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Abstract. This paper proposes two one-round authenticated group key
exchange protocols from newly employed cryptographic invariant maps
(CIMs): one is secure in the quantum random oracle model and the other
resists against maximum exposure where a non-trivial combination of
secret keys is revealed. The security of the former (resp. latter) is proved
under the n-way decisional (resp. n-way gap) Diffie–Hellman assumption
on the CIMs in the quantum random (resp. random) oracle model.

We instantiate the proposed protocols on the hard homogeneous spaces
with limitation where the number of the user group is two. In particular,
the protocols instantiated by using the CSIDH, commutative supersin-
gular isogeny Diffie–Hellman, key exchange are currently more realistic
than the general n-party CIM-based ones due to its realizability. Our
two-party one-round protocols are secure against quantum adversaries.

Keywords: One-round authenticated group key exchange ·
Cryptographic invariant maps · Hard homogeneous spaces ·
Commutative supersingular isogeny Diffie–Hellman · G-CK model ·
G-CK+ model · Quantum adversary

1 Introduction

1.1 Background

Recently, National Institute of Standards and Technology (NIST) has initi-
ated a process to standardize quantum-resistant public-key cryptographic algo-
rithms [17], so, to study quantum-resistant cryptosystems is a hot research area.
A wide range of quantum-resistant primitives (i.e., mathematical foundations)
have been scrutinized by experts on cryptography and mathematics over the
world. They include lattice-based, code-based, and multivariate cryptography.
We treat with one (relatively) newly entered quantum-resistant primitive, which
is called isogeny-based cryptography.

Key establishing over insecure channels is one of important cryptographic
techniques. Recent researches on this have led to authenticated key exchange
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(AKE) and its multiparty extension, that is, authenticated group key exchange
(AGKE). We then propose quantum-resistant AKE and AGKE schemes from
isogenies on elliptic curves. In fact, we establish them on some abstract notions
obtained from isogenies called cryptographic invariant maps (CIMs) and hard
homogeneous spaces (HHSs).

HHS, CIM and CSIDH Key Exchange. In an unpublished but seminal
paper [3], Couveignes initiated the research of isogeny-based cryptography where
he formulated the basic notion of HHSs which is an abstract form of isogeny
graphs and class groups of endomorphism rings of (ordinary) elliptic curves.

Independently, Rostovtsev and Stolbunov [18] proposed a Diffie–Hellman
type key exchange from ordinary elliptic curve isogenies, which is now called
RS key exchange and intensively studied very recently in [4]. While the RS key
exchange uses ordinary curves, De Feo et al. employed supersingular isogenies
for a practical key exchange protocol called supersingular isogeny Diffie–Hellman
(SIDH) key exchange since ordinary isogeny problems suffer from subexponential
quantum attacks. Jao et al. submitted an isogeny-based encryption scheme called
SIKE (supersingular isogeny key encapsulation) to the NIST post-quantum cryp-
tography competition, and the scheme is an enhanced form of the SIDH key
exchange.

Castryck et al. [2] put forward a new HHS-based cryptographic construction
called CSIDH (commutative SIDH) key exchange, which is constructed from a
group action on the set of supersingular elliptic curves defined over a prime field.
This ingenious key exchange opened a new research avenue in isogeny cryptog-
raphy. As another new proposal, Boneh et al. [1] initiated to study a candidate
multiparty non-interactive key exchange on CIMs, whose underlying structure is
given by a HHS, (X,G), where X is a finite set and G is a finite abelian group,
and the invariant map is defined on the n-th product Xn equipped with nice
homomorphic (or equivariant) properties. As in the traditional Diffie–Hellman
and pairing primitives, we can consider n-way computational, decisional, and
gap Diffie–Hellman problems and assumptions on CIMs.

The notions of HHS and CIM give very concise conceptualizations of the
above wonderful recent developments. We propose a generic conversion method
from these key exchanges to authenticated ones.

We omit definitions, proofs and discussions because of page limitation. See [6]
in details.

1.2 Our Contributions

One-Round AGKE from CIM. We propose two one-round AGKE protocols
on the CIMs. One is called n-UM (n-Unified Model) which satisfies the G-CK
security. The security of n-UM is proved under the n-way DDH assumption in
the quantum random oracle model. The other is called BC n-DH (biclique n-
Diffie–Hellman) which satisfies the G-CK+ security. The security of BC n-DH
is proved under the n-way GDH assumption in the random oracle model. The
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Table 1. Comparison of one-round AGKE protocols.

