
Chapter 13
NIR Fluorescent Nanoprobes
and Techniques for Brain Imaging

Takashi Jin and Yasutomo Nomura

13.1 Introduction

For in vivo fluorescence imaging, visible-emitting fluorescent probes cannot be
applied because of the strong absorption and scattering of visible light by intrinsic
chromophores, organelles, and cytoskeleton in cells [1, 2]. Most of the visible-
emitting fluorescent probes have been used for in vitro imaging and sensing of
biomolecules and organelles using conventional fluorescence microscopes [3, 4].
Compared with visible light (400–700 nm), NIR light (700–1400 nm) allows deeper
penetration with reduced absorption and scattering in living tissues [5]. In addition,
tissue autofluorescence in the NIR region is much lower than the autofluorescence
in the visible region [5]. Thus, NIR fluorescence imaging is widely used for non-
invasive visualization of deep tissues in living system [6–9].

So far, conventional NIR region ranging from 700 to 900 nm (1st NIR window)
has been used for in vivo imaging [5]. In this NIR region, many kinds of fluorescent
probes such as Cy7, ICG, iRFP, and CdSeTe quantum dots (QDs) are commercially
available (Fig. 13.1). Recently, NIR fluorescence imaging in the wavelengths of
1000–1400 nm (2nd NIR window) [10–14] has been attracted for clearer deep-
tissue imaging at the whole-body level (Fig. 13.2). As the tissue autofluorescence
and scattering significantly decrease beyond 1000 nm, 2nd NIR fluorescence
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Fig. 13.1 Representative nanoprobes that can be used for bioimaging at the wavelengths of visible
and near infrared regions

Fig. 13.2 First and second
NIR windows in biological
tissues. Top: These plots of
effective attenuation
coefficient (on a log scale)
versus wavelength show that
absorption and scattering
from oxygenated blood,
deoxygenated blood, skin,
and fatty tissue is lowest in
either the first (pink shaded
area) or 2nd (grey) NIR
window. Bottom: Sensitivity
curves for typical cameras
based on silicon (Si), indium
gallium arsenide (InGaAs) or
mercury cadmium telluride
(HgCdTe) sensors.
Reproduced from ref. [10]
with permission from
Springer-Nature
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imaging offers better spatiotemporal resolution in the deep-tissue imaging [10–12].
Unfortunately, compared with conventional NIR fluorescent probes in the 1st NIR
window, NIR fluorescent probes that can be used in the 2nd NIR window are very
limited.

During the past 5 years, several types of NIR fluorescent probes such as single-
walled carbon nanotubes (SWNTs) [15–32], PbS QDs [33–43], Ag2S QDs [44–
57], and rare earth-doped nanoparticles [58–61] have been developed for in vivo
imaging in the 2nd NIR window. Recently, organic dye-based NIR nanoprobes with
low toxicities have attracted much attention for deep-tissue imaging in the 2nd NIR
window [62–91]. In this chapter, we focus on the synthesis, optical properties, and
applications of NIR fluorescent nanoprobes for non-invasive brain imaging in the
2nd NIR window.

13.2 Optical Property of Brain Tissue

In non-invasive fluorescence imaging of brain, autofluorescence, absorption, and
scattering by scalp and skull significantly affect the signal-to-background ratios
of the fluorescence images. Autofluorescence and absorption result mainly from
the intrinsic chromophores such as nicotinamide adenine dinucleotide phosphate
(NADP) and flavin in intracellular compartments [92–94]. To get clear NIR
fluorescence images of mouse brains, excitation wavelengths are very important to
reduce the absorption and autofluorescence by tissues. The detection wavelengths
for fluorescence emission are also important to get reduced scattering images.

The absorption spectrum of a mouse brain shows that tissue absorption at the
NIR region from 700 to 1400 nm is very low (Fig. 13.3a). The strong absorption at
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Fig. 13.3 (a) Absorption spectrum of a mouse brain. (b) Autofluorescence of a mouse brain. The
fluorescence at 520 and 720 nm was obtained by excitation at 482 and 670 nm, respectively. The
fluorescence at 1110, 1300, and 1500 nm was obtained by excitation at 785 nm. Adapted from ref.
[41]
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Fig. 13.4 (a) Autofluorescence from brain tissues of mice. The autofluorescence at 520 and
720 nm was measured by excitation at 482 and 670 nm, respectively. The autofluorescence over
1000 nm was measured by excitation at 785 nm. (b) Fluorescence images of 15 μm beads
containing five types of QDs (520, 720, 1100, 1300, and 1500 nm emission) though brain tissues
of mice. Thickness of the brain tissues was 100 μm. The intensity of fluorescence emission of
each QDs was adjusted to the similar level. Upper images show raw data, and lower images show
normalized data. Reproduced from ref. [36] with permission from Royal Society of Chemistry

