point property, which states that any n points o1, ..on of the space can
be isometrically embedded in the (n − 1)-dimensional Euclidean space. Many
often used metric spaces such as Euclidean spaces of any dimension, spaces with
the Triangular or Jensen-Shannon distances, and, more generally, any Hilbert-
embeddable spaces meet the n-point property [7]. The n-Simplex projection is
properly described in [9]. Here, we sketch just the main concepts.
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First, the n-point property guarantees that there exists an isometric embed-
ding of the n pivots into (Rn−1, �2) space, i.e., it is possible to construct the ver-
tices vpi

∈ R
n−1 such that �2(vpi

, vpj
) = d(pi, pj) for all i, j ∈ {1, . . . , n}. These

vertices form the so-called base simplex. Second, for any other object o ∈ D,
the (n + 1)-point property guarantees that there exists a vertex vo ∈ R

n such
that �2(vo, vpi

) = d(o, pi) for all i = 1, . . . , n. The n-Simplex projection assigns
such vo to o, and Connor et al. [9] provide an iterative algorithm to compute the
coordinates of the vertices vpi

of the simplex base as well as the coordinates of
the vector vo associated to o ∈ D. The base simplex is computed once and reused
to project all data objects o ∈ S. Moreover, the Euclidean distance between any
two projected vectors vo1 , vo2 ∈ R

n is a lower-bound of their actual distance,
and this bound becomes tighter with increasing number of pivots n [9].

3 The n-Simplex Sketching: Proposal and Comparison

We propose the sketching technique NSP 50 that transforms metric spaces with
the n-point property to the Hamming space. It uses the n-Simplex projection
with λ pivots to project objects into λ-dimensional Euclidean space; the obtained
vectors are then randomly rotated and binarized using the median values in each
coordinate. These medians are evaluated on the data sample set. The random
rotation is applied to distribute information equally over the vectors, as the n-
Simplex projection returns vectors with decreasing values along the dimensions.

For each data set S, there exists a finite number of pivots ñ such that φPñ

is an isometric space embedding1. The identification of the minimum ñ with
this property is still an open problem. The convergence is achieved when all
the projected data points have a zero value in their last component, so the
NSP 50 technique as described above cannot produce meaningful sketches of
length λ > ñ. We overcome this issue by a concatenation of smaller sketches
obtained using different rotation matrices.

The proposed NSP 50 technique is inspired by the PCA 50 approach, but
provides significantly broader applicability, as it can transform all the met-
ric spaces with the n-point property. This includes spaces with very expensive
distance functions, as mentioned in Sect. 2.2. Sketching techniques also require
transformation learning of a significantly different complexity. We compare the
novel NSP 50 technique with the GHP 50, BP 50 and PCA 50 approaches and
we provide the table summarising the main features of these sketching tech-
niques, including the costs of the learning and object to sketch transformations
in terms of floating point operations and distance computations. This table is
provided online2, due to the paper length limitation.

The GHP 50 and BP 50 techniques require an expensive pivot learning.
Specifically, the GHP 50 requires (1) to examine the balance of the GHPs defined
by various pivot pairs to create long sketches with the balanced bits, (2) an anal-
ysis of the pairwise bit correlations made for these sketches, and (3) a selection
1 The proof is made trivially by a selection of all objects from the data set S as pivots.
2 http://www.nmis.isti.cnr.it/falchi/SISAP19SM.pdf.

http://www.nmis.isti.cnr.it/falchi/SISAP19SM.pdf
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(a) DeCAF (b) SIFT (c) SQFD

Fig. 1. Distance densities for DeCAF, SIFT and SQFD data sets

of low correlated bits. The learning of the BP 50 is cheaper, since the proper
radii are selected for a set of pivots directly. The rest of the learning is the same
as in case of the GHP 50. The cost of the PCA 50 learning is given by the PCA
learning cost and evaluation of the medians over the transformed vectors. We
compute the PCA matrix using the Singular Value Decomposition (SVD) over
the centred data. The learning of the NSP 50 is the cheapest one; it consists of
the n-Simplex projection that has the quadratic cost with respect to the number
of pivots n, and the binarization, which consists of the medians evaluations over
coordinates of vectors in the sample set T .

4 Experiments

We evaluate the search quality of the NSP 50 technique on three data sets and
we compare it with the sketching techniques PCA 50, GHP 50 and BP 50. We
use three real-life data sets of visual features extracted from images:

SQFD: 1 million adaptive-binning feature histograms [2] extracted from the
Profiset collection3. Each signature consists of, on average, 60 cluster cen-
troids in a 7-dimensional space. A weight is associate to each cluster, and
the signatures are compared by the Signature Quadratic Form Distance [2].
Note that this metric is a cheaper alternative to Earth Movers Distance, nev-
ertheless, the cost of the Signature Quadratic Form Distance evaluation is
quadratic with respect to the number of cluster centroids.

DeCAF: 1 million deep features extracted from the Profiset collection using
the Deep Convolutional Neural Network described in [10]. Each feature is
a 4,096-dimensional vector of values from the last hidden layer (fc7 ) of the
neural network. The deep features use the ReLU activation function and are
not �2-normalised. These features are compared with the Euclidean distance.

SIFT: 1 million SIFT descriptors from the ANN data set4. Each descriptor is
a 128-dimensional vector. The Euclidean distance is used for the comparison.

Figure 1 shows particular distance densities. We express the quality of the
sketching techniques by the recall of the k-NN queries evaluated using a simple
3 http://disa.fi.muni.cz/profiset/.
4 http://corpus-texmex.irisa.fr/.

http://disa.fi.muni.cz/profiset/
http://corpus-texmex.irisa.fr/
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(a) Sketching techniques and lengths (b) Various candidate set sizes

Fig. 2. SQFD data set: Quality of 3 sketching techniques varying sketch lengths (2a),
comparison of 128bit sketches using various candidate set sizes (2b).

sketch-based filtering. More specifically, sketches are applied to select the candi-
date set CandSet(q) for each query object q ∈ D that consists of a fixed number
of the most similar sketches to the query sketch sk(q); then, the candidate set
is refined by the distance d(q, o), o ∈ CandSet(q) to return the k most similar
objects o to q with the sketches in the candidate set CandSet(q). This approx-
imate answer is compared with the precise one that consists of the k closest
objects o ∈ S to q. The candidate sets consist of 2,000 sketches in the case of
DeCAF and SIFT data sets, and 1,000 sketches in the case of the SQFD data
set.

We evaluate experiments using 1,000 randomly selected query objects q ∈ D,
and we depict results by Tukey box plots to show distributions of the recall values
for particular query objects: the lower- and upper-bounds of the box show the
quartiles, and the lines inside the boxes depict the medians of the recall values.
The ends of the whiskers represent the minimum and the maximum non-outliers,
and dots show the outlying recall values. In all cases, we examine 100 nearest
neighbours queries to investigate properly the variance of the recall values over
particular query objects. We use sketches of lengths λ ∈ {64, 128, 196, 256}.

Results. Figure 2a shows results for the SQFD data set. The colours of the box
plots distinguish particular sketching techniques, the suffix of the column names
denotes the length of sketches. The proposed NSP 50 technique significantly
outperforms both, GHP 50 and BP 50 techniques, fixing the sketch length. The
PCA 50 approach is not applicable for this data set, as we search different than
the Euclidean space. The BP 50 technique performs worst and provides the
median recall just 0.67 in case of 256bit sketches. The NSP 50 and GHP 50
approaches achieve a solid median recall of 0.88 and 0.81, respectively, even in
case of 192bit sketches. We show also a coherence of the results when varying
the candidate set size. Figure 2b reports the recalls for the candidate set sizes
c ∈ {100, 500, 1000, 2000, 3000, 4000} and sketches of length 128 bits made by
the sketching techniques NSP 50 and GHP 50. This figure shows that a given
recall value can be achieved by the NSP 50 technique using a smaller candidate
set than in case of the GHP 50.
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(a) DeCAF data set (b) SIFT data set

Fig. 3. Quality of sketching techniques varying sketch lengths

The recall values for the DeCAF and SIFT data sets are depicted in Fig. 3.
The BP 50 technique is less robust concerning the dimensionality of the data,
so it achieves poor recalls in case of DeCAF descriptors, but it is still reasonable
for the SIFT data set. The quality of the newly proposed NSP 50 technique is
slightly better then that of the GHP 50 technique in case of the DeCAF data set.
Both are, however, outperformed by the PCA 50 technique, which is specialised
for the Euclidean space. This interpretation is valid for all the sketch lengths λ
we have tested. The differences between the NSP 50 and PCA 50 techniques
practically dismiss in case of the SIFT data set. Both these techniques achieve
significantly better recall than the BP 50 and the GHP 50 techniques.

5 Conclusions

We contribute to the area of the metric space embeddings into the Hamming
space. We propose the NSP 50 technique that leverages the n-Simplex projec-
tion to transform metric objects into bit-string sketches. We compare the NSP 50
technique with three other state-of-the-art sketching techniques designed either
for the general metric space or the Euclidean vector space. The experiments are
conducted on three real life data sets of visual features using four different sketch
lengths. We show that our technique provides advantages of both metric-based
and specialised vector-based techniques, as it provides a good trade-off between
the quality of the space approximation, applicability, and transformation learn-
ing cost.
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Abstract. Principal Component Analysis (PCA) is a popular method
for linear dimensionality reduction. It is often used to discover hidden
correlations or to facilitate the interpretation and visualization of data.
However, it is liable to suffer from outliers. Strong outliers can skew the
principal components and as a consequence lead to a higher reconstruc-
tion loss. While there exist several sophisticated approaches to make the
PCA more robust, we present an approach which is intriguingly simple:
we replace the covariance matrix by a so-called coMAD matrix. The first
experiments show that PCA based on the coMAD matrix is more robust
towards outliers.

Keywords: Covariance · coMAD · Principal Component Analysis

1 Introduction

When dealing with vast amounts of data and a large number of features perform-
ing principal component analysis (PCA) [5] is a common approach. PCA yields
the principal components, i.e. the directions of highest variance in the data. Fur-
thermore, PCA can be used to reveal hidden correlations and is sometimes used
to detect arbitrary oriented linear correlated clusters. For example it is used
in correlation clustering algorithms like 4C [2] or ORCLUS [1]. However PCA
based on the covariance matrix is highly sensity towards outliers, particularly
strong ones, can have an impact on the resulting principal components. This is
due to the fact that outliers can influence the mean for each of the features of
a data set. That is why in statistics the median is used as a robust measure
against outliers. For the measure of dispersion of a feature the so called median
absolute deviation from the median, short MAD, is the method of choice. In
this work we propose to use a coMAD matrix instead of a covariance matrix
on which the eigenvalues and eigenvectors are computed. We will elaborate on
the MAD and the coMAD matrix in detail. In our first tests it can be seen that
with heavy noise the principal components of a PCA are heavily deflected, while
those resulting from a PCA based on the coMAD remain stable.

c© Springer Nature Switzerland AG 2019
G. Amato et al. (Eds.): SISAP 2019, LNCS 11807, pp. 273–280, 2019.
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2 Related Work

There are many approaches to make the PCA more robust towards noise. With
the term robust, we understand the following: Given data where a significant
amount of the objects exhibits a linear correlation and some objects are outliers.
The method is considered as robust, if the increasing number as well as increasing
distance of outliers, does not significantly affect the direction of computed prin-
cipal components in comparison to the case where there would be no outliers in
the data set. In the work of [6] the authors develop a theory of Robust Principal
Component Analysis (RPCA) and describe a robust M-estimation algorithm for
capturing linear multivariate representations of high dimensional data, exem-
plary on images. M-estimators are a class of extremum estimators which can
be regarded as a generalization of maximum-likelihood estimation. The authors
further state that while methods such as RANSAC and Least Median Squares
are more robust compared to M-estimation, it is not clear how to apply the
techniques efficiently on high-dimensional data. In another work [4] the authors
propose the ROBPCA method which combines the concept of a so-called ’pro-
jection pursuit’ with a robust scatter matrix estimation on which the eigenvec-
tors and eigenvalues are computed. Their method relies on several criteria and
definitions. They use e.g. for the computation of outlierness the so called Stahel-
Donoho affine-invariant outlyingness. They further compute a reweighted mean
and covariance matrix based on the Rousseeuw and Van Driessen consistency
factor. In another work [7] a generative RPCA model is proposed which relies
on the Bayesian framework in which data noise is modelled as a mixture of
Gaussians (MoG).

While all of the mentioned methods rely on various more complex and sophis-
ticated methods, we challenge the task of robust PCA by asking: What if
we exchange the covariance matrix against a coMAD matrix? Since the sim-
ple median and MAD is robust against outliers, the coMAD and MAD-PCA
should be, too. In the following section we first define the coMAD and contrast
it against the covariance. Then we support our claim in the experimental evalu-
ation section, in which we also elaborate briefly on a metric we use to measure
the robustness of our method in which we compare the reconstruction errors
from a coMAD-based PCA against the covariance-based solution. We later on
critically question the appropriateness of the MAE evaluation. Our approach is
based on the MAD and the comedian as defined in the work of [3]. However we
have taken the liberty of renaming the comedian to coMAD since the covariance
is traditionally not named the ‘comean’.

3 MAD and coMAD

Given a data matrix D where each of its rows represents a data record and its
columns represent the features (A1, ..., Ad). The first step of performing PC is
computing the covariance matrix Σ, which is defined as:
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ΣD =

⎛
⎜⎝

var(A1) · · · cov(A1, Ad)
...

. . .
...

cov(Ad, A1) · · · var(Ad)

⎞
⎟⎠

With covariance being

cov(Ai, Aj) := E(((Ai − E(Ai))(Aj − E(Aj)))

For the case that Ai = Aj it is defined as the variance var(Ai) = E((Ai −
E(Ai))2) = E((Aj−E(Ai))2) = var(Aj). The covariance is thus a generalization
of the variance. At this point it can be seen that from each of the features the
expected value E (mean) is subtracted. The mean however is sensitive towards
outliers which skew the mean value significantly. A more robust measure is the
median. The analogon to the variance is the median absolute deviation from the
median (MAD) which is defined as:

mad(Ai) = med(|Ai − med(Ai)|)

We can now generalize MAD like the covariance is a generalization of the
variance. Then the coMAD can be defined as:

com(Ai, Aj) := med((Ai − med(Ai))(Aj − med(Aj)))

Like cov(Ai, Aj), com(Ai, Aj) is also a measure of covariance. Therefore,
building on the definition of the coMAD, we can define a coMAD matrix Λ:

ΛD =

⎛
⎜⎝

com(A1, A1) · · · com(A1, Ad)
...

. . .
...

com(Ad, A1) · · · com(Ad, Ad)

⎞
⎟⎠

Now we can perform PCA using ΛD instead of ΣD, i.e. the eigenvalues and
their corresponding eigenvectors of the coMad-matrix are computed.

While we shall see later in the experimental section the effects of noise on a
covariance and a coMAD-based PCA, we further ask in this work-in-progress if
there is a way to quantify the quality of the different methods. For this purpose
we shall elaborate first on what happens after the eigenpairs (eigenvector, eigen-
value) of a PCA are computed. The eigenvectors are put into an eigenvector
matrix U where each column corresponds to an eigenvector. What we do now is
to use the eigenvectors with the k-largest eigenvalues, where k is widely noted
in the literature as the number of principal components which cover more than
85% of the variance as a rule of thumb. The percentage of variance in a given
dataset is explained by the following ration for each of the eigenvalue λi:

ϕ(k) =
∑k

i=1 λi∑d
i=1 λi
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We discard as an example the second principal component of a performed
PCA, which yields Uk=1. We project now the data D down to a lower dimensional
representation Y through:

Y = D · Uk=i

If we now want to reconstruct the data back to its original two-dimensional
representation we achieve this with:

Z = Y · Uk=i

This procedure of projecting the data (D) down to a lower dimension (Y ) and
reconstructing (Z) it gives us the opportunity to compute the Mean Absolute
Error (MAE) which is defined as:

MAE(D,Z) =
∑n

i=1 |di − zi|
n

,

where di ∈ D, zi ∈ Z and n denoted the number of objects for which holds
n = |D| = |Z|.

4 Experiments and Discussion

To provide an intuition, we apply this method on the following toy examples as
seen in Fig. 11. In Fig. 1(a) we have a data set with a subset of objects which
clearly exhibits a linear correlation. To this data set we added three outliers.
On the left side it can be observed that the principal components of a PCA
using the covariance matrix are deflected towards the direction of the three out-
liers. In contrast the principal components from the coMAD-based PCA remain
with barely noticable deflection in the direction of the objects belonging to the
linear correlation. If we add now a fourth outlier which is even more apart,
one can observe in Fig. 1(b) that the deflection of the principal components of
a covariance-based PCA increases, exhibiting an by far larger eigenvalue. The
coMAD variant remains again barely affected. In Fig. 1(c) and (d) we increase the
distance of the fourth outlier, being more distant to the other outliers as well as
to the linear correlated objects. In Fig. 1(d) the deflection is massive in the case
of the covariance-based PCA, while principal components of the coMAD variant
remain robust. These simple synthetic experiments reveal that a coMAD-based
PCA excels regarding robustness against noise.

In a next step we conduct experiments on different data sets comparing
the resulting MAE for the covariance and for the coMAD variant. For each
of the data sets we repeat the MAE computation for choosing a range from
k = 1, ..., k = d principal components. The reason for this approach is twofold:
first, one can observe how the MAE decreases per data set by increasing the
number of principal components. Second: one can observe certain number of
1 We used python with several libraries. The code can be found at: https://github.

com/huenemoerder/MAD-PCA.

https://github.com/huenemoerder/MAD-PCA
https://github.com/huenemoerder/MAD-PCA
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(a) three outliers (b) four outliers I

(c) four outliers II (d) four outliers III

Fig. 1. PCA using covariance vs. coMAD matrices

eigenvectors which result in an increase or decrease of the MAE. For all the
experiments we used the data sets offered by the sklearn2 library.

Fig. 2. MAE with increasing number of principal components on the synthetic s-curve
data set. orange: coMAD variant; blue: covariance variant (Color figure online)

2 https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets.

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets
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We begin as a first experiment on a synthetic data set. We generated an
s-curve (50 samples, 3 features, 20 gaussian noise, random state = 42) without
outliers. By that we have a null-case where we would not expect the coMAD
to surpass the covariance approach at all. This data set has been chosen for its
inherently non-linear shape. In Fig. 2 we see on the horizontal axis the number of
principal components and on the vertical axis the MAE. The coMAD approach
is mostly the same like the covariance method, since we do not have outliers but
just an increase of noise. However taking the first two principal components, the
MAE is by around 25 units lower for the covariance method compared to the
coMAD.

Fig. 3. MAE with increasing number of principal components on the iris data set.
orange: coMAD variant; blue: covariance variant (Color figure online)

The second experiment is conducted on the iris data set (450 samples, 4
features). In Fig. 3 it can be seen significant differences in the MAE between
the covariance and coMAD PCA variants. Taking the first principal component
yields an lower MAE for the coMAD variant compared to the covariance version.
For the second principal component we get already a visible difference where
the covariance excels in comparison to the coMAD-based PCA. However, the
improvement of the MAE from the covariance approach reduces drastically with
the third principal component. It remains for future work to further investigate
the reasons for why in the coMAD yields a lower MAE for the second principal
component and a higher for the third PC compared to the covariance-based
approach.

