
Ron Steinfeld
Tsz Hon Yuen (Eds.)

LN
CS

 1
18

21

13th International Conference, ProvSec 2019
Cairns, QLD, Australia, October 1–4, 2019
Proceedings

Provable Security

Lecture Notes in Computer Science 11821

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Ron Steinfeld • Tsz Hon Yuen (Eds.)

Provable Security
13th International Conference, ProvSec 2019
Cairns, QLD, Australia, October 1–4, 2019
Proceedings

123

Editors
Ron Steinfeld
Monash University
Melbourne, VIC, Australia

Tsz Hon Yuen
The University of Hong Kong
Pok Fu Lam, Hong Kong

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-31918-2 ISBN 978-3-030-31919-9 (eBook)
https://doi.org/10.1007/978-3-030-31919-9

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2019, corrected publication 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-1745-4183
https://orcid.org/0000-0002-0629-6792
https://doi.org/10.1007/978-3-030-31919-9

Preface

This volume contains the papers presented at ProvSec 2019: the 13th International
Conference on Provable and Practical Security held during October 1–4, 2019, in
Cairns, Australia.

There were 51 submissions. Each submission was reviewed by at least two Program
Committee members. The committee decided to accept 18 full papers and 6 short
papers.

Provable security is an essential tool for analyzing the security of modern
cryptographic primitives. The research community has witnessed the great contribu-
tions that the provable security methodology made to the analysis of cryptographic
schemes and protocols. Today, cryptographic primitives without a rigorous “proof”
cannot be regarded as sound. Also, the methodology has been used to discover security
flaws in the cryptographic schemes and protocols, which were considered seemingly
secure without formal analysis. On the one hand, provable security provides confidence
in using cryptographic schemes and protocols for various real-world applications, but
on the other hand, schemes with provable security are sometimes not efficient enough
to be used in practice, and correctness of the proofs may be difficult to verify.

Therefore, this year we decided to enrich the scope of this conference, by adding
“Practical Security” to the theme. The new theme brought together researchers and
practitioners to provide a confluence of new practical cyber security technologies,
including their applications and their integration with IT systems in various industrial
sectors.

We would like to thank the general co-chairs, Joseph K. Liu and Wei Xiang, the
publication chair, Jiangshan Yu, and the publicity co-chairs, Xingliang Yuan and Yu
Wang, for organizing the conference.

October 2019 Ron Steinfeld
Tsz Hon Yuen

Organization

Program Committee

Elena Andreeva Katholieke Universiteit Leuven, Belgium
Man Ho Au The Hong Kong Polytechnic University, SAR China
Joonsang Baek University of Wollongong, Australia
Donghoon Chang NIST, USA
Jie Chen East China Normal University, China
Liqun Chen University of Surrey, UK
Xiaofeng Chen Xidian University, China
Cheng-Kang Chu Huawei Singapore, Singapore
Bernardo David The University of Tokyo, Japan
Keita Emura National Institute of Information and Communications

Technology, Japan
Zekeriya Erkin Delft University of Technology, The Netherlands
Jinguang Han Queen’s University Belfast, UK
Xinyi Huang Fujian Normal University, China
Ryo Kikuchi NTT, Japan
Jongkil Kim University of Wollongong, Australia
Veronika Kuchta Monash University, Australia
Jianchang Lai University of Wollongong, Australia
Hyung Tae Lee Chonbuk National University, South Korea
Jooyoung Lee Korea Advanced Institute of Science and Technology,

South Korea
Kaitai Liang University of Surrey, UK
Joseph Liu Monash University, Australia
Rongxing Lu University of New Brunswick, Canada
Xiapu Luo The Hong Kong Polytechnic University, SAR China
Siqi Ma CSIRO, Australia
Bernardo Magri Aarhus University, Denmark
Barbara Masucci University of Salerno, Italy
Bart Mennink Digital Security Group, Radboud University,

Nijmegen, The Netherlands
Chris Mitchell Royal Holloway, University of London, UK
Kirill Morozov University of North Texas, USA
Abderrahmane Nitaj LMNO, Université de Caen, France
Raphael Phan Monash University, Australia
Josef Pieprzyk CSIRO, Australia
Kouichi Sakurai Kyushu University, Japan
Ron Steinfeld Monash University, Australia
Rainer Steinwandt Florida Atlantic University, USA

Chunhua Su University of Aizu, Japan
Shi-Feng Sun Shanghai Jiao Tong University, China
Willy Susilo University of Wollongong, Australia
Katsuyuki Takashima Mitsubishi Electric, Japan
Atsushi Takayasu The University of Tokyo, Japan
Qiang Tang New Jersey Institute of Technology, USA
Dongvu Tonien University of Wollongong, Australia
Damien Vergnaud Université Pierre et Marie Curie/Institut Universitaire

de France, France
Sheng Wen Swinburne University of Technology, Australia
Qianhong Wu Beihang University, China
Chung-Huang Yang National Kaohsiung Normal University, Taiwan
Guomin Yang University of Wollongong, Australia
Wun-She Yap Universiti Tunku Abdul Rahman, Malaysia
Xun Yi RMIT University, Australia
Yong Yu University of Science and Technology of China, China
Xingliang Yuan Monash University, Australia
Tsz Hon Yuen The University of Hong Kong, SAR China
Aaram Yun University of Minnesota, USA

Additional Reviewers

Anada, Hiroaki
Chen, Haixia
Chengjun Lin
Datta, Pratish
Erson, Oguzhan
Ersoy, Oguzhan
Garg, Surabhi
Hesamifard, Ehsan
Ikematsu, Yasuhiko
Lai, Shangqi
Li, Na
Liu, Jianghua
Nguyen, Khoa
Ohata, Satsuya

Roy, Arnab
Roy, Dibyendu
Ueshige, Yoshifumi
Wang, Luping
Wu, Lei
Yang, Wenjie
Zeng, Ming
Zeng, Yali
Zhao, Hang
Zhao, Qian
Zhen, Haibin
Zhu, Fei
Zhu, Yan

viii Organization

Contents

Post-quantum Cryptography

Identity-Concealed Authenticated Encryption from Ring Learning
with Errors . 3

Chao Liu, Zhongxiang Zheng, Keting Jia, and Limin Tao

Lattice-Based IBE with Equality Test in Standard Model 19
Dung Hoang Duong, Huy Quoc Le, Partha Sarathi Roy,
and Willy Susilo

Password-Based Authenticated Key Exchange from Standard
Isogeny Assumptions. 41

Shintaro Terada and Kazuki Yoneyama

Signatures

An Efficient Conditional Privacy-Preserving Authentication Scheme
for Vehicular Ad Hoc Networks Using Online/Offline
Certificateless Aggregate Signature . 59

Kang Li, Man Ho Au, Wang Hei Ho, and Yi Lei Wang

History-Free Sequential Aggregate MAC Revisited 77
Shoichi Hirose and Junji Shikata

A Practical Lattice-Based Sequential Aggregate Signature 94
Zhipeng Wang and Qianhong Wu

Encryption

Towards Enhanced Security for Certificateless Public-Key
Authenticated Encryption with Keyword Search . 113

Xueqiao Liu, Hongbo Li, Guomin Yang, Willy Susilo, Joseph Tonien,
and Qiong Huang

Space-Efficient and Secure Substring Searchable Symmetric Encryption
Using an Improved DAWG . 130

Hiroaki Yamamoto, Yoshihiro Wachi, and Hiroshi Fujiwara

Plaintext-Verifiably-Checkable Encryption . 149
Sha Ma, Qiong Huang, Ximing Li, and Meiyan Xiao

Hierarchical Functional Signcryption: Notion and Construction 167
Dongxue Pan, Bei Liang, Hongda Li, and Peifang Ni

Attack

A Critique of Game-Based Definitions of Receipt-Freeness for Voting. 189
Ashley Fraser, Elizabeth A. Quaglia, and Ben Smyth

Improved Cryptanalysis of the KMOV Elliptic Curve Cryptosystem 206
Abderrahmane Nitaj, Willy Susilo, and Joseph Tonien

Solving ECDLP via List Decoding . 222
Fangguo Zhang and Shengli Liu

Protocols

Provably Secure Proactive Secret Sharing Without the
Adjacent Assumption. 247

Zhe Xia, Bo Yang, Yanwei Zhou, Mingwu Zhang, Hua Shen, and Yi Mu

A Coin-Free Oracle-Based Augmented Black Box Framework 265
Kyosuke Yamashita, Mehdi Tibouchi, and Masayuki Abe

Blockchain

A Lattice-Based Anonymous Distributed E-Cash from Bitcoin 275
Zeming Lu, Zoe L. Jiang, Yulin Wu, Xuan Wang, and Yantao Zhong

A Centralized Digital Currency System with Rich Functions 288
Haibo Tian, Peiran Luo, and Yinxue Su

Chameleon Hash Time-Lock Contract for Privacy Preserving Payment
Channel Networks. 303

Bin Yu, Shabnam Kasra Kermanshahi, Amin Sakzad, and Surya Nepal

Short Papers

On-demand Privacy Preservation for Cost-Efficient Edge Intelligence
Model Training. 321

Zhi Zhou and Xu Chen

One-Round Authenticated Group Key Exchange from Isogenies 330
Atsushi Fujioka, Katsuyuki Takashima, and Kazuki Yoneyama

x Contents

TumbleBit++: A Comprehensive Privacy Protocol Providing Anonymity
and Amount-Invisibility . 339

Yi Liu, Zhen Liu, Yu Long, Zhiqiang Liu, Dawu Gu, Fei Huan,
and Yanxue Jia

Secure Online/Offline Attribute-Based Encryption for IoT Users
in Cloud Computing . 347

Xiang Li, Hui Tian, and Jianting Ning

FSPVDsse: A Forward Secure Publicly Verifiable Dynamic SSE Scheme . . . 355
Laltu Sardar and Sushmita Ruj

A Hidden Markov Model-Based Method for Virtual Machine
Anomaly Detection . 372

Chaochen Shi and Jiangshan Yu

Correction to: Provable Security . C1
Ron Steinfeld and Tsz Hon Yuen

Author Index . 381

Contents xi

Post-quantum Cryptography

Identity-Concealed Authenticated
Encryption from Ring Learning

with Errors

Chao Liu1, Zhongxiang Zheng2, Keting Jia2(B), and Limin Tao3

1 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan, People’s Republic of China

liu chao@mail.sdu.edu.cn
2 Department of Computer Science and Technology, Tsinghua University,

Beijing, People’s Republic of China
zhengzx13@mails.tsinghua.edu.cn, ktjia@mail.tsinghua.edu.cn

3 Space Star Technology Co., LTD., Beijing, People’s Republic of China

Abstract. Authenticated encryption (AE) is very suitable for a
resources constrained environment for it needs less computational costs
and AE has become one of the important technologies of modern commu-
nication security. Identity concealment is one of research focuses in design
and analysis of current secure transport protocols (such as TLS1.3 and
Google’s QUIC). In this paper, we present a provably secure identity-
concealed authenticated encryption in the public-key setting over ideal
lattices, referred to as RLWE-ICAE. Our scheme can be regarded as
a parallel extension of higncryption scheme proposed by Zhao (CCS
2016), but in the lattice-based setting. RLWE-ICAE can be viewed as
a monolithic integration of public-key encryption, key agreement over
ideal lattices, identity concealment and digital signature. The security of
RLWE-ICAE is directly relied on the Ring Learning with Errors (RLWE)
assumption. Two concrete choices of parameters are provided in the end.

Keywords: Authenticated encryption · RLWE · Lattice-based ·
Identity-concealed · Provable security

1 Introduction

Authenticated encryption (AE) is a form of encryption that guarantees the con-
fidentiality and authenticity of data at the same time. Because AE can sign and
encrypt messages in single step, the computational cost of it is lower than that
of traditional signature-then-encryption methods. Some works also shows that
AE is functionally equivalent to one-pass authenticated key-exchange [7,11,19].
Since Zheng proposed the first AE scheme [29] in 1997, it has become one of the
important technologies of modern communication security.

By identity concealment, we mean that the protocol transcript shouldn’t leak
participants’ identity information. ID concealment is relevant for several reasons.
c© Springer Nature Switzerland AG 2019
R. Steinfeld and T. H. Yuen (Eds.): ProvSec 2019, LNCS 11821, pp. 3–18, 2019.
https://doi.org/10.1007/978-3-030-31919-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-31919-9_1

4 C. Liu et al.

For instance, if the identity is not protected in a wireless device, an attacker
can eavesdrop the communications to track the user’s location, which leads to
attacks directed towards selected users. Identity concealment is mandated or
recommended by many standardized and deployed cryptographic protocols like
TLS1.3 [22], QUIC [24], EMV [5], etc. Furthermore, we say that a player enjoys
forward ID-privacy if his ID-privacy preserves even through his static secret-
key is compromised. For some famous protocols such as Zheng’s signcryption
[3,29] and one-pass HMQV (HOMQV) [12,14], the issue of ID-concealment was
not considered. In 2016, Zhao [28] introduced that ID-concealment can be inte-
grated with AE to solve the problem of 0-RTT (zero-round trip time) with client
authentication. A 0-RTT option protocol allows the establishment of a secure
connection in “one-shot”, which means that cryptographically protected pay-
load data can be sent immediately along with the first single message sent from
a sender to a receiver, without the need for a latency-incurring prior handshake
protocol. Many large projects have been developed and experimented with 0-
RTT protocols, such as Google’s QUIC [15], TLS1.3 and Facebook’ Zero proto-
cols [13]. But QUIC and TLS1.3 are now only supporting 0-RTT mode without
client authentication. Zhao proposed higncryption [28] which solved the problem
of 0-RTT with client authentication by integrating public-key encryption, entity
authentication and ID-concealment into a single primitive.

Some other properties are considered in nowadays public-key settings. A pro-
tocol enjoys “receiver deniability”, which means that the session transcript, espe-
cially the authentication value, can be simulated by a receiver with public param-
eters and his own secret-key. A protocol enjoys x-security [12], which means that
the leakage of ephemeral secret does not cause the exposure of sender’s static
secret or pre-shared secret. For some well-known protocols, Zheng’s signcryption
[3,29] does not enjoy x-security and is receiver undeniable. Krawczyk’s one-pass
HMQV (HOMQV) [12] scheme enjoys receiver deniability and x-security, but
without forward ID-privacy. Zhao’s higncryption [28] has a novel design, and
enjoys forward ID-privacy, receiver deniability and x-security.

But above existed authenticated encryptions are mainly based on the clas-
sic hard problems, such as the computational/decisional DH problem. It is well
known that DH problem is vulnerable to quantum computers [25]. Since the rapid
development of quantum computers, searching other counterparts based on prob-
lems which are believed to be resistant to quantum attacks is more and more
urgent. Naturally we think of such a question: can we come up with an authenti-
cated encryption that can resist quantum attacks and enjoys above several good
properties such as ID-concealment, receiver deniability and x-security? Note that
lattice-based cryptographic schemes have many advantages such as asymptotic
efficiency, conceptual simplicity and worst-case hardness assumption, and it is a
perfect choice to build lattice-based authenticated encryption in the public-key
settings.

Our Contributions. In this paper, we propose a new authenticated encryption
to solve the above motivating questions. We choose Ring Learning With Errors
(RLWE), which is as hard as some worst case lattice problems on ideal lattices

Identity-Concealed Authenticated Encryption from RLWE 5

[10,18] to construct our scheme. By utilizing some useful properties of RLWE
and discrete Gaussian distributions, we present an approach to combine pub-
lic/secret key in a manner similar to higncryption [28]. Our scheme not only
enjoys many nice properties of higncryption such as identity concealment, 0-
RTT option, forward ID-privacy, receiver deniability and x-security, but also
enjoys some properties of lattice-based cryptography, such as worst-case hard-
ness assumption, and resistance to quantum computer attacks. We manage to
establish a full proof of our scheme’ security in the Zhao’s strong model [28] by
replacing the Diffie-Hellman core of Zhao’s model with the lattice-based core.
Our scheme may have some other applications. For example we give a direct
application of one-pass ID-concealed authenticated key exchange protocol. In
the end, we choose the concrete parameters and give the security assessment.

Techniques in Our Scheme. In higncryption, the sender (the encryption party)
and the receiver (the decryption party) would compute a same element, which
is used in encrypting communication data. Since higncryption works on “nicely-
behaved” cyclic groups, which have the property of commutativity, such a “key
agreement” can be easily realized. While for lattice-based cryptographic, ben-
efitting from the growth of lattice-based key exchange protocols [4,8,21], we
can utilize the key agreement technique to construct our scheme. Ding et al.
[8] firstly introduced the key reconciliation mechanism to “handling the noises”
of RLWE. And Peikert [21] gave an improved version of reconciliation mecha-
nism. We use Peikert’s reconciliation mechanism to achieve the key agreement
in our scheme. Furthermore, since the perfect randomization properties of cyclic
groups, the static key can be “perfectly hidden” in the communication data.
While for RLWE based scheme, the goal of perfectly hiding the keys can be
realized by using rejection sampling [16]. In the security aspect, secret hidden is
necessary, so we apply the rejection sampling technique in our scheme. To prove
the security of our scheme, we introduce vPWE assumption, which is a variant
of Pairing with Errors (PWE) assumption introduced by Ding et al. [9], and we
show that vPWE assumption can be reduced to the RLWE problem. As long as
the vPWE assumption is hard, the security of our scheme can be guaranteed.

Related Works. For authenticated protocols from ideal lattices, in 2015, Zhang
et al. [27] proposed an authenticated RLWE based key exchange and a one-pass
authenticated key exchange over ideal lattices. In 2017, Ding et al. [9] proposed
RLWE-based password authenticated key exchange, whose security is proved by
using PWE assumption. Yang et al. [26] introduced a RLWE-based two-message
key exchange scheme in 2018, and they used Peikert’s reconciliation mechanism
to construct the scheme.

Roadmap. In Sect. 2, we introduce some backgrounds such as notations, security
models, RLWE and some tools used in scheme. Our protocol RLWE-ICAE is
introduced in Sect. 3. And in Sect. 4, a theorems is given to guarantee the security
of the scheme. The parameters and the security assessment of our scheme are
presented in Sect. 5. Finally, we conclude and discuss some further works in
Sect. 6.

6 C. Liu et al.

2 Preliminaries

2.1 Notations

Let n be an integer of the power of 2. Denote the ring of integer polynomials R
as Z[x]/(xn + 1), and Rq := Zq[x]/(xn + 1) as the ring of integer polynomials
modulo xn+1 with every coefficient is reduced modulo positive integer q. Let the
norm of a polynomial be the norm of its coefficients vector. Let x

$←− χ denote the
coefficients of x are sampled based on the probability distribution χ. For any pos-
itive real β ∈ R, and a vector c ∈ R

m, let the continuous Gaussian distribution
over R

m with standard deviation β centered at c be defined by the probability
function ρβ,c(x) = (1√

2πβ2
)mexp(−||x−v||22

2β2). Let DZn,β,c(x) = ρβ,c(x)
ρβ,c(Zm) to indi-

cate the m-dimensional discrete Gaussian distribution. The subscripts β and c
are omitted when they are 1 and 0. Usually χβ denotes Gaussian distribution
with standard deviation β and centered at 0.

2.2 Authenticated Encryption with Associated Data

An authenticated encryption with associated date (AEAD) scheme transforms a
message M and a public packet header, which is usually implicitly determined
from the context, into a ciphertext C which provides both privacy (of M) and
authenticity (of C and H) [23]. We state the security of AEAD in [28] as follows.

AEAD Security. Let
∏

= (K, E ,D) be a symmetric encryption scheme. The key
space K = {0, 1}κ is a finite nonempty set of strings. There is a probabilistic
polynomial-time algorithm takes a security parameter κ as input and samples
a key K from K. The polynomial-time encryption algorithm E : κ × {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗ ∪ {⊥} and the polynomial-time decryption algorithm D : κ ×
{0, 1}∗ × {0, 1}∗ → {0, 1}∗ ∪ {⊥} satisfy:

Pr[K ← K;H ∈ {0, 1}∗;M ∈ {0, 1}∗;C ← EK(H,M) : DK(C) �= M] ≤ negl(κ),

where negl is a negligible function. Generally, we assume the ciphertext C has
the associate data H. Let A be a polynomial-time adversary. A security game for
AEAD is described in Table 1. The advantage of A is defined to be Advaead∏ (A) =
|2 · Pr[AEADA∏ returns true] − 1|. And we say

∏
scheme is AEAD-secure, if for

all sufficiently large κ, AdvAEAD∏ (A) ≤ negl(κ).

2.3 Security Model for ICAE

We recall the security model for identity-concealed authenticated encryption
(ICAE) scheme from [28]. An ICAE scheme IC is specified with four polynomial-
time algorithms (Setup, Keygen, Encrypt, Decrypt) as follows:

– Setup: takes the security parameter κ as input and outputs the system
parameter params used in the scheme.

Identity-Concealed Authenticated Encryption from RLWE 7

Table 1. AEAD security game

main AEADA∏: procedure Enc(H, M0, M1): procedure Dec(C′):

K ← K If |M0| �= |M1|, Ret ⊥ If σ = 1 ∧ C′ /∈ C then

σ ← {0, 1} C0 ← EK(H, M0) Ret DK(C′)

σ′ = AEnc,Dec C1 ← EK(H, M1) else Ret ⊥
Ret (σ′ = σ) If C0 = ⊥ or C1 = ⊥, Ret ⊥

C ∪←− Cσ; Ret Cσ

– Keygen: takes params as input and outputs a key pair (pk, sk) used for
encryption and decryption.

– Encrypt: takes the sender’s private key sks and public identity informa-
tion pids = (ids, pks, certs) where certs is issued by a certificate author-
ity, a receiver’s public identity information pidr = (idr, pkr, certr), message
M ∈ {0, 1}∗, and associated data H ∈ {0, 1}∗ as input. It returns a cipher-
text C or ⊥ which indicate encrypt failure. We allow pids = (ids, pks, certs)
equal to pidr = (idr, pkr, certr), which means that a user encrypts a message
to himself. We also assume some offline-computable intermediate randomness
used in generating C is stored in a variable ST C .

– Decrypt: takes a receiver’s private key skr, the receiver’s public identity
information pidr = (idr, pkr, certr), a ciphertext C as input. It outputs
(pids,M) or an error ⊥.

We say that an ICAE scheme is correctness if for all sufficiently large secu-
rity parameter κ, key pairs (pks, sks) and (pkr, skr) which are output by Key-
gen(1κ), there is

Pr[Decrypt(skr, pidr,Encrypt(sks, pids, pidr,H,M)) �= (pids,M)] ≤ negl(κ)

where H,M ∈ {0, 1}∗ such that Encrypt(sks, pids, pidr,H,M) �= ⊥, and negl
is a negligible function.

Now we present the security model for ICAE. We assume each user possesses
a single key pair for encryption and decryption, and each user can encrypt mes-
sages to himself. In this model the adversary is allowed to register users adap-
tively (hence has dishonest users). Let the number of users in the system be N ,
which is a polynomial in the security parameter κ. We assume all the honest
users’ key pairs are generated by the challenger according to the key generation
algorithm specified in the system. Denote by HONEST (reps., DISHONEST),
the set of public identity information of all the honest (resp., dishonest) users.
We denote the public identity information of a user idi as pidi (1 ≤ i ≤ n), the
sender’s (resp., the receiver’s) public identity information as pids (resp., pidr).
The adversary’s abilities are formalized by providing the adversary with the
following oracles:

– ENO: takes (pids, pidr,H,M) as inputs, where pidr ∈ HONEST
⋃
DISH−

ONEST. If pids ∈ HONEST, the oracle returns Encrypt(sks, pids, pidr,

8 C. Liu et al.

H,M), otherwise return ⊥. In order to allow for later Exposure query
against a ciphertext C, some specified offline-computable intermediate ran-
domness to generate C are allowed to be stored into ST C .

– DEO: takes (pidr, C) as inputs. If pidr ∈ HONEST, the oracle returns
Decrypt (skr, pidr, C), otherwise, returns ⊥.

– Exposure: takes C �= ⊥ as input. If C is output by an earlier ENO query,
the oracle returns the offline-computable intermediate randomness (stored in
ST C) used in generating C.

– Corrupt: takes pidi ∈ HONEST as input, (1 ≤ i ≤ N), and returns user
idi’s private key ski.

Outsider Unforgeability. Consider the following experiment for AOU :

The encryption experiment Encry-forgeAOU ,IC(κ):

– AOU is given the all the honest users’ public keys and can register arbitrary
public keys on its own with security parameter κ.

– AOU is allowed to issue ENO, DEO, Exposure and Corrput queries. AOU

then outputs (pidr∗ , C∗) as its output.
– AOU succeeds if and only if:

1. Decrypt(skr∗ , pidr∗ , C∗) = (pids∗ ,M∗), where pids∗ ∈ HONEST;
2. AOU has not issued Corrupt(pids∗) or Corrupt(pidr∗) query, but is

allowed to query Exposure(C∗) to expose the intermediate randomness
in generating C∗.

3. C∗ is not the output of ENO(pids∗ , pidr∗ ,H∗,M∗) issued by AOU ,
but AOU is still allowed to query ENO(pids′ , pidr′ ,H ′,M ′) for (pids′ ,
pidr′ ,H ′,M ′) �= (pids∗ , pidr∗ ,H∗,M∗) and in particular (pids∗ , pidr∗ ,H ′,
M∗) for H ′ �= H∗. AOU can even query ENO(pids∗ , pidr∗ ,H∗,M∗) as
long as its outputs returned is not C∗. And parts of C∗ (the H∗) may
appear in previous outputs of ENO.

– The experiment returns 1 if AOU succeeds, otherwise returns 0.

We say that an ICAE scheme IC has outside unforgeability, if for any PPT
adversary AOU , there is a negligible function negl such that:

Pr[Encry-forgeAOU ,IC(κ) = 1] ≤ negl(κ).

Next we introduce the definition of insider confidentiality, which is identical
to outsider unforgeability, except that Corrupt(pidr∗) is allowed to the adver-
sary.

Insider Confidentiality. We assume that all the users have equal length public
identity information. Consider the following experiment for an adversary AIC :

The encryption experiment Encry-ConfidentAIC ,IC(κ):

– AIC is given the all the honest users’ public keys and can register arbitrary
public keys on its own with security parameter κ.

Identity-Concealed Authenticated Encryption from RLWE 9

– AIC is allowed to issue ENO, DEO, Exposure and Corrput queries. AIC

then outputs two equal length messages (M0,M1), an associated data H∗,
and two pairs of public identity information of equal length (pids∗

0
, pidr∗) and

(pids∗
1
, pidr∗) where pids∗

0
, pids∗

1
, pidr∗ ∈ HONEST.

– A uniform bit γ ∈ {0, 1} is chosen, and then a ciphertext C∗ = Encrypt
(sks∗

γ
, pids∗

γ
, pidr∗ ,H∗,Mγ) is computed and given to AIC .

– The adversary AIC can continue executing the second phase, except ask-
ing DEO(pidr∗ , C∗), Exposure(C∗) or Corrupt(pidr∗) which will cause
AIC win the game trivially. But the adversary AIC is allowed to issue
Corrupt(pids∗

0
) and Corrupt(pids∗

1
), which can capture forward ID-privacy.

Eventually, AIC outputs a bit γ′.
– The output of the experiment is defined to be 1 if γ′ = γ, and 0 otherwise. If

the output of the experiment is 1, we say that AIC succeeds.

We say that an ICAE scheme IC has insider confidentiality, if for any PPT
adversary AIC there is a negligible function negl such that:

Pr[Encry-ConfidentAIC ,IC(κ) = 1] ≤ negl(κ).

Note that the definition of outsider confidentiality is identical to that of insider
confidentiality, except that neither Corrupt(pid∗

s0
) nor Corrupt(pid∗

s1
).

2.4 Ring Learning with Errors

In 2010, Lyubashevsky, Peikert and Regev [18] proposed the Ring Learning with
Erros problems (RLWE), which is based on the Learning with Errors (LWE)

in the ring setting. Assume there are uniform random elements a, s
$←− Rq and

an error distribution χ. Let As,χ denote the distribution of the RLWE pair

(a, as + e), where the error e
$←− χ. Given polynomial number of samples, the

search version of RLWE is to find the secret s, while the decision version of the
RLWE problem (DRLWEq,χ) is to distinguish As,χ from an uniform distribution
pair (a, b) on Rq ×Rq. RLWE enjoys a worst case hardness guarantee, which we
state here.

Theorem 1 ([18], Theorem 3.6). Let R = Z[x]/(xn + 1) where n is a power of
2, δ = δ(n) <

√
logn/n, and q = 1 mod 2n which is a ploy(n)-bounded prime

such that δq ≥ ω(
√

logn). Then there exists a ploy(n)-time quantum reduction
from Õ(

√
n/δ)-SIVP (Short Independent Vectors Problem) on ideal lattices in

the ring R to solve DRLWEq,χ with l−1 samples, where χ = DZn,ς is the discrete
Gaussian distribution with parameter ς = δq · (nl/log(nl))1/4/

√
2π.

We have the following useful facts.

Lemma 1 ([16], Lemma 4.4). For any k > 0, Prx←χβ
(|x| > kβ) ≤ 2e−k2/2.

Note that taking k = 13 gives tail probability approximating 2−121.

10 C. Liu et al.

Lemma 2 ([20]). Letting real β = ω(
√

logn), constant η > 1√
2π

, then we have

that Pr
v

$←−DZn,β

[||v|| > η·β√
n] ≤ 1

2Dn, where D = η
√

2πe·e−π·η2
. In particular,

we have Pr
v

$←−DZn,β

[||v|| > β
√

n] ≤ 2−n+1.

2.5 The Rejection Sampling

Now, we recall the rejection sampling from [17].

Theorem 2 ([17], Theorem 3.4). Let S be a subset of Zm, all the elements of
S have norms less than T , β = w(T

√
logm) be a real, and φ : S → R be a

probability distribution. Then the distribution of the following algorithm F :

– c $←− φ;
– z $←− DZm,β,c;

– output (z, c) with probability min
(

DZm,β(z)

M ·DZm,β,c(z)
, 1

)
.

is within statistical distance 2−w(logm)

M from the distribution of the following algo-
rithm G:

– c $←− φ;
– z $←− DZm,β;
– output (z, c) with probability 1

M .

where M = O(1) is a constant. Moreover, the probability that F outputs some-
thing is at leat 1−2−w(logm)

M . More concretely, if β = ηT for any positive η, then
M = e12/η+1/(2η2) and the output of algorithm F is within statistical distance
2−100

M of the output of G, and the probability that F outputs something is at leat
1−2−100

M .

2.6 Reconciliation Mechanism

Firstly, We recall the reconciliation mechanism proposed by Peikert in [21] for
transforming approximate agreement to exact agreement. For integer q > p ≥ 2,
we define the modular rounding function �·�p : Zq → Zp as �x�p := �p

q · x� and
downward-rounded function �·p : Zq → Zp as �xp := �p

q · x.

Even Modulus. Let the modulus q ≥ 2 is even, define two disjoint intervals I0 :=
{0, 1, . . . , � q

4�−1}, I1 := {−� q
4�, . . . ,−1} mod q. Then when v ∈ (I0+ q

2)∪(I1+ q
2),

�v�2 = 1, and when v ∈ I0 ∪ I1, �v�2 = 0. Here we define the cross-rounding
function 〈·〉2 : Zq → Z2 as 〈v〉2 := � 4

q · v mod 2. Obviously, 〈v〉2 = b ∈ {0, 1}
such that v ∈ Ib ∪ (q

2 + Ib).

Lemma 3 ([21], Claim 3.1). For q ≥ 2 is even, if v is uniformly random chosen
from Zq, then given 〈v〉2, �v�2 is uniformly random.

Identity-Concealed Authenticated Encryption from RLWE 11

Define the set E := [− q
8 , q

8) ∩ Z. Suppose v, w ∈ Zq are sufficiently close, and
given w and 〈v〉2, we can recover �v�2 using the reconciliation function rec:
Zq × Z2 → Z2:

rec(w, b) =

{
0 if w ∈ Ib + E(modq),
1 otherwise.

Lemma 4 ([21], Claim 3.2). For q ≥ 2 is even, if w = v + e mod q for some
v ∈ Zq and e ∈ E, then rec(w, 〈v〉2)= �v�2.

Odd Modulus. When q is odd, Peikert proposed a randomized function dbl:
Zq → Z2q to avoid the bias produced in the rounding function. Let v ∈ Zq,
function dbl is defined to be dbl(v) := 2v − ẽ ∈ Z2q where ẽ ∈ Z is independent
of v and uniformly random modulo two. Usually we write v with an overbar to
means that v̄ ← dbl(v).

Lemma 5 ([21], Claim 3.3). For q > 2 is odd, if v is uniformly random chosen
from Zq and v̄ ← dbl(v) ∈ Z2q, then �v̄�2 is uniformly random given 〈v̄〉2.

Define function HelpRec(X): (1) X ← dbl(X); (2) W ← 〈X〉2, K ← �X�2;
(3) return (K,W).

Note that for w, v ∈ Zq, we need apply the appropriated rounding function
from Z2q to Z2, (which means that �x�p = � p

2q · x�, 〈x〉2 = � 4
2q · x), and similar

to rec function. Then if (K,W) ← HelpRec(X) and Y = X + e with ||e||∞ < q
8 ,

then rec(2 · Y,W) = K. By applying coefficient-wise to the coefficients in Zq of
a ring elements we also can extend these definitions to Rq. That is, for a ring
elements v = (v0, . . . , vn−1) ∈ Rq, setting �v�2 = (�v0�2, . . . , �vn−1�2); 〈v〉2 =
(〈v0〉2, . . . , 〈vn−1〉2), HelpRec(v) = (HelpRec(v0), . . . ,HelpRec(vn−1)) and for a
binary-vector b = (b0, . . . , bn−1) ∈ {0, 1}n, setting rec(v, b) = (rec(v0, b0),. . . ,
rec(vn−1, bn−1)).

2.7 A Variant of Pair with Errors Problem

The vPWE Assumption. In [9], Ding et al. propose the Pairing with Errors
(PWE) assumption based on Ding’s reconciliation mechanism [8]. Here we pro-
posed a variant of their PWE assumption and we call it vPWE assumption.
We replace the Ding’s reconciliation mechanism with Peikert’s reconciliation
mechanism. Let χβ be a Gaussian distribution for fixed β ∈ R

∗
+. For any

(X, s) ∈ Rq × Rq, if (K,W) ←HelpRec(X · s), then set τ(X, s) := K = �X · s�2.
Let A be probabilistic, polynomial-time algorithm. A takes inputs of the form
(a,X, Y,W), where (a,X, Y) ∈ Rq ×Rq ×Rq and W ∈ {0, 1}n, and outputs a list
of values in {0, 1}n. Given s randomly chosen from χβ , Y which is a “small addi-
tive perturbation” of a · s, and W ← 〈X · s〉2, A’s objective will be outputting
the string τ(X, s).

To states the hardness of vPWE assumption, We define the decision version
of vPWE problem vDPWE as follows. If vDPWE is hard, so is vPWE.

12 C. Liu et al.

Definition 1 (vDPWE). Given (a,X, Y,W, σ) ∈ Rq×Rq×Rq×{0, 1}n×{0, 1}n

where W = 〈K〉2 for some K ∈ Rq (K ← dbl(K)), and σ = rec(2 · K,W).
The Decision vPWE problem (vDPWE) is to decide whether K = Xs + e1,
Y = as + e2 for some s, e1, e2 are drawn from χβ, or (K,Y) are uniformly
random in Rq × Rq.

In order to show the reduction of the vDPWE problem to the RLWE problem,
we would like to introduce a definition to what we called the RLWE-DH problem
[9] which can be reduced to RLWE problem.

Definition 2 (RLWE-DH). Let Rq and χβ be defined as above. Given an
input ring element (a,X, Y,K), where (a,X) is uniformly random in R2

q, The
DRLWE-DH problem is to decision if K is Xs + e1 and Y = as + e2 for some
s, e1, e2

$←− χβ or (K,Y) are uniformly random in Rq × Rq.

Theorem 3 ([9], Theorem 1). Let Rq and χβ be defined as above, then the
RLWE-DH problem is hard to solve if RLWE problem is hard.

Theorem 4. Let Rq and χβ be defined as above. The vDPWE problem is hard
if the RLWE-DH problem is hard.

Proof. Suppose there exists an algorithm D which can solve the vDPWE
problem on input (a,X, Y,W, σ) where for some K ∈ Rq, W = 〈K〉2 and
σ = rec(2 · K,W) with non-negligible advantage. By using D as a subroutine,
we can build a distinguisher D′ on input (a′,X ′, Y ′,K ′), solve the RLWE-DH
problem:

– Compute W = 〈K ′〉2 and σ = rec(2 · K ′,W).
– Run D using the input (a′,X ′, Y ′,W, σ).

• If D outputs 1 then K ′ is X ′s + e1 for some e1
$←− χβ and Y ′ = as + e2

for some s, e1
$←− χβ .

• Else (K ′, Y ′) is uniformly random element from Rq × Rq.

Because D solves vDPWE with non-negligible advantage, D′ solves RLWE-
DH with non-negligible advantage as well, which contradicts RLWE-DH’s hard-
ness. ��

3 Protocol Construction of Encryption

3.1 The RLWE-ICAE

In this section we present a practical and carefully designed scheme: RLWE-
ICAE. The scheme consists of the following four algorithms, Setup, Keygen,
Encrypt and Decrypt.

Setup: On a security parameter κ, Setup(1κ) returns params = (n, q, α, β, a)
specifying the underlying ring Rq, Gaussian distribution χα, χβ used in the

Identity-Concealed Authenticated Encryption from RLWE 13

scheme and public element a
$←− Rq, where n is a power of 2 and q is an odd

prime such that q mod 2n = 1.

Keygen: On the parameters params, for each honest user i, (1 ≤ i ≤ N),

Keygen samples si, ei
$←− χα, sets pki = a · si + ei and ski = si, and outputs

the keypair (pki, ski). The CA issue a certificate certi used to authenticated the
binding between user identity idi and public-key pki.

Encrypt: Let
∏

= (K, E ,D) be an AEAD scheme. Let h : {0, 1}∗ → χα be
a cryptographic hash function that always outputs invertible elements in Rq,
M ∈ {0, 1}∗ be the message to be encrypted with an associated data H and
KDF : G × {0, 1}∗ → {0, 1}κ be a key derivation function. We denote by
Alice the sender with public identity information pidA = (idA, pkA = pA =

a · sA + eA ∈ Rq, certA), where sA, eA
$←− χα, and secret-key skA = sA, and by

Bob the receiver with possesses public identity information pidB = (idB , pkB =

pB = a · sB + eB ∈ Rq, certB), where sB , eB
$←− χα, and secret-key skB = sB .

Encrypt(skA, pidA, pidB ,H,M) works as follows:

1. Sample r, f
$←− χβ and compute X = a · r + f ∈ Rq;

2. Compute d = h(X, pidA, pidB), r̂ = r + sAd and f̂ = f + eAd;
3. Go to step 4 with probability min(

D
Z2n,β(v)

M ·D
Z2n,β,v1

(v) , 1), where v ∈ Z
2n is the

coefficient vector of element r̂ concatenated with the coefficient vector of f̂ ,
and v1 ∈ Z

2n is the coefficient vector of sAd concatenated with the coefficient
vector of eAd; otherwise go back to step 1;

4. Sample g
$←− χβ , and compute X̃ = pA · d + X, PSA = pB · (r + sAd) + g;

5. Compute (PS,w) ← HelpRec(PSA);
6. Derive key K1 = KDF (PS, X̃||pidB), where K1 ∈ K;
7. Compute CAE ← EK1(H, pidA||X||M);
8. Finally, send the ciphertext C = (H, X̃, w,CAE) to the receiver.

Decrypt(skB , pidB , C(= (H, X̃, w,CAE))) works as follows:

1. Compute PSB = X̃ · sB and pre-shared secrecy PS = rec(2 · PSB, w), and
derive the key K1 = KDF (PS, X̃||pidB);

2. Run DK1(H,CAE). If DK1(H,CAE) returns ⊥, abort; otherwise get (pidA =
(idA, pA, certA),X,M);

3. Compute d = h(X, pidA, pidB). If X̃ equals to pA · d + X and pidA is valid,
accept (pidA,M); otherwise, abort.

Our scheme is presented in Fig. 1. Note that we use rejection sampling in our
scheme, and this technique can protect the secret information sAd and eAd from
X̃ = a · (sAd + r) + (eAd + f). In our proof of insider confidentiality, such a
“secret hidden” is necessary. Reconciliation mechanism is used to compute PS
from two approximate values PSA and PSB, and this can be regarded to be a
key agreement of the sender and the receiver.

14 C. Liu et al.

pidA pidB

pkA : pA ← a · sA + eA pkB : pB ← a · sB + eB

skA : sA skB : sB

where sA, eA
$←− χα where sB , eB

$←− χα

X ← a · r + f where r, f
$←− χβ

d ← h(X, pidA, pidB)
˜X = pA · d + X
PSA ← pB · (r + sA · d) + g

where g
$←− χβ

(PS, w) ← HelpRec(PSA)

K1 ← KDF (PS, ˜X||pidB)

CAE ← EK1(H, pidA||X||M)
H, ˜X,w,CAE−−−−−−−−→ PSB ← ˜X · sB

PS ← rec(2 · PSB , w)

K1 ← KDF (PS, ˜X||pidB)
(pidA, X, M) ← DK1(H, CAE)
d ← h(X, pidA, pidB)

Accept if pidA valid and ˜X = pA · d + X

Fig. 1. Protocol structure of RLWE-ICAE.

One-Pass CAKE. In the RLWE-ICAE, there is K1 = KDF (PS, X̃||pidB).
We can redefine KDF to construct an one-pass CAKE. Define (K1,K2) =
KDF (PS, X̃||pidB). Then to cast the RLWE-ICAE scheme into one-pass
identity-concealed authenticated key-exchange (CAKE), we need set the session-
key to be K2 which is computationally independent of the key K1. Hence the
exposure of K1 does not affect the session key security. Note that a similar
scheme is Zhang’s one-pass key exchange protocol from ideal lattices [27]. Com-
pared Zhang’s protocol, our scheme provides identity concealment.

3.2 Correctness

Note that in protocol, if �PSA�2 = rec(2 · PSB, w), where PSA ← dbl(PSA),
the protocols would be correct. By the definition of the reconciliation mechanism
and Lemma 4, there needs to ||PSA − PSB||∞ < q

8 . We have

PSA = pB(r + sAd) + g = (asB + eB)(r + sAd) + g

= adsAsB + eBsAd + arsB + reB + g,

PSB = X̃sB = (pAd + X)sB = (asAd + eAd + ar + f)sB

= adsAsB + eAsBd + arsB + fsB,

therefore, we need ||PSA − PSB||∞ = ||eBsAd + reB + g − eAsBd − fsB||∞ < q
8

with overwhelming probability.

Identity-Concealed Authenticated Encryption from RLWE 15

4 Security for RLWE-ICAE

We assume KDF to be a random oracle.

Theorem 5. The scheme RLWE-ICAE in Fig. 1 satisfies outsider unforgeability
and insider confidentiality in the random oracle model, under the AEAD security
and the vPWE assumption.

The proof of Theorem 5 is presented in the full version of this paper in ePrint.
We construct a scheme simulator S, which is computationally indistinguishable
from that in the real attack game from the view of the adversary and proof that
if the adversary can break the outsider unforgeability or insider confidentiality
security, vPWE problem can be solved with non-negligible probability.

5 Concrete Parameters

In this section, we present the choices of parameters and give the complexity
assessment of RLWE-ICAE.

We use the property for product of two Gaussian distributed random val-
ues which are stated in [27]. Let x, y ∈ R be two polynomials with degree of
n. Assume that the coefficients of x and y are distributed according to a dis-
crete Gaussian distribution with parameter βx, βy, respectively. Then we have
that the individual coefficients of the polynomial xy are approximately normally
distributed around zero with parameter βxβy

√
n. Hence for ||PSA − PSB||∞ =

||eBsAd + reB + g − fsB − eAsBd||∞ < q
8 , applying Lemma 1 we have that

||kA − kB ||∞ > 13 ·
√

2nα2β2 + β2 + 2n2α6 with probability approximating
2−121. We set 13 ·

√
2nα2β2 + β2 + 2n2α6 < q

8 to make sure the correctness
of the scheme. Note that since the Theorem 1 of rejection sampling, the distri-
butions of r + sAd is according to χβ . We follow a way of parameter choosing
in [27]. To choose an appropriate β, we set η = 1/2 in Lemma 2 such that
||sAd|| ≤ 1/2nα2 with probability at most 2 · 0.943−n. In order to make the
rejection sampling work, we need to set β ≥ ζ · 1/2nα2 for some constant ζ.
When we set ζ = 12, by Theorem 1, there is an expect number of rejection
sampling about M = 2.72 and a statistical distance about 2−100

M .
For the security of our parameters, Alkim et al. [2] analysised RLWE and

LWE using two BKZ types attacks: prime attack and dual attack [6]. The
thoughts of their approach is to replace the enumeration core-SVP algorithm
in BKZ by sieve algorithm, and only evaluate the cost of one call to an SVP
oracle in dimension b. For more detail, we refer to [2]. We use their techniques
to assess the core-SVP security. But to estimate the security of our scheme more
accurately, we follow Albrecht’s estimation [1] about the number for the calls to
core-SVP oracle. Albrecht estimated it to be 8d, where d is the dimension of the
embedding lattice. We will first compute the core-SVP security, then multiple it
with 8d to obtain the final security.

Two recommend parameters choices is given in Table 2. Remark that q must
be a prime and satisfies q = 1 mod 2n. In the table, we denote classical security

16 C. Liu et al.

Table 2. Recommend Parameters for RLWE-ICAE

I II

n power of 2 1024 2048

α 2.828 2.828

β > 1
2
nα2ζ = 1

2
nα2 · 12 49152 98304

log2β ≈15.6 ≈16.6

q > 104 · √
2nα2β2 + β2 + 2n2α6 231362561 654340097

log2q ≈27.8 ≈29.3

Classical security 120 bits 256 bits

Quantum security 110 bits 234 bits

as the best-known classical attack time complexity, and quantum security as the
best-known quantum attack time complexity [2].

6 Conclusion

We proposed the first lattice based identity-concealed authenticated encryption
scheme: RLWE-ICAE. The scheme enjoys many nice properties of higncryption
such as 0-RTT option, forward ID-privacy, receiver deniability and x-security.
Meanwhile since our scheme is based on RLWE, it also enjoys the properties of
lattice-based cryptography, such as conceptual simplicity, worst-case hardness
assumption, and resistance to quantum computer attacks. Our scheme benefits
from Peikert’s reconciliation mechanism [21] technique which can help two par-
ties compute a same element from two approximate values. We use the rejection
sampling technique to hide the static secret information. To prove the security
of our scheme, we introduce vPWE assumption, which is a variant of Pairing
with Errors assumption [9] by replacing the reconciliation mechanism in [9] with
Peikert’s version [21]. For further works, we will consider to construct an identity
concealed key exchange from RLWE.

Acknowledgments. This article is supported by The National Key Research and
Development Program of China (Grant No. 2017YFA0303903), National Cryptog-
raphy Development Fund (No. MMJJ20170121), and Zhejiang Province Key R&D
Project (No. 2017C01062). Authors thank Aijun Ge for discussions and the anony-
mous ProvSec’19 reviewers for helpful comments.

References

1. Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parameter
choices in HElib and SEAL. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017, Part II. LNCS, vol. 10211, pp. 103–129. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56614-6 4

https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-319-56614-6_4

Identity-Concealed Authenticated Encryption from RLWE 17

2. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: 25th USENIX Security Symposium, USENIX Security 16,
Austin, TX, USA, 10–12 August 2016, pp. 327–343 (2016). https://www.usenix.
org/conference/usenixsecurity16/technical-sessions/presentation/alkim

3. Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption.
J. Cryptology 20(2), 203–235 (2007)

4. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: 2015 IEEE Sym-
posium on Security and Privacy, SP 2015, San Jose, CA, USA, 17–21 May 2015,
pp. 553–570 (2015)

5. Brzuska, C., Smart, N.P., Warinschi, B., Watson, G.J.: An analysis of the EMV
channel establishment protocol. In: 2013 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2013, Berlin, Germany, 4–8 November 2013,
pp. 373–386 (2013)

6. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

7. Dent, A.W.: Hybrid cryptography. IACR Cryptology ePrint Archive 2004, 210
(2004). http://eprint.iacr.org/2004/210

8. Ding, J.: A simple provably secure key exchange scheme based on the learning with
errors problem. IACR Cryptology ePrint Archive 2012, 688 (2012). http://eprint.
iacr.org/2012/688

9. Ding, J., Alsayigh, S., Lancrenon, J., RV, S., Snook, M.: Provably secure pass-
word authenticated key exchange based on RLWE for the post-quantum world.
In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 183–204. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-52153-4 11

10. Ducas, L., Durmus, A.: Ring-LWE in polynomial rings. In: Fischlin, M., Buchmann,
J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 34–51. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30057-8 3

11. Gorantla, M.C., Boyd, C., González Nieto, J.M.G.: On the connection between
signcryption and one-pass key establishment. In: Galbraith, S.D. (ed.) Cryptogra-
phy and Coding 2007. LNCS, vol. 4887, pp. 277–301. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-77272-9 17

12. Halevi, S., Krawczyk, H.: One-pass HMQV and asymmetric key-wrapping. In:
Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol.
6571, pp. 317–334. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19379-8 20

13. Iyengar, S., Nekritz, K.: Building zero protocol for fast, secure mobile connec-
tions (2017). https://code.fb.com/android/building-zero-protocol-for-fast-secure-
mobile-connections/

14. Krawczyk, H.: The order of encryption and authentication for protecting com-
munications (or: how secure is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 310–331. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44647-8 19

15. Langley, A., Chang, W.T.: Quic crypto (2014). https://docs.google.com/
document/d/1g5nIXAIkN Y-7XJW5K45IblHd L2f5LTaDUDwvZ5L6g

16. Lyubashevsky, V.: Lattice signatures without trapdoors. IACR Cryptology ePrint
Archive 2011, 537 (2011). http://eprint.iacr.org/2011/537

17. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://doi.org/10.1007/978-3-642-25385-0_1
http://eprint.iacr.org/2004/210
http://eprint.iacr.org/2012/688
http://eprint.iacr.org/2012/688
https://doi.org/10.1007/978-3-319-52153-4_11
https://doi.org/10.1007/978-3-642-30057-8_3
https://doi.org/10.1007/978-3-540-77272-9_17
https://doi.org/10.1007/978-3-642-19379-8_20
https://doi.org/10.1007/978-3-642-19379-8_20
https://code.fb.com/android/building-zero-protocol-for-fast-secure-mobile-connections/
https://code.fb.com/android/building-zero-protocol-for-fast-secure-mobile-connections/
https://doi.org/10.1007/3-540-44647-8_19
https://doi.org/10.1007/3-540-44647-8_19
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g
http://eprint.iacr.org/2011/537
https://doi.org/10.1007/978-3-642-29011-4_43

18 C. Liu et al.

18. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

19. Menezes, A., Qu, M., Vanstone, S.A.: Some new key agreement protocols providing
mutual implicit authentication (1995)

20. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007)

21. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11659-4 12

22. Rescorla, E.: The transport layer security (TLS) protocol version 1.3. RFC 8446,
pp. 1–160 (2018)

23. Rogaway, P.: Authenticated-encryption with associated-data. In: Proceedings of
the 9th ACM Conference on Computer and Communications Security, CCS 2002,
Washington, DC, USA, 18–22 November 2002, pp. 98–107 (2002)

24. Roskind, J.: Quick UDP internet connections: multiplexed stream transport over
UDP (2012)

25. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

26. Yang, Z., Chen, Y., Luo, S.: Two-message key exchange with strong security from
ideal lattices. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 98–115.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0 6

27. Zhang, J., Zhang, Z., Ding, J., Snook, M., Dagdelen, Ö.: Authenticated key
exchange from ideal lattices. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015, Part II. LNCS, vol. 9057, pp. 719–751. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46803-6 24

28. Zhao, Y.: Identity-concealed authenticated encryption and key exchange. In: Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, 24–28 October 2016, pp. 1464–1479 (2016)

29. Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption) �
cost(signature) + cost (encryption). In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS,
vol. 1294. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052234

https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-76953-0_6
https://doi.org/10.1007/978-3-662-46803-6_24
https://doi.org/10.1007/978-3-662-46803-6_24
https://doi.org/10.1007/BFb0052234

Lattice-Based IBE with Equality Test
in Standard Model

Dung Hoang Duong(B), Huy Quoc Le, Partha Sarathi Roy, and Willy Susilo

Institute of Cybersecurity and Cryptology,
School of Computing and Information Technology, University of Wollongong,

Northfields Avenue, Wollongong, NSW 2522, Australia
{hduong,wsusilo}@uow.edu.au, qhl576@uowmail.edu.au,

royparthasarathi0@gmail.com

Abstract. Public key encryption with equality test (PKEET) allows the
testing of equality of underlying messages of two ciphertexts. PKEET is
a potential candidate for many practical applications like efficient data
management on encrypted databases. Identity-based encryption scheme
with equality test (IBEET), which was introduced by Ma (Informa-
tion Science 2016), can simplify the certificate management of PKEET.
Potential applicability of IBEET leads to intensive research from its first
instantiation. Ma’s IBEET and most of the constructions are proven
secure in the random oracle model based on number-theoretic hardness
assumptions which are vulnerable in the post-quantum era. Recently, Lee
et al. (ePrint 2016) proposed a generic construction of IBEET schemes
in the standard model and hence it is possible to yield the first instan-
tiation of IBEET schemes based on lattices. Their method is to use a
3-level hierarchical identity-based encryption (HIBE) scheme together
with a one-time signature scheme. In this paper, we propose, for the first
time, a concrete construction of an IBEET scheme based on the hardness
assumption of lattices in the standard model and compare the data sizes
with the instantiation from Lee et al. (ePrint 2016). Further, we have
modified our proposed IBEET to make it secure against insider attack.

1 Introduction

The concept of IBEET is the combination of PKEET and identity-based encryp-
tion (IBE). IBEET can simplify the certificate management of PKEET with all
messages encrypted with the receiver’s public identity. IBEET is a special kind
of IBE featuring equality test between ciphertexts under different as well as the
same identity. This property is very useful in various practical applications, such
as keyword search on encrypted data, encrypted data partitioning for efficient
encrypted data management, personal health record system and spam filtering in
encrypted email systems. Due to its numerous practical applications, there have
been elegant research outcomes in this direction with the appearance of improved
schemes or ones with additional functionalities [8,10,15]. However, they are all
proven secure in the random oracle model which does not exist in reality. There-
fore it is necessary to construct such a scheme in the standard model. Moreover,
c© Springer Nature Switzerland AG 2019
R. Steinfeld and T. H. Yuen (Eds.): ProvSec 2019, LNCS 11821, pp. 19–40, 2019.
https://doi.org/10.1007/978-3-030-31919-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-31919-9_2

20 D. H. Duong et al.

all aforementioned existing schemes base their security on some number-theoretic
hardness assumptions which will be efficiently solved in the quantum era [13]. Up
to the present, there is only one IBEET scheme secure in the standard model,
which was generically constructed by Lee et al. [7]. Their method is to use a
3-level hierarchical identity-based encryption (HIBE) scheme together with a
one-time signature scheme. This is the first one with the possibility of yielding
a post-quantum instantiation based on lattices, since lattice-based cryptogra-
phy is the only one among other post-quantum areas up to present offers HIBE
primitives, e.g., [1]. Hence it remains a question of either yielding an efficient
instantiation or directly constructing an IBEET based on lattices.

On the other hand, supporting equality tests makes the security of IBEET
schemes weaken. If the adversary can have a trapdoor for the equality test on
the target ciphertext, he can generate a ciphertext of any message by himself
and perform equality tests between the target ciphertext and the ciphertext
generated by himself. We call this type of attacks as an insider attack [15].
IBEET secure against insider attack is proposed by Wu et al. [15]. There is a
security flaw which is fixed by Lee et al. [9]. However, the construction is secure
in the random oracle model based on number-theoretic hardness assumption.
So, it is required to consider the secure construction in standard model based
on the hardness assumptions which will remain secure in post-quantum era.

Table 1. Comparison of proposed IBEET with instantiation from [7].

Scheme Ciphertext Public key Master secret key Secret key

Proposed 2t + 4m (l + 3)mn + nt 2m2 4mt

Instantiation∗

from [7]
8m + 2t + 2mt (l + 3)mn + nt 2m2 2mt

∗See Appendix A; ∗∗Data sizes are in number of field elements. In case of [7], we
do not count the part of ciphertex which is possible to obtain from the public key.

Our Contribution: In this paper, our contribution is twofold:

– According to the best of our knowledge, we propose the first concrete con-
struction of an addaptive secure IBEET scheme secure in the standard model
based on the hardness assumption of lattices. From Table 1, it is evident that
the proposed construction outperformed the instantiation from [7].

– We have modified the proposed IBEET to make it secure against insider
attack. This is also secure in the standard model based on the hardness
assumption of lattices, whereas the previous constructions are secure in the
random oracle model based on the number-theoretic hardness assumptions.

Our ideas come from the use of the full lattice-based IBE in the standard model
by Agrawal et al. [1] and a recent technique by Duong et al. [6] in directly
constructing a PKEET based on lattices in the standard model.

Lattice-Based IBE with Equality Test in Standard Model 21

Remark 1. Our proposed schemes achieve only IND-CPA security (defined in
Sect. 2), which can be modified to achieve IND-CCA2 security by using the HIBE
scheme in [1] through the BCHK’s transformation [4]. Hence in definition of
security model in Sect. 2, we provide only the definition of CPA-security models,
in which the adversary cannot query the decryption oracle.

2 Preliminaries

2.1 Identity-Based Encryption with Equality Test (IBEET)

Definition 2 (IBEET). An identity-based encryption with equality test
(IBEET) consists of the following polynomial-time algorithms:

– Setup(λ): On input a security parameter λ and set of parameters, it outputs
a public parameter PP and a master secret key MSK. Note that PP consists
of the information of the message space M and we assume that all other
algorithms take PP as an input implicitly without stated.

– Extract(PP,MSK, ID): On input PP,MSK and an identity ID, it outputs a user
ID’s secret key SKID.

– Enc(PP, ID,m): On input PP, an identity ID and a message m, it outputs a
ciphertext CT.

– Dec(PP,SKID,CT): On input PP, a user ID’s secret key SK and a ciphertext
CT, it outputs a message m′ or ⊥.

– Td(SKID): On input the secret key SKID for the user ID, it outputs a trapdoor
tdID.

– Test(tdIDi
, tdIDj

,CTIDi
,CTIDj

): On input two trapdoors tdIDi
, tdIDj

and two
ciphertexts CTIDi

,CTIDj
for users IDi and IDj respectively, it outputs 1 or 0.

Correctness. We say that an IBEET scheme is correct if the following condi-
tions hold:

(1) For any security parameter λ, any user IDi and any message m, it holds that

Pr

[
Dec(PP,SKID,CTID) = m

∣∣∣∣∣SKID ← Extract(PP,MSK, ID)
CTID ← Enc(PP, ID,m)

]
= 1.

(2) For any security parameter λ, any users IDi, IDj and any messages mi,mj ,
it holds that:

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣
Test

⎛
⎜⎜⎜⎝

tdIDi

tdIDj

CTIDi

CTIDj

⎞
⎟⎟⎟⎠ = 1

∣∣∣∣∣∣∣∣∣∣∣∣

SKIDi
← Extract(PP,MSK, IDi)

CTIDi
← Enc(PP, IDi,mi)

tdIDi
← Td(SKIDi

)
SKIDj

← Extract(PP,MSK, IDj)
CTIDj

← Enc(PP, IDj ,mj)
tdIDj

← Td(SKIDj
)

⎤
⎥⎥⎥⎥⎥⎥⎦

is 1 if mi = mj and is negligible in λ for any ciphertexts CTi, CTj such that
Dec(SKi,CTi) �= Dec(SKj ,CTj), regardless of whether i = j.

22 D. H. Duong et al.

Security Model of IBEET. For the security model of IBEET, we consider
two types of adversaries:

• Type-I adversary: for this type, the adversary can request to issue a trapdoor
for the target identity and thus can perform equality tests on the challenge
ciphertext. The aim of this type of adversaries is to reveal the message in the
challenge ciphertext.

• Type-II adversary: for this type, the adversary cannot request to issue a
trapdoor for the target identity and thus cannot perform equality tests on
the challenge ciphertext. The aim of this type of adversaries is to distinguish
which message is in the challenge ciphertext between two candidates.

The security model of a IBEET scheme against two types of adversaries above
is described in the following.

OW-ID-CPA Security Against Type-I Adversaries. We illustrate the
game between a challenger C and a Type-I adversary A who can have a trap-
door for all ciphertexts of the target identity, say ID∗, that he wants to attack,
as follows:

1. Setup: The challenger C runs Setup(λ) to generate the pair (PP,MSK), and
sends the public parameter PP to A.

2. Phase 1: The adversary A may make queries polynomially many times adap-
tively and in any order to the following oracles:
– OExt: an oracle that on input an identity ID (different from ID∗), returns

the ID’s secret key SKID.
– OTd: an oracle that on input an identity ID, return tdID by running tdID ←

Td(SKID) using the secret key SKID of the identity ID.
3. Challenge: C chooses a random message m in the message space and run

CT∗
ID∗ ← Enc(PP, ID∗,m), and sends CT∗

ID∗ to A.
4. Phase 2: A can query as in Phase 1 with the constraint that the identity

ID∗ cannot be queried to the key generation oracle OExt.
5. Guess: A output m′.

The adversary A wins the above game if m = m′ and the success probability of
A is defined as

AdvOW-ID-CPA
A,IBEET (λ) := Pr[m = m′].

Remark 3. If the message space is polynomial in the security parameter or the
min-entropy of the message distribution is much lower than the security param-
eter then a Type-I adversary A with a trapdoor for the challenge ciphertext can
reveal the message in polynomial-time or small exponential time in the secu-
rity parameter, by performing the equality tests with the challenge ciphertext
and all other ciphertexts of all messages generated by himself. Hence to prevent
this attack, we assume that the size of the message space M is exponential in the
security parameter and the min-entropy of the message distribution is sufficiently
higher than the security parameter.

Lattice-Based IBE with Equality Test in Standard Model 23

IND-ID-CPA Security Against Type-II Adversaries. We present the
game between a challenger C and a Type-II adversary A who cannot have a
trapdoor for all ciphertexts of the target identity ID∗ as follows:

1. Setup: The challenger C runs Setup(λ) to generate (PP,MSK) and gives the
public parameter PP to A.

2. Phase 1: The adversary A may make queries polynomially many times adap-
tively and in any order to the following oracles:
– OExt: an oracle that on input an identity ID (different from ID∗), returns

the ID’s secret key SKID.
– OTd: an oracle that on input an identity ID, return tdID by running tdID ←

Td(SKID) using the secret key SKID of the identity ID.
3. Challenge: A selects a target user ID∗, which was never queried to the

OExt and OTd oracles in Phase 1, and two messages m0 m1 of same length
and pass to C, who then selects a random bit b ∈ {0, 1}, runs CT∗

ID∗,b ←
Enc(PP, ID∗,mb) and sends CT∗

ID∗,b to A.
4. Phase 2: A can query as in Phase 1 with the constraint that the target

identity ID∗ cannot be queried to the secret key extraction oracle OExt and
the trapdoor generation oracle OTd.

5. Guess: A output b′.

The adversary A wins the above game if b = b′ and the advantage of A is defined
as

AdvIND-ID-CPA
A,IBEET :=

∣∣∣∣Pr[b = b′] − 1
2

∣∣∣∣ .

2.2 IBEET Against Insider Attack

Definition 4. An IBEET against insider attack consists of the following
polynomial-time algorithms:

– Setup(λ): On input a security parameter λ, it outputs a public parameter PP,
a master secret key MSK and a master token key MTK.

– Extract(ID,MSK,MTK): On input an identity ID, the master secret key MSK
and a master token key MTK, it outputs the secret key SKID and token tokID
for the identity ID.
It is assumed that SKID and tokID are delivered to the user of identity ID and
the token tokID is delivered to all group users via secure channel.

– Enc(PP,m, ID, tokID): On input PP, an identity ID with its token tokID and a
message m, it outputs a ciphertext CT.

– Dec(CT,SKID, tokID): On input a ciphertext CT, the secret key SKID and token
tokID of the identity ID, it outputs a message m′ or ⊥.

– Test(CTi,CTj): On input two ciphertexts CTi and CTj, it outputs 1 or 0.

Correctness. We say that the above IBEET is correct if the following holds:

24 D. H. Duong et al.

(1) For any security parameter λ, identity ID and message m, it holds that

Pr[m ← Dec(CT,SKID, tokID)] = 1

where (PP,MSK,MTK) ← Setup(λ), (SKID, tokID) ← Extract(ID,MSK,MTK)
and CT ← Enc(PP,m, ID, tokID).

(2) For any security parameter λ, identities IDi, IDj and messages mi,mj , it
holds that

Pr

⎡
⎢⎢⎢⎢⎣Test (CTi,CTj) = 1

∣∣∣∣∣∣∣∣∣∣

(PP,MSK,MTK) ← Setup(λ)
(SKIDi

, tokIDi
) ← Extract(IDi,MSK,MTK)

(SKIDj , tokIDj) ← Extract(IDj ,MSK,MTK)
CTi ← Enc(PP,mi, IDi, tokIDi

)
CTj ← Enc(PP,mj , IDj , tokIDj

)

⎤
⎥⎥⎥⎥⎦

is 1 if mi = mj and negligible in the security parameter λ otherwise.

Security Model. The security model of IBEET against insider attack [15] is
slightly weaker than the formal security model of traditional IBE. In such a
scheme, two messages m0 and m1 submitted by the adversary to the challenger
should not be queried to the encryption oracle before and after the challenge
phase. We call this security model the weak indistinguishability under adaptive
identity and chosen message attacks (wIND-ID-CPA). In particular, we present
the game between the challenger C and the adversary A as the following.

1. Setup: The challenger C runs Setup(λ) to generate (PP,MSK,MTK) and
gives the public parameter PP to A.

2. Phase 1: The adversary A may make queries polynomially many times adap-
tively and in any order to the following oracles:
– OExt: an oracle that on input an identity ID, returns the ID’s secret key
SKID, where (SKID, tokID) ← Extract(ID,MSK,MTK).

– OEnc: an oracle that on input a pair of an identity ID and a message m,
returns the output of Enc(PP,m, ID, tokID).

3. Challenge: A submits a target identity ID∗ and two messages m0, m1 of
same length to C, where ID∗ was never queried to OExt and m0, m1 were
never queried to OEnc in Phase 1. Then C picks a random bit b ∈ {0, 1}, runs
CT∗

ID∗,b ← Enc(PP,mb, ID
∗, tokID∗), and sends CT∗

ID∗,b to A.
4. Phase 2: A can query as in Phase 1 with the following constraints:

– The target identity ID∗ cannot be queried to OExt;
– The submitted messages m0, m1 cannot be queried to OEnc;

5. Guess: A outputs a bit b′.

The adversary A wins the above game if b = b′ and the advantage of A is defined
as

AdvwIND-ID-CPA
A,IBEET :=

∣∣∣∣Pr[b = b′] − 1
2

∣∣∣∣ .

Lattice-Based IBE with Equality Test in Standard Model 25

2.3 Lattices

Throughout the paper, we will mainly focus on integer lattices, which are discrete
subgroups of Z

m. Specially, a lattice Λ in Z
m with basis B = [b1, · · · ,bn] ∈

Z
m×n, where each bi is written in column form, is defined as

Λ :=

{
n∑

i=1

bixi|xi ∈ Z ∀i = 1, · · · , n

}
⊆ Z

m.

We call n the rank of Λ and if n = m we say that Λ is a full rank lattice. In
this paper, we mainly consider full rank lattices containing qZm, called q-ary
lattices, defined as the following, for a given matrix A ∈ Z

n×m and u ∈ Z
n
q

Λq(A) :=
{
e ∈ Z

m s.t. ∃s ∈ Z
n
q where ATs = e mod q

}
Λ⊥

q (A) := {e ∈ Z
m s.t. Ae = 0 mod q}

Λu
q (A) := {e ∈ Z

m s.t. Ae = u mod q}

Note that if t ∈ Λu
q (A) then Λu

q (A) = Λ⊥
q (A) + t.

Let S = {s1, · · · , sk} be a set of vectors in R
m. We denote by ‖S‖ :=

maxi ‖si‖ for i = 1, · · · , k, the maximum l2 length of the vectors in S. We also
denote S̃ := {s̃1, · · · , s̃k} the Gram-Schmidt orthogonalization of the vectors
s1, · · · , sk in that order. We refer to ‖S̃‖ the Gram-Schmidt norm of S.

Ajtai [2] first proposed how to sample a uniform matrix A ∈ Z
n×m
q with an

associated basis SA of Λ⊥
q (A) with low Gram-Schmidt norm. It is improved later

by Alwen and Peikert [3] in the following Theorem.

Theorem 1. Let q ≥ 3 be odd and m := �6n log q�. There is a probabilistic
polynomial-time algorithm TrapGen(q, n) that outputs a pair (A ∈ Z

n×m
q , S ∈

Z
m×m) such that A is statistically close to a uniform matrix in Z

n×m
q and S is

a basis for Λ⊥
q (A) satisfying

‖S̃‖ ≤ O(
√

n log q) and ‖S‖ ≤ O(n log q)

with all but negligible probability in n.

Definition 1 (Gaussian distribution). Let Λ ⊆ Z
m be a lattice. For a vector

c ∈ R
m and a positive parameter σ ∈ R, define:

ρσ,c(x) = exp
(

π
‖x − c‖2

σ2

)
and ρσ,c(Λ) =

∑
x∈Λ

ρσ,c(x).

The discrete Gaussian distribution over Λ with center c and parameter σ is

∀y ∈ Λ , DΛ,σ,c(y) =
ρσ,c(y)
ρσ,c(Λ)

.

26 D. H. Duong et al.

For convenience, we will denote by ρσ and DΛ.σ for ρ0,σ and DΛ,σ,0 respec-
tively. When σ = 1 we will write ρ instead of ρ1. We recall below in Theorem 2
some useful results. The first one comes from [11, Lemma 4.4]. The second one is
from [5] and formulated in [1, Theorem 17] and the last one is from [1, Theorem
19].

Theorem 2. Let q > 2 and let A,B be a matrix in Z
n×m
q with m > n and B

is rank n. Let TA, TB be a basis for Λ⊥
q (A) and Λ⊥

q (B) respectively. Then for
c ∈ R

m and U ∈ Z
n×t
q :

1. Let M be a matrix in Z
n×m1
q and σ ≥ ‖T̃A‖ω(

√
log(m + m1)). Then there

exists a PPT algorithm SampleLeft(A,M, TA, U, σ) that outputs a vector e ∈
Z

m+m1 distributed statistically close to DΛu
q (F1),σ where F1 := (A | M). In

particular e ∈ ΛU
q (F1), i.e., F1 · e = U mod q.

2. Let R be a matrix in Z
k×m and let sR := sup‖x‖=1 ‖Rx‖. Let F2 :=

(A | AR+B). Then for σ ≥ ‖T̃B‖sRω(
√

log m), there exists a PPT algorithm
SampleRight(A,B,R, TB , U, σ) that outputs a vector e ∈ Z

m+k distributed
statistically close to DΛU

q (F2),σ. In particular e ∈ Λu
q (F2), i.e., F2 · e = U

mod q.
Note that when R is a random matrix in {−1, 1}m×m then sR < O(

√
m) with

overwhelming probability (cf. [1, Lemma 15]).

