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6.1  �Introduction

Nanobiotechnology integrates nanotechnology with biology. Nanobiotechnology is a 
new, emergent, and interdisciplinary field of research that refers to the use of nano-
technology to modify living organisms to enable the combinations of biological and 
nonbiological materials. The word “nano” refers to scale between 1 and 100 nm, and 
the term nanobiotechnology was coined by Lynn W.  Jelinski, a biophysicist from 
Cornell University, USA. Nanobiotechnology finds application in genetic engineering 
and breeding programs (Scrinis and Lyons 2007). Variety of materials are used to 
synthesize nanoparticles (NPs) such as metal oxides, silicates, magnetic materials, 
semiconductor quantum dots (QDs), lipids, polymers, and emulsions (Niemeyer and 
Doz 2001; Oskam 2006; Puoci et al. 2008; Prasad et al. 2017a).

The use of nanobiotechnology is relevant in the current perspective because the 
widespread use of chemical pesticides and fertilizers has contaminated the environ-
ment, is hazardous for human health, and affects the biodiversity. To combat the 
problem, several nanotechnology-based products such as nanofertilizers, nanoher-
bicides, nanopesticides, nanosensors, nanofungicides and nanoinsecticides 
enhanced seed germination, and genetically modified crops are being developed 
(Jampilek and Kralova 2015; Bhattacharyya et al. 2016; Prasad et al. 2014, 2017a).

Nanotechnology holds great potential to increase global food production and 
food quality. Important areas of nanotechnology application in the food sector are 
food processing, food packaging (active, antimicrobial and smart packaging), nano-
additives, nanoencapsulation, nanosensors for contamination detection in food, and 
controlled release of nutraceuticals (Chellaram et al. 2014; Prasad et al. 2017b).

6.2  �Application of Nanobiotechnology in Agriculture

Conventional agriculture uses agrochemicals, such as fertilizers, pesticides, fungi-
cides, insecticides, and herbicides for crop growth and protection. However, their 
overuse is damaging the ecosystem by adding toxins in ground and surface water 
(Mukhopadhyay 2014). However, nanobiotechnology holds to promise to solve the 
agricultural problems and to restrict chemical overuse (Fig. 6.1). The applications 
of nanobiotechnology are described in this chapter (Table 6.1).

6.2.1  �Nanofertilizers

Fertilizers are chemical compounds that provide nutrients to plant (Bottoms and 
Emerson 2013). Chemical fertilizers are in use since the early 1950s  and have 
become the synonym of fertilzers. However, excessive use of chemical fertilizers 
has rattled the problem of water contamination, decreased  soil fertility and 
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Agriculture Nano-herbicides

Nano-fertilizers

Nano-fungicides
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Fig. 6.1  Application of nanobiotechnology in agriculture. (Adapted from Mehrazar et al. 2015)

Table 6.1  Nanoparticle applications in agriculture

Nanomaterial Type of nanoparticle Application References

Nanofertilizer Synthetic apatite NP Increase the plant growth rate and 
seed yield

Liu and Lal (2014)

Iron chelate Increase in wet weight and 
maximum leaf surface index and 
aerial organs dry weight

Moghadam et al. 
(2012)

FeS2 Breakdown starch in seeds 
resulting in increased in growth

Srivastava et al. 
(2014)

EDTA-coated Fe3O4 Increased iron content in 
sunflower

Shahrekizad et al. 
(2015)

Fe3O4 Increased the availability of iron 
to the plants

Rui et al. (2016)

Fe3O4 Increase the iron and protein 
content and also used for the 
treatment of chlorosis

Siva and Benita 
(2016)

Cu Enhanced leaf area, chlorophyll 
content, fresh and dry weight and 
root dry weight of wheat

Hafeez et al. 
(2015)

Nanochitosan-NPK 
fertilizer

Increased the growth and 
production of wheat growing in 
sandy soil

Abdel-Aziz et al. 
(2016)

Nanozeourea 
fertilizer

Increased N content and 
enhanced the crude protein

Manikandan and 
Subramanian 
(2016)

SiO2 nanofertilizer Enhanced the nitrogen and 
phosphorus content

Yassen et al. 
(2017)

Zinc/boron 
nanofertilizer, 
prepared by loading 
ZnSO4 and H3BO3 on 
a chitosan NPs 
emulsion

Increased the uptake of zinc, 
chlorophyll content and 
photosynthesis of the coffee was 
increased

Wang and Nguyen 
(2018)

(continued)
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Table 6.1  (continued)

Nanomaterial Type of nanoparticle Application References

Chitosan–
polymethacrylic acid 
(PMAA) NP

Starch accumulation at the root 
tip of pea. Major proteins such as 
convicilin, vicilin, and legumin β 
upregulated

Khalifa and 
Hasaneen (2018)

Nanoherbicides Poly(epsilon-
caprolactone) NP 
containing herbicide 
atrazine

Increased the mobility of atrazine 
in the soil resulting in increase 
herbicide effectiveness against 
Brassica sp.

Pereira et al. 
(2014)

Chitosan/
tripolyphosphate 
NPs loaded with 
paraquat herbicide

Control weeds Grillo et al. (2014)

Atrazine loaded 
nanocapsule

Decreased the root and shoot 
growth in B. pilosa and decrease 
in the photosystem II activity

Sousa et al. (2018)

Nanopesticides Nanosilica Effective against nuclear 
polyhedrosis virus (BmNPV) in 
silkworm industry

Barik et al. (2008)

SiO2 Effective against Sitophilus 
oryzae

Debnath et al. 
(2011)

SiO2 Effective against the stored grain 
pest Corcyra cephalonica

Vani and Brindhaa 
(2013)

Ag Effective against Sitophilus 
oryzae L. (pest of rice)

Abduz Zahir et al. 
(2012)

Ag Effective against the first to 
fourth instar larvae and pupae of 
the cotton bollworm (Helicoverpa 
armigera)

Durga Devi et al. 
(2014)

CuO Control cotton leafworm 
(Spodoptera littorals)

Shaker et al. 
(2016)

ZnO Delay in the larval and pupal 
development period of 
Callosobruchus maculates

Malaikozhundan 
et al. (2017)

Nanoinsecticides ZnO Effective against Trialeurodes 
vaporariorum (greenhouse 
whitefly)

Khooshe-Bast 
et al. (2016)

Bio-silver and Au Decreased the body weight of 
Pericallia ricini larvae

Sahayaraj et al. 
(2016)

Ag and Zn Effective against Aphis nerii Rouhani et al. 
(2012)

Ag Control cotton leafworm 
(Spodoptera littoralis)

El-bendary and 
El-Helaly (2013)

Nanoalumina dust More effective against S. oryzae 
than R. dominica

Buteler et al. 
(2015)

SiO2 Effective against Rhyzopertha 
dominica F., and Tribolium 
confusum Jacquelin du Val.

