
Martin Atzmueller
Wouter Duivesteijn (Eds.)

30th Benelux Conference, BNAIC 2018
‘s-Hertogenbosch, The Netherlands, November 8–9, 2018
Revised Selected Papers

Artificial Intelligence

Communications in Computer and Information Science 1021

Communications
in Computer and Information Science 1021

Commenced Publication in 2007
Founding and Former Series Editors:
Phoebe Chen, Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu,
Krishna M. Sivalingam, Dominik Ślęzak, Takashi Washio, and Xiaokang Yang

Editorial Board Members

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Junsong Yuan
University at Buffalo, The State University of New York, Buffalo, NY, USA

Lizhu Zhou
Tsinghua University, Beijing, China

http://orcid.org/0000-0002-0044-503X
http://orcid.org/0000-0002-5961-6606
http://orcid.org/0000-0001-6859-7120

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Martin Atzmueller • Wouter Duivesteijn (Eds.)

Artificial Intelligence
30th Benelux Conference, BNAIC 2018
‘s-Hertogenbosch, The Netherlands, November 8–9, 2018
Revised Selected Papers

123

Editors
Martin Atzmueller
Tilburg University
Tilburg, The Netherlands

Wouter Duivesteijn
Eindhoven University of Technology
Eindhoven, The Netherlands

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-31977-9 ISBN 978-3-030-31978-6 (eBook)
https://doi.org/10.1007/978-3-030-31978-6

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-31978-6

Preface

This volume contains the proceedings of BNAIC 2018: the 30th Benelux Conference
on Artificial Intelligence held in ‘s-Hertogenbosch, The Netherlands, during
November 8–9, 2018. BNAIC was organized by the Jheronimus Academy of Data
Science (JADS), under the auspices of the Benelux Association for Artificial
Intelligence (BNVKI) and the Dutch Research School for Information and Knowledge
Systems (SIKS).

For the proceedings, we selected high-quality papers from BNAIC itself, but also
papers from the collocated Benelearn conference, based on quality and thematic fit.
From the BNAIC submissions, we selected the Type A regular papers that had been
accepted for oral presentation at BNAIC, which were also extended/revised for the
proceedings. Each submission was reviewed by at least three Program Committee
members. For the proceedings, we were able to include nine high-quality submissions
from BNAIC. Further, we were able to include two high-quality contributions from the
collocated Benelearn conference.

For the BNAIC 2018 proceedings, we would like to reiterate the credits and extend
our thanks to many who supported the organization. The BNAIC 2018 conference
would not have been possible without the support and efforts of many. We thank the
members of the Program Committee for their constructive and scholarly reviews. We
are grateful to Arjan van den Born, Chris Emmery, Arjan Haring, and Laura Niemeijer
for their reliable administrative support and local organization/coordination at JADS.
We also wish to thank all student volunteers for enthusiastically helping out in many
ways. A special thanks goes to Eric Postma for his invaluable support for BNAIC 2018
at JADS in many ways behind the scenes.

Finally, we are grateful to our sponsors for their generous support of the conference:

– Target Holding
– DIKW Intelligence
– SNN Adaptive Intelligence
– SIKS
– BNVKI
– SKBS

July 2019 Martin Atzmueller
Wouter Duivesteijn

Organization

Program Committee

Stylianos Asteriadis University of Maastricht, The Netherlands
Martin Atzmueller Tilburg University, The Netherlands
Reyhan Aydogan Delft University of Technology, The Netherlands
Floris Bex Utrecht University, The Netherlands
Albert Bifet LTCI, Telecom ParisTech, France
Tibor Bosse Vrije Universiteit Amsterdam, The Netherlands
Bert Bredeweg University of Amsterdam, The Netherlands
Tom Claassen Radboud University, The Netherlands
Walter Daelemans University of Antwerp, The Netherlands
Gregoire Danoy University of Luxembourg, Luxembourg
Mehdi Dastani Utrecht University, The Netherlands
Jesse Davis Katholieke Universiteit Leuven, Belgium
Victor de Boer Vrije Universiteit Amsterdam, The Netherlands
Marc Denecker Katholieke Universiteit Leuven, Belgium
Wouter Duivesteijn Eindhoven University of Technology, The Netherlands
Ad Feelders Utrecht University, The Netherlands
George H. L. Fletcher Eindhoven University of Technology, The Netherlands
Pascal Gribomont University of Liege, Belgium
Perry Groot Radboud University, The Netherlands
Andrew Hendrickson Tilburg University, The Netherlands
Tom Heskes Radboud University, The Netherlands
Arjen Hommersom Open University of the Netherlands, The Netherlands
Mark Hoogendoorn Vrije Universiteit Amsterdam, The Netherlands
Geert-Jan Houben Delft University of Technology, The Netherlands
Kristian Kersting TU Darmstadt, Germany
Arno Knobbe Universiteit Leiden, The Netherlands
Walter Kosters LIACS, Leiden University, The Netherlands
Johan Kwisthout Radboud University, The Netherlands
Tom Lenaerts Universite Libre de Bruxelles, Belgium
Peter Lucas Leiden University, The Netherlands
Bernd Ludwig University of Regensburg, Germany
Bernard Manderick COMO Lab. Vrije Universiteit Brussel, Belgium
Elena Marchiori Radboud University, The Netherlands
Wannes Meert Katholieke Universiteit Leuven, Belgium
John-Jules Meyer Utrecht University, The Netherlands
Aske Plaat Leiden University, The Netherlands
Eric Postma TiCC, Tilburg University, The Netherlands
Marie Postma Tilburg University, The Netherlands

Henry Prakken University of Utrecht and University of Groningen,
The Netherlands

Stefan Schlobach Vrije Universiteit Amsterdam, The Netherlands
Evgueni Smirnov MICC-IKAT, Maastricht University, The Netherlands
Gerasimos Spanakis Maastricht University, The Netherlands
Jennifer Spenader University of Groningen, AI, The Netherlands
Johan Suykens Katholieke Universiteit Leuven, Belgium
Annette Ten Teije Vrije Universiteit Amsterdam, The Netherlands
Dirk Thierens Utrecht University, The Netherlands
Jos Uiterwijk Maastricht University, The Netherlands
Egon L. van den Broek Utrecht University, The Netherlands
Jaap van Den Herik Leiden University, The Netherlands
Peter van der Putten LIACS, Leiden University and Pegasystems,

The Netherlands
Leon van der Torre University of Luxembourg, Luxembourg
Frank Van Harmelen Vrije Universiteit Amsterdam, The Netherlands
M. Birna van Riemsdijk Delft University of Technology, The Netherlands
Marieke van Vugt University of Groningen, The Netherlands
Menno Van Zaanen Tilburg University, The Netherlands
Remco Veltkamp Utrecht University, The Netherlands
Joost Vennekens Katholieke Universiteit Leuven, Belgium
Arnoud Visser University of Amsterdam, The Netherlands
Willem Waegeman Ghent University, Belgium
Gerhard Weiss University Maastricht, The Netherlands
Marco Wiering University of Groningen, The Netherlands
Jef Wijsen University of Mons, Belgium
Mark H. M. Winands Maastricht University, The Netherlands
Marcel Worring University of Amsterdam, The Netherlands
Yingqian Zhang Eindhoven University of Technology, The Netherlands

Additional Reviewers

Lapauw, Ruben
Menger, Vincent
Schraagen, Marijn
van der Hallen, Matthias

viii Organization

Contents

Early Detection of Sepsis Induced Deterioration Using Machine Learning . . . 1
Francesco Dal Canton, Vincent M. Quinten, and Marco A. Wiering

Deriving Formulas for Integer Sequences Using Inductive Programming 16
Les De Ridder and Thijs Vercammen

All or In-cloud: How the Identification of Six Types of Anomalies
Is Affected by the Discretization Method . 25

Ralph Foorthuis

Topic Modeling for Exploring Cancer-Related Coverage
in Journalistic Texts . 43

Naomi Hariman, Marjolein de Vries, and Ionica Smeets

Model Selection for Multi-directional Ensemble of Regression
and Classification Trees . 52

Evgeniya Korneva and Hendrik Blockeel

Finding Dissimilar Explanations in Bayesian Networks:
Complexity Results . 65

Johan Kwisthout

Beyond Local Nash Equilibria for Adversarial Networks 73
Frans A. Oliehoek, Rahul Savani, Jose Gallego, Elise van der Pol,
and Roderich Groß

Deep Multi-agent Reinforcement Learning in a Homogeneous
Open Population . 90

Roxana Rădulescu, Manon Legrand, Kyriakos Efthymiadis,
Diederik M. Roijers, and Ann Nowé

Computing and Predicting Winning Hands in the Trick-Taking
Game of Klaverjas . 106

Jan N. van Rijn, Frank W. Takes, and Jonathan K. Vis

Style Transfer of Abstract Drum Patterns Using a Light-Weight
Hierarchical Autoencoder . 121

Mark Voschezang

Assessing the Potential of Classical Q-learning in General Game Playing. . . . 138
Hui Wang, Michael Emmerich, and Aske Plaat

Visual Rationalizations in Deep Reinforcement Learning for Atari Games . . . 151
Laurens Weitkamp, Elise van der Pol, and Zeynep Akata

Author Index . 167

x Contents

Early Detection of Sepsis Induced
Deterioration Using Machine Learning

Francesco Dal Canton1, Vincent M. Quinten1,2, and Marco A. Wiering1(B)

1 University of Groningen, 9700 AB Groningen, The Netherlands
m.a.wiering@rug.nl

2 University Medical Center Groningen, 9713 GZ Groningen, The Netherlands

Abstract. Sepsis is an excessive bodily reaction to an infection in the
bloodstream, which causes one in five patients to deteriorate within two
days after admission to the hospital. Until now, no clear tool for early
detection of sepsis induced deterioration has been found. This research
uses electrocardiograph (ECG), respiratory rate, and blood oxygen sat-
uration continuous bio-signals collected from 132 patients from the Uni-
versity Medical Center of Groningen during the first 48 h after hospital
admission. This data is examined under a range of feature extraction
strategies and Machine Learning techniques as an exploratory frame-
work to find the most promising methods for early detection of sepsis
induced deterioration. The analysis includes the use of Gradient Boost-
ing Machines, Random Forests, Linear Support Vector Machines, Multi-
Layer Perceptrons, Naive Bayes Classifiers, and k-Nearest Neighbors
classifiers. The most promising results were obtained using Linear Sup-
port Vector Machines trained on features extracted from single heart
beats using the wavelet transform and autoregressive modelling, where
the classification occurred as a majority vote of the heart beats over
multiple long ECG segments.

Keywords: Sepsis · Machine Learning · Bio-signals · Health care

1 Introduction

Sepsis is a life-threatening organ dysfunction caused by an uncontrolled reaction
to infection by the organism [1] that can lead to organ failure, septic shock, and
death [2]. Common symptoms of sepsis include higher heart rate and respiratory
rate, and abnormal changes in bodily temperature [3]. Sepsis is one of the most
common causes for mortality among chronically ill patients, and it is estimated
that sepsis affects at least 240 people out of 100,000 in the United States, while
severe sepsis affects between 51 and 95 out of 100,000 [4]. Most patients affected
by sepsis are admitted to the hospital through the Emergency Department (ED),
and it was shown that approximately 20% of patients admitted to the ED with
infection or sepsis deteriorate [5].

Early detection of sepsis induced deterioration is extremely valuable since it
allows for fast and effective treatment. In [6] it was shown that each hour of delay
c© Springer Nature Switzerland AG 2019
M. Atzmueller and W. Duivesteijn (Eds.): BNAIC 2018, CCIS 1021, pp. 1–15, 2019.
https://doi.org/10.1007/978-3-030-31978-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31978-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-31978-6_1

2 F. Dal Canton et al.

in the application of appropriate treatment is correlated with a mean increase
in mortality of 7.6%. Nevertheless, despite the intensive research in the field, it
is still not clear how the onset, progress, and response to treatment of sepsis can
be accurately monitored [7].

The traditional approach for tracking sepsis onset and development is to
use discrete values describing vital signs and non-specific symptoms [3]. More
recently, measures obtained from Heart Rate Variability (HRV) have been gath-
ering research interest. Although at present the most successful studies in this
area concerned sepsis development in neonates [8], some studies have been car-
ried out to explore the predictive potential of HRV measures in adults [9,10]. In
2017 the SepsiVit study was started at the University Medical Center of Gronin-
gen (UMCG), which involves a long term data collection program, and aims at
determining whether HRV measures can provide a reliable source of information
for predicting deterioration in patients with suspected sepsis in the ED [11].

The current study focuses on the potential of Machine Learning based algo-
rithms paired with the use of raw Electrocardiograph (ECG), Plethysmograph,
and Respiratory Rate bio-signals collected during the SepsiVit study at the
UMCG as sources of information for early detection of patient deterioration
due to sepsis. Seven different Machine Learning classifiers are tested and their
classification accuracies are compared across three different feature extraction
methods. The first two methods involve Histograms of Derivatives (HOD) of
the bio-signals, while the third one uses morphological features of heart beats
extracted using the wavelet transform and autoregressive modelling as applied
in [12]. The third feature extraction method was also tested in a majority vote
fashion across 5 min long signal windows and 1 h long signal windows.

This paper is organized as follows. Section 2 describes the dataset in more
detail. Section 3 illustrates the three feature extraction methods used to process
the dataset. Section 4 lists and explains the machine learning models and how
they were applied. Section 5 describes the experimental setup and the obtained
results, while Sect. 6 concludes the paper.

2 Dataset

The dataset used in this research was collected at the ED of the UMCG according
to the protocol of the SepsiVit study. All patients included in the study (i) are
more than 18 years old, (ii) present a suspected infection or sepsis, (iii) show
two or more systemic inflammatory response syndrome criteria as defined by
the International Sepsis Definitions Conference [13], and (iv) provided written
informed consent. Patients are not included in the study in case of (i) known
pregnancy, (ii) when the patient is not admitted to the hospital from the ED or is
transfered to another hospital or care facility, and (iii) in case of previous cardiac
transplantation [11]. While the aim of the SepsiVit study is to collect data from
171 patients, the collected and labeled data at the time of the current study
includes 132 patients (84 males; average age 61.5 years; median age 63.5 years;
average missing data 53%).

Early Detection of Sepsis Induced Deterioration Using Machine Learning 3

For each patient, high sample rate vital signs are recorded with a bedside
patient monitor (Philips IntelliVue MP70 System with MultiMeasurement Mod-
ule using custom software based on the Philips IntelliVue Data Export Interface
Protocol). The data includes time series data of ECG (500 Hz), Plethysmograph
(125 Hz), and Respiratory Rate (62.5 Hz) bio-signals recorded for up to 48 h since
admission to the ED. No imputation strategy is used to recover missing data due
to the complexity and unpredictability of the bio-signals involved. The electrodes
for recording the ECG signals are placed according to the EASI configuration
[14], and in particular the data from Lead II is used for this analysis. After the
data is collected, the outcomes for the patient’s condition are recorded. Specifi-
cally, five outcomes are monitored: whether the patient (i) had to be transferred
to the Intensive Care Unit (ICU), (ii) died in the hospital, (iii) developed kidney
failure, (iv) developed liver failure, or (v) developed respiratory failure. Since
the goal of this analysis is to provide a tool for early sepsis deterioration, each
patient was labeled as ‘deteriorating’ if they registered positive to any of these
five outcomes, and ‘healthy’ otherwise. The proportions of the two groups are
specific to each feature extraction method depending on the amount of usable
data, and are mentioned in the respective subsections of the paper.

3 Feature Extraction Methods

The detection of early signs of sepsis induced deterioration using bio-signals
requires a procedure of feature extraction from the raw data, so that each
extracted feature vector represents a segment of the original data. With this
in mind, a good feature extraction procedure should yield feature vectors that
are most similar among the same class and most different across different classes.

The three feature extraction methods described in this section are compared
with the ones currently being developed as a part of the SepsiVit study, which
were obtained exclusively from the ECG signal, after the removal of technical
and physiological artifacts [15]. They include HRV measures as described in [16],
and geometrical features of the R-R intervals [17].

3.1 Histograms of Derivatives

The first approach involves the extraction of the distribution of the first and
second order derivatives of the available signals, or Histograms of Derivatives
(HOD). This method is conceptually close to the Histogram of Oriented Gra-
dients strategy used in image processing [18]: the objective is to obtain the
frequency distribution of change in signal intensity across a signal segment. The
derivative of a function at a specific input value is defined as the slope of the
tangent line to the graph of the function at that point. In the case of the dig-
ital signals used in this study, an approximation of the derivative function is
computed as:

dx

dt
=

xt+h − xt

h
(1)

4 F. Dal Canton et al.

where h is the unit interval between consecutive samples. For each of the three
signals used in this study, h is set to 1 since the time between consecutive samples
in each signal is constant.

The first step of this procedure is, for each patient’s bio-signals (i.e. ECG,
Plethysmograph, and Respiratory Rate), to extract all simultaneous 5-minute
long signal segments that don’t contain any missing data. The result is a collec-
tion of 5-minute long data triplets containing the three bio-signals. The length of
5 min for each signal window was chosen experimentally as it produced improved
classification accuracies compared to a length of 30 min. This choice was also
guided by the convenience of requiring only 5 min of recorded signal before
attempting detection of sepsis induced deterioration, which would speed up the
potential application of treatment.

Fig. 1. Plot showing first and second order derivatives
of an ECG signal segment taken from the SepsiVit
dataset.

At this stage, the first
and second derivatives of
each signal segment are
computed. Given each sig-
nal in each data triplet,
Eq. 1 was applied across
the whole signal segment.
The result is 6 signals,
two for each type of bio-
signal, of which one is
the first order derivative,
and the other is the sec-
ond order derivative, com-
puted by applying Eq. 1 on
the computed first deriva-
tive. A plot representing an
example of first and second
order derivatives computed
in such fashion is shown in
Fig. 1.

In order to obtain the frequency distribution of each derivative, a 20-bin
frequency histogram is computed for each of the 6 derivative signals. In order
to exclude outliers, the extrema of each histogram are computed as follows. For
each of the 6 derivative signals, the minimum and maximum values are collected
across the whole dataset, for a total of 12 values. A 95% interval is then calculated
for each of the 12 resulting lists of values. The lowest value in the 95% interval
was chosen for the minimum of each histogram, while the maximum value in the
95% interval was chosen for the maximum of each histogram. The values found
with this method are reported in Table 1.

The result was six 20-bin histograms, three for the first derivative of ECG,
Plethysmograph, and Respiratory Rate, and three for their second derivatives,
for each 5-minute long data segment. Each of these histograms was then centered
(by subtracting the mean) and scaled (by dividing by the standard deviation).

Early Detection of Sepsis Induced Deterioration Using Machine Learning 5

These six histograms were then concatenated so that the first three vectors were
the histograms of the first derivative of ECG, Plethysmograph, and Respira-
tory Rate histograms, while the last three were the histograms of the second
derivatives in the same order.

The last step of the feature extraction process involved, for the ECG signal
contained in each of the data triplets, extracting the mean and the standard devi-
ation of the Heart Rate, μ(HR) and σ(HR). These two values were appended
to each concatenated frequency histogram vector to produce a 122-dimensional
feature vector. Only patients that had at least one uninterrupted 5-minute long
window containing all three bio-signals were included in this procedure. This fea-
ture extraction method yielded 14,389 feature vectors from 89 different patients.
Out of the total number of data triplets, 50.8% came from patients marked as
‘deteriorating’.

3.2 Δ of Histograms of Derivatives

The second feature extraction approach is largely based on the one described in
Subsect. 3.1. The objective of this method is to obtain a measure of the change
between the HODs of consecutive 5-minute long data triplets. Initially all pairs
of consecutive 5-minute long data triplets are collected, so that in each pair
the second triplet directly follows the first one in the time domain. The two 122-
dimensional feature vectors for both data triplets are then extracted according to
the procedure described in Subsect. 3.1. The final feature vector is then computed
as the element-wise difference between the two vectors as:

fvΔ = fvt − fvt−1 (2)

where fvt−1 and fvt are the feature vectors extracted from the first and second
data triplets respectively. Only patients that had at least one uninterrupted
10-minute long window containing all three bio-signals were included in this
procedure. This feature extraction procedure yielded 13,110 feature vectors from
88 different patients. Out of the total number of data triplets, 50.5% came from
patients marked as ‘deteriorating’.

3.3 Wavelet Transform and Autoregressive Modelling

The last feature extraction procedure involves using the wavelet transform and
autoregressive modelling on exclusively the ECG signal. This approach relies on
extracting morphological features from individual heart beats, replicating the
approach found in [12]. This procedure required a preprocessing step of noise
removal from the ECG signal and extraction of all available heart beats (done
with the Python package Biosppy 0.5.1), where the R-peaks were detected using
Hamilton’s approach [19]. Each heart beat is extracted in the form of an array
of 300 samples, where the R-peak occurs at the 100th sample. An example of a
series of extracted heart beats is shown in Fig. 2.

6 F. Dal Canton et al.

Table 1. Extrema of each of the 6 frequency histograms, computed for the SepsiVit
dataset by considering the 95% interval for each minimum and maximum value in each
derivative signal.

1st derivative 2nd derivative

Min Max Min Max

ECG −348 343 −307 307

Pleth. −756 768 −511 518

Resp. −681 722 −523 676

Fig. 2. Plot showing exemplar heart beats extracted
from an ECG segment taken from the SepsiVit dataset,
after noise removal has been applied. The different col-
ors represent the different heart beats. (Color figure
online)

Due to memory limita-
tions of the computer used
when running the Machine
Learning algorithms, a sam-
ple of 10,000 heart beats
was selected for each patient
to be used in the study. The
sample of heart beats for
each patient was selected
by (1) extracting all heart
beats for that patient, and
(2) keeping 10,000 evenly
spaced heart beats across
all heart beats of the
patient ordered in the time
domain. This was done
to ensure that, for each
patient, heart beats from
all stages of their stay in
the hospital were available.
A time-frequency decomposition of each heart beat was then produced using the
wavelet transform as done in [12], which has been shown to be a good tool for
QRS complex detection [20].

The wavelet transform is an operation that represents a signal with a series
of coefficients which describe the energy distribution of the signal across both
time and frequency. The continuous wavelet transform (CWT) of a continuous
signal is defined as [21]:

CWTx(b, a) =
1

√|a|

∫ ∞

−∞
x(t)g

(
t − b

a

)
dt (3)

where the wavelet g(t) satisfies the conditions reported in [22]. a and b (a, b ∈
�, a �= 0) are the dilation and translation parameters. The chosen wavelet, which
in the case of this study is the Daubechies wavelet of order 8, as done by Qibin
and Liqing [12], is compressed or expanded depending on the value of a, in such a

Early Detection of Sepsis Induced Deterioration Using Machine Learning 7

way that coefficients can be extracted to describe the morphology of the signal at
different frequency ranges. The high computational complexity of this approach
can be reduced by discretising one or both parameters of the function. The case
where a is discretised is defined as the dyadic wavelet transform DyWT . a is
discretised along the dyadic sequence 2i (i ∈ N) [20]. DyWT is then defined as:

DyWTx(b, 2i) =
1√
2i

∫ ∞

−∞
x(t)g

(
t − b

2i

)
dt (4)

The dyadic wavelet transform was consequently applied to all heart beat sig-
nals (done with the Python package pywt 1.0.6 [23]). A required parameter for
the operation was the decomposition level, which influences the frequency ranges
extracted from the signal. The chosen decomposition level was 4 as done in [12].
The wavelet transform decomposition yielded four detail coefficients d1, d2, d3, d4
and the vector of approximation coefficients a4. The detail coefficients represent
the high frequency parts of the ECG signal, while the vector of approximation
coefficients a4 represent the lower frequency changes in each heart beat, corre-
sponding with the main features of the QRS complexes. For each heart beat, the
vector a4 contained 32 points.

The second step was the extraction of the coefficients of an autoregressive
model trained on each heart beat. An autoregressive model of order p of a signal
x[n] is defined as the linear combination of the p previous samples in the signal,
and can be expressed as:

x[n] =
p∑

i=1

a[i]x[n − i] + e[n] (5)

where a[i] is the ith coefficient and e[n] is white noise with mean zero [12].
The number of coefficients p was chosen to be 14 using the Akaike Information
criterion [24], so that the 14 coefficients aar of the autoregressive model were
extracted from each heart beat (done with the Python package statsmodels 0.9).
The two obtained vectors a4 = {w1, . . . , w32} and aar = {a1, . . . , a14} were
then concatenated to form the feature vector for that heart beat. Only patients
whose ECG signal contained at least one heart beat detectable using Hamilton’s
approach [19] were included in this procedure. This feature extraction procedure
yielded 1,155,997 feature vectors from 123 different patients. Out of the total
number of data triplets, 44.9% came from patients marked as ‘deteriorating’.

Due to the large number of feature vectors obtained with this method, Prin-
cipal Component Analysis (PCA), a common feature reduction procedure, was
used to compress the dimensionality of the feature vectors from 46 to 10 dimen-
sions [25]. PCA involves projecting a set of vectors across the dimension with the
maximal variance, in order to reduce the number of dimensions while preserving
the maximal amount of information regarding the distribution of the vectors.
For each test, PCA was applied by fitting it on the training split of the data,
and then applying it to both the training and the testing splits of the data.

8 F. Dal Canton et al.

4 Machine Learning Methods

All algorithms described in this section were implemented in Python using the
package scikit-learn 0.19.1 [26]. The dataset was split into training and test-
ing/validation sets using 90% and 10% of the data respectively. The strategy
used for splitting the dataset was group 10-fold cross-validation, so that 10 itera-
tions of testing were performed for each algorithm. An important property of the
group k-folds strategy for dataset splitting is that no data from the same patient
occurred in different folds, so as to eliminate overfitting over single patients. The
results as reported in Sect. 5 consist of the mean classification accuracy for the
tuned models across the 10 training iterations, along with its standard deviation.
The accuracy was computed as the number of correct classifications over all clas-
sification attempts. For the Linear Support Vector Machine, weighted k-Nearest
Neighbors, and Multi-Layer Perceptron, the data must be scaled. A MinMax
scaler, which scales each feature to an interval [0, 1], was chosen experimentally
as it yielded better results compared to a standard scaler. For each training fold
the scaler was fitted on the training split of the dataset, and consequently applied
to both the training and the testing split. Class scaling was applied to the two
classes in the training phase for all classifiers except for the Multi-Layer Percep-
tron and the Weighted k-Nearest Neighbors, in order to normalise the impact

Table 2. Parameters used for each of the classifiers. The feature extraction methods are,
in order: Histograms of Derivatives (HOD, see Subsect. 3.1), Difference of Histograms of
Derivatives (HODΔ, see Subsect. 3.2), wavelet transform and autoregressive modelling
(HB, see Subsect. 3.3), and using the HRV measures extracted as part of the SepsiVit
study (SV). The classifiers are, in order: Linear Support Vector Machine (SVM), Ran-
dom Forest (RF), Gradient Boosting Machine (GBM), Weighted k-Nearest Neighbors
(WkNN), Multi-Layer Perceptron (MLP), and Linear Regression (LR).

HOD HODΔ HB SV

SVM C 11 12 15 9.5

RF n estimators 7, 000 5, 000 3, 500 5, 000

GBM n estimators 10, 000 10, 000 10, 000 10, 000

learning rate 0.01 0.01 0.005 0.0001

min samples. 10

WkNN n neighbors 6 11 251 55

p 1

MLP hidden n. 31 53 7 4

learning rate 0.0005 0.0005 0.0005 0.001

max iter 3, 000

activation logistic

LR C 15 8 10 15

solver newton-cg

multi class multinomial

Early Detection of Sepsis Induced Deterioration Using Machine Learning 9

of the distribution of the two classes during training. The parameter tuning for
all algorithms was done by parameter grid search using cross-validation. The
parameters for all algorithms are reported in Table 2.

4.1 Linear Support Vector Machine

Support Vector Machines (SVMs) are a set of supervised learning algorithms
useful in classification, which is widely and successfully applied in the medical
field [12,27,28]. A Linear Support Vector Machine generates a hyperplane which
position and orientation is optimised to best differentiate between the two classes,
and which is computed using the support vectors, which are the vectors in the
training set closest to the decision hyperplane [29]. The Linear SVM model used
the squared hinge loss function, which produced a classification boundary with a
soft margin, yielding classification probabilities. The only tuned parameter was
C, which represents the importance given to outliers during training.

4.2 Random Forest

A Random Forest is an ensemble-based algorithm which works as a combina-
tion of decision tree predictors [30]. Each tree in a Random Forest is initialised
using the values of a random vector sampled independently using the same dis-
tribution. This method is more robust to overfitting compared to standard deci-
sion trees [31]. All default parameters were kept the same as the scikit-learn
implementation of the algorithm [26], except for n estimators, the number of
trees to be generated. As the number of trees is increased, the accuracy nor-
mally increases and eventually plateaus. In the case of the wavelet transform
and autoregressive modelling feature extraction method (see Subsect. 3.3), the
number of generated trees was artificially kept low to accomodate for the memory
limitations of the computer used in the analysis.

4.3 Gradient Boosting Machine

The Gradient Boosting Machine algorithm is, much like the Random Forest,
an ensemble-based algorithm used in classification which combines a number of
weak decision tree classifiers into a strong decision tree classifier. Each decision
tree is generated by combining the previous decision trees and applying a higher
weight to events that are difficult to predict. The result is a gradient descent algo-
rithm that minimizes the classification error by generating more decision trees
[32]. The two parameters that were tuned for this algorithm were n estimators,
the number of trees to be generated, and learning rate, which shrinks the contri-
bution of each tree. There is a trade-off between the values of the two parameters,
so they need to be adjusted to each other. For all other parameters, the defaults
of the scikit-learn package were used, except for the value of min samples leaf ,
which was set to 10. This value defines the minimum number of feature vectors
to be found in each leaf of the decision trees.

10 F. Dal Canton et al.

4.4 Weighted k-Nearest Neighbors

The Weighted k-Nearest Neighbors (WkNN) algorithm is a variation of the stan-
dard k-Nearest Neighbors classification algorithm. The latter works by, for each
feature vector in the testing set, producing a majority vote across the k clos-
est feature vectors of the training set, according to a specified distance metric.
The WkNN algorithm works in a similar fashion, with the added feature that
votes from each neighboring feature vector are scaled depending on their dis-
tance from the feature vector to be classified [33]. The tuned parameter was
only n neighbors, which is k, the number of the closest feature vectors that
are taken into account for the classification. The distance metric used for this
algorithm was the Minkowski distance, with the inverse scaling factor p set to 1.

4.5 Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is a type of feedforward artificial neural net-
work which implements the backpropagation supervised learning algorithm. The
MLP implemented as a part of this study contained only one hidden layer. The
amount of neurons in the hidden layer was the parameter hidden neurons, tuned
for each feature extraction method. The final, output layer contains a number
of neurons equal to the number of classes, to which activations a Softmax func-
tion is applied in order to compute class-wise probabilities. The learning rate
parameter was also tuned using cross-validation [31,34]. All other parameters
were kept to the defaults given by scikit-learn, except for the applied logistic
activation function, and the maximum number of training iterations for the
algorithm, which was set to 3,000.

4.6 Näıve Bayes Classifier

The Näıve Bayes classifier is one of the simplest probabilistic classifiers, which
has the advantage of being computationally inexpensive, and has been used with
success on Heart Rate Arrhythmia classification in [35]. This classifier constructs
a set of probabilities, which correspond to the probability that each feature value
appears among the feature vectors within a certain class. The Näıve Bayes clas-
sifier makes, however, a strong assumption of conditional independence between
the features within the feature vectors [36]. This assumption rarely holds in real
life scenarios, and it clearly doesn’t hold for the feature vectors extracted with
the procedures described in Sect. 3. For this study, the Gaussian Näıve Bayes
classifier was used, which relies on the assumption that the likelihood of the
features follows a Gaussian distribution. The algorithm was tested as it tends
to perform well in many classification tasks, and because of its conveniently low
computational complexity. This classifier requires only the prior probabilities of
the two classes, computed as the proportion of each class across each complete
processed dataset.

Early Detection of Sepsis Induced Deterioration Using Machine Learning 11

4.7 Logistic Regression

The Logistic Regression classifier is a standard linear model for classification. In
this study, a multinomial logistic regression was used, which means that the prob-
ability estimates should be better calibrated per class compared to a dichotomous
implementation. The classifier used the ‘newton-cg’ solver. The only parameter
tuned using cross-validation was C, the inverse of the regularization strength α.

5 Experiments and Results

For each tuned classifier and for every testing procedure, the mean and standard
deviation of the classification accuracy across the 10 folds of the cross-validation
process are reported. The testing procedures were five in total. The first three
involved standard classification of the feature vectors obtained with the three
feature extraction methods described in Sect. 3 using cross-validation. For each
of the three produced datasets, each feature vector was assigned the same label
as the patient that it was extracted from. During the training phase, the classifier
was trained on the training set using the correct labels. During the testing phase,
each feature vector was classified as belonging to the ‘deteriorating’ class or to
the ‘healthy’ class. The result of the classification was then compared with the
correct label in order to compute the accuracy (i.e. the proportion of correct
classifications during the testing phase).

The last two testing procedures were applied to the morphology descriptors,
which are described in Subsect. 3.3). For both testing procedures, the training
phase was the same as for the third testing procedure, so that the classifier could
classify each heart beat as ‘deteriorating’ or not given its feature vector. What
changed in the last two testing procedures was the testing phase. The first of
the two testing procedures was done as a majority vote, where heart beats are
extracted and processed for all 5-minute long ECG segments. The classification
process is then applied to all heart beats in each 5-minute long ECG segment so
that if 50% or more of the heart beats are classified as ‘deteriorating’, then the
whole segment receives such classification outcome. The third testing procedure
is performed in a similar fashion by taking a majority vote across 12 5-minute
long ECG segments.

All testing procedures are compared to the performance of the tuned algo-
rithms used on the HRV features extracted as part of the SepsiVit study, as
mentioned in Sect. 3. All outcomes of the testing procedures are reported in
Table 3.

The Histograms of Derivatives and Differences of Histograms of Derivatives
methods for feature extraction did not show any promise, ranging from a mean
classification accuracy of 43.1± 11.9% for the Multi-Layer Perceptron in the
Difference of Histograms of Derivatives procedure, to 56.6± 12% for the Random
Forests algorithm applied to the Histograms of Derivative method for feature
extraction.

The best results were obtained using the Linear Support Vector Machine on
the feature vectors extracted in the SepsiVit study, which had a mean accuracy

12 F. Dal Canton et al.

Table 3. Mean and standard deviation of the classification accuracies for all models
and testing procedures. The testing procedures are, in order: Histograms of Deriva-
tives (HOD, see Subsect. 3.1), difference of Histograms of Derivatives (HODΔ, see
Subsect. 3.2), wavelet transform and autoregressive modelling without majority vote
(HB, see Subsect. 3.3), wavelet transform and autoregressive modelling applied in a
majority vote fashion over 5-minute long ECG segments (MV), wavelet transform and
autoregressive modelling applied in a majority vote fashion over 12 5-minute long ECG
segments (MV2), and using the HRV measures extracted as part of the SepsiVit study
(SV).The classifiers are, in order: Linear Regression (LR), Weighted k-Nearest Neigh-
bors (WkNN), Näıve Bayes (NB), Linear Support Vector Machine (SVM), Multi-Layer
Perceptron (MLP) Random Forest (RF), and Gradient Boosting Machine (GBM).

HOD HODΔ HB MV MV2 SV

LR 54.1± 14.3 50.5± 7.4 59.3± 9.4 60.6± 10.8 61.0± 10.6 63.0± 5.2

WkNN 52.8± 6.7 50.4± 6.6 55.1± 6.3 57.1± 10.9 57.8± 11.2 57.9± 5.8

NB 54.8± 13.3 49.7± 14.3 51.8± 10.7 54.0± 15.4 53.9± 15.9 57.9± 5.8

SVM 52.4± 13.9 50.5± 12.7 60.9± 9.1 62.2± 10.7 62.4± 10.9 65.5± 7.9

MLP 53.8± 11.1 43.1± 11.9 59.8± 12.9 57.1± 15.2 56.9± 15.9 60.3± 8.1

RF 56.3± 12 54.8± 6.7 55.4± 7.8 58.2± 12.2 58.5± 12.8 59.3± 6.9

GBM 54.6± 8.4 54.4± 9.0 57.6± 7.8 61.5± 13.1 61.9± 13.6 61.3± 8.5

of 65.5% and a standard deviation of 7.9%. The most promising results were
obtained with the feature extraction method involving the wavelet transform and
autoregressive modelling, which was only marginally improved by the majority
vote testing procedures. The Linear Support Vector Machine classifier produced
the best results with the data extracted in this fashion, peaking at 62.4± 10.9%
mean classification accuracy.

Overall, the Linear Support Vector Machine was the best classifier, sometimes
beaten by the Random Forest.

6 Conclusion and Future Work

The results presented in the previous section show that none of the attempted
feature extraction methods are superior in their ability to encapsulate differ-
ences between the two classes and similarity among the same class compared to
the HRV features extracted as part of the SepsiVit study [11]. Nonetheless, the
results of this study imply that there is more useful information in the morpho-
logical descriptions of the ECG signal compared to the frequency distributions
of the slopes of high frequency bio-signals.

While there was an increase in classification accuracy obtained by applying
the majority vote testing strategies, the fact that the improvement was as small
as 1.5% indicates that the improvement is only marginal, and given the benefits
of early detection of sepsis induced deterioration [6], a classification strategy
requiring less data such as the standard heart beat classification or the majority

Early Detection of Sepsis Induced Deterioration Using Machine Learning 13

vote across 5-minute ECG segments might be more beneficial for improving
survival rates, compared to one that uses 60-minute ECG segments.

A difficulty encountered in this study was the limited size of the dataset.
The low variability in the bio-signals across the data of each individual patient
makes it so that the diversity in the dataset, and so the capacity of the Machine
Learning algorithms to properly generalise the problem, is entirely dependent
on the amount of different patients included in the study. Since reaching the
target of the SepsiVit study of 171 patients (i.e. only 30% more than were avail-
able for this research) is likely not going to produce sufficient diversity in the
dataset, future data collection programs are needed to further investigate the
predictive potential of high frequency bio-signals for early detection of sepsis
induced deterioration.

Future studies could focus on any of the following points for improvement.
A more complete analysis of the feature extraction methods should be carried
out: new strategies should be tested, and all strategies should be used together
to produce feature vectors containing all features for each bio-signal segment.
An analysis of which features contribute the most to the classification would
then reveal the features that are most relevant towards the early detection of
sepsis induced deterioration. Furthermore, different classifiers should be tested.
Obvious candidates are Recurrent Neural Networks such as LSTMs, widely used
on time series data, which nevertheless require large amounts of data for effective
training, and which as such would depend on a new data collection program.

References

1. Singer, M., et al.: The third international consensus definitions for sepsis and septic
shock (sepsis-3). JAMA 315(8), 801–810 (2016). 26903338[pmid]

2. Bone, R.C., Fisher, C.J., Clemmer, T.P., Slotman, G.J., Metz, C.A., Balk, R.A.:
Sepsis syndrome: a valid clinical entity. Methylprednisolone severe sepsis study
group. Crit. Care Med. 17(5), 389–393 (1989)

3. Buchan, C.A., Bravi, A., Seely, A.J.E.: Variability analysis and the diagnosis, man-
agement, and treatment of sepsis. Curr. Infect. Dis. Rep. 14(5), 512–521 (2012)

4. Danai, P., Martin, G.S.: Epidemiology of sepsis: recent advances. Curr. Infect. Dis.
Rep. 7(5), 329–334 (2005)

5. Glickman, S.W., et al.: Disease progression in hemodynamically stable patients
presenting to the emergency department with sepsis. Acad. Emerg. Med. 17(4),
383–390 (2010)

6. Brindley, P.G., Zhu, N., Sligl, W.: Best evidence in critical care medicine early
antibiotics and survival from septic shock: it’s about time. Can. J. Anesth./Journal
canadien d’anesthésie 53(11), 1157–1160 (2006)

7. Dellinger, R.P., et al.: Surviving sepsis campaign: international guidelines for man-
agement of severe sepsis and septic shock 2012. Crit. Care Med. 41(2), 580–637
(2013)

8. Moorman, J.R., et al.: Mortality reduction by heart rate characteristic monitoring
in very low birth weight neonates: a randomized trial. J. Pediatrics 159(6), 900–
906.e1 (2011)

9. Ahmad, S., et al.: Continuous multi-parameter heart rate variability analysis her-
alds onset of sepsis in adults. PLoS ONE 4(8), 1–10 (2009)

14 F. Dal Canton et al.

10. Bravi, A., Green, G., Longtin, A., Seely, A.J.E.: Monitoring and identification of
sepsis development through a composite measure of heart rate variability. PLoS
ONE 7(9), e45666 (2012). PONE-D-12-18432[PII]

11. Quinten, V.M., van Meurs, M., Renes, M.H., Ligtenberg, J.J.M., ter Maaten, J.C.:
Protocol of the SepsiVit study: a prospective observational study to determine
whether continuous heart rate variability measurement during the first 48 hours of
hospitalisation provides an early warning for deterioration in patients presenting
with infec. BMJ Open 7(11), e018259 (2017)

12. Zhao, Q., Zhang, L.: ECG feature extraction and classification using wavelet trans-
form and support vector machines. In: 2005 International Conference on Neural
Networks and Brain, vol. 2, pp. 1089–1092, October 2005

13. Levy, M.M., et al.: 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis def-
initions conference. Crit. Care Med. 31(4), 1250–1256 (2003)

14. Cardoso, J.F., Laheld, B.H.: Equivariant adaptive source separation. IEEE Trans.
Signal Process. 44(12), 3017–3030 (1996)

15. Peltola, M.: Role of editing of R-R intervals in the analysis of heart rate variability.
Front. Physiol. 3, 148 (2012)

16. Shaffer, F., Ginsberg, J.P.: An overview of heart rate variability metrics and norms.
Front. Public Health 5, 258 (2017). 29034226[pmid]

17. Moridani, M.K., Setarehdan, S.K., Nasrabadi, A.M., Hajinasrollah, E.: Non-linear
feature extraction from HRV signal for mortality prediction of ICU cardiovascular
patient. J. Med. Eng. Technol. 40(3), 87–98 (2016). PMID: 27028609

18. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2005), vol. 1, pp. 886–893, June 2005

19. Hamilton, P.: Open source ECG analysis. Comput. Cardiol. 29, 101–104 (2002)
20. Kadambe, S., Murray, R., Boudreaux-Bartels, G.F.: Wavelet transform-based QRS

complex detector. IEEE Trans. Biomed. Eng. 46(7), 838–848 (1999)
21. Morlet, J., Arens, G., Fourgeau, E., Glard, D.: Wave propagation and sampling

theory - Part i: complex signal and scattering in multilayered media. Geophysics
47(2), 203–221 (1982)

22. Grossmann, A.: Wavelet transforms and edge detection. In: Albeverio, S., Blan-
chard, P., Hazewinkel, M., Streit, L. (eds.) Stochastic Processes in Physics and
Engineering, pp. 149–157. Springer, Dordrecht (1988). https://doi.org/10.1007/
978-94-009-2893-0 7

23. Lee, G., et al.: Pywavelets - wavelet transforms in Python (2006). Accessed 2018
24. Akaike, H.: Information theory and an extension of the maximum likelihood prin-

ciple. In: Parzen, E., Tanabe, K., Kitagawa, G. (eds.) Selected Papers of Hirotugu
Akaike, pp. 199–213. Springer, New York (1998). https://doi.org/10.1007/978-1-
4612-1694-0 15

25. Jolliffe, I.: Principal component analysis. In: Lovric, M. (ed.) International Ency-
clopedia of Statistical Science, pp. 1094–1096. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-04898-2

26. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

27. Li, Q., Rajagopalan, C., Clifford, G.D.: Ventricular fibrillation and tachycardia
classification using a machine learning approach. IEEE Trans. Biomed. Eng. 61(6),
1607–1613 (2014)

28. Song, M.H., Lee, J., Cho, S.P., Lee, K.J., Yoo, S.K.: Support vector machine based
arrhythmia classification using reduced features. Int. J. Control Autom. Syst. 3(4),
571–579 (2005)

https://doi.org/10.1007/978-94-009-2893-0_7
https://doi.org/10.1007/978-94-009-2893-0_7
https://doi.org/10.1007/978-1-4612-1694-0_15
https://doi.org/10.1007/978-1-4612-1694-0_15
https://doi.org/10.1007/978-3-642-04898-2
https://doi.org/10.1007/978-3-642-04898-2

Early Detection of Sepsis Induced Deterioration Using Machine Learning 15

29. Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Schölkopf, B.: Support vector
machines. IEEE Intell. Syst. Appl. 13(4), 18–28 (1998)

30. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
31. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning.

Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7
32. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.

