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Abstract. In secret sharing (SS), the secret is shared among a num-
ber of parties so that only a quorum of these parties can recover the
secret, but a smaller set of parties cannot learn any information about
the secret. However, the traditional SS technique is insufficient to pro-
tect the secret with a long lifetime, because the adversary may gradually
compromise enough parties to retrieve the secret over the long time. To
solve this issue, proactive secret sharing (PSS) divides the lifetime of the
secret into many short time periods and the parties jointly update their
secret shares in each time period. The benefit is that if the adversary
cannot break into enough parties in a single time period, her compro-
mised shares will become obsolete after the shares being updated.

In the last two decades, many PSS schemes have been proposed and
they are widely used in various security protocols. However, the majority
of existing PSS schemes require the adjacent assumption, i.e. if a party is
corrupted during an update phase, it is corrupted in both time periods
adjacent to that update phase. Note that this assumption not only hin-
ders the security model to capture the mobile adversary’s abilities, but
also prevents PSS schemes being used in many real-world applications.
In this paper, we revisit the research of PSS, and our work contributes
in the following aspects. Firstly, we discuss why some existing schemes
(including Herzberg’s PSS scheme) cannot maintain their security when
the adjacent assumption is removed. Secondly, we use the polynomial
truncation method to improve Herzberg’s PSS scheme. To the best of
our knowledge, our proposed scheme is the first provably secure PSS
scheme without the adjacent assumption.
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1 Introduction

The secret sharing (SS) technique, first introduced by Shamir [28] and Blak-
ley [5], is an important building block in cryptology to protect secrecy and avail-
ability of sensitive information. The secret is divided into a number of shares and
each share is held by an individual party. Therefore, if the adversary wants to
learn or destroy the secret, she has to break into multiple parties. For example,
in a (t, n)-threshold secret sharing, the secret is shared among n parties so that
any t parties work together can recover the secret, but less than t parties cannot
learn any information of the secret. And the adversary needs to compromise
at least n − t + 1 parties if her purpose is to destroy the secret. However, the
traditional SS technique is not suitable for some cases. For example, it might be
insufficient to protect the secret with a long lifetime, e.g. crypto master keys,
legal documents, medical records, etc. In these cases, the adversary may grad-
ually compromise enough parties to learn the secret or destroy it, because she
breaks into the parties in a monotonic fashion and she has a very long time to
mount the attack.

To mitigate the above issue, proactive secret sharing (PSS) has been intro-
duced in which the entire lifetime of the secret is divided into many short time
periods and the parties jointly update the shares at the beginning of each time
period with the original secret unchanged. The update includes a share recovery
protocol and a share refreshment protocol. In the share recovery protocol, any
lost or tampered share is recovered for the corresponding party without disclosing
it to the other parties. In the share refreshment phase, the parties interactively
compute new shares of the same secret and erase old shares. Because old shares
and new ones are independent, if the adversary cannot break into enough parties
before the update, any compromised share learned by the adversary will become
obsolete after the update. In the case of a (t, n)-threshold PSS, the adversary has
to compromise t parties in a single time period in order to learn the secret. This
is opposed to compromising t parties over the entire lifetime in traditional SS
schemes. For example, suppose some legal document needs to be protected for
10 years. If the shares are updated weekly, then the time slot for the adversary
to break into t parties has been dramatically reduced from 10 years to 1 week.

The motivation of PSS is to protect the secret against the mobile adver-
sary [23] who can compromise different parties at different time periods.
Throughout the entire lifetime of the secret, the mobile adversary may corrupt
all parties or break into some parties several times. But the requirement is that
she can only compromise less than a quarom of parties in each time period. If a
party is no longer corrupted by the mobile adversary, it will be “rebooted” into
the safe state immediately.

Informally, proactive security refers to secrecy and robustness in the presence
of the mobile adversary, where secrecy guarantees that the mobile adversary can-
not learn any information about the secret in the entire lifetime of the secret,
and robustness ensures that the secret can be correctly reconstructed in any
time period even in the presence of some corrupted parties. Moreover, a PSS
scheme is said to be optimal resilient if it is robust against any minority of cor-
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rupted parties. Note that this threshold is the maximum number of corrupted
parties allowed in SS schemes. In the literature, the threat model widely used in
analysing PSS schemes requires the adjacent assumption, i.e. if a party is cor-
rupted during an update phase, it is corrupted in both time periods adjacent to
that update phase. In this paper, we investigate the necessity and implications of
the adjacent assumption, and explore the design of provably secure PSS schemes
without this assumption.

1.1 Related Works

The concept of mobile adversary was first introduced by Ostrovsky and Yung
in [23]. The same paper also showed that if there exists pairwise secure commu-
nication channels and the parties can erase part of their memory, a lot of secure
multiparty computation protocols (e.g. [3,10,26]) can be extended to withstand
the mobile adversary. However, this idea only works theoretically, because the
computation is done by secure distributed circuit evaluations and the communi-
cation costs are proportional to the size of circuits. For some specific problems,
more efficient solutions are desired. Later, Canetti and Herzberg [9] introduced
an efficient method to construct a distributed pseudorandom generator that can
be maintained proactively. Canetti et al. [8] also demonstrated how to ensure
authenticated and secret communication among parties that is robust against
break-ins and key exposures.

