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Abstract. Back-analysis involves the determination of input parameters
required in computational models using field monitored data, and is particularly
suited to underground constructions, where more information about ground
conditions and response become available as the construction progresses.
A crucial component of back-analysis is an algorithm to find a set of input
parameters that will minimize the difference between predicted and measured
performance (e.g., in terms of deformations, stresses or tunnel support loads).
Methods of back-analysis can be broadly classified as direct and gradient-based
optimization techniques. An alternative methodology to carry out the required
nonlinear optimization in back-analyses is the use of heuristic techniques.
Heuristic methods refer to experience-based techniques for problem solving,
learning, and discovery that find a solution which is not guaranteed to be
optimal, but is good enough for a given set of goals. Two heuristic methods are
presented and discussed, namely, Simulated Annealing (SA) and Differential
Evolution Genetic Algorithm (DEGA). SA replicates the metallurgical pro-
cessing of metals annealing, which involves a gradual and sufficiently slow
cooling of a metal from the heated phase, which leads to a final material with a
minimum imperfections and internal dislocations. DEGA emulates the Dar-
winian evolution theory of the survival of the fittest. Descriptions of SA and
DEGA, their implementations in the computer code Fast Lagrangean Analysis
of Continua (FLAC), and uses in the back-analysis of the response of idealized
tunnelling problems, and a real case of a twin tunnel in China are presented.

Keywords: Back analysis � Heuristics � Genetic algorithm �
Simulated annealing � Tunneling � Monitoring

1 Introduction

Computational models for geotechnical applications have undergone major improve-
ments in the past several decades. They can be used in performance-based engineering
design and evaluation of geotechnical structures by providing detailed evaluation of
response and estimated consequences. However, determination of model input
parameters remains to be the ‘Achilles’ heel’ of computational modelling [1]. This is
particularly true due to significant uncertainties in material properties and loads
encountered in geotechnical engineering. Geological, geophysical, in situ and labora-
tory investigations needed in analysis and design are time consuming and expensive
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and are carried out extensively only for very important projects. Even in these
important projects are data inevitably incomplete. Estimates of initial model parameters
are usually established from laboratory tests on limited number of core samples.
However, laboratory scale measurements from a few small core samples are inadequate
in characterizing properties because of their inability to capture heterogeneities at large
scales, and of unavoidable sample disturbance.

An alternative procedure to determining input to computational models is by
monitoring field response. Direct measurements of field response can provide fast and
economical means of determining or validating model parameters and for improving
the reliability of model predictions. Predicted response from computer simulation using
an initial set of model parameters can be compared with observations. If predicted and
observed response deviate, input data are iteratively revised, often by manual trial-and-
error procedure. The process of adjusting model parameters so that the model matches
observed response during some historical period can be accomplished by inverse
modelling or back-analysis. Iterative procedures are often used since direct inversion is
only possible for very simple analytical models. Back analysis is essentially an opti-
mization problem where the objective is to minimize, in a least squares sense, the
differences between predicted and monitored response. Back-analysis is particularly
suited for underground constructions such as tunneling where more information on the
ground characteristics and response become available as the construction progresses.
Using data from monitoring, models can be calibrated, and the design can be modified
as the structure is being built. However, back-analysis is time consuming and requires
much effort, and thus is not widely adopted in routine engineering practice.

Back-analysis requires an algorithm to handle the minimization of the differences
between predicted and measured response, to find an improved set of input parameters.
The present paper focuses on the application of so-called heuristics-based global search
algorithms in the back-analysis of tunnel behavior from field measurements using a
commercially available code. A description of heuristic algorithm, particularly Simu-
late Annealing (SA) and Differential Evolution Genetic Algorithm (DEGA), and their
implementations in the commercial computer code Fast Lagrangean Analysis of
Continua (FLAC) developed by Itasca [2] are presented. The uses of SA and DEGA in
back-analysis of tunnel response are analyzed in terms of the uniqueness of the solu-
tion, the stability and efficiency of the code under highly non-linear circumstances, the
sensitivity of the solution to the initial trial assumption and the sensitivity of the
solution to the monitoring data. The application of the proposed back-analysis pro-
cedures is demonstrated in the combined back- and forward-modelling of the Heshang
Highway Tunnel project in China.