the visible region less than 600 nm is attributed to the absorption by intrinsic chro-
mophores such as flavin and hemoglobin. The intense absorption at around 1500 nm
is due to the absorption by water molecules in the brain tissue. Autofluorescence of
the mouse brain strongly depends on the wavelength of excitation (Fig. 13.3b). The
intensity of autofluorescence over 1000 nm is very low compared with that of the
autofluorescence at 520 and 720 nm. Figure 13.4a shows autofluorescence images
(at 520, 720, 1100, 1300, and 1500 nm) of brain tissues. It should be noted that
the autofluorescence intensity decreases with increasing the emission wavelength,
indicating intrinsic chromophores in tissues are less excited at longer wavelengths.
Furthermore, the tissue scattering of NIR fluorescence decreases with increasing the
emission wavelength (Fig. 13.4b). These optical properties in the 2nd NIR window
allow clearer deep-tissue imaging of brain with high signal-to-background ratios,
compared with the imaging performed at the visible and 1st NIR regions.
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13.3 NIR Nanoprobes for In Vivo Fluorescence Imaging

13.3.1 Nanomaterial-Based NIR Nanoprobes

SWNTs in the 2nd NIR window the first-reported fluorescent nanoprobes by
Dai group for intravital imaging in mice [24]. SWNTs are cylindrical nanotubes
(hundred nanometer in length) consisting of graphene layers, and they have a
broad emission in the 2nd NIR region [15]. Although raw SWNTs are insoluble
to water and their fluorescence quantum yields are very low (<1%), surface
functionalization results in water-dispersible and bright SWNTs [24]. So far, several
groups have demonstrated the capability of surface-functionalized SWNTs as NIR
fluorescent probes for non-invasive imaging of organs, lymph nodes, tumors, and
cerebral vessels in mice [25–32]. For biomedical applications, SWNTs have serious
problems on their cytotoxicity and difficulty in exclusion from the body [15, 95, 96].

Nanoparticle-based NIR nanoprobes such as Ag2S QDs, PbS QDs, rare earth-
doped nanoparticles are alternative NIR nanoprobes for intravital imaging in the 2nd
NIR window (Fig. 13.5). NIR-emitting Ag2S QDs [44–57], and PbS QDs [33–43]

Fig. 13.5 Schematic illustration of typical nanomaterial-based NIR nanoprobes, (a) Polyethylene
glycol (PEG)-capped SWNT [24], (b) PEG-capped Ag2S QDs [45], (c) glutathione-capped PbS
QDs [33], and (d) rare earth-doped nanoparticle [59]
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are semiconductor nanocrystals that have unique optical properties, such as size-
dependent tunable emissions, narrow emission bands, high quantum yields, and high
resistance to photobleaching. In 2010, Wang group first synthesized NIR-emitting
Ag2S QDs for bioimaging by thermal decomposition of (C2H5)2NCS2Ag [44]. By
optimization of the reaction conditions for preparing QDs, they succeeded in the
synthesis of emission tunable Ag2S QDs with a high quantum yield (ca. 20%) in
the wavelength region from 900 to 1200 nm [52]. Furthermore, they demonstrated
the capability of the Ag2S QDs for tumor imaging, in situ tracking of transplanted
stem cells, and imaging-guided precise operation of glioma [46, 54–56]. In 2013,
our group reported a facile method for preparing water-dispersible PbS QDs, which
have tunable emissions from 1000–1400 nm with high quantum yields of 6–12%
[33]. As the water-dispersible PbS QDs are capped with glutathione (a natural
tripeptide), functionalized QDs with biomolecules such as antibody and peptide
are easily prepared. We demonstrated the utility of the PbS QDs for non-invasive
visualization of lymph nodes as well as breast tumors in living mice. Furthermore,
we synthesized highly bright PbS/CdS QDs with a core/shell structure that emit
from 1000 to 1500 nm, and we applied these QDs to non-invasive imaging of
cerebral blood vessels in mice [34]. In this work, we found that the signal-to-
background ratio in the NIR fluorescence imaging of brain tissue at 1300 nm can
be improved 76 times compared to the NIR imaging at 720 nm. In 2013, Moghe
group reported rare earth (Er3+, Ho3+, Tm3+, and Pr3+)-doped nanoparticles as in
vivo shortwave infrared reports for intravital imaging in mice [59]. Other groups
also reported rare-earth nanoparticles for organ imaging and cancer early detection
[58, 60, 61]. However, biomedical applications of these nanoparticle-based NIR
nanoprobes including SWNTs are very limited due to their dose-dependent toxicity
[95, 96].