Among the research of proactive security, PSS has attracted the most inter-
ests. Not only because it is a useful technique to protect secret with a long
lifetime, but also it is an important building block for various security proto-
cols, such as proactive threshold cryptosystems [19], proactive secure multiparty
computation [2,30], key management in the ad hoc networks [18,31], and so on.
In PSS, the secret is initially shared among the parties. The tricky part is how
to jointly update the shares among the parties. For this task, three approaches
have been introduced that achieve the optimal resilience property:

– Herzberg’s approach [20]: before the update, the secret s is shared among
the parties in a (t, n)-threshold fashion using a t − 1 degree polynomial f(x)
such that f(0) = s. To update the shares, the parties jointly generate a
random t − 1 degree polynomial δ(x) with δ(0) = 0. After the update, each
party holds a new share of the t − 1 degree polynomial f ′(x) = f(x) + δ(x).
Because f ′(0) = f(0) + δ(0) = s, the shares have been updated without
changing the original secret s.

– Frankel’s approach [12]: before the update, the secret is also shared among
the parties in a (t, n)-threshold fashion. To update the shares, the parties first
jointly transform the (t, n) polynomial sharing of the secret into an (n, n) addi-
tive sharing of the secret. To achieve optimal resilience, each share of the (n, n)
additive sharing is further shared among the parties in the (t, n)-threshold
fashion. Then, the parties jointly transform the (n, n) additive sharing of the
secret back to a (t, n) polynomial sharing of the secret. Note that in both
transformations, the secret is not revealed to any individual party, and after
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the update, the polynomial used to share the secret is independent from the
one before the update.

– Rabin’s approach [25]: before the update, the secret is additively shared
among the parties. To achieve optimal resilience, each of the old share is
further shared among the parties in the (t, n)-threshold fashion. To update
the shares, each party first shares her old share among the parties using
another (n, n) additive sharing. In this process, each party will receive a
share of the old share, called fragement, from every other party. Then, each
party sums the received fragements, obtaining the new share of the secret.
For optimal resilience, each party also needs to further share this new share
among the parties in the (t, n)-threshold fashion. Now, the new shares form
an independent (n, n) additive sharing of the original secret.

Based on the above PSS schemes, a lot of further investigations have been
carried out in proactive security in the last two decades. For example, Stinson and
Wei [29] have proposed an unconditionally secure PSS scheme using symmetric
bivariate functions, in which both the secrecy and robustness properties are
unconditionally protected. Canetti [7], followed by Frankel [14] and Almansa [1],
have introduced the methods to extend PSS to withstand adaptive adversaries
who can choose which parties to corrupt at any time during the run of the
protocol. Cachin [6] and Zhou [32] have introduced PSS that is secure in the
asynchronous communication model. Schultz et al. [27] have introduced a mobile
PSS scheme that allows on-the-fly reconfiguration of the threshold, so that the
scheme is able to accommodate more changes in the environment.

1.2 Our Contributions

In this paper, we revisit the research of provably secure and optimal resilient
PSS, and we contribute in the following aspects:

– Firstly, although the adjacent assumption is widely used in existing PSS
schemes, it not only hinders the security model to capture the mobile adver-
sary’s abilities, but also prevents PSS schemes from being used in many real-
world applications. However, if this assumption is removed, we show that some
existing schemes (including Herzberg’s PSS scheme) will become insecure.

– Secondly, we use the polynomial truncation method to improve Herzberg’s
PSS scheme, resulting a provably secure PSS scheme without the adjacent
assumption. To the best of our knowledge, it is the first PSS scheme satisfying
this feature.

1.3 Organisation of the Paper

The rest of the paper is organised as follows: Sect. 2 outlines some preliminar-
ies, including a new threat model without the adjacent assumption and some
cryptographic building blocks. In Sect. 3, we show that the secrecy property in
Herzberg’s PSS scheme might be violated by the mobile adversary in our threat
model. In Sect. 4, we use the polynomial truncation method to modify Herzberg’s
scheme, making it secure in our threat model. Finally, we conclude in Sect. 5.
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2 Preliminaries

2.1 Models and Definitions

The Players. The players in our environment are n parties P1, P2, . . . , Pn and
the mobile adversary A. We assume that all these players can be modelled as
probabilistic polynomial time (PPT) Turing machines [17]. Moreover, we assume
that the system is synchronised, the parties can access to some common global
clock, and each party has a local source of randomness. In this paper, we denote
n = 2t − 1, where t is the threshold.

Time Periods. The entire lifetime of the secret is divided into many short time
periods (e.g. a day, a week, etc.) which are determined by the common global
clock. At the beginning of the first time period, there is a share distribution phase
in which the secret is shared among the parties either by a trusted party or in a
distributed fashion [16]. For all the other time periods, there is an update phase
at the beginning of each time period. After the update, the lost or tampered
shares are recovered and the parties hold new shares of the secret while the old
shares are erased.