#parties Assumption Model Post-quantum Proof

[10] n KEM, PRF weak G-CKa Based on ingredients StdM

[16] 3 gap-BDH G-eCK No ROM

[19] 3 DBDH G-CK+ No StdM

[14] n MLMs G-eCK No StdM

[12] n iO G-CK No StdM

n-UM n n-DDH G-CK Yes QROM

BC n-DH n n-GDH G-CK+ Yes ROM
aThe model does not capture weak perfect forward secrecy (wPFS).

BC n-DH protocol requires that the number of the user group is bounded by
logarithm of the security parameter. Comparison with existing one-round AGKE
protocols is shown in Table 1.

Instantiating One-Round Two-Party AKE from HHS. We instantiate
the proposed protocols on the HHS with limitation where the number of the
user group is two. In particular, the CSIDH-based protocols are currently more
realistic than the general n-party CIM-based ones due to its realizability. Our
two-party one-round protocols are secure against quantum adversaries.

Compared to the previous SIDH-based one-round (two-party) AKE proto-
cols [5,7], the proposed protocols have several merits. While Galbraith et al. [8]
proposed an active attack on the SIDH protocol by using the auxiliary points
exchanged between users, the attack cannot be applied to our CSIDH-based
ones since they include no auxiliary points. In [9], one attack scenario for the

Table 2. Comparison of isogeny-based AKE protocols.

Assumption Model #rounds Proof

SIDH TS2 [7] SI-CDH CK 1a ROM

AKE-SIDH-SIKE [15] SI-DDH CK+ 2 ROM

LJA [13] SI-DDH qCK 2 QROM

AKESIDH-2 [20] SI-DDH CK+ 2 ROM

SIDH UM [5] SI-DDH CK 1 QROM

biclique SIDH [5] di-SI-GDH CK+ 1 ROM

HKSU [11] IND-CPA PKE modified CK 2 QROM

HHS-UM 2-DDH CK 1 QROM

HHS-BC 2-GDH CK+ 1 ROM
aGalbraith claims that the protocol is one-round however the description shows
that it is two-round as the responder generates the response after receiving the
first message [7].
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gap Diffie–Hellman (GDH) problem on the SIDH protocol is given since the
degrees of isogenies used are fixed by public parameters as �ei

i for small primes
�i, e.g., �1 = 2, �2 = 3. As the CSIDH protocol uses random multiples consisting
of several primes �i (i = 1, . . . , n) for the degrees and they are not fixed by
public parameters, the attack cannot be applied to the CSIDH setting. Thus,
the GDH assumption on CSIDH has no effective attacks at present, and we have
a strong confidence on the security of our CSIDH-based BC protocol, which is
reduced from the CSIDH GDH assumption. Comparison with existing isogeny-
based AKE protocols is shown in Table 2.

2 n-UM: G-CK Secure n-Party Authenticated Group
Key Exchange

2.1 Protocol

Public Parameters. We set Π = nUM. Let λ be a security parameter.
Let MapGen be a generation algorithm of a cryptographic invariant map, and
(X,S,G, e) ←R MapGen(1λ) and x ←R X are chosen. Let H : {0, 1}∗ →
{0, 1}λ be a hash function modeled as a quantum random oracle. Public param-
eters are (Π,X, S,G, e, x,H).

Static Secret and Public Keys. Party Ui chooses ti ∈ G as the SSK. Then,
Ui computes Ti = ti ∗ x as the SPK.

Key Exchange. W.l.o.g, we suppose a session executed by U = (U1, . . . , Un) ⊆
U .

1. Ui chooses ri ←R G as the ESK, and computes Ri = ri ∗ x as the EPK.
Then, Ui broadcasts (Π, rolei′ , Ui, Ri) to U \ Ui.

2. On receiving (Π, rolej′ , Uj , Rj) for all j �= i, Ui computes Z1 = en−1(T1, . . . ,
Ti−1, ti∗Ti+1, . . . , Tn) and Z2 = en−1(R1, . . . , Ri−1, ri∗Ri+1, . . . , Rn).1 Then,
Ui generates the session key SK = H(Π, U1, . . . , Un, R1, . . . , Rn, Z1, Z2),
and completes the session (Fig. 1).

T1 = t1 ∗ x · · · Ti = ti ∗ x · · · Tn = tn ∗ x

R1 = r1 ∗ x · · · Ri = ri ∗ x · · · Rn = rn ∗ x
R1−→ · · · Ri←− Ri−→ · · · Rn←−
Z1 = en−1(T1, . . . , Ti−1, ti ∗ Ti+1, Ti+2, . . . , Tn)
Z2 = en−1(R1, . . . , Ri−1, ri ∗ Ri+1, Ri+2, . . . , Rn)

SK = H(Π, U1, . . . , Un, R1, . . . , Rn, Z1, Z2)

Fig. 1. Outline of n-UM protocol.