Since iris is small with regards to number of features as well as number of
samples, we move in our next experiment to a larger scale. We test now both
approaches on the pendigit data set which represents handwritten digits contain-
ing over 1797 samples in total, and 64 features. The results can be observed in
Fig. 4. Here we observe that the MAE of the coMAD variant is marginally higher
compared to the covariance version. This observation raises several questions: 1.
Is the coMAD PCA inferior to the covariance PCA? The answer is: it depends.
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Fig. 4. MAE with increasing number of principal components on the digits data set.
orange: coMAD variant; blue: covariance variant (Color figure online)

In the synthetic experiments one could clearly observe that the coMAD based
method is superior. It is resilient towards outliers. But why do we get worse
MAE results compared to the covariance variant? If we think of what happens
in the case of the reconstruction error we recognize the following: It turns out
that the MAE is lower for the covariance based approach since we obtain prin-
cipal components which are heavily deflected. While this deflection is bad, since
it means that it does not represent the direction of linear correlated objects in
the data set, it is good for the reconstruction, since it means that the deflected
principal component minimizes the distance from the outliers to the principal
components, and as such, minimizes the error. The observed behaviors regard-
ing the reconstruction are therefore expected. However, we may question at this
point whether the MAE itself is a good measure for our purpose. The MAE is
suitable if we want to evaluate of how well the detected principal components
minimize the distance to each data object in the data set. However, it does
not reflect how well the principal components maintain a small distance of the
objects belonging to a linear correlation.

5 Conclusion and Future Work

In this work-in-progress we have presented the coMAD in context of PCA. Based
on the idea that a median is more robust compared to mean we defined a coMAD
matrix on which a PCA is performed. The idea is intriguingly simple compared to
competing methods. Experimental results show that the coMAD approach yields
principal components which seem unaffected by any noise, while the covariance-
based PCA experiences heavy deflection of its resulting principal components.

The potential of the coMAD for PCA may reveal in future work, when for
correlation clustering methods such as 4 C the coMAD is used instead of the
covariance. Especially in the 4 C scenario where for each data object within an
ε-radius a PCA is conducted, we have a small sample size of objects, making it
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especially prone to just a small number of noise. It also remains to future work
to further study those cases where the coMAD approach delivers higher as well
as a lower MAE compared to the covariance variant. Detecting and characteriz-
ing those cases opens the scene for the development of novel approaches dealing
with such special cases. Further it remains of special interest to develop criteria
to evaluate the quality of a coMAD-based PCA against a covariance variant,
since the MAE does not satisfy the task of determining the resilience of princi-
pal components against noise, but rather quantifies the quality of the principal
components with regards to the minimization of the distance to all objects in
the data set. We hope to kindle with this work future research on the coMAD.
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Education and Research (BMBF) under Grant No. 01IS18036A. The authors of this
work take full responsibilities for its content.
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Abstract. Axis-aligned subspace clustering generally entails searching
through enormous numbers of subspaces (feature combinations) and eval-
uation of cluster quality within each subspace. In this paper, we tackle
the problem of identifying subsets of features with the most significant
contribution to the formation of the local neighborhood surrounding a
given data point. For each point, the recently-proposed Local Intrinsic
Dimension (LID) model is used in identifying the axis directions along
which features have the greatest local discriminability, or equivalently,
the fewest number of components of LID that capture the local complex-
ity of the data. In this paper, we develop an estimator of LID along axis
projections, and provide preliminary evidence that this LID decomposi-
tion can indicate axis-aligned data subspaces that support the formation
of clusters.

Keywords: Intrinsic dimensionality · Estimation · Subspace

1 Introduction

In data mining, machine learning, and other areas of AI, we are often faced with
datasets that contain many more attributes than needed, or that can even be
helpful for tasks such as clustering or classification. Problems associated with
such high dimensional data are for example the concentration effect of distances
[6,9] or irrelevant features [13,26]. For clustering [17,23] and outlier detection
[26], researchers have made use of various techniques to identify relevant sub-
spaces, as defined by subsets of features that are informative for a particular
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task. Examples of how relevant subspaces can be determined for individual clus-
ters or outliers include local density estimation in a systematic search through
candidate subspaces, or the adaptation of distance measures based on the distri-
bution within local neighborhoods. For sufficiently tight local neighborhoods, the
underlying local data manifold can be regarded as approaching a linear form [21],
an assumption that further justifies the determination of locally relevant features
for subspace determination.

In this paper, we present a novel technique for the identification of subsets
of features with the most significant contribution to the formation of the local
neighborhood surrounding a given data point, using the recently introduced
Local Intrinsic Dimensionality (LID) [10,11] model. LID is a distributional form
of intrinsic dimensional modeling in which the volume of a ball of radius r is
taken to be the probability measure associated with its interior, denoted by
F (r). The function F can be regarded as the cumulative distribution function
(cdf) of an underlying distribution of distances. Theoretical properties of LID in
multivariate analysis have been studied recently [12]. LID has also seen practical
applications in such areas as similarity search [7], dependency analysis [20], and
deep learning [18,19].

To make use of the LID model to identify locally-discriminative features,
we develop an estimator of LID decomposed along axis projections that com-
pensates for the bias introduced during projection. We also provide preliminary
experimental evidence that LID decomposition can indicate axis-aligned data
subspaces that support the formation of clusters, by implementing a simple two-
stage technique whereby points are first assigned to relevant subspaces, and then
clustered. As the relevant features can be different for each cluster, feature rele-
vance is assessed cluster-wise or even point-wise (as the clusters are not known
in advance). It is not our intent here to propose a complete subspace cluster-
ing strategy; rather the goal in this preliminary investigation is to provide some
guidance as to how subspace identification could be done as an independent,
initial step as part of a larger clustering strategy.

In Sect. 2, we give some preliminaries on intrinsic dimensionality, before dis-
cussing LID decomposition and its estimation. In Sect. 3, to illustrate how LID
decomposition could be used within subspace clustering, we propose as an exam-
ple a simple method using LID to determine eligible subspaces within which
DBSCAN is used for clustering. In this preliminary version, only a brief sum-
mary of the experimentation is given; more details can be found in [4]. We
conclude the paper in Sect. 4.

Preliminaries on ID. Let X ∈ R
m be an m-variate random variable, let F :

R
m → R be its joint probability distribution, and let ‖ · ‖ denote an arbitrary

norm. The ID of F at a non-zero point x is defined as follows.

Definition 1 ([12]). Let x ∈ R
m
�=0 such that F (x) �= 0. Assume that the partial

derivatives ∂f
∂xi

(x) at x exist for all i ∈ [m] = {1, . . . , m}, the ID of F at x is
defined as IDF (x) := xT ∇F (x)/F (x).
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It is well-known that, under suitable mild continuity assumptions, the ID of F
at x is equivalent to both the indiscriminability and the intrinsic dimensionality
of F at x, see [12, Theorem 1]. Local intrinsic dimensionalities have also been
shown to satisfy the following useful decomposition rule.

Theorem 1 ([12]). Let x ∈ R
m
�=0 and let I ⊆ R with 0 ∈ I be an open interval

such that F is non-zero and its partial derivatives exist and are continuous at
(1 + ε)x for all ε ∈ I. Assume that xi �= 0 for each i ∈ [m]. Then IDF (x) =∑m

i=1 IDFi,x
(xi), where Fi,x(t) := F (x1, . . . , xi−1, t, xi+1, . . . , xm) for i ∈ [m].

2 Decomposed LID Estimation

Definition and Properties. We now define Nδ := {x ∈ R
m : 0 < ‖x‖∞ < δ},

and assume that F is non-zero and that its partial derivatives exist and are
continuous at every x ∈ Nδ. Then, for every x ∈ Nδ, there is an interval I with
0 ∈ I such that F is non-zero and its partial derivatives exist and are continuous
at (1+ε)x for every ε ∈ I. Following [12], we define ID∗

F := limx→0,‖x‖∞≤δ IDF (x)
as the local intrinsic dimensionality of F .

Definition 2. Let Iδ be the ‘hollow’ open interval (−δ, δ) \ {0}. For x ∈ Nδ,
we define the functions Fi,x : Iδ → R and gi : Iδ × Iδ

m−1 → R as Fi,x(t) :=
F (x1, . . . , xi−1, t, xi+1, . . . , xm) and gi(t, x−i) := t · F ′

i,x(t)/Fi,x(t), where x−i =
(x1, . . . , xi−1, xi+1, . . . , xm) ∈ Iδ

m−1 for some x ∈ Nδ.

Using the Moore-Osgood theorem to interchange the order of limits, we obtain
a decomposition rule for LID. For the precise statement of the Moore-Osgood
theorem, see for example [16].

Theorem 2. Assume that for every i ∈ [m], it holds that (1) limt→0 gi(t, y)
exists for every y ∈ Iδ

m−1, (2) limy→0 gi(t, y) exists for every t ∈ Iδ, and (3) at
least one of the two limits exists uniformly. Then the limits ID∗

F,i := limx→0 xi ·
F ′

i,x(xi)/Fi,x(xi) exist for all i ∈ [m], and thus

ID∗
F =

m∑

i=1

ID∗
F,i =

m∑

i=1

lim
x→0

xi · F ′
i,x(xi)

Fi,x(xi)
=

m∑

i=1

lim
y→0

lim
t→0

gi(t, y). (1)

We refer to ID∗
F,i as the local intrinsic dimensionality of F in direction i.

Estimating ID∗
F,i. Now let φ : R → R be a univariate function and assume that

ID∗
φ := IDφ(0) = limt→0 t · φ′(t)/φ(t) exists. We note that Theorems 2 and 3

in [11] yields that, as w approaches 0, it holds that φ(t) ≈ φ(w) · (t/w)ID
∗
φ .

Moreover, differentiating this quantity yields (φ(w)/w) · ID∗
φ ·(t/w)ID

∗
φ −1 as an

approximation of φ′(t). We now apply this observation to the estimation of ID∗
F,i

for some i ∈ [m]. Let us fix some x ∈ R
m
�=0 and let us denote ID∗

i := ID∗
Fi,x

for
i ∈ [m]. Given p(1), . . . , p(k) ∈ R

m following the joint distribution F , we are now
in a position to state the log-likelihood function for the parameter ID∗

i under
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the observations p(1), . . . , p(k). Assume that we associate a weight ω(p(j)i ) to the
projection p

(j)
i of each observation p(j)—for the standard unweighted case of the

log-likelihood function, all weights are set to 1. We may regard these weights as
assigning a-priori likelihoods to the observations, by which an individual obser-
vation p

(j)
i is accounted as having occurred ω(p(j)i )-many times. The weighted

log-likelihood function can then be derived as

L(ID∗
i : p(1), . . . , p(k)) =

k∑

j=1

ω(p(j)i ) · log
(Fi,x(w)

w
· ID∗

i ·( |p(j)i |
w

)ID∗
i −1

)
.

We are now interested in the parameter ID∗
i that maximizes L(ID∗

i :
p(1), . . . , p(k)). For this purpose, we form its derivative w.r.t. ID∗

i and set it
to zero. A straightforward derivation shows that the likelihood is maximized at

ÎD∗
i =

(
− 1

∑k
j=1 ω(p(j)i )

k∑

j=1

ω(p(j)i ) log
(
∣
∣p

(j)
i

∣
∣

w

))−1

, (2)

which has the form of a weighted variant of the Hill estimator with threshold w.

0 1

1

|p|1

|p1|

√
1 − |p1|2

Fig. 1. When considering a circular neigh-
borhood, points p with projections ‖p1‖ close
to one are much less likely than points with
small projections, since the blue region is
not accounted for. Such a neighborhood can
however still be employed, by associating a
weight ω(p1) with p that is proportional to
1 over the length of the line segment that
contains all points with this projection ‖p1‖.
(Color figure online)

Note that we have now developed
an estimator for ID∗

i . Assuming how-
ever, that for a reference point x0 ∈
R

m, the considered neighborhood
from which the points p(1), . . . , p(k)

are chosen is sufficiently small, it is
reasonable to use the same estimator
for ID∗

F,i as well, as the outer limit
in (1) can be neglected.

Neighborhood Weighting. In the pre-
vious subsection, we have developed
an estimator for ID∗

F,i; however, we
have not yet stated how to determine
a neighborhood for x0. This turns
out to be a delicate question, for
which the use of observation weight-
ing will become essential.

Note that the estimator for ID∗
F,i

that we developed above assumes
that neighborhood points p(j) with
projections |pj | stem from the inter-
val [0, w]. If we pick a ‘box neighbor-
hood’ of x0 consisting of the k closest points to x0 with respect to the L∞
norm (defined as ‖v‖∞ := max{|vi| : i ∈ [m]} for v ∈ R

m), the points p with
projections |pi| close to zero are equally likely to be neighbors as points with
projections close to one. This is however, not the case if we pick the neigh-
borhood as the k closest points with respect to the Euclidean norm. In this
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case, points p with projections |pi| close to zero will be much more likely to be
neighbors than points with |pi| close to one. As the Euclidean norm is however
much more common in practical applications, due to its rotational invariance,
we would still like to be able to handle this situation as well. In order to compen-
sate for the bias that results from the fact that points with large projections are
less likely than points with small projection, we will use the weighting scheme
introduced in the previous subsection. When estimating ID∗

F,i, an observation p
with projection |pi| must be weighted according to the ratio of the volume of
the m − 1-dimensional sphere with radius (1 − |pi|2)1/2 on the one hand, and
the volume of its bounding hypercube on the other. This leads to the definition
of weights ω(pi) := 1/(1 − |pi|2)(m−1)/2 for the case of the Euclidean norm. See
Fig. 1 for an illustration of the 2D-case.

Verification of ID∗
F =

∑m
i=1 ID∗

F,i. In this paragraph we report on an exper-
iment that aims at verifying the equation ID∗

F =
∑m

i=1 ID∗
F,i from Theorem 2

for the case of a uniform distribution in a space equipped with the Euclidean
distance metric. For the purpose of estimating ID∗

F , we use the MLE (Hill)
estimator proposed in [3] (hill distances). We compare its output value ÎD∗

F

on a hyperspherical neighborhood of radius 1 with the sum
∑m

i=1 ÎD∗
i , where

we consider two different ways of obtaining the estimates ÎD∗
i . In the first case

(sum hill projections), we pick a (unit-)hypercubical neighborhood, while in
the second case (sum w hill projections), we use the weighted estimator for
the hyperspherical neighborhood compensating for bias using weights.

Fig. 2. Results for the three estimators. Error-
bars denote 95% confidence intervals. Every
measurement is an average of 5 runs.

In our experiment, we create
neighborhoods of 100 points for
dimensions m = 2, 4, 8, . . . , 1024.
Note that in this example of a
uniform distribution in m dimen-
sions, the true LID value is m.
The experiments show that the
two decomposition-based estima-
tors, when summed over all com-
ponents, do match the total
intrinsic dimensionality m, as
does the MLE estimator, see
Fig. 2.

3 Subspace Clustering Based on LID Decomposition

We now consider some of the issues surrounding the use of LID-decomposition
ranking to support subspace clustering. It is not our intent here to propose
a single full subspace clustering strategy; rather, the goal is to provide some
guidance as to how subspace identification could be done as an independent,
preliminary step as part of a larger clustering strategy.
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We rely on the LID decomposition to determine relevant attributes for the
cluster to which the neighborhood of q belongs. The subspace dimensionality
of a point q is determined by searching for attributes with low ID estimates. A
common way of doing this is by locating a gap in the sequence of LID estimates
that best separates relevant attributes from irrelevant ones, much in the same
way as a projective basis is found in PCA decompositions through gaps in the
sequence of eigenvalues or variances. We track the relative difference in ID from
attributes with low ID to high ID and fix the cut-off that determines the subspace
dimensionality at the attribute that exhibits the highest relative difference.

Cluster Membership. To better define the local subspace preference vectors, we
propose an additional refinement step. We use a sample of data points X̃ to build
a profile from their subspace preference vectors P = {S(x) | x ∈ X̃}. The local
subspace preference is refined by determining the membership of points M to
the collected subspace profiles. Given the ordered attributes vector O(q), M(q)
is selected as the subspace whose attributes are present in the first elements
of O(q). Inside a subspace, points with preference towards that subspace are
clustered using a traditional algorithm such as DBSCAN [8].

Experimental Evaluation

Besides the recall, we rely on three other metrics that are widely used in the liter-
ature to measure the performance of clustering techniques, namely the Adjusted
Rand-Index (ARI) [15], the Normalized Mutual Information (NMI) [24], and the
Adjusted Mutual Information (AMI) [25].

Table 1. Synth. datasets: description.

d ||S|| Noisy Ai

T1 30 {5, 5, 5, 5, 5} 5

T2 50 {3, 5, 7, 7, 11} 17

T3 100 {3, 5, 7, 7, 11} 67

Table 2. Synth. datasets: results.

NMI AMI ARI Recall

T1 DiSH 0.535 0.362 0.264 0.582

CLIQUE 0.431 0.275 0.303 0.635

LID-DBSCAN 0.801 0.734 0.803 0.726

T2 DiSH 0.568 0.396 0.532 0.7

CLIQUE 0.644 0.473 0.568 0.78

LID-DBSCAN 0.779 0.695 0.716 0.765

T3 DiSH 0.570 0.397 0.412 0.702

CLIQUE 0.644 0.473 0.568 0.78

LID-DBSCAN 0.749 0.671 0.699 0.76

Synthetic Data. We syntheti-
cally generated three datasets
(T1, T2, T3) with 30, 50, and
100 attributes, respectively,
each consisting of 5 standard
Gaussian clusters with each
attribute value from a given
cluster generated according to
N (c, r), with c and r hav-
ing been selected uniformly
at random from [−1, 1] and
(0, 0.2], respectively. For T1
and T2, each cluster was gen-
erated in its own distinct
subspace (with no attributes
in common between clusters).
For the purpose of studying
the resilience of the approach
to noise, the data was aug-
mented with attributes whose
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values were drawn uniformly at random from [−1, 1]. T3 was generated from T2
by adding 50 additional attributes with uniform noise. The details are summa-
rized in Table 1. Table 2 summarizes the clustering performance for these datasets
comparing our approach against DiSH [1] and CLIQUE [2]. We chose DiSH as it
also relies on a point-wise determination of relevant attributes (essentially com-
paring the spread of distances of nearest neighbors in all attributes) and could be
seen as closely related to our approach. In addition, we test against the classical
method CLIQUE, as it is arguably the best-known subspace clustering method.
In most cases, our approach shows a superior performance.

Manifold Data. For the purpose of further validating the efficiency of the app-
roach to detect significant subspaces on more complex datasets, we relied on
the manifold generator proposed in [22] and generated manifolds of differing
distributions in different dimensions. We compared the performance of the LID
decomposition approach with the one of DiSH with respect to two different met-
rics (RNIA and ARR) that are generally used to judge clustering algorithms.
With respect to both metrics, LID decomposition outperforms DiSH for each
of the datasets considered, particularly for D4 (the set with highest average
manifold dimension). We refer the reader to the full version for details.

4 Conclusion

Using decomposed LID as a new primitive for estimating the local relevance of a
feature, future work could explore more refined subspace clustering approaches.
Clustering approaches can be tailored to this new primitive but presumably
many existing subspace clustering methods could be adapted to using the new
primitive instead of conventional building blocks such as density-estimates, anal-
ysis of variance, or distance distributions. Beyond subspace clustering, many
more applications can be envisioned, for example in subspace outlier detection
[26] or in subspace similarity search [5,14].