The Mobile Adversary. Following the description in [23], the mobile adversary
can be envisioned as follows: it has t − 1 pebbles, and at the beginning of each
time period, she places the pebbles on any t − 1 parties. If the pebble is placed
on a party, this party is corrupted by the mobile adversary. Corrupting a party
means learning this party’s private information, changing its intended behaviour,
disconnecting it, and so on. When the pebble is removed from a party, this party
will be “rebooted” to the safe state at the beginning of the next time period,
and her share will be jointly recovered by the parties. After each time period,
the mobile adversary can move pebbles from a set of parties to a different set
of parties. Therefore, the mobile adversary has more power than the ordinary
adversary in traditional SS schemes, because the mobile adversary may corrupt
all parties or break into some parties multiple times throughout the lifetime of
the secret. However, it is assumed that the mobile adversary corrupts less than
t parties in each time period.

The Communication Channel. We assume that all players are connected
to a common authenticated broadcast channel C, such that any message sent
through C can be heard by the other players. The mobile adversary cannot mod-
ify messages send by an uncorrupted party through C, nor she can prevent an
uncorrupted party from receiving messages from C. Moreover, we assume that
there are pairwise secure communication channels among the parties, and the
mobile adversary is unable to tamper or intercept the messages send through
these secure channels. With these assumptions, we can focus our discussions
on the proactive secret sharing schemes without considering the low level tech-
nical details. We note that both the authenticated broadcast channel and the
pairwise secure channels can be implemented using standard techniques such as
encryption and signature functions.
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In the majority of existing PSS schemes (e.g. [1,12–15,20,21,27]), there is an
assumption that if a party is corrupted during an update phase, it is corrupted
during both time periods adjacent to that update phase. In comparison, our
threat model does not require this assumption. We only assume that if a party
is corrupted during an update phase, it is corrupted in the same time period but
not in the preceeding time period. We show that this gives the adversary more
power and such an adversary better mimics the mobile adversary. To simplify
the description, considering the case that the entire lifetime of the secret has
been divided into two time periods (as shown in Fig. 1). In the existing works,
the adversary who corrupts t − 1 parties during the update phase will corrupt
the same parties throughtout the lifetime of the secret. In this case, the mobile
adversary does not have more power than the ordinary adversary in traditional
SS schemes. But in our threat model, the mobile adversary can corrupt some
parties in time period 1 and then move to corrupt some other parties in time
period 2. Therefore, the mobile adversary in our threat model has more power
and our model better captures the ability of the mobile adversary. Moreover,
the adjacent assumption will prevent the PSS schemes being used in many real-
world applications. For example, PSS schemes were suggested to be used in Ad
Hoc networks to safeguard the crypto keys in the distributed fashion [18,31].
But since the topology structure of the networks may change dynamically, and
nodes may join or leave any time, the existing PSS schemes with the adjacent
assumption are not suitable for these circumstances.

Fig. 1. A demonstration of the time periods

In order to provide rigorous security analysis for our proposed PSS scheme,
we use the following security definitions:

Definition 1 (Robustness:) A proactive secret sharing scheme is robust if in
the presence of the mobile adversary, the secret can be correctly recovered in any
time period throughout the entire lifetime of the secret.

Definition 2 (Secrecy:) A proactive secret sharing scheme is secret if after
polynomially many updates, the mobile adversary still cannot learn any infor-
mation of the secret.

Definition 3 (Optimal resilience:) A proactive secret sharing scheme is opti-
mal resilient if it is robust against the mobile adversary who has the ability to
corrupt any minority of the parties.
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2.2 Cryptographic Building Blocks

Shamir’s Secret Sharing [28]. Denote p as a large prime such that p >
n. In the rest of this paper, we assume that all computations are modulo p
unless otherwise stated. To share the secret s ∈ Zp, the dealer first generates a
polynomial f(x) = a0 +a1x+ · · ·+at−1x

t−1 over Zp with degree t− 1 such that
a0 = s. Then the dealer evaluates the polynomial f(x) at different public and
pre-defined values xi for i ∈ {1, 2, . . . , n}, and she sends the share si = f(xi)
to the party Pi through the secure channel. If any t parties work together, they
can recover the secret using polynomial interpolation as s =

∑t
i=1 si · Li, where

Li =
∏t

j=1,j �=i xj/(xj −xi) is the Lagrange coefficient. It is obvious that Shamir’s
SS is correct. To see why any t−1 colluding parties cannot learn any information
of the secret, the t−1 points (x1, s1), . . . , (xt−1, st−1) are known by these parties.
But for each possible value s′ ∈ Zp, the point (0, s′) can be used to interpolate a
unique polynomial, and the probability of these polynomials is equal. However,
Shamir’s SS is not robust: the cheating parties may release fake shares when
recovering the secret. To solve this issue, either of the following verifiable secret
sharing (VSS) techniques can be used.