The security of our construction reduces to the LWE (Learning With Errors)
problem introduced by Regev [12].

Definition 2 (LWE problem). Consider publicly a prime q, a positive integer
n, and a distribution χ over Zq. An (Zq, n, χ)-LWE problem instance consists of
access to an unspecified challenge oracle O, being either a noisy pseudorandom
sampler Os associated with a secret s ∈ Z

n
q , or a truly random sampler O$ who

behaviors are as follows:

Os: samples of the form (ui, vi) = (ui,uT
i s + xi) ∈ Z

n
q × Zq where s ∈ Z

n
q is

a uniform secret key, ui ∈ Z
n
q is uniform and xi ∈ Zq is a noise withdrawn

from χ.
O$: samples are uniform pairs in Z

n
q × Zq.

The (Zq, n, χ)-LWE problem allows responds queries to the challenge oracle O.
We say that an algorithm A decides the (Zq, n, χ)-LWE problem if

AdvLWE
A :=

∣∣Pr[AOs = 1] − Pr[AO$ = 1]
∣∣

is non-negligible for a random s ∈ Z
n
q .

Regev [12] showed that (see Theorem 3 below) when χ is the distribution Ψα

of the random variable �qX� mod q where α ∈ (0, 1) and X is a normal random
variable with mean 0 and standard deviation α/

√
2π then the LWE problem is

hard.

Lattice-Based IBE with Equality Test in Standard Model 27

Theorem 3. If there exists an efficient, possibly quantum, algorithm for decid-
ing the (Zq, n, Ψα)-LWE problem for q > 2

√
n/α then there is an efficient quan-

tum algorithm for approximating the SIVP and GapSVP problems, to within
Õ(n/α) factors in the l2 norm, in the worst case.

Hence if we assume the hardness of approximating the SIVP and GapSVP
problems in lattices of dimension n to within polynomial (in n) factors, then it
follows from Theorem 3 that deciding the LWE problem is hard when n/α is a
polynomial in n.

3 Proposed Construction: IBEET

3.1 Construction

Setup(λ): On input a security parameter λ, set the parameters q, n,m, σ, α as
in Sect. 3.2
1. Use TrapGen(q, n) to generate uniformly random n × m-matrices A,A′ ∈

Z
n×m
q together with trapdoors TA and TA′ respectively.

2. Select l + 1 uniformly random n × m matrices A1, · · · , Al, B ∈ Z
n×m
q .

3. Select a uniformly random matrix U ∈ Z
n×t
q .

4. H : {0, 1}∗ → {0, 1}t is a hash function.
5. H ′ : {0, 1}∗ → {0, 1}l is a hash function.
6. Output the public key and the secret key

PK = (A,A′, A1, · · · , Al, B, U) , MSK = (TA, TA′).

Extract(PP,MSK, ID): On input the public parameter PP, a master secret key
MSK and an identity ID = (b1, · · · , bl) ∈ {−1, 1}l:
1. Let AID = B +

∑l
i+1 biAi ∈ Z

n×m
q .

2. Sample EID, E′
ID ∈ Z

2m×t
q as

EID ← SampleLeft(A, AID, TA, U, σ) , E′
ID ← SampleLeft(A′, AID, TA′ , U, σ).

3. Output SKID := (EID, E′
ID).

Let FID = (A|AID), F ′
ID = (A′|AID) ∈ Zq then FID · EID = U,F ′

ID · E′
ID = U in

Zq and EID, E′
ID are distributed as DΛU

q (FID),σ, DΛU
q (F ′

ID),σ
respectively.

Encrypt(PP, ID,m): On input the public parameter PP, an identity ID and a
message m ∈ {0, 1}t, do:
1. Let AID = B +

∑l
i+1 biAi ∈ Z

n×m
q .

2. Set FID := (A|AID), F ′
ID := (A′|AID) ∈ Z

n×2m
q

3. Choose uniformly random s1, s2 ∈ Z
n
q

4. Choose x1,x2 ∈ Ψ
t

α and compute

CT1 = UT s1 + x1 + m
⌊q

2
⌋

, CT2 = UT s2 + x2 + H(m)
⌊q

2
⌋ ∈ Z

t
q.

5. Choose l uniformly random matrices Ri ∈ {−1, 1}m×m for i = 1, · · · , l

and define RID =
∑l

i=1 biRi ∈ {−l, · · · , l}m×m.

28 D. H. Duong et al.

6. Choose y1,y2 ∈ Ψ
m

α and set z1 = RT
IDy1, z2 = RT

IDy2 ∈ Z
m
q .

7. Compute

CT3 = FT
IDs1 +

[
y1

z1

]
,CT4 = (F ′

ID)T s2 +
[
y2

z2

]
∈ Z

2m
q .

8. The ciphertext is

CTID = (CT1,CT2,CT3,CT4) ∈ Z
2t+4m
q .

Decrypt(PP,SKID,CT): On input public parameter PP, private key SKID =
(EID, E′

ID) and a ciphertext CT = (CT1,CT2,CT3,CT4), do:
1. Compute w ← CT1 − ET

IDCT3 ∈ Z
t
q.

2. For each i = 1, · · · , t, compare wi and � q
2�. If they are close, output

mi = 1 and otherwise output mi = 0. We then obtain the message m.
3. Compute w′ ← CT2 − (E′

ID)TCT4 ∈ Z
t
q.

4. For each i = 1, · · · , t, compare w′
i and � q

2�. If they are close, output hi = 1
and otherwise output hi = 0. We then obtain the vector h.

5. If h = H(m) then output m, otherwise output ⊥.
Trapdoor(SKID): On input an identity’s secret key SKID = (EID, E′

ID), it outputs
a trapdoor tdi = E′

ID.
Test(tdIDi

, tdIDj
,CTIDi

,CTIDj
): On input trapdoors tdIDi

, tdIDj
and ciphertexts

CTIDi ,CTIDj for identities IDi, IDj respectively, computes
1. For each i (resp. j), compute wi ← CTi2 − (E′

IDi
)TCTi4 ∈ Z

t
q. For each

k = 1, · · · , t, compare each coordinate wik with � q
2� and output hik = 1

if they are close, and 0 otherwise. At the end, we obtain the vector hi

(resp. hj).
2. Output 1 if hi = hj and 0 otherwise.

Theorem 4. Proposed IBEET construction above is correct if H is a collision-
resistant hash function.

Proof. It is easy to see that if CT is a valid ciphertext of m then the decryption
will always output m. Moreover, if CTIDi and CTIDj are valid ciphertext of m
and m′ of identities IDi and IDj respectively. Then the Test process checks
whether H(m) = H(m′). If so then it outputs 1, meaning that m = m′, which
is always correct with overwhelming probability since H is collision resistant.
Hence, proposed IBEET described above is correct. ��

3.2 Parameters

We follow [1, Sect. 7.3] for choosing parameters for our scheme. Now for the
system to work correctly we need to ensure

– the error term in decryption is less than q/5 with high probability, i.e., q =
Ω(σm3/2) and α < [σlmω(

√
log m)]−1,

– that the TrapGen can operate, i.e., m > 6n log q,
– that σ is large enough for SampleLeft and SampleRight, i.e., σ > lmω(

√
log m),

Lattice-Based IBE with Equality Test in Standard Model 29

– that Regev’s reduction applies, i.e., q > 2
√

n/α,
– that our security reduction applies (i.e., q > 2Q where Q is the number of

identity queries from the adversary).

Hence the following choice of parameters (q,m, σ, α) from [1] satisfies all of the
above conditions, taking n to be the security parameter:

m = 6n1+δ , q = max(2Q,m2.5ω(
√

log n))

σ = mlω(
√

log n) , α = [l2m2ω(
√

log n)]−1
(1)

and round up m to the nearest larger integer and q to the nearest larger prime.
Here we assume that δ is such that nδ > �log q� = O(log n). In [1, Sect. 7.5], it is
shown that one can remove the restriction q > 2Q and that q = m2.5ω(

√
log n)

is sufficient.

3.3 Security Analysis

In this section, we claim that our proposed scheme is OW-ID-CPA secure against
Type-I adversaries (cf. Theorem 5) and IND-ID-CPA secure against Type-II
adversaries (cf. Theorem 6). The proofs will follow a similar argument of Theo-
rem 8. We omit them in the current version and refer to the full version.

Theorem 5. The IBEET with parameters (q, n,m, σ, α) as in (1) is
OW-ID-CPA secure provided that H is a one-way hash function and the
(Zq, n, Ψ̄α)-LWE assumption holds. In particular, suppose there exists a prob-
abilistic algorithm A that wins the OW-ID-CPA game with advantage ε, then
there is a probabilistic algorithm B that solves the (Zq, n, Ψ̄α)-LWE problem with
advantage ε′ such that

ε′ ≥ 1
2q

(ε − εH,OW)

where εH,OW is the advantage of breaking the one-wayness of H.

Theorem 6. The IBEET with parameters (q, n,m, σ, α) as in (1) is
IND-ID-CPA secure provided that H is a one-way hash function and the
(Zq, n, Ψ̄α)-LWE assumption holds. In particular, suppose there exists a prob-
abilistic algorithm A that wins the IND-ID-CPA game with advantage ε, then
there is a probabilistic algorithm B that solves the (Zq, n, Ψ̄α)-LWE problem with
advantage ε′ such that

ε′ ≥ 1
4q

(ε − −εH,OW)

where εH,OW is the advantage of breaking the one-wayness of H.

4 Proposed Construction: IBEET Against Insider Attack

4.1 Construction

Setup(λ): On input a security parameter λ, set the parameters q, n,m, σ, α as
in Sect. 3.2

30 D. H. Duong et al.

1. Use TrapGen(q, n) to generate uniformly random n × m-matrices A,A′ ∈
Z

n×m
q together with trapdoors TA and TA′ respectively.

2. Select l + 1 uniformly random n × m matrices A1, · · · , Al, B ∈ Z
n×m
q .

3. Select a uniformly random matrix U ∈ Z
n×t
q .

4. H : {0, 1}∗ → Z
m
q is a hash function.

5. Output the public parameter, the master secret key MSK and the master
token MTK:

PP = (A,A′, A1, · · · , Al, B, U) , MSK = TA , MTK = TA′ .

Extract(ID,MSK,MTK): On input a master secret key MSK, a master token
MTK and an identity ID = (b1, · · · , bl) ∈ {−1, 1}l:
1. Let AID = B +

∑l
i+1 biAi ∈ Z

n×m
q .

2. Sample EID ∈ Z
2m×t
q as EID ← SampleLeft(A,AID, TA, U, σ).

3. Output SKID := EID and tokID = TA′ .
Let FID = (A|AID) then FID · EID = U in Zq and EID is distributed as
DΛU

q (FID),σ.
Encrypt(PP, ID, tokID,m): On input the public parameter PP, an identity ID

with its token tokID and a message m ∈ {0, 1}t, do:
1. Let AID = B +

∑l
i+1 biAi ∈ Z

n×m
q and set FID := (A|AID) ∈ Z

n×2m
q .

2. Choose uniformly random s′, s ∈ Z
m
q .

3. Choose x ∈ Ψ
t

α and compute

CT1 = TA′s′T + H(m‖TA′) ∈ Z
m
q , CT2 = UT s + x + m

⌊q

2
⌋ ∈ Z

t
q.

4. Choose l uniformly random matrices Ri ∈ {−1, 1}m×m for i = 1, · · · , l

and define RID =
∑l

i=1 biRi ∈ {−l, · · · , l}m×m.
5. Choose y ∈ Ψ

m

α and set z = RT
IDy ∈ Z

m
q .

6. Compute

CT3 = FT
IDs +

[
y
z

]
∈ Z

2m
q .

7. The ciphertext is

CTID = (CT1,CT2,CT3) ∈ Z
t+3m
q .

Decrypt(SKID, tokID,CT): On input the private key SKID = EID, token tokID =
TA′ and a ciphertext CT = (CT1,CT2,CT3), do:
1. Compute w ← CT2 − ET

IDCT3 ∈ Z
t
q.

2. For each i = 1, · · · , t, compare wi and � q
2�. If they are close, output

mi = 1 and otherwise output mi = 0. We then obtain the message m.
3. Compute h := A′CT1 mod q.
4. If h = A′H(m‖TA′) mod q, then output m, otherwise output ⊥.

Test(CTIDi ,CTIDj): On input ciphertexts CTIDi ,CTIDj for identities IDi, IDj

respectively, if A′CTi,1 = A′CTj,1 then output 1, and 0 otherwise.

Lattice-Based IBE with Equality Test in Standard Model 31

Theorem 7. The above construction is correct if H is a collision-resistant hash
function.

Proof. It is easy to see that if CT is a valid ciphertext of m then the decryption
will always output m. Moreover, if CTIDi

and CTIDj
are valid ciphertext of m and

m′ of identities IDi and IDj respectively. Then the Test process checks whether
H(m‖TA′) = H(m′‖TA′). If so then it outputs 1, meaning that m = m′, which
is always correct with overwhelming probability since H is collision resistant.
Hence, proposed construction described above is correct. ��

4.2 Security Analysis

In this section, we prove that our IBEET scheme is wIND-ID-CPA secure.

Theorem 8. The IBEET construction with parameters (q, n,m, σ, α) as in (1)
is wIND-ID-CPA secure provided that H is a one-way hash function and the
(Zq, n, Ψ̄α)-LWE assumption holds. In particular, suppose there exists a prob-
abilistic algorithm A that wins the wIND-ID-CPA game with advantage ε, then
there is a probabilistic algorithm B that solves the (Zq, n, Ψ̄α)-LWE problem with
advantage ε′ such that

ε′ ≥ 1
4q

(ε − εH,OW)

where εH,OW is the advantage of breaking the one-wayness of H.

Proof. Assume that there is an adversary A who breaks the wIND-ID-CPA secu-
rity of the IBEET scheme with non-negligible probability ε. We construct an
algorithm B who solves the LWE problem using A. We now describe the behav-
ior of B. Assume that ID∗ is the target identity of the adversary A and the
challenge ciphertext is CT∗

ID∗ = (CT∗
ID∗,1,CT

∗
ID∗,2,CT

∗
ID∗,3).

We will proceed the proof in a sequence of games. In game i, let Wi denote the
event that the adversary A correctly guesses the challenge bit. The adversary’s
advantage in Game i is

∣∣Pr[Wi] − 1
2

∣∣.
Game 0. This is the original wIND-ID-CPA game between the ttacker A against

the scheme and the wIND-ID-CPA challenger.
Game 1. This is similar to Game 0 except the way the challenger B generates

the public key for the identity ID∗, as the following. Let R∗
i ∈ {−1, 1}m×m

for i = 1, · · · , l be the ephemeral random matrices generated for the creation
of the ciphertext CT∗

ID∗ . In this game, the challenger chooses l matrices R∗
i

uniformly random in {−1, 1}m×m and chooses l random scalars hi ∈ Zq for
i = 1, · · · , l. Then it generates A, TA′ and B as in Game 0 and constructs the
matrices Ai for i = 1, · · · , l as

Ai ← A · R∗
i − hi · B ∈ Z

n×m
q .

The remainder of the game is unchanged with R∗
i , i = 1, · · · , l, used to

generate the challenge ciphertext. Similar to the proof of [1, Theorem 25] we

32 D. H. Duong et al.

have that the Ai are close to uniform and hence they are random independent
matrices in the view of the adversary as in Game 0. Therefore

Pr[W1] = Pr[W0].

Game 2. This is similar to Game 1 except that at the challenge phase, B chooses
arbitrary message m′ from the message space and encrypts m′ in CTID,1.
Other steps are similar to Game 1. Here we can not expect the behavior of A.
Since A′ is public, A can obtain A′H(m′‖T ′

A). At the end if A outputs m′,
call this event E2, then A has broken the one-wayness of the hash function
H. Therefore we have

Pr[W1] − Pr[W2] ≤ εH,OW

where εH,OW is the advantage of A in breaking the one-wayness of H.
Game 3. This game is similar to Game 2 except that we add an abort that is

independent of adversary’s view. The challenger behaves as follows:
– The setup phase is identical to Game 2 except that the challenger also

chooses random hi ∈ Zq, i = 1, · · · , l and keeps it to itself.
– In the final guess phase, the adversary outputs a random guess b′ ∈ {0, 1}

for b. The challenger now does the following:
1. Abort check: for all queries CTID to the decryption oracle ODec,

the challenger checks whether the identity ID = (b1, · · · , bl) satisfies
1 +

∑h
i=1 bihi �= 0 and 1 +

∑h
i=1 b∗

i hi = 0. If not then the challenger
overwrites b′ with a fresh random bit in {0, 1} and aborts the game.

2. Artificial abort: the challenger samples a message Γ such that
Pr[Γ = 1] is calculated through a function G (defined as in [1]) evalu-
ated through all the queries of A. If Γ = 1 the challenger overwrites b′

with a fresh random bit and aborts the game (due to artificial abort);
see [1] for more details.

It follows from the proof of [1, Theorem 25] that∣∣∣∣Pr[W3] − 1
2

∣∣∣∣ ≥ 1
4q

∣∣∣∣Pr[W2] − 1
2

∣∣∣∣ .

Game 4. We now change the way how A and B are generated in Game 3.
In Game 4, A is a random matrix in Z

n×m
q and B is generated through

TrapGen(q, n) together with an associated trapdoor TB for Λ⊥
q (B). The con-

struction of Ai for i = 1, · · · , l remains the same as in Game 3, i.e., Ai =
AR∗

i − hiB. When A queries OExt(ID) for the secret key of ID = (b1, · · · , bl),
B performs as follows:

– B sets

FID := (A|B +
l∑

i=1

Ai) = (A|AR + hIDB)

where

R ←
l∑

i=1

biR
∗
i ∈ Z

n×m
q and hID ← 1 +

l∑
i=1

bihi ∈ Zq. (2)

Lattice-Based IBE with Equality Test in Standard Model 33

– If hID = 0 then abort the game and pretend that the adversary outputs
a random bit b′ as in Game 3.

– Set EID ← SampleRight(A, hIDB,R, TB , U, σ) ∈ Z
2m×t
q . Note that since

hID is non-zero, and so TB is also a trapdoor for hθB. And hence the
output EID satisfies FID · EID = U in Z

t
q. Moreover, Theorem 2 shows

that when σ > ‖T̃B‖sRω(
√

m) with sR := ‖R‖, the generated EID is
distributed close to DΛU

q
(FID) as in Game 2.

– Return SKID := EID.
Game 4 is otherwise the same as Game 3. In particular, in the challenge
phase, the challenger checks if ID∗ = (b∗

1, · · · , b∗
l) satisfies 1 +

∑l
i=1 b∗

i hi = 0.
If not, the challenger aborts the game as in Game 3. Similarly, in Game 4,
the challenger also implements an artificial abort in the guess phase. Since
Game 3 and Game 2 are identical in the adversary’s view, we have that

Pr[W4] = Pr[W3].

Game 5. Game 5 is identical to Game 4, except that the challenge ciphertext
is always chosen randomly. And thus the advantage of A is always 0.

We now show that Game 4 and Game 5 are computationally indistinguishable.
If the abort event happens then the games are clearly indistinguishable. We,
therefore, consider only the queries that do not cause an abort.

Suppose now A has a non-negligible advantage in distinguishing Game 4 and
Game 5. We use A to construct B to solve the LWE problem as follows.

Setup. First of all, B requests from O and receives, for each j = 1, · · · , t a fresh
pair (ai, di) ∈ Z

n
q ×Zq and for each i = 1, · · · ,m, a fresh pair (ui, vi) ∈ Z

n
q ×Zq.

A announces an identity ID for the target identity. B constructs the public
parameter PP as follows:
1. Assemble the random matrix A ∈ Z

n×m
q from m of previously given LWE

samples by letting the i-th column of A to be the n-vector ui for all
i = 1, · · · ,m.

2. Assemble the first t unused LWE samples a1, · · · ,at to become a public
random matrix U ∈ Z

n×t
q .

3. Run TrapGen(q, σ) to generate uniformly random matrices A′, B ∈ Z
n×m
q

together with their trapdoor TA′ and TB respectively.
4. Choose l random matrices R∗

i ∈ {−1, 1}m×m for i = 1, · · · , l and l random
scalars hi ∈ Zq for i = 1, · · · , l. Next it constructs the matrices Ai for
i = 1, · · · , l as

Ai ← AR∗
i − hiB ∈ Z

n×m
q .

Note that it follows from the leftover hash lemma [14, Theorem 8.38] that
A1, · · · , Al are statistically close to uniform.

5. Set PP := (A,A′, A1, · · · , Al, B, U) and send to A.
Queries. B answers the queries as in Game 4, including aborting the game if

needed.

34 D. H. Duong et al.

Challenge. Now when A sends B two messages m0 and m1 and a target identity
ID∗. B choose a random bit b ∈ {0, 1} and computes the challenge ciphertext
CT∗

ID∗ = (CT∗
ID∗,1,CT

∗
ID∗,2,CT

∗
ID∗,3) for mb as follows:

1. Choose a random s′ ∈ Z
m
q and compute

CT∗
ID∗,1 = TA′s′T + H(mb‖TA′) ∈ Z

m
q .

2. Assemble d1, · · · , dt, v1, · · · , vm from the entries of the samples to form
d∗ = [d1, · · · , dt]T ∈ Z

t
q and v∗ = [v1, · · · , vm]T ∈ Z

m
q .

3. Set CT∗
ID∗,2 ← d∗ + mb� q

2� ∈ Z
t
q.

4. Compute R∗
ID∗ :=

∑l
i=1 b∗

i R
∗
i ∈ {−l, · · · , l}m×m.

5. Set

CT∗
ID∗,3 :=

[
v∗

(R∗
ID∗)Tv∗

]
∈ Z

2m
q .

Then B sends CT∗
ID∗ = (CT∗

ID∗,1,CT
∗
ID∗,2,CT

∗
ID∗,3) to A.

Note that in case of no abort, one has hID∗ = 0 and so FID∗ = (A|AR∗
ID∗).

When the oracle is pseudorandom, i.e., O = Os then v∗ = AT s + y for some
random noise vector y ← Ψ

m

α . Therefore CT∗
ID∗,3 in Step 5 satisfies:

CT∗
ID∗,3 :=

[
AT s + y

(AR∗
ID∗)T s + (R∗

ID∗)Ty

]
= (F ∗

ID)T s +
[

y
(R∗

ID∗)Ty

]
.

Moreover, d∗ = UT s + x for some x ← Ψ
t

α and therefore

CT∗
ID∗,2 = UT s + x + mb�q

2
�.

Therefore CT∗
ID∗ is a valid ciphertext.

When O = O$ we have that d∗ is uniform in Z
t
q and v∗ is uniform in Z

m
q .

Then obviously CT∗
ID∗,2 is uniform. It follows also from the leftover hash

lemma (cf. [14, Theorem 8.38]) that CT∗
ID∗,3 is also uniform.

Guess. After Phase 2, A guesses if it is interacting with a Game 4 or Game 5.
The simulator also implements the artificial abort from Game 4 and Game 5
and output the final guess as to the answer to the LWE problem.

We have seen above that when O = Os then the adversary’s view is as in Game
4. When O = O$ then the view of the adversary is as in Game 5. Hence the
advantage ε′ of B in solving the LWE problem is the same as the advantage of
A in distinguishing Game 4 and Game 5. Since Pr[W5] = 0, we have

Pr[W4] = Pr[W4] − Pr[W5] ≤ ε′.

Hence combining the above results yields the desired result. We obtain that

ε = Pr[W0] ≤ εH,OW + 4qε′

which implies

ε′ ≥ 1
4q

(ε − εH,OW)

as desired. ��

Lattice-Based IBE with Equality Test in Standard Model 35

5 Conclusion

In this paper, we propose a direct construction of IBEET based on the hardness
of Learning With Errors problem. Efficiency is the reason to avoid the instan-
tiation of lattice-based IBEET from the generic construction by Lee et al. [7].
In addition, we also modify our scheme to obtain an IBEET against insider
attack. We will leave as a future work for improving our schemes to achieve
CCA2-security as well as to support flexible authorisation.

Acknowledgement. This work is supported by the Australian Research Council Dis-
covery Project DP180100665. We would like to thank Tsz Hon Yuen and anonymous
reviewers for many helpful comments and fruitful discussions.

Appendix A: An Instantiation of Lee et al.’s Construction

In this section, we will present a lattice-based IBEET which is an instantiation
of the Lee et al.’s construction [7]. In their generic construction, they need (i)
a multi-bit HIBE scheme and (ii) an one-time signature scheme. To instantiate
their construction, we modify the lattice based single-bit HIBE of [1] to multi-bit
one and use it, along with the signature scheme, to have following construction of
lattice based IBEET. Even though one needs only a one-time signature scheme,
we choose the full secure signature scheme from [1] to unify the system, since
in such case, both signature and HIBE schemes use the same public key. It is
required to use multi-bit HIBE and signature scheme to have IBEET from Lee
et al.’s [7].

In what follows, we will denote by [id1.id2.id3] the identity of a 3-level HIBE
scheme where id1 is the first level identity, id2 is the second level identity and
id3 is third level identity. Below, we follow [7] to denote by [ID.0] (resp. [ID.1])
an identity in the second level in which we indicate that ID is the identity of the
first level.

A.1 Construction

Setup(λ)
On input security parameter λ, and a maximum hierarchy depth 3, set the
parameters q, n,m, σ̄, ᾱ. The vector σ̄ & ᾱ ∈ R

2 and we use σl and αl to refer
to their l- th coordinate.
1. Use algorithm TrapGen(q, n) to select a uniformly random n × m- matrix

A,A′ ∈ Z
n×m
q with a basis TA, TA′ for Λ⊥

q (A) and Λ⊥
q (A′), respectively.

Repeat this Step until A and A′ have rank n.
2. Select l + 1 uniformly random m × m matrices A1, A2, A3, · · · , Al, B ∈

Z
n×m
q .

3. Select a uniformly random matrix U ∈ Z
n×t
q .

4. We need some hash functions H : {0, 1}∗ → {0, 1}t, H1 : {0, 1}∗ →
{−1, 1}t, H2 : {0, 1}∗ → Z

n
q and a full domain difference map H ′ : Zn

q →
Z

n×n
q as in [1, Sect. 5].

36 D. H. Duong et al.

5. Output the public key and the secret key

PK = (A,A′, A1, A2, A3, · · · , Al, B, U) , MSK = TA, sks = TA′

Extract(PP,MSK, ID): On input the public parameter PP, a master secret key
MSK and an identity ID(∈ Z

n
q) = (b1, · · · , bl) ∈ {−1, 1}l:

1. Let AID = A1 + H ′(ID)B ∈ Z
n×m
q .

2. Sample E ∈ Z
2m×t
q as

E ← SampleBasisLeft(A,AID, TA, U, σ).

3. Output SKID := E.
Let FID = (A|AID) ∈ Z

n×2m
q then FID · E = U in Zq and E is distributed as

DΛU
q (FID),σ.

Enc(PP, ID,m)
On input the public key PK and a message m ∈ {0, 1}t do
1. Choose uniformly random s1, s2 ∈ Z

n
q .

2. Choose x1,x2 ∈ Ψ
t

α and compute

c1 = UT s1 + x1 + m
⌊q

2
⌋ ∈ Z

t
q,

c2 = UT s2 + x2 + H(m)
⌊q

2
⌋ ∈ Z

t
q.

3. Set vks = A1‖ · · · ‖Al.
4. Set id := H2(vks) ∈ Z

n
q .

5. Build the following matrices in Z
n×4m
q :

FID.0.vks
= (FID|A2 + H ′(0) · B|A3 + H ′(id) · B),

FID.1.vks
= (FID|A2 + H ′(1) · B|A3 + H ′(id) · B).

6. Choose a uniformly random n × 2m matrix R in {−1, 1}n×3m.
7. Choose y1,y2 ∈ Ψ

m

α and set z1 = RTy1, z2 = RTy2 ∈ Z
3m
q .

8. Compute

c3 = FT
ID.0.vks

s1 + [yT
1 |zT

1]T ∈ Z
4m
q ,

c4 = FT
ID.1.vks

s2 + [yT
2 |zT

2]T ∈ Z
4m
q .

9. Let b := H1(c1‖c2‖c3‖c4) ∈ {−1, 1}l and define a matrix

F = (A′|B +
l∑

i=1

biAi) ∈ Z
n×2m
q .

10. Extract a signature e ∈ Z
2m×t by

e ← SampleBasisLeft(A′, B +
l∑

i=1

biAi, TA′ , 0, σ).

Note that F · e = 0 mod q.

Lattice-Based IBE with Equality Test in Standard Model 37

11. Output the ciphertext

CT = (vk, c1, c2, c3, c4, e).

Dec(PP,SKID,CT)
On input a secret key SKID and a ciphertext CT, do
1. Parse the ciphertext CT into

(vk, c1, c2, c3, c4, e).

2. Let b := H1(c1‖c2‖c3‖c4) ∈ {−1, 1}l and define a matrix

F = (A′|B +
l∑

i=1

biAi) ∈ Z
n×2m
q .

3. If F · e = 0 in Zq and ‖e‖ ≤ σ
√

2m then continue to Step 4; otherwise
output ⊥.

4. Set id := H2(vk) ∈ Z
n
q and build the following matrices:

FID.0 = (FID|A2 + H ′(0) · B) ∈ Z
n×3m
q ,

FID.1 = (FID|A2 + H ′(1) · B) ∈ Z
n×3m
q .

FID.0.vks
= (FID|A2 + H ′(0) · B|A3 + H ′(id) · B) ∈ Z

n×4m
q ,

FID.1.vks
= (FID|A2 + H ′(1) · B|A3 + H ′(id) · B) ∈ Z

n×4m
q .

5. Generate

EID.0 ← SampleBasisLeft(FID, A2 + H ′(0) · B,E,U, σ)
s.t. FID.0 · EID.0 = U

EID.1 ← SampleBasisLeft(FID, A2 + H ′(1) · B,E,U, σ)
s.t. FID.1 · EID.1 = U

EID.0.vks
← SampleBasisLeft(FID.0, A3 + H ′(0) · B,EID.0, U, σ)

s.t. FID.0.vks
· EID.0.vks

= U

EID.1.vks
← SampleBasisLeft(FID.1, A3 + H ′(1) · B,EID.1, U, σ)

s.t. FID.1.vks
· EID.1.vks

= U.

6. Compute w ← c1 − ET
ID.0.vks

c3 ∈ Z
t
q.

7. For each i = 1, · · · , t, compare wi and � q
2�. If they are close, output

mi = 1 and otherwise output mi = 0. We then obtain the message m.
8. Compute w′ ← c2 − ET

ID.1.vks
c4 ∈ Z

t
q.

9. For each i = 1, · · · , t, compare w′
i and � q

2�. If they are close, output hi = 1
and otherwise output hi = 0. We then obtain the vector h.

10. If h = H(m) then output m, otherwise output ⊥.

38 D. H. Duong et al.

Td(SKi)
On input the secret key SKi(= Ei) of a user Ui, run

tdi ← SampleBasisLeft(FID, A2 + H ′(1) · B,Ei, U, σ).

Test(tdi, tdj ,CTi,CTj)
On input trapdoors tdi, tdj and ciphertexts CTi,CTj of users Ui and Uj

respectively, for k = i, j, do the following
1. Parse CTk into

(vkk, ck,1, ck,2, ck,3, ck,4, ek).

2. Sample EIDk.1.vks
∈ Z

5m×t
q from

SampleBasisLeft(FIDk.1, Ak,3 + H ′(1) · Bk, EIDk.1, U, σ).

3. Use EIDk.1.vks
to decrypt ck,2, ck,4 as in Step 8–9 of Dec(SK,CT) above

to obtain the hash value hk.
4. If hi = hj then ouput 1; otherwise output 0.

Theorem 5 (Correctness). The above IBEET is correct if the hash function H
is collision resistant.

Proof. Since we employ the multi-bit HIBE and signature scheme from [1], their
correctness follow from [1]. The Theorem follows from [7, Theorem 1]. ��

A.2 Parameters

We follow [1, Sect. 8.3] for choosing parameters for our scheme. Now for the
system to work correctly we need to ensure

– the error term in decryption is less than q/5 with high probability, i.e., q =
Ω(σm3/2) and α < [σlmω(

√
log m)]−1,

– that the TrapGen can operate, i.e., m > 6n log q,
– that σ is large enough for SampleLeft and SampleRight, i.e., σ > lmω(

√
log m),

– that Regev’s reduction applies, i.e., q > 2
√

n/α,

Hence the following choice of parameters (q,m, σ, α) from [1] satisfies all of the
above conditions, taking n to be the security parameter:

m = 6n1+δ , q = max(2Q,m2.5ω(
√

log n))

σ = mlω(
√

log n) , α = [l2m2ω(
√

log n)]
(3)

and round up m to the nearest larger integer and q to the nearest larger prime.
Here we assume that δ is such that nδ > �log q� = O(log n).

Theorem 6. The IBEET constructed in Sect. 5 with paramaters as in (3) is
IND-ID-CCA2 secure provided that H1 is collision resistant.

Lattice-Based IBE with Equality Test in Standard Model 39

Proof. The HIBE is IND-sID-CPA secure by [1, Theorem 33] and the sig-
nature is strongly unforgeable by [1, Sect. 7.5]. The result follows from
[7, Theorem 5]. ��
Theorem 7 ([7, Theorem 3]). The IBEET with parameters (q, n,m, σ, α) as
in (3) is OW-ID-CCA2 provided that H is one-way and H1 is collision resistant.

Proof. The HIBE is IND-sID-CPA secure by [1, Theorem 33] and the sig-
nature is strongly unforgeable by [1, Sect. 7.5]. The result follows from
[7, Theorem 6]. ��

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

2. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6 1

3. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: Pro-
ceedings of the 26th International Symposium on Theoretical Aspects of Computer
Science, STACS 2009, Freiburg, Germany, 26–28 February 2009, pp. 75–86 (2009)

4. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)

5. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

6. Duong, D.H., Fukushima, K., Kiyomoto, S., Roy, P.S., Susilo, W.: A lattice-based
public key encryption with equality test in standard model. In: Jang-Jaccard, J.,
Guo, F. (eds.) ACISP 2019. LNCS, vol. 11547, pp. 138–155. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-21548-4 8

7. Lee, H.T., Ling, S., Seo, J.H., Wang, H., Youn, T.-Y.: Public key encryption with
equality test in the standard model. Cryptology ePrint Archive, Report 2016/1182
(2016)

8. Lee, H.T., Ling, S., Seo, J.H., Wang, H.: Semi-generic construction of public key
encryption and identity-based encryption with equality test. Inf. Sci. 373, 419–440
(2016)

9. Lee, H.T., Wang, H., Zhang, K.: Security analysis and modification of ID-based
encryption with equality test from ACISP 2017. In: Susilo, W., Yang, G. (eds.)
ACISP 2018. LNCS, vol. 10946, pp. 780–786. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-93638-3 46

10. Ma, S.: Identity-based encryption with outsourced equality test in cloud comput-
ing. Inf. Sci. 328, 389–402 (2016)

11. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. In: Proceedings of the 45th Symposium on Foundations of Computer
Science (FOCS 2004), Rome, Italy, 17–19 October 2004, pp. 372–381 (2004)

12. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the 37th Annual ACM Symposium on Theory of Comput-
ing, Baltimore, MD, USA, 22–24 May 2005, pp. 84–93 (2005)

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/3-540-48523-6_1
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-030-21548-4_8
https://doi.org/10.1007/978-3-319-93638-3_46
https://doi.org/10.1007/978-3-319-93638-3_46

40 D. H. Duong et al.

13. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

14. Shoup, V.: A Computational Introduction to Number Theory and Algebra, 2nd
edn. Cambridge University Press, Cambridge (2008)

15. Wu, T., Ma, S., Mu, Y., Zeng, S.: ID-based encryption with equality test against
insider attack. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017, Part I. LNCS, vol.
10342, pp. 168–183. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
60055-0 9

https://doi.org/10.1007/978-3-319-60055-0_9
https://doi.org/10.1007/978-3-319-60055-0_9

Password-Based Authenticated Key
Exchange from Standard Isogeny

Assumptions

Shintaro Terada and Kazuki Yoneyama(B)

Ibaraki University, 4-12-1, Nakanarusawa, Hitachi-shi, Ibaraki, Japan
kazuki.yoneyama.sec@vc.ibaraki.ac.jp

Abstract. The isogeny-based cryptosystems are considered as one of
post-quantum cryptosystems. Taraskin et al. proposed a password-based
authenticated key exchange (PAKE) scheme from isogeny by extend-
ing Jao et al.’s supersingular isogeny Diffie-Hellman (SIDH) protocol. In
their scheme, a new group action is introduced in addition to SIDH due
to non-commutativity of SIDH in order to embed the password to the
DH public key. Also, in the security proof, new non-standard assump-
tions regarding the new group action are necessary. It is not clear if these
assumptions are really hard.

In this paper, we propose new PAKE schemes, SIDH-EKE and
CSIDH-EKE, which are secure under the standard assumptions (cor-
responding to the computational DH assumption). Our schemes are
obtained by a combination of SIDH (or CSIDH, commutative SIDH)
and EKE (encrypted key exchange). We prove security of our schemes
under the same standard assumptions as original SIDH and CSIDH in
the random oracle model and ideal cipher model. CSIDH-EKE achieves
more compact communication overhead than Taraskin et al.’s scheme.

Keywords: Authenticated key exchange ·
Password-based authenticated key exchange ·
Isogeny-based cryposystems

1 Introduction

1.1 Backgrounds

Post-quantum cryptosystems (PQC) are one of hottest research topics in cryp-
tography due to emerging of quantum computers. Though the most studied
PQC is lattice-based, other alternatives are also required to risk diversifica-
tion as NIST’s PQC standardization [1]. Isogeny-based cryptosystems are one of
candidates of PQC. Given two elliptic curves E,E′/Fp, non-zero homomorphism
ψ : E → E′ is called an isogeny. By Vélu’s formula [39], given elliptic curve E and
point R, we can efficiently compute an isogeny ψ : E → E/〈R〉 with kernel 〈R〉.

c© Springer Nature Switzerland AG 2019
R. Steinfeld and T. H. Yuen (Eds.): ProvSec 2019, LNCS 11821, pp. 41–56, 2019.
https://doi.org/10.1007/978-3-030-31919-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-31919-9_3

42 S. Terada and K. Yoneyama

On the other hand, given two isogenous elliptic curves E and E′, to find a (com-
pact representation of) isogeny ψ : E → E′ (the isogeny computation problem)
is believed to be hard even for quantum computers. Isogeny-based cryptosystems
rely on the isogeny computation problem and its derivations. The advantage of
isogeny-based cryptosystems against other PQC candidates is compactness of
the key size and the ciphertext size.

Couveignes [13] initiated the research of isogeny-based cryptography by for-
mulating the basic notion of hard homogeneous spaces (HHSs) which is an
abstract form of isogeny graphs and class groups of endomorphism rings of
(ordinary) elliptic curves. Rostovtsev and Stolbunov [37] proposed a DH type
key exchange scheme from ordinary elliptic curve isogenies. On the other hand,
Childs et al. [12] showed that the isogeny computation problem on ordinary
elliptic curve isogenies can be analysed in quantum subexponential time. Then,
Jao et al. [16,25] proposed supersingular isogeny-based DH type key exchange
(SIDH) scheme because no quantum subexponential time analysis is known for
the isogeny computation problem on supersingular elliptic curve isogenies. It is
known that j-invariants j(E) = j(E′) (where j(E) is deterministically derived
from E) iff elliptic curves E and E′ are isomorphic. SIDH uses this property
to share j-invariants as the common session key between parties. Also, Cas-
tryck et al. [11] proposed a new HHS-based key exchange scheme called CSIDH
(commutative SIDH), which is constructed from a group action on the set of
supersingular elliptic curves defined over a prime field. Since the group action is
commutative in CSIDH, we can deal with it as a similar manner to classical DH
key exchange. In CSIDH, a common secret curve is obtained between parties
resulting from the group action, and the Montgomery coefficient of the curve
is shared as the common session key. Moreover, validity of public keys can be
efficiently verified while SIDH has no efficient method yet. Hence, CSIDH is very
compatible to classical DH.

There is a trade-off between the SIDH system and the CSIDH system. The
advantage of SIDH is that computational time is relatively faster than the CSIDH
while it is slower than other PQC candidates. For the security level corresponding
to 64 bit quantum security and 128 bit classical security (i.e., NIST category
1 [1]), computational time for the SIDH key exchange is about 10 times faster
than the CSIDH key exchange. On the other hand, the advantage of CSIDH is
that the key size is more compact than SIDH while the key size of SIDH is also
more compact than other PQC candidates. For the parameter of NIST category
1, the key size is about one fifth of these of SIDH. Also, another major advantage
of CSIDH is efficient puiblic key validation.

Since SIDH and CSIDH are only secure against passive (i.e., just eavesdrop-
ping) adversaries, authenticated key exchange (AKE) schemes [18,19,33,34,40]
from isogeny have been recently studied. AKE schemes aim to ensure security
against active adversaries such as impersonation resilience, known-key security,
and forward secrecy. In AKE, each party has a pre-established static secret key
as the credential, and publishes the corresponding static public key. Thus, some
public key infrastructure (PKI) is necessary.

PAKE from Standard Isogeny Assumptions 43

On the other hand, in the real world, the most popular authentication mech-
anism is the password authentication. Hence, password-based authenticated key
exchange (PAKE) is important to study in a practical sense. In PAKE, par-
ties shares a human-memorable password in advance, they do not need any
PKI. Since passwords are chosen from a small dictionary, we must consider on-
line and off-line dictionary attacks as well as security of AKE. Many PAKE
schemes based on the classical DH key exchange have been introduced such as
[3,5,9,10,20,21,23,26–30,32,35]. Taraskin et al. [38] introduced the first PAKE
scheme (TSJL scheme) from isogeny. The TSJL scheme is an extension of SIDH
to password-based. The construction idea is simple: each party encodes the pass-
word to SIDH public key, and decodes the received public key with the password.
To achieve such an encoding, they proposed a new group action. Also, security
of the TSJL scheme is proved in the Bellare-Pointcheval-Rogaway (BPR) model
under new assumptions related to the new group action in the random oracle
(RO) model. However, in [38], justification of new assumptions is not sufficiently
discussed. Thus, it is desirable to construct a PAKE scheme based on a standard
isogeny problem.

1.2 Our Contribution

We propose two new PAKE schemes from isogeny, called SIDH-EKE and CSIDH-
EKE, which are secure under the standard isogeny assumptions. Our main idea
is to compose SIDH (or CSIDH) and encrypted key exchange (EKE) [4]. EKE is
a PAKE scheme based on classical DH key exchange, and security is proved in
[3] as EKE2. Each party encrypts the DH public key with the password as the
key, and decrypts the received ciphertext with the password. The session key
is generated by hashing the session key of the classical DH key exchange with
session-specific information. In (C)SIDH-EKE, each party encrypts the (C)SIDH
public key with the password, and decrypts the received ciphertext with the
password. By the same way as (C)SIDH, the key material of the session key
can be generated, and the session key is the hashed value of the key material
and session-specific information. The computational cost and the communication
cost is almost the same as (C)SIDH. We prove that (C)SIDH-EKE is secure in
the BPR model under the standard (C)SIDH assumption (i.e., corresponding
to the classical computational DH assumption) in the RO model and the ideal
cipher (IC) model. The security proof follows the proof of EKE. However, since
algebraic structures are different between (C)SIDH-EKE and EKE, we cannot
directly use the proof strategy of EKE. Hence, we give the modification of the
proof of EKE according to the algebraic structure of (C)SIDH by using the
hybrid argument.

The advantage of our SIDH-EKE against the previous PAKE scheme from
isogeny (i.e., the TSJL scheme) is that SIDH-EKE can be proved under the
standard SIDH assumption while the TSJL scheme is proved under non-standard
assumptions. The advantage of our CSIDH-EKE against the TSJL scheme is
communication overhead. Though the TSJL scheme (and SIDH-EKE) need 2640
bit overhead for each party, CSIDH-EKE only needs 512 bit overhead for the

44 S. Terada and K. Yoneyama

same security level (NIST category 1)1 in exchange for the computational cost.
The detailed efficiency comparison is given in Table 1.

1.3 Related Work

Many post-quantum key exchange schemes have been studied. Fujioka et al. [17]
proposed a generic construction of AKE from KEM, and showed instantiations
from lattices and codes. Ding et al. [15] proposed an AKE schemes from the
Learning with Errors (LWE) problem and the Ring-LWE (RLWE) problem.
Bos et al. [8] proposed an RLWE-based AKE scheme for TLS, and Alkim et
al. [2] improved it as NewHope. Also, Bos et al. [7] proposed a LWE-based AKE
scheme, Frodo.

On the other hand, there are few post-quantum PAKE schemes. Katz and
Vaikuntanathan [31] proposed the first PAKE scheme based on lattices. To
remove noise from the shared session key, their scheme uses an error-correcting
code; and thus, it needs three moves. Ding et al. [14] proposed RLWE-based
PAKE schemes. One guarantees explicit authentication with three moves, and
the other needs two moves (not one-round). Generally, isogeny cryptosystem is
advantageous to lattice cryptosystem in key sizes. Hence, (C)SIDH-EKE can be
implemented by smaller key sizes than these lattice-based PAKE schemes. Also,
(C)SIDH-EKE can be executed in one-round (i.e., parties can exchange public
keys simultaneously) while known lattice-based PAKE schemes are not.

2 Preliminaries

In this section, we recall SIDH, HHS, CSIDH, EKE and the BPR model.
Throughout this paper we use the following notations. If M is a set, then by

m ∈R M we denote that m is sampled randomly from M. If R is an algorithm,
then by y ← R(x; r) we denote that y is output by R on input x and randomness
r (if R is deterministic, r is empty). The security parameter is λ.

2.1 SIDH

Here, we recall the SIDH system [16,25].
For two small primes �A, �B (e.g., �A = 2, �B = 3), let p be a large prime

such that p ± 1 = f · �eA

A �eB

B for a small f and �eA

A ≈ �eB

B = 2Θ(λ). Let E over
Fp2 be a random supersingular elliptic curve with E(Fp2) � (Z/(p ± 1)Z)2 ⊇
1 Very recently, Peikert [36] showed a new quantum security analysis of CSIDH-512,

corresponding to NIST category 1, by using the collimation sieve technique, and
CSIDH-512 is broken by 40 bit quantum memory and 216 quantum oracle queries
(i.e., 56 bit quantum security). Hence, He estimates that the quantum security level
of CSIDH-512 is rather weaker than NIST category 1. On the other hand, the quan-
tum circuit for the group operation of CSIDH is very high cost. Thus, by considering
such external overheads of circuits in addition to his evaluation, CSIDH-512 still
seems safe in reality.

PAKE from Standard Isogeny Assumptions 45

(Z/�eA

A Z)2 ⊕ (Z/�eB

B Z)2. For isogenies ψA and ψB with kernels of orders �eA

A

and �eB

B , respectively, let ker ψA = 〈RA〉 ⊂ E[�eA

A], ker ψB = 〈RB〉 ⊂ E[�eB

B],
ker ψBA = 〈ψB(RA)〉 ⊂ EB [�eA

A] and kerψAB = 〈ψA(RB)〉 ⊂ EA[�eB

B]. Then,
for ψA : E → EA = E/〈RA〉 and ψB : E → EB = E/〈RB〉, ψAB : EA →
E/〈RA, RB〉 and ψBA : EB → E/〈RA, RB〉 hold. Thus, we can use j-invariants
j(E/〈RA, RB〉) as the common secret computed by two ways. Please see [16,25]
for the detail of the mathematical foundation of the SIDH system.

In the SIDH system, hardness assumptions are defined as classical DH. We
recall the computational DH-type assumptions for SIDH defined in [16].

Definition 1 (SI-CDH Problem [16]). For a ∈R Z/�eA

A Z, b ∈R Z/�eB

B Z,
E[�eA

A] = 〈PA, QA〉, E[�eB

B] = 〈PB , QB〉, RA = PA + aQA, RB = PB + bQB,
ψA : E → EA = E/〈RA〉 and ψB : E → EB = E/〈RB〉, the advantage
of a PPT solver S in the SI-CDH problem for public parameter Param =
(E,PA, QA, PB , QB) is defined as

Advsi-cdhE,�A,�B (S) =

Pr[S(Param, (EA, ψA(PB), ψA(QB)), (EB , ψB(PA), ψB(QA))) → j(E/〈RA, RB〉)].

The SI-CDH problem corresponds to the classical computational DH prob-
lem.

Protocol of SIDH. Here, we recall the protocol of SIDH [25].

Public Parameters. Let E[�eA

A] = 〈PA, QA〉 and E[�eB

B] = 〈PB , QB〉. The public
parameters are (E,PA, QA, PB , QB).

Session. Parties A and B executes a key exchange session as follows:

1. Party A chooses a ∈R Z/�eA

A Z, computes RA = PA + aQA and ψA : E →
EA = E/〈RA〉, and sends the public key Â = (EA, ψA(PB), ψA(QB)) to party
B.

2. Party B chooses b ∈R Z/�eB

B Z, computes RB = PB + bQB and ψB : E →
EB = E/〈RB〉, and sends the public key B̂ = (EB , ψB(PA), ψB(QA)) to party
A.

3. On receiving B̂, party A computes RBA = ψB(PA)+aψB(QA) and generates
the session key SK = j(EB/〈RBA〉).

4. On receiving Â, party B computes RAB = ψA(PB)+ bψA(QB) and generates
the session key SK = j(EA/〈RAB〉).

Since EB/〈RBA〉 and EA/〈RAB〉 are isomorphic, j(EB/〈RBA〉) = j(EA/〈RAB〉)
holds.

It is obvious that the session key SK is hard to find for any passive adversary
if the SI-CDH problem is hard.

46 S. Terada and K. Yoneyama

2.2 Hard Homogeneous Space and CSIDH

Here, we recall the definition of HHS [13], and the CSIDH system [11] as an
instantiation of HHS.

Definition 2 (Freeness and Transitivity). X denotes a finite set, and G
denotes an abelian group. We say that G acts efficiently on X freely and transi-
tively if there is an efficiently computable map ∗ : G × X → X as follows:

– for any x ∈ X and g, h ∈ G, g ∗ (h ∗ x) = (gh) ∗ x holds, and there is an
identity element id ∈ G such that id ∗ x = x,

– for any (x, y) ∈ X × X, there is g ∈ G such that g ∗ x = y, and
– for any x ∈ X and g, h ∈ G such that g ∗ x = h ∗ x, g = h holds.

Definition 3 (Hard Homogeneous Space). A HHS consists of a finite
abelian group G acting freely and transitively on some set X such that the fol-
lowing tasks are efficiently executable:

– Computing the group operation on G
– Sampling randomly from G with (close to) uniform distribution
– Deciding validity and equality of a representation of elements of X
– Computing the action of a group element g ∈ G on some x ∈ X (i.e., g ∗ x)

The CSIDH system is an instantiation of HHS from Fp-rational supersingular
elliptic curves and their Fp-rational isogeny. Let E��p(O) be the set of elliptic
curves over Fp whose Fp-rational endomorphism ring is some fixed quadratic
order O, and cl(O) be the ideal class group of O. Then, the CSIDH system
is regarded as HHS by setting X = E��p(O) and G = cl(O) as the parameter
of HHS. For curve E ∈ X and ideal class [g] ∈ G, the group action [g] ∗ E
corresponds to the map ([g], E) −→ E/g. Since E/g is a supersingular curve,
the form of E/g is y2 = x3 + cx2 +x for c ∈ Fp. Then, [g] ∗E can be represented
as such Montgomery coefficient c.

Due to commutativity of cl(O), for [g], [g′] ∈ G, E ∈ X, Eg = E/g and Eg′ =
E/g′, curves Eg′/g and Eg/g

′ are identical. Thus, we can use the Montgomery
coefficient of E/gg′ (i.e., ([g][g′]) ∗ E) as the common secret computed by two
ways. Please see [11] for the detail of the mathematical foundation of the CSIDH
system. In this paper, we use the notation of HHS as the CSIDH system for
simplicity.

In the CSIDH system, hardness assumptions are defined as classical DH by
using HHS. We recall the computational DH-type assumption for HHS defined
in [6].2

Definition 4 (CSI-CDH Problem [6]). For E0 ∈ X, [a], [b] ∈R G, Ea =
[a] ∗ E0 and Eb = [b] ∗ E0, the advantage of a PPT solver S in the CSI-CDH
problem is defined as

Advcsi-cdhG,X (S) = Pr[S(E0, Ea, Eb) → ([a][b]) ∗ E0].

2 In [6], assumptions are defined as a generalized form for n-way by using cryptographic
invariant maps (CIM). In the case of n = 1, CIM is the same as HHS.

PAKE from Standard Isogeny Assumptions 47

The CSI-CDH problem corresponds to the classical computational DH prob-
lem.

Protocol of CSIDH. Here, we recall the protocol of CSIDH [11].

Public Parameters. Let p = (4 · �1 · · · �n−1) be a large prime where each �i is
a small distinct odd prime. Then, the supersingular elliptic curve E0 : y2 =
x3 + x over Fp with endomorphism ring O = Z[π] is constructed where π is
the Frobenius endomorphism satisfying π2 = −p. For the notation of HHS, G is
denoted by cl(O) and X is denoted by E��p(O); and thus, E0 ∈ X = E��p(O).
[g] ∈R G means that integers (e1, . . . , en) are randomly sampled from a range
{−m, . . . ,m} and [g] = [le1

1 · · · len
n] ∈ cl(O) where li = (�i, π − 1). [g] ∗ E0 is

represented by the Montgomery coefficient c ∈ Fp of the elliptic curve [g]E0 :
y2 = x3 + cx2 + x by applying the action of [g] to E0.

The public parameters are (G,X,E0).

Session. Parties A and B executes a key exchange session as follows:

1. Party A chooses [a] ∈R G, and sends the public key Â = [a] ∗ E0 to party B.
2. Party B chooses [b] ∈R G, and sends the public key B̂ = [b] ∗ E0 to party A.
3. On receiving B̂, party A generates the session key SK = [a] ∗ B̂.
4. On receiving Â, party B generates the session key SK = [b] ∗ Â.

Since G is an abelian group, [a][b] = [b][a] holds. Therefore, [a] ∗ B̂ = [a] ∗ ([b] ∗
E0) = ([a][b])∗E0 = ([b][a])∗E0 = [b]∗([a]∗E0) = [b]∗Â holds from Definition 2.

It is obvious that the session key SK is hard to find for any passive adversary
if the CSI-CDH problem is hard.

2.3 EKE

Here, we recall the protocol of EKE [3,4].

Public Parameters. Let p be a λ-bit prime, G′ be a cyclic group of order p
with a generator g′. Let H : {0, 1}∗ → {0, 1}λ be a hash function modelled
as a RO. Let (Enc,Enc−1) be a symmetric key encryption scheme with key
size κ bit and input/output size �-bit where Enc : {0, 1}κ × {0, 1}� → {0, 1}�

is the encryption algorithm. It is modelled as an IC; that is, for each key k
it is equivalent to a random permutation. Then, output a public parameter
params := (p, g′, G′,H, (Enc,Enc−1)).

Session. Parties A and B having password pw = pwAB executes a key exchange
session as follows:

1. Party A chooses a ∈R Zp, computes Â = g′a, and sends α = Encpw(Â) to
party B.

2. Party B chooses b ∈R Zp, computes B̂ = g′b, and sends β = Encpw(B̂) to
party A.

48 S. Terada and K. Yoneyama

3. On receiving β, party A decrypts B̂ = Enc−1
pw(β) and generates the session

key SK = H(A,B, Â, B̂, B̂a).
4. On receiving α, party B decrypts Â = Enc−1

pw(α) and generates the session
key SK = H(A,B, Â, B̂, Âb).

We briefly explain why the IC is necessary. In EKE, password pw is used as
the key of the symmetric key encryption scheme. However, pw is chosen from
dictionary D which is smaller than the key size. Thus, if we use a concrete
symmetric key encryption scheme, security is not guaranteed in the provable
way. On the other hand, in the IC model, the adversary must pose query (k,m)
to Enc (or query (k, c) to Enc−1) in order to do encryption (or decryption). Also,
the IC is guaranteed to be independent random permutations for distinct keys.
Hence, the adversary must guess the password and pose query (pw′, ·) to the
IC in order to impersonate a party. Its successful probability is bounded by the
number of Send query because the IC guarantees information-theoretic security.

2.4 BPR Model

Here, we recall the BPR model [3] for PAKE.

Protocol Participants and Passwords. A PAKE scheme contains two par-
ties (an initiator and a responder, or a client and a server) who will engage in the
protocol. We suppose that the total number of parties in the system is at most
N . Let passwords for all pairs of parties be uniformly and independently chosen
from a fixed dictionary D. This uniformity requirement is made for simplicity
and can be easily removed by adjusting security of an individual password to be
the min-entropy of the distribution, instead of 1/|D|. Parties P and P ′ share a
password pwPP ′ .

Session. We denote with Πi
P the ith instance of key exchange sessions that

party P runs. Each party can concurrently execute the protocol multiple times
with different instances. We suppose that the total number of instances of a
party is at most �. The adversary is given oracle access to these instances and
may also control some of the instances itself. We remark that unlike the standard
notion of an “oracle”, in this model instances maintain state which is updated
as the protocol progresses. In particular the state of an instance Πi

P includes the
following variables (initialized as null):

– sidi
P : the session identifier which is the ordered concatenation of all messages

sent and received by Πi
P ;

– pidi
P : the partner identifier whom Πi

P believes it is interacting (pidi
P �= P);

– acci
P : a Boolean variable corresponding to whether Πi

P accepts or rejects at
the end of the execution.

We say that two instances Πi
P and Πj

P ′ are partnered if the following properties
hold: pidi

P = P ′ and pidj
P ′ = P , and sidi

P = sidj
P ′ �= null except possibly for the

PAKE from Standard Isogeny Assumptions 49

final message.3 Partnered parties must accept and conclude with the common
session key.

Security Definition. An adversary is given total control of the external net-
work connecting parties. This adversarial capability is modeled by giving some
oracle accesses4 as follows:

– Execute(P, i, P ′, j): This query models passive attacks. The output of this
query consists of the messages that were exchanged during the honest execu-
tion of the protocol.

– Send(P, i,m): This query models active attacks. The instance Πi
P runs accord-

ing to the protocol specification and updates state. The output of this query
consists of the message that the party P would generate on receipt of mes-
sage m. If the input message is empty (say ⊥), the query means activating
the initiator and the output of the query consists of the first move message.

– Reveal(P, i): This query models leakage of session keys by improper erasure
of session keys after use or compromise of a host machine. The output of this
query consists of the session key SK of Πi

P if acci
P = 1.

– Test(P, i): At the beginning a hidden bit b is chosen. If no session key for
instance Πi

P is defined, then return the undefined symbol ⊥. Otherwise, return
the session key for instance Πi

P if b = 1 or a random key from the same domain
if b = 0. This query is posed just once.

The adversary is considered successful if it non-trivially guesses b correctly
or if it breaks correctness of a session.

Definition 5 (Freshness). We say that an instance Πi
P is fresh unless one of

the following is true at the conclusion of the experiment:

– the adversary poses Reveal(P, i),
– the adversary poses Reveal(P ′, j) if Πi

P and Πj
P ′ are partnered.

We say that an adversary A succeeds if either:

– A poses Test(P, i) for a fresh instance Πi
P and outputs a bit b′ = b,

– Πi
P and Πj

P ′ are partnered, and acci
P = acci

P ′ = 1, but session keys are not
identical.

The adversary’s advantage for protocol Π is formally defined by:

AdvpakeΠ,D (A) = |Pr[A succeeds] − 1/2|,
where λ is a security parameter.
3 The exception of the final message for matching of sid is needed to rule out a trivial

attack that an adversary forwards all messages except the final one.
4 The model does not contain any explicit corruption oracle access (i.e., to reveal

passwords). In the password-only setting, such an oracle is unnecessary because
an adversary can internally simulate these oracles by itself. Please see [22, pp.190,
footnote 8] for details.

50 S. Terada and K. Yoneyama

Definition 6 (Security of PAKE). We say a PAKE protocol is secure if for
a dictionary D and any PPT adversary A that makes at most qSend queries of
Send to different instances the advantage AdvpakeΠ,D (A) is only negligibly larger
than qSend/|D| for λ.

3 (C)SIDH-EKE: PAKE from Isogeny Under (C)SI-CDH
Assumption

In this section, we show our new PAKE schemes based on SIDH and CSIDH,
named SIDH-EKE and CSIDH-EKE, respectively.

3.1 SIDH-EKE

Our first scheme (SIDH-EKE) is obtained by a combination of SIDH and EKE.
SIDH-EKE relies on the RO model and the IC model as EKE. The protocol
is basically the same as EKE. Though EKE is based on the classical DH key
exchange, SIDH-EKE uses SIDH to share a key material between users. Specifi-
cally, each user encrypts the public key of SIDH (i.e., Â = (EA, ψA(PB), ψA(QB))
and B̂ = (EB , ψB(PA), ψB(QA))) with the password as the key for the IC,
decrypts the public key of the peer, and computes the session key of SIDH (i.e.,
j(E/〈RA, RB〉)) as the key material of our scheme. In the session key generation,
public keys are contained in inputs of the hash function as EKE, but j-invariants
of a part of public keys are used to reduce the bandwidth.

The protocol of SIDH-EKE is as follows.

Public Parameters. Let (E,PA, QA, PB , QB) be the public parameters of SIDH.
Let H : {0, 1}∗ → {0, 1}λ be a hash function modelled as a RO. Let (Enc,Enc−1)
be a symmetric key encryption scheme modelled as an IC with key size κ bit
(2κ > |D|) and domain (Fp2)2 × (Z/�eA

A Z)2. Then, output a public parameter
params := (E,PA, QA, PB , QB ,H, (Enc, Enc−1)).

Session. Parties A and B having password pw = pwAB executes a key exchange
session as follows:

1. Party A chooses a ∈R Z/�eA

A Z, computes RA = PA + aQA, ψA : E → EA =
E/〈RA〉 and Â = (EA, ψA(PB), ψA(QB)), and sends (A,α = Encpw(Â)) to
party B.

2. Party B chooses b ∈R Z/�eB

B Z, computes RB = PB + bQB , ψB : E → EB =
E/〈RB〉 and B̂ = (EB , ψB(PA), ψB(QA)), and sends (B, β = Encpw(B̂)) to
party A.

3. On receiving (B, β), party A decrypts B̂ = Enc−1
pw(β), computes RBA =

ψB(PA) + aψB(QA) and Z = j(EB/〈RBA〉), and generates the session key
SK = H(A,B, j(EA), j(EB), Z).

4. On receiving (A,α), party B decrypts Â = Enc−1
pw(α), computes RAB =

ψA(PB) + bψA(QB) and Z = j(EA/〈RAB〉), and generates the session key
SK = H(A,B, j(EA), j(EB), Z).

PAKE from Standard Isogeny Assumptions 51

Security. Here, we show security of SIDH-EKE in the BPR model. The security
proof is slightly different with the security proof of EKE due to the structure
of the SIDH system. In EKE, if we set Â = ga · gθ and B̂ = gb · gφ, the session
key is SK = H(A,B, Â, B̂, Z = gab · gaφ · gbθ · gθφ). Thus, in the EKE proof, in
order to change the session key generation in the Execute oracle, the simulator
embeds instances of the CDH problem to ga and gb, sets public keys as above
by choosing θ and φ for each session, and finally obtains gab (i.e., the answer of
the CDH problem) from Z. However, in SIDH-EKE, such a simulation does not
work because j(EA) and j(EB) have no algebraic structure (i.e., j-invariants).
Specifically, for j(EA)·j(Eθ) and j(EB)·j(Eφ), Z = j(EA/〈RAB〉)·j(EA/〈RAφ〉)·
j(EB/〈RBθ〉) · j(Eθ/〈Rθφ〉) is not guaranteed. Hence, in our proof, we simulate
the Execute oracle gradually by using the hybrid argument. Specifically, the
output of the Execute query is gradually changed in hybrid experiments, and
the simulator sets the public keys of the changed session to be the same as
instances of the SI-CDH problem. The simulator directly obtains the answer
of the SI-CDH problem as Z for each hybrid experiment. Also, our scheme
is secure against off-line dictionary attacks. EA in the ephemeral public key
Â is an elliptic curve having form y2 = x3 + αx2 + β for α, β ∈ Fp2 , and
ψA(PB), ψA(QB) ∈ Z/�eA

A Z are some points of EA. Hence, Encpw(Â) is the
ciphertext of (α, β, ψA(PB), ψA(QB)). The adversary can observe Encpw(Â) and
try to find pw by posing (pw′,Encpw(Â)) to Enc−1 oracle for guessing password
pw′. However, since any information of (α, β, ψA(PB), ψA(QB)) is not leaked
from Encpw(Â) because (Enc,Enc−1) is the IC, the adversary cannot determine
if the guess is valid or not. Thus, our scheme prevents off-line dictionary attacks.
Therefore, we can prove security of SIDH-EKE.

Theorem 1. For the advantage Advsi-cdhE,�A,�B (S) of the SI-CDH problem, the
advantage Advpakesidh-eke,D(A) of CSIDH-EKE is as follows in the RO model and
the IC model:

Advpakesidh-eke,D(A) ≤ (qSend + qExecute)2

4p2
+ (qExecute + qSend) · Advsi-cdhE,�A,�B (S) +

qSend
|D|

where qSend and qExecute denote the upper bound of Send and Execute queries,
respectively.

3.2 CSIDH-EKE

Our second scheme (CSIDH-EKE) is obtained by a combination of CSIDH and
EKE as SIDH-EKE. Specifically, each user encrypts the public key of CSIDH
(i.e., Â or B̂) with the password as the key for the IC, decrypts the public key
of the peer, and computes the session key of CSIDH (i.e., ([a][b]) ∗ E0) as the
key material of our scheme.

The protocol of CSIDH-EKE is as follows.

52 S. Terada and K. Yoneyama

Public Parameters. Let (G,X) be an abelian group and a finite set con-
structing HHS, and E0 ∈ X be the supersingular elliptic curve E0 : y2 = x3 + x
over Fp. Let H : {0, 1}∗ → {0, 1}λ be a hash function modelled as a RO. Let
(Enc,Enc−1) be a symmetric key encryption scheme modelled as an IC with
key size κ bit (2κ > |D|) and domain Fp. Then, output a public parameter
params := (G,X,E0,H, (Enc,Enc−1)).

Session. Parties A and B having password pw = pwAB executes a key exchange
session as follows:

1. Party A chooses [a] ∈R G, computes Â = [a] ∗ E0, and sends (A,α =
Encpw(Â)) to party B.

2. Party B chooses [b] ∈R G, computes B̂ = [b] ∗ E0, and sends (B, β =
Encpw(B̂)) to party A.

3. On receiving (B, β), party A decrypts B̂ = Enc−1
pw(β) and generates the session

key SK = H(A,B, Â, B̂, [a] ∗ B̂).
4. On receiving (A,α), party B decrypts Â = Enc−1

pw(α) and generates the session
key SK = H(A,B, Â, B̂, [b] ∗ B̂).

Security. Security of CSIDH-EKE can be proved by a similar manner as SIDH-
EKE. Here, we discuss security against off-line dictionary attacks. Â corresponds
to the Montgomery coefficient c ∈ Fp of the elliptic curve [a]E0 : y2 = x3+cx2+x

by applying the action of [a] to E0. Hence, Encpw(Â) is the ciphertext of c. The
adversary can observe Encpw(Â) and try to find pw by posing (pw′,Encpw(Â))
to Enc−1 oracle for guessing password pw′. However, since any information of
c is not leaked from Encpw(Â) because (Enc,Enc−1) is the IC, the adversary
cannot determine if the guess is valid or not. Thus, CSIDH-EKE prevents off-
line dictionary attacks.

Theorem 2. For the advantage Advcsi-cdhG,X of the CSI-CDH problem, the advan-
tage Advpakecsidh-eke,D of CSIDH-EKE is as follows in the RO model and the IC
model:

Advpakecsidh-eke,D(A) ≤ (qSend + qExecute)2

2p
+ (qExecute + qSend) · Advcsi-cdhG,X (S) +

qSend
|D|

where qSend and qExecute denote the upper bound of Send and Execute queries,
respectively.

4 Comparison

In this section, we give an efficiency comparison of our schemes and the TSJL
scheme [38]. The comparison is shown in Table 1.

PAKE from Standard Isogeny Assumptions 53

Table 1. Comparison among PAKE from isogeny

Assumption Communication
overhead

Computational
time

TJSL scheme [38] SI-CDH & SI-APC &
SI-APD & C-SGA

2640 bit ≈ 5.0ms

SIDH-EKE (Sect. 3.1) SI-CDH 2640 bit ≈ 5.0ms

CSIDH-EKE (Sect. 3.2) CSI-CDH 512 bit ≈ 80.6ms

SI-APC, SI-APD and C-SGA mean the supersingular isogeny auxiliary point com-
putation assumption, the supersingular isogeny auxiliary point decision assumption
and the computational simultaneous group action assumption, respectively, intro-
duced in [38].

To compare SIDH-based schemes and the CSIDH-based scheme, we use
parameters having the same security level (i.e., NIST category 1 [1]) corre-
sponding to the key search on a block cipher with a 128 bit key (i.e., κ = 128).
For SIDH, the parameter corresponding to NIST category 1 is estimated as
SIKEp434 in [24]. The public key is an element in (Fp2)2 × (Z/�eA

A Z)2, and the
size is estimated as 2640 bit. Computational time of a public key generation and
time for a session key generation of SIDH are about 1.9 ms and about 3.1 ms,
respectively, based on the performance evaluation of x64-assembly implementa-
tion on a 3.4GHz Intel Core i7-6700 (Skylake) processor in [24, Table 2.1]. The
TSJL scheme and SIDH-EKE contain an ephemeral public key of SIDH as the
message, and computations of a public key generation and a session key genera-
tion of SIDH for each party. For CSIDH, the parameter corresponding to NIST
category 1 is estimated as CSIDH-512 in [11]. The public key is an element in Fp,
and the size is estimated as 512 bit. Computational time of a group action and
time for a public key validation of CSIDH are about 40.3 ms and about 1.6 ms,
respectively, based on the proof-of-concept implementation on a 3.5GHz Intel
Core i5 (Skylake) processor in [11, Table 2]. CSIDH-EKE contains an ephemeral
public key of CSIDH as the message, and computations of a public key genera-
tion and a session key generation of CSIDH for each party. We simply add these
values without any acceleration technique. As shown in Table 1, CSIDH-EKE is
more compact than the TSJL scheme, and SIDH-EKE is secure only under the
SI-CDH assumption while the TSJL scheme relies on additional assumptions.

5 Conclusion

We introduced two new one-round PAKE schemes, SIDH-EKE and CSIDH-EKE,
based on isogeny, which are secure under the standard hardness assumptions.
Also, CSIDH-EKE is advantageous in communication overhead though the com-
putational cost is worse. The security proof follows the proof of EKE in the RO
and IC model, but there is a technical issue due to the difference between alge-
braic structures of EKE and (C)SIDH-EKE. Excluding symmetric cryptography
operations, the computational cost and communication cost of (C)SIDH-EKE is
almost the same as original (C)SIDH.

54 S. Terada and K. Yoneyama

A remaining problem of further researches is removing idealized building
blocks such as ROs and ICs. Otherwise, giving a security proof in the quantum
RO (or IC) model is another direction.