Variance-based measures of feature relevance, such as those underlying PCA
and its variants, have an advantage over LID in that sample variances decompose
perfectly across the coordinates within a Euclidean space. However, although the
theoretical values within an LID decomposition are guaranteed to be additive,
their estimates are not. Although the experimental results shown in Fig. 2 indi-
cate for the case of uniform distributions that MLE estimates for decomposed
LID do sum to the overall LID estimate within reasonable tolerances, it is not
clear how well additivity is conserved for real data. Since the additivity of esti-
mators for LID decomposition may depend significantly on their accuracy, future
research in this area could benefit from the further development of LID estima-
tors of good convergence properties.

Acknowledgments. M. E. Houle was supported by JSPS Kakenhi Kiban (B)
Research Grant 18H03296.
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Abstract. Software product lines enable reuse of shared software across
a family of products. As new products are built in the product line,
new features are added. The features are units of functionality that pro-
vide services to users. Unwanted feature interactions, wherein one feature
interferes with another feature’s operation, is a significant problem, espe-
cially as large software product lines evolve. Detecting feature interac-
tions is a time-consuming and difficult task for developers. Moreover, fea-
ture interactions are often only discovered during testing, at which point
costly re-work is needed. This paper proposes a similarity-based method
to identify unwanted feature interactions much earlier in the development
process. It uses knowledge of prior feature interactions stored with the
software product line’s feature model to help find unwanted interactions
between a new feature and existing features. The paper describes the
framework and algorithms used to detect the feature interactions using
three path similarity measures and evaluates the approach on a real-
world, evolving software product line. Results show that the approach
performs well, with 83% accuracy and 60% to 100% coverage of feature
interactions in experiments, and scales to a large number of features.

Keywords: Feature interaction · Similarity measures · Software
product lines

1 Introduction

A software product line (SPL) is a family of software products that share a set
of basic features as a core and differ in other alternative or optional features [18].
Software product lines are widely used in industry to reduce the cost and time-
to-market of new products. A feature is defined in a software product line as a
unit of functionality that provides service to users [7,10,19] (i.e., different from
a feature in machine learning or statistics). In a software product line, features
are combined in various configurations to form a growing set of new products
[9,18].
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Feature interaction in a software product line refers to a situation in which
individual features separately behave as expected, but when merged in a new
product, one or more no longer operates as desired and may even be dangerous
[3]. Batory et al. describe a classical example of unintended feature interaction,
attributed to Kang. A building with a fire-control feature has sensors that, when
they detect fire, activate water sprinklers. A building with a flood-control feature
has water sensors that, when they detect standing water, turn off the water main.
Either feature operates correctly alone; however, if the flood-control feature is
added to a building having the fire-control feature, the features interfere with
each other and create a hazardous situation [5].

The feature interaction problem is a challenging one that hinders the devel-
opment of dependable product lines [11,19]. As the number of features grows,
the problem typically grows.

Potential feature interactions can increase exponentially with the number
of features, making the task even more difficult. In safety-critical systems,
unplanned feature interactions can be hazardous. Detecting unwanted feature
interactions is difficult, and developers currently depend primarily on testing
or code analysis to locate them, both of which occur late in the development
process [13].

In small product lines, class similarity can detect some feature interactions
[15]; however, real-world product lines typically have very many features [8] and
weak traceability from features to code [5].

Our work is based on two observations: first, that a new feature being added
is often similar to an existing feature, and second, that a product line reposi-
tory typically contains a feature model, a directed acyclic graph that specifies
the features, and a representation or list of the known constraints on feature
interactions. The constraints encode lessons learned from experience with prior
products.

We are especially interested in mutually exclusive features (alternative con-
straints, where only one child feature among several can be selected, and cross-
tree excludes constraints, where both features cannot be part of the same prod-
uct). We focus here on these feature interactions because unwanted ones have
proven especially troublesome unless discovered early on. A recent Dagstuhl
seminar [1] described the need to improve such detection of feature interac-
tions. Moreover, features involved in excludes constraints are often implicated in
unsatisfactory user experience and anomalous performance [6]. Widely reported
examples include recent iPhone and safety-critical Prius car problems, both of
which involved excludes constraints on features [12].

We have observed that if there is a mutual exclusion constraint between
Feature i and Feature j, and a new product introduces a new Feature k having
high similarity with Feature j, then it is likely that Feature k also has a mutually
exclusive relationship with Feature i. Detecting mutually exclusive features in
code is difficult. Nadi et al. [16] reported that, while they could recover 28% of
the existing constraints in a feature model, their approach detected only 3 of its
32 mutex constraints. Our method instead computes the similarity between those
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features known to interact in unwanted ways in the software product line and
the planned new features. We apply this knowledge to discover related feature
interactions in the new product much earlier in the development process.

We thus investigate three research questions:

RQ1: How effectively can we measure the similarity between a new feature and
existing features?
RQ2: To what extent can path similarity between two features detect unintended
feature interaction at an early stage of development?
RQ3: To what extent can we effectively predict new, unwanted feature interac-
tions in a new product in a software product line?

We study these research questions by implementing our approach and eval-
uating it in a large software product line. Results from evaluation showed an
accuracy of 83% and coverage of 60–100% in detecting feature interactions. This
indicates that the use of similarity measures between features in a software prod-
uct line can detect potential feature interactions in the design phase of a newly
added product.

The rest of the paper is structured as follows. Section 2 provides an overview
of the approach for detecting feature interactions in a software product line.
Section 3 specifies the three feature-based similarity measures that were used.
Section 4 describes results from the evaluation. Section 5 reviews related work,
and Sect. 6 gives concluding remarks.

Fig. 1. FIDUS: Feature Interaction Detection Using Similarity in Software Product
Lines
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2 Overview

In this section we motivate our work and introduce our proposed framework.

2.1 Problem Statement

The problem that we address is detecting unwanted feature interactions. When
features are combined to build a new product but do not work together as
expected, an unplanned feature interaction occurs. Currently, testing or formal
verification are used by developers to detect feature interactions. However, test-
ing all combinations of features is impractical due to its combinatorial complexity
in real-world product lines [14]. Moreover, formal verification requires develop-
ers to create a formal model, which is rarely done in practice, and then only
for small software product lines. Thus, although methods which apply testing
and formal methods to detect feature interaction in software product lines are
helpful, these methods detect them only late in development, are often infeasible
due to combinatorial explosion, or pre-suppose the existence of formal models.

These limitations motivated us to investigate an approach to detect unwanted
feature interactions in an earlier stage of development by using feature similarity
measures. We call our resulting method FIDUS, short for “Feature Interaction
Detection Using Similarity.”

2.2 Approach

Since detecting feature interactions at the code level is costly and occurs late in
development, we focus instead on the early-phase feature model and introduce an
efficient framework using similarity measures to detect new feature interactions
in an evolving software product line. Our proposed framework, FIDUS, is based
on three main components: (1) the software product line’s repository of known
feature interactions, (2) the feature model for the software product line, and (3)
a set of similarity measures to understand how close new features are to existing
features.

FIDUS is shown in Fig. 1. As shown there, the software product line reposi-
tory on the left contains the feature model and documentation of known feature
interactions, derived from bug reports and known constraints. Figure 1 shows
that FIDUS applies similarity measures both to features participating in known
feature interactions and to new features added for the next product in the SPL.
FIDUS then uses the results of the similarity measurements to identify similar
features and predict new feature interactions to be avoided. This information is
reported to the developer as well as used to update the repository.

A proposed usage scenario for FIDUS is that a developer wants to understand
whether a new product having a new feature Fnew will interact in an undesired
way with any existing features. FIDUS uses the feature model with its capture of
known constraints (e.g., F i⊕F j ) to help answer this question by applying feature
similarity measures to Fnew with features in known, unwanted interactions.
FIDUS then reports to the developer the extent to which the new feature Fnew
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may potentially participate in any known feature interactions. This technique
has the potential to reduce feature interactions inadvertently introduced in a new
product, thereby reducing risk as well as saving time and effort in debugging.

3 Similarity Measures to Detect Unwanted Feature
Interactions in Software Product Lines

This section first introduces the software product line used in our evaluation
so that it can be used for illustrative purposes in the following discussion. The
section then describes, specifies, and discusses the three similarity measures that
we investigated for detecting feature interactions in a new product or version in
an evolving software product line. Table 1 shows the similarity measures used in
our study to measure the distance between two features in a tree-based feature
model of a large software product line.

3.1 SPL Case Study

We selected three versions to study as products in the very large (600 features)
BusyBox software product line [20]. BusyBox is a binary executable and highly
configurable system consisting of small versions of many common GNU shell
tools such as file utilities and shell utilities. BusyBox can be configured with
configurator tools such as menuconfig. As shown in Table 1, we studied features
introduced in the configuration part of BusyBox versions 1.7, 1.8, and 1.17, and
in the shells part of BusyBox version 1.17. We used the LocMetrics tool1 for
counting lines of code. On average 14% to 17% of the source lines of code are
kconfig code, which is a configuration language used to configure BusyBox. The
number of features is the total number of features added to or deleted from
the prior version. For example, in version 1.8, four features were added and two
features were deleted, resulting in 42 features in version 1.8 compared to 40
features in version 1.7.

Table 1. Different parts of different versions of BusyBox studied in this paper

SPL name Num. features Num. interactions #LOC

BusyBox v1.7 (Configuration) 40 16 14.8K

BusyBox v1.8 (Configuration) 42 22 15.5K

BusyBox v1.17 (Configuration,Shells) 72 28 19K

1 http://www.locmetrics.com/index.html.

http://www.locmetrics.com/index.html
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3.2 Similarity Measures

We chose three path-based metrics which had worked well on a very large as-is
hierarchy, WordNet, introduced in [17]. However, here we used them to measure
the pairwise similarity between features in a large software product line’s feature
model. The three similarity metrics are path, lch, and wup [17]. A description
of each of these path-based similarity measures together with examples from
BusyBox version 1.8 follows. Figure 2 shows the feature model and the position
of two features, SYMLINKS and SCRIPT WRAPPER. We calculate the
similarity scores between them below.

Fig. 2. A piece of the feature model for BusyBox version 1.8 (Color figure online)

Path length (path): In path measure, the similarity score is inversely pro-
portional to the number of nodes along the shortest path between two features
in the feature model, which is here treated as an undirected acylic graph. The
similarity score is 0 to 1, inclusive. If the two features are identical, the path sim-
ilarity score is 1. Two sibling features have a path score of 0.5 since the shortest
path between them is of length two in terms of counting nodes. Here, Shortest
path (SYMLINKS, SCRIPT WRAPPER) = |3, 4| = 2.

Leacock & Chodorow (lch): The lch similarity score proposed by
Leacock and Chodorow (lch) is −log(length/(2 ∗ D)), where length is
the length of the shortest path between the two features using node-
counting and D is the maximum depth of the feature model. Here, D =
maximum depth feature diagram = 4, and lch = −log(length/(2 ∗ D)) =
−log(2/(2 ∗ 4)) = 0.6.

Wu & Palmer (wup): The Wu & Palmer measure (wup) calculates the
similarity score of two features by considering the depths of the two features
in the feature model, along with the depth of the LCS, the least common sub-
sumer (LCS) of the two features, which is the most distinct feature they share
as an ancestor. The similarity score formula is 2 ∗ depth(LCS)/(depth(F1) +
depth(F2)). The score can never be zero because the depth of the LCS is never
zero since the depth of the root of a feature model is one. The score is 1 if the
two features are the same. Here, depth(LCS) = depth(APPLET LINKS) = 3,
and wup = 2 ∗ depth(LCS)/(depth(F1) + depth(F2)) = 2 ∗ 3/(4 + 4)) = 0.75.
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3.3 Algorithms

Algorithms 1, 2 and 3 show how the path, lch and wup similarity measures are
calculated. Algorithm 4 does pairwise calculation of similarity scores between
features in a software product line. Lines 2 to 8 execute nested for loops and call
Algorithms 1, 2 and 3 to calculate the similarity. Algorithm 5 shows how FIDUS
recommends new possible feature interactions when a new feature is added to
the existing software product line.

Algorithm 1. Calculate the path Similarity
Input: F i , F j ∈ F (Two Nodes in Feature Model)
Output: PathSim(Path Similarity)

1: function path(F i , F j )
2: Length ← |Shortest Path(F i , F j )|
3: PathSim ← 1

Length

4: return PathSim
5: end function

Algorithm 2. Calculate the lch Similarity
Input: F i , F j ∈ F (Two Nodes in Feature Model), D (maximum depth of FM)
Output: LchSim(lch Similarity)

1: function lch(F i , F j )
2: Length ← |Shortest Path(F i , F j )|
3: LchSim ← −log(Length

2∗D )
4: return LchSim
5: end function

Algorithm 3. Calculate the wup Similarity
Input: F i , F j ∈ F (Two Nodes in Feature Model)
Output: WupSim(wup Similarity)

1: function wup(F i , F j )
2: depth(LCS) ← |LCS(F i , F j )|
3: WupSim ← 2 ∗ depth(LCS)/(depth(F1) + depth(F2))
4: return WupSim
5: end function
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Algorithm 4. Pairwise calculation of similarity scores between features in a
software product line
Input: F1 . . . FN

Output: PathSim[ ][ ], LchSim[ ][ ],WupSim[ ][ ] (Pairwise Similarity Matrix)

1: function SimMatrix(F1 . . . FN )
2: for i ← 1 to N do
3: for j ← i + 1 to N do
4: PathSim[i][j] ← PATH(F i , F j )
5: LchSim[i][j] ← LCH(F i , F j )
6: WupSim[i][j] ← WUP (F i , F j )
7: end for
8: end for
9: return PathSim[ ][ ], LchSim[ ][ ],WupSim[ ][ ]

10: end function

Lines 2 to 19 of Algorithm 5 identify which features in the feature model
have the highest similarity values to a new feature. Next, it checks all features in
known feature interactions pairs to find whether the most similar features to a
new feature are involved in any known unwanted feature interactions. If the algo-
rithm matches the new feature to any known feature interactions, FIDUS recom-
mends it/them as potential unwanted feature interactions. We implemented the
algorithms in Python and Java in order to automate the calculation of pairwise
similarity scores2.

Time Complexity. Algorithms 1 and 2 depend only on finding the shortest
path between two features in a feature model. Here, the length of the shortest
path is defined as the number of nodes in the shortest path between the two fea-
tures. Finding the shortest path in an undirected acyclic graph has linear time
complexity of O(|E + N |) where |E| is the number of edges between features
and |N | is the number of features in the feature model. Algorithm2 needs the
maximum depth of the DAG which is linear in N. Thus, the time complexity is
max(O(|E + N |), O(|N |)) which is O(|E + N |). The time complexity of Algo-
rithm3 is also linear in N since it only depends on line 2, which finds the depth
of the common ancestor between two features and the depth of each feature.
The time complexity of Algorithm 4, which calculates the pairwise similarity
between features, is O(N3). Lines 2 to 8 of Algorithm 4 implement a nested for
loop which runs N(N − 1)/2 times. In lines 4, 5 and 6 of Algorithm4, we call
Algorithms 1, 2 and 3, all of which are linear in the number of features, to cal-
culate the similarity scores. Thus, the final time complexity of Algorithm4 is
O(N2(E + N)). Algorithm 5 which reports out the potential new feature inter-
actions that have been discovered has the same time complexity as Algorithm4
since it calculates the pair similarity of new features with existing features in
known feature interactions.

2 https://github.com/zahrakhoshmanesh/FIDUS.

https://github.com/zahrakhoshmanesh/FIDUS
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Algorithm 5. Recommend new Feature Interaction using path similarity
Input: F [ ], F I[ ], Fnew (FI: list of Known pairwise Feature Interactions in the SPL)
Output: NewFI[ ] (list of new suggested feature interactions)

1: function Detect(F [N ], F I[K], Fnew)
2: FSimilarPath ← F1 ,FSimilarLch ← F1 ,FSimilarWup ← F1
3: PATHMax ← PATH(F1 , Fnew)
4: LCHMax ← LCH(F1 , Fnew)
5: WUPMax ← LCH(F1 , Fnew)
6: for i ← 2 to N do
7: PATHSim[i] ← PATH(F i , Fnew)
8: LCHSim[i] ← LCH(F i , Fnew)
9: WUPSim[i] ← WUP (F i , Fnew)

10: if (PATH[i] > PATHMax) then
11: FSimilarPath ← F i
12: end if
13: if (LCHSim[i] > LCHMax) then
14: FSimilarLch ← F i
15: end if
16: if (WUPSim[i] > WUPMax) then
17: FSimilarWup ← F i
18: end if
19: end for
20: for i ← 1 to k do
21: F i + FsimilarPath ← FindFI(FsimilarPath)
22: NewFI[] ← F i + FsimilarPath
23: F i + FsimilarLch ← FindFI(FsimilarLch)
24: NewFI[] ← F i + FsimilarLch
25: F i + FsimilarWup ← FindFI(FsimilarWup)
26: NewFI[] ← F i + FsimilarWup
27: end for
28: return NewFI[ ]
29: end function

3.4 Illustrative Example

Figure 2 shows a portion of the feature model for BusyBox versions 1.7 and 1.8. In
Fig. 2, the new features added in version 1.8, are highlighted in green in the fea-
ture model of BusyBox version 1.7. FIDUS will calculate the similarity between
them and those existing features which participate in known unwanted feature
interactions of BusyBox version 1.7. As depicted in Fig. 2, there are six features
in the installations option section of BusyBox 1.7, including optional features
INSTALL NO USR, APPLET LINK, and PREFIX, and alternative features for
APPLET LINK feature including SYMLINKS, HARD LINK and DONT with
the constraint that only one of these three features can be selected. Selecting the
two features SYMLINKS and HARD LINK would cause an unwanted feature
interaction since these two features have an XOR constraint. An XOR constraint
is a mutually exclusive selection of two features such that selecting one feature
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or configuration must exclude the second feature from the product. XOR con-
straints are handled as unwanted feature interactions in FIDUS since the two
features cannot both be selected for a product.

Feature SCRIPT WRAPPER is added to BusyBox version 1.8. In other
words, SCRIPT WRAPPER is a new feature beyond BusyBox version 1.7.

We use a list of known unwanted feature interactions of version 1.7 which
are shown in the software product line repository of Fig. 1. From that list, we
know that SYMLINKS and HARDLINK contribute a feature interaction. FIDUS
calculates the similarity score between the new feature SCRIPT WRAPPER
and all other features that participate in known interactions in BusyBox ver-
sion 1.7. Based on the result, as shown in Fig. 3, DONT, HARDLINK, and
SYMLINK are the most similar features to SCRIPT WRAPPER. Therefore,
FIDUS places SCRIPT WRAPPER instead of these similar features in the
known unwanted feature interactions and reports them to the developers as
possible new, unwanted feature interactions that may need to be resolved.

4 Results

This section presents our results for each of the three research questions. We
implement and evaluate our framework, FIDUS, based on three well-performing
similarity metrics described in [17]. Table 2 shows the similarity metrics used in
our study.

Table 2. Path-based similarity metrics used in this study

Name of similarity metric Formula Reference

path 1/(lengthshortestpath) [17]

lch −log(length/(2 ∗ D)) [17]

wup 2 ∗ depth(LCS)/(depth(F1) + depth(F2)) [17]

Our goal is to detect pairwise unwanted feature interactions, i.e., those sit-
uations in which two features contribute to an interaction and the presence of
one causes an unwanted change in the behavior of the second feature [5]. Two-
way feature interactions are the majority of interactions in software product
lines, so investigating them serves our goal of detecting the majority of feature
interactions in the early phases of new product development.