13.3.2 Organic Dye-Based NIR Nanoprobes

Recently, organic dye-based NIR nanoprobes emitting over 1000 nm have been
developed as next-generation NIR nanoprobes for intravital bioimaging. Although
a variety of NIR organic nanoprobes emitting in the 1st NIR window are commer-
cially available, there are a very limited number of NIR organic nanoprobes that
emit over 1000 nm. During a few years, several types of NIR-emitting organic
dyes beyond 1000 nm have been reported for bioimaging. Organic dye-based
NIR nanoprobes are classified into three types (Fig. 13.6a). Frist type is NIR-
dye nanoparticles, where NIR dyes are incorporated into micelles or amphiphilic
polymers [62, 63]. Second type is NIR-dye complex, where NIR dyes are conjugated
to proteins such as fetal bovine serum [64]. Third type is solely, water-dispersible
NIR dyes [65, 67]. To date, these types of organic dye-based NIR nanoprobes have
appeared as probes for bioimaging in the 2nd NIR window (Fig. 13.6b). Compared
with nanomaterial-based NIR nanoprobes, organic dye-based nanoprobes have well-
defined architectures with rapid metabolism and low toxicity [66, 97].
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Fig. 13.6 (a) Schematic illustration of three types of organic dye-based NIR fluorophore. (b)
Chemical structures of typical NIR dyes emitting over 1000 nm (laser dyes, benzo-bis (1,2,5-
thiadiazole) dyes, polymethine dyes, and cyanine dyes). Blue and pink color show the electron
acceptor and donor unit, respectively

In 2013, Dai group reported laser dye, IR-1061 incorporated nanoparticles as
a NIR nanoprobe for in vivo imaging [62]. IR-1061 is a commercially available
polymethine dye, which is highly hydrophobic and insoluble to water. Thus,
they incorporated IR-1061 to nanoparticles consisting of amphiphilic polymer
poly (acrylic acid, PAA) and polyethylene glycol-conjugated phospholipid (DSPE-
nPEG). The fluorescence quantum yield of the IR-1061 incorporated nanoparticle
was 1.8% [62]. They succeeded in performing whole-body imaging of nude mice
after intravenous injection of the IR-1061 incorporated nanoparticles. They found
the facile excretion of the IR-1061 nanoparticles from the body. Using the similar
strategy, Dai group also reported fluorescent copolymer (poly(benzo[1,2-b:3,4-
b’]difuran-alt-fluorothieno-[3,4-b]thiophen, pDA) incorporated nanoparticles as a
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NIR nanoprobe and performed ultrafast fluorescence imaging (>25 flames/sec) in
the 2nd NIR window [63].

In the design of NIR-emitting nanoprobes, the energy band gap is known to be
significantly affected by conjugation length as well as donor–acceptor (D–A) charge
transfer in π-conjugated molecules [78]. In 2016, Dai, Cheng and Hong reported a
new type of benzo-bis(1,2,5-thiadiazole) NIR-emitting dyes with D–A–D charge
structures (Fig. 13.6b) [65, 69, 80]. This type of NIR nanoprobe (CH1055-PEG)
emits at approximately 1050 nm with a quantum yield of 0.3% in an aqueous solu-
tion [65]. They modified the fluorescence brightness of CH1055 by complexation of
its sulfonated derivative (CH-4T) with bovine serum to produce 110-fold increase in
NIR fluorescence. They succeeded to perform molecular imaging of tumors in mice
using affibody-functionalized CH1055 [65], leading to a possible application of the
NIR dye to tumor detection in humans. Their works showed that the brightness
of D–A–D dyes can be significantly improved by their composites with proteins.
To date, several derivatives of benzo-bis(1,2,5-thiadiazole) nanoprobes have been
reported for in vivo tumor imaging and image-guided surgery [68, 78].