References

1. Post-Quantum Cryptography Standardization. National Institute of Standards and
Technology (2016)

2. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: USENIX Security Symposium 2016, pp. 327–343 (2016)

3. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6 11

4. Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange: a password-based
protocol secure against dictionary attacks and password file compromise. In: ACM
CCS, pp. 244–250 (1993)

5. Ben Hamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: Efficient
UC-secure authenticated key-exchange for algebraic languages. In: Kurosawa, K.,
Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 272–291. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36362-7 18

6. Boneh, D., et al.: Multiparty non-interactive key exchange and more from isogenies
on elliptic curves. In: MATHCRYPT 2018 (2018). https://eprint.iacr.org/2018/665

7. Bos, J.W., et al.: Frodo: take off the ring! Practical, quantum-secure key exchange
from LWE. In: ACM Conference on Computer and Communications Security 2016,
pp. 1006–1018 (2016)

8. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: IEEE Symposium
on Security and Privacy 2015, pp. 553–570 (2015)

9. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 12

10. Canetti, R., Dachman-Soled, D., Vaikuntanathan, V., Wee, H.: Efficient password
authenticated key exchange via oblivious transfer. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 449–466. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30057-8 27

11. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

12. Childs, A.M., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quan-
tum subexponential time. J. Math. Cryptol. 8(1), 1–29 (2014)

13. Couveignes, J.M.: Hard Homogeneous Spaces. Cryptology ePrint Archive, Report
2006/291 (2006). https://eprint.iacr.org/2006/291

14. Ding, J., Alsayigh, S., Lancrenon, J., RV, S., Snook, M.: Provably secure pass-
word authenticated key exchange based on RLWE for the post-quantum world.
In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 183–204. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-52153-4 11

https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/978-3-642-36362-7_18
https://eprint.iacr.org/2018/665
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/978-3-642-30057-8_27
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-319-52153-4_11

PAKE from Standard Isogeny Assumptions 55

15. Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme based
on the learning with errors problem. IACR Cryptology ePrint Archive 2012/688
(2012). http://eprint.iacr.org/2012/688

16. Feo, L.D., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

17. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated
key exchange from factoring, codes, and lattices. Des. Codes Crypt. 76(3), 469–504
(2015)

18. Fujioka, A., Takashima, K., Terada, S., Yoneyama, K.: Supersingular isogeny
Diffie–Hellman authenticated key exchange. In: Lee, K. (ed.) ICISC 2018. LNCS,
vol. 11396, pp. 177–195. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-12146-4 12

19. Galbraith, S.D.: Authenticated key exchange for SIDH. IACR Cryptology ePrint
Archive 2018/266 2018 (2018). http://eprint.iacr.org/2018/266

20. Gennaro, R.: Faster and shorter password-authenticated key exchange. In: Canetti,
R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 589–606. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-78524-8 32

21. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key
exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 33

22. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key
exchange. ACM Trans. Inf. Syst. Secur. 9(2), 181–234 (2006)

23. Groce, A., Katz, J.: A new framework for efficient password-based authenticated
key exchange. In: ACM Conference on Computer and Communications Security
2010, pp. 516–525 (2010)

24. Jao, D., et al.: Supersingular Isogeny Key Encapsulation (SIKE). submission to
NIST PQC Competition (2017). https://sike.org/

25. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

26. Jiang, S., Gong, G.: Password based key exchange with mutual authentication.
In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 267–279.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-4 19

27. Jutla, C., Roy, A.: Relatively-sound NIZKs and password-based key-exchange. In:
Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp.
485–503. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-
8 29

28. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44987-6 29

29. Katz, J., Ostrovsky, R., Yung, M.: Forward secrecy in password-only key exchange
protocols. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576,
pp. 29–44. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7 3

30. Katz, J., Ostrovsky, R., Yung, M.: Efficient and secure authenticated key exchange
using weak passwords. J. ACM 57(1), 1–39 (2009)

31. Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based
authenticated key exchange from lattices. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10366-7 37

http://eprint.iacr.org/2012/688
https://doi.org/10.1007/978-3-030-12146-4_12
https://doi.org/10.1007/978-3-030-12146-4_12
http://eprint.iacr.org/2018/266
https://doi.org/10.1007/978-3-540-78524-8_32
https://doi.org/10.1007/3-540-39200-9_33
https://sike.org/
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-540-30564-4_19
https://doi.org/10.1007/978-3-642-30057-8_29
https://doi.org/10.1007/978-3-642-30057-8_29
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/3-540-36413-7_3
https://doi.org/10.1007/978-3-642-10366-7_37
https://doi.org/10.1007/978-3-642-10366-7_37

56 S. Terada and K. Yoneyama

32. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 18

33. LeGrow, J., Jao, D., Azarderakhsh, R.: Modeling Quantum-Safe Authenticated
Key Establishment, and an Isogeny-Based Protocol. IACR Cryptology ePrint
Archive 2018/282 (2018). http://eprint.iacr.org/2018/282

34. Longa, P.: A Note on Post-Quantum Authenticated Key Exchange from Supersin-
gular Isogenies. IACR Cryptology ePrint Archive 2018/267 (2018). http://eprint.
iacr.org/2018/267

35. MacKenzie, P., Patel, S., Swaminathan, R.: Password-authenticated key exchange
based on RSA. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp.
599–613. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 46

36. Peikert, C.: He Gives C-Sieves on the CSIDH. Cryptology ePrint Archive, Report
2019/725 (2019). https://eprint.iacr.org/2006/291

37. Rostovtsev, A., Stolbunov, A.: Public-Key Cryptosystem Based on Isogenies. Cryp-
tology ePrint Archive, Report 2006/145 (2006). https://eprint.iacr.org/2006/145

38. Taraskin, O., Soukharev, V., Jao, D., LeGrow, J.: An Isogeny-Based Password-
Authenticated Key Establishment Protocol. IACR Cryptology ePrint Archive
2018/886 (2018). https://eprint.iacr.org/2018/886

39. Vélu, J.: Isogénies entre courbes elliptiques. Comptes Rendus des Séances de
l’Académie des Sciences. Série I. Mathématique 273, A238–A241 (1971)

40. Xu, X., Xue, H., Wang, K., Tian, S., Liang, B., Yu, W.: Strongly Secure Authenti-
cated Key Exchange from Supersingular Isogeny. IACR Cryptology ePrint Archive
2018/760 (2018)

https://doi.org/10.1007/978-3-642-19571-6_18
http://eprint.iacr.org/2018/282
http://eprint.iacr.org/2018/267
http://eprint.iacr.org/2018/267
https://doi.org/10.1007/3-540-44448-3_46
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2018/886

Signatures

An Efficient Conditional
Privacy-Preserving Authentication

Scheme for Vehicular Ad Hoc Networks
Using Online/Offline Certificateless

Aggregate Signature

Kang Li1,2, Man Ho Au2(B), Wang Hei Ho3, and Yi Lei Wang2

1 Research Institute for Sustainable Urban Development,
The Hong Kong Polytechnic University, Hung Hom, Hong Kong

kang.li@connect.polyu.hk
2 Department of Computing, The Hong Kong Polytechnic University,

Hung Hom, Hong Kong
{man-ho-allen.au,yilei.wang}@polyu.edu.hk

3 Department of Electronic and Information Engineering,
The Hong Kong Polytechnic University, Hung Hom, Hong Kong

ivanwh.ho@polyu.edu.hk

Abstract. Vehicular ad hoc networks (VANETs) are fundamental com-
ponents of building a safe and intelligent transportation system. How-
ever, due to its wireless nature, VANETs have serious security and pri-
vacy issues that need to be addressed. The conditional privacy-preserving
authentication protocol is one important tool to satisfy the security and
privacy requirements. Many such schemes employ the certificateless sig-
nature, which not only avoids the key management issue of the PKI-
based scheme but also solves the key escrow problem of the ID-based
signature scheme. However, many schemes have the drawback that the
computational expensive bilinear pairing operation or map-to-point hash
function are used. In order to enhance the efficiency, certificateless signa-
ture schemes for VANETs are usually constructed to support signature
aggregation or online/offline computation. In this paper, we propose an
efficient conditional privacy-preserving authentication scheme using an
online/offline certificateless aggregate signature, which does not require
bilinear pairing or map-to-point hash function, to address the security
and privacy issues of VANETs. Our proposed scheme is proven to be
secure with a rigorous security proof, and it satisfies all the security and
privacy requirements with a better performance compared with other
related schemes.

1 Introduction

Thanks to the rapid advancement of wireless technologies, the vehicular ad-hoc
network (VANET) is introduced to build a safe and intelligent transportation
c© Springer Nature Switzerland AG 2019
R. Steinfeld and T. H. Yuen (Eds.): ProvSec 2019, LNCS 11821, pp. 59–76, 2019.
https://doi.org/10.1007/978-3-030-31919-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-31919-9_4

60 K. Li et al.

system in metropolitan cities. In VANET, drivers can get a better awareness of
their driving environment and can take early action to respond to an emergent
situation to avoid any possible damage or to follow a better route by circum-
venting traffic bottleneck. However, the transmitted message, which may include
sensitive data concerning the drivers’ privacy, in DSRC wireless protocol could
be easily monitored, altered and forged. For example, a malicious vehicle may
broadcast a fake message to cause a traffic accident. For message security, the
receiver should verify the legitimacy and integrity of the received message before
taking further action. In terms of the privacy issue, anonymity must be provided
to prevent the adversaries from extracting private information, such as the real
identity, from the transmitted messages. However, privacy protection should be
conditional, as traceability should also be guaranteed, which indicates that the
TA should be able to reveal the real identity of a malicious vehicle when it is
necessary.

Many privacy-preserving authentication schemes based on traditional pub-
lic key infrastructure (PKI) [11,18] have been proposed to address the security
and privacy issues. However, in PKI-based authentication scheme, a certificate
is required for every public key of the vehicle and the RSU, which means that
a certificate authority needs ma to manage all the certificates and vehicles may
have to preload a large number of public/private key pairs together with the
corresponding certificates in the local storage. This causes huge storage burden
and also makes it difficult for the authority. Due to this drawback, PKI-based
scheme is not practical and still infeasible for use in VANETs. In order to remove
the burden of certificates, papers such as [3,10], proposed ID-based authentica-
tion scheme to enhance the computation and communication efficiency. However,
these mechanisms are considered suitable only for private networks, because of
the key escrow problem [9]. To solve the key escrow problem of ID-based sig-
nature scheme, the concept of certificaletess signature was firstly introduced
by Al-Riyami and Paterson [1]. Since then, many authentication schemes using
certificateless signatures have been proposed to tackle the security and privacy
problems in VANET [5,13,15,25].

Since the OBU only has limited computation capacity and the communica-
tion window of VANET is very short, participants in VANETs need to handle a
large flow of messages. Hence, aggregate signature is proposed to improve mes-
sage authentication efficiency in vanet. Signature aggregation means that given
n signatures on n distinct messages from n distinct users, it is possible to aggre-
gate all these signatures into a single short signature [4]. This is very useful in
the scenario, where RSUs aid the communications in VANET by collecting and
aggregating a large set of individual signatures of each vehicle into one signa-
ture and broadcasting this aggregated signature to the vehicles, which greatly
enhances the efficiency of verification and reduces the communication overhead.
Apart from the aggregated signature, an online/offline signature is another app-
roach to further decrease the computation cost. In the offline phase, some heavy
computations are executed and the intermediate results are stored in resource-
constrained devices. Then in the online phase, on receiving a message, the device

An Efficient Conditional Privacy-Preserving Authentication Scheme 61

can very efficiently compute a signature using the intermediate result from the
offline phase.

In this paper, we propose an efficient pairing-free online/offline aggregated
certificateless signature scheme with conditional privacy-preserving for VANETs.
Our scheme satisfies all the security and privacy requirements for VANETs with
a rigorous security proof. In order to further enhance authentication efficiency,
our scheme supports online/offline signing, signature aggregation, and batch ver-
ification. Moreover, we analyse its computation efficiency, specifically the signing,
verifying and aggregated verifying cost and make comparisons with some other
similar schemes to demonstrate that the efficiency of our scheme is better than
most of other related schemes.

1.1 Related Works

The introduction of the first certificateless signature (CL-PKS) by Al-Riyami
and Paterson [1] has inspired a large body of research work on improving the
CL-PKS scheme. Yum and Lee [23] described a general method to construct
a CL-PKS scheme from any ID-based signature scheme. Later, Li et al. [14]
proposed the first CL-PKS scheme using bilinear pairings. Au et al. [2] presented
a new security model for CL-PKS schemes, in which a malicious KGC attack
is considered. He et al. [7] developed the first CL-PKS without using bilinear
pairings. However, in [21], the scheme in [7] is found to be insecure against a
strong type II attack. More recently, Yeh et al. [22] proposed a CL-PKS scheme
for IoT deployment. However, Jia et al. [12] pointed out that it has security
flaws, as any malicious KGC can impersonate the KGC and it cannot resist a
public key replacement attack.

The first online/offline signature scheme was introduced by Even, Goldreich
and Micali [6]. But, the method is impractical since the size of the signature
increases by a quadratic factor [16]. Liu et al. [16] proposed an efficient iden-
tity based online/offline signature scheme, but it has the key escrow problem.
Recently, Cui et al. [5] proposed an efficient certificateless aggregated signature
scheme without pairing for VANETs. However, Kamil et al. [13] found a security
flaw in [5].

2 Preliminaries and Background

2.1 Elliptic Curve Cryptosystem and Assumptions

Let Fp be a finite field, which is determined by a λ-bit prime number p. Let a set
of elliptic curve points E over Fp be defined by the curve form: y2 = x3 +ax+ b,
where p > 3, a, b ∈ Fp, and (4a3 + 27b2) mod p �= 0, and the point at infinity
be O. All the points on E including O form an additive group G with order q
and generator P . The point addition ‘+’ of element in cyclic group G is defined
as follows: Let P,Q ∈ G, l be the line containing P,Q (tangent line to E if
P = Q), and R is the third point of the intersection of l and E. Let l′ be the

62 K. Li et al.

line connecting R and O. Then P ‘+’ Q is defined as the third point such that
l′ intersects with E at R and O, which is -R. Scalar multiplication over E/Fp

can be defined as follows:

mP = P + P + P + ... + P (m times), where m ∈ Z∗
q

The following complexity assumptions are used in security proof of the pro-
posed scheme. We will use the Discrete Logarithm (DL) assumption and the
Computational Diffie-Hellman (CDH) assumption over the additive cyclic group
G, which can be defined as follows.

Definition 1 (The DL Assumption). Discrete Logarithm (DL) Assumption:
Given a random point Q ∈ G on E, it is hard to compute an integer x ∈ Z∗

q in
polynomial time such that Q = xP with non-negligible probability.

Definition 2 (The CDH Assumption). Computational Diffie-Hellman
(CDH) Assumption: Given two random point Q,R ∈ G on E, where Q = xP ,
R = yP , x, y ∈ Z∗

q , it is hard to compute xyP in polynomial time with non-
negligible probability.

2.2 System Model

Typically, a two-layer vehicular ad hoc network model is suitable for VANETs.
Figure 1 shows the typical architecture of VANETs. The lower layer composed
of vehicles and roadside units (RSUs) located at the critical points along the
road. Each vehicle is equipped with an onboard unit (OBU), which enables
vehicles to communicate with other vehicles or RSUs. The communication of
Vehicle-to-Everything(V2X), mainly the Vehicle-to-Vehicle (V2V) and Vehicle-
to-Infrastructure (V2I), is realized by the dedicated short-range communica-
tions (DSRC) protocol, which is identified as IEEE 802.11p. The upper layer
of VANET consists of an application server(such as traffic control and analysis

Fig. 1. A typical architecture of VANETs

An Efficient Conditional Privacy-Preserving Authentication Scheme 63

center), and key generation center (KGC) and trace authority (TRA). The TRA
is responsible for RSU and vehicle registration by generating pseudo identities
for them and can reveal the real identity of a vehicle from its signed message.
The KGC is in charge of generating public and private keys for RSU and vehi-
cles. Besides, we assume that the KGC and TRA are always trusted and cannot
be comprised, which is usually assumed in VANET scheme as in [17,24]. The
KGC and TRA have sufficient computation power and storage capacity. KGC
and TRA are two separate authorities, which can communicate with each other
securely using wired networks and secure protocols, such as Transport Layer
Security (TLS) protocol. We also assume that each vehicle is equipped with a
tamper-proof device, which can prevent the adversary from extracting data from
the device. The OBU only has limited computation power, and RSU has greater
computation power than OBU. The OBU and RSU are not trusted, and the
message sent by them should be authenticated.

3 The Proposed Authentication Scheme

In this section, we present our proposed authentication scheme in detail. First,
we define some notations that will be used in the scheme as listed in Table 1.

Table 1. Notations and descriptions

Notation Description

Vi The i-th vehicle

pski A partial private key of vehicle Vi

xIDi A secret key of vehicle Vi

vpkIDi A public key of vehicle Vi

(Ppub, α) The public/private key pair of KGC

(Tpub, β) The public/private key pair of TRA

RIDi The real identity of a vehicle Vi

PIDi The pseudo identity of a vehicle Vi

H1, H2, H3 Secure hash functions

Ti A valid period of the pseudo identity

ti A current timestamp

mi A traffic-related message

⊕ The exclusive OR operation

|| The message concatenation operation

3.1 System Parameter Setup

In this phase, the TRA and KGC will generate the system parameters, such as
a finite field, an elliptic curve, public keys, etc.

64 K. Li et al.

– Given a security parameter τ , the TAs will generate two large primes p and
q, and will choose a non-singular elliptic curve E, which is defined by the
equation y2 = x3 + ax + b, where p > 3, a, b ∈ Fp, and (4a3 + 27b2) mod p�=
0.

– The TAs will choose a generator P of the additive group G with the order of q.
And it will also choose three secure hash functions which are H1: G×{0, 1}∗×
{0, 1}∗ → Z∗

q , H2: {0, 1}∗ ×G → Z∗
q , H3: {0, 1}∗ ×{0, 1}∗ ×G×G×{0, 1}∗ →

Z∗
q .

– The TRA will randomly choose number β ∈ Z∗
q as its master private key for

traceability, and compute Tpub = β · P as its public key.
– The KGC will randomly choose number α ∈ Z∗

q as its master private key for
partial private key extraction, and compute Ppub = α · P as its public key.

– Then, the public parameters are params = {P, p, q, E,G,H1,H2,H3, Ppub,
Tpub}. Finally,each vehicle pre-loads the public parameters into its temper-
proof device and RSU stores params into its local storage.

3.2 Pseudo-Identity-Generation and Partial-Private-Key-Extraction

In this phase, vehicles register with the TRA and KGC to obtain its pseudo
identity and partial private key.

– The vehicle choose a random value ki ∈ Z∗
q , and calculate PIDi,1 = kiP .

Then the vehicle sends its real identity RIDi and PIDi,1 to the TRA in a
secure way.

– Once the TRA receives (RIDi, P IDi,1) from the vehicle, it first check whether
RIDi is valid or not. If RIDi exist in its local database, then TRA computes
PIDi,2 = RIDi ⊕H1((β ·PIDi,1)||Ti||Tpub) and send the PIDi,2 to the vehi-
cle. Then, the pseudo identity of the vehicle is PIDi = (PIDi,1, P IDi,2, Ti)
where Ti is the valid period of the pseudo identity.

– A vehicle will use its pseudo identity PIDi to communicate with other
participants in the VANET. Since only TRA know its master private key
β, it has the ability to reveal the real identity of a vehicle by computing
RIDi = PIDi,2 ⊕ H1((β · PIDi,1)||Ti||Tpub) in some situation. Then, the
TRA will also send the pseudo identity PIDi to KGC in a secure way.

– After the KGC receives the pseudo identity, it choose a random number di ∈
Z∗
q and compute QIDi

= diP . Then it calculates the partial private key as
pskIDi

= di + H2(PIDi||QIDi
) · α (mod q).

– Then the KGC transmits (QIDi
, pskIDi

) to the vehicle via a secure channel.
Finally the vehicle obtains its pseudo identity PIDi and partial private key
pskIDi

. And the vehicle can check the validity of the partial private key using
the public parameters by verifying whether the equation pskIDi

·P = QIDi
+

H2(PIDi||QIDi
) ·Ppub holds or not. If it holds, then the vehicle will store the

pseudo identity (PIDi) and partial private key(pskIDi
) in its temper-proof

device for further use. Note that the value QIDi
should be public.

An Efficient Conditional Privacy-Preserving Authentication Scheme 65

3.3 Vehicle-Key-Generation

In this phase, the vehicle choose a random number xIDi
∈ Z∗

q as its secret key
and compute vpkIDi

= xIDi
· P as its public key.

3.4 Offline-Sign

In order to maintain the message authentication and integrity, the traffic-related
message should be signed before transmitted. Since the computation power of
the OBU is limited, we propose to use online-offline signature technique, which
allows the vehicles to offline compute some part of the signature when OBU is
idle or the traffic density is not high, to enhance the efficiency of generating
signatures. The offline signature is generated as follows:

– Vi randomly selects a number ri ∈ Z∗
q

– Vi computes Ri = ri · P
– Vi stores the offline φi = (ri, Ri) locally

Generating the offline signature does not require the message, thus a large set of
these offline signature pairs could be pre-generated and stored locally for future
use.

3.5 Online-Sign

Firstly, it randomly picks a pseudo identity PIDi from its storage and selects
the latest timestamp ti, which is used to prevent the replay message attacks. On
input a traffic-related message mi, it signs the message as the followings steps.

– Vi obtains a fresh offline signature tuple φi = (ri, Ri) from its storage.
– Vi computes the full private key ski = xIDi

+ pskIDi

– Vi computes h3i = H3(mi||PIDi||vpkIDi
||Ri||ti).

– Vi computes si = h3i · ri + ski (modq)
– The output signature is σi = (Ri, si). Finally, the vehicle Vi broadcasts

{mi, P IDi, σi, ti, vpkIDi
, QIDi

} to nearby RSUs and vehicles for verification.

3.6 Individual-Verify

In this phase, RSUs or vehicles verify the validity of an individual received
message. Once it receives the message {mi, P IDi, σi, ti, vpkIDi

, QIDi
} , it checks

the validity of the signature as follows.

– Firstly, the verifier will check the freshness of the timestamp ti. If it is not
fresh, then the verifier reject the message and stop the verifying process.

– Then, calculate h3i = H3(mi||PIDi||vpkIDi
||Ri||ti) and h2i = H2

(PIDi||QIDi
)

– Then,check whether the equation si ·P = h3i ·Ri + vpkIDi
+QIDi

+h2i ·Ppub

holds or not. If this equation holds, then the verifier acepts this message,
otherwise reject.

66 K. Li et al.

Proof of Correctness: Since h3i = H3(mi||PIDi||vpkIDi
||Ri||ti), h2i =

H2(PIDi||QIDi
), ski = xIDi

+ pskIDi
, ri · P = Ri, xIDi

· P = vpkIDi
, and

pskIDi
· P = QIDi

+ h2i · Ppub, if the signature is generated correctly, then the
following equation will hold

si · P = h3i · ri · P + xIDi
· P + pskIDi

· P

= h3i · Ri + vpkIDi
+ QIDi

+ h2i · Ppub

3.7 Aggregate

In some scenarios where the density of transmitted messages is very high, RSUs
need to aid the communication by aggregating a collection of certificateless sig-
natures into one. Signature aggregation is the process that on receiving a set of
messages {mi, P IDi, σi, ti, vpkIDi

, QIDi
} from n vehicles {Vi, V2,, Vn}, where

i = 1, 2, 3, ...n, the RSU aggregate the signature by calculating S =
∑n

i=1 si.
Then RSUs output σ = (R1, R2, R3...Rn, S) as the aggregated signature.

3.8 Aggregate-Verify

This algorithm is assumed to be performed by RSUs or the application cen-
ters, such as a traffic control center. Once receiving the aggregated signature
σ = (R1, R2, R3...Rn, S) from a set of vehicles {V1, V2, V3, ..., Vn}, with the cor-
responding parameters {mi, P IDi, ti, vpkIDi

, QIDi
}, where i = 1, 2, 3, ...n, the

RSUs or application centers check the validity of the aggregated signature by
performing the following steps.

– Firstly, the verifier will check the freshness of the timestamp ti, for i =
1, 2, 3, ...n. If it is not fresh, then the verifier reject the message and stop
the verifying process.

– Calculate h3i = H3(mi||PIDi||vpkIDi
||Ri||ti) and h2i = H2(PIDi||QIDi

),
for i = 1, 2, 3, ...n

– Check whether the following equation holds or not: S · P =
∑n

i=1(h3i · Ri) +∑n
i=1 QIDi

+
∑n

i=1 vpkIDi
+ (

∑n
i=1 h2i) · Ppub. If this equation holds, the

verifier will accept the aggregated signature.

Proof of Correctness: Since we have h3i = H3(mi||PIDi||vpkIDi
||Ri||ti),

h2i = H2(PIDi||QIDi
), ski = xIDi

+pskIDi
, ri ·P = Ri, xIDi

·P = vpkIDi
, and

pskIDi
· P = QIDi

+ h2i · Ppub, then we can check the correctness as follows:

S · P =
∑n

i=1
si · P

=
∑n

i=1
(h3i · ri · P + xIDi

· P + pskIDi
· P)

=
∑n

i=1
(h3i · Ri) +

∑n

i=1
QIDi

+
∑n

i=1
vpkIDi

+ (
∑n

i=1
h2i) · Ppub

An Efficient Conditional Privacy-Preserving Authentication Scheme 67

3.9 Batch Verification

Sometimes, a participant in VANETs needs to verify multiple signatures in a
single instance instead of aggregating them. In this scenario, we need to use
the batch verification technique, which allows multiple signatures to be verified
at a time. To ensure the non-repudiation of signatures using batch verification,
we use the small exponent test technology [10]. On receiving multiple messages
{mi, P IDi, σi, ti, vpkIDi

, QIDi
} where i = 1, 2, 3, ...n, the verifier checks the sig-

nature validity using public parameters. The verification process is presented as
follows.

– Firstly, the verifier will check the freshness of the timestamp ti, for i =
1, 2, 3, ...n. If it is not fresh, then the verifier reject the message and stop
the verifying process.

– The verifier randomly choose a vector v = {v1, v2, v3, ..., vn},, where vi is a
small random integer in [1, 2t] and t is a small integer that incurs very little
computation head.

– The verifier checks whether the following equation hols, if it holds, it accepts
the messages, otherwise rejects the messages.
(
∑n

i=1 si · vi) ·P =
∑n

i=1(h3i ·Ri · vi)+
∑n

i=1(vpkIDi
· vi)+

∑n
i=1(QIDi

· vi)+
(
∑n

i=1 h2i · vi) · Ppub

Proof of Correctness: The process is similar to that in the aggregated verify.
We have h3i = H3(mi||PIDi||vpkIDi

||Ri||ti), h2i = H2(PIDi||QIDi
), ski =

xIDi
+ pskIDi

, ri ·P = Ri, xIDi
·P = vpkIDi

, and pskIDi
·P = QIDi

+h2 ·Ppub.
We obtain that:

(
∑n

i=1
si · vi) · P

=
∑n

i=1
((h3i · ri + xIDi

+ pskIDi
) · vi) · P

=
∑n

i=1
(h3i · vi · ri · P) +

∑n

i=1
(vi · xIDi

· P) +
∑n

i=1
(vi · pskIDi

· P)

=
∑n

i=1
(h3i ·Ri · vi) +

∑n

i=1
(pskIDi

· vi) +
∑n

i=1
((QIDi

+ h2i · Ppub) · vi)

=
∑n

i=1
(h3i ·Ri · vi) +

∑n

i=1
(vpkIDi

· vi) +
∑n

i=1
(QIDi

· vi) + (
∑n

i=1
h2i · vi) · Ppub

4 Security Proof

In this section, we give a formal security proof on the proposed certificateless
signature scheme. We use a similar approach in [7] to prove the security of the
proposed signature scheme. The detailed security proof is shown in the appendix.

5 Discussion

In this section, we first present the security and privacy analysis with respect
to the identity privacy-preserving, message authentication, and integrity, trace-
ability, unlinkability and resistance to various attacks. Then we will analyze the
performance of the proposed online/offline certificateless signature scheme and
compare with some other similar schemes.

68 K. Li et al.

5.1 Security Analysis

1. Identity Privacy Preserving: Each participant in VANET needs to register
with the TRA to obtain a pseudo identity, which is generated by the TRA
using its master private key β. The only way for an adversary to reveal the
real identity is to compute RIDi = PIDi,2⊕H1((β ·PIDi,1)||Ti||Tpub), which
means that the adversary has to know the master private key β to calculate
β ·PIDi,1. However, it is infeasible for the adversary to obtain β from Tpub =
β · P , as this contradicts the DL assumption. Therefore, our scheme meets
the requirement of identity privacy preserving.

2. Message Authentication and Integrity: Each transmitted message is
signed by a legitimate user before broadcasting in VANET. According to
Theorems 1 and 2, there is no polynomial-time adversary can forge a valid
signature based on the DL assumption. Hence the verifier can check the valid-
ity and integrity of the signature, which guarantees that the message comes
from a legitimate user and it is not modified during transmission, by verifying
the equation si ·P = h3i ·Ri +vpkIDi

+QIDi
+h2i ·Ppub. Hence, the proposed

scheme ensures the message authentication and integrity.
3. Traceability: The pseudo identity is generated using the master private

key of the TRA. From the pseudo identity PIDi = (PIDi,1, P IDi,2, Ti),
where PIDi,1 = kiP , PIDi,2 = RIDi ⊕ H1((β · PIDi,1)||Ti||Tpub), the
TRA can extract the real identity by computing RIDi = PIDi,2 ⊕ H1((β ·
PIDi,1)||Ti||Tpub). Hence, the traceability is also provided by our scheme.

4. Unlinkability: During the pseudo identity generation phase, the OBU
choose a random value ki ∈ Z∗

q to calculate PIDi,1 = kiP and PIDi,2 =
RIDi ⊕ H1((β · PIDi,1)||Ti||Tpub) which compose the pseudo identity. As for
the signature generation, a random value ri ∈ Z∗

q is also selected by the vehi-
cle and used to compute the signature. Due to the randomness of ki and ri, it
is infeasible for the adversary to link two anonymous identities or signatures
generated by the same vehicle. Hence, the requirement of unlinkability is also
guaranteed by our scheme.

5. Resistance to Various Attacks: In this part, we show that our scheme can
resist various attacks, including reply attack, modification attack, imperson-
ation attack and stolen verifier table attack.

– Reply Attack: The timestamp ti inside the message {mi, P IDi, σi,
ti, vpkIDi

, QIDi
} is used to resist the reply attack. Before verifying the

validity of the signature, the verifier will check the freshness of the times-
tamp ti. If it is not a fresh timestamp, the message will be rejected. Hence,
the reply attack is avoided in our scheme by using the timestamp.

– Message Modification Attact: Since each message is signed by the
sender, any modification of the message will lead to the result that equa-
tion si · P = h3i · Ri + vpkIDi

+ QIDi
+ h2i · Ppub does not hold when the

verifier checks the validity of the signature. Then the modified message
will be disregarded. Hence, our scheme can resist modification attack.

– Impersonation Attack: In order to launch a successful imperson-
ation attack, the adversary should be able to output a message

An Efficient Conditional Privacy-Preserving Authentication Scheme 69

{mi, P IDi, σi, ti, vpkIDi
, QIDi

} that can pass the verification of the
receiver. This means that the adversary should be able to forge a valid
signature. However, this is infeasible according to the Theorems 1 and 2.
Hence the impersonation attack is impossible for our scheme.

– Stolen Verifier Table Attack: In our scheme, OBU and RSU does not
maintain a verifier table for message authentication. Therefore, stolen
verifier table attack is also impossible for our scheme.

5.2 Performance Evaluation

We adopt a similar approach in [8] to analyze the performance. Below we define
the benchmark and security level for comparisons.

For bilinear pairing-based authentication schemes, we use a bilinear pairing
ē : G1×G1 → G2 with the security level of 80-bits, where G1 is an additive group
generated by a point P̄ with the order of q̄ on the super singular elliptic curve
Ē : y2 = x3 + x mod p̄ with the embedding group degree 2, p̄ is a 512-bit prime
number, q̄ is a 160-bit Solinas prime number and the equation p̄+1 = 12q̄r holds.
For ECC-based identity-based authentication scheme, we achieve the security
level of 80-bits by using an additive group G generated by a point P with the
order q on a non-singular elliptic curve E, which is defined by the equation
y2 = x3 + ax + b, where p > 3, a, b ∈ Fp, p, q are 160-bit prime number, and
(4a3 + 27b2) mod p �= 0.

5.3 Computation Cost Analysis

We first define some notations about the execution time of the cryptographic
operations. The execution time is evaluated using the famous MIRACL cryp-
tographic library. We use the cryptographic operation time directly from [8] to
evaluate the performance. Note that some very light operations, such as addition
operation in Z∗

q and multiplication operation in Z∗
q are ignored, as the execution

time is relatively small.

• Tbp: The operation time of a bilinear pairing operation ē(P,Q), where P̄ , Q̄ ∈
G1, 4.2110 ms;

• Tbp−m: The operation time of a scalar multiplication x ·P̄ related to a bilinear
pairing, where P̄ ∈ G1, x ∈ Z∗

q̄ , 1.7090 ms;
• Tbp−a: The operation time of a point addition P̄ + Q̄ related to a bilinear

pairing, where P̄ , Q̄ ∈ G1, 0.0071 ms;
• Tecc−m: The operation time of a scalar multiplication x · P related to the

ECC, where P ∈ G and x ∈ Z∗
q , 0.4420 ms;

• Tecc−a: The operation time of a point addition P + Q related to the ECC,
where P,Q ∈ G, 0.0018 ms;

• TH : The execution time of a map-to-point hash function operation, 4.406 ms;
• Th: The execution time of an ordinary one-way hash function operation,

0.0001 ms.

70 K. Li et al.

Table 2. Computation cost comparisons of the proposed scheme with others

Schemes Sign (ms) Individual verify (ms) Total (ms)

[19] 4Tbp−m + 2Tbp−a + Th ≈ 6.8503 3Tbp + 3Tbp−m + Tbp−a + 2Th ≈ 17.7673 24.6176

[9] 2Tbp−m + Tbp−a + Th ≈ 3.4252 3Tbp + Tbp−m + Tbp−a + TH + Th ≈ 18.7552 22.1804

[15] 3Tbp−m ≈ 5.127 3Tbp + 2TH + 2Tbp−m ≈ 24.863 29.99

[25] 3Tbp−m ≈ 5.127 3Tbp + TH + 2Tbp−m ≈ 20.457 25.584

[5] Tecc−m + Th + Tecc−a ≈ 0.4439 3Tecc−m + 2Tecc−a + 2Th ≈ 1.3298 1.7737

[13] 3Tecc−m + 3Th + 2Tecc−a ≈ 1.3299 2Tecc−m + Tecc−a + Th ≈ 0.8859 2.2158

Our scheme Tecc−m + Th ≈ 0.4421 3Tecc−m + 3Tecc−a + 2Th ≈ 1.3316 1.7737

Table 3. Computation cost comparisons of the proposed scheme with others

Schemes Aggregated verify (ms)

[19] 3Tbp + 3nTbp−m + nTbp−a + 2nTh

[9] 3Tbp + nTbp−m + nTbp−a + nTH + nTh

[15] 3Tbp + (n + 1)TH + 2nTbp−m

[25] 3Tbp + nTH + 2nTbp−m

[5] (n + 2)Tecc−m + 2nTecc−a + 2nTh

[13] 2Tecc−m + nTecc−a + nTh

Our scheme (n + 2)Tecc−m + 3nTecc−a + 2nTh

We make comparisons with the recent authentication schemes in VANET [5,
9,13,15,19,25]. The comparisons of computation cost of signing, verifying one
message and aggregated verify are given in Tables 2 and 3. From Tables 2 and
3, it is obvious to see that schemes [9,15,19,25] with pairing operation and
map-to-point hash functions are much more computationally expensive than
schemes based on ECC cryptographic primitives and simple one-way hash func-
tions. Then, comparing to similar schemes [5,13], which also does not require
pairing and map-to-point hash function, our scheme also has some advantages.
Even through [5] almost has the same computation efficiency as our scheme, it
is shown to be insecure under the existing security model in [13]. Kamil et al.
[13] proposed an improved scheme after its cryptanalysis of Cui’s scheme [5].
Although, the individual verifying phase of our scheme is more expensive than
that in [13], the signing cost of our scheme is much lower than that in [13]. And
note that, the total cost of signing and verifying a single message is also small
than that in [13]. More importantly, our scheme supports online/offline sign,
which means that some cryptographic operations can be pre-computed and used
directly when signing a message. Hence in our scheme, the signing cost could be
lower and only be Th, as the operation of the relatively expensive scalar mul-
tiplication corresponding to Tecc−m can be pre-computed and does not incur
computation overhead.

An Efficient Conditional Privacy-Preserving Authentication Scheme 71

Fig. 2. Aggregated verification time vs. Number of signatures

In Fig. 2, we further investigate the aggregated verification time with respect
to the number of signatures. Figure 1 indicates that the aggregated verification
time with regards to number of signatures of the schemes, which require bilinear
pairings and map-to-point hash functions, increases much faster than that of
the schemes without pairings or map-to-point hash functions. The aggregated
verification time with regards to the number of signatures of our scheme grows a
little faster than that of [13]. However, we argue that typically a RSU is assumed
to have much more computation power than the OBU. Hence, in many scenarios,
the need to enhance the signing efficiency is more significant than the need to
improve the aggregated verification efficiency, which means that the advantage
of an efficient sign phase outweight the advantage of an efficient aggregated
verification phase. Therefore, our scheme has a slight edge comparing to the
scheme [13] in the sense that the signing efficiency is higher than that in [13].

6 Conclusions

In this paper, we propose an efficient conditional privacy-preserving authenti-
cation scheme using online/offline certificateless aggregate signature to address
the security and privacy issues of VANETs. Our proposed scheme is proven to
be secure with a rigorous security proof, and it satisfies all the security and
privacy requirements of VANET. The online/offline signature allows some com-
putational expensive operations to be pre-computed offline, thus reducing the
computation overhead when signing a message online. Moreover, the proposed
scheme does not require the computational expensive bilinear pairing opera-
tion and map-to-point hash function, and it supports signature aggregation and
batch verification, which are very useful for VANETs scenario. As a result of
using these techniques, the proposed scheme has a better computation efficiency
compared with many other related schemes.

72 K. Li et al.

A Security Proof

Typically, for a certificateless signature scheme, we define two types of security,
namely Type-I security and Type-II security, which corresponds to two types of
adversaries A1 and A2.

– Type-I Adversary: A1 can launch a public key replacement attack by
replacing the public key of any vehicle with a value of its choice. A1 does
not know the master secret key or the partial private key.

– Type-II Adversary: A2 acts as a malicious-but-passive KGC, which knows
the master key and the partial private key, but cannot replace any user’s
public key.

Theorem 1. The proposed scheme is (ε, t, qc, qs, qh)- secure against the adver-
sary A1 in the random oracle model, assuming that DL assumption hold in G,
where qc, qh, qs are the numbers of Create, Hash and Sign queries that the
adversary is allowed to make.

Proof. Assume there is a probabilistic polynomial-time forger A1, we construct
an algorithm F that make use of A1 to solve the discrete logarithm prob-
lem(DLP). Suppose F is given the DLP instance (P,Q) to compute x ∈ Z∗

q

such that Q = xP . F chooses a random identity ID∗ as the challenged ID and
answers the oracle queries from A1 as follows:

– Setup(ID) query: F sets Ppub = Q and sends the parameters
{P, p, q, E,G,H2,H3, Ppub} to A1.

– Create(ID) query: F maintains a hash list Lc of tuple (ID,QID,
vpkID, pskID, xID, h2). When A1 makes a query on ID, if ID is in Lc, F
responds with (ID,QID, vpkID, pskID, xID, h2). Otherwise, F will simulate
the oracle as follows. It randomly selects three value a, b, c ∈ Z∗

q , and sets
QID = a·Ppub+b·P , vpkID = c·P , pskID = b, xID = c, h2 = H2(ID||QID) ←
−a(modq). Then it responds with (ID,QID, vpkID, pskID, xID, h2), and
inserts (ID,QID, h2) to LH2 . Note that the equation pskID · P = QID +
h2 · Ppub holds, which means that the partial secret key is valid.

– H2 query: When adversary makes a H2 query with (ID,QID), if ID is
already in the hash list LH2 , F just returns the corresponding h2. Otherwise,
F runs Create(ID) to get h2, and send h2 to A1.

– Partial-Private-Key-Extract(ID) query: If ID = ID∗, F stops the sim-
ulation. Otherwise, F checks the hash list Lc, if ID in the list, then F response
with pskID. If ID is not in Lc, F queries Create(ID) to get the pskID, and
sends it to A1.

– Public-Key(ID) query: On receiving the query on ID, if ID is already in
Lc, F response with pkID = (QID, vpkID). Otherwise, F queries Create(ID)
to get the (QID, vpkID), and sends it to A1.

– Public-Key-Replacement(ID, pk
′
ID) query: F maintains a hash list LR

of tuple (ID, di, QID, xID, vpkID). When A1 queries with (ID, pk
′
ID), where

Q
′
ID =d

′
i · P , vpk

′
ID = x

′
ID · P and pk

′
ID =(Q

′
ID, vpk

′
ID), F sets QID = Q

′
ID,

An Efficient Conditional Privacy-Preserving Authentication Scheme 73

vpkID = vpk
′
ID, pskID =⊥, and xID = x

′
ID. Then F updates the list LR to

be (ID, d
′
i, Q

′
ID, vpk

′
ID, x

′
ID)

– H3 query: F maintains a hash list LH3 of tuple (m, ID,R, vpkID, t, h3). If
the queries ID is in this list, F just responds with h3. Otherwise it chooses a
random h3, sets h3 = H3(m||ID||vpkID||R||t), add it into LH3 and responds
with h3.

– Sign(ID,m) query: When A1 makes a sign query on (ID,m), if ID is
in LR, F generates random numbers a, b, c ∈ Z∗

q , sets s = a,R = P, h3 =
H3(m||ID||vpkID||R||t) ← (a − b − c)mod(q), inserts (m, ID,R, vpkID, t, h3)
into LH3 . The output signature is (R, s). If ID is not in LR, F acts like the
description of the scheme.

Finally, A1 outputs a forged signature σ = (R, s{1}) on (ID,m), which satisfies
the verification process of the verifier. If ID �= ID∗,F fails and aborts. From the
forking lemma in [20], F rewinds A1 to the point where it queries H3, and use a
different value. A1 will output another valid signatures (R, s{2}) with the same
R. Then we have:

s{i} · P = h3{i} · R + vpkID + QID + h2 · Ppub, where i = 1, 2

From these two linear equations, we can derive the value r by s2−s1
h3{2} −h3{1}

.

Another rewind on H2 will allow computation on x.

Probability Analysis: The simulation of Create(ID) oracle fails when the
random oracle assignment H2(ID||QID) causes inconsistency, which happens
with the probability at most qh/q. The probability of successful simulation of qc
times is at least (1 − (qh/q))qc � 1 − (qhqc/q). Also, the simulation is successful
qh times with the probability at least (1−(qh/q))qh � 1−(q2h/q). And ID = ID∗

with the probability 1/qc. Therefore, the overall successful simulation probability
is (1 − qhqc/q)(1 − (q2h/q))(1/qc)ε.

The time complexity of the algorithm F is dominated by the exponentiations
performed in the Create and Sign queries, which is equal to t+O(qc+qs)S, where
S is the time of a scalar multiplication operation.

Theorem 2. The proposed scheme is (ε, t, qc, qs, qh)- secure against the adver-
sary A2 in the random oracle model, assuming that DL assumption hold in G,
where qc, qh, qs are the numbers of Create, Hash and Sign queries that the
adversary is allowed to make.

Proof. Assume there is a probabilistic polynomial-time forger A2, we construct
an algorithm F that make use of A2 to solve the discrete logarithm prob-
lem(DLP). Suppose F is given the DLP instance (P,Q) to compute y ∈ Z∗

q

such that Q = yP . F chooses a random identity ID∗ as the challenged ID and
answers the oracle queries from A2 as follows:

– Setup(ID) query: F sets Ppub = x · P, x ∈ Z∗
q and sends the parameters

{P, p, q, E,G,H2,H3, Ppub} to A2.

74 K. Li et al.

– Create(ID) query: F maintains a hash list Lc of tuple (ID,QID,
vpkID, pskID, xID, h2). When A1 makes a query on ID, if ID is in Lc, F
responds with (ID,QID, vpkID, pskID, xID, h2). If ID = ID∗, F choose
a, b ∈ Z∗

q randomly, sets QID = aP, vpkID = Q,h2 = H2(ID||QID) ←
b, pskID = a + x · h2, xID =⊥. If ID �= ID∗, F select three random
number a, b, c, and sets QID = aP, vpkID = bP, h2 = H2(ID||QID) ←
c, pskID = a + x · h2, xID = b. Finally, F response the query with
ID,QID, vpkID, pskID, xID, h2 and add ID,QID, h2 into the hash list LH2

– H2 query: When adversary makes a H2 query with (ID,QID), if ID is
already in the hash list LH2 , F just returns the corresponding h2. Otherwise,
F runs Create(ID) to get h2, and send h2 to A1.

– Partial-Private-Key-Extract(ID) query: On receiving the query on ID,
F checks the hash list Lc, if ID in the list, then F response with pskID. If
ID is not in Lc, F queries Create(ID) to get the pskID, and sends it to A1.

– Public-Key(ID) query: On receiving the query on ID, if ID is already in
Lc, F response with pkID = (QID, vpkID). Otherwise, F queries Create(ID)
to get the (QID, vpkID), and sends it to A1.

– Secrety-Key-Extract(ID) query: If ID = ID∗, F aborts the simulation.
Otherwise, if ID is already in Lc, F response with xID.If ID is not already
in Lc, F runs Create(ID) to get ID,QID, vpkID, pskID, xID, h2, and sends
xIDto the adversary.

– H3 query: F maintains a hash list LH3 of tuple (m, ID,R, vpkID, t, h3). If
the quries ID is in this list, F just responds with h3. Otherwise it chooses a
random h3, sets h3 = H3(m||ID||vpkID||R||t), add it into LH3 and responds
with h3.

– Sign(ID,m) query: If ID �= ID∗, F acts like the description of the
scheme.Otherwise, F generates random numbers a, b, f ∈ Z∗

q , sets s =
a, h3 = H3(m||ID||vpkID||R||t) ← f,R = h−1

3 · (bPpub − Q), and response
eith the signature as (R, s). This signature is valid as the equation s · P =
h3 · R + QID + vpkID + h2 · Ppub holds.

Finally, A2 outputs a forged signature σ = (R, s{1}) on (ID,m), which sat-
isfies the verification process of the verifier. From the forking lemma in [20], F
rewinds A2 to the point where it queries H3, and use a different value. A2 will
output another valid signature (R, s{2}) with the same R. Then we have:

s{i} · P = h3{i} · R + vpkID + QID + h2 · Ppub, where i = 1, 2
s{i} = h3{i} · r + y + di + h2x, i = 1, 2

Only y, r are unknown. Hence, from these two linear equations, we can derive
the two unknown value r, y, and output y as the solution of the DL problem.

Probability Analysis: The simulation of Create(ID) oracle fails when the
random oracle assignment H2(ID||QID) causes inconsistency, which happens
with the probability at most qh/q. The probability of successful simulation of qc
times is at least (1 − (qh/q))qc � 1 − (qhqc/q). Also, the simulation is successful

An Efficient Conditional Privacy-Preserving Authentication Scheme 75

qh times with the probability at least (1−(qh/q))qh � 1−(q2h/q). And ID = ID∗

with the probability 1/qc. Therefore, the overall successful simulation probability
is (1 − qhqc/q)(1 − (q2h/q))(1/qc)ε.

The time complexity of the algorithm F is dominated by the exponentiations
performed in the Create and Sign queries, which is equal to t+O(qc+qs)S, where
S is the time of a scalar multiplication operation.

References

1. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-40061-5 29

2. Au, M.H., Mu, Y., Chen, J., Wong, D.S., Liu, J.K., Yang, G.: Malicious KGC
attacks in certificateless cryptography. In: Proceedings of the 2nd ACM Sympo-
sium on Information, Computer and Communications Security, pp. 302–311. ACM
(2007)

3. Bayat, M., Barmshoory, M., Rahimi, M., Aref, M.R.: A secure authentication
scheme for vanets with batch verification. Wirel. Netw. 21(5), 1733–1743 (2015)

4. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 26

5. Cui, J., Zhang, J., Zhong, H., Shi, R., Xu, Y.: An efficient certificateless aggregate
signature without pairings for vehicular ad hoc networks. Inf. Sci. 451, 1–15 (2018)

6. Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 263–275. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 24

7. He, D., Chen, J., Zhang, R.: An efficient and provably-secure certificateless sig-
nature scheme without bilinear pairings. Int. J. Commun Syst 25(11), 1432–1442
(2012)

8. He, D., Zeadally, S., Xu, B., Huang, X.: An efficient identity-based conditional
privacy-preserving authentication scheme for vehicular ad hoc networks. IEEE
Trans. Inf. Forensics Secur. 10(12), 2681–2691 (2015)

9. Horng, S.-J., Tzeng, S.-F., Huang, P.-H., Wang, X., Li, T., Khan, M.K.: An efficient
certificateless aggregate signature with conditional privacy-preserving for vehicular
sensor networks. Inf. Sci. 317, 48–66 (2015)

10. Horng, S.-J., et al.: b-SPECS+: batch verification for secure pseudonymous authen-
tication in VANET. IEEE Trans. Inf. Forensics Secur. 8(11), 1860–1875 (2013)

11. Hubaux, J.-P., Capkun, S., Luo, J.: The security and privacy of smart vehicles.
IEEE Secur. Priv. 3, 49–55 (2004)

12. Jia, X., He, D., Liu, Q., Choo, K.-K.R.: An efficient provably-secure certificateless
signature scheme for internet-of-things deployment. Ad Hoc Netw. 71, 78–87 (2018)

13. Kamil, I.A., Ogundoyin, S.O.: An improved certificateless aggregate signature
scheme without bilinear pairings for vehicular ad hoc networks. J. Inf. Secur. Appl.
44, 184–200 (2019)

14. Li, X.-X., Chen, K.-F., Sun, L.: Certificateless signature and proxy signature
schemes from bilinear pairings. Lith. Math. J. 45(1), 76–83 (2005)

15. Liu, D., Shi, R.-H., Zhang, S., Zhong, H.: Efficient anonymous roaming authen-
tication scheme using certificateless aggregate signature in wireless network. J.
Commun. 37(7), 182–192 (2016)

https://doi.org/10.1007/978-3-540-40061-5_29
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/0-387-34805-0_24

76 K. Li et al.

16. Liu, J.K., Baek, J., Zhou, J., Yang, Y., Wong, J.W.: Efficient online/offline identity-
based signature for wireless sensor network. Int. J. Inf. Secur. 9(4), 287–296 (2010)

17. Lo, N.-W., Tsai, J.-L.: An efficient conditional privacy-preserving authentication
scheme for vehicular sensor networks without pairings. IEEE Trans. Intell. Transp.
Syst. 17(5), 1319–1328 (2015)

18. Lu, R., Lin, X., Zhu, H., Ho, P.-H., Shen, X.: ECPP: efficient conditional privacy
preservation protocol for secure vehicular communications. In: IEEE INFOCOM
2008-The 27th Conference on Computer Communications, pp. 1229–1237. IEEE
(2008)

19. Malhi, A.K., Batra, S.: An efficient certificateless aggregate signature scheme for
vehicular ad-hoc networks. Discrete Math. Theor. Comput. Sci. 17(1), 317–338
(2015)

20. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361–396 (2000)

21. Tsai, J.-L., Lo, N.-W., Wu, T.-C.: Weaknesses and improvements of an efficient
certificateless signature scheme without using bilinear pairings. Int. J. Commun
Syst 27(7), 1083–1090 (2014)

22. Yeh, K.-H., Su, C., Choo, K.-K.R., Chiu, W.: A novel certificateless signature
scheme for smart objects in the internet-of-things. Sensors 17(5), 1001 (2017)

23. Yum, D.H., Lee, P.J.: Generic construction of certificateless signature. In: Wang,
H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 200–
211. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27800-9 18

24. Zhang, C., Lu, R., Lin, X., Ho, P.-H., Shen, X.: An efficient identity-based batch
verification scheme for vehicular sensor networks. In: IEEE INFOCOM 2008-The
27th Conference on Computer Communications, pp. 246–250. IEEE (2008)

25. Zhong, H., Han, S., Cui, J., Zhang, J., Xu, Y.: Privacy-preserving authentication
scheme with full aggregation in vanet. Inf. Sci. 476, 211–221 (2019)

https://doi.org/10.1007/978-3-540-27800-9_18

History-Free Sequential Aggregate MAC
Revisited

Shoichi Hirose1,2(B) and Junji Shikata3

1 Faculty of Engineering, University of Fukui, Fukui, Japan
hrs shch@u-fukui.ac.jp

2 Japan Datacom Co., Ltd., Tokyo, Japan
3 Graduate School of Environment and Information Sciences,

Yokohama National University, Yokohama, Japan
shikata-junji-rb@ynu.ac.jp

Abstract. Eikemeier et al. introduced and formalized sequential aggre-
gate MAC in 2010. They also constructed a history-free scheme for
sequential aggregate MAC using a pseudorandom permutation and a
MAC function. In this paper, we reconsider history-free sequential aggre-
gate MAC. We give a definition of its security requirement, which is
more general than that of Eikemeier et al. Then, we propose two new
schemes for history-free sequential aggregate MAC. The first scheme
is constructed with a pseudorandom permutation and a pseudorandom
function. The second scheme is constructed only with a pseudorandom
function under two keying strategies and without a pseudorandom per-
mutation. We reduce the security of the proposed schemes to the security
properties of their underlying primitives. We also discuss an instantia-
tion of the second scheme using a pseudorandom function based on a
cryptographic hash function such as HMAC with SHA-2 in some detail.

Keywords: Message authentication · Aggregate MAC · Block cipher ·
Hash function · Provable security

1 Introduction

Background. Message authentication is one of the important roles of symmetric
cryptography. A cryptographic primitive for message authentication is called
a MAC function. Let MAC be a MAC function. Two communicating parties,
a sender and a receiver, share a secret key SK . The sender sends a message
Msg to the receiver together with an authenticator Tag ← MAC (SK ,Msg),
which is often called a tag. After receiving (Msg ,Tag), the receiver computes
Tag ′ ← MAC (SK ,Msg) and accepts Msg if and only if Tag ′ = Tag .

For authenticated transmission of multiple messages, each message is trans-
mitted with its tag in common cases. Aggregate MAC, which was proposed by
Katz and Lindell [17], enables us to aggregate multiple tags into a single tag of

c© Springer Nature Switzerland AG 2019
R. Steinfeld and T. H. Yuen (Eds.): ProvSec 2019, LNCS 11821, pp. 77–93, 2019.
https://doi.org/10.1007/978-3-030-31919-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_5&domain=pdf
http://orcid.org/0000-0001-6723-722X
http://orcid.org/0000-0003-2861-359X
https://doi.org/10.1007/978-3-030-31919-9_5

78 S. Hirose and J. Shikata

the same length as each of the tags. It is useful for energy-constrained applica-
tions such as IoT since a tag makes the amount of transmitted data (more than)
double for a very short message.

The Katz-Lindell aggregate MAC scheme aggregates the tags by bitwise mod-
ular addition. Thus, it obviously does not reflect the ordering of the messages
in the aggregate tag. On the other hand, Eikemeier et al. [11] introduced and
formalized sequential aggregate MAC, which enables us to detect any change
in the ordering as well as the messages. The scheme proposed by Eikemeier et
al. produces a new aggregate tag from a new message and an aggregate-so-far
tag without the messages corresponding to the aggregate-so-far tag. Thus, it is
called history-free.

Our Contribution. History-free sequential aggregate MAC is reconsidered in
this paper. First, its syntax and security requirement are formalized. They are
based on those of Eikemeier et al. [11]. The definition of security requirement is,
however, more general than theirs in terms of restriction imposed on adversaries.
Second, two new schemes are presented. The first scheme is called cipher-based
since it requires a pseudorandom permutation and suitable for instantiations
using a block cipher such as AES [13]. The second scheme is called hash-based
since it requires a pseudorandom function with two keying strategies and suitable
for instantiations using a cryptographic hash function such as SHA-2 [12]. The
second scheme is just a simple cascade of a pseudorandom function, and it may
be interesting in that the scheme presented by Eikemeier et al. [11] requires a
pseudorandom permutation as well as the first scheme in the current paper.

Related Work. Inspired by aggregate signatures [8], Katz and Lindell introduced
aggregate MAC [17]. They also proposed an aggregate MAC scheme which aggre-
gates tags by bitwise modular addition. The unforgeability of their scheme is
reduced to the unforgeability of its underlying MAC function.

Eikemeier et al. [11] gave formal descriptions of sequential aggregate MAC
and its security requirement. They also proposed a history-free scheme using
a pseudorandom permutation and a MAC function, which was shown to be
unforgeable. To aggregate tags, their scheme uses secret keys of the involved
users as well as the new schemes proposed in the current paper. Sato, Hirose
and Shikata proposed another type of sequential aggregate MAC [20]. Their
scheme does not use secret keys of the involved users to aggregate tags.

Aggregate MAC has the following drawbacks: (i) All the messages are
required to verify their authenticity with respect to their aggregate tag, and
(ii) invalid messages are not identified in the case that the result of authenticity
verification is invalid. For the first drawback, aggregate MAC with on-the-fly ver-
ification was proposed [9]. For the second drawback, group-testing [10] is applied
to aggregate MAC of the Katz-Lindell type [16].

Ma and Tsudik [18] introduced forward-secure sequential aggregate MAC and
proposed a scheme using a MAC function and a cryptographic hash function.
Ma and Tsudik [19] discussed its application to secure audit log. Hirose and
Kuwakado proposed a scheme without cryptographic hash functions [15].

History-Free Sequential Aggregate MAC Revisited 79

Organization. Notations and definitions are introduced in Sect. 2. Syntax and
a security requirement of history-free sequential aggregate MAC are formalized
in Sect. 3. Generic constructions using a block cipher and a hash function are
presented in Sects. 4 and 5, respectively. Their unforgeability and instantiations
are also discussed in these sections. A brief concluding remark is given in Sect. 6.

2 Preliminaries

2.1 Notation

For integers n1 and n2 satisfying n1 ≤ n2, let [n1, n2] be the set of integers
between n1 and n2 inclusive.

Selecting an element s uniformly at random from a set S is denoted by s ←← S.
For a set S, let S∗ �

⋃
i≥0 Si and S+ �

⋃
i≥1 Si. For non-negative integers

n1 and n2 satisfying n1 ≤ n2, let S [n1,n2] �
⋃n2

i=n1
Si.

Let Σ � {0, 1}. For a non-negative integer l, let Σl be the set of all Σ-
sequences of length l. Let ε be the Σ-sequence of length 0. For x ∈ Σ∗, let |x|
be the length of x. For x, y ∈ Σ∗, let x‖y be the concatenation of x and y.

Let FD,R be the set of all functions from D to R. Let PD be the set of all
permutations over D. For PD, let id be the identity permutation: id(x) = x for
every x ∈ D.

For a function f , let time(f) be the amount of time required to compute f .

2.2 Pseudorandom Function and Permutation

A pseudorandom function (PRF) [14] is a keyed function f ∈ FK×D,R, where K is
its key space. The security requirement of a PRF is indistinguishability [4,6,14].
An adversary D against f is given an oracle, which is either fK or ρ, where
K ←← K and ρ ←← FD,R. It makes queries in D to the oracle adaptively and
obtains the corresponding outputs. Finally, it outputs 0 or 1. The prf-advantage
of D against f is defined by

Advprf
f (D) �

∣
∣Pr[DfK = 1] − Pr[Dρ = 1]

∣
∣ ,

where D is regarded as a random variable. Informally, f is called a secure PRF
if any adversary with realistic computational resources can only have negligible
prf-advantage against f .

For a pseudorandom permutation (PRP) p ∈ FK×D,D, the prp-advantage is
defined similarly:

Advprp
p (D) � |Pr[DpK = 1] − Pr[D� = 1]| ,

where K ←← K and � ←← PD.

80 S. Hirose and J. Shikata

2.3 PRF Under Related-Key Attack

The notion of a PRF under related-key attacks [5] is formalized by Bellare and
Kohno. Let Φ ⊂ FK,K be a set of key-deriving functions. Let key ∈ FΦ×K,K be a
function such that key(ϕ,K) � ϕ(K). Let D be an adversary making a Φ-related-
key attack (Φ-RKA) against f ∈ FK×D,R. D is given an oracle g(key(·,K), ·),
where g is either f or ρ ←← FK×D,R, and K ←← K. For each query (ϕ, x) ∈ Φ×D
made by D, g(key(·,K), ·) returns g(ϕ(K), x). g(key(·,K), ·) is denoted by g[K]
for simplicity. The prf-rka-advantage of D against f is defined by

Advprf-rka
Φ,f (D) �

∣
∣Pr[Df [K] = 1] − Pr[Dρ[K] = 1]

∣
∣.

2.4 PRF with Affix

The notion of a PRF with affix is introduced to prove the PRF property of H2-
MAC by Yasuda [21]. The attack scenario of PRF-AX is similar to that of PRF
except that an adversary can also obtain information called affix. An adversary
D against f ∈ FK×D,R is given access to a pair of oracles (g, g′), which are either
(fK , f ′

K) or (ρ, ρ′), where K ←← K, f ′ ∈ FK×D′,R′ , and (ρ, ρ′) ←← (FD,R,FD′,R′).
g′ accepts only a single query x′ made by D and returns g′(x′) to D. The prf-
ax-advantage of D is defined by

Advprf-ax∗
f (D) �

∣
∣Pr[D(fK ,f ′

K) = 1] − Pr[D(ρ,ρ′) = 1]
∣
∣.

The formalization here is actually slightly different from that of [21], where
the query to g′ is fixed and cannot be chosen by D. Thus, the notation prf-ax∗

is used instead of prf-ax of [21].

2.5 Multi-oracle Setting

The prf-advantage can be generalized to the multi-oracle setting. In this set-
ting, an adversary D against f ∈ FK×D,R is given oracles, which are either
fK1 , fK2 , . . . , fKm

or ρ1, ρ2, . . . , ρm, where Ki ←← K and ρi ←← FD,R for
i ∈ [1,m]. The prf-advantage of D against f is defined by

Advm-prf
f (D) �

∣
∣Pr[DfK1 ,...,fKm = 1] − Pr[Dρ1,...,ρm = 1]

∣
∣ .

The prf-advantage degrades at most linearly with the number of the oracles:

Lemma 1 (Lemma 3.3 in [3]). For any adversary Dm against f with access
to m oracles, there exists some adversary Ds against f such that

Advm-prf
f (Dm) ≤ m · Advprf

f (Ds).

The run time of Ds is approximately total of that of Dm and the time to compute
f for the queries made by Dm. The number of the queries made by Ds is at most
max{qi | i ∈ [1,m]}, where qi is the number of the queries from Dm to its i-th
oracle.

The prp-advantage, the prf-rka-advantage, and the prf-ax-advantage can be
generalized to the multi-oracle setting in the similar manner. The similar results
to Lemma 1 also hold for these advantages.

History-Free Sequential Aggregate MAC Revisited 81

2.6 Keyed Merkle-Damg̊ard Iteration

For a keyed function f : V ×D → V with its key space V, Let MDf : V ×D∗ → V
be the keyed Merkle-Damg̊ard iteration of f with its key space V. Namely, for
V ∈ V and an empty sequence ε ∈ D0, MDf (ε, V) � V and

MDf ((D1,D2, . . . , Dn), V) � f(Dn,MDf ((D1,D2, . . . , Dn−1), V)),

where Di ∈ D for i ∈ [1, n]. MDf (·, V) is also denoted by MDf
V (·).

2.7 Collision Resistance

Let HD,R ⊆ FD,R and |D| > |R|. Let A be an adversary which takes as input
a function in HD,R and returns a pair of elements in D. The cr-advantage of A
against HD,R is defined by

Advcr
HD,R(A) � Pr[(x, x′) ← A(h) : x 	= x′ ∧ h(x) = h(x′)],

where h ←← HD,R.

3 History-Free Sequential Aggregate MAC

3.1 Syntax

A history-free sequential aggregate MAC (SAM) scheme is defined to consist of
the following algorithms:

Key generation K ← KG(1p).
This algorithm takes as input a security parameter p and produces a secret
key K.

Aggregate Tagging T ← STag(KI ,M, I, T ′).
This algorithm takes as input a pair of a message and an ID (M, I), an
aggregate-so-far tag T ′ and a secret key KI of the user I, and produces as
output a new aggregate tag T .

Verification d ← SVer((KI1 , . . . ,KIn
), ((M1, I1), . . . , (Mn, In)), Tn).

This algorithm takes as input a tuple of pairs of a message and an ID
((M1, I1), . . . , (Mn, In)), a tag Tn and secret keys (KI1 , . . . ,KIn

) and returns
a decision d ∈ {�,⊥}.

For ((M1, I1), . . . , (Mn, In)), let T ′
i = STag(KIi

,Mi, Ii, T
′
i−1) for i ∈ [1, n],

where T ′
0 is a fixed constant. Then, SVer((KI1 , . . . ,KIn

), ((M1, I1), . . . , (Mn, In)),
Tn) returns � if Tn = T ′

n, and ⊥ otherwise.
A sequential aggregate MAC scheme is called history-free if the new aggregate

tag depends on the previous messages and IDs only through the aggregate-so-
far tag as in the current formalization. A history-free sequential aggregate MAC
scheme is simply called a sequential aggregate MAC scheme in the remaining
parts of this paper.

82 S. Hirose and J. Shikata

3.2 Security Requirement

The security requirement of an SAM scheme SAM � (KG,STag,SVer) is unforge-
ability. An adversary F against SAM is given access to aggregate tagging, veri-
fication and corrupt oracles.

The aggregate tagging oracle receives a pair of a message and an ID (M, I)
and an aggregate-so-far tag T ′ as a query and returns the tag T ← STag(KI ,M,
I, T ′). The verification oracle receives pairs of a message and an ID ((M1, I1), . . . ,
(Mn, In)) and a tag Tn as a query and returns the decision d ← SVer((KI1 , . . . ,
KIn

), ((M1, I1), . . . , (Mn, In)), Tn). The corrupt oracle receives an ID I as a query
and returns the corresponding secret key KI .

F is allowed to make multiple queries adaptively to the aggregate tagging
oracle and the corrupt oracle and finally a query to the verification oracle. Let
Forge(F) be an event that F succeeds in asking the verification oracle a query
(((M1, I1), . . . , (Mn, In)), Tn) satisfying the following conditions:

– SVer((KI1 , . . . ,KIn
), ((M1, I1), . . . , (Mn, In)), Tn) = �.

– Let T ′
i = STag(KIi

,Mi, Ii, T
′
i−1) for i ∈ [1, n]. There exists some j ∈ [1, n]

such that F asks neither (Mj , Ij , T
′
j−1) to the aggregate tagging oracle nor Ij

to the corrupt oracle.

Then, the advantage of F against SAM with respect to unforgeability is defined
by

Advuf
SAM(F) � Pr[Forge(F)] .

SAM is informally said to be unforgeable if Advuf
SAM(F) is negligibly small for

any adversary F with realistic computational resources.

3.3 Discussion

The differences between the formalization of Eikemeier et al. [11] and that of
this paper are described below.

In the formalization of unforgeability by Eikemeier et al., an adversary F
works in two phases. In the first phase, F is allowed to ask queries only to the
corrupt oracle. In the second phase, F is allowed to ask queries only to the sequen-
tial aggregate tagging oracle SeqAgg, which receives an aggregate-so-far tag T ′

and a sequence of pairs of a message and an ID P � ((M1, I1), . . . , (Mn, In))
as a query and returns a corresponding tag T as an answer. Let QCor be the
set of ID’s F asks to its corrupt oracle as queries in the first phase. Then, as is
mentioned later, it is required that In 	∈ QCor. Let QSeq be the set of pairs of a
query by F to SeqAgg and the corresponding answer ((T ′, P), T). At the end of
the second phase, F outputs a sequence of pairs of a message and an ID and a
tag.

History-Free Sequential Aggregate MAC Revisited 83

To define the successful forgery by F, Eikemeier et al. define the closure of
queries made by F. Let

TrivialQSeq,QCor
(P ′, T ′) � {P ′} ∪

⋃

((T ′,P),T)∈QSeq

TrivialQSeq,QCor
(P ′‖P, T)

∪
⋃

I∈QCor,(M,T) s.t.
T←STag(KI ,M,I,T ′)

TrivialQSeq,QCor
(P ′‖(M, I), T) .

Then, the closure is defined by

Closure(QSeq,QCor) � TrivialQSeq,QCor
(ε, cT),

where cT is a constant used as an aggregate-so-far tag for the first message1.
Suppose that F outputs the sequence of pairs of a message and an ID

and the corresponding tag (P̃ , T̃) at the end of the second phase, where
P̃ � ((M̃1, Ĩ1), . . . , (M̃n, Ĩn)). Then, F succeeds in forgery if

SVer((KĨ1
, . . . ,KĨn

), ((M̃1, Ĩ1), . . . , (M̃n, Ĩn)), T̃) = �

and P̃ 	∈ Closure(QSeq,QCor). The security of a sequential aggregate MAC scheme
is quantified by the probability of successful forgery. Informally, a sequential
aggregate MAC scheme is said to be unforgeable if any adversary with realistic
computational resources succeeds in forgery only with a negligible probability.

The security formalization of this paper is more general than that of Eike-
meier et al. from the following reason: In the formalization of Eikemeier et al.,
F works in two phases and its oracle access is restricted in both of the phases,
while such restriction is not assumed in the formalization of this paper.

In the formalization of Eikemeier et al., the oracle SeqAgg receives as a query
an aggregate-so-far tag and a sequence of pairs of a message and an ID and
returns a corresponding tag. On the other hand, in the formalization of this
paper, F gets a tag for a sequence of pairs of a message and an ID by successive
queries to the oracle STag. Thus, F may not obtain any of the aggregate-so-far
tags in the formalization of Eikemeier et al., while it obtain all of the aggregate-
so-far tags in the formalization of this paper. In the formalization of Eikemeier
et al., from the definition of the closure of queries made by F, F succeeds in
forgery if it can make a correct guess for an aggregate-so-far tag. However, we
have to notice the following point.

Let (((M1, I1), . . . , (Mn, In)), T ′) be a query made by F to SeqAgg. Then, it
must hold that In 	∈ QCor. The reason is described below.

In the proof of the unforgeability of the sequential aggregate MAC scheme by
Eikemeier et al., it is required that there exists an efficient algorithm to compute
T ′ for given T,KI ,M, I if T ← STag(KI ,M, I, T ′). Then, suppose that F asks
(((M1, I1), . . . , (Mn, In)), cT) as a query to SeqAgg and obtains the correspond-
ing tag Tn. In addition, suppose that QCor = {In}. Then, F can obtain Tn−1 from
1 Though the tag for the first message is computed without an aggregate-so-far tag in

the formalization of Eikemeier et al., this change is minor.

84 S. Hirose and J. Shikata

Tn,KIn
,Mn, In. Notice that Tn−1 is a valid tag for ((M1, I1), . . . , (Mn−1, In−1))

and ((M1, I1), . . . , (Mn−1, In−1)) is not included in the closure. Thus, F succeeds
in forgery by outputting (((M1, I1), . . . , (Mn−1, In−1)), Tn−1).