RQ1: How effectively can we measure the similarity between a new
feature and existing features?
For RQ1, for each of the three similarity metrics, FIDUS evaluates the detec-
tion model on BusyBox version 1.17 and reports the performance in terms of
Accuracy and Coverage of detection of unwanted feature interactions. Accuracy
here is defined as the number of correct feature interactions predicted by FIDUS
divided by the total predicted. Coverage is defined as the number of unique



Leveraging Feature Similarity for Earlier Detection of Unwanted FI in SPLs 303

Fig. 3. The Pairwise similarity scores between features in the BusyBox

unwanted feature interactions detected by FIDUS divided by the total unique
feature interactions in the software product line. Accuracy and Coverage values
are between 0 to 1.

For BusyBox we used a list of 28 XOR constraints in the feature model of
BusyBox version 1.17 as the oracle [16]. Since BusyBox is a very large software
product line, Fig. 3 shows the similarity scores between features only for the
installation-option portion of the BusyBox product line. For all three path-based
similarity metrics, the similarity threshold is set here to 0.5. Results presented
in Fig. 3 and in Table 3 show that FIDUS effectively measured the similarity
between two features using the path similarity measures. High similarity between
new features and existing features indicates that they may contribute to similar
unwanted feature interactions. The threshold setting and its effect on Accuracy
and Coverage are discussed below in RQ3.

RQ2:To what extent can path similarity between two features detect
feature interaction at an early stage of development?
Table 3 shows the Accuracy and Coverage of FIDUS on BusyBox v.17. As shown
in Table 3, with the threshold set to 0.5, the wup metric has the highest Coverage
of 100% among the three metrics, with the other two yielding 60% Coverage.
This indicates that the wup metric could correctly detect all the known unwanted
feature interactions. However, the lch and path metrics have better Accuracy
than wup since they are very selective and ignore many new, potential unwanted
feature interactions. This reduces the false positives and increases Accuracy while
decreasing Coverage. The wup measure allows the similarity formula to consider
the locations of both of the two features in the feature model, enabling capture
of more context and relaxation of the formula in order to suggest more features
as similar features. Considering both Accuracy and Coverage, we see that wup
performs better than lch or path measures for our purpose.

Table 3. Accuracy and Coverage of feature interactions detection in BusyBox v1.17

Name of SPL Similarity measure Threshold Accuracy Coverage

BusyBox v1.17 wup 0.5 83% 100%

lch 100% 60%

path 100% 60 %
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RQ3: To what extent can we effectively predict new feature inter-
actions in a new product in a software product line?
To answer this question, we consider two different versions of BusyBox, version
1.7 and 1.8. We set BusyBox version 1.7 as the current version of the product
line. BusyBox v1.8 serves as the oracle for evaluating the Accuracy and Coverage
of FIDUS in predicting new unwanted feature interactions when new features are
added. We used a delta comparison between two portions of BusyBox v 1.7 and
1.8 in which unwanted feature interactions occur. A graphical representation
of this is shown in Fig. 2, where the green highlighted rectangles are the new
features added to BusyBox version 1.7 to constitute BusyBox v1.8. For example,
SCRIPT WRAPPER is added to the APPLET LINK branch of BusyBox v1.7.

Table 4. Accuracy and Coverage of feature interactions detection in BusyBox v1.8

Name of SPL Similarity measure Threshold Accuracy Coverage

BusyBox 1.8 wup 0.5 65% 100%

lch 100% 20%

path 100% 20%

wup 0.3 65% 100%

lch 65% 100%

path 30% 20%

As mentioned earlier, we have the list of known unwanted feature interac-
tions for BusyBox version 1.7. We can thus compute the similarity between the
new features added to the system in version 1.8, and the existing features known
to have contributed to unwanted feature interactions in the past. Finally, we
predict the new unwanted feature interactions that involve new features in ver-
sion 1.8. As shown in Table 4, with the threshold set to 0.5, the wup metric can
detect new feature interactions with 65% Accuracy and 100 % Coverage. That is,
wup predicted all new feature interactions. The false positive predictions cause
it to have a lower Accuracy compared to the Coverage. The lch and path met-
rics have very weak Coverage, 20%, although they also have 100% Accuracy.
These findings indicate that lch and path are overly selective for our purposes at
this threshold, identifying as new feature interactions only those with very high
potential and thus missing many.

We also investigated a relaxed version of our similarity framework, FIDUS.
We defined the relaxation as a decreasing of the threshold from 0.5 to 0.3, and
show the FIDUS results in Table 4 on BusyBox version 1.8 with the threshold
lowered to 0.3. As shown in Table 4, the lch metric achieved the same results
as the wup metric while the path metric still had a weak result. This indicates
that, as expected, Coverage will improve when the threshold decreases; however,
the Accuracy will decrease. Thus, there is a trade-off between Accuracy and
Coverage. However, the wup metric continued to perform acceptably well in
both Accuracy and Coverage.
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In summary, results from evaluation on the BusyBox software product line
indicated that, using the wup measure, the similarity framework, FIDUS, can
effectively predict new unwanted feature interactions that are similar to known
ones, in the new version of a software product line.

4.1 Threats to Validity

In this section, we describe some threats to the internal and external validity of
our model.

Internal Threats. We used a single large software product line case study
[16] on which to evaluate our work. However, this case study is a well-regarded
benchmark in the software product line literature. Moreover, detection of mutual
exclusion feature interactions in BusyBox has continued to be an open problem,
so the use of it provides a good challenge to evaluate our technique. Second, we
used a limited set of three similarity metrics in our study. However, these three
were selected after careful study and achieved good accuracy and reasonable
coverage of the targeted feature interactions.

External Threats. Evaluation on additional software product lines in other
application areas beyond that presented here is needed. Future work will seek to
ascertain whether the results shown on the BusyBox product line hold up and
can be generalized to software product lines in other domains.

5 Related Work

In the area of using similarity measures in a software product line, Henard, et
al. [13] used similarity measures to prioritize test cases in order to reduce the
number of product configurations in software product-line testing. Our study
is different in that we used similarity measures to detect feature interaction at
the design stage. To our knowledge similarity measures have not been studied in
order to detect feature interactions in a new product of a software product line.

Pedersen, et al. [17] evaluated three similarity measures based on path
lengths, naming path, lch, and wup in an is-a hierarchy of concepts in order
to measure the similarity of two concepts. We use the same similarity measures;
however, our study differs in that we use them instead to detect feature interac-
tions.

Nadi, et al. [16] extracted constraints from the code of highly configurable
systems and compared them with constraints in the feature model, achieving
recovery of 28% of the existing feature model constraints from the code. While
we also use the feature model, our work differs from theirs both in that we seek
to detect feature interactions early in development and in that we use feature-
similarity measures to do so. Atlee, Fahrenberg and Legay [4] used simulation
on formal models (featured transition systems) to measure the degree to which
a product’s behavior differs when a new feature is added. Unlike us, they did
not distinguish between intended and unintended feature interactions.
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Soares, et al. [19] performed a recent systematic study of works on feature
interaction in software product line engineering. They found that 43% of the
papers aimed to understand feature interaction at early stages of the software
life cycle. Among this 43%, the majority used formal methods, specifically model
checking.

Apel, et al. [2,3] proposed feature-aware verification to automate the detec-
tion of feature interactions using variability encoding. Our approach to dealing
with the feature interaction problem differs from their studies in not requiring
formal methods, motivated by the current low uptake of formal methods by
industries developing software product lines.

We instead aim in our method to leverage feature similarity to detect
unwanted feature interactions in an evolving software product line, since this
method is more understandable to the developers and users who work with and
maintain the product-line systems.

6 Conclusion

This paper described a similarity-based method to detect feature interactions
at the design phase of a new product in an evolving software product line by
exploiting knowledge of prior problematic feature interactions and identifying
similar new features likely to have the same involvement in those problematic
interactions. Results from our evaluation of this approach on a real-world soft-
ware product line indicate that calculations of path-based similarity between
features in a software product line’s feature model can help detect unwanted
and perhaps risky feature interactions much earlier in the development process
for a new product than current testing techniques.

Acknowledgments. We thank Andrei Migunov for feedback on an early draft. The
work in this paper was partially funded by National Science Foundation Grant CCF
1513717.

References

1. Apel, S., Atlee, J.M., Baresi, L., Zave, P.: Feature interactions: the next generation
(Dagstuhl seminar 14281). Dagstuhl Rep. 4, 1–24 (2014)

2. Apel, S., Speidel, H., Wendler, P., Von Rhein, A., Beyer, D.: Detection of feature
interactions using feature-aware verification. In: ASE, pp. 372–375 (2011)
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Abstract. Proteins in living cells rarely act alone, but instead perform
their functions together with other proteins in so-called protein com-
plexes. Being able to quantify the similarity between two protein com-
plexes is essential for numerous applications, e.g. for database searches of
complexes that are similar to a given input complex. While the similar-
ity problem has been extensively studied on single proteins and protein
families, there is very little existing work on modeling and computing the
similarity between protein complexes. Because protein complexes can be
naturally modeled as graphs, in principle general graph similarity mea-
sures may be used, but these are often computationally hard to obtain
and do not take typical properties of protein complexes into account.
Here we propose a parametric family of similarity measures based on
Weisfeiler-Lehman labeling. We evaluate it on simulated complexes of the
extended human integrin adhesome network. We show that the defined
family of similarity measures is in good agreement with edit similar-
ity, a similarity measure derived from graph edit distance, but can be
computed more efficiently. It can therefore be used in large-scale studies
and serve as a basis for further refinements of modeling protein complex
similarity.

Keywords: Similarity measure · Protein complexes ·
Weisfeiler-Lehman labeling · Constrained protein interaction networks ·
Jaccard similarity

1 Introduction
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most cellular functions are enabled only when proteins physically interact with
c© Springer Nature Switzerland AG 2019
G. Amato et al. (Eds.): SISAP 2019, LNCS 11807, pp. 308–322, 2019.
https://doi.org/10.1007/978-3-030-32047-8_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32047-8_27&domain=pdf
http://orcid.org/0000-0001-5263-2358
http://orcid.org/0000-0003-1709-1925
http://orcid.org/0000-0001-7621-971X
http://orcid.org/0000-0001-9818-9320
http://orcid.org/0000-0003-2645-947X
http://orcid.org/0000-0002-8536-6065
https://doi.org/10.1007/978-3-030-32047-8_27


Protein Complex Similarity Based on Weisfeiler-Lehman Labeling 309

other proteins, forming protein complexes. DNA transcription is a typical exam-
ple, where RNA polymerase II, general transcription factors, cell type specific
transcription regulators and mediator proteins interact.

Understanding protein complex formation and function is one of the big
challenges of cell biology, approached by both experimental techniques and com-
putational modeling. While the constituent protein sequences can be obtained
from the genome, the computational prediction of real protein complexes from
protein interaction networks appears to be much more difficult [3,24]. Fortu-
nately, new experimental technologies are about to enhance our understanding
of complexes significantly in the near future, e.g. high-resolution protein-protein
docking [12,16]. Large scale generation of libraries of cell lines having two or
more endogenously tagged fluorescent proteins [4] and recent high-throughput
and multiplexed implementations of fluorescence correlation spectroscopy allow
us to systematically measure endogenous concentrations, binding constants and
high-order complexes in such libraries of cell lines [8,27]. Protein complexes can
be made of transient and obligate interactions. The former appear and disappear
in vivo, whereas the latter are disrupted enzymatically. The approach shown in
this work can be applied to both types. However, in our analysis, we focus on
the former.

When studying biological entities such as protein sequences or protein com-
plexes, a fundamental task is to define a measure of similarity between two such
entities. For protein sequences, there is a well-established theory based on scor-
ing matrices and alignment scores [17]. For protein complexes, it appears that no
systematic effort to quantify similarity has been made yet. The purpose of the
present article is therefore to discuss the different options to define a similarity
measure on protein complexes and to propose a reasonable and computationally
tractable definition of protein complex similarity.

Establishing a similarity measure is not only important fundamentally, but
there are many immediate applications, such as:

Database search: In the database search problem we are given a query complex
and a large collection (database) of complexes, and the task is to find the
complexes in the database that are most similar to the query.

Comparing predictions: Several complex prediction methods predict putative
complexes by locating dense regions in a protein interaction network [6,9,15,
18], and for comparing complexes predicted by different algorithms, it is of
interest to compute a maximum-weight matching between the output of two
algorithms, where the weighting is given by a similarity function.

Summarizing and clustering: When simulating complex formation based on
available knowledge such as possible interactions and interaction constraints,
it is helpful to aggregate the simulation output to focus on frequently seen
or typical complexes, ignoring small differences. Aggregation or clustering by
similarity thereby reduces data size and complexity. Such a task requires a
way to quantify the similarity between two protein complexes.

When there are tens of thousands of different complexes subject to pairwise
comparison, a similarity measure must be efficiently computable.
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Models for Protein Complexes. We first need to discuss models for protein com-
plexes on different levels of detail, namely the set, multiset, and graph models.

While intuition suggests that protein complexes can be naturally described
as graphs with proteins as vertices and physical interactions as edges, there are
in fact different ways to formally describe a protein complex. We start with a
given set P of all proteins of an organism, the building blocks of the complexes.

Set: In its most simple form, a protein complex can be defined as a set (in the
mathematical sense, i.e., without multiplicities) of proteins, i.e., as a subset
{p1, p2, . . . , pn} of P . Sets neither capture the multiplicities nor the nature
of the physical interactions between the constituent proteins of a complex.
Some experimental techniques only give such set-type information, and sev-
eral existing databases only provide this type of information, e.g. the CORUM
database [20].

Multiset: Formally, a multiset is a function C : P → N0 that assigns a multi-
plicity to each protein p ∈ P with C(p) = 0 for proteins p that are not part of
the complex. We also use the multiset notation C = {{p1, p1, p2}} to express
that C(p1) = 2, C(p2) = 1 and C(p) = 0 for all other p ∈ P . Defining a pro-
tein complex as a multiset of proteins gives a more accurate representation
of the complex, but still does not consider the interaction topology.

Graph: To add more information, we can define a protein complex as an undi-
rected graph C = (V,E, �) with labeled vertices V, such that each vertex v ∈ V
represents a protein and hence has a label �(v) ∈ P , each edge e ∈ E ⊆ V ×V
represents a physical interaction between the corresponding proteins, such
that E is symmetric and C is connected. The graph description provides the
interaction topology. We call this representation a protein complex graph and
define its size as |C| := |V | + |E|.
For the set and multiset models, a similarity measure is readily given by the

Jaccard similarity (see Methods). For graphs, the graph edit distance has been
proposed for pattern recognition tasks more than 30 years ago [22]. A graph
edit distance between graphs C and C ′ measures the total costs of the edit
operations required to transform C into C ′. Defining similarity via graph edit
operations appears intuitive, but has computational disadvantages, as the graph
edit distance generalizes the classical maximum common subgraph problem [5],
which is NP-complete [7] and hard to approximate with given guarantees [10].
Recently, a binary linear programming formulation for computing the graph edit
distance has been proposed [14], which allows to compare graphs of moderate
size using state-of-the art general purpose solvers. However, when we want to
compare many complexes, evaluating the edit distance between all pairs becomes
infeasible in practice.

In this article, we therefore propose an efficient alternative: We define a family
of similarity measures on graphs by resorting to the Jaccard similarity, which
is efficiently computed and even more efficiently estimated using established
locality-sensitive hashing techniques. Taking the graph structure into account is
achieved by so-called Weisfeiler-Lehman labeling of the vertices [28], propagating
vertex labels between neighbors. This approach is different from recent work that
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approximates and bounds the graph edit distance [19] and has the advantage of
scaling better to large-scale studies.

The remainder of the article is structured as follows. In the Methods section,
we define a parametric family of similarity measures based on Weisfeiler-Lehman
labeling and the precise definition of graph edit similarity we compare against.
In the Results section, we describe how we obtain pairs of protein complexes,
for which we compare Weisfeiler-Lehman similarity and edit similarity. Finally,
we discuss limitations and possible extensions of this work.

2 Methods

Our goal is to define a similarity measure between protein complexes that cap-
tures not only the (multisets of the) constituent proteins, but also the interaction
topology (graph structure). We introduce a parameterized family of similarity
measures on protein complexes, which are based on multiset comparisons of ver-
tex labels in the complex graph and take the local neighborhood of each protein
into account by using Weisfeiler-Lehman labels.

Jaccard Similarity of Sets and Multisets. To compare sets or multisets,
Jaccard similarity coefficients are an established quantity.

Let M ⊆ U and M ′ ⊆ U be two subsets of a common universe U . Then the
Jaccard similarity between M and M ′ is defined as

Jset(M,M ′) :=
|M ∩ M ′|
|M ∪ M ′| ∈ [0, 1] . (1)

This definition is extended to multisets as follows. Recall that multisets M and
M ′ are functions U → N0, assigning multiplicities M(o) and M ′(o) to each
object o ∈ U . (The set definition can be seen as the special case where the value
set is only {0, 1} instead of N0.) Then the Jaccard similarity between M and M ′

is defined as

Jmultiset(M,M ′) :=
∑

o∈U min{M(o),M ′(o)}
∑

o∈U max{M(o),M ′(o)} ∈ [0, 1] . (2)

A Parametric Family of Protein Complex Similarity Measures. Instead
of comparing the protein complexes directly by their graph topology and label-
ing, we extract and compare multisets of features of the protein complexes. Weis-
feiler and Lehman developed an iterative label refinement procedure to derive
a canonical graph representation for graph isomorphism testing [28]. The same
procedure is often used to define graph similarities or graph kernels [23].

Initially, the feature multiset of a graph consists of the union of all vertex
labels, i.e., the protein names. After the initialization, the vertex labels are iter-
atively augmented by the labels of the neighboring vertices from the previous
iteration, thereby encoding the (local) graph structure in the vertex labels. Let
us now formally define the process.
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Fig. 1. Example of a protein complex and its representations. The colors high-
light the labels of an example node in WL0(C) and WL1(C). A: Graph representation
of protein complex C. B: Multiset representation of C which is equal to WL0(C). C:
Result of the first WL iteration.

Definition 1 (Weisfeiler-Lehman labeling of iteration i for a protein
complex graph). Let C = (V,E, �0) be a protein complex graph with label
function �0 : V → L0 := P . Furthermore, let N(v) := {u | {v, u} ∈ E} denote
the neighbors of vertex v ∈ V . Then, the Weisfeiler-Lehman labeling of iteration
i is defined as a re-labeling of the protein complex graph: It replaces the labeling
function �0 : V → L0 with a labeling function �i : V → Li. The value of �i for a
vertex v ∈ V is recursively defined as

�i(v) := ( �i−1(v), {{�i−1(u) |u ∈ N(v)}} ). (3)

Note that the second component of the new label is a multiset.

To avoid that the length of labels increases in each iteration, label compres-
sion is performed after each step in practice. This is achieved by a one-to-one
mapping of the labels {�i(v) | v ∈ V } to integer labels. Note that the label com-
pression step must be consistent across multiple graphs in order to construct
comparable feature sets.

Given the Weisfeiler-Lehman labeling function of a protein complex graph for
some iteration i, we can now define the multiset of Weisfeiler-Lehman features
for iteration i.