Feldman’s VSS [11]. Let p be a large prime and g is a generator of a subgroup
of Z

∗
p in which the discrete logarithm cannot be solved in polynomial time. To

share the secret s ∈ Zp, the dealer first generates a t − 1 degree polynomial
f(x) = a0 + a1x + · · · + at−1x

t−1 over Zp such that a0 = s. Then, the dealer
computes Ai = gai for i ∈ {0, 1, . . . , t − 1}, and makes these values public.
Finally, the dealer computs and sends the share si = f(xi) to each party. Once
receiving the share, the party can verify its validity by

gsi =
t−1∏

j=0

Aj
xj
i

When recovering the secret, anyone can also use the above equation to verify
that the parties have revealed the correct shares.

Pedersen’s VSS [24]. Let p, q be two large primes such that q|p − 1, and G
is a subgroup of Z

∗
p with order q. Both g and h are elements of G, but nobody

knows the value logg h1. To share the secret s ∈ Zq, the dealer generates two
random polynomials f(x) and f ′(x) over Zq with degree t − 1:

f(x) = a0 + a1x + · · · + at−1x
t−1 f ′(x) = b0 + b1x + · · · + bt−1x

t−1

1 It is crucial that nobody knows the value logg h. To generate g and h, we first select g
in the group G. Then, a distributed coin flipping protocol [3] can be used to generate
a random value r ∈ Z

∗
p. Finally, h can be computed as h = r(p−1)/q. In case if h = 1,

we can go back to select another random value r ∈ Z
∗
p until h �= 1.
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where a0 = s. Then the dealer publishes Ci = gaihbi for i ∈ {0, 1, . . . , t − 1}.
Finally, the dealer computes and sends the share si = f(xi) and s′

i = f ′(xi) to
each party. Once receiving the share, the party can verify its validity by

gsihs′
i =

t−1∏

j=0

Cj
xj
i

When recovering the secret, anyone can also use the above equation to verify
that the parties have revealed the correct shares.

3 Analysis of Herzberg’s PSS Scheme

In this section, we first briefly review Herzberg’s PSS scheme [20]. We then show
that the secrecy property of Herzberg’s scheme might be violated by the mobile
adversary in our threat model. We also discuss the impact of this vulnerability
with respect to some other PSS schemes.

3.1 Review of Herzberg’s PSS Scheme

Denote p as some large prime, and {x1, x2, . . . , xn} be the public index values
associated with each party, respectively. In the k-th time period, the secret s ∈ Zp

is shared among the parties through the t − 1 degree polynomial f (k)(x) =
a0 + a1x + · · · + at−1x

t−1 over Zp such that a0 = s. The party Pi holds the
share s

(k)
i = f (k)(xi). At the beginning of the (k +1)-th time period, the parties

will jointly update these shares. And the update phase includes a share recovery
protocol followed by a share refreshment protocol.

Share Recovery. The set of parties in Λ, where |Λ| ≥ t, jointly recover the lost
share s

(k)
r for the party Pr as follows:

1. Pi picks a random t−1 degree polynomial δi(x) = δi,0+δi,1x+ · · ·+δi,t−1x
t−1

over Zp such that δi(xr) = 0. For example, Pi can first randomly pick the coef-
ficients {δi,j}j∈{1,...,t−1} from Zp, and then computes δi,0 = −∑t−1

j=1 δi,jxr
j .

2. Pi computes ui,j = δi(xj) and sends it to each other party Pj using the secure
channel.

3. Pi computes s′
i = s

(k)
i +

∑
j∈Λ uj,i and sends this value to Pr using the secure

channel.
4. Finally, Pr uses the received values to interpolate a polynomial g(x) =

f (k)(x) +
∑

i∈Λ δi(x), obtaining s
(k)
r = g(xr).

Because each of the polynomial δi(x) is randomly chosen, Pr cannot learn the
polynomial f (k)(x). Hence, Pr cannot learn the secret. And the share s

(k)
r is

recovered for Pr without being disclosed to the other parties.
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Share Refreshment. Each party Pi, i ∈ {1, 2, . . . , n}, performs the share
refreshment protocol as follows:

1. Pi picks random values {λi,j}j∈{1,2,...,t−1} from Zp. These values define the
polynomial λi(x) = λi,1x + · · · + λi,t−1x

t−1 over Zp such that λi(0) = 0.
2. Pi computes wi,j = λi(xj) and sends it to each other party Pj using the

secure channel.
3. Pi computes its new share s

(k+1)
i = s

(k)
i +

∑n
j=1 wj,i, and erases the old

share s
(k)
i as well as all the intermediate values. Now, the same secret is

shared among the parties through the t − 1 degree polynomial f (k+1)(x) =
f (k)(x) +

∑n
i=1 λi(x).

To achieve the robustness property, Feldman’s VSS is used both in the share
recovery and in the share refreshment, ensuring that the parties have generated
and shared the polynomial properly.

3.2 Threat Analysis of Herzberg’s Scheme in Our Threat Model

The security of Herzberg’s PSS scheme have been proved in [21]. However, the
proof relies on the adjacent assumption. Now, we show that if this assumption
is removed, as in our threat model, the secrecy property of Herzberg’s scheme
may be violated by the mobile adversary.