4 Generic Construction Based on Block Cipher

A SAM scheme is presented, which is constructed from a pseudorandom function
and a pseudorandom permutation. Then, it is shown to be unforgeable. Since
the scheme uses a pseudorandom permutation, it is suitable for instantiations
using a block cipher and is called a cipher-based scheme.

4.1 Scheme

The cipher-based SAM scheme SAMc � (KGc,STagc,SVerc) is constructed from
a PRF F : K × M → L with its key space K and a PRP G : L × T → T with
its key space L as follows:

– KGc simply returns KI ←← K for a user I.
– T ← STagc(KI ,M, I, T ′), where T � G(F (KI ,M), T ′).
– SVerc((KI1 , . . . ,KIn

), ((M1, I1), . . . , (Mn, In)), Tn) returns � if Tn = T ′
n, and

⊥ otherwise, where T ′
i = G(F (KIi

,Mi), T ′
i−1)) for i ∈ [1, n] and T ′

0 is some
constant cT ∈ T .

The aggregate tagging of SAMc is depicted in Fig. 1.

M1

T1

KI1
F

Mn

TnG

M2

KI2

cT
T2

KIn

Tn−1

F F

G G

Fig. 1. The aggregate tagging of the proposed scheme SAMc. The triangle of a box
indicates that the corresponding input is a secret key to F or G.

The crucial idea of the proposed scheme is to use the “tag” of a message by
F as a secret key of G for aggregate.

4.2 Unforgeability

It is shown that SAMc is unforgeable if F is a secure PRF and G is a secure
PRP.

History-Free Sequential Aggregate MAC Revisited 85

Theorem 1. Suppose that SAMc has at most u users. For any adversary F
against SAMc running in time at most s, making at most qt queries to the aggre-
gate tagging oracle, at most qc queries to the corrupt oracle and a query of length
at most � to the verification oracle, there exist some adversaries D1 and D2 such
that

Advuf
SAMc

(F) ≤ u

(

Advprf
F (D1) + (qt + �)Advprp

G (D2) +
�

|T | − qt

)

.

D1 runs in time at most about s + (qt + �)(time(F) + time(G)) + uqc and makes
at most qt + � queries to its oracle. D2 runs in time at most about s + 2(qt +
�)(time(F) + time(G)) + uqc and makes at most qt + � queries to its oracle.

Proof. Let I be the set of the users of SAMc, where |I| ≤ u. The adversary D1

against F works as follows. It first chooses a user İ ←← I and assigns a secret
key KI ←← K of F to each user I 	= İ. Then, it runs F. It responds to each oracle
query from F as follows:

– For an aggregate-tagging query (M, I, T ′), it returns G(F (KI ,M), T ′) if I 	=
İ, and G(f(M), T ′) otherwise, where f is the oracle of D1.

– For a corrupt query I, it returns KI if I 	= İ, and outputs 0 and aborts
otherwise.

– For a verification query (((M1, I1), . . . , (Mn, In)), Tn), it evaluates the validity
of the query using KIi

for Ii 	= İ and f for Ii = İ, and returns the result to
F. Let T ′

1, T
′
2, . . . , T

′
n be the intermediate tags obtained during the evaluation.

D1 outputs 1 and terminates if the evaluation result is � and there exists
some j ∈ [1, n] such that Ij = İ and F does not ask (Mj , Ij , T

′
j−1) to the

aggregate tagging oracle before the verification query. (Notice that D1 aborts
as soon as F asks İ to the corrupt oracle.) Otherwise, D1 outputs 0 and
terminates.

Then,

Pr[DFK
1 = 1] ≥ 1

|I| Pr[Forge(F)] ≥ 1
u

Advuf
SAMc

(F) ,

where K ←← K. Let ρ ←← FM,L. Since Pr[DFK
1 = 1] ≤ Advprf

F (D1) + Pr[Dρ
1 = 1],

Advuf
SAMc

(F) ≤ u Advprf
F (D1) + u Pr[Dρ

1 = 1].

D1 runs in time at most about s + (qt + �)(time(F) + time(G)) + uqc and makes
at most qt + � queries to its oracle.

For Pr[Dρ
1 = 1], let us consider an adversary D̃2 against G. D̃2 is given

q � qt + � permutations g1, g2, . . . , gq in PT as its oracles. D̃g1,g2,...,gq

2 works in
the same way as Df

1 except for the following cases:

– For an aggregate-tagging query (M, İ, T ′) made by F, it returns gd(M)(T ′).
– For a verification query (((M1, I1), . . . , (Mn, In)), Tn) made by F, it evaluates

the validity of the query using KIi
for Ii 	= İ and gd(Mi) for Ii = İ.

86 S. Hirose and J. Shikata

Here, d is a mapping satisfying that 1 ≤ d(M) ≤ q and that d(M) 	= d(M ′) if
M 	= M ′. Then,

Pr[Dρ
1 = 1] = Pr[D̃

GL1 ,GL2 ,...,GLq

2 = 1]

≤ Advq-prp
G (D̃2) + Pr[D̃�1,�2,...,�q

2 = 1],

where Li ←← L and �i ←← PT for i ∈ [1, q].
Let us consider Pr[D̃�1,�2,...,�q

2 = 1]. For a verification query (((M1, I1), . . . ,
(Mn, In)), Tn) made by F, let T ′

1, T
′
2, . . . , T

′
n be the intermediate tags obtained

during the verification of the query. Suppose that ı̂ is the maximum value of
i such that, for any i′ < i, Ii′ 	= İ or (Ii′ ,Mi′ , T ′

i′−1) is an aggregate-tagging
query made by F. Suppose that ı̌ is the minimum value of i such that T ′′

i′ =
G(F (KIi′ ,Mi′), T ′′

i′−1) if Ii′ 	= İ and F obtains T ′′
i′ by an aggregate-tagging

query (Mi′ , Ii′ , T ′′
i′−1) if Ii′ = İ for i < i′ ≤ n and T ′′

n = Tn. Notice that T ′′
ı̌ is

uniquely determined by Tn since G is a keyed permutation and �1, . . . , �q are
permutations. Let J � {i | Ii = İ ∧ ı̂ ≤ i < ı̌}. Then,

Pr[T ′
ı̌ = T ′′

ı̌] = Pr
[
(T ′

ı̌ = T ′′
ı̌) ∧

∨

i∈J
(T ′

i = T ′′
ı̌)

]
+ Pr

[
(T ′

ı̌ = T ′′
ı̌) ∧

∨

i∈J
(T ′

i = T ′′
ı̌)

]

≤ Pr
[∨

i∈J
(T ′

i = T ′′
ı̌)

]
+ Pr

[
T ′

ı̌ = T ′′
ı̌

∣
∣

∨

i∈J
(T ′

i = T ′′
ı̌)

]

≤ �

|T | − qt
,

where the condition T ′
i = T ′′

ı̌ is ignored if (Mi, Ii, T
′
i−1) is asked to the aggregate-

tagging oracle before the verification query. Thus,

Pr
[
D̃�1,�2,...,�q

2 = 1
]

≤ �

|T | − qt
.

From the lemma similar to Lemma 1, there exists some adversary D2 such that

Advq-prp
G (D̃2) ≤ q · Advprp

G (D2) .

D2 runs in time at most about s+2(qt + �)(time(F)+time(G))+uqc and makes
at most qt + � queries to its oracle. ��

4.3 Discussion

The proposed scheme SAMc may not be secure if G is not a keyed permutation.
Suppose that G is a secure PRF except that WK is a weak key of G. Suppose
that G(WK, T) = Tg for any T ∈ T . Then, the following attack on SAMc always
succeeds in forgery:

1. Ask Î to the corrupt oracle and obtain KÎ .
2. Compute M̂ such that F (KÎ , M̂) = WK. Notice that it is possible if, for

example, F is a block cipher or a PRF based on CBC-MAC such as CMAC.
3. Ask (((M, I), (M̂, Î)), Tg) to the verification oracle, where I 	= Î.

It is easy to see that SVerc((KI ,KÎ), ((M, I), (M̂, Î)), Tg) = � for any (M, I).

History-Free Sequential Aggregate MAC Revisited 87

5 Generic Construction Based on Hash Function

The other SAM scheme is presented, which is constructed from a pseudorandom
function in two keying strategies. Then, it is shown to be unforgeable. As is
discussed later, the scheme is suitable for instantiations using a hash function
and is called a hash-based scheme.

5.1 Scheme

The hash-based SAM scheme SAMh � (KGh,STagh,SVerh) is constructed from
a keyed function H : K × M × T → T as follows:

– KGh simply returns KI ←← K for a user I.
– T � H(KI ,M, T ′), where T ← STagh(KI ,M, I, T ′).
– SVerh((KI1 , . . . ,KIn

), ((M1, I1), . . . , (Mn, In)), Tn) returns � if Tn = T ′
n, and

⊥ otherwise, where T ′
i = H(KIi

,Mi, T
′
i−1) for i ∈ [1, n] and T ′

0 is some
constant cT ∈ T .

The aggregate tagging SAMh is depicted in Fig. 2.

M1

T1
Tn

M2 Mn

H H H

KI1 KI2 KIn

cT

Fig. 2. The aggregate tagging of the proposed scheme SAMh.

5.2 Unforgeability

It is shown that SAMh is unforgeable if H is a secure PRF in two keying strate-
gies. Let Hk and Ht denote the function H : K × M × T → T with key space
K and T , respectively.

MDHt
: (K × M)∗ × T → T be the keyed Merkle-Damg̊ard iteration of Ht

with key space T . MDHt
is a secure PRF against adversaries making only a

single query if Ht is a secure PRF:

Lemma 2. For any adversary D against MDHt
making a single query in (K ×

M)[0,�], there exists some adversary D′ against Ht such that

Advprf

MDHt (D) ≤ � · Advprf
Ht (D′).

The run time of D′ is approximately total of that of D and the time to compute
Ht for the query made by D. D′ makes at most a single query.

88 S. Hirose and J. Shikata

The proof of Lemma 2 is omitted since it follows from the simple and standard
hybrid argument.

Theorem 2. Suppose that SAMh has at most u users. For any adversary F
against SAMh running in time at most s, making at most qt queries to the
aggregate tagging oracle, at most qc queries to the corrupt oracle and a query of
length at most � to the verification oracle, there exist some adversaries D1 and
D2 such that

Advuf
SAMh

(F) ≤ u

(

Advprf
Hk(D1) + �2 Advprf

Ht (D2) +
�qt + 1

|T |

)

.

D1 runs in time at most about s+(qt+�)·time(H)+uqc and makes at most qt+�
queries to its oracle. D2 runs in time at most about s+(qt+�2+2�)·time(H)+uqc
and makes at most a single query to its oracle.

Proof. At first, the proof is very similar to that of Theorem 1. Let I be the set
of the users of SAMh, where |I| ≤ u. The adversary D1 against Hk works as
follows. It first chooses a user İ ←← I and assigns a secret key KI ←← K of F to
each user I 	= İ. Then, it runs F. It responds to each oracle query from F as
follows:

– For an aggregate-tagging query (M, I, T ′), it returns H(KI ,M, T ′) if I 	= İ,
and f(M,T ′) otherwise, where f is the oracle of D1.

– For a corrupt query I, it returns KI if I 	= İ, and outputs 0 and aborts
otherwise.

– For a verification query (((M1, I1), . . . , (Mn, In)), Tn), it evaluates the validity
of the query using KIi

for Ii 	= İ and f for Ii = İ, and returns the result to
F. Let T ′

1, T
′
2, . . . , T

′
n be the intermediate tags obtained during the evaluation.

D1 outputs 1 and terminates if the evaluation result is � and there exists
some j ∈ [1, n] such that Ij = İ and F does not ask (Mj , Ij , T

′
j−1) to the

aggregate tagging oracle before the verification query. (Notice that D1 aborts
as soon as F asks İ to the corrupt oracle.) Otherwise, D1 outputs 0 and
terminates.

Then,

Pr[DHk
K

1 = 1] ≥ 1
|I| Pr[Forge(F)] ≥ 1

u
Advuf

SAMh
(F),

where K ←← K. Let ρ ←← FM×T ,T . Since Pr[DHk
K

1 = 1] ≤ Advprf
Hk(D1)+Pr[Dρ

1 =
1],

Advuf
SAMh

(F) ≤ u Advprf
Hk(D1) + u Pr[Dρ

1 = 1].

D1 runs in time at most about s + (qt + �) · time(H) + uqc and makes at most
qt + � queries to its oracle.

For Pr[Dρ
1 = 1], let us consider an adversary D̃2 against MDHt

. D̃2 has � ora-
cles, which are either (MDHt

S1 , . . . ,MDHt
S�) or (ϕ1, . . . , ϕ�), where Si ←← T and

History-Free Sequential Aggregate MAC Revisited 89

ϕ ←← F(K×M)[0,�],T for i ∈ [1, �]. D̃2 runs Dρ
1 by simulating ρ with lazy evaluation

until F asks a query to its verification oracle. Let (((M1, I1), . . . , (Mn, In)), Tn)
be the query made by F to its verification oracle. Notice that n ≤ �. Suppose
that Ii1 = Ii2 = · · · = Iit

= İ for 1 ≤ i1 < i2 < · · · < it ≤ n and Ii 	= İ
for i ∈ [1, n] \ {i1, i2, . . . , it}. For (((M1, I1), . . . , (Mn, In)), Tn), D̃2 computes
T ′

i ← STagh(KIi
,Mi, Ii, T

′
i−1) for i = 1, 2, . . ., where T ′

0 = cT, until D̃2 finds a
new input to ρ. Without loss of generality, suppose that (Mi1 , T

′
i1−1) is the new

input. Then, for j = 1, 2, . . . , t−1, D̃2 asks ((KIij+1 ,Mij+1), (KIij+2 ,Mij+2), . . . ,
(KIij+1−1 ,Mij+1−1)) to its ij-th oracle and gets T ′

ij+1−1 as the answer. If there

exists some j∗ ∈ [2, t] such that (Mij∗ , T ′
ij∗ −1) is not new, then D̃2 outputs 1

and aborts. Otherwise, D̃2 asks ((KIit+1 ,Mit+1), (KIit+2 ,Mit+2), . . . , (Kn,Mn))
to its it-th oracle and gets T ′

n as the answer. D̃2 outputs 1 if T ′
n = Tn (F succeeds

in forgery) and 0 otherwise. Then,

Pr[Dρ
1 = 1] ≤ Pr[D̃MD

Ht
S1 ,...,MD

Ht
S�

2 = 1]

≤ Adv�-prf

MDHt (D̃2) + Pr[D̃ϕ1,...,ϕ�

2 = 1]

≤ Adv�-prf

MDHt (D̃2) +
�qt + 1

|T | .

D̃2 runs in time at most about s + (qt + �) · time(H) + uqc and makes at most
a single query to each of its � oracles.

From Lemmas 1 and 2, there exists some adversary D2 such that

Adv�-prf

MDHt (D̃2) ≤ �2 Advprf
Ht (D2) .

D2 runs in time at most about s + (qt + �2 + 2�) · time(H) + uqc and makes at
most a single query to its oracle. ��

5.3 Instantiation with HMAC

The case where HMAC using SHA-1 or SHA-2 [12] is used for the aggregate-
tagging function H is discussed. HMAC using SHA-1 or SHA-2 will be simply
called HMAC.

Let h : Σc × Σb → Σc be the compression function of the underlying hash
function for HMAC, where c < b. For a key K, an aggregate-so-far tag T ′ and
a message M , the aggregate-tagging function T ← H(K,M,T ′), which is called
EMDh, is defined in Algorithm 1. Here, T ′ ∈ Σc, it is assumed that K ∈ Σb

and M ∈ (Σb)+, and the padding for M is omitted just for simplicity. IV ∈ Σc,
ipad, opad ∈ Σb and pad ∈ Σb−c are constants. The aggregate-tagging function
EMDh(K,M,T ′) is also depicted in Fig. 3.

Since EMDh(K,M,T ′) with its key K is actually HMAC, it is shown to be
a PRF under the assumption that h is a PRF with two keying strategies, that
is, keyed via chaining variable and keyed via message [1], where the first and

90 S. Hirose and J. Shikata

Algorithm 1. The aggregate-tagging function EMDh(K,M,T ′) using HMAC
1: function EMDh(K, M, T ′) � K ∈ Σb, M ∈ (Σb)+, T ′ ∈ Σc

2: S ← h(h(IV, K ⊕ ipad), T ′‖0b−c)
3: V ← MDh(S, M)
4: T ← h(h(IV, K ⊕ opad), V ‖pad)
5: return T
6: end function

M[m]T ||0b−cM[1]K⊕ipad

h

K⊕opad

h hh

hh

IV

IV T

|| pad

Fig. 3. The aggregate-tagging function EMDh using HMAC. M = M [1]‖M [2]‖ · · · ‖
M [m] and M [i] ∈ Σb for i ∈ [1, m].

the second arguments of h are called the chaining variable and the message,
respectively.

Here, EMDh(K,M,T ′) with its key T ′ is shown to be a PRF under reasonable
assumptions on h. The proof is similar to the proof for H2-MAC [21].

For h : Σc × Σb → Σc, the keyed function h with its key space Σc and Σb is
denoted by hm and hcv, respectively. hIV(·) � h(IV, ·).

For EMDh, let emdh(S,K,M) be the function defined by the steps 3, 4
and 5 of Algorithm 1. EMDh(K,M,T ′) = emdh(S,K,M) if S ← h(h(IV,K ⊕
ipad), T ′‖0b−c). emdh(S,K,M) is regarded as a keyed function with its key S.

Lemma 3. For any adversary D against emdh running in time at most s, hav-
ing access to q oracles and making at most q queries in Σb×(Σb)[1,l], there exists
some adversary D′ against hcv having access to q oracles such that

Advq-prf

emdh(D) ≤ (l + 1) · Advq-prf-ax∗
hcv (D′).

D′ runs in time at most s + (l + 2)q · time(h) and makes at most q queries.

The proof is similar to that of Lemma 3 in [21]. It also uses the multi-oracle-to-
multi-oracle reduction in [2].

In the statement of the following theorem, the notation of cr-advantage is
abused. Though the compression function h should be chosen uniformly at ran-
dom from some set of functions, it is not explicit in this subsection.

Theorem 3. For any adversary D against EMDh running in time at most s
and making at most q queries in Σb × (Σb)[1,l], there exist some adversaries D1,

History-Free Sequential Aggregate MAC Revisited 91

D2 and D3 such that

Advprf

EMDh(D) ≤ Advprf
hm(D1) + (l + 1)q · Advprf-ax∗

hcv (D2) + Advcr
hIV

(D3).

D1 runs in time at most s + (l + 2)q · time(h) and makes at most q queries. D2

runs in time at most s+(l +3)q · time(h) and makes at most q queries. D3 runs
in time at most s.

Proof. For any adversary D against EMDh,

Advprf

EMDh(D) =
∣
∣Pr[DEMDh

T ′ = 1] − Pr[Dρ = 1]
∣
∣,

where T ′ ←← Σc and ρ ←← FΣb×(Σb)+,Σc .
Let D1 be an adversary against hm working as follows. D1 runs D. For a

query (K,M) made by D, D1 asks its oracle h(IV,K ⊕ ipad) and gets S as an
answer. Then, D1 returns emdh(S,K,M) to D. Finally, D1 outputs the same
output as D. Then, Advprf

hm(D1) =
∣
∣Pr[Dhm

T ′
1 = 1]−Pr[Dν

1 = 1]
∣
∣, where T ′ ←← Σc

and ν ←← FΣc,Σc , and Pr[Dhm
T ′

1 = 1] = Pr[DEMDh
T ′ = 1]. D1 runs in time at most

s + (l + 2)q · time(h) and makes at most q queries.
Let D̃2 be an adversary against emdh(S, ·, ·) with its key S. D̃2 is given q

oracles which are either (emdh
S1

, . . . , emdh
Sq

) or (μ1, . . . , μq), where Si ←← Σc and
μi ←← FΣb×(Σb)+,Σc for i ∈ [1, q]. D̃2 runs D. For the i-th query (K,M) made
by D, D̃2 asks (K,M) to its d(i)-th oracle and returns the answer to D, where
d(i) ← d(i′) if there exists some i′(< i) such that the i′-th query is (K,M ′) for
some M ′, and d(i) ← i otherwise. Finally, D̃2 outputs the same output as D.

Then, Dν
1 is equivalent to D̃

emdh
S1

,...,emdh
Sq

2 as long as D finds no collision for hIV

during the execution of D̃
emdh

S1
,...,emdh

Sq

2 . Thus, there exists some D3 such that

∣
∣Pr[Dν

1 = 1] − Pr[D̃
emdh

S1
,...,emdh

Sq

2 = 1]
∣
∣ ≤ Advcr

hIV
(D3) ,

and D3 runs in time at most s. In addition, D̃μ1,...,μq

2 is equivalent to Dρ and
Pr[D̃μ1,...,μq

2] = Pr[Dρ = 1]. D̃2 runs in time at most s and makes at most q
queries.

Putting all things together,

Advprf

EMDh(D) =
∣
∣Pr[DEMDh

T ′ = 1] − Pr[Dρ = 1]
∣
∣

≤ Advprf
hm(D1) +

∣
∣Pr[Dν

1 = 1] − Pr[Dρ = 1]
∣
∣

≤ Advprf
hm(D1) + Advq-prf

emdh(D̃2) + Advcr
hIV

(D3) .

From Lemma 3 and the lemma similar to Lemma 1, there exists some adversary
D2 such that

Advprf

emdh(D̃2) ≤ (l + 1)q · Advprf-ax∗
hcv (D2) .

D2 runs in time at most s + (l + 3)q · time(h) and makes at most q queries. ��

92 S. Hirose and J. Shikata

6 Conclusion

This paper has presented two schemes for history-free sequential aggregate MAC.
One is suitable for instantiations using a block cipher and the other is suitable for
instantiations using a hash function. Future work is to prove the unforgeability
of the proposed schemes for adversaries making multiple verification queries.

Acknowledgements. This research was conducted under a contract of Research and
Development for Expansion of Radio Wave Resources funded by the Ministry of Inter-
nal Affairs and Communications, Japan.

References

1. Bellare, M.: New proofs for NMAC and HMAC: security without collision-resistance.
In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11818175 36

2. Bellare, M., Bernstein, D.J., Tessaro, S.: Hash-function based PRFs: AMAC and
its multi-user security. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016.
LNCS, vol. 9665, pp. 566–595. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49890-3 22

3. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: the
cascade construction and its concrete security. In: Proceedings of the 37th IEEE
Symposium on Foundations of Computer Science, pp. 514–523 (1996)

4. Bellare, M., Kilian, J., Rogaway, P.: The security of cipher block chaining. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341–358. Springer, Hei-
delberg (1994). https://doi.org/10.1007/3-540-48658-5 32

5. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 491–506. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 31

6. Bellare, M., Rogaway, P.: On the construction of variable-input-length ciphers. In:
Knudsen, L. (ed.) FSE 1999. LNCS, vol. 1636, pp. 231–244. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48519-8 17

7. Biham, E. (ed.): EUROCRYPT 2003. LNCS, vol. 2656. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-39200-9

8. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 26

9. Chen, Y., Lei, C.: Aggregate message authentication codes (AMACs) with on-the-
fly verification. Int. J. Inf. Sec. 12(6), 495–504 (2013). https://doi.org/10.1007/
s10207-013-0202-0

10. Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and Its Applications. Series
on Applied Mathematics, 2nd edn, vol. 12, World Scientific, Singapore (2000)

11. Eikemeier, O., et al.: History-free aggregate message authentication codes. In:
Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 309–328. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-4 20

12. FIPS PUB 180–4: Secure hash standard (SHS), August 2015

https://doi.org/10.1007/11818175_36
https://doi.org/10.1007/978-3-662-49890-3_22
https://doi.org/10.1007/978-3-662-49890-3_22
https://doi.org/10.1007/3-540-48658-5_32
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-48519-8_17
https://doi.org/10.1007/3-540-39200-9
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/s10207-013-0202-0
https://doi.org/10.1007/s10207-013-0202-0
https://doi.org/10.1007/978-3-642-15317-4_20

History-Free Sequential Aggregate MAC Revisited 93

13. FIPS PUB 197: Advanced encryption standard (AES) (2001)
14. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.

ACM 33(4), 792–807 (1986)
15. Hirose, S., Kuwakado, H.: Forward-secure sequential aggregate message authentica-

tion revisited. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds.) ProvSec
2014. LNCS, vol. 8782, pp. 87–102. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-12475-9 7

16. Hirose, S., Shikata, J.: Non-adaptive group-testing aggregate MAC scheme. In: Su,
C., Kikuchi, H. (eds.) ISPEC 2018. LNCS, vol. 11125, pp. 357–372. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99807-7 22

17. Katz, J., Lindell, A.Y.: Aggregate message authentication codes. In: Malkin, T.
(ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 155–169. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-79263-5 10

18. Ma, D., Tsudik, G.: Extended abstract: forward-secure sequential aggregate
authentication. In: IEEE Symposium on Security and Privacy, pp. 86–91. IEEE
Computer Society (2007). Also published as IACR Cryptology ePrint Archive:
Report 2007/052

19. Ma, D., Tsudik, G.: A new approach to secure logging. ACM Trans. Storage 5(1),
2:1–2:21 (2009)

20. Sato, S., Hirose, S., Shikata, J.: Generic construction of sequential aggregate MACs
from any MACs. In: Baek, J., Susilo, W., Kim, J. (eds.) ProvSec 2018. LNCS, vol.
11192, pp. 295–312. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
01446-9 17

21. Yasuda, K.: HMAC without the “Second” Key. In: Samarati, P., Yung, M., Mar-
tinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735, pp. 443–458. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04474-8 35

https://doi.org/10.1007/978-3-319-12475-9_7
https://doi.org/10.1007/978-3-319-12475-9_7
https://doi.org/10.1007/978-3-319-99807-7_22
https://doi.org/10.1007/978-3-540-79263-5_10
https://doi.org/10.1007/978-3-030-01446-9_17
https://doi.org/10.1007/978-3-030-01446-9_17
https://doi.org/10.1007/978-3-642-04474-8_35

A Practical Lattice-Based Sequential
Aggregate Signature

Zhipeng Wang(B) and Qianhong Wu(B)

School of Cyber Science and Technology, Beihang University, Beijing, China
{ZhipengWang,qianhong.wu}@buaa.edu.cn

Abstract. In this work, we construct a lattice-based efficient Sequen-
tial Aggregate Signature (SAS) scheme that is provably secure in stan-
dard ideal cipher model with some slight changes. This framework is
inspired by the scheme of Gentry et al. at PKC 2018 which presented
trapdoor-permutation-based sequential aggregate signatures. Since to
present, there is no known method to construct a lattice-based trap-
door permutation, we use lattice-based trapdoor function instead to
design SAS scheme. In particular, our scheme is history-free, where the
sequentially-executed aggregation operation does not need to take the
previous messages in order as one part of its input. We also give soft-
ware implementation of our SAS scheme using FALCON based trapdoor
function, which originates from the provably secure NTRUSign signa-
ture scheme proposed by Stehlé and Steinfeld at Eurocrypt 2011. The
experiment results show our scheme is efficient and practical.

Keywords: Sequential aggregate signature · Lattice ·
Trapdoor function · Software implementation

1 Introduction

The concept of Aggregate Signature (AS) is first introduced in [5]. It enables any
third party to combine n individual signatures produced by a group of different
signers on different messages into a single short signature, while maintaining
the same security as n individual signatures. Sequential aggregate signatures
(SAS), proposed in [25], differ from the conventional AS schemes by requiring
signers to compute the aggregated signature in a sequence and imposing an
order-specific generation of aggregate signatures. In particular, one signer uses
the output of its predecessor as one part of its input during the signing process.
(Sequential) Aggregate signatures are important mechanisms applied to many
areas in order to decrease the amount of transmitted data, such as authenticated
network routing protocols, sensor data, PKI certification chains, and blockchain
protocols. In this paper, we focus on sequential aggregate signatures (SAS).
Existing designs of SAS have mostly been dominated by (RSA based) trapdoor
permutations [1,6,15,25,29] and bilinear pairings [3,10,21–23].

c© Springer Nature Switzerland AG 2019
R. Steinfeld and T. H. Yuen (Eds.): ProvSec 2019, LNCS 11821, pp. 94–109, 2019.
https://doi.org/10.1007/978-3-030-31919-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-31919-9_6

A Practical Lattice-Based Sequential Aggregate Signature 95

On the other hand, since the groundbreaking work of Shor [32], the hard-
ness of classical number theoretic assumptions is extremely reduced when faced
to an attacker featured with a powerful quantum computer. This induced a lot
of research work to replace those affected classical schemes with alternatives
of post-quantum security. Due to the features of conjectured security against
quantum attacks, algorithmic simplicity and high parallelism, and strong secu-
rity guarantees from worst-case hardness, lattice-based cryptography is one of
the most popular post-quantum cryptography and has been used to construct
versatile and powerful cryptographic objects such as encryption schemes, digital
signature schemes, identity-based encryption, fully homomorphic encryption and
so on. In Post-Quantum Cryptography Standardization of NIST, lattice-based
cryptographic schemes account for a large proportion.

However, to the best of our knowledge, there is not much prior work devoted
to constructing the lattice-based (sequential) aggregate signature scheme.
Hohenberger et al. [19] built the first identity-based aggregate signature scheme
that admits unrestricted aggregation that is based on leveled multilinear map
setting from [12], yet the underlying hardness assumptions are not directly con-
nected to worst-case lattice problems. Inspired by [25,29], Bansarkhani et al.
[9] first attempted to construct a lattice-based sequential aggregate signature
scheme that is secure in the random oracle model. Their SAS scheme can be
instantiated by preimage sampleable trapdoor functions and the security model
is similar to that in [25,29]. In the design of [9], before operating the signing pro-
cess, each signer needs to verify the signatures received from the previous signers.
This additional check prevents fast aggregate signing. Besides, their SAS scheme
is somewhat complex and its security proof is subtle. Lu et al. [24] used the “Lat-
tice Intersection Method” proposed in [4] to construct lattice-Based unordered
aggregate signature scheme, while in their AS scheme, aggregator needs to solve
a linear congruential equation in lattice. This may make the aggregate scheme
have a slow computation speed and hard to be implemented in practice. And
unfortunately, none of the above schemes considered specific software implemen-
tation.

1.1 Our Results and Contribution

In this paper, we provide a practical sequential aggregate signature scheme based
on the hardness of lattice-based trapdoor function. Inspired by the work of [15],
which used trapdoor permutation and Ideal Cipher Model to construct SAS
schemes, we replace trapdoor permutation with trapdoor function as so far there
is no successful construction of lattice-based trapdoor permutation. To a lattice-
based trapdoor function, the sizes of input and output are different. Therefore,
we add the encoder-decoder technique proposed in [29] to match the domain
and range of trapdoor function with those of ideal cipher. Similar to [15], the
security of our scheme is in Variant Ideal Cipher Model that has some slight
changes compared with Ideal Cipher Model.

Our construct is history-free [10], which means that the sequentially-executed
aggregation algorithm does not need to receive the previous messages in order

96 Z. Wang and Q. Wu

as one part of its input. Compared to the work of [9], in our SAS the “aggregate-
so-far” check is removed, which prompts the improvement of aggregate singing
speed and decreases the data of input during the signing process. The main exe-
cution that dominates aggregate signing’s speed is the preimage sample operation
of generate function.

We implement our SAS scheme using the trapdoor generate function in FAL-
CON [11] due to its efficiency and simplicity compared to other lattice-based
trapdoor generate functions. The FALCON-based trapdoor function works on
ring variant lattice. We experimentally evaluate the performance of our con-
struction. Each aggregate signing and verifying algorithm runs for approximately
1/10 ms on a modern laptop. The aggregation rate is about 50%.

1.2 Organization

The remainder of this paper is structured as follows. In Sect. 2, we present our
notations, models, and preliminary definitions. Section 3 describes our proposed
SAS scheme in details. Section 4 gives the security analysis of our proposed
scheme. Section 5 presents an analysis of our SAS scheme instantiated with FAL-
CON and RSA. In Sect. 6 we make our conclusion and discuss the future works.

2 Preliminaries

2.1 Notation

If n ∈ N, then {0, 1}n is the set of all n-bit strings, and 0n is the bit string
containing n zeros. {0, 1}∗ is the set of all strings. Let 0 denote the empty
vector. For an n-bit string x and an integer 0 ≤ k ≤ n, x[1,k] denotes the first
k bits of x. For two bit strings x and y, x||y denotes these two bit strings are
stitched together. If S is a set, and y ∈ S, then x = (x1, ..., xn) ∈ Sn is a
n-dimensional vector, x ∪ y is the (n + 1)-dimensional vector (x1, ..., xn, y). |S|
denotes the number of elements in S. x ← U(S) denotes the uniform selection
of an element from S. If A is an algorithm then y ← A(x1, ..., xn; r) means that
we run A on input (x1, ..., xn) and coins r and denote y as the output.

2.2 Random Oracle Model

The random oracle is a powerful cryptographic tool introduced by Bellare and
Rogaway in [2]. All parties in the random oracle model have oracle access to
a function H : {0, 1}∗ → {0, 1}∗ where for any x ∈ {0, 1}∗, H(x) is chosen
uniformly at random of some desired output length. Informally speaking, this
means that one regards the function H as a black box that responds to a query for
the value of H(x) by giving a random value. For each query, the oracle makes
an independent random choice, except that it keeps a record of its responses
H(x) and repeats the same response if x is queried again. In this paper, a hash
function is modeled as a random oracle.

A Practical Lattice-Based Sequential Aggregate Signature 97

2.3 Ideal Cipher Model

In ideal cipher model [31], all parties have oracle access to two functions, π :
{0, 1}∗ ×{0, 1}≥k → {0, 1}≥k and π−1 : {0, 1}∗ ×{0, 1}≥k → {0, 1}≥k, where the
first is such that for every K ∈ {0, 1}∗ and every input length n ≥ k, π(K, ·) is an
independent random permutation on {0, 1}n. The second is such that for every
K ∈ {0, 1}∗ and every input length n ≥ k, π−1(K, ·) is the inverse of π(K, ·) on
{0, 1}n. Ideal cipher model is mainly used for blockcipher construction and AES
can be modeled as an ideal cipher with fixed block length.

In our work, we consider a variant ideal cipher model with two functions,
Π : {0, 1}∗ × {0, 1}n → {0, 1}k and Π−1 : {0, 1}∗ × {0, 1}k → {0, 1}n, where
the first is such that for every K ∈ {0, 1}∗ and every input x with length n,
Π(K,x) = π(K,x[1,k]), where x[1,k] is the first k bits of x. The second is such that
for every K ∈ {0, 1}∗ and every input y with length k, Π−1(K, y) = π(K, y)||z,
where z is a bit string chosen from {0, 1}n−k with (n ≥ k).

2.4 Cryptographic Problems on Lattices

Lattices. A lattice Λ is the set of all integer combinations of some linearly
independent basis vectors, B = {b1, .., bm} ∈ R

m×m, Λ(B) = {∑m
i=1 zibi, zi ∈

Z}. An m-dimensional full-rank lattice Λ is a discrete additive subgroup of Rm.
The polynomial ring R = Z[x]/(xn + 1) is isomorphic to the integer lattice Z

n

where n is a power of 2. A polynomial f =
∑n−1

i=1 fi · xi in R corresponds to the
integer vector (f0, .., fn−1) in Z

n. In our instantiation we work with polynomials
over R, or Rq = R/qR = Zq[x]/(xn + 1) where q is a prime and q = 1 mod 2n.

Gaussian Distribution. The n-dimensional Gaussian function of center
c ∈ R

n and width parameter σ is defined as ρσ,c(x) = exp
(
−π ||x−c||2

σ2

)
,

for all x ∈ R
n. It can be extended to an n × n-matrix B: ρB,c(x) =

exp
(−π(x − c)T Σ−1(x − c)

)
, where Σ = B · BT . The discrete Gaussian dis-

tribution over a lattice Λ is defined as DΛ,σ,c(x) = ρσ,c (x)
ρσ,c (Λ) .

Ring-SIS/Ring-LWE. We use Ring-SIS and Ring-LWE proposed in [26,30]
and [27,33,34], which are proven to be at least as hard as the GapSVP/SIVP
problems on ideal lattices.

Definition 1 (R-SISq,β,m). Given a positive real β and m uniformly random
elements ai ∈ Rq, defining a vector a ∈ Rm

q , find a nonzero vector z ∈ Rm of
norm ||z|| ≤ β such that fa(a) = at · z =

∑m
i=1 ai · zi = 0 ∈ Rq.

Definition 2 (Decision R-LWEn,q,DR,σ
). Given m uniformly random ele-

ments ai ∈ Rq, defining a vector a ∈ Rm
q , and b = a · s + e, where s ← U(Rq)

and e ← DRm,σ, distinguish (a, b = a ·s+e) from (a, b) drawn from the uniform
distribution over Rm

q × Rm
q .

98 Z. Wang and Q. Wu

2.5 Lattice-Based Trapdoor Function

Informally, a trapdoor function is a function that is easy to evaluate and hard
to invert on its own, but which can be generated together with some extra
“trapdoor” information that makes inversion easy. There are many versions of
this basic concept, depending on whether the function in question is injective,
surjective, bijective, “lossy,” etc.

In lattice cryptography, the trapdoor function is usually presented as a ran-
dom integer matrix A ∈ Z

n×m
q (with uniform entries modulo q) and a TA (typi-

cally TA is a short basis for the lattice defined by A). The strong trapdoor is used
to efficiently “invert” the (Ring) Short Integer Solution (SIS) and (Ring) Learn-
ing with Errors (LWE) functions fA =Ax and gA(s, e) = stA+et associated to
the matrix A. Theoretical solutions to these trapdoor generation and function
inversion problems have long been known. There are two distinct but closely
related methods to constitute a lattice-based trapdoor function, constructed
from short bases [7,16] or gadget [13,20,28]. According to [16], there exists a
polynomial-time algorithm TrapGen that on input the security parameter 1n

outputs a public key A and the corresponding trapdoor TA such that the trap-
door function fA(·) : Bn → Rn can be inverted by a function SamplePre(TA, ·)
easily with TA.

We consider the preimage sampleable trapdoor functions that are collision
resistant, meaning that it is infeasible to find a collision fA(x1) = fA(x2) where
x1, x2 ∈ Bn and x1 �= x2. For a trapdoor-collision-finding algorithm C and
n ∈ N, define its CF-advantage against TrapGen as

Advcf
TrapGen,C(n)

= Pr[fA(x1) = fA(x2)|(fA, A, TA) ← TrapGen(1n), (x1, x2) ← C(fA, A)]

C is said to (t, ε)-breaks a collision-resistant preimage sampleable trapdoor
function fA if it outputs a collision with CF-advantage Advcf

TrapGen,C(n) at least
ε and has running time t. Notice that if C find a collision of trapdoor function
fA, it can solve the underlying lattice problem (Ring) Short Integer Solution
(SIS) or (Ring) Learning with Errors (LWE).

2.6 History-Free Sequential Aggregate Signature

A history-free sequential aggregate signature scheme is a tuple (KeyGen,
AggSign,AggV er) of algorithms defined as follows.

– KeyGen: The key generation algorithm KeyGen on input 1n outputs a public
key pk and matching secret key sk: (pk, sk) ← KeyGen(1n).

– AggSign: The history-free aggregate signing algorithm AggSign on input
secret key sk, message m and aggregate-so-far signature σ∗, outputs a new
aggregate signature σ: σ ← AggSign(sk,m, σ∗).

– AggV er: The aggregate verification algorithm AggSign on input public key
pk and messages (pk1,m1), ..., (pki,mi) and aggregate signature σ outputs a
bit: 1 or 0← AggV er((pk1,m1), ..., (pki,mi), σ).

A Practical Lattice-Based Sequential Aggregate Signature 99

Security Model. The security notion we use is same to that in [6,15,29]. To
a history-free sequential aggregate signature scheme SAS and a forger F , we
associate for every n ∈ N a SAS unforgeability experiment Expuf

HF−SAS,F (n)
that runs in three phases:

– Setup: The experiment generates (pk, sk) ← KeyGen(1n).
– Attack: Then, the experiment runs F on input pk with oracle access to

AggSign(sk, ·, ·) and other random functions.
– Forgery: Eventually, F halts with output parsed as (pk1,m1), ..., (pkn,mn),

σ. The experiment outputs 1 iff: (1) AggV er((pk1,m1), ..., (pki,mi), σ) out-
puts 1, (2) pk = pki∗ for some 1 ≤ i∗ ≤ n, (3) F did not make an oracle
query of the form AggSign(sk,mi∗ , ·).
Define the history-free SAS-unforgeability advantage of F as

Advuf
HF−SAS,F (n) = Pr[Expuf

HF−SAS,F (n) outputs 1]

Aggregation Rate. For a sequential aggregate signature scheme with n signers,
we define size(σi) as the size of the individual signature σi for 1 ≤ i ≤ n and
size(σSAS) as the size of the final aggregate signature σSAS . The aggregation
rate rate(n), which measures the storage savings due to the SAS scheme, is
defined as

rate(n) = 1 − size(σSAS)
∑n

i=0 size(σi)

3 Sequential Aggregate Signatures from Lattice-Based
Trapdoor Function

The following Algorithms 1 and 2 provide the main steps of our SAS scheme.
In our scheme we use the encoder-decoder technique enc and dec proposed by
[29].

enc :{0, 1}n → {0, 1}k × {0, 1}∗

dec :{0, 1}k × {0, 1}∗ → {0, 1}n

The encoder-decoder technique is originally designed to allow for hiding of addi-
tional information to decrease the total data to be sent. In our work, we use it to
break and merge the signature in order to map the trapdoor function f ’s domain
space and range space to these of function π. H1 and H2 are two functions which
hash any bit string down to τ bits: H1 : {0, 1}∗ → {0, 1}τ , H2 : {0, 1}∗ → {0, 1}τ .

Theorem 1. If there exists a forger F that (t, qH , qΠ , qS , ε)-breaks SAS in the
ideal cipher model, then there exists a collision-finding algorithm C that (t

′
,

ε
′
)-breaks the collision-resistant trapdoor function f with

ε
′ ≥

(

ε − (qS + qH)2

2τ
− q2Π + qΠ

2k

)

·
(

1 − (qS + qH)2

2τ

)

·
(

1 − q2Π + qΠ

2k

)

t
′ ≤ t + (qH + qS + qΠ) · tU + (qS + qΠ) · tf

100 Z. Wang and Q. Wu

Algorithm 1. AggSign for ith signer in the sequence.
Input: public key fi, secret key Ti, message mi, aggregate-so-far signature σi−1;
Output: new aggregate signature σi;
1: If i = 1, then:
2: x0 ← 0n, α0 ← 0n−k ;
3: Else:
4: (xi−1, αi−1) ← σi−1;
5: Ki ← fi||H1(mi)||H2(αi−1);
6: (zi−1, αi) ← enc(xi−1);
7: yi ← π−1(Ki, zi−1);
8: xi ← SamplePre(Ti, yi);
9: αi ← αi−1 ∪ αi;

10: σi = (xi, αi)
11: return σi;

Algorithm 2. AggVer
Input: public key and messages (f1, m1), ..., (fn, mn), aggregate signature σ;
Output: a bit 0 or 1;
1: (xn, αn) ← σ
2: For i = n down to 1 do:
3: yi ← fi(xi);
4: Ki ← fi|||H1(mi)||H2(αi−1);
5: zi−1 ← π(Ki, yi);
6: xi−1 ← dec(zi−1, αi);
7: If x0 = 0n, then return 1;
8: Else return 0;

F is said (t, qH , qΠ , qS , ε)-breaks SAS if its SAS-unforgeability advantage
Advuf

HF−SAS,F (n) is at least ε with making at most qΠ times Π-queries or
Π−1-queries, qH times H1-queries or H2-queries and qS times sequential signing
queries. tU is the time of each execution of function U(·) and tf is the time of
each execution of function f(·).

4 Security Proof

We first give a Variant Chain-to-Zero Lemma originating from [15] that plays a
key role in the security analysis of our scheme.

Consider an adversary A has access to the variant ideal cipher model where
its key K describes a function f : {0, 1}n → {0, 1}k (n ≥ k) unrelated to the
function Π : f × {0, 1}n → {0, 1}k and its inverse Π−1 : f × {0, 1}k → {0, 1}n.
A may submit a Π-query form as Π[f, y] to receive a random x ∈ {0, 1}n, or a
Π−1-query form as Π−1[f, x] query to receive a random y ∈ {0, 1}k.

We say that Π-table entry xi = Π[fi+1, yi+1] is linked to Π-table entry
xi−1 = Π[fi, yi] if fi(xi) = yi. We define a Π-table entry x = Π[f, y] to be
chained to zero if x = 0n or it is linked to an entry that is chained to zero.

A Practical Lattice-Based Sequential Aggregate Signature 101

The length of a chain is defined as the number of entries linked in this chain.
A Π-table entry x = Π[f, y] is a forward query if it is received by making a
Π-query and a backward query if it is received by making a Π−1-query.

Lemma 1 (Variant Chain-to-Zero Lemma). Consider an adversary A
makes at most qΠ queries to the variant ideal cipher oracle. Define BADΠ

to be the event that some forward query in Π-table is chained to zero. Then
Pr[BADΠ] ≤ q2

Π+qΠ

2k .

Proof (Proof of Lemma 1). We give a brief proof of Lemma 1 using the proof
method in [15] with some changes.

Consider function f : {0, 1}n → {0, 1}k (n ≥ k) and qΠ random bit strings
y1, ..., yqΠ

∈ {0, 1}k. For 1 ≤ i ≤ qΠ , let Yi be the random variable giving the
size of the pre-image set of f−1(yi) and let Ymax,i be the random variable giving
the maximum over i the size of the pre-image set of f−1(yi). Then we compute

E[Yi] =
∑

yi∈{0,1}k

1
2k

· |f−1(yi)| =
1
2k

∑

yi∈{0,1}k

|f−1(yi)| = 2n−k

E[Ymax,i] ≤
+∞∑

j=1

j · Pr[Ymax,i = j] =
+∞∑

j=0

Pr[Ymax,i > j]

≤
+∞∑

j=0

qΠ∑

i=1

Pr[Yi > j] =
qΠ∑

i=1

E[Yi] = qΠ · 2n−k

Define Coll1 to be event that a forward query xi = Π[fi+1, yi+1] is linked to some
already existing backward query xi−1 = Π[fi, yi]. We say that a forward query
collides if satisfies the condition for Coll1. Let BQmade denotes the number of
backward queries that have been made. Then we have

Pr[Coll1] =
qΠ∑

m=1

Pr[a forward query x = Π[f, y] collides if BQmade = m]

≤
qΠ∑

m=1

∞∑

j=1

j · Pr[Ymax,i = j, 1 ≤ i ≤ m] · 2−n

=
qΠ∑

m=1

E[Ymax,i, 1 ≤ i ≤ m] · 2−n

≤
qΠ∑

m=1

m · 2n−k · 2−n

≤ q2Π
2k

Define Coll2 to be event that a backward query xi−1 = Π[fi, yi] is linked
to some already existing query xi = Π[fi+1, yi+1]. For an existing query

102 Z. Wang and Q. Wu

xi = Π[fi+1, yi+1] and a backward query xi−1 = Π[fi, yi], yi is chosen ran-
domly and independently while fi(xi) is already defined before yi is chosen.
Thus Pr[fi(xi) = yi] = 2−k, which infers

Pr[Coll2] ≤ qΠ

2k

Define Coll = Coll1 ∨ Coll2, then

Pr[Coll] ≤ Pr[Coll2] + Pr[Coll1]

≤ q2Π + qΠ

2k

Finally, combine the definitions of BADqΠ
and Coll, we have

Pr[BADqΠ
] ≤ Pr[BADqΠ

| Coll] + Pr[Coll]
= 0 + Pr[Coll]

≤ q2Π + qΠ

2k

Proof (Proof of Theorem 1). Given the challenge trapdoor function f∗, C
runs F on inputing f∗ and simulates the environment as follows:

– Setup: At the beginning of this game C sets up four empty tables H1[·, ·],
H2[·, ·], Π[·, ·] and f∗[·, ·].

– Response to H1-query: When F makes a H1-query of message m, C draws
r uniformly from {0, 1}τ : r ← U({0, 1}τ), records H1(m) = r in the H1-table
and returns r to F .

– Response to H2-query: When F makes a H2-query of α, C draws s uni-
formly from {0, 1}τ : s ← U({0, 1}τ), records H2(α) = s in the H2-table and
returns s to F .

– Response to Π-query: When F makes a Π-query of f ||r||s and y, C draws
x uniformly from {0, 1}n: x ← U({0, 1}n), records Π[f ||r||s, y] = x in the
Π-table and returns x to F .

– Response to Π−1-query: When F makes a Π−1-query of f ||r||s and x, C
draws x̂ uniformly from {0, 1}n: x̂ ← U({0, 1}n), then computes f∗(x̂) = y.
Records Π[f ||r||s, y] = x̂ in the Π-table and records f∗(x̂) = y in the f∗-
table. Finally returns y to F .

– Response to aggregate signing query: When F makes a aggregate signing
query of m and σ, C draws s and r uniformly from {0, 1}τ : r ← U({0, 1}τ)
and s ← U({0, 1}τ).
If r is in the H1-table or s is in the H2-table, then C aborts.
Else C parses σ: (xi−1,αi−1) ← σ, draws xi uniformly from {0, 1}n: xi ←
U({0, 1}n) and computes f∗(xi) = yi. Then records Π[f ||r||s, yi] = xi in the
Π-table and encodes xi−1 to obtain (αi, zi): (αi, zi) ← enc(xi−1); Appends
αi to αi−1: αi ← αi−1 ∪ αi; Finally returns σi = (xi,αi) to F ;

A Practical Lattice-Based Sequential Aggregate Signature 103

Finally, let (f∗
1 ,m∗

1), ..., (f
∗
n,m∗

n), σ∗ be the output of forger F . The collision
finding algorithm C proceeds as in Algorithm 3 in order to obtain a collision
of f∗.

Algorithm 3. Collison-finder of f∗

Input: The output of forger F : (f∗
1 , m∗

1), ..., (f
∗
n, m∗

n), σ∗

Output: (x1, x2) that satisfy f∗(x1) = f∗(x2)
C checks the output of forger F . If there does not exist 1 ≤ i∗ ≤ n such that f∗

i∗ = f∗,
then C return ⊥;
If AggV er((f∗

1 , m∗
1), ..., (f

∗
n, m∗

n), σ∗) outputs 0, then C also return ⊥;
Else C does:

Parses σ∗: (x∗
n, α∗

n) ← σ∗;
For i = n down to i∗ + 1 does:

y∗
i ← f∗

i (x∗
i);

r∗
i ← H1(m

∗
i);

s∗
i ← H2(α

∗
i−1);

x∗
i−1 ← Π[f∗

i ||r∗
i ||s∗

i , y∗
i];

y∗
i∗ ← f∗

i (x∗
i∗);

C looks for y∗
i∗ in the f∗-table. If y∗

i∗ is not in f∗-table, then C return ⊥.
Else let x̂∗

i∗ be the index of y∗
i∗ in the f∗-table, C return (x∗

i∗ , x̂∗
i∗);

Consider executions of SAS unforgeability experiments with F and of the
trapdoor-collision-finding algorithm C over a common set of random coin
sequences with the same coins used for common choices across both experi-
ments. In the execution of C in its experiment, let BADΠ be the event that
any forward query is chained to zero. Let ABORT be the event that C aborts.
Let FORGE be the event that F outputs a valid forgery in its experiment. We
claim that

Advcf
TrapGen,C(n) ≥ Pr[FORGE ∧ ABORT ∧ BADΠ]

= Pr[FORGE | ABORT ∧ BADΠ] · Pr[ABORT | BADΠ] · Pr[BADΠ]

≥ Pr[FORGE | ABORT ∧ BADΠ] · Pr[ABORT | BADΠ] ·
(

1 − q2Π + qΠ

2k

)

The first inequality is because on coin sequences where C does not abort, the
execution of F in its experiment and when run by C is equal. Hence, on such
coin sequences F also forges in its execution by C. And since F finally produces a
valid forgery, it can be inferred that the Π-table entry x∗

i−1 = Π[f∗
i ||m∗

i ||s∗
i , y

∗
i]

is chained to zero. Conditioning on BADΠ , x∗
i−1 = Π[f∗

i ||m∗
i ||s∗

i , y
∗
i] must be

obtained by a backward query. Thus, C can find the index x̂∗
i∗ of y∗

i∗ in the
f∗-table, which leads to a collision f∗(x̂i∗) = f∗(xi∗). The last line is due to the
Variant Chain-to-Zero Lemma 1.

Next, we prove that

Pr[ABORT | BADΠ] ≥ 1 − (qS + qH)2

2τ

104 Z. Wang and Q. Wu

On each signing query and hash query, s or r is chosen independently at ran-
dom. BADΠ and ABORT are independent. The probability that r = H1(m) is
already in the H1-table or s = H2(α) is already in the H2-table on a given
signing query is at most qS+qH

2τ . Summing over all signing queries we have
Pr[ABORT | BADΠ] ≤ (qS + qH)2/2τ .

We finally compute

Pr[FORGE | ABORT ∧ BADΠ]

=
Pr[FORGE ∧ ABORT ∧ BADΠ]

Pr[ABORT ∧ BADΠ]

=
Pr[FORGE ∧ ABORT ∨ BADΠ]

Pr[ABORT ∧ BADΠ]

=
Pr[FORGE − Pr[FORGE | ABORT ∨ BADΠ] · Pr[ABORT ∨ BADΠ]

Pr[ABORT ∧ BADΠ]

≥ Pr[FORGE − Pr[ABORT ∨ BADΠ]

≥ Pr[FORGE] − Pr[ABORT] − Pr[BADΠ]

≥ Advuf
HF−SAS,F (n) − (qS + qH)2

2τ
− q2Π + qΠ

2k

Combining all the above, we have

Advcf
TrapGen,C(n)

≥
(
Advuf

HF−SAS,F (n) − (qS + qH)2

2τ
− q2Π

2k

)
·
(

1 − (qS + qH)2

2τ

)
·
(

1 − q2Π + qΠ

2k

)

We derive an upper bound for the running time of C considering only sample
function U(S) which appears in all four types of query, where S = {0, 1}n or
S = {0, 1}τ , and function f , which appears in Π−1-query and aggregate signing
query. Therefore, the running time t

′
is upper bounded by:

t
′ ≤ t + (qH + qS + qΠ) · tU + (qS + qΠ) · tf

5 Instantiation

In general, any collision-resistant trapdoor function can be used to construct our
SAS scheme. In this section we instantiate and analyze our sequential aggregate
signature scheme in conjunction with FALCON [11].

FALCON [11] is a candidate cryptographic signature algorithm in the round
2 of NIST Post-Quantum Cryptography Project. It is based on the theoretical
framework of lattice-based trapdoor function construction in [16] and is instan-
tiated over NTRU lattices [18], with a trapdoor sampler called “fast Fourier
sampling” [8]. The underlying hard problem is the short integer solution prob-
lem (SIS) over NTRU lattices [33], for which no polynomial time solving algo-
rithm is currently known in the general case, even with the help of quantum
computers. Main elements in FALCON are polynomials of degree with integer

A Practical Lattice-Based Sequential Aggregate Signature 105

coefficients. The degree n is normally a power of two(typically 512 or 1024) or
a small multiple of a power of two (e.g. 768). Computations are done modulo
a monic polynomial of degree n denoted φ which is a cyclotomic polynomial in
practice.

The public key A is a basis for a lattice of dimension 2n:

A =
[−h In

qIn On

]

where In is the identity matrix of dimension n, On is the zero matrix of dimension
n, and h is a polynomial modulo φ for an n × n sub-matrix. q is a specific small
prime, and in practice is either q = 12289 or q = 18433. h’s coefficients are
integers between 0 and q − 1.

The corresponding trapdoor TA is expressed as:

TA =
[

g −f
G −F

]

where f , g, F and G are short integral polynomials modulo φ, which satisfy:
{

h = g/f mod φ mod q

fG − gF = q mod φ

The trapdoor function in our work is:

fA :Z[x]/(φ) × Z[x]/(φ) → Zq[x]/(φ)
fA (s1, s2) = s1 + s2 · h mod q

where ||(s1, s2)|| ≤ β for a given positive acceptance bound β. The SamplePre
function is expressed as SamplePre (TA, y) = (s1, s2) mod q, where s1, s2 and
y satisfy fA (s1, s2) = y mod q.

In our scheme, the aggregate rate is τ(n) = 1 − size(xn)+
∑n

i=1 size(αi)∑n
i=1 size(xi)

. If

size(αi) and size(xn) are not dependent on i, then τ(n) ≈ 1 − size(αi)
size(xi)

. In prac-
tical implementation, the input x of f is an array with length 2048, which are
integer coefficients of polynomial in Z[x] and the output y of f is an array
with length 1024, which are integer coefficients of polynomial in Zq[x]. Let
s1 = x[0,1023] and s2 = x[1024,2047]. Function enc is simply used to split x
into (x[0,1023], x[1024,2047]) and function dec merges two arrays with length 1024
to one array with length 2048. We use AES several times to serve as a block
cipher and use SHA256 as a hash function. Other parameters we use the recom-
mended values in [11]. We implement our SAS scheme written using language C
on tripe-core Intel i5 3.30 GHz CPU with standard CPU benchmarks. Figure 1
shows the efficiency of our AggSign algorithm and AggVer algorithm. In Fig. 1,
we add 10 ms to the value of average verify time and 20 ms to the value of aver-
age key generate time in order to make a visible difference between the curves
of average verify time, average sign time and average key generate time.

106 Z. Wang and Q. Wu

We also make an RSA-based trapdoor function construction of our SAS. The
public key is (N, d) and the corresponding trapdoor is (N, e), where N = pq,
p and q are primes, and ed = 1 mod φ(N). The trapdoor function f on input
x ∈ Z

∗
N outputs f(x) = xe mod N and the SamplePre function on input

y ∈ Z
∗
N outputs SamplePre(y) = yd mod N . In our implementation, the input

of trapdoor function is an array with length 244 and the output array is with
length 256. Table 1 gives a comparison of aggregate rate and efficiency of SAS
based on FALCON trapdoor function and RSA trapdoor function for one signer.

Fig. 1. Efficiency of sequential aggregate signature scheme based on FALCON

Table 1. Comparison of Aggregate rate and Efficiency of SAS based on FALCON
trapdoor function and RSA trapdoor function for one signer

Type of trapdoor rate τ(n) KeyGen Sign Verify

FALCON ≈50% 0.302 ms 0.161 ms 0.150 ms

RSA ≈95% ≤0.001 ms 1.582 ms 0.065 ms

6 Conclusion and Future Works

In this paper we address the problem of constructing lattice-based sequential
aggregate signature. We give a practical SAS scheme based on lattice trapdoor
function. The scheme is provably secure in ideal cipher model. We do a soft-
ware implementation of SAS using FALCON-based trapdoor and RSA-based

A Practical Lattice-Based Sequential Aggregate Signature 107

trapdoor. The experimental results show that our lattice-based SAS scheme has
a high computation speed (approximately 1/10 ms) and can save about 50%
storage or transmission costs. Any trapdoor function can be used to construct
our SAS, such as the recently improved lattice trapdoor function in [13,14,17],
yet our aggregate rate is not optimal as a result of the difference between trap-
door function’s sizes of input and output. One interesting open problem is to
construct lattice-based trapdoor permutation to improve aggregate rate.

Acknowledgment. This paper is supported by the National Key R&D Program of
China through project 2017YFB0802500, by the National Cryptography Development
Fund through project MMJJ20170106, by the foundation of Science and Technology on
Information Assurance Laboratory through project 61421120305162112006, the Nat-
ural Science Foundation of China through projects 61772538, 61672083, 61532021,
61472429, 91646203 and 61402029.

References

1. Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures. In:
Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol.
4596, pp. 411–422. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73420-8 37

2. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security, pp. 62–73. ACM (1993)

3. Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisignatures and
identity-based sequential aggregate signatures, with applications to secure routing.
In: Proceedings of the 14th ACM Conference on Computer and Communications
Security, pp. 276–285. ACM (2007)

4. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 10

5. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9 26

6. Brogle, K., Goldberg, S., Reyzin, L.: Sequential aggregate signatures with lazy
verification from trapdoor permutations. Inf. Comput. 239, 356–376 (2014)

7. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. J. Cryptol. 25(4), 601–639 (2012)

8. Ducas, L., Prest, T.: Fast fourier orthogonalization. In: Proceedings of the ACM on
International Symposium on Symbolic and Algebraic Computation, pp. 191–198.
ACM (2016). https://doi.org/10.1145/2930889.2930923

9. El Bansarkhani, R., Buchmann, J.: Towards lattice based aggregate signatures. In:
Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp.
336–355. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-6 21

10. Fischlin, M., Lehmann, A., Schröder, D.: History-free sequential aggregate signa-
tures. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 113–130.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9 7

https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/978-3-642-20465-4_10
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1145/2930889.2930923
https://doi.org/10.1007/978-3-319-06734-6_21
https://doi.org/10.1007/978-3-642-32928-9_7

108 Z. Wang and Q. Wu

11. Fouque, P.A., et al.: Falcon: fast-fourier lattice-based compact signatures over
NTRU (2018). Accessed 12 June 2019. https://falcon-sign.info/

12. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

13. Genise, N., Micciancio, D.: Faster Gaussian sampling for trapdoor lattices with
arbitrary modulus. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10820, pp. 174–203. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78381-9 7

14. Genise, N., Micciancio, D., Polyakov, Y.: Building an efficient lattice gadget toolkit:
Subgaussian sampling and more. Technical report, Cryptology ePrint Archive,
Report 2018/946, 2018 (2018). https://eprint.iacr.org/2018/946.pdf

15. Gentry, C., O’Neill, A., Reyzin, L.: A unified framework for trapdoor-permutation-
based sequential aggregate signatures. In: Abdalla, M., Dahab, R. (eds.) PKC 2018.
LNCS, vol. 10770, pp. 34–57. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-76581-5 2

16. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Sympo-
sium on Theory of Computing, pp. 197–206. ACM (2008)

17. Gür, K.D., Polyakov, Y., Rohloff, K., Ryan, G.W., Savas, E.: Implementation and
evaluation of improved Gaussian sampling for lattice trapdoors. In: Proceedings of
the 6th Workshop on Encrypted Computing & Applied Homomorphic Cryptogra-
phy, pp. 61–71. ACM (2018)

18. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36563-X 9

19. Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multi-
linear maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40041-4 27

20. Hu, Y., Jia, H.: A new Gaussian sampling for trapdoor lattices with arbitrary mod-
ulus. Des. Codes Crypt. 1–18 (2019). https://doi.org/10.1007/s10623-019-00635-8

21. Lee, K., Lee, D.H., Yung, M.: Sequential aggregate signatures made shorter. In:
Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013.
LNCS, vol. 7954, pp. 202–217. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38980-1 13

22. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006).
https://doi.org/10.1007/11761679 28

23. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures, multisignatures, and verifiably encrypted signatures without random
oracles. J. Cryptol. 26(2), 340–373 (2013)

24. Lu, X., Yin, W., Wen, Q., Jin, Z., Li, W.: A lattice-based unordered aggregate
signature scheme based on the intersection method. IEEE Access 6, 33986–33994
(2018). https://doi.org/10.1109/ACCESS.2018.2847411

https://falcon-sign.info/
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-319-78381-9_7
https://doi.org/10.1007/978-3-319-78381-9_7
https://eprint.iacr.org/2018/946.pdf
https://doi.org/10.1007/978-3-319-76581-5_2
https://doi.org/10.1007/978-3-319-76581-5_2
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/978-3-642-40041-4_27
https://doi.org/10.1007/s10623-019-00635-8
https://doi.org/10.1007/978-3-642-38980-1_13
https://doi.org/10.1007/978-3-642-38980-1_13
https://doi.org/10.1007/11761679_28
https://doi.org/10.1109/ACCESS.2018.2847411

A Practical Lattice-Based Sequential Aggregate Signature 109

25. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signa-
tures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24676-3 5

26. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006). https://doi.org/
10.1007/11787006 13

27. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

28. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

29. Neven, G.: Efficient sequential aggregate signed data. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 52–69. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3 4

30. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assump-
tions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 145–166. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 8

31. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4),
656–715 (1949)

32. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999). https://doi.
org/10.1137/S0097539795293172

33. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 4

34. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryp-
tion based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7 36

https://doi.org/10.1007/978-3-540-24676-3_5
https://doi.org/10.1007/978-3-540-24676-3_5
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-540-78967-3_4
https://doi.org/10.1007/978-3-540-78967-3_4
https://doi.org/10.1007/11681878_8
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1007/978-3-642-20465-4_4
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36

Encryption

Towards Enhanced Security for
Certificateless Public-Key Authenticated

Encryption with Keyword Search

Xueqiao Liu1, Hongbo Li2, Guomin Yang1(B), Willy Susilo1, Joseph Tonien1,
and Qiong Huang2

1 Institute of Cybersecurity and Cryptology,
School of Computing and Information Technology, University of Wollongong,

Wollongong 2522, Australia
{xl691,gyang,wsusilo,dong}@uow.edu.au

2 College of Mathematics and Informatics, South China Agricultural University,
Guangzhou 510642, China

hongbo@stu.scau.edu.cn, qhuang@scau.edu.cn

Abstract. Certificateless Public-key Authenticated Encryption with
Keyword Search (CLPAEKS) is derived from the Public-key Authen-
ticated Encryption with Keyword Search (PAEKS) and simultaneously
combines the features of the Public Key Cryptography (CLPKC). In
a CLPAEKS scheme, the ciphertext is designed to meet the need for
both confidentiality and authentication, i.e., on one hand, the cipher-
text is the encryption of the keyword; on the other hand, adversaries are
incapable of generating a valid ciphertext without the owner’s private
key. He et al. formalized security models for CLPAEKS and proposed
a CLPAEKS scheme. However, we find their models are incomplete to
capture the security requirements for CLPAEKS and re-formalize the
security requirements for CLPAEKS in terms of trapdoor privacy and
ciphertext indistinguishability. Besides, we point out that their scheme
is vulnerable to the Keyword Guessing Attack (KGA) by a malicious
receiver, which is not considered in their security model. Then we mod-
ify He et al.’s scheme and prove that the new scheme meets the new
security requirements.

Keywords: Public Key Authenticated Encryption with Keyword
Search · Keyword Guessing Attack · Certificateless

1 Introduction

Since the widespread of the concept and corresponding applications of the cloud
storage, performing search on encrypted data has become a popular research
topic. Among all potential solutions, the Public-key Encryption with Keyword
Search (PEKS) has attracted considerable attentions from researchers, since it
was put forth by Boneh et al. [5]. Due to the properties inherited from the
c© Springer Nature Switzerland AG 2019
R. Steinfeld and T. H. Yuen (Eds.): ProvSec 2019, LNCS 11821, pp. 113–129, 2019.
https://doi.org/10.1007/978-3-030-31919-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-31919-9_7

114 X. Liu et al.

public key encryption, PEKS not only allows multiple data providers to upload
data together with the searchable ciphertext to the server, but permits multiple
request users to generate a trapdoor in order to launch a query with underlying
keywords of interest as well. A number of PEKS schemes have been presented
and proven to be Semantic Secure under Chosen Keyword Attack (SS-CKA).

However, we have to highlight that the security definition of SS-CKA only
considers the risk of revealing information from the searchable ciphertext and
does not consider the potential leakage from the trapdoor. We take the well-
known attack named Keyword Guessing Attack [8,21] as an example. An
attacker may collect one trapdoor with the underlying keyword w from the
communications between an authorized request user and the server. Then the
attacker generates all searchable ciphertexts by exhaustively computing the
searchable ciphertext for each keyword in the universal keyword set of limited
size. Finally, the attacker matches each searchable ciphertext generated from the
underlying keyword w′ with the collected trapdoor. Once they match, it means
that w = w′. In short, some information about the underlying keyword of the
trapdoor or query is revealed to the attacker. This attack can be launched in
an off-line way on schemes with small keyword space. A considerable number of
existing PEKS works are found vulnerable to this attack. On one hand, secu-
rity model outlining the privacy leakage from trapdoors should be taken into
account. On the other hand, generic solution which is naturally immune to this
attack should be constructed.

To resist such attacks especially the Inside Keyword Guessing Attack (IKGA)
which are launched by the server, PAEKS and its derivation CLPAEKS come
into play [12,13]. Both of their ideas are to take the sender’s private key as the
input of the ciphertext generation algorithm, so that other parties can never
impersonate the sender to make a ciphertext. In short, their ciphertexts are
supposed to be unforgeable by other parties. Unfortunately, though the scheme
in [12] can resist the IKGA from the server, it is vulnerable to KGA launched
by other parties, say, the receiver. That is, without the private key of the sender
S but with the private key SkR of the receiver R, it is possible to modify a real
ciphertext CS→R(w) to a valid ciphertext C ′

S→R′(w). Then the malicious receiver
R can learn whether the underlying keyword of the current trapdoor TS→R′(w′)
sniffed from the communication channel is the same as that of C ′

S→R′(w) by
running the test algorithm on the new ciphertext and the trapdoor. That is
to say, the trapdoor privacy can no more be guaranteed. Furthermore, R can
in advance impersonate S and upload C ′

S→R′(w) with its own document D to
the server, resulting in matching C ′

S→R′(w) with the trapdoor TS→R′(w) and
additionally returning D to the innocent receiver R′.

In addition, in an open network environment, there is no fully trusted par-
ties. This is also applicable to the outsourced data storage applications. That
is, any party involved in the cloud storage system can be untrusted or even
malicious and the forementioned attacks are practical and potential. Thus, a
well-defined security model with the ciphertext oracle like [13] is needed. How-
ever, the security models of [12] which only consider the searchable ciphertext

Towards Enhanced Security for CLPAEKS 115

indistinguishability without accessing the ciphertext oracle cannot accurately
capture the security requirements for CLPAEKS.

1.1 Related Work

With the advent of the cloud storage technique, the public are more willing
to store their personal data on the cloud after encryption. Even though data
encrypted leaks less privacy, direct operations on data such as computations and
search are prevented. During the long journey of seeking the solution to enabling
search on encrypted data, Public-key Encryption with Keyword Search (PEKS)
was proposed [5]. From then on, a large number of PEKS works and its variants
[10,15–18] have emerged. However, the security model of the semantic security
against chosen keyword attack in [5] only takes the leakage of ciphertext into
consideration and does not consider that of trapdoor. That is, schemes do not
satisfy the tradoor privacy have the leakage risk against the Keyword Guessing
Attack [8,21].

Then some subsequent researches [9,11] focus on designing constructions
resisting KGA. As one of the solutions, the Public-key Encryption with Fuzzy
Keyword Search (PEFKS) was formalized and a detailed construction was pre-
sented which is secure against outside keyword guessing attack in [20]. An alter-
native solution to KGA prevention is to deploy two servers, assuming the servers
never collude [19].

Another creative solution against KGA is the Public-key Authenticated
Encryption with Keyword Search (PAEKS) proposed by [13], in which besides
computing the searchable ciphertext from each keyword, the data provider also
needs to authenticate the searchable ciphertext with her/his secret key. That
means the secret key of the data provider is also input of the encryption algo-
rithm. Then the problem naturally comes to defining the security model depict-
ing unforgeability, which is similar to that of signcrpytion [22] to a certain degree.