Definition 2 (Weisfeiler-Lehman feature set of iteration i for a protein
complex graph). Let C = (V,E, �0) be a protein complex graph with label
function �0 : V → L0 = P . Then, the Weisfeiler-Lehman features of iteration i
are defined as multiset WLi(C) = {{li(v) | v ∈ V }}.

Note that WL0(C) always corresponds to the initial multiset of protein names
as described above. Accordingly, WL1(C) integrates the neighborhood labels
of each node. Figure 1 shows an example protein complex, together with the
associated feature sets WL0(C) and WL1(C). A node and its neighborhood are
highlighted in red and blue to demonstrate the relation between WL0(C) and
WL1(C).
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We use the Jaccard coefficient to obtain a normalized similarity based on
multiset intersection. We apply the Jaccard coefficient to the feature sets of
each iteration individually and compute a convex combination of the results.
Let w = (wi)i≥0 be a sequence of non-negative weights with

∑
i≥0 wi = 1. We

compare two complexes C and C ′ by

Sw(C,C ′) :=
∑

i≥0

wi · Jmultiset(WLi(C),WLi(C ′)), (4)

where Jmultiset is given by Eq. (2). This defines a family of similarity measures
between complexes with values in [0, 1], parameterized by the weight vector
w = (w0, w1, . . . ).

It is easy to see that, as long as w0 > 0, we have Sw(C,C ′) = 0 if and only if
the protein sets of C and C ′ are disjoint. If Sw(C,C ′) < 1, the protein complex
graphs are not isomorphic. However, Sw(C,C ′) = 1 does not necessarily imply
that C and C ′ are isomorphic even if wi > 0 for all i: There exist examples
of non-isomorphic graphs G,G′ with WLi(G) = WLi(G′) for all i ≥ 0. (As a
simple example, take G to be a cycle of six vertices, and G′ to be two cycles of
three vertices, all with the same label.) On the other hand, there exist classes of
graphs, such as the so-called CR-graphs, for which the implication “Sw(C,C ′) =
1 ⇒ C,C ′ are isomorphic” is true if wi > 0 for all i [1]. Moreover, the implication
holds with high probability for random graphs (without vertex labels) even when
wi = 0 for all i ≥ 3 [2].

In practice, we may assume that most protein complexes are non-adversarial
graphs with sufficiently simple structure and expressive initial labels such that
their Weisfeiler-Lehman features are appropriate to characterize their similarity.
In fact, we put forward the hypothesis that using a single iteration is frequently
sufficient for practical purposes, and we set wi := 0 for i ≥ 2 in our computational
experiments (see Results) and only have a single free parameter w0 ∈ [0, 1] that
defines w1 := 1 − w0. In the following, we write ω for w0. In this case, Sω is
efficiently computable: A proof of the following lemma can be found in the work
of [23].

Lemma 1. For ω ∈ [0, 1], each of the one-parameter similarity measures

Sω(C,C ′) := ω·Jmultiset(WL0(C),WL0(C ′))+(1−ω)·Jmultiset(WL1(C),WL1(C ′))

can be computed in O(|C| + |C ′|) time, where |C| = |V | + |E|.

A Similarity Measure Based on Graph Edit Distance. To compare the
family of Weisfeiler-Lehman multiset-based similarity measures defined above
with graph edit distance, we state a formal definition of the edit-based similarity.
We allow the following elementary operations to edit a graph: vertex deletion,
vertex insertion, vertex relabeling, edge deletion, and edge insertion. A sequence
(o1, . . . , ok) of such edit operations that transforms a graph G into another graph
H is called an edit path from G to H. Each operation o is assigned a cost c(o),
which is zero for substituting vertices and edges with the same label. We use
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a cost of 1 for all operations except vertex relabeling which has a cost of 2,
corresponding to one deletion and one insertion (leaving the edges in place).
Note that deleting or inserting a vertex of degree k otherwise has cost k + 1 for
deleting k edges and the vertex itself. We denote the set of all possible edit paths
from G to H by Υ (G,H).

Definition 3. Let G and H be labeled graphs. The graph edit distance from G
to H is defined by

d(G,H) = min

{
k∑

i=1

c(oi)

∣
∣
∣
∣
∣
(o1, . . . , ok) ∈ Υ (G,H)

}

. (5)

Intuitively, the graph edit distance preserves a subgraph G′ of G that is also
contained in H using zero-cost substitutions, deletes the vertices and edges in
G that are not in G′ and then inserts vertices and edges to obtain an isomor-
phic copy of H. Therefore all non-zero costs can be attributed to the elements
which are in one of the graphs, but not in their common subgraph. In this sense
the graph edit distance is similar to the symmetric difference of two sets. This
observation motivates the following normalized similarity measure derived from
the graph edit distance. We define the graph edit similarity as

Jgraph(G,H) :=
|G| + |H| − d(G,H)
|G| + |H| + d(G,H)

∈ [0, 1], (6)

where |G| := |V (G)|+ |E(G)|. Note that the graph edit distance between G and
H is at most |G| + |H|, which is achieved by deleting all vertices and edges of G
and inserting all vertices and edges of H. In this case the graph edit similarity
is zero. Similarly, Jgraph(G,H) = 1 if and only if d(G,H) = 0. In this respect
the similarity measure resembles the Jaccard similarity. In fact, if the edges are
not taken into account, the graph edit similarity equals the multiset Jaccard
similarity.

Lemma 2. For two protein complexes, let C, D denote their protein multisets
and G, H their protein complex graphs. For the edge-free graphs G′ = (V (G), ∅)
and H ′ = (V (H), ∅) it holds that Jgraph(G′,H ′) = Jmultiset(C,D).

Proof. An optimal graph edit path is obtained as follows: We substitute the
vertices with common labels free of cost, which are Z =

∑
p∈P min{C(p),D(p)}

in total. We delete the remaining |G′|−Z vertices in G′ and insert |H ′|−Z vertices
to obtain an isomorphic copy of H ′ at a total cost of |G′|+ |H ′|−2Z = d(G,H).
Instead we may also substitute up to | |G′| − |H ′| | vertices, each at cost two,
which results in the same total cost. Using the fact that |G′| =

∑
p∈P C(p) and

|H ′| =
∑

p∈P D(p), we obtain the result by calculating
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Fig. 2. Three exemplary pairs of protein complexes. Each labeled node is a
protein instance, each edge a protein interaction, and solid black vs. dashed red edges
distinguish between the two complexes. A: Edit similarity 0.714; WL similarity in
[0.4, 0.75] depending on weight ω. B: Edit similarity 0.838; WL similarity 1.0 (inde-
pendent of ω). C: Edit similarity 0.9; WL similarity in [0.667, 0.818] depending on ω.

Jgraph(G′,H ′) =
|G′| + |H ′| − d(G′,H ′)
|G′| + |H ′| + d(G′,H ′)

=
Z

|G′| + |H ′| − Z

=
Z

∑
p∈P C(p) +

∑
p∈P D(p) − Z

=

∑
p∈P min{C(p),D(p)}

∑
p∈P C(p) + D(p) − min{C(p),D(p)}

=

∑
p∈P min{C(p),D(p)}

∑
p∈P max{C(p),D(p)} = Jmultiset(C,D) .

Lemma 2 shows that the graph edit similarity can indeed be seen as a natural
extension of the multiset Jaccard similarity to graph structured data.

3 Results

Hypothesis. We hypothesize that the Weisfeiler-Lehman based family of sim-
ilarity measures Sω defined in Eq. (4) approximates well the edit distance
based similarity defined in Eq. (6) for typical protein complexes. The similar-
ity measures Sω have the advantage that they can be efficiently computed (see
Lemma 1).

Experimental Setup. We have implemented the similarity measures based on
Weisfeiler-Lehman labeling and the graph edit similarity in Java 8. To compute
the exact graph edit distance, we used a recent binary linear programming for-
mulation [14] and solved the instances using Gurobi 7.5.2. All experiments were
run on 18-core Intel Xeon E5-2699 CPUs with 2.30 GHz using 64bit Ubuntu
Linux 14.04. To ensure the reproducibility of our experiments, the performed
data analysis is available as a Snakemake [11] workflow1.

1 https://doi.org/10.5281/zenodo.1178084.

https://doi.org/10.5281/zenodo.1178084
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Data Generation. As mentioned in the Introduction, obtaining real protein
complex graphs is difficult at the moment, because experimental techniques that
resolve the (graph) topology of the complexes are only being developed. There-
fore we resort to the simulation of complexes, based on two types of knowledge:
possible physical protein-protein interactions, formalized by a protein interaction
network, and constraints between protein interactions.

Formally, a protein interaction network is an undirected graph N = (P, I),
where P is the set of protein types of a cell (or an organism), and I ⊂ P × P
indicates the pairs of protein types that may potentially physically interact.
Since N describes the entirety of possible interactions, any protein complex can
be seen as a connected subgraph of N .

It is important to realize that protein interactions are not independent of each
other, but interdependent. Those interaction dependencies are generated by two
major mechanisms. On the one hand there is allosteric regulation, in which the
capability of a protein to bind other proteins is affected by a conformational
change upon one interaction [13]. The other key mechanism is steric hindrance
that prevents proteins from binding simultaneously to too close or identical pro-
tein domains leading to mutual exclusiveness of interactions [21]. The depen-
dencies between interactions constrain the set of possible protein complexes
and their assembly paths. One possible model for this are constrained protein
interaction networks, where the protein interaction network is enhanced by the
interaction dependencies (constraints) modeled as propositional logic formulas
[25]. With constrained protein interaction networks, we can stochastically simu-
late complex formation based on the available knowledge and obtain a detailed
interaction topology (which proteins physically interact) for each complex.

To evaluate the Weisfeiler-Lehman based similarity (“WL similarity”) against
the edit distance based similarity (“edit similarity”), we computed both similar-
ity measures on pairs of 100 000 protein complexes that have been simulated in a
previous study [25]. For the simulation, a constrained protein interaction network
was generated from the human adhesome protein network and a set of interaction
dependencies obtained from protein domain interaction databases and manual
curation. Then, protein complex assembly was simulated in a step-wise process,
with association and dissociation rates calibrated to fit the complex size dis-
tribution of the CORUM database [20], until reaching convergence (for details,
see [25]). The obtained complexes mimic the size distribution of known com-
plexes, while also providing information about the actual physical interactions
happening inside the complex, an information that is currently not yet available
for real data. Since calculating edit similarity is computationally costly, we only
considered a subset of all possible pairs for the analysis. To obtain candidate
pairs, we considered all pairs of complexes that have at most 20 proteins (larger
complexes are so rare that high similarities are unlikely), that have a size dif-
ference of protein multisets of at most 10, and that share at least one protein.
These were sorted descendingly after the number of shared proteins and then the
edit distance based similarity was computed on the first 500 000 candidate pairs.
The resulting edit similarity values were classified into bins of width 0.1. Because
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Fig. 3. Comparison of edit similarity and WL similarity. A and C: Scatterplot
between edit and WL similarity for weights ω = 0.41 (A) and ω = 0.69 (C), including
marginal distributions and least-squares regression line. Each point represents a pair
of complexes. B: Pearson correlation coefficient between edit and WL similarity as
function of ω. The maximum correlation (0.946) occurs for ω = 0.41 (A). D: Cosine
similarity as a function of ω. The maximum cosine similarity (0.983) is at ω = 0.69 (C).

most pairs of complexes share a small number of proteins, we find many pairs
with small edit similiarity (but none in the range [0.0, 0.1[ because we required
one common protein) and comparatively few pairs with edit similarity above 0.5.
To achieve a uniform distribution among bins for the comparison, we randomly
selected 1000 pairs from each bin, excluding the bin [0.9, 1.0[ which contained a
single pair. This yielded 8000 pairs of complexes from 8 bins.

Similarity Comparison. We first consider three exemplary pairs (Fig. 2 A–C)
with edit similarities of approximately 0.7, 0.8 and 0.9, respectively, the latter
being the most similar observed pair. Our simulation has been calibrated to yield
complexes of a realistic size distribution that additionally reflect all currently
known interaction dependencies. However, since this data is likely incomplete
and we also did not consider the law of mass action, we do not claim that the
particular combination of proteins in these examples is likely to occur in reality.
The examples are therefore only meant to illustrate the behavior of the two
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measures and give an intuition of cases where WL similarity fails to properly
approximate edit similarity.

In example A, an additional protein (PTPN3) is added to an existing com-
plex, a linear chain of 3 proteins. The edit similarity is 10/14 = 0.714, the WL
similarity is between 0.75 for ω = 1 and and 0.4 for ω = 0. Because the edit
similarity is between the extreme WL similarities, there exists a unique weight
ω∗ ≈ 0.898, for which WL and edit similarities agree for this particular com-
plex pair. Example B is a noteworthy case, because the WL similarity is 1.0,
independent of ω, because the vertex labels are identical even after the first
Weisfeiler-Lehman iteration. (Further iterations would show a difference.) The
edit similarity is 20/24 = 0.83, which is obtained by attaching ALB to the other
LRP2 protein. In example C, one protein is replaced by another one in a fairly
large complex. The edit similarity (0.905) is relatively high and outside the WL
similarity range between 0.667 for ω = 0 and 0.818 for ω = 1.

Because most protein complexes are small and do not exhibit properties of
examples B or C, the overall agreement between WL similarity and edit similarity
is high: For each of the selected complex pairs, we computed the exact edit simi-
larity and the WL similarity for each weight ω ∈ W := {0.0, 0.01, 0.02, . . . , 1.0}.
Let e be the vector of edit similarity values and s(ω) the corresponding vector
of WL similarity values using weight ω. To compare the similarity measures,
we calculated both the Pearson correlation coefficient and the cosine similarity
of e and s(ω) for all ω ∈ W . As can be seen from Fig. 3 A and B, the highest
values occur for ω between 0.38 and 0.44 and the maximum Pearson correlation
coefficient is obtained for ω = 0.41. For the cosine similarity, the maximum value
is reached for weight ω = 0.69, but the function is less peaked, and values above
0.4 lead to high agreement (Fig. 3 C and D).

Overall, we find good agreement between edit similarity and WL similarity
for sufficiently large values of ω, i.e., if the Jaccard similarity of the constituent
protein multiset has sufficiently high weight.

Fig. 4. Running times. Violin plots pf wall-clock times for computing the graph edit
similarity (GED), the Weisfeiler-Lehman sets (WL-FV) and their Jaccard coefficients
(WL-SIM) in three runs.
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Running Time Comparison. To study the practical running time of both
similarity measures, a subset of 100 complexes was drawn at random from the
data set. We measured the time required to compute all pairwise similarities for
this subset. For the Weisfeiler-Lehman based similarities, the computation can
be divided into two steps. In the first step, the Weisfeiler-Lehman feature set is
computed for each graph. In the second step, these sets are used to compute the
quadratic number of similarities between all pairs using the Jaccard coefficient.
Thus, the computational costly part is computed only once for each graph, while
the quadratic number of comparisons is lightweight. This kind of preprocessing
is not possible for the graph edit similarity.

Figure 4 shows the running times obtained experimentally. For the Weisfeiler-
Lehman similarity we observe that computing the feature sets indeed dominates
the running time in most cases. Most importantly, we observe that the graph edit
similarity is about two orders of magnitude slower than the Weisfeiler-Lehman
based similarities, on average and in the worst-case. If the overall similarity
computation costs dominate the preprocessing costs (e.g., large data sets and a
quadratic number of similarity computations) this difference increases to three
orders of magnitude. We expect that this tendency is even intensified when
considering highly similar pairs only, which are of special interest in many appli-
cations. Overall, our experimental results confirm that the proposed similarity
measure based on Weisfeiler-Lehman labeling can be computed efficiently.

4 Discussion

Our motivation to consider protein complex similarity was to reduce the com-
plexity of the simulation output of our constrained protein interaction network
simulator [25], and we were surprised to see that apparently, no similarity mea-
sures have been proposed in the literature. Depending on the underlying rep-
resentation (set, multiset or graph), different alternatives suggest themselves.
However, most graph-based measures are both theoretically and practically hard
to compute for larger complexes or for large amounts of complexes. While dif-
ferent tractable graph similarity measures [26], or an approximate graph edit
distance [19] have been proposed, none of these appear to be specifically tailored
to the properties of protein complexes (often less than ten vertices; sparse). Our
proposal to define the similarity as a convex combination of two Jaccard coef-
ficients (protein label multiset and Weisfeiler-Lehman label multiset after one
iteration) has two additional advantages. First, using Jaccard coefficients allows
to efficiently pre-filter for high similarity using locality-sensitive hashing. In com-
bination with the preprocessing abilities discussed in the experimental running
time comparison, this allows for very fast search queries, clusterings, and other
applications that rely on intensive distance computations. Second, for weight
ω = 1 of the 0-th WL iteration, our measure reduces to the natural similar-
ity measure of the multiset representation. Our framework hence allows for a
smooth transition between multiset and graph representation. The comparison
to an edit-based similarity seems to indicate that the protein label multiset plays
an important role if one wants to approximate the edit similarity.



320 B. K. Stöcker et al.

From a biological point of view, a high similarity between two complexes
should indicate a high probability that they share the same function and can
substitute each other in a cellular process. If such information were available, we
could use it for evaluating similarity measures. At present, when not even the
interaction topology of most complexes has been determined, the corresponding
data is out of reach, and such an evaluation is not feasible. In this situation,
we suggest that edit similarity is a measure that corresponds to intuition about
similarity and that any reasonable similarity measure should be close to edit
similarity. The measure we propose has this property (for any weight ω ∈ [0, 1])
but offers the advantage that it can be quickly computed and scales to millions
of complex pairs. Currently, it is unclear whether the optimal weights presented
here will be directly applicable to future data. Instead, we propose to apply the
computationally expensive edit similarity based strategy used in this work to
obtain optimal weights for WL similarity on a representative subset of the new
data, and then use these weights for the efficient calculation of WL similarity on
the entire dataset.

Both WL similarity and edit similarity have limitations from a biological
point of view because they do not consider similarities between individual pro-
teins: Two proteins are either equal or distinct. However, if two proteins are
closely related, should they be treated as equal or distinct? In the former case,
we lose resolution. In the latter case, we would benefit from a fine-grained simi-
larity function between proteins (e.g. a modification of p is very similar to p, a
protein with some common domains is somewhat similar to p, but a completely
disjoint protein in terms of domains has similarity zero). In this sense, the ques-
tion of how to best measure protein complex similarity is far from settled.
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Abstract. Multiple instance classification (MIC) is a kind of supervised
learning, where data are represented as bags and each bag contains many
instances. Training bags are given a label and the system tries to learn
how to label unknown bags, without necessarily learning how to label
individually each of their instances. In particular, we apply concepts
drawn from MIC to the realm of content-based image retrieval, where
images are described as bags of visual local descriptors. We introduce
several classifiers, according to the different MIC paradigms, and evaluate
them experimentally on a real-world dataset, comparing their accuracy
and efficiency.

1 Introduction

Content-based image retrieval (CBIR) consists in searching for images of interest
in large databases, exploiting their visual content, as opposed to concept-based
image indexing, which exploits text-based techniques for indexing images, using
image captions, surrounding text, keywords, and so on [14]. CBIR can be used
per se, e.g., to search for a particular image in a large image dataset (a notable
example is the Google Images system, images.google.com), or as a building block
for a plethora of other image-related tasks, like browsing [5], annotation [4],
classification [1], and so on.