Stat. 29(5), 1189–1232 (2001)
33. Hechenbichler, K., Schliep, K.: Weighted k-nearest-neighbor techniques and ordinal

classification (2004). Accessed 2018
34. Kriesel, D.: A brief introduction to neural networks (2007)
35. Soman, T., Bobbie, P.O.: Classification of arrhythmia using machine learning tech-

niques. WSEAS Trans. Comput. 4, 548–552 (2005)
36. Chan, T.F., Golub, G.H., LeVeque, R.J.: Updating formulae and a pairwise algo-

rithm for computing sample variances. In: Caussinus, H., Ettinger, P., Tomassone,
R. (eds.) COMPSTAT 1982 5th Symposium Held at Toulouse 1982, pp. 30–41.
Physica-Verlag, Heidelberg (1982)

https://doi.org/10.1007/978-0-387-84858-7

Deriving Formulas for Integer Sequences
Using Inductive Programming

Les De Ridder(B) and Thijs Vercammen

Department of Computer Science, KU Leuven, 3000 Leuven, Belgium
{les.deridder,thijs.vercammen}@student.kuleuven.be

Abstract. Solving integer sequences, correctly predicting the next num-
ber in a given sequence, is a challenging task for both humans and artifi-
cial intelligence. We present a method to derive a formula for an integer
sequence given a subsequence. By splitting the known subsequence into
‘windows’, we can derive constraints in the form of linear combinations,
which can be generalised to find a formula for the complete sequence.
This approach is effective and can compete with existing methods based
on pattern recognition and Artificial Neural Networks with regard to
performance, success rate, and output quality.

Keywords: Integer sequences · Number series ·
Inductive programming · Linear combinations

1 Introduction

Predicting the next number in a given integer sequence, or solving a number
series, is a challenging task for humans, often used in intelligence tests, and for
Artificial Intelligence alike [2].

In this paper we present a method to derive a formula for an integer sequence
when given a known subsequence, by finding appropriate linear combinations
of the given numbers. We use partitions of the given subsequence as learning
examples and induce a formula from the found linear combinations.

Existing solutions for this problem use e.g. functional programming with
pattern recognition to derive a function or program for a sequence [3], or artificial
neural networks to find the next number of a sequence [5].

A valuable resource on integer sequences is the ‘Online Encyclopedia of Inte-
ger Sequences’ (OEIS) [4]. It classifies over 300,000 sequences into various cate-
gories based on importance, difficulty of solving, mathematical properties, etc.

This paper is based on our bachelor’s thesis, and is organised as follows:
we first introduce the problem, next we outline our proposed solution, then we
present an evaluation of our algorithm, and finally we compare our solution to
existing methods.

c© Springer Nature Switzerland AG 2019
M. Atzmueller and W. Duivesteijn (Eds.): BNAIC 2018, CCIS 1021, pp. 16–24, 2019.
https://doi.org/10.1007/978-3-030-31978-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31978-6_2&domain=pdf
http://orcid.org/0000-0002-6457-9117
http://orcid.org/0000-0002-1056-2782
https://doi.org/10.1007/978-3-030-31978-6_2

Deriving Formulas for Integer Sequences Using Inductive Programming 17

2 Problem Statement

The problem that we solve can be described as follows:
Take an integer sequence a with length n1,

(a1, a2, . . . , an−1, an),

given a subsequence of a, find a formula for all ai, with i = 1..n.
This problem is an extension of the problem where given m consecutive

elements of a sequence, starting with the kth element, the (k + m)th element is
searched. By finding a formula for the whole subsequence instead, not only the
next, (k + m)th element can be found, but also any other element.

Our algorithm will in principle only derive recursive formulas for a given
input sequence, expressing ai in terms of ai−1, . . . , a1.

3 Approach

3.1 Windows

To approach this problem, we introduce the concept of windows on sequences.
A window with length w ‘selects’ a subsequence of w consecutive integers of the
input sequence. This window can be moved to create new selections of the input
sequence. For every possible window size, we thus obtain a list of subsequences,
generated by the sliding window.

3.2 Linear Combinations

After partitioning the input sequence by using a sliding window, we make the
assumption that the last number of each window can be written as a linear
combination of the remaining numbers of the window, with the same unknown
coefficients for each window. This way, each ai can be written as a linear com-
bination of ai−1, . . . , a1.

3.3 Feature Vectors

We can find formulas for sequences that can’t be described by simple linear
combinations of numbers in the window by adding extra feature vectors. More
concretely, we take a list of functions as an extra parameter for the input of our
algorithm.

These functions can be operations on numbers of the window, e.g. an expo-
nentiation, the product of the numbers in the window (except the last one), or
the function can be e.g. a constant function.

1 Note that n can often be infinite.

18 L. De Ridder and T. Vercammen

We use the function results as extra terms in the linear combinations, for
which new unknowns are introduced. For a sequence a consisting of numbers
a1, a2, . . . , an, this produces an equation of the form

ai = c1 · ai−1 + c2 · ai−2 + · · · + cw−1 · ai−w+1

+d1 · f(ai−1) + d2 · f(ai−2) + · · · + dw−1 · f(ai−w+1)
+e · g({ai−1, ai−2, . . . , ai−w+1})
+q

Here ci, di and e are the (unknown) coefficients belonging to their respective
terms, f is a function that applies to single numbers in the window, g is a
function that applies to all the numbers in the window and q is a constant.

3.4 Algorithm

We start the algorithm with an initial window size of 2. We calculate the system
of linear equations and solve it with a linear system solver. If we find a solution,
we reconstruct the formula for the integer sequence from the found coefficient
vector, and return the resulting formula. If the system was not solvable, we
increase the window size by 1, we construct the new system and try again. If the
maximally permissible window size is reached and we haven’t found a solution
yet, the algorithm fails.

A description of this algorithm in pseudocode is given in Algorithm 1.

3.5 Limitations

By using the appropriate functions as input for the algorithm, it becomes possible
to find formulas for a significantly larger part of possible input sequences than
without extra feature vectors.

The algorithm is however still limited since it mainly derives recursive for-
mulas. There are integer sequences for which no trivial recursive formula exists
or is known. Furthermore, the computational complexity is dependent on the
calculations of the added functions, which can have a large impact on the run
time of the algorithm (for certain input functions, or for large numbers of input
functions).

Finally, using these extra feature vectors causes the number of columns in the
coefficient matrix to rise. This means that to keep the system determined, the
number of rows in the coefficient matrix has to be higher than in the case where
no extra feature vectors are used. The input sequence therefore has to be longer
when more feature vectors are used simultaneously. When there are insufficient
rows, it’s naturally also possible to choose a solution from the infinite solution
set, but this is unlikely to be the solution that is sought.

Deriving Formulas for Integer Sequences Using Inductive Programming 19

Algorithm 1. Pseudocode of the algorithm presented in Section 3.4
1: � In this pseudocode, we assume all input functions are functions that apply to

all numbers in the window (for brevity).
2:
3: procedure FindFormula(InputSeq, InputFuns)
4: for WinSize ← 2 to Length(InputSeq) do
5: System ← GenerateLinearSystem(InputSeq, WinSize, InputFuns)
6: Solution ← Solve(System)
7: if Solution �= ∅ then
8: Derive Formula from Solution and InputFuns
9: return Formula

10: end if
11: end for
12: return ∅
13: end procedure
14:
15: function GenerateLinearSystem(InputSeq, WinSize, InputFuns)
16: � Ci are the unknown coefficients of our linear combinations.
17: System ← ∅
18: for i ← 1 to Length(InputSeq) − WinSize + 1 do
19: Equation ← InputSeqi+WinSize−1 = C1InputSeqi+C2InputSeqi+1+ · · ·+

CWinSize−2InputSeqi+WinSize−3 + CWinSize−1InputSeqi+WinSize−2

20: for fj in InputFuns do
21: Equation.RHS ← Equation.RHS + Cfjfj({InputSeqi..(i+WinSize−2))}
22: end for
23: System ← System ∪ {Equation}
24: end for
25: return System
26: end function

4 Implementation

For a given input sequence a with length n, window size m, and function values
of the p feature vectors f , a linear system solver is given the coefficient matrix
and the vector of constant terms (last number of each window) as input:

A =

⎡
⎢⎢⎣

a1 · · · am−1 f1,1 · · · fp,1
a2 · · · am f1,2 · · · fp,2
· · · · · · · · · · · · · · · · · ·

an−m+1 · · · an−1 f1,n−m+1 · · · fp,n−m+1

⎤
⎥⎥⎦ , b =

⎡
⎢⎢⎣

am
am+1

. . .
an

⎤
⎥⎥⎦ .

20 L. De Ridder and T. Vercammen

These are used by the solver to solve the matrix equation Ax = b. If a solu-
tion exists, we use the solution vector x to construct a formula for the integer
sequence.

5 Experiments

We benchmarked the performance of our algorithm and implementation using
sequences from the ‘Online Encyclopedia of Integer Sequences’ (OEIS) [4], a
database with over 300,000 classified sequences. For performance reasons, we
trimmed all sequences longer than 16 elements to the first 16 numbers.

For a sequence of n numbers, we run our algorithm on the first n−1 numbers
and calculate the nth number using the formula found by our algorithm. We
consider a found formula for a sequence to be correct if the calculated number
is equal to the nth number in the input sequence.

Note that this doesn’t necessarily mean that a formula found by our algorithm
determines the same sequence as the sequence from the OEIS. For example, some
sequences contain a repetition of the same number as long as or longer than the
input subsequence size. In this case our implementation will derive a constant
function for the sequence. We still consider these cases to be correct because our
implementation finds a correct solution for the input subsequence.

To solve the problem of having too many sequences used at once, described
in Sect. 3.5, we use three sets of feature vectors. When the algorithm does not
succeed at finding a solution with the first set, the second and if necessary the
third set are tried. The first set contains only the constant function. The second
set contains a function that squares all the numbers in the window. The third set
contains a function that returns the position of the last number of the window
in the original input sequence, and the constant function.

5.1 Sequences in OEIS Categories

We test our implementation on sequences from the core, easy, hard, nice, base
and fini categories of the OEIS. Table 1 shows an example sequence for each
used category. For each of these categories we used a sample of 500 sequences,
except for the core category where we used the full set of 174 sequences.

It’s clear from the results (Table 2) that the ability of our algorithm to find
a formula for a given sequence depends on the category of the sequence. As
expected, our implementation was able to find a formula for only 3% of the
sequences in the hard category, mostly sequences with a repetitive start. Our
implementation works better on sequences from the easy category, where it was
able to find a formula for almost a third of the sequences in the sample. In the
core category, with the most important sequences, our implementation can find
a formula for a quarter of the sequences.

Deriving Formulas for Integer Sequences Using Inductive Programming 21

Table 1. Examples of OEIS sequences by category

Category Sequence Description OEIS identifier

core 1, 2, 3, 4, 5, 6, 7, . . . Natural numbers A000027

easy 1, 2, 4, 8, 16, 32, 64, . . . Powers of 2 A000079

hard 2, 3, 5, 7, 13, 17, 19, . . . Mersenne exponents A000043

nice 0, 1, 1, 2, 3, 5, 8, . . . Fibonacci sequence A000045

base 0, 1, . . . , 11, 22, . . . , 101, . . . Palindromes in base 10 A002113

fini 1, 2, 3, 4, 6, 8, 12, 24 Divisors of 24 A018253

Table 2. Results of our algorithm on the OEIS

Category Total Tested Solved Percentage

core 174 174 47 27.01%

easy 74611 500 164 32.80%

hard 6319 500 16 3.20%

nice 6835 500 132 26.40%

base 35369 500 43 8.60%

fini 5977 500 28 5.60%

5.2 Input Length

We now investigate what the effect is of using shorter sequences on our algo-
rithm’s ability to solve them. We run our implementation on sequences of the
core category, shortened to first 2, then 3, then 4, . . . input numbers. The results
are shown in Fig. 1.

When the input sequence has a length of 2 or 3, our algorithm can often find
a correct third or fourth number because a lot of the sequences have a trivial
start. Afterwards, when the sequences start to show complexity, the number
of sequences for which our algorithm can find a formula drops quickly. This
is because the window cannot be shifted enough for short sequences. When the
input gets a bit longer, the window can be shifted more times and more formulas
can be found again.

Furthermore the number of sequences for which we can successfully find a
formula fluctuates mildly. This is a consequence of solutions that are correct for
the next number in the sequence, but not for the numbers after it.

22 L. De Ridder and T. Vercammen

2 4 6 8 10 12 14

50

60

70

80

Input sequence length

Fo
rm

ul
as

fo
un

d

Fig. 1. Number of sequences for which a formula can be found per sequence length

5.3 Feature Vectors

Table 3 shows the number of sequences from the core category for which a formula
can be found when only one particular feature vector gets used and when all three
feature vectors get used at the same time.

Note that only 43 sequences are found when all feature vectors get used at the
same time, compared to 47 in the previous results. This illustrates the problem
with using too many feature vectors described in Sect. 3.5.

Interesting is that the algorithm can find multiple formulas for the same
sequence, depending on the feature vectors used. A simple example of this is the
sequence of natural numbers, (1, 2, 3, 4, 5, 6, . . .), which has the solution {an =
−an−2 + 2× an−1} without feature vectors, but the solution {an = −an−1 + 1}
with the constant function as a feature vector.

Table 3. Number of solved sequences from the core category of the OEIS per feature
vector

Feature Sequences solved

None 38

Constant 39

Square 41

Position in sequence 43

All 43

Deriving Formulas for Integer Sequences Using Inductive Programming 23

6 Comparison with Other Methods

6.1 MagicHaskeller

An earlier method [1] uses a functional method with an analytical gener-
ate and test approach, implemented in MagicHaskeller. A set of twenty self
made sequences with a length of 5 to 7 numbers each was used to test the
MagicHaskeller implementation. This implementation succeeded in finding a
formula for 8 out of 20 sequences with an execution time varying from a few
milliseconds to several dozens of seconds.

In the first test, our implementation succeeded in finding a formula for 13
sequences. Our algorithm had issues with ‘alternating’ sequences: sequences
that alternate between two or more operations on the previous number. These
sequences need a relatively large window to be described with a recursive formula
and with a sequence length of 5 to 7 numbers, our algorithm can’t move the win-
dow enough to generate the necessary equations. We extended these sequences
to 10 numbers and this time, our implementation succeeded in finding a formula
for 17 out of 20 sequences with a total execution time of 2.5 s.

6.2 IGOR

Another functional method [3], named IGOR, generates Haskell programs via
pattern recognition. A self-made set of 20 sequences was used here as well, each
with a length of 5 numbers. The IGOR implementation succeeded in generating
a program for 13 sequences, with an execution time of maximum 1 h and 25 min
per sequence.

Our implementation had once again a problem with alternating sequences
and was only able to find a formula for 10 sequences at first. After extending
the sequences, our implementation was able to find a formula for 14 out of 20
sequences with a total execution time of 2 s.

6.3 Neural Networks

Artificial Neural Networks (ANN) have also been used to solve integer
sequences [5]. Both a set of 20 self-made sequences with a length of 5, as well
as a subset of 57.000 integer sequences from the OEIS were used to benchmark
the ANN implementation. Out of the set of 20, the neural network was able to
predict the next number for 17 of the sequences.

Our implementation was able to find a formula for 16 of the sequences initially
and 18 after extending the sequences to 10 input numbers.

Out of the set of 57.000 sequences, the best neural network could find the
next number for almost 13.000 sequences. All generated neural networks together
could predict the correct next number for almost 27.000 sequences. We cannot
make a direct comparison because we don’t know which sequences of the OEIS
they used, but judging from the poor performance of our implementation in

24 L. De Ridder and T. Vercammen

some categories, we can conclude that our implementation is worse than the
ANN approach at finding the next number in a sequence.

Important to note is that the neural network only finds the next number and
not a formula or program like our algorithm and the methods discussed above.
Furthermore, a neural network needs to be trained before it can be used to solve
sequences.

7 Further Work

Further research can focus on better usage and selection of feature vectors. Our
experiments used only a small number of feature vectors and because the feature
vectors are the results of mathematical functions, there is a lot of room for
improvement here.

8 Conclusion

Our method is able to find formulas for integer sequences with some success.
The chance of success is largely dependent on the type of sequence and the
relationship between the length of the given sequence and the minimal window
size. The used feature vector functions also play an important role in finding
formulas. The method is extensible via feature vectors which means the chance of
success can be increased by using the right feature vector for the given sequence.

Our method can compete with existing methods with regard to performance,
success rate, and output quality.

Acknowledgements. We would like to thank our supervisor Prof. Luc De Raedt for
his guidance and support during our bachelor’s thesis.

References

1. Düsel, M., Werner, A., Zeißner, T.: Solving number series with the MagicHaskeller.
Technical report, University of Bamberg (2012)

2. Hernández-Orallo, J., Mart́ınez-Plumed, F., Schmid, U., Siebers, M., Dowe,
D.L.: Computer models solving intelligence test problems: progress andimplica-
tions. Artif. Intell. 230, 74–107 (2016). https://doi.org/10.1016/j.artint.2015.09.
011. http://www.sciencedirect.com/science/article/pii/S0004370215001538

3. Milovec, M.: Applying inductive programming to solving number series problems.
Master’s thesis, University of Bamberg (2014)

4. OEIS Foundation Inc.: The Online Encyclopedia of Integer Sequences (2018).
https://oeis.org/

5. Ragni, M., Klein, A.: Predicting numbers: an AI approach to solving number series.
In: Bach, J., Edelkamp, S. (eds.) KI 2011. LNCS (LNAI), vol. 7006, pp. 255–259.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24455-1 24

https://doi.org/10.1016/j.artint.2015.09.011
https://doi.org/10.1016/j.artint.2015.09.011
http://www.sciencedirect.com/science/article/pii/S0004370215001538
https://oeis.org/
https://doi.org/10.1007/978-3-642-24455-1_24

All or In-cloud: How the Identification
of Six Types of Anomalies Is Affected

by the Discretization Method

Ralph Foorthuis(&)

UWV / Heineken, Amsterdam, The Netherlands
ralphfoorthuis@gmail.com

Abstract. Anomaly detection is the process of identifying cases, or groups of
cases, that are in some way unusual and do not fit the general patterns present in
the dataset. Numerous algorithms use discretization of numerical data in their
detection processes. This study investigates the effect of the employed dis-
cretization method on the unsupervised detection of each of the six anomaly
types acknowledged in a recent typology of data anomalies. To this end,
experiments are conducted with various datasets and SECODA, a general-
purpose algorithm for unsupervised non-parametric anomaly detection in data-
sets with numerical and categorical attributes. This algorithm employs dis-
cretization of continuous attributes, exponentially increasing weights and
discretization cut points, and a pruning heuristic to detect anomalies with an
optimal number of iterations. The empirical results of experiments with syn-
thetic and real-world data demonstrate that standard SECODA can detect all six
types, but that different discretization methods favor the discovery of certain
anomaly types. These main findings also hold for other detection techniques
using discretization.

Keywords: Anomaly detection � Outlier detection � Deviants � SECODA �
Data mining � Typology � Discretization � Binning � Concatenation trick �
Anomaly types � Classification

1 Introduction

The task of anomaly detection (AD) refers to identifying cases, or groups of cases, that
are in some way unusual and do not fit the general patterns present in the dataset [1–3].
The detection of anomalies, which are often also referred to as outliers, deviants or
novelties, is a major research topic in the overlapping disciplines of artificial intelli-
gence [4–6], data mining [7–9] and statistics [10–12]. It is not merely of interest for
academia, however, as it is also of significant value in industrial practice nowadays [13,
14, 36]. Anomaly detection can be used for discovering fraud, data quality issues,
security threats, process and system failures, and deviating data points that hamper
model training.

Many techniques for detecting anomalies have been devised throughout the years.
The field of statistics traditionally focused mainly on parametric methods for discovering
univariate outliers in each attribute (variable) separately [cf. 1, 12, 15]. Distance- and

© Springer Nature Switzerland AG 2019
M. Atzmueller and W. Duivesteijn (Eds.): BNAIC 2018, CCIS 1021, pp. 25–42, 2019.
https://doi.org/10.1007/978-3-030-31978-6_3

http://orcid.org/0000-0003-1132-4767
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31978-6_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31978-6_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31978-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-31978-6_3

density-based techniques were consequently developed, allowing for non-parametric
multidimensional data mining [16–18]. Another group of methods comprises complex
non-parametric models, such as one-class support vector machines, ensembles and
various subspace methods [19–21]. Other approaches employ reconstruction techniques
or information-theoretic concepts such as entropy and Kolmogorov complexity [22, 23].
Some solutions focus on individual cases (data points) [e.g. 16, 17, 25], whereas others
aim to detect groups or substructures [e.g. 8, 23]. Discretization of continuous (numer-
ical) attributes is a technique used in many of the AD approaches, e.g. for improving
accuracy and time performance of the algorithms [24–28].

SECODA is an algorithm for unsupervised non-parametric anomaly detection in
datasets with continuous and categorical attributes [25, 29]. It bears similarities with, i.
a., density-based AD solutions and ensembles. SECODA employs discretization of
numerical attributes, exponentially increasing weights and discretization cut points, as
well as a pruning heuristic to detect anomalies with an optimal number of iterations. Its
rich form of discretization makes it well-suited for this paper’s experimentation.

This study investigates the effect of the discretization method on the unsupervised
detection of each of the six anomaly types acknowledged in a recent typology of data
anomalies [3]. The experimental results not only demonstrate that SECODA, using its
standard settings, is able to detect all six anomaly types, but also that different dis-
cretization methods clearly favor the discovery of different anomaly types. Moreover,
the main results, as summarized in Tables 2 and 3, also hold for other techniques using
discretization.

This paper proceeds as follows. Section 2 presents the necessary theoretical
background. Section 3 discusses the experiments that have been conducted with sev-
eral synthetic and real-world datasets. Section 4 is for conclusions.

2 Theoretical Foundations

This section presents a summary of the typology of anomalies, a brief overview of
discretization theory, and an explanation of the SECODA algorithm.

2.1 Typology of Anomalies

The typology of data anomalies presented in [3] offers a theoretical and tangible
understanding of the nature of different types of anomalies, assists researchers with
systematically evaluating the functional capabilities of anomaly detection algorithms,
and as a framework aids in analyzing the nature of data, patterns and anomalies. The
typology uses two fundamental and data-oriented dimensions:

• Types of Data: The data types of the attributes that are involved in the anomalous
character of a deviant case. These can be continuous (numerical, e.g. height or
temperature), categorical (code- or class-based, e.g. color or blood type) or mixed
(when both types are involved).

• Cardinality of Relationship: The way in which the various attributes relate to each
other when describing anomalous behavior. When no relationship between the

26 R. Foorthuis

variables exists to which the anomalous character of the deviant case can be
attributed, the relationship is said to be univariate. It follows that the analysis can
assume independence between the attributes. On the other hand, when the deviant
behavior of the anomaly lies in the relationships between its variables, i.e. in the
combination of its attribute values, then the relationship is said to be multivariate.
This means the variables need to be analyzed jointly, not separately, in order to
account for the relationships between them.

These two dimensions naturally and objectively yield six basic types of anomalies.
Although the typology can be used to describe aggregate anomalies (a group of cases
that deviates), the focus in this study is on individual data points. The anomaly types
are described below (note: the reader might want to zoom in on a digital screen to see
colors, patterns and data points in detail).

• Type I - Extreme value anomaly: A case with an extremely high, low or otherwise
rare (e.g. isolated intermediate) value for one or several individual numerical
attributes. This type of outlier is typically considered in traditional univariate
statistics, e.g. by using a measure of central tendency plus or minus 3 times the
standard deviation or the median absolute deviation. Examples of Type I anomalies
are the Ia and Ib cases in Fig. 2A.

• Type II - Rare class anomaly: A case with an uncommon class value for one or
several individual categorical variables. Such values can be few and far between or
truly unique (i.e. occur only once). An example of a Type II anomaly is the IIa case
in Fig. 2B, which is the only square shape in the set.

Types of Data

Continuous
attributes

Categorical
attributes

Mixed
attributes

Ca
rd

in
al

ity
 o

f R
el

at
io

ns
hi

p

U
ni

va
ria

te Type I

Extreme value
anomaly

Type II

Rare class
anomaly

Type III

Simple mixed
data anomaly

M
ul

tiv
ar

ia
te Type IV

Multidimensional
numerical anomaly

Type V

Multidimensional
rare class anomaly

Type VI

Multidimensional
mixed data anomaly

Fig. 1. The typology of anomalies.

All or In-cloud: How the Identification of Six Types of Anomalies 27

• Type III - Simple mixed data anomaly: A case that is both a Type I and Type II
anomaly, i.e. with at least one extreme value and one rare class. This anomaly type
deviates with regard to multiple data types. This requires deviant values for at least
two attributes, each anomalous in their own right. These can thus be analyzed
separately. Analyzing the attributes jointly is not necessary because, like Type I and
II anomalies, the case is not deviant in terms of a combination of values. An
example of a Type III anomaly is the IIIa case in Fig. 2B, a unique shape at an
extreme numerical position.

• Type IV - Multidimensional numerical anomaly: A case that does not conform to the
general patterns when the relationship between multiple continuous attributes is
taken into account, but that does not have extreme or isolated values for any of the
individual attributes that partake in this relationship. The anomalous nature of a case
of this type lies in the deviant or rare combination of its continuous attribute values.
Detection therefore requires several numerical attributes that are analyzed jointly.
An example of a Type IV anomaly is the IVa case in Fig. 2A.

• Type V - Multidimensional rare class anomaly: A case with a rare combination of
class values. A minimum of two categorical attributes needs to be analyzed jointly
to discover a multidimensional rare class anomaly. An example is this curious
combination of values from three attributes used to describe dogs: ‘MALE’, ‘PUPPY’
and ‘PREGNANT’. Another example is the Va case in Fig. 2B, which is the only red
circle in the set.

Va

IIa

IIIa

IVa
Ia

Ib

(a) (b)

Fig. 2. (A) Mountain dataset with 3 numerical attributes; (B) ClassCircle dataset with two
numerical attributes and two categorical attributes (color and shape). (Color figure online)

28 R. Foorthuis

• Type VI - Multidimensional mixed data anomaly: A case with a deviant relationship
between its continuous and categorical attributes. The anomalous case generally has
a categorical value or a combination of categorical values that in itself is not rare in
the dataset as a whole, but is only rare in its neighborhood (numerical area) or local
pattern. As with Type IV and V anomalies, multiple attributes need to be jointly
taken into account to identify them. In fact, multiple datatypes need to be used, as a
Type VI anomaly per definition requires both numerical and categorical data.
Examples of Type VI anomalies are the VIa cases in Fig. 6A, seemingly misplaced
green cases amongst an overwhelmingly red data cloud.

The value of this typology lies not only in providing both a theoretical and tangible
understanding of the types of anomalies one can encounter in datasets, but also in its
ability to help evaluating which type of anomalies can be detected by a given algorithm
– or a given configuration of an algorithm. See [3, 25] for more examples of anomalies.

2.2 Discretization

The task of discretization refers to partitioning a continuous attribute into a limited
number of sub-ranges (intervals) in order to obtain a categorical data type [27, 28, 30].
Discretization is used regularly in artificial intelligence, as numerous machine learning
and data mining algorithms require a categorical feature space [7, 27, 28, 30].
Examples of algorithms where discretization plays a crucial role are decision trees,
random forests, Bayesian networks, naive Bayes and rule-learners. Discretization also
plays an important role in anomaly detection [cf. 24, 25, 26]. Apart from the fact that
techniques may require categorical data, discretization has been shown to improve the
accuracy, time performance and understandability of analysis methods [27, 28, 30].

The term arity refers to the resulting number of intervals or partitions. Several
methods allow to set this number b before running the discretization process. The range
of a continuous variable is divided into intervals by b − 1 cut points. An individual cut
point or split point is a real value at the position where an interval boundary is located,
dividing the range into two intervals.

Discretization methods can be supervised, taking into account the training set’s
class label that ultimately needs to be predicted, or unsupervised, thus not taking into
account a dependent variable. Two main unsupervised discretization methods exist,
both of them often referred to as binning [7, 26, 27, 31]. Equiwidth discretization refers
to equal interval binning. This method divides the range of an attribute’s observed
continuous values into b bins of the same value interval. The second method is
equidepth discretization, which refers to equal frequency binning and divides a con-
tinuous attribute into b bins that each contain the same number of cases. In both
methods b is provided as input to the discretization function. The two discretization
techniques have been used for anomaly detection [e.g. 24, 25, 26].

Discretization methods can be characterized in several ways [28, 30, 31]. Binning
techniques can be global or local, albeit both unsupervised methods employed in this
study are global. This means that they use the entire value space for partitioning,
independently of the characteristics of local regions. Methods can also be direct or
incremental, with the latter referring to techniques that pass through the data several

All or In-cloud: How the Identification of Six Types of Anomalies 29

times to arrive at an optimal discretized attribute. The equiwidth and equidepth
methods are direct, meaning that they require only one pass. Finally, both binning
methods discretize the data for each attribute separately, so these binning solutions do
not take into account any relationships between the variables.

2.3 SECODA

SECODA, an abbreviation for segmentation- and combination-based detection of
anomalies, is a general-purpose algorithm for unsupervised anomaly detection in
datasets with mixed data [25, 29, 40]. The algorithm is non-parametric in nature and
therefore does not assume any specific data distribution. It investigates the joint dis-
tribution to discover high-density patterns and low-frequency deviations in the dataset,
taking into account any relationship that may exist between the attributes. To this end,
SECODA iteratively searches the dataset until the cases have been scrutinized with
sufficient detail.

SECODA is guaranteed to identify cases with unique or very rare combinations of
attribute values. The algorithm uses the histogram-based approach to assess the density
of each combination (or “constellation”) of categorical and continuous attribute values.
The concatenation trick, which combines categorical and discretized continuous attri-
butes into a new constellation feature, is used to analyze different data types in a joint
fashion. In conjunction with recursive binning this captures complex relationships
between attributes. In subsequent iterations SECODA uses increasingly narrow dis-
cretization intervals in order to add more detail and precision to the analysis and
identify more subtle anomalies. The distance between data points in numerical space is
implicitly accounted for by this iterative binning process. A pruning heuristic as well as
exponentially increasing weights and arity are employed to speed up the analysis. The

Fig. 3. (A) The large black dots represent the top 45 anomalies of the Mountain set resulting
from equiwidth binning; (B) The top 45 anomalies from equidepth binning.

30 R. Foorthuis

increasing arity (providing more localized details) and weights (allowing for optimally
combining the results obtained from different iterations) also help to avoid dis-
cretization error and detection bias.

Note that recursive discretization is not employed by SECODA to find a single,
optimal value for the arity parameter b, because it exploits the information from all
binning iterations. Put differently, SECODA is an algorithm that recursively collects
and uses the information from a discretization method that is itself applied in each
iteration in a direct (instead of incremental) manner. The input parameter b is thus not
provided by the user, but repeatedly by SECODA until a stopping criterion is reached.

The SECODA approach has several favorable properties. It is a relatively simple
algorithm that does not require expensive point-to-point calculations. Only basic data
operations are used, making it suitable for sets with large numbers of rows and for in-
database analytics and machines with relatively little memory. The algorithm scales
linearly with dataset size, and for extremely large sets a longer computation time is
hardly required because additional iterations would not yield a meaningful gain in
precision. An exploratory AD analysis could limit the runtime by simply setting a
maximum of e.g. 10 iterations, which for very large sets can be expected to be faster
than point-to-point algorithms. The technique can also easily be implemented for
parallel processing architectures. All kinds of relationships between attributes are taken
into account, such as (non)linear associations, interactions, collinearity and relations
between variables of different data types. Although SECODA is vulnerable to the curse
of dimensionality, general techniques such as feature bagging and random projection
can be applied to deal with this. Missing values are automatically handled as one would
functionally desire in an AD context, with only very rare missing values being con-
sidered anomalous. Finally, the pruning heuristic is a self-regulating mechanism during
runtime, dynamically deciding how many cases to discard. After converging the
algorithm returns a score vector so that each case gets assigned a degree of anoma-
lousness, with lower scores representing more deviant occurrences.

SECODA has been evaluated in an academic context and has been used in practice
as well to discover anomalies in the Polis Administration, an official register main-
taining masterdata regarding the salaries, social security benefits, pensions and income
relationships of people working or living in the Netherlands [25, 37, 40]. The evalu-
ation involved applying the algorithm to various synthetic and real-world datasets.
Using ROC and PRC curves, as well as AUC and partial AUC metrics, it was
demonstrated that this AD solution is able to successfully detect a wide variety of
anomaly types. It has also been shown that the algorithm has low memory requirements
and scales linearly with dataset size. SECODA has not been tested on all six types of
anomalies, as the full typology was published later. Section 3 will demonstrate that the
algorithm is indeed able to detect all types, and is therefore well-suited for experiments
studying the effects of discretization on the detection of these types.

SECODA can be downloaded for free as a package for the R environment (see
Remarks). The implementation offers various options, such as the minimum and
maximum number of iterations, a pruning parameter, and the iteration after which the
heuristics should start to run. These options generally have trivial consequences and are
mainly intended to tweak the amount of analysis detail and running time, so the
standard settings normally suffice. This is desirable because algorithms for data mining

All or In-cloud: How the Identification of Six Types of Anomalies 31

are ideally parameter-free in order to discover the true patterns and deviations in a
simple and objective fashion [23, cf. 18]. On the other hand, however, it is widely
acknowledged that the world – and therefore the datasets that it produces – is extremely
complex, and that no single algorithm or algorithm setting is thus able to perform
excellent in all situations [18, 32–34]. This also holds in the context of anomaly
detection [35, 36] and discretization [30]. Section 3 therefore investigates the effect of
the binning method, another parameter that the analyst can set before running
SECODA, on detecting the different types of anomalies defined in Sect. 2.1.

3 Empirical Experiments

3.1 Research Design and Datasets

This study uses several synthetic and real-world datasets to investigate whether and
how the discretization method affects the detection of the various anomaly types. The
simulated datasets are labelled, which makes them suitable for verifying whether AD
algorithms can readily detect the anomalies. The real-world dataset, drawn randomly
from the aforementioned Polis Administration and anonymized subsequently, is
unlabeled. The sets are described in Table 1 and are visually depicted in Figs. 2, 3, 4,
5, 6 and 7. See the Remarks for download options. The R environment 3.4.3, RStudio
1.1.383, SECODA 0.5.3 and rgl 0.98.22 were used to generate the synthetic datasets
and conduct the experiments. SECODA’s heuristics for speeding up the analysis (e.g.
pruning, which in a standard configuration starts being applied after 10 iterations) were
not used in order to ensure maximum precision of the results.

Although the multivariate anomaly types can be used to describe aggregate
anomalies – i.e. a group of related cases that deviates as a whole [3] – this study will
focus solely on deviants that are atomic, single cases in independent data. The reason
for this is that detecting grouped anomalies generally requires special-purpose
approaches.

Table 1. Datasets used for experiments.

Dataset Nature Datatypes # Cases Types of anomaly

ClassCircle Simulated 2 num, 2 categ 422 Type II, III, V
Mountain Simulated 3 numerical 943 Type I, IV
NoisyMix Simulated 3 num, 2 categ 3867 Type II, VI
Sword Simulated 2 num, 1 categ 7024 Type II, III, VI
Helix Simulated 3 num, 1 categ 1410 Type I, IV, VI
Polis dataset Real-world 3 num, 1 categ 304726 Type I, II, IV, VI

32 R. Foorthuis

3.2 Results and Discussion

In the first series of experiments the five simulated datasets were used to study whether
SECODA was able to identify the six types of anomalies presented in Sect. 2.1. Note
that [25] was not able to evaluate the algorithm on all six types because the full
typology of [3] had not been developed at the time. The standard configuration of
SECODA employs equiwidth binning and was indeed able to detect all types of
anomalies. The subsequent series of experiments involved running SECODA with the
non-standard equidepth setting to investigate what types of anomalies were identified in
this fashion and how this compared to equiwidth AD.

With regard to a univariate analysis of a single numerical attribute, it is evident that
the equiwidth setting is the preferred and basically only sensible option. This setting is
able to detect isolated Type I cases, both extremely large or small values and rare
intermediate data points. The equidepth setting, even though many discretization
iterations were generally required before converging, was not able to detect these
obvious anomalies and resulted in all cases getting a very high and non-discriminating
score. This can be easily explained by the nature of equidepth discretization, since
every bin gets assigned the same number of cases (although slight differences in
frequency might occur if the set cannot be split evenly). SECODA’s repeated binning
with increasingly narrow intervals does not change this fact.

For the Mountain set with multiple numerical attributes the equiwidth setting was
also found to be the superior choice, as it was readily able to detect the 3 labelled
Type I and IV anomalies. Furthermore, the other cases with a low score also made
sense, as they were all relatively isolated cases at the fringe of the data cloud. With the
equidepth setting only 1 of the 3 labelled anomalies were detected (the Type IV case of

Fig. 4. Two attributes of the Mountain set analyzed with (A) equiwidth binning and
(B) equidepth binning. It is clear the bins (intervals) are very different.

All or In-cloud: How the Identification of Six Types of Anomalies 33

Fig. 2A). In addition, most of the other low-score equidepth results were positioned in
the middle of the data cloud, seemingly without a good reason why these should be
considered more anomalous than other data points. The difference between the two
binning methods is illustrated by Fig. 3A on the left depicting the 45 most anomalous
cases found by equiwidth binning, which are mostly outlying and include the 3 labelled
anomalies, and Fig. 3B showing the 45 lowest-score cases, which are mainly posi-
tioned in the high-density center of the data cloud. (Note that the aforementioned 3 true
anomalies, which can be clearly seen in Fig. 2A, are not visible from this angle.)

Figure 4 illustrates the difference between the two discretization methods even
more clearly, showing also how the cut points result in very different constellations
(multi-dimensional segments of the data). Note that the cut points and resulting con-
stellations are the result of a single discretization run, and thus only illustrate a part of
the AD process. The large black dots represent the top 50 anomalies identified by the
algorithm after 10 (equiwidth) and 13 (equidepth) iterations, analyzing two of the set’s
attributes. The equiwidth AD results represent the most isolated points, often at the
fringes of the data cloud, and as such make sense. The equidepth run detects the
Type IV anomaly as one of the most extreme cases, but also yields many meaningless
false positives at the center of the cloud. This will be explained in more detail later.

When disregarding the categorical attributes in the Helix and NoisyMix sets, the
results are very similar. Type IV anomalies can be detected relatively well by equidepth
binning, albeit with more false positives. Type I deviants are not detected, although
they may be found if they have extreme values for multiple numerical attributes and
thus are anomalous with regard to the combination of these values. Figure 5 illustrates
a single equidepth binning iteration for the NoisyMix set, with large black dots rep-
resenting the identified anomalies. Due to the slightly different data distribution the
lowest-score cases are positioned around the dense data cloud, rather than at the center
of it.

Fig. 5. Equidepth binning for the NoisyMix shown in 2D and 3D.

34 R. Foorthuis

In short, the equidepth setting is most certainly not suitable for AD analysis of
univariate numerical vectors (hosting Type I cases) and is reasonably equipped for
dealing with multivariate numerical sets (hosting Type IV cases). Equiwidth binning
yields more meaningful results as it directly targets the numerically isolated cases.

When analyzing a dataset containing only categorical attributes, the discretization
method does not in any way influence the results. This is entirely to be expected, as
discretization of continuous data should not affect a purely categorical analysis. The
binning method provided by the analyst as an input parameter to the algorithm is
simply irrelevant in this situation. Tests on several datasets indeed confirm this when
running the algorithm with the two settings. In sets with mixed data both numerical and
categorical attributes are present, and the returned scores of the two discretization

VIa

VIb

ROC AUC (full): 88.7359910%
ROC pAUC (100 - 90%): 81.8234763%
ROC pAUC (100 - 95%): 78.5991345%
ROC pAUC (100 - 99%): 62.1481883%

ROC AUC (full): 99.6415567%
ROC pAUC (100 - 90%): 98.1134564%
ROC pAUC (100 - 95%): 96.3236587%
ROC pAUC (100 - 99%): 85.7432526%

(a)

(b)

(c)

Fig. 6. From top to bottom: (A) The top 50 anomalies (black circles) of the Sword set from
equiwidth binning; The (B) top 5 and (C) top 50 anomalies from equidepth binning. (Color figure
online)

All or In-cloud: How the Identification of Six Types of Anomalies 35

methods can be expected to be different. However, the effect depends on the type of
anomaly and the distribution of the data. Truly unique Type II or III univariate class-
based anomalies will be recognized as unique, regardless of the binning method, and
get assigned the lowest score possible. The same holds for unique combinations of
classes, i.e. Type V cases. Experiments with the datasets that contain categorical data
confirmed this as well, with SECODA returning the lowest anomaly score for such
unique cases with both methods. However, when the Type II, III or V anomalies are
rare in the dataset (rather than truly unique), the numerical data may influence the
score. This can be expected because the rare cases can be close or distant neighbors and
also ‘compete’ with e.g. very isolated Type I and VI deviants. However, regardless of
the binning method one would still expect these anomalies to be identified, returning
relatively low anomaly scores for such cases. This is confirmed as well, although with
some interesting differences between the two discretization methods (see below).

The binning method possibly has the most interesting impact on the detection of
Type VI anomalies. These do not feature truly (globally) unique classes, because these
classes are common in other areas of the numerical space. The detection of these local
anomalies may therefore very well be affected by the discretization technique, an
expectation that was confirmed by the experiments. In several datasets it was observed
that equidepth binning often yields superior results when the goal is to detect Type VI
anomalies. This is illustrated by Fig. 6A at the top, where it can clearly be seen that the
equiwidth analysis results in a variety of anomalies. However, due to the nature of the
Sword dataset, which contains many numerically isolated cases, most of the top 50
anomalies are Type I and IV outliers. The Type II and III anomalies are also detected,
but the Type VI anomalies less so. The equidepth analysis presented in Fig. 6B and C
results in quite different cases being denoted as most extreme anomalies. It can be seen
that the top 5 cases are mostly Type VI anomalies, which are located in dense (rather
than sparsely populated) regions of the space. The Type II case at height 805 and the
Type III case at the far right of Fig. 6B are truly unique classes due to their color and
are therefore regarded as highly anomalous by both binning methods. Rare (as opposed
to truly unique) Type II and V anomalies, which can but do not have to be isolated, are
also detected more readily with equidepth binning when not located in low-density
areas. Equiwidth binning will acknowledge a handful of neighboring rare classes (i.e. a
very small ‘cluster’) as moderately anomalous, regardless of whether they lie inside or
outside the data cloud. This is due to the fact that they are not truly unique. Equidepth
binning, on the other hand, will recognize them as highly anomalous if they lie within
the cloud, but not if they lie outside it (see the five detected purple cases in the middle
of Fig. 6C). Figure 6 also shows the ROC AUC and 3 specificity partial AUCs for the
specific task of detecting the in-cloud high-density anomalies (not the numerically
isolated cases). In short, equiwidth discretization is well-equipped for detecting all
anomaly types, including isolated occurrences. Equidepth binning, although more
vulnerable to yielding false positives, is relatively well-equipped for detecting Type VI
and in-cloud Type II and V anomalies.

To further investigate these findings, SECODA was used to analyze a sample from
the aforementioned real-world Polis dataset. A similar effect was observed here. Fig-
ure 7A on the left illustrates the results of AD with equiwidth binning, which yielded a
wide variety of anomalies, including many isolated cases. Figure 7B shows the results

36 R. Foorthuis

of AD with equidepth discretization, with the most extreme anomalies found to be
positioned in the center’s high-density area. Both figures also have a zoomed-in view at
the bottom, where the difference can be seen in more detail for each binning method.

At this point it is valuable to discuss the reasons why equiwidth and equidepth
discretization yield different results in an AD context. In general, equiwidth binning
performs better in terms of overall functional performance, i.e. the capability to detect a
wide variety of meaningful anomalies. The reason for this is that equiwidth binning (or
at least a single binning run with only one value for b) uses fixed value intervals,
resulting in isolated Type I, III and IV cases to be placed in near empty bins. This also
holds when an algorithm such as SECODA repeatedly discretizes the continuous
attributes using many values for b during the analysis, thus creating few bins in early
iterations and many bins in later iterations (the recursive binning ensures that more
distant anomalies get lower scores). It is known from the literature that data analysis
with equiwidth binning is sensitive to outliers, a property that is usually seen as a
disadvantage [7, 27, 28, 31]. However, in the context of anomaly detection this sen-
sitivity can be exploited, resulting in relatively easy detection of sparse data by iso-
lating them in separate bins. Equidepth binning, on the other hand, fails this detection
of isolated cases, since the value ranges of the bins are stretched so as to fill them with
an equal amount of data points. For example, in a typical Gaussian distribution the
discretization intervals at the tails will be very wide because these regions are sparsely

Fig. 7. (A) The large dots represent the 40 most extreme anomalies of the Polis set detected by
equiwidth binning (the bottom is zoomed-in); (B) The top 40 anomalies from equidepth binning

All or In-cloud: How the Identification of Six Types of Anomalies 37

populated and the bins have to be filled with a given amount of cases. Moving inwards
to the mean of the Gaussian distribution the bins will get narrower. The consequence is
that univariately numerically isolated cases are not detected, as the focus is then on the
categorical abnormality and – in case of multivariate analysis – on the combination of
values from multiple attributes. Compared to equiwidth binning this results in (uni-
variate) low-density cases getting assigned relatively high SECODA scores and non-
isolated deviant cases relatively low scores.

Moreover, in the narrow intervals used for univariate high-density areas, the class
values of Type II, V or VI cases will be quickly (i.e. with a relatively low value for b)
unique in its bin, even if the case is not located very distantly from the cases with a
similar color. In Fig. 6, for example, the red Type VI anomalies somewhat left from
value 20 are not located very far from the large amount of normal red cases that can be
seen from value 20 and up. With equidepth binning the discretization intervals in that
region of the variable plotted on the horizontal axis will be very narrow, resulting in
earlier separation and therefore detection of these anomalies than would be the case
with equiwidth binning.

