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Abstract. Shanghai has the largest newly reclaimed area in China, and the
associated soil contamination risk exists. To evaluate both land subsidence risks
and soil heavy metal contamination (HMC) risks in Shanghai’s coastal
reclaimed regions, a Bayesian Network (BN) was established taking sixteen
variables such as average initial void of underlying strata, land reclamation time,
thickness of the reclaimed layer, and soil HMC into consideration. In the BN,
the ultimate land subsidence since July 1st 2018 and the land subsidence
velocity characterized by the land subsidence from July 1st 2018 to January 1st
2019 analytically evaluated in typical reclaimed regions of Shanghai were used
to characterize land subsidence. Seven heavy metal elements, i.e., Zn, Cd, As,
Ni, Cu, Pb and Cr were included into the HMC evaluation. Influence strength of
the BN arcs and node sensitivity were analyzed. The BN analysis shows that the
two study zones hold remarkable differences in field basic characteristics,
geotechnical parameters and soil HMC distribution. The three land subsidence
risk variables hold little correlation with the HMC distribution, but they are both
correlated tightly with the basic characteristics of the study points.

Keywords: Bayesian Network � Land subsidence � Soil contamination �
Land reclamation

1 Introduction

Over half of human population in the world lives within 60 km of coast, and the
population proportion is increasing [1]. Consequently, large-scale development of land
reclamation were conducted to meet the demand for land. Many countries, such as
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United States, South Korea, Netherlands and China reclaimed over 1000 km2 lands [2],
more than 1860 km2 lands were reclaimed in China during 2000–2016, and a large
portion of the lands held significant contamination risks [3]. Field surveys showed that
contamination including heavy metal contamination within marine sediments and
dredged materials existed in many regions [4], especially in river estuaries [5–7]. Many
land reclamation programs using sediments of unknown quality for fills were con-
ducted under poor environmental supervision especially in developing regions, but soil
contamination usually was not considered in studies on those new lands.

The city of Shanghai, China obtained over 300 km2 land using land reclamation
[8], and the area is still expanding for the need of city development. Contamination of
Zn [9], Cd [10–12], As [11] within surface sediments in some Shanghai’s coastal zones
were detected to be contaminated. The authors conducted series of field surveys on both
geotechnical properties and soil environmental properties during 2016–2018, obtaining
numbers of correlated data therein. Worrying surface subsidence risks and heavy metal
contamination (HMC) were revealed within Shanghai’s typical reclaimed lands.

Bayesian network (BN) is practical in multi-variables analysis [13, 14], and has
been widely used in many cases, e.g., earthquake disaster chain analysis [15], marine
transportation risk assessment [16], and coastal hazard risk reduction assessment [17].

This work aims to build a comprehensive BN to evaluate surface subsidence risks
and HMC in Shanghai’s typical reclaimed regions, and analyze correlations among the
considered variables.

2 Materials and Methods

2.1 Shanghai’s Typical Reclaimed Lands

Detailed borehole surveys and lab tests on both geotechnical data and soil environ-
mental data was done since 2016 in typical reclaimed fields of Hengsha Island and
Laogang Town, Shanghai [3]. Depth of the boreholes ranged from 45 m to 75 m, the
investigated layers are listed in Table 1.

Table 1. Strata in the study regions.

Strata Soil type Strata Soil type

①3-1 Landfill ⑤1-2 Silt interbedded with clay
①3-2 Hydraulic fill ⑤3 Silty clay
①3-3 Mud ⑥ Silty clay
②2 Muddy and silty clay ⑦1 Sandy silt
②3 Silt and sand ⑦2 Silt and sand
③1 Muddy and silty clay ⑧ Clay
④ Muddy clay ⑨ Sand with silt
⑤1-1 Clay
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Using the data detected in 2016–2018, the authors evaluated surface subsidence
risks on basis of one dimensional Terzaghi’s soil consolidation theory [18]. The
evaluated land subsidence caused by land reclamation was comprised of self-weight
consolidation subsidence of reclaimed layers and compression consolidation subsi-
dence of underlying sedimentary beddings. Land subsidence since July 1st 2018 (s18)
was evaluated to characterize the total land subsidence risk. The land subsidence from
July 1st 2018 to January 1st 2019 (v18) was evaluated to act as the land subsidence
velocity in the analyzed points. And comprehensive land subsidence risk (Rc) simul-
taneously considering s18 and v18 was also evaluated. Heavy metal contamination
within soils considering concentration of seven heavy metal elements, i.e., Zn, Cd, As,
Ni, Cu, Pb and Cr was evaluated in thirty two boreholes among which eleven boreholes
were drilled in Laogang Town and twenty one in Hengsha Island. Considering that the
contaminated layers including the reclaimed layer ①3-2 to layer ⑤1-1, and that layer
②2–③1 were dredged as the major fill source for land reclamation in the study regions,
only the top layers downward to layer ⑤1-1 were analyzed in the HMC analysis, and
they were divided into three groups, i.e., the fill layers, shallow sediments (layer
②2–③1) and deep sediments (layer ④–⑤1-1).