To simplify the description, considering the case that the entire lifetime
of the secret is divided into two time periods, as shown in Fig. 1. We allow
the mobile adversary to corrupt some parties in time period 1 and then move
on to corrupt some other parties in time period 2. Without loss of generality,
we assume that the parties {P1, P3, P4 . . . , Pt} are corrupted in time period 1,
and the parties {P2, P3, P4, . . . , Pt} are corrupted in time period 2. Because the
mobile adversary can learn the corrupted parties’ private information, for each
polynomial λi(x) in the share refreshment protocol, the mobile adversary knows
that t − 1 points (x2, wi,2), (x3, wi,3), . . . , (xt, wi,t) will pass this polynomial. In
addition, the mobile adversary also knows that the point (0, 0) will pass this
polynomial. Therefore, these t points allows the mobile adversary to interpo-
late the polynomial λi(x). With the knowledge of all these polynomials λi(x) for
i ∈ {1, 2, . . . , n}, the old shares and the new shares are no longer independent. In
other words, the mobile adversary knows how a given share in time period 1 has
been updated into time period 2. Therefore, the mobile adversary can combine
P1’s share in time period 1 with the t − 1 shares of P2, P3, . . . , Pt in time period
2 to recover the secret2.

Note that in the share recovery protocol, the mobile adversary may also find
out all polynomials δi(x) for i ∈ Λ, because she knows t − 1 points held by the
corrupted parties and an additional point (xr, 0). Hence, these t points can be
used to interpolate each of these polynomials. However, since these polynomials
2 Note that a similar problem has been independently discovered by Nikov and Nikova

in [22]. But its consequences were not elaborated and no solution of this problem
was proposed in that work.
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are only used privately by the party Pr, the knowledge of these polynomials does
not affect the secrecy property in Herzberg’s scheme.

3.3 Some Other PSS Schemes in Our Threat Model

In the literature, several other proactive secret sharing schemes are suffering
similar vulnerabilities. A common feature of these schemes is that they all use
t − 1 degree polynomials to update the shares. For example, in [21], Jarecki has
introduced a scheme that replaces Feldman’s VSS with Pedersen’s VSS, while
the other technical details remain the same as in Herzberg’s scheme. In [29],
Stinson et al. have introduced an unconditional secure proactive secret sharing
scheme, in which a t−1 degree symmetric bivariate function is used to refresh the
shares. In [27], Schultz et al. have introduced a PSS scheme that allows on-the-fly
reconfiguration of the threshold. In Schultz’s scheme, the share recovery protocol
is combined with the share refreshment protocol, and t − 1 degree polynomials
are used to refresh the shares. Therefore, the secrecy property in these scheme
also might be violated by the mobile adversary in our threat model.

The above discussions may give the readers a false intuition that any PSS
scheme using t − 1 degree polynomials to update the shares is vulnerable in
our threat model. A counterexample is that although Ostrovsky and Yung [23]
also have used t − 1 degree polynomials to update the shares, the above threat
analysis does not apply to it. Because Ostrovsky’s scheme has used two layers
of SS, while the other vulnerable schemes only use one layer of SS. For similar
reasons, this threat analysis is not directly applicable with Frankel’s scheme [12]
or Rabin’s scheme [25]. However, we note that these schemes are not specially
designed to withstand the mentioned attack, and it is still unknown whether
their security can be formally proved in our new threat model.

4 Modification of Herzberg’s PSS Scheme

In this section, we modify Herzberg’s PSS scheme, making it secure against the
mobile adversary in our threat model. Because the share recovery protocol in
Herzberg’s scheme does not suffer the vulnerability discussed in the previous
section, we focus our description on the share refreshment protocol.

As a high level overview, we use 2t − 1 degree random polynomials with 0
in the constant coefficient to refresh the shares. Hence, the mobile adversary
who corrupts t − 1 parties cannot learn any information of these polynomials.
However, after adding these 2t − 1 degree random polynomials with the original
t − 1 degree polynomial that shares the secret, the result polynomial will have a
degree 2t−1 rather than t−1. But this implies that the secret cannot be recovered
by any t parties, violating the optimal resilience property. To further address this
issue, the parties need to jointly truncate the 2t − 1 degree polynomial into a
t − 1 degree polynomial with the constant coefficient unchanged.
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4.1 Jointly Polynomial Truncation

In [3], Ben-Or et al. have introduced a novel technique to jointly truncate polyno-
mials. We adapt this method in our proposed scheme with two necessary changes.
Firstly, in Ben-Or’s scheme, a 2t degree polynomial is truncated into a t degree
polynomial with the first t + 1 coefficients unchanged. While in our proposed
scheme, a 2t − 1 degree polynomial is truncated into a t − 1 degree polynomial
with only the constant coefficient unchanged. In other words, we truncate the
polynomial in a randomised fashion instead of a fixed one. And we show later
that this change is crucial for the security of our proposed scheme. Secondly,
to ensure the robustness property, error correction codes are used in Ben-Or’s
scheme, but we use VSS instead in order to achieve the optimal resilience prop-
erty.