In 2017, Sletten group reported flavylium polymethine nanoprobes for near- and
shortwave-infrared imaging [79]. They synthesized a new series of polymethine
dyes with dimethylamino flavylium heterocycles and found that a flavylium dye
(Flav 7) emitting at ca. 1050 nm is 13 times brighter than IR-26 (quantum yield:
0.05). They achieved whole-body imaging of nude mice by intravenous injection
of Flav 7 micelles consisting of mPEG-DSPE lipids, suggesting the possible
translation of polymethine nanoprobes to optical diagnostics in NIR region over
1000 nm. In 2018, Zhang group reported the synthesis and application of a cyanine
dye (FD-1080) that emit at around 1100 nm for deep-tissue high-resolution dynamic
bioimaging [67]. The excitation wavelength (1064 nm) of this NIR probe was
longer than that (650–980 nm) of previous reported NIR probe. Thus, this NIR
probe allowed deeper tissue imaging due to the high penetration of excitation light
(1064 nm). The quantum yield of PD-1080 was 0.31% in an aqueous solution and
could be increased to 5.94% after combining with fetal bovine serum. This dye is
the first-reported NIR nanoprobe that can be excited at the wavelength longer than
1000 nm.

More recently, several groups have found that a commercially available dye,
indocyanine green (ICG) with an emission peak of 830 nm can be used to NIR
fluorescence imaging in the 2nd NIR window [72, 73, 83, 85]. ICG is the only
NIR nanoprobe that is approved by the Food and Drug Administration (FDA) for
clinical use in humans. Although the NIR emission of ICG over 1000 nm is very
week, its emissions in blood and vasculatures are clearly detected by an InGaAs
camera. In 2018, Bawendi and Bruns group showed that ICG can be used as a
NIR nanoprobe for in vivo fluorescence imaging over 1000 nm, including intravital
microscopy, non-invasive real-time imaging in blood and lymph vessels, imaging of
hepatobiliary clearance, and molecular targeted in vivo imaging [73]. In the same
year, Annapragada group reported that ICG-incorporated liposomes show higher
contrast to noise ratios compared to free ICG in the 2nd NIR window, allowing
visualization of hind limb and intracranial vasculatures [72, 83]. Sun and Chen
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group reported that the NIR emissions of ICG including IRDye800 and IR-12N3
have the potential to accelerate clinical translation of NIR fluorescence imaging in
the 2nd NIR window [85]. While no FDA-approved NIR organic nanoprobes with
an emission peak over 1000 nm exist, the emission of ICG may give rapid translation
of longer NIR fluorescence to humans in clinical applications.

13.4 NIR Fluorescence Detection System for Brain Imaging

In most of the commercially available in vivo imaging systems, conventional NIR
wavelenths ranging from 700 to 900 nm (1st NIR optical window) are used for
deep-tissue imaging. This is because the conventional NIR photodetectors (silicon
CCD camera) are sensitive in the 1st NIR region, and 1st NIR-emitting probes (e.g.,
Indocyanine green, Cy 7, and CdSeTe QDs) are commercially available. Although
1st NIR fluorescence imaging is useful for the non-invasive visualization of organs
and tissues, its spatial resolution is not enough to observe cellular dynamics.
As tissue autofluorescence and scattering significantly decrease with increasing
the excitation/emission wavelength, fluorescence imaging in the 2nd NIR region
should be very useful to get better spatiotemporal resolution in deep-tissue imaging
[10]. However, there are no commercially available imaging systems with high
spatiotemporal resolution in the 2nd NIR window.

Our 2nd NIR microscope imaging system is based on the Macro Zoom System
with zoom function from 0.63× to 6.3× (Fig. 13.7). Optical system is optimized
for VIS, 1st NIR, and 2nd NIR fluorescence imaging. Solid-state lasers for 645,
785, and 978 nm excitation, and emission filters of 1100 ± 25 nm, 1300 ± 25 nm,
and 1500 ± 25 nm are equipped to the optical system. A Xe lamp was used as the
excitation light source at 482 nm for VIS imaging. A Si EM camera (iXon3, Andor)
is used for VIS and 1st NIR fluorescence imaging, and an InGaAs CMOS camera
(C10633-34; Hamamatsu photonics) is used for 2nd NIR fluorescence imaging.