Ziaee and Ganji 
(2016)

(continued)
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Table 6.1  (continued)

Nanomaterial Type of nanoparticle Application References

Nanofungicide Ag Effective against 18 different 
fungi (Alternaria alternate, 
A. brassicicola, A. solani, 
Botrytis cinerea, Cladosporium 
cucumerinum, Corynespora 
cassiicola, Cylindrocarpon 
destructans, Didymella bryoniae, 
Fusarium oxysporum f. Sp. 
cucumerinum, F. oxysporum f. 
Sp. lycopersici, F. oxysporum, 
F. solani, Fusarium sp., 
Glomerella cingulata, 
Monosporascus cannonballus, 
Pythium aphanidermatum, 
P. ythium spinosum, 
and Stemphylium lycopersici)

Kim et al. (2012)

Ag Effective against Bipolaris 
sorokiniana in wheat

Mishra et al. 
(2014)

Ag Effective against Candida spp., 
Bipolaris sorokiniana, 
Magnaporthe grisea and powdery 
mildews

Jo et al. (2009); 
Kim et al. (2009); 
Panacek et al. 
(2009); Lamsal 
et al. (2011)

Chitosan Effective against F. solani, and 
A. niger

Ing et al. (2012)

Cu Inhibited the activity of plant 
pathogenic fungi: Phoma 
destructiva (DBT-66), Curvularia 
lunata (MTCC 2030), 
A. alternata (MTCC 6572) and 
F. oxysporum (MTCC 1755)

Kanhed et al. 
(2014)

Ag and Cu Effective against two plant 
pathogenic fungi Alternaria 
alternata, and Botrytis cinerea

Ouda (2014)

ZnO Effective against two pathogenic 
fungi (Botrytis cinerea, and 
Penicillium expansum)

He et al. (2011)

ZnO and MgO Effective against A. alternate, 
F. oxysporum, Rhizopus 
stolonifer, and Mucor plumbeus

Wani and Shah 
(2012)

Cu–chitosan Effective against A. solani and 
F. oxysporum in tomato

Saharan et al. 
(2015)

Nano trifloxystrobin 
25% + tebuconazole 
50%

Effective against Macrophomina 
phaseolina

Kumar et al. 
(2016)

Combination 
between chitosan 
(CS) and silver (Ag), 
Ag@CS NPs

Effective against Pyricularia 
oryzae caused rice blast

Pham et al. (2018)

(continued)
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Table 6.1  (continued)

Nanomaterial Type of nanoparticle Application References

ZnO Effective against fungal 
phytopathogens, namely 
A. alternata, A. niger, B. cinerea, 
F. oxysporum, and P. expansum

Jamdagni et al. 
(2018)

Seed 
germination

Carbon nanotubes Increased the germination of 
tomato seeds

Khodakovskaya 
et al. (2009)

ZnO Enhanced the germination rate Singh et al. (2013)
ZnO Enhanced seed germination in 

rice and increased radical and 
plumule length

Upadhyaya et al. 
(2017)

Au Increased the seed germination 
rate of Gloriosa superba

Gopinath et al. 
(2014)

Nanosilicon dioxide Enhanced seed germination 
(22.16%), germination mean time 
(3.98%), and seed germination 
index in tomato

Siddiqui and 
Al-Whaibi (2014)

Ag Increased seed germination rate 
percent by 95% in Boswellia 
ovalifoliolata

Savithramma et al. 
(2012)

Ag Showed the highest percentage of 
seed germination in Pennisetum 
glaucum

Parveen and Rao 
(2014)

TiO2 Increased water absorption by the 
seeds resulting in accelerated 
seed germination

Feizi et al. (2012)

Anatase Enhance the germination of 
parsley seeds

Dehkourdi and 
Mosavi (2013)

Binary mixtures of 
six metal oxide NPs 
(TiO2, Fe2O3, CuO, 
NiO, Co3O4 and 
ZnO)

Enhanced seed germination in 
Brassica

Ko et al. (2017)

Ag Highest seed germination 
(98.6%) followed by copper 
(69.6%), and gold (56.5%), 
respectively

Hussain et al. 
(2017)

SiO2 Enhanced seed germination Alsaeedi et al. 
(2018)

initiated eutrophication. Nanofertilizers hold the promise to alleviate the environ-
mental problems caused by the use of chemical fertilizers. Nanofertilizers can 
improve plant growth as they contain nutrients and growth-promoting substances 
encapsulated in nanopolymers, chelates or emulsions. Nanofertilizers enjoy envi-
ronmental and other benefits like less contamination of water bodies, reduced soil 
toxicity, delayed and steady nutrient release, increased production yield, improved 
photosynthesis, enhanced fertilizer effect period, and increased soil nutrients 
(Naderi and Danesh-Shahkari 2013; Mehrazar et al. 2015).
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Several examples of successful application of metal-based nanofertilizers for 
improved plant growth are available in the scientific literature. For example, iron-
chelated nanofertilizer application on two varieties of spinach, Varamin 88 and 
Viroflayand, respectively at 4 kg ha−1 showed 58% and 47% improvement in wet 
weight along with enhanced leaf surface index and aerial organs (Moghadam et al. 
2012). In addition, the EDTA-coated Fe3O4 NPs increased iron content in sunflower 
(Shahrekizad et  al. 2015). Similarly, iron pyrite  NP treatment on spinach seeds 
improved plant growth and enhanced breakdown of starch in seeds (Srivastava et al. 
2014). Iron oxide NPs improve peanut growth by augmenting the availability of iron 
(Rui et  al. 2016). The Fe2O3 NP application increases the plant iron and protein 
content and reduces the frequency of chlorosis (Siva and Benita 2016). Copper (Cu) 
NP application increased the growth and yield of wheat cultivar Millat-2011 by 
enhancing leaf area, chlorophyll content, fresh and dry weight, and root dry weight 
(Hafeez et al. 2015).

Synthetic apatite NP application increases the soybean plant growth rate (32.6%) 
and seed yield (20.4%), respectively (Liu and Lal 2014). The nanozeourea fertilizer 
enhanced crude protein of maize plant growing in black soil by 26.1% and in red 
soils by 36.1%, which was higher than conventional urea fertilizer application 
(Manikandan and Subramanian 2016). The SiO2 nanofertilizer application increased 
growth and yield in cucumber through improved nitrogen and phosphorus content 
in the plant (Yassen et al. 2017).