Lemma 1. For i ∈ {1, 2, . . . , n}, suppose ai is some public constant and zi

is the private input of the party Pi, then the linear function F (z1, z2, . . . , zn) =
a1z1+a2z2+· · ·+anzn can be computed by the parties in a secure and distributed
fashion.

Proof. (Sketch) Firstly, each party Pi shares its private input zi among the par-
ties using (t, n)-threshold verifiable secret sharing. Denote si,j as the share of zi

held by the party Pj . Then a1s1,j +a2s2,j + · · ·+ansn,j will be the corresponding
share of a1z1 + a2z2 + · · · + anzn held by Pj , thanks to the homomorphic prop-
erty of secret sharing [4]. If the result is supposed to be made public, each party
broadcasts its computed share and anyone can retrieve the result by polynomial
interpolation. And if the result is supposed to be known by some certain party,
then each party sends its computed share to this party using the secure channel.
Therefore, the function F (z1, z2, . . . , zn) can be computed in a secure and dis-
tributed fashion. Here, the word “secure” implies both correctness and secrecy.
Correctness means that if the private inputs are properly shared, the correct
result can always be computed even in the presence of any minority of cheating
parties, and this property can be ensured using VSS. Secrecy means that apart
from the final result, the adversary who corrupts any minority of parties learns
no additional information.

Lemma 2. Suppose M is a public n × n matrix. For i ∈ {1, 2, . . . , n}, zi is
the private input of the party Pi. Denote Z as a vector [z1, z2, . . . , zn] and Y
as another vector [y1, y2, . . . , yn]. Then Y = Z · M can be computed in a secure
and distributed fashion, such that by the end of the computation, each party Pi

obtains the value yi without leaking any other information.

Proof. Since yi is the vector Z times the i-th column of the matrix M. It can
be computed in a secure and distributed fashion by Lemma 1. By the end of
the computation, each party sends its computed share to the party Pi using the
secure channels. Hence, only Pi knows the value yi. If this process is repeated
for i ∈ {1, 2, . . . , n}, the desired computation can be carried out in a secure and
distributed fashion.
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Theorem 1. Suppose h(x) = h0+h1x+h2x
2+ · · ·+h2t−1x

2t−1 is a polynomial
with degree 2t − 1, and each party Pi holds a share of h(x) as si = h(xi).
Then, these parties can jointly truncate h(x) into a t − 1 degree polynomial
k(x) = k0 + k1x + · · · + kt−1x

t−1 in a secure and distributed fashion with the
constant coefficient unchanged, i.e. h0 = k0. By the end of the computation, each
party holds a share of k(x) as ri = k(xi).

Proof. (Sketch) Denote B as an n × n Vandermonde matrix

B =

⎛

⎜
⎜
⎜
⎝

1 1 . . . 1
x1 x2 . . . xn

...
...

. . .
...

xn−1
1 xn−1

2 . . . xn−1
n

⎞

⎟
⎟
⎟
⎠

H = [h0, h1, . . . h2t−1, . . . , 0] is an n-vector that represents the coefficients of
h(x); K = [k0, k1, . . . kt−1, 0, . . . , 0] is an n-vector that represents the coefficient
of k(x); the n × n projection matrix P satisfies H · P = K (i.e. the first column
is a vector led by 1 and followed by 0s, the second column till the t-th column
are random vectors generated in a distributed fashion and shared among the
parties [16], and the other columns are all zero vectors); S = [s1, s2, . . . , sn] is an
n-vector that represents the shares of h(x); R = [r1, r2, . . . , rn] is an n-vector that
represents the shares of k(x). Hence, we have H ·B = S and K ·B = R. Moreover,
because B is a Vandermonde matrix, it is always reversible as its determinant
cannot be 0. Therefore, we have S · (B−1 · P · B) = R. Denote T = B−1 · P · B,
we have S ·T = R, where T can be jointly computed in a secure and distributed
fashion. By Lemma 2, the 2t−1 degree polynomial h(x) can be truncated into a
t−1 degree k(x) in a secure and distributed fashion with the constant coefficient
unchanged.

4.2 Our Proposed Scheme

Our proposed scheme works as follows: denote p as a large prime and g is a
generator of a subgroup of Z

∗
p in which the discrete logarithm cannot be solved

in polynomial time. Suppose in the k-th time period, the secret s ∈ Zp is shared
among the parties P1, P2, . . . , Pn using a t − 1 degree polynomial f (k)(x) =
a0 + a1x + · · · + at−1x

t−1 over Zp such that s = a0, and the commitments
Ai = gai for i ∈ {0, 1, . . . , t − 1} are made public. Each party Pi’s secret share is
s
(k)
i = f (k)(xi), and Pi can verify the validity of its share by

gs
(k)
i =

t−1∏

j=0

Aj
xj
i

In the share refreshment, each party Pi, for i ∈ {1, 2, . . . , n}, performs as follows:

1. Pi generates a random 2t − 1 degree polynomial as λi(x) = λi,1x + λi,2x
2 +

· · ·+λi,2t−1x
2t−1 over Zp such that λi(0) = 0. Pi also broadcasts Bi,j = gλi,j

for j ∈ {1, 2, . . . , 2t − 1}.
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2. Pi computes wi,j = λi(xj) and sends it to each other parties Pj using the
secure channel. Pi can verify whether its received share wj,i from each other
party is valid by

gwj,i =
2t−1∏

k=1

Bj,k
xk
i

3. In order to achieve the optimal resilience property, once receiving the value
wj,i, Pi needs to further share this value among the parties in a (t, n)-threshold
fashion. If some parties are found faulty in Step 2 or in Step 3, they will be
disqualified from the protocol and their polynomials will be excluded. At this
moment, the set of the remaining parties is denoted as Λ.