2.2 BN Analysis

BNs are acyclic directed graphs with nodes that represent random variables and arcs
that represent direct probabilistic dependences among them [13, 14, 16]. BN’s structure
is a qualitative illustration of the interactions among the modeled variables. Based on
the conditional independence and the chain rule [13], the joint probability distribution
of a set of random variables U = {B1, …, Bn} can be defined in the BN as follows:

P Uð Þ ¼
Yn

i¼1

P Bi Pa Bið Þjf g ð1Þ

where P(U) is the joint probability distribution of U, and Pa(Bi) is the parent set of
variable Bi. Information flow in BN obeys the following rules: (1) information may
flow through a serial (B1!B2!B3)/diverging (B1←B2!B3) connection unless the
evidence for the intermediate variable B2 is given; (2) information may flow through a
converging (B1!B2←B3) connection whenever the state of the intermediate variable
B2 or one of its descendants is given [19]. BN determines the relevant variables to a
given target variable by using these rules. According to Bayes theorem, posterior
probability distribution of events can be yielded by updating their prior probability
given new observations, i.e. evidence E [20]:

P U Ejð Þ ¼ P U;Eð Þ
,

P Eð Þ ¼ P U;Eð Þ
,

X

U

P U;Eð Þ ð2Þ

In the BN analysis, subject-matter-expert judgments [16] from correlated sources,
such as geotechnical field surveys, laboratory tests, data collection, and standards
learning, were firstly executed to determine concrete BN variables and global BN
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structure and to build a BN for risk evaluation in the study regions. The BN was
constituted of sixteen nodes among which four nodes (N01-N04) are basic character-
istics of the data points, six nodes (N05-N10) showing geotechnical parameters of
analyzed layers, three nodes (N011-N013) used for evaluating subsidence risk levels,
and three (N14-N16) used to assess soil contamination (Table 2). Secondly, data
preparation based on the analysis in the first step was conducted carefully. The con-
tinuous variables were transformed into discrete variables to make BN a discrete
network that can be applicable to discrete information in practice (Table 2). Variable
discretization was conducted on the basis of subject matter experts’ judgments. Thirdly,
primary structure learning was performed with the prepared data and outlined global
BN structure. The primarily learned BN structure was further adjusted to rectify the
arcs among the BN nodes that go against common theories and logic. Finally, data
learning was conducted using the established BN structure, thus producing the final BN
model.

Table 2. Categorization of analyzed variables in the BN.
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3 Results

Influence strength between the Node N04 with its connected nodes generally shows
stronger than other arcs, indicating the point location holds robust correlation with
other variables, especially the soil type, land reclamation time, s18 and shallow sedi-
ment HMC. Influence between the three geotechnical parameters of fill layers, average
initial soil void ratio (N05), average hydraulic conductivity (N06) and average com-
pressibility coefficient (N07), only appears strong between Node N05 and Node N07.
Contrastingly, influence among the three geotechnical parameters all shows similarly
strong. Influence among the three HMC nodes is significantly strong, especially that
between the fill HMC (N14) and the shallow sediment HMC (N15) (Fig. 1).

Sensitivity analysis on both the land subsidence risk levels and soil contamination
indicates the factors which can provide a high probability of correct evaluation on the
target node (Figs. 2, 3, 4, 5 and 6). The s18 risk is remarkably sensitive to the four basic
characteristics of the data points (N01-N04), the void ratio nodes and the compress-
ibility coefficient nodes (Fig. 2a). The v18 risk is sensitive to all the basic characteristics
of the data points and the geotechnical parameter nodes among which the point
location, land reclamation time and the fill layer thickness hold the highest sensitivity
(Fig. 2b). Sensitivity of the Rc risk reflects a combination of that of s18 risk and v18 risk
(Fig. 3). The fill HMC shows sensitive to point location, land reclamation time and fill
layer thickness (Fig. 4). The shallow sediment HMC acts sensitive to the fill HMC, but
only slightly sensitive to point location (Fig. 5). The deep sediment HMC shows

Fig. 1. Land subsidence risk and soil HMC contamination BN showing arc influence strength.
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sensitive to the other two HMC nodes, land reclamation time and point location
(Fig. 6). Sensitivity between the three subsidence risk nodes and the three HMC nodes
appears slight.

Fig. 2. Sensitivity analysis respectively setting N11 (a), N12 (b) as the target variable (Bar chart
color: the more red indicating the sensitivity more high, gray showing no sensitivity).
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Fig. 3. Sensitivity analysis setting N13 as the target variable (Bar chart color: the more red
indicating the sensitivity more high, gray showing no sensitivity).

Fig. 4. Sensitivity analysis setting N14 as the target variable (Bar chart color: the more red
indicating the sensitivity more high, gray showing no sensitivity).
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Fig. 5. Sensitivity analysis setting N15 as the target variable (Bar chart color: the more red
indicating the sensitivity more high, gray showing no sensitivity).

Fig. 6. Sensitivity analysis setting N16 as the target variable (Bar chart color: the more red
indicating the sensitivity more high, gray showing no sensitivity).
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4 Discussion and Conclusions

Point location holds strong influence on other three basic characteristics, geotechnical
parameters and shallow sediment HMC, meanwhile it shows high sensitivity to the
three subsidence risk nodes, fill HMC and deep sediment HMC, this essentially reflects
significant differences in both land reclamation construction and sedimentary envi-
ronments between the two study zones, i.e., YEIZ and YECPZ. The different influence
strength of arcs among geotechnical parameters of the fill layers and the underlying
strata, probably was caused by different texture between the fill soils and sedimentary
soils. Rationally, the three land subsidence risk nodes appear sensitive to the six
geotechnical parameter nodes since the land subsidence was evaluated using those
parameters. But the three HMC nodes develop low sensitivity to the six geotechnical
parameters, s18 risk and v18 risk, indicating that the soil HMC in the study regions hold
no significant correlation with the soil geotechnical parameters. The HMC distribution
was controlled more by the basic characteristics such as the point location, land
reclamation time and fill layer thickness. Noticeably, the three HMC nodes show
almost no sensitivity to fill soil types, meaning the HMC distribution held no corre-
lation with the fill soil types in the study regions. The BN can be used as a basis for
land subsidence controlling and field remediation planning in the study regions, further
field survey data on soil geotechnical properties and HMC distribution would enhance
reliability of the BN.
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