Recently, the demand for chitosan NP has increased based on their role as 
nanofertilizer. Chitosan is a biodegradable and biocompatible polymer of randomly 
distributed β-(1 →  4)-linked D-glucosamine and N-acetyl-D-glucosamine units. 
Several examples show an impressive plant growth result due to chitosan NP appli-
cation. Nanochitosan-NPK fertilizer increases the growth and production of wheat 
growing in sandy soil (Abdel-Aziz et al. 2016). Application of zinc-boron nanofer-
tilizer, prepared by loading ZnSO4 on chitosan NP emulsion, on coffee leaves 
increased the level of Zn, N, and P uptake and improved chlorophyll content (Wang 
and Nguyen 2018). Chitosan–polymethacrylic acid (PMAA) NP application on pea 
plant increased starch accumulation in root tips. In addition, synthesis of proteins 
such as convicilin, vicilin, and legumin β was upregulated (Khalifa and 
Hasaneen 2018).

6.2.2  �Nanoherbicides

Weeds are unwanted plants that reduce crop yield thus need timely removal from 
agricultural lands. Conventional herbicides kill weeds from the aboveground plant 
parts and do not remove tubers or roots that sprout another plant under favorable 
conditions (Ali et al. 2014). In addition, the absence of moisture in herbicides ren-
der them less effective in rainfed agriculture systems (Subramanian and 
Tarafdar 2011).

6  Nanobiotechnology and its Application in Agriculture and Food Production
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Nanoherbicides application  could be an effective method to remove weeds 
(Fig. 6.2). The NP-based herbicide has several advantages over conventional herbi-
cides such as increased water solubility, lower weed resistance, and decreased toxic-
ity. NPs of poly(epsilon-caprolactone) containing the herbicide atrazine were tested 
on target (Brassica sp.) and nontarget (Zea mays) plants. Encapsulated herbicide did 
not harm a nontarget plant (Zea mays). The NPs increase the mobility of atrazine in 
the soil, resulting in increased herbicide effectiveness against Brassica sp. (Pereira 
et  al. 2014). Chitosan/tripolyphosphate NP-based nanoherbicides are also under 
development. Chitosan/tripolyphosphate NPs loaded with paraquat herbicide are less 
toxic to crops and are safe in controlling weeds (Grillo et al. 2014). The 2000 g ha−1 
application of atrazine-loaded nanocapsule effectively decreased the root and shoot 
growth in B. pilosa and reduced photosystem II activity (Sousa et al. 2018).

6.2.3  �Nanopesticides

Plant pests are a major threat to crop production and require stringent control mea-
sures. The conventional methods for pest control employ several types of chemical 
pesticides, most of which are xenobiotic in nature. In addition, the excessive use of 
pesticides is causing adverse effects on organisms, environment, and nitrogen-fixing 
ability of plants (Ghormade et al. 2011; Elrahman and Mostafa 2015; Bhattacharyya 
et al. 2016).

NP-based pesticides enjoy several advantages over conventional pesticides. 
Nanosilica derived from the plant is effective in controlling the infection of nuclear 
polyhedrosis virus (BmNPV) of silkworm (Barik et  al. 2008). Silica NPs used 
against Sitophilus oryzae provide 90% pest mortality (Debnath et  al. 2011). In 
another study, 70–80-nm sized silica NP provided 100% mortality against Corcyra 
cephalonica (Vani and Brindhaa 2013). The Ag NPs, synthesized from aqueous leaf 
extracts of Euphorbia prostrate, demonstrated 100% mortality rate against 
Sitophilus oryzae L., a rice pest (Abduz Zahir et al. 2012). The Ag NPs synthesized 

Nanoherbicide    Target weed

Unaffected plant Dead weed plant

Fig. 6.2  Pathway showing the use of nanoherbicide to target weed plant. (Adapted from Elrahman 
and Mostafa 2015)

P. Priyanka et al.
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from leaf extract of Euphorbia hirta provide protection against larvae and pupae of 
the cotton bollworm (Helicoverpa armigera). In addition, the longevity of male and 
female pest decreases after Ag NP treatment on larvae and pupae of the cotton boll-
worm (Durga Devi et al. 2014). The use of CuO NPs controls cotton leafworm lar-
vae (Spodoptera littorals) with mortality of 100% (Shaker et al. 2016). The treatment 
of Bacillus thuringiensis-coated ZnO NPs delay the larval and pupal development 
period of Callosobruchus maculatus. The results show that Bt ZnO NPs are effec-
tive nanopesticide against C. maculatus (Malaikozhundan et al. 2017).

6.2.4  �Nanoinsecticides

Insects are vectors of various plant diseases that damage crops and therefore require 
active control. Several chemical-based insecticides have been used to inhibit their 
reproduction or kill them (Ragaei and Sabry 2014). However, chemical-based insec-
ticides suffer from several drawbacks as they are degraded by light, temperature, 
microorganism, and hydrolysis. Therefore, only a small quantity of these insecti-
cides reaches the target site. As a result, repeated application of insecticides is nec-
essary to control the insects, which increase the cost of crop production. In addition, 
the use of insecticides is known to damage ecosystems and human health (Perlatti 
et al. 2013).

To combat the practical problems associated with field application of chemical 
insecticide, several  NP-based insecticides are being formulated and tested. For 
example, the ZnO NPs provide mortality rate of 91.6% against Trialeurodes vapo-
rariorum (Greenhouse whitefly) (Khooshe-Bast et al. 2016). The use of biosilver 
and gold NPs affects the growth and decreases the body weight of Pericallia ricini 
larvae. Therefore, Ag and Au NPs could be used to control insects (Sahayaraj et al. 
2016). The Ag and Zn NP application against Aphis nerii at 700 mg mL−1 provides 
the highest insect mortality rate (Rouhani et al. 2012). The Ag NP application on 
cotton leafworm (Spodoptera littoralis) provides more than 50% mortality of leaf-
worms at 250 ppm and higher concentrations (El-Bendary and El-Helaly 2013). The 
nanoalumina dust, synthesized using a modified glycine-nitrate combustion pro-
cess, displayed fair mortality rate against Sitophilus oryzae and Rhyzopertha domi-
nica (pests of stored grain) (Buteler et al. 2015). The two SiO2 NPs, namely Aerosil® 
and Nanosav, provided high-mortality rate of Rhyzopertha dominica and Tribolium 
confusum (Ziaee and Ganji 2016).

6.2.5  �Nanofungicides

Phytopathogens attack plant tissues at different stages of growth. Some fungal 
pathogens like Fusarium spp., Botrytis cinerea, and Phythophora spp. infect aerial 
and few infect ground plant parts, causing a huge loss in crop yield. Conventional 
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methods for phytopathogen control involve chemical fungicide application, which 
is highly toxic and nonbiodegradable in nature, contaminates the environment, and 
affects human health. To counter the problems associated with chemical fertilizer 
application in the field, the development of nanomaterial-based eco-friendly fungi-
cide is underway for agriculture sustainability and greener environment (Abd-
Elsalam and Alghuthaymi 2015). For achieving the goal, several nanofungicides 
have been tested against many plant pests.