2 Back-Analysis Procedures

Back-analysis methods can be broadly classified as local and global. Local back-
analysis methods can be further classified as direct and gradient-based. Generally,
direct optimization methods are easier to implement since they do not require formu-
lation and calculation of gradients of the error function. These methods can be
employed for well-posed geotechnical problems, for example problems involving
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elastic analysis with one to three parameters to be back-analyzed. Gradient-based
methods are those that require derivatives of the objective function that is being
minimized. Examples are the Steepest Descent, the Conjugate Gradient, the Newton
and the Quasi-Newton methods. The main advantage of gradient methods is the
property of quadratic convergence which accelerates the solution progress. When
constraints are required for the parameters, then either a penalty procedure must be
superimposed on the optimization process, or a more appropriate method needs to be
used. Of the latter methods, a modified version of the Simplex, the Complex method, a
constrained version of the Simplex, has shown good results in the literature [3].
Gradient-based methods are powerful algorithms but present some challenges. The
need to evaluate derivatives makes the use of gradient methods difficult in iterative
non-linear numerical analysis, for example by using the finite element method. This
could be dealt with when there are only a two to three unknowns, however, when the
number of unknowns increases then the process becomes not only computationally
expensive but sometimes impossible.

Many direct and gradient methods have been applied successfully in back-analysis
of ground deformations for various simplified geotechnical problems. Cividini et al.
[4, 5] provide an excellent outline of back analysis principles and describe the suc-
cessful application of the Simplex method, for back-analysis of a geotechnical problem
with two and four unknown variables. Application of back-analysis to geotechnical
problems requires careful consideration of the type, and nature of available monitoring
data. Other important factors in the back-analysis using monitoring data are the
uncertainties and errors associated with both the monitoring program and the instru-
ments. An excellent review of the various field monitoring equipment including their
sensitivities and potential sources of error is found in Dunnicliff [6], and Xiang et al.
[3]. Gioda and Sakurai [7], Londe [8], Sakurai [9], Sakurai et al. [10], and Hrubesova
and Mohyla [11] discuss the applications of back-analysis in tunneling.

2.1 Heuristic Methods of Back-Analysis

Heuristic methods refer to problem-solving techniques that employ practical method-
ologies not guaranteed to be truly optimal or perfect, but adequate to produce a suf-
ficiently satisfactory solution that approximates the exact solution for a problem at hand
in a reasonable time. Heuristic methods can find optimal solutions by using search
trees, however, instead of generating all possible solution branches, a heuristic method
selects branches more likely to produce outcomes than other branches. They follow
iterative procedures where the search learns what paths to follow and which ones to
avoid by assessing how close the current iteration is to the solution. Heuristic methods
are sometimes the most viable techniques for difficult optimization of non-linear
problems where the best approach is to exploit randomness in the system to get an
approximate answer. Heuristic algorithms mostly fall into four broad categories: Neural
Networks (NN), Simulated Annealing (SA), Genetic Algorithm (GA) and Evolutionary
Algorithm (EA). Genetic and evolutionary algorithms are generally similar techniques
but follow different implementations.
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2.2 Simulated Annealing

Simulated Annealing (SA) was first introduced by Kirkpatrick et al. [13] and belongs to
a general class of combinatorial optimization techniques. SA was initially introduced
for discrete optimization problems, but it has recently gained attention for its ability to
solve large-scale continuous optimization problems where highly irregular objective
functions with multiple local optima may exist. SA got its name from the metallurgical
annealing of metals such as steel, by which a gradual and sufficiently slow cooling of a
metal from the heated phase, leads to a final material with theoretically perfect crys-
talline structure having a minimum number of imperfections and internal dislocations.
During cooling, nature follows its own optimization path for the given circumstances.
This is what the SA back-analysis procedure tries to emulate.

SA applied to back-analysis works by replacing a trial solution to an optimization
problem by a random nearby solution. The new nearby solution is chosen with a
probability that depends on a global parameter T called the “temperature” of the
system. The probabilities are chosen so that the system ultimately tends to move to
states of lower energy following the Boltzmann probability distribution. The steps are
repeated, and when enough time is made available for cooling, the higher is the
probability of attaining a minimum energy state at the end. If the solution is controlled
in such a way that the algorithm scans over progressively smaller solution spaces, then
there is good chance to converge to a global optimum.