The fundamental concept in CBIR is that of similarity, which is used to com-
pare the image content. Evaluating the similarity between two images involves:
(1) automatically extracting relevant features/descriptors, summarizing visual
content of each image, and (2) compare such features to assess a similarity score
in [0, 1], with the understanding that higher values indicate high degrees of sim-
ilarity between images’ content.

Approaches to extraction of image features can be broadly classified in global
(where descriptors represent visual characteristics of the image as a whole) and
local (where features describe visual characteristics of a small set of image pixels),
with local features having a major prevalence in recent approaches. Another
fundamental ingredient for CBIR is efficient indexing, due to the facts that image
databases are usually (very) large and that often a real-time query processing is
required. However, as acknowledged in [10], “research on efficient ways to index
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images by content has been largely overshadowed by research on efficient visual
representation and similarity measures”.

In this paper, we focus on the task of classifying images, i.e., identifying
to which of a set of categories a new image belongs, given a (training) set of
images for which the category membership is known. This task is one of the
most common ways to measure the effectiveness of any CBIR technique. Indeed,
as acknowledged in [11]: “A feature that performs well for the task of classifica-
tion on a certain data set, it will most probably be a good choice for retrieval
of images from that data set, too.” Despite the importance of this task, most of
the approaches have only focused on establishing the accuracy of image content
descriptors (features), with a negligent lack of emphasis on classifying techniques
and almost no interest to efficiency. The former issue is even more prominent,
due to the increasing usage of local features, which opens the way to a plethora of
more advanced classification techniques. The latter problem is of utmost impor-
tance for those approaches using lazy learning, i.e., for which the training data
are generalized only (or mostly) when a query is made to the system (when a
new image is to be classified). In such cases, the training phase is quite fast,
while evaluation is the more costly part of classification (as opposed to eager
learning, where the opposite happens).

To overcome this deficiency, we propose to combine the realms of multiple
instance classification (MIC) and content-based image retrieval, by applying MIC
techniques to the task of image classification. To the best of our knowledge, this
is the first attempt to combine the world of multiple instance classification to
the task of image classification in a comprehensive way. Indeed, a few previous
attempts [1,9,17,20,21] have used approaches drawn from MIC for classifying
images, but without putting them into the proper context (actually, any image
classification method based on local features can be thought as exploiting a
particular MIC technique). Moreover, among the approaches using lazy learning,
we are the first to put an emphasis on efficiency of the classification.

Our goal here is not to propose a novel technique for image classification;
rather, we would like to show how the introduction of concepts drawn from
Artificial Intelligence could help researchers working in CBIR to evaluate their
proposed features and/or indexing techniques in a more structured way, by show-
ing them the existing alternatives. For this, we exemplify the comparison of two
well known features, both implemented in the Windsurf framework [7]. The
use of Windsurf provides us a number of algorithms and indexing data struc-
tures for efficient query processing, so that we are able to abstract from the
underlying details of feature extraction, data indexing, etc., and to focus on
MIC algorithms. A preliminary experimental evaluation, concerning both effec-
tiveness and efficiency, has finally been performed on a real-world dataset, which
has been previously used for a similar task [1].

2 Related Work

As already stated in Sect. 1, the task of image classification has received massive
attention in the realm of CBIR; it is beyond the scope of this paper to introduce
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and classify all attempts, and we will limit ourselves to describe the ones most
related to the work presented in this paper, in particular those using techniques
drawn from MIC.

The first papers [17,18,21] that used MIC techniques for image classification
were written by pioneers of multiple instance learning. All papers use the diverse
density (DD) algorithm to classify images (the first two in the specific scenario
of natural scene images, while the latter paper adopts a more general approach
which is applicable to a broader range of images) and differ in the features
extracted at the instance level. The DD algorithm is one of the earliest MIC
algorithms and follows the SMI assumption (see Sect. 3.1). All the proposed
approaches perform a sequential scan in the instance space, so they are clearly
not suited for large training sets.

A MIC approach using deep learning is described in [20]. This is clearly an
eager learning technique, so it is not comparable to our approach in terms of
efficiency, but the accuracy it exhibits is comparable to that obtained here (albeit
on a different dataset).

Finally, it is worth noting that the techniques described in [1] are exactly
equivalent to some of the MIC approaches we describe here: we will highlight such
equivalences when describing our classifiers in Sect. 3. We stress here, however,
that in [1] the emphasis wes exclusively on the accuracy of the classification
task, while here we advocate the comparison of techniques on both accuracy
and efficiency.

3 Multiple Instance Classification and Its Application to
Images

Multiple instance learning [12] is a branch of supervised learning where, instead
of a training set of objects, the learner receives a training set of bags, each
containing multiple instances. Multiple instance classification (MIC) [2] is the
name given to the sub-field of MIL focused on classification. MIC includes a
number of classification techniques that exploit the fact that the class of each
individual bag can be transferred to all (or to some) of its instances.

In image classification, the problem tackled in this paper, bags correspond to
images, represented by way of n features (instances) Ri: I = {R1, R2, . . . , Rn}.
The objective is to estimate a classification function C(I) providing the class of
an unknown image I. To this end we are given a training set T of M images with
corresponding class, T = {(I1, C1), (I2, C2), . . . , (IM , CM )}, where Ci is the
class of image Ii. From the point of view of MIC, techniques differ in the assump-
tion regarding how the class of each bag is related to the bag instances [13]. The
excellent review paper [2] provides the following taxonomy:

Instance Space (IS): it is assumed that the discriminative information lies
at the instance level, so that classification is performed on instances and
the overall classification is performed by aggregating scores obtained at the
instance level.
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Bag Space (BS): the main assumption is that discriminative information lies
at the bag level, and this cannot be distributed to instances.

Embedded Space (ES): each bag is mapped to a single feature vector, summa-
rizing the relevant information included at the instance level, then a vector-
based classifier is exploited.

As we will show in the following sections, it can be easily seen, each of the
three alternatives suggests a retrieval model, based on instances (features), bags
(images), and vectors, respectively. This also helps researchers proposing novel
local features for characterizing image content to define their appropriate model.

3.1 Instance Space Classification

Since it is assumed that information is carried by instances, the retrieval model
implies that images retrieved first are those including features that are most
similar to features of the query image (this can be made efficient by way of an
index built on local features).

Collective Assumption. These methods are based on the premise that all
instances in a bag contribute equally to the bag class. In this case the bag class
can be estimated by choosing the class maximizing a simple (weighted) average.
This was implemented using a two-step confidence-rated IS classifier:

1. First, each image feature R is classified using a feature-level classifier c(R);
the classifier also computes a value ν(R) representing the confidence that c
has on its choice c(R).

2. Then, the whole image is classified taking into consideration the class assigned
to each of its features.

In particular, for any class Cj a score sj(I) is computed for image I as the sum
of confidences of features classified to each class:

sj(I) =
∑

R∈I:c(R)=Cj

ν(R) (1)

Then I is classified to the class maximizing the value in Eq. 1:

C(I) = arg max
j

sj(I) (2)

1-NN Classifier - IS: The classifier of feature R and the corresponding score
take into account only the nearest neighbor of R only:

c(R) = c(NN1(R)) ν(R) = sim(R,NN1(R))

This classifier equals the one called Φf in [1]. Efficient retrieval of NN1(R) is
guaranteed by performing a 1-NN query on the feature-based index.
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Local Classifier - ISL: The only difference with respect to the previous classifier
is the score which is defined as follows:

c(R) = c(NN1(R)) ν(R) =

{
1 if 1 − sim(R,NN1(R))

sim(R,NN1(R)) > c

0 otherwise

where NN1(R) is the nearest neighbor of R of a class different than that of
NN1(R) ([1] calls this classifier Φm). The efficient evaluation of this approach is
obtained through a sorted access for each query feature R, retrieving instances
until a result is obtained whose class is different to that of NN1(R).

Weighted Local Classifier - ISWL: The classifier of feature R and the correspond-
ing score are defined as follows, taking into account the nearest neighbor of R
only:

c(R) = c(NN1(R)) ν(R) = 1 − sim(R,NN1(R))
sim(R,NN1(R))

With respect to the previous classifier, here the confidence value is not binary,
but uses the original “fuzzy” ratio between similarities of the NN of R and of
the NN of a different class. In [1], this classifier was denoted as Φw.

Weighted k-NN Classifier - ISW: First, a score for each class is defined according
to classes of the nearest k neighbors of feature R:

sj(R) =
∑

i=1,...,k:c(NNi(R))=Cj

sim(R,NNi(R))

Then, the classifier and the score are defined as:

c(R) = arg max
j

sj(R) ν(R) = 1 − maxsj(R)
max sj(R)

where maxsj(R) is the score of the second best class for R. Note that this
definition of confidence is coherent with the one defined for the weighted local
classifier (the two definitions coincide for k = 1), but it is different with respect
to the one given for the 1-NN classifier. This classifier was named Φk in [1].
Efficient evaluation is obtained by way of a k-NN query on the feature index.

Standard Multiple Instance Assumption. Methods in this category sup-
pose that instances of each class are only contained in bags of the same class and
that every bag contains at least one instance of its class. This is equal to say that,
for each bag, one of the instances possesses some “desirable” property making the
whole bag of that class, thus we are trying to identify which instance type char-
acterizes each class. The SMI assumption (SMI) was implemented by removing,
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from the training set, all those instances that would lead to a wrong classifi-
cation, i.e., whose NN belongs to a different class.1 This approach has also the
advantage of reducing the ground truth size, as also acknowledged in [1], where
this approach was called “local features cleaning”. Finally, any IS classifier can
be exploited on the reduced ground truth to classify each instance.

3.2 Bag Space Classification

Techniques following this paradigm consider each bag as a whole, so that the
classification is performed in the space of bags. Typically, methods in this cat-
egory exploit a distance d(Ii, Ij) obtained by appropriately aggregating dis-
tances between correspondent features δ(Rh, Rk). Examples include the EMD
distance (BSEMD) [15,19], the Hausdorff distance (BSHaus), and the Chamfer dis-
tance (BSCham) [8]. It has to be noted that such distances also differ in their
time complexity, since the Chamfer and Hausdorff distances are quadratic in
the number of instances, while EMD is super-cubic [15] thus it is extremely
time consuming, particularly for large bags (we will see that this is the case
for SIFT salient point descriptors). Alternatively, one can use a kernel function
K(Ii, Ij) ∈ [0, 1] assessing the similarity between images Ii and Ij . This classifier
is called Φs in [1].

The retrieval model is the classical one used in CBIR, where images are
retrieved for decreasing values of their similarity to the query image and efficient
evaluation is obtained exploiting an image-based index. A 1-NN classifier has
been used for all implemented alternatives.

3.3 Embedded Space Classification

Methods in this category map each image I to a K-dimensional vector v then
exploit a K-dimensional classifier (like SVM or 1-NN) on the so-obtained vector.
Mapping from I to v is usually performed by way of a vocabulary V , i.e., a set of
K instances (words) V = {(w1, p1), (w2, p2), . . . , (wK , pK)}, where each word is
characterized by an identifier w and a prototype instance p. Given an image I and
a vocabulary V , the mapping function M produces the vector v, M(I, V ) = v.

Histogram-Based Methods. These techniques consider that each component
of v is obtained as the average value (for that component) of features in I:

vj =
1
N

∑

R∈I

fj(R), j ∈ [1,K] (3)

where fj(R) measures the probability that feature R corresponds to word wj .

1 Actually, we removed the instance from the training set if its NN in a different bag
is in a different class. This was required because it could happen that the NN of an
instance belongs to the same bag.
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Possible implementations for fj are:

Bag-of-words with hard assignment: fj(R) = 1 ⇔ j = arg mini δ(R, pi),
otherwise fj(R) = 0. This way, each feature is assigned to one and only one
word and the j-th component of v counts how many features of I are assigned
to word wj .

Bag-of-words with soft assignment: fj(R) = 1 − δ(R, pi). fj(R) represents
the similarity between feature R and word wj and the j-th component of v
represents the average similarity of features in I to word wj .

Distance-Based Methods. These techniques consider that each component
of the vector v is obtained as the matching degree between features in I and the
corresponding word:

vj = min
R∈I

δ(R, pj), j ∈ [1,K] (4)

The ES approach makes sense basically whenever the number of instances
in a bag is so high to make BS classification (and retrieval) impractical. The
retrieval model here consists of comparing image histograms using a vectorial
distance (in our experiments, we used the simple Euclidean metric) and indexing
histograms using a spatial index.

Finally, we also consider the so-called bag-of-visual-words (ESBOVW) approach,
where the size K of the vocabulary is (much) higher than the number of instances
in each bag. In this scenario, which is the one commonly used for salient point
descriptors, the hard assignment is used, each image is represented as a sparse
vector and the Hamming distance is used to compare histograms. Note that this
is the de-facto standard for salient point descriptors, for which vector quantiza-
tion is used to deal with the high number of descriptors in each image (usually,
in the order of hundreds) and with the high dimensionality (64–128) of each
descriptor.

4 Experiments and Final Discussion

We conducted a preliminary experiment on the Pisa landmark dataset [1], com-
posed of 1227 photos (crawled from Flickr at standard resolution) partitioned
in 12 categories, each including a number of images ranging from 46 to 138.
The dataset was randomly split into a training set (70%) and a test set (30%).
Among local features included in the Windsurf library (SIFT, SURF, FREAK,
ORB, and BRISK), we chose SIFT [16], since it was experimentally proven that
such descriptors consistently perform better than the others for image classifi-
cation [1,6], and the original Windsurf features [3]. On average, every image
contains 4.39 Windsurf regions and 864.8 SIFT salient points, thus the ground
truth has a total of 3186 Windsurf regions and 627,845 SIFT salient points.
All experiments have been performed on a Pentium 4 3.2 GHz machine with 1
GB of RAM under the MS Windows 7 OS. Salient point extraction has been
performed by exploiting the OpenCV 2.4.11 library with the Java interface.
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Table 1. Accuracy and cost (in seconds) for the implemented approaches: IS (left) and
BS/ES (right). Best figures for all classifier types are in boldface.

SIFT Windsurf
classifier accuracy cost accuracy cost
IS 0.944 2713 0.804 3.6
ISL 0.917 2736 0.810 3.6
ISWL= ISW(1) 0.944 2758 0.801 3.6
ISW(10) 0.806 3682 0.778 3.8
ISW(50) 0.694 3702 0.75 3.8
ISW(SMI,1) 0.8 1836 0.698 3.6
ISW(SMI,10) 0.722 2100 0.674 3.8
ISW(SMI,50) 0.639 2274 0.670 3.8

SIFT Windsurf
classifier accuracy cost accuracy cost
BSHaus 0.333 192 0.322 1.7
BSEMD 0.333 298 0.402 2.2
BSCham 0.322 208 0.298 2.8
ESH 0.778 0.62
ESS 0.667 0.65
ESD 0.778 0.67
ESBOVW 0.139 3.9

Results, included in Table 1, show that approaches based on the Instance
Space assumption outperform approaches based on the Bag Space assumption on
classification accuracy: this somehow confirms results included in [1]. However,
the extremely high number of instances per image when using SIFT descriptors
makes this alternative extremely inefficient, a fact that was not considered in [1].
On the other hand, the features originally included in Windsurf allow efficient
and accurate classification for the examined dataset. For SIFT, the only viable
alternative is to exploit the Embedded Space assumption, with good efficiency
at the cost of a slightly reduced precision in classification. It is worth noting
that results for BS and ES confirm those obtained in [6] for the similar task
of image retrieval. We believe that our results could be helpful to evaluate the
effectiveness of any local descriptor to represent the image content, in order to
obtain both accurate and efficient classification and/or retrieval.
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Abstract. Since the 1970’s the Content-Based Image Indexing and
Retrieval (CBIR) has been an active area. Nowadays, the rapid increase
of video data has paved the way to the advancement of the technologies
in many different communities for the creation of Content-Based Video
Indexing and Retrieval (CBVIR). However, greater attention needs to be
devoted to the development of effective tools for video search and browse.
In this paper, we present Visione, a system for large-scale video retrieval.
The system integrates several content-based analysis and retrieval mod-
ules, including a keywords search, a spatial object-based search, and a
visual similarity search. From the tests carried out by users when they
needed to find as many correct examples as possible, the similarity search
proved to be the most promising option. Our implementation is based on
state-of-the-art deep learning approaches for content analysis and lever-
ages highly efficient indexing techniques to ensure scalability. Specifically,
we encode all the visual and textual descriptors extracted from the videos
into (surrogate) textual representations that are then efficiently indexed
and searched using an off-the-shelf text search engine using similarity
functions.

Keywords: Content-based image indexing · Neural networks ·
Multimedia retrieval · Similarity search · Object detection

1 Introduction

Video data is the fastest growing data type on the Internet, and because of
the proliferation of high-definition video cameras, the volume of video data is
exploding. Visione [1] is a content-based video retrieval system that participated
for the first time in 2019 to the Video Browser Showdown (VBS) [11], an inter-
national video search competition that evaluates the performance of interactive
video retrievals systems. The VBS 2019 uses the V3C1 dataset that consists
of 7,475 video files, amounting for 1000h of video content (1082659 predefined
segments) [15] and encompasses three content search tasks: visual Known-Item
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Search (visual KIS), textual Known-Item Search (textual KIS) and ad-hoc Video
Search (AVS). The visual KIS task models the situation in which someone wants
to find a particular video clip that he has already seen, assuming that it is con-
tained in a specific collection of data. In the textual KIS, the target video clip is
no longer visually presented to the participants of the challenge but it is rather
described in details by text. This task simulates situations in which a user wants
to find a particular video clip, without having seen it before, but knowing the
content of the video exactly. For the AVS task, instead, a textual description
is provided (e.g. “A person playing guitar outdoors”) and participants need to
find as many correct examples as possible, i.e. video shots that fit the given
description.

In this paper, we describe the current version of Visione, an image retrieval
system used to search for videos, presented for the first time at VBS2019. After
the first implementation of the system, as described in [1], we decide to focus
our attention on the query phase, by improving the user interaction with the
interface. And for that reason, we introduce a set of icons for the object location
and, inspired by other system involved in VBS of the previous years (e.g. [10]),
we integrate the query-by-color sketch. In the next sections, we describe the
main components of the system and the techniques at the bottom of the system.

2 System Components

Visione is based on state-of-the-art deep learning approaches for the visual con-
tent analysis and exploits highly efficient indexing techniques to ensure scalabil-
ity. In Visione, we use the keyframes made available by the VBS organizers (1
million segments and keyframes1), focusing our work on the extraction of rel-
evant information on these keyframes and on the design of a clear and simple
user interface.

In the following, we give a brief description of the main components of the
system: the User Interface and the Search Engine (see Fig. 1).

2.1 User Interface

The user interface, shown in the upper part of Fig. 1, provides a text box to
specify the keywords, and a canvas for sketching objects to be found in the target
video. Inspired by one of the system on VBS2018, we integrate also the query-by-
color sketches, realized with the same interface we used for the objects (canvas
and bounding box). The canvas is split into a grid of 7×7 cells, where the user can
draw simple bounding boxes to specify the location of the desired objects/colors.
The user can move, enlarge or reduce the drawn bounding boxes for refining the
search. In the current version of the system, we realize a simple drag & drop on
the canvas using icons for the most common objects. Furthermore with the same
mechanism we define a color palette available as icons, to facilitate the search

1 https://www-nlpir.nist.gov/projects/tv2019/data.html.

https://www-nlpir.nist.gov/projects/tv2019/data.html
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Fig. 1. The main components of Visione: the user search interface, and the indexing
and retrieval system

by color: for each cell of the grid (7 × 7), we calculate the dominant colors using
a K-NN approach, largely adopted in color based image segmentation [13].