Inhibition of several fungal pathogens by Ag NPs indicates their antifungal prop-
erties (Kim et al. 2012). For example, silver-based NPs were found to be effective 
against 18 fungal species (Alternaria alternata, A. brassicicola, A. solani, Botrytis 
cinerea, Cladosporium cucumerinum, Corynespora cassiicola, Cylindrocarpon 
destructans, Didymella bryoniae, Fusarium oxysporum f. sp. Cucumerinum, F. oxy-
sporum f. sp. lycopersici, F. solani, Fusarium sp., Glomerella cingulata, 
Monosporascus cannonballus, Pythium aphanidermatum, P. spinosum, and 
Stemphylium lycopersici). The Ag NPs were also found effective against Bipolaris 
sorokiniana infection in wheat (Mishra et al. 2014). The antifungal activity of Ag 
NPs was also found against Candida spp. (Kim et al. 2009; Panacek et al. 2009), 
Bipolaris sorokiniana, Magnaporthe grisea (Jo et al. 2009), and powdery mildews 
(Lamsal et al. 2011). In addition, Ag and Cu NPs, used against A. alternata and 
Botrytis cinerea, showed maximum inhibition of the fungal hyphae growth at the 
concentration of 15 mg L−1 of Ag and Cu NPs (Ouda 2014).

High-molecular-weight chitosan NPs show antifungal activity against F. solani 
and Aspergillus niger (Ing et al. 2012). Cu–chitosan NP application at 0.12% con-
centration against A. solani and F. oxysporum in tomato caused 70.5% and 73.5% 
inhibition of fungal mycelia and spore germination by 61.5% and 83.0%, respec-
tively (Saharan et al. 2015). Cu NPs inhibit the activity of plant pathogenic fungi 
like Phoma destructive (DBT-66), Curvularia lunata (MTCC 2030), A. alternata 
(MTCC 6572), and F. oxysporum (MTCC 1755). Since Cu NP can be quickly and 
conveniently synthesized using C-TAB-IPA method, it holds potential to be used as 
a commercial fungicide (Kanhed et al. 2014).

The ZnO NP application against Botrytis cinerea and Penicillium expansum 
causes deformation in fungal hyphae and inhibition of B. cinerea growth. In addi-
tion, ZnO NPs inhibit the growth of conidiophores and conidia of P. expansum, 
leading to the death of fungal hyphae (He et al. 2011). The ZnO and magnesium 
oxide (MgO)-based NP application has been reported to reduce spore germination 
of Alternaria alternata, Fusarium oxysporum, Rhizopus stolonifer, and Mucor 
plumbeus (Wani and Shah 2012).

More recently, the NP combinations are under use for effective nanofungicide 
preparation. For example, the combination of 25% nano trifloxystrobin with 50% 
tebuconazole (75 WG) fungicide made through ball milling produced better anti-
fungal activity in comparison to conventional fungicide against Macrophomina 
phaseolina (Kumar et al. 2016). The combination of chitosan (CS) and silver (Ag) 
(also abbreviated as Ag@CS NPs) displayed significant antifungal activity against 
Pyricularia oryzae, responsible for rice blast (Pham et al. 2018). The ZnO NP com-
bination with ciprofloxacin and ceftazidime demonstrated antifungal property 
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against A. alternata, A. niger, B. cinerea, F. oxysporum, and P. expansum. The maxi-
mum antifungal activity was achieved when 0.25 mg mL−1 ZnO NPs was combined 
with 8 μg mL−1 ciprofloxacin and 32 μg mL−1 ceftazidime (Jamdagni et al. 2018).

6.2.6  �Seed Science: Enhancing Seed Germination

Seed yield is the most important factor in determining crop productivity. Usually, 
the laboratory-tested germination seeds are distributed to farmers for cropping. 
However, most of the times the provided seeds show viability rate below the claim. 
The NP-based methods are being developed to improve the seed germination of 
stored seeds (Manimaran 2015).

The NPs of C, Zn, Au, Ag, and Si have been claimed to improve seed germination 
of several plants. For example, the carbon nanotube application at 10–40 μg mL−1 
solvent increases tomato seed germination (Khodakovskaya et al. 2009). The ZnO NP 
application enhances the germination rate in many plants (Singh et al. 2013). The ZnO 
NP application at 15 mg L−1 enhances rice seed germination (Upadhyaya et al. 2017).

The Au and Ag are the nanoparticles of choice for many reasons. Au NP applica-
tion at 1000 μM increased the Gloriosa superba germination rate (Gopinath et al. 
2014). The Ag NP treatment increased seed germination percentage rate of Boswellia 
ovalifoliolata by 95% (Savithramma et al. 2012). The Ag NP treatment at 50 mg L−1 
on Pennisetum glaucum seeds shows the highest germination percentage (93.33%) 
(Parveen and Rao 2014).

The TiO2 NPs are preferred in plant sciences due to photocatalytic activity, sta-
bility, and lower costs. The 10 ppm nanosize TiO2 treatment decreases the mean 
germination time (34%) in spinach seeds by facilitating water absorption (Feizi 
et al. 2012). Anatase NP (TiO2) application at 40 mg mL−1 enhances the germination 
of parsley seeds (92.46%) (Dehkourdi and Mosavi 2013). TiO2 NPs applied at 
2000  mg  L−1 in canola plants have been reported to enhance seed germination 
(Mahmoodzadeh et al. 2013).

Nanosilicon dioxide (nSiO2) application at 8 g L−1 enhanced tomato seed germi-
nation percent (22.16%), germination meantime (3.98%), and seed germination 
index (22.15%) (Siddiqui and Al-Whaibi 2014). The SiO2 (10–20 nm) and Mo NP 
(>100 nm) application in rice seeds also shows better germination (Adhikari et al. 
2013). The 200 ppm silica NPs were reported to enhance cucumber seed germina-
tion (Alsaeedi et al. 2018).