Consider the objective function f ðXÞ related to the least-squares error between
prediction and measurement, where X is the n-dimensional solution vector. An
example of f ðXÞ is the relative error between measured and predicted values:

f ðXÞ ¼ Xm � Xp

Xp

����
���� ð1Þ

where Xm and Xp are the vectors of measured and predicted quantities, respectively.
The goal of the optimization is to seek Min f ðXÞ½ � subject to the constraints
xLi � xi � xUi ; i ¼ 1; . . .; n, where xi 2 X, and xLi and xUi are the expected lower and
upper bound values of xi. The solution starts from an initial trial solution vector X1. An
arbitrary initial starting “temperature” To corresponding to X1 is also assumed.
A dedicated cooling schedule is required to perform the SA, which determines how the
temperature is decreased from an initial value To during the annealing. An example
annealing schedule often encountered in the literature is an exponential cooling

At each temperature stage Tk, several iterations NI are performed using different,
sequentially and randomly generated combinations (or permutations) of the solution
vector around the present trial Xiþ 1 ¼ Xi þDX. The vector change DX must yield a
new vector relatively close to the previous solution. If a new vector Xi+1 from the
random perturbation does not satisfy Eq. (1), then the random generation of DX is
repeated until a valid trial vector is found. The new vector Xi+1 is used as input in the
numerical analysis and a new objective function value f ðXiþ 1Þ is obtained. The new
trial is accepted if it leads to a decrease of the objective function value, i.e.
Df ¼ f Xiþ 1ð Þ � f Xið Þ\0. On the other hand, if Df [ 0, then the Metropolis et al.
(1953) criterion is used to control the acceptance or not of the present trial. The
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probability of the objective value change is calculated and compared to a random
number r 2 ½0; 1�. Thus, by setting E = Df as a measure of the energy of the system and
the Boltzmann’s constant k = 1.0, the probability yields:

PðDf Þ ¼ exp
�Df
T

� �
ð2Þ

If this probability is greater than a randomly generated number r, the new solution is
accepted and becomes the starting solution for the next iteration. Otherwise, if the
probability is less than r, the new solution is rejected, and the present solution remains
the same from the previous step. The randomly generated vector DX of perturbations
around a present solution vector also needs some consideration. In [14], a discussion is
made regarding the importance and efficiency of various methods of calculating the DX
vector. The present implementation involves a simple scheme in which the present
solution value is randomly perturbed by a small value.

2.3 Differential Evolution Genetic Algorithm

Differential Evolution Genetic Algorithm (DEGA) combines the concepts of Differ-
ential Evolution and Genetic Algorithms to handle optimization of non-binary valued
nonlinear functions. DEGA uses two arrays to store a population of NP, D-dimensional
vectors of parameters that are being back-calculated (D = n = number of parameters).
The parameter vector may consist of heterogeneous data from different types of
monitoring (e.g., displacements, strain, loads on structures, pore pressures, etc.) The
first array contains the primary values of the present vector population, and the sec-
ondary array stores sequentially the products or “offspring” for the next generation. The
algorithm starts by filling the primary array with NP vectors with randomly generated
parameter values. The initial random generation should satisfy the constraints on the
parameters. The primary array is also called as the “trial vector” since it contains NP
vectors that will later be tried for fitness. Each of these individual randomly-generated
vectors Xi is considered sequentially for genetic operations. For each of the chosen
vectors, three other vectors XA, XB, XC are randomly chosen from the remaining
vectors of the primary array. The following mutation is then performed to generate a
new trial vector:

Xm
1 ¼ XA þFðXB � XCÞ ð3Þ

where Xm
1 is the new mutant vector and F is a mutation factor in the range 0\F� 1:2

with an optimum value in the range 0.4 to 1 [14].
At this stage, the crossover takes place. A randint(i) = random integer number in

the range [1, n], and for each parameter j = 1, …, n, randnum(j) = random number in
the range [0, 1] are generated. Then a new vector is created from the original Xi parent
and the mutant vector using the crossover criterion:
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x0i;j ¼
xmi;j if randnum�XR or randintðiÞ ¼ j
xi;j if randnum[XR and randintðiÞ 6¼ j

�
ð4Þ

where XR is a crossover rate in the range [0, 1]. The crossover scheme essentially
means that if randnum > XR, the new ith trial vector will receive the j parameter from
the parent vector, otherwise the parameter will be obtained from the mutant vector Xm

1 .
In this way if XR = 1, then every trial vector will be obtained from the mutant vector,
or if XR = 0, then all except for one parameter will be called from the parent trial
vector. The new vector X0

i;j is tested against Xi for fitness.
For minimization problems, the vector corresponding to the lower value (fittest

candidate) is entered in the secondary array. The same procedure is followed until all
vectors of the original primary array are processed and an equal size secondary array
has been formed. At this stage the secondary array values are transferred and update the
primary array while the secondary array is purged. This marks the end of one gener-
ation. Obviously, many generations are required for convergence. The above steps are
repeated until a maximum number of generations is reached. When the algorithm
converges to the global optimum based on the criterion, then all vectors of the primary
array theoretically become equal.