It was mentioned above that equidepth binning recognizes several neighboring rare
classes (referred to as the very small ‘cluster’) as very anomalous if they lie within the
rest of the data cloud, but not if they lie isolated. This can be explained by the same
reason: within the dense parts of the data cloud the discretized value intervals are
narrower, so rare classes are recognized with a lower arity b than with equiwidth
discretization. This means they get detected earlier and are denoted as more anomalous.

Equidepth binning in an AD context thus scrutinizes the dense regions of the
distribution in more detail (if these regions can be detected univariately). This method
of discretization disregards tail and intermediate data points that are isolated in
numerical space. Instead, when a multivariate analysis is conducted, the focus will be
on uncommon class values and rare combinations of (continuous and categorical)
attribute values. Equidepth discretization thus ignores univariately isolated cases and,
more so than equiwidth analysis, has a propensity to detect anomalies that lie amongst
other data points. It favors detecting cases that w.r.t. numerical attributes are located in
univariate high-density regions. The discretization process, which handles individual
attributes, will place cases that are located in univariate high-density regions in very
thin univariate bins, i.e. in narrow value intervals. If these cases are also located in the
univariate high-density ranges of other attributes, the multidimensional intersection will
thus yield relatively low-density, sparsely populated constellations. In a purely
numerical dataset this property will denote as anomalies both Type IV cases (true

Table 2. Underlying reason for discriminating between regular and anomalous data points.

Underlying reason for discriminating EW ED

Categorical data with an unbalanced class distribution is present U U

Bins get scarcely filled with isolated points U �
Combinations of numerical and/or categorical values yield infrequent
occurrences

U U

38 R. Foorthuis

deviants) and points in or around the densest areas of the data cloud (often false
positives, but sometimes interesting subtle deviants). Figure 4B clearly illustrates this
mechanism, by showing that very dense regions have very small segments or con-
stellations, which then may happen to contain relatively few cases. These arguments
holds both for one-time discretization and the iterative binning of SECODA. For mixed
data this works well for discovering Type VI anomalies, as well as for Type II and V
cases located in high-density areas.

Table 2 succinctly states why equidepth binning can discriminate between normal
and anomalous cases. It is not because bins get scarcely filled with isolated points,
because all bins are filled with an equal amount of cases. Rather, it is because cate-
gorical data with an unbalanced class distribution is present or because the combi-
nation of numerical and/or categorical values yields infrequent occurrences.
Equiwidth binning, on the other hand, utilizes all these three discriminating properties.

Table 3 summarizes the findings for each anomaly type. The Impact? column refers
to whether there exists a direct impact of using equidepth (ED) instead of equiwidth
(EW) binning for the anomaly type. The Useful? column denotes whether equidepth
binning can be useful in some situations for detecting the given type.

These main conclusions also hold for single, non-iterative binning operations, e.g.
using only 7 intervals to discretize each continuous attribute. However, the recursive
binning of SECODA accounts for the distance between data points and is thus able to
take this into account to calculate the degree of deviation. A single discretization run,

Table 3. Impact of discretization method on detection of anomaly types.

Type Impact? Useful? Explanation

I Y N ED cannot discriminate between the univariate numerical
values and is intrinsically not equipped to detect this type

II N/Y Y ED is identical to EW when analyzing a single categorical
attribute. It can be more useful than EW if the goal is to
detect (non-unique) rare Type II anomalies in numerically
high-density regions in an analysis of mixed data

III Y Y ED detects truly unique classes equally well as EW, but the
latter shows slightly better performance with rare classes
(because EW will exploit their isolated position better)

IV Y Y ED detects many Type IV cases, but also yields more false
positives and false negatives, and is thus not optimally
equipped to detect this type. ED can sometimes detect more
subtle Type IV cases at dense areas than EW can

V N/Y Y ED is identical to EW in a set with merely categorical data. It
can be more useful than EW if the goal is to detect (non-
unique) rare Type V anomalies in numerically high-density
regions in an analysis of mixed data

VI Y Y ED tends to favor the detection of Type VI anomalies and can
be more useful than EW if this is indeed the goal

All or In-cloud: How the Identification of Six Types of Anomalies 39

on the other hand, requires the analyst to pick an arbitrary number of bins and cannot
return such information on the degree of anomalousness as a result of this rather crude
form of binning.

As a final note, equidepth discretization can be useful in practical situations, as it is
known that in some settings it is valuable to detect non-isolated and relatively subtle
deviations rather than cases that are extreme and rare on all accounts [cf. 38, 39].

4 Conclusion

This study has analyzed the impact of two discretization methods on the detection of
different types of anomalies. The SECODA algorithm was used in the experiments
because of its rich form of discretization. The empirical results of the analysis with
synthetic and real-world data demonstrate that discretization, including its employment
in the standard SECODA algorithm, can be used to detect all six types of anomalies.
However, the equiwidth and equidepth discretization techniques yield notably different
results and favor the discovery of certain anomaly types. Equiwidth and equidepth
SECODA can therefore best be seen as two different algorithms. Equiwidth SECODA
is a general-purpose algorithm, whereas the equidepth version is a special-purpose
technique focusing on specific anomaly types. The main conclusions, as summarized in
Tables 2 and 3, also hold for techniques that perform discretization only once, although
the results hereof will be less precise and will not account for the distance between data
points.

In general, if the analyst does not know beforehand in what type of anomaly he or
she is interested, then equiwidth discretization is the preferred option. This will conduct
a general-purpose anomaly detection and ensure that all anomaly types will be
detected. If on the other hand the focus is on identifying anomalies that are not located
in extreme or isolated regions of the numerical space, equidepth discretization should
be used. The equidepth binning option favors the detection of Type VI anomalies as
well as Type II and V cases that are found inside data clouds rather than in sparsely
populated regions.

Remarks A SECODA implementation, various datasets and the code to analyze them
in R can be downloaded from www.foorthuis.nl (see the SECODA resources for R
section).

Final version: September 8th 2019. This research was sponsored in part by UWV
(Uitvoeringsinstituut Werknemersverzekeringen).

This publication is an extended version of the BNAIC 2018 paper The Impact of
Discretization Method on the Detection of Six Types of Anomalies in Datasets.

References

1. Barnett, V., Lewis, T.: Outliers in Statistical Data, 3rd edn. Wiley, Chichester (1994)
2. Goldstein, M., Uchida, S.: A comparative evaluation of unsupervised anomaly detection

algorithms. PLoS ONE 11(4), e0152173 (2016)

40 R. Foorthuis

http://www.foorthuis.nl

3. Foorthuis, R.: A typology of data anomalies. In: Medina, J., et al. (eds.) IPMU 2018. CCIS,
vol. 854, pp. 26–38. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91476-3_3

4. Pang, G., Cao, L., Chin, L.: Outlier detection in complex categorical data by modelling the
feature value couplings. In: Proceedings of the 25th International Joint Conference on
Artificial Intelligence (2016)

5. Riahi, F., Schulte, O.: Propositionalization for unsupervised outlier detection in multi-
relational data. In: Proceedings of the 29th International Florida Artificial Intelligence
Research Society Conference (2016)

6. Hengst, F., den Hoogendoorn, M.: Detecting interesting outliers: active learning for anomaly
detection. In: Proceedings of the 28th Benelux Conference on Artificial Intelligence,
Amsterdam, The Netherlands (2016)

7. Tan, P., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley, Boston
(2005)

8. Noble, C.C., Cook, D.J.: Graph-based anomaly detection. In: Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (2003)

9. Schubert, E., Weiler, M., Zimek, A.: Outlier detection and trend detection: two sides of the
same coin. In: Proceedings of the 15th IEEE International Conference on Data Mining
Workshops (2015)

10. Hubert, M., Rousseeuw, P., Segaert, P.: Multivariate functional outlier detection. Stat.
Methods Appl. 24(2), 177–202 (2015)

11. Ranshous, S., Shen, S., Koutra, D., Harenberg, S., Faloutsos, C., Samatova, N.F.: Anomaly
detection in dynamic networks: a survey. WIREs Comput. Stat. 7(3), 223–247 (2015)

12. Fielding, J., Gilbert, N.: Understanding Social Statistics. Sage Publications, London (2000)
13. Gartner: Hype Cycle for Data Science and Machine Learning, 2017. Gartner, Inc (2017)
14. Forrester: The Forrester Wave: Security Analytics Platforms, Q1 2017. Forrester Research,

Inc. (2017)
15. Leys, C., Ley, C., Klein, O., Bernard, P., Licata, L.: Detecting outliers: do not use standard

deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol.
49(4), 764–766 (2013)

16. Knorr, E.M., Ng, R.T.: Algorithms for mining distance-based outliers in large datasets. In:
VLDB 1998, Proceedings of the 24th International Conference on Very Large Data Bases
(1998)

17. Breunig, M.M., Kriegel, H., Ng, R.T., Sander, J.: LOF: identifying density-based local
outliers. In: Proceedings of the ACM SIGMOD Conference on Management of Data (2000)

18. Campos, G.O., et al.: On the evaluation of unsupervised outlier detection: measures,
datasets, and an empirical study. Data Min. Knowl. Discovery 30(4), 891–927 (2016)

19. Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., Platt, J.: Support vector method
for novelty detection. Adv. Neural Inf. Process. 12, 582–588 (2000)

20. Liu, F.T., Ting, K.M., Zhou, Z.: Isolation-based anomaly detection. ACM Trans. Knowl.
Discov. Data 6(1), 3 (2012)

21. Shyu, M.L., Chen, S.C., Sarinnapakorn, K., Chang, L.W.: A novel anomaly detection
scheme based on principal component classifier. In: Proceedings of the ICDM Foundation
and New Direction of Data Mining workshop, pp. 172–179 (2003)

22. Pimentel, M.A.F., Clifton, D.A., Clifton, L., Tarassenko, L.: A review of novelty detection.
Signal Process. 99, 215–249 (2014)

23. Keogh, E., Lonardi, S., Ratanamahatana, C.A.: Towards parameter-free data mining. In:
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Seattle (2004)

All or In-cloud: How the Identification of Six Types of Anomalies 41

http://dx.doi.org/10.1007/978-3-319-91476-3_3

24. Goldstein, M., Dengel, A.: Histogram-based outlier score (HBOS): a fast unsupervised
anomaly detection algorithm. In: Proceedings of the 35th German Conference on Artificial
Intelligence (KI-2012), pp. 59–63 (2012)

25. Foorthuis, R.: SECODA: segmentation- and combination-based detection of anomalies. In:
Proceedings of the 4th IEEE International Conference on Data Science and Advanced
Analytics (DSAA 2017), pp. 755–764, Tokyo (2017). https://doi.org/10.1109/dsaa.2017.35

26. Aggarwal, C.C., Yu, P.S.: An effective and efficient algorithm for high-dimensional outlier
detection. VLDB J. 14(2), 211–221 (2005)

27. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of
continuous features. In: Proceedings of the Twelfth International Conference on Machine
Learning (1995)

28. Kotsiantis, S., Kanellopoulos, D.: Discretization techniques: a recent survey. GESTS Int.
Trans. Comput. Sci. Eng. 32, 47–58 (2006)

29. Foorthuis, R.: Anomaly detection with SECODA. In: Poster Presentation at the 4th IEEE
International Conference on Data Science and Advanced Analytics (DSAA), Tokyo (2017).
https://doi.org/10.13140/rg.2.2.21212.08325

30. Yang, Y., Webb, G.I., Wu, X.: Discretization methods. In: Maimon, O., Rockach, L. (eds.)
Data Mining and Knowledge Discovery Handbook. Kluwer Academic Publishers (2005)

31. Li, H., Hussain, F., Tan, C.M., Dash, M.: Discretization: an enabling technique. Data Min.
Knowl. Disc. 6(4), 393–423 (2002)

32. Wolpert, D.H., Macready, W.G.: No Free Lunch Theorems for Search. Technical report SFI-
TR-95-02-010, Santa Fe Institute (1996)

33. Clarke, B., Fokoué, E., Zhang, H.H.: Principles and Theory for Data Mining and Machine
Learning. Springer, New York (2009). https://doi.org/10.1007/978-0-387-98135-2

34. Rokach, L., Maimon, O.: Data Mining With Decision Trees: Theory and Applications, 2nd
edn. World Scientific Publishing, Singapore (2015)

35. Janssens, J.H.M.: Outlier Selection and One-Class Classification. Ph.D. thesis, Tilburg
University (2013)

36. Maxion, R.A., Tan, K.M.C.: Benchmarking anomaly-based detection systems. In: Interna-
tional Conference on Dependable Systems and Networks, New York (2000)

37. LAK: Anomaly Detection at the Dutch Alliance on Income Data and Taxes (2018). www.
loonaangifteketen.nl

38. Pijnenburg, M., Kowalczyk, W.: Singular outliers: finding common observations with an
uncommon feature. In: Medina, J., Ojeda-Aciego, M., Verdegay, J.L., Perfilieva, I.,
Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2018. CCIS, vol. 855, pp. 492–503.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91479-4_41

39. Greenacre, M., Ayhan, H.: Identifying Inliers. Barcelona GSE Working Paper Series (2014)
40. Foorthuis, R.: (Un)certain anomalies in income data. In: Presentation at the Mini-

Symposium on Uncertainty in Data-Driven Systems, Utrecht University, 28 January 2019

42 R. Foorthuis

http://dx.doi.org/10.1109/dsaa.2017.35
http://dx.doi.org/10.13140/rg.2.2.21212.08325
http://dx.doi.org/10.1007/978-0-387-98135-2
http://www.loonaangifteketen.nl
http://www.loonaangifteketen.nl
http://dx.doi.org/10.1007/978-3-319-91479-4_41

Topic Modeling for Exploring Cancer-Related
Coverage in Journalistic Texts

Naomi Hariman1,2(&), Marjolein de Vries1,3, and Ionica Smeets1

1 Science Communication and Society, Faculty of Science, Leiden University,
Leiden, The Netherlands

i.smeets@biology.leidenuniv.nl
2 Bio-Pharmaceutical Sciences, Leiden University, Leiden, The Netherlands
3 Mathematics and Computer Science, Eindhoven University of Technology,

Eindhoven, The Netherlands

Abstract. Topic modeling has been used for many applications, but has not
been applied to science and health communication research yet. In this paper,
using topic modeling for this novel domain is explored, by investigating the
coverage of cancer in news items from the New York Times since 1970 with the
Latent Dirichlet Allocation (LDA) model. Content analysis of cancer in print
media has been performed before, but at a much smaller scope and with manual
rather than computational analysis. We collected 45.684 articles concerning
cancer via the New York Times API to build the LDA model upon.
Our results show a predominance of breast cancer in news articles as com-

pared with other types of cancer, similar to previous studies. Additionally, our
topic model shows 6 distinct topics: research on cancer, lifestyle and mortality,
the healthcare system, business and insurance issues regarding cancer treatment,
environmental politics and American politics on cancer-related policies.
Since topic modeling is a computational technique, the model has more

difficulty with understanding the meaning of the analyzed text than (most)
humans. Therefore, future research will be set up to let the public contribute to
analysis of a topic model.

Keywords: Topic modeling � Cancer � Content analysis

1 Introduction

Covering cancer accurately in news media comes with unique constraints due to the
disease’s highly complex, technical and emotional nature [1]. Early content analysis
studies starting from the 1970s provided some of the first insights into how cancer was
reported in a variety of American newspapers [1] (n = 2.138) [2] (n = 1.466). These
studies showed that cancer news stories did not generally address a specific type of
cancer, and articles that did focus on a particular type of cancer mostly focused on
breast and lung cancer.

N. Hariman and M. de Vries—Contributed equally to this paper.

© Springer Nature Switzerland AG 2019
M. Atzmueller and W. Duivesteijn (Eds.): BNAIC 2018, CCIS 1021, pp. 43–51, 2019.
https://doi.org/10.1007/978-3-030-31978-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31978-6_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31978-6_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31978-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-31978-6_4

A similar content analysis study was later conducted by Clarke and Everest, who
analyzed articles about cancer (n = 131) in a wide range of magazines published
between 1991 and 2001 [3]. Their results also showed a predominance of articles
addressing breast cancer as compared with other types of cancer, even though breast
cancer did not have the highest incidence rate at that time. In addition, Clarke and
Everest focused on the portrayal of cancer in their articles, and found that an emphasis
on fear and the usage of battle metaphors were often used when framing cancer.

Moreover, Musso and Wakefield [4] analyzed cancer coverage in Canadian
newspapers from 2003 to 2004 (n = 464), and also found that if an article addressed a
specific type of cancer, 40% of the cases it was breast cancer and 21% of the time it was
lung cancer, even though lung cancer had the highest incidence rate among all
Canadians at the time. Analysis of latent themes showed that the newspapers addressed
the relation of lifestyle and personal habits, such as smoking, and cancer the most, as
well as the effect of environmental exposures and biological factors on cancer and
issues within the healthcare system.

The aforementioned studies reveal how cancer is framed and covered in news-
papers and magazines. However, as the articles were analyzed manually, researchers
were left with some restrictions such as: a large amount of content to analyze but a
short timeframe [1, 2], or a longer timeframe but a lower amount of content to analyze
[3, 4]. The use of computational techniques gets rid of such restraints as content
analysis can now be done in an automatic or semi-automatic manner. With the rise of
the internet, more and more information is available online, and a large set of news
items covering cancer can be acquired quite easily. The New York Times, for example,
provides an application programming interface (API) for access to their articles from
the current days back to 1851 [5]. Moreover, with automatic techniques such as topic
modeling, large amounts of texts can be analyzed automatically instead of manually.
Consequently, it is now possible to investigate the coverage of cancer in journalistic
texts with both a long timeframe as well as a large amount of content to analyze.
Therefore, in this paper, we use topic modeling to investigate the coverage of cancer in
news items from the New York Times since 1970.

Topic modeling has already been used in a wide range of applications, from ana-
lyzing tweets on Twitter to find trending topics [6, 7] or a user’s political orientation
[8], to analyzing Facebook messages and the relation of resulting topics with per-
sonality, age and gender [9] and recommending scientific articles [10]. Even though
topic modeling has been widely studied within the computational linguistics field, it has
not been used to answer questions within science and health communication yet.
Jacobi, van Atteveldt and Welbers [11] have demonstrated the usefulness of topic
modeling for journalism research, by exploring the framing of the issue ‘nuclear
power’ in the New York Times since 1945. Accordingly, our paper will make a first
step into applying topic modeling to the science and health communication research
domain.

44 N. Hariman et al.

2 Method

In this section, we discuss the data collection (Sect. 2.1), data pre-processing
(Sect. 2.2) and the use of the Latent Dirichlet Allocation (LDA) model for topic
modeling (Sect. 2.3).

2.1 Data Collection

The New York Times Article Search API python wrapper NYTimesArticleAPI [5] was
used to retrieve the data. All articles containing the query ‘cancer’, ‘chemotherapy’,
‘malignant’, ‘carcinogen’ and ‘tumor’ were collected. The begin date of the search was
set to January 1, 1970, in line with previous research [1, 2]. For each article, we
retrieved the main headline and snippet (i.e. often the first paragraph of the news item),
and pasted them together as one document for further analysis. In total, 57.402 articles
were retrieved.

2.2 Data Pre-processing

The documents were stripped of punctuation, numbers and other special characters (e.g.
:, . @ ‘ ‘ -)1. Words containing hyphens such as ‘cancer-like’ were split into two, e.g.
‘cancer’ and ‘like’. Then, stop word removal was performed using the English stop
words list from the nltk.corpus package [12]. Stop words in the list that contained
hyphens were also split into two before performing stop word removal. As the LDA
model cannot work well with small documents [13], any document that contained 20
words or less after stop word removal was removed from the dataset. These procedures
resulted in 45.684 documents remaining for use in the LDA model. All documents
were then shuffled to prevent from time bias in the model.

Subsequently, the documents were tokenized and bigrams and trigrams were cre-
ated to group together words that often occurred together in the documents, by using
the models.Phrases function from the gensim package [14]. If a word combination
occurred at least 20 times in the entire dataset and had a models.Phrases threshold
score of minimally 100, a bigram or trigram was made.

Next, lemmatization was performed on the dataset using the spacy model for
English [15]. Lemmatization was performed on nouns, adjectives, verbs and adverbs
(detected with Part-Of-Speech-tags), and a word was removed if it did not fall into one
of these four categories. After lemmatization, terms were removed if they met one of
the following criteria: having a document frequency of lower than 10, occurring in
more than 25% of all the documents, or a character length of less than 3 characters.
Additionally, terms that occurred less than 17 times in the entire corpus were removed.
The terms ‘immunotherapy’ and ‘cancer causing’ were manually re-added, since they
had been removed during this procedure but were deemed important and relevant to the
research. As a result, the dictionary contained 7.312 unique terms.

1 Python code can be found at github.com/NHariman/LDA-model-SCS-2018.

Topic Modeling for Exploring Cancer-Related Coverage in Journalistic Texts 45

http://github.com/NHariman/LDA-model-SCS-2018

2.3 Latent Dirichlet Allocation

In our work, we use the Latent Dirichlet Allocation (LDA) [16] model for topic mo-
deling. The LDA model is a generative probabilistic model that represents documents
as random mixtures over latent topics. Each topic is then characterized by a distribution
over words. Our LDA model was created using the models.ldamodel function from the
gensim package [14]. The model was updated every term and used a chunk size of
1000 and 10 passes. The alpha parameter was set to 1.0/number of topics, and the other
parameters were set to default settings. The model was run with the number of topics in
the following sequence: {5, 10, 15, 20, 25}. In order to select the most appropriate
number of topics, the pyLDAvis gensim notebook [17] was used to visualize the topics
and determine the quality of the model. The pyLDAvis notebook visualizes each topic
as a bubble, where the area of the bubble resembles the prevalence of the topic in the
corpus and inter-topic distances are displayed by means of multidimensional scaling
onto two axes [18]. A proper topic model is thus visualized in pyLDAvis with relatively
big, non-overlapping bubbles. In our case, the most informative number of topics was
10 topics. We will look at the results into detail in the following section.

3 Results

The final model as visualized by pyLDAvis is displayed in Fig. 1. Table 1 shows the 15
most relevant terms for each of the 10 topics. The topics are ordered in descending
order of prevalence in the corpus. The 15 most salient terms overall are:

cancer, die, health, drug, new, year, old, study, today, yesterday, say, hospital, state, federal,
medical

Fig. 1. Final LDA model as visualized by pyLDAvis, each bubble represents a topic.

46 N. Hariman et al.

Most of these terms are linked to medical topics, such as the terms ‘health’, ‘drug’
and ‘medical’. Words like ‘state’ and ‘federal’ are also found to be notable, indicating
that some documents are politically themed as well. The words ‘breast’ and ‘woman’
are also present in the top-30 salient terms overall; no other type of cancer is present in
the top-30.

Out of the 10 topics constructed by the model (Table 1), 4 were found to be noisy
topics without a distinct link to a subject (topics 1, 8, 9 and 10). In the remaining topics,
issues such as research, lifestyle and politics are found. Topic 2 is focused on research
on cancer, and contains notable words such as ‘study’, ‘scientist’ and ‘treatment’. This
topic also contains the words ‘breast’ and ‘woman’, showing that some of the medical
research topic documents appear to report on research on breast cancer.

Topic 3 is focused on the link between lifestyle (such as smoking) and cancer, and
people dying because of cancer, with terms such as ‘die’, ‘hospital’, ‘smoke’ and
‘cigarette’ (top-30). Topic 4 is concerned with the healthcare system with related terms
such as ‘health’, ‘plan’, ‘hospital’, ‘program’ and ‘cost’ (top-30). Topic 5 addresses
topics regarding insurance and business, as it contains terms such as ‘company’, ‘in-
surance’ and ‘business’ (in the top-30). This topic relates to new technologies

Table 1. Top-15 most relevant terms per topic.

Topic # Top-15 most relevant terms Topic content % of
tokens

1 year, day, time, make, life, first, come, good, last, take,
get, world, look, man, people

General (noise) 17.2

2 cancer, drug, study, say, find, doctor, new, patient, may,
scientist, woman, breast, disease, treatment, report

Research 16.0

3 year, die, old, cancer, new, hospital, york, home,
yesterday, former, child, last, lead, smoke, center

Lifestyle and
mortality

13.2

4 health, new, state, care, medical, plan, york, say,
hospital, would, program, official, center, public,
company

Healthcare
system

11.1

5 new, city, year, company, york, town, asbestos, rate,
jersey, water, high, people, sell, sale, insurance

Insurance and
business

10.4

6 today, say, federal, use, chemical, official, case, judge,
ban, government, court, agency, state, food, lead

Environmental
politics

9.0

7 today, say, president, senate, leader, campaign, bill,
senator, vote, republican, would, house, lead, former,
week

American politics 8.4

8 yesterday, new, marry, son, award, mrs, richard,
daughter, theater, rev, york, robert, music, film, screen

People and
performing arts
(noise)

5.2

9 man, kill, death, police, evening, brooklyn, son, mother,
watch, brother, dead, marijuana, say, daughter, last

Crime (noise) 5.0

10 yesterday, company, share, stock, nuclear, george,
smoker, edward, institute, market, retire, air, aim, japan,
secretary

General (noise) 4.4

Topic Modeling for Exploring Cancer-Related Coverage in Journalistic Texts 47

developed for cancer treatment by companies and issues with insurance coverage of
cancer therapy, hence the more business side of cancer therapy.

Topic 6 and topic 7 are both concerning politics, where the former focuses on
environmental politics regarding public safety and the latter focuses on general
American politics. The environmental politics topic (topic 6) does not seem to have a
clear link with cancer at first sight. However, the terms ‘food’, ‘chemical’ and ‘pes-
ticide’ (top-30) indicate that these documents are linked to news addressing the safety
of pesticides in agriculture, their correlation to cancer and legislations for and against
pesticides in court. Topic 7 discusses American politics, for which in-depth analysis
shows that this topic features mainly issues regarding policies on bills for smoking in
public and legalization of marijuana for cancer patients undergoing (chemo) therapy.

The other four topics (1, 8, 9, 10) include noise terms and do not contain a distinct
subject, although one topic seems to consist of people and performing arts institutions
(topic 8) among its noise and the other crime related elements (topic 9).

4 Discussion and Conclusion

In this section, we discuss the results (Sect. 4.1), provide a more general discussion
(Sect. 4.2) and present the conclusion of this paper (Sect. 4.3).

4.1 Discussion of Results

In general, cancer related coverage within the New York Times between 1970 and
2018 seems to center around health and science issues on the one hand, and business
and political issues on the other hand. Out of the 10 LDA generated topics, 6 topics
contain a distinct subject matter: research, lifestyle and mortality, the healthcare sys-
tem, business and insurances, environmental politics and American politics. The first
three topics are more science and health related while the latter three address business
and political issues. The other four topics include noise terms and do not contain a
distinct subject.

In particular, the terms ‘breast’ and ‘woman’ are salient in the entire corpus,
indicating that breast cancer is one of the commonly discussed topics overall. No other
organ specific cancer type is mentioned in the top-30 most notable general terms. This
result corresponds with previous research, whose results have also shown the pre-
dominance of breast cancer in comparison with other types of cancer even though
breast cancer did not have the highest incidence rate at that time [1–4]. The larger
amount of articles reporting on breast cancer may be due to the highly vocal breast
cancer movements [3] such as the Pink ribbon campaign.

In contrast to Clarke and Everest [3], our topics did not show fear or battle
metaphors. This may be due to two reasons: (1) Clarke and Everest analyzed magazines
rather than newspapers, and the difference in framing of cancer is due to this difference
in media type, (2) Clarke and Everest used manual analysis and we have used topic
modeling, and the LDA method is not designed for such complex understanding of text
beyond solely finding salient words and topics.

48 N. Hariman et al.

Our results do show similarities with the results of Musso and Wakefield [4]. One
of our six distinct topics is the healthcare system, which was also a frequently covered
subject in the results of Musso and Wakefield [4]. Additionally, both studies have
found issues regarding lifestyle (e.g. smoking) and pesticides to be repeatedly
addressed in news articles on cancer.

Interestingly, a substantial proportion of the topics found in our research concerns
business and political issues regarding cancer. These aspects of cancer were not pre-
valent in previous studies [1–4]. Hence, this might be a specific area of interest of the
New York Times.

4.2 General Discussion

Even though topic modeling has been used for a wide range of applications already,
this is the first time that it is applied to science and health communication research. Our
paper has made a first step into exploring the usage of topic modeling to this new
application area, which is an addition to the large set of manual content analysis
techniques currently used in science communication research. Future research could
also study the occurrence of topics over time and analyze links to historic events, in
order to better understand the coverage of cancer in the New York Times and possible
temporal patterns.

In order to answer our research question, we have used topic modeling and LDA in
particular. Even though an automatic technique such as topic modeling has benefits in
comparison with manual content analysis, as described in the introduction, some
downsides also exist. Since topic modeling is a computer model, the model has diffi-
culties with understanding nuances and subtext. Moreover, the automatically created
topics ideally resemble categorization of issues or frames based on substantiated theory
and would be interpreted that way. This is, however, not guaranteed as the LDA model
does not classify based on theory, but on (co-)occurrence of words in documents.
Accordingly, testing for statistical, internal and external validity is still difficult to do
for LDA and topic models in general [16]. Therefore, it is still up to the researcher to
interpret the resulting topics and glean insights and results from them.

Considering that topic models have more difficulty with understanding the meaning
of text than humans do, an interesting direction for future research is to incorporate
human analysis in the computational process of topic modeling. One or more humans
are of course already involved, as the researchers give e.g. ‘names’ to topics and
interpret its content. It would be very interesting to include a larger group of people to
help with these tasks, as well as other tasks such as marking important terms for a topic
or removing terms from topics that are irrelevant. Additionally, involving more people
in the interpretation of the topics decreases the subjectivity of one or two researchers
interpreting them alone. Hence, including a larger group of people in topic modeling
research could lead to higher quality output. We propose to make the project open for
the public to voluntarily engage in, also called ‘citizen science’, as this would be an
opportunity to let the public learn something about (computer) science. Therefore, the
second author is planning to set up a project for topic modeling with citizen science in
the coming few years, but then for analysis of a different topic.

Topic Modeling for Exploring Cancer-Related Coverage in Journalistic Texts 49

4.3 Conclusion

The goal of our research was to use topic modeling to investigate the coverage of
cancer in news items from the New York Times since 1970. Similar to previous
research, our results show a predominance of breast cancer as compared with other
types of cancer in the analyzed news articles. Additionally, our topic model shows 6
distinct topics: research on cancer, lifestyle and mortality, the healthcare system,
business and insurance issues regarding cancer treatment, environmental politics and
American politics on cancer-related policies. Our paper made a first step into using
topic modeling in health and science communication research, which is an addition to
the manual content analysis techniques currently used in the field. Since topic modeling
is a computational technique, the model has more difficulty with understanding the
meaning of text than humans do. Therefore, future research will be set up to let the
public help with analysis of the topic model.

References

1. Greenberg, R.H., Freimuth, V.S., Bratick, E.A.: A content analytic study of daily newspaper
coverage of cancer. Commun. Yearb. 3(8985), 645–654 (1979)

2. Freimuth, V.S., Greenberg, R.H., DeWitt, J., Romano, R.M.: Covering cancer: newspapers
and the public interest. J. Commun. 34(1), 62–73 (1984)

3. Clarke, J.N., Everest, M.M.: Cancer in the mass print media: fear, uncertainty and the
medical model. Soc. Sci. Med. 62(10), 2591–2600 (2006)

4. Musso, E., Wakefield, S.E.L.: “Tales of mind over cancer”: cancer risk and prevention in the
canadian print media. Health, Risk Soc. 11(1), 17–38 (2009)

5. The New York Times Developer Network. https://developer.nytimes.com/. Accessed 28
Aug 2018

6. Lau, J., Collier, N., Baldwin, T.: On–line trend analysis with topic models: #twitter trends
detection topic model online. In: Proceedings of COLING 2012: Technical Papers,
pp. 1519–1534 (2012)

7. Xie, W., Zhu, F., Jiang, J., Lim, E.P., Wang, K.: TopicSketch: real–time bursty topic
detection from Twitter. In: IEEE 13th International Conference on Data Mining, pp. 837–
846 (2013)

8. Fang, A., Ounis, I., Habel, P., Macdonald, C., Limsopatham, N.: Topic–centric classification
of Twitter user’s political orientation. In: Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 791–794 (2015)

9. Schwartz, H.A., Eichstaedt, J.C., Kern, M.L., Dziurzynski, L., Ramones, S.M., et al.:
Personality, gender, and age in the language of social media: the open-vocabulary approach.
PLoS ONE 8(9), e73791 (2013)

10. Wang, C., Blei, D.M.: Collaborative topic modeling for recommending scientific articles. In:
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 448–456 (2011)

11. Jacobi, C., van Atteveldt, W., Welbers, K.: Quantitative analysis of large amounts of
journalistic texts using topic modelling. Digital J. 4(1), 89–106 (2016)

12. Nltk.corpus package. https://www.nltk.org/api/nltk.corpus.html. Accessed 28 Aug 2018
13. Hong, L., Davison, B.: Empirical study of topic modeling in Twitter. In: Proceedings of the

First Workshop on Social Media Analytics, pp. 80–88 (2010)

50 N. Hariman et al.

https://developer.nytimes.com/
https://www.nltk.org/api/nltk.corpus.html

14. Rehurek, R., Sojka, P.: Software framework for topic modelling with large corpora. In:
Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks,
pp. 45–50 (2010)

15. Spacy. https://spacy.io/. Accessed 28 Aug 2018
16. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3(Jan),

993–1022 (2003)
17. PyLDAvis, https://pyldavis.readthedocs.io/. Accessed 28 Aug 2018
18. Sievert, C., Shirley, K.E.: LDAvis: a method for visualizing and interpreting topics. In:

Proceedings of the Workshop on Interactive Language Learning, Visualization, and
Interfaces, pp. 63–70 (2014)

Topic Modeling for Exploring Cancer-Related Coverage in Journalistic Texts 51

https://spacy.io/
https://pyldavis.readthedocs.io/

Model Selection for Multi-directional
Ensemble of Regression and Classification

Trees

Evgeniya Korneva(B) and Hendrik Blockeel

KU Leuven, Leuven, Belgium
{evgeniya.korneva,hendrik.blockeel}@cs.kuleuven.be

Abstract. Multi-directional ensembles of Classification and Regression
treeS (MERCS) extend random forests towards multi-directional pre-
diction. The current work discusses different strategies of induction of
such a model, which comes down to selecting sets of input and output
attributes for each tree in the ensemble. It has been previously shown
that employing multi-targets trees as MERCS component models helps
reduce both model induction and inference time. In the current work, we
present a novel output selection strategy for MERCS component model
that takes relatedness between the attributes into account and compare
it to the random output selection. We observe that accounting for relat-
edness between targets has a limited effect on performance and discuss
the reasons why it is inherently difficult to improve the overall perfor-
mance of a multi-directional model by altering target selection strategy
for its component models.

Keywords: Versatile models · Ensemble learning ·
Multi-task learning · Multi-directional models

1 Introduction

In practice, data analysis often happens in two steps. First, a task-specific
machine learning model is built. Then, this model is used for inference. How-
ever, in many cases the user may want to perform different prediction tasks on
the same data. A typical example of such a setting is missing data imputation.
Moreover, sometimes not all of the prediction tasks are known beforehand. In
this case, it appears beneficial to learn a single multi-purpose model of the data
set that can be re-used to solve various tasks rather then a number of different
special-purpose models. An example of such a versatile model of data is MERCS.

MERCS stands for Multi-directional Ensemble of Classification and
Regression treeS. The method is first introduced in [13]. The term multi-
directional in its name refers to the fact that the resulting model is capable

The research is supported by the Research foundation - Flanders (project G079416N,
MERCS).

c© Springer Nature Switzerland AG 2019
M. Atzmueller and W. Duivesteijn (Eds.): BNAIC 2018, CCIS 1021, pp. 52–64, 2019.
https://doi.org/10.1007/978-3-030-31978-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31978-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-31978-6_5

Model Selection for MERCS 53

of answering any possible query of the data of the form “predict Y from X”, as
opposed to conventional uni-directional models, where the sets of the input and
target variables are fixed.

MERCS essentially extends well-known random forests to multi-directional
prediction by constructing ensembles of (possibly multi-target) decision trees
that have different sets of input and output variables. More specifically, let
RF(I,O) denote a random forest that predicts a set of output variables O from a
given set of input attributes I. Note that O can contain more than one attribute.
Then, for a given data set D with attributes A = {A1, A2, . . . , Am}, its MERCS
model M(D) is formally defined as:

M(D) = {RF i, i = 1 . . . n|RF i = RF(Ii,Oi), Ii ⊂ A, Oi ⊂ A, Ii ∩ Oi = ∅}

One of the key research questions is how to decide which trees exactly should
be included in the model, i.e., how to determine the sets of input and output
attributes, Ii and Oi respectively, for every component random forest RF i in
the ensemble, so that the resulting model allows for prediction in any direction?

As pointed out in [13], this is already possible by learning a set of conven-
tional single-target trees (namely, by learning one random forest per attribute
in a data set). Experimental results show, however, that employing multi-target
trees as MERCS component models leads to much faster model induction and
inference comparing to the straightforward baseline approach. Performance-wise,
multi-target tree-based models are often inferior to their baseline counterpart.
However, the decrease in predictive accuracy is considered marginal taking into
account the gain in speed.

In the experiments conducted in [13], attributes are grouped into target sets
randomly, while intuitively it seems that performance of the resulting model
can be improved if targets predicted jointly by the same component model are
somehow similar, or related, because in this case the multi-task model is able to
exploit potential dependencies between them [7]. But how to define the notion
of relatedness and how to determine which attributes in the data set are related
and should be therefore predicted together?

The goal of this paper is twofold. First, we apply MERCS to regression task
and compare the effect of using multi-target component models to that previ-
ously observed in the classification case. Second, we investigate the possibility
to improve the predictive performance of the MERCS model consisting of multi-
target component models. To that end, we propose a novel MERCS induction
strategy that takes relatedness between the attributes into account. We namely
discuss two different ways of measuring the relatedness.

The rest of the paper is organized as follows. The next section positions
MERCS in the context of multi-task learning and discusses the connection
between model selection for MERCS and the problem of identifying related tasks
in a multi-task setting. Section 3 formalizes different model selection strategies
for MERCS. The results of empirical evaluation of the strategies under consid-
eration are presented in Sect. 4. Final section summarizes the key findings.

54 E. Korneva and H. Blockeel

2 Related Work

This section discusses the relation between MERCS and multi-task learning.
Multi-task learning (also known as multi-output, multi-objective or multi-

target prediction) refers to joint prediction of multiple variables by the same
model. A special case of multi-task learning is multi-label classification, when a
set of binary labels is assigned to every example.

In the multi-task setting, one often faces the challenge of identifying which
tasks can benefit from being learned together, and which should be treated
separately. This question appears to be closely related to determining which
attributes should be predicted together by the same component model in
MERCS.

Breskvar et al. propose random output selection for solving multi-target clas-
sification and regression problems, which is extended towards random target
grouping strategy for MERCS [2,3]. However, generalizing more sophisticated
task grouping approaches proposed in the multi-task learning field towards the
multi-directional setting is more challenging.

The biggest difference between MERCS and conventional multi-target mod-
els is that the latter are still uni-directional. Indeed, such models can only pre-
dict a predefined set of targets and, as opposed to MERCS, are not capable of
answering random query of data. In addition, in multi-task learning, one often
aims at improving prediction performance of a multi-task model with respect to
some predefined principal task, while MERCS is not a task-specific model and
is expected to perform reasonably well over all possible tasks.

For instance, Piccart et al. explore inductive transfer in the context of decision
tree learning. Pairwise transfer between the targets is measured as the gain in
predictive performance that two-target model yields over a single-target one.
The authors then propose the algorithm that, given one main target, aims at
identifying its best support set, that is, the best subset of auxiliary targets that
can be added to the model so that the resulting multi-output model shows the
best predictive performance with respect to the main target.

Applying this technique to MERCS induction will not help to reduce the size
of the model compared to the baseline approach: there will still be km trees in
the resulting ensemble. In addition, when the number of attribute in data set is
high, computing inductive transfer as defined in [9] for all possible combinations
of targets becomes computationally expensive.

An alternative clustering-based approach to discover the relation between
binary classification tasks is proposed in [11]. First, empirical measure of mutual
relatedness between tasks is estimated. Then, the tasks are clustered into classes
of mutually related tasks.

The idea of applying clustering techniques to split data set attributes into
disjoint target sets based on their mutual relatedness seems applicable in the
MERCS context. However, such a clustering, unless constrained, can result in
highly unbalanced clusters with many attributes in some of them and very few in
the others. Component models, however, will likely perform poorly if too many
targets are needed to be predicted from too few inputs.

Model Selection for MERCS 55

3 Selection Strategies for MERCS

Baseline Approach
The most straightforward way to build a versatile tree-based model is to learn a
random forest of k single-target trees for every single attribute i in the data set:

M(D) = RF i(A \ {Ai}, {Ai}), i = 1 . . .m

This approach results therefore in the MERCS ensemble of km trees in total.
For large m and typical k (e.g., k = 30), such a simple baseline strategy leads
to quite a large model.

Predicting several targets simultaneously by the same component models is
a reasonable solution to that problem.

Random Grouping of Targets
When employing multi-target trees as MERCS component models, one can
neglect possible relations between the attributes and group them into sets of
targets randomly.

Let us partition the m attributes of a data set into m/p disjoint subsets
A

j , j = 1, . . . ,m/p, of p targets each. If an ensemble of k multi-target trees is
learned for each subset, the resulting MERCS model contains n = km

p trees,
rather than km:

M(D) = RFj(Aj ,A \ A
j), j = 1 . . .m/p

Therefore, even though such an approach does not take into account related-
ness between the target attributes, one can certainly expect to observe benefits
in terms of speed, since the resulting MERCS model is smaller in size. Similarly
to the baseline approach, each attribute is predicted by one random forest, but
each random forest simultaneously predicts p targets rather than just one.

Heuristic-Based Grouping of Targets
Suppose we have a way to measure the relatedness between any two attributes
Ai and Aj in the data set. Let us denote it as rij .

We will assign attributes as targets to MERCS component models one by one
in a greedy manner. At each step, attribute Ai is assigned to the most related
model, i.e., the model that already predicts targets that are highly related to
the current attribute. Just as in the random grouping case, the number p of
targets predicted by each model (and, therefore, the total number of models n)
are specified in advance.

More specifically, we propose assessing the relatedness between the attribute
Ai and MERCS component model RFk by computing relatedness score defined
as follows:

R(Ai,RFk) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if |Ok| = 0,
1

|Ok|
∑

j:Aj∈Ok

rij

1
m

m∑

j=1
rij

, if 0 < |Ok| < p,

0, if |Ok| = p.

56 E. Korneva and H. Blockeel

This definition basically means the following:

– If the model does not have any targets assigned yet, the corresponding relat-
edness score is set to 1.

– If the model already has some targets assigned (e.g. 0 < |Ok| < p), the
relatedness score is computed as the ratio of the average relatedness of the
current attribute to the model’s targets and its average relatedness to all of
the attributes in the data set.
The score will therefore be greater than 1 if model’s targets appear more
related than attributes on average (and it therefore makes sense to group
them), and less than 1 if the opposite is true (and it is therefore better to
assign the current attribute to a new or a more related model).

– If the model cannot take any more targets (|Ok| = p), the relatedness score
is set to zero.

The final question is how to asses relatedness between any pair of attributes
itself (i.e., how to obtain rij). There are two possible ways in which one can
interpret the notion of similarity between the learning tasks.

The first one is to compare the values of the target attributes themselves:
if those are somewhat interconnected, the learning tasks are related. Arguably
the most straightforward way to assess statistical dependency of two variables
is by computing correlation coefficient. While expressing the degree of linear
dependency between the variables, it can be a reasonable proxy for more complex
measures of relation (e.g., mutual information score) since in practice even more
complex relationships between two variables often have fairly linear component.

Another way to assess the relatedness between two learning tasks is to see it
as a fact that they share the same input features, or find the same input features
important [4].

The internal estimates made by random forest can be easily used for measur-
ing feature importance for predicting a particular target.1 One can construct
a matrix C = {cij}, where cij indicates the importance of the attribute Aj for
predicting Ai. The importance scores cij are obtained by learning a single-target
Random Forest for attribute Ai. To speed up the process, we propose learning
these random forest on a small random subsample (e.g., 30%) of the data. The
correlation coefficient between the rows of the matrix C reflects how similar the
corresponding attributes are in terms of what inputs they find important, or, in
other words, how much the corresponding attributes are related to each other.

The fundamental difference between the two aforementioned ways of assessing
relatedness is that the latter directly takes the needs of the learner (in this case,
decision tree) into account, while the former only relies on the tasks themselves.

1 One of the ways of doing this is by calculating mean decrease impurity for each
attribute. Every node in the trees in the forest corresponds to a binary test on a
single attribute, and the locally optimal test is chosen based on the impurity measure.
While learning a tree, one can estimate how much each input feature decreases the
weighted impurity in a tree. The impurity decrease from each attribute test can be
averaged over all trees [1].