Moreover, another new functionality added to the old system [1], is the possi-
bility of using some filters, such as the number of occurrences of specific objects,
and the type of keyframes to be retrieved (B/W or color, 4:3 or 16:9). At brows-
ing time, the user browsing through the results can use the image similarity
to refine the search, or group the keyframes (in the result set) that belong to
the same video. Finally, the user interface offers the possibility to show for each
keyframe of the result set, all the keyframes of the video of the selected keyframe,
and play the video starting from the selected keyframe: this can help to check if
the selected keyframe matches the query. A standard search in Visione, for all the
tasks, could be done by drawing one or more bounding boxes of objects/colors,
or by searching for some keywords, and often by combining them.

2.2 Search Engine

Retrieval and browsing require that the source material is first of all effectively
indexed. In our case, we employ state-of-the-art deep learning approaches to
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extract both low-level and semantic visual features. We encode all the features
extracted from the keyframes (visual features, keywords, object locations, and
metadata) into textual representations that are then indexed using inverted files.
We use a text surrogate representation [6], which was specifically extended to
support efficient spatial object queries on large scale data. In this way, it is
possible to build queries by placing the objects to be found in the scene and
efficiently search for matching images in an interactive way. This choice allows us
to exploit efficient and scalable search technologies and platform used nowadays
for text retrieval. In particular, Visione relies on the Apache Lucene2.

In the next section, we describe in detail the techniques employed to obtain
useful visual/semantic features.

3 Methodologies

Visione addresses the issues of CBVIR modeling the data using both the simple
features (color, texture) and derived features (semantic features). Regarding the
derived features, Visione relies heavily on deep learning techniques, trying to
bridge the semantic gap between text and image using the following approaches:

– for keywords search: we exploit an image annotation system based on dif-
ferent Convolutional Neural Networks to extract scene attributes.

– for object location search: we exploit the efficiency of YOLO3 as a real-
time object detection system to retrieve the video shot containing the objects
sketched by the user.

– for visual similarity search: we perform a similarity search by computing
the similarity between the visual features represented using the R-MAC [17]
visual descriptor.

Keywords. Convolutional Neural Networks, used to extract the deep features,
are able to associate images with categories they are trained from, but quite
often, these categories are insufficient to associate relevant keywords/tags to
an image. For that reason, then, Visione exploits an automatic annotation sys-
tem to annotate untagged images. This system, as described in [2], is based
on YFCC100M-HNfc6, a set of deep features extracted from the YFCC100M
dataset [16], created using the Caffe framework [8]. The image annotation sys-
tem is based on an unsupervised approach to extract the implicitly existing
knowledge in the huge collection of unstructured texts describing the images of
YFCC100M dataset, allowing us to label the images without using a training
model. The image annotation system also exploits the metadata of the images
validated using WordNet [5].

2 https://lucene.apache.org/.
3 https://pjreddie.com/darknet/yolo/.

https://lucene.apache.org/
https://pjreddie.com/darknet/yolo/
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Fig. 2. Search Engine: the index for both object location and keywords.

Object Location. Following the idea that the human eye is able to identify
objects in the image very quickly, we decide to take advantage of the new tech-
nologies available to search for object instances in order to retrieve the exacted
video shot.

For this purpose, we use YOLOv3 [14] as object detector, both because it is
extremely fast and because of its accuracy. Our image query interface is subdi-
vided into a 7 × 7 grid in the same way that YOLO segments images to detect
objects. Each object detected in the single image I by YOLO is indexed using
a specific encoding ENC conceived to put together the location and the class
corresponding to the object (codloccodclass). The idea of using YOLO to detect
objects within video has already been exploited in VBS, e.g. by [18], but our app-
roach is distinguished by being able to encode the class and the location of the
objects in a single textual description of the image, allowing us to search using
a standard text search engine. Basically for each image I entry on the index,
we have a space-separated concatenation of ENC s, one for all the possible cells
(codloc) in the grid that contains the object (codclass) where:

– loc is the juxtaposition of row and col on the grid
– class is the name of the object as classified by YOLO.

In practice, through the UI the users can draw the objects they are looking
for by specifying the desired location for each of them (e.g., tree and vehicle in
Fig. 1). Meanwhile, for each object, the UI encodes appropriately the request to
interrogate the index, marking all the cells in the grid that contain the object.
For example, for the query in Fig. 1, we will search for entries I on our index that
contain the sequence p1tree p2tree ... p6tree, where pi is the code of the i-th cell
(with 1 ≤ i ≤ 6 since the tree icon covers six cells). Note that, a cell of a sketch
can contain multiple objects. As showed in Fig. 2, for the image with id 2075,
we extract both keywords (beach, cloud, etcetera), using the image annotation
tool, and object location (3dperson, etcetera), exploiting the object detector,
and later we index these two features in a single Lucene index.

Visual Similarity. Visione also supports visual content-based search function-
alities, which allows users to retrieve scenes containing keyframes visually similar
to a query image given by example. To start the search the user can select any
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keyframe of a video as query. In order to represent and compare the visual con-
tent of the images, we use the Regional Maximum Activations of Convolutions
(R-MAC) [17]. This descriptor effectively aggregates several local convolutional
features (extracted at multiple position and scales) into a dense and compact
global image representation. We use the ResNet-101 trained model provided
by [7] as feature extractor since it achieved the best performance on standard
benchmarks. To efficiently index the R-MAC descriptor, we transform the deep
features into a textual encoding suitable for being indexed by a standard full-text
search engine, such as Lucene: we first use the Deep Permutation technique [3]
to encode the deep features into a permutation vector, which is then transformed
into a Surrogate Text Representation (STR) as described in [6]. The advantage
of using a textual encoding is that we can efficiently exploit off-the-shelf text
search engines for performing image searches on large scale.

4 Results

For the evaluation of our system, we took advantage of the participation to the
VBS competition, which was a great opportunity to test the system with both
expert and novice users.4 For each task, a team receives a score based on response
time and on the number of correct and incorrect submissions.

KIS Tasks. During the competition, the strategy used for solving both the KIS
tasks was mainly based on the use of queries by object locations and keywords.
Queries by color-sketch were used sparingly since they resulted to be less stable
and sometimes degrades the quality of results obtained with the keywords/object
search. As showed in Fig. 3, for our system the textual-KIS task was the hardest,
accordingly to the observation done by the organizers of the competition in [12],
where they note that textual-KIS task is much harder to solve than visual tasks.

AVS Tasks. In this tasks, keywords/object and the image similarity search func-
tionalities were mainly used. In particular, the image similarity search resulted
to be notably useful to retrieve keyframes of different videos with similar visual
content.

We experienced how an image retrieval system could be useful for video
search, for the (Textual KIS ) the results were not particularly satisfying, but for
the AVS task are very promising. A problem on the textual KIS is a too specific
categorisation of the object which decreased the recall: sometimes users does
not distinguish between car or trunk or vehicle and they may use one of them
(as textual query) indistinctly. However, for the YOLO detector the difference
is quite significant and this leads to low recall. Globally speaking, one of the
main problem was due to a rather simple user interface. In fact, Visione was
not supporting functionality like query history, multiple submissions at once, or
any form of collaboration between the team members: this leads to redundant
submissions and “slow” submission of multiple instances.

4 http://www.videobrowsershowdown.org/example-browsers/infos-and-results-2019/.

http://www.videobrowsershowdown.org/example-browsers/infos-and-results-2019/
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Fig. 3. The VBS2019 competition results for the three tasks AVS, KIS-textual and
KIS-visual (score between 0 and 100). The bold line highlights the result of our system.

5 Conclusion

We described Visione, a system presented at the Video Browser Showdown 2019
challenge. The system supports three types of queries: query by keywords, query
by object location, and query by visual similarity. Visione exploits state-of-the-art
deep learning approaches and ad-hoc surrogate text encodings of the extracted
features in order to use efficient technologies for text retrieval. From the experi-
ence at the competition, we ascertained a high efficiency regarding the indexing
structure, made to support large scale multimedia access but a lack of effective-
ness on keywords search. As a result of the system assessment made after the
competition, we decide to invest a more effort on the keywords-based search,
trying to ameliorate the image annotation part: we plan to integrate dataset of
place, concept and categories [4,9,19], and automatic tools for scene understand-
ing. Furthermore, we will improve the user interface to make it more usable and
collaborative.
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Abstract. Searching for one particular scene in a large annotation-free
video archive becomes a common task in the multimedia age. Since the
task is inherently difficult without knowledge of the scene location, mul-
timedia management systems utilize various notions of similarity and
provide both effective retrieval models and interactive interfaces. In this
paper, we propose a vision of a simulation framework for automatic con-
figuration of interactive known-item search video retrieval systems. We
believe that such framework could help with early, resource-inexpensive
evaluations and therefore automatic parameters tuning, detection of
effective search strategies and effective configuration of client prototypes.

Keywords: Video retrieval · Known-item search · Simulated users

1 Introduction

With ubiquitous cameras and high-speed connection in personal digital devices,
the so-called digital universe has seen rapid increase of multimedia content in
recent years. For example, YouTube claims that there are on average 400 hours
of video content uploaded to their web servers every minute and every day people
generate billions of views.

The current mainstream in multimedia retrieval is highly influenced by sig-
nificant achievements reached with deep learning. Some examples are automated
concepts detection [7], localization of objects [13], semantic segmentation [15], or
image/video captioning [17]. However, there are still scenarios, where automated
approaches lack effectiveness and users in the loop can make a significant differ-
ence. Especially in cases, where an ideal query example is not available and users
may provide just clues to find desired content [9]. One important representative
of such tasks is known-item search (KIS), where users look for one particular
video scene in a given dataset. The task can become difficult once the dataset
is large, lacks human annotations and users do not have the information, where
the searched scene is located within the dataset structure (e.g., timestamp or
folder). With such limitations, users have to resort to various automatic anno-
tation models, content-based query initialization methods and similarity-based
retrieval [18] to solve the task.
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The KIS scenario may appear in many important real-world situations. Fast
inspection of videos from police car cameras or wearable LifeLog devices can help
to search for memorized moments and speed up the reaction time. In some coun-
tries, surgeons are required by law to document their operations, however, the
after-inspection of many hours of operations is too time consuming. Video/film
productions create hundreds of hours of video, where searching desired scenes
in the video editing process is one of the most time consuming tasks. Nonethe-
less, results of recent Video Browser Showdown (VBS) installments focusing on
KIS tasks showed that state-of-the-art interactive video retrieval tools still face
problems to solve all KIS tasks within a given time limit [10].

One of the limitations preventing successful KIS task’s completion is inability
of (especially novice) users to properly select the most suitable search strategies
for a given task.1 Another limitation is a proper parametrization of individ-
ual components of the tool, because user-based evaluations are very timely. To
face both issues, some model of user behavior describing the query construc-
tion process and browsing interactions is desired. Given the pairs of targets
and simulated interactions, system designers could obtain first estimates of the
performance and promising configurations of the parameter space. Therefore,
in order to solve both challenges, we envision a user simulation framework for
interactive KIS retrieval tools, describe its key components and concepts, show
its possible applications and also discuss open problems to solve.

As a starting point of the envisioned KIS simulations framework, we use a
formal framework for the (reproducible) evaluation of interactive IR systems
proposed in [19]. We adopt several concepts and methodology defined by the
authors and aim on instantiating this generic framework for the KIS scenario.

For some components of interactive KIS retrieval systems such as relevance
feedback, there are already devised models of user behavior (e.g., [8]), which
can be utilized in the simulation framework. For some other components, e.g.,
various sketch-based query initialization models, the models of user behavior
needs to be proposed. In Sect. 3, we discuss a set of generic user models and its
instances for some common components of KIS tools.

2 Models for Interactive Known Item Search

In this section, we would like to describe some models commonly utilized in
interactive KIS retrieval tools and their possible extensions. Since most searches
start with a set of provided/available “proxy” queries, a pool of suitable ini-
tialization models is discussed in Sect. 2.1. Apart from options to sequentially
browse results or reformulate the query, the relevance feedback models represents
a popular method allowing users to express their feedback and flexibly adapt the
underlying ranking models based on it. We review some possible approaches in
Sect. 2.2.
1 Note that the interactive systems usually comprise a wide set of available retrieval

components and practically unbound list of possible interaction sequences with
unknown rewards varying for individual tasks.



342 L. Peška et al.

2.1 Models for KIS Initialization

In interactive KIS retrieval systems, four categories of query initialization are
commonly used – text-based and sketch-based models, query by example image
and filtering. Text-based models enable intuitive description of texts obtained
from ASR/OCR models or semantic elements detected in searched frames/shots
by concept/action detection models [7,21]. The query can be further positioned
in models supporting region proposals [13].

For visual KIS tasks, several systems demonstrated that sketch-based models
provide an opportunity to effectively express memorized low level features like
colors, edges or motion (e.g., the vitrivr system [14]). With the time passing by,
however, the users face problems with memorizing and reconstruction of searched
scenes. Hence these models have to assume highly noisy inputs and also new
types of features should be considered (e.g., from semantic segmentation [15]).

Providing an example image from an external service or the current result set
is a popular alternative to the previous two categories once a candidate “proxy”
example is available. KIS system may also provide, e.g., self-organized maps
of pre-selected representative instances to help users to navigate through the
dataset [2]. Usually, features from a deep learning architecture are considered
for query by example similarity-based retrieval models [6].

Filtering provides an option to prune the searched collection based on unam-
biguously detected attributes (e.g., black-and-white or aspect ratio). It can be
used also to cut-out a part of the similarity based ordering provided by the first
three presented approaches.

All mentioned models as well as their fusion can be instantiated by multiple
different retrieval methods, which can be further tuned by their respective hyper-
parameters. For instance, a wide range of pre-trained classification networks can
be utilized in automated annotations task for keyword-based models. Further-
more, retrieval methods may, e.g., consider implicit or explicit (user-defined)
relevance of individual keywords, or assume different (fuzzy) logical operators
between them.

2.2 Relevance Feedback Models

Once query initialization attempts fail to target the searched item(s), interac-
tive and systematic browsing [2] represents a viable alternative to the tedious
sequential inspection of results. In addition, the browsing can provide a sequence
of actions, which could be utilized by some relevance feedback models, i.e., updat-
ing preference of items based on the positive and negative examples as expressed
by the user. While aiming on the description of user’s decision making process,
KIS tools may process multiple types of user actions (or inactions [20]) with vary-
ing relevance or informativeness including, e.g., detailed observation of items,
ignoring their presence or explicit selection as positive or negative candidates.

Relevance feedback models commonly work in two steps: first update rele-
vance scores of individual items based on new feedback and some items’ similarity
metric and then display a subset of the items to the user. Bayesian relevance
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feedback models were successfully applied to the first task (e.g., [5]). For the
results display, there is a key tradeoff between the focus on current best candi-
dates and capability to cover all suitable candidates. Some inspiration can be
found e.g. in the domain of recommender systems, specifically in models aim-
ing on relevance vs. diversity tradeoff [12], exploration vs. exploitation tradeoff
[1], or adapted query-based topic modeling approaches [3] combined with some
results calibration [16] ensuring the proportional representation of query topics.

Nonetheless, due to the short expected life-span of user’s tasks, relevance
feedback models have to be highly efficient and capable to update their internal
representations online upon the feedback is received.

3 Vision of Automated KIS Configuration

As described in previous sections, current interactive KIS retrieval tools are
comprised from multiple components instantiating various search paradigms.
For each of the search paradigm, multiple implementations are possible, which
can be further tuned by various hyperparameter settings. This situation is chal-
lenging not only from the system composition perspective, but also from the
user point of view. It is hard or even impossible for users (especially novices) to
select, which search strategy leads to the best results. The envisioned simulation
framework should contribute towards both of the challenges. With the ability
to approximately model user’s behavior, some first estimates of performance of
individual configurations can be driven. By evaluating performance of differ-
ent search strategies (e.g., detailed vs. simple query initialization, sequential vs.
interactive browsing etc.), we may provide a set of generic suggestions to users,
or even design a wizard-style tool.

The core component of the envisioned framework are models of user behav-
ior.2 We define the user’s task as follows: for a given target item t, construct an
interaction sequence I, such that the target item is found. At the same time, the
cost of interaction sequence C(I) should be as low as possible.3 As a starting
point, we assume that finding the target item could be modelled as a random
variable with a probability distribution based on the properties of the current
interface card (e.g., volume and size of displayed objects) and the position of the
target item among the result set.

We consider the model of user behavior to work in three steps. First, an aggre-
gated user model selects, which component should be interacted with. Then,
the behavior model of the respective component is employed and decide, which
action(s) are taken. Finally, the aggregated user model process the response of
the system, either stating that the target item was found, or continues to the
next lap.
2 Note that we adopted several concepts, e.g., user, system, action, interface card,

interaction sequence and interaction cost/reward, defined in [19].
3 C(I) could be defined as a simple sum of all interactions costs, but could also perform

some non-linear transformation of them, e.g., impose a threshold on the maximal
allowed costs. Nonetheless, C(I) should maintain the non-increasing property for the
prefixes of I.
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3.1 User Behavior Models for Individual Components

In order to construct a behavior model for individual component c, we need
to first define the set of plausible user actions Ac and their costs Cc. The set
of actions is component-dependent, but rather straightforward in most cases.
For example, in keyword-based query initialization, the set of actions would
correspond to insertion/removal of a keyword to the query, or, optionally, modify
their weights or logic operators connecting them. In a color-based sketch model
(e.g., [11]), the set of actions would correspond to insertion/removal of a colored
point to a certain position in the sketch. In relevance feedback models, actions
would correspond to marking one of the displayed items as a positive or negative
example. Costs Cc should be set according to the considered real-world task,
usually based on expected temporal complexity of the action.

Then, the task of the user model is, based on the given target t, assign
occurrence probability pa to each action a ∈ Ac. The key assumption of proposed
user models is that, up to some extent, user’s perception of data is consistent
with component-level data understanding. Although some transformations of
system-to-user data understanding are possible, we assume that the lack of data
and causality issues would prevent us from learning such models. We consider
three types of user models: posteriori optimal users, greedy optimal users and
noisy optimal users. Posteriori optimal user model always selects the action that
maximizes the probability of finding the target item4 and therefore provides
the theoretical boundaries of the component efficiency.5 Greedy optimal user
model selects the best action according to the data representation featured by
the component, e.g., the keyword assigned with the highest probability by an
automated annotations in the case of keyword-based query initialization. Finally,
noisy optimal user models are based on greedy optimal models, but additionally
introduce random noise to the selection process. Note that the introduced noise
may be multidimensional, e.g., in color-based sketch, both the color channels
and position coordinates may be randomly shifted.

3.2 Aggregated User Behavior Models

While selecting, which component to interact with, multiple strategies can be
devised. First, strategies only utilizing a single component (or some fixed com-
ponents ordering) provide important baseline comparisons and may provide
clues to justify utilization of each individual component. Second, similarly as
in component-level models, posteriori optimal strategies (or their randomized
versions) can be used to provide theoretical boundaries of the tool. Finally, com-
ponents can be sampled based on their past performance. For instance, multi-
armed bandit model with Thompson Sampling, delayed reward and gradually
decreasing reward attribution [4] seems suitable for the task. Variations in train
set sizes for this model may be used to mimic the differences between novice and
4 Optionally, it could also consider the cost of created interaction sequence C(I).
5 Note that due to the size of action space in some components, posteriori optimal

model cannot be effectively evaluated and some approximations may be necessary.
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experienced users and therefore can be utilized in devising individual interfaces
for each user group. Apart from long-term component performance, a short-term
performance evaluation may be applied as well, preventing a repeated usage of
the component, which works badly for the current task.