In a recent study, several metallic NPs were reported to enhance the germination 
percentage of a medicinal plant Artemisia absinthium. In the study, the germination 
percentage of 98.6% was achieved with Ag NPs followed by Cu NPs (69.6%) and Au 
NPs (56.5%), respectively (Hussain et al. 2017). In another study, binary mixtures of 
six metal oxide NPs (TiO2, Fe2O3, CuO, NiO, Co3O4, and ZnO) were used for evaluat-
ing seed germination in brassica. The 2–6% seed germination enhancement was 
achieved at 1000 and 2000 mg L−1 concentration of Ti, Co, and Fe metal oxide NPs. 
The CuO NP was found to be most toxic for brassica seed germination (Ko et al. 2017).
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6.2.7  �Nanobiosensors for Plant Pathogen Detection

Traditional microscopy-based and culture-dependent methods are available for 
detecting plant pathogens, which are time-consuming and often inaccurate (Fletcher 
et al. 2006). In addition, the immunological and molecular methods available for 
pathogen detection suffer from longer test time, weak signal strength, and bulky 
instrumentation (Kashyap et al. 2016). However, nanobiosensor application in plant 
pathology could provide a novel approach for detecting plant pathogens. The meth-
ods of pathogen detection are simple, rapid, and accurate (Sharon et al. 2010; Ismail 
et al. 2017). For example, fluorescent silica NPs, combined with antibody molecules 
were used to detect Xanthomonas axonopodis pv. vesicatoria that causes bacterial 
spot disease in Solanaceae family plants (Yao et  al. 2009). Copper NP-modified 
gold electrode was used to detect oilseed rape infected with fungal pathogen 
Sclerotinia sclerotiorum (Wang et al. 2010). The TiO2 or SnO NPs were used for 
detecting p-ethylguaiacol present in fruits and plants infected with fungi 
Phytophthora cactorum (Fang et al. 2014). Quantum dots fret-based biosensor was 
used to detect Candidatus phytoplasma aurantifolia that causes witche’s broom dis-
ease of lime (Rad et al. 2012).

Nanobiosensors are also effective in detecting plant viral disease. The immuno-
sensor shows high specificity and sensitivity for virus detection. For example, a 
chemiresistive sensor based on polypyrrole (PPy) nanoribbon was used to detect 
plant viruses (Chartuprayoon et al. 2013). Nanorod-based fiber-optic particle plas-
mon resonance immunosensor was utilized to detect orchid viruses (Cymbidium 
mosaic virus and Odontoglossum ringspot virus), which has several advantages 
such as faster analysis, good reproducibility, and lower detection limit than ELISA 
(Lin et al. 2014). A nanowire-based biosensor was developed for detecting plant 
diseases (Ariffin et al. 2014). Carbon nanotube-based Cu NPs are used to develop 
biosensor for detecting Begomovirus (CLCuKoV-Bur). The developed sensor 
detects viruses up to 0.01 ng μ L−1 DNA concentration (Tahira et al. 2018).

6.2.8  �Nanobiosensors for Pesticide Residue Detection

Nowadays  pesticides are in heavy  use for crop improvement. When pesticides 
degrade in environment, some toxic residues are released in the soil which may 
enter into the food chain through contaminated water and soil. Henceforth, accu-
rate pesticide detection methods are required to measure the soil and plant con-
tamination status. Conventional methods of pesticide residue detection include 
mass spectrometry, GC, HPLC, and UV-Vis spectrometry. However, these meth-
ods require skilled technicians and are time-consuming, therefore, not suitable for 
field analysis. As a result, newer methods are required for accurate pesticide resi-
due detection in crop fields. Several nanobiosensor-based methods are under 
development that are cheaper, fast and do not require sample pretreatment (Vimala 
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et  al. 2016). For example, an electrochemical magnetoimmunosensing method 
was developed for detecting atrazine residue in samples (Zacco et  al. 2006). 
Nanocomposite ZrO2/Au film electrode is used for detecting parathion (Wang and 
Li 2008). Amperometric biosensor based on assembling acetylcholinesterase on 
poly(dimethylsiloxane)-poly(diallydimethylammonium)/gold NP composite film 
is used for detecting organophosphates (Zhao et al. 2009). The MnO2 nanosheet-
carbon dots are used for detecting organophosphorus pesticides (Yan et al. 2018). 
An optical biosensor was developed for detecting organophosphate pesticide 
using CdTe as fluorescent probe (Sun et al. 2011). Core-shell nanosensors based 
on localized surface plasmon resonance (LSPR) were developed for detecting 
atrazine (Yang et al. 2014). Recently, a fluorescence sensor was synthesized by 
combining copper (II) oxide and multiwall carbon nanotubes for detecting glypho-
sate. The detection was based on catalytic inhibition activity of the copper (II) 
oxide and multiwall carbon nanotubes (Chang et al. 2016). Sahoo et al. (2018) 
used zinc oxide quantum dots for detecting aldrin, tetradifon, glyphosate, and 
atrazine in water.

6.2.9  �Production of Genetically Modified Crops

Nanobiotechnology also finds application in gene modification. For example, meso-
porous silica nanoparticle (MSN) was used to transport DNA and chemicals into 
plant cells and leaves (Torney et  al. 2007). The  MSNs were used as carriers to 
deliver Cre recombinase protein into Zea mays cells for genome editing 
(Martin-Ortigosa et  al. 2014). A fluorescent-conjugated polymer NP (CPN) was 
used for delivering siRNAs to knockdown a target gene in the cellulose biosynthesis 
pathway (NtCesA-1a and NtCesA1b) in plant protoplasts (Silva et  al. 2010). 
Calcium phosphate NPs were used to deliver pBI121 harboring GFP driven by 35S 
promoter-encoding plasmid DNA into tobacco (Ardekani et al. 2014).

6.3  �Application of Nanobiotechnology in Food Industry

The application of nanobiotechnology in the food sector is a newer concept 
with  immense potential. Nanobiotechnology use in food has  improved its  taste, 
color, and flavor. Its application has also enhanced absorption and bioavailability of 
nutrients as well as health supplements. New food packaging materials are being 
developed using nanobiotechnology with improved mechanical strength, oxygen 
barrier, and antimicrobial properties. Nanosensors are used for detecting microbial 
contamination and toxic substances in food. The major areas of nanobiotechnology 
application in food sectors include food processing, food packaging, nanoemul-
sions, nanoencapsulations, nanoadditives, and nutraceutical delivery (Singh et al. 
2017) (Fig. 6.3).
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6.3.1  �Food Processing

Food processing is done to maintain the nutritional quality of the food and enhance 
its shelf life. As a result, processed foods are less likely to get spoiled than fresh 
foods. In addition, such foods can be easily transported to long distances. Nowadays, 
commercially marketed food is processed using enzyme immobilization nanofiltra-
tion and other methods (Dasgupta et al. 2015) to improve the shelf life. Some of the 
common nanobiotechnology methods used in food processing are described further.

6.3.1.1  �Enzyme Immobilization

Some food processing methods employ enzymes to modify food components 
for  improving flavor, texture, and nutritional quality. The latest methods employ 
enzymes that are immobilized using NPs for thorough dispersal around food matri-
ces to increase enzyme activity (Thangavel 2014). For example, SiO2 NPs are used 
for triacylglycerol lipase immobilization in olive oil. The SiO2 NPs, with reactive 
aldehyde groups, covalently bind to a porcine triacylglycerol lipase and help in 
hydrolyzing olive oil. The enzyme immobilization also helps in improving stability, 
adaptability, and reusability of food products (Bai et al. 2006). Similarly, magnetite 
NPs are used to immobilize lipase (Lee et al. 2009). In addition, polyacrylonitrile 
(PAN) nanofibrous membranes were used for immobilizing Candida rugosa lipase 
for the hydrolysis of soybean oil (Li and Wu 2009).