Model Selection for MERCS 57

Table 1. Data sets used in the experiments

Data set # instances, n # attributes, m Source

andro 48 36 [10]

edm 767 10 [10,12]

jura 358 18 [6,10]

oes10 402 314 [10]

oes97 333 279 [10]

rf1 9004 72 [10]

scm20d 8965 77 [10]

slump 102 10 [10,14]

wq 1059 30 [5]

To sum up, there are four different ways to induce a MERCS model that are
the following:

1. Learning single-target component models according to the baseline strategy.
2. Learning multi-target component models grouping attributes determining the

target sets randomly.
3. Learning multi-target component models grouping correlated targets

together.
4. Learning multi-target component models grouping targets with similar fea-

ture importance vectors together.

These strategies are empirically compared in the following section.

4 Experiments

The Data
Table 1 provides a short summary of the data sets used for experiments. The
data is a collection of benchmarks data sets for multi-target regression problems.
Only numerical attributes (e.g., those with more than 10 distinct values) were
considered. The attributes have been scaled to fall in the range between 0 and 1.

Experimental Setup
We compare four different MERCS induction strategies formulated in the pre-
vious section in terms of induction and inference time, as well predictive perfor-
mance2 of the resulting MERCS models. To that end, 10-fold cross validation is
performed.
2 More specifically, the predictive accuracy is evaluated based on the performance on

prediction tasks of the following form:

Ai ← A \ {Ai}, i = 1 . . .m,

.

58 E. Korneva and H. Blockeel

Fig. 1. The more targets are predicted by MERCS component models, the less trees
need to be learned. Therefore, model induction becomes faster. However, computing
heuristic function to take attribute relatedness into account slows it down.

Besides, when multi-target decision trees are employed, different number
of target attributes per component model (parameter p) are considered. More
specifically, component models predicting 10%, 20%, 40%, 60% and 80% of the
attributes in the data set are considered (p equals to 0.1, 0.2, 0.4, 0.6 and 0.8
respectively).

Results

Speed. Figures 1 and 2 show average model induction and inference time
depending on the number of targets predicted simultaneously by each of the
MERCS component models, as well as on the grouping strategy employed.

As expected, the more targets are predicted jointly, the faster the MERCS
model can be learned. That is because the total number of trees to be learned
decreases. The gain is especially noticeable for the data sets with a large number
of attributes. This goes in line with the findings presented in [13]. Grouping tar-
gets based on correlation between takes roughly the same time as when grouping
them randomly. Indeed, correlation matrix is fast to compute. Obtaining feature
importance scores for computing relatedness scores is, by contrast, computa-
tionally expensive. One can notice that inducing a MERCS model based on
this grouping strategy can actually sometimes take longer than learning single-
target component models for each of the attributes. However, if the number of
attributes is very high (e.g., data sets oes10, oes97, rf1, scm20d), a speed
up in induction time is still observed.

Interesting phenomena can be noticed on the figure below. While inference
generally becomes faster when multiple targets are predicted at once by the com-
ponent models, obtaining predictions is slower when targets are grouped based
on their relatedness. That means that the component tree models themselves
become larger and more complex.

Performance. To evaluate MERCS predictive performance, we assess the qual-
ity of individual attribute prediction by computing the corresponding root mean

Model Selection for MERCS 59

Fig. 2. Inference is generally faster when multiple attributes are predicted by a sin-
gle component models. Grouping related attributes together results in more complex
models, and obtaining predictions takes more time.

squared error (RMSE). We then order the four induction strategies from best to
worst for each of the attribute of the data set. The average rank associated with
each of the strategy is presented on Fig. 3. Furthermore, Fig. 4 illustrates the
distribution of the RMSEs depending on the induction strategy and parameter
p for every data set.

To begin with, unlike in the classification case considered in [13], models
based on multi-target trees rarely outperform the baseline MERCS model that
consists of single-target random forests for each of the attribute. The only exam-
ple of a data set for which employing multi-target trees in MERCS is actually
beneficial is rf1. There, the MERCS model with targets grouped randomly out-
performs the baseline one for all the values of the parameter p under considera-
tion.

The effect of taking relatedness of the attributes into account when inducing a
MERCS model is limited. On the one hand, for most of the data sets, there exist
at least one combination of the value of p and heuristic function that on average
leads to a more accurate performance with respect to all of the attributes. On
the other hand, however, in most cases the difference in the performance appears
to be insignificant. For two data sets, namely edm and oes97, random grouping
always works at least as well as more sophisticated heuristic-based approaches.

When comparing the two heuristic-based grouping strategies with each other,
one can notice that grouping based on similarity in feature importance scores
results in more accurate models for most of the data sets. The only exceptions are
data sets wq and edm: for their attributes, correlation-based grouping is superior.

The next section discusses why employing a more sophisticated grouping
strategy does not result in a significant improvement in predictive performance.

60 E. Korneva and H. Blockeel

Fig. 3. rf1 is the only data set where MERCS based on multi-target component mod-
els outperforms the baseline model for all the number of targets considered. Grouping
attributes based on similarity of their feature importance vectors results in more accu-
rate models than when using correlation coefficient as relatedness measure.

Model Selection for MERCS 61

Fig. 4. Employing heuristic to group related attributes together has a limited effect
on predictive performance of the resulting MERCS model. For most of the data sets,
there is a combination of heuristic function and value of the parameter p that helps
improve the performance of the resulting model compared to the random grouping
case. However, the improvement appears to be marginal.

5 Discussion

There are a number of possible reasons why grouping attributes into target sets
in a ‘smart’ way does not seem to improve the performance of the resulting
MERCS model. They are namely the following.

– Predicting several targets simultaneously can be beneficial for some of them
and detrimental for others.
Any combination of the number of outputs p and grouping strategy can result
in a MERCS model that is better in solving some prediction tasks and worse
in solving others. This observation leads to a number of important remarks.
First, average performance will stay roughly the same (this is exactly what
has been observed in the results of the experiments conducted in the current
paper).

62 E. Korneva and H. Blockeel

Second, none of the grouping strategies may result in a clearly superior
MERCS model because it may be impossible to achieve a general improvement
in predictive accuracy for every single prediction task: every new grouping is
better for predicting in some directions and worse for the others.
Third, correlation coefficient between two variables is symmetric and therefore
does not reflect the asymmetric nature of inductive transfer. Thus, using it
as the measure of relatedness will result in suboptimal models [4,9].

– Models multiple predicting related targets overfit.
Predicting several targets simultaneously even if they are unrelated can still
be beneficial because additional targets act as regularization terms, forcing
the resulting model to perform well on all the tasks and therefore making
it less prone to overfitting [4,8]. This effect disappears if targets are very
similar. This observation can be confirmed by the fact that, according to
our observations, inference becomes slower when the related attributes are
grouped together, meaning that the models become more complex.

– There are possibly no groups of highly related attributes in the data set.
When looking for a way of grouping similar or related attributes together,
one explicitly assumes that such groups of highly related attributes exist in
the data set, which may not always hold in practice. When the magnitude of
relatedness is somewhat similar between all the attributes, such a grouping
is not better than a random one.

– Predictors in the component models happen to be unrelated to targets.
One can see correlated attributes as related ones and therefore better pre-
dicted together. However, they can also be good predictors for each other. If
the value of p is too high, it can be the case that all the highly correlated
attributes in the data set are grouped together to be predicted by a sin-
gle component model with he rest of the attributes as predictors. However,
since by construction of the model those are less related to the targets, the
performance of such a model will be poor.

– Feature importance scores obtained from a single-target random forest may
no longer be reliable when a multi-target one is constructed.
Indeed, we group the attributes in a target set for a multi-output component
model in such a way that all of them find the same subset of input features
important, i.e., splits on these same inputs occur and significantly decrease
node impurity when constructing corresponding single-target trees. However,
these splits may happen on completely different values. When we then predict
the set of targets together, however, the split in a multi-target tree must
happen on the same one, and it appears difficult to find a split that would
be informative with respect to all of the targets, which results in larger, more
complex trees and worse prediction performance.

On balance, employing multi-target random forests helps reduce the size of
the final MERCS model in terms of the number of trees that need to be learned.
That results in a significant speed-up in model induction, which is the main
motivation to use multi-target component models in MERCS. However, there is

Model Selection for MERCS 63

a trade-off between speed and quality of the predictions: the more targets are
predicted jointly, the faster the learning happens, and, typically, the worse the
predictions are.

Employing ‘smart’ grouping strategies may help improve the predictive per-
formance of the multi-target component models. Based on experimental results
and aforementioned remarks, we can conclude that grouping attributes based on
similarity of the features they find important is more appropriate than relying
on the correlation coefficient between the attributes themselves.

However, the optimal value of the parameter p is not known in advance,
which is the major shortcoming of the proposed approach. Besides, the resulting
MERCS models almost never outperforms the baseline counterpart, which is
a MERCS model based on single-target trees. Nevertheless, obtaining feature
importance scores is computationally expensive, which can mitigate the gain in
learning time if the number of attributes in a data set is not very high.

To sum up, when applying MERCS in practice, one should rather stick to the
baseline strategy, especially if the number of attributes in the data set is low.
If speed is a priority, opting for random grouping of targets with a relatively
low number of targets per component model (e.g., 10% of the total number
of attributes) is reasonable, since it can still allow for much faster induction
and comparable predictive performance to those in the baseline case. Employing
heuristic-based induction strategy with feature importance scores as the measure
of relatedness between the attributes can be beneficial for the performance, but
extra time is needed to determine the best value of the parameter p.

References

1. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
2. Breskvar, M., Kocev, D., Džeroski, S.: Multi-label classification using random label

subset selections. In: Yamamoto, A., Kida, T., Uno, T., Kuboyama, T. (eds.) DS
2017. LNCS (LNAI), vol. 10558, pp. 108–115. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67786-6 8

3. Breskvar, M., Kocev, D., Džeroski, S.: Ensembles for multi-target regression with
random output selections. Mach. Learn. 107(11), 1673–1709 (2018)

4. Caruana, R.: Multitask learning. In: Thrun, S., Pratt, L. (eds.) Learning to Learn,
pp. 95–133. Springer, Boston (1998). https://doi.org/10.1007/978-1-4615-5529-2 5

5. Džeroski, S., Demšar, D., Grbović, J.: Predicting chemical parameters of river
water quality from bioindicator data. Appl. Intell. 13(1), 7–17 (2000)

6. Goovaerts, P.: Geostatistics for Natural Resources Evaluation. Oxford University
Press on Demand (1997)

7. Kocev, D., Vens, C., Struyf, J., Dzeroski, S.: Tree ensembles for predicting
structured outputs. Pattern Recognit. 46(3), 817–833 (2013). https://doi.org/10.
1016/j.patcog.2012.09.023. http://linkinghub.elsevier.com/retrieve/pii/S00313203
1200430X

8. Paredes, B.R., Argyriou, A., Berthouze, N., Pontil, M.: Exploiting unrelated tasks
in multi-task learning. In: Artificial Intelligence and Statistics, pp. 951–959 (2012)

https://doi.org/10.1007/978-3-319-67786-6_8
https://doi.org/10.1007/978-3-319-67786-6_8
https://doi.org/10.1007/978-1-4615-5529-2_5
https://doi.org/10.1016/j.patcog.2012.09.023
https://doi.org/10.1016/j.patcog.2012.09.023
http://linkinghub.elsevier.com/retrieve/pii/S003132031200430X
http://linkinghub.elsevier.com/retrieve/pii/S003132031200430X

64 E. Korneva and H. Blockeel

9. Piccart, B., Struyf, J., Blockeel, H.: Empirical asymmetric selective transfer in
multi-objective decision trees. In: Jean-Fran, J.-F., Berthold, M.R., Horváth, T.
(eds.) DS 2008. LNCS (LNAI), vol. 5255, pp. 64–75. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-88411-8 9

10. Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., Vlahavas, I.: Multi-target
regression via input space expansion: treating targets as inputs. Mach. Learn.
104(1), 55–98 (2016). https://doi.org/10.1007/s10994-016-5546-z

11. Thrun, S., O’Sullivan, J.: Discovering structure in multiple learning tasks: the TC
algorithm. ICML 96, 489–497 (1996)

12. Tsanas, A., Xifara, A.: Accurate quantitative estimation of energy performance
of residential buildings using statistical machine learning tools. Energy Build. 49,
560–567 (2012)

13. Van Wolputte, E., Korneva, E., Blockeel, H.: MERCS: multi-directional ensem-
bles of regression and classification trees. In: AAAI Conference on Artificial Intel-
ligence, North America (2018). https://aaai.org/ocs/index.php/AAAI/AAAI18/
paper/view/16875

14. Yeh, I.C.: Modeling slump flow of concrete using second-order regressions and
artificial neural networks. Cement Concr. Compos. 29(6), 474–480 (2007)

https://doi.org/10.1007/978-3-540-88411-8_9
https://doi.org/10.1007/s10994-016-5546-z
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16875
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16875

Finding Dissimilar Explanations
in Bayesian Networks:
Complexity Results

Johan Kwisthout(B)

Donders Institute for Brain, Cognition and Behaviour,
Radboud University Nijmegen, PO Box 9104, 6500HE Nijmegen, The Netherlands

j.kwisthout@donders.ru.nl

http://www.socsci.ru.nl/johank

Abstract. Finding the most probable explanation for observed variables
in a Bayesian network is a notoriously intractable problem, particularly
if there are hidden variables in the network. In this paper we examine the
complexity of a related problem, that is, the problem of finding a set of
sufficiently dissimilar, yet all plausible, explanations. Applications of this
problem are, e.g., in search query results (you won’t want 10 results that
all link to the same website) or in decision support systems. We show
that the problem of finding a ‘good enough’ explanation that differs in
structure from the best explanation is at least as hard as finding the best
explanation itself.

Keywords: Bayesian networks · MAP explanations ·
Computational complexity

1 Introduction

A vital computational problem within probabilistic graphical models such as
Bayesian networks is the problem of finding the mode or most probable explana-
tion of a set of variables given observed values for other variables in the network.
When the network includes latent or hidden variables (i.e., variables that have
neither been observed nor are of interest for the explanation) this problem is
known as Partial MAP; the explanation sought is the MAP explanation, i.e.,
the joint value assignment to the explanation variables that has maximum pos-
terior probability. In this paper we are interested in the problem of finding not
specifically the MAP explanation, but other explanations that have desirable
properties. There are two distinct reasons why we may be interested in alterna-
tive explanations:

1. As a means of approximating the MAP explanation. Partial MAP is a
highly intractable problem [1,6] and we may find an acceptable approximation
thereof (to be further explicated later) ‘good enough’;

c© Springer Nature Switzerland AG 2019
M. Atzmueller and W. Duivesteijn (Eds.): BNAIC 2018, CCIS 1021, pp. 65–72, 2019.
https://doi.org/10.1007/978-3-030-31978-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31978-6_6&domain=pdf
http://orcid.org/0000-0003-4383-7786
https://doi.org/10.1007/978-3-030-31978-6_6

66 J. Kwisthout

2. To obtain ‘alternative good’ explanations in addition to the MAP explanation,
to allow us to explore several alternatives (e.g. search results) or to cover for
a set of likely explanations (e.g. medical conditions).

‘Good enough’ and ‘alternative good’ explanations are conceptually different
when we look at the structure of the explanation as compared to the MAP
explanation; that is, how similar or dissimilar the joint value assignments (of the
MAP explanation and the alternative explanation) are. In the first case we are
more than happy to obtain an explanation that is almost identical to the MAP
explanation; in fact, in some problem domains this might even be a prerequisite.
For example, in computational cognitive modeling an explanation that does not
resemble the MAP explanation would not be acceptable as a valid approximation
of the MAP explanation, even if it has a comparable probability. In the second
case, our goal is to find alternative explanations that are structurally different
yet are still plausible. For example, in response to a search query we don’t want
to end up with ten results that refer to minor variations of essentially the same
web-page, even if they happen to be the most probable given the query.

Note that structure approximation (where we seek an explanation with Ham-
ming distance at most d of the MAP explanation) is really different from value
approximation (where we seek an explanation with almost-as-high probability,
e.g. within ratio r of the MAP explanation) and from rank approximation (where
we seek an explanation that is within the m best explanations) [7]. These notions
are really orthogonal, as Fig. 1 will reveal.

Current algorithms that seek to find alternative explanations by exploring
local maxima (e.g. [2,3,5]) may fare well if the explanatory landscape is as in the
“local maxima” panel of Fig. 1. They might not find good explanations, or take a
lot of time, if the landscape is in either of the other panels of Fig. 1. However, the
computational complexity of this problem has not yet been investigated. In this
paper we are specifically interested in explanations that rank well (are within
the best m explanations) and that are either structurally similar or dissimilar;
that is, we complement the results of [7]. In this paper we will further explicate
both problems and explore the computational complexity of both of them. We
will start with offering some necessary preliminaries and sharing our notational
conventions. In Sect. 3 we will formalize both problems (in several variants) and
show that both of them are at least as hard as Partial MAP itself. We will also
further elaborate on the exact complexity of decision versions of both problems
which turns out to be non-trivial. We conclude in Sect. 4.

2 Preliminaries

In this section we introduce our notational conventions. Specifically we will cover
Bayesian networks, the complexity classes PP and NPPP, one-Turing reductions,
and formal definitions of the approximation notions we will use in the paper.
The reader is referred to textbooks like [4] (specifically complexity in Bayesian
networks) and to [7] (for a formal treatment of MAP approximations) for more
background.

Finding Dissimilar Explanations in Bayesian Networks: Complexity Results 67

Fig. 1. Graphical depiction of possible relationships between similarity and probability
of explanations, with on the X-axis defines an order of the explanations according to
their similarity to the best explanation. In “linear decrease” the structure and the prob-
ability correlate almost completely; in “random noise” almost not at all. There can be
a sole peak of probability mass (“lonely mountain”) with all other explanations having
almost zero probability. Alternatively, there can be several structurally distinct “local
maxima” of probability mass. Particularly in the latter case it might be interesting to
look at dissimilar explanations that have a relatively high probability.

A Bayesian network B = (GB,Pr) is a probabilistic graphical model that suc-
cinctly represents a joint probability distribution Pr(V) =

∏n
i=1 Pr(Vi | π(Vi))

over a set of discrete random variables V. B is defined by a directed acyclic graph
GB = (V,A), where V represents the stochastic variables and A models the
conditional (in)dependences between them, and a set of parameter probabilities
Pr in the form of conditional probability tables (CPTs). In our notation π(Vi)
denotes the set of parents of a node Vi in GB. We use upper case to indicate
variables, lower case to indicate a specific value of a variable, and boldface to
indicate sets of variables respectively joint value assignments to such a set.

One of the key computational problems in Bayesian networks is the problem
to find the most probable explanation for a set of observations, i.e., a joint value
assignment to a designated set of variables (the explanation set) that has maxi-
mum posterior probability given the observed variables (the joint value assign-
ment to the evidence set) in the network. If the network includes variables that
are neither observed nor to be explained (referred to as intermediate variables)

68 J. Kwisthout

this problem is typically referred to as Partial MAP. We use the following
formal definition:

Partial MAP
Instance: A Bayesian network B = (GB,Pr), where V(GB) is partitioned into
a set of evidence nodes E with a joint value assignment e, a set of intermediate
nodes I, and an explanation set H.
Output: A joint value assignment h to H such that for all joint value
assignments h′ to H, Pr(h | e) ≥ Pr(h′ | e).
The following notation is taken from [7]. For an arbitrary Partial MAP
instance {B,H,E, I, e}, let cansolB refer to the set of candidate solutions, with
optsolB ∈ cansolB denoting the optimal solution (or, in case of multiple solutions
with the same posterior probability, one of the optimal solutions) to the Partial
MAP instance; we will informally refer to this solution as the MAP explanation.
When cansolB is ordered according to the probability of the candidate solutions
(breaking ties between candidate solutions with the same probability arbitrar-
ily), then optsol1...m

B refers to the set of the first m elements in cansolB, viz. the
m most probable solutions to the Partial MAP instance.

We assume that the reader is familiar with standard notions in computational
complexity theory, notably the classes P and NP, NP-hardness, and polynomial
time (many-one) reductions. The class PP is the class of decision problems that
can be decided by a probabilistic Turing machine in polynomial time; that is,
where Yes-instances are accepted with probability strictly larger than 1/2 and
No-instances are accepted with probability no more than 1/2. A problem in PP
might be accepted with probability 1/2+ ε where ε may depend exponentially on
the input size n. Hence, it may take exponential time to increase the probability
of acceptance (by repetition of the computation and taking a majority decision)
close to 1. This is consistent with the sampling variant of the Chernoff bound:
The number of samples M needed to increase the probability of acceptance of
Yes-instances to 1− δ is at least ln(1/

√
δ)

ε2 ; when ε = 1/2n then M is exponential in
the input size. PP hence is a powerful class; we know for example that NP ⊆ PP
and the inclusion is assumed to be strict. The canonical PP-complete decision
problem is MajSAT: given a Boolean formula φ, does the majority of truth
assignments to its variables satisfy φ?

In computational complexity theory, so-called oracles are theoretical con-
structs that increase the power of a specific Turing machine. An oracle (e.g.,
an oracle for PP-complete problems) can be seen as a ‘magic sub-routine’ that
answers class membership queries (e.g, in PP) in a single time step. In this
paper we are specifically interested in classes defined by non-deterministic Tur-
ing machines with access to a PP-oracle. Such a machine is very powerful, and
likewise problems that are complete for the corresponding complexity class NPPP

are highly intractable.
A decision variant of Partial MAP is known to be NPPP-complete, even

for binary variables, indegree at most 2, and under the assumption that there
exists at least one joint value assignment h such that Pr(h, e) > 0 [8,9]. In the

Finding Dissimilar Explanations in Bayesian Networks: Complexity Results 69

intractability proofs in Sect. 3 we will assume, without loss of generality, that
these constraints hold for all Bayesian networks B under consideration. As we
use reductions from function problems, not decision problems, our reductions
are formally polynomial-time one-Turing reductions. A function f one-Turing
reduces to g (notation f ≤FP

1−T g) if there are functions t1 and t2 such that for
all x, f(x) = t1(x, g(x, t2(x))) [10, p.5].

We finish this section be repeating the following formal definition of rank-
approximation of Partial MAP from [7]; we will build on this definition in the
next section.

Definition 1 (rank-approximation of Partial MAP). Let optsol1...m
B ⊆

cansolB be the set of the m most probable solutions to a Partial MAP problem
and let optsolB be the optimal solution. An explanation approxsolB ∈ cansolB is
defined to m-rank-approximate optsolB if approxsolB ∈ optsol1...m

B .

3 Main Results

Let dH be the Hamming distance between two joint value assignments. We define
the following two problem variants to Partial MAP, where m and d are arbi-
trary constants:

(m, d)-Similar Partial MAP
Instance: As in Partial MAP.
Output: An explanation approxsolB ∈ cansolB that m-rank-approximates
optsolB and where dH(approxsolB, optsolB) ≤ d, or special symbol ∅ if no such
explanation exists.

(m, d)-Dissimilar Partial MAP
Instance: As in Partial MAP.
Output: An explanation approxsolB ∈ cansolB that m-rank-approximates
optsolB and where dH(approxsolB, optsolB) ≥ d, or special symbol ∅ if no such
explanation exists.

We will prove that both problems are NPPP-hard by reduction from Partial
MAP, even for binary variables with indegree at most 2. We will start with the
construction for (m, d)-Similar Partial MAP without the latter constraints
and prove NPPP-hardness (Fig. 2, panel a), and then adapt it to contain only
binary variables and indegree at most 2 (panel b). Then we show how this con-
struction can be extended to prove NPPP-hardness of (m, d)-Dissimilar Par-
tial MAP (panel c).

Theorem 1 (m, d)-Similar Partial MAP is NPPP-hard.

Proof. We reduce from the NPPP-hard Partial MAP problem. Let
{B,H,E, I, e} be an instance to Partial MAP. From B, we create an instance
B′ to (m, d)-Similar Partial MAP as follows. To B we add a singleton,
unconnected node M with m uniformly distributed values m1 . . . mm. Let

70 J. Kwisthout

M M1 Mk

︷ ︸︸ ︷
�logm�nodes

. . .

. . .D1 Dd−1M

(a) (b)

(c)

m1

mm

. . . mF

mT mT

mF

Fig. 2. Nodes added to Partial MAP network B. (a) basic construct; (b) construct
with binary nodes only; (c) assuming at least d different nodes.

H′ = H ∪ {M} and observe that the MAP explanation h to H in the Partial
MAP instance now translates into a set of m best explanations optsol1...m

B =
h∪{mi}(i = 1 . . . m) with equal probability and by construction all these expla-
nations differ only in the value assignment to M . Let optsolB be any arbitrary
explanation in optsol1...m

B and let apr be a distinct explanation in optsol1...m
B . We

have that approxsolB ∈ optsol1...m
B m-rank-approximates optsolB and that for

any d ≥ 1, dH(approxsolB, optsolB) = 1 ≤ d; obviously the one-Turing reduction
takes polynomial time and hence (m, d)-Similar Partial MAP is NPPP-hard.

Note that we can replace M in this construction by k = �log m	 uniformly
distributed binary variables Mi such that H′ = H ∪ {M1 . . . Mk}. A caveat here
is that h may translate to more than m explanations with equal probability and if
optsol1...m

B and optsolB are picked randomly from this set, we may end up1 with a
set that does not contain approxsolB such that dH(approxsolB, optsolB) = 1. We
therefore impose the constraint that optsol1...m

B does not arbitrarily break ties,
but that it contains the first m explanations according to their lexicographical
order, and because of this we can be sure that optsol1...m

B contains at least one
explanation approxsolB with dH(approxsolB, optsolB) = 1.

Corollary 1. (m, d)-Similar Partial MAP is NPPP-hard, even if all nodes
are binary and have indegree at most 2.

We now extend the construction in the proof of Theorem1 to prove NPPP-
hardness of (m, d)-Dissimilar Partial MAP. To the above constructed net-
work B′ we add d − 1 nodes D1 . . . Dd−1 with m uniformly distributed val-
ues. D1 has M as sole parent, whereas Di, i ≥ 2 has Di−1 as sole parent. The
probability of Di is defined to be deterministically dependent on its parent,
i.e., Pr(D1 = d1,j | M = mj) = 1 and Pr(Di = di,j | Di−1 = di−1,j) = 1.
We set H′ = H ∪ {M} ∪ {D1 . . . Dd−1}. By construction, every explanation in

1 An example of such a situation would be when m = 5 and the solutions with binary
encodings 000, 011, 101, 110, and 111 would be in optsol1...mB , with optsolB = 000.

Finding Dissimilar Explanations in Bayesian Networks: Complexity Results 71

optsol1...m
B will differ in d variables and thus any approxsolB ∈ optsol1...m

B m-
rank-approximates optsolB and dH(approxsolB, optsolB) = d. The construction
with k = �log m	 binary variables Mi is similar, but now we add (d − 1)k nodes
D1,1 . . . Dd−1,k, which implies that every approxsolB ∈ optsol1...m

B differs in at
least d nodes.

Corollary 2. (m, d)-Dissimilar Partial MAP is NPPP-hard, even if all nodes
are binary and have indegree at most 2.

Note that m and d are constants and not part of the input. If we would make
them part of the input, then unary notation would be necessary as the number
of nodes added would otherwise be exponential in the binary representation of
m and d. However, since m ≤ 2n (where n denotes the number of variables in
B) the reduction would then not be polynomial in the Partial MAP instance
any more. Hence, we require m (and d) to be a constant.

3.1 On Membership in NPPP

As explicated before, Partial MAP has an NPPP-complete decision variant
[9]. Is it likely that appropriate decision variants of Similar Partial MAP
and Dissimilar Partial MAP are also in NPPP? We can check in polynomial
time, using the MAP explanation optsolB and the approximation approxsolB ∈
cansolB, that the Hamming distance dH(approxsolB, optsolB) is as promised.
However, a verification algorithm for (m, d)-Similar Partial MAP and (m, d)-
Dissimilar Partial MAP should also verify that approxsolB actually is within
the m best explanations, and finding the m-th best explanation is known to be
FPPPPP

-complete [8]. Hence, it is unlikely that (m, d)-Similar Partial MAP
and (m, d)-Dissimilar Partial MAP have an NPPP-complete decision variant.

4 Conclusion

In this short paper we elaborated on the computational complexity of finding
MAP explanations that are almost-as-good as the most probable one (where
‘almost-as-good’ was defined by rank) and that are sufficiently similar or dis-
similar to the most probable explanation. We found that these problems are
NPPP-hard, that is, not easier than the Partial MAP problem itself. An
attempt to extend this proof construct to include value-approximation did
not succeed, as the proof constructs really require that all explanations in
approxsolB ∈ optsol1...m

B have the same probability. In an extreme case it might
be that we have just two explanations for a given Partial MAP problem, where
Pr(h | e) = 1/2 + ε and Pr(¬h | e) = 1/2 − ε, and any non-uniform probability
assignment to the additional variables in the explanation set will destroy the
proof.

In future work we’d like to extend our results to value-approximation as well
as rank-approximation. It might be relevant to investigate the complexity of
these problems in constrained structures, such as polytrees, where the Partial
MAP problem nonetheless remains NP-hard.

72 J. Kwisthout

References

1. de Campos, C.P.: New complexity results for MAP in Bayesian networks. In: Walsh,
T. (ed.) Proceedings of IJCAI, vol. 11 (2011)

2. Chen, C., Kolmogorov, V., Zhu, Y., Metaxas, D., Lampert, C.: Computing the M
most probable modes of a graphical model. In: Proceedings of the 16th Interna-
tional Conference on Articial Intelligence and Statistics (AISTATS) (2013)

3. Chen, C., Yuan, C., Ye, Z., Chen, C.: Solving M-modes in loopy graphs using
tree decompositions. In: Kratochv́ıl, V., Studený, M. (eds.) Proceedings of the
Ninth International Conference on Probabilistic Graphical Models. Proceedings of
Machine Learning Research, vol. 72, pp. 145–156 (2018)

4. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge Uni-
versity Press, Cambridge (2009)

5. Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part-based models. IEEE Trans. Softw. Eng. 32(9),
1627–1645 (2010)

6. Kwisthout, J.: Most probable explanations in Bayesian networks: complexity and
tractability. Int. J. Approx. Reason. 52(9), 1452–1469 (2011)

7. Kwisthout, J.: Tree-width and the computational complexity of MAP approxima-
tions in Bayesian networks. J. Artif. Intell. Res. 53, 699–720 (2015)

8. Kwisthout, J.H.P., Bodlaender, H.L., van der Gaag, L.C.: The complexity of find-
ing kth most probable explanations in probabilistic networks. In: Černá, I., et al.
(eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 356–367. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-18381-2 30

9. Park, J., Darwiche, A.: Complexity results and approximation settings for MAP
explanations. J. Artif. Intell. Res. 21, 101–133 (2004)

10. Toda, S.: Simple characterizations of P(#P) and complete problems. J. Comput.
Syst. Sci. 49, 1–17 (1994)

https://doi.org/10.1007/978-3-642-18381-2_30

Beyond Local Nash Equilibria
for Adversarial Networks

Frans A. Oliehoek1(B), Rahul Savani2, Jose Gallego3, Elise van der Pol3,
and Roderich Groß4

1 Delft University of Technology, Delft, The Netherlands
f.a.oliehoek@tudelft.nl

2 University of Liverpool, Liverpool, UK
3 University of Amsterdam, Amsterdam, The Netherlands
4 The University of Sheffield, Sheffield, The Netherlands

Abstract. Save for some special cases, current training methods for
Generative Adversarial Networks (GANs) are at best guaranteed to con-
verge to a ‘local Nash equilibrium’ (LNE). Such LNEs, however, can be
arbitrarily far from an actual Nash equilibrium (NE), which implies that
there are no guarantees on the quality of the found generator or clas-
sifier. This paper proposes to model GANs explicitly as finite games in
mixed strategies, thereby ensuring that every LNE is an NE. We use the
Parallel Nash Memory as a solution method, which is proven to monoton-
ically converge to a resource-bounded Nash equilibrium. We empirically
demonstrate that our method is less prone to typical GAN problems such
as mode collapse and produces solutions that are less exploitable than
those produced by GANs and MGANs.

1 Introduction

Generative Adversarial Networks (GANs) [14] are a framework in which two
neural networks compete with each other: the generator (G) tries to trick the
classifier (C) into classifying its generated fake data as true. GANs hold great
promise for the development of accurate generative models for complex distri-
butions without relying on distance metrics [23]. However, GANs are difficult
to train [1,2,40]. A typical problem is mode collapse, which can take the form
of mode omission, where G does not produce any points from certain modes,
or mode degeneration, in which G only partially covers some of the modes. In
fact, except for special cases (cf. Sect. 7), current training methods [17,40] can
only guarantee to converge to a local Nash equilibrium (LNE) [35]. However,
an LNE can be arbitrarily far from an NE, and the corresponding generator
might be exploitable by an opponent due to suffering from problems such as
mode collapse. Moreover, adding computational resources alone may not offer
a way to escape these local equilibria: the problem does not lie in the lack of

This paper is based on a prior arXiv paper which contains further details [31].

c© Springer Nature Switzerland AG 2019
M. Atzmueller and W. Duivesteijn (Eds.): BNAIC 2018, CCIS 1021, pp. 73–89, 2019.
https://doi.org/10.1007/978-3-030-31978-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31978-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-31978-6_7

74 F. A. Oliehoek et al.

computational resources, but is inherently the result of only allowing small steps
in strategy space using gradient-based training.

We introduce an approach that does not get trapped in LNEs by formulating
adversarial networks as finite zero-sum games. The solutions that we try to
find are saddle points in mixed strategies. This approach is motivated by the
observation that, in the space of mixed strategies, any LNE is an NE. We employ
Parallel Nash Memory (PNM) [29], to search for approximate mixed equilibria
with small support.

PNM has been shown to monotonically converge to an NE, provided that in
its iterations it has non-zero probability to find better responses [29]. However,
due to the extremely large number of pure strategies that result for sensible
choices of neural network classes, we cannot expect to find exact best responses.
Therefore, we introduce resource-bounded best-responses (RBBRs), and show
that our PNM approach monotonically converges to the corresponding resource-
bounded Nash equilibrium (RB-NE).

Key features of our approach are that: (1) It is based on finite zero-sum
games, and as such it enables the use of existing game-theoretic methods. In
this paper we focus on one such method, Parallel Nash Memory (PNM) [29]. (2)
It will not get trapped in LNEs: we prove that it monotonically converges to
an RB-NE, which means that more computation can improve solution quality.
(3) It works for any network architecture. In particular, future improvements in
classifiers/generator networks can be exploited directly.

We investigate empirically the effectiveness of PNM and show that it can
indeed deal well with typical GAN problems. We show that the found solutions
closely match the theoretical predictions made by [14] about the conditions at
a Nash equilibrium, and are much less susceptible to being exploited by an
adversary than those produced by GANs and MGANs [18].

2 Background

We defer a more detailed treatment of related work until Sect. 7. Here, we intro-
duce some basic game theory.

Definition 1 (‘game’). A two-player strategic game , which we will simply call
‘game’, is a tuple

〈D, {Si}i∈D , {ui}i∈D
〉
, where D = {1, 2} is the set of players,

Si is the set of pure strategies (actions) for player i, and ui : S → R is i′s
payoff function defined on the set of pure strategy profiles S := S1 × S2. When
the action sets are finite, the game is finite.

We also write si and s−i for the strategy of agent i and its opponent respectively.
A fundamental concept is the Nash equilibrium (NE), which is a strategy profile
s = 〈si, s−i〉 such that no player can unilaterally deviate and improve his payoff:
ui(s) ≥ ui(〈s′

i, s−i〉) for all players i and s′
i ∈ Si.

A finite game may not possess a pure NE. A mixed strategy μi of player i
is a probability distribution over i’s pure strategies Si. The payoff of a player
under a profile of mixed strategies μ = 〈μ1, μ2〉 is defined as the expectation:

Beyond Local Nash Equilibria for Adversarial Networks 75

ui(μ) :=
∑

s∈S [
∏

j∈D μj(sj)] · ui(s). Then an NE in mixed strategies is defined
as follows. A μ = 〈μi, μ−i〉 is an NE if and only if ui(μ) ≥ ui(〈s′

i, μ−i〉) for
all players i and potential unilateral deviations s′

i ∈ Si. Every finite game has
at least one NE in mixed strategies [25]. In this paper we deal with two-player
zero-sum games, where u1(s1, s2) = −u2(s1, s2) for all s1 ∈ S1, s2 ∈ S2. The
equilibria of zero-sum games, also called saddle points,1 have several important
properties, as stated in Von Neuman’s Minmax theorem [27]:

Theorem 1. In a finite zero-sum game, v∗ is the value of the game that satis-
fies: minµ2 maxµ1 u1(μ) = maxµ1 minµ2 u1(μ) = v∗.

All equilibria have payoff v∗ and equilibrium strategies are interchangeable: if
〈μ1, μ2〉 and 〈μ′

1, μ
′
2〉 are equilibria, then so are 〈μ′

1, μ2〉 and 〈μ1, μ
′
2〉 [32]. This

means that in zero-sum games we do not need to worry about equilibrium selec-
tion. Moreover, the convex combination of two equilibria is an equilibrium, mean-
ing that the game either has one or infinitely many equilibria. We also employ
the standard, additive notion of approximate equilibrium: A pair of strategies
(μi, μ−i) is an ε-NE if ∀i ui(μi, μ−i) ≥ maxµ′

i
ui(μ′

i, μ−i) − ε.
In the literature, GANs have not typically been considered as finite games.

The natural interpretation of the standard setup of GANs is of an infinite game
where payoffs are defined over all possible weight parameters for the respective
neural networks. With this view we do not obtain existence of saddle points in the
space of parameters, nor the desirable properties that follow from Theorem 1.2

This is why the notion of local Nash equilibrium (LNE) has arisen in the literature
[35,40]. Roughly, an LNE is a strategy profile where neither player can improve
in a small neighborhood of the profile. In finite games every LNE is an NE, as,
whenever there is a global deviation (i.e., a better response), one can always
deviate locally in the space of mixed strategies towards a pure best response (by
playing that better response with ε higher probability).

3 GANGs

In order to capitalize on the insight that we can escape local equilibria by switch-
ing to mixed strategy space for a finite game, we formalize adversarial networks
in a finite games setting.3

We consider a standard adversarial network setup: M = 〈pd, 〈G, pz〉 , C, φ〉
where
1 Note that in game theory the term ‘saddle point’ is used to denote a ‘global’ saddle

point which corresponds to a Nash equilibrium: there is no profitable deviation near
or far away from the current point. In contrast, in machine learning, the term ‘saddle
point’ typically denotes a ‘local’ saddle point: no player can improve its payoff by
making a small step from the current joint strategy.

2 Some results on the existence of saddle points in infinite action games are known, but
they require properties like convexity and concavity of utility functions [5], which
we cannot apply as they would need to hold w.r.t. the neural network parameters.

3 By relying on Glicksberg’s theorem, we think it would be possible to extend our
formulation to the continuous setting.

76 F. A. Oliehoek et al.

– pd(x) is the distribution over (‘true’ or ‘real’) data points x ∈ R
d.

– G is a neural network class with d outputs, parametrized by a parameter
vector θG ∈ ΘG, such that G(z; θG) ∈ R

d denotes the (‘fake’ or ‘generated’)
output of G on a random vector z drawn from some distribution z ∼ pz.

– C is a neural network class with a single output, parametrized by a parameter
vector θC ∈ ΘC , such that the output C(x; θC) ∈ [0, 1] indicates the ‘realness’
of x according to C.

– φ : [0, 1] → R is a measuring function [4]—e.g., log for GANs, the identity
mapping for WGANs—used to specify game payoffs, explained next.

We call M a Generative Adversarial Network Game (GANG), since it induces
a zero-sum game 〈D = {G,C}, {SG,SC} , {uG, uC}〉 with:

– SG = {G(·; θG) | θG ∈ ΘG} the set of strategies sG;

– SC = {C(·; θC) | θC ∈ ΘC} the set of strategies sC ;

– uC(sG, sC) = Ex∼pd
[φ(sC(x))] − Ez∼pz

[φ(sC(sG(z)))]. I.e., the score of C is
the expected ‘measured realness’ of the real data minus that of the fake data;

– uG(sG, sC) = −uC(sG, sC).

As such, when using φ = log, the above formulation of GANGs employ a payoff
function for G that use [14]’s trick to enforce strong gradients early in the training
process (but it applies this transformation to uC too, in order to retain the zero-
sum property). It is also possible to use the original GAN objective. Correctness
of these transformations is shown in [31].

In practice, GANs are represented using floating point numbers, of which,
for a given setup, there is only a finite (albeit large) number. From now on, we
will focus on finite GANGs, which have finite parameter sets and a finite set of
neural network architectures.

We emphasize this finiteness, because this is exactly what enables us to obtain
the desirable properties mentioned in Sect. 2: existence of (one or infinitely many)
mixed NEs with the same value, as well as the guarantee that any LNE is an
NE. Moreover, these properties hold for the GANG in its original formulation—
not for a theoretical abstraction in terms of (infinite capacity) densities—which
means that we can truly expect solution methods (that operate in the parametric
domain [38]) to exploit these properties. However, since we do not impose any
additional constraints or discretization4, the number of strategies (all possible
unique instantiations of the network class with floating point numbers) is huge.
Therefore, we think that finding (near-) equilibria with small supports is one
of the most important challenges for making principled advances in the field
of adversarial networks. As a first step towards addressing this challenge, we
propose to make use of the Parallel Nash Memory (PNM) [29], which can be seen
as a generalization (to non-exact best responses) of the double oracle method [6,
24].

4 Therefore, our finite GANGs have the same representational capacity as normal
GANs that are implemented using floating point arithmetic.

Beyond Local Nash Equilibria for Adversarial Networks 77

4 Solving GANGs

Treating GANGs as finite games in mixed strategies permits building on exist-
ing tools and algorithms for these classes of games [10,11,33]. In this section,
we describe how to use Parallel Nash Memory (PNM) [29], which is particu-
larly tailored to find approximate NEs with small support, and monotonically5

converges to such an equilibrium.

Parallel Nash Memory for GANGs. The basic idea of PNM is that we iter-
atively find new strategies which are good candidates for improvement of an
approximate mixed strategy NE 〈μG, μC〉. Previous works (such as the original
PNM paper [29], and before that the double-oracle method [24]) have considered
the use of exact best response (BR) functions to deliver such new candidates.
In GANGs, however, computing such an exact BR is intractable, and we typ-
ically use gradient descent, or another way to compute an approximate best
response. In phrasing our algorithm, we abstract away from the actual imple-
mentation of how it is computed, but we acknowledge the fact that the quality
we can expect is bounded by computational resources. As such we will use the
term ‘resource-bounded best response’ (RBBR) to denote an approximate best
response function which computes the best possible answer it can given some
amount of computational resources.

Definition 2. A strategy si ∈ SRB
i of player i is a resource-bounded best-

response (RBBR) against a (possibly mixed) strategy μj, if

∀s′
i ∈ SRB

i , ui(si, μj) ≥ ui(s′
i, μj).

That is, si only needs to be amongst the best strategies that player i can compute
in response to μj .

For ease of explanation, we focus on the setting with deterministic best
responses, but the approach can easily be extended to non-deterministic RBBR
functions6 and our empirical evaluation makes use of such non-deterministic
RBBR functions (due to random initializations).

Algorithm 1 details our approach. PNM incrementally grows a strategic game
SG over a number of iterations using the AugmentGame function. It uses
SolveGame to compute (via linear programming, see, e.g., [37]) a mixed strat-
egy NE 〈μG, μC〉 of this smaller game at the end of each iteration. At the begin-
ning of each iteration the algorithm uses the RBBR functions to deliver new
5 For an explanation of the precise meaning of monotonic here, we refer to [29].

Roughly, we will be ‘secure’ against more strategies of the other agent with each
iteration. This does not imply that the worst case payoff for an agent also improves
monotonically. The latter property, while desirable, is not possible with an approach
that incrementally constructs sub-games of the full game, as considered here: there
might always be a part of the game we have not seen yet, but which we might dis-
cover in the future that will lead to a very poor worst case payoff for one of the
agents.

6 By changing the termination criterion of line 8 in Algorithm 1 into a criterion for
including the newly found strategies. See the formulation in [29] for more details.

78 F. A. Oliehoek et al.

Algorithm 1. Parallel Nash Memory with deterministic RBBRs

1: 〈sG, sC〉 ← InitialStrategies()
2: 〈μG, μC〉 ← 〈{sG}, {sC}〉 � set initial mixtures
3: while True do
4: sG ← RBBR(μC) � get new bounded best resp.
5: sC ← RBBR(μG)
6: // Expected payoffs of these ‘tests’ against mixture:
7: uBRs ← uG(sG, μC) + uC(μG, sC)
8: if uBRs ≤ 0 then
9: break

10: end if
11: SG ← AugmentGame(SG, sG, sC)
12: 〈μG, μC〉 ← SolveGame(SG)
13: end while
14: return 〈μG, μC〉 � found an RB-NE

promising strategies (sG, sC). Then we test if they ‘beat’ the current 〈μG, μC〉.
If they do, uBRs > 0, and the game is augmented with these and solved again to
find a new NE of the sub-game SG. If they do not, uBRs ≤ 0, and the algorithm
stops.