Dai group used a high-resolution microscopic system for NIR imaging of brain
imaging cerebral vessels (Fig. 13.8) [31]. High-magnification intravital imaging of
cerebral vessels was carried out in epifluorescence mode with an 808-nm diode
laser (RMPC lasers, 160 mW) as the excitation source and two objective lenses
(4× and 10×) for microscopic imaging. The mouse with scalp hair removed was
intravenously injected with a solution of SWNTs and placed in a home-made
stereotactic platform fixed on a motorized 3D-translational stage that allowed for
the digital position adjustment and readout of the mouse relative to the objective.
The emitted fluorescence was filtered through a 1000-nm long-pass filter, a 1300-
nm long-pass filter, and a 1400-nm short-pass filter to ensure only photons in the
1300–1400 nm.
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Fig. 13.7 (a, b) Up-right fluorescence microscope system for in vivo imaging in VIS, 1st NIR,
and 2nd NIR region (400–1400 nm). (c) Sensitivity curves for typical cameras based on silicon
(Si), indium gallium arsenide (InGaAs) sensors. Si and InGaAs cameras are sensitive within the
1st and 2nd NIR windows, respectively
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Fig. 13.8 A schematic of
NIR fluorescence imaging for
non-invasive through-scalp
and through-skull brain
vascular imaging. NIR-IIa
emission: 1300–1400 nm.
Reproduce from ref. [31] with
permission from
Springer-Nature

13.5 Non-invasive Brain Imaging Using NIR Nanoprobes

13.5.1 Cerebral Blood Vessels

13.5.1.1 SWNT Probes

To date, mouse brain imaging has largely relied on magnetic resonance (MR), X-ray
computed tomography (CT), and positron emission tomography (PET). However,
these imaging modalities have limited spatial resolution and long scanning times.
During the past 5 years, a number of reports on non-invasive brain imaging
of mice in the 2nd NIR window have appeared using NIR nanoprobes such as
SWNTs [31, 98], QDs [34, 41, 99–102], rare earth-doped nanomaterials [104,
105], and organic dyes [65–77, 104–107]. In 2014, Dai et al. first reported 2nd
NIR fluorescence imaging of a mouse brain by using (SWNTs) (Fig. 13.9) [31].
They performed through-scalp and through-skull fluorescence imaging of mouse
cerebral vasculatures without craniotomy, utilizing the intrinsic photoluminescence
of SWNTs in the 1.3–1.4 nm NIR window. They found that reduced photon
scattering in the NIR region allowed fluorescence imaging to a depth of >2 mm in
mouse brain with sub-10 μm resolution. In this fluorescence imaging, they achieved
dynamic NIR fluorescence imaging (5.3 frames/sec) of cerebral blood perfusion.

13.5.1.2 QD Probes

In 2014, our group first reported the non-invasive fluorescence angiography of a
mouse head using PbS/CdS QDs in the 2nd NIR window [34]. To date, several types
of QDs including PbS QDs, Ag2S QDs, and InAs QDs have been used for brain
imaging in the 2nd NIR window [100–103]. Figure 13.10 shows the fluorescence
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Fig. 13.9 NIR fluorescence imaging of mouse brain vasculatures with SWNT–IRDye800 in
different NIR subregions. (a), A C57Bl/6 mouse head with the hair removed. (b–d), Fluorescence
images of the same mouse head in the NIR-I, NIR-II, and NIR-IIa regions. In (d), the inferior
cerebral vein, superior sagittal sinus, and transverse sinus are labeled 1, 2, and 3, respectively.
Reproduced from ref. [31] with permission from Springer-Nature

angiography for a mouse head using bovine serum albumin (BSA)-conjugated
VIS, 1st NIR, and 2nd NIR-emitting QDs [34]. The fluorescence images of mouse
cerebral vessels were measured by using band-path filters (525, 720, and 1300 nm)
after injection of each QDs in a mouse tail vein. Autofluorescence of the mouse
body dramatically decreased in the angiography of 2nd NIR images compared with
that of the VIS and 1st NIR images. Blood vessels showed a clearer image in the 2nd
NIR region due to the higher penetration and lower scattering of the 2nd NIR light in
the tissue. The spatial resolution of the fluorescence image of the blood vessels was
significantly improved by increasing the imaging wavelength, which also increased
the signal-to-background ratio of the 2nd NIR fluorescence images compared with
VIS or 1st NIR fluorescence images.