6.3.1.2  �Nanofrying

The US-based Oilfresh Corporation is marketing a new nanoceramic product with 
several proclaimed benefits. The benefit includes reduced use of oil in restaurants 
and in fast food due to the larger surface area of the product (Momin et al. 2013).
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Fig. 6.3  Application of nanobiotechnology in food industry. (Adapted from Ravichandran 2010)
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6.3.1.3  �Nanofiltration

Nanofiltration is a cost-effective separation method for product separation that 
stands somewhere between reverse osmosis and ultrafiltration. It separates sub-
stances less than 10 Å and removes divalent and multivalent ions. Nanofiltration is 
commercially used for desalination of seawater, concentration of juices (Warczok 
et al. 2004), demineralization, and removal of color from water. The technology is 
also applicable in wastewater treatment, water purification, and cheese making 
(Hussain and Al-Rawajfeh 2009). For example,  the commercial cottage cheese 
whey making suffers from acidity, dilution, and saltiness. Nanofiltration of cottage 
cheese whey effectively concentrates solids by removing sodium, potassium salts, 
and some acids (Nguyen et al. 2003). Another commercial example of nanofiltration 
is of lactic acid separation, which is an important product of the food industry that 
requires costly purification system. Lactic acid enrichment with inorganic nanofil-
tration and molecular sieving membranes by pervaporation was achieved at much 
lower costs than vacuum evaporation and electrodialysis (Duke et al. 2008).

6.3.1.4  �Nanolamination

Food is spoiled by the accumulation of moisture, gases, and lipids, which can be 
protected through nanolamination. Nanolaminates are thin, harmless protective 
films synthesized from polysaccharides, proteins, and lipids. These are barrier 
against carbon dioxide and oxygen that preserves food, improves food texture, fla-
vor, and color. In addition nanolaminations enhance the level of nutrients and anti-
oxidants in the food (Ali et al. 2014). For example, lipid-based nanolaminates are 
good barriers against moisture, while polysaccharide- and protein-based films pro-
tect from oxygen- and carbon dioxide-based damage (Ravichandran 2010).

6.3.2  �Food Packaging

The packaging increases the shelf life of food by reducing microbial spoilage, 
decreasing gas and moisture exchange. Many commercial NP-based food packag-
ing products are available and discussed further.

6.3.2.1  �Active Packaging

The NP-based active packaging provides antimicrobial, antioxidation, and moisture 
scavenging properties to the food items (Yildirim et al. 2017). The main action of 
active packaging NPs lies in the inhibition of the microbial growth that leads to the 
spoiling of food (Chellaram et al. 2014).
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The chitosan films are used in food preservation due to antimicrobial and non-
toxic properties (Tripathi et al. 2008). Nanoclay is used in the packaging of food, 
beer bottles, carbonated drinks, and thermoformed containers. The packaged nano-
clay acts as a gas barrier that keeps oxygen-sensitive foods fresh for longer time 
spans. The polyethylene terephthalate (PET) beer bottles use nanoclays produced 
by Nanocor® which enhance beer storage time from 11 weeks to about 30 weeks 
(Silvestre et al. 2011). The Ag NPs combined with hydroxypropyl methylcellulose 
(HPMC) matrix provide antimicrobial property, which is internally coated on food 
packaging material (Moura et al. 2012). In addition, the ZnO NPs are also used in 
food packaging as they are safe and hold antimicrobial activity (Espitia et al. 2012). 
Also, allyl isothiocyanate (AIT) and carbon nanotubes (CNT) are utilized as antimi-
crobial film for the packaging of shredded and cooked chicken meat. The diffusion 
of the AIT from the film in the packaged chicken decreases the microbial contami-
nation, which allows controlled oxidation and reduces color change (Dias et  al. 
2013). In another study, the antimicrobial activity of ZnO NP/CS film provided 
about 1.5- to two-fold increase in the antimicrobial activity against B. subtilis and 
E. coli (Priyadarshi and Negi 2016). Durethan is a transparent plastic film, which 
contains clay NPs that block oxygen, carbon dioxide, and moisture to keep the food 
fresh. The use of nanoclay in durethan preparation makes the plastic lighter, stron-
ger, and heat resistant (Davari et al. 2017). The Ag NPs synthesized by crosslinking 
with trisodium citrate enhanced shelf life of the grapefruit. The Ag NPs filled with 
hydroxypropyl methylcellulose (HPMC) and xanthan films show good antibacterial 
activity with decreased decay index (Kothari and Setia 2017). A variety of 
NP-reinforced polymers termed as nanocomposites are used in the food packaging 
industry (Momin et  al. 2013). For example, the composite of Ag and ZnO NPs 
enhances the shelf life of fresh juice (Emamifar et al. 2010).

Fruits and vegetables degrade faster after harvest due to ethylene production. 
Therefore, ethylene adsorbent powders are added in packaging to maintain the 
freshness of food and food products. Alkali-treated halloysite nanotubes have the 
highest ethylene adsorption capacity because the treatment increases the nanotube 
pore size (Gaikwad et al. 2018). Polyethylene nanocomposite films containing com-
binations of organoclay (OC) NP are also used in antimicrobial packaging of food 
that are effective against Escherichia coli (Fasihnia et al. 2017). Sarwar et al. (2017) 
found the antimicrobial activity of PVA/nanocellulose/Ag nanocomposite films 
against Staphylococcus aureus (MRSA) and E. coli (DH5-α). The developed film 
was nontoxic and possessed high thermal stability and high mechanical strength.

6.3.2.2  �Biodegradable Packaging

The use of nondegradable plastics change the soil nature and causes the accumula-
tion of toxic gases in the atmosphere, which is responsible for environmental pollu-
tion and global warming. To counter the problem associated with nondegradable 
plastics, the production of biodegradable plastics has been initiated. However, the 
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biodegradable plastic production at a commercial level is a costly affair, and also 
they are permeable to water and gas permeable and lack mechanical strength.

The newer methods employ natural or synthetic NPs to rectify the defects of 
biodegradable plastics because NP-based bioplastics have advantages like bio-
degradability and higher mechanical strength (Chellaram et  al. 2014). For 
example, biodegradable starch/clay nanocomposite films hold higher mechani-
cal strength and are used in food packaging (Avella et al. 2005). In addition, 
the incorporation of NPs in bioplastics  impart antimicrobial nature  to them. 
For example, laser-generated Cu NPs embedded in a biodegradable polymer 
matrix (polylactic acid) equip them with antibacterial nature, for better food 
storage capability (Longano et al. 2012). A biodegradable material, poly(lactic 
acid) used in food packaging, provides higher mechanical strength and antimi-
crobial activity (Gonzalez and Igarzabal 2013). Also, specialized bioplastics 
are available for thermal-sensitive foods. For example, pectin-TiO2 nanocom-
posite aerogels are available for packaging thermosensitive food that  lowers 
the thermal conductivity to food. The presence of TiO2 enhances thermal sta-
bility and provides antimicrobial activity under UV light and dark conditions 
(Nesi et al. 2018).