AugmentGame evaluates (by simulation) each newly found strategy for
each player against all of the existing strategies of the other player, thus con-
structing a new row and column for the maintained payoff matrix. In order to
implement the best response functions, we have used standard stochastic gra-
dient descent, which means that any existing neural network architectures can
be used. However, we need to compute RBBRs against mixtures of networks of
the other player. For C this is trivial: we can simply generate a batch of fake
data from the mixture μG. Implementing an RBBR for G against μC is slightly
more involved, as we need to back-propagate the gradient from all the different
sC ∈ μC to G. Intuitively, one can think of a combined network consisting of
the G network with its outputs connected to every sC ∈ μC . The predictions
ŷsC of these components sC ∈ μC are combined in a single linear output node
ŷ =

∑
sC∈µC

μC(sC) · ŷsC . This allows us to evaluate and backpropagate through
the entire network. A practical implementation loops through each component
sC ∈ μC and does the evaluation of the weighted prediction μC(sC) · ŷsC and
subsequent backpropagation per component.

Analysis. Given that we do not compute exact BRs, we cannot get convergence
to an NE. Instead, using RBBRs, we define an intuitive specialization of NE:

Definition 3. μ = 〈μi, μj〉 is a resource-bounded NE (RB-NE) if and only if
∀i ui(μi, μj) ≥ ui(RBBRi(μj), μj).

That is, an RB-NE can be thought of as follows: we present μ to each player i
and it gets the chance to switch to another strategy, for which it can apply its
bounded resources (i.e., use RBBRi) exactly once. After this application, the

Beyond Local Nash Equilibria for Adversarial Networks 79

player’s resources are exhausted and if the found RBBRi(μj) does not lead to
a higher payoff it will not have an incentive to deviate.7

Intuitively, it is clear that PNM converges to an RB-NE, which we now state
formally.

Theorem 2. If PNM terminates, it has found an RB-NE.

Proof. We show that uBRs ≤ 0 implies we have an RB-NE:

uBRs = uG(RBBRG(μC), μC) + uC(μG, RBBRC(μG))
≤ 0 = uG(μG, μC) + uC(μG, μC) (1)

Note that, per Definition 2, uG(RBBRG(μC), μC) ≥ uG(s′
G, μC) for all com-

putable s′
G ∈ SRB

G (and similar for C). Therefore, the only way that
uG(RBBRG(μC), μC) ≥ uG(μG, μC) could fail to hold, is if μG would include
some strategies that are not computable (not in SRB

G) that provide higher pay-
off. However, as the support of μG is composed of strategies computed in pre-
vious iterations, this cannot be the case. We conclude uG(RBBRG(μC), μC) ≥
uG(μG, μC) and similarly uC(μG, RBBRC(μG)) ≥ uC(μG, μC). Together with
(1) this directly implies uG(μG, μC) = uG(RBBRG(μC), μC) and uC(μG, μC) =
uC(μG, RBBRC(μG)), indicating we found an RB-NE.

Corollary 1. Moroever, making use of the finiteness of the game, it can be
easily shown that Algorithm 1 terminates and monotonically converges to an
equilibrium.

Proof. This follows directly from the fact that there are only finitely many
RBBRs and the fact that we never forget RBBRs that we computed before, thus
the proof for PNM [29] extends to Algorithm 1.

Finally, an RB-NE can be linked to the familiar notion of ε-NE by making
assumptions on the power of the best response computation.

Theorem 3. If both players are powerful enough to compute ε-best responses,
then an RB-NE is an ε-NE.

Proof. Starting from the RB-NE (μi, μj), assume an arbitrary i. By definition
of RB-NE ui(μi, μj) ≥ ui(RBBRi(μj), μj) ≥ maxµ′

i
ui(μ′

i, μj) − ε.

The PNM algorithm for GANGs is parameter free, but we mention two adap-
tations that are helpful: Interleaved training of best responses and regularization
of classifier best responses. Details can be found in [31].

7 During training the RBBR functions will be used many times. However, the goal of
the RB-NE is to provide a characterization of the end point of training.

80 F. A. Oliehoek et al.

5 Experiments

Here we report on experiments that aim to test if searching in mixed strategies
with PNM-GANG can help in reducing problems with training GANs, and if
the found solutions (near-RB-NEs) provide better generative models and are
potentially closer to true Nash equilibria than those found by GANs (near-
LNEs). Since our goal is to produce better generative models, we refrain from
evaluating these methods on complex data like images: image quality and log
likelihood are not aligned as for instance shown by [39]. Moreover there is debate
about whether GANs are overfitting and assessing this from samples is difficult;
some methods have been proposed e.g., [3,22,28,36], but most provide merely a
measure of variability, not over-fitting. As such, we choose to focus on irrefutable
results on mixture of Gaussian (MoG) tasks, for which the distributions can
readily be visualized.

Experimental Setup. We compare our PNM approach (‘PNM-GANG’) to a
vanilla GAN implementation and state-of-the-art MGAN [18]. Table 1 summa-
rizes the settings for GAN and PNM training. RBBR models were taken to be
as small as possible while still achieving good results. As suggested by [8], we
use leaky ReLU as inner activation for our GAN implementation to avoid sparse
gradients. Generators have linear output layers. Classifiers use sigmoids for the
final layer. Both classifiers and generators are multi-layer perceptrons with 3 hid-
den layers. We do not use techniques such as Dropout or Batch Normalization,
as they did not yield significant improvements in the quality of our experimental
results. The MGAN configuration is identical to that of Table 3 in Appendix C1
of [18].

Table 1. Settings used to train GANs and RBBRs.

GAN RBBR

Learning rate 3 · 10−4 5 · 10−3

Batch size 128 128

Dimension of z 40 5

Hidden nodes 50 5

Iterations 20000 750

Generator parameters 4902 92

Classifier parameters 2751 61

Inner activation Leaky ReLU Leaky ReLU

Measuring function log 10−5-bounded log

We test on 3 MoG tasks: ‘round’, ‘grid’ and ‘random’ (cf. Fig. 1). For each we
create test cases with 9 and 16 components. In our plots, black points are real
data, green points are generated data. Blue indicates areas that are classified as
‘realistic’ while red indicates a ‘fake’ classification by C.

Beyond Local Nash Equilibria for Adversarial Networks 81

Fig. 1. Results for mixtures of Gaussians with 9 and 16 modes. Odd rows: PNM-
GANG, Even rows: GAN. The histograms represent the probabilities in the mixed
strategy of each player. True data is shown in black, while fake data is green. The
classification boundary (where the classifier outputs 0.5) is indicated with a red line.
Best seen in color. (Color figure online)

82 F. A. Oliehoek et al.

Found Solutions Compared to Normal GANs. The results produced by regular
GANs and PNM-GANGs are shown in Fig. 1 and clearly convey three main
points: (1) The PNM-GANG mixed classifier has a much flatter surface than
the classifier found by the GAN. Around the true data, it outputs around 0.5
indicating indifference, which is in line with the theoretical predictions about the
equilibrium [14]. (2) This flatter surface is not coming at the cost of inaccurate
samples. In contrast: nearly all samples shown are hitting one of the modes and
thus the PNM-GANG solutions are highly accurate, much more so than the GAN
solutions. (3) Finally, the PNM-GANGs, unlike GANs, do not suffer from mode
omission. We also note that PNM-GANG typically uses fewer total parameters
than the regular GAN, e.g., 1463 vs. 7653 for the random 9 task in Fig. 1. This
shows that, qualitatively, the use of multiple generators seems to lead to good
results. However, not all modes are fully covered. This can be controlled by
varying the learning rate [31].

Found Solutions Compared to MGANs. Here we compare the solutions found
above for PNM-GANGs to a state-of-the-art GAN variant: MGAN [18] pro-
poses a setup with a mixture of k generators, a classifier, and a discriminator. In
an MGAN, the generator mixture aims to create samples which match the train-
ing data distribution, while the discriminator distinguishes real and generated
samples, and the classifier tries to determine which generator a sample comes
from. We use MGAN as a state-of-the art baseline that was explicitly designed
to overcome the problem of mode collapse.

Figure 2 shows the results of MGAN on the mixture of Gaussian tasks. We
see that MGAN results do seem qualitatively quite good. Comparing them to
the PNG-GANG results from Fig. 1, we see that MGAN may even have less
mode degeneration. However, we also see that in the MGAN results there is one
missed mode (and thus also one mode covered by 2 generators) on the randomly
located components task (right column). In contrast, the PNM-GANGs results
did not fail to capture any mode.

We point out that MGAN results were obtained with an architecture and
hyperparameters which exactly match those proposed by [18] for a similar task.
This means that the MGAN models shown use many more parameters (approx.
310,000) than the GAN and GANG models (approx. 2,000). MGAN requires
the number of generators to be chosen upfront as a hyperparameter of the
method. We chose this to be equal to the number of mixture components, so
that MGAN could cover all modes with one generator per mode. We note that
PNM does not require such a hyperparameter to be set, nor does PNM require
the related “diversity” hyperparameter of the MGAN method (called β in the
MGAN paper).

Overall, these results show that the quality of the solutions found by PNM-
GANGs is competitive to that of the state-of-the-art MGAN, while using much
fewer parameters.

Exploitability of Solutions. Finally, to complement the above qualitative analysis,
we also provide a quantitative analysis of the solutions found by GANs, MGANs

Beyond Local Nash Equilibria for Adversarial Networks 83

Fig. 2. Results for MGAN on several mixture of Gaussian tasks with 9 modes. Markers
correspond to samples created by each generator.

and PNM-GANGs. We investigate to what extent they are exploitable by newly
introduced adversaries with some fixed computational power (as modeled by the
complexity of the networks we use to attack the found solution). Intuitively,
since PNM-GANGs are trained by (against) more powerful attack than GANs,
we expect them to be more robust against new attacks of any kind. Specifically,
for a given solution μ̃ = (μ̃G, μ̃C) we use the following measure of exploitability:

explRB(μ̃G, μ̃C) � RBmaxµG
uG(μG, μ̃C) + RBmaxµC

uC(μ̃G, μC),

where ‘RBmax’ denotes an approximate maximization performed by an adver-
sary of some fixed complexity.

That is, the ‘RBmax’ functions are analogous to the RBBR functions
employed in PNM, but the computational resources of ‘RBmax’ could be differ-
ent from those used during PNM. Intuitively, it gives a higher score if μ̃ is easier
to exploit. However, it is not a true measure of distance to an equilibrium: it
can return values that are lower than zero which indicate that μ̃ could not be
exploited by the approximate best responses. Our exploitability is closely related
to the use of GAN training metrics [20], but additionally includes the exploitabil-
ity of the classifier. This is important: when only testing the exploitability of the
generator, this does give a way to compare generators, but it does not give a
way to assess how far from equilibrium we might be. Since finite GANGs are
zero-sum games, distance to equilibrium is the desired performance measure. In
particular, the exploitability of the classifier actually may provide information
about the quality of the generator: if the generator holds up well against a perfect
classifier, it should be close to the data distribution.8

Figure 3 shows our exploitability results for all three tasks with nine modes.
We observe roughly the same trend across the three tasks. First, we investi-
gate the exploitability of solutions delivered by GANs, MGANs and GANGs of

8 This measure of exploitability was used to quantify convergence in PNM [29], and
also has been used in the optimization literature [26]. It was in the context of GANs
in [30], and further motivated for this purpose in [31]. Additionally, an empirical
evaluation of exploitability as a measure for GANs was performed in the mean-
time [16], suggesting that this is a useful measure to quantify sample quality and
mode collapse.

84 F. A. Oliehoek et al.

Fig. 3. Exploitability results all 9 mode tasks. Top to bottom: round, grid, random.

different complexities (in terms of total number of parameters used). For this,
we compute ‘attacks’ to these solutions using attackers of fixed complexity (a
total of 453 parameters for the attacking G and C together). These results are
shown in Fig. 3 (left and middle column). The left column shows the exploitabil-
ity of PNM-GANG after different numbers of iterations, as well as the number
of parameters used in the solutions found in those iterations (a sum over all the
networks in the support of the mixture). Error bars indicate standard deviation
over 15 trials. It is apparent that PNM-GANG solutions with more parameters
typically are less exploitable. Also shown is that the variance of exploitability
depends heavily on the solution that we happen to attack.

The middle column shows how exploitable GAN, MGAN and PNM-GANG
models of different complexities are: the x-axis indicates the total number of
parameters, while the y-axis shows the exploitability. The PNM results are the
same points also shown in the left column, but repositioned at the appropriate
place on the x-axis. All data points are exploitability of models that were trained
until convergence. Note that here the x-axis shows the complexity in terms of
total parameters. The figure shows an approximately monotonic decrease in
exploitability for GANGs, while GANs and MGANs with higher complexity
are still very exploitable in many cases. In contrast to GANGs, more complex
architectures for GANs or MGANs are thus not necessarily a way to guarantee
a better solution.

We also we investigate what happens for the converged GAN/PNM-GANG
solution of Fig. 1, which have comparable complexities, when attacked with vary-
ing complexity attackers. We also attack the previously reported MGAN solution

Beyond Local Nash Equilibria for Adversarial Networks 85

(Fig. 2), which has a significantly larger number of parameters (approx. 310,000)
than the GAN and GANG models (approx. 2,000). These results are shown in
Fig. 3 (right). Clearly shown is that the PNM-GANG is robust with near-zero
exploitability even when attacked with high-complexity attackers. The MGAN
models also have low exploitability, but recall that these models are much more
complex. Even with such a complex model, in the ‘random’ task, the MGAN solu-
tion has a non-zero level of exploitability, roughly constant for several attacker
complexities. This is most likely related to the missed mode and the fact that
two of the MGAN generators collapsed to the same lower-right mode in Fig. 1.
In stark contrast to both PNM-GANGs and MGAN, we see that the converged
GAN solution is exploitable already for low-complexity attackers, again suggest-
ing that the GAN was stuck in an Local Nash Equilibrium far away from a Nash
Equilibrium.

6 Discussion

Overall, the preceding results are very positive: they demonstrate that PNM-
trained GANGs can provide more robust solutions than GANs/MGANs with the
same number of parameters, suggesting that they are closer to a Nash equilibrium
and provide better generative models.

However, we have had (at least so far) less positive results scaling these
methods to the image tasks (e.g., MNIST, CelebA or CIFAR-10) that researchers
have used to evaluate GANs. A typical problem is that we experience extreme
mode collapse of the generator RBBR: i.e., the RBBR typically outputs a single
image, regardless of the noise vector z. This mirrors the problem of generator
mode collapse also observed in regular GAN training and we are investigating
how to overcome this problem by building on techniques, such as minibatch
discrimination [36], that were introduced to overcome the related problem in
regular GAN training.

An interesting observation that we made on MNIST is that we get the same
issues when initializing PNM with the solutions from a number of different runs
of normal GAN training. That is, using these GAN solutions as the set of initial
strategies, we still find RBBRs (which look like noise attacks) that significantly
gain over the mixed strategies maintained, for many iterations. This echos the
results that we reported above for the MOG domains: the GAN provided solu-
tions for MNIST are not robust to newly trained attacks. As such, one might
question in how far GAN training really works for MNIST in terms of capturing
the true data distribution: as far as we can tell these solutions are far from equi-
librium, and therefore there is no reason to conclude that the data distribution
would be well-captured.

7 Related Work

There is a vast body of work related to this paper. We will restrict to discussing
only the most relevant papers here. For a broader discussion, including recent

86 F. A. Oliehoek et al.

progress on solving in zero-sum games, more general GAN improvements, and
bounded rationality, please see [31].

Recently, more researchers have investigated the idea of (more or less) explic-
itly representing a set or mixture of strategies for the players. For instance, [21]
retains sets of networks that are trained by randomly pairing up with a net-
work for the other player thus forming a GAN. This, like PNM, can be inter-
preted as a coevolutionary approach, but unlike PNM, it does not have any
convergence guarantees. MAD-GAN [13] uses k generators, but one discrimina-
tor. MGAN [18] proposes mixtures of k generators, a classifier and a discrim-
inator with weight sharing; and presents a theoretical analysis similar to [14]
assuming infinite capacity densities. None of these approaches have convergence
guarantees.

Generally, explicit mixtures can bring advantages in two ways: (1) Repre-
sentation: intuitively, a mixture of k neural networks could better represent a
complex distribution than a single neural network of the same size, and would be
roughly on par with a single network that is k times as big. Arora et al. [4] show
how to create such a bigger network that is particularly suitable for dealing with
multiple modes using a ‘multi-way selector’. In our experiments we observed
mixtures of simpler networks leading to better performance than a single larger
network of the same total complexity (in terms of number of parameters). (2)
Training : Arora et al. use an architecture that is tailored to representing a mix-
ture of components and train a single such network. We, in contrast, explicitly
represent the mixture; given the observation that good solutions will take the
form of a mixture. This is a form of domain knowledge that facilitates learning
and convergence guarantees.

A closely related paper is the work by [15], which also builds upon game-
theoretic tools to give certain convergence guarantees. The main differences are
as follows: (1) We provide a more general form of convergence (to an RB-NE)
that is applicable to all architectures, that only depends on the power to compute
best responses, and show that PNM-GANG converges in this sense. We also show
that if agents can compute an ε-best response, then the procedure converges to
an ε-NE. (2) [15] show that for a quite specific GAN architecture their first
algorithm converges to an ε-NE. On the one hand, this result is an instantiation
of our more general theory: they assume they can compute exact (for G) and
ε-approximate (for C) best responses; for such powerful players our Theorem 3
provides that guarantee. On the other hand, their formulation works without
discretizing the spaces of strategies. (3) The practical implementation of the
algorithm in [15] does not provide guarantees.

Ge et al. [12] propose a method similar to ours that uses fictitious play [7,11]
rather than PNM. Fictitious play does not explicitly model mixed strategies for
the agents, but interprets the opponent’s historical behavior as such a mixed
strategy. The average strategy played by the ‘Fictitious GAN’ approach con-
verges to a Nash equilibrium assuming that “the discriminator and the genera-
tor are updated according to the best-response strategy at each iteration”, which
follow from the result by [9] which states that fictitious play converges in con-

Beyond Local Nash Equilibria for Adversarial Networks 87

tinuous zero-sum games. Intuitively, fictitious play, like PNM, in each iteration
only ever touches a finite subset of strategies, and one can show that the value of
such subgames converges. While this result gives some theoretical underpinning
to Fictitious GAN, of course in practice the assumption is hard to satisfy and
the notion of RB-NE that we propose may apply to analyze their approach too.
Also, in their empirical results they limit the history of actions (played neural
networks in previous iterations) to 5 to improve scalability at the cost of conver-
gence guarantees. The Fictitious GAN is not explicitly shown to be more robust
than normal GANs, as we show in this paper, but it is demonstrated to produce
high quality images, thus showing the potential of game theoretical approaches
to GANs to scale.

Hsieh et al. [19] also search in the space of mixed strategies, but without
making finiteness assumption (enabled by Glicksberg’s theorem). In particular
they extend entropic Mirror Descent and Mirror-Prox to infinite dimension to
solve GANs, and propose an approximation that can be implemented making
use of sampling algorithms. However, for the algorithm to improve over time it
needs to make updates that are proportional to the expected payoffs of strategies
against the opponents current strategy. De facto this implies that the sampling
strategy must be able to find best responses, which in turn implies solving a
non-convex optimization problem. As such, it seems unlikely that their practical
approach would converge to Nash equilibrium. An interesting question is whether
their method can be shown to converge to an RB-NE.

8 Conclusions

We introduce finite GANGs—Generative Adversarial Network Games—a novel
framework for representing adversarial networks by formulating them as finite
zero-sum games. By tackling them with techniques working in mixed strategies
we can avoid getting stuck in local Nash equilibria (LNE). As finite GANGs have
extremely large strategy spaces we cannot expect to exactly (or ε-approximately)
solve them. Therefore, we introduced the resource-bounded Nash equilibrium
(RB-NE). This notion is richer than LNE in that it captures not only failures of
escaping local optima of gradient descent, but applies to any approximate best-
response computations, including methods with random restarts. Additionally,
GANGs can draw on a rich set of methods for solving zero-sum games [10,11,
29,34]. In this paper, we build on PNM and prove that the resulting method
monotonically converges to an RB-NE. We empirically demonstrate that the
resulting method does not suffer from typical GAN problems such as mode
collapse and forgetting. We also show that the GANG-PNM solutions are closer
to theoretical predictions, and are less exploitable than normal GANs: by using
PNM we can train models that are more robust than GANs of the same total
complexity, indicating they are closer to a Nash equilibrium and yield better
generative performance.

We presented a framework that can have many instantiations and modifi-
cations. For example, one direction is to employ different learning algorithms.

88 F. A. Oliehoek et al.

Another direction could focus on modifications of PNM, such as to allow dis-
carding “stale” pure strategies, which would allow the process to run for longer
without being inhibited by the size of the resulting zero-sum “subgame” that
must be maintained and repeatedly solved.

Acknowledgments. This research made use of a GPU
donated by NVIDIA. F.A.O. is funded by EPSRC First
Grant EP/R001227/1. This project had received funding
from the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No. 758824—INFLUENCE).

References

1. Arjovsky, M., Bottou, L.: Towards principled methods for training generative
adversarial networks. In: ICLR (2017)

2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks.
In: ICML (2017)

3. Arora, S., Zhang, Y.: Do GANs actually learn the distribution? An empirical study,
ArXiv e-prints (2017)

4. Arora, S., Ge, R., Liang, Y., Ma, T., Zhang, Y.: Generalization and equilibrium in
generative adversarial nets (GANs). In: ICML (2017)

5. Aubin, J.P.: Optima and Equilibria: An Introduction to Nonlinear Analysis, vol.
140. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-662-03539-9

6. Bosanský, B., Kiekintveld, C., Lisý, V., Pechoucek, M.: An exact double-oracle
algorithm for zero-sum extensive-form games with imperfect information. J. AI
Res. 51, 829–866 (2014)

7. Brown, G.W.: Iterative solution of games by fictitious play. Act. Anal. Prod. Alloc.
13(1), 374–376 (1951)

8. Chintala, S.: How to train a GAN? Tips and tricks to make GANs work. https://
github.com/soumith/ganhacks (2016). Accessed 08 Feb 2018

9. Danskin, J.M.: Fictitious play for continuous games revisited. Int. J. Game Theory
10(3), 147–154 (1981)

10. Foster, D.J., Li, Z., Lykouris, T., Sridharan, K., Tardos, E.: Learning in games:
robustness of fast convergence. In: NIPS 29 (2016)

11. Fudenberg, D., Levine, D.K.: The Theory of Learning in Games. MIT Press, Cam-
bridge (1998)

12. Ge, H., Xia, Y., Chen, X., Berry, R., Wu, Y.: Fictitious GAN: training GANs with
historical models. ArXiv e-prints (2018)

13. Ghosh, A., Kulharia, V., Namboodiri, V.P., Torr, P.H.S., Dokania, P.K.: Multi-
agent diverse generative adversarial networks. ArXiv e-prints (2017)

14. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS 27 (2014)
15. Grnarova, P., Levy, K.Y., Lucchi, A., Hofmann, T., Krause, A.: An online learning

approach to generative adversarial networks. In: ICLR (2018)
16. Grnarova, P., Levy, K.Y., Lucchi, A., Perraudin, N., Hofmann, T., Krause, A.:

Evaluating GANs via duality. arXiv e-prints (2018)
17. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs

trained by a two time-scale update rule converge to a local Nash equilibrium.
In: NIPS 30 (2017)

https://doi.org/10.1007/978-3-662-03539-9
https://github.com/soumith/ganhacks
https://github.com/soumith/ganhacks

Beyond Local Nash Equilibria for Adversarial Networks 89

18. Hoang, Q., Nguyen, T.D., Le, T., Phung, D.Q.: Multi-generator generative adver-
sarial nets. In: ICLR (2018)

19. Hsieh, Y.P., Liu, C., Cevher, V.: Finding mixed Nash equilibria of generative adver-
sarial networks. ArXiv e-prints (2018)

20. Im, D.J., Ma, A.H., Taylor, G.W., Branson, K.: Quantitatively evaluating GANs
with divergences proposed for training. In: ICLR (2018)

21. Jiwoong Im, D., Ma, H., Dongjoo Kim, C., Taylor, G.: Generative adversarial
parallelization. ArXiv e-prints (2016)

22. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for
improved quality, stability, and variation. In: ICLR (2018)

23. Li, W., Gauci, M., Groß, R.: Turing learning: a metric-free approach to inferring
behavior and its application to swarms. Swarm Intell. 10(3), 211–243 (2016)

24. McMahan, H.B., Gordon, G.J., Blum, A.: Planning in the presence of cost functions
controlled by an adversary. In: ICML (2003)

25. Nash, J.F.: Equilibrium points in N-person games. Proc. Natl. Acad. Sci. U. S. A.
36, 48–49 (1950)

26. Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approxi-
mation approach to stochastic programming. SIAM J. Optim. 19(4), 1574–1609
(2009)

27. von Neumann, J.: Zur Theorie der Gesellschaftsspiele. Math. Ann. 100(1), 295–320
(1928)

28. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier
GANs. In: ICML (2017)

29. Oliehoek, F.A., de Jong, E.D., Vlassis, N.: The parallel Nash memory for asym-
metric games. In: Proceedings of the Genetic and Evolutionary Computation
(GECCO) (2006)

30. Oliehoek, F.A., Savani, R., Gallego-Posada, J., Van der Pol, E., De Jong, E.D.,
Groß, R.: GANGs: generative adversarial network games. ArXiv e-prints (2017)

31. Oliehoek, F.A., Savani, R., Gallego-Posada, J., van der Pol, E., Gross, R.: Beyond
local Nash equilibria for adversarial networks. ArXiv e-prints (2018)

32. Osborne, M.J., Rubinstein, A.: Nash equilibrium. In: A Course in Game Theory.
The MIT Press (1994)

33. Rakhlin, A., Sridharan, K.: Online learning with predictable sequences. In: COLT
(2013)

34. Rakhlin, A., Sridharan, K.: Optimization, learning, and games with predictable
sequences. In: NIPS 26 (2013)

35. Ratliff, L.J., Burden, S.A., Sastry, S.S.: Characterization and computation of local
Nash equilibria in continuous games. In: Annual Allerton Conference on Commu-
nication, Control, and Computing. IEEE (2013)

36. Salimans, T., Goodfellow, I.J., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training GANs. In: NIPS 29 (2016)

37. Shoham, Y., Leyton-Brown, K.: Multi-Agent Systems: Algorithmic, Game-
Theoretic and Logical Foundations. Cambridge University Press, Cambridge (2008)

38. Sinn, M., Rawat, A.: Non-parametric estimation of Jensen-Shannon divergence in
generative adversarial network training. In: AISTATS (2018)

39. Theis, L., van den Oord, A., Bethge, M.: A note on the evaluation of generative
models. In: ICLR (2016)

40. Unterthiner, T., Nessler, B., Klambauer, G., Heusel, M., Ramsauer, H., Hochreiter,
S.: Coulomb GANs: provably optimal Nash equilibria via potential fields. In: ICLR
(2018)

Deep Multi-agent Reinforcement
Learning in a Homogeneous Open

Population

Roxana Rădulescu1(B), Manon Legrand1, Kyriakos Efthymiadis1,
Diederik M. Roijers1,2, and Ann Nowé1

1 Vrije Universiteit Brussel, Brussels, Belgium
{roxana.radulescu,kyriakos.efthymiadis,ann.nowe}@vub.be
2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

d.m.roijers@vu.nl

Abstract. Advances in reinforcement learning research have recently
produced agents that are competent, or sometimes exceed human perfor-
mance, in complex tasks. Most interesting real world problems however,
are not restricted to one agent, but instead deal with multiple agents
acting in the same environment and have proven to be challenging tasks
to solve. In this work we present a study on a homogeneous open popula-
tion of agents modelled as a multi-agent reinforcement learning (MARL)
system. We propose a centralised learning approach, with decentralised
execution in which agents are given the same policy to execute individu-
ally. Using the SimuLane highway traffic simulator as a test-bed we show
experimentally that using a single-agent learnt policy to initialise the
multi-agent scenario, which we then fine-tune to the task, out-performs
agents that learn in the multi-agent setting from scratch. Specifically
we contribute an open population MARL configuration, how to transfer
knowledge from single- to a multi-agent setting and a training procedure
for a homogeneous open population of agents.

Keywords: Multi-agent systems · Reinforcement learning ·
Open population · Highway traffic

1 Introduction

Recently, a great surge in reinforcement learning research has led to competent
artificial agents for increasingly complex tasks, such as playing Atari games and
Go [19,25], and robotics [27]. Through these advances, solutions for many real-
world problems are now within reach.

A feature of many real-world learning problems is that they require
interactions between agents [1,3,7,22]—both human agents, and increasingly
also other artificial agents. Such a multi-agent aspect makes these problems

M. Legrand—Contribution done during the master thesis studies at the Vrije Univer-
siteit Brussel.

c© Springer Nature Switzerland AG 2019
M. Atzmueller and W. Duivesteijn (Eds.): BNAIC 2018, CCIS 1021, pp. 90–105, 2019.
https://doi.org/10.1007/978-3-030-31978-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31978-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-31978-6_8

Deep MARL in a Homogeneous Open Population 91

particularly challenging. Specifically, artificial agents need to learn to antici-
pate the behaviour of other agents; typically, failing to do so greatly diminishes
the performance. Furthermore, if agents are not fully cooperative (or zero-sum)
[15,32], learning algorithms may have trouble identifying a suitable equilibrium
policy.

In this paper, we study the behaviour of a population of homogeneous learn-
ing agents that is continuously changing, as new agents are entering the system,
possibly at different rates than the ones exiting. We characterize this problem
as an open population of homogeneous learning agents. To tackle this scenario,
the agents are sharing the same policy and are learning simultaneously, in the
presence of other agents (e.g., human drivers) modelled as part of the environ-
ment. The policy-sharing aspect has the advantage that only one policy needs
to be learned, and that the agents (both human and artificial) can more easily
anticipate the behaviour of the other learning agents. Furthermore, we believe
that in many situations humans will be able to more easily predict what the
agents will do, which we believe to be a desirable aspect in many systems that
also include human agents.

We situate our study in (simulated) traffic on a highway. Not only is this a
suitable domain for studying homogeneous agents that share their policy—a car
manufacturer probably will want to sell autonomous cars with one policy only—
but it also illustrates why we would like to be able to learn around other agents,
i.e., humans, and why predictable agents would be desirable. We propose a new
simulator for highway traffic, which we briefly discuss in Sect. 3. For a more
extensive discussion of the simulator, please refer to [11] and [12].

To learn a policy for our artificial agents, we mainly build upon the Deep
Q-learning [18,19] approach. First, we apply this algorithm to learn a policy for
a single agent (Sect. 5.1), and test how suitable this policy is for the multi-agent
setting. Second, we tackle the multi-agent scenario through the centralized learn-
ing decentralized execution paradigm (in which homogeneous learning agents
sample simultaneously from an environment to train the same shared neural
network that represents their policy) (Sect. 5.2). As expected, this training pro-
cedure is significantly slower than single-agent learning. Our key insight is that
multi-agent learning can be sped up by first training a single-agent policy, and
then using this single-agent policy as a starting point for a homogeneous set of
agents. We integrate this key insight into our multi-agent learning algorithm,
completing our main contribution. We show experimentally, in Sect. 5.3, that
homogeneous multi-agent learning via reuse of a policy trained for a single agent
yields better results and is much faster than learning from scratch.

Our contributions for this work can be summarized as follows: (i) we success-
fully demonstrate how a single agent policy can be learned in our problem setting
and then demonstrate the need for training a model while several autonomous
agents are present in the environment, as the single agent one is unable to per-
form well in a multi-agent scenario; (ii) we demonstrate two methods for sharing
knowledge between agents: either by learning a shared policy using the expe-
riences of all the agents in an open population, or by additionally transferring
knowledge from a single-agent setting to a multi-agent one, in a complex problem
setting.

92 R. Rădulescu et al.

2 Background

In Reinforcement Learning (RL) [28] an agent learns to solve a task by interacting
with the environment, using a numerical reward signal as guidance. Value-based
algorithms are a common class of RL techniques. In value-based algorithms, the
goal typically is to find an estimation of the action-value function Q defined as
the expected sum of rewards discounted at each time step t by a factor γ, when
acting according to a policy π = P (a|s), defining the probability of any action
a in a state s:

Qπ(s, a) = E
[
rt + γrt+1 + γ2rt+2 + · · · | s0 = s, a0 = a, π

]
.

The optimal value function is then: Q∗(s, a) = maxπ Qπ(s, a).
Q-learning [31] is a popular value-based RL algorithm, in which the value

function is iteratively updated to optimize this expected long-term reward, by
bootstrapping the estimated value of the next state. Specifically, after a tran-
sition from state s to s′, through action a, Q-learning performs the following
update:

Q(s, a) ← Q(s, a) + α[r + γ max
a′

Q(s′, a′) − Q(s, a)] ,

where α is the learning rate, γ is the discount factor and r is the immediate
reward received from the environment.

In this paper, we build upon Deep Q-learning, which relies on a Deep Q-
network (DQN) [18], i.e., a neural network as a function approximator to esti-
mate the action-value function, Q(s, a; θ) ≈ Q∗(s, a), rather than a tabular repre-
sentation of the value function. A key aspect for having a stable learning process
when introducing this non-linear function approximator is keeping a secondary
target network, Q(s, a; θ−). In the case of DQN, it suffices to update the target
network’s parameters every τ steps with the online network [30]. The parameters
θ are learned by performing one-step gradient descent updates according to the
following loss function at iteration i:

Li(θi) = E

(
r + γ max

a′
Q(s′, a′; θ−

i) − Q(s, a; θi)
)2

DQN is then used together with experience replay memory (ERM) as detailed in
[19] to further stabilize and improve the learning process. While an agent inter-
acts with its environment, it gathers experiences of the form <st, at, st+1, rt>
at each time step t. In the original Q-learning algorithm [31], each experience is
used only once to update the Q-value function. This can be considered wasteful,
as certain events may occur with a low frequency. Reusing experiences is the key
idea behind the experience replay mechanism [14]; the agent keeps all the past
experiences in memory and can then reuse them to update its Q-value function.
Additionally, for Deep Q-learning, experience replay plays an important role in
breaking the correlation induced by the sequentiality between learning samples.

For the action selection strategy we use ε-greedy, choosing a random action
with a probability ε and the action with the highest Q-value for the rest of the
time.

Deep MARL in a Homogeneous Open Population 93

Fig. 1. Graphical Interface of SimuLane. The human drivers are represented in blue,
while the autonomous agents are in green. (Color figure online)

3 Problem Setting

In this section, we outline our first contribution: the SimuLane highway traffic
simulator.1

3.1 Environment

SimuLane is a highway traffic simulator modelling both a single- and multi-
agent reinforcement learning environment. It offers a discrete representation of
a highway section, where each lane has a preferred speed, reflecting the idea
that cars’ speed usually increases from right to left on highway lanes. Figure 1
presents a screen-shot of SimuLane’s graphical user interface, in which both
humans drivers (in blue) and autonomous agents (in green) are interacting in
the environment.

Another important component of the simulator are the human drivers. They
act according to a behavioural model that can be summarized by three rules: (i)
“drivers must not crash”, (ii) “drivers must reach their desired speed” and (iii)
“drivers must respect the lanes’ speeds”.

3.2 State and Action Space

Each agent perceives at each time step a state containing only local information,
i.e., in accordance to its field of view. The agent is able to observe the presence
of other cars, their speed, its own speed and location (i.e., current lane), together
with its goal. SimuLane offers learning settings in which the highway can also
have exits, with each driver having a certain exit number as a goal. For all the
experiments in this work, we do not use exits, thus our agents’ goal is to safely
traverse the simulated highway segment. The speed of the cars can take integer
values in the interval [0, 3]. A visual representation of this car-centric input space
can be seen in Fig. 2.
1 We have previously demonstrated an earlier version of SimuLane at BNAIC 2017

[12].

94 R. Rădulescu et al.

Fig. 2. State space and network inputs for each learning agent in the SimuLane envi-
ronment. Everything is normalized between [0, 1].

An action is a tuple of the form <acceleration, direction>, where the acceler-
ation value is an integer in the range [−2, 2], while the direction can take values
from the set {forward, left, right}. Our action space is formed by all the possible
<acceleration, direction> combinations and thus has a size of 15.

3.3 Parameters

Traffic density defines a per lane probability for a car to enter the highway at
each time step. The first cell of each lane is thus updated according to the traffic
density at every step. For the multi-agent scenario, the ratio of autonomous cars
is the probability that a new driver entering the highway is an autonomous car.

The size of the highway section can also be configured by setting the number
of lanes and cells. Additionally, the irrationality defines the probability for a
human driver to choose a random action, allowing one to simulate the fact that
a driver can make mistakes.

For the single-agent case we define the maximum number of steps the agent
can spend on the highway in order to avoid an infinite episode. If the agent is
still present on the highway beyond this number of time-steps his outcome will
be set to overtime and the episode is terminated. For the multi-agent scenario
we fix each episode to a certain number of steps. The reward function is also
fully configurable for each possible outcome (i.e., crash, overtime and achieved
goal).

Deep MARL in a Homogeneous Open Population 95

4 Methods

In this section we outline our second and main contribution: a method for train-
ing a homogeneous multi-agent policy in open populations. We are considering
here three learning settings: single-agent, where only one autonomous car is
present on the highway at all times; multi-agent learning from scratch, where
multiple autonomous cars sharing the same learning model are trained from
scratch; and multi-agent initialized with a single-agent network as a starting
point for the training. We note that for each of the three settings, the human
drivers are also present in the environment at all times.

4.1 From Single to Multi-agent Learning

The multi-agent setting is vitally different from the single-agent setting. In
a single-agent setting an agent has to learn to respond well to the environ-
ment. While this environment may contain other agents, these can generally be
assumed to behave according to stationary rules. In our problem setting, we
generate such non-learning agents on-the-fly, following a stationary distribution
over policies such agents may have. The multi-agent setting on the other hand is
considerably harder, i.e., an agent not only has to respond well to the environ-
ment, but also to other learning agents – which in our case are running the same,
but evolving, policy. This means that the environment is non-stationary, due to
these concurrently learning agents. This induces two important challenges: (1)
the experience tuples in the experience replay buffer may not resemble the cur-
rent situation well enough any more, as the learning agent’s policies have changed
and (2) as a result of this the agents may learn a policy that responds to overly
erratic agents, as in the beginning, the learning agents do behave erratically.

Before tackling these problems however, we must first decide upon the basis
for the multi-agent approach. As we are considering a homogeneous population of
learning agents, we employ Deep Q-learning coupled with a centralized training
with decentralized execution framework, i.e., during training the agents add their
experiences to the same experience replay buffer and only one network is trained
for the entire population. At execution time, each agent receives its own network
copy and acts according to its own local input. This approach has two main
potential advantages: (i) speeding up the training process due to the information
sharing between all the agents, (ii) the policy learned will be uniform across the
entire population outputting a more predictable behaviour for all the agents.
This second point is highly important, as we aim to be able to learn in non-
stationary environments.

Our goal for the multi-agent setting is thus to learn one agent-centric pol-
icy, uniform over the entire population. As our environment consists in a fixed
highway segment through which different agents pass at various rates, we are
dealing with an open population. We are learning a policy, by having all agents
that pass through the environment contribute, with the experiences they gather,
to a central experience replay memory.

96 R. Rădulescu et al.

For the multi-agent reinforcement learning scenario, as we know from pre-
vious research, when employing an experience replay memory [8] learning may
become unstable due to non-stationarity. As an initial approach to mitigate this
situation we shrink the ERM until we obtained a stable learning process. As an
additional helping factor for learning in a multi-agent environment we employ
a dropout mask [26] before the output layer. While we expect this approach to
mitigate part of the above-stated problems, we do expect the performance of the
agents trained in this manner to be significantly worse than in the single-agent
case.

4.2 Single to Multi-agent Knowledge Transfer

We identified two problems that may impair learning in a multi-agent reinforce-
ment learning in open populations: the highly erratic behaviour of the agents in
the beginning, and the non-stationarity that may render experience replay less
useful. Our key insight is that we can significantly reduce the impact of both
problems by initializing the policy of the agents with a model learned in the
single-agent version of the open-population scenario, i.e., all other agents are
non-learning. Firstly, the behaviour of the agents will be significantly better in
the beginning, as they already “know” the environment. Furthermore, this will
make the behaviour of the learning agents more predictable, and thus make the
problem less non-stationary.

Specifically, in our highway traffic problem setting there are two main aspects
that have to be learned: (i) driving in a highway environment populated with
human drivers, (ii) dealing with the behaviour of other autonomous driving
agents. Transfer from the single-agent case to the multi-agent case leverages
knowledge about the former from a model trained in a single agent setting,
which takes less time to train, and then further tunes this network in order to
include in the policy a behaviour adapted for the latter. As we show empirically
in Sect. 5, this both reduces the overall training time until convergence with
respect to multi-agent network trained from scratch, while the performance is
significantly higher.

The fine-tuning procedure we adopt for this work consists in freezing all
the weights of the single-agent network model we are transferring to the multi-
agent scenario, with the exception of the ones between the last hidden layer
and the output. This procedure ensures sufficient exploration in the beginning
to escape the risk of running into a local optimum early, while keeping the
useful information about the environment encoded in the earlier layers [21].
Additionally, we decrease the learning rate by a factor of 10 in order to stabilize
the learning process and avoid unlearning the transferred knowledge.

5 Experiments

In order to test the performance of our algorithms for multi-agent reinforcement
learning in open homogeneous populations, we run them on a highway traffic

Deep MARL in a Homogeneous Open Population 97

setting, using the settings for our algorithms and our SimuLane simulator stated
below. We measure performance of our algorithms as the fraction of times the
agents have successfully traversed the highway segment, and thus reached their
goal, until each respective episode. We additionally report the fraction of crashes
and overtimes.

DQN Settings – We use a DQN function approximator by means of a feed
forward network composed of two fully connected layers of size 100 (with a
relu activation function) and 50 (followed by a tanh activation), respectively.
There are 42 inputs and 15 outputs. This network architecture is kept the same
throughout all our experiments in order to ensure a proper comparison between
all the cases (we argue that we look from a policy maker’s perspective and aim
to learn a car-centred policy in all the settings). The optimizer used is adagrad
[5] with a learning rate of 0.01. We set two different update intervals for the
online and target networks, 10 and 50 respectively, while the batch size for the
online network update is set to 16. The experience replay memory has a size of
10 000.

SimuLane Settings – Throughout all our experiments we keep the traffic density
at a constant 0.25 value, while the highway segment we consider has 3 lanes,
each consisting of 40 cells. For the single agent scenario, the learner has 70 time
steps to traverse the highway, otherwise the output is set to overtime. For the
multi-agent experiments we keep the length of an episode at 160 steps.

Q-learning Settings – The Q-learning parameters are set as follows: ε is 0.1, γ
is 0.9, while the reward function is set to: goal 1, crash −1, no-speed −0.01,
overtime −0.4. The small negative reward for each time step in which the car
speed is zero was introduced to encourage agents to avoid the overtime outcome.

5.1 Single-Agent

As a baseline, we first train a policy using only a single agent in the environment,
and subsequently test how well that policy performs if it is employed by multiple
agents in a multi-agent scenario.

Figure 3 (left) presents the training for the single agent case over 250 000
episodes. The results are averages over 30 runs and we plot the mean and stan-
dard deviation for each outcome. We note that for the entire training period the
agent keeps a constant ε exploration factor. We notice that in training, the agent
manages to converge to a performance of over 80%. Additionally, the training
curves do not exhibit a high variance, outputting a stable expected performance.

Now that we have a trained network model for the single agent setting,
we can test this policy in various scenarios. We begin by looking at how the
model behaves in different traffic densities. We illustrate the outcomes of our
simulations in Fig. 3 (right), under two different traffic density values: 0.25 (the
value used during training) and 0.752. We average the results over the 30 trained
2 We note that we run simulations for other intermediate values, but only show here

the two extremes, for the sake of graph legibility.

98 R. Rădulescu et al.

Single-agent Training Single-agent Testing

Fig. 3. Single-agent model performance in training (left) and testing (right). The agent
keeps a constant ε exploration rate of 0.1 for the entire training process. The ε is set to
0 during testing. In the testing scenarios, we notice that the further we go away from
the value the model was trained under (i.e., 0.25), the bigger the drop in performance
gets.

models. One can notice that the further we go away from the value the model was
trained under, the bigger the drop in performance will get. This result indicates
that, in order to have a better performing model, one should also look at training
in a multi-task fashion [6,23], to allow the model to adapt to a bigger variety of
environments (at least in terms of traffic density).

A first step towards our goal of having a policy that is able to handle a multi-
agent highway scenario is to see how our single agent model performs when
multiple learners are present in the environment. We run simulations varying
the ratio of autonomous drivers on the highway between 0 and 1, with steps of
0.01. Every agent entering the highway is using the model from the single agent
setting in order to act in the environment. The simulations for each ratio last for
500 steps and are repeated 100 times. We plot the mean and standard deviation
for each result.

Figure 4 presents the results of these simulations. Notice the downwards trend
along the ratio axis in the left subplot, which clearly indicates that a simple
transfer of the single agent policy to a multi-agent setting is not sufficient. The
more autonomous agents are on the highway, the more difficult it is to cope and
behave in the environment. On the right side we also take a look at the number
of cars entering the highway segment versus the number of cars exiting. We
notice also a steep decrease in these values, signalling an increased presence of
crashes and stopped cars on the highway, bringing the traffic close to a standstill
towards the higher values of the ratio.