4. Pi computes si = s
(k)
i +

∑
j∈Λ wj,i, and this value is a share of the 2t − 1

degree polynomial

h(x) = f (k)(x) +
∑

j∈Λ

λj(x) = h0 + h1x + · · · + h2t−1x
2t−1

The commitments of h(x) can be publicly computed as Ci = ghi = Ai ·∏
j∈Λ Bj,i for i ∈ {0, 1, . . . , t − 1} and CI = ghI =

∏
j∈Λ Bj,I for I ∈ {t, t +

1, . . . , 2t − 1}.
5. Finally, the parties jointly truncate the 2t − 1 degree polynomial h(x) into a

t−1 degree polynomial k(x) with the constant coefficient unchanged. Denote
S = [s1, s2, . . . , sn] as the n-vector that represents the shares of h(x), and
R = [r1, r2, . . . , rn] as the n-vector that represents the shares of k(x), the
truncation is done by S · T = R, where T can be computed in a secure
and distributed fashion as shown in Theorem 1. Now, k(x) is the updated
polynomial that will be used in the (k + 1)-th time period as f (k+1)(x),
and each party Pi holds a share s

(k+1)
i = ri. Note that if any party Pi is

found cheating in this step, the corresponding share si will be recovered by
the uncorrupted parties. And this ensures that this step will always finish
successfully.

4.3 Security Analysis

Theorem 2. Our proposed PSS scheme is robust and secret in the presence of
the mobile adversary who has the ability to corrupt any minority of the parties.

Proof. We prove this theorem using the inductive method. Firstly, we assume
that at initialisation of the protocol, the secret is properly shared among the
parties through (t, n)-threshold secret sharing. Furthermore, we assume that in
each time period 1, 2, . . . , k, the above theorem holds. And we prove that in the
time period k + 1, the adversary who has the ability to corrupt any minority
of the parties can neither prevent the secret from being recovered nor learn any
information of the secret.

Robustness: In each time period, the validity of the shares can be verified
using the public commitments. Without loss of generality, we assume that the
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shares s
(k+1)
1 , s

(k+1)
2 , . . . , s

(k+1)
t are valid and they will be used to recover the

secret. Denote Li =
∏t

j=1,j �=i xj/(xj − xi) as the Lagrange coefficients for i ∈
{1, 2, . . . , t}. Then we have

t∑

i=1

s
(k+1)
i · Li = f (k+1)(0) = f (k)(0) +

∑

j∈Λ

λ′
j(0) = s

where λ′
j(x) = λ′

i,1x+λ′
i,2x

2 + · · ·+λ′
i,t−1x

t−1. Although the polynomials λ′
j(x)

and λj(x) are independent because of the randomised truncation, the equation
λ′

j(0) = λj(0) = 0 always holds for all j ∈ Λ. Therefore, based on the assumption
that the mobile adversary cannot corrupt more than t− 1 parties in time period
k + 1, there exists at least t uncorrupted parties and the secret can be correctly
recovered.

Secrecy: To prove that the proposed scheme achieves the secrecy property. We
prove that there exists a PPT simulator SIM who can simulate the mobile
adversary’s view in share refreshment, and the simulated view is indistinguish-
able from the one in the real run of the protocol. Without loss of generality, we
assume that the parties P1, P2, . . . , Pt−1 are corrupted and the mobile adversary
knows their shares s

(k)
1 , s

(k)
2 , . . . , s

(k)
t−1. The simulator SIM works as follows:

1. Each party Pi generates a random 2t−1 degree polynomial as λ̃i(x) = λ̃i,1x+
λ̃i,2x

2 + · · · + λ̃i,2t−1x
2t−1 over Zp such that λ̃i(0) = 0. Pi also broadcasts

B̃i,j = g
˜λi,j for j ∈ {1, 2, . . . , 2t − 1}.

2. Pi computes w̃i,j = λ̃i(xj) and sends it to each other party Pj using the secure
channel. Pi can verify the validity of w̃j,i using the public commitments B̃j,k

for k ∈ {1, 2, . . . , 2t − 1}. Those values received by the corrupted parties are
forwarded to the mobile adversary.

3. Once receiving the value w̃j,i, Pi further shares this value among the parties
using (t, n)-threshold verifiable secret sharing. Similarly, any cheating party
will be disqualified, and the set of the remaining parties is denoted as Λ.