The 2nd NIR fluorescence imaging shows deeper penetration with lower scat-
tering compared with the VIS and 1st NIR fluorescence imaging. Although NIR
light over 1000 nm can penetrate across the skin and scalp of the mouse brain, it is
difficult to determine the precise value of brain imaging depth in living mice. Figure
13.11 shows the imaging depth for an isolated mouse brain. Visualization depth
for the cerebral blood vessels was evaluated by measuring z-stacked images for the
isolated brain. In our NIR imaging system, maximum depth for the visualization
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Fig. 13.10 Fluorescence angiography of a mouse head. The images show its Vis (520 nm), 1st
NIR (720 nm), and 2nd NIR (1300 nm) fluorescence angiographies, where excitation wavelengths
are 488 nm, 670 nm, and 785 nm, respectively. CdSe/ZnS QDs, CdSeTe/CdS QDs, PbS/CdS QDs
were used for fluorescence imaging at 525, 720, and 1300 nm, respectively. Reproduced from ref.
[34]. Copyright (2014) with permission of Royal Society of Chemistry

of the fine structure of cerebral blood vessels was determined to be ca. 1.6 mm.
For a brain of living mouse, we can perform NIR fluorescence imaging of cerebral
blood vessels with high spatial resolution. Figure 13.12 shows non-invasive NIR
fluorescence images of cerebral blood vessels of a nude mouse after injection of PbS
QDs via a tail vein. Immediately after injection of the QDs, strong NIR fluorescence
signals were detected and clear images of the cerebral blood vessels could be taken.
Although the intensity of the NIR fluorescence signals was gradually decreased,
the NIR fluorescence images of the cerebral blood vessels could be taken for ca.
5 minutes post-injection of the PbS QDs. In this brain imaging, we could observe
small blood capillaries with a spatial resolution of ca. 10 μm.

13.5.1.3 Rare-Earth Nanoprobes

Rare earth (Er3+)-doped nanoprobes can also be used for brain imaging in the
NIR window beyond 1500 nm [104, 105]. In general, with increasing the emission
wavelength in fluorescence imaging, tissue scattering of the emission light is
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Fig. 13.11 (a) Bright-field image of a mouse brain perfused by PbS QDs. (b) Raw fluorescence
images and sectioning images at the depth of 0.2 mm, 0.8 mm, and 1.6 mm from the surface.
The sectioning image was obtained from a raw image minus its previous and next image. Red
circles with dotted lines show cerebral blood vessels appearance after sectioning. Scale bar: 1 mm.
Adapted from ref. [41]

decreased. Thus, fluorescence imaging beyond 1500 nm would give clearer images
of the brain compared with the imaging wavelength in the 2nd NIR region. Zhong et
al. reported Er/Ce co-doped NaYbF4 nanocrystals for in vivo fluorescence imaging
in the NIR region between 1500 and 1700 nm [104]. This Er/Ce co-doped nanoprobe
shows bright emission at 1550 nm under 980 nm excitation. In this probe, Ce
doping suppresses the upconversion pathway while boosting down conversion by
ninefold to produce bright 1550 nm emission. The authors reported that the quantum
yield of this rare-earth nanoprobe was 0.27–2.73% with a highest value among
reported down conversion rare earth-doped nanomaterials, leading to fast in vivo
cerebrovascular imaging with a 20 ms exposure time in the NIR region between
1500 and 1700 nm (Fig. 13.13).

13.5.1.4 Organic Dye Nanoprobes

Very recently, much attention has been paid to organic dye-based NIR nanoprobes
for in vivo imaging in the 2nd NIR window due to their low toxicities and rapid
clearance from the body [62–77, 106, 107]. The safety of NIR fluorescent probes
is crucial for the application of 2nd NIR fluorescence imaging to biomedical and
clinical fields. The fluorescence brightness of organic dye-based NIR nanoprobes
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Fig. 13.12 NIR fluorescence images of cerebral blood vessels in a nude mouse. NIR fluorescence
images were taken 1 s, 20 s, 40 s, and 60 s post-injection of PbS QDs (200 μL, 2 μM) through
a tail vein. Excitation: 670 nm, Emission >1000 nm. Laser power; 25 mW/cm2. Exposure time:
100 ms. Scale bar: 1 mm. Adapted from ref. [12]. Copyright (2018) The Electrochemical Society

Fig. 13.13 Fast in vivo brain imaging with Er-doped nanoprobes in the 2nd NIR region. (a) Color
photograph of a C57Bl/6 mouse preceding NIR fluorescence imaging. (b–d) Time-course NIR
brain fluorescence images (exposure time: 20 ms) showing the perfusion of Er-doped nanoprobes
into various cerebral vessels. Reproduced from ref. [104] with permission from Springer-Nature

is lower than that of nanomaterial-based NIR nanoprobes because of the smaller
extinction coefficients of organic dyes. To overcome the low fluorescence bright-
ness, several efforts have been made to increase the fluorescence brightness of
organic dye-based NIR probes.