1 Ti and Ri are indexed in the cyclic manner in modulo n. For example, when i = n,
then Z1 = en−1(tn ∗ T1, . . . , Tn) and Z2 = en−1(rn ∗ R1, . . . , Rn).
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2.2 Security

Theorem 2.1. Suppose that H is modeled as a quantum random oracle and
that the n-DDH assumption holds. Then the n-UM protocol is a post-quantum
G-CK-secure n-party authenticated group key exchange protocol in the quantum
random oracle model.

In particular, for any quantum adversary A against the n-UM protocol that
runs in time at most t, involves at most nu honest parties and activates at most
ns sessions, and makes at most nh queries to the quantum random oracle and
nq SessionReveal queries, there exists a n-DDH quantum solver S such that

Advn-DDH
S (λ) ≥ 2Advg-ck

nUM,A(λ)2

n2
un2

s(8nhnq + 3(nh + nq + 1)4)
,

where S runs in time t plus time to perform O(
(nu + ns)λ

)
group action opera-

tions.

3 Biclique n-DH : G-CK+ Secure n-Party Authenticated
Group Key Exchange

3.1 Protocol

Public Parameters. We set Π = BCnDH. Let λ be a security parameter.
Let MapGen be a generation algorithm of a cryptographic invariant map, and
(X, S, G, e) ←R MapGen(1λ) and x ←R X are chosen. Let H : {0, 1}∗ →
{0, 1}λ be a hash function modeled as a random oracle. Public parameters are
(Π,X, S,G, e, x,H).

Static Secret and Public Keys. Party Ui chooses ti ∈ G as the SSK. Then,
Ui computes Ti = ti ∗ x as the SPK.

Key Exchange. As in Sect. 2, we suppose a session executed by U = (U1, . . . ,
Un) ⊆ U .

1. Ui chooses ri ←R G as the ESK, and computes Ri = ri ∗x as the EPK. Then,
Ui broadcasts (Π, rolei′ , Ui, Ri) to U \ Ui.

2. On receiving (Π, rolej′ , Uj , R1, . . . , Rn), Ui computes Z∅ = en−1(T1, . . . , Ti−1,
ti ∗Ti+1, Ti+2, . . . , Tn), . . . , ZI = en−1(R1, . . . , Ri−1, ri ∗Ri+1, Ri+2, . . . , Rn)
as follows:2 for all P ∈ P(I),

– if i ∈ P , then vi = ri, and else if i �∈ P , then vi = ti,
– for all k ∈ I (k �= i), if k ∈ P , then Vk = Rk, and else if k �∈ P , then

Vk = Tk, and
– Ui computes ZP as ZP = en−1(V1, . . . , Vi−1, vi ∗ Vi+1, Vi+2, . . . , Vn).

Then, Ui generates the session key SK = H(Π, U1, . . . , Un, R1, . . . , Rn,
Z∅, . . . , ZI), and completes the session (Fig. 2).

2 Ti and Ri are indexed in the cyclic manner in modulo n.
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T1 = t1 ∗ x · · · Ti = ti ∗ x · · · Tn = tn ∗ x

R1 = r1 ∗ x · · · Ri = ri ∗ x · · · Rn = rn ∗ x
R1−→ · · · Ri←− Ri−→ · · · Rn←−
Z∅ = en−1(T1, . . . , Ti−1, ti ∗ Ti+1, Ti+2, . . . , Tn)

...
ZI = en−1(R1, . . . , Ri−1, ri ∗ Ri+1, Ri+2, . . . , Rn)
SK = H(Π, U1, . . . , Un, R1, . . . , Rn, Z∅, . . . , ZI)

Fig. 2. Outline of biclique n-DH protocol.

It is worth to note here that we need to assume that the number of the user
group is bounded by logarithm of the security parameter, λ.

Otherwise, we need exponential computations in λ as the number of the
shared values is 2n.

3.2 Security

Theorem 3.1. Suppose that H is modeled as a random oracle and that the
n-way GDH assumption holds for S. Then the biclique n-DH protocol is a post-
quantum G-CK+ secure n-party authenticated group key exchange protocol in the
random oracle model.

In particular, for any AGKE quantum adversary A against the biclique n-
DH protocol that runs in time at most t, involves at most nu honest parties and
activate at most ns sessions, and makes at most nh queries to the random oracle,
there exists a n-way GDH quantum solver S such that

Advn-GDH
S (λ) ≥ min

{ 1
nn

u

,
1

nn−1
u ns

, . . . ,
1

nunn−1
s

,
1
nn

s

}
· Advg-ck+

BCnDH,A(λ),

where S runs in time t plus time to perform O(
(nu + ns)λ

)
group action opera-

tions and make O(nh + ns) queries to the n-DDH oracle.