5.2 Multi-agent from Scratch

In addition to our single-agent-trained policy as a baseline for multi-agent set-
tings, we also try to train a multi-agent policy from scratch. Please note that

Deep MARL in a Homogeneous Open Population 99

Testing a Single-agent Model in a Multi-agent Setting

Fig. 4. Performance of the single agent model in a multi-agent setting with various
ratios of autonomous cars present on the highway. The drop in performance is a clear
indication for the need of a model trained in a multi-agent setting, that allows the
policy to also incorporate a response to the behaviour of other autonomous agents.

for the multi-agent setting there are two important changes in the parameters
mentioned above. The ERM has now a size of 20, and we introduce a dropout
mask before the output layer, as explained before, with a value of 0.5. Figure 5
presents the training outcome. The results are averaged over 18 runs and we
again run the training process for 250 000 episodes. Notice that in comparison
to the single agent case, the expected performance is lower (ending up at a bit
over 60% in training), while the variance is higher, showing uncertainty in the
final training outcome.

Another important aspect we should note regarding the multi-agent from
scratch training procedure is about the training duration. The time for training
a multi-agent model from scratch is about 4 times higher than the one for the
single agent case (i.e., it took about 4 days, compared to around 20 h).

Moving on to the testing phase, Fig. 6 illustrates the performance of our
multi-agent models when various ratios of autonomous cars are present on the
highway. Keeping in mind that the ratio under which we trained the policy was
0.5, we can then extract from the left graph the average performance of the
models during execution for this scenario, i.e., around 75%. In comparison to
Fig. 4, we can definitely notice that the multi-agent models handle better the
increase in the autonomous agent ratios, however there is still a higher variance
observed towards the second half of the axis. Regarding the number of cars
entering the highway, we notice a linear drop, signalling a general decrease in
the speed of the cars. Looking also at the number of cars exiting, we notice a
slight diverging tendency towards the end, a sign for cars coming to a stand still
or getting involved in more crashes.

100 R. Rădulescu et al.

Multi-agent Training from Scratch

Fig. 5. Performance of the multi-agent from scratch model in training. The agents
keeps a constant ε exploration rate of 0.1 for the entire process.

Testing the Multi-agent Model Trained from Scratch

Fig. 6. Performance of the multi-agent model in a setting with various ratios of
autonomous cars present on the highway. The drop in performance is not as steep
as the single agent case, however there is still much variance in the second half of the
graphs.

5.3 Multi-agent with Single-agent Initialization

Finally, we test our main contribution: using a single-agent policy as an ini-
tialization to train a multi-agent policy in a homogeneous open population of
learners. For this experiment we initialize the network with a model learned in
the single agent scenario. We keep the same parameters as in the multi-agent
from scratch case, with the exception of the learning rate, which is lowered to
0.001 and the dropout before the output layer, lowered to 0.25. The results are
averaged over 8 independent runs.

The results of the fine-tuning process are shown in Fig. 7. We can notice
how the goal curve starts now much higher (i.e., at approximately 50%), due to
the model initialization, while the final performance level is significantly better
compared to the multi-agent learning from zero. The variance is lower and notice

Deep MARL in a Homogeneous Open Population 101

Multi-agent Training with Initialization

Fig. 7. Performance of the multi-agent with single agent initialization models in train-
ing. The agents keeps a constant ε exploration rate of 0.1 for the entire process.

how 50 000 additional episodes were already enough to match the single-agent
performance. We should also note that the total training time for the single
agent model plus the multi-agent initialized from single agent one is still only
half of the time required to train the multi-agent network from scratch, while
the performance is significantly better.

Our final simulation results (Fig. 8) illustrate how the multi-agent with single
agent initialization models perform under various ratios of autonomous cars on
the highway. The average performance level for the 0.5 ratio is a bit over 90%.
We also notice that the performance has no longer such a steep downwards trend,
but always remains above 80%. For the number of cars exiting and entering the
highway, even though the variance is fairly high, we can notice the two curves do
not diverge from each other, signalling that there is only a decrease in the cars’
speed. We can conclude from these results that models trained in a multi-agent
setting, having an initial knowledge transfer from the single agent case exhibit
the best performance in our problem setting.

6 Related Work

Our work takes inspiration from the A3C algorithm [17], in which multiple single-
agent environments are run in parallel, and share their experience through push-
ing gradient updates to a centrally maintained actor and critic. The environment
studied in this work however, is vitally different on two important points: in this
paper multiple agents act in the same environment, and as the population is
open the number of agents varies over time.

Our multi-agent training setting is additionally related to the parameter shar-
ing training procedure described by [9]. The idea is to leverage the homogeneity
of the population of agents and allow them to share the parameters of a common
policy. Our open population characteristic, however, prevents us from adding an

102 R. Rădulescu et al.

Testing the Multi-agent Model with Initialization

Fig. 8. Performance of multi-agent with single agent initialization models in a setting
with various ratios of autonomous cars present on the highway. The drop in performance
is only showing a slight decrease, demonstrating that these models are better adapted
to a multi-agent scenario.

index for each agent within the model, as the number of agents, as well as the
agents themselves, do not remain constant in the population.

In the work of [4] we can also find the idea of an interplay between single
and multi-agent scenarios. Although not directly related to our setting, we do
find there an interesting procedure for allowing agents to learn as independent
learners until there is an explicit requirement for interacting and cooperating
with other learners.

The knowledge transfer approach from a single to a multi-agent task pre-
sented in this work resembles one of the study cases of [2], where they perform
transfer learning from a single-agent predator-prey setting to a multi-agent one
(with two or three agents). However, due to our goal of learning a uniform
behaviour for each agent in the population, we do not need to establish any
mapping between agents for the transfer procedure. We are additionally dealing
with a more complex problem setting and a larger number of agents that can
enter and exit the system at varying time rates and that are not necessarily
performing a cooperative task.

7 Conclusions

In this paper, we looked at the problem of learning in a homogeneous open
population of agents, applied in the SimuLane highway traffic simulator. We
started by successfully training a single agent in the environment, however that
proved to be insufficient in order to cope with a multi-agent setting.

We then examined two basic ways of sharing knowledge between agents:
sharing experience from multiple agents in an open population by learning a
shared policy, and additionally transferring knowledge from a single-agent setting
to a multi-agent setting.

Deep MARL in a Homogeneous Open Population 103

We have shown that in our setting homogeneous multi-agent learning via pol-
icy reuse from a single agent yields better results and is much faster than learning
from scratch. We thus conclude that transferring from a single-agent policy to a
multi-agent policy in homogeneous open-population multi-agent reinforcement
learning is both key to keeping learning tractable, and significantly increases
performance.

We note that the direct parameter sharing we used for both types of knowl-
edge transfer is only possible due to the homogeneous population. When the set
of agents would be heterogeneous, other transfer methods [29] would be required.

In future work, we aim to examine how the learning can be decentralised and
still share experience via social learning [10] or by developing a grounded com-
munication system [20]. Additionally, it holds great interest for us to evaluate
different (multi-agent) reinforcement learning approaches such as [13,16,24] in
this problem setting. Furthermore, another possible study aspect is to remove
the homogeneity constraint from the agents and learn in a heterogeneous pop-
ulation. One can then start identifying clusters of similar agents [33] and apply
the principle of learn-from-whom-to-learn in either a centralized or decentral-
ized manner. Finally, the complexity of the environment can also be increased
by considering dynamic traffic densities (simulating daily traffic patterns).

Acknowledgements. This work is supported by Flanders Innovation & Entrepre-
neurship (VLAIO), SBO project 140047: Stable MultI-agent LEarnIng for neTworks
(SMILE-IT), and the European Union FET Proactive Initiative project 64089: Deferred
Restructuring of Experience in Autonomous Machines (DREAM) and the Security-
Driven Engineering of Cloud-Based Applications (SeCLOUD).

References

1. Amato, C., Oliehoek, F.A.: Scalable planning and learning for multiagent
POMDPs. In: AAAI, pp. 1995–2002 (2015)

2. Boutsioukis, G., Partalas, I., Vlahavas, I.: Transfer learning in multi-agent rein-
forcement learning domains. In: Sanner, S., Hutter, M. (eds.) EWRL 2011. LNCS
(LNAI), vol. 7188, pp. 249–260. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29946-9 25

3. Busoniu, L., Babuska, R., Schutter, B.D.: A comprehensive survey of multiagent
reinforcement learning. IEEE Trans Syst. Man Cybern. Part C 38(2), 156–172
(2008)

4. De Hauwere, Y.M.: Sparse interactions in multi-agent reinforcement learning.
Ph.D. thesis, Vrije Universiteit Brussel (2011)

5. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res. 12(Jul), 2121–2159 (2011)

6. Espeholt, L., et al.: IMPALA: scalable distributed deep-RL with importance
weighted actor-learner architectures. arXiv preprint arXiv:1802.01561 (2018)

7. Foerster, J., Assael, Y.M., de Freitas, N., Whiteson, S.: Learning to communicate
with deep multi-agent reinforcement learning. In: Advances in Neural Information
Processing Systems, pp. 2137–2145 (2016)

8. Foerster, J., et al.: Stabilising experience replay for deep multi-agent reinforcement
learning. arXiv preprint arXiv:1702.08887 (2017)

https://doi.org/10.1007/978-3-642-29946-9_25
https://doi.org/10.1007/978-3-642-29946-9_25
http://arxiv.org/abs/1802.01561
http://arxiv.org/abs/1702.08887

104 R. Rădulescu et al.

9. Gupta, J.K., Egorov, M., Kochenderfer, M.: Cooperative multi-agent control using
deep reinforcement learning. In: Sukthankar, G., Rodriguez-Aguilar, J.A. (eds.)
AAMAS 2017. LNCS (LNAI), vol. 10642, pp. 66–83. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-71682-4 5

10. Heinerman, J., Rango, M., Eiben, A.E.: Evolution, individual learning, and social
learning in a swarm of real robots. In: 2015 IEEE Symposium Series on Computa-
tional Intelligence, pp. 1055–1062. IEEE (2015)

11. Legrand, M.: Deep reinforcement learning for autonomous vehicle control among
human drivers. Master dissertation, Vrije Universiteit Brussel (2017). http://ai.
vub.ac.be/sites/default/files/thesis legrand.pdf

12. Legrand, M., Rădulescu, R., Roijers, D.M., Nowé, A.: The SimuLane highway
traffic simulator for multi-agent reinforcement learning. BNAIC 2017, 394–395
(2017)

13. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971 (2015)

14. Lin, L.J.: Self-improving reactive agents based on reinforcement learning, planning
and teaching. Mach. Learn. 8(3–4), 293–321 (1992)

15. Littman, M.L.: Value-function reinforcement learning in Markov games. Cogn.
Syst. Res. 2(1), 55–66 (2001)

16. Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O.P., Mordatch, I.: Multi-agent
actor-critic for mixed cooperative-competitive environments. In: Advances in Neu-
ral Information Processing Systems, pp. 6382–6393 (2017)

17. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. CoRR
abs/1602.01783 (2016)

18. Mnih, V., et al.: Playing Atari with deep reinforcement learning. CoRR abs/
1312.5602 (2013)

19. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

20. Mordatch, I., Abbeel, P.: Emergence of grounded compositional language in multi-
agent populations. arXiv preprint arXiv:1703.04908 (2017)

21. Mossalam, H., Assael, Y., Roijers, D., Whiteson, S.: Multi-objective deep reinforce-
ment learning. In: NIPS Workshop on Deep RL (2016)

22. Nowé, A., Vrancx, P., De Hauwere, Y.M.: Game theory and multi-agent reinforce-
ment learning. In: Wiering, M., van Otterlo, M. (eds.) Reinforcement Learning:
State of the Art, pp. 441–470. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-27645-3 14

23. Rusu, A.A., et al.: Progressive neural networks. arXiv preprint arXiv:1606.04671
(2016)

24. Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust region policy
optimization. In: International Conference on Machine Learning, pp. 1889–1897
(2015)

25. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

26. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15, 1929–1958 (2014)

27. Steckelmacher, D., Roijers, D.M., Harutyunyan, A., Vrancx, P., Plisnier, H., Nowé,
A.: Reinforcement learning in POMDPs with memoryless options and option-
observation initiation sets. AAAI 2018, 4099–4106 (2018)

28. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

https://doi.org/10.1007/978-3-319-71682-4_5
http://ai.vub.ac.be/sites/default/files/thesis_legrand.pdf
http://ai.vub.ac.be/sites/default/files/thesis_legrand.pdf
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1703.04908
https://doi.org/10.1007/978-3-642-27645-3_14
https://doi.org/10.1007/978-3-642-27645-3_14
http://arxiv.org/abs/1606.04671

Deep MARL in a Homogeneous Open Population 105

29. Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning domains: a
survey. J. Mach. Learn. Res. 10(Jul), 1633–1685 (2009)

30. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
Q-learning. AAAI 16, 2094–2100 (2016)

31. Watkins, C.J.C.H.: Learning from delayed rewards. Ph.D. thesis, University of
Cambridge England (1989)

32. Wiggers, A.J., Oliehoek, F.A., Roijers, D.M.: Structure in the value function of
two-player zero-sum games of incomplete information. In: ECAI 2016, pp. 1628–
1629 (2016)

33. Zhang, C., Lesser, V.: Coordinating multi-agent reinforcement learning with lim-
ited communication. In: Proceedings of the 2013 International Conference on
Autonomous Agents and Multi-agent Systems, pp. 1101–1108 (2013)

Computing and Predicting Winning
Hands in the Trick-Taking Game

of Klaverjas

Jan N. van Rijn2,4(B), Frank W. Takes3,4, and Jonathan K. Vis1,4

1 Leiden University Medical Center, Leiden, The Netherlands
2 Columbia University, New York, USA

3 University of Amsterdam, Amsterdam, The Netherlands
4 Leiden University, Leiden, The Netherlands

Abstract. This paper deals with the trick-taking game of Klaverjas, in
which two teams of two players aim to gather as many high valued cards
for their team as possible. We propose an efficient encoding to enumer-
ate possible configurations of the game, such that subsequently αβ-search
can be employed to effectively determine whether a given hand of cards
is winning. To avoid having to apply the exact approach to all possible
game configurations, we introduce a partitioning of hands into 981,541
equivalence classes. In addition, we devise a machine learning approach
that, based on a combination of simple features is able to predict with
high accuracy whether a hand is winning. This approach essentially mim-
ics humans, who typically decide whether or not to play a dealt hand
based on various simple counts of high ranking cards in their hand. By
comparing the results of the exact algorithm and the machine learning
approach we are able to characterize precisely which instances are diffi-
cult to solve for an algorithm, but easy to decide for a human. Results
on almost one million game instances show that the exact approach typi-
cally solves a game within minutes, whereas a relatively small number of
instances require up to several days, traversing a space of several billion
game states. Interestingly, it is precisely those instances that are always
correctly classified by the machine learning approach. This suggests that
a hybrid approach combining both machine learning and exact search
may be the solution to a perfect real-time artificial Klaverjas agent.

Keywords: Trick-taking card games · Alpha-beta search ·
Computational complexity · Machine learning · AI

1 Introduction

A substantial part of artificial intelligence deals with investigating the extent to
which machines are able to perform nontrivial complex human tasks. One of such
tasks is playing games, a topic which over the years has received a lot of attention

c© Springer Nature Switzerland AG 2019
M. Atzmueller and W. Duivesteijn (Eds.): BNAIC 2018, CCIS 1021, pp. 106–120, 2019.
https://doi.org/10.1007/978-3-030-31978-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31978-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-31978-6_9

Winning Hands in the Game of Klaverjas 107

in artificial intelligence research [8–10], leading to a number of breakthroughs.
A recent example is AlphaGo [21], where a combination of search algorithms
and machine learning techniques is used to effectively beat humans at the highly
complex game of Go. In general, a key problem in such games is that the search
space of all possible game configurations is extremely large. This makes it difficult
for algorithms to choose for example the next best move, whereas such a decision
is often without much effort successfully taken by a human. In this paper we aim
to explore this difference in competence of machines and humans, in particular
in automatically assessing if a given instance of the game of Klaverjas can be
won.

Klaverjas is a trick-taking (card) game, played with the top eight cards from
each suit of the French deck. Each card has a face f ∈ F = {7, 8, 9, 10, J,Q,K,A},
a suit s ∈ S = {♣,♦,♥,♠} and a rank r ∈ R = (1, . . . , 8). Cards with higher
ranks are considered more powerful. One suit is designated the trump suit; cards
from this suit are considered more powerful than all cards from other suits.
Each card has a specific number of points associated to it, based on the rank
and whether it is part of the trump suit or not. Table 1 displays for each card
its value in points. Note that the rank of a card depends on the face value and
whether it is part of the trump suit.

Table 1. Rank and number of points per card.

Rank Regular Trump

8 A 11 J 20

7 10 10 9 14

6 K 4 A 11

5 Q 3 10 10

4 J 2 K 4

3 9 0 Q 3

2 8 0 8 0

1 7 0 7 0

The game is played with four players that form two teams: one team consists
of player N (north) and S (south) whereas the other consists of player E (east)
and W (west). Each player starts with eight cards, to be played in each of the
eight tricks. A trick is a part of the game in which each player plays one card.
The first card of a trick can be freely chosen by the starting player. The other
players must follow the leading card. If such a card is not available in a player’s
hand, a trump card must be played. Whenever a player must play a trump card,
and a trump card has already been played in that trick, if possible, a higher
rank trump card should be played. If the player can neither follow suit nor play
a trump card, it is allowed to play any card that the player has left. It should be
noted that there are also versions of the game in which always playing a (higher)

108 J. N. van Rijn et al.

trump card is not mandatory if a team mate has already played a trump card,
referred to as “Amsterdams” rather than the version which we consider, which
is “Rotterdams” Klaverjas.

Once the fourth player has played his card, the trick has ended, and the
winner of the trick is determined. If trump cards have been played, the trump
card with the highest rank wins the tricks. If not, the card with the highest rank
of the leading suit wins the trick. The player who played this card takes all the
cards, his team receives the associated points and will start the next trick. The
team that wins the last of the eight tricks is awarded 10 additional points. To
win the game the team that started the game has to accumulate more points
than the opposing team. If they fail to do so, i.e., they lose the game, which
is referred to as nat, 162 points are awarded to the opposing team. Note that
draws do not exist. When the starting team manages to win all eight tricks of
the game they are awarded 100 bonus points, referred to as pit.

Additionally, special meld points can be claimed by the team winning the
trick when cards with adjacent face values are in the trick. These are for three
ascending face values 20 meld points and for four ascending face values 50 meld
points. For the King and Queen of trump, players can claim 20 meld points, in
addition to other meld points already claimed in that trick. Finally, when four
cards of the same face are played in the same trick, the team winning the trick
can claim 100 meld points. For determining meld points, the order in which the
players have played these cards is irrelevant. The addition of meld changes the
dynamics of the game drastically, as players might sometimes be inclined to play
a good card in a trick that is already lost, to prevent conceding meld points to
the opposing team. Teams can choose not to claim meld points, for example
when they already know they will lose the game.

In this paper we consider the task of determining and predicting whether an
instance of the game of Klaverjas is winning for a variant of the game, in which
complete information on a team’s cards is available. In addition, we assume that
there is no bidding process of determining which player starts the game; the first
player always starts and determines the trump suit. For this simplified version
of the game, we consider the decision problem of, given a particular distribution
of cards over players, determining whether this hand is winning for the starting
player. We do so using both an exact algorithm based on αβ-search, as well as
using a machine learning algorithm that based on feature construction mimics
how a human decides whether a hand would be winning, for example based on
counting high value cards.

The results presented in this paper are useful for at least two types of new
insights. First, in the real game, determining the starting player is done based on
bidding, where players assess the quality of their dealt hand, based on whether
they think they can win that hand. The approaches presented in this paper
essentially perform this type of hand quality assessment. Second, as we employ
both an exact approach and a machine learning approach, we can investigate
the extent to which both are able to efficiently solve the game of Klaverjas. This

Winning Hands in the Game of Klaverjas 109

will allow to investigate whether exact algorithms have the same difficulties with
certain hands as an exact algorithm faces.

The remainder of this paper is organized as follows. After discussing related
work in Sect. 2, we introduce various definitions and necessary notation in Sect. 3.
Then, an exact algorithm for solving a game of Klaverjas is presented in Sect. 4.
Next, a machine learning approach is presented in Sect. 5. A comparison between
the two is made in Sect. 6. Finally, Sect. 7 concludes the paper and provides
suggestions for future work.

2 Related Work

Klaverjas is an example of the Jack-Nine card games, which are characterized as
trick-taking games where the Jack and nine of the trump suit are the highest-
ranking trumps, and the tens and aces of other suits are the most valuable cards
of these suits [16]. Trick-taking games are games of finite length, where players
have a hand of cards, and in each round (called a trick) all players play a card
from their hand; the player that played the best card according to the rules
wins the trick. As Jack-Nine games are not extensively studied in literature, we
review some seminal research on solving games, as well as relevant literature on
trick-taking games in general.

Exhaustive search strategies have extensively been applied in a number of
games [9,19]. For two-player games, the minimax algorithm and its extension
αβ-pruning, together henceforth referred to as αβ-search, traverse a game tree
to evaluate a given game position. In practice, this is often combined with a
heuristic evaluation function, in case the game tree is too massive to traverse to
all relevant leafs. Historically, much research has been conducted to handcraft
static heuristic functions that capture human knowledge about the game. Alter-
native to using a static heuristic function, induction techniques can be used to
learn such functions based on previous games. Recently, this strategy has been
successfully employed within AlphaGo, an artificial intelligence agent that has
beaten the human world champion at Go [21,22]. When no heuristic function is
used, and the relevant part of the game tree is completely traversed, the minimax
algorithm results in the game-theoretical value, i.e., the outcome of the game
assuming perfect play, of this game state [12,17]. This is one of the principal
aims of this work.

When agents are confronted with imperfect information, Perfect Information
Monte Carlo (PIMC) search is a practical technique for playing games that are
too large to be optimally solved [7,15]. PIMC builds a game tree starting with
a probabilistic node, branching to all possible configurations. For each configu-
ration, it assumes perfect information and uses common search algorithms, such
as minimax with αβ-pruning. It has been noted that the correct card to play
might be based on information that the player can not possibly know [6].

Several computational complexity results have been obtained for trick-taking
games where all players have perfect information [2,23,24]. According to [2], the
natural decision question for trick-taking games is whether a given team can

110 J. N. van Rijn et al.

obtain a given number of tricks. In order to obtain computational complexity
results, generalizations need to be made. In the case of trick-taking games this
can be done over the number of suits, the number of cards per suit, the number
of players and the way these players are assigned to two teams. In [23] it was
shown that trick-taking games with two players and one suit are in P. In [24], it
was proven that trick-taking games with two players, where both players have
for each suit an equal number of cards, are in P, for an unbounded number of
suits. Later, the authors of [2] showed that all generalizations are in PSPACE,
and when generalizing over the number of teams and the number of suits, trick-
taking games are PSPACE-complete. Furthermore, they showed that a game
with six players and unbounded number of suits and cards per suit is PSPACE-
complete. It is shown that the obtained complexity results also apply to trick-
taking games that feature a trump suit, such as the Nine-Jack games. The biggest
difference between the obtained complexity results and the main interest of our
work, Klaverjas, is that the natural decision question of Klaverjas involves a
threshold on the number of points, rather than the number of obtained tricks.
This decision question requires a different approach.

Other related research regarding trick-taking games focuses on combining
and applying search and heuristic evaluation techniques to Skat, a related trick-
taking game. We review some examples. In [13], an agent is proposed that uses
exact search, assuming perfect information. The implementation features a spe-
cific move ordering, transposition tables and adversarial heuristics to speed up
the procedure. The main claim is that a typical instance of Skat (with perfect
information) can be solved within milliseconds. This conclusion is in line with
our (Klaverjas) experiments in Sect. 6.2. The outcomes of individual games can
be combined using Monte Carlo techniques. In [5] an agent is proposed that
applies inference techniques to both heuristic evaluations and the bidding in
Skat. Finally, in [14] a post processing opponent modelling technique is intro-
duced, determining the skill level of an opponent based on earlier games. This is
based on the premise that when playing against weaker opponents, moves that
have a higher risk and reward pay-off can be played. All mentioned agents use
a variant of PIMC to traverse the search space.

3 Preliminaries

We allow ourselves to build upon the excellent definition given by the authors
of [2]. The game is played with 32 cards, each player obtaining 8 cards. For
each card c, face(c) denotes the face, suit(c) denotes the suit, rank(c) denotes
the rank, and points(c) denotes the number of points associated with this card.
Note that each card is defined by its suit and face value. The rank and the score
follow from this.

A position p is defined by a tuple of hands h = (hN , hE , hS , hW), where a
hand is a set of cards, a trump suit φ ∈ {♣,♦,♥,♠} and a lead player τ ∈ P ,
where P = {N,E, S,W}. Let hp with p ∈ P be the set of all cards (i.e., the
hand) of player p. All players have an equal number of cards, i.e., for all i, j ∈ P

Winning Hands in the Game of Klaverjas 111

it holds that |hi| = |hj |. Furthermore, the hands of players do not overlap, i.e.,
for all i, j ∈ P (with i �= j) we have hi ∩ hj = ∅.

We define hp,s with p ∈ P be the set of all cards of player p that are of suit
s, i.e., Hp,s = {c ∈ Hp : suit(c) = s}. Let op with p ∈ P be the set of all cards in
the opposing team of player p, i.e., oN = oS = hW ∪hE and oW = oE = hN ∪hS .

Problem Statement. The goal of this paper is to compute the game-theoretical
value of the game Klaverjas KlaverjasOpen(h, φ, τ) with hands h, trump suit
φ and starting player τ , where the players have full information. Team NS aims
to maximize the the score of team EW subtracted from the score of team NS .
Team EW aims to minimize this value. In case of a positive value, team NS has
an optimal strategy to win the game, whereas in case of a negative value, team
EW has an optimal strategy to win the game.

KlaverjasOpen(h, φ, τ) returns tuple K = (KNS ,t,KNS ,m,KEW ,t,KEW ,m)
of four values, respectively the trick points obtained by team NS , the meld points
obtained by team NS , the trick points obtained by team EW and the meld points
obtained by teamEW . As such, the total score of teamNS can be defined asKNS =
KNS ,t + KNS ,m, and similarly the score of team EW can be defined as KEW =
KEW ,t+KEW ,m. Note that there are sometimes multiple sequences of moves may
lead to the same outcome. Including the definition of nat, the result of the game is
determined by Outcome(KlaverjasOpen(h, φ, τ)) =

Outcome(K) =

{
KNS − KEW if KNS > KEW ,

−(162 + KEW ,m) otherwise.

This value is to be maximized by team NS and minimized by team EW . Note
that team NS needs to obtain more points that team EW cf. the definition in
Sect. 1, otherwise all 162 points are awarded to team EW (i.e., team NW is
nat). In this case, the optimal outcome does never include any meld points from
team NS , as the team obtaining meld points can choose to not declare these.
Also note that the definition of pit from Sect. 1 is implicitly captured in this
formalization through the meld points.

4 Exact Approach

After briefly discussing the combinatorics behind solving the game of Klaverjas
in Sect. 4.1, after which the main approach is outlined in Sect. 4.2 and explored
further in Sect. 4.3.

4.1 Combinatorics

In this section we restrict ourselves, without losing generality, to configurations
of the game of Klaverjas with a fixed trump (♦) and starting player (N). The
number of different configurations is given as the number of ways of dealing
32 cards over 4 hands of 8 cards:

(
32
8

)(
24
8

)(
16
8

)
. Note that given a fixed trump

112 J. N. van Rijn et al.

suit some of the above configurations will be equivalent as the order of the non-
trump suits is of no consequence. We omit the removal of these symmetrical
configurations for the sake of simplicity.

We use a Combinatorial Number System [1,11] of degree k to define a bijec-
tion between any number N to the k-th combination (in lexicographic order) of(
n
k

)
:

N =
(

ck
k

)
+ · · · +

(
c2
2

)
+

(
c1
1

)
.

The process of mapping the number N to its corresponding combination is com-
monly referred to as unranking, while the inverse operation is called ranking.

It is trivial to combine combinatorial number systems (of the same degree).
This allows us to easily enumerate the total number of configurations. Moreover,
the total number of configurations is less than 264 making the implementation
trivial.

4.2 Solving Approach

Calculating the game-theoretical value of a given configuration with perfect
information, a fixed trump and starting player can be done with various exist-
ing techniques, in particular minimax search with αβ-pruning [12]. In practical
approaches, this search technique is often equipped with an intermediate eval-
uation function that allows for partial exploration of the search tree as well as
various heuristics aimed towards reducing the statespace. In contrast to most
practical implementations, we are interested in the game-theoretical value of a
configuration, the search procedure needs to traverse the complete statespace
(unless it can theoretically determine for a given branch that it will never be
relevant, cf. αβ-pruning). In our implementation we use the classical minimax
search with αβ-pruning, but without any additional heuristics. This approach is
rarely practical as the statespace for most games is too large.

An upper bound on the statespace for a given configuration is 8!4, where in
every trick each player is able to select any of his cards in hand. Although rare,
this situation can occur in practice, e.g., when every player is dealt cards from
only one suit.

The distribution of the suits over the hands is the main contributing factor
to the number of legal moves during a particular game (note that in case of the
trump suit also the face value of the card can be of influence). Therefore, the
size of the search space highly depends on this distribution.

4.3 Equivalence Classes

In order to show the practicality of the solving approach presented in Sect. 4.2,
we partition the total number of configurations into configurations with the same
distribution of the number of cards from the same suit in each of the hands:

Winning Hands in the Game of Klaverjas 113

⎛
⎜⎜⎝

8 0 0 0
0 8 0 0
0 0 8 0
0 0 0 8

⎞
⎟⎟⎠ , · · · ,

⎛
⎜⎜⎝

2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2

⎞
⎟⎟⎠ , · · · ,

⎛
⎜⎜⎝

0 0 0 8
0 0 8 0
0 8 0 0
8 0 0 0

⎞
⎟⎟⎠ ,

where the hands are represented in rows and the columns represent the num-
ber of cards of each suit (both the order of players as well as the order of suits
is unimportant). There are 981,541 of such equivalence classes1, each contain-
ing a highly variable number of equivalent configurations ranging from 1 to
40,327,580,160,000. Note that equivalence does not imply a similar play out of
the game nor a similar outcome. It merely fixes the distribution of cards of cer-
tain suits over the hands with the intent of obtaining a similar average branching
factor during the αβ-search.

This partitioning focuses on exploring the effect of the various statespace
sizes on the performance of our exact solving approach as well as yielding an
interesting dataset for the machine learning approach described in Sect. 5.

5 Machine Learning Approach

In this section, we elaborate on our machine learning approach to predict the
outcome of a particular configuration.

The classification problem is as follows. Given full information about the
hands of all players, predict whether the starting team will win or not, i.e.,
whether for a given deal h, Outcome(KlaverjasOpen(h, φ, τ)) > 0. Like in
Sect. 4, we fix φ = ♦ and τ = N .

In order to apply supervised machine learning techniques to this problem, we
need to have access to a dataset of generated games, and their outcome. For this
we use all 981,541 games that were analyzed in Sect. 6.1. Generally, machine
learning models are induced based on a dataset D = {(xi, yi) | i = 1, . . . , n}
to map an input x to output f(x), which closely represents y. Here, n rep-
resents the number of games in the dataset, xi is a numerical representation
of one such game and yi is the outcome of that game. As such, yi repre-
sents whether team NS will obtain more points than team EW , i.e, whether
Outcome(KlaverjasOpen(h, φ, τ)) > 0.

The main challenge is representing a game g as feature vector F(g). This has
been done for other games, see for example Dou Shou Qi [20]. We note that more
complex algorithms, e.g., convolutional neural networks, can implicitly learn this
mapping. However, it has been noted in [8] that card games do not have a clear
topological structure to exploit. As such, defining convolutions on card games is
a research question in its own right and beyond the scope of this work. Table 2
shows an overview of the handcrafted features that we defined. The first column
defines a name for each group of features, the column ‘size’ denotes how many

1 See also: N.J.A. Sloane. The On-Line Encyclopedia of Integer Sequences, https://
oeis.org. Sequence A001496.

https://oeis.org
https://oeis.org

114 J. N. van Rijn et al.

of those features can be generated. The column ‘parameters’ defines how this
number of features can be generated. The last column defines how each feature
can be generated.

Table 2. Features constructed for the machine learning approach.

Name Size Parameters Definition

card ownership 32 ∀s ∈ S, ∀f ∈ F p : ∃c : c ∈ hp ∧ suit(c) =
s ∧ face(c) = f

suit counts 16 ∀p ∈ P, ∀s ∈ S |hp,s|
rank counts 32 ∀p ∈ P, ∀r ∈ R |{c ∈ Hp : rank(c) = r}|
points 4 ∀p ∈ P

∑

c∈hp

points(c)

stdev per player 4 ∀p ∈ P stdev(∀s ∈ S : |hp,s|)
stdev per suit 4 ∀s ∈ S stdev(∀p ∈ P : |hp,s|)
stdev (game) 1 stdev(∀p ∈ P, ∀s ∈ S : |hp,s|)
top cards 16 ∀p ∈ P, ∀s ∈ S |{c ∈ Hp,s : rank(c′) <

rank(c) ∨ suit(c′) �= suit(c)}|
with c′ ∈ op

Card ownership is a perfect mapping from a configuration containing all cards
to a tabular representation. It describes for each card to which player it belongs.
Suit counts, rank counts and points represent some basic countable qualities of
the hand that a given player has. The standard deviation (stdev) gives a measure
of how equal the suits are spread (per player, per suit and for the whole game).
Note that the maximum obtainable standard deviation (per player, per suit and
per game) is 3.46. If the game has a standard deviation of such value, this means
that all players have all cards from a given suit (and the player with the cards
from the trump suit will win the game). If the game has a standard deviation of
0, this means that all players have exactly two cards of each suit. The top cards
denote how many cards of a given suit a player has that can not be beaten by
the other team (except using trump cards).

Additionally, we can construct several convenience features oriented on
teams, that can be exploited by the classifier to assess the card quality of the
teams at once. For suit count (per suit), rank count (per rank), points and top
cards (per suit), the appropriate team feature is the sum of both players for that
feature. For example, the feature ‘suit count of ♦ for team NS ’, is the sum of
‘suit count of ♦ for player N ’ and ‘suit count of ♦ for player S’.

6 Experiments

In this section we present results of using the exact approach and the machine
learning approach, as well as a comparison between the approaches.

Winning Hands in the Game of Klaverjas 115

Fig. 1. Cumulative Distribution Function (CDF) of the leaf count of the exact algo-
rithm for each of the 981,541 instances (see Sect. 4.3) of Klaverjas.

6.1 Exact Approach Results

As discussed in Sect. 4, the number of configurations is
(
32
8

)(
24
8

)(
16
8

)
, which is

approximately 9.956 · 1016. Therefore it is nontrivial to solve a representative
sample of all configurations. Instead, we sample according to the equivalence
classes as defined in Sect. 4.3. From each equivalence class we randomly select
one configuration yielding a set of 981,541 configurations. For all of these configu-
rations the game-theoretical score is calculated using minimax with αβ-pruning.
No transposition tables were used. Note that when the team of the lead player
can no longer obtain more than half of the points, all points will be assigned to
the other team. Note that the leaf count within an equivalent class can differ
significantly due to (i) the rule that a player needs to play a higher trump card
if possible and (ii) the dynamics of αβ-pruning combined with how the cards are
delt.

Figure 1 shows a CDF of the leaf count of the αβ-algorithm. This leaf count
is directly proportional to the running time. Most configurations can be calcu-
lated in on average 1.5 CPU minutes, having between 106 and 109 leafs. A few
instances with around 1011 leafs took around 45 minutes. However, one config-
uration required up to 4 CPU days, visiting 1.5 · 1012 leafs.

6.2 Machine Learning Results

In this section we evaluate the performance of the machine learning techniques on
the task to predict for a given configuration whether the team of the lead player
can obtain more points than the other team. Our main interests are to evalu-
ate the handcrafted features (as proposed in Sect. 5) and to compare machine
learning approaches with exact search techniques (see Sect. 6.3). We use stan-
dard machine learning techniques, i.e., decision trees and random forests [3].

116 J. N. van Rijn et al.

Fig. 2. Gini importance according to the random forest classifier. (Color figure online)

These have the advantage that they are interpretable and relatively insensi-
tive to hyperparameter values. We use random forests with 64 trees. The other
hyperparameters were set to their defaults, as defined in scikit-learn 0.20.0 [18].

For each configuration, we extract the following sets of features: card own-
erships (first row in Table 2), the handcrafted features (all other rows in Table 2
and convenience team features) and all features (all rows in Table 2 and conve-
nience team features). Clearly, the set of all features contains a richer source of
information than the set of just the card ownerships. We evaluate the algorithm
using 2-fold cross-validation. The problem is well-balanced (528,339 positive vs
453,202 negative observations). We record the predictive accuracy of the classi-
fiers on all three feature sets. Predictive accuracy is the percentage of correctly
classified observations.

The results are presented in Table 3, displaying the accuracy for different
algorithms and feature sets. We note the following observations. As expected,
the set of all features outperforms the set of just the card ownership features
on both classifiers. Interestingly, the performance of the single decision tree on
the handcrafted (and all) features almost equals that of random forest on just
the card ownership features. Finally, the set of handcrafted features outperforms
the set of all features for both classifiers. These observations lead us to belief
that the handcrafted features on their own provide a more useful signal to learn
from, in the context of tree-based models.

Table 3. Accuracy of machine learning algorithms on different feature sets.

Feature subset Decision tree Random forest

Card ownership 82.44 88.16

Handcrafted 88.02 91.98

All 87.96 91.79

Winning Hands in the Game of Klaverjas 117

In order to study the behaviour of the classifier a bit better, we analyze
the Gini importance as defined in [4]. Gini importance is defined as the total
decrease in node impurity (averaged by all trees in the ensemble). Intuitively, a
high Gini importance resembles that the feature was important for classification.
Figure 2 shows a bar plot of the 50 most important features (sorted according to
the feature set ‘All’). We show Gini importance for the three feature sets. Note
that each feature is applicable to either the ‘card ownership’ set (blue bars) or
the ‘handcrafted set’ (green bars). As a limitation of this feature importance
analysis, we note that the notion of feature importance is rather subjective,
and that there is no guarantee that this directly correlated with the predictive
accuracy of a model.

The results seem to confirm several expected patterns. First, from the hand-
crafted features that focus on a suit, the highest rated ones focus on the trump
suit (♦). Second, from the card ownership features, the highest rated ones are
the ones that focus on the top two trump cards (♦J and ♦9). Finally, from the
rank count features, the highest rated ones focus on the highest rank (rank 8).

We note the following observations. First, when provided with all features, the
handcrafted features provide the highest Gini importance. Second, the random
forest makes proper use of the convenience team features (cf. top three features).
Finally, suit counts, top cards and points seem to be strong features, often used
in the top ranked features.

6.3 Comparison of Exact Approach and Machine Learning
Approach

The two experiments above highlight how an exact algorithm based on αβ-search
as well as a machine learning approach are both independently able to assess
whether a certain hand of Klaverjas is winning. A comparison of which approach
is “better” in terms of determining whether a hand is winning may at first glance
seem uninteresting, as the exact algorithm always returns the correct answer.
However, the number of leafs in the search tree that is traversed by the exact
algorithm can be seen as an indicator of how difficult it is to exactly determine
whether a hand is winning. A distribution of these leaf counts was presented
in Sect. 6.1. Here, we compare this leaf count between four result sets from the
machine learning model, namely the correctly classified win and loss instances,
and the incorrectly classified win and loss instances.

Figure 3 presents results of this comparison. The figure shows on the vertical
axis the number of leafs that were traversed by the exact algorithm, for all
instances in each of the four result classes described above. Horizontal Gaussian
noise was added to highlight the density of each result set at different leaf count
values. Note the logarithmic vertical axis.

From the figure, we see that indeed, as discussed in Sect. 6.2, the majority
of instances is correctly classified. More importantly, we observe two interesting
patterns for the win instances (depicted in red and blue). First, it appears that
the win instances require exploration of a larger search space than lost instances
of the game. We believe that this is due to the fact that such instances require

118 J. N. van Rijn et al.

Fig. 3. Leaf count (according to exact algorithm) of correctly and incorrectly classified
(according to machine learning approach) win and loss instances (1% sample). (Color
figure online)

the algorithm to explore the maximum score up until the last trick of the game,
whereas for lost games, the search tree can be pruned much earlier in the game
when no more cards of substantial value are left. Second, we observe how for
the correctly classified win instances (depicted in red), the number of leafs is
significantly higher (note the logarithmic vertical axis). In fact, for incorrectly
classified win instances (depicted in green) only substantially lower leaf counts
are observed. It turns out that the machine learning algorithm is able to correctly
classify the instances that are difficult to solve exactly (requiring up to four
days of computation time, see Sect. 6.1). One possible explanation for this is the
different objective of both approaches. Given a deal, the exact approach aims to
find the set of moves that leads to the best possible score, whereas the machine
learning approach only aims to classify whether a deal is winning or not. In
future work we aim to study this in more detail, for example by comparing the
exact approach against a supervised regression model.

7 Conclusion

In this paper, we have presented both an exact algorithm as well as a machine
learning approach to solving the game of Klaverjas. In particular, we addressed
the task of assessing whether a given distribution of cards over the hands of
teams of players, is winning. It turns out that an exact algorithm based on αβ-
search is able to determine this on average in a matter of minutes. In addition,
the proposed machine learning approach employing simple features based on
card ownership is able to predict whether a hand is winning with 88% accuracy.
Adding more complex aggregated features and statistics related to meld points
increases this accuracy to almost 92%. Interestingly, many of the cases where

Winning Hands in the Game of Klaverjas 119

the machine learning algorithm consistently performs well, are in fact instances
where the computation time (as a result of the number of leafs in the search tree)
of the exact algorithm is longest (up to several days), evaluating over 1.5 · 1012

play outs. This suggests that games that are difficult to assess for an algorithm,
are in fact easy for humans, who typically use features similar to the machine
learning approach in their decision making.

The findings presented in this paper highlight how in the future, a real-time
artificial agent playing the game of Klaverjas may benefit from combining an
exact approach with a machine learning approach, depending on what type of
hand it is evaluating. A key question to then address is how we can a priori
determine which component of such a hybrid algorithm we should use. The
explored partitioning of the set of equivalence classes presented in this paper
may provide a first basis of determining this.

In future work, we want to investigate if we can determine whether a hand
is winning based on only one player’s cards, rather than based on perfect infor-
mation on all of the team’s cards. A starting point may be the PIMC approach
discussed in [15], where to solve a game with imperfect information, typically
many games with perfect information are played out. In addition, we want to
investigate the use of transposition tables in order to reduce the search space
even further.

Acknowledgements. The second author was supported by funding from the Euro-
pean Research Council (ERC) under the EU Horizon 2020 research and innovation
programme (grant agreement 638946). We thank F.F. Bodrij and A.M. Stawska for
assistance with qualitative real-world validation of a relevant feature subset.

References

1. Beckenbach, E.F.: Applied Combinatorial Mathematics. Krieger Publishing Co.,
Inc., Melbourne (1981)

2. Bonnet, É., Jamain, F., Saffidine, A.: On the complexity of trick-taking card games.
In: IJCAI, pp. 482–488 (2013)

3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
4. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.: Classification and Regression

Trees. Chapman and Hall/CRC, Wadsworth (1984)
5. Buro, M., Long, J.R., Furtak, T., Sturtevant, N.R.: Improving state evaluation,

inference, and search in trick-based card games. In: IJCAI, pp. 1407–1413 (2009)
6. Frank, I., Basin, D.: Search in games with incomplete information: a case study

using bridge card play. Artif. Intell. 100(1–2), 87–123 (1998)
7. Ginsberg, M.L.: GIB: imperfect information in a computationally challenging

game. J. Artif. Intell. Res. 14, 303–358 (2001)
8. Hearn, R.A.: Games, puzzles, and computation. Ph.D. thesis, Massachusetts Insti-

tute of Technology (2006)
9. van den Herik, H.J., Uiterwijk, J.W., van Rijswijck, J.: Games solved: now and in

the future. Artif. Intell. 134(1–2), 277–311 (2002)
10. Hoogeboom, H.J., Kosters, W.A., van Rijn, J.N., Vis, J.K.: Acyclic constraint logic

and games. ICGA J. 37(1), 3–16 (2014)

120 J. N. van Rijn et al.

11. Knuth, D.E.: The Art of Computer Programming, Volume 4, Fascicle 3: Generating
All Combinations and Partitions. Addison-Wesley Professional, Boston (2005)

12. Knuth, D.E., Moore, R.W.: An analysis of alpha-beta pruning. Artif. Intell. 6(4),
293–326 (1975)

13. Kupferschmid, S., Helmert, M.: A skat player based on Monte-Carlo simulation. In:
van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS,
vol. 4630, pp. 135–147. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-75538-8 12

14. Long, J.R., Buro, M.: Real-Time opponent modeling in trick-taking card games.
In: IJCAI, vol. 22, pp. 617–622 (2011)

15. Long, J.R., Sturtevant, N.R., Buro, M., Furtak, T.: Understanding the success of
perfect information Monte Carlo sampling in game tree search. In: AAAI (2010)

16. Parlett, D.: The Penguin Book of Card Games. Penguin, London (2008)
17. Pearl, J.: The solution for the branching factor of the alpha-beta pruning algorithm

and its optimality. Commun. ACM 25(8), 559–564 (1982)
18. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.