Wan et al. reported a bright organic NIR nanoprobe (p-FE) for three-dimensional
imaging of cerebral vasculatures [66]. They encapsulated an organic NIR dye
(FE) in the hydrophobic interior of an amphiphilic polymer, poly (styrene-co-
chloromethyl styrene)-graft-poly(ethylene glycol) (PS-g-PEG), to produce a bright
and biocompatible NIR nanoprobe (size: 12 nm) that can be used for the fluores-
cence imaging in the 2nd NIR window. The fluorescence quantum yield of p-FE
in aqueous environment was ca. 16.5%. With this bright organic NIR nanoprobe,
non-invasive ultrafast in vivo NIR imaging of cerebral blood vessels with a short
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a

b

z = 880.2 µm z = 1323.0 µmz = 1036.8 µm

z = 221.4 µm z = 437.4 µm z = 658.8 µm

Fig. 13.14 (a) Photo and wide-field NIR-II epi-fluorescence imaging of the brain in a mouse
injected with p-FE (808 nm excitation, emission >1200 nm) with an exposure time of 5 ms. (b)
Ex vivo confocal imaging of brain in a mouse injected with p-FE (785 nm excitation, emission
>1100 nm, laser power ~30 mW, PMT voltage ~500 V). Reproduced from ref. [66] with permission
from Springer-Nature

exposure time of 2–5 ms was achieved (Fig. 13.14). In addition, the bright organic
NIR nanoprobe enabled three-dimensional NIR fluorescence imaging of cerebral
blood vessels using a confocal imaging system.
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13.5.2 Brain Tumors

NIR fluorescence imaging is useful for the non-invasive visualization of brain
tumors as well as cerebral blood vessels in living mice. In 2016, Antaris et al.
reported a small NIR dye (CH1055) for mouse brain imaging in the 2nd NIR win-
dow [65]. They synthesized a small molecule (CH1055, 0.97 kDa) and PEGylated
CH1055 (8.9 kDa) and showed the capability of these NIR organic nanoprobes for
orthotopic glioblastoma brain tumor imaging. They used an orthotopic glioblastoma
brain tumor-bearing mouse by implanting U87MG cells in the mouse brain at a
depth of 4 mm with the left hemisphere (Fig. 13.15a, b). Once the brain tumor
reached a diameter of 2–3 mm, they intravenously injected PEGylated CH1055
(100 μg) to the mouse and observed NIR fluorescence from the tumor at periodic
time points over next 3 days. They observed that 6 h post-injection, the tumor was
clearly visible during high magnification of NIR fluorescence (>1200 nm) imaging
(Fig. 13.15c). After 24 h, the tumor was clearly visible with a tumor-to-normal
tissue ration of 4.25 when using a whole-body imaging system (Fig. 13.15d). In

Fig. 13.15 (a) Color photograph of a nude mouse preceding high-magnification NIR-II imaging,
with an outline over suture lines. (b) Graphic representation demonstrating the location of
a U87MG orthotopic glioblastoma brain tumor under both the scalp and skull. (c, d) High-
magnification NIR-II fluorescence imaging (1200 nm long-pass filter, 800 ms) showing strong
tumor fluorescence detectable through both the scalp and skull 6 h post-intravenous injection.
Reproduced from ref. [65] with permission from Springer-Nature
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this study, the accumulation of PEGylated CH1055 to a brain tumor was attributed
to passive tumor uptake via the enhanced permeation and enhanced (EPR) effect
[108]. Recently, Tian et al. reported the fluorescence imaging of a glioblastoma
brain tumor by using active tumor uptake of RGD peptide-conjugated NIR dye
(IR-BEMC6P@RGD) [76]. They detected strong tumor fluorescence (>1300 nm)
through scalp/skull at 12 h post-injection.