In order to get rid of unconditional trust in Private Key Generator (PKG),
Certificateless Public Key Cryptography (CLPKC) was proposed by Al-Riyami
and Paterson [1], keeping users’ private key unrevealed to Key Generation Cen-
ter (KGC) by allowing users to set a secret value themselves. Based on this
concept, Certificateless Public Key Encryption (CLPKE) [2,3] and Certificate-
less Signature (CLS) [1,14] schemes are constructed. Recently, the certificateless
public key encryption with keyword search (CLPAEKS) [12] was proposed to
avoid the certificate management and the key escrow problem of PAEKS with
the help of the certificateless primitive. Similarly, CLPAEKS should also consider
unforgeability which is inherited from the security requirements of PAEKS.

1.2 Our Contributions

We outline the contributions of this work as follows:

– We reconsider the security definitions against two types of adversaries and
present new security models which better depict the security requirements
for CLPAEKS.

116 X. Liu et al.

– By analyzing the weakness of an existing scheme under our security models,
we present a new CLPAEKS scheme.

– We prove that the new scheme is secure under the formalized security models.

2 Preliminaries

2.1 Bilinear Pairing

Let e : G1 × G1 → G2 be a bilinear pairing, where G1,G2 are cyclic groups of
the same prime order q. It satisfies the following [6]:

– For any x, y ∈ Z, P,Q ∈ G1 e(xP, yQ) = e(P,Q)xy.
– For any generator P ∈ G1, e(P, P) is a generator of G2.
– For any P,Q ∈ G1, e(P,Q) can be computed efficiently.

2.2 Decisional Bilinear Diffie Hellman Problem

Given a generator P ∈ G1 and elements xP, yP, zP ∈ G1 where x, y, z are
randomly chosen from Zq, distinguish e(P, P)xyz from a random element from
G2 [7].

2.3 Decisional Linear Problem

Given a generator Q ∈ G1 and elements x1Q,x2Q,xx1Q, yx2Q ∈ G1 where
x, y, x1, x2 are randomly chosen from Zq, distinguish (x + y)Q from a random
element Z from G1 [4].

3 Certificateless Public-Key Authenticated Encryption
with Keyword Search

3.1 Definition

The syntax of CLPAEKS is outlined in [12]: Setup, Extract − partial−
private − key, Set − secret − value, Set − private − key, Set − public−
key, CLPAEKS, Trapdoor, Test. We omit this session due to limited space.

3.2 Security Models

In this section, we will discuss the security requirements which should be
equipped with a CLPAEKS scheme. First of all, CLPAEKS is foremost a PAEKS
which should possess trapdoor privacy and ciphertext indistinguishability men-
tioned in [13]. Then it is a scheme in the form of the certificateless public
key cryptography in which given that the scheme has no certificates, a fur-
ther strengthened security model is taken into account, allowing adversaries to
replace the public key of any entity with a value of their choice. In short, the

Towards Enhanced Security for CLPAEKS 117

games depicting security requirements for CLPAEKS are designed after taking
those of both PAEKS and the certificateless public key cryptography into con-
sideration. As the security requirements of CLPKC, two types adversaries are
taken into account in CLPAEKS to depict the outside adversaries (type 1) and
the inside adversaries (type 2), respectively [1].

Remark: Type 1 adversary depicts the outside adversary who may be one of
the legal system users. That means it can access the secret value and decide
the corresponding public key. Thus, type 1 adversary can replace public keys
and should designate the public key for replacement at the very beginning. In
contrast, type 2 adversary depicts the inside adversary like KGC who can access
the master key, but cannot replace public keys.

Trapdoor Privacy. Similar to the security requirement in [13], the adver-
sary should not distinguish two trapdoors given access to responses for a range
of queries, including the extract partial private key query, the extract secret
value query, the request public key query, the trapdoor query and the cipher-
text query which outline the practical capability of the adversary. Besides, the
security requirements for the certificateless public key aspect should be taken
into consideration. That is, type 1 adversary should be permitted to launch the
replace public key query and type 2 adversary should be permitted to access the
master key due to the feature of certificateless cryptography [1]. The model is
divided into the following two parts correspondingly:

Game 1 (type 1 adversary):
Setup: Given a security parameter λ, the adversary A chooses the challenge

sender’s identity IDS and the new public key Pk′
IDS

, the challenge receiver’s
identity IDR, the challenger C generates and sends (Param,PkIDR

) to A.
Query: The adversary A is allowed to issue the following queries:

– Hash query: A is allowed to issue queries to all hash oracles.
– Extract partial private key query: Given an identity IDi, the challenger C

computes the corresponding partial private key dIDi
and returns dIDi

to A.
A is prohibited from querying the partial private key of IDS .

– Extract secret value query: Given an identity IDi, the challenger C computes
and returns the corresponding secret value xIDi

to A. A is prohibited from
querying the secret value xIDi

for the identity IDi s.t. the corresponding
public key Pki has been replaced by a replace public key query, and the
secret value xIDR

for the challenge receiver’s identity IDR .
– Request public key query: Given an identity IDi, the challenger C computes

the corresponding public key PkIDi
and returns PkIDi

to A.
– Replace public key query: Given an identity IDi, the adversary A can ask the

challenger C to replace the corresponding public key PkIDi
with a new public

key Pk′
IDi

. A is prohibited from replacing the public key for the challenge
receiver’s identity IDR before the challenge phase which would enable A to
receive a challenge trapdoor under a secret value known by A and trivially
win the distinguishing game.

118 X. Liu et al.

– Trapdoor query: Given a keyword w, IDS′ and IDR′ , the challenger C com-
putes the corresponding trapdoor Tw with respect to IDS′ and IDR′ , returns
Tw to A.

– Ciphertext query: Given a keyword w, IDS′ and IDR′ , the challenger C
computes the corresponding ciphertext Cw with respect to IDS′ and IDR′ ,
returns Cw to A.

Challenge: A chooses two keywords w0, w1 s.t. (PkIDS
, PkIDR

, w0),
(PkIDS

, PkIDR
, w1) have not been queried for trapdoor and ciphertext, sends

them to the challenger C. C randomly chooses b ∈ {0, 1}, returns Twb
to A.

Query: A continues launching queries as the above with the same restric-
tions.

Guess: A outputs a bit b′. It wins the game if b′ = b.
Game 2 (type 2 adversary):
The differences of this game from the above game are as follows:

1. the adversary A chooses the challenge sender’s identity IDS and the challenge
receiver’s identity IDR, the challenger C sends (Param,PkR, PkS) to A in
the Setup phase.

2. the master key s is given to the adversary A in the Setup phase.
3. the adversary A is prohibited from launching any replace public key queries.
4. the adversary A is prohibited from launching extract secret value queries on

the challenge identities IDS and IDR.

Definition 1. We say that a CLPAEKS satisfies the trapdoor privacy if for any
probabilistic polynomial-time (PPT) adversary A, the advantage

AdvTP
CLPAEKS,A(λ) = |Pr[b′ = b] − 1

2
|

is negligible.

Ciphertext Indistinguishability. Similar to the security requirement in [13],
the adversary should not distinguish two ciphertexts given access to responses
for the similar range of queries to that of the trapdoor privacy. Similarly, type 1
adversary should be permitted to launch the replace public key query and type
2 adversary should be permitted to access the master key due to the feature of
certificateless [1]. The model is devided into the following two parts correspond-
ingly:

Game 3 (type 1 adversary):
Setup: Given a security parameter λ, the adversary A chooses the challenge

sender’s identity IDS , the challenge receiver’s identity IDR and the public key
for replacement Pk′

IDR
, the challenger C generates and sends (Param,PkIDS

)
to A.

Query: The adversary A is allowed to issue similar queries as in Game 1.
In the replace public key query, A is prohibited from replacing IDS ’s public key.

Towards Enhanced Security for CLPAEKS 119

Challenge: A chooses two keywords w0, w1 s.t. (PkIDS
, PkIDR

, w0),
(PkIDS

, PkIDR
, w1) have not been queried for trapdoor and ciphertext, sends

them to the challenger C. C randomly chooses b ∈ {0, 1}, returns Cwb
to A.

Query: A continues launching queries as the above with similar restrictions.
Guess: A outputs a bit b′. It wins the game if b′ = b.
Game 4 (type 2 adversary):
The differences of this game from the above game is the same to the Game

2 of the trapdoor privacy. For simplicity, we omit the repeated details.

Definition 2. We say that a CLPAEKS satisfies the ciphertext indistinguisha-
bility if for any PPT adversary A, the advantage

AdvCI
CLPAEKS,A(λ) = |Pr[b′ = b] − 1

2
|

is negligible.

4 Weakness of He et al.’s Scheme

In this section, we review He et al.’s scheme [12] and point out the scheme is
vulnerable to the KGA according to our trapdoor privacy security model.

4.1 He et al.’s Scheme

In this section, we first revisit the CLPAEKS proposed in [12].

1. Setup : Given a security parameter l, KGC chooses a cyclic additive group
G1 and a cyclic multiplicative G2 of the same prime order q > 2l, a generator
P of G1, a bilinear pairing e : G1 × G1 → G2, a random number s ∈ Z

∗
q

as the master key, computes Ppub = sP , selects three hash functions: h1 :
{0, 1}∗ × G1 → Z

∗
q , H2 : {0, 1}∗ → G1, h3 : {0, 1}∗ × G1 × G1 × G1 → Z

∗
q ,

publishes Param = {l,G1,G2, e, q, P, Ppub, h1,H2, h3} and keeps s secret.
2. Extract − partial − private − key : Given the sender’s identity IDS ∈

{0, 1}∗ and the master key s, KGC chooses a random number rIDS
∈ Z

∗
q ,

computes RIDS
= rIDS

P , αIDS
= h1(IDS , RIDS

), and dIDS
= rIDS

+
sαIDS

(mod q). Then KGC returns dIDS
and RIDS

to the sender.
dIDR

and RIDR
are computed and returned in the same way as above.

3. Set − secret − value : Given the sender’s identity IDS ∈ {0, 1}∗ and the
receiver’s identity IDR ∈ {0, 1}∗, the sender chooses a random number
xIDS

∈ Z
∗
q as its secret value, the receiver chooses a random number

xIDR
∈ Z

∗
q as its secret value.

4. Set − private − key : Given the sender’s secret value xIDS
and the sender’s

partial private key dIDS
, the sender’s private key is set as SKIDS

=
(xIDS

, dIDS
). Given the receiver’s secret value xIDR

and the reciver’s partial
private key dIDR

, the receiver’s private key is set as SKIDR
= (xIDR

, dIDR
).

120 X. Liu et al.

5. Set − public − key : Given the sender’s secret value xIDS
, the partial pub-

lic information RIDS
, the receiver’s secret value xIDR

, and the partial pub-
lic information RIDR

, the sender computes PIDS
= xIDS

P , PkIDS
=

(PIDS
, RIDS

) is set as the sender’s public key, the receiver computes PIDR
=

xIDR
P , PkIDR

= (PIDR
, RIDR

) is set as the receiver’s public key.
6. CLPAEKS : Given the sender’s identity IDS , the receiver’s identity IDR,

the sender’s secret key SKIDS
, the receiver’s public key PkIDR

, and the
keyword w, the sender chooses a random number r ∈ Z

∗
q , computes

βIDS
= h3(IDS , Ppub, PIDS

, RIDS
), βIDR

= h3(IDR, Ppub, PIDR
, RIDR

),
C1 = (dIDS

+βIDS
xIDS

)H2(w)+rP , C2 = r(βIDR
PIDR

+RIDR
+αIDR

Ppub),
and returns the ciphertext Cw = (C1, C2).

7. Trapdoor : Given the sender’s identity IDS , the receiver’s identity IDR, the
sender’s public key PkIDS

and the receiver’s private key SKIDR
, the receiver

computes
βIDS

= h3(IDS , Ppub, PIDS
, RIDS

), βIDR
= h3(IDR, Ppub, PIDR

, RIDR
) and

Tw = e((dIDR
+ βIDR

xIDR
)H2(w), βIDS

PIDS
+ RIDS

+ αIDS
Ppub).

8. Test : Given the receiver’s identity IDR and public key PkIDR
, the

trapdoor Tw, and the ciphertext Cw, the server computes βIDR
=

h3(IDR, Ppub, PIDR
, RIDR

) and checks if Twe(C2, P) = e(C1, βIDR
PIDR

+
RIDR

+ αIDR
Ppub).

4.2 Weakeness of He et al.’s Scheme

We will follow our Game 1 of the trapdoor privacy step by step in order to
present the weakness of He et al.’s scheme [12]. The main idea is to make a valid
ciphertext Cw0 for one of the challenge keywords with respect to the challenge
sender IDS and the challenge receiver IDR, by processing another ciphertext
C ′

w0
for the same keyword w0 with respect to IDS and another receiver IDR′

with the private key of IDR′ at the beginning, then to run the algorithm Test,
given the challenge trapdoor Twb

for the challenge keyword wb ∈ {w0, w1} and
Cw0 as the inputs.

Query: The adversary A issues the following queries:

– Extract partial private key query: A sends a query for an identity IDR′ , the
challenger C returns the corresponding partial private key dIDR′ to A.

– Extract secret value query: The adversary A sends a query for an identity
IDR′ , the challenger C returns the corresponding secret value xIDR′ to A.

– Request public key query: The adversary A sends a request public key query
for the same identity IDR′ , the challenger C returns the corresponding public
key PkIDR′ where PKIDR′ = (PIDR′ , RIDR′).

– Ciphertext query: The adversary A sends a ciphertext query for a keyword
w0 of its choice and the same receiver IDR′ , the challenger C returns the
corresponding ciphertext C ′

w with respect to IDS and IDR′ to A. C ′
w0

=
(C ′

1, C
′
2) where C ′

1 = (dIDS
+βIDS

xIDS
)H2(w0)+ r′P,C ′

2 = r′(βIDR′ PIDR′ +
RIDR′ + αIDR′ Ppub).

Towards Enhanced Security for CLPAEKS 121

A firstly computes βIDS
= h3(IDS , Ppub, PIDS

, RIDS
), βIDR

=
h3(IDR, Ppub, PIDR

, RIDR
), βIDR′ = h3(IDR′ , Ppub, PIDR′ , RIDR′), and r′P =

(βIDR′ xIDR′ +dIDR′)−1C ′
2, then computes C ′

1−r′P = (dIDS
+βIDS

xIDS
)H2(w0).

A randomly choses r ∈ Z
∗
q and forges a searchable ciphertext Cw0 = (C1, C2)

for the same keyword w0 with respect to the challenge identities IDS and IDR:
C1 = (dIDS

+ βIDS
xIDS

)H2(w0) + rP,C2 = r(βIDR
PIDR

+ RIDR
+ αIDR

Ppub).
Challenge: The adversary A chooses another keyword w1, sends w0, w1 and

the challenge identity IDR to the challenger C. C randomly chooses b ∈ {0, 1},
computes Twb

← Trapdoor(wb, PkS , SkR) and returns it to A.
The adversary A runs Test(PkIDR

, Twb
, Cw0) → c.

Guess: If c = 1, the adversary A outputs a bit b′ = 0; otherwise, A outputs
a bit b′ = 1. It always wins the game since b′ = b holds.

5 Our New CLPAEKS Scheme

In this section, we first present a new CLPAEKS scheme by improving He et
al.’s scheme [12] and then prove that it satisfies our security definitions.

5.1 Construction

To obtain our new scheme, we modify their Setup, CLPAEKS, Trapdoor, and
Test algorithms. We only outline the improved four algorithms for simplicity.

1. Setup : Given a security parameter l, besides the parameter choice in the
original algorithm, KGC additionally chooses a generator Q of G1.

2. CLPAEKS : Given the sender’s identity IDS , the receiver’s identity IDR, the
sender’s secret key SKIDS

, the receiver’s public key PkIDR
, the keyword w,

the sender chooses a random number r ∈ Z
∗
q , computes βIDS

, βIDR
, C2 as

before and C1 = (dIDS
+ βIDS

xIDS
)H2(IDS , IDR, w) + rQ.

3. Trapdoor : Given the sender’s identity IDS , the receiver’s identity IDR,
the sender’s public key PkIDS

and the receiver’s private key SKIDR
,

the receiver computes βIDS
, βIDR

as before and Tw = e((dIDR
+

βIDR
xIDR

)H2(IDS , IDR, w), βIDS
PIDS

+ RIDS
+ αIDS

Ppub).
4. Test : Given the receiver’s identity IDR, the receiver’s public key PkIDR

, the
trapdoor Tw, and the ciphertext Cw, the server computes βIDR

as before,
and checks if Twe(C2, Q) = e(C1, βIDR

PIDR
+ RIDR

+ αIDR
Ppub).

5.2 Security Proof

We only provide the proof sketch here. The probability computation is detailed
in the full version of this paper1.

1 Please contact the authors for it.

122 X. Liu et al.

Theorem 1. If the adversary A wins the trapdoor privacy game with advantage
εT , then there exists a probabilistic polynomial time (PPT) adversary B which
can solve the DBDH problem with advantage

εDBDH ≥min{εT · (1 − 2

qh1

)qSV · 2

(qT + qC)e
, εT · (1 − 1

qh1

)qSV +qPPK · 2

(qT + qC)e
}

where qh1 is the number of h1 queries, qSV is the number of extract secret value
queries, qPPK is the number of partial private queries, qT is the number of
trapdoor queries and qC is the number of ciphertext queries.

Proof. Assume that there is a PPT adversary A which breaks the trapdoor
privacy of our CLPAEKS scheme with a non-negligible advantage εT , we will
use it to construct another PPT algorithm B to solve the DBDH problem.

Game 1 (type 1 adversary):
Setup: The algorithm B takes a DBDH problem instance as input, i.e.,

(G1,G2, e, q, P, xP, yP, zP, Z) where x, y, z are randomly chosen from Zq. Z
is either e(g, g)xyz or a random element of G2. Let b be a bit such that
b = 0 if Z = e(P, P)xyz, and b = 1 if Z is random. A chooses the
challenge sender’s identity IDS and the challenge receiver’s identity IDR.
The new public key for the replace public key query with respect to IDS

is P ′
IDS

. B randomly chooses t, αIDS
, βIDS

∈ Z
∗
q , RIDS

∈ G1, computes
Q = tP, Ppub = 1

αIDS
(xP − βIDS

P ′
IDS

− RIDS
), adds <IDS , RIDS

, αIDS
>

to the Lh1 and <IDS , RIDS
,⊥, βIDS

> to LE1 , sets the public parameters as
Param = {G1,G2, e, q, P,Q, Ppub}, the challenge receiver IDR’s public key as
PIDR

= yP , adds <IDR,⊥, PIDR
> to the LE2 and sends (Param,PIDR

) to the
adversary A.

Query: The adversary A is allowed to issue the following queries:

– h1 query: B maintains an Lh1 list, which contains tuples <IDi, RIDi
, αi>.

Upon receiving A’s query on (IDi, RIDi
), if the tuple <IDi, RIDi

, αi> is
already in the Lh1 list, B returns αi; otherwise, B randomly chooses αi ∈ Z∗

q ,
adds <IDi, RIDi

, αi> to the Lh1 list and returns αi.
– H2 query: B maintains an LH2 list, which contains tuples <wi,

IDS′ , IDR′ , μi, ci,Hi>. Upon receiving A’s query, if the tuple <wi, IDS′ ,
IDR′ , μi, ci,Hi> is already in the LH2 list, B returns Hi; otherwise, B ran-
domly chooses μi ∈ Z∗

q , tosses a coin ci ∈ {0, 1} so that Pr[ci = 0] = δ, B
sets Hi = (1 − ci)zP + μiP , adds <wi, IDS′ , IDR′ , μi, ci,Hi> to the LH2 list
and returns Hi.

– h3 query: B maintains an Lh3 list, which contains tuples <IDi, PIDi
,

RIDi
, βi>. Upon receiving A’s query on (IDi, PIDi

, RIDi
), if the tuple

<IDi, PIDi
, RIDi

, βi> is already in the Lh3 list, B returns βi; otherwise,
B randomly chooses βi ∈ Z∗

q , adds <IDi, PIDi
, RIDi

, βi> to Lh3 list and
returns βi.

– Extract partial private key query: B maintains an LE1 list, which con-
tains tuples <IDi, RIDi

, dIDi
, βi>. Upon receiving A’s query on IDi, if

<IDi, RIDi
, dIDi

, βi> is already in the LE1 list, B returns βi; otherwise,

Towards Enhanced Security for CLPAEKS 123

1. if IDi �= IDS , B randomly chooses dIDi
, αi ∈ Z∗

q , computes
RIDi

= dIDi
P − αiPpub, adds <IDi, RIDi

, αi> to the Lh1 list and
<IDi, RIDi

, dIDi
, βi> to LE1 .

2. if IDi = IDS , B aborts. (This event is denoted by E4.)
– Extract secret value query: B maintains an LE2 list, which contains tuples

<IDi, xIDi
, PIDi

>. Upon receiving A’s query on IDi,
1. if IDi �= IDR, B randomly chooses xi ∈ Z∗

q , computes PIDi
= xIDi

P ,
adds <IDi, xIDi

, PIDi
> to the LE2 list and returns xIDi

.
2. if IDi = IDR, B aborts. (This event is denoted by E1.)

– Request public key query: Upon receiving A’s query on IDi, B retrieves the
corresponding RIDi

, PIDi
from LE1 , LE2 and returns the public key PkIDi

=
(RIDi

, PIDi
) to A.

– Replace public key query: Upon receiving A’s query on (IDi, RIDi
, P ′

IDi
), B

sets PIDi
= P ′

IDi
, dIDi

= ⊥, xIDi
= ⊥. A is prohibited from replacing IDR’s

public key, which would enable A to trivially win the distinguishing game. A
is also prohibited from both replacing the public key for the challenge sender’s
identity IDS before the challenge phase and extracting the partial private key
for IDS , which would enable A to obtain both parts of IDS ’s private key.

– Trapdoor query: Upon receiving A’s query, B retrieves <wi, IDS′ ,
IDR′ , μi, ci,Hi> from the LH2 list,
1. if ci = 0, B aborts. (This event is denoted by E2.)
2. otherwise, B gets PkIDR′ = (RIDR′ , PIDR′), PkIDS′ = (RIDS′ , PIDS′)

by launching the request public key query, retrieves αIDS′ , βIDS′ ,
αIDR′ , βIDR′ from the Lh1 , Lh3 list, computes Twi

= e(μi(RIDS′ +
αIDS′ Ppub +βIDS′ PIDS′), βIDR′ PIDR′ +RIDR′ +αIDR′ Ppub), returns Twi

to A.
– Ciphertext query: Upon receiving A’s query, B retrieves <wi, IDS′ ,

IDR′ , μi, ci,Hi> from the LH2 list,
1. if ci = 0, B aborts. (This event is denoted by E2.)
2. otherwise, B gets PkIDR′ = (RIDR′ , PIDR′), PkIDS′ = (RIDS′ , PIDS′)

by launching the request public key query, retrieves αIDS′ , βIDS′ ,
αIDR′ , βIDR′ from Lh1 , Lh3 , computes C1 = μi(βIDS′ PIDS′ + RIDS′ +
αIDS′ Ppub) + rQ,C2 = r(βIDR′ PIDR′ + RIDR′ + αIDR′ Ppub), returns
C = (C1, C2) to A.

Challenge: The adversary A chooses two keywords w0, w1 s.t.
(PkIDS

, PkIDR
, w0), (PkIDS

, PkIDR
, w1) have not been queried for trapdoor

and ciphertext, sends them to B. B retrieves <w0, IDS , IDR, μ0, c0,H0 >,<
w1, IDS , IDR, μ1, c1,H1> from LH2 .

1. if c0 = c1 = 1, B aborts and outputs a random bit b′ as its guess. (This event
is denoted by E3.)

2. otherwise, let b̂ be the bit s.t. cb̂ = 0, B computes the challenge trapdoor Twb̂

as follows and returns it to A.

Twb̂
= e(zP, xP)dIDR e(P, xP)dIDR

μiZβIDR e(yP, xP)βIDR
μi .

124 X. Liu et al.

If Z = e(P, P)xyz, then we have:

Tw
b̂

= e((dIDR + βIDRxIDR)H2(IDS , IDR, wb̂), βIDSPIDS + RIDS + αIDSPpub).

If Z is a random element from G2, so is Twb̂
.

Query: A continues launching queries with the same restrictions.
Guess: The adversary A outputs a bit b̂′. If b̂′ = b̂, B outputs b′ = 0;

otherwise, it outputs b′ = 1.
Game 2 (type 2 adversary):
Setup: The algorithm B takes a DBDH problem instance as input, i.e.,

(G1,G2, e, q, P, xP, yP, zP, Z) where x, y, z are randomly chosen from Zq. Z
is either e(P, P)xyz or a random element of G2. Let b be a bit such that
b = 0 if Z = e(g, g)xyz, and b = 1 if Z is random. A chooses the chal-
lenge sender’s identity IDS and the challenge receiver’s identity IDR. B ran-
domly chooses t, s ∈ Z

∗
q , computes Q = tP, Ppub = sP and sets the public

parameters as Param = {G1,G2, e, q, P,Q, Ppub}, the challenge sender IDS ’s
public key as PIDS

= xP and the challenge receiver IDR’s public key as
PIDR

= yP , adds <IDS ,⊥, PIDS
>,< IDR,⊥, PIDR

> to the LE2 , and sends
(Param,PIDS

, PIDR
) to the adversary A.

Query: Here we only detail different answers from that of Game 1:

– Extract partial private key query: B maintains an LE1 list, which con-
tains tuples <IDi, RIDi

, dIDi
, βi>. Upon receiving A’s query on IDi, B

randomly chooses rIDi
∈ Z∗

q and looks up the Lh1 list. If the tuple
<IDi, RIDi

, αi> is already in the Lh1 list, B retrieves αi; otherwise, ran-
domly chooses αIDi

∈ Z∗
q and adds <IDi, RIDi

, αIDi
> to the Lh1 list. B

computes dIDi
= rIDi

+ sα(mod q), RIDi
= rIDi

P , adds <IDi, RIDi
, dIDi

>
to the LE1 list and returns RIDi

, dIDi
.

– Extract secret value query: B maintains an LE2 list, which contains tuples
<IDi, xIDi

, PIDi
>. Upon receiving A’s query on IDi,

1. if IDi �= IDS , IDR, B randomly chooses xi ∈ Z∗
q , computes PIDi

=
xIDi

P , adds <IDi, xIDi
, PIDi

> to the LE2 list and returns xIDi
.

2. if IDi = IDS , B aborts. (This event is denoted by E1.)
3. if IDi = IDR, B aborts. (This event is denoted by E1.)

– Request public key query: Upon receiving A’s query on IDi, B retrieves the
corresponding RIDi

, PIDi
from LE1 , LE2 and returns the public key PkIDi

=
(RIDi

, PIDi
) to A. replacing the public key for the challenge receiver’s identity

IDR before the challenge phase and extracting the partial private key for IDR

in some phase, which would enable A to receive a challenge trapdoor under
a public key for which it could compute the private key.

Challenge: The adversary A chooses two keywords w0, w1 s.t.
(PkIDS

, PkIDR
, w0), (PkIDS

, PkIDR
, w1) have not been queried for trapdoor

and ciphertext, sends them to B. B retrieves <w0, IDS , IDR, μ0, c0,H0 >,
< w1, IDS , IDR, μ1, c1,H1> from LH2 .

Towards Enhanced Security for CLPAEKS 125

1. if c0 = c1 = 1, B aborts and outputs a random bit b′ as its guess. (This event
is denoted by E3.)

2. otherwise, let b̂ be the bit s.t. cb̂ = 0, B computes the challenge trapdoor Twb̂

as follows and returns it to A.

Twb̂
= e(zP, xP)dIDR

βIDS e(P, xP)dIDR
μiβIDS ZβIDR

βIDS e(yP, xP)βIDR
μiβIDS

e(zP,RIDS
+ αIDS

Ppub)dIDR e(P,RIDS
+ αIDS

Ppub)dIDR
μi

e(yP, zP)βIDR
dIDS e(yP,RIDS

+ αIDS
Ppub).

If Z = e(P, P)xyz, then we have:

Tw
b̂

= e((dIDR + βIDRxIDR)H2(IDS , IDR, wb̂), βIDSPIDS + RIDS + αIDSPpub).

If Z is a random element from G2, so is Twb̂
.

Query: A continues launching queries with the same restrictions.
Guess: The adversary A outputs a bit b̂′. If b̂′ = b̂, B outputs b′ = 0;

otherwise, it outputs b′ = 1.

Theorem 2. If the adversary A wins the ciphertext indistinguishability game
with advantage εC , then there exists a PPT adversary B which can solve the
DLIN problem with advantage

εDLIN ≥min{εC · (1 − 2

qh1

)qSV · 2

(qT + qC)e
, εC · (1 − 1

qh1

)qSV +qPPK · 2

(qT + qC)e
}

where qh1 is the number of h1 queries, qSV is the number of extract secret value
queries, qPPK is the number of partial private queries, qT is the number of
trapdoor queries and qC is the number of ciphertext queries.

Proof. Assume that there is a PPT adversary A which breaks the ciphertext
indistinguishability of our CLPAEKS scheme with a non-negligible advantage
εC , we will use it to construct another PPT algorithm B to solve the DLIN
problem.

Game 3 (type 1 adversary):
Setup: The algorithm B takes a DLIN problem instance as input, i.e.,

(G1, e, q,Q, x1Q,x2Q,xx1Q, yx2Q,Z) where x, y, x1, x2 are randomly chosen
from Zq. Z is either (x + y)Q or a random element of G1. Let b be a bit such
that b = 0 if Z = (x + y)Q, and b = 1 if Z is random. A chooses the chal-
lenge sender’s identity IDS and the challenge receiver’s identity IDR. The new
public key for the replace public key query with respect to IDR is P ′

IDR
. B

sets P = x1Q, the challenge sender IDS ’s public key as PIDS
= xP = xx1Q,

randomly chooses αIDR
, βIDR

∈ Z
∗
q , RIDR

∈ G1, adds <IDS , RIDS
, αIDS

> to
the Lh1 , <IDS , RIDS

,⊥, βIDS
> to LE1 , <IDS ,⊥, PIDS

> to the LE2 , sets the
master public key as Ppub = 1

αIDR
(x2Q−βIDR

P ′
IDR

−RIDR
), the public param-

eters as Param = {G1,G2, e, q, P,Q, Ppub}, and sends (Param,PIDS
) to the

adversary A.
Query: Here we only detail different answers from that of Game 1:

126 X. Liu et al.

– H2 query: B maintains an LH2 list, which contains tuples <wi, μi, ci,Hi>.
Upon receiving A’s query on wi, if the tuple <wi, μi, ci,Hi> is already in the
LH2 list, B returns Hi; otherwise, B randomly chooses μi ∈ Z∗

q , tosses a coin
ci ∈ {0, 1} so that Pr[ci = 0] = δ, B sets Hi = ciμiP + (1 − ci)μiQ, adds
<wi, μi, ci,Hi> to the LH2 list and returns Hi.

– Extract partial private key query: B answers queries and denotes event E4 in
the similar way as in Game 1. The only difference is the two cases are divided
by checking whether IDi = IDR rather than checking IDi = IDS .

– Extract secret value query: B answers queries and denotes event E1 in the
similar way as in Game 1. The only difference is the two cases are divided by
checking whether IDi = IDS rather than checking IDi = IDR.

– Replace public key query: B answers queries in the same way as in Game 1. A
is prohibited from replacing IDS ’s public key, and both replacing the public
key for the challenge receiver’s identity IDR before the challenge phase and
extracting the partial private key for IDR.

Challenge: The adversary A chooses two keywords w0, w1 s.t. (PkIDS
,

w0), (PkIDS
, w1) have not been queried for trapdoor and (PkIDR

, w0),
(PkIDR

, w1) have not been queried for ciphertext, sends them to B. B retrieves
<w0, μ0, c0,H0 >,< w1, μ1, c1,H1> from LH2 .

1. if c0 = c1 = 1, B aborts and outputs a random bit b′ as its guess. (This event
is denoted by E3.)

2. otherwise, let b̂ be the bit s.t. cb̂ = 0, B computes the challenge ciphertext Cb̂
as follows and returns it to A.

C1,b̂ = dIDS
· μb̂Q + βIDS

· μb̂ · (x + y)Q,

C2,b̂ =βIDS
· μb̂ · yx2Q.

If Z = (x + y)Q, then we have:

C1,b̂ = (dIDS
+ βIDS

· xIDS
)μb̂Q + βIDS

· μb̂ · yQ,

C2,b̂ = βIDS
· μb̂ · y(dIDR

P + βIDR
PIDR

).

If Z is a random element from G2, so is C1,b̂.

Query: A continues launching queries with the same restrictions.
Guess: The adversary A outputs a bit b̂′. If b̂′ = b̂, B outputs b′ = 0;

otherwise, it outputs b′ = 1.
Game 4 (type 2 adversary):
Setup: The algorithm B takes a DLIN problem instance as input, i.e.,

(G1, e, q,Q, x1Q,x2Q,xx1Q, yx2Q,Z) where x, y, x1, x2 are randomly chosen
from Zq. Z is either (x+y)Q or a random element of G1. Let b be a bit such that
b = 0 if Z = (x+y)Q, and b = 1 if Z is random. A chooses the challenge sender’s
identity IDS and the challenge receiver’s identity IDR. B randomly chooses
s ∈ Z

∗
q , computes Ppub = sP , sets P = x1Q, the public parameters as Param =

{G1,G2, e, q, P,Q, Ppub}, the challenge sender IDS ’s public key as PIDS
=

Towards Enhanced Security for CLPAEKS 127

xP = xx1Q. B randomly chooses αIDR
, rIDR

, βIDR
∈ Z∗

q , computes dIDR
=

rIDR
+ sα(mod q), RIDR

= rIDR
P . B sets the challenge receiver IDR’s public

key as PIDR
= 1

βIDR
(x2Q − dIDR

· x1Q), s.t. (dIDR
P + βIDR

PIDR
) = x2Q. B

adds <IDR, RIDR
, αIDR

>,< IDR, PIDR
, RIDi

, βIDR
>,< IDR, RIDR

, dIDR
>

to the Lh1 , Lh3 , LE1 list, respectively, and sends (Param,PIDS
, PIDR

) to the
adversary A.

Query: Here we only detail different answers from that of Game 2:

– H2 query: B maintains an LH2 list, which contains tuples <wi,
IDS′ , IDR′ , μi, ci,Hi>. Upon receiving A’s query on wi, if the tuple
<wi, IDS′ , IDR′ , μi, ci,Hi> is already in the LH2 list, B returns Hi; oth-
erwise, B randomly chooses μi ∈ Z∗

q , tosses a coin ci ∈ {0, 1} so that
Pr[ci = 0] = δ, B sets Hi = ciμiP + (1 − ci)μiQ, adds <wi, μi, ci,Hi>
to the LH2 and returns Hi.

Challenge: The adversary A chooses two keywords w0, w1 s.t. (PkIDS
, w0),

(PkIDS
, w1) have not been queried for trapdoor and (PkIDR

, w0), (PkIDR
, w1)

have not been queried for ciphertext, sends them to B. B retrieves
<w0, μ0, c0,H0 >,< w1, μ1, c1,H1> from LH2 .

1. if c0 = c1 = 1, B aborts and outputs a random bit b′ as its guess. (This event
is denoted by E3.)

2. otherwise, let b̂ be the bit s.t. cb̂ = 0, B computes the challenge ciphertext Cb̂
as follows and returns it to A.

C1,b̂ =dIDS
· μb̂Q + βIDS

· μb̂ · (x + y)Q,

C2,b̂ =βIDS
· μb̂ · yx2Q.

If Z = (x + y)Q, then we have:

C1,b̂ =(dIDS
+ βIDS

· xIDS
)μb̂Q + βIDS

· μb̂ · yQ,

C2,b̂ =βIDS
· μb̂ · y(dIDR

P + βIDR
PIDR

).

If Z is a random element from G2, so is C1,b̂.

Query: A continues launching queries with the same restrictions.
Guess: The adversary A outputs a bit b̂′. If b̂′ = b̂, B outputs b′ = 0;

otherwise, it outputs b′ = 1.

6 Conclusion

In this work, we re-formalized the security definitions of CLPAEKS. Under the
proposed security models, we pointed out the weakness of an existing scheme
and worked out a new scheme by modifying the original one. Finally, we proved
the new scheme is secure under the assumptions of DBDH and DLIN.

128 X. Liu et al.

Acknowledgement. This work is supported by the National Natural Science Foun-
dation of China (Nos. 61872152, 61872409), Guangdong Natural Science Funds for
Distinguished Young Scholar (No. 2014A030306021), Guangdong Program for Spe-
cial Support of Top-notch Young Professionals (No. 2015TQ01X796), and the Grad-
uate Student Overseas Study Program of South China Agricultural University (No.
2018LHPY025).

References

1. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-40061-5 29

2. Al-Riyami, S.S., Paterson, K.G.: CBE from CL-PKE: a generic construction and
efficient schemes. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 398–415.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4 27

3. Baek, J., Safavi-Naini, R., Susilo, W.: Certificateless public key encryption with-
out pairing. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS,
vol. 3650, pp. 134–148. Springer, Heidelberg (2005). https://doi.org/10.1007/
11556992 10

4. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

5. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 30

6. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

7. Boyen, X.: The uber-assumption family. In: Galbraith, S.D., Paterson, K.G. (eds.)
Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85538-5 3

8. Byun, J.W., Rhee, H.S., Park, H.-A., Lee, D.H.: Off-line keyword guessing attacks
on recent keyword search schemes over encrypted data. In: Jonker, W., Petković,
M. (eds.) SDM 2006. LNCS, vol. 4165, pp. 75–83. Springer, Heidelberg (2006).
https://doi.org/10.1007/11844662 6

9. Fang, L., Susilo, W., Ge, C., Wang, J.: Public key encryption with keyword search
secure against keyword guessing attacks without random oracle. Inf. Sci. 238, 221–
241 (2013)

10. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over
encrypted data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 31–45. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24852-1 3

11. Guo, L., Yau, W.C.: Efficient secure-channel free public key encryption with key-
word search for EMRs in cloud storage. J. Med. Syst. 39(2), 11 (2015)

12. He, D., Ma, M., Zeadally, S., Kumar, N., Liang, K.: Certificateless public key
authenticated encryption with keyword search for industrial internet of things.
IEEE Trans. Ind. Inform. 14(8), 3618–3627 (2018)

13. Huang, Q., Li, H.: An efficient public-key searchable encryption scheme secure
against inside keyword guessing attacks. Inf. Sci. 403, 1–14 (2017)

https://doi.org/10.1007/978-3-540-40061-5_29
https://doi.org/10.1007/978-3-540-30580-4_27
https://doi.org/10.1007/11556992_10
https://doi.org/10.1007/11556992_10
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/11844662_6
https://doi.org/10.1007/978-3-540-24852-1_3
https://doi.org/10.1007/978-3-540-24852-1_3

Towards Enhanced Security for CLPAEKS 129

14. Huang, X., Susilo, W., Mu, Y., Zhang, F.: On the security of certificateless sig-
nature schemes from Asiacrypt 2003. In: Desmedt, Y.G., Wang, H., Mu, Y., Li,
Y. (eds.) CANS 2005. LNCS, vol. 3810, pp. 13–25. Springer, Heidelberg (2005).
https://doi.org/10.1007/11599371 2

15. Ma, S., Huang, Q., Zhang, M., Yang, B.: Efficient public key encryption with
equality test supporting flexible authorization. IEEE Trans. Inf. Forensics Secur.
10(3), 458–470 (2015)

16. Park, D.J., Kim, K., Lee, P.J.: Public key encryption with conjunctive field keyword
search. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 73–86.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31815-6 7

17. Rhee, H.S., Susilo, W., Kim, H.J.: Secure searchable public key encryption scheme
against keyword guessing attacks. IEICE Electron. Express 6(5), 237–243 (2009)

18. Sun, W., Yu, S., Lou, W., Hou, Y.T., Li, H.: Protecting your right: verifiable
attribute-based keyword search with fine-grained owner-enforced search authoriza-
tion in the cloud. IEEE Trans. Parallel Distrib. Syst. 27(4), 1187–1198 (2016)

19. Wang, C.H., Tu, T.Y.: Keyword search encryption scheme resistant against
keyword-guessing attack by the untrusted server. J. Shanghai Jiaotong Univ. (Sci.)
19(4), 440–442 (2014)

20. Xu, P., Jin, H., Wu, Q., Wang, W.: Public-key encryption with fuzzy keyword
search: a provably secure scheme under keyword guessing attack. IEEE Trans.
Comput. 62(11), 2266–2277 (2013)

21. Yau, W.-C., Heng, S.-H., Goi, B.-M.: Off-line keyword guessing attacks on recent
public key encryption with keyword search schemes. In: Rong, C., Jaatun, M.G.,
Sandnes, F.E., Yang, L.T., Ma, J. (eds.) ATC 2008. LNCS, vol. 5060, pp. 100–105.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69295-9 10

22. Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption)
<< cost(signature)+ cost(encryption). In: Kaliski, B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997). https://doi.org/10.
1007/BFb0052234

https://doi.org/10.1007/11599371_2
https://doi.org/10.1007/978-3-540-31815-6_7
https://doi.org/10.1007/978-3-540-69295-9_10
https://doi.org/10.1007/BFb0052234
https://doi.org/10.1007/BFb0052234

Space-Efficient and Secure Substring
Searchable Symmetric Encryption Using

an Improved DAWG

Hiroaki Yamamoto1(B), Yoshihiro Wachi2, and Hiroshi Fujiwara1

1 Department of Electrical and Computer Engineering, Shinshu University,
4-17-1 Wakasato, Nagano-shi 380-8553, Japan
{yamamoto,fujiwara}@cs.shinshu-u.ac.jp

2 NTT COMWARE CORPORATION, Minato-ku, Tokyo, Japan

Abstract. A searchable symmetric encryption (SSE) scheme is a
method which searches encrypted data without decrypting it. In this
paper, we address the substring search problem such that for a set D of
documents and a pattern p, we find all occurrences of p in D. Here a docu-
ment and a pattern are defined as strings and are encrypted. A directed
acyclic word graph (DAWG), which is a deterministic finite automa-
ton, is known for solving a substring search problem on a plaintext. We
improve a DAWG so that all transitions of a DAWG have distinct sym-
bols and present a space-efficient and secure substring SSE scheme using
an improved DAWG. The novel feature of an improved DAWG is that
we can solve the substring search problem using only the labels of tran-
sitions. The proposed substring SSE scheme consists of an index with a
simple structure and the size is O(n) for the total size n of documents.

1 Introduction

1.1 Backgrounds

In recent years, remote storage services are rapidly spreading in cloud computing.
In such a system, there is often a case where a user wants to protect the confiden-
tiality of data on a remote server. In the field of information retrieval, developing
a technique for efficiently searching the encrypted data while protecting the con-
fidentiality of data and a query is a major topic. Such a search technique is
called searchable encryption, and in particular, a scheme using symmetric key
encryption is called searchable symmetric encryption (SSE). To securely search
data (or documents) with an SSE scheme, the user first generates an encrypted
data, including an encrypted index, and stores it on the server. Later, the user
interacts with the server to carry out a search on encrypted data. Up to now,
researches on SSE schemes have been actively done under such a background
[4,6,8,10–13,16,17,19–22,25].

c© Springer Nature Switzerland AG 2019
R. Steinfeld and T. H. Yuen (Eds.): ProvSec 2019, LNCS 11821, pp. 130–148, 2019.
https://doi.org/10.1007/978-3-030-31919-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-31919-9_8

Space-Efficient and Secure Substring Searchable Symmetric Encryption 131

1.2 Our Contributions

Most of SSE schemes proposed until now support only exact keyword search, and
therefore one of the challenging problems for SSE is to develop a secure scheme
to efficiently search for all substrings appearing in a document. Here a document
is a text string. A trivial technique is that we store all substrings occurring in
a document in an index. However, this method generates a huge index because
there are O(n2) substrings in a document of length n. Reducing the size of an
index is an important problem. Toward solving this problem, several substring
search schemes have been proposed [7,9,13,18,23,26].

A directed acyclic word graph (DAWG) [1,2] for a string w is a determin-
istic finite automaton (DFA) that accepts all substrings of w and is known as
an efficient data structure for representing all substrings. Yamamoto [26] has
developed a substring SSE scheme (YA-scheme) using a DAWG by introducing
an idea of block words. However YA-scheme needs a large index to enhance the
security because the size is in proportion to the size of a block word. Furthermore
YA-scheme cannot completely hide the occurrence frequencies of all characters
and meets only non-adaptive security.

We will propose a new substring SSE scheme by improving a DAWG. In gen-
eral, all symbols of transitions of a DAWG are not always distinct. We improve
a DAWG by allowing a transition with a string so that all transitions are per-
formed by distinct strings. The improved DAWG is called an augmented DAWG
(ADAWG) and a string used by a transition of an ADAWG is called a meta-
symbol. The big advantage of an ADAWG is that we can simulate an ADAWG
using only meta-symbols. Therefore we do not need to store transitions of an
ADAWG in an index. Furthermore, since all meta-symbols of transitions of an
ADAWG are distinct, our scheme can completely hide the occurrence frequen-
cies of characters and the structure of an ADAWG without using dummy data.
These features enable us to design a space-efficient and secure substring SSE
scheme. The schemes [7,18] need dummy data to hide the tree structure or the
occurrence frequencies of characters. The drawback is that the search time get
larger a little at the worst case. Let us summarize our scheme below. Here let
D = {d0, · · · , dN−1} be a set of N documents and q be a query of length m.
nD =

∑
di∈D |di| and D(q) is the set of all document ID and position pairs

(id, pos) such that q appears at position pos in document did. A document and
a query are defined as a string on an alphabet Σ.

– For any query q of length m, the proposed scheme finds all document ID
and position pairs at which q appears. The size of the index is O(nD) and
the search time is O(m2 + |D(q)|). Our scheme consists of an index with
a simpler structure than other substring SSE schemes, and it is possible to
make the hidden constant factor of O(nD) small. The number of rounds of
communication between a user and a server is three for a search.

– Adaptive Security: It can be proved that the proposed scheme is adaptively
secure under similar leakages as the scheme in [7].

132 H. Yamamoto et al.

– Frequency and Structure: Our scheme hides frequencies of all characters
occurring in a document and a query. If N ≥ 2 then the number of occur-
rences of q per a document does not leak out. Furthermore our scheme hides
the structure of an ADAWG.

Table 1. Comparison of substring search schemes. Here kσ = |Σ| and γ is the length
of a block word. The column “# of rounds” denotes the number of rounds of com-
munication between a user and a server for a search. The terms adapt and non-adapt
mean adaptive security and non-adaptive security, respectively. The column “Struct”
has “◦” if the scheme can hide a data structure underlying an index and � if the
scheme requires dummy data. The column “VL” has “◦” if the scheme can search for a
string of any length. The column “Freq” has “◦” if the scheme can hide the occurrence
frequency of any character and � if the scheme requires dummy data.

Scheme # of rounds Index size Search time Security Struct Freq VL

CS-scheme [7] 4 O(kσnD) O(kσm + |D(q)|) Adapt � ◦ ◦
SOR-scheme [24] 3 O(nD) O(m2 + |D(q)|) Adapt × � ◦
YA-scheme [26] 3 O(γnD) O((m/γ) log nD +|D(q)|) Non-adapt ◦ � ◦
LM-scheme [18] 3 O(nD) O(nD) Adapt ◦ � �
This work 3 O(nD) O(m2 + |D(q)|)) Adapt ◦ ◦ ◦

1.3 Related Works

Several substring SSE schemes have been proposed [7,9,13,18,23,26]. To the
best of our knowledge, the existing substring SSE schemes can be classified into
two types. One is a scheme which uses an advanced data structure which is used
in a substring search for a plaintext to achieve sub-linear search time in nD,
and the other is a scheme which does not use such data structure. The schemes
of [7,18,23,26] and our scheme belong to the former and the schemes of [9,13]
belong to the latter. Faber et al. [9] applied the conjunctive search scheme of
[5] to a substring search problem. Their scheme parses a string to k-grams (k
consecutive characters) and then searches for the conjunction of the k-grams.
The scheme can make a search in one round of communication, but the search
time can be O(nD) because the time depends on the number of occurrences
of a k-gram. Hahn [13] proposed a new substring SSE scheme for the existing
database, but they use a special encryption scheme called frequency-hiding order-
preserving encryption.

The schemes [7,18,23,26] using an advanced data structure aim to achieve
search time sublinear in nD and index size linear in nD. Since our scheme is
also the same type, we compare our scheme with these schemes. Table 1 gives
a comparison of these schemes. The search time of the user includes the time
to make a trapdoor, but not include the time to decrypt encrypted documents
returned from the server. Since we have already discussed YA-scheme, we discuss
the other schemes.

Space-Efficient and Secure Substring Searchable Symmetric Encryption 133

Chase and Shen [7] proposed a scheme (CS-scheme) based on a suffix tree
which is a data structure constructed from all suffixes of a string. They say
that the number of rounds of communication is three in [7]. However, the user
gets encrypted IDs from the serve after the third round. Therefore, for the user
to get the documents corresponding IDs from the server, the user must send
decrypted IDs to the server. Hence CS-scheme needs four rounds. The time and
space complexity of CS-scheme depend on kσ = |Σ|. Therefore CS-scheme runs
faster if kσ is small. However, if kσ > m, then the running time is slower than
our scheme. Furthermore the size of the index can be drastically large because
CS-scheme must insert so many dummy data in the index in order to hide the
structure of a suffix tree.

Leontiadis and Li [18] (LM-scheme) have presented a new substring SSE
scheme by employing a data structure called FM-index, which is a combination
of BWT transformation and a suffix array, for reducing the index size of CS-
scheme. The size of the index is O(nD) and the hidden constant factor is small.
LM-scheme regards a k-gram (which is called a bucket) as one symbol and inserts
dummy buckets into the original string in order to hide the frequency of buckets.
Since the search time depends on the number of occurrences of a bucket, the time
becomes O(nD) in the worst case. Furthermore, for a query such that the length
is less than k, LM-scheme does not clearly describe the search procedure. The
described search procedure cannot search for such a query or always takes O(nD)
time even if searching for it.

Strizhov and Ray [23,24] proposed a new substring SSE scheme (SOR-
scheme) for a space-efficient scheme. SOR-scheme [24] is the revised version
of the scheme in [23] and is based on a position heap tree for a string. Their
scheme first generates a position heap tree and then builds an encrypted index
by encrypting each node of the tree. Hence the structure of the position heap
tree is revealed. Furthermore SOR-scheme must compare a query and a docu-
ment character by character to verify that the query occurs in the document. For
that reason, SOR-scheme needs another index made by encrypting a character of
documents one by one. This index leaks the frequency of characters. The search
takes O(m2 + |D(q)|) time and needs three rounds of communication.

2 Preliminaries

Throughout this paper, Σ denotes an arbitrary finite alphabet, and a document
and a query denote a string (word) in Σ∗. The empty string is denoted by
ε. For a string w ∈ Σ∗, |w| denotes the length of w. When W is a set, |W |
denotes the number of elements of W . For strings w, x, y, z ∈ Σ∗, if w = xyz,
then y is called a substring of w. Let FACT (w) = {y | y is a substring of w}
and FACT (W) = ∪w∈W FACT (w). For two strings x and y, x||y denotes the
concatenation of x and y.

We consider the following substring search problem. Let D = {d0, . . . , dN−1}
be the set of N documents. We denote by ID(d) the identifier of a docu-
ment d, which is called a document ID. For a document di, ID(di) = i.

134 H. Yamamoto et al.

Fig. 1. A DAWG for {secure, system}

For a document d, we define nd = |d|, nD =
∑

d∈D nd, and D(q) =
{(i, j) | q appears at position j in di}. Then the substring search problem is, for a
given string q (q is called a query), to find D(q). In this paper, we address the
substring search problem on encrypted documents using a symmetric encryption
scheme. A symmetric encryption scheme consists of three (probabilistic) polyno-
mial time algorithms SKE= (KeyGen, Enc, Dec), where KeyGen(1λ) takes as an
input a security parameter λ and randomly outputs a secret key sk; Enc(sk, d)
takes as inputs a secret key sk and a document d, and returns an encrypted
document c; Dec(sk, c) takes as inputs a key sk and an encrypted document c
of d, and returns d if sk is the key that is used to produce c. As seen in [6],
we require a symmetric encryption scheme to be secure against pseudorandom
chosen-plaintext attacks (PCPA-security). For simplicity, by Encsk(·) we denote
an encryption function Enc(sk, ·) with a secret key sk. In addition, we use a pseu-
dorandom function F : {0, 1}λ × {0, 1}l1 → {0, 1}l2 , which is a polynomial-time
function that cannot be distinguished from a random function (for example, refer
to [15] for the definition). We write Fsk(x) for F (sk, x). We define a negligible
function for a security definition.

Definition 1. A function f from natural numbers to positive real numbers is
negligible in a security parameter λ if for every positive polynomial p(·) there is
an integer λ0 such that for any λ ≥ λ0 it holds that f(λ) < 1/p(λ).

Space-Efficient and Secure Substring Searchable Symmetric Encryption 135

Our SSE scheme consists of two parties, a user and a server. The user is the
owner of data and stores data in the server in an encrypted form. The user wants
to search encrypted data on the server without revealing the contents of data to
the server. We assume that the server is honest but curious. The SSE scheme
works as follows.

1. Setup phase: The user constructs a secure index from the set D of documents
and encrypts all documents di. After that, the user stores them in the server.

2. Search phase: For a query q, the user makes a trapdoor TRAP(q) of q and
sends it to the server. The user and the server search for the set D(q) following
a search protocol, and the user finally gets D(q) and {ci | (i, j) ∈ D(q)}. The
user decrypts each ci and gets the original document di.

3 An Augmented Directed Acyclic Word Graph

A directed acyclic word graph (DAWG) is data structure proposed by Blumer,
Blumer and Haussler [1] for implementing efficient substring search. In this
section, we propose a new data structure called an augmented DAWG by improv-
ing a DAWG.

3.1 A Directed Acyclic Word Graph

A DAWG for a string w ∈ Σ∗ is a deterministic finite automaton (DFA) that
accepts FACT (w). Blumer et al. [2] extended a DAWG for a set of strings.
We here give definitions and properties of a DAWG. Let W = {w0, . . . , wN−1}
be the set of text strings on Σ. For any string w = a1 · · · an ∈ W and v ∈
Σ∗, let end-set(v, w) = {i | v = ai−|v|+1 · · · ai}. In particular, end-set(ε, w) =
{0, 1, . . . , n}. Then, we define an equivalence class such that strings x and y in Σ∗

are equivalent on W if and only if for all w ∈ W , end-set(x,w) = end-set(y, w).
A DAWG M(W) = (Q,Σ, δ, init) is a DFA such that M(W) accepts FACT (W)
and the set Q of states consists of all equivalence classes on W , where δ is the
transition function and init is the initial state. Since all states of Q become final
states for a DAWG, we omit a set of final states. As with [26], we give a simple
algorithm BuildDawg to construct a DAWG M(W) from W in Algorithm 1. The
algorithm BuildDawg uses the subset construction method which is the standard
method to translate a nondeterministic finite automaton (NFA) into a DFA (for
example, see [14]). In a nutshell, we first make a DFA DF (W) which is a trie
of W , and then constructs M(W) from DF (W) by setting the initial state of
M(W) to the set Q of states. A trie is a data structure for searching a text (for
example, see [3]) and can be viewed as a DFA. The algorithm BuildDawg(W) runs
in time O(n2

W), where nW =
∑

w∈W |w|. The following proposition is obtained
from the results of [1,2].

136 H. Yamamoto et al.

Algorithm 1. BuildDawg(W)
Input: W = {w1, . . . , wk} where wi is a string on an alphabet Σ
1: make a trie TR = (V, E) for W where V is the set of nodes and E is the set of

directed edges. Then TR can be regarded as a DFA DF (W) = (Q, Σ, δ, p) where
Q = {v | v ∈ V } is a set of state, and the initial state p is the root of TR.
Furthermore δ(v1, a) = v2 if and only if (v1, v2) ∈ E and the edge is labeled a
symbol a.

2: {constructing a DAWG M(W) from DF (W) using the subset construction}
3: let us set the initial state of M(W) to the set Q of states,
4: construct a DAWG M(W) according to DF (W), using the subset construction
5: number states of M(W) from 0, where the initial state is numbered 0
6: return M(W)

Proposition 1. (1) The number of states of M(W) is at most 2nW − 1, and
the number of transitions is at most 3nW − 4,
(2) for any state of M(W), all the incoming transitions of the state have the

same symbol,
(3) for any string x ∈ Σ∗, M(W) accepts x if and only if there is w ∈ W such

that x ∈ FACT (w).

We say that for any string x, x is accepted by M(W) at state st if M(W)
reaches state st after reading x. For any state st of M(W), let WORD(st) be
the set of strings accepted by M(W) at state st. Then note that WORD(st)
becomes the equivalence class corresponding to st.

Example 1. Let us give an example of a DAWG in Fig. 1. Given a DFA of (A) for
{secure, system}, the DAWG of (B) is constructed using the subset construction
method by setting the initial state of the DAWG to all states of (A). If we regard
all states of (B) as the final states, then the DAWG exactly accepts all substrings
of secure and system.

3.2 An Augmented DAWG

To make a secure index, we want to improve a DAWG such that all transitions
have a distinct symbol. We achieve this purpose by allowing a DAWG to have a
transition by a string. Let M(W) = (Q,Σ, δ, st0) be the DAWG for a set W of
strings. Then we give a new DAWG M̃(W) = (Q, Σ̃, δ̃, st0) called an augment
DAWG (ADAWG), which is defined as follows.

1. for any st1, st2 ∈ Q, if δ(st1, a) = st2 is defined for a symbol a ∈ Σ, then we
define δ̃(st1, σa) = st2, where σ is the shortest string in WORD(st1).

2. Σ̃ = {σ | σ ∈ FACT (W) such that ∃st1, st2 ∈ Q, δ̃(st1, σ) = st2 is defined}.
We call σ ∈ Σ̃ a meta-symbol. Note that a meta-symbol is a string over Σ.

Since each state of a DAWG corresponds to an equivalence class, the shortest
string in WORD(st1) is exactly one. Therefore δ̃ can be defined. We give an

Space-Efficient and Secure Substring Searchable Symmetric Encryption 137

Algorithm 2. BuildADawg(W)
Input: W = {w0, . . . , wN−1}
1: make a DAWG M(W) = (Q, Σ, δ, st0) from W using BuildDawg
2: State ← {st0} and NEW ← ∅
3: for all st ∈ Q do
4: st.s ← ε
5: end for
6: while State �= ∅ do
7: for all st′ ∈ State do
8: for all transitions δ(st′, a) = st do
9: if a transition from st′ to st in δ̃ is not defined then

10: σ ← st′.s||a, define δ̃(st′, σ) = st and add σ to Σ̃,
11: if st.s = ε then
12: st.s ← σ {note that σ is the shortest string reachable to st.}
13: end if
14: NEW ← NEW ∪ {st}
15: end if
16: end for
17: end for
18: State ← NEW and NEW ← ∅
19: end while
20: return ADAWG M̃(W) = (Q, Σ̃, δ̃, st0)

algorithm BuildADawg to construct an ADAWG in Algorithm 2 (Fig. 2). The
algorithm BuildADawg(W) runs in time linear in the number of transitions of
M(W). An ADAWG M̃(W) = (Q, Σ̃, δ̃, st0) has the following property.

Proposition 2. (1) The number of states in M̃(W) is the same as that of
M(W),
(2) the number of transitions in M̃(W) is the same as that of M(W),
(3) for any two transitions δ̃(st1, σ1) and δ̃(st2, σ2), σ1 �= σ2.

Proof. Properties (1) and (2) of Proposition 2 are obvious from the definition
of an ADAWG. We prove property (3). Since the case st1 = st2 is obvious, we
prove the case st1 �= st2. Let us assume that σ1 = σ2 and σ1 = aσ. We note that
for any two states st1 and st2 in Q, the sets WORD(st1) and WORD(st2) are
always disjoint because M(W) is a DFA. Therefore, the state reachable by σ on
M(W) is exactly one. Hence st1 = st2 and then the property (3) holds.

Property (3) is a crucial property for security of our scheme because this
leads that all transitions of an ADAWG have distinct meta-symbols. M(W)
and M̃(W) have the same structure except for symbols of transitions. Now let
q be a string accepted by M(W) at state st and σ̃q be a sequence of meta-
symbols accepted by M̃(W) at state st. Then there is a one-to-one correspon-
dence between q and σ̃q. We can design an algorithm to translate q into σ̃q. We
give the algorithm Translate in Algorithm 3. The following proposition holds for
Translate.

138 H. Yamamoto et al.

Algorithm 3. Translate(q, Σ̃)
Input: q = a1 · · · am

1: Used ← ∅ and σ̃q ← ε
2: if a1 ∈ Σ̃ then
3: σ1 ← a1 and σ̃q ← σ̃q||σ1

4: end if
5: for i = 2, . . . , m do
6: for j = 1, . . . , i − 1 do
7: σi ← aj · · · ai

8: if σi /∈ Used and σi ∈ Σ̃ then
9: σ̃q ← σ̃q||σi and Used ← Used ∪ {σi}

10: break {go to the next i.}
11: end if
12: end for
13: end for
14: if |σ̃q| = m then
15: return σ̃q {this means that σ̃q = σ1 · · · σm has been generated.}
16: else
17: return ∅
18: end if

Proposition 3. Let q ∈ Σ∗, |q| = m and let σ̃q be an output of Translate(q, Σ̃).
Then q is accepted by M(W) at state st if and only if σ̃q = σ1 · · · σm (σi ∈ Σ̃)
and σ̃q is accepted by M̃(W) at state st.

We must note that if we know Σ̃ then we can compute σ̃q from q using
Translate. Proposition 3 states that we know Σ̃ then we can check if q is accepted
by M(W) without simulating M̃(W) on σ̃q. In other words, if we can make σ̃q

that is not ∅ from q using Translate then we know that q is accepted by M(W).
This fact leads to a secure and space-efficient substring SSE scheme.

3.3 A State-Set Tree

By Proposition 3, we can know whether there is a text string w in W such
that w contains a given string x using an ADAWG. However, we cannot know
which text string w contains x. We need additional information to identify a
text string and a position in which the string x appears. We introduce a state-
set tree corresponding to an ADAWG. The state-set tree was originally defined
for a DAWG in [1,2]. We use a state-set tree to identify a text string and a
position. In Sect. 3.1, we defined an equivalence relation on Σ∗ with respect to
W using end-set(x,w). For any x ∈ Σ∗, let [x]W be an equivalence class to which
x belongs. As defined in [1,2], we construct a state-tree TW from equivalence
classes as follows.

1. The nodes of TW consist of equivalence classes.
2. The root of TW is [ε]W .

Space-Efficient and Secure Substring Searchable Symmetric Encryption 139

Fig. 2. An augmented DAWG obtained from the DAWG given in Fig. 1.

3. Let [x]W be any node of TW and x be the longest string in [x]W . Then, for
any a ∈ Σ, if ax ∈ FACT (W), then [ax]W is a child of [x]W .

It is obvious from the definition of TW that the following proposition holds.

Proposition 4. Let [x1]W and [x2]W be any two nodes of TW such that [x2]W
is a descendant of [x1]W . Then for any strings s1 ∈ [x1]W and s2 ∈ [x2]W , s1 is
a suffix of s2.

Let M(W) be the DAWG for W . Recall that a state of M(W) also cor-
responds to an equivalence class. Hence there is a one-to-one correspondence
between a state of M(W) (that is, a state of M̃(W)) and a node of TW . Proposi-
tion 4 states that if s ∈ [x]W for some node [x]W , then s appears in all strings of
[x′]W which is a descendant of [x]W . By this property, we assign text string ID
and position pairs to a node of TW as follows. Let [x]W be any node of TW and
x be a string in [x]W . Furthermore let (id1, pos1), . . . , (idl, posl) be a text string
ID and a position (an end position) pairs in which x appears. Then, for any
1 ≤ i ≤ l, if (idi, posi) does not appear in a descendant of [x]W , then (idi, posi)
is assigned to [x]W ; otherwise not assigned. We call a node with text string ID
and position pairs an info-node. As an example, we give TW for the DAWG of
Fig. 1 in Fig. 3. The nodes of TW correspond to the states of the DAWG. The
info-nodes are 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12. We assign a number to each pair
attached to info-nodes of TW in preorder. In Fig. 3, such a number is attached to
the outside of each pair. We use these numbers when constructing indexes. Note
that the state-set tree TW can be constructed together with the corresponding
DAWG because a node of TW corresponds to a state of a DAWG.

Now, by Lv we denote the set of document ID and position pairs assigned to
a node v, and by TW (v) we denote the subtree of TW rooted by v. Furthermore,
let us define L(TW (v)) = ∪v∈V Lv, where V is the set of nodes of TW (v). Then
it follows from Proposition 4 that we obtain the following proposition.

140 H. Yamamoto et al.

Fig. 3. A state-set tree TW with (id, pos) for the DAWG given in Fig. 1. The pair (i, j)
of numbers in a dotted square denotes the text string ID (document ID) and position.
Here W = {secure, system} where ID(secure) = 1 and ID(system) = 2.

Proposition 5. For any string x ∈ Σ∗, let x be accepted by M(W) at state st
and let vst be the node of TW corresponding to st. Then, x occurs in position j
of wi if and only if (i, j) ∈ L(TW (vst)).

3.4 Outline of Search Using an ADAWG and a State-Set Tree

Let us explain an outline of a search procedure using an ADAWG and a state-
set tree. Given a keyword q, we first make σ̃q from q by Translate(q, Σ̃). By
Proposition 3, if we can make σ̃q then we know that q appears; otherwise q does
not appear. Let st be the state reached after reading σ̃q. We find the node vst
corresponding to st and gets L(TW (vst)). In the following section, we describe a
substring SSE scheme which securely performs the above mentioned procedure.

4 A Secure Substring SSE Scheme

In the previous section, we used the set W of strings to explain an ADAWG
and a state-set tree. Since the set D of documents corresponds to W , we use D
instead of W to explain our substring SSE scheme. Our substring SSE scheme
SUB SSE= (KeyGen, Enc, Trapdr, BuildIndex, Search, Dec) consists of six (prob-
abilistic) polynomial-time algorithms such that

– KeyGen(1λ) is an probabilistic algorithm that takes as an input a security
parameter λ and returns secret keys SK = (sk0, sk1, sk2, sk3, sk4),

– Enc(sk, d) is a probabilistic algorithm that takes as inputs a secret key sk and
a document d and returns an encrypted document c, that is, c =Encsk(d). In
particular, Encsk(D) = ∪d∈D {Encsk(d)},

– Trapdr(SK , q) is a deterministic algorithm that takes as inputs secret keys
SK and a query q, and returns a trapdoor TRAP(q) of q. In our scheme, this
consists of MakeTrap1 and MakeTrap2,

– BuildIndex(SK ,D) is a probabilistic algorithm that takes as inputs a secret
key SK , a set D of documents and a false positive parameter ν and returns an
encrypted index Π = (LSET,NMAP, IND) and a set of encrypted documents,

Space-Efficient and Secure Substring Searchable Symmetric Encryption 141

Fig. 4. Index Π = (LSET,NMAP, IND)

– Search(q,Π) is a protocol between the user and the server to search for D(q)
using an encrypted index Π. This is described as a search protocol in Sect. 4.2,

– Dec(sk, c) is a deterministic algorithm that takes as inputs a secret key sk
and an encrypted document c and returns the decrypted document d.

In the following, we describe details of Trapdr, BuildIndex, and Search.
Our secure indexes are made from an ADAWG and a state-set tree using
SKE= (KeyGen, Enc, Dec) and a pseudorandom function Fsk for a secret key sk.

4.1 Constructing a Secure Encrypted Index

The encrypted index Π = (LSET,NMAP, IND) consists of three sub-indexes
LSET, NMAP, and IND. The sub-index LSET is the set of encrypted meta-
symbols. The sub-index NMAP have information of a state reachable by the
last transition of an encrypted ADAWG. The sub-index IND has pairs of docu-
ment ID and position, and is built from a state-set tree. We will explain these
three sub-indexes. We give an algorithm BuildIndex in Algorithm 4 which con-
structs an encrypted index Π. Here M̃(D) = (Q, Σ̃, δ̃, 0) is an ADAWG and TD

is state-set tree for the set D of documents. We give an outline of the index Π
in Fig. 4, where Σ̃ = {σ1, . . . , σl} and t = nD.

Sub-index LSET. We make LSET so that LSET = {Fsk1(σ) | σ ∈ Σ̃}. Thus
LSET consists of encrypted meta-symbols which appears on transitions of M̃(D).

Sub-index NMAP. We store information of info-nodes corresponding to
a state reachable by transitions of M̃(D) in NMAP for a given query. Let
q be a query of length m and σ̃q = σ1 · · · σm be a sequence obtained by
Translate(q, Σ̃). Then if a DAWG M(D) reaches a state st by q, then the
corresponding ADAWG M̃(D) also reaches the state st by σ̃q. Then we set
NMAP[Fsk2(σm)] = (min,max) ⊕ Fsk3(σm). Here min and max is the mini-
mum number and the maximum number among document ID and position pairs
attached to info-nodes of the subtree corresponding to a state st . Note that min
and max are computed from the state-set tree.

Sub-index IND. The sub-index IND is used to get pairs of a document ID
and a position in which a query appears. IND is an array of nD entries in which

142 H. Yamamoto et al.

Algorithm 4. BuildIndex(SK ,D)
Input: SK = {sk0, sk1, sk2, sk3, sk4}, D = {d0, . . . , dN−1}
1: generate an ADAWG M̃(D) = (Q, Σ̃, δ̃, 0) and a state-set tree TD

2: Let TD(v) be a subtree of TD rooted by a node v.
3: {Constructing LSET}
4: for all σ ∈ Σ̃ do
5: X ← Fsk1(σ) and add X to LSET
6: end for
7: {Constructing NMAP and IND}
8: for all σ ∈ Σ̃ do
9: compute min and max of T (vnst) where nst is a state such that δ̃(st , σ) = nst

for some state st and vnst is the node of TD corresponding to nst ,
10: compute all (idi, posi) appearing in TD(vnst)
11: NMAP[Fsk2(σ)] ← (min,max) ⊕ Fsk3(σ)
12: for all min ≤ i ≤ max do
13: IND[i] ← Encsk4(idi||posi),
14: end for
15: end for
16: return Π = (LSET,NMAP, IND) and {c | c ∈ Encsk0(D)}.

document lists are stored. IND is also built from the state-set tree. IND is an array
with a document ID and an occurrence position. Each info-node of a state-set tree
corresponds to a string occurring in D and has document ID and position pairs
in which the string appear. Then, for randomly selected position i, a document
ID and position pair (id, pos) is stored in IND[i] in the form Encsk4(id||pos). We
have the following theorem from Proposition 2.

Theorem 1. Let D be a set of documents and let Π = (LSET,NMAP, IND).
Then, the size of Π is O(nD).

4.2 A Search Protocol

In our security model, we assume that the server is honest-but-curious. A
search protocol is performed in three rounds of communication between a user
and a server as follows. For any query q, we first generate TRAP(q) using
MakeTrap1(q), which is used to check if q appears in a document. If appears,
the user generates (Y,Z) using MakeTrap2(q) in order to gets encrypted pairs of
a document ID and a position. Finally the user gets the desired documents. We
present the search protocol for a keyword q = a1 · · · am in the following.