Res. 12, 2825–2830 (2011)
19. van Rijn, J.N., Takes, F.W., Vis, J.K.: The complexity of Rummikub problems.

In: Proceedings of the 27th Benelux Conference on Artificial Intelligence (2015)
20. van Rijn, J.N., Vis, J.K.: Endgame analysis of Dou Shou Qi. ICGA J. 37(2), 120–

124 (2014)
21. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree

search. Nature 529(7587), 484–489 (2016)
22. Silver, D., et al.: Mastering the game of Go without human knowledge. Nature

550(7676), 354–359 (2017)
23. Wästlund, J.: A solution of two-person single-suit whist. Electron. J. Comb. 12(1)

(2005). Paper #R43
24. Wästlund, J.: Two-person symmetric whist. Electron. J. Comb. 12(1) (2005).

Paper #R44

https://doi.org/10.1007/978-3-540-75538-8_12
https://doi.org/10.1007/978-3-540-75538-8_12

Style Transfer of Abstract Drum Patterns
Using a Light-Weight Hierarchical

Autoencoder

Mark Voschezang(B)

VU University, 1081 HV Amsterdam, The Netherlands
mark.voschezang@icloud.com

Abstract. Many improvements have been made in the field of genera-
tive modelling. State-of-the-art unsupervised models have been able to
transfer the style of existing media with photo-realistic quality. However,
these improvements have been largely limited to graphical data. Music
has been proven to be more difficult to model. Magenta’s MusicVAE
can quite successfully generate abstract rhythms and melodies. How-
ever, MusicVAE is a large model that requires vast amounts of computing
power before it starts to make realistic predictions. Moreover, its input is
heavily quantized which makes it impossible to model musical variations
such as swing. This paper proposes a lightweight but high-resolution
variational recurrent autoencoder that can be used to transfer the style
of input samples while maintaining characteristics of the original sample.
This model can be trained in a few hours on small datasets and allows
researchers and musicians to experiment with musical style transfer. In
addition, a novel technique based on normalized compression distance
is used to evaluate the model by measuring the similarity of generated
samples to target classes.

Keywords: Variational autoencoder · MIDI drum patterns ·
Generative modelling · Normalized compression distance

1 Introduction

In the past years many improvements have been made in the field of generative
modelling. Examples of models that can produce realistic looking images are
CycleGAN, MUNIT and the model by Karras et al. (2017), which rely on many
convolutional layers [12,14,17]. Unlike convolutional layers, recurrent layers are
designed to make predictions based on previous input values and thus should be
better suited for temporal data such as music. Although some successful music-
generating models have been created, training networks that incorporate these
layers requires enormous amounts of computing power [24].

Music can be encoded in many different digital formats. Common high-
quality formats are FLAC and WAV, which store audio in a bitstream. Alter-
natively, music can be represented in an abstract notation such as MIDI [23].
c© Springer Nature Switzerland AG 2019
M. Atzmueller and W. Duivesteijn (Eds.): BNAIC 2018, CCIS 1021, pp. 121–137, 2019.
https://doi.org/10.1007/978-3-030-31978-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31978-6_10&domain=pdf
http://orcid.org/0000-0001-5585-7907
https://doi.org/10.1007/978-3-030-31978-6_10

122 M. Voschezang

Comparable to sheet music, MIDI is an instrument-invariant format that con-
tains only the most essential musical information that defines a piece. A MIDI
file consists of a stream of note-messages that can be played back by a synthesizer
or sampler. As a single MIDI file can be played back by different instruments
the resulting timbre of the audio can differ drastically.

Magenta’s MusicVAE is a variational autoencoder that can reconstruct
MIDI-based drum patterns and melodies [27]. It can apply latent-space transfor-
mations to encoded input samples to transform them to sound similar to a tar-
get sample. Decoding an interpolation of the latent space produces a musically
related sequence of samples. A study showed that music generated by Music-
VAE sounded comparable to music that was created by humans. However, the
model has a number of limitations. (1) It contains has many trainable parame-
ters and requires a large dataset to be trained on. Training the model requires a
large amount of computing power. (2) During encoding of MIDI files to vector
sequences that fit the input of the model, a quantization with a resolution of
16th notes is applied. This means that information about swing, groove and feel
is lost. Especially these aspects are what makes drum patterns sound human
and are what distinguishes different playing styles [6,8,32].

This paper proposes a model that is based on MusicVAE. However, it is much
faster to train due to a reduced amount of parameters and the usage of both
convolutional and recurrent layers. At the same time, it uses a higher quality of
MIDI conversion to allow for subtle differences in timing.

The next section introduces a number of general concepts and techniques
that are vital to this paper. This is followed by a description of our specific
model and an experiment to test the musicality of the transformations that can
be applied with this model. Finally, a thorough assessment of the assumptions
of this model is given along with recommendations for further research.

2 Background

2.1 MIDI

A MIDI file consists of a stream of messages. Each message contains the pitch,
velocity and duration of a note that occurs at a certain instance. Additionally,
MIDI files can contain control- and meta-messages, but these are discarded in
this paper. Temporal information is quantized to a musical grid, with a resolution
that varies per file.

This means that a perfect timing can be maintained when changing the
tempo of a song, but notes that played off-beat may be shifted to fit the grid. In
drum patterns this happens when a certain level of swing is introduced, or when
for example the snare drum is played deliberately early. In some musical styles
drums are deliberately played with a sloppy (i.e., imperfect) timing [8,9]. This
is done to achieve a certain (sometimes human-like) feel or to make the groove
more dance-able.

Velocity-information of individual notes is quantized even heavier and can
contain not more than 128 different values. With the exception of dedicated

Style Transfer of Abstract Drum Patterns 123

(drum-)synthesizers, samplers usually implement changes in velocity by increas-
ing the volume at which samples are played. The resulting variation in dynamics
is far less intensive than the dynamics that are caused by striking a physical
instrument with higher velocity, which causes a change in timbre (i.e., audible
frequencies) and decay of the sound. This lack of variation can make synthe-
sized MIDI files sound artificial. Despite these limitations, MIDI is a widely
used format. Carefully programmed patterns and melodies that are synthesized
can sound as musical as audio that is produced by acoustic instruments.

There are two aspects of MIDI that make it especially suitable for generative
modelling. Firstly, it requires less memory than waveform-based formats, such
as WAV. Secondly, the abstract design of MIDI itself is a first step into finding
generalizations of training data.

2.2 Variational Autoencoders

The model that is used is a type of Variational Autoencoder (VAE) [1,16]. An
autoencoder consists of an encoder and a decoder [28]. An input x is encoded
into a lower dimensional latent vector z, which is then decoded back to a recon-
struction of the input x′. This allows an autoencoder to be trained on unlabelled
data. This is especially useful in a domain such as music where classes (genres)
are subjective; music is perceived differently between people [18]. The reduction
in dimensionality of z forces the model to learn a generalized form of the training
data.

A VAE is an autoencoder in which the encoding part predicts not the
latent vector itself but instead the (conditional) multivariate probability dis-
tribution P (z|x). The latent space is assumed to be a standard normal distribu-
tion (P (z) ∼ N (0, 1)) [15,26]. The decoder models the conditional distribution
P (x′|z). This forces decoder to be more invariant to change. In practice, this
technique stimulates the decoder to always predict a musical output (i.e., as
musical as the training data) even if the decoder’s input is random.

The encoder should not just encode samples of different genres into different
latent vectors, but changes in input samples should correspond to proportional
changes in the encoded representation of that sample. As a result, decoding a
sequence of nearby latent vectors will result in a set of output samples that
are similar. Decoding a movement in the latent space from vector za to vector
zb should result in a sequence of samples that will be perceived as a smooth
transition from the original sample a to sample b.

2.3 Recurrent and Hierarchical Layers

Music consists of different patterns, that recur at different temporal positions
in a piece. In traditional models this would mean that a feature detector (i.e., a
dedicated set of neurons that are activated by some pattern in the input data)
has to be repeated for every position where the pattern could occur. To prevent
an unnecessary increase of trainable parameters two types of layers are used:
recurrent layers and shared layers.

124 M. Voschezang

Recurrent layers allow a neural network to be able to make predictions
based on previous input values [4]. Although simple recurrent neural networks
often have trouble in modelling long term dependencies, long short-term mem-
ory (LSTM) based networks have proven to be able to learn both short and
long-term dependencies [2,11]. This makes them suitable to model music.

Recurrent layers are very powerful but are generally more difficult to train
than convolutional layers [9]. A simple alternative is to use shared layers [33].
Multiple copies of a single dense layer that share weights and biases are applied to
different temporal slices on an input. This allows a shared layer to be applied to
long input sequences, without requiring an increase in trainable parameters. This
allows a model to learn to “recognize” features at different temporal locations,
without requiring these features to be present at multiple temporal locations. In
this sense, the usage of shared layers increases the level of generalization of a
model. This is useful if a model has to be trained on a limited amount of data.

3 Model

This section covers the structure of the model. The model consists of an encoder
that encodes matrix-representations of MIDI files to latent vectors and a decoder
that applies random transformations to latent vectors and then generates recon-
structions of the original input matrices. Figure 1 shows an abstract overview of
the model.

3.1 Encoder

The encoder starts with a 1-dimensional convolutional layer, with the purpose of
making the model invariant to small variations in the input data [7]. To reduce
the loss of spatial information, 64 output filters are used in the convolutional
layer. This layer is followed by a bidirectional LSTM layer with 2 ·128 nodes and
a many-to-one encoding [10]. The output of the encoder are two parallel dense
layers with 20 nodes that act as zμ and zlogσ. These layers do have trainable
weights and biased but lack activation functions.

3.2 Latent Space

The encoder outputs 2 latent vectors that are called zμ and zlogσ. These are used
to in the reparameterization of the evidence lower bound to obtain a random
latent vector z [15,16,26]. This value is computed by (point-wise) multiplying a
random vector ε (sampled from a multivariate normal distribution) with zlogσ

and adding the result to zμ.

z = zμ + ε ◦ ezlogσ (1)

Style Transfer of Abstract Drum Patterns 125

3.3 Decoder

The hierarchical structure of the generating part of the network is based on
MusicVAE [27]. Instead of decoding the latent vectors directly as done in tradi-
tional autoencoders, they are fed into a conductor-network. This network outputs
a sequence of embeddings, that are independently fed into a embedding-decoder.
The output sequence of the embedding-decoder is reshaped to the shape of the
original input. It is not proven that the specific structure of this model improves
the performance of the model. Instead, it is used as a restriction that forces
the model to learn a hierarchical representation of the training data. The first
layer after re-parameterization is a dense layer with 256 nodes and a leaky-ReLU
activation layer [20].

leakyReLU(x) =

{
0.3x, if x < 0
x, otherwise

(2)

This layer is followed by three bypassed dense layers with 256 nodes and elu
activation [25]. These activation functions are added to speed up the training of
the model.

elu(x) =

{
0.1(ex − 1), if x < 0
x, otherwise

(3)

A summation layer merges the previous layer with the first layer of the decoder.
The purpose of this layer is to initially bypass the three elu layers and start
using them later when the model requires more complexity to keep improving
[30]. Batch-normalization is used to keep the model more stable and decrease the
training time further [13]. These layers are reshaped into a sequence of 10 vectors
and are fed into a bidirectional LSTM layer with 2 × 128 layers [10,11]. This
recurrent layer outputs a sequence of embeddings that are fed in the embedding-
decoder.

The embedding-decoder starts with a dense layer with 250 nodes and a relu
activation. The output layer of the embedding-decoder is a dense layer with
sigmoid activation to keep the output values in the correct range. The length of
this layer is equal to the product of the length of the embedding (i.e., the sample
length divided by the amount of embeddings) and the amount of notes. Finally,
all the embeddings are combined and reshaped to the original input shape.

3.4 Loss Function

The parameters of the model are optimized using the Adam optimizer [21] and a
summation of different loss functions. The main component of the loss functions
is the binary cross-entropy (HC) of x and x′. Minimizing this part of the loss
function causes the model to learn the identity function. The second component
is the Kullbach-Leibler divergence (DKL) of the predicted latent vectors and

126 M. Voschezang

Fig. 1. The structure of the Variational Autoencoder. The input matrix x is fed into
the encoder and encoded into the vectors zμ and zlogσ which represents the mean and
variance of the (multivariate) conditional distribution P (z|x). The latent vector z is
computed by (point-wise) multiplying the variance zlogσ with a random vector ε and
adding the mean zμ. The conductor-network uses z as input and produces a sequence
of embeddings. These are decoded to an output matrix x′. The network is trained to
generate an x′ that is similar to an input x.

the standard normal distribution [15,31]. This forces the encoder’s output to be
normally distributed. Lastly the mean square error (MSE) between x and x′ is
added to allow the model to minimize non-binary differences in output, which
corresponds to differences in the velocity of MIDI notes.

loss(x) = αHC(x, x′) − βDKL

(
P (z|x) ‖P (z)

)
+ γ MSE(x, x′) (4)

4 Method

This section describes the process used to obtain training data and an experiment
that tests the model’s ability to generate musically meaningful transformations.

Style Transfer of Abstract Drum Patterns 127

4.1 Training Dataset

The training dataset consists of 497 MIDI files from different internet sources
and contains various musical styles, including pop, rock and jazz. There were a
total number of 71 classes and 7 samples per class. Many classes may have been
similar in a musical sense, but there was no convention between classes from
different sources. Thus, it is highly likely that these classes are not mutually
exclusive. Note that a class does not necessarily resemble a single musical genre.

This paper focuses on short drum loops. Samples with the word “fill” in
the filename are omitted from the training set because drum fills may sound
unmusical when played out of context. It is assumed that all samples have a
tempo of 120 bpm and start on the first beat (instead of starting with an upbeat,
which is not unusual), but this is not checked explicitly. As a result, the training
set consists of 4-bar drum samples, that each have length of 2.0 s at 120 bpm.

The model will be trained for 1000 epochs on an Intel i5 CPU using the
Adam optimizer with a fixed learning rate of 0.001 and a batch size of 128.

4.2 Encoding of MIDI Files

In MIDI drum patterns, the pitch-value of note-messages corresponds to the type
of instrument instead of to the actual pitch. Not all MIDI files use the same pitch-
instrument standard. For this reason, a lookup table is used to map different
pitches to 9 distinct instruments. These instruments are: bass drum, snare drum,
closed hi-hat, open hi-hat, low tom, middle tom, high tom, crash cymbal and
ride cymbal. All notes that do not correspond to a known pitch are merged into
an additional channel. All MIDI files are encoded into sequences of 160 note-
vectors. A note-vector contains the velocities at which the different instruments
are hit during the corresponding interval. An interval has a duration of 0.025 s.
Velocities that are lower than 10% of the maximal velocity are interpreted as
rests (silence) and are not converted.

Unlike many melodic instruments, most acoustic drums are played without
an intended duration of notes. This means that they are triggered once and then
left to ring out. For this reason, note-off messages are discarded during encoding
of messages. There are a few exceptions such as the (open) hi-hat and crash
cymbals. These instruments are occasionally muted manually by drummers. In
such cases there is a small loss of musical information.

4.3 Evaluation

The extent to which the model can transfer the style of drum patterns is tested
with the metric normalized compression distance (NCD) [19]. The similarity
of transformed samples is compared to both the target and the original class.
Note that transformations of style are different than transformations of a sample
itself. The latter can be achieved perfectly, given that a model is trained on both
the input and target sample. This paper focuses on the transfer of the style of
samples while maintaining characteristic aspects of the original class.

128 M. Voschezang

Application of latent vectors. Application of latent vector transformations is
defined as the point-wise addition of two vectors. Transformations can be applied
with variable intensity by scaling the transformation vector α.

va(vbase) = vbase + αva (5)

Transformations. For every class in the training data, the average of all latent
transformations from every sample in that class to the average latent location of
all other classes is computed. This is considered the set of latent transformations
that correspond with transforming the style of class A to the style of class B
(abbreviated as A → B).

b̄ =
1

|B|
|B|∑
i=1

Bi

transformation(A,B) =
1

|A|
|A|∑
i=1

b̄ − Ai (6)

A minimal transformation is considered a transformation A → B only the most
distinguishing latent dimension is modified. For every transformation the mini-
mal transformation is approximated with an ensemble of decision tree classifiers
[3,26].

A number of transformations is randomly sampled from the set of trans-
formations described in the previous section. Each transformation A → B is
applied to all samples of class A. The NCD between the transformed set and
both the original set and the target set is computed. This is repeated with several
transformation intensities. The experiment is performed for full and for minimal
transformations.

It is expected that changes in the latent space map to proportional changes in
the NCD between the original samples and the samples in the target class. Thus,
for every transformation A → B there will be a negative correlation between the
transformation intensity and the NCD between the transformed samples A′ and
the target samples in B. As the minimal transformations are less invasive, it
is expected that the correlation between minimally transformed samples and
samples of the corresponding original classes is lower than the correlation of the
fully transformed samples and the original classes.

5 Results

Figure 2 shows the training loss during training. The figure suggests that the
model was still learning when the training was stopped. It was assumed the
model was overfitting but this was not checked explicitly.

Style Transfer of Abstract Drum Patterns 129

Fig. 2. The training loss for every epoch of training, computed with Eq. (4).

5.1 Qualitative Evaluation

Manual inspection of transformations showed that not all transformations had
an audible effect (i.e., there were no notes added or removed). This was the case
for both full and minimal transformations. It seems that the magnitude to which
a latent transformations modifies the style of a latent vector, is depending on
the original latent position of that vector.

Figure 3 shows an example of a “successful” transformation sequence. At each
sequential step, a small number of notes of the previous pattern are changed.
This shows that the model is capable of generating subtle transformations.

Fig. 3. A number of transformed patterns. The original class (label) is “country -
straight brushes” and the target class is “jazz - another you”. The figure shows the first
2 beats of the patterns (there are 4 beats per bar). Each pattern was automatically
denoised by removing notes that occured within 3 intervals after each note.

130 M. Voschezang

Fig. 4. The average NCD between transformed classes and target classes with increas-
ing intensities for full transformations (above) and minimal transformations (below).
The line is the average of the regression lines of each transformation. Note that the
y-axis does not start at 0.

5.2 NCD to Target Class

For every class, 21 transformations to random other classes were computed,
which resulted in a total sample size of 1491. For every transformation, the NCD
was applied as described in Sect. 4.3, with 20 incremental intensities between 0
and 1 per transformation.

Figure 4 shows the average NCD between transformed and target classes of
different transformation intensities. The figures suggests that the intensities of
both types of transformations correspond with proportional reductions in NCD.
58.3% of the slopes of full transformations were significantly different than zero.
This value was 38.8% for the minimal transformations. This means that not all
transformations had a positive effect on the similarity with the target class.

A dependent t-test was performed independently for every pair of full and
minimal transformations. This showed that in 43.9% of the transformations, the
full transformations led to significantly different NCD scores than the minimal
transformations. This means that in more than half of the transformations the
minimal transformations produced samples that were as similar to the target
class as the full transformations.

5.3 NCD to Original Class

Figure 5 shows the average NCD between transformed and original classes of
different transformation intensities. The figures suggests that the intensities of
both types of transformations correspond with proportional growth in NCD. For

Style Transfer of Abstract Drum Patterns 131

Fig. 5. The average NCD between transformed classes and original classes with increas-
ing intensities for full transformations (above) and minimal transformations (below).
The line is the average of the regression lines of each transformation.

the full transformations 70% of the slopes were significantly different than zero.
This value was 89% for the minimal transformations. This means that not all
transformations decreased the similarity with the original class gradually.

A dependent t-test was performed independently for every pair of full and
minimal transformations. This showed that the full transformations led to sig-
nificantly higher NCD scores that the minimal transformations in 82% of the
transformations. This means that in 82% of the transformations the minimal
transformations were less invasive.

6 Conclusion

The experiment showed that the proposed model can successfully generate latent
transformations that modify the style of drum patterns towards a target style,
with variable intensity. It also showed that the minimal transformations were
better at maintaining similarity of the transformed samples to the original classes
than the full transformations. Not all latent transformations affected the style
of pattern with the same intensity. This suggests that the model did not learn
to use all latent dimensions to the same extend. There could be several reasons
for this. (1) The training of the model was stopped too early. (2) There was not
enough variance in the training dataset with respect to the size of the model.
This means that the model could reconstruct all training data without needing
to generalize the data to a certain extend.

The techniques described in Sect. 4.3 can be used to automatically extract
meaningful transformations for some classes, but this method is not guaranteed

132 M. Voschezang

to work for all classes. Finally, the implementation of the NCD-based evaluation
showed that it is possible to use NCD to measure improvements in similarity
between multiple samples.

7 Further Research

During the development of this model many choices had to be made about the
training data, the structure of the model and the transformations of samples.
This section gives an overview of aspects that can be improved and probably
will enhance the transformations that the model generates.

7.1 Dataset

The model was trained on a small dataset, especially compared to the size
datasets that were used to train MusicVAE and MUNIT [7,12]. While the ability
to extract multiple musical properties from a limited amount of data is desired,
the variance of the used dataset may have been too small with respect to the size
of the model and the amount of training time. Using a larger dataset without
increasing the size of the model will force the model to learn more subtle dif-
ferences between samples and this may result in overall better transformations
(i.e., higher absolute correlations between transformation intensity and the NCD
of transformed samples to both the target and original classes).

Another possible change is to not increase the size of the dataset, but to
use a smaller number of classes. Training a model on less classes will reduce
the generalizability of a model, which effectively means that the reconstruction
quality of new, unseen data will be lower. As long as the model is used to
transform samples from within its training dataset, this is not a problem. The
advantage of training a model on fewer classes is that more subtle differences
between classes will be modelled. It can be expected that this will improve the
model’s ability to apply subtle transformations.

It is also advised to take the musical compatibility of different samples into
account. Samples in the training dataset were cropped to have a length of 2 bars
and speed up or down to have a tempo of 120 bpm. Using samples that have
comparable lengths and tempi will reduce the (possibly non-musical) side-effects
of “normalizing” the training data.

7.2 Model Structure

Multiple versions of embedding-decoders were tried during the development of
this model, including dense, convolutional and recurrent layers [34]. We found
that using dense or convolutional layers reduced the training time, and that
dense embedding-decoders produced a less “blurry” output than convolutional
layers. However, the effect that these different embedding-decoders had on the
quality of generated transformations was not tested.

Style Transfer of Abstract Drum Patterns 133

It is possible that the model was complex enough to memorize a significant
part of the training data, which reduced the level of generalization of the model.
The most probable aspects of the model structure that would instigate this are
the size of the latent space (i.e., the amount of latent dimensions) and the group
of dense layers in the conductor decoder. The latent space is the part of the model
that has the lowest dimensionality and thus determines the ultimate amount of
compression of input data. The dense layers in the conductor decoder together
account for a significant of the trainable parameters of the model and can store
a lot of complexity.

It is desired to have a high-dimensional latent space, as the purpose of latent
dimensions is to correspond to the many different musical properties of the
training data. Therefore it is advised to reduce either the amount of nodes in
the dense layers, or the amount of dense layers.

The hyperparameters of the model were not optimized. In MusicVAE, several
loss function parameters were altered during training [27]. This technique can
be used for this model as well. The loss function (as described in Sect. 3.4) could
initially be biased by using a high value for α and a low value for β. Inverting
the relation over time will stimulate the model to first learn to reconstruct the
input and later learn a generalized form of the input. Increasing γ instead of β
will allow the model to first learn reconstruction that is invariant to velocity,
and later learn more subtle differences.

7.3 Noise

A major shortcoming of this model is that the prediction occasionally contains
stuttering of notes and an unusual co-occurrence of notes. Such “mistakes” can
sound glitchy and artificial. The stuttering of notes can simply be a side-effect
of different patterns that are combined. The co-occurrence of notes may have a
more complicated cause.

The co-occurrence of notes seemed to happen for instruments that sound
similar, for example a floor tom, low tom and high tom. Because these instru-
ments sound similar, they can often be interchanged (within a musical piece).
Therefore, it is likely that they occur often in similar positions in patterns. It is
expected that the model has not learned that these instruments will have high
independent probabilities to occur in a certain pattern, but have a much lower
probability to occur together in that pattern (i.e., P (e1|x) � P (e1|e2, x), for
events e1,2 in pattern x).

Although it should be possible for the main model to learn these dependen-
cies, it could be better to build a separate model that is focused on removing
this kind of noise. This separate model could be a denoising autoencoder [29].
Adversarial examples could be generated by adding random noise to samples or
by randomly adding samples from different classes together. These techniques
have successfully been used to build denoising autoencoders for images, and can
be expected to work to some extend for MIDI matrices.

134 M. Voschezang

7.4 Transformations

The model can be used to an even fuller extend by defining more complex trans-
formations. An alternative to selecting the single most distinguishing latent
dimension, as done in minimal transformations, is to transform every latent
dimension proportionally to the relative importance of that dimension for two
classes. This method should have the advantages of both full and minimal trans-
formations.

The style of samples can also be influenced directly, by using a model that
is structured as a conditional variational autoencoder (CVAE) [5]. A CVAE
extends a VAE by modelling auxiliary label information. This allows the training
dataset to be extended with domain knowledge. Style transfer can be applied
by decoding the combination of an encoded input sample and an altered label-
vector. It will be interesting to how the transformations produced by the two
approaches will differ.

7.5 Metrics

The implementation of NCD that was used to determine similarity of patterns
to classes was based on the generic compression algorithm zip [19]. More ade-
quate compression algorithms are SIA and COSIATEC [22]. These algorithms
are designed to compress abstract music and can be expected to improve the
extent to which NCD measures similarity in a musical sense.

A future use case for NCD is to use it during hyper parameter optimization
of generative models. Commonly used loss functions (including the loss functions
described in Sect. 3.4) perform well when measuring similarity of individual sam-
ples, but are not designed to recognize similarity to sets of samples. NCD can
be used to measure the similarity of predicted output samples to target classes,
even though the predicted samples are not equal to a specific output sample. This
makes NCD suitable to be incorporated in a heuristic that focuses on learning
parameters that are optimal for transferring the style of input data, as style
transfer is a fuzzy process that not aims to produce a perfect reconstruction
of training data, but rather to generate a partial reconstruction that contains
specific characteristics of certain data.

Acknowledgments. The author wishes to thank Stefan Schlobach, Albert Meroño
Peñuela and Peter Bloem for inspiration and useful discussions.

A Appendix

Both the implementation of the model described in this paper and a number of
synthesized examples of generated MIDI files can be found at https://github.
com/voschezang/drum-style-transfer.

A.1 Parameters

Table 1 shows the values of the most important parameters.

https://github.com/voschezang/drum-style-transfer
https://github.com/voschezang/drum-style-transfer

Style Transfer of Abstract Drum Patterns 135

Table 1. Parameters

Parameter Value

Dimensionality of the latent space 10

Input shape (timesteps, notes) (160, 10)

Maximal quantization 0.025 s

Training dataset 497 samples

Amount of classes 72

α (binary crossentropy loss intensity) 1

β (KL loss intensity) 0.75

γ (MSE loss intensity) 0.05

Batch size 128

Number of training epochs 1000

A.2 Structure of the Model

The encoder and decoders can be seen as a pipeline where a sequence of trans-
formations is applied to an input. Table 2 shows a brief overview of each layer.

Table 2. Structure of the model

Encoder

0 (input) 64 output filters, ReLU, kernel size = 2, strides = 1

128 nodes, activation functions as explained in [17]

(both dense, no activation layers)
1 conv1d

2 bidirectional LSTM

3 (z-mean, z-log-var)

Decoder

0 (input) produces a list of embeddings

is mapped to each embedding

reshape list of embeddings
1 reparameterization

2 Conductor network

3 Embedding decoder

4 output

Conductor network

0 (input)

1 dense 1 leakyReLU activation

2 dense 2–5 elu activation

3 sum(dense 1, dense 5) (bypass for layers 2–5)

4 batch normalization

5 repeat-vector (10 times)

6 BiLSTM (return sequences (embeddings)

Embedding decoder

0 (input)

1 dense ReLU activation

2 dense sigmoid activation

136 M. Voschezang

References

1. Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. In: Pro-
ceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 37–49
(2012)

2. Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., Maass, W.: Long short-
term memory and learning-to-learn in networks of spiking neurons. arXiv preprint
arXiv:1803.09574 (2018)

3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
4. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for

statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)
5. Creswell, A., Bharath, A.A., Sengupta, B.: Conditional autoencoders with adver-

sarial information factorization. arXiv preprint arXiv:1711.05175 (2017)
6. D’Errico, M.A.: Behind the beat: technical and practical aspects of instrumental

hip-hop composition. Ph.D. thesis, Tufts University (2011)
7. Dumoulin, V., Visin, F.: A guide to convolution arithmetic for deep learning. arXiv

preprint arXiv:1603.07285 (2016)
8. Fujii, S., Hirashima, M., Kudo, K., Ohtsuki, T., Nakamura, Y., Oda, S.: Syn-

chronization error of drum kit playing with a metronome at different tempi by
professional drummers. Music Percept.: Interdiscip. J. 28(5), 491–503 (2011)

9. Gers, F.A., Schraudolph, N.N., Schmidhuber, J.: Learning precise timing with
LSTM recurrent networks. J. Mach. Learn. Res. 3(Aug), 115–143 (2002)

10. Graves, A., Fernández, S., Schmidhuber, J.: Bidirectional LSTM networks for
improved phoneme classification and recognition. In: Duch, W., Kacprzyk, J., Oja,
E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 799–804. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11550907 126

11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

12. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-
image translation. arXiv preprint arXiv:1804.04732 (2018)

13. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

14. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for
improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

15. Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling,
M.: Improved variational inference with inverse autoregressive flow. In:
Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.)
Advances in Neural Information Processing Systems 29, pp. 4743–4751. Curran
Associates, Inc. (2016). http://papers.nips.cc/paper/6581-improved-variational-
inference-with-inverse-autoregressive-flow.pdf

16. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

17. Liao, J., Yao, Y., Yuan, L., Hua, G., Kang, S.B.: Visual attribute transfer through
deep image analogy. arXiv preprint arXiv:1705.01088 (2017)

18. Lippens, S., Martens, J.P., De Mulder, T.: A comparison of human and automatic
musical genre classification. In: 2004 Proceedings of IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP 2004), vol. 4, pp. iv-233–iv-
236. IEEE (2004)

19. Louboutin, C., Meredith, D.: Using general-purpose compression algorithms for
music analysis. J. New Music Res. 45(1), 1–16 (2016)

http://arxiv.org/abs/1803.09574
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1711.05175
http://arxiv.org/abs/1603.07285
https://doi.org/10.1007/11550907_126
http://arxiv.org/abs/1804.04732
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1710.10196
http://papers.nips.cc/paper/6581-improved-variational-inference-with-inverse-autoregressive-flow.pdf
http://papers.nips.cc/paper/6581-improved-variational-inference-with-inverse-autoregressive-flow.pdf
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1705.01088

Style Transfer of Abstract Drum Patterns 137

20. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural net-
work acoustic models. In: Proceedings of icml, vol. 30, p. 3 (2013)

21. Meinshausen, N., Bühlmann, P.: Stability selection. J. R. Stat. Soc.: Ser. B (Stat.
Methodol.) 72(4), 417–473 (2010)

22. Meredith, D.: COSIATEC and SIATECCompress: pattern discovery by geometric
compression. In: International Society for Music Information Retrieval Conference.
International Society for Music Information Retrieval (2013)

23. Meredith, D.: Computational Music Analysis, vol. 62. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-319-25931-4

24. Mor, N., Wolf, L., Polyak, A., Taigman, Y.: A universal music translation network.
arXiv preprint arXiv:1805.07848 (2018)

25. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time
object detection with region proposal networks. In: Cortes, C., Lawrence,
N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neu-
ral Information Processing Systems 28, pp. 91–99. Curran Associates, Inc.
(2015). http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-
detection-with-region-proposal-networks.pdf

26. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and
approximate inference in deep generative models. arXiv preprint arXiv:1401.4082
(2014)

27. Roberts, A., Engel, J., Raffel, C., Hawthorne, C., Eck, D.: A hierarchical
latent vector model for learning long-term structure in music. arXiv preprint
arXiv:1803.05428 (2018)

28. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations
by error propagation. Technical report, California University San Diego La Jolla
Institute for Cognitive Science (1985)

29. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denois-
ing autoencoders: learning useful representations in a deep network with a local
denoising criterion. J. Mach. Learn. Res. 11(Dec), 3371–3408 (2010)

30. Wang, X., Yu, F., Dou, Z.Y., Gonzalez, J.E.: Skipnet: learning dynamic routing in
convolutional networks. arXiv preprint arXiv:1711.09485 (2017)

31. Watson, J., Holmes, C., et al.: Approximate models and robust decisions. Stat. Sci.
31(4), 465–489 (2016)

32. Witek, M.A., Carlsen, K.: Simultaneous rhythmic events with different schematic
affiliations: microtiming and dynamic attending in two contemporary R&B grooves.
In: Musical Rhythm in the Age of Digital Reproduction, pp. 51–68. Routledge
(2016)

33. Yunpeng, C., Xiaojie, J., Bingyi, K., Jiashi, F., Shuicheng, Y.: Sharing residual
units through collective tensor factorization in deep neural networks. arXiv preprint
arXiv:1703.02180 (2017)

34. Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks
(2010)

https://doi.org/10.1007/978-3-319-25931-4
http://arxiv.org/abs/1805.07848
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://arxiv.org/abs/1401.4082
http://arxiv.org/abs/1803.05428
http://arxiv.org/abs/1711.09485
http://arxiv.org/abs/1703.02180

Assessing the Potential of Classical
Q-learning in General Game Playing

Hui Wang(B), Michael Emmerich, and Aske Plaat

Leiden Institute of Advanced Computer Science, Leiden University,
Leiden, The Netherlands

h.wang.13@liacs.leidenuniv.nl

http://www.cs.leiden.edu

Abstract. After the recent groundbreaking results of AlphaGo and
AlphaZero, we have seen strong interests in deep reinforcement learning
and artificial general intelligence (AGI) in game playing. However, deep
learning is resource-intensive and the theory is not yet well developed.
For small games, simple classical table-based Q-learning might still be
the algorithm of choice. General Game Playing (GGP) provides a good
testbed for reinforcement learning to research AGI. Q-learning is one
of the canonical reinforcement learning methods, and has been used by
(Banerjee & Stone, IJCAI 2007) in GGP. In this paper we implement
Q-learning in GGP for three small-board games (Tic-Tac-Toe, Connect
Four, Hex), to allow comparison to Banerjee et al. We find that Q-
learning converges to a high win rate in GGP. For the ε-greedy strat-
egy, we propose a first enhancement, the dynamic ε algorithm. In addi-
tion, inspired by (Gelly & Silver, ICML 2007) we combine online search
(Monte Carlo Search) to enhance offline learning, and propose QM-
learning for GGP. Both enhancements improve the performance of clas-
sical Q-learning. In this work, GGP allows us to show, if augmented
by appropriate enhancements, that classical table-based Q-learning can
perform well in small games.

Keywords: Reinforcement learning · Q-learning ·
General Game Playing · Monte Carlo Search

1 Introduction

Traditional game playing programs are written to play a single specific game,
such as Chess, or Go. The aim of General Game Playing [1] (GGP) is to create
adaptive game playing programs; programs that can play more than one game
well. To this end, GGP uses a so-called Game Description Language (GDL) [2].
GDL-authors write game-descriptions that specify the rules of a game. The chal-
lenge for GGP-authors is to write a GGP player that will play any game well.
GGP players should ensure that a wide range of GDL-games can be played
well. Comprehensive tool-suites exist to help researchers write GGP and GDL
programs, and an active research community exists [3–6].
c© Springer Nature Switzerland AG 2019
M. Atzmueller and W. Duivesteijn (Eds.): BNAIC 2018, CCIS 1021, pp. 138–150, 2019.
https://doi.org/10.1007/978-3-030-31978-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31978-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-31978-6_11

Assessing the Potential of Classical Q-learning in General Game Playing 139

The GGP model follows the state/action/result paradigm of reinforcement
learning [7], a paradigm that has yielded many successful problem solving algo-
rithms. For example, the successes of AlphaGo are based on two reinforcement
learning algorithms, Monte Carlo Tree Search (MCTS) [8] and Deep Q-learning
(DQN) [9,10]. MCTS, in particular, has been successful in GGP [11]. However,
few works analyze the potential of Q-learning for GGP, not to mention DQN.
The aim of this paper is to be a basis for further research of DQN for GGP.

Q-learning with deep neural networks requires extensive computational
resources. Table-based Q-learning might offer a viable alternative for small
games. Therefore, following Banerjee [12], in this paper we address the conver-
gence speed of table-based Q-learning. We use three small two-player zero-sum
games: Tic-Tac-Toe, Hex and Connect Four, and table-based Q-learning. We
introduce two enhancements: dynamic ε, and, borrowing an idea from [13], we
create a new version of Q-learning, inserting Monte Carlo Search (MCS) into
Q-learning, using online search for offline learning1.

Our contributions can be summarized as follows:

1. Dynamic ε: We evaluate the classical Q-learning, finding (1) that Q-learning
works and converges in GGP, and (2) that Q-learning with a dynamic ε can
enhance the performance of TD(λ)2 baseline with a fixed ε [12].

2. QM-learning: To further improve performance we enhance classical
Q-learning by adding a modest amount of Monte Carlo lookahead
(QMPlayer) [14]. This improves the convergence rate of Q-learning, and shows
that online search can also improve the offline learning in GGP.

The paper is organized as follows. Section 2 presents related work and recalls
basic concepts of GGP and reinforcement learning. Section 3 presents the designs
of the QPlayer with fixed and dynamic ε and QMPlayer for two-player zero-sum
games for GGP to assess the potential of classical Q-learning in detail. Section 4
presents the experimental results. Section 5 concludes the paper and discusses
directions for future work.

2 Related Work and Preliminaries

2.1 GGP

A General Game Player must be able to accept formal GDL descriptions of
a game and play games effectively without human intervention [4], where the
GDL has been defined to describe the game rules [15]. An interpreter program [5]
generates legal moves (actions) for a specific board (state). Furthermore, a Game
Manager (GM) is at the center of the software ecosystem. The GM interacts with
game players through TCP/IP protocol to control the match. The GM manages
game descriptions and matches records and temporary states of matches while
the game is running. The system also contains a viewer interface for users who
are interested in running matches and a monitor to analyze the match process.
1 Source code: https://github.com/wh1992v/ggp-rl.
2 One of temporal difference methods, see [7].

https://github.com/wh1992v/ggp-rl

140 H. Wang et al.

2.2 Reinforcement Learning

Since Watkins proposed Q-learning in 1989 [16], much progress has been made
in reinforcement learning [17,18]. However, few works report on the use of Q-
learning in GGP. In [12], Banerjee and Stone propose a method to create a gen-
eral game player to study knowledge transfer, combining Q-learning and GGP.
Their aim is to improve the performance of Q-learning by transferring the knowl-
edge learned in one game to a new, but related, game. They found knowledge
transfer with Q-learning to be expensive. In [13], Gelly and Silver combine online
and offline knowledge to improve learning performance.

Recently, DeepMind published work on mastering Chess and Shogi by self-
play with a deep, generalized reinforcement learning algorithm [19]. With a series
of landmark publications from AlphaGo to AlphaZero [10,19,20], these works
showcase the promise of general reinforcement learning algorithms. However,
such learning algorithms are very resource-intensive and typically require spe-
cial GPU/TPU hardware. Furthermore, the neural network-based approach is
quite inaccessible to theoretical analysis. Therefore, in this paper we study the
performance of table-based Q-learning.

In GGP, variants of MCTS [8] are used with great success [11]. Méhat et
al. combined UCT (Upper Confidence bound applied to Trees) and nested MCS
for single-player general game playing [21]. Cazenave et al. further proposed
a nested MCS for two-player games [22]. Monte Carlo techniques have proved
a viable approach for searching intractable game spaces and other optimization
problems [23]. Therefore, in this paper we combine MCS to improve performance.

2.3 Q-learning

A basic distinction between reinforcement learning methods is that of “on-
policy” and “off-policy” methods. On-policy methods attempt to evaluate or
improve the policy that is used to make decisions, whereas off-policy methods
evaluate or improve a policy different from that used to make decisions [7]. Q-
learning is an off-policy method. The reinforcement learning model consists of
an agent, a set of states S, and a set of actions A available in state S [7]. The
agent can move to the next state s′, s′ ∈ S from state s after following action
a, a ∈ A, denoted as s

a−→ s′. After finishing the action a, the agent gets an
immediate reward R(s, a), usually a numerical score. The cumulative return of
current state s by taking the action a, denoted as Q(s, a), is a weighted sum,
calculated by R(s, a) and the maximum Q(s′, a′) value of all next states:

Q(s, a) = R(s, a) + γ maxa′Q(s′, a′) (1)

where a′ ∈ A′ and A′ is the set of actions available in state s′. γ is the dis-
count factor of maxa′Q(s′, a′) for next state s′. Q(s, a) can be updated by online
interactions with the environment using the following rule:

Q(s, a) ← (1 − α) Q(s, a) + α (R(s, a) + γ maxa′Q(s′, a′)) (2)

where α ∈ [0, 1] is the learning rate. The Q-values are guaranteed to converge
after iteratively updating.

Assessing the Potential of Classical Q-learning in General Game Playing 141

3 Design

3.1 Classical Q-learning for Two-Player Games

GGP games in our experiments are two-player zero-sum games that alternate
moves. Therefore, we can use the same rule, see Algorithm 1 line 5, to create
R(s, a), rather than to use a reward table. In our experiments, we set R(s, a) = 0
for non-terminal states, and call the getGoal() function for terminal states. In
order to improve the learning effectiveness, we update the Q(s, a) table only at
the end of the match. During offline learning, QPlayer uses an ε-greedy strategy
to balance exploration and exploitation towards convergence. While the ε-greedy
strategy is enabled, QPlayer will perform a random action. Otherwise, QPlayer
will perform the best action according to Q(S,A) table. If no record matches
current state, QPlayer will perform a random action. The pseudo code for this
algorithm is given in Algorithm 1.

Algorithm 1. Classical Q-learning Player with Static ε

1: function QPlayer(current state s, learning rate α, discount factor γ, Q table:
Q(S, A))

2: for each match do
3: if s terminates then
4: for each (s, a) from end to the start in current match record do
5: R(s,a) =s′ is terminal state? getGoal(s′, myrole) : 0
6: Update Q(s, a) ← (1 − α) Q(s, a) + α (R(s, a) + γ maxa′Q(s′, a′))

7: else
8: if ε-greedy is enabled then
9: selected action = Random()

10: else
11: selected action = SelectFromQTable()
12: if no s record in Q(S, A) then
13: selected action = Random()
14: � To be changed for different versions

15: performAction(s, selected action)

16: return Q(S, A)

3.2 Dynamic ε Enhancement

In contrast to the baseline of [12], which uses a fixed ε value, we use a dynamically
decreasing ε-greedy Q-learning [17]. In our implementation, we use the function

ε(m) =

{
a(cos(m2lπ)) + b m ≤ l

0 m > l
(3)

for ε, where m is the current match count, and l is a number of matches we set
in advance to control the decaying speed of ε. During offline learning, if m = l, ε

142 H. Wang et al.

decreases to 0. a and b is set to limit the range of ε, where ε ∈ [b, a + b], a, b ≥ 0
and a + b ≤ 1. The player generates a random number num where num ∈ [0, 1].
If num < ε, the player will explore a random action, else the player will exploit
best action from the currently learnt Q(s, a) table. Note that in this function, in
order to assess the potential of Q-learning in detail, we introduce l for controlling
the decay of ε. This parameter determines the value and changing speed of ε in
current match count m. Instances in our experiments are shown in Fig. 1:

Fig. 1. Decaying Curves of ε with Different l. Every curve decays from 0.5 (learning
start, explore & exploit) to 0 (m ≥ l, fully exploit).

3.3 QM-learning Enhancement

The main idea of Monte Carlo Search [14] is to make some lookahead probes
from a non-terminal state to the end of the game by selecting random moves for
the players to estimate the value of that state. To apply Monte Carlo in game
playing, we use a time-limited version, since in competitive game playing time
for each move is an important factor for the player to consider. The time limited
MCS in GGP that we use is written as MonteCarloSearch(time limit).

In Algorithm 1 (line 13), we see that a random action is chosen when QPlayer
can not find an existing value in the Q(s, a) table. In this case, QPlayer acts like
a random player, which will lead to a low win rate and slow learning speed. In
order to address this problem, we introduce a variant of Q-learning combined
with MCS. MCS performs a time limited lookahead to find better moves. The
more time it has, the better the action it finds will be. To achieve this, we use
selected action = MonteCarloSearch(time limit) to replace the line 13,
giving QM-learning. By adding MCS, we effectively add a local version of the
last two stages of MCTS to Q-learning: the playout and backup stage [8].

Assessing the Potential of Classical Q-learning in General Game Playing 143

4 Experiments and Results

4.1 Dynamic ε Enhancement

We create ε-greedy Q-learning players (α = 0.1, γ = 0.9) with fixed ε = 0.1,
0.2 and with dynamically decreasing ε ∈ [0, 0.5] to play 30000 matches first
(l = 30000) against a Random player, respectively. During these 30000 matches,
the dynamic ε decreases from 0.5 to 0 based on the decay function, see Eq. 3.
The fixed values for ε are 0.1 and 0.2, respectively. After 30000 matches, fixed
ε is also set to 0 to continue the competition. For Tic-Tac-Toe, results in Fig. 2
show that dynamically decreasing ε performs better. We see that the final win
rate of dynamically decreasing ε is 4% higher than fixed ε = 0.1 and 7% higher
than fixed ε = 0.2. Therefore, in the rest of the experiments, we use dynamic ε
for further improvements.