3.3 Generation of Client Prototypes

Aside from evaluation of the KIS tools and its individual components, an impor-
tant open challenge is to automatically generate interfaces for (an effective subset
of) available components. Preferably, interfaces generation should be personal-
ized w.r.t. target device, user’s experience or search style and current status of
the task. For example, wizards could be generated to guide the user based on a
recommended search strategy (obtained by simulations), presenting a sequence
of screens with predefined actions in a given retrieval model. Another option is
to tune interface cards according to the simulation results of individual com-
ponents, or disclose this information to the user. It is also possible to recom-
mend/highlight, which component(s) would be most suitable for the next step,
or discourage users from continued usage of ineffective ones. Main challenges of
this task are to set a proper level of simplicity vs. effectiveness of the graphical
interface (GUI) for individual users and to introduce suitable models transform-
ing simulation results into generated interfaces.

Meta-analysis of the simulations (i.e., which paths commonly lead to the good
results) should be a good starting point for wizard-style solutions and component
recommendations. While constructing the interface cards, both effectiveness and
uniqueness of components (i.e., up to what extent, the query can be mimicked by
other components) should be considered. Components’ hyperparameter settings
should be displayed according to their impact on the results and comprehen-
sibility to the users. In either case, it is desired to propose some intermediate
domain specific description language for model-driven development that will
allow to encode the GUI composition w.r.t. a standard set of GUI elements pro-
vided for the retrieval models. Eventually, sequences of GUI compositions will
also be encoded for description of the search strategies.

3.4 Framework Verification and Tuning from User Feedback

Some user behavior models introduce additional hyperparameters (e.g., the mag-
nitudes of noise for noisy optimal models), which may affect simulations’ results.
Although it is possible to run simulations w.r.t. multiple hyperparameter values
and aim to find some globally optimal methods, such results may often be incon-
clusive and furthermore, it would be extremely challenging to compare results
across different components. Nonetheless, the hyperparameter space of behavior
models is much less complex than the one of the original components, so only a
limited amount of feedback may be sufficient to tune behavior models to mimic
the real users well. Alternatively, optimal client prototypes w.r.t. various behav-
ior model settings could be evaluated in standard A/B testing or user studies,
which could refer back to the ideal hyperparameter settings.
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An open challenge to solve is, up to what extent users behave consistently
across different datasets, i.e., whether some transfer learning for behavior models
is applicable. Another important challenge is to explore up to what extent, it is
necessary to mimic the behavior of real users, i.e., are hereby described models
sufficient to provide results consistent with the preference of real users, or more
complex models are necessary?

4 Conclusions

In this vision paper, we discussed the importance and challenges of KIS task
in large, unannotated video collections. One of the main challenges is the lack
of validation options (and their costly acquisition), which leads to insufficiently
supported design choices and suboptimal performance of KIS tools. In the envi-
sioned framework, we focus on the possibility to conceptually describe the search
process and to propose simulation models suitable to support a range of design
choices as well as guide the user through the KIS process. While materializing
our vision, we plan to employ a bottom-up process starting at defining and eval-
uating single-component user models, then advance to aggregated user models
and ultimately aim on the automated generation of client prototypes. Finally,
a confrontation of the devised approaches in existing interactive known-item
search evaluation campaigns (e.g., VBS) represents our ultimate challenge.

Acknowledgements. This paper has been supported by Czech Science Foundation
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Abstract. The complexity of contemporary data warrants a need for
better analysing tools in investigative areas. Human processing of data is
no longer a viable option. We present an architecture of a novel universal
system for analysis of graph-structured data, where data-mining and
similarity-search operators can be used to discover or search for unknown
information. We also present results that were obtained by our prototype
implementation on two real-world data collections: the Twitter Higg’s
boson dataset and the Kosarak dataset.

Keywords: Data analysis · Pattern mining · Similarity search ·
Advanced data types

1 Introduction

In the investigative fields, such as forensic analysis, there is often a need for
analysis of contemporary data gathered from different sources. The main problem
that arises is that experts do not know what they are looking for until it is shown
to them and then, based on the observation of newly discovered data, there is
a need for searching techniques. There exist many techniques for these sub-
tasks, such as SNAP [8], SPMF [6], MESSIF [3]. While there are various more
specialised tools and approaches that can give even more detailed answer, the
forensic analysts rather use a single generic system than multiple ones.

The critical aspect of contemporary data is that it has connections to others.
Whether it is a response in the form of a tweet, a picture showing some event
or record of purchase, a social network can be created from such information.

Search and mining are two main areas that we are interested in. The main
focus on these areas is further narrowed into query by example search in case of
searching and into pattern mining for the mining task.

Supervised by P. Zezula.
This work has been supported by the Ministry of the Interior of the Czech Republic
under the “Security Research for the Needs of the State Program 2015–2020,” through
the Project No. VI20172020096, “Complex Analysis and Visualization of Large-scale
Heterogeneous Data.”

c© Springer Nature Switzerland AG 2019
G. Amato et al. (Eds.): SISAP 2019, LNCS 11807, pp. 351–355, 2019.
https://doi.org/10.1007/978-3-030-32047-8_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32047-8_31&domain=pdf
https://doi.org/10.1007/978-3-030-32047-8_31


352 J. Peschel and P. Zezula

In query by example search, one of the main aspects used for searching is
similarity between objects [10]. For this task, there exist various types of queries,
but we focus on the two widely used ones: k-nearest neighbours query and range
query. These two approaches allow for a high range of use-cases.

Pattern mining is a technique of discovery of frequent behaviour in the data.
The main emphasis is put on periodicity or frequency. In connection with social
networks, the main goals are mining communities and frequent sub-paths. Main
techniques are older Apriori algorithm developed by Agrawal et al. [1], FP-
growth developed by Han et al. [7] and GSP developed by Srikant et al. [9].

Goal: To address the mentioned problems, we want to propose a system that
satisfies these requirements:

– general multipurpose system
– unified data structure
– modularity of system
– efficient processing
– large scalability

We call this system Advanced Data Analysis by Mining and Searching System,
shortened as ADAMiSS.

The system for advanced analysis that is presented allows opening research
space for the development of new techniques from combined ones.

2 Architecture

In forensic analysis, an expert looks at a high volume of data and tries to uncover
new evidence. There is a need to obtain new insight into various data to gain
hidden information.

To tackle the problem, we propose an architecture consisting of four com-
ponents containing data and transformations between them visualised in Fig. 1.
Transformations are a series of simple operations that reveal hidden information
when combined in the right way. The ordering of operations is dependent on
user requirement.

We selected multigraph as the appropriate data structure since a lot of real-
world data can be viewed as entities introduced by links. Every element of multi-
graph is allowed to have attributes, to capture all the information needed for
analysis.

ADAMiSS allows working with a broad range of data inputs. Examples of
such inputs are interaction networks from Facebook or Twitter, e-mail message
network, phone call network, bank transaction network, computer network and
many others. The only prerequisite is that transformation into graph must exist.

Because every method needs a specific approach or view on data, ADAMiSS
introduces the concept of transaction database. The transaction database is a
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Fig. 1. Overview of an architecture of ADAMiSS

structure used by all the analytic operators. It consists of transactions and is used
as a preprocessed data source for analytic operators. By the transformation into
this flat structure, lots of the information from graph representation is omitted.
Thus, it is necessary to select the right transformation for the desired operation.

Filtering transformation serves as a preprocess of data for analytic opera-
tors. During filtering, noisy data is removed, and only important structures are
presented. An example of such preprocess is the removal of nodes without con-
nection or taking into account only edges that appeared at least several times.
By filtering, transformation can occur and a group node can be introduced by
merging several nodes into one. A result of this transformation is a prepared
transaction database.

To analyse the data, ADAMiSS contains analytic operators. These operators
are basic functions that can be applied to the transaction database to obtain
new knowledge. Due to the well-defined structure of transaction database, there
is a possibility of implementing a large number of methods. Example operations
that are available in the system:

Frequent item-set mining is a method that discovers information by providing
frequent patterns of co-occurring items. The frequency of a pattern is determined
by a user-defined threshold. In graph analysis, it can be used to find frequent
neighbours. With a slight modification, it can be used to mine communities.

Sequence mining serves for searching for frequent paths in a graph. Data in a
transaction of transaction database are then taken as a sequence, and ADAMiSS
then searches for continuous subsequences. In sequence mining, it is often allowed
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to have holes in patterns. Both approaches with holes and without holes can be
applied to the transaction database.

Range search is an operator that searches for all the items that are similar to the
selected query. The threshold for similarity is defined by the user. In the range
search, an arbitrary similarity function must be selected. Such a function must
satisfy the metric space properties. As an example, similarity can be measured
on the sets of neighbours or at selected attribute values.

K-NN search is an operator very similar to the range search, but it retrieves k-
most similar items to the ADAMiSS. In the same manner as in the range search,
the suitable similarity function must be selected.

The proposed architecture seems to be very useful for an iterative approach
to analysis. The main process is to import data selected for analysis, filter them
by applying suitable filters and analyse them via analytic operators. The results
of the analysis are then again imported for further analysis by searching or
another round of pattern mining. This iterative approach is a process of creating
an advanced analysis.

3 Prototype Results

Two datasets were used, Twitter Higg’s Boson dataset [5] and Kosarak dataset
[4], to showcase prototype application.

We applied a frequent item-set mining operator to dataset Twitter Higg’s
boson. This dataset contains 304691 interactions on Twitter with a topic con-
nected to the discovery of Higg’s boson at CERN. A threshold of size 11 was
selected, because social networks are quite shallow graphs. TA total of 7 commu-
nities of size 12 and 94 communities of size 11 were discovered. Average overlap
of all these communities is 80.7%.

For path mining, sequence mining was applied to dataset Kosarak, containing
990000 click-stream data from the logs of an online news portal. The threshold
was set to 1024, to obtain quite short frequent paths. There was found 322 paths
and only 5 paths containing more than 4 nodes. The longest path contained 16
nodes.

One of the communities of size 12 was picked, and the Jaccard coefficient was
computed on its nodes. For efficient processing, ADAMiSS uses MESSIF library
developed by Batko et al. [3].

For range queries, the threshold was selected to 0.2. Four nodes (60686,
137247, 137321, 137246) had their most similar items inside the community.

For k-nn queries, 10 was selected as k, and an average amount of most similar
nodes from the community for each node was 8.33 node.

4 Conclusion

In this paper we introduced a new system ADAMiSS. This system is used for
obtaining new information from large volumes of data that can be transferred
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into a suitable graph representation. The system is based on unifying graph
representation and flat transaction database used for two analytic approaches,
pattern mining and similarity searching.

The system is highly modular; new methods can be developed and added.
In the near future, we plan to add inference of association rules and to improve
pattern mining methods by implementing new method NegFIN [2]. We would
also like to improve our definition of community and to develop a suitable method
for the discovery of such a structure. We also see a lot of space for research of
interconnecting similarity search and pattern mining.

A prototype of the system was used for the analysis of two datasets, Twitter
Higg’s Boson dataset and Kosarak dataset. The system processed data and pro-
vided information about communities, frequent paths through the network and
similarities between nodes.
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Abstract. Software product lines enable the reuse of shared software
across a family of products. As new products are built in the prod-
uct line, new features are added. A feature is a unit of functionality.
Unwanted feature interactions, wherein one feature hinders another fea-
ture’s operation, are a significant problem, especially as large software
product lines evolve. Detecting feature interactions is a time-consuming
and difficult task for developers. Moreover, feature interactions are often
only discovered during testing, at which point costly re-work is needed.
The work described here investigates how to discover feature interactions
much earlier in the development process. Toward this goal, we propose
a similarity-based approach that mines prior feature interactions stored
in the software product line’s artifacts to predict unwanted interactions
between a new feature and existing features. Initial results show that
the planned methodology performs well in terms of accuracy and cov-
erage both in experiments on three small software product lines in the
literature and in experiments on one large, real-world software product
line.

Keywords: Feature interaction · Similarity measures ·
Software product lines

1 Statement of the Problem

A Software Product Line (SPL) is a family of products that share certain core
features (called commonalities) as well as different optional or alternative fea-
tures (called variabilities). A feature is a unit of functionality, such as a service
visible to the product’s users. SPLs are widely used in industry to reduce the
cost and time-to-market of products. It is worthwhile to study all features in a
SPL as a set and to reuse the product line’s repository of software artifacts to
build new products [3,5,9].

Software product lines evolve over time as new features are added [4]. Ensur-
ing that SPL features continue to work as expected in each new product is both
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essential and difficult [9]. Feature interaction in the SPL literature refers to the
unwanted situation in which individual features behave as expected in isolation,
but when combined in a new product, one or more no longer acts as intended
and may even be dangerous. A classic example of unwanted feature interaction
is described by Batory et al. Imagine we have a building with two optional fea-
tures, fire-control, and flood-control. A building with a fire-control feature has
sensors that, when they detect fire, activate water sprinklers. A building with a
flood-control feature has water sensors that, when they detect standing water,
turn off the water main. Either feature operates correctly alone; however, if a
new product is built with both, the features interfere with each other and create
a hazardous state [2].

Existing approaches to the feature-interaction problem are mostly based on
testing. However, this approach can only detect unwanted feature interactions
late in the development process after the product has already implemented. Ear-
lier approaches using model checking have been proposed; however, are difficult
to apply in practice and are not scalable to actual SPLs [1].

The remainder of the paper is structured as follows. Section 2 describes our
similarity-based approach to detecting unwanted feature interactions in a new
SPL product. Section 3 describes our contributions to date. Section 4 summarizes
the results and discusses our future work.

Fig. 1. FIDUS: feature interaction detection using similarity in software ProductLines
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2 Outline of the Planned Methodology

Our work aims to discover feature interactions in a new SPL product at an earlier
stage of the new product’s development. To this end, we have proposed a method
that leverages knowledge of prior feature interactions in the SPL together with
measures of similarity between existing and new features. This enables design-
time discovery of feature interactions in a new product.

Our approach uses the fact that product line repositories typically include
documentation of known feature interactions, derived from previous experience
and bug reports. We use similarity measures to calculate the similarity between
those features known to interact in the software product line and the new fea-
tures. We then employ this information to build a model that detects similar
feature interactions in the new product much earlier in the development process.
In a preliminary study [6], we applied our similarity method on a small software
product line and obtained results that encourage us to pursue this work. As
detecting feature interaction at the code level is partial, costly, and occurs late
in development, we concentrate on the early stage artifacts of an SPL consisting
of the feature models and the class elements related to each product line feature.
Hence, we introduce an efficient framework using similarity measures to detect
new feature interactions in evolving software product lines.

2.1 Similarity Framework

Our approach uses two main information sources to detect feature interactions:
(1) the SPL repository of known feature interactions and a set of early-stage
artifacts, i.e., the feature model, and class attributes and methods; and (2) a set
of similarity measures to understand how close new features are to existing fea-
tures. The proposed framework (FIDUS) is shown in Fig. 1. As displayed there,
known feature interactions are derived from bug reports for earlier products and
from early-stage elements of product line features such as feature models, as
well as class variables and class methods, if available in the repository. The most
common artifact in an SPL repository is its feature model. This is typically a
tree representation in which each node represents a feature. The feature model
encodes in its structure the constraints that must be maintained in any selection
of features (e.g., XOR) for a new product.

A proposed usage scenario for FIDUS is that a developer wants to under-
stand whether a new product having a new feature Fnew will interact in an
undesired way with any existing features. We use the SPL artifacts with its
capture of known interactions to help answer this question by applying feature
similarity measures to Fnew and features in known and unwanted interactions.
The approach reports to the developer the extent to which the new feature Fnew
may potentially participate in any known feature interaction. This technique has
the potential to reduce feature-interactions inadvertently introduced in a new
product, thereby reducing risk as well as saving time and effort in debugging.
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2.2 Similarity Measures

The similarity is the pivotal piece of our framework, FIDUS. We use similarity
as a heuristic tool to compare two features in the SPL. Table 1 shows the sim-
ilarity measures applied in our study for computing the similarity score of two
features in a small SPL. We selected two set-based similarity measures, Jaccard
and Hamming [6], to obtain a similarity score between two features when we
have access to the SPL class diagram including class variables and methods.
We represent a feature as a set of class methods and class variables used in the
design of a feature. Therefore, the feature representation is a class-based artifact
since only methods and variables of a coded feature are considered to capture
the properties of a feature in an SPL.

Table 1. Class-based similarity metrics used for small SPLs

Name of metric Category Case studies

Jaccard Class Email, Elevator, MinePump

Hamming Class Email, Elevator, MinePump

FIDUS uses different similarity metrics to calculate the similarity between
two features depending on the artifact types that are available in an SPL. For
very large SPLs, it uses the feature model as the main artifact to locate features
and capture similarity between them. We use three path-based metrics on the
feature model to obtain similarity measures between features in a very large
SPL: path, lch, and wup [8] (Table 2).

Table 2. Path-based similarity metrics used for large SPLs

Name of metric Formula Ref.

Path 1/(lengthshortestpath) [8]

lch −log(length/(2 ∗ D)) [8]

wup 2 ∗ depth(LCS)/(depth(F1) + depth(F2)) [8]

3 Experimental Results

In this section, we first introduce the SPL case studies investigated in our work.
We then present the results obtained in terms of accuracy and coverage. We
applied the similarity-based method proposed in this work on three small to
medium size software product lines: Email, Elevator, and Mine Pump, and to dif-
ferent versions of a very large highly configurable software, BusyBox. These SPL
are considered as benchmarks in software product line literature [1,7] (Table 3).
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Table 3. SPLs used for FIDUS evaluation

SPL name n(Features) n(Interactions) #LOC

Elevator, MinePump, Email [1] 6–9 4–11 580–1233

BusyBox v1.7,8,17 (Configuration, Shells) 40–72 16–28 14.8–19K

Tables 4 and 5 show the results, in terms of accuracy and coverage, of applying
the proposed feature-interaction detection framework: (1) on three small SPLs
using class-based similarity metrics, and (2) on a very large SPL using path-
based similarity metrics. As shown in Table 4, with the threshold set to 0.5, the
wup metric gave the highest coverage of 100% among the three metrics, with the
other two yielding 60% coverage. Hamming had the highest coverage compared
to Jaccard in class-based similarity measures for SPL features.

Table 4. Accuracy,coverage results for detecting feature interactions in three small
SPLs

Jaccard similarity Hamming similarity

SPL name Accuracy Coverage Accuracy Coverage

Email 70% 82% 70% 64%

Elevator 100% 83.3% 100% 83.3%

Mine pump 50% 50 % 37.5 % 100%

Average 73.3% 71.77% 69.17% 82.4%

Table 5. Accuracy and coverage results for detecting feature interactions in a large
SPL

SPL name Similarity measure Threshold Accuracy Coverage

BusyBox v1.17 wup 0.5 83 100

lch 100 60

path 100 60

4 Future Work

Planned future work will investigate whether the use of additional product line
artifacts such as requirements and design specifications (architectural, state and
activity diagrams) can, by identifying similar behaviors among features, improve
the performance of our method. Planned future work also will investigate how
information in the feature model can be mined to automatically advise minimal
repairs to resolve feature interactions flagged by this method.
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