1. User: Using MakeTrap1(q), the user makes TRAP(q) = (X1, . . . ,Xm) and
sends TRAP(q) to the server.

2. Server: Let EXIST be an output of ExistTest(TRAP(q), LSET). Then the
server sends EXIST to the user.

3. User: If EXIST = ∅ then the search halts. If EXIST �= ∅ then the user
makes a trapdoor (Y,Z) by MakeTrap2(q,EXIST). The user sends (Y,Z) to
the server.

Space-Efficient and Secure Substring Searchable Symmetric Encryption 143

Algorithm 5. MakeTrap1(q)
Input: q = a1 · · · am

1: X1 ← Fsk1(a1), X1 ← {X1} and SYM ← ∅
2: for j = 2, . . . , m do
3: k ← 1
4: for i = 1, . . . , j − 1 do
5: σ ← ai · · · aj

6: if σ /∈ SYM then
7: Xk ← Fsk1(σ), Xj ← Xj ∪ {Xk}, k + +, and SYM ← SYM ∪ {σ}
8: end if
9: end for

10: end for
11: return TRAP(q) = (X1, . . . , Xm)

Algorithm 6. ExistTest(TRAP(q), LSET)
Input: TRAP(q) = (X1, . . . , Xm)
1: for j = 1, . . . , m do
2: Flag ← false
3: for i = 1, . . . , |Xj | do
4: take Xi from Xj

5: if Xi ∈ LSET then
6: if j = m then
7: return Xi

8: end if
9: Flag ← true and break {exit this for-loop}

10: end if
11: end for
12: if Flag = false then
13: return ∅
14: end if
15: end for

4. Server: Receiving (Y,Z), the server gets (min,max) by computing
NMAP[Y] ⊕ Z. For all min ≤ i ≤ max , the server sends the value of
IND[i] (= Ri) to the user.

5. User: Receiving (Rmin , . . . , Rmax), the user gets (idi, posi) by decrypting Ri

for all min ≤ i ≤ max . The user sends (idmin , . . . , idmax) to the server.
6. Server: Receiving (idmin , . . . , idmax), the server sends (cidmin

, . . . , cidmax
) to

the user.
7. User: The user decrypts cidmin

and gets a document didmin
. If q appears at

posmin in didmin
, then the user knows that q appears in cidi

(min ≤ i ≤ max);
otherwise the user knows that q does not appear.

Lemma 1. For any query q of length m, let EXIST be an output of
ExistTest(TRAP(q),LSET). Then EXIST �= ∅ if and only if q appears in docu-
ments of D.

144 H. Yamamoto et al.

Algorithm 7. MakeTrap2(q,EXIST)
Input: q = a1 · · · am

1: if m = 1 then
2: X ← Fsk1(a1)
3: if X = EXIST then
4: Y ← Fsk2(a1) and Z ← Fsk3(a1)
5: end if
6: end if
7: if m ≥ 2 then
8: for i = 1, . . . , m − 1 do
9: σ ← ai · · · am and X ← Fsk1(σ)

10: if X = EXIST then
11: Y ← Fsk2(σ), Z ← Fsk3(σ), and break
12: end if
13: end for
14: end if
15: return (Y, Z)

The lemma is obtained from Proposition 3. That is, ExistTest carries out the
same task as that of Translate in an encrypted world. It follows from Lemma 1
and Proposition 5 that the following theorem holds. In the search protocol, the
user may get false positive answers with all but negligible probability by collisions
of pseudorandom functions. However, the user can filter out these answers by
checking just one pair of a document and a position at Step 7.

Theorem 2. For any query q of length m, the search protocol finds D(q) in
O(m2 + |D(q)|) time and in three rounds of communication.

5 Security Analysis

We will prove that the proposed scheme meets adaptive security. For the security
analysis, we consider a real game REALA and a simulation game SIMA,S , which
are played by three players, a challenger, an adversary and a simulator. As you
see below, REALA plays using the proposed scheme, while SIMA,S simulates
the real scheme using only information that an adversary (that is, a server) can
get. Then leakage information LEAK for SUB SSE is listed as follows.

– The length of each document |d0|, · · · , |dN−1| and the collection of encrypted
documents, the size n1 of LSET, the size n2 of NMAP, and the size n3 of IND.

– (access pattern) For a query q, (min,max) and the set {id | (id, pos) ∈ D(q)}.
Note that a position pos at which q appears does not leak out.

– (search pattern) For a query q, TRAP(q) = (X1, · · · ,Xm) and (Y,Z). In
addition, the set LX = X ∩ LSET, where X = X1 ∪ · · · ∪ Xm.

– (prefix pattern) For any query q, the adversary can know whether q is a prefix
of the previous queries from the above information leaked.

Space-Efficient and Secure Substring Searchable Symmetric Encryption 145

[adaptive semantic security model]

REALA(λ)
– The adversary A chooses D, where D = {d0, . . . , dN−1} is the set of docu-

ments. After that, A sends them to the challenger C.
– C generates randomly a secret key SK = (sk0, sk1, sk2, sk3, sk4) using KeyGen

(1λ), and builds Π by BuildIndex(SK ,D). After that, C sends (Π,Encsk0(D))
to A.

– repeat the following polynomially many times.
1. A selects a query q and sends q to C.
2. Perform a search protocol between A and C, where A plays as the server

and C plays as the user.
– Finally, A outputs a bit b ∈ {0, 1}.

SIMA,S(λ)
– The adversary A chooses D where D = {d0, . . . , dN−1} is the set of docu-

ments, and then A sends them to the challenger C.
– C sends leakage information LEAK to the simulator S.
– S builds an index Π∗, a set {c∗

0, . . . , c
∗
N−1} of encrypted documents, using

LEAK. After that, S sends them to A.
– Repeat the following polynomially many times.

1. A selects a query q and sends q to S.
2. Perform a search protocol between A and S, where A plays as the server

and S plays as the user.
– Finally, A outputs a bit b ∈ {0, 1}.

Definition 2. We say that a substring SSE scheme meets adaptive semantic
security if for all probabilistic polynomial time adversaries A, there is a proba-
bilistic polynomial time simulator such that

|Pr(A outputs b = 1 inREALA(λ)) − Pr(A outputs b = 1 inSIMA,S(λ))|
is negligible.

Since a symmetric encryption scheme satisfies PCPA-security, the following
theorem holds.

Theorem 3. The proposed scheme SUB SSE meets adaptive semantic security.

Proof (Sketch). We will describe an outline of the proof. We show a polynomial
time simulator S such that the advantage of any probabilistic polynomial time
adversary A to distinguish between the outputs of REALA(λ) and SIMA,S(λ)
is negligible. Let D = {d0, · · · , dN−1} be a set of documents. S has three sets
TRAPx, TRAPy, and TRAPz and initially sets them to ∅.

– Simulating encrypted documents for the document set D. Simulator S gener-
ates a random strings c∗

i of |di| bits for a document di (0 ≤ i ≤ N −1). Since a
symmetric encryption scheme is PCPA-secure, ci and c∗

i is indistinguishable.

146 H. Yamamoto et al.

– Simulating an encrypted index for the set D of documents.
The simulator S builds an index Π∗ = (LSET∗,NMAP∗, IND∗) using LEAK
as follows.
1. Simulating LSET. The simulator S knows the size n1 of LSET from

LEAK. Then S generates n1 random strings X∗
1 , . . . , X∗

n1
and builds

LSET∗ as the set {X∗
1 , . . . , X∗

n1
}. We note that all transitions of an

ADAWG are done by distinct meta-symbols and LSET is built using a
pseudorandom function. Therefore LSET and LSET∗ are indistinguish-
able with all but negligible probability.

2. Simulating NMAP and IND. The simulator S knows the size n2 of NMAP
and the size n3 of IND from LEAK. S makes NMAP∗ in the following
way. S generates n2 random strings Y ∗

1 , . . . , Y ∗
n2

and n2 random strings
Z∗
1 , . . . , Z∗

n2
, and sets NMAP∗ = {(Y ∗

i , Z∗
i) | 1 ≤ i ≤ n2}. Next S generates

n3 random strings R∗
1, . . . , R

∗
n3

to build IND and sets IND∗[i] = R∗
i for

all 1 ≤ i ≤ n3. All elements of NMAP are independent of each other
and are randomized by a pseudorandom function. Therefore NMAP and
NMAP∗ are indistinguishable with all but negligible probability. Similarly,
since IND is built using a PCPA-secure encryption scheme and all pairs
of a document ID and a position are distinct, IND and IND∗ are also
indistinguishable with all but negligible probability.

– Simulating a search at time t. Let q = a1 · · · am be a query at time t. S knows
TRAP(q) = (X1, · · · ,Xm), LX , (min,max), and {id | (id, pos) ∈ D(q)} from
LEAK. Given q, S makes X ∗

j to simulate Xj by modifying MakeTrap1 as
follows. Here we note that S can know a substring of q from which X is made
for each X ∈ Xj because elements of Xj is sequentially numbered.
1. if (a1,X

∗) ∈ TRAPx then add X∗ to X ∗
1 ; otherwise if X ∈ X1 generating

from a1 is in LX then randomly choose unused X∗ from LSET∗ and if
X ∈ X1 is not in LX then generate a random string X∗ not in LX . After
that add X∗ to X ∗

1 and (a1,X
∗) to TRAPx,

2. for σ at line 5 of MakeTrap1 do the following:
if (σ,X∗) ∈ TRAPx then add X∗ to X ∗

j ; otherwise if X ∈ Xj generating
from σ is in LX then randomly choose unused X∗ from LSET∗ and if
X ∈ Xj is not in LX then generate a random string X∗ not in LSET∗.
After that add X∗ to X ∗

j and (σ,X∗) to TRAPx.
Clearly Xj and X ∗

j have the same number of elements. Let LX ∗ = X ∗∩LSET∗

where X ∗ = X ∗
1 ∪ · · · ∪ X ∗

m. Then LX and LX ∗ also have the same number
of elements. Since Xj is randomized by a pseudorandom function, A cannot
distinguish Xj and X ∗

j with all but negligible probability. Similarly A cannot
distinguish LX and LX ∗. Next S makes a trapdoor (Y ∗, Z∗) to simulate
(Y,Z) made by MakeTrap2 as follows. If (q, Y ′, Z ′) ∈ TRAPy for q then set
Y ∗ = Y ′ and Z∗ = Z ′. This case means that q has been used in a search
previously.
Let us consider the case (q, Y ′, Z ′) /∈ TRAPy for q. Then S randomly chooses
an unused position Y ′ in NMAP∗ and sets Y ∗ = Y ′. Furthermore S generates
Z ′ so that (min,max) = NMAP∗[Y ′]⊕Z ′ and sets Z∗ = Z ′. S adds (q, Y ′, Z ′)

Space-Efficient and Secure Substring Searchable Symmetric Encryption 147

to TRAPy. After that, S sends (Y ∗, Z∗) to A. Receiving (Y ∗, Z∗), A sends
IND∗[i] (min ≤ i ≤ max) to S. Finally, since S knows all document IDs id
such that a document did contains q, he sends these IDs to A.

By these setting, S can let A search for q in a similar way to the real world.
Thus A cannot distinguish REALA and SIMA,S with all but negligible proba-
bility. Hence the theorem has been proved.

6 Conclusions

We proposed a secure substring SSE scheme by improving a DAWG. Comparing
with substring SSE schemes proposed previously, the proposed SSE has a simple
structure and is space-efficient, but the search time increases. This is because it
takes more time to generate a trapdoor TRAP(q) for a query q. Improving the
search time without weakening security is one of future works.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Number
JP17K00183.

References

1. Blumer, A., Blumer, J., Haussler, D.: The smallest automaton recognizing the
subwords of a text. Theoret. Comput. Sci. 40, 31–55 (1985)

2. Blumer, A., Blumer, J., Haussler, D., Mcconnell, R.: Complete inverted files for
efficient text retrieval and analysis. J. ACM 34(3), 578–595 (1987)

3. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval (Section 8). ACM
Press, Addison-Wesley, New York (1999)

4. Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private searchable
encryption from constrained cryptographic primitives. In: Proceedings of CCS
2017, pp. 1465–1482 (2017)

5. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for Boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 20

6. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. J. Comput. Secur. 19(5),
895–934 (2011)

7. Chase, M., Shen, E.: Substring-searchable symmetric encryption. In: Proceedings
on Privacy Enhancing Technologies 2015, vol. 2015, no. 2, pp. 263–281 (2015)

8. Chamani, J.G., Papadopoulos, D., Papamanthou, C., Jalili, R.: New constructions
for forward and backward private symmetric searchable encryption. In: Proceedings
of CCS 2018, pp. 1038–1055 (2018)

9. Faber, S., Jarecki, S., Krawczyk, H., Nguyen, Q., Rosu, M., Steiner, M.: Rich
queries on encrypted data: beyond exact matches. In: Pernul, G., Ryan, P.Y.A.,
Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp. 123–145. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24177-7 7

https://doi.org/10.1007/978-3-642-40041-4_20
https://doi.org/10.1007/978-3-319-24177-7_7

148 H. Yamamoto et al.

10. Goh, E.-J.: Secure Indexes. Stanford University Technical Report. In: IACR ePrint
Cryptography Archive (2003). See http://eprint.iacr.org/2003/216

11. Hacüigumüs, H., Hore, B., Iyer, B., Mehrotra, S.: Search on encrypted data. Adv.
Inf. Secur. 33, 383–425 (2007)

12. Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates.
In: Proceedings of ACM CCS 2014, pp. 310–320 (2014)

13. Hahn, F., Loza, N., Kerschbaum, F.: Practical and secure substring search. In:
Proceedings of SIGMOD/PODS 2018, pp. 163–176 (2018)

14. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory Language and
Computation. Addison Wesley, Reading (1979)

15. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, Second Edn. CRC
Press, Boca Raton (2015)

16. Kurosawa, K., Ohtaki, Y.: UC-secure searchable symmetric encryption. In:
Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 285–298. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32946-3 21

17. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: Proceedings of ACM CCS 2012, pp. 965–976 (2012)

18. Leontiadis, I., Li, M.: Storage efficient substring searchable symmetric encryption.
In: Proceedings of the 6th International Workshop on Security in Cloud Computing
(SCC 2018), pp. 3–14 (2018)

19. Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., Lou, W.: Fuzzy keyword search over
encrypted data in cloud computing. In: Proceedings of INFCOM 2010, pp. 441–445
(2010)

20. Miyoshi, R., Yamamoto, H., Fujiwara, H., Miyazaki, T.: Practical and secure
searchable symmetric encryption with a small index. In: Lipmaa, H., Mitrokotsa,
A., Matulevičius, R. (eds.) NordSec 2017. LNCS, vol. 10674, pp. 53–69. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70290-2 4

21. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: process-
ing queries on an encrypted database. Commun. ACM 55(9), 103–111 (2012)

22. Suga, T., Nishide, T., Sakurai, K.: Secure keyword search using bloom filter with
specified character positions. In: Takagi, T., Wang, G., Qin, Z., Jiang, S., Yu, Y.
(eds.) ProvSec 2012. LNCS, vol. 7496, pp. 235–252. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33272-2 15

23. Strizhov, M., Ray, I.: Substring position search over encrypted cloud data using
tree-based index. In: Proceedings of IEEE IC2E 2015, pp. 165–174 (2015)

24. Strizhov, M., Osman, Z., Ray, I.: Substring position search over encrypted cloud
data supporting efficient multi-user setup. Future Internet 8(28), 2016 (2016)

25. Song, D.X., Wagner, D., Perrig, A.: Techniques for searchers on encrypted data.
In: Proceedings of IEEE Symposium on Security and Privacy, pp. 44–55 (2000)

26. Yamamoto, H.: Secure automata-based substring search scheme on encrypted data.
In: Ogawa, K., Yoshioka, K. (eds.) IWSEC 2016. LNCS, vol. 9836, pp. 111–131.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44524-3 7

http://eprint.iacr.org/2003/216
https://doi.org/10.1007/978-3-642-32946-3_21
https://doi.org/10.1007/978-3-319-70290-2_4
https://doi.org/10.1007/978-3-642-33272-2_15
https://doi.org/10.1007/978-3-319-44524-3_7

Plaintext-Verifiably-Checkable
Encryption

Sha Ma(B), Qiong Huang, Ximing Li, and Meiyan Xiao

College of Mathematics and Informatics, South China Agricultural University,
Guangzhou, Guangdong, China

martin deng@163.com, {qhuang,liximing,maymayxiao}@scau.edu.cn

Abstract. The notion of plaintext-checkable encryption (PCE) has
recently emerged in the application of search on encrypted data only
by plaintexts. We observe that existing PCE schemes are not sufficient
to guarantee check correctness in the case of a malicious encryptor. To
address this concern, we put forth the concept of plaintext-verifiably-
checkable encryption (PVCE), which captures the basic requirement of
output correctness: If M is thought to be the plaintext for a ciphertext
ct by the Check algorithm, ct is actually a valid encryption of M . In
other words, it does not exist any maliciously generated ciphertext could
succeed in plaintext checking. This property guarantees a meaningful
notion of correctness and is crucial in several applications. We propose a
PVCE construction using pairing-friendly smooth projective hash func-
tion with modified language representation and prove it to be unlink-
cca security in the standard model. This is the first verifiable plaintext-
checkable encryption that provides both verifiable checkability and the
most desirable security in the standard model. To this end, we show a
PVCE instantiation from k-MDDH assumption.

Keywords: Plaintext checkable encryption · Verifiability ·
Smooth projective hash function · Pairing friendly ·
k-MDDH assumption

1 Introduction

Encryption technology with functionalities, for example, public/private keyword
search or equality test, plays important roles in era of cloud computing, which
has been achieved much attraction in recent years. A typical primitive is pub-
lic key encryption with keyword searh (PEKS) [1–5] to search on ciphertexts
by a trapdoor from secret key and keyword. Any user owing the trapdoor could
infer whether any ciphertext contains the same keyword in the trapdoor without
the knowledge of the underlying keyword. Another variant is public key encryp-
tion with equality test (PKEET) [6–10] to search on ciphertexts by a candidate
ciphertext. Any tester (or authorized tester) could know whether two ciphertexts
share the same message.
c© Springer Nature Switzerland AG 2019
R. Steinfeld and T. H. Yuen (Eds.): ProvSec 2019, LNCS 11821, pp. 149–166, 2019.
https://doi.org/10.1007/978-3-030-31919-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-31919-9_9

150 S. Ma et al.

In this paper, we consider the primitive plaintext-checkable encryption (PCE)
to search on ciphertext only by plaintext. It is no surprise that in PCE frame-
work if the check algorithm on a ciphertext and a plaintext returns true, the
tester could easily obtain the plaintext underlying a ciphertext. Otherwise, the
ciphertext should not leak any other knowledge of the plaintext. Compared with
PEKS, the trapdoor of PCE is a plaintext without taking any secret informa-
tion as input while the trapdoor of PEKS is generated only by the data owner
using its secret key. Compared with PKEET, PCE provides more simple search
way (only by plaintext) without additional encryption of compared plaintext,
possibly under different public keys.

We observe that existing PCE schemes are not sufficient to guarantee check
correctness. This is essential in the case of a malicious encryptor, where the
maliciously generated ciphertext could possibly succeed in plaintext checking. A
seemly proper technology is to adopt signature to guarantee the well-formedness
of ciphertexts, which is similar to [10] to ensure all unchecked elements in the
ciphertexts have not been tampered with. However, this technology is only used
in the scenario which implies an assumption that all encryptors are honest. Here
we emphasize that this intention is different from our goal to exclude all
invalid ciphertexts which are possibly generated by malicious encryp-
tors. Next, we use some examples to explain our goal.

• In [11], two PCE constructions in random oracle model do satisfy the verifiable
checkability because the test procedure could totally recover the randomness
in the encryption procedure and then the verifiability follows.

• In [11], one PCE construction in standard model also satisfies the verifiable
checkability, using the pairing property on the check elements in G2.

• In [12], the ciphertext is CT = (W,U,W ′, V) = (W,ProjHash1(hp1,W) ∗
M,W ′,ProjHash2(hp2, (W,U,W ′))). In the check procedure, W ′ could be
reconstructed and then V is verified by the witness τ of W ′. However, U
could not be guaranteed to be correct. In other words, a ciphertext with-
out well formedness would pass the check phase. For instance, the adversary
could randomly choose y ∈ Y and compute the ciphertext C ′ = (W, y ∗
M,W ′,ProjHash2(hp2, (W,U,W))), where W ′ = WordGen(Γ (W, y,M)).
Therefore, even if C ′ is thought to be the encryption of M by the check
algorithm, C ′ is actually not the encryption of M !

Note that although the schemes in [11] satisfy the verifiable checkability, they
can not achieve the best desirable unlink-cca security. To the best of our knowl-
edge, we have not seen PCE constructions that have both verifiable checkability
and the strongest unlink-cca security in the literature. This is the motivation of
our work.

1.1 Related Work

Canard et al. [11] first proposed generic PCE constructions in the random oracle
model based on any probabilistic or deterministic encryption and a practical

Plaintext-Verifiably-Checkable Encryption 151

Scheme Setting Model Join Aut Secw Seco Verif

Yang et al. [6] public key RO full-encrypted × – ow-cca ×
Tang [7] public key RO full-encrypted

√
ow-cca ind-cca ×

Tang [8] public key RO full-encrypted
√

ow-cca ind-cca ×
Ma et al. [10] public key RO full-encrypted

√
ow-cca ind-cca ×

Huang et al. [9] public key RO full-encrypted
√

ow-cca ind-cca ×
Ma et al. [16] public key RO full-encrypted

√
ow-cca ind-cca ×

Carbunar et al. [13] private key standard full-encrypted
√

one-way ind-cpa ×
Furukawa et al. [14] private key RO full-encrypted

√
one-way ind-cpa ×

Pang et al. [15] private key standard full-encrypted
√

one-way ind-cpa
√

Canard et al. [11] public key RO semi-encrypted × – unlink
√

Canard et al. [11] public key standard semi-encrypted × – unlink
√

Ma[12] public key standard semi-encrypted × – s-priv-cca ×
This paper public key standard semi-encrypted × – unlink-cca

√

Fig. 1. Comparison with related work.

construction using pairing groups in the standard model, whose security notion
is defined as unlink. Recently, Ma et al. [12] proposed a PCE scheme with s-priv1-
cca security, which is independent with unlink. As shown in [12], the most desired
security of PCE is unlink-cca. In the application, PCE is a useful primitive for
private join on encrypted database, where a join attribute is sensitive to be pro-
tected and another join attribute is stored in plain. Privacy-preserving join on
encrypted database has been received much attention, where most constructions
work under the condition that both joined attributes are encrypted. Carbunar
and Sion [13] first studied private join on outsourced database in a private key
setting, which supports general binary join predicates including range, equal-
ity and Hamming distance. Furukawa and Isshiki [14] provided a scheme where
the server requires an authorization from the data owner to execute an equi-
join. Yang et al. [6] introduced the notion of public key encryption with equality
test (PKEET) as a useful primitive for join on two encrypted columns in multi-
user setting. Several follow-on [7–10] studies extended PKEET with authorized
equality test such that only authorized server can perform equality test on cipher-
texts, which is accordance with only authorized server can perform equijoin on
encrypted attributes. We show Fig. 1 to summarize the properties of related work
according to public/private setting, random oracle/standard model, full/semi-
encrypted join, authorization, security with/without authorization and verifica-
tion, where full-encrypted join denotes join on both two encrypted attributes and
semi-encrypted join denotes join on one encrypted attribute and another non-
encrypted attribute. We see that only our work has both verifiable checkability
and the most desirable security.

152 S. Ma et al.

2 Pairing-Friendly Smooth Projective Hash Function

2.1 Definition of SPHF

A smooth projective hash function (SPHF) is based on a domain X and an NP
language L ⊂ X . An SPHF system over L onto a set Y is defined as follows [17].

– SPHFSetup(k): It takes as input a security parameter k and outputs
(L, param) as the global parameters.

– HashKG(L, param): It generates a hashing key hk.
– ProjKG(hk,(L,param),W): It derives the projection key hp from the hashing

key hk, possibly depending on the word W.
– Hash(hk,(L, param), W): It outputs the hash value hv ∈ Y from the hashing

key on any word W ∈ X .
– ProjHash(hp,(L,param),W,w): It outputs the hash value hv′ ∈ Y from the

projection key hp and any word W ∈ X with the witness w.

In this paper, we additionally define a WordVF algorithm to verify a word W
using a witness w:

– WordVF((L, param), w,W): It outputs 1 if w is the witness of W , or 0 other-
wise.

Correctness. The correctness of SPHF assures that if W ∈ L with a witness w,
then Hash(hk, (L, param),W) = ProjHash(hp, (L, param),W,w).

Smoothness. The smoothness of SPHF assures that if W ∈ X\L, then the fol-
lowing two distributions are statistically indistinguishable:

{((L, param),W, hp, hv)|hv = Hash(hk, (L, param),W)},

{((L, param),W, hp, hv)|hv $← Y}.

where (L, param) = SPHFSetup(k), hk = HashKG(L, param) and hp =
ProjKG(hk, (L, param),W).

2-Smoothness. The 2-smoothness of SPHF assures that if W1,W2 ∈ X\L∧W1 �=
W2, then the following two distributions are statistically indistinguishable:

{((L, param),W1,W2, hp, hv1, hv2)|hv2 = Hash(hk, (L, param),W2)},

{((L, param),W1,W2, hp, hv1, hv2)|hv2 $← Y},

where (L, param) = SPHFSetup(k), hk = HashKG(L, param), hp = ProjKG(hk,
(L, param),W2) and hv1 = Hash(hk, (L, param),W1).

Extended SPHF. An extended SPHF additionally takes an auxiliary element
aux along with word W as input of Hash and ProjHash algorithm.

Plaintext-Verifiably-Checkable Encryption 153

2.2 Modified Language Representation

For SPHF, classical language representation has been described in [17–19]. We
omit it for brevity. By making modification on classical language representation
[17–19], we provide an alternative language representation of a language Laux.
For a language Laux, there exist two positive integers k and n, a word basis
function Υ : Set �→ G

k×n and a family of functions Θaux : Set �→ G
1×n, such

that for any word C ∈ Set, (C ∈ Laux) ⇐⇒ (∃ϕ ∈ Z
1×k
p) ∧ (∃δ ∈ Z

k×n
p) such

that Θaux(C) = ϕ • (δ • Γ (C)), where ϕ is independent of any word C. In other
words, we say that C ∈ Laux if and only if ˜Θaux(C) is a linear combination
of (the exponents in) the rows of some matrix δ • Γ (C). It also requires that
a user, who knows a witness w of the membership C ∈ Laux, can efficiently
compute the above linear combination ϕ. We emphasize that it is difference
from the language representation in the literature that the linear combina-
tion ϕ is required to be independently chosen randomness, while the
linear combination λ in the classical language representation possibly
includes both the independently chosen randomness and possibly non-
independently random elements. This might be a quite strong requirement
but this is actually verified by very expressive language over ciphertexts such as
ElGamal, Cramer-Shoup and variants.

We briefly illustrate it on an SPHF for the language of Cramer-Shoup cipher-
text encrypting a message M = aux. Words in the language Laux is C = (u1 =
gr
1, u2 = gr

2, e = M · hr, v = (cdξ)r), with r ∈ Zp and ξ = H(�,u, e) ∈ Z
∗
p. We

choose k = 2, aux = M,n = 5, and the modified language representation on the
language of Cramer-Shoup ciphertext is shown as follows.

Γ =
(

g1 1 g2 h c
1 g1 1 1 d

)

λ = (r, rξ) λ • Γ = (gr
1 , grξ

1 , gr
2 , hr, (cdξ)r)

ΘM (C) = (u1, uξ
1, u2, e/M, v).

Γ =
(

g1 1 g2 h c
1 g1 1 1 d

)

ϕ = (r, r) δ =
(

1 0
0 ξ

)

ϕ • (δ • Γ) = (gr
1 , grξ

1 , gr
2 , hr, (cdξ)r)

˜ΘM (C) = (u1, uξ
1, u2, e/M, v).

2.3 Transformation from SPHF to PF-SPHF

Let PGGen be a probabilistic polynomial time (PPT) algorithm that on input
k returns a description PG = (P, ˜G, G, GT , e, g̃, g) of asymmetric pairing group,
where ˜G, G and GT are cyclic groups of order p for a k-bit prime p, g̃ and g are
generators of ˜G and G, respectively, and e : ˜G × G is a bilinear map between
them.

Notations. We focus here on cyclic group Gs for s ∈ {1, 2, T} of prime order p
and define three operators on the group:

1. Gs ∗ Gs → Gs. For any u ∈ Gs and v ∈ Gs, u ∗ v ∈ Gs. Specifically, for any
element u ∈ Gs, we define u∗u−1 = 1Gs

, which is the identity element of Gs.
Sometimes we also use uv = vu ∈ Gs for u, v ∈ Gs.

154 S. Ma et al.

2. Zp•Gs → Gs (or Gs•Zp → Gs). For any r ∈ Zp and u ∈ Gs, r•u = u•r = ur.
3. G1 G2 → GT (or G2 G1 → GT). For u1 ∈ G1 and u2 ∈ G2, u1 u2 =

u2 u1 = e(u1, u2).

Assume that every pairing-less SPHF has the modified language representa-
tion, implying a hash value is represented as Θaux(C) = ϕ • (δ • γ(C)). A first
naive approach to transform every pairing-less SPHF into PF-SPHF in a bilinear
setting is described in the Table 1, where we will always use the implicit notation
of elements in Gs, i.e., we let [u]Gs

= gu
s be an element in Gs. The key idea is

to put pairing-less SPHF in a source group G (resp. ˜G) of pairing along with an
element g̃ in another source group ˜G (resp. G), whose combination contributes
to computing a pairing value. Actually, a pairing-friendly SPHF (PF-SPHF) has
been used to construct particular SPHFs with the interesting properties, for
instance, the structure-preserving SPHF [18] and the trapdoor SPHF [19].

Table 1. Transformation from SPHF to PF-SPHF.

SPHF PF-SPHF

Word C(Θ(C)) [λ • Γ (C)]G [λ • Γ (C)]G

Witness w λ λ

hk α α

hp(γ(C)) [α • Γ (C)]G [α • Γ (C)]G

Hash [α • Θ(C)]G [g̃ � (α • Θ(C))]GT

ProjHash [ϕ • (δ • γ(C))]G [(ϕ • g̃) � (δ • γ(C))]GT

WordVF — Check [g̃ � (λ • Γ (C))]GT

?
= [(λ • g̃) � Γ (C)]GT

Correctness. Correctness is inherited for word in L as this reduces to computing
the same value but in GT .

Smoothness. For the words outside the language, the unchanged projection key
do not reveal new information, therefore the hash value remain smoothness.

Examples. Two examples of classical SPHF on Diffie-Hellman and Cramer-Shoup
encryption of M and their counterparts with PF-SPHF are described in [18]. We
omit them for brevity.

2.4 2-Smoothness SPHF

[17] provides an efficient group-theoretic way (See Theorem 3 in [17]) to construct
universal2 projective hash family from universal projective hash family. Actu-
ally, applying the same technology we can also obtain 2-smoothness extended
SPHF directly from smoothness SPHF. Let SPHF= (SPHFSetup, HashKG, Pro-
jKG, Hash, ProjHash) is smooth projective hash function on X derived from

Plaintext-Verifiably-Checkable Encryption 155

1. ̂SPHFSetup(k): It is the same as the SPHFSetup algorithm in SPHF.

2. ̂HashKG(L, param): For i ∈ {0, . . . , n}, it generates a hash key ̂hk = {hki =
HashKG(L, param)}n

i=0.

3. ̂ProjKG(̂hk, (L, param), W): For i ∈ {0, . . . , n}, it derives the projection key ̂hp from the hashing

key ̂hk, possibly depending on the word W: ̂hp = {ProjKG(hki, (L, param), W)}n
i=0.

4. ̂Hash(̂hk, (L, param), W, aux): It outputs the hash value ̂hv ∈ Y from the hash key ̂hk on any
word W ∈ X and aux ∈ E using Hash algorithm:

̂hv = Hash(hk0, (L, param), W)

n
∏

i=1

Hash(hki, (L, param), W)
γi ,

where (γ1, · · · , γn) = Γ (W, aux).

5. ̂ProjHash(̂hp, (L, param), W, w, aux): It outputs the hash value hv′ ∈ Y from the projection key
̂hp and any word W ∈ X and aux ∈ E with the witness w using ProjHash algorithm:

̂hv′ = ProjHash(hp0, (L, param), W, w)

n
∏

i=1

ProjHash(hpi, (L, param), W, w)
γi

where (γ1, · · · , γn) = Γ (W, aux).

Fig. 2. Constructing 2-Smoothness SPHF from SPHF

G of order prime p, we define an extended projective hash function ŜPHF =
(̂SPHFSetup, ĤashKG, P̂rojKG, Ĥash, ̂ProjHash, ŴordVF) for (X ×E,L×E) based
on SPHF as follows and fix an collusion-resistance hash function

Γ : X × E → {0, · · · , p − 1}n,

where n is sufficiently large. The way to construct 2-smoothness SPHF from
SPHF is shown in Fig. 2.

3 Definitions

3.1 Plaintext-Verifiably-Checkable Encryption

We define here the notion of plaintext-verifiably-checkable encryption. Let k ∈ N

be a security parameter. A plaintext-verifiably-checkable encryption (PVCE) is
composed of the following five algorithms:

1. Setup(k) → pp. The setup algorithm takes as input k and outputs a public
system parameter pp.

2. KeyGen(pp) → (pk, sk). The key generation algorithm takes as input a public
system parameter pp and outputs a key pair (pk, sk) of public and secret key,
respectively.

3. Enc(pk,M) → ct. The encryption algorithm takes as input pk and a plaintext
M and outputs a ciphertext ct.

4. Dec(sk, ct) → M . The decryption algorithm takes as input sk and a cipher-
text ct, and outputs a plaintext M or ⊥.

156 S. Ma et al.

5. VerifyCheck(ct,M) → 1/0. The verifiable check algorithm takes as input a
ciphertext ct and a plaintext M , and outputs 1 if ct is indeed generated
correctly for M under the public key pk, and 0 otherwise.

Correctness. The correctness of PCE must verify the following two conditions:

1. Correctness of decryption. For any k ∈ N and m ∈ {0, 1}∗,

Pr[pp
$← Setup(k), (pk, sk) $← KeyGen(pp), ct $← Enc(pk,M) :

Dec(sk, ct) = M] = 1.

2. Correctness of plaintext check. For any k ∈ N and m ∈ {0, 1}∗,

Pr[pp
$← Setup(k), (pk, sk) $← KeyGen(pp), ct $← Enc(pk,M) :

Check(M, ct) = 1] = 1.

Verifiability. If M is thought to be the plaintext for a ciphertext ct by the
Check algorithm, ct is actually a valid encryption of M .

Pr[pp
$← Setup(k), (pk, sk) $← KeyGen(pp), (ct,M) $← A(pp, pk) :

Check(ct,M) = 1 : ∃r ∧ Enc(pk,M ; r) = ct] = 1.

We assume that PCE plaintexts are drawn from a space of high min-entropy
[11] since the adversary could win the game definitely when PCE plaintexts
come from a space without enough entropy. This assumption is reasonable and
has existed in many searchable encryptions.

Definition 1 (High min-entropy). An adversary A = (Af ,Ag) is legitimate
if there exists a function �(·) s.t. for all pk and m ∈ [Af (1k, pk)] we have |m| =
�(k). Moreover, we say that an adversary A = (Af ,Ag) has min-entropy μ if

∀k ∈ N ∀pk ∀m : Pr[m′ ← Af (1k, pk) : m′ = m] ≤ 2−μ(k).

A is said to have high min-entropy if it has min-entropy μ with μ(k) ∈ ω(logk).

3.2 Unlink-CCA Security

Informally, the unlink-cca security assures that the adversary A = (A1,A2) as a
pair of polynomial time algorithms could not get any partial information about
the plaintext under the ciphertext even provided the access to a decryption
oracle, where A1 and A2 share neither coins nor state. A1 takes input pk
and returns two plaintexts (M0,M1). A2 takes input pk and a ciphertext ct, and
tries to guess b. Note that A2 does not see M0 and M1 as the output of A1 and
hence cannot guess whether ct∗b is the encryption of M0 and M1. The following
experiment Expunlink-cca

PVCE,A (k) is defined for the adversary A with high min-entropy
against unlink-cca security, which wins with negligible probability.

Plaintext-Verifiably-Checkable Encryption 157

Expunlink−cca
PVCE,A (k):

1. Setup Phase. The challenger runs the KeyGen(k) algorithm to generate
(pk, sk) and sends pk to the adversary A = (A1,A2).

2. Probing Phase I. The adversary A1 submits a ciphertext ct to the chal-
lenger. The challenger decrypts ct using its secret key sk and returns the
plaintext M back to A1.

3. Challenge Phase. The adversary A1 randomly selects two messages M0 and
M1, and presents them to the challenger. The challenger selects a random
bit b ∈ {0, 1} and sends (ct∗b , ct

∗
1) = (Enc(pk,Mb),Enc(pk,M1)).

4. Probing Phase II. For A2’s submitted ciphertext ct, the challenger
responses the same as in the probing phase I with the only constraint that
ct is not equal to ct∗.

5. Guessing Phase. A2 outputs a bit b′. The adversary A is said to win the
game if b′ = b, inducing the output of experiment is 1, and 0 otherwise.

We say PVCE has unlink-cca security if for any polynomial adversary A,

Advunlink-cca
PVCE,A (k) =

∣

∣

∣

∣

Pr[b = b′] − 1
2

∣

∣

∣

∣

,

which is negligible on the security parameter k.

4 PVCE Construction

Let the language L be hard-partitioned subset. Let SPHF=(SPHFSetup,
HashKG, ProjKG, Hash, ProjHash) be a smooth projective hash function
and ŜPHF = (̂SPHFSetup, ĤashKG, P̂rojKG, Ĥash, ̂ProjHash) be 2-smoothness
extended smooth projective hash function, which are both defined on the
domain X for the same language L under the same security param-
eter k. Let PF-SPHF and ̂PF-SPHF be transformed from SPHF and
ŜPHF using the technology in Sect. 2.4. We present a construction of
PVCE = (PVCE.Setup,PVCE.KeyGen,PVCE.Enc,PVCE.Dec,PVCE.VerifyCheck)
as follows.

1. Setup PVCE.Setup(k):
The setup algorithm does the following:
(a) Taking the security parameter k as input, run the SPHFSetup algorithm

of SPHF to generate the public parameter (L, param) on (G, p).
(b) Define the public parameter (L, parame = (˜G, G, GT , e, g̃, g, p)) for the

transformed PF-SPHF in Type 2 paring, which is a type of pairing with
the condition ˜G �= G but there is an efficiently computable homomor-
phism φ : G → ˜G.

(c) Generate a collision-resistant hash functions f defined on: X×GT ×GT →
˜G and Γ : X × GT × ˜G → (Zp)n, n is an integer.

The public system parameter is pp = <L, parame, f, Γ>.

158 S. Ma et al.

2. KeyGen PVCE.KeyGen(pp):
The key generation algorithm does the following:
(a) Compute the private key:

hk = HashKG(L, param),
For i ∈ {0, ..., n}, hki = HashKG(L, param).

(b) Compute the public key:
hp = ProjKG(hk, (L, param)),
For i ∈ {0, ..., n}, hpi = ProjKG(hki, (L, param)).
The public/private key pair (pk, sk) is

sk : (hk, ̂hk) = (hk, (hk0, hk1, · · · , hkn)),

pk : (hp, ̂hp) = (hp, (hp0, hp1, · · · , hpn)).

3. Encryption PVCE.Enc(pk,M) :
To encrypt a message M , the encryption algorithm does the following:
(a) Randomly pick a word W ∈ L with the witness w ∈ Zp.
(b) Assume ̂ProjHash(̂hp, (W,X, Y), w) is defined as

̂ProjHash(̂hp, (W,X, Y), w) = ProjHash(hp0,W,w)

n
∏

i=1

ProjHash(hpi,W,w)γi ,

where (γ1, · · · , γn) = Γ (W,X, Y) ∈ (Zp)n. Compute the encryption of
M :

X = PF-ProjHash(g̃,ProjHash(hp,W,w)) ∗ M,

Y = (g̃ • w) ∗ f(W,X ∗ M−1,M),

Z = ̂PF-ProjHash(g̃, ̂ProjHash(̂hp, (W,X, Y), w)).

The output of the algorithm is the ciphertext ct = (W,X, Y, Z).
4. Dec PVCE.Dec(sk, CT):

This algorithm decrypts the ciphertext ct = (W,X, Y, Z) using the secret key
sk in the following way:
(a) Compute M ← X ∗ PF-Hash(g̃,Hash(hk,W))−1.
(b) Check whether

Z = e
(

g̃, Ĥash(̂hk, (W,X, Y))
)

,

Z = e
(

Y ∗ f−1(W,X ∗ M−1,M), ̂hp • (1, γ1, · · · , γn)
)

.

where (γ1, · · · , γn) = Γ (W,X, Y) and ̂hp • (1, γ1, · · · , γn) is defined as
hp0hp

γ1
1 . . . hpγn

n . If the above equations hold, it outputs the plaintext M
for the ciphertext ct. Else it outputs 0.

5. Check PVCE.VerifyCheck(M, ct):
Check whether

WordVF(Y ∗ f−1(W,M),W) = 1,

X ∗ M−1 = e
(

Y ∗ f−1(W,X ∗ M−1,M), ̂hp
)

,

Z = e
(

Y ∗ f−1(W,X ∗ M−1,M), ̂hp • (1, γ1, · · · , γn)
)

.

Plaintext-Verifiably-Checkable Encryption 159

hold or not, where (γ1, · · · , γn) = Γ (W,X, Y). If the above equations hold,
it outputs 1 indicating that M is the plaintext of ct. Else, it outputs 0.

Correctness. We omit the correctness analysis of Dec algorithm and
only provide the correctness analysis of Check algorithm as follows. (1)
WordVF(Y ∗ f−1(W,M),W) = WordVF(w • g̃,W) = 1, (2) XM−1 =
e(g̃,ProjHash(hp,W,w)) = e(w • g̃, hp) = e(Y ∗ f−1(W,X ∗ M−1,M), hp) and
(3) Z = e(g̃, ̂ProjHash(̂hp, (W,X, Y), w)) = e(w • g̃, ̂hp • (1, γ1, · · · , γn)) =
e(Y ∗f−1(W,X ∗M−1,M), ̂hp•(1, γ1, · · · , γn)). Therefore, if the above equations
hold, we say that ct is the encryption of M .

Verifiability. Consider any public key pk, any ciphertext ct and any plaintext
M such that VerifyCheck(pk, ct,M) = 1. The key element for verification is
π = Y ∗ f−1(W,X ∗ M−1,M) = g̃w. Because of the property of PF-SPHF, π
denoted as ϕ g̃ in the modified language representation is the witness of both
PF-Hash(g̃,Hash(hk,W)) and ̂PF-Hash(g̃, Ĥash(̂hk, (W,X, Y))). Meanwhile, it is
also the witness of W under the pairing. Therefore, the ciphertext could be
correctly verified.

4.1 Security Proof

Theorem 1. PVCE satisfies unlink-cca if it is computationally hard to distin-
guish any random element W ∗ ∈ L from any random element from X\L.

Proof. We show that the existence of an adversary A against unlink-cca security
with significant advantage implies the existence of an efficient algorithm B that
decides a random element W ∈ L or W ∈ X\L. We define the following game
between a simulator (as a role of the distinguisher for the hard subset mem-
bership problem) and an adversary A = (A1,A2) that carries out an unlink-cca
attack.

Game0: Game0 is the initial security game.

1. Setup Phase. This simulator emulates the initialization of the system as fol-
lows. It runs the Setup(k) algorithm by itself to generate the public parameter
pp =< L, parame = (˜G, G, GT , e, g̃, g, p), f, Γ >. Then it runs the KeyGen(pp)
algorithm to generate a public/secret key pair (pk, sk) = ((hp, ̂hp), (hk, ̂hk)).
It gives (pp, pk) to A.
• Under the alternative language representation in Sect. 2, we define a new

function ˜Γ : Set �→ G
k×1. It comes possibly from any column of Γ (W)

satisfying that λ • ˜Γ (W) is completely determined by ϕ. We denote it by
˜Θaux(W) = λ • ˜Γ (W), which is an element of the vector in Θaux(W). The
simulator emulates g̃ ∈ ˜G in the following special way:

g̃ = φ((aλ) ˜Γ (W)),

where a is randomly chosen from Zp.

160 S. Ma et al.

2. Probing Phase I. For A1’s submitted ciphertext ct, the simulator returns
the plaintext M via the Dec algorithm using its secret key sk.

3. Challenge Phase. A1 presents two random messages M0 and M1 to the
simulator. The simulator computes the ciphertext ct∗b = (W ∗,X∗, Y ∗, Z∗) of
Mb as follows:
• The simulator chooses a random word W ∗ ∈ L, where W ∗ is the value

input to the simulator, and computes

X∗ = PF-Hash(g̃,Hash(hk,W ∗)) ∗ Mb

Y ∗ = φ((aλ) • ˜Γ (W ∗)) ∗ f(W ∗,X∗ ∗ M−1
b ,Mb)

= a φ(λ • ˜Γ (W ∗)) ∗ f(W ∗,X∗ ∗ M−1
b ,Mb)

= a φ(˜Θ(W ∗)) ∗ f(W ∗,X∗ ∗ M−1
b ,Mb)

Z∗ = ̂PF-Hash(g̃, Ĥash(̂hk, (W ∗,X∗, Y ∗))

and honestly computes the ciphertext ct∗1 = Enc(pk,M1). Then it returns
(ct∗b , ct

∗
1) to A2.

4. Probing Phase II. For A2’s submitted query on the ciphertext ct, the sim-
ulator responses the same as in the probing phase I with the only constraint
that ct is not equal to ct∗b .

5. Guessing Phase. A2 outputs its guess b′.

We consider the behaviour of this simulator in two cases:

Case 1: The simulator is given a random element W ∗ ∈ L. Let Yes(1) be the
event that the simulator outputs 1 in this case.

Case 2: The simulator is given a random element W ∗ ∈ X\L. Let No(1) be the
event that the simulator outputs 1 in this case.

Let

AdvDist(k) =
∣

∣

∣

∣

Pr[Yes(1)] − Pr[No(1)]
∣

∣

∣

∣

, (1)

which is the distinguishing advantage of the simulator. Our goal is to show that
Advunlink-cca

PVCE,A (k) is negligible provided AdvDist(k) is negligible. We now analyze
the behaviour of the simulator in these two cases:

Case 1: W ∗ ∈ L. In this case, the simulator is perfect. Therefore, we have
∣

∣

∣

∣

Pr[Yes(1)] − 1
2

∣

∣

∣

∣

≥ Advunlink-cca
PVCE,A (k) (2)

Case 2: W ∗ ∈ X\L. We will use the game-hopping technique for this case.

Game1: Game1 is the same as Game0, so that in addition to reject-
ing a ciphertext C = (W,X, Y, Z) but Z = e((a • φ(˜Θ(W))) ∗ f(W,X ∗
M−1,M)), Ĥash(̂hk,W,X, Y)). Let F be the event that Z = e((a • φ(˜Θ(W))) ∗

Plaintext-Verifiably-Checkable Encryption 161

f(W,X ∗ M−1,M)), Ĥash(̂hk, (W,X, Y))). We define the advantage of A in
Game1 as AdvGame1

PVCE,A(k) and claim that

∣

∣

∣

∣

AdvGame1
PVCE,A(k) − AdvGame0

PVCE,A(k)
∣

∣

∣

∣

≤ Pr[F] (3)

Next, we analyze the probability that the event F happens. For all ciphertxts
C = (W,X, Y, Z) ∈ X ×GT × ˜G×GT with W ∈ X\L submitted to a decryption
oracle after the challenge phrase, we divide them into two cases:

1. (W,X, Y) = (W ∗,X∗, Y ∗). Since Z is uniquely determined by (W,X, Y), the
simulator returns ⊥.

2. (W,X, Y) �= (W ∗,X∗, Y ∗). Given W and X, sk is still uniformly distributed
with the only constraint that hp = ProjKG(hk) and ̂hp = P̂rojKG(̂hk). Under
this condition, we further divide all queried ciphertexts into two cases:
(a) (W,X) = (W ∗,X∗). Since Y is uniquely determined by (W,X), the

simulator returns ⊥.
(b) (W,X) �= (W ∗,X∗). Due to the 2-smoothness property of ̂PF-SPHF,

̂PF-Hash(̂hk, (W,X, Y)) is uniformly distributed over Y. Therefore, the
probability that the adversary outputs a valid ciphertext (W,X, Y, ·) with
W ∈ X\L submitted to the decryption oracle is negligible.

Assume that Q(k) denotes the number of decryption queries. From the above
analysis, we have

Pr[F] ≤ 2-smooth(k) · Q(k), (4)

where 2-smooth(k) denotes the distinguishable probability in the definition of the
2-smoothness property of PF-SPHF. We define AdvGame1

PVCE,A(k) as the advantage
of the adversary A in Game1 and claim that

∣

∣

∣

∣

AdvGame1
PVCE,A(k) − AdvGame0

PVCE,A(k)
∣

∣

∣

∣

≤ 2-smooth(k) · Q(k), (5)

by combining the relations (3) and (4).

Game2: Game2 is the same as Game1 except that the simulator sets X∗ =
y1 ∗ Mb in stead of computing X∗ = PF-Hash(g̃,Hash(hk,W ∗)) ∗ Mb and sets
Z∗ = e(a • φ(˜Θ(W ∗)) ∗ f(W ∗, y1,Mb), Ĥash(̂hk, (W ∗,X∗, Y ∗)) in stead of com-
puting Z∗ = e(a • φ(˜Θ(W ∗)) ∗ f(W ∗,PF-Hash(g̃,Hash(hk,W ∗)),Mb), Ĥash(̂hk,
(W ∗,X∗, Y ∗))), where y1 ∈ GT is chosen at random. We define AdvGame2

PVCE,A(k)
as the advantage of the adversary A in Game2 and claim that

∣

∣

∣

∣

AdvGame2
PVCE,A(k) − AdvGame1

PVCE,A(k)
∣

∣

∣

∣

≤ 2 · smooth(k), (6)

due to the smoothness property of PF-SPHF.

162 S. Ma et al.

Game3: Game3 is the same as Game2 except that the simulator sets
Z∗ = y2

$← GT in stead of computing Z∗ = e(a • φ(˜Θ(W ∗)) ∗
f(W ∗, y1,Mb), Ĥash(̂hk, (W ∗,X∗, Y ∗)). We define the advantage of A in Game3
as AdvGame3

PVCE,A(k) be the advantage of the adversary A in Game3 and claim
that

∣

∣

∣

∣

AdvGame3
PVCE,A(k) − AdvGame2

PVCE,A(k)
∣

∣

∣

∣

≤ smooth(k) (7)

due to the smooth property of PF-SPHF. It is evident that the output b′ of
adversary with high min-entropy in Game3 is totally independent of the hidden
bit b. Therefore, we have

AdvGame3
PVCE,A(k) =

1
2

+ 2−μ(k). (8)

Combining the relations (5), (6), (7) and (8), we claim that
∣

∣

∣

∣

Pr[No(1)] − 1
2

∣

∣

∣

∣

≤ 2-smooth(k) · Q(k) + 2 · smooth(k) + 2−μ(k), (9)

Combining the relations (2) and (9), we claim that

Advunlink-cca
PVCE,A (k) ≤ AdvDist(k) + 2-smooth(k) · Q(k) + 3 · smooth(k) + 2−μ(k),

from which the theorem immediately follows.

5 Instantiated PVCE Construction Under k-MDDH
Assumption

In this section, we show a concrete PVCE construction by instantiating SPHF in
pairing groups. Because DDH problem is easy on the group G in the a Type-2
pairing used in the PVCE construction, we can not use the SPHF instances from
Diffie-Hellman or Cramer Shoup encryption in [18]. Therefore, we choose Matrix
Diffie-Hellman assumption on which to instantiate SPHF for the transformation
to PF-SPHF since it is still hard in Type-2 pairing.

Notations. For s ∈ {1, 2, T} and a ∈ Zp we let [a] = ga ∈ G be an element in G

or [b]s be an element in Gs. More generally, for a matrix A = (aij) ∈ Z
n×m
p we

define [A]s as the implicit representation of A in Gs: [A]s :=
(

ga11
s · · · ga1m

s

gan1
s · · · ganm

s

)

∈
G

n×m
s . Given [a]1, [b]2 one can efficiently compute [ab]T using the pairing e. For

a, b ∈ Z
k
p define e([a]1, [b]2) = [aTb]T ∈ GT .

Definition 2 (Matrix Distribution). Let k ∈ N. We call Dk a matrix distri-
bution if it outputs matrices in Z

(k+1)×k
p of full rank k in polynomial time.

Plaintext-Verifiably-Checkable Encryption 163

Definition 3 (Dk-Matrix Diffie-Hellman Dk-MDDH). Let Dk be a matrix dis-
tribution and s ∈ {1, 2, T}. We say that the Dk-Matrix Diffie-Hellman (Dk-
MDDH) assumption holds relative to PGGen in group Gs if for all PPT adver-
saries D,

AdvDk
(D) :=

∣

∣Pr[D(PG, [A]s, [Aw]s) = 1]− Pr[D(PG, [A]s, [u]s) = 1]
∣

∣ = negl(k),

where the probability is taken over PG $← PGGen(k), A
$← Dk, w

$← Z
k
p, u

$←
Z

k+1
p .

5.1 Smooth Projective Hash Function on k-MDDH Assumption

Let Dk be a matrix distribution. We build a smooth hash proof system
SPHF = (SPHFSetup,HashKG,ProjKG,Hash,ProjHash,WordVF), whose hard
subset membership problem is based on the Dk-Matrix Diffie-Hellman Assump-
tion.

1. SPHFSetup(k): It generates a group G of prime order p with an underlying
matrix assumption using a base matrix [A] ∈ G

(k+1)×k. Define the language:
Lk-MDDH = {[c] = [Ar] ∈ G

k+1 : r ∈ Z
k
p}. The output of param is (G, p, [A]).

2. HashKG(Lk-MDDH, param): It generates a hashing key hk = x ∈ Z
k+1
p .

3. ProjKG(hk, (Lk-MDDH, param)): It derives the projection key hp = [x�A] ∈
G

k.
4. Hash(hk, (Lk-MDDH, param), [c] ∈ G

k+1): It computes the hash value hv =
[x�c].

5. ProjHash(hp, (Lk-MDDH, param), [c] ∈ G
k+1, r): Using the witness r of [c], it

computes the hash value hv′ = [(x�A)r].
6. WordVF([c] ∈ G

k+1, r): It outputs 1 if e([1]
˜G
, [c]) = e([r̄]

˜G
, [A1]G) ∈ G

k+1
T ,

where [1]
˜G

= (g̃, . . . , g̃) ∈ ˜G
k+1
p , [r̄] = (g̃r, . . . , g̃r) ∈ ˜G

k+1
p and 1 =

(1, . . . , 1) ∈ Z
k
p.

5.2 PVCE Instantiation Under k-MDDH Assumption

Based on the above SPHF instantiation from k-MDDH assumption, we immedi-
ately obtain a PVCE construction under k-MDDH assumption as follows.

1. Setup(k): It generates the public parameter (Lk-MDDH, param) on G using
the SPHFSetup(k) algorithm of SPHF on k-MDDH assumption and hence
the public parameter (Lk-MDDH, parame = (˜G, G, GT , e, g̃, g, p,A)) is defined
for the transformed PF-SPHF in Type 2 pairing. It chooses a hash f :
G

k+1 × GT × GT → ˜G and Γ : G
k+1 × GT × ˜G → Zp, where we set n = 1

for 2-smoothness ŜPHF generation [17]. It sets the public system parameter
pp =< Lk-MDDH, parame, f, Γ >.

164 S. Ma et al.

2. KeyGen(pp): It outputs the following public/private key pair (pk, sk) for the
PVCE scheme.

pk : (hp, ̂hp) = ([Ax], ([Ax̂1], [Ax̂2])),

sk : (hk, ̂hk) = (x, (x̂1, x̂2)).

3. Enc(pk,M): It chooses a random number r ∈ Zp and set r = (r, . . . , r) ∈ Z
k
p

and computes

W = [c] = [Ar], X = e(g̃, [(x�A)r]) · M,

Y = g̃r · f(W,XM−1,M), Z = e(g̃, [(x̂�
1 A)r][(x̂�

2 A)(γr)])),

where γ = Γ (W,X, Y) ∈ Zp. Finally, it outputs the ciphertext ct =
(W,X, Y, Z) for the plaintext M .

4. Dec(sk, ct): Upon parsing ct as (W,X, Y, Z), it computes M ← X ·e(g̃, [x�c])
and then verifies if

Z = e(g̃, [x̂�
1 c] · [x̂�

2 (γc)],
Z = e(Y · f−1(W,XM−1,M), [x̂�

1 A1][x̂�
2 Aγ]),

hold or not, where 1 = (1, · · · , 1) ∈ Z
k
p, γ = (γ, · · · , γ) ∈ Z

k
p and

γ = Γ (W,X, Y). Through this validation, it returns the plaintext M for
the ciphertext ct, or ⊥ otherwise.

5. Check(M, ct): Upon parsing ct as (W,X, Y, Z), we set [1]
˜G

= (g̃, . . . , g̃) ∈
˜G

k+1
p , b = (b, . . . , b) ∈ ˜G

k+1
p where b = Y · f−1(W,XM−1,M), 1 =

(1, · · · , 1) ∈ Z
k
p and γ = (γ, · · · , γ) ∈ Z

k
p where γ = Γ (W,X, Y). Then it

checks if

e([1]
˜G
, [c]) = e(b, [A1]),

XM−1 = e(b, [x�A1]),
Z = e(b, [x̂�

1 A1][x̂�
2 Aγ]),

hold or not. Through this validation, it returns 1 indicating that M is the
plaintext of ct under pk, or 0 otherwise.

6 Conclusion

We provided a notion of plaintext-verifiably-checkable encryption (PVCE) to
ensure that any valid ciphertext could be correctly verified in the test procedure,
which prevents a maliciously generated ciphertext passing the check algorithm.
We proposed a PVCE construction in the standard model, which has unlink-
cca security using pairing-friendly smooth projective hash functions (PF-SPHF)
as underlying building block. Finally, we obtain a PVCE instantiation from k-
MDDH assumption.

Plaintext-Verifiably-Checkable Encryption 165

Acknowledgement. This work is supported by National Natural Science Foundation
of China (No. 61872409, 61872152), Pearl River Nova Program of Guangzhou (No.
201610010037), Guangdong Natural Science Funds for Distinguished Young Scholar
(No. 2014A030306021) and Guangdong Program for Special Support of Topnotch
Young Professionals (No. 2015TQ01X796).

References

1. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 30

2. Park, D.J., Kim, K., Lee, P.J.: Public key encryption with conjunctive field keyword
search. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 73–86.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31815-6 7

3. Di Crescenzo, G., Saraswat, V.: Public key encryption with searchable key-
words based on jacobi symbols. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 282–296. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-77026-8 21

4. Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth projective hashing for con-
ditionally extractable commitments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS,
vol. 5677, pp. 671–689. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03356-8 39

5. Rhee, H.S., Park, J.H., Susilo, W., Lee, D.H.: Trapdoor security in a searchable
public-key encryption scheme with a designated tester. J. Syst. Softw. 83, 763–771
(2010)

6. Yang, G., Tan, C.H., Huang, Q., Wong, D.S.: Probabilistic public key encryption
with equality test. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 119–
131. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11925-5 9

7. Tang, Q.: Public key encryption schemes supporting equality test with authoriza-
tion of different granularity. Int. J. Appl. Cryptogr. 2(4), 304–321 (2012)

8. Tang, Q.: Public key encryption supporting plaintext equality test and user-
specified authorization. Secur. Commun. Netw. 5(12), 1351–1362 (2012)

9. Huang, K., Tso, R., Chen, Y., Rahman, S., Almogren, A., Alamri, A.: PKE-AET:
public key encryption with authorized equality test. Comput. J. 58(10), 2686–2697
(2015)

10. Ma, S., Huang, Q., Zhang, M., Yang, B.: Efficient public key encryption with
equality test supporting flexible authorization. IEEE Trans. Inf. Forensics Secur.
10(3), 458–470 (2015)

11. Canard, S., Fuchsbauer, G., Gouget, A., Laguillaumie, F.: Plaintext-checkable
encryption. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 332–
348. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27954-6 21

12. Ma, S., Mu, Y., Susilo, W.: A generic scheme of plaintext-checkable database
encryption. Inf. Sci. 429, 88–101 (2018)

13. Carbunar, B., Sion, R.: Toward private joins on outsourced data. IEEE Trans.
Knowl. Data Eng. 24(9), 1699–1710 (2012)

14. Furukawa, J., Isshiki, T.: Controlled joining on encrypted relational database. In:
Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 46–64. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36334-4 4

https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-31815-6_7
https://doi.org/10.1007/978-3-540-77026-8_21
https://doi.org/10.1007/978-3-642-03356-8_39
https://doi.org/10.1007/978-3-642-03356-8_39
https://doi.org/10.1007/978-3-642-11925-5_9
https://doi.org/10.1007/978-3-642-27954-6_21
https://doi.org/10.1007/978-3-642-36334-4_4

166 S. Ma et al.

15. Hweehwa, P., Xuhua, D.: Privacy-preserving ad-hoc equi-join on outsourced data.
ACM Trans. Database Syst. (TODS) 39(3), 23:1–23:40 (2014)

16. Ma, S.: Authorized equi-join for multiple data contributors in the PKC-based set-
ting. Comput. J. 60(12), 1822–1838 (2017)

17. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

18. Blazy, O., Chevalier, C.: Structure-preserving smooth projective hashing. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 339–369.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 12

19. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 449–475. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 25

https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-662-53890-6_12
https://doi.org/10.1007/978-3-642-40041-4_25

Hierarchical Functional Signcryption:
Notion and Construction

Dongxue Pan1,2,3, Bei Liang4(B) , Hongda Li1,2,3, and Peifang Ni1,2,3

1 State Key Lab of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China

{pandongxue,lihongda,nipeifang}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China
3 Data Assurance and Communication Security Research Center, CAS,

Beijing, China
4 Chalmers University of Technology, Gothenburg, Sweden

lbei@chalmers.se

Abstract. With the purpose of achieving fine-grained access control
over the signing and decryption capabilities in the context of a tradi-
tional digital signcryption scheme, the concept of functional signcryption
(FSC) is introduced by Datta et al. (ProvSec 2015) to provide the func-
tionalities of both functional encryption (FE) and functional signature
(FS) in an integrated paradigm. In this paper, we introduce the notion of
hierarchical functional signcryption (HFSC), which augments the stan-
dard functional signcryption with hierarchical delegation capabilities on
both signcrypting and unsigncrypting, thereby significantly expanding
the scope of functional signcryption in hierarchical access-control appli-
cation. More precisely, our contributions are two-fold: (i) we formalize
the syntax of HFSC and its security notion, (ii) we provide a generic
construction of HFSC based on cryptographic building blocks including
indistinguishability obfuscation (iO) and statistically simulation-sound
non-interactive zero-knowledge proof of knowledge (SSS-NIZKPoK) for
NP relations, and we formally shows that it satisfies selective message
confidentiality and selective ciphertext unforgeability.

Keywords: Hierarchical functional signcryption ·
Indistinguishability obfuscation · Statistically simulation-sound
non-interactive zero-knowledge proof of knowledge

1 Introduction

In order to provide the confidentiality as well as authentication guarantees, dig-
ital signcryption is introduced by Zheng [13] as a cryptographic primitive that
unifies the functionality of both encryption and authentication in an efficient
manner. With the purpose of achieving fine-grained access control over the sign-
ing and decryption capabilities in the context of a traditional digital signcryption
c© Springer Nature Switzerland AG 2019
R. Steinfeld and T. H. Yuen (Eds.): ProvSec 2019, LNCS 11821, pp. 167–185, 2019.
https://doi.org/10.1007/978-3-030-31919-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_10&domain=pdf
http://orcid.org/0000-0002-8622-8596
https://doi.org/10.1007/978-3-030-31919-9_10

168 D. Pan et al.

scheme, the concept of functional signcryption (FSC) is introduced by Datta et
al. [7] to provide the functionalities of both function encryption (FE) and func-
tional signature (FS) in an integrated paradigm.

In an FSC scheme, in addition to a master secret key that is held by a trusted
authority and can be used to signcrypt (unsigncrypt) any message, there are sec-
ondary signing keys for some signing functions f (called SKf), as well as func-
tional decryption keys DKg for some decryption functions g, both of which are
derived from the master secret key. Such a signing key SKf enables a signcrypter
to signcrypt (i.e., encrypt and authenticate simultaneously) any message in the
range of f , while a decryption key DKg allows one to not only verify the authen-
ticity of the ciphertext, but also unsigncrypt the ciphertext (the signcryption of
some message m) and retrieve g(m). The notions of security for FSC are message
confidentiality and ciphertext unforgeability. The message confidentiality guar-
antees that anyone holding the decryption key DKg and a signcyption of any
message m, cannot learn any additional information about m from a signcyption,
beyond the result g(m), while ciphertext unforgeability assures that given the
signing keys for functions f1, . . . , fs of his choice and signcryptions for messages
m1, . . . , mq of his choice, any adversary cannot produce a valid signcryption of
a message m∗ which is not equal to one of the queried messages m1, . . . , mq,
and if m∗ is not in the range of one of the queried functions f1, . . . , fs. Based
on the existence of indistinguishability obfuscation (iO) for all polynomial-size
circuits and statistically simulation-sound non-interactive zero-knowledge proof
of knowledge (SSS-NIZKPoK) system for NP relations, Datta et al. [7] proposed
a generic construction of FSC from ordinary public key encryption (PKE) and
digital signature schemes.

Hierarchical Functional Signcryption (HFSC). Motivated by the appli-
cability of FSC for supporting highly controlled, fine-grained access strategies,
in this paper we put forward the new primitive called hierarchical functional
signcryption (HFSC). The hierarchical notion augments the standard functional
signcryption with hierarchical delegation capabilities on both signcrypting and
unsigncrypting, significantly expanding the scope of functional signcryption in
hierarchical access-control application.

As we know, in an FSC scheme, the trusted authority who holds the mas-
ter secret key can generate the functional signing key for a signing function f
(called SKf) which allows a signcrypter to produce the signcryption of f(z) for
any z ∈ Df , as well as functional decryption key for a decryption function g
(called DKg) which enables us to unsigncrypt the signcryption of a message m
and to retrieve g(m). Here let f and f ′ be functions with domain Df and Df ′

respectively, where the range of f ′ is a subset of Df . In an HFSC scheme, the
holder of any such functional signing key SKf can in turn generate a functional
signing key SKf◦f ′ corresponding to the function f ◦ f ′ for any given function
f ′. Then, anyone holding the delegated functional signing key SKf◦f ′ and any
message z′ ∈ Df ′ , can produce the signcryption of f(f ′(z′)). Furthermore, the
holder of the functional decryption key DKg can in turn generate a functional
decryption key DKg′◦g corresponding to the function g′ ◦ g for any given func-

Hierarchical Functional Signcryption: Notion and Construction 169

tion g′. Then, anyone holding the delegated functional decryption key DKg′◦g

and an signcryption of message m, can compute g′(g(m)) but cannot learn any
additional information about the message m.

It is crucial to notice the conspicuous distinction of the delegation right
between functional signing key SKf and functional decryption key DKg. The
user with SKf can only delegate his functional signing capability on a function
f ′, the range of which should be a subset of the domain of f , which implies that
the capability of delegation is gradually shrinking from the upper level to lower
level. It makes sense because in fact the upper-level user with signing key SKf

usually only wants to delegate his signing right on a subset of his domain to a
lower-level user, and the upper-level user can choose the function f ′ such that
the range of f ′ is exactly the subset that he would like to delegate his signing
right. Therefore, in the delegation of functional signing key, the successor f ′ is
composed inside the predecessor f . Whereas, the user with functional decryption
key DKg can delegate his functional decryption capability on a function g′, the
domain of which should cover the range of g, thus, in the delegation of functional
decryption key, the successor g′ is composed outside the predecessor g.

The significance of considering the hierarchical delegation capability has been
recognized by many works, such as the hierarchical augmentation on functional
encryption called hierarchical functional encryption, which was investigated in
[1,4,6], and hierarchical delegation on functional signature called delegatable
functional signature [2], which realizes the delegation of signing capabilities in a
chained manner.

Our Contributions. We begin with formally introducing the syntax of HFSC
and formalizing its security notion. We then present a generic construction of this
challenging primitive based on cryptographic building blocks including iO and
statistically simulation-sound non-interactive zero-knowledge proof of knowledge
(SSS-NIZKPoK) for NP relations. Furthermore, we prove that our HFSC pro-
posal achieves selective message confidentiality against chosen plaintext attack
(CPA), as well as, selective ciphertext unforgeability against chosen message
attack (CMA).

Technical Overview. Formally, an HFSC scheme consists of the standard algo-
rithms of an FSC scheme, with two additional key delegation algorithms, namely,
a functional signing key delegation algorithm and a functional decryption key
delegation algorithm. Each of delegation algorithms is identical in syntax to the
key generation algorithm of FSC, except that it takes a functional signing (or
decryption) key SKf (or DKg) instead of the master secret key, and the output
of the delegation algorithm is a functional signing (or decryption) key SKf◦f ′

(or DKg′◦g) corresponding to the composed function f ◦ f ′ (or g′ ◦ g).
Before showing the main idea of our HFSC construction, we recall how

the FSC scheme proposed by Datta et al. in [7] (denoted as DDM-FSC)
works. In DDM-FSC scheme, the public parameters are set as MPK =
(pk1

PKE , pk2
PKE , vk0, CRS) while the master secret key is set as MSK =

(sk1
PKE , sk0), where (pk1

PKE , sk1
PKE) and (pk2

PKE , sk2
PKE) are PKE key pairs,

(vk0, sk0) is a signature key pair, and CRS is a common reference string of

170 D. Pan et al.

SSS-NIZKPoK. Given a function f , the functional signing key is generated
as SKf = (f, σ), where σ is the signature (under sk0) of f . To signcrypt a
message z with signing key SKf = (f, σ), the signcrypter computes a cipher-
text CT = (e1, e2, π), where e1, e2 are ciphertexts of f(z) under pk1

PKE , pk2
PKE

respectively, and π is the proof for the statement that e1, e2 are encryptions of
f(z) under pk1

PKE , pk2
PKE and σ is a signature of f under sk0. Given a function

g, the functional decryption key is an obfuscation of the program P g,sk1
P KE ,MPK ,

which on input the signcryption CT = (e1, e2, π), first check the validity of the
proof and then decrypts e1 to obtain plaintext m, finally output g(m). The
unsigncryption on a ciphertext CT is straightforward by running the obfuscated
program on CT .