Fig. 2. Win rate of the fixed and dynamic ε Q-learning Player vs a Random Player
Baseline. In the white part, the player uses ε-greedy to learn; in the grey part, all
players set ε = 0 (stable performance). The color code of the rest figures are the same

To enable comparison with previous work, we implemented TD(λ), the base-
line learner of [12] (α = 0.3, γ = 1.0, λ = 0.7, ε = 0.01), and dynamic ε
learner(α = 0.1, γ = 0.9, ε ∈ [0, 0.5], l = 30000, Algorithm 1). For Tic-Tac-Toe,
from Fig. 3, we find that although the TD(λ) player converges more quickly ini-
tially (win rate stays at about 75.5% after 9000th match) our dynamic ε player
performs better when the value of ε decreases dynamically with the learning
process.

Experiments above suggest the following conclusions: that (1) classical Q-
learning is applicable to a GGP system, and that (2) a dynamic ε can enhance
the performance of fixed ε. However, beyond the basic applicability in a single

144 H. Wang et al.

Fig. 3. Win rate of classical Q-learning and [11] Baseline Player vs Random.

game, we need to show that it can do so (1) efficiently, and (2) in more than one
game. Thus, we further experiment with QPlayer to play Hex (l = 50000) and
Connect Four (l = 80000) against the Random player. In order to limit excessive
learning times, following [12], we play Hex on a very small 3 × 3 board, and play
ConnectFour on a 4 × 4 board. The results of these experiments are given in
Fig. 4. We see that QPlayer can also play these other games effectively. Note
that the reason why the player achieves different win rates could be that the
game space of 3 × 3 Hex is much smaller than 4 × 4 ConnectFour.

(a) 3×3 Hex (b) 4×4 Connect Four

Fig. 4. Win rate of QPlayer vs Random Player in different games. For Hex and
Connect-Four the win rate of Q-learning also converges

However, so far, all our games are small. QPlayer should be able to learn to
play larger games. The complexity influences how many matches the QPlayer

Assessing the Potential of Classical Q-learning in General Game Playing 145

should learn. We will now show results to demonstrate how QPlayer performs
while playing more complex games. We make QPlayer play Tic-Tac-Toe (a line
of 3 stones is a win, l = 50000) in 3 × 3, 4 × 4 and 5 × 5 boards, respectively,
and show the results in Fig. 5.

Fig. 5. Win rate of QPlayer vs Random in Tic-Tac-Toe on different board size. For
larger board sizes convergence slows down

The results show that with the increase of game board size, QPlayer performs
worse. For larger boards can not achieve convergence. The reason for the lack of
convergence is that QPlayer has not learned enough knowledge. Our experiments
also show that for table-based Q-learning in GGP, large game complexity leads
to slow convergence, which confirms the well-known drawback of classical Q-
learning.

4.2 QM-learning Enhancement

The second contribution of this paper is QM-learning enhancement, we imple-
ment the QPlayer and QMPlayer based on Algorithm 1 and Sect. 3.3. For both
players, we set parameters to α = 0.1, γ = 0.9, ε ∈ [0, 0.5] respectively and we
set the l = 5000, 10000, 20000, 30000, 40000, 50000, respectively. For QMPlayer,
we set time limit = 50 ms. Next we make them play the game with the Random
baseline player for 1.5 × l matches for 5 rounds respectively. The comparison
between QPlayer and QMPlayer is shown in Fig. 6.

Figure 6(a) shows that QPlayer has the most unstable performance (the
largest variance in 5 experiments) and only wins around 55% matches after
training 5000 matches. Figure 6(b) illustrates that after training 10000 matches
QPlayer wins about 80% matches. However, during the exploration period (the

146 H. Wang et al.

(a) l=5000 (b) l=10000

(c) l=20000 (d) l=30000

(e) l=40000 (f) l=50000

Fig. 6. Win rate of QMPlayer (QPlayer) vs Random in Tic-Tac-Toe for 5 experiments.
Small Monte Carlo lookaheads improve the convergence of Q-learning, especially in the
early part of learning. QMPlayer always outperforms Qplayer

white part of the figure) the performance is still very unstable. Figure 6(c) shows
that QPlayer wins about 86% of the matches while learning 20000 matches still
with high variance. Figure 6(d), (e), (f), show us that after training 30000, 40000,
50000 matches, QPlayer gets a similar win rate, which is nearly 86.5% with
smaller and smaller variance.

Assessing the Potential of Classical Q-learning in General Game Playing 147

In Fig. 6(a), QMPlayer gets a high win rate (about 67%) at the very begin-
ning. Then the win rate decreases to 66% and 65%, and then increases from 65%
to around 84% at the 5000th match. Finally, the win rate stays at around 85%.
Also in the other sub figures, for QMPlayer, the curves all decrease first and
then increase until reaching a stable state. This is because at the very begin-
ning, QMPlayer chooses more actions from MCS. Then as the learning period
moves forward, it chooses more actions from Q table.

Overall, as the l increases, the win rate of QPlayer becomes higher until
leveling off around 86.5%. The variance becomes smaller and smaller, which
proves that Q-learning can achieve convergence in GGP games and that a proper
ε decaying speed makes sense for classical Q-learning. Note that in every sub
figure, QMPlayer can always achieve a higher win rate than QPlayer, not only
at the beginning but also at the end of the learning period. Overall, QMPlayer
achieves a better performance than QPlayer with the higher convergence win
rate (at least 87.5% after training 50000 matches). To compare the convergence
speeds of QPlayer and QMPlayer, we summarize the convergence win rates of
different l according to Fig. 6 in Fig. 7.

Fig. 7. Convergence win rate of QMPlayer (QPlayer) vs Random in Tic-Tac-Toe

These results show that combining online MCS with classical Q-learning for
GGP can improve the win rate both at the beginning and at the end of the
offline learning period. The main reason is that QM-learning allows the Q(s, a)
table to be filled quickly with good actions from MCS, achieving a quick and
direct learning rate. It is worth to note that, QMPlayer will spend slightly more
time (at most is search time limit×number of (state-action) pairs) in training
than QPlayer. It will be time consuming for MCS to compute a large game,

148 H. Wang et al.

and this is also the essential drawback of table-based Q-learning, so currently
QM-learning is also only applicable for small games.

5 Conclusion

This paper examines the applicability of Q-learning, a canonical reinforcement
learning algorithm, to create general players for GGP programs. Firstly, we show
how good canonical implementations of Q-learning perform on GGP games.
The GGP system allows us to easily use three real games for our experiments:
Tic-Tac-Toe, Connect Four, and Hex. We find that (1) Q-learning is indeed
general enough to achieve convergence in GGP games. However, we also find that
convergence is slow. In accordance with Banerjee [12], who used a static value for
ε, we find that (2) a value for ε that changes with the learning phases gives better
performance (start with more exploration, become more greedy later on). The
table-based implementation of Q-learning facilitates theoretical analysis, and
comparison against some baselines [12]. However, it is only suitable for small
games. A neural network implementation facilitates the study of larger games,
and allows meaningful comparison to DQN variants [9].

Still using our table-based implementation, we then enhance Q-learning with
an MCS based lookahead. We find that, especially at the start of the learning,
this speeds up convergence considerably. Our Q-learning is table-based, limiting
it to small games. Even with the MCS enhancement, convergence of QM-learning
does not yet allow its direct use in larger games. The QPlayer needs to learn
a large number of matches to get good performance in playing larger games.
The results with the improved Monte Carlo algorithm show a real improvement
of the player’s win rate, and learn the most probable strategies to get high
rewards faster than learning completely from scratch. This enhancement shows
how online search can be used to improve the performance of offline learning in
GGP. On this basis, we can assess different offline learning algorithms (or follow
Gelly [13] to combine it with neural networks for larger games in GGP).

Our use of Monte Carlo in QM-learning is different from the AlphaGo archi-
tecture, where MCTS is wrapped around Q-learning (DQN) [9]. In our approach,
we insert Monte Carlo within the Q-learning loop. Future work should show if
our QM-learning results transfer to AlphaGo-like uses of DQN inside MCTS, if
QM-learning can achieve faster convergence, reducing the high computational
demands of AlphaGo [19]. Additionally, we plan to study nested MCS in Q-
learning [22]. Implementing Neural Network based players also allows the study
of more complex GGP games.

Acknowledgments. Hui Wang acknowledges financial support from the China Schol-
arship Council (CSC), CSC No. 201706990015.

Assessing the Potential of Classical Q-learning in General Game Playing 149

References

1. Genesereth, M., Love, N., Pell, B.: General game playing: overview of the AAAI
competition. AI Mag. 26(2), 62–72 (2005)

2. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General game
playing: game description language specification. Stanford Technical report LG-
2006-1 (2008)

3. Kaiser, D.M.: The design and implementation of a successful general game playing
agent. In: International Florida Artificial Intelligence Research Society Conference,
pp. 110–115. AAAI Press, California (2007)

4. Genesereth, M., Thielscher, M.: General game playing. Synth. Lect. Artif. Intell.
Mach. Learn. 8(2), 1–229 (2014)

5. Świechowski, M., Mańdziuk, J.: Fast interpreter for logical reasoning in general
game playing. J. Logic Comput. 26(5), 1697–1727 (2014)

6. Wang, H., Tang, Y., Liu, J., Chen, W.: A search optimization method for rule
learning in board games. In: Geng, X., Kang, B.-H. (eds.) PRICAI 2018. LNCS
(LNAI), vol. 11013, pp. 174–181. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-97310-4 20

7. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn.
MIT Press, Cambridge (1998)

8. Browne, C.B., Powley, E., Whitehouse, D., et al.: A survey of Monte Carlo tree
search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)

9. Mnih, V., Kavukcuoglu, K., Silver, D., et al.: Human-level control through deep
reinforcement learning. Nature 518(7540), 529–533 (2015)

10. Silver, D., Huang, A., Maddison, C.J., et al.: Mastering the game of Go with deep
neural networks and tree search. Nature 529(7587), 484–489 (2016)

11. Mehat, J., Cazenave, T.: Monte-Carlo tree search for general game playing. Univ.
Paris 8 (2008)

12. Banerjee, B., Stone, P.: General game learning using knowledge transfer. In: Veloso,
M.M. (ed.) International Joint Conference on Artificial Intelligence 2007, pp. 672–
677 (2007)

13. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: Pro-
ceedings of the 24th International Conference on Machine Learning, pp. 273–280
(2007)

14. Robert, C.P.: Monte Carlo Methods. Wiley, Hoboken (2004)
15. Thielscher, M.: The general game playing description language is universal. In:

Toby Walsh. International Joint Conference on Artificial Intelligence 2011, vol. 22,
no. 1, pp. 1107–1112. AAAI Press, California (2011)

16. Watkins, C.J.C.H.: Learning from Delayed Rewards. King’s College, Cambridge
(1989)

17. Even-Dar, E., Mansour, Y.: Convergence of optimistic and incremental Q-learning.
In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Infor-
mation Processing Systems 2001, pp. 1499–1506. MIT Press, Cambridge (2001)

18. Hu, J., Wellman, M.P.: Nash Q-learning for general-sum stochastic games. J. Mach.
Learn. Res. 4, 1039–1069 (2003)

19. Silver, D., Hubert, T., Schrittwieser, J., et al.: Mastering Chess and Shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint
arXiv:1712.01815 (2017)

20. Silver, D., Schrittwieser, J., Simonyan, K., et al.: Mastering the game of go without
human knowledge. Nature 550(7676), 354–359 (2017)

https://doi.org/10.1007/978-3-319-97310-4_20
https://doi.org/10.1007/978-3-319-97310-4_20
http://arxiv.org/abs/1712.01815

150 H. Wang et al.

21. Méhat, J., Cazenave, T.: Combining UCT and nested Monte Carlo search for single-
player general game playing. IEEE Trans. Comput. Intell. AI Games 2(4), 271–277
(2010)

22. Cazenave, T., Saffidine, A., Schofield, M.J., Thielscher, M.: Nested Monte Carlo
search for two-player games. In: Schuurmans, D., Wellman, M.P. (eds.) AAAI Con-
ference on Artificial Intelligence 2016, vol. 16, pp. 687–693. AAAI Press, California
(2016)

23. Ruijl, B., Vermaseren, J., Plaat, A., Herik, J.: Combining simulated annealing and
Monte Carlo tree search for expression simplification. In: Duval, B., Jaap van den
Herik, H., Loiseau, S., Filipe, J. (eds.) Proceedings of the 6th International Con-
ference on Agents and Artificial Intelligence 2014, vol. 1, pp. 724–731. SciTePress,
Setúbal, Portugal (2014)

Visual Rationalizations in Deep
Reinforcement Learning for Atari Games

Laurens Weitkamp1(B), Elise van der Pol2, and Zeynep Akata2

1 Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
laurens.weitkamp@student.uva.nl

2 UvA-Bosch Delta Lab, University of Amsterdam, Amsterdam, The Netherlands

Abstract. Due to the capability of deep learning to perform well in high
dimensional problems, deep reinforcement learning agents perform well
in challenging tasks such as Atari 2600 games. However, clearly explain-
ing why a certain action is taken by the agent can be as important as the
decision itself. Deep reinforcement learning models, as other deep learn-
ing models, tend to be opaque in their decision-making process. In this
work, we propose to make deep reinforcement learning more transparent
by visualizing the evidence on which the agent bases its decision. In this
work, we emphasize the importance of producing a justification for an
observed action, which could be applied to a black-box decision agent.

Keywords: Explainable AI · Reinforcement learning · Deep learning

1 Introduction

Due to strong results on challenging benchmarks over the last few years, enabled
by the use of deep neural networks as function approximators [6,11,17] deep rein-
forcement learning has become an increasingly active field of research. While
neural networks allow reinforcement learning methods to scale to complex prob-
lems with large state spaces, their decision-making is opaque and they can fail
in non-obvious ways, for example, if the network fails to generalize well and
chooses an action based on the wrong feature. Moreover, recent work [7] has
shown that these methods can lack robustness, with large differences in perfor-
mance when varying hyperparameters, deep learning libraries or even the random
seed. Gaining insight into the decision-making process of reinforcement learning
(RL) agents can provide new intuitions about why and how they fail. Moreover,
agents that can justify with visual elements why a prediction is consistent to a
user are more likely to be trusted [18]. Generating such post-hoc explanations,
also referred to as rationalizations, does not only increase trust, but also it is a
key component for understanding and interacting with them [3]. Motivated by
explainability as a means to make the black-box neural networks transparent,
we propose to visualize the decision process of a reinforcement learning agent by
using Grad-CAM [15].

c© Springer Nature Switzerland AG 2019
M. Atzmueller and W. Duivesteijn (Eds.): BNAIC 2018, CCIS 1021, pp. 151–165, 2019.
https://doi.org/10.1007/978-3-030-31978-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31978-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-31978-6_12

152 L. Weitkamp et al.

Grad-CAM creates an activation map that shows prominent spaces of activa-
tion given an input image and class, typically in an image classification task. The
activation map is calculated through a combination of the convolutional neural
network weights and the gradient activations created during a forward pass of
the input image and class in the neural network.

Applying this method instead to a reinforcement learning agent, it wil be
used to construct action-specific activation maps that highlight the regions of
the image that are the most important evidences, for the predicted action of the
RL agent. We evaluate these visualizations on three Atari 2600 games using the
OpenAI Gym wrapper, created precisely to tackle difficult problems in deep rein-
forcement learning. The range of games in the wrapper are diverse in difficulty:
they have different long-term reward mechanics and a different action space per
game. These difficulties are of interest when looking to explain why the agent
takes a specific action given a state.

This paper is structured as follows: The next section, Sect. 2, discusses related
works in both reinforcement learning and explainable AI. Section 3 presents the
visual rationalization model and explains how it is adapted to reinforcement
learning tasks. Following after that is Sect. 4 which provides the setup required
for experiments. This section also provides the results for the rationalization
model, including where the model fails. The last section, Sect. 5, provides an
conclusion to the experiments.

2 Related Work

In this section, we discuss previous works relevant to reinforcement learning and
explainable artificial intelligence.

2.1 Deep Reinforcement Learning

In general, there are two main methods in deep reinforcement learning. The first
method uses a neural network to approximate the value function that estimates
the value of state, action pairs as to infer a policy. One such value function
estimation model is called the Deep-Q Network (DQN), which has had garnered
much attention to the field of deep reinforcement learning due to impressive
results on challenging benchmarks such as Atari 2600 games [11]. Since the
release of this model, a range of modifications have been proposed that have
improved this model such as the Deep Recurrent-Q model, the Double DQN
model and the Rainbow DQN model [5,9,19].

The second method used in deep reinforcement learning approximates the
policy directly, by parameterizing the policy and using the gradient of these
parameters to calculate an optimal policy. This method is called the policy gra-
dient method, and a much cited example of such a method is known as the
REINFORCE line of algorithms [20]. More recent examples of policy gradient
methods include Trust Region Policy Optimization and Proximal Policy Opti-
mization [13,14].

Visual Rationalizations in Deep Reinforcement Learning for Atari Games 153

A hybrid that combines value function methods and policy gradient methods
is known as the actor-critic method. In this method, the actor is trying to infer a
policy using a state, action pair and the critic is assigning a value to the current
state of the actor. In this paper we use the Asynchronous Advantage Actor-Critic
(A3C) model which has been used to achieve human level performance on a wide
range of Atari 2600 games [10].

2.2 Explainable AI

Generating visual or textual explanations of deep network predictions is a
research direction that has recently gained much interest [1,8,12,23]. Following
the convention described by Park et al. in [12], we focus on post-hoc explana-
tions, namely rationalizations where a deep network is trained to explain a black
box decision maker which is useful in increasing trust for the end user.

Textual rationalizations are explored in Hendricks et al. [8] which proposes
a loss function based on sampling and reinforcement learning that learns to
generate sentences that realize a global sentence property, such as class specificity.
Andreas et al. [1] composes collections of jointly-trained neural modules into deep
networks for question answering by decomposing questions into their linguistic
substructures, and using these structures to dynamically instantiate modular
networks with reusable components.

As for visual rationalizations, Zintgraf et al. [23] propose to apply prediction
difference analysis to a specific input. [12] utilizes a visual attention module
that justifies the predictions of deep networks for visual question answering and
activity recognition. In [4] the authors propose to use a perturbation method
that selectively blurs regions to calculate the impact on an RL agent’s policy.
Although this method demonstrates important regions for the agent’s decision
making, the method used in this paper highlights important regions without the
need for such a perturbation method.

Grad-CAM [15] uses the gradients of any target concept, i.e. predicted action,
flowing into the final convolutional layer to produce a coarse localization map
highlighting the important regions in the image for predicting the concept. It
has been demonstrated on image classification and captioning. In this work, we
adapt it to two reinforcement learning tasks to visually rationalize the predicted
action.

3 Visual Rationalization Model

In reinforcement learning, an agent interacting with an environment over a series
of discrete time steps observes a state1 st ∈ S, takes an action at ∈ A and
receives a reward rt and observes the next state st+1 ∈ S. The agent is tasked

1 Here we assume problems where partial observability can be addressed by represent-
ing a state as a small number of past observations.

154 L. Weitkamp et al.

with finding a policy π : S × A → [0, 1], a function mapping states and actions
to probabilities whose goal is to maximize the discounted sum of rewards:

Rt =
∞∑

k=0

γkrt+k+1 (1)

which is the return with discount factor γ ∈ [0, 1].

3.1 Asynchronous Advantage Actor Critic Learning

Gradient based actor-critic methods split the agent in two components: an actor
that interacts with the environment using a policy π(a|s; θ), and a critic that
assigns values to these actions using the value function V (s; θ). Both the policy
and the value function are directly parameterized by θ. Updating the policy and
value function is done through gradient descent

θt+1 = θt + ∇θt
log π(at|st; θt)At. (2)

With At = Rt−V (st; θt), an estimation of the advantage function [21]. In [10],
the policy gradient actor-critic uses a series of asynchronous actors that all send
policy-gradient updates to a single model that keeps track of the parameters θ.
In our implementation the actor output is a softmax vector of size |A|, the total
number of actions the agent can take in the specific environment. Because our
visual rationalization model uses the actor output only, the scalar critic output
will be ignored for the purposed of this paper. However, in future work, exploring
the critic’s explanations could be of interest. To ensure exploration early on an
entropy regularization term H is introduced with respect to the policy gradient,

θt+1 = θt + ∇θt
log π(at|st; θt)At + β∇θt

H(π(st; θt)), (3)

where β is a hyper parameter discounting the entropy regularization.

3.2 Visual Rationalization

Our visual rationalization is based on Grad-CAM [15], and constitutes of com-
puting a class-discriminative localization map Ls

GradCAM ∈ Ru×v using the gra-
dient of any target class. These gradients are global-average-pooled to obtain
the neuron importance weights ac

k for class c, for activation layer k in the CNN2:

αc
k =

1
Z

∑

i

∑

j

∂yc

∂Lk
ij

. (4)

2 k is usually chosen to be the last convolutional layer in the CNN.

Visual Rationalizations in Deep Reinforcement Learning for Atari Games 155

Fig. 1. The model takes as input a state, calculates the state-action π(a|s; θ) policy and
then produces a gradient-based activation map based on the state, action pair. This
activation map can then be overlayed on the original state to indicate evidence that
the agent has to take the action. In this Figure, the agent chooses to take the action
LEFTFIRE which would make the agent go one step to the left and then shoot up.
The activation map is highlighting the agent (bottom), incoming debris (upper-right)
and an incoming enemy (upper-mid).

Adapting this method in particular to the A3C actor output, let ha be the
score for action a before the softmax, αa

k now represents the importance weight
for state a in activation layer k:

αa
k =

1
Z

∑

i

∑

j

∂ha

∂Lk
ij

, (5)

with |h| = |A|, the total amount of actions the agent can take. The gradi-
ent then gets weighted by the forward-pass activations Lk and passes an ELU
activation3 to produce a weighted class activation map:

La
GradCAM = ELU(

K∑

k=1

αa
kLk). (6)

This activation map has values in the range [0, 1] with higher weights correspond-
ing to a stronger response to the input state. This can be applied to the critic
output in the same fashion. The resulting activation map can bilinearly extrapo-
lated to the size of the input state and can then be overlayed on top of this state
to produce a high-quality heatmap that indicate regions that motivate the agent
to take action a. A visual representation of this process is depicted in Fig. 1.

3 the Exponential Linear Unit has been chosen in favor of the ReLU used in the
original Grad-CAM paper due to the dying ReLU effect described in [22].

156 L. Weitkamp et al.

Fig. 2. A detailed explanation of the Pong, BeamRider and Seaquest game frames,
respectively from Atari 2600 games [2]. The agent is situated in an environment with
(multiple) moving enemies, other moving objects and semi-static objects (for example
the torpedoes left in BeamRider and the oxygen bar in Seaquest).

4 Experiments

In this section, we first provide the details of our experimentation setup. We
then show qualitative examples evaluating how our model performs in three of
the Atari games. Throughout this section, red bounding boxes and red arrows
indicate important regions of a state.

4.1 Setup

The Atari 2600 game environment is provided through the Arcade Learning
Environment wrapper in the OpenAI Gym framework [2]. The framework has
multiple version of each game but for the purpose of this paper the NoFrameskip-
v4 environment will be used (OpenAI considers NoFrameskip the canonical Atari
environment in gym and v4 is the latest version). Each state is represented as a
210×160×3 pixel image with a 128-colour palette, and each state is preprocessed
to a 84×84×1 image as input to the network. A side-effect of this preprocessing
is that the visual score will be removed from the state in most games, but the
agent still gets the reward per state implicitly through the environment.

In our experiments, we use three Atari games, namely Pong, BeamRider and
Seaquest, all depicted in Fig. 2. All three games have a different action space
(see Table 1), and a different long term-reward system for the agent to learn.

Pong. Pong has six actions with three of the six being redundant (FIRE is equal
to NOOP, LEFT is equal to LEFTFIRE and RIGHT is equal to RIGHTFIRE).
The agent is displayed on the right and the enemy on the left and the first player
to score 21 goals wins.

Visual Rationalizations in Deep Reinforcement Learning for Atari Games 157

Table 1. Action space of Pong, BeamRider and Seaquest in the Atari 2600 OpenAI
wrapper. Each agent from top to bottom has an increasing amount of actions.

NOOP FIRE UP LEFT RIGHT DOWN
LEFT
FIRE

RIGHT
FIRE

UP
LEFT

UP
RIGHT

UP
FIRE

DOWN
LEFT

DOWN
RIGHT

DOWN
FIRE

UP
LEFT
FIRE

UP
RIGHT
FIRE

DOWN
LEFT
FIRE

DOWN
RIGHT
FIRE

Pong x x x x x x

BeamRider x x x x x x x x x

Seaquest x x x x x x x x x x x x x x x x x x

BeamRider. In BeamRider the agent is displayed at the bottom and the agent
has to traverse a series of sectors where each sector contains 15 enemies (remain-
ing enemies is displayed at the top-left) and a boss at the end. The agent has
three torpedoes that can be used specifically to kill the sector boss, but these
can also be used to destroy debris that appear in later sectors. Learning how
to use the torpedoes correctly is not necessary to succeed in the game, but it
provides for long-term rewards in the form of bonus points.

Seaquest. In Seaquest the agent is dependent on a limited amount of oxygen,
depicted at the bottom of the state. The agent can ascend to the surface which
will refill the oxygen bar and it drops off any swimmers that the agent has picked
up along the way for a bonus reward. Resurfacing requires learning a long-term
reward dependency which is not easily learned [16]. Surfacing is not just used to
refill the oxygen bar but also to drop-off any swimmer that the agent has found
underwater which results in additional points. A different way to get a positive
reward is to kill sharks.

4.2 Learning A Policy

Training an agent to gain human-like or superhuman-like performance in a com-
plex environment can take millions of input frames. In this section we take the
same approach as Greydanus et al. [4], in which the authors argue that deep RL
agents, during training, discard policies in favor for better ones. Seeing how an
agent is reacting to different situations at different times of training might make
it clear how an agent is trying to maximize long-term rewards. To demonstrate
this, two agents have been trained for a different number of frames. The first
model which will be called the Full Agent has been trained using (at least) 40
million frames. The second agent which will be called the Half Agent has been
trained using 20 million frames, except for the case of Pong where it has been
trained using 500,000 frames, due to the fact that Pong is an easier game to learn.
The mean score and variance can be found in Table 2. For both games a sequence

158 L. Weitkamp et al.

Fig. 3. Manually sampled states from the game Pong, combined with the Full Agent
and the Half Agent’s actions Grad-CAM outputs based on these states. Indicated in
the red boxes is the tracking behavior exhibited by the Half Agent. Best viewed in high
resolution in color. (Color figure online)

of states were manually sampled, after which both agents have evaluated4 the
state to learn spatial-temporal information. States were manually sampled by
having a person (one of the authors) play one episode of each game. The states
were sampled manually to make sure the samples were not biased towards one
agents’ policy.

Pong. For Pong, the Full Agent has learned to shoot the ball in such a way
that it scores by hitting the ball only once each round. The initial round might
differ, but after that all rounds are the same: the Full Agent shoots the ball
up high which makes the ball bounce off the wall all the way down over the
opponent’s side, at which point the agent retreats to the lower right corner. This
would indicate that the Full Agent is not reacting to the ball most of the time,
but is waiting to exploit a working strategy that allows it to win each round.
In contrast, he Half Agent is actively tracking the ball at each step and could

4 evaluated in this case means having forwarded each state that has been manually
sampled through the model.

Visual Rationalizations in Deep Reinforcement Learning for Atari Games 159

Table 2. The mean and variance of both the Full Agent (trained on at least 40 mil-
lion frames) and the Half Agent (500,000 frames in Pong and 20 million frames in
BeamRider) after playing 100 episodes using a greedy strategy. Seaquest’s Half Agent
is omitted because the Full Agent could not learn how to surface for water.

Full Agent mean Full Agent variance Half Agent mean Half Agent variance

Pong 21.00 0.00 14.99 0.09

BeamRider 4659.04 1932.58 1597.40 1202.00

Seaquest 1749.00 11.44 N/A N/A

potentially be losing some rounds because of this. The tracking behavior of the
Half Agent is demonstrated in Fig. 3 at frames 50, 51 and 53 indicated with a
red box. In these frames the Half Agent’s attention is focused on the ball and
the corresponding action is to go up to match it.

BeamRider. For BeamRider, both agents have learned to hit enemies but the
Full Agent has a higher average return. Looking at Fig. 4, both agents have
a measure of attention on the two white enemy saucers, but the intensity of
attention differs; the Full Agent has high attention on the enemies, in comparison
with the Half Agent which has low attention on the enemies. The Half Agent
is either going right which is essentially a NOOP in that area or it could be
shooting at the incoming enemy. More interesting are the last two frames: 175
and 176. The attention of the Full Agent turns from the directly approaching
enemy saucer to the enemy saucer on the left of it, and the agent would try to
move into its direction (LEFTFIRE). The Full Agent’s attention in frame 176
is placed in a medium degree at the trajectory of its own laser that will hit the
enemy saucer in the next frame. This could indicate that the Full Agent knows
it will hit the target and is thus moving away from it, to focus on the other
remaining enemy.

From the analysis of both agents another interesting result is discovered: the
agents do not learn to properly use the torpedoes. At the beginning of each
episode/level both agents would fire torpedoes until they are all used up and
then continue on as usual. In Fig. 5 this phenomena is demonstrated through a
manually sampled configuration evaluated by the Full Agent only (the results are
the same for the Half Agent). The torpedoes have not been used yet, on purpose,
and there are enemies coming towards the agent at different time-steps. Looking
at the Grad-CAM attention map, it would appear to be highly focused on the
remaining three torpedoes in the upper right corner indicated by a red box. This
occurs even when the action chosen by the agent is not of the UP-variety which
would trigger firing a torpedo.

160 L. Weitkamp et al.

Fig. 4. Manually sampled states from the game BeamRider, combined with the Full
Agent and the Half Agent’s actions Grad-CAM outputs based on these states. The red
boxes indicate the difference in focus of the agents and the arrow indicates the shot
fired by the agent. Best viewed in high resolution in color. (Color figure online)

4.3 Agent Failing

A different way of looking at how rationalizations aid in understanding the behav-
ior of an agent is by looking at when an agent fails at its task. In the context of
BeamRider and Seaquest, this means looking at the last couple of frames before
the agent dies.

BeamRider. In the situation depicted in Fig. 6 the agent is approached by a
number of different enemies, one of which only appears after sector 7: the green
bounce craft, depicted inside a red box in the first four frames. This is an enemy
that can only be destroyed by shooting a torpedo at it, and it jumps from beam
to beam trying to hit the agent which is what kills the agent eventually in the
last frame. In all frames the Grad-CAM model is focused at the nearest three
enemies, and the agent is shooting using LEFTFIRE in the direction of the green
bounce craft. This could add extra weight to the idea that the agent does not

Visual Rationalizations in Deep Reinforcement Learning for Atari Games 161

Fig. 5. Manually sampled states from the game BeamRider while not firing torpedoes.
Combined with the Full Agent’s actions Grad-CAM outputs based on these states. In
the 300 frames played it has chosen any UP-variant 219 times, LEFTFIRE 67 and
other actions 14 times. Best viewed in high resolution in color. (Color figure online)

know how to use the torpedoes correctly, but perhaps also that the agent might
not be able to distinguish one enemy from another; the piece of green debris to
the left of the green bounce craft looks quite similar to it.

Seaquest. The agent playing Seaquest has a different problem: it has not
learned the long term strategy of surfacing for oxygen. An example of a death
due to this is depicted in Fig. 7. The oxygen bar is highlighted by a red box,
and it is noticeable that there is no direct or intense activations produced by
the rationalization model on the oxygen bar. This could indicate that the agent
has never made a correlation between the oxygen bar depleting and the episode
ending. A multitude of factors could lead the agent to not learn this such as
not having enough temporal knowledge or a lack of exploratory actions. A solu-
tion to this could be the use of Fine-Grained Action Repetition which selects a
random action and performs this action for a decaying number of times [16].

4.4 Failure Cases of Our Model

Looking at Fig. 7 a prominent activation is depicted in the form of a vertical
bar at the top of the state. This vertical bar might seem a bit too ambiguous
and even hard to interpret. This type of activation map come in two varieties:
activations that highlight only static objects and avoid any non-static objects
like agents or enemies and activations that do highlight seemingly at random.

162 L. Weitkamp et al.

Fig. 6. Agent dies because it is hit by a green bouncecraft, highlighted by the rex box.
The green bouncecraft is an enemy that only appears in later sectors of the game, but
it looks similar to an enemy which is more easily avoidable and which also appears
multiple times in each sector. Best viewed in high resolution in color. (Color figure
online)

Fig. 7. The agent dies due to lack of oxygen depicted in the red box. Looking at the
activation map for the Full Agent, it is noticeable that there are no (direct) Grad-CAM
activations on the oxygen bar. This could indicate a lack of understanding of the oxygen
mechanism that allows the agent to live longer and get a higher score. Best viewed in
high resolution in color. (Color figure online)

The activations that highlight everything except for non-static objects are
noticeable in Fig. 8 in the case of Pong and BeamRider. For Pong, the activations
are not focused on the ball but on everything except for the ball which could

Visual Rationalizations in Deep Reinforcement Learning for Atari Games 163

Fig. 8. (Seemingly) ambiguous rationalization outputs. The activations depicted in
Pong highlight the agent and its enemy. The activations are also noticeable lightly on
the whole field except for the bal itself. When looking more closely to the BeamRider
activations, it appears that there are activations surrounding important in the game
such as the agent, the lives left and incoming enemies. The Seaquest activations, in
contrast to the other games, seem more scattered and not focused on either objects or
space between objects. Best viewed in high resolution in color. (Color figure online)

still indicate some pattern for the agent. For BeamRider the activations are
highlighting areas directly next to the non-static agent and enemies in the state.
This could indicate that the agent is calculating the trajectory of enemies or
possible safe locations for it to go to.

The activations that are seemingly at random are depicted in Fig. 8 in the
last two Seaquest frames. A possible explanation for this could be that the agent
is not provided with enough evidence and is indifferent to taking any action,
which is reflected in the ambiguous activation map.

5 Conclusion

In this work, we have presented a post-hoc explanation framework that visually
rationalizes the output of a deep reinforcement learning agent. Once the agent
has made the decision of which action to take, the model propagates the gradi-
ents that lead to that action back to the image. Hence, it is able to visualize the
activation map of the action as a heatmap. Our experiments on three Atari 2600
games indicate that the visualizations successfully attend to the regions such as
the agent and the obstacle that lead to the action. We argue that such visual
rationalizations, i.e. post-hoc explanations, are important to enable communi-
cation between users and the agents. Future work will include a quantitative
evaluation in the form of a user study or developing an automatic evaluation
metric for these kind of visual explanations.

164 L. Weitkamp et al.

References

1. Andreas, J., Rohrbach, M., Darrell, T., Klein, D.: Neural module networks. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

2. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning envi-
ronment: an evaluation platform for general agents. CoRR abs/1207.4708 (2012).
http://arxiv.org/abs/1207.4708

3. Biran, O., McKeown, K.: Justification narratives for individual classifications. In:
Proceedings of the AutoML Workshop at ICML 2014 (2014)

4. Greydanus, S., Koul, A., Dodge, J., Fern, A.: Visualizing and understanding atari
agents. CoRR abs/1711.00138 (2017). http://arxiv.org/abs/1711.00138

5. Hausknecht, M., Stone, P.: Deep recurrent Q-learning for partially observable
MDPs. CoRR, abs/1507.06527 (2015)

6. Heess, N., et al.: Emergence of locomotion behaviours in rich environments. arXiv
preprint arXiv:1707.02286 (2017)

7. Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D.: Deep
reinforcement learning that matters. arXiv preprint arXiv:1709.06560 (2017)

8. Hendricks, L.A., Akata, Z., Rohrbach, M., Donahue, J., Schiele, B., Darrell, T.:
Generating visual explanations. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) ECCV 2016. LNCS, vol. 9908, pp. 3–19. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-46493-0 1

9. Hessel, M., et al.: Rainbow: combining improvements in deep reinforcement learn-
ing. arXiv preprint arXiv:1710.02298 (2017)

10. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Inter-
national Conference on Machine Learning, pp. 1928–1937 (2016)

11. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

12. Park, D.H., et al.: Multimodal explanations: justifying decisions and pointing to
the evidence. In: IEEE CVPR (2018)

13. Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust region policy
optimization. In: International Conference on Machine Learning, pp. 1889–1897
(2015)

14. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. CoRR abs/1707.06347 (2017). http://arxiv.org/abs/1707.
06347

15. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
CAM: visual explanations from deep networks via gradient-based localization. In:
IEEE ICCV (2017)

16. Sharma, S., Lakshminarayanan, A.S., Ravindran, B.: Learning to repeat: fine
grained action repetition for deep reinforcement learning. CoRR abs/1702.06054
(2017). http://arxiv.org/abs/1702.06054

17. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

18. Teach, R.L., Shortliffe, E.H.: An analysis of physician attitudes regarding computer-
based clinical consultation systems. In: Anderson, J.G., Jay, S.J. (eds.) Use and
Impact of Computers in Clinical Medicine. Computers and Medicine, pp. 68–85.
Springer, New York (1981). https://doi.org/10.1007/978-1-4613-8674-2 6

19. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
Q-learning. In: AAAI, vol. 16, pp. 2094–2100 (2016)

http://arxiv.org/abs/1207.4708
http://arxiv.org/abs/1711.00138
http://arxiv.org/abs/1707.02286
http://arxiv.org/abs/1709.06560
https://doi.org/10.1007/978-3-319-46493-0_1
https://doi.org/10.1007/978-3-319-46493-0_1
http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1702.06054
https://doi.org/10.1007/978-1-4613-8674-2_6

Visual Rationalizations in Deep Reinforcement Learning for Atari Games 165

20. Williams, R.J.: Simple statistical gradient-following algorithms for connection-
ist reinforcement learning. In: Sutton, R.S. (ed.) Reinforcement Learning. The
Springer International Series in Engineering and Computer Science (Knowledge
Representation, Learning and Expert Systems), vol. 173, pp. 5–32. Springer,
Boston (1992). https://doi.org/10.1007/978-1-4615-3618-5 2

21. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn. 8(3), 229–256 (1992). https://doi.org/10.
1007/BF00992696

22. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in
convolutional network. CoRR abs/1505.00853 (2015). http://arxiv.org/abs/1505.
00853

23. Zintgraf, L.M., Cohen, T.S., Adel, T., Welling, M.: Visualizing deep neural network
decisions: prediction difference analysis. In: ICLR (2017)

https://doi.org/10.1007/978-1-4615-3618-5_2
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1505.00853

Author Index

Akata, Zeynep 151

Blockeel, Hendrik 52

Dal Canton, Francesco 1
De Ridder, Les 16
de Vries, Marjolein 43

Efthymiadis, Kyriakos 90
Emmerich, Michael 138

Foorthuis, Ralph 25

Gallego, Jose 73
Groß, Roderich 73

Hariman, Naomi 43

Korneva, Evgeniya 52
Kwisthout, Johan 65

Legrand, Manon 90

Nowé, Ann 90

Oliehoek, Frans A. 73

Plaat, Aske 138

Quinten, Vincent M. 1

Rădulescu, Roxana 90
Roijers, Diederik M. 90

Savani, Rahul 73
Smeets, Ionica 43

Takes, Frank W. 106

van der Pol, Elise 73, 151
van Rijn, Jan N. 106
Vercammen, Thijs 16
Vis, Jonathan K. 106
Voschezang, Mark 121

Wang, Hui 138
Weitkamp, Laurens 151
Wiering, Marco A. 1

	Preface
	Organization
	Contents
	Early Detection of Sepsis Induced Deterioration Using Machine Learning
	1 Introduction
	2 Dataset
	3 Feature Extraction Methods
	3.1 Histograms of Derivatives
	3.2 of Histograms of Derivatives
	3.3 Wavelet Transform and Autoregressive Modelling

	4 Machine Learning Methods
	4.1 Linear Support Vector Machine
	4.2 Random Forest
	4.3 Gradient Boosting Machine
	4.4 Weighted k-Nearest Neighbors
	4.5 Multi-Layer Perceptron
	4.6 Naïve Bayes Classifier
	4.7 Logistic Regression

	5 Experiments and Results
	6 Conclusion and Future Work
	References

	Deriving Formulas for Integer Sequences Using Inductive Programming
	1 Introduction
	2 Problem Statement
	3 Approach
	3.1 Windows
	3.2 Linear Combinations
	3.3 Feature Vectors
	3.4 Algorithm
	3.5 Limitations

	4 Implementation
	5 Experiments
	5.1 Sequences in OEIS Categories
	5.2 Input Length
	5.3 Feature Vectors

	6 Comparison with Other Methods
	6.1 MagicHaskeller
	6.2 IGOR
	6.3 Neural Networks

	7 Further Work
	8 Conclusion
	References

	All or In-cloud: How the Identification of Six Types of Anomalies Is Affected by the Discretization Method
	Abstract
	1 Introduction
	2 Theoretical Foundations
	2.1 Typology of Anomalies
	2.2 Discretization
	2.3 SECODA

	3 Empirical Experiments
	3.1 Research Design and Datasets
	3.2 Results and Discussion

	4 Conclusion
	References

	Topic Modeling for Exploring Cancer-Related Coverage in Journalistic Texts
	Abstract
	1 Introduction
	2 Method
	2.1 Data Collection
	2.2 Data Pre-processing
	2.3 Latent Dirichlet Allocation

	3 Results
	4 Discussion and Conclusion
	4.1 Discussion of Results
	4.2 General Discussion
	4.3 Conclusion

	References

	Model Selection for Multi-directional Ensemble of Regression and Classification Trees
	1 Introduction
	2 Related Work
	3 Selection Strategies for MERCS
	4 Experiments
	5 Discussion
	References

	Finding Dissimilar Explanations in Bayesian Networks: Complexity Results
	1 Introduction
	2 Preliminaries
	3 Main Results
	3.1 On Membership in NPPP

	4 Conclusion
	References

	Beyond Local Nash Equilibria for Adversarial Networks
	1 Introduction
	2 Background
	3 GANGs
	4 Solving GANGs
	5 Experiments
	6 Discussion
	7 Related Work
	8 Conclusions
	References

	Deep Multi-agent Reinforcement Learning in a Homogeneous Open Population
	1 Introduction
	2 Background
	3 Problem Setting
	3.1 Environment
	3.2 State and Action Space
	3.3 Parameters

	4 Methods
	4.1 From Single to Multi-agent Learning
	4.2 Single to Multi-agent Knowledge Transfer

	5 Experiments
	5.1 Single-Agent
	5.2 Multi-agent from Scratch
	5.3 Multi-agent with Single-agent Initialization

	6 Related Work
	7 Conclusions
	References

	Computing and Predicting Winning Hands in the Trick-Taking Game of Klaverjas
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Exact Approach
	4.1 Combinatorics
	4.2 Solving Approach
	4.3 Equivalence Classes

	5 Machine Learning Approach
	6 Experiments
	6.1 Exact Approach Results
	6.2 Machine Learning Results
	6.3 Comparison of Exact Approach and Machine Learning Approach

	7 Conclusion
	References

	Style Transfer of Abstract Drum Patterns Using a Light-Weight Hierarchical Autoencoder
	1 Introduction
	2 Background
	2.1 MIDI
	2.2 Variational Autoencoders
	2.3 Recurrent and Hierarchical Layers

	3 Model
	3.1 Encoder
	3.2 Latent Space
	3.3 Decoder
	3.4 Loss Function

	4 Method
	4.1 Training Dataset
	4.2 Encoding of MIDI Files
	4.3 Evaluation

	5 Results
	5.1 Qualitative Evaluation
	5.2 NCD to Target Class
	5.3 NCD to Original Class

	6 Conclusion
	7 Further Research
	7.1 Dataset
	7.2 Model Structure
	7.3 Noise
	7.4 Transformations
	7.5 Metrics

	A Appendix
	A.1 Parameters
	A.2 Structure of the Model

	References

	Assessing the Potential of Classical Q-learning in General Game Playing
	1 Introduction
	2 Related Work and Preliminaries
	2.1 GGP
	2.2 Reinforcement Learning
	2.3 Q-learning

	3 Design
	3.1 Classical Q-learning for Two-Player Games
	3.2 Dynamic Enhancement
	3.3 QM-learning Enhancement

	4 Experiments and Results
	4.1 Dynamic Enhancement
	4.2 QM-learning Enhancement

	5 Conclusion
	References

	Visual Rationalizations in Deep Reinforcement Learning for Atari Games
	1 Introduction
	2 Related Work
	2.1 Deep Reinforcement Learning
	2.2 Explainable AI

	3 Visual Rationalization Model
	3.1 Asynchronous Advantage Actor Critic Learning
	3.2 Visual Rationalization

	4 Experiments
	4.1 Setup
	4.2 Learning A Policy
	4.3 Agent Failing
	4.4 Failure Cases of Our Model

	5 Conclusion
	References

	Author Index