6.3.2.3  �Smart Packaging

In smart packaging, the nanosensors are used for detecting microbial and biochemi-
cal changes and release of antimicrobials, antioxidants, and enzymes in food. The 
smart food spoilage detection is based on the concept that unpleasant odors are 
generated from food and drinks when contaminated with bacteria. A chemical sen-
sor system called electronic nose senses the odor released from spoiled food 
(Casalinuovo et al. 2006). In a more specified example, Concina et al. (2009) used 
an electronic nose to detect the volatile compounds released from spoiled tomato. 
Electronic tongues, based on amperometric sensors, are also in use for food analysis 
(Scampicchio et al. 2008). In addition, surface-enhanced Raman scattering (SERS) 
sensors made up of a graphene and Ag nanocomposite was developed to detect the 
prohibited color additives in food (Xie et al. 2012).

6.3.3  �Nanocoating

Wax coating is widely used for improving the shelf life of apples and cheeses. 
Coating delays senescence and protects the fruit from decay (Ghosh et al. 2017). 
The recent development of nanoscale edible coatings was made possible through 
nanotechnology. Edible coatings and films are used on various foods including 
fruits, vegetables, meats, cheese, and bakery products (Momin et  al. 2013). 
Nanocomposite edible coating is used for increasing the shelf life of olive (Ghosh 
et al. 2017).
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6.3.4  �Nanoadditives

Nanoadditives such as vitamins, antimicrobials, antioxidants, and preservatives are 
used to enhance taste, absorption, and bioavailability of nutrients (Momin et  al. 
2013). For example, food additive nanoscale silica powder increases the shelf life 
and bioavailability of specific nutrients (Canham 2007). The NPs containing cal-
cium show effective absorption properties (Jeon and Lee 2009). The TiO2 or E-171, 
a colored additive, produces a nontransparent white film that shows shielding 
against UV light (Latva-Nirva et al. 2009). The nanocrystalline powder of lycopene 
and resveratrol increases the absorption and bioavailability of nutrients in the body 
(Hsieh 2010). Nanoadditive, acyl ascorbates, synthesized through lipase condensa-
tion of ascorbic acid with fatty acids is used as antioxidant as it inhibits the oxida-
tion of polyunsaturated fatty acid (Sharma and Pathak 2010). Aquasol preservative 
manufactured by AquaNova contains nanoscale micelle that increases absorption of 
nutritional additives and enhanced the preservation of food. Bioral™ omega-3 fatty 
acid nanocochleates, manufactured by BioDelivery Sciences International, is added 
to cakes, muffins, pasta, soups, cookies, cereals, chips, and confectionery. Synthetic 
lycopene, manufactured by BASF AG and DSM Nutritional Products Ltd., is an 
antioxidant and used in soft drinks, juices, breakfast cereals, instant soups, salad 
dressings, and yogurt (Kirdar 2015). Nisin-loaded chitosan-monomethyl fumaric 
acid (CM-N) NPs used as food additive show antibacterial activity against food-
borne pathogens in orange juice (Khan et al. 2017).

6.3.5  �Nanoencapsulation

Nanoencapsulation is the process to encapsulate substances at the nanoscale 
range (Lopez et al. 2006). The benefit of nanoencapsulation includes increased 
bioavailability of nutrients, preservation of the ingredients and additives during 
processing, removal of unpleasant tastes and flavors, and controlled release of 
additives (Chaudhry et al. 2010). Lipid-based nanoencapsulation systems such as 
nanoliposomes, archaeosomes, and nanocochleates can protect antioxidants 
from degradation and increase their solubility and bioavailability (Mozafari et al. 
2006). Functional bread has been enriched with nanoencapsulated omega-3 fatty 
acids. Encapsulation decreased lipid oxidation during baking and reduces the 
formation of acrylamide and hydroxymethylfurfural (HMF) in bread (Gokmen 
et al. 2011). Donsi et al. (2011) used the high-pressure homogenization (HPH) 
method to prepare sunflower oil or oil-in-water nanoemulsions. A terpene and 
D-limonene mixture was encapsulated into sunflower oil or essential oil-in-water 
nanoemulsions. Encapsulation of terpenes and D-limonene inhibits the growth of 
microbes. Isolated lactoferrin from camel milk is encapsulated using calcium 
alginate. Calcium alginate nanocapsules help to control lactoferrin digestion 
(Raei et al. 2015).
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Curcumin is a medically important compound produced by Curcuma longa 
plants. However, they are lipophilic in nature and unstable in gastrointestinal fluids. 
It has been shown that encapsulation of curcumin in nanoform enhances their anti-
oxidant properties with increased absorption rate during digestion (Rao and Khanum 
2016). In addition, nanoencapsulation could be used to encapsulate fish oils 
that deteriorate rapidly otherwise. As a result, nanoliposome system was developed 
to encapsulate fish oil (Ghorbanzade et al. 2017).

6.3.6  �Nanoemulsions

The emulsion is a mixture of two immiscible liquid phases in which one phase dis-
perses as droplets. Nanoemulsions consist of nanosize oil droplets of 10–100 nm. 
Nanoemulsions can be produced using high- and low-energy methods. A high-energy 
method uses mechanical devices (high-pressure valve homogenizers, microfluidizers, 
and sonication) to generate intense disruptive forces that breakdown the oil and water 
phases to form oil droplets. A low-energy method is based on the spontaneous forma-
tion of oil droplets within mixed oil-in-water emulsifier systems (Silva et al. 2012).

6.3.7  �Nutraceutical Delivery

The major problem of the nutraceutical industry lies with the active components 
that poorly dissolve in oil or water, thus finding it difficult to reach target sites, 
thereby resulting in low bioavailability of nutrients (Putheti 2015). 
Nanobiotechnology employs a new strategy for the efficient delivery of nutraceuti-
cals through nanoencapsulation. For example, nanoencapsulation of nutraceuticals 
is most commonly done using hydrophobins (Hyd), a small cysteine-rich amphipa-
thic protein. The Hyd proteins bind to hydrophobic materials like vitamin D3 (VD3) 
with high affinity and protect the vitamin against degradation. The Hyd protein also 
acts as nanovehicle of hydrophobic nutraceuticals (Israeli-Lev et al. 2014). Dual 
nutraceutical nanohybrids consisting of folic acid and calcium were synthesized 
based on layered double hydroxide structure through exfoliation reassembly hybrid-
ization method. The report shows that the use of nutraceutical nanohybrids increases 
contents of essential nutrients in the human body (Kim and Oh 2016).