Our HFSC scheme is come out from the inspiration of DDM-FSC scheme.
The public parameters and master secret key (MPK,MSK) are set the same
as DDM-FSC scheme. Whereas, our functional signing key is generated as
SKf = (f, vkf , σf , skf , γ), where σf is the signature (under sk0) of the concate-
nation of a signing function f and a verification key vkf in a fresh signature key
pair (vkf , skf), where (vkf , skf) is generated by the key generation algorithm
of a signature scheme using randomness γ. On input SKf = (f, vkf , σf , skf , γ)
and a function f ′, the functional signing key delegation algorithm outputs a
delegated functional signing key as SKf◦f ′ = (f ◦ f ′, vkf , σf , vkf ′ , σf ′ , skf ′ , γ′),
where σf is the signature (under sk0) of the concatenation of a signing function
f and vkf , and σf ′ is the signature (under skf) of the concatenation of func-
tion f ′ and vkf ′ in a fresh signature key pair (vkf ′ , skf ′), where (vkf ′ , skf ′) is
generated by the key generation algorithm of a signature scheme using random-
ness γ′. To signcrypt a message z with SKf0◦···◦fi

, the signcrypter computes a
ciphertext CT = (e1, e2, π), where e1, e2 are ciphertexts of f0 ◦ · · · ◦ fi(z) under
pk1

PKE , pk2
PKE respectively, and π proves that e1, e2 are produced honestly, each

σfj
(j ∈ [0, i]) is a signature of fj ||vkfj

(under corresponding verification key
vk0 (if j = 0) or vkfj−1 (if j ∈ [i])), and (vkfi

, skfi
) is a signature key pair.

The decryption key generation algorithm is the same as in DDM-FSC scheme.
When considering the delegation algorithm of functional decryption keys, we take
advantage of the idea from hierarchical functional encryption scheme proposed
by Ananth et al. [1]. Roughly speaking, on input DKg = (g, dkg), where dkg is
an obfuscation of the program P g,sk1

P KE ,MPK , together with a function g′, the
functional decryption key delegation algorithm outputs a delegated functional
decryption key DKg′◦g consisting of function g′ ◦ g together with an obfuscation
of the program P g′,dkg , where the program P g′,dkg on input a ciphertext CT =
(e1, e2, π), first evaluates the obfuscation dkg on input CT to obtain g(m), then
applies g′ on g(m) to obtain g′ ◦ g(m), which is eventually returned back. The
unsigncryption on a ciphertext CT is straightforward by running DKgi◦···◦g0 on
a ciphertext CT and output the result.

The notions of security for HFSC that we consider are formalized in the
selective security model, namely, message confidentiality (indistinguishability of
ciphertexts against chosen plaintext attack) and ciphertext unforgeability (exis-
tential unforgeability against chosen message attack). In the selective model, the

Hierarchical Functional Signcryption: Notion and Construction 171

adversary must declare the challenge messages at the very beginning, before the
system parameters are chosen.

Related Works. The significance of considering the hierarchical delegation
capability has been recognized by many works, such as the hierarchical augmen-
tation on FE called hierarchical functional encryption, and hierarchical delega-
tion on FS called delegatable functional signature, which realizes the delegation
of decryption and signing capabilities to another party in a chained manner
respectively.

Hierarchical Functional Encryption (HFE). Ananth et al. [1] formally introduced
the concept of HFE and provided a security notion for HFE schemes. They also
briefly showed how to use a general-purpose indistinguishability obfuscator to
transform the FE scheme of Garg et al. [8] into an HFE scheme. Their HFE
construction can only support hierarchical structures of constant levels. Then,
Chandran et al. [6] proposed an adaptively-secure HFE scheme that supports
hierarchical structures of any pre-determined polynomial levels by using sub-
exponentially-secure iO. Afterwards, Brakerski and Segev [4] present a generic
transformation to convert any general-purpose public-key FE scheme into an
HFE scheme without relying on iO.

Functional Signature (FS). FS was introduced by Boyle et al. [3] to realized the
delegation of the signing capability from a master authority to another party. In
an FS scheme, a trusted authority publishes public parameters and holds a mas-
ter signing key. The master signing key can be used to sign any message, as well
as to derive a functional key SKf , a constrained signing key corresponding to
some signing function f . Then the signer with SKf can sign any message in the
range of the function f . Boyle et al. also show how to build an FS scheme with
function privacy and succinctness, relying on the succinct non-interactive argu-
ments of knowledge (SNARKS) and (standard) non-interactive zero-knowledge
arguments of knowledge (NIZKAoKs) for NP languages.

Delegatable Functional Signatures (DFS). Backes et al. [2] introduced DFS which
enables the signer of a message who holds the master signing key to choose
an evaluator, specify the ways that the party can modify the signature while
keeping its validity, and also allows the evaluator to further delegate its signing
capabilities.

Organization. In Sect. 2, we provide the notations and definitions of the build-
ing blocks that are used through the paper. In Sect. 3, we propose the notion
of hierarchical functional signcryption and show a construction. In Sect. 4, we
make a conclusion.

2 Preliminaries

2.1 Notations

We use λ to denote the security parameter. Let A(·) be a probabilistic algorithm
and let A(x) be the result of running algorithm A on input x, then we use

172 D. Pan et al.

y = A(x) (or y ← A(x)) to denote that y is set as A(x). Let Ar(x) be the
result of running algorithm A on input x with random value r. For a finite set
S, we use y ∈R S (or y ←R S) to denote that y is uniformly selected from
S. We use [l] to denote the set {1, 2, · · · , l}. We write negl(·) to denote an
unspecified negligible function, poly(·) an unspecified polynomial. We denote by
|a| the length of string a. We denote by a||b the concatenation of two bit strings
a and b. We use “X

c= Y ” to denote that probabilistic distributions X and Y are
computationally indistinguishable. For any language L and any instance x ∈ L,
we denote by RL the efficiently computable binary NP relation for L and then
for any witnesses w of x ∈ L, RL(x,w) = 1.

2.2 Indistinguishability Obfuscation

Definition 2.1. Indistinguishability obfuscation (iO) [8]. A PPT algo-
rithm iO is called an indistinguishability obfuscator for a circuit ensemble
{Cλ}λ∈N if the following conditions are satisfied:

– (functionality) For all security parameters λ ∈ N , for all C ∈ Cλ, and for all
input x we have that Pr[C ′(x) = C(x) : C ′ ← iO(1λ, C)] = 1.

– (security) For any PPT distinguisher D, there exists a negligible function
negl(·) such that the following holds: For all security parameters λ ∈ N , for
all pairs of same size circuits C0, C1 ∈ Cλ, we have that if C0(x) = C1(x) for
all inputs x, then

∣
∣Pr[D(1λ, iO(1λ, C0)) = 1] − Pr[D(1λ, iO(1λ, C1)) = 1]

∣
∣ ≤

negl(λ).

The results [5,8,9,14] on iO support our construction of HFSC.

2.3 Statistically Simulation-Sound Non-interactive Zero-Knowledge
Proof of Knowledge

The notion of SSS-NIZKPoK has been introduced and formalized in the full
version of [10]. Now we slightly simplify the original definition following [3,7,8].

Definition 2.2. Statistically Simulation-Sound Non-interactive Zero-
Knowledge Proof of Knowledge: SSS-NIZKPoK. Let R ⊂ {0, 1}∗×{0, 1}∗

be an NP (binary) relation. For pairs (X,W) ∈ R, we call X the statement and
W the witness. Let L ⊂ {0, 1}∗ be the language consisting of statements in R.
An SSS-NIZKPoK system for L consists of the following PPT algorithms:

– SSS-NIZKPoK.Setup(1λ): The trusted authority takes as input a security
parameter 1λ and publishes a common reference string CRS.

– SSS-NIZKPoK.Prove(CRS,X,W): Taking as input the common reference
string CRS, a statement X ∈ L along with a witness W , a prover outputs a
proof π.

– SSS-NIZKPoK.Verify(CRS,X, π): On input the common reference string
CRS, a statement X ∈ {0, 1}∗, and a proof π, a verifier outputs 1, if the
proof π is acceptable, or 0, otherwise.

Hierarchical Functional Signcryption: Notion and Construction 173

– SSS-NIZKPoK.SimSetup(1λ,X): The simulator takes as input the secu-
rity parameter 1λ together with a statement X ∈ {0, 1}∗. It produces a simu-
lated common reference string CRS along with a trapdoor TR that enables it
to simulate a proof for X without access to a witness.

– SSS-NIZKPoK.SimProve(CRS, TR,X): Taking as input the simulated
common reference string CRS, the trapdoor TR, and the statement X ∈
{0, 1}∗ for which CRS and TR have been generated, the simulator outputs a
simulated proof π.

– SSS-NIZKPoK.ExtSetup(1λ): The extractor, on input 1λ, outputs an
extraction-enabling common reference string CRS and an extraction trapdoor
T̃R.

– SSS-NIZKPoK.Extr(CRS, T̃R,X, π): The extractor takes as input the
extraction-enabling common reference string CRS, the extraction trapdoor
T̃R, a statement X ∈ {0, 1}∗, and a proof π. It outputs a witness W .

An SSS-NIZKPoK system should have the following properties:

• Perfect Completeness: An SSS-NIZKPoK system is perfectly complete
if for all security parameter λ, all (X,W) ∈ R, all CRS ← SSS-
NIZKPoK.Setup(1λ), and all π ← SSS-NIZKPoK.Prove(CRS,X,W):

SSS-NIZKPoK.V erify(CRS,X, π) = 1.

• Statistical Soundness: An SSS-NIZKPoK system is statistically sound if
for all non-uniform adversaries A there exists a negligible function negl such
that for any security parameter λ, we have

Pr
[

CRS ← SSS − NIZKPoK.Setup(1λ); (X,π) ← A(CRS) :
SSS − NIZKPoK.V erify(CRS,X, π) = 1 ∧ X /∈ L

]

≤ negl(λ).

• Computational Zero-Knowledge: We define the SSS-NIZKPoK system
to be computationally zero-knowledge if for all non-uniform PPT adversaries
A there exists a negligible function negl such that for any security parameter
λ, we have for all X ∈ L

∣
∣
∣
∣
∣
Pr

⎡

⎣

CRS ← SSS − NIZKPoK.Setup(1λ);
π ← SSS − NIZKPoK.Prove(CRS,X,W) :
A(CRS,X, π) = 1

⎤

⎦

−Pr

⎡

⎣

(CRS, TR) ← SSS − NIZKPoK.SimSetup(1λ,X);
π ← SSS − NIZKPoK.SimProve(CRS, TR,X) :
A(CRS,X, π) = 1

⎤

⎦

∣
∣
∣
∣
∣
≤ negl(λ),

where W is a witness corresponding to X.
• Knowledge Extraction: We call an SSS-NIZKPoK system a proof of knowl-
edge for R if for any security parameter λ the following holds: For all non-
uniform adversaries A there exists a negligible function negl1 such that

174 D. Pan et al.

∣
∣
∣
∣
∣
Pr

[

CRS ← SSS − NIZKPoK.Setup(1λ);
A(CRS) = 1

]

−Pr
[

(CRS, T̃R) ← SSS − NIZKPoK.ExtSetup(1λ);
A(CRS) = 1

]
∣
∣
∣
∣
∣
≤ negl1(λ),

and for all non-uniform PPT adversaries A there exists a negligible function
negl2 such that

Pr

⎡

⎢
⎢
⎣

(CRS, T̃R) ← SSS − NIZKPoK.ExtSetup(1λ);
(X,π) ← A(CRS);
W ∗ ← SSS − NIZKPoK.Extr(CRS, T̃R,X, π) :
SSS − NIZKPoK.V erify(CRS,X, π) = 1 ∧ (X,w∗) /∈ R

⎤

⎥
⎥
⎦

≤ negl2(λ).

• Statistical Simulation-Soundness: An SSS-NIZKPoK system is statis-
tically simulation-sound if for all non-uniform adversaries A there exists a
negligible function negl such that for any security parameter λ, we have for
all statements X ∈ {0, 1}∗

Pr

⎡

⎢
⎢
⎢
⎢
⎣

(CRS, TR) ← SSS − NIZKPoK.SimSetup(1λ,X);
π ← SSS − NIZKPoK.SimProve(CRS, TR,X);
(X∗, π∗) ← A(CRS,X, π) :
X∗ �= X ∧ X∗ /∈ L∧
SSS − NIZKPoK.V erify(CRS,X∗, π∗) = 1

⎤

⎥
⎥
⎥
⎥
⎦

≤ negl(λ).

There are well-known constructions [11,12] of non-interactive zero-knowledge
proof of knowledge (NIZKPoK) for NP relations. Then, based on any NIZKPoK
and a non-interactive perfectly binding commitment scheme we can obtain an
SSS-NIZKPoK for NP relations follows from the similar technique of [8].

3 Hierarchical Functional Signcryption: Notion
and Construction

In this section, we start with presenting the definition of hierarchical functional
signcryption (HFSC), which is adapted from the notions of functional signcryp-
tion [7] and hierarchical functional encryption [4]. And then we show a construc-
tion of HFSC.

3.1 The Notion of Hierarchical Functional Signcryption

Definition 3.1. Hierarchical Functional Signcryption (HFSC). A hier-
archical functional signcryption scheme for a message space M , a family of
signing functions F = {f : Df → M}, and a class of decryption functions
G = {g : M → Rg}, where Df and Rg denote the domain of the function f and
range of the function g respectively, consists of the following PPT algorithms:

Hierarchical Functional Signcryption: Notion and Construction 175

– HFSC.Setup(1λ): The trusted authority takes as input the security param-
eter 1λ and publishes the public parameters MPK, while keeps the master
secret key MSK to itself.

– HFSC.SKeyGen(MPK,MSK, f): Taking as input the public parameters
MPK, the master secret key MSK, and a signing function f ∈ F from a
signcrypter, the trusted authority provides a signing key SKf to the sign-
crypter.

– HFSC.SKDelegate(MPK,SKf , f ′): Taking as input the public parameters
MPK, the signing key SKf , and a function f ′, the range of which is a subset
of the domain of f , the signcrypter provides a signing key SKf◦f ′ to another
signcrypter.

– HFSC.Signcrypt(MPK,SKf0◦···◦fi
, z): A signcrypter takes as input the

public parameters MPK, its signing key SKf0◦···◦fi
corresponding to some

signing function f0 ∈ F and {fj}j∈[i] satisfying that the range of fj is a sub-
set of the domain of fj−1, and an input z ∈ Dfi

. It produces a ciphertext CT
which is a signcryption of f0 ◦ · · · ◦ fi(z) ∈ M .

– HFSC.DKeyGen(MPK,MSK, g): On input the public parameters MPK,
the master secret key MSK, and a decryption function g ∈ G from
a decrypter, the trusted authority hands the decryption key DKg to the
decrypter.

– HFSC.DKDelegate(MPK,DKg, g
′): Taking as input the public parameters

MPK, a decryption key DKg, and a function g′ satisfying that the domain
of g′ contains the range of g, the decrypter provides a signing key DKg′◦g to
another decrypter.

– HFSC.Unsigncrypt(MPK,DKgi◦···◦g1◦g0 , CT): A decrypter, on input the
public parameters MPK, its decryption key DKgi◦···◦g1◦g0 associated with
some decryption function g0 ∈ G and {gj}j∈[i] satisfying that the domain of gj

contains the range of gj−1, and a ciphertext CT signcrypting a message m ∈
M , attempts to unsigncrypt the ciphertext CT and outputs gi ◦· · ·◦g1 ◦g0(m),
if successful, or a special string ⊥ indicating failure, otherwise.

An HFSC scheme should possess the following properties:

• Correctness: An HFSC scheme is correct if for all signing function f0 ∈ F
and {fj}j∈[i1] satisfying that the range of fj is a subset of the domain of fj−1,
z ∈ Dfi

, and g0 ∈ G and {gj}j∈[i2] satisfying that the domain of gj contains
the range of gj−1,

176 D. Pan et al.

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(MPK,MSK) ← HFSC.Setup(1λ),
SKf0 ← HFSC.SKeyGen(MPK,MSK, f0),
SKf0◦···◦fj

← HFSC.SKDelegate(MPK,
SKf0◦···◦fj−1 , fj), j ∈ [i1],

DKg0 ← HFSC.DKeyGen(MPK,MSK, g0),
DKgj◦···◦g0 ← HFSC.DKDelegate(MPK,

DKgj−1◦···◦g0 , gj), j ∈ [i2] :
HFSC.Unsigncrypt

(

MPK,DKgi2◦···◦g0 ,

HFSC.Signcrypt
(

MPK,SKf0◦···◦fi1
, z

))

= gi2 ◦ · · · ◦ g0(f0 ◦ · · · ◦ fi1(z))

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

> 1 − negl(λ).

for some negligible function negl.
• Selective Security: An HFSC scheme has two security requirements,
namely, (I) message confidentiality and (II) ciphertext unforgeability which
are described below. In the selective model, the adversary must decide the
challenge messages up front, before the system parameters are chosen.

(I) Message Confidentiality: We define this security notion on indistin-
guishability of ciphertexts against chosen plaintext attack (CPA) through the fol-
lowing game between a probabilistic adversary A and a probabilistic challenger C.

Init: A submits two sequences (f∗
0,0, · · · , f∗

0,i, z
∗
0), (f∗

1,0, · · · , f∗
1,i, z

∗
1) of signing

function f∗
α,0 ∈ F and {f∗

α,j}j∈[i] satisfying that the range of f∗
α,j is a subset of

the domain of f∗
α,j−1 and z∗

α ∈ Df∗
α,i

(α ∈ {0, 1}) that will be used to frame the
challenge.

Setup: C performs HFSC.Setup(1λ) to obtain (MPK,MSK) and hands
MPK to A.

Query Phase 1: A may adaptively make any polynomial number of queries
which may be of the following types to be answered by C.

– Signing key query: Upon receiving a signing key query for a signing function
f0 ∈ F and {fj}j∈[i1] satisfying that the range of fj is a subset of the domain
of fj−1, C hands the signing key SKf0◦···◦fi1

to A, by performing

SKf0 ← HFSC.SKeyGen(MPK,MSK, f0)
SKf0◦···◦fj

← HFSC.SKDelegate(MPK,SKf0◦···◦fj−1 , fj), j ∈ [i1].

– Decryption key query: When A queries a decryption key for a decryption
function g0 ∈ G and {gj}j∈[i2] satisfying that the domain of gj contains the
range of gj−1 to C subject to the constraint that g̃(f∗

0,0 ◦ · · · ◦ f∗
0,i(z

∗
0)) =

g̃(f∗
1,0 ◦ · · · ◦ f∗

1,i(z
∗
1)), where g̃ = gi2 ◦ · · · ◦ g0, C provides the decryption key

DKg̃ to A by running

DKg0 ← HFSC.DKeyGen(MPK,MSK, g0),
DKgj◦···◦g0 ← HFSC.DKDelegate(MPK,DKgj−1◦···◦g0 , gj), j ∈ [i2].

Hierarchical Functional Signcryption: Notion and Construction 177

– Signcryption query: In response to a signcryption query of A for a signing
function f0 ∈ F and {fj}j∈[i3] satisfying that the range of fj is a subset of
the domain of fj−1, and an input z ∈ Dfi3

, C hands the ciphertext CT to A,
which is a signcryption of f0 ◦ · · · ◦ fi3(z), by performing

SKf0 ← HFSC.SKeyGen(MPK,MSK, f0)
SKf0◦···◦fj

← HFSC.SKDelegate(MPK,SKf0◦···◦fj−1 , fj), j ∈ [i3],
CT ← HFSC.Signcrypt(MPK,SKf0◦···◦fi3

, z).

Challenge: C flips a random coin b ← {0, 1} and generates the challenge cipher-
text CT ∗ by running SKf∗

b,0
← HFSC.SKeyGen(MPK,MSK, f∗

b,0),

SKf∗
b,0◦···◦f∗

b,j
← HFSC.SKDelegate(MPK,SKf∗

b,0◦···◦f∗
b,j−1

, f∗
b,j), j ∈ [i],

CT ∗ ← HFSC.Signcrypt(MPK,SKf∗
b,0◦···◦f∗

b,i
, z∗

b).

Query Phase 2: A may continue adaptively to make a polynomial number of
queries as in Query Phase 1, subject to the same restriction as earlier, and C
provides the answer to them.

Guess: A eventually outputs a guess b′ for b and wins the game if b′ = b.

An HFSC scheme is defined to be selectively message confidential against CPA if
for all PPT adversaries A there exists a negligible function negl such that for any
security parameter λ, AdvHFSC,s−IND−CPA

A (λ) = |Pr[b′ = b] − 1/2| < negl(λ).

(II) Ciphertext Unforgeability: This notion of security is defined on existen-
tial unforgeability against chosen message attack (CMA) through the following
game between a probabilistic adversary A and a probabilistic challenger C.

Init: A declares a message m∗ ∈ M to C on which the forgery will be outputted.

Setup: C runs HFSC.Setup(1λ) to obtain (MPK,MSK) and hands MPK to
A.

Query Phase: A may adaptively make a polynomial number of queries of the
following types to C and C provides the answer to those queries.

– Signing key query: Upon receiving a signing key query for a signing function
f0 ∈ F and {fj}j∈[i1], satisfying that the range of fj is a subset of the domain
of fj−1, subject to the constraint that there exists no z ∈ Dfi1

such that
f0◦· · ·◦fi1(z) = m∗, C hands the signing key SKf0◦···◦fi1

to A, by performing

SKf0 ← HFSC.SKeyGen(MPK,MSK, f0)
SKf0◦···◦fj

← HFSC.SKDelegate(MPK,SKf0◦···◦fj−1 , fj), j ∈ [i1].

– Decryption key query: When A queries a decryption key for a decryption
function g0 ∈ G and {gj}j∈[i2] satisfying that the domain of gj contains the
range of gj−1 to C, C provides the decryption key DKgi2◦···◦g0 to A by running

DKg0 ← HFSC.DKeyGen(MPK,MSK, g0),
DKgj◦···◦g0 ← HFSC.DKDelegate(MPK,DKgj−1◦···◦g0 , gj), j ∈ [i2].

178 D. Pan et al.

– Signcryption query: In response to a signcryption query of A for a signing
function f0 ∈ F and {fj}j∈[i3] satisfying that the range of fj is a subset of
the domain of fj−1, and an input z ∈ Dfi3

, C hands the ciphertext CT to A,
which is a signcryption of f0 ◦ · · · ◦ fi3(z), by performing

SKf0 ← HFSC.SKeyGen(MPK,MSK, f0)
SKf0◦···◦fj

← HFSC.SKDelegate(MPK,SKf0◦···◦fj−1 , fj), j ∈ [i3],
CT ← HFSC.Signcrypt(MPK,SKf0◦···◦fi3

, z).

– Unsigncryption query: Upon receiving an unsigncryption query from A for a
ciphertext CT under a decryption function g0 ∈ G and {gj}j∈[i4] satisfying
that the domain of gj contains the range of gj−1, C performs algorithms

DKg0 ← HFSC.DKeyGen(MPK,MSK, g0),
DKgj◦···◦g0 ← HFSC.DKDelegate(MPK,DKgj−1◦···◦g0 , gj), j ∈ [i4],

HFSC.Unsigncrypt(MPK,DKgi4◦···◦g0 , CT)and sends the result to A.

Forgery: A finally outputs a forgery CT ∗ on m∗. A wins the game if CT ∗ is
indeed a valid functional signcryption of m∗, i.e., HFSC.Unsigncrypt(MPK,
DKg, CT ∗) = g(m∗) for all g ∈ G, and there does not exist any (f0, · · · , fi5 , z)
sequence such that (f0, · · · , fi5 , z) was a signcryption query of A and m∗ =
f0 ◦ · · · ◦ fi5(z).

An HFSC scheme is defined to be selectively ciphertext unforgeable against
CMA if for all PPT adversaries A there exists a negligible function negl such that
for any security parameter λ, AdvHFSC,s−UF−CMA

A (λ) = Pr[Awins] < negl(λ).

3.2 The Construction of Hierarchical Functional Signcryption

In this subsection, we present a generic construction of this challenging prim-
itive, hierarchical functional signcryption, that supports arbitrary polynomial-
size signing and decryption functions from known cryptographic building blocks.
Let λ be the underlying security parameter. The cryptographic building blocks
used in our HFSC construction are the following:

– O: An indistinguishability obfuscator for P/poly.
– PKE = (PKE.KeyGen, PKE.Encrypt, PKE.Decrypt): A CPA-secure

public key encryption scheme with message space M ⊂ {0, 1}n(λ), for some
polynomial n.

– SIG = (SIG.KeyGen, SIG.Sign, SIG.V erify): An existentially unforgeable
signature scheme with message space {0, 1}n(λ), for some polynomial n.

– SSS-NIZKPoK = (SSS-NIZKPoK.Setup, SSS-NIZKPoK.Prove,
SSS-NIZKPoK.V erify, SSS-NIZKPoK.SimSetup, SSS-NIZKPoK.
SimProve, SSS-NIZKPoK.ExtSetup, SSS-NIZKPoK.Extr): An SSS-
NIZKPoK system for the NP relation R, with statements of the form

X = (pk1
PKE , pk2

PKE , vkSIG, e1, e2) ∈ {0, 1}∗,

Hierarchical Functional Signcryption: Notion and Construction 179

witness of the form W = (m, z, r1, r2, f0, vkf0 , σf0 , · · · , fi, vkfi
, σfi

, skfi
, γi) ∈

{0, 1}∗, and

(X,W) ∈ R ⇐⇒
(

e1 = PKE.Encrypt(pk1
PKE ,m; r1)

∧

e2 = PKE.Encrypt(pk2
PKE ,m; r2)

∧

SIG.V erify(vkSIG, f0||vkf0 , σf0) = 1
∧

SIG.V erify(vkfj−1 , fj ||vkfj
, σfj

) = 1 for ∀j ∈ [i]
∧

(vkfi
, skfi

) ← SIG.KeyGen(1λ; γi)
∧

m = f0 ◦ · · · ◦ fi(z)
)

,

for a function family F = {f0 : Df0 → M} ⊂ P/poly (with representation in
{0, 1}λ).

Then we build an HFSC scheme for message space M , family of signing
functions F , and the class of decryption functions G = {g : M → Rg} ⊂ P/poly.

Construction 3.1. (HFSC scheme).

– HFSC.Setup(1λ): The trusted authority takes as input the security param-
eter 1λ and proceeds as follows:

• It generates (pk1
PKE , sk1

PKE), (pk2
PKE , sk2

PKE) ← PKE.KeyGen(1λ).
• It obtains (vkSIG, skSIG) ← SIG.KeyGen(1λ).
• It generates CRS ← SSS-NIZKPoK.Setup(1λ).
• It publishes the public parameters MPK = (pk1

PKE , pk2
PKE , vkSIG,

CRS), while keeps the master secret key MSK = (sk1
PKE , skSIG) to

itself.
– HFSC.SKeyGen(MPK,MSK, f): Taking as input the public parame-

ters MPK, the master secret key MSK, and a signing function f ∈ F
from a signcrypter, the trusted authority runs the algorithms (vkf , skf) ←
SIG.KeyGen(1λ; γ) with randomness γ and SIG.Sign(skSIG, f ||vkf) to
obtain a signature σf on the concatenation of the signing function f
and the verification key vkf , and then returns the signing key SKf =
(f, vkf , σf , skf , γ) to the signcrypter.

– HFSC.SKDelegate(MPK,SKf , f ′): Taking as input the public parameters
MPK, the signing key SKf , and a function f ′ (from another signcrypter)
satisfying that the range of f ′ is a subset of the domain of f , the signcrypter
proceeds as follows:

• It parses SKf = (f, SK ′
f , sk, γ).

• It obtains (vkf ′ , skf ′) ← SIG.KeyGen(1λ; γ′) with randomness γ′.
• It generates σf ′ ← SIG.Sign(sk, f ′||vkf ′).
• It returns the signing key SKf◦f ′ = (f ◦f ′, SK ′

f , vkf ′ , σf ′ , skf ′ , γ′) to the
signcrypter.

– HFSC.Signcrypt(MPK,SKf0◦···◦fi
, z): A signcrypter takes as input the

public parameters MPK, its signing key SKf0◦···◦fi
corresponding to some

signing function f0 ∈ F and {fj}j∈[i] satisfying that the range of fj is a subset
of the domain of fj−1, and an input z ∈ Dfi

. It prepares the ciphertext as
follows:

180 D. Pan et al.

• It parses SKf0◦···◦fi
= (f0 ◦ · · · ◦ fi, vkf0 , σf0 , · · · , vkfi

, σfi
, skfi

, γi).
• It It computes el = PKE.Encrypt(pkl

PKE , f0 ◦ · · · ◦ fi(z); rl) for l = 1, 2,
where rl is the randomness selected for encryption.

• It generates a proof π ← SSS-NIZKPoK.Prove(CRS,X,W), where
X = (pk1

PKE , pk2
PKE , vkSIG, e1, e2) is a statement of the NP relation R

and W = (f0 ◦ · · · ◦fi(z), z, r1, r2, f0, vkf0 , σf0 , · · · , fi, vkfi
, σfi

, skfi
, γi) is

the corresponding witness.
• It outputs the ciphertext CT = (e1, e2, π).

– HFSC.DKeyGen(MPK,MSK, g): On input the public parameters MPK,
the master secret key MSK, and a decryption function g ∈ G from a
decrypter, the trusted authority proceeds as follows:

• It parses MSK = (sk1
PKE , skSIG).

• It computes dkg ← O(P g,sk1
P KE ,MPK) using the circuit size

max{|P1|, |P2|}, where the programs Pl = P g,skl
P KE ,MPK (l = 1, 2) are

defined in Fig. 1.
• It outputs DKg = (g, dkg).

– HFSC.DKDelegate(MPK,DKg, g
′): Taking as input the public parame-

ters MPK, a decryption key DKg, and a function g′ (from another decrypter)
satisfying that the domain of g′ contains the range of g, the decrypter pro-
ceeds as follows:

• It parses DKg = (g, dkg).
• It computes dkg′◦g ← O(P g′,dkg). The program P f ′,dkg on input a cipher-

text CT = (e1, e2, π), first evaluates the obfuscation dkg on input CT to
obtain x. It then evaluates g′ on x to obtain g′(x), which it then outputs.

• It returns the decryption key DKg′◦g = (g′ ◦ g, dkg′◦g).
– HFSC.Unsigncrypt(MPK,DKgi◦···◦g0 , CT): A decrypter, on input the

public parameters MPK, its decryption key DKgi◦···◦g0 , and a ciphertext
CT signcrypting a message m ∈ M , decrypts the ciphertext as follows:

• It parses DKgi◦···◦g0 = (gi ◦ · · · ◦ g0, dkgi◦···◦g0).• It computes and outputs y ← dkgi◦···◦g0(CT).

Pl = P g,skl
PKE ,MPK (l = 1, 2)

Given input (e1, e2, π), the program proceeds as follows:

1. Extract pk1
PKE , pk2

PKE , vkSIG, CRS from MPK.
2. Set X = (pk1

PKE , pk2
PKE , vkSIG, e1, e2).

3. If SSS-NIZKPoK.V erify(CRS, X, π) = 0, then output ⊥ and stop.
Otherwise, continue to the next step.

4. Output g(PKE.Decrypt(skl
PKE , el)).

Fig. 1. Programs P1 and P2

Correctness: It is oblivious that the correctness of the proposed scheme follows
immediately from the correctness of O, PKE, and SIG, perfect completeness of
the SSS-NIZKPoK system, and the description of the program P1 in Fig. 1.

Hierarchical Functional Signcryption: Notion and Construction 181

3.3 Security Analysis

Theorem 3.1 (Message Confidentiality of HFSC). Assuming iO O for
P/poly, CPA-secure public key encryption PKE, and the statistical simulation-
soundness and zero-knowledge properties of the SSS-NIZKPoK system, the
HFSC scheme described in Sect. 3.2 is selectively message confidential against
CPA as per the definition given in Sect. 3.1.

Proof. Suppose that at most q = q(λ) many decryption key queries are made
by any adversary in the selective CPA-message confidentiality game of Defini-
tion 3.1. Then for simplicity, we assume the adversary to always make exactly
q decryption key queries. We denote g̃i for i ∈ [q] to be the i-th composite
decryption function for which a decryption key query is made. By the rules of
the game g̃i(f̃∗

0 (z∗
0)) is constrained to be equal to g̃i(f̃∗

1 (z∗
1)) for i ∈ [q], where

f̃∗
α = f∗

α,0 ◦ · · · ◦ f∗
α,i for α ∈ {0, 1}.

We form our proof here into a sequence of hybrids. As in the first hybrid, the
challenger signcrypts f̃∗

0 (z∗
0). And then, we gradually modify the signcryption in

multiple hybrid steps into a signcryption of f̃∗
1 (z∗

1) in the challenge ciphertext.
And we show that each hybrid experiment is indistinguishable from the previous
one, hence then we can show that our HFSC scheme have selective message
confidentiality against CPA.

Sequence of Hybrids:

– Hyb0: This corresponds to the honest execution of the selective CPA-message
confidentiality game introduced in Definition 3.1 when the challenger sign-
crypts f̃∗

0 (z∗
0) in the challenge ciphertext CT ∗ = (e∗

1, e
∗
2, π

∗), i.e. the elements
are computed with algorithms e∗

l = PKE.Encrypt(pkl
PKE , f̃∗

0 (z∗
0); r∗

l) for
l = 1, 2 and π∗ ← SSS-NIZKPoK.Prove(CRS,X∗,W ∗), where the state-
ment X∗ = (pk1

PKE , pk2
PKE , vkSIG, e∗

1, e
∗
2) and W ∗ is a valid witness corre-

sponding to X∗.
– Hyb1,i for i ∈ [0, q]: In this sequence of hybrids, we change the form of

the decryption keys provided to the adversary in response to its decryption
key queries. In hybrid Hyb1,i, the first i decryption keys requested by the
adversary (with g0 ∈ G and {gj}j∈[i2] satisfying that the domain of gj contains
the range of gj−1 to C subject to the constraint that g0(f̃∗

0 (z∗
0)) = g0(f̃∗

1 (z∗
1)))

will result in decryption keys generated as DKg̃i
= (g̃i, O(P g̃i,sk1

P KE ,MPK)),
where g̃i = gi2 ◦ · · · ◦ g0 and P g̃i,sk1

P KE ,MPK and P g̃i,sk2
P KE ,MPK are depicted

in Fig. 1, while the remaining i + 1 to q decryption keys are generated by
performing

DKg0 = (g0, dkg0) = (g0, O(P g0,sk1
P KE ,MPK)), and for j ∈ [i2],

DKgj◦···◦g0 = (gj ◦ · · · ◦ g0, dkgj◦···◦g0) = (gj ◦ · · · ◦ g0, O(P gj ,dkgj−1◦···◦g0)),

where P gj ,dkgj−1◦···◦g0 on input a ciphertext CT = (e1, e2, π), first evaluates
the obfuscation dkgj−1◦···◦g0 on input CT to obtain x. It then evaluates gj on
x to obtain gj(x). Observe that Hyb1,0 is equivalent to Hyb0.

182 D. Pan et al.

– Hyb2: In this hybrid, the common reference string CRS included in the public
parameters MPK is generated as

(CRS, TR) ← SSS-NIZKPoK.SimSetup(1λ,X∗),

and the proof π∗ included in the challenge ciphertext CT ∗ is simulated as

π∗ ← SSS-NIZKPoK.SimProve(CRS, TR,X∗)

where X∗ = (pk1
PKE , pk2

PKE , vkSIG, e∗
1, e

∗
2). The rest of the experiment con-

tinues as in Hyb1,q using the simulated common reference string CRS.
– Hyb3: This hybrid is the same as the last hybrid except that the challenge

ciphertext is computed as

e∗
1 = PKE.Encrypt(pk1

PKE , f̃∗
0 (z∗

0); r∗
1),

e∗
2 = PKE.Encrypt(pk2

PKE , f̃∗
1 (z∗

1); r∗
2),

π∗ ← SSS − NIZKPoK.SimProve(CRS, TR,X∗)

where X∗ = (pk1
PKE , pk2

PKE , vkSIG, e∗
1, e

∗
2).

– Hyb4,i for i ∈ [0, q]: In this sequence of hybrids, we change the form
of the decryption keys provided to the adversary in response to its
decryption key queries. In Hyb4,i, the first i decryption keys requested
by the adversary will result in decryption keys generated as DKg̃i

=
(g̃i, O(P g̃i,sk2

P KE ,MPK)) while the remaining i+1 to q decryption keys are gen-
erated as DKg̃i

= (g̃i, O(P g̃i,sk1
P KE ,MPK)) as in Hyb3, where P g̃i,sk1

P KE ,MPK

and P g̃i,sk2
P KE ,MPK are depicted in Fig. 1. Observe that Hyb4,0 is equivalent

to Hyb3.
– Hyb5: This hybrid is identical to the hybrid Hyb4,q with the exception that

the challenge ciphertext is generated as CT ∗ = (e∗
1, e

∗
2, π

∗) where

e∗
1 = PKE.Encrypt(pk1

PKE , f̃∗
1 (z∗

1); r∗
1),

e∗
2 = PKE.Encrypt(pk2

PKE , f̃∗
1 (z∗

1); r∗
2),

and the proof π∗ is still simulated.
– Hyb6,i for i ∈ [0, q]: In this sequence of hybrids, we again change the

form of the decryption keys provided to the adversary in response to its
decryption key queries. In Hyb6,i, the first i decryption keys requested
by the adversary will result in decryption keys generated as DKg̃i

=
(g̃i, O(P g̃i,sk1

P KE ,MPK)) while the remaining i+1 to q decryption keys are gen-
erated as DKg̃i

= (g̃i, O(P g̃i,sk2
P KE ,MPK)) as in Hyb5, where P g̃i,sk1

P KE ,MPK

and P g̃i,sk2
P KE ,MPK are depicted in Fig. 1. Observe that Hyb6,0 is equivalent

to Hyb5.
– Hyb7: In this hybrid, the common reference string CRS included in MPK is

obtained as
CRS ← SSS-NIZKPoK.Setup(1λ),

Hierarchical Functional Signcryption: Notion and Construction 183

and the proof π∗ included in the challenge ciphertext CT ∗ is generated as

π∗ ← SSS-NIZKPoK.Prove(CRS,X∗,W ∗),

where X∗ = (pk1
PKE , pk2

PKE , vkSIG, e∗
1, e

∗
2) and W ∗ is a valid witness cor-

responding to X∗. The remainder of the experiment continues as in Hyb6,q

using the honestly generated common reference string CRS.
– Hyb8,i for i ∈ [0, q]: In this sequence of hybrids, we change the form of

the decryption keys provided to the adversary in response to its decryption
key queries. In hybrid Hyb8,i, the first i decryption keys requested by the
adversary (with g0 ∈ G and {gj}j∈[i2] satisfying that the domain of gj contains
the range of gj−1 to C subject to the constraint that g0(f̃∗

0 (z∗
0)) = g0(f̃∗

1 (z∗
1)))

will result in decryption keys DKg̃i
(g̃i = gi2◦· · ·◦g0) generated by performing

DKg0 = (g0, dkg0) = (g0, O(P g0,sk1
P KE ,MPK)), and for j ∈ [i2],

DKgj◦···◦g0 = (gj ◦ · · · ◦ g0, dkgj◦···◦g0) = (gj ◦ · · · ◦ g0, O(P gj ,dkgj−1◦···◦g0)),

where P gj ,dkgj−1◦···◦g0 on input a ciphertext CT = (e1, e2, π), first evaluates
the obfuscation dkgj−1◦···◦g0 on input CT to obtain x. It then evaluates gj on
x to obtain gj(x). The remaining i + 1 to q decryption keys are generated as
DKg̃i

= (g̃i, O(P g̃i,sk1
P KE ,MPK)), where P g̃i,sk1

P KE ,MPK and P g̃i,sk2
P KE ,MPK

are depicted in Fig. 1. Observe that Hyb8,0 is equivalent to Hyb7 and that
Hyb8,q corresponds to the selective CPA-message confidentiality game when
f̃∗
1 (z∗

1) is signcrypted in the challenge ciphertext.

Proofs of Hybrid Arguments: We now present a sequence of lemmas to show
that no PPT adversary can distinguish with non-negligible advantage between
any two consecutive hybrids described above, hence then the security in the
selective CPA-message confidentiality game follows.

Lemma 1. Assuming O is an iO for P/poly, no PPT adversary can distinguish
with non-negligible advantage between Hyb1,i and Hyb1,i+1 for i ∈ [0, q − 1].

Lemma 2. Assuming SSS-NIZKPoK system is computationally zero-
knowledge, no PPT adversary can distinguish with non-negligible advantage
between Hyb1,q and Hyb2.

Lemma 3. Assuming PKE is CPA secure, no PPT adversary can distinguish
with non-negligible advantage between the hybrids Hyb2 and Hyb3.

Lemma 4. Assuming O is an iO for P/poly and SSS-NIZKPoK is statistically
simulation-sound, no PPT adversary can distinguish with non-negligible advan-
tage between Hyb4,i and Hyb4,i+1 for i ∈ [0, q − 1].

Lemma 5. Assuming PKE is CPA secure, no PPT adversary can distinguish
with non-negligible advantage between the hybrids Hyb4,q and Hyb5.

184 D. Pan et al.

Lemma 6. Assuming O is an iO for P/poly and SSS-NIZKPoK is statistically
simulation-sound, no PPT adversary can distinguish with non-negligible advan-
tage between Hyb6,i and Hyb6,i+1 for i ∈ [0, q − 1].

Lemma 7. Assuming SSS-NIZKPoK
system is computationally zero-knowledge, no PPT adversary can distinguish
with non-negligible advantage between Hyb6,q and Hyb7.

Lemma 8. Assuming O is an iO for P/poly, no PPT adversary can distinguish
with non-negligible advantage between Hyb8,i and Hyb8,i+1 for i ∈ [0, q − 1].

The proofs of Lemmas 1–8 are available in the full version. ��
Theorem 3.2 (Ciphertext Unforgeability of HFSC.) Under the assump-
tion that SIG is existentially unforgeable against CMA and SSS-NIZKPoK is a
proof of knowledge, the HFSC scheme described in Sect. 3.2 is selectively cipher-
text unforgeable against CMA as per the definition given in Sect. 3.1.

The proof of Theorem 3.2 is available in the full version.

4 Conclusion

In this paper, we investigate hierarchical functional signcryption schemes, which
augments FSC with delegation capabilities, offering significantly more expressive
access control. We first provide formal definition of hierarchical functional sign-
cryption and formulate its security requirements. And then, we present a generic
construction of hierarchical functional signcryption from indistinguishability
obfuscation and statistically simulation-sound non-interactive zero-knowledge
proof of knowledge.

Acknowledgement. This work is supported by National Key R&D Program of China
(No. 2017YFB0802500). This work is also partially supported by the Swedish Research
Council (Vetenskapsr̊adet) through the grant PRECIS (621-2014-4845).

References

1. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfusca-
tion and applications. IACR Cryptology ePrint Archive 2013, 689 (2013)

2. Backes, M., Meiser, S., Schröder, D.: Delegatable functional signatures. In: Cheng,
C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol.
9614, pp. 357–386. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49384-7 14

3. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 29

4. Brakerski, Z., Chandran, N., Goyal, V., Jain, A., Sahai, A., Segev, G.: Hierarchical
functional encryption (2017)

https://doi.org/10.1007/978-3-662-49384-7_14
https://doi.org/10.1007/978-3-662-49384-7_14
https://doi.org/10.1007/978-3-642-54631-0_29

Hierarchical Functional Signcryption: Notion and Construction 185

5. Brakerski, Z., Dagmi, O.: Shorter circuit obfuscation in challenging security mod-
els. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 551–570.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-9 29

6. Chandran, N., Goyal, V., Jain, A., Sahai, A.: Functional encryption: decentralised
and delegatable. IACR Cryptology ePrint Archive 2015, 1017 (2015)

7. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional signcryption: notion, con-
struction, and applications. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS,
vol. 9451, pp. 268–288. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
26059-4 15

8. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: IEEE
Symposium on Foundations of Computer Science (2013)

9. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53644-5 10

10. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 29

11. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 21

12. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 1–35 (2012)

13. Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption)
� cost(signature) + cost(encryption). In: Kaliski, B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997). https://doi.org/10.
1007/BFb0052234

14. Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 15

https://doi.org/10.1007/978-3-319-44618-9_29
https://doi.org/10.1007/978-3-319-26059-4_15
https://doi.org/10.1007/978-3-319-26059-4_15
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/BFb0052234
https://doi.org/10.1007/BFb0052234
https://doi.org/10.1007/978-3-662-46803-6_15

Attack

A Critique of Game-Based Definitions
of Receipt-Freeness for Voting

Ashley Fraser1(B), Elizabeth A. Quaglia1, and Ben Smyth2

1 Information Security Group, Royal Holloway, University of London, London, UK
{Ashley.Fraser.2016,Elizabeth.Quaglia}@rhul.ac.uk

2 Interdisciplinary Centre for Security, Reliability and Trust,
University of Luxembourg, Esch-sur-Alzette, Luxembourg

research@bensmyth.com

Abstract. We analyse three game-based definitions of receipt-freeness;
uncovering soundness issues with two of the definitions and complete-
ness issues with all three. Hence, two of the definitions are too weak,
i.e., satisfiable by voting schemes that are not intuitively receipt-free.
More precisely, those schemes need not even satisfy ballot secrecy. Con-
sequently, the definitions are satisfiable by schemes that reveal how voters
vote. Moreover, we find that each definition is limited in scope. Beyond
soundness and completeness issues, we show that each definition captures
a different attacker model and we examine some of those differences.

1 Introduction

Electronic voting, or e-voting, is the process of voting with the use of electronic
aids at some stage in the voting process. We use the term e-voting to refer to
remote e-voting that does not require paper at any point in the process and can
be accomplished anywhere in the world. E-voting is gaining popularity, both for
public office elections and other voting scenarios. In particular, Australia has
used iVote [19] for state general elections in New South Wales since 2011 and
Estonia has implemented Internet voting in municipal elections since 2005 and in
parliamentary elections since 2007 [35]. Moreover, the International Association
for Cryptologic Research (IACR) use Helios [1,17] to elect board members [18].

E-voting has created new opportunities, including the introduction of conve-
nience to the voting process, and the potential to automate the process of tallying
elections when compared to hand-counting ballots in a traditional paper-based
election. It also has the potential to produce verifiable elections, one of the main
security goals of e-voting.1 E-voting also creates new challenges. In particular,
voter privacy is a concern. This is not new or unique to electronic voting but is
particularly true for schemes that do not rely on a physical voting booth because
1 Verifiability is typically defined as individual verifiability (any voter can check that

their ballot is counted), universal verifiability (anyone can check that the published
tally is correct) and eligibility verifiability (only eligible voters voted). The interested
reader can consult [11,31,34] for a discussion on the subject of verifiability.

c© Springer Nature Switzerland AG 2019
R. Steinfeld and T. H. Yuen (Eds.): ProvSec 2019, LNCS 11821, pp. 189–205, 2019.
https://doi.org/10.1007/978-3-030-31919-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-31919-9_11

190 A. Fraser et al.

the voter cannot rely upon the privacy afforded by the booth. A step towards
overcoming the challenge of ensuring voter privacy is to provide rigorous privacy
definitions for e-voting schemes, and then formally prove that a scheme satisfies
a given definition.

Privacy for e-voting is often presented as a hierarchy of security proper-
ties [13] as follows. First, ballot secrecy, whereby a voter’s vote remains secret
throughout the election, except when the result of the election reveals the vote,
or when partial information about the vote can be deduced from the result.
Second, receipt-freeness, the property that a voter cannot prove their vote to
anyone. Finally, coercion-resistance, whereby a voter can cast their vote as they
intended, even if they are under the control of an attacker for some time during
the election.

The relationship between these privacy properties is often considered to
be linear [13]. In particular, receipt-freeness strengthens ballot secrecy with
additional protection against vote buying. This ensures that potential attack-
ers have no incentive to buy votes, since a voter cannot prove how they
voted, and therefore cannot prove that their vote was truly ‘bought’. Moreover,
coercion-resistance strengthens receipt-freeness by protecting against randomiza-
tion, abstention and simulation attacks [22]. However, Küesters et al. challenge
this hierarchy, showing that increasing the level of ballot secrecy can lead to a
decrease in the level of coercion-resistance [24].

Formal ballot secrecy definitions were surveyed in [5,29], where Bernhard et
al. and Smyth compared existing ballot secrecy definitions from the literature
and presented their own definitions. Similarly, definitions of coercion resistance
were surveyed in [32]. Receipt-freeness, on the other hand, has not been surveyed,
which motivates this work.

The earliest definitions of receipt-freeness are informal, with the first def-
inition credited to Benaloh and Tuinstra [4]. A general shift towards formal
definitions occurred in response to concerns that voting schemes may appear
to be receipt-free when they are not [28]. The early formal definitions, with
the exception of Moran and Naor’s simulation-based definition [27], are formu-
lated in the symbolic model, for example, [2,8,14,15,20,21]. These definitions
use a variety of logical languages to capture the intuition of receipt-freeness. In
fact, these definitions helped to shape the intuition and determine how to define
receipt-freeness. More recently, there has been a movement towards game-based
definitions of receipt-freeness, possibly driven by the simplicity of proof tech-
niques in the model. Given that this is a young area of research and, to the best
of our knowledge, there is no examination that tests the rigour of these game-
based definitions, we revisit existing game-based definitions in the literature and
perform a critical analysis.

1.1 Our Contributions

We analyse three game-based definitions of receipt-freeness from the literature: a
receipt-freeness definition by Kiayias et al., which we call KZZ [23] (Sect. 3); one
by Chaidos et al., which we call CCFG [9] (Sect. 4); and one by Bernhard et al. for

A Critique of Game-Based Definitions of Receipt-Freeness for Voting 191

schemes that use deniable vote updating, a process that allows a voter to change
their vote without detection, which we call DKV [6,7] (Sect. 5). We cast each
definition into our syntax (Definition 1) to facilitate analysis and comparison of
definitions.

We uncover soundness issues with KZZ and CCFG, and find all three defini-
tions to be incomplete. The soundness issue in KZZ arises because the defini-
tion is satisfied by schemes that reveal how voters vote when not all voters vote
(Sect. 3.1). An issue arises in CCFG because Chaidos et al. do not consider strong
consistency (Sect. 4.1), a property defined to accompany ballot secrecy defini-
tion BPRIV [5], upon which CCFG is based, and is used to detect some attacks
against ballot secrecy. The definitions are incomplete because some schemes are
out of scope. Schemes that count votes in some particular ways and others that
allow voters to submit multiple ballots are out of scope of KZZ (Sect. 3.2). We
prove that neither KZZ nor CCFG is satisfiable by JCJ [22] (Sects. 3.2 and 4.2).
Finally, DKV limits the class of schemes considered to those that use deniable
vote updating.

We discuss the attacker model adopted by each definition, showing that each
definition considers a different attacker model. We find that KZZ models a voter
that attempts to prove their vote to an attacker, without allowing the voter
to interact with the attacker before voting. In particular, the attacker cannot
provide instructions to the voter (Sect. 3.3). We demonstrate that the attacker
model in CCFG is much stronger, capturing an attacker with some control over
the voter (Sect. 4.3). We also comment that DKV does not model a voter who
attempts to prove their vote, but only asks whether an attacker can determine
whether a voter has updated their vote from the attacker’s choice or not. We
discuss the consequences of these differing attacker models, questioning whether
each definition captures the core intuition of receipt-freeness.

2 Preliminaries

We let A(y1, . . . , yn; c) denote the output of algorithm A on inputs y1, . . . , yn

and coins c, and let A(y1, . . . , yn) denote A(y1, . . . , yn; c) for some coins c chosen
uniformly at random. Moreover, we let x ← M denote assignment of M to x.

An e-voting scheme typically consists of the following five phases. First
(Setup), the election administrator2 computes and publishes public parameters
of the scheme. Secondly (Register), the administrator provides eligible voters
with a public and private credential and adds the public credential to a list L.
Thirdly (Vote), each voter selects their vote v. This vote is stored as a ballot
b on the ballot box BB. Fourthly (Tally), a tallier computes and publishes the
result. Finally (Verification), voters verify that their ballot is on the ballot box
and observers verify that the tally is correct. We now formally introduce the
syntax for an e-voting scheme, adapted from [5,9], that follows this structure.

2 For simplicity, we consider each entity to be a single individual but the role of any
individual can be distributed.

192 A. Fraser et al.

Definition 1 (E-voting scheme). An e-voting scheme Γ is a tuple of prob-
abilistic polynomial-time algorithms (Setup,Register,Vote,Append,Tally,Verify)
relative to a result function f : V → R where V is the set of all possible votes
and R is the result space such that:

Setup(1λ) On input security parameter 1λ, algorithm Setup outputs an election
key pair pk and sk, where pk is the public key and sk is the private key.

Register(1λ) On input security parameter 1λ, algorithm Register outputs a pub-
lic/private credential pair upk and usk and updates the list L with upk (i.e.
L ← L ∪ {upk}).

Vote(v, usk, pk, 1λ) On input vote v, private credential usk, public key pk and
security parameter 1λ, algorithm Vote outputs a ballot b.

Append(BB, b) On input ballot box BB and ballot b, algorithm Append updates
BB to include the ballot b and outputs the updated ballot box.

Tally(BB,L, sk, 1λ) On input ballot box BB, list L, private key sk and security
parameter 1λ, algorithm Tally computes the election outcome r, and outputs
r with a tallying proof ρ that the tally is correct.

Verify(BB, r, ρ, pk, 1λ) On input ballot box BB, election outcome r, proof ρ, public
key pk and security parameter 1λ, any interested party can check that the
outcome of the election was computed correctly. The output of algorithm
Verify is 1 if the election result verifies and 0 otherwise.

E-voting schemes must satisfy correctness: let f be a result function,3 mb be
the maximum number of ballots and mc be the maximum number of candi-
dates. We say that Γ satisfies correctness with respect to f , mb and mc if there
exists a negligible function negl such that, for all security parameters λ and
choices v1, . . . , vnv

∈ V where nv is an integer such that nv ≤ mb ∧ |V| ≤ mc,
Pr

[
(pk, sk) ← Setup(1λ); for i = 1, . . . , nv:

{
(upki, uski) ← Register(1λ); bi ←

Vote(vi, uski, pk, 1λ);BB ← Append(BB, bi)
}
; L ← {upk1, . . . , upknv

}; (r, ρ) ←
Tally(BB,L, sk, 1λ): r = f(v1, . . . , vnv

)
]

> 1 − negl(λ).

Our correctness definition uses ideas from the correctness definitions in [5,34] and
considers an experiment in which the outcome is calculated in two ways: (1) the
outcome is calculated in the normal way by running Tally, and (2) the outcome
is computed by applying a result function f to all the votes input to Vote. Those
two ways must compute equivalent outcomes to satisfy the correctness property.

3 Receipt-Freeness by Kiayias, Zacharias and Zhang
(KZZ)

In this section, we analyse the receipt-freeness definition by Kiayias et al. [23],
which we call KZZ. The game captures the following idea: the attacker should be
unable to distinguish between a voter who submits a vote and either proves that
they submitted that vote, or attempts to prove that they submitted a different
vote.
3 Function f must itself be correct, i.e., f must output the election outcome with

respect to v1, . . . , vnv .

A Critique of Game-Based Definitions of Receipt-Freeness for Voting 193

Definition 2 (KZZ). Let Γ = (Setup,Register,Vote,Append,Tally,Verify) be an
e-voting scheme, A be an adversary, S be a simulator,4 λ be a security parameter,
nv, nc and t be positive integers and β be a bit. Let ExpKZZ,β

A,S,Γ (λ, nv, nc, t) be the
game that proceed as follows:

1. The challenger initializes BB as an empty list and inputs 1λ, nv, nc to adver-
sary A, which outputs a set of eligible voters I = {id1, . . . , idnv

} and a set of
possible vote choices V such that |V| = nc.

2. The challenger computes Setup(1λ) to produce the key pair (pk, sk) and,
for each i ∈ {1, . . . , nv}, computes Register(1λ) to produce a credential
pair (upk, usk). Public credentials are added to the list L, hence, L =
{upk1, . . . , upknv

}. The challenger inputs pk and L to A.
3. For each i ∈ {1, . . . , nv}, A decides whether idi is corrupt.

– If so, the challenger inputs uski to A, which outputs a ballot b.
– Otherwise (idi is not corrupt), A outputs votes v0, v1 ∈ V to the chal-

lenger, the challenger computes ballot b ← Vote(vβ , uski, pk, 1λ), and the
challenger returns the ballot to A, along with either the view view of the
voter during Vote when β = 0 or S(view) when β = 1.5

Finally, the challenger computes BB ← Append(BB, b).
4. The challenger computes (r, ρ) ← Tally(BB,L, sk, 1λ) and inputs r, ρ and BB

to A, which outputs a bit β′.
5. The game outputs 1 if the following conditions are satisfied: (i) β′ = β, (ii)

the number of corrupted voters is bounded by t, and (iii) f(〈v0〉idi∈Vh
) =

f(〈v1〉idi∈Vh
), i.e., with respect to uncorrupted voters, denoted by the set Vh,

the outcome of the election computed via the result function f is the same,
regardless of whether β = 0 or β = 1.

An e-voting scheme Γ satisfies KZZ for nv voters, nc candidates and at most t
corrupted voters if there exists a probabilistic polynomial-time simulator S and
a negligible function negl such that, for all probabilistic polynomial-time adver-
saries A and all security parameters λ, we have
∣
∣
∣ Pr

[
ExpKZZ,0

A,S,Γ (λ, nc, nv, t) = 1
] − Pr

[
ExpKZZ,1

A,S,Γ (λ, nc, nv, t) = 1
]∣∣
∣ ≤ negl(λ) .

We demonstrate a soundness issue with KZZ, namely, that KZZ guarantees
receipt-freeness only if all voters vote (Sect. 3.1). Moreover, KZZ is incom-
plete because there exists schemes that are receipt-free but do no satisfy KZZ
(Sect. 3.2).

3.1 Soundness Issue

KZZ requires that a single ballot is submitted to the ballot box on behalf of each
voter. As a result, KZZ declares schemes as receipt-free that reveal how voters
4 Simulator S models a voter providing fake evidence of a vote they did not submit.
5 view is defined as the “internal state of the voter” [23]. It refers to any information

that the voter inputs to the voting client to produce a ballot, including, but not
necessarily limited to, private credentials and the coins input to algorithm Vote.

194 A. Fraser et al.

vote, when not all voters vote. To illustrate this, consider an e-voting scheme
for at most nv voters. If less than nv voters vote and, hence, |BB| ≤ nv − 1,
define algorithm Tally to output an election outcome r = {(id1, v1), . . . (idi, vi)}
where i ≤ nv − 1, i.e., it lists each voter that voted and the vote submitted
by that voter. Clearly, this scheme is not receipt-free. Indeed, the scheme does
not satisfy ballot-secrecy because the result announces the link between voter
and vote. However, in the KZZ game, a ballot must be submitted for every
voter, so this privacy leakage will not be identified. Therefore, the scheme may
satisfy KZZ whilst not being receipt-free. Consequently, a proven secure scheme
may leak every voter’s vote when a real-world deployment cannot ensure that
all voters vote. Hence, there may exist schemes that are proven secure but, in
practice, do not offer any degree of privacy for voters.

3.2 Completeness Issues

Schemes with Multiple Ballots Are Out of Scope: KZZ requires the sub-
mission of a single ballot on behalf of each voter. Yet, some e-voting schemes
require the submission of more than one ballot to achieve receipt-freeness. For
instance, e-voting schemes may use fake private credentials (that are indistin-
guishable from real private credentials). Such schemes require voters to cast
dummy ballots using fake credentials and prove the contents of dummy ballots
(rather than real ballots) to an attacker. A voter can then cast a ballot for a
different vote using their real credential. In these schemes it is necessary that a
voter submits two ballots in order to submit a vote but prove that they submit-
ted a different vote. JCJ [22] is an e-voting scheme that achieves receipt-freeness
this way, hence, the scheme cannot satisfy KZZ. We obtain the following result,
a proof of which appears in the full version of this paper [16].

Proposition 1. JCJ does not satisfy KZZ.

KZZ Limits the Set of Result Functions for Which a Scheme Can Be
Declared Receipt-Free: We demonstrate this limitation, which exists as a
consequence of the condition f(〈v0〉idi∈Vh

) = f(〈v1〉idi∈Vh
), by considering an

informal argument used by Bernhard et al. in [5] to show that ballot-secrecy
definition PRIV [3] has the same limitation. Consider an e-voting scheme with
two possible candidate choices, namely V = {0, 1}, for which f outputs the
winning candidate, or ‘0’ in the event of a draw. An adversary against the KZZ
game can submit a ballot for ‘1’ on behalf of a corrupted voter and can submit
votes on behalf of all other voters such that 〈v0〉idi∈Vh

has exactly half entries
equal to ‘0’ and half equal to ‘1’, and 〈v1〉idi∈Vh

has all entries equal to ‘0’. Then,
f(〈v0〉idi∈Vh

) = f(〈v1〉idi∈Vh
) = 0, but the election outcome r = 1 (if β = 0) or

0 (if β = 1). Thus, the adversary can output β′ = β and the scheme does not
satisfy KZZ.

A Critique of Game-Based Definitions of Receipt-Freeness for Voting 195

3.3 Further Discussion

KZZ models attack scenarios in which a voter provides evidence of their vote
(including their private credential) to the attacker only after voting, thereby
assuming that honest voters do not reveal their private credentials until they
have voted. We illustrate that DEMOS, an e-voting scheme that satisfies KZZ [23,
Theorem 5], is no longer receipt-free if an attacker can compel a voter to reveal
their credentials before voting, that is, when the assumption does not hold.

DEMOS provides each eligible voter with a voting card (which is a private
credential in our terminology). This voting card consists of two parts: the first
part contains a list of candidates and a unique vote code associated with each
candidate. This is repeated on the second part of the voting card, although
the vote codes associated with each candidate are different. To cast a ballot,
each voter selects a part of their voting card (part ‘0’ or part ‘1’, which we
call the coins, using our terminology) and inputs the selected part and the vote
code listed next to their chosen candidate to the voting client. The part of the
voting card and the vote code constitute the voter’s ballot. The ballot box is
updated with the ballot, i.e., algorithm Append outputs BB ‖ b. Intuitively,
DEMOS satisfies KZZ because voters can swap vote codes on the voting card,
and can make the vote code on their ballot correspond to any candidate they
wish. Therefore, the voter can convince the attacker that the submitted vote
code corresponds to the attacker’s choice of candidate.

However, consider the following scenario: an attacker wants a voter to vote for
candidate A but the voter wants to vote for candidate B. The attacker requests
to see the voter’s voting card before voting. Only after seeing the voting card,
the attacker requests that the voter cast a ballot for A. In this scenario, the voter
may not have switched vote codes for A and B. Thus, the voter cannot vote for
A and convince the attacker that they voted for B. In contrast, if an attacker
does not see the voting card until after voting, the voter can switch the vote
codes for A and B. Therefore, DEMOS provides a guarantee of receipt-freeness
only if the voting card is revealed after voting.

The scenario above describes an attacker who interacts with a voter before
voting, which is outside the scope of KZZ. The question is: should this attack sce-
nario be captured by receipt-freeness, or does it fall under the remit of coercion-
resistance? We do not address this in our informal definition of receipt-freeness
(Sect. 1) because this is a grey area in the literature. For instance, Delaune et
al. define receipt-freeness as the property that “a voter does not gain any infor-
mation (a receipt) which can be used to prove to a coercer that she voted in a
certain way” and coercion-resistance as “a voter cannot cooperate with a coercer
to prove to him that she voted in a certain way” [14]. This suggests that providing
information to an attacker before voting is captured by coercion-resistance, not
receipt-freeness. In fact, Delaune et al.’s definition of receipt-freeness implies
that a voter uses information to prove their vote after voting, whereas pro-
viding information to an attacker before voting is considered cooperation with
an attacker. It appears that KZZ captures this intuition. On the other hand,
some authors take a different approach. We discuss an approach that leads to a

196 A. Fraser et al.

different conclusion in Sect. 4. For now, we note that establishing a boundary
between receipt-freeness and coercion-resistance is an open problem.

4 Receipt-Freeness by Chaidos et al. (CCFG)

In this section, we consider a definition of receipt-freeness by Chaidos et al. [9],
which we call CCFG. Chaidos et al. consider ballot boxes that contain ballots
validated by an algorithm Valid and consider ballot boxes as private, introducing
an algorithm Publish that outputs a public view of a ballot box, which we call
the bulletin board. Formally, Chaidos et al. extend the definition of an e-voting
scheme (Definition 1) to include algorithms Valid and Publish such that:

Valid(BB, b) On input ballot box BB and a ballot b, algorithm Valid outputs �,
if the ballot is valid, or ⊥ otherwise.

Publish(BB) On input ballot box BB, algorithm Publish outputs bulletin board
PBB.

Furthermore, algorithm Verify is redefined to take as input a bulletin board PBB,
rather than a ballot box BB. All other aspects of Verify remain the same.6

In this context, Chaidos et al. define CCFG as an extension of the ballot
secrecy game BPRIV by Bernhard et al. [5]. CCFG captures the idea that the
attacker should be unable to determine whether, throughout the game, they are
viewing a real or fake election, when the outcome is always computed for the real
election. As such, CCFG models two ballot boxes, BB0 and BB1, and, respectively,
two bulletin boards, PBB0 and PBB1. The adversary must determine whether
they are viewing PBB0 or PBB1, when the outcome is always computed over
the contents of BB0.

CCFG relies on algorithms SimSetup and SimProof, which facilitate the abil-
ity to simulate the tallying proof ρ such that the outcome computed over the
contents of BB0 appears to be computed over the contents of BB1, when β = 1.
Algorithms SimSetup and SimProof are defined as follows:

SimSetup(1λ) On input security parameter 1λ, algorithm SimSetup outputs an
election key pair pk and sk and auxiliary information aux, which is used to
output a simulated proof during the tally phase of the election.

SimProof(BB, r, aux) On input ballot box BB, election outcome r and auxiliary
information aux, algorithm SimProof outputs a proof ρ that r is the outcome
of an election computed over the contents of BB.

Using those algorithms, CCFG is formalized as follows:

Definition 3 (CCFG). Let Γ = (Setup,Register,Vote,Valid,Append,Tally,
Publish,Verify) be an e-voting scheme, A be an adversary, λ be a security param-
eter and β be a bit. Let ExpCCFG,β

A,Γ (λ) be the game that proceeds as follows:7 the

6 In this section, we use the term e-voting scheme to refer to Definition 1 plus algo-
rithms Valid and Publish.

7 We omit SimSetup and SimProof as inputs to game ExpCCFG,β
A,Γ (λ) for simplicity.

A Critique of Game-Based Definitions of Receipt-Freeness for Voting 197

challenger initializes BB0 and BB1 as empty lists and Vr and Vc as empty sets.
Adversary A can then query the oracles defined in Fig. 1, under the constraint
that Osetup must be queried before any other oracles and Otally appears only as
the final oracle call. The adversary terminates by outputting a bit β′. The game
outputs 1 if β′ = β.

An e-voting scheme Γ satisfies CCFG if there exists algorithms SimSetup and
SimProof and a negligible function negl such that, for all probabilistic polynomial-
time adversaries A and all security parameters λ, we have

∣
∣
∣ Pr

[
ExpCCFG,0

A,Γ (λ) = 1
] − Pr

[
ExpCCFG,1

A,Γ (λ) = 1
]∣∣
∣ ≤ negl(λ) .

We show that CCFG is unsound as it overlooks the needs for strong consistency
(Sect. 4.1) and is incomplete, limiting the class of schemes that can be declared
receipt-free (Sect. 4.2).

4.1 Soundness Issue

A property called strong consistency is introduced in [5] to accompany BPRIV.
Strong consistency requires that the outcome output by Tally is consistent with
the application of result function f to the votes and is necessary to detect tally
policies that may lead to an attack against ballot secrecy. Therefore, as noted in
[5, Section IV.D], an e-voting scheme must satisfy BPRIV and strong consistency
to achieve ballot secrecy. However, Chaidos et al. do not consider this property
in [9], which results in an unsound definition of receipt-freeness. In fact, there
exists schemes satisfying CCFG that are vulnerable to attacks that violate ballot
secrecy. We briefly recall an example in [5, Section IV.D], that illustrates this:
define an e-voting scheme for two candidates (say, A and B) that outputs a
multiset of the submitted votes as the election outcome. Suppose this scheme
satisfies CCFG. Now, define a modified scheme such that, if the first voter votes
for candidate A, this vote is removed from the election outcome. An adversary
against CCFG cannot distinguish games ExpCCFG,0

A,Γ (λ) and ExpCCFG,1
A,Γ (λ), where Γ

is the modified scheme, because the tally is always computed over the contents
of BB0 and so the election outcome will be the same in both games. However,
through removal of the first vote, the tally for this modified scheme allows the
adversary to determine whether the first vote is for candidate A or B. Therefore,
the modified scheme reveals how the first voter voted. We refer the reader to
[5, Section IV.D] for full details of this argument. Unfortunately, CCFG cannot
simply adopt the original definition of strong consistency by Bernhard et al.,
because it is defined over different syntax. In particular, the original definition
does not consider algorithm Append. Adapting the original definition to consider
this algorithm is a possible direction for future work.

4.2 Completeness Issue

We observe that CCFG is unsatisfiable by schemes for which Append(BB, b) out-
puts BB ‖ b and Publish(BB) outputs BB. That is, Append(BB, b) appends ballot

198 A. Fraser et al.

Osetup()

if β = 0 then

(pk, sk) ← Setup(1λ)

else

(pk, sk, aux) ← SimSetup(1λ)

return pk

Oregister(id)

if (id, upk, usk) /∈ Vr then

(upk, usk) ← Register(1λ)

L ← L ∪ {upk}
Vr ← Vr ∪ {(id, upk, usk)}

return upk

Ocorrupt(id)

if (id, upk, usk) ∈ Vr then

Vc ← Vc ∪ {(id, upk)}
return (upk, usk)

Ovote(id, v0, v1)

if v0, v1 ∈ V ∧ (id, upk, usk) ∈ Vr then

b0 ← Vote(v0, usk, pk, 1λ)

b1 ← Vote(v1, usk, pk, 1λ)

BB0 ← Append(BB0, b0)

BB1 ← Append(BB1, b1)

Ocast(id, b)

if Valid(BBβ , b) = � then

BB0 ← Append(BB0, b)

BB1 ← Append(BB1, b)

Otally()

if β = 0 then

(r, ρ) ← Tally(BB0, L, sk, 1λ)

else

(r, ρ′) ← Tally(BB0, L, sk, 1λ)

ρ ← SimProof(BB1, r, aux)

return (r, ρ)

Oboard()

return Publish(BBβ)

Oreceipt(id, b0, b1)

if (id, upk) ∈ Vc ∧ Valid(BB0, b0) = � ∧ Valid(BB1, b1) = � then

BB0 ← Append(BB0, b0)

BB1 ← Append(BB1, b1)

Fig. 1. Oracles used in the receipt-freeness game CCFG by Chaidos et al. [9]

b to ballot box BB without processing the ballot in any way and Publish(BB) out-
puts BB such that the ballot that appears on the public view of BB is identical
to the ballot submitted by the voter. Formally, we have the following result.

Proposition 2. Let Γ = (Setup,Register,Vote,Valid,Append,Tally,Publish,
Verify) be an e-voting scheme for which Append(BB, b) outputs BB ‖ b and
Publish(BB) outputs BB. Then Γ does not satisfy CCFG.