3 Application to Back-Analysis of Tunnel Response

To illustrate their applicability to real problems, the SA and DEGA back-analysis
procedure was implemented in the widely-used finite difference code FLAC [2], using
its built-in programming language FISH. In the interest of avoiding a very lengthy
paper, and since the results and conclusions from the two methods are very similar,
only the results from the SA back-analysis are presented below. The implemented
procedure is then applied to the analysis of the response during construction of the
Heshang Highway Tunnel located in the Fujian province of South East China and is a
part of the transportation system between the local airport and Fuzhou city. It is a twin
tunnel project and approximately 450 m long. Each of the two tunnels is approximately
11.5 m high and 15 m wide. The tunnel passes through highly weathered volcanic
material. Due to the poor quality of the rock mass and the lateral proximity of the two
tunnels, a wide array of instrumentation methods was employed.

During construction, three sections of the tunnel were fully instrumented consisting
of: (1) multipoint extensometer measurements, (2) surface subsidence, (3) tunnel
convergence, (4) crown subsidence by surveying, (5) anchor tensioning, and (6) lining
axial and radial pressure. The back-analysis was performed using only the exten-
someter data and surface subsidence. The details and locations of the field sensors used
in the back-analysis are shown in Figs. 1 and 2.

The sequential excavation of the Heshang tunnel was designed in accordance with
anticipated ground conditions, with different excavation sequences used for the left and
right tunnels. The left tunnel was excavated with two side drifts, a top and a bottom
core (Stages 1, 2, 3 and 5). The right tunnel was excavated by a top heading, two bench
sections and followed by an invert (Stages 4, 6, 7 and 8). The back-analysis is
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performed using monitoring data obtained from the Stages 1 and 2 in the excavation of
the left tunnel. These include extensometer displacements measured at K01 and K02,
and surface displacements measured at P2 to P8. Model parameters obtained from the
back-analysis of the left tunnel (Stages 1 and 2) are then used in the prediction (or
forward modelling) of the response of both the left and right tunnels during subsequent
stages (Stages 3 to 8) of construction. The combined back- and forward-modelling was
performed for Station K6+300. It is noted that there are no lateral differences in rock
types encountered in the left and right tunnels at Station K6+300.

The ground is modelled by a Mohr-Coulomb failure criterion. Two-dimensional
plane strain conditions are assumed, and three-dimensional loading effects due to
deformation before the tunnel face are approximated using the Convergence-
Confinement method [15]. The forepoling umbrella is simulated using finite differ-
ence zones with equivalent continuum properties instead of using structural elements
using a simple homogenization scheme suggested by [12]. The unknown rock mass
properties that were back-analyzed are the rock elastic Young’s modulus E, Poisson’s
ratio m, the cohesion c and friction angle /, and the average unit weight of the rock c.

Fig. 1. Locations and details of extensometer measurements at Station K6+300 of Heshang
Tunnel.

Fig. 2. Locations and details of surface subsidence measurements at Station K6+300 of
Heshang Tunnel.
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The finite difference grid used to discretize the entire cross-section of the tunnel is
shown Fig. 3 together with a close-up of the left tunnel showing the sequence of
excavations and the locations of the instrumentation. A refined discretization is used
close to the tunnel to better simulate a possible plastic zone. Roller boundaries are used
for the left, bottom and right boundaries of the model. Initial stresses due to self-weight
of the materials are applied, and then the staged excavation sequence is closely sim-
ulated in the model. Estimates of the ranges of values for the model parameters
involved in the back-analysis were based on preliminary geotechnical studies of the
predominant rock types encountered at the tunnel site. Initial values or guesses cor-
responded to estimated average values of the different parameters.

Figure 4 shows comparisons of the extensometer displacements from locations K01
and K02 from monitoring and the complete iterative back-analysis. The comparisons
are shown for the end of Stages 1 and 2 of the construction. Figure 5 shows the
comparisons of surface subsidence in locations P2 to P8 at the end of construction
Stages 1 and 2 from monitoring and back-analysis. Good agreement between measured
and back-analyzed results were obtained for both the extensometer and surface dis-
placement measurements, and for both construction stages. The back-analyzed
parameters were then used to predict the response of the left and right tunnels dur-
ing subsequent excavation Stages 3 to 8 using forward modelling.