4. In this step, the simulator SIM computes si = s
(k)
i +

∑
j∈Λ w̃j,i for i ∈

{1, 2, . . . , t − 1}, and it sends these values to the mobile adversary.
5. In order to truncate the 2t − 1 degree polynomial h(x) into a t − 1 degree

polynomial k(x) with the constant coefficient unchanged, each party Pi needs
to share its value si among the parties in a (t, n)-threshold fashion. For those
corrupted parties, the simulator SIM can share their values in the normal
way. However, SIM does not know the values st, st+1, . . . , sn. To simulate the
(t, n)-threshold secret sharing of these values, the simulator SIM computes

gsi = gs
(k)
i ·

∏

l∈Λ

gw̃l,i =
t−1∏

j=0

Aj
xj
i ·

∏

l∈Λ

gw̃l,i

for i ∈ {t, t + 1, . . . , n}. Then, for each of the value {gsi}i∈{t,t+1,...,n}, SIM
selects t−1 random values {εi}i∈{1,2,...,t−1} and sends these values to the t−1
corrupted parties respectively. Denote M as the following t × t matrix
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M =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 . . . 0
1 x1 x2

1 . . . xt−1
1

1 x2 x2
2 . . . xt−1

2
...

1 xt−1 x2
t−1 . . . xt−1

t−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and σi,j is the (i, j)-th entry of M−1. Now, SIM broadcasts the commit-
ments {Di}i∈{0,1,...,t−1}, where D0 = gsi and Dj = (gsi)σj,1 · ∏t−1

l=1(gεl)σj,l+1

for j ∈ {1, 2, . . . , t−1}. Note that these commitments ensures that the mobile
adversary will accept the values {εi}i∈{1,2,...,t−1} as the shares of si. As fol-
lows, the parties jointly trancate the polynomial h(x) into k(x).

It is obvious that the above simulation can finish in polynomial time. Now, we
show that the mobile adversary cannot distinguish the above simulated conver-
sation from a real run of the protocol.

– Indistinguishability of information in Step 1 and 2: the 2t − 1 degree
polynomials {λi(x)} and {λ̃i(x)} for i ∈ {1, 2, . . . , n} are randomly selected
both in the real protocol and in the simulation. Hence, they are indistinguish-
able.

– Indistinguishability of information in Step 3: both the real protocol
and the simulation share the values wj,i and w̃j,i among the parties using a
random t − 1 degree polynomial. Hence, they are indistinguishable.

– Indistinguishability of information in Step 4: the si values hold by the
corrupted parties are randomly distributed in Zp both in the real protocol
and in the simulation. Hence, they are indistinguishable.

– Indistinguishability of information in Step 5: the mobile adversary’s
view of sharing the values {si}i∈{1,2,...,n} is consistent both in the real pro-
tocol and in the simulation. Moreover, by Theorem 1, the joint polynomial
truncation can be done in a secure and distributed fashion. Hence, the real
protocol and the simulation in this step is also indistinguishable.

Therefore, the simulated view cannot be distinguished from the one in the real
run of the protocol. In other words, the mobile adversary cannot learn any
information of the secret in time period k + 1.

4.4 Some Discussions

Once the reason is clear why Herzberg’s PSS scheme fails to maintain its security
in our new threat model, it is quite natural to come up with the idea of using
polynomials with higher degrees to update the shares in the share refreshment
and then truncating the resulting polynomial to the desirable degree. However,
we show that if one uses Ben-Or’s polynomial truncation method directly, the
construction still suffers the same problem as in Herzberg’s PSS scheme.
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Ben-Or’s original method is also capable of truncating a 2t−1 degree polyno-
mial into a t−1 degree polynomial. But it keeps the first t coefficients unchanged
rather than just keeping the constant coefficient unchanged as in our proposed
scheme. Recall that λ(x) is the polynomial used to refresh the shares, h(x) is the
polynomial before truncation and k(x) is the polynomial after the truncation.
Their shares are wi, si, ri, respectively. Denote p(x) as a polynomial with degree
t − 1 containing the first t coefficients of the polynomial λ(x). The relationship
h(x)−k(x) = λ(x)−p(x) always holds if Ben-Or’s polynomial truncation method
is used directly. Thanks to the homomorphic property of SS, the value wi+ri−si

represents a share for the polynomial p(x). Therefore, if the mobile adversary
A is assumed to corrupt t − 1 parties, A can obtain t − 1 shares of p(x). And
this implies that A is able to launch the same attack as shown in Sect. 3.2. This
is why we have adapted a variant of Ben-Or’s method in our proposed scheme
so that the truncation is performed in the randomised fashion instead of a fixed
one.

5 Conclusion

In this paper, we revisited the research of provably secure and optimal resilient
PSS. We discussed the negative aspects caused by the adjacent assumption which
is widely used in the existing PSS schemes. And this motivates us to consider
whether this assumption can be removed from the threat model in PSS schemes.
However, we showed that if it is removed, many existing schemes will become
insecure. We then used the polynomial truncation method to improve Herzberg’s
PSS scheme, making it secure without the adjacent assumption. To the best of
our knowledge, this is the first PSS scheme satisfying this feature.
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