6.3.8  �Nanobiosensor for Detection of Food Pathogen 
and Other Contaminants

Traditionally, the food pathogens are detected through microbial culture observa-
tion, PCR amplification, and immunology-based method (ELISA). Recently, many 
NP-based biosensor systems have been developed that are fast, inexpensive and 
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require a little experience. Magnetic NPs coated with antibody (anti-AFM1) are 
used to separate the bound and unbound fractions of the component. Nanosensors 
successfully detect a minute change in the food color and gases released due to 
spoilage (Pradhan et al. 2015).

Biosensor-based methods involve detection of foodborne pathogen antibod-
ies bound to NPs (Popov et al. 2010). An electronic tongue or nose consisting 
of an array of nanosensors was developed to detect the food spoilage through 
signals of gases released by food items (Garcia et  al. 2006). Several cited 
examples have used nanosensors for pathogen detection. For example, nano-
biosensors were used to detect food pathogens such as Staphylococcus spp., 
Bacillus spp., Clostridium spp., Shigella, and E. coli (Otles and Yalcin 2010). 
A gold  NP-based biosensor with graphite-epoxy composite electrodes was 
used for the identification of Salmonella IS200 (Oliveira Marques et al. 2009). 
Streptavidin-coated magnetic NPs were used for detecting foodborne patho-
gens like Escherichia coli O157: H7, Salmonella enterica, Vibrio cholera, and 
Campylobacter jejuni (Song et al. 2013). Shelby et al. (2017) used magneto-
fluorescent nanosensor for detecting foodborne pathogen E. coli O157: H7. 
Piezoelectric biosensor based on an Au NP was used for detecting Escherichia 
coli O157: H7 in apple juice, milk, and ground beef. An Au/Si hetero-nanorod 
biosensor was used to detect Salmonella sp. based on the fluorescence (Fu 
et al. 2008). Electrically active polyaniline-coated magnetic (EAPM) NP-based 
biosensor was used to detect endospores of Bacillus anthracis in food samples 
(Pal and Alocilja 2009).

Nanosensors find huge application in toxin detection from various products. For 
example, an electrochemical immunosensor was used for detecting aflatoxin M1 
(AFM1) in milk. The sensor was based on a competitive immunoassay in which the 
enzyme horseradish peroxidase (HRP) was used as a tag (Paniel et al. 2010). Optical 
biosensor based on competitive dispersion of gold nanorods (GNRs) detect afla-
toxin B1 (AFB1) in food products (Xu et al. 2013). The Au NP-based aptasensor 
was used for detecting AFB1 in food samples (Hosseini et al. 2015). The use of Au 
NP in biosensor amplifies the signal frequency change due to the relatively large 
mass of the NPs (Chen et al. 2008). An optical carbon nanotube (CNT) immunosen-
sor detects Staphylococcal enterotoxin B (SEB) in food. The deployment of CNT 
has lowered the detection limit of SEB and increased the immunosensor sensitivity 
at least sixfold (Yang et al. 2008).

Recently, the aptamer-based biosensors are under the course of development. 
Aptamers are single-stranded nucleic acids (DNA and RNA) or peptides that bind 
to the targeted molecules with high affinity and specificity (Song et al. 2012). In a 
classical example, luminescent assay, based on aptamer sensors, was used for 
detecting toxins in food (McKeague et al. 2011). In addition, aptamer-based nano-
sensors successfully detect acetamiprid pesticides in food (Verdian 2017). Besides 
aptamer biosensors, NP-based fluorescence resonance energy transfer methods are 
also used for detecting organophosphorus pesticides in food samples (Long 
et al. 2015).
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6.4  �Nanoparticles: Risks and Regulations

Besides various advantages of nanobiotechnology in the food industry, some safety 
issues are associated with the use of NPs. Several vivid nanotechnological applica-
tion can impart accidental effects on plants and animals, thus need a thorough evalu-
ation. NPs may accumulate within body organs and tissues due to smaller dimensions 
(Savolainen et al. 2010). Animals may inhale NPs into the lungs, resulting in severe 
disorders. The NPs may deposit on leaves and floral plant parts to create a toxic 
layer that prevents pollen tube penetration on stigma. They may also affect the 
translocation of water and minerals (Tarafdar 2015). Exposure of human endothelial 
cells with NPs could lead to cytotoxicity, genotoxicity, and dysfunction of nitric 
oxide signaling (Cao 2018). The NPs can enter the human body through the lungs, 
intestinal tract, and skin. Skin contact with toxic NPs and their inhalation are major 
risks in agriculture practices (Hoet et al. 2004). Inhaled NPs may reach the brain to 
cause neurodegeneration (Win-Shwe and Fujimaki 2011). Some studies reported 
the neurotoxic nature of NPs (Wu et al. 2013; Chin-Chan et al. 2015; Coccini et al. 
2015; Migliore et al. 2015).

As a result, special regulations are required for NP preparation and application in 
agriculture and food industries (Amenta et al. 2015). In 2011, the guidance draft on 
risk assessment for nanotechnology use in food, feed applications, and pesticides 
was issued by the European Food Safety Authority (EFSA Scientific Committee). 
Environmental Protection Agency (EPA), USA, issued a proposal to use Sect. 6(a)
(2) of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) to obtain 
information on the use of nanomaterials in pesticide products and its potential effect 
on humans or the environment (EFSA Scientific Committee 2011). As a 
result, National Institute for Occupational Safety and Health (NIOSH), USA, issued 
warning against occupational exposure to carbon nanotubes and nanofibers during 
research and development (Howard 2013).

6.5  �Conclusion

Nanobiotechnology involves the use of nanotechnology to modify living organisms 
and to  enable the combination of biological and nonbiological materials. 
Nanobiotechnology has multiple applications in agriculture, food, and other sectors. 
The NP-based herbicides, pesticides, fertilizers, fungicides, and insecticides are 
needed for improving the crop productivity in an eco-friendly way. In seed science, 
nanotechnology is used to enhance seed germination. The role of nanobiosensors 
has also been proved useful in pathogen diagnosis, pesticide residue detection, and 
food contaminant determination. The nanobiotechnology application in food 
includes food processing (improving texture, color and shelf life), packaging (anti-
microbial, oxygen and aroma scavenger), application of nanoadditives, nanoencap-
sulation, and controlled nutraceuticals delivery at the time of digestion. The 
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NPs have been effectively used in developing food storage packaging materials that 
can decrease pathogenic growth of stored food. Nanobiosensors are also used to 
detect the contamination of foodborne pathogens, toxic substance, and pesticide in 
food. However, extensive studies are required to understand the NP-associated tox-
icity and involved mechanism to avoid application-based harmful effects on the 
environment and human health.
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