The predicted results from the forward modelling of the tunnel response at the
completion of tunnel construction (after construction Stages 3 to 8) are shown in
Figs. 6 and 7. Figure 6 shows a comparison of the predicted and measured tunnel
response from the extensometer displacements obtained from all extensometer loca-
tions K01 to K06. Due to excavation of the right tunnel, all extensometers are now

P2P3P4
P6

P7
P8

KO1
KO2

Forepoling
region

Medial
pilot hole

Upper 
bench

Lateral 
pilot hole

20 m

40 m

Fig. 3. Finite difference discretization of Heshang Tunnel: (a) full cross-section at Station K6
+300; (b) region around the left tunnel.
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registering detectable displacements. A similar comparison is shown in Fig. 7 in terms
of the surface subsidence measurements from points P1 to P8. As can be seen, there is
very good agreement between predicted and measured response. The differences
between predicted and measured response are less than 1 cm in most cases. The good
agreement between predicted and monitored response indicates the validity of the
model parameters obtained from the back-analysis of the tunnel response at the earlier
stages of construction.
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Fig. 4. Comparisons of extensometer displacements at Station K6+300 from monitoring and
back-analysis: (TOP) end of Stage 1 and (BOTTOM) end of Stage 2.
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Fig. 5. Comparisons of surface subsidence at the end of construction Stages 1 and 2 at Station
K6+300 from measurements and back-analysis.
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Table 1 lists the estimated range of values for the model parameters involved in the
back-analysis, the step sizes, the initial values or guesses used at the start of the back-
analysis, and the final back-analyzed values obtained from the back-analysis. The
estimated range of parameters values is based on preliminary geotechnical studies of
the predominant rock types encountered at the tunnel site.
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Fig. 6. Comparison of measured and predicted (from combined back- and forward-analysis)
extensometer measurements at Station K6+300 of Heshang Tunnel.
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Fig. 7. Comparisons of measured and predicted (from forward analysis) extensometer
displacements at end of tunnel construction at Station K6+300.
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4 Conclusions

The paper proposed the use of heuristics-based methods, which are experience-based
techniques for problem solving, in the back-analysis of geotechnical problems partic-
ularly tunnel constructions. Using heuristic methods, solutions, which are found by
using search trees, are not guaranteed to be optimal, but good enough for a given set of
goals. Instead of generating all possible solution branches, branches more likely to
produce outcomes are selected. Iterative search procedures are employed that learn
what paths to follow and avoid by assessing how close the current iteration is to the
solution. Heuristic methods can be the most viable techniques for difficult optimization
of non-linear problems where the best approach is to exploit randomness in the system
to get suitable answers.

Two methods namely, Simulated Annealing (SA) and Differential Evolution
Genetic Algorithm (DEGA), were described and implemented in the widely available
computer code FLAC. Both methods systematically search for the best set of model
parameters that will minimize the objective function which is the least-squares nor-
malized difference between model predictions and monitored results. The searches of
the vectors of potential parameter values follow natural processes of metal annealing in
the case of SA, and genetic evolution in the case of DEGA. Application in the case of
the Heshang Tunnel in China showed the power of the proposed methods to converge
towards optimal model parameter values from different initial values or guesses of the
model parameters. Using monitoring data from the first two of the eight tunnel exca-
vation stages, model parameters were back-analyzed using the proposed systems.
These model parameters were then used in forward modelling to predict the response of
the twin tunnels during subsequent excavation stages. Good agreement was obtained
between predicted and measured response in all stages of construction indicating the
validity of the proposed system.

The following are the main advantages of heuristic methods of back-analysis
including SA and DEGA: (1) Not “greedy” and uphill movements are frequently
allowed during optimization so solution does not get stuck in local optima; (2) Inde-
pendent of the initial parameter assumptions; (3) Suitable for non-continuous, non-
differentiable functions; (4) Independent of convexity status; (5) Can be used with
heterogeneous monitoring data; (6) Can be used with relative values of monitoring
data; (7) The solution history usually provides information regarding strong local
optima (possible solution candidates); and (8) Parameter constraints can be easily
applied.

Table 1. Range, initial and back-calculated values of model parameters for Section K6+300 of
Heshang Tunnel.

Parameter E (MPa) m c (kN/m3) c (MPa) / (°)

Range 100–1500 0.3–0.45 16–23 0.02–0.1 24–35
Step size 100 0.1 2 0.02 1
Initial 800 0.38 18 0.06 30
Final 210 0.35 21 0.02 24
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