13.5.3 Cerebrovascular Disorders

NIR fluorescence imaging can be also used for the visualization of the pathophys-
iological state of blood vessels in sepsis. Thrombosis in cerebral blood vessels
is induced by administration of lipopolysaccharide (LPS) to mice (Fig. 13.16a).
Heparin is used as an inhibitor of blood coagulation [109–111]. The magnified
images with the scalp removed (Fig. 13.16b) of blood vessels, showed septic clots
(i.e., thrombosis), and the number of clots was increased by administration of
LPS. The administration of heparin resulted in the suppression of the number of
clots (Fig. 13.16b and c). Figure 13.16d shows the immunohistochemistry for an
LPS-administrated brain slice, indicating the formation of clots in cerebral blood
vessels. The blood coagulation was quantified by enzyme-linked immunosorbent
assays (ELISA) (Fig. 13.16e). Thrombin–antithrombin complex (TAT) is a valid
biomarker for disseminated intravascular coagulation [112]. After administration of
LPS, averaged TAT values were significantly increased, and the level of TAT was
recovered by heparin administration. This study suggests that 2nd NIR fluorescence
imaging is useful for the detection of thrombosis in an LPS-injected mouse.

13.6 Summary and Outlook

In this chapter, we presented recent progress in NIR fluorescent nanoprobes and
techniques for brain imaging in the 2nd NIR window. During the past 5 years, a
variety of the NIR nanoprobes have been synthesized, and the proof of principle
studies on their capabilities for non-invasive brain imaging have been performed.
The pioneer work by Dai group using SWNTs has proven the advantages of
NIR fluorescence imaging of brain tissues in the 2nd NIR window [31]: deeper
penetration, reduced scattering, and low-autofluorescence in deep-tissue imaging.
Nanomaterial-based NIR nanoprobes such as Ag2S QDs, PbS QDs, and rare earth-
doped nanoparticles have also contributed to prove their superior properties for
brain imaging. Although the nanomaterial-based NIR nanoprobes such as SWNTs
cannot be applied to clinical fields because of their cytotoxic properties, these
NIR nanoprobes should be very useful for the study of cancer cell metastasis,
immune/inflammatory response, and stem cell dynamics in the animal level.
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Fig. 13.16 (a) Time course of the experimental procedure for LPS and heparin administration.
(b) NIR fluorescence images (>1000 nm) of cerebral blood vessels before and after administration
of LPS (LPS (−) and LPS (+)) and the image followed by additional administration of heparin
(LPS + heparin), with scalp removed. Lower panel shows the magnification of the images shown
by red rectangular. Red arrowheads show clots. Scale bars: 1 mm. (c) Statistical analyses of
the clots in the cerebral vessels. (d) Immunofluorescence staining of LPS-treated cerebral blood
vessels, where anti-fibrinogen antibody (Alexa FLuor 488) was used for staining of fibrinogen.
Fibrinogen helps the formation of blood clots. Scale bar: 10 μm. (e) ELISA assays for TAT in
blood plasma. Adapted from ref. [41]

For biomedical and clinical applications in humans, the NIR nanoprobes must
be rapidly metabolized and excluded from the body. The renal filtration threshold
for rapid clearance via urine excretion is known as ca. 5 nm [113]. In this regard,
smaller organic dye nanoprobes are suitable as NIR probes for fluorescence imaging
in humans. In a few years, researchers have developed several types of NIR-dye
nanoprobes that emit over 1000 nm [62–91]. These organic NIR nanoprobes have
shown the possible application of NIR intravital imaging to biomedical fields.
Notably, recent studies showed that the FDA-approved NIR dye, ICG can be used
to perform in vivo NIR imaging over 1000 nm. This finding permits the rapid
translocation of 2nd NIR-emitting organic dyes (>1000 nm) in the clinical fields.

In the practical use of the 2nd NIR-emitting organic dyes in the clinical fields,
high brightness and safety are necessary as optical contrast agents. At the same time,
highly sensitive NIR imaging system with a high spatiotemporal resolution should
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also be developed for the clinical use such as non-invasive visualization of blood
vessels and tumors. At present, except for conventional NIR imaging system (700–
900 nm for animals, there is no NIR fluorescence (>1000 nm) imaging system for
humans [114]. In the near future, by developing highly sensitive 2nd NIR-emitting
organic dyes and intravital imaging system, NIR fluorescence imaging in the 2nd
NIR window will be an indispensable tool for non-invasive imaging in biomedical
and clinical fields [115].
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