4 Two-Party Authenticated Key Exchanges from Hard
Homogeneous Spaces

4.1 G-CK Secure AKE Protocol (from HHS)

We give our HHS-based UM protocol. Public parameters are pp = (X,G). We
set Π = HHS-UM, that is, the protocol ID is “HHS-UM.” The secret-key space
for initiators and responders is given by the group G.

User U1 has static public key, T1 = t1 ∗ x, where t1 ←R G, and t1 is U1’s
static secret key. User U2 has static public key, T2 = t2 ∗x, where t2 ←R G, and
t2 is U2’s static secret key. Here, ephemeral secret keys for U1 and U2 are given
as r1 ←R G, and r2 ←R G, respectively. U1 sends a ephemeral public key R1
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T1 = t1 ∗ x T2 = t2 ∗ x

R1 = r1 ∗ x
R1−→ R2 = r2 ∗ x
R2←−

Z1 = t1 ∗ T2 Z1 = t2 ∗ T1

Z2 = r1 ∗ R2 Z2 = r2 ∗ R1

SK = H(Π, U1, U2, R1, R2, Z1, Z2)

Fig. 3. Outline of HHS UM protocol.

T1 = t1 ∗ x T2 = t2 ∗ x

R1 = r1 ∗ x
R1−→ R2 = r2 ∗ x
R2←−

Z1 = t1 ∗ T2 Z1 = t2 ∗ T1

Z2 = r1 ∗ T2 Z2 = t2 ∗ R1

Z3 = t1 ∗ R2 Z3 = r2 ∗ T1

Z4 = r1 ∗ R2 Z4 = r2 ∗ R1

SK = H(Π, U1, U2, R1, R2, Z1, Z2, Z3, Z4)

Fig. 4. Outline of HHS biclique protocol.

as R1 = r1 ∗ x to U2, U2 sends back a ephemeral public key R2 as R2 = r2 ∗ x
to U1.

U1 computes Z1 = t1 ∗ T2, and Z2 = r1 ∗ R2, and then, obtains the session
key SK as SK = H(Π, U1, U2, R1, R2, Z1, Z2), where H is a hash function.

U2 can computes the session key SK as SK = H(Π, U1, U2, R1, R2, Z1, Z2)
from Z1 = t2 ∗ T1, and Z2 = r2 ∗ R1 (Fig. 3).

It is clear that the session keys of both parties are equal.
The security of this scheme is given as a corollary of Theorem 2.1.

Corollary 4.1. Suppose that H is modeled as a quantum random oracle and
that the 2-DDH assumption holds on the HHS (X,G). Then the 2-UM protocol
is a post-quantum G-CK-secure 2-party authenticated key exchange protocol in
the quantum random oracle model.

4.2 G-CK+ Secure AKE Protocol (from HHS)

We give our HHS-based biclique protocol. Public parameters are pp = (X,G). We
set Π = HHS-BC, that is, the protocol ID is “HHS-BC.” Static and ephemeral
keys are the same as our HHS UM protocol. The secret-key space for initiators
and responders is given by the group G.

User U1 has static public key, T1 = t1 ∗ x, where t1 ←R G, and t1 is U1’s
static secret key. User U2, also, has static public key, B = t2∗x, where t2 ←R G,
and t2 is U2’s static secret key. Here, ephemeral secret keys for U1 and U2 are
given as r1 ←R G, and r2 ←R G, respectively. U1 sends an ephemeral public
key R1 as R1 = r1 ∗ x to U2, U2 sends back an ephemeral public key R2 as
R2 = r2 ∗ x to U1.

U1 computes the non-trivial combinations of the ephemeral and static public
keys as Z1 = t1 ∗ T2, Z2 = r1 ∗ T2, Z3 = t1 ∗ R2, and Z4 = r1 ∗ R2, and then,
obtains the session key SK as SK = H(Π, U1, U2, R1, R2, Z1, Z2, Z3, Z4), where
H is a hash function.

U2 can computes the session key SK as SK = H(Π, U1, U2, R1, R2, Z1, Z2, Z3,
Z4) from Z1 = t2 ∗ T1, Z2 = t2 ∗ R1, Z3 = r2 ∗ T1, and Z4 = r2 ∗ R1 (Fig. 4).

It is clear that the session keys of both parties are equal.
The security of this scheme is given as a corollary of Theorem 3.1.
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Corollary 4.2. Suppose that H is modeled as a random oracle and that the
2-way GDH assumption holds on the HHS (X,G). Then the biclique 2-DH pro-
tocol is a post-quantum G-CK+ secure authenticated key exchange protocol in
the random oracle model.
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