A Critique of Game-Based Definitions of Receipt-Freeness for Voting 199

Proof. We construct an adversary A against the CCFG game as follows. A queries
pk ← Osetup(), upk ← Oregister(id) and (upk, usk) ← Ocorrupt(id). Then, A
computes b0 ← Vote(v0, usk, pk, 1λ) and b1 ← Vote(v1, usk, pk, 1λ) and queries
Oreceipt(id, b0, b1), PBBβ ← Oboard() and (r, ρ) ← Otally(). It follows that
PBBβ contains the single entry b0 (if β = 0) or b1 (if β = 1). Therefore, A can
correctly distinguish ExpCCFG,0

A,Γ (λ) and ExpCCFG,1
A,Γ (λ) and outputs β′ = β. Thus,

the e-voting scheme Γ does not satisfy CCFG. �
CCFG is unsatisfiable by these schemes because, in the CCFG game, the adver-

sary submits two ballots to Oreceipt. To satisfy CCFG, the adversary must be
unable to distinguish a bulletin board that contains ballot b0 and a bulletin
board that contains ballot b1, where the adversary queries Oreceipt(id, b0, b1)
in the CCFG game. This requires that ballots are modified in some way before
they are appended to BB0 and BB1, or before PBBβ is published. Otherwise,
the adversary can trivially distinguish as shown in the proof of Proposition 2.
Partly, CCFG excludes these schemes by design. Chaidos et al. acknowledge that
a scheme satisfies CCFG only if it achieves receipt-freeness without the voter rely-
ing on some evasion strategy [9]. Generally, schemes that provide voters with an
evasion strategy, a procedure that the scheme provides to allow the voter to
evade coercion, do not rely on ballot modification but instead on the use of an
evasion strategy to achieve receipt-freeness. This means that schemes that rely
on evasion strategies to achieve receipt-freeness cannot satisfy CCFG despite the
fact that they are receipt-free. For example, JCJ relies on fake credentials, a
type of evasion strategy, to achieve receipt-freeness (Sect. 3.2). Thus, we have
the following corollary.

Corollary 1. JCJ does not satisfy CCFG.

The corollary follows from Proposition 2, since JCJ ballots are not modified
before they are appended to the ballot box and Publish(BB) outputs BB.

4.3 Further Discussion

CCFG captures the scenario in which an honest voter constructs their ballot and
gives the attacker the coins used (or possibly uses coins provided by the attacker)
to construct their ballot. This allows the attacker to reconstruct the ballot locally
and then check whether the ballot appears on the bulletin board. CCFG captures
this scenario through the oracle Oreceipt, which allows the adversary to construct
ballots on behalf of voters and then submit these ballots to Oreceipt. The adver-
sary can then view PBBβ , and expects to see a ballot corresponding to one of
those submitted to Oreceipt.

Chaidos et al. take a very different approach to the intuition of receipt-
freeness than Kiayias et al. As mentioned in Sect. 3.3, Delaune et al. consider
a voter that cooperates with an attacker (e.g. by using coins provided by the
attacker) to fall outwith the scope of receipt-freeness. Moreover, Kiayias et al.
exclude this scenario from the definition of KZZ. However, Chaidos et al. consider

200 A. Fraser et al.

this to fall within the scope of receipt-freeness although, admittedly, they do
refer to CCFG as a definition of strong receipt-freeness. Therefore, we see that
there is no consensus over the boundary between receipt-freeness and coercion-
resistance in the literature and that definitions of receipt-freeness capture varying
intuitions.

5 Receipt-Freeness for Deniable Vote Updating
by Bernhard, Kulyk and Volkamer (DKV)

In this section, we analyse a definition of receipt-freeness by Bernhard et al. [6,7]
for schemes that use deniable vote updating, which we call DKV. Bernhard et al.
construct a game-based definition of receipt-freeness for KTV-Helios [25], a vari-
ant of the Helios e-voting scheme that uses deniable vote updating whereby a
voter casts a ballot, and then changes their vote, without an attacker detecting
the change. In [7, Section 4.1] it was recognized that CCFG does not apply to
KTV-Helios because deniable vote updating is a type of evasion strategy and the
strategy is required to achieve receipt-freeness. Therefore, Bernhard et al. intro-
duce a new receipt-freeness definition that modifies CCFG to schemes that use
deniable vote updating. We rely on the definition presented in [6] (the technical
report associated with the conference version of the paper [7]).

DKV captures the following idea: the attacker should be unable to distinguish
a voter who submits a vote and a voter who submits the same vote but then
deniably updates their vote, where the adversarial advantage of distinguishing is
denoted δ. DKV adopts e-voting syntax (Definition 1) extended with algorithm
Valid (Sect. 4) and considers timestamps such that algorithm Vote is redefined
to take additional input of a timestamp t, indicating the time at which a ballot
is to be cast. DKV relies on algorithms SimSetup and SimProof (Sect. 4) and,
additionally, algorithms DenyUpdate and Obfuscate such that:

DenyUpdate(v0, v1, usk, tu, pk, 1λ) On input votes v0, v1, private credential usk,
timestamp tu chosen uniformly at random from some probability distribution
P, public key pk and security parameter 1λ, algorithm DenyUpdate outputs
a ballot that updates a vote from vote v0 to vote v1 at timestamp tu.

Obfuscate(BB, id) On input ballot box BB and voter id, algorithm Obfuscate
casts dummy ballots for voter id to hide ballots cast by id in the event that
id deniably updates their vote, and outputs the updated ballot box.

Using those algorithms, DKV is formalized as follows:

Definition 4 (DKV). Let Γ = (Setup,Register,Vote,Valid,Append,Tally,Verify)
be an e-voting scheme with timestamps, A be an adversary, λ be a security
parameter and β be a bit. Let ExpDKV,β

A,Γ (λ) be the game that proceeds as fol-
lows: the challenger initializes BB0 and BB1 as empty lists. If β = 0 (resp.,
β = 1), the challenger computes Setup(1λ) to produce the keypair (pk, sk) (resp.,
computes SimSetup(1λ) to produce the keypair (pk, sk) and auxiliary informa-
tion aux) and, for each i ∈ {1, . . . , nv}, computes Register(1λ) to produce a

A Critique of Game-Based Definitions of Receipt-Freeness for Voting 201

Ovote(id, v0, v1, t)

b0 ← Vote(v0, usk, t, pk, 1λ)

b1 ← Vote(v1, usk, t, pk, 1λ)

if Valid(BBβ , bβ) = � then

BB0 ← Append(BB0, b0)

BB1 ← Append(BB1, b1)

Otally()

if β = 0

(r, ρ) ← Tally(BB0, L, sk, 1λ)

else

(r, ρ′) ← Tally(BB0, L, sk, 1λ)

ρ ← SimProof(BB1, r, aux)

return (r, ρ)

Ocast(id, b)

if Valid(BBβ , b) then

BB0 ← Append(BB0, b)

BB1 ← Append(BB1, b)

Oreceipt(id, v0, v1, t)

if v0, v1 ∈ V then

b0 ← Vote(v0, usk, t, pk, 1λ)

BB0 ← Append(BB0, b0)

BB1 ← Append(BB1, b0)

tu ←$ P

b1 ← DeniablyUpdate(v0, v1, usk, tu, pk, 1λ)

BB1 ← Append(BB1, b1)

BB0 ← Obfuscate(BB0, id)

BB1 ← Obfuscate(BB1, id)

Fig. 2. Oracles used in the receipt-freeness game DKV by Bernhard et al. [6]

credential pair (upk, usk). Public credentials are added to the list L, namely,
L = {usk1, . . . , usknv

}. The challenger inputs pk, L and BBβ
8 to adversary A.

Adversary A can then query the oracles defined in Fig. 2, under the constraint
that Oreceipt can be queried at most once and Otally appears only as the final
oracle call. The adversary terminates by outputting a bit β′. The game outputs
1 if β′ = β.

An e-voting scheme Γ satisfies DKV if there exists algorithms DenyUpdate,
Obfuscate, SimSetup and SimProof and a negligible function negl such that, for
all probabilistic polynomial-time adversaries A and all security parameters λ, we
have

∣
∣
∣ Pr

[
ExpDKV,0

A,Γ (λ) = 1
] − Pr

[
ExpDKV,1

A,Γ (λ) = 1
] − δ

∣
∣
∣ ≤ negl(λ) .

We did not find any soundness issues with DKV. In particular, although DKV
uses the same framework as CCFG, DKV does not overlook the need for strong

8 In this game BB = PBB. Bernhard et al. do not mention adversarial access to BBβ

in the technical report [6] but do allow the adversary to ‘see’ BB in the conference
version [7]. We assume that, as DKV is a modification of CCFG, the adversary should
have access to BBβ . This could be resolved by providing the adversary with access
to an oracle Opublish as defined for CCFG. This provides the adversary with a view
of BBβ , which we assume is the intention in this definition.

202 A. Fraser et al.

consistency and defines strong consistency in their syntax in [6]. Clearly, DKV is
incomplete because it limits the class of e-voting schemes that can be declared
receipt-free to schemes with timestamps that achieve receipt-freeness through
the use of deniable vote updating, although this is by design.

Bernhard et al. capture a different intuition of receipt-freeness than Kiayias et
al. and Chaidos et al. DKV does not model a voter who interacts with an attacker
to prove their vote. In other words, DKV does not model a voter that provides
an attacker with any proof of their vote. In particular, there is no mechanism
to capture the fact that a voter may try to pass their credentials or coins to
an attacker. Certainly, this definition does not pose any issues with respect
to whether it captures attack scenarios that should be considered under the
heading of coercion-resistance. However, it does raise questions about whether
this definition captures receipt-freeness. As there is no mechanism for a voter
to attempt to prove their vote, we conclude that receipt-freeness is guaranteed
under the assumption that the voter does not pass any proof of their vote to the
attacker.

6 Conclusion

We have systematically analysed game-based definitions of receipt-freeness,
uncovered completeness and soundness issues, and found that each definition
considers a different attacker model.

We proved that KZZ can be satisfied by schemes that leak every voter’s vote.
Moreover, we found that CCFG does not consider strong consistency, which seems
necessary for soundness. By comparison, DKV considers strong consistency, and
we believe coupling CCFG with a suitable notion of strong consistency should
suffice to achieve soundness, albeit defining such a notion is non-trivial.

We found each definition to be incomplete. KZZ requires that each voter
votes, and only once. CCFG is unsatisfiable by a class of schemes that do not
process ballots before adding them to the ballot box and for which the bulletin
board is identical to the ballot box. Consequently, JCJ does not satisfy KZZ
or CCFG. Furthermore, DKV only applies to schemes that use deniable vote
updating. Thus, there is no game-based definition of receipt-freeness that can be
applied to a wide class of schemes.

Each definition captures a different attacker model: KZZ models a voter that
provides evidence of their vote (e.g., coins and credentials) after voting. By
comparison, CCFG captures scenarios wherein the voter uses coins provided by an
attacker. Consequently, KZZ does not capture scenarios where a voter interacts
with an attacker before voting (e.g., by providing the attacker with credentials),
whereas CCFG does. It is unclear whether a definition of receipt-freeness should
capture this scenario, or whether this should be considered beyond the scope of
receipt-freeness and be captured by coercion-resistance. The boundary between
receipt-freeness and coercion-resistance is unclear and we believe establishing a
boundary is an interesting open problem.

We observe that KZZ, CCFG and DKV consider that all election authori-
ties are honest, in particular, the election administrator, tallier and ballot box

A Critique of Game-Based Definitions of Receipt-Freeness for Voting 203

are honest. Moreover, communication channels between voters and/or election
authorities are considered to be private. In practice, trust assumptions may be
difficult to enforce, or it may not be possible to prove that the assumption holds.
Motivated by this, ballot secrecy in the context of a malicious ballot box was
considered in [29,30], whereby the adversary controls the contents of the ballot
box. We believe that this setting warrants further exploration and that security
definitions with minimal trust assumptions are preferable.

A further point of interest is that receipt-freeness (and, more generally, pri-
vacy) does not exist in a vacuum and must be considered in the context of
other desirable security properties. This has been addressed in recent literature
and one notable area of research relates to the relationship between privacy and
verifiability. Some results have shown that this relationship is rather intricate:
for example, receipt-freeness and universal verifiability are incompatible under
certain assumptions on the communication channels and election authorities
[10], but are compatible under different assumptions [9,26]. Moreover, Cortier
and Lallemand recently showed that ballot secrecy implies individual verifiabil-
ity [12], assuming the same trust assumptions for both ballot secrecy and indi-
vidual verifiability, but this result does not hold more generally [33]. We believe
that exploring the relationship between privacy and verifiability, particularly
with respect to trust assumptions, is an interesting area of future research.

Acknowledgements. This work is partly supported by the EPSRC and the UK
government as part of the Centre for Doctoral Training in Cyber Security at Royal
Holloway, University of London (EP/P009301/1), and by the Luxembourg National
Research Fund (FNR) under the FNR-INTER-VoteVerif project (10415467).

References

1. Adida, B.: Helios: web-based open-audit voting. In: USENIX Security Symposium,
vol. 17, pp. 335–348. USENIX (2008)

2. Baskar, A., Ramanujam, R., Suresh, S.P.: Knowledge-based modelling of voting
protocols. In: TARK 2007, pp. 62–71. ACM (2007)

3. Benaloh, J.: Verifiable secret-ballot elections. Ph.D. thesis, Yale University (2006)
4. Benaloh, J., Tuinstra, D.: Receipt-free secret-ballot elections. In: STOC 1994, pp.

544–553. ACM (1994)
5. Bernhard, D., Cortier, V., Galindo, D., Pereira, O., Warinschi, B.: SoK: a com-

prehensive analysis of game-based ballot privacy definitions. In: S&P 2015, pp.
499–516. IEEE (2015)

6. Bernhard, D., Kulyk, O., Volkamer, M.: Security proofs for participation privacy,
receipt-freeness, ballot privacy, and verifiability against malicious bulletin board
for the Helios voting scheme. IACR ePrint 2016/431

7. Bernhard, D., Kulyk, O., Volkamer, M.: Security proofs for participation privacy,
receipt-freeness and ballot privacy for the Helios voting scheme. In: ARES 2017,
p. 1. ACM (2017)

8. Braunlich, K., Grimm, R.: Formalization of receipt-freeness in the context of elec-
tronic voting. In: ARES 2011, pp. 119–126. IEEE (2011)

204 A. Fraser et al.

9. Chaidos, P., Cortier, V., Fuchsbauer, G., Galindo, D.: BeleniosRF: a non-
interactive receipt-free electronic voting scheme. In: CCS 2016, pp. 1614–1625.
ACM (2016)

10. Chevallier-Mames, B., Fouque, P.-A., Pointcheval, D., Stern, J., Traoré, J.: On
some incompatible properties of voting schemes. Towards Trust. Elect. 6000, 191–
199 (2010)

11. Cortier, V., Galindo, D., Küsters, R., Mueller, J., Truderung, T.: Sok: verifiability
notions for e-voting protocols. In: S&P 2016, pp. 779–798. IEEE (2016)

12. Cortier, V., Lallemand, J.: Voting: you can’t have privacy without individual ver-
ifiability. In: CCS 2018, pp. 53–66. ACM (2018)

13. Delaune, S., Kremer, S., Ryan, M.: Coercion-resistance and receipt-freeness in elec-
tronic voting. In: CSFW 2006, pp. 28–42. IEEE (2006)

14. Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic
voting protocols. JCS 17(4), 435–487 (2009)

15. Dreier, J., Lafourcade, P., Lakhnech, Y.: A formal taxonomy of privacy in voting
protocols. In: ICC 2012, pp. 6710–6715. IEEE (2012)

16. Fraser, A., Quaglia, E.A., Smyth, B.: A critique of game-based definitions of
receipt-freeness for voting. IACR ePrint 2019/853

17. Helios voting system. https://heliosvoting.org/. Accessed 06 Mar 2018
18. IACR final report of IACR electronic voting committee. www.iacr.org/elections/

eVoting/finalReportHelios 2010-09-27.html. Accessed 01 Aug 2017
19. iVote online voting. www.ivote.nsw.gov.au/. Accessed 01 Aug 2017
20. Jonker, H.L., de Vink, E.P.: Formalising receipt-freeness. In: Katsikas, S.K., López,

J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 476–
488. Springer, Heidelberg (2006). https://doi.org/10.1007/11836810 34

21. Jonker, H.L., Pieters, W.: Receipt-freeness as a special case of anonymity in epis-
temic logic. In: IAVoSS Workshop on Trustworthy Elections (WOTE) (2006)

22. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
WPES 2005, pp. 61–70. ACM (2005)

23. Kiayias, A., Zacharias, T., Zhang, B.: End-to-end verifiable elections in the stan-
dard model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 468–498. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46803-6 16

24. Küesters, R., Truderung, T., Vogt, A.: Verifiability, privacy, and coercion-
resistance: new insights from a case study. In: S&P 2011, pp. 538–553. IEEE (2011)

25. Kulyk, O., Teague, V., Volkamer, M.: Extending Helios towards private eligibility
verifiability. In: Haenni, R., Koenig, R.E., Wikström, D. (eds.) VOTELID 2015.
LNCS, vol. 9269, pp. 57–73. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-22270-7 4

26. Lee, B., Boyd, C., Dawson, E., Kim, K., Yang, J., Yoo, S.: Providing receipt-
freeness in mixnet-based voting protocols. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC
2003. LNCS, vol. 2971, pp. 245–258. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24691-6 19

27. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting pri-
vacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 22

28. Okamoto, T.: Receipt-free electronic voting schemes for large scale elections. In:
Christianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols 1997.
LNCS, vol. 1361, pp. 25–35. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0028157

https://heliosvoting.org/
www.iacr.org/elections/eVoting/finalReportHelios_2010-09-27.html
www.iacr.org/elections/eVoting/finalReportHelios_2010-09-27.html
www.ivote.nsw.gov.au/
https://doi.org/10.1007/11836810_34
https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/978-3-319-22270-7_4
https://doi.org/10.1007/978-3-319-22270-7_4
https://doi.org/10.1007/978-3-540-24691-6_19
https://doi.org/10.1007/978-3-540-24691-6_19
https://doi.org/10.1007/11818175_22
https://doi.org/10.1007/BFb0028157
https://doi.org/10.1007/BFb0028157

A Critique of Game-Based Definitions of Receipt-Freeness for Voting 205

29. Smyth, B.: Ballot secrecy: security definition, sufficient conditions, and analysis of
Helios. IACR ePrint 2015/942

30. Smyth, B.: Ballot secrecy with malicious bulletin boards. IACR ePrint 2014/822
31. Smyth, B.: A foundation for secret, verifiable elections. IACR ePrint 2018/225
32. Smyth, B.: Surveying definitions of coercion resistance. IACR ePrint 2019/822
33. Smyth, B.: Verifiability of Helios mixnet. IACR ePrint 2018/017
34. Smyth, B., Frink, S., Clarkson, M.R.: Election verifiability: cryptographic defini-

tions and an analysis of Helios, Helios-C, and JCJ. IACR ePrint 2015/233
35. Springall, D., et al.: Security analysis of the Estonian internet voting system. In:

CCS 2014, pp. 703–715. ACM (2014)

Improved Cryptanalysis of the KMOV
Elliptic Curve Cryptosystem

Abderrahmane Nitaj1(B), Willy Susilo2, and Joseph Tonien2

1 LMNO, Université de Caen Normandie, Caen, France
abderrahmane.nitaj@unicaen.fr

2 Institute of Cybersecurity and Cryptology,
School of Computing and Information Technology, University of Wollongong,

Wollongong, Australia
{willy.susilo,joseph.tonien}@uow.edu.au

Abstract. This paper presents two new improved attacks on the KMOV
cryptosystem. KMOV is an encryption algorithm based on elliptic curves
over the ring ZN where N = pq is a product of two large primes of equal
bit size. The first attack uses the properties of the convergents of the
continued fraction expansion of a specific value derived from the KMOV
public key. The second attack is based on Coppersmith’s method for
finding small solutions of a multivariate polynomial modular equation.
Both attacks improve the existing attacks on the KMOV cryptosystem.

1 Introduction

The RSA cryptosystem [21], invented in 1978 by Rivest, Shamir and Adleman,
is the most widely used cryptosystem. The main parameters in RSA are two
integers, the RSA modulus N = pq where p and q are large prime numbers, and
the public exponent e, which is an integer satisfying gcd(e, (p − 1)(q − 1)) = 1.
The private exponent is the integer d satisfying ed ≡ 1 (mod (p − 1)(q − 1)). In
many implementations, the private exponent d is required to be small to ease
decryption and signature. Unfortunately, this scenario is dangerous and can be
used to break the system [3,6]. In 1990, Wiener [24,25] presented an attack to
break the RSA system if the private exponent d satisfies d < 1

4√18
N

1
4 . Since

then, Wiener’s bound has been extended in many situations, mainly by Boneh
and Durfee [2] to d < N0.292.

In 1985, Miller [17] and Koblitz [13] independently proposed to use elliptic
curves in cryptography. Since then, many cryptosystems have been proposed
based on elliptic curves. In the direction of RSA, Koyama, Maurer, Okamoto
and Vanstone [14] proposed a cryptosystem, called KMOV, based on the elliptic
curve EN (0, b) where N = pq is an RSA modulus and EN (0, b) is the set of
solutions of the modular equation y2 ≡ x3 + b (mod N), together with the point
at infinity, denoted O. When the prime factors p and q are such that p ≡ q ≡ 2
(mod 3), then any point P ∈ EN (0, b) satisfies (p + 1)(q + 1)P = O. In KMOV,
the public key is a pair (N, e) where N = pq with two prime integers satisfying
c© Springer Nature Switzerland AG 2019
R. Steinfeld and T. H. Yuen (Eds.): ProvSec 2019, LNCS 11821, pp. 206–221, 2019.
https://doi.org/10.1007/978-3-030-31919-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-31919-9_12

Improved Cryptanalysis of the KMOV Elliptic Curve Cryptosystem 207

p ≡ q ≡ 2 (mod 3) and e is an integer satisfying gcd(e, (p + 1)(q + 1)) = 1. The
decryption exponent is the integer d such that ed ≡ 1 (mod (p + 1)(q + 1)).

Notice that the modular equation ed ≡ 1 (mod (p+1)(q+1)) is equivalent to
the integer key equation ed−k(p+1)(q+1) = 1. In 1995, Pinch [20] used the key
equation and extended Wiener’s attack to KMOV. He showed that one can factor
the modulus N = pq if d < 1

3N
1
4 . In [11], Ibrahimpasic extended the attack of

Pinch by a few bits using an exhaustive search. Both attacks use the convergents
of the continued fraction expansion of e

N . In [18], Nitaj considered the generalized
equation eu − (p + 1)(q + 1)v = w and showed that one can factor the modulus
N = pq if the parameters u, v, w satisfy some specific conditions, especially if
uv <

√
2
√

N
12 . The method combines the continued fraction algorithm [4,7] and

Coppersmith’s method [8] for solving univariate modular equations.
In this paper, we extend the former attacks on KMOV. In the first attack

we consider the KMOV key equation ed − k(p + 1)(q + 1) = 1 and instead of
using the convergents of e

N , we use the convergents of e

N+1+
(
1+ 3

√
2

4

)
N

1
2
. As a

consequence, we show that one can factor the modulus N = pq if the private

exponent d is such that d < 2
√

2N
3
4√
e
. This bound improves the former bound

d < 1
3N

1
4 , especially when the public exponent e is significantly smaller then N .

In the second attack we consider the generalized key equation eu−(p+1)(q+
1)v = w and transform it to the modular polynomial equation v(p+q+1)+Nv+
w ≡ 0 (mod e). We consider the polynomial f(x, y, z) = xy + Nx + z and apply
Coppersmith’s method to find the small solutions of the modular polynomial
equation f(x, y, z) ≡ 0 (mod e). When e = Nβ , u < N δ and |w| < Nγ , if

δ <
7
6

− γ − 1
3

√
6β − 6γ + 1 − ε,

where ε is a small constant, then Coppersmith’s method enables us to find p +
q + 1, which combined with N = pq gives p and q. We note that in the standard
situation of a KMOV instance with e ≈ N and eu− (p+1)(q +1)v = 1, our new
bound is δ < 0.284 which is much larger than the existing bounds.

The rest of this paper is organized as follows. In Sect. 2, we give some prelim-
inaries on Coppersmith’s method, continued fractions, elliptic curves and recall
the KMOV cryptosystem. In Sect. 3, we present our first attack on KMOV based
on continued fractions. In Sect. 4, we present our second attack on KMOV which
is based on Coppersmith’s method. We conclude the paper in Sect. 5.

2 Preliminaries

In this section, we give some preliminaries on Coppersmith’s methods for solv-
ing modular polynomial equations, continued fractions and elliptic curves. For
completeness, we recall the KMOV cryptosystem.

208 A. Nitaj et al.

2.1 Coppersmith’s Method

One of the difficult problems in algebra is to solve modular polynomial equations
of the form

f(x1, . . . , xn) ≡ 0 (mod e),

where f(x1, . . . , xn) ∈ Z[x1, . . . , xn] is multivariate polynomial. In 1996, Cop-
persmith [8] introduced a rigorous method for finding the small solutions of the
univariate polynomial equation f(x) ≡ 0 (mod e) and the small roots of the
bivariate polynomial equation f(x, y) = 0. Coppersmith’s method is based on
lattice reduction and is useful in cryptography, especially for attacking the RSA
cryptosystem (see [1,5,16,19]). Since then, numerous variants of Coppersmith’s
method have been presented for multivariate polynomial equations assuming
certain hypothesis. The following result of Howgrave-Graham [10] is useful for
solving the polynomial equations.

Theorem 1 (Howgrave-Graham). Let e be a positive integer and h(x, y, z) ∈
Z[x, y, z] be a polynomial with at most ω monomials. Let m be a positive integer.
Suppose that

h (x0, y0, z0) ≡ 0 (mod em) and

‖h(xX, yY, zZ)‖ =
√∑

i,j,k

ai,j,kxiyjzk <
em

√
ω

,

where |x0| < X, |y0| < Y , |z0| < Z. Then h (x0, y0, z0) = 0 holds over the
integers.

For a multivariate polynomial modular equation f(x, y, z) ≡ 0 (mod e), the
idea in Coppersmith’s method is to build certain modular polynomials equations
h(x, y, z) ≡ 0 (mod em) sharing the modular solution (x0, y0, z0). These poly-
nomials are generally built by applying Jochemz-May [12] method and applying
lattice reduction techniques such as the LLL algorithm [15]. The LLL algorithm
acts on lattices and the following result is useful (see [12,15,16]).

Theorem 2 (LLL). Let L be a lattice spanned by a basis (u1, . . . , uω), then the
LLL algorithm produces a new basis (b1, . . . , bω) satisfying

‖b1‖ ≤ . . . ≤ ‖bi‖ ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i , i = 1, . . . , ω.

To find the root (x0, y0, z0), we use a system with three polynomial equations
hi(x, y, z) = 0, i = 1, 2, 3. By using Gröbner basis computation or resultant tech-
niques, the system can be solved under the following widely believed assumption.

Assumption 1. The polynomials h1, h2, h3 ∈ Z[x, y, z] that are derived from
the reduced basis of the lattice in Coppersmith’s method are algebraically inde-
pendent.

Improved Cryptanalysis of the KMOV Elliptic Curve Cryptosystem 209

2.2 Continued Fractions

Let ξ �= 0 be real number. The continued fraction expansion of ξ is an expression
of the form

ξ = a0 +
1

a1 +
1

a2 +
1
. . .

,

where a0 is an integer and for i ≥ 1, ai is a positive integer. The integers ai,
i ≥ 0 are the partial quotients of the continued fraction expansion. The process
to compute the integers ai for i ≥ 0 is the continued fraction algorithm. The
starting term is x0 = ξ and for i ≥ 0,

ai =
xi�, xi+1 =
1

xi − ai
.

When the continued fraction expansion is used with the first k + 1 partial quo-
tients, the fraction is a convergent. The following method is very useful for
computing the convergents of ξ.

Theorem 3. The kth convergent can be determined as [a0, . . . , ak] = pk

qk
, where

the sequences {pn} and {qn} are specified as follows1:

p−2 = 0, p−1 = 1, pn = anpn−1 + pn−2, ∀n ≥ 0,

q−2 = 1, q−1 = 0, qn = anqn−1 + qn−2, ∀n ≥ 0.

There are many properties related to the theory of continued fractions. One of
the most important results is Legendre’s Theorem (see Theorem 184 of [9]).

Theorem 4. Let ξ �= 0 be a real number and a, b be two positive integers such
that a

b �∈ N and (a, b) = 1. If

0 <
∣∣∣ξ − a

b

∣∣∣ <
1

2b2

then a
b is a convergent of the continued fraction of ξ.

Note that computing a convergent a
b of ξ with the continued fraction algorithm

is done in polynomial time in log(b).

2.3 Elliptic Curves

Let p ≥ 5 be a prime number and a and b two integers satisfying 4a3 + 27b2 �≡ 0
(mod p). An elliptic curve Ep(a, b) over Fp = Z/pZ is the set of solutions (x, y) ∈
F
2
p satisfying the equation

Ep(a, b) : y2 ≡ x3 + ax + b (mod p), (1)
1 The convergents start with p0

q0
, but it is a convention to extend the sequence index

to −1 and −2 to allow the recursive formula to hold for n = 0 and n = 1.

210 A. Nitaj et al.

together with a point O, called the point at infinity. If P1 = (x1, y1) and P2 =
(x2, y2) are two points, then one have the following properties.

– P1 + O = O + P1 = P1.
– The opposite of P1 is −P1 = (x1,−y1).
– If P2 = −P1, then P1 + P2 = O.
– If P2 �= −P1, then P1 + P2 = P3 = (x3, y3) where

x3 ≡ λ2 − x1 − x2 (mod p), y3 ≡ λ(x1 − x3) − y1 (mod p),

with

λ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y2 − y1
x2 − x1

if x1 �= x2,

3x2
1 + a

2y1
if x1 = x2.

With the former addition law, the set Ep(a, b) is a group of finite order #Ep(a, b)
where #Ep(a, b) is the number of solutions (x, y) ∈ F

2
p of the Eq. (1) together

with the point at infinity. According to a famous Theorem of Hasse (see [23],
Chap. 5), we have #Ep(a, b) = p+1− tp, with |tp| < 2

√
p, which is close to p+1,

up to a small value tp.
For specific values of p, #Ep(a, b) can be explicitly computed as for p ≡ 2

(mod 3) (see [22]).

Theorem 5. Let Ep(0, b) be an elliptic curve over Fp with equation y2 ≡ x3 + b
(mod p). If p ≡ 2 (mod 3), then number of points on Ep(0, b) is #Ep(0, b) =
p + 1.

Since #Ep(a, b) is the order of the group Ep(0, b) for the addition law, then
#Ep(a, b) ·P = O for any point P ∈ Ep(a, b). When p ≡ 2 (mod 3), then for any
point P ∈, we have (p + 1)P = O. When N is a composite square free integer
and a and b are integers satisfying 4a3 + 27b2 �≡ 0 (mod p), one can define an
elliptic curve EN (a, b) over the ring Z/NZ by the equation

EN (a, b) : y2 ≡ x3 + ax + b (mod N), (2)

together with a point O at infinity. An addition law can be defined over EN (a, b)
by using the same rules as the addition law on Ep(a, b) by replacing modulo p by
modulo N . When the division by x2−x1 is not possible, this means that gcd(x2−
x1, n) �= 1. Since 0 < |x2−x1| < n, then gcd(x2−x1, n) = p or gcd(x2−x1, n) = q.
If N = pq is an RSA modulus, this is equivalent to factoring N . Since the integer
factorization problem is very hard, especially for RSA moduli, then the scenario
that the addition does not exist is unlikely to happen. By the Chinese remainder
theorem, every point P = (x, y) ∈ EN (a, b) is uniquely represented by a pair of
points (Pp, Pq) ∈ Ep(a, b) × Eq(a, b) with the convention that O is represented
by the pair of points at infinity (Op,Oq) ∈ Ep(a, b)×Eq(a, b). It follows that for
p ≡ q ≡ 2 (mod 3) and for any point P ∈ EN (0, b), we have

(p + 1)(q + 1)P = (p + 1)(q + 1)(Pp, Pq) = (Op,Oq) = O.

Improved Cryptanalysis of the KMOV Elliptic Curve Cryptosystem 211

2.4 The KMOV Cryptosystem

In 1991, Koyama, Maurer, Okamoto and Vanstone proposed a cryptosystem,
called KMOV, based on the elliptic curve EN (0, b) where N = pq is an RSA
modulus. The scheme works as follows.

– KMOV Key Generation algorithm.
1. Choose two distinct prime numbers p and q of similar bit-length with

p ≡ q ≡ 2 (mod 3).
2. Compute N = pq.
3. Choose e such that gcd(e, (p + 1)(q + 1)) = 1.
4. Compute d = e−1 (mod (p + 1)(q + 1)).
5. Keep p, q, d secret, publish N, e.

– KMOV Encryption algorithm.
1. For a message m = (mx,my) ∈ Z

2
N , compute b = m2

y − m3
x (mod N).

2. Compute the point (cx, cy) = e(mx,my) on the elliptic curve with equa-
tion y2 ≡ x3 + b (mod N). The ciphertext is c = (cx, cy).

– KMOV Decryption algorithm.
1. For a ciphertext c = (cx, cy) ∈ Z

2
N , compute b = c2y − c3x (mod N).

2. Compute the point (mx,my) = d(cx, cy) on the elliptic curve y2 ≡ x3 + b
(mod N). The plaintext is m = (mx,my).

The complexity of the encryption and decryption algorithms are based on the
size of the encryption key e and the size of decryption key d, respectively. In a
cryptosystem with a limited resource such as a credit card, it is desirable to have
a smaller value of d or e. Unfortunately, when d is too small, Pinch [20] showed
that one can factor the RSA modulus N = pq if d < 1

3N
1
4 . Using a generalized

attack, Nitaj [18] showed that one can factor N when d ≡ y
x (mod (p+1)(q+1))

is much larger under some extra conditions on x and y.

3 A New Improved Attack Based on Continued Fractions

In this section, we give an improved attack on KMOV based totally on the
continued fraction algorithm.

3.1 The New Attack Based on Continued Fractions

The attacks presented in [20] and [11] take advantage on using the convergents of
the continued fraction expansion of e

N . Instead of using the convergents of e
N , we

will use the convergents of e
φ0

where φ0 is given by φ0 = N +1+
(
1 + 3

√
2

4

)
N

1
2 .

To this end, we will need the following result.

Lemma 1. For any N > 106, we have
(

3√
2

− 2
)

N
1
2 + 2

(N + 2N
1
2)2

<
1

8N
3
2

212 A. Nitaj et al.

Proof. Suppose that (
3√
2

− 2
)

N
1
2 + 2

(
N + 2N

1
2

)2 <
1

8N
3
2
.

Then, clearing the denominators, we get

8N
1
2

((
3√
2

− 2
)

N
1
2 + 2

)
<

(
N

1
2 + 2

)2

,

which is equivalent to
(
12

√
2 − 16

)
N + 16N

1
2 < N + 4N

1
2 + 4.

This is true if (
12

√
2 − 16

)
N + 16N

1
2 < N + 4N

1
2 ,

or equivalently 12 <
(
17 − 12

√
2
)
N

1
2 . This is valid if

N > 106 >

(
12

17 − 12
√

2

)2

.

This terminates the proof. �
The following lemma is useful for approximating the sizes of the prime factors
of an RSA modulus N = pq when p and q are of the same bit-size.

Lemma 2. Let N = pq be an RSA modulus with q < p < 2q. Then

2N
1
2 < p + q <

3
√

2
2

N
1
2 .

Proof. Assume that q < p < 2q. Then 1 <
√

p
q <

√
2, so, since the function

f(x) = x + 1
x is increasing on [1,+∞), we get

2 <

√
p

q
+

√
q

p
<

√
2 +

1√
2

=
3
√

2
2

.

If we multiply by N
1
2 , we get

2N
1
2 < p + q <

3
√

2
2

N
1
2 .

This terminates the proof. �
Now, we present our first improved attack on KMOV based on the continued
fraction algorithm. The following result shows that the secret information p, q, d
in a KMOV cryptosystem can be recovered from public information (e,N).

Improved Cryptanalysis of the KMOV Elliptic Curve Cryptosystem 213

Theorem 6. Let (N, e) be a public key in a KMOV cryptosystem with N =
pq > 106, q < p < 2q and gcd(e, (p + 1)(q + 1)). If ed ≡ 1 (mod (p + 1)(q + 1))

and d < 2
√

2N
3
4√
e
, then one can factor N in polynomial time in log(N).

Proof. Suppose that N = pq with q < p < 2q. Then, by Lemma 2, we get

N + 1 + 2N
1
2 < (p + 1)(q + 1) < N + 1 +

3
√

2
2

N
1
2 .

We set φ1 = N +1+2N
1
2 and φ2 = N +1+ 3

√
2

2 N
1
2 . Then (p+1)(q+1) ∈]φ1, φ2[.

Let

φ0 = N + 1 +

(

1 +
3
√

2
4

)

N
1
2 ,

be the midpoint of the interval [φ1, φ2]. Since (p + 1)(q + 1) ∈ (φ1, φ2), then

|(p + 1)(q + 1) − φ0| ≤ 1
2
(φ2 − φ1). (3)

If ed ≡ 1 (mod (p + 1)(q + 1)), then ed − k(p + 1)(q + 1) = 1, and
∣∣∣
∣

e

φ0
− k

d

∣∣∣
∣ =

∣∣∣
∣

(
e

φ0
− e

(p + 1)(q + 1)

)
+

(
e

(p + 1)(q + 1)
− k

d

)∣∣∣
∣

=
∣
∣∣∣
e((p + 1)(q + 1) − φ0)

φ0(p + 1)(q + 1)
+

1
d(p + 1)(q + 1)

∣
∣∣∣

=
∣∣∣
∣
e((p + 1)(q + 1) − φ0)

φ0(p + 1)(q + 1)
+

e

(p + 1)(q + 1)(k(p + 1)(q + 1) + 1)

∣∣∣
∣ .

Since φ0(p + 1)(q + 1) > φ2
1 and (p + 1)(q + 1)(k(p + 1)(q + 1) + 1) > φ2

1, then
∣
∣∣∣

e

φ0
− k

d

∣
∣∣∣ < e

1
2 (φ2 − φ1)

φ2
1

+ e
1
φ2
1

= e
φ2 − φ1 + 2

2φ2
1

.

Then, combining (3) and φ1 = N + 1 + 2
√

N ≥ N + 2
√

N , we get

∣∣∣∣
e

φ0
− k

d

∣∣∣∣ < e

(
3
√
2

2 − 2
) √

N + 2

2
(
N + 2

√
N

)2 .

Using Lemma 1, for N > 106, we get
∣∣∣
∣

e

φ0
− k

d

∣∣∣
∣ <

e

16N
3
2
.

214 A. Nitaj et al.

Now, suppose that e

16N
3
2

< 1
2d2 , that is d < 2

√
2N

3
4√

e
, then

∣∣∣
∣

e

φ0
− k

d

∣∣∣
∣ <

1
2d2

.

It follows by Theorem 4 that k
d is a convergent of e

φ0
from which we deduce k and

d. Using the equation ed − k(p + 1)(q + 1) = 1, we get p + q = ed−1
k − N − 1 and

combining with N = pq, we easily find p and q. This gives to the factorization of
N = pq. Notice that, since the continued fraction algorithm works in polynomial
time, then finding p and q is done in polynomial time. �

3.2 Comparison with Former Attacks

In [20], Pinch extended Wiener’s attack [25] on RSA to KMOV and showed that
one can factor the modulus N = pq if the private exponent d satisfies d < 1

3N
1
4 .

In [11], Ibrahimpasic slightly extended the attack of Pinch by an extra exhaustive
research. In both attacks, the bounds do not depend on the size of e. In our new

attack, the bound is d < 2
√

2N
3
4√
e

and depends on e. In the typical situation

where e ≈ N , our bound becomes d < 2
√

2N
1
4 ≈ 2.828N

1
4 while the bound

in [20] is d < 1
3N

1
4 ≈ 0.333N

1
4 . Observe that our new bound d < 2

√
2N

3
4√
e

is
more significative for moderately small e.

Let us consider a numerical example. Consider the 1024 bit modulus N

N = 128072253291560984675731339942623874155571330351805615681477940
737860111553200263411409851831323456088583497355190072283898949
746366445389418926799490964902211240447125449181697155706714427
483626444781096408044876129844375261551528718257946239064984462
426873862229453485949998050716038824410982005466246527621,

and the 999 bit public exponent.

e = 296526935093015710407136686034981189608183689687233930438373260
994003008667647176609955506859286957594312864516062333691708865
839614673732252521930067346220763331390433471403382719324360755
735108333314843772805919919463508848644534123617058298952149225
5372881221811248133999406005069737107180854644647.

Then, applying the continued fraction algorithm to e
φ0

and computing the con-
vergents, the 130th convergent is k

d where

k = 439246113481593542214907254431461323475931905724710548163257922
73119943084,

d = 189713759006418854581978701838234268226797542876185500122247305
6385648715923809927.

Improved Cryptanalysis of the KMOV Elliptic Curve Cryptosystem 215

Using this convergent, we get p + q = ed−1
k . Then combining with pq = N , we

get

p = 122295652435077729919345520517086986879675097236430221980450907
006278884550539602496027848592931847870084590996181730049111792
44406300082071971851405178417,

q = 104723471964426405086080002568566304601367956338101575543737215
792893331651240463496547152238295322902114471979717345643807495
25832667841702102917782974613.

We notice that k
d is not among the convergents of e

N which implies that the
methods of Pinch and Ibrahimpasic will not succeed.

4 A New Improved Attack Based on Coppersmith’s
Method

In this section, we present a new attack on KMOV based on Coppersmith’s
method.

4.1 The New Attack

Theorem 7. Let (N, e) be a public key for the KMOV cryptosystem where N =
pq is an RSA modulus and e = Nβ. Suppose that e satisfies the equation eu −
(p + 1)(q + 1)v = w with u < N δ and |w| < Nγ . If

δ <
7
6

− γ − 1
3

√
6β − 6γ + 1 − ε,

for a small positive constant ε, then one can factor N in polynomial time.

Proof. Suppose that N = pq is an RSA modulus and e is a public exponent
satisfying eu − (p + 1)(q + 1)v = w. Since (p + 1)(q + 1) = N + p + q + 1, then
v(N+p+q+1)+w ≡ 0 (mod e), which can be rewritten as v(p+q+1)+Nv+w ≡
0 (mod e). Consider the polynomial f(x, y, z) = xy + Nx + z, Then (x, y, z) =
(v, p + q + 1, w) is a solution of the modular polynomial equation f(x, y, z) ≡ 0
(mod e). To find the solution (v, p+q+1, w), we apply Coppersmith’s method [8].
Let m and t be two positive integers to be optimized later. We use f(x, y, z) to
build the sets of polynomials

Gk,i1,i2,i3(x, y, z) = xi1−kzi3f(x, y, z)kem−k,

for k = 0, . . . m, i1 = k, . . . , m, i2 = k, i3 = m − i1,

Hk,i1,i2,i3(x, y, z) = yi2−kzi3f(x, y, z)kem−k,

for k = 0, . . . m, i1 = k, i2 = k + 1, . . . , i1 + t, i3 = m − i1.

Let L denote the lattice spanned by the coefficient vectors of the polynomials
Gk,i1,i2,i3(Xx, Y y, Zz) and Hk,i1,i2,i3(Xx, Y y, Zz). By choosing the increasing

216 A. Nitaj et al.

ordering following the i1’s, then the i2’s, and the i3’s, one find a left triangular
matrix. For m = 2 and t = 1, the coefficient matrix for L is presented in Table 1
where the monomials are

{z3, xz2, x2z, x3, xyz2, x2yz, x3y, x2y2z, x3y2, x3y3, xy2z2, x2y3z, x2yz, x3y4}.

The non-zero elements are marked with an ‘�’ and do not influence the value of
the determinant.

Table 1. The coefficient matrix for the case m = 2, t = 1.

z3 xz2 x2z x3 xyz2 x2yz x3y x2y2z x3y2 x3y3

Gk,i1,i2,i3
G0,0,0,3 Z3e3 0 0 0 0 0 0 0 0 0

G0,1,0,2 0 XZ2e3 0 0 0 0 0 0 0 0

G0,2,0,1 0 0 X2Ze3 0 0 0 0 0 0 0

G0,3,0,0 0 0 0 X3 0 0 0 0 0 0

G1,1,1,2 � 0 0 0 XY Z2e2 0 0 0 0 0

G1,2,1,1 0 � � 0 0 X2Y Ze2 0 0 0 0

G1,3,1,0 0 0 � � 0 0 X3Y e2 0 0 0

G2,2,2,1 � � � 0 � � 0 X2Y 2Ze 0 0

G2,3,2,0 0 � � � 0 � � 0 X3Y 2e 0

G3,3,3,0 � 0 � � � � � � � X3Y 3

Hk,i1,i2,i3
H0,0,1,3 0 0 0 0 � 0 0 0 0 �
H1,1,2,2 0 0 0 0 � � 0 � 0 0
H2,2,3,1 0 0 0 � 0 0 � � 0 0
H3,3,4,0 0 0 0 0 � 0 0 � � 0

xy2z2 x2y3z x2yz x3y4

Gk,i1,i2,i3
G0,0,0,3 0 0 0 0
G0,1,0,2 0 0 0 0
G0,2,0,1 0 0 0 0
G0,3,0,0 0 0 0 0
G1,1,1,2 0 0 0 0
G1,2,1,1 0 0 0 0
G1,3,1,0 0 0 0 0
G2,2,2,1 0 0 0 0
G2,3,2,0 0 0 0 0
G3,3,3,0 0 0 0 0

Hk,i1,i2,i3
H0,0,1,3 XY 2Z2e2 0 0 0

H1,1,2,2 � X2Y 3Ze 0 0

H2,2,3,1 0 0 X2Y Ze 0

H3,3,4,0 0 0 0 X3Y 4

The determinant of the triangular matrix is then the determinant of the
lattice L and can be easily computed as

det(L) = eneXnX Y nY ZnZ . (4)

To find the values of the exponents ne, nX , nY , nZ , define the sum S(a) by

S(a) =
m∑

k=0

m∑

i1=k

k∑

i2=k

m−i1∑

i3=m−i1

a +
m∑

k=0

k∑

i1=k

i1+t∑

i2=k+1

m−i1∑

i3=m−i1

a.

Improved Cryptanalysis of the KMOV Elliptic Curve Cryptosystem 217

By the construction of the polynomials G and H, we get

ne = S(m − k) =
1
6
m(m + 1)(2m + 3t + 4),

nX = S(i1) =
1
6
m(m + 1)(2m + 3t + 4),

nY = S(i2) =
1
6
(m + 1)

(
m2 + 3mt + 3t2 + 2m + 3t

)
,

nZ = S(i3) =
1
6
m(m + 1)(m + 3t + 2).

(5)

The dimension of the lattice is the number of rows in the matrix. It can be
estimated as

ω = S(1) =
1
2
(m + 1)(m + 2t + 2). (6)

If we set t = τm for some positive τ , then the dominant terms of the exponents
in (5) and 6 are

ne ≈ 1
6
(3τ + 2)m3 + o(m3),

nX ≈ 1
6
(3τ + 2)m3 + o(m3),

nY ≈ 1
6

(
3τ2 + 3τ + 1

)
m3 + o(m3),

nZ ≈ 1
6
(3τ + 1)m3 + o(m3),

w ≈ 1
6
(6τ + 3)m2 + o(m2).

(7)

Next, we apply the LLL algorithm 2 to the lattice L. We then get a reduced
basis where the three first vectors hi, i = 1, 2, 3 satisfy

‖h1‖ ≤ ‖h2‖ ≤ ‖h3‖ ≤ 2
ω(ω−1)
4(ω−2) det(L)

1
ω−2 .

To apply Howgrave-Graham’s Theorem 1 to h1, h2 and h3, we set

2
ω(ω−1)
4(ω−2) det(L)

1
ω−2 <

em

√
ω

,

from which we deduce

det(L) < 2− ω(ω−1)
4

1

(
√

ω)ω−2 em(ω−2).

Using (4), we get

eneXnX Y nY ZnZ < 2− ω(ω−1)
4

1

(
√

ω)ω−2 em(ω−2). (8)

218 A. Nitaj et al.

Suppose that e = Nβ , u < N δ and |w| < Nγ . Then, using Lemma 2, we
have p + q + 1 ≤ 2p < 2

√
2
√

N. Since p + q + 1 is represented by y, we set
Y =

⌊
2
√

2
√

N
⌋

. On the other hand, since (p + 1)(q + 1) > N and |w| < eu, we
get

|v| =
|eu − w|

(p + 1)(q + 1)
<

eu + |w|
(p + 1)(q + 1)

<
2eu

N
< 2Nβ+δ−1. (9)

Since v is represented by x, we set X =
⌊
2Nβ+δ−1

⌋
. Also, since w is represented

by Z, we set Z =
Nγ� . It follows that the solution (x, y, z) = (v, p + q + 1, w)
satisfies |x| < X, |y| < Y and |z| < Z and (8) is satisfied if

2nX

(
2
√

2
)nY

Nneβ+nX(β+δ−1)+
nY
2 +nZγ < 2− ω(ω−1)

4
1

(
√

ω)ω−2Nm(ω−2)β . (10)

Using the approximations of ne, nX , nY , nZ given in (7) and ω given 6, the
inequality 8 leads to

N

(
(3τ+2)β+(3τ+2)(β+δ−1)+ 3τ2+3τ+1

2 +(3τ+1)γ
)

m3

< 2−nX

(
2
√

2
)−nY

2− ω(ω−1)
4

1

(
√

ω)ω−2N−2βmN (6τ+3)βm3
.

(11)

To homogenize the exponentiation of N , we set

2−nX

(
2
√

2
)−nY

2− ω(ω−1)
4

1

(
√

ω)ω−2N−2βm = N−μm3
,

where μ is a small positive constant. Then, taking logarithms and dividing by
m3 log N , we get

(3τ + 2)β + (3τ + 2)(β + δ − 1) +
3τ2 + 3τ + 1

2
+ (3τ + 1)γ − (6τ + 3)β < −μ.

The optimal value for the left hand side is τ0 = 1−2δ−2γ
2 , which, plugged in the

former inequality leads to

−12δ2 − 24δγ − 12γ2 + 8β + 28δ + 20γ − 15 < −8μ,

and consequently

δ <
7
6

− γ − 1
3

√
6β − 6γ + 1 − ε,

where ε is a small positive constant that depends on m and N . Within this
condition, the reduced lattice has three polynomials h1(x, y, z), h2(x, y, z) and
h2(x, y, z) sharing the root (x0, y0, z0) = (v, p+q+1, w). Then, applying Gröbner
basis or resultant computations, we get the expected solution (x0, y0, z0) from
which we deduce p + q = y − 1. Together with the equation pq = N , this leads
to finding p and q. This terminates the proof. �

Improved Cryptanalysis of the KMOV Elliptic Curve Cryptosystem 219

4.2 Comparison with Former Attacks

In [18], Nitaj presented an algorithm for factoring the modulus N = pq when
the public exponent e satisfies an equation of the form eu − (p + 1)(q + 1)v = w,
where the unknown parameters u, v and w are such that

|w| <
(p − q)N

1
4 v

3(p + q)
, uv <

√
2
√

N

12
. (12)

The idea in [18] is to compute the convergents of the continued fraction of e
N ,

and for each convergent v
u with uv <

√
2
√

N
12 , to compute U and V with

U =
eu

v
− N − 1, V =

√
|U2 − 4N |.

Then p̃ = 1
2 (U + V) is a possible approximation of the prime factor p with error

term of at most 2N
1
4 . If so, then by applying Coppersmith’s method, one can

find p, and then factor N .
To compare our new results and the result of [18], suppose that e = Nβ ,

u < N δ and |w| < Nγ . Then, by (9), we get |v| < 2Nβ+δ−1. Hence, the inequal-
ities (12) are fulfilled if

Nγ <
2(p − q)N

1
4 Nβ+δ−1

3(p + q)
, 2N δNβ+δ−1 <

√
2
√

N

12
.

Then, neglecting the constants and assuming that p − q ≈ p + q, the former two
inequalities are true if

γ <
1
4

+ β + δ − 1, 2δ + β − 1 <
1
2
.

This leads to δ < 3
4 − 1

2β, which is to be compared with the new bound

δ <
7
6

− γ − 1
3

√
6β − 6γ + 1 − ε.

Define
δ0 =

3
4

− 1
2
β, δ1 =

7
6

− γ − 1
3

√
6β − 6γ + 1.

A typical situation is when e ≈ N , that is β = 1, and |w| is small, that is γ = 0.
Then the bounds δ0 and δ1 are δ0 = 0.25, δ1 ≈ 0.284. We see that the new
method overcome the method of [18] in the most realistic situations of instances
of KMOV.

5 Conclusion

We have presented two new attacks on the KMOV cryptosystem which is an
RSA type cryptosystem based on elliptic curves. The first attack is based on the
continued fraction algorithm and the second is based on Coppersmith’s method.
Both attacks work when the private key is suitably small and the new results
improve the former attacks on the KMOV elliptic curve cryptosystem.

220 A. Nitaj et al.

References

1. Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Not. Am. Math.
Soc. 46(2), 203–213 (1999)

2. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292.
IEEE Trans. Inf. Theory 46, 1339–1349 (2000)

3. Bunder, M., Tonien, J.: A new improved attack on RSA. In: Proceedings of the
5th International Cryptology and Information Security Conference, pp. 101–110
(2016)

4. Bunder, M., Nitaj, A., Susilo, W., Tonien, J.: A new attack on three variants
of the RSA cryptosystem. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016. LNCS,
vol. 9723, pp. 258–268. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40367-0 16

5. Bunder, M., Nitaj, A., Susilo, W., Tonien, J.: A generalized attack on RSA type
cryptosystems. Theor. Comput. Sci. 704, 74–81 (2017)

6. Bunder, M., Tonien, J.: A new attack on the RSA cryptosystem based on continued
fractions. Malays. J. Math. Sci. 11(S3), 45–57 (2017)

7. Bunder, M., Nitaj, A., Susilo, W., Tonien, J.: Cryptanalysis of RSA-type cryp-
tosystems based on Lucas sequences. Gaussian integers and elliptic curves. J. Inf.
Secur. Appl. 40, 193–198 (2018)

8. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)

9. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford
University Press, London (1965)

10. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024458

11. Ibrahimpasic, B.: Cryptanalysis of KMOV cryptosystem with short secret expo-
nent. In: Proceedings of Central European Conference on Information and Intelli-
gent Systems (2008)

12. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials
with new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006).
https://doi.org/10.1007/11935230 18

13. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987)
14. Koyama, K., Maurer, U.M., Okamoto, T., Vanstone, S.A.: New public-key schemes

based on elliptic curves over the ring Zn. In: Feigenbaum, J. (ed.) CRYPTO 1991.
LNCS, vol. 576, pp. 252–266. Springer, Heidelberg (1992). https://doi.org/10.1007/
3-540-46766-1 20

15. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261, 513–534 (1982)

16. May, A.: New RSA vulnerabilities using lattics reduction methods. Ph.D. dis-
sertation, University of Paderborn (2003). http://www.cits.rub.de/imperia/md/
content/may/paper/bp.ps

17. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 31

18. Nitaj, A.: A new attack on the KMOV cryptosystem. Bull. Korean Math. Soc.
51(5), 1347–1356 (2014)

https://doi.org/10.1007/978-3-319-40367-0_16
https://doi.org/10.1007/978-3-319-40367-0_16
https://doi.org/10.1007/BFb0024458
https://doi.org/10.1007/11935230_18
https://doi.org/10.1007/3-540-46766-1_20
https://doi.org/10.1007/3-540-46766-1_20
http://www.cits.rub.de/imperia/md/content/may/paper/bp.ps
http://www.cits.rub.de/imperia/md/content/may/paper/bp.ps
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31

Improved Cryptanalysis of the KMOV Elliptic Curve Cryptosystem 221

19. Nitaj, A., Pan, Y., Tonien, J.: A generalized attack on some variants of the RSA
cryptosystem. In: Cid, C., Jacobson Jr., M. (eds.) SAC 2018. LNCS, vol. 11349, pp.
421–433. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10970-7 19

20. Pinch, R.G.E.: Extending the Wiener attack to RSA-type cryptosystems. Electron.
Lett. 31(20), 1736–1738 (1995)

21. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

22. Schmitt, S., Zimmer, H.G.: Elliptic Curves. A Computational Approach. Walter
de Gruyter, Berlin (2003)

23. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathe-
matics, vol. 106. Springer, New York (1986). https://doi.org/10.1007/978-1-4757-
1920-8

24. Susilo, W., Tonien, J., Yang, G.: The Wiener attack on RSA revisited: a quest
for the exact bound. In: Jang-Jaccard, J., Guo, F. (eds.) ACISP 2019. LNCS, vol.
11547, pp. 381–398. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
21548-4 21

25. Wiener, M.: Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf. Theory
36, 553–558 (1990)

https://doi.org/10.1007/978-3-030-10970-7_19
https://doi.org/10.1007/978-1-4757-1920-8
https://doi.org/10.1007/978-1-4757-1920-8
https://doi.org/10.1007/978-3-030-21548-4_21
https://doi.org/10.1007/978-3-030-21548-4_21

Solving ECDLP via List Decoding

Fangguo Zhang1,2(B) and Shengli Liu3

1 School of Data and Computer Science, Sun Yat-sen University,
Guangzhou 510006, China
isszhfg@mail.sysu.edu.cn

2 Guangdong Key Laboratory of Information Security, Guangzhou 510006, China
3 Department of Computer Science and Engineering, Shanghai Jiao Tong University,

Shanghai 200240, China

Abstract. We provide a new approach to the elliptic curve discrete
logarithm problem (ECDLP). First, we construct Elliptic Codes (EC
codes) from the ECDLP. Then we propose an algorithm of finding the
minimum weight codewords for algebraic geometry codes, especially for
the elliptic code, via list decoding. Finally, with the minimum weight
codewords, we show how to solve ECDLP. This work may provide a
potential approach to speeding up the computation of ECDLP.

Keywords: Elliptic curves discrete logarithms · Elliptic code ·
List decoding · Minimum weight codewords

1 Introduction

ECC and ECDLP. In the 1980s, Koblitz [17] and Miller [21] opened the door of
elliptic-curve cryptography (ECC). Since the introduction of ECC, the elliptic-
curve analogues of cryptographic primitives, like public-key encryption, digital
signature, key agreement, etc., were set up and deployed widely in information
systems, due to the smaller key sizes and more efficient implementations than
their traditional siblings with the same security level. In the last decades, ECC
primitives have permeated in cryptographic protocols and deployed in a variety
of applications.

The security kernel of ECC is the hardness of the elliptic curve discrete
logarithm problem (ECDLP). Let E be an elliptic curve defined over a finite field
Fq and E(Fq) be the additive group over E . Let P ∈ E(Fq) be a point of prime
order p, and let 〈P 〉 be the subgroup generated by P . If Q ∈ 〈P 〉, then Q = sP for
some integer s (0 ≤ s < p), and s := logP Q is defined as the discrete logarithm
of Q to the base P . The problem of finding s, given P,Q and the parameters of
E , is called ECDLP. Up to date, Pollard ρ method [25] with complexity O(

√
p)

and its refinements are known as the most efficient solutions to ECDLP, except
for some special elliptic curves [7,9,19,26–28]. A good survey of recent works on
ECDLP can be found in [8].

c© Springer Nature Switzerland AG 2019
R. Steinfeld and T. H. Yuen (Eds.): ProvSec 2019, LNCS 11821, pp. 222–244, 2019.
https://doi.org/10.1007/978-3-030-31919-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-31919-9_13

Solving ECDLP via List Decoding 223

ECDLP and Minimum Distance of Elliptic Code. Algebraic geometry
codes (AG codes) were introduced in 1977 by V.D. Goppa [11] as a class of
linear codes. Elliptic Codes belong to AG codes, and they are constructed from
elliptic curve, i.e., algebraic curves of genus g = 1. For any [n, k] elliptic code C
constructed from E over Fq, the minimum distance of C is either d = n − k or
d = n−k+1 [30]. Meanwhile, the minimum distance of C is closely related to the
solution of the ECDLP over E . This connection was first noticed by Driencourt
and Michon [5], and rediscovered by Cheng [3]. This brought us a new hope
of solving ECDLP: it is possible for us to solve ECDLP over E if we found a
codeword of minimum distance for the elliptic code over E . However, computing
the minimum distance of a linear code is one of the fundamental problems in
algorithmic coding theory. Vardy [36] showed that it is an NP-hard problem
for general linear codes, while Cheng [3] proved that it is still NP-hard (under
RP-reduction) for elliptic codes. Obviously, the problem of finding Minimum
Weight Codewords for a linear code is NP hard as well, since a codeword of
minimum weight uniquely determine the minimum distance of this linear code.
As a result, it is unlikely for us to design an algorithm of finding codewords of
minimum weight in polynomial time, perhaps even not in subexponential time.
However, for some NP-hard problems, some algorithms of exponential time do
beat the trivial exhaustive search solution.

List Decoding. List decoding is a powerful decoding algorithm for linear error-
correction codes. It has a longer history than elliptic-curve cryptography and
dates back to the works of Elias [6] and Wozencraft [38] in the 1950s. The
breakthroughs of list decoding were due to Goldreich and Levin [10] for the
Hadamard code, and to Sudan [33] for the Reed-Solomon(RS) codes. For any
[n, k, d] linear code, a well-known fact is that if the number of errors t satisfies t ≤
�(d−1)/2�, then there must exist a unique codeword within distance �(d−1)/2�
from the received vector. If t > (d − 1)/2, however, unique decoding is usually
impossible. In 1997, Sudan [33] proposed “List Decoding algorithm” and applied
it to Reed-Solomon codes to break the barrier of t > (d − 1)/2 by allowing the
algorithm outputting a list of codewords. Later, Shokrollahi and Wasserman [31]
extended Sudan’s list decoding algorithm to algebraic-geometry codes. In 1999,
Guruswami and Sudan [12] improved the bound of t to n−√

nk for both RS and
AG codes. Up to now, the list decoding algorithm is one of the most powerful
decoding methods for RS and AG codes.

Beyond its application in the field of coding theory, it also led to new devel-
opments in complexity theory and cryptography. For instance, it results in new
constructions of hardcore predicates from one-way permutations, amplifying
hardness of boolean functions, construction of extractors [34], computation of
the discrete logarithm over finite fields [4], and constructions of cryptographic
schemes [16], etc.

Our Contribution. In this paper, we consider a new approach to the solution
of ECDLP, and provide the first try of using list decoding to solve ECDLP. We
believe that our work merely scratches the surface of the potential power of list

224 F. Zhang and S. Liu

decoding techniques in solving ECDLP, and expect more results on this topic in
the near future. Our contributions are listed as follows:

1. We present a general algorithm of finding Minimum Weight Codewords for
any linear code that is list decodable. Meanwhile, we show a specific algorithm
of finding minimum weight codewords for AG codes using list decoding.

2. We show how to list decode elliptic codes and designed an algorithm of finding
minimum distance codewords for elliptic codes.

3. Our work provides the first method of solving ECDLP via list decoding, which
is of theoretical significance.

Organization. The rest of our paper is organized as follows. In Sect. 2, we
review some preliminaries that will be used in our construction. In Sect. 3, we
show how to use List Decoding to find Minimum Weight Codewords of algebraic
codes, especially of elliptic codes. In Sect. 4, we present an algorithm of solving
ECDLP problems via List Decoding and give the corresponding analysis. Finally,
Sect. 5 concludes this paper.

2 Preliminaries

If n is a positive integer, define [n] := {1, 2, . . . , n}. Let S be a set, then s ← S
denotes choose an element s from S uniformly at random. If Alg. is an algo-
rithm, then (b1, b2, . . . , bi) ← Alg.(a1, a2, . . . , aj) means that the algorithm takes
a1, a2, . . . , aj as input and outputs b1, b2, . . . , bi.

2.1 Elliptic Curve and Elliptic Curve Discrete Logarithm Problems

Let Fq be a finite field of q elements. An elliptic curve E over Fq is a cubic curve
defined by Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (ai ∈ Fq).

The set of Fq-rational points of E is defined as

E(Fq) := {(x, y) ∈ Fq × Fq : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6} ∪ {O},

where O is the point of infinity,
Equipped with the so-called “chord-and-tangent” rule, E(Fq) becomes an

abelian group [[29], III.2]. Note that if the characteristic of the finite field is
larger than 3, the Weierstrass equation of an elliptic curve E can be transformed
into a short but isomorphic one

E : y2 = x3 + ax + b,

where a, b ∈ Fq, 4a3 + 27b2 �= 0 ∈ Fq. For detailed information about elliptic
curves, we refer the reader to Silverman’s book [29].

Solving ECDLP via List Decoding 225

Let p be a prime integer which is coprime to q. Let GenG be an elliptic curve
group generation algorithm. Taking as input a security parameter 1κ, GenG
outputs q which defines a finite field Fq, an Elliptic Curve E over Fq, and a point
P ∈ E(Fq) of order p. Denote by 〈P 〉 the group of order p generated by P . If
Q ∈ 〈P 〉, it must holds that Q = sP for some integer s, 0 ≤ s < p, which is
called the logarithm of Q to the base P and denoted by logP Q. The problem of
finding s, given P,Q and the parameters of E , is known as the Elliptic Curve
Discrete Logarithm Problem (ECDLP).

The ECDLP problem is a well-known hard problem. It is an essential base
for elliptic curve cryptography and pairing-based cryptography, and has been a
major research area in computational number theory and cryptography for the
last several decades.

2.2 Linear Error Correction Codes

An [n, k] linear error correction code C over finite field Fq is a set of codewords,
where each codeword contains n elements of Fq and all codewords constitute a
linear space of dimension k over Fq. Therefore, each codeword can be expressed
as a vector of length n over Fq. Given a codeword c = (c1, c2, . . . , cn) ∈ F

n
q ,

its Hamming weight, denoted by wt(c), is defined to be the number of non-zero
coordinates, i.e.,

wt(c) = |{i | ci �= 0, 1 ≤ i ≤ n}|.
The distance of two codewords c1, c2, denoted by dis(c1, c2), counts the number
of coordinates in which they differ. The minimum distance d(C) of C is the
minimal value of the distances between any two different codewords. In formula,

d(C) := min
c1,c2∈C,c1 �=c2

dis(c1, c2).

By the linearity of C, we know that d(C) is determined by the minimum Hamming
weight among all non-zero codewords in C, i.e.,

d(C) = min
c∈C\{0}

wt(c).

If a linear [n, k] code C has d as the minimum distance, then C is called a [n, k, d]
linear code.

For any linear [n, k] code C over finite field Fq. Suppose that 0 = (0, ..., 0) is
the transmitted (causal) codeword, and e is a received vector. Define f(e, t) :=
|{c ∈ C\{0} : |e−c| ≤ t}| as the number of noncausal codewords within distance
t centered around e. If f(e, t) = m, then e is m-tuply falsely decodable. Define
D(u, t) :=

∑
|e|=u f(e, t) as the total number of falsely decodable words of weight

u, counting on all possible received vectors of weight u. By the linearity of C, for
any causal codeword c and any error pattern e, f(e, t) also denotes the number
of noncausal codewords within distance t centered around the received vector
r = c + e. According to [2,20], we have the following results.

226 F. Zhang and S. Liu

Theorem 1 ([2,20]). If |e| = u, then the average number of noncausal code-
words in a decoding sphere of radius t over all error patterns of weight u is given
by

L̄(u, t) =
D(u, t)

(
n
u

)

(q − 1)u

.

For an [n, k, d] RS code, Berlekamp and Ramsey proved that D(u, t) =(
d
t

) (
n
d

)

(q − 1) if u + t = d, hence

L̄(u, t) =
1

(q − 1)u−1

(
n − u

t

)

if u + t = n − k + 1.

2.3 Algebraic-Geometry Codes and Elliptic Codes

Algebraic-Geometry (AG) Codes are linear error correction codes defined on
algebraic curves. The first AG code was due to Goppa [11] who proposed the
so-called “Goppa Code”. Algebraic-Geometry Codes can be viewed as gener-
alizations of Reed-Solomon codes. Over the years, AG codes attracted much
attention since some AG codes results in linear codes with parameters beating
the Gilbert-Varshamov bound [11,32,35].

Let Fq be a finite field with q elements and X be an absolutely irreducible
curve over Fq of genus g. Let Fq(X) denote the function field defined over X .

A divisor D on a curve X is a formal sum of points D =
∑

P nP P on the
curve X , where nP ∈ Z \ {0} for a finite number of points on X . Here nP

denotes the multiplicity of the point P on the curve. The degree of a divisor
D =

∑
P nP P is defined as the sum of nP , i.e., deg(D) :=

∑
P nP . The support

of a divisor supp(D) is the set of points with nonzero coefficients. A divisor is
called effective if all coefficients are non-negative.

For each point P ∈ X and any f ∈ Fq(X) \ {0}, we can abstract the notion
of evaluation of f at P (denoted by vP (f)) by local parameter and discrete
valuation function vP : Fq(X) → Z ∪ {∞}. A point P is said to be a zero of
multiplicity m if vP (f) = m > 0, a pole of multiplicity −m if vP (f) = m < 0,

Any function f ∈ Fq(X) \ {0} can be associated with a so-called principal
divisor. The principle divisor of f ∈ Fq(X) is defined as div(f) :=

∑
P vP (f)P .

According to [32](Theorem I.4.11), the degree of a principal divisor is always 0,
i.e., deg(div(f)) = 0.

Let G =
∑

P nP P be any divisor of degree k on X . Denote by L(G) all
rational functions f ∈ Fq(X) such that the divisor div(f)+G is effective, together
with the zero function, i.e.,

L(G) := {f | div(f) + G is effective} ∪ {0}. (1)

By the Riemann-Roch theorem, L(G) is a vector space over Fq of finite dimension
and its dimension is given by dim(L(G)) := k − g + 1, where g is the genus of
X .

Solving ECDLP via List Decoding 227

Given an irreducible curve X and the function field Fq(X) defined over X ,
let P1, P2, ..., Pn be distinct rational points on X . The n points determine a
divisor D := P1 + P2 + . . . + Pn. Let G be an arbitrary divisor on X such that
{P1, P2, ..., Pn} ∩ supp(G) = ∅. An AG code C(D,G) is defined by the following
injective mapping ev : L(G) → F

n
q with

ev(f) := (f(P1), f(P2), . . . , f(Pn))

Hence C(D,G) = image(ev). If G =
∑

P nP P is a divisor of degree k, then
C(D,G) is an [n, k − g + 1, d] code over Fq and d ≥ n − k + 1 − g. The basic
properties of AG codes can be found in [23,32,35].

Elliptic Codes. Elliptic curves can be regarded as a special class of algebraic
curves, they are algebraic curves with genus g = 1, hence Elliptic Codes are just
AG codes constructed from elliptic curve. Let E be an elliptic curve over Fq and
Fq(E) be the elliptic function field. Recall that there exists an additive abelian
group E(Fq) with the group operation defined by the “chord-and-tangent” rule
on E . As a result, principal divisors on elliptic curve E satisfy the following
property as shown in the following theorem.

Theorem 2. [29] Let E be an elliptic curve over over Fq. Let D =∑
P∈E(Fq)

nP P be a divisor of E. Then D is a principal divisor if and only
if

∑
P∈E(Fq)

nP = 0 and
∑

P∈E(Fq)
nP · P = O, where nP · P denotes the

scalar multiplication over the Elliptic Curve group E(Fq) and the summation
in

∑
P∈E(Fq)

nP · P is implemented with the addition defined over group E(Fq).

Given an elliptic curve E defined over Fq, and let Fq(E) be the elliptic function
field. Let P1, P2, . . . , Pn ∈ E(Fq). Define D := P1 + P2 + . . . + Pn be divisors
on E . Let G be another divisor on E such that 0 < deg(G) = k < n and
supp(D) ∩ supp(G) = ∅. The elliptic code C(D,G) is defined by G and D with

C(D,G) := {(f(P1), . . . , f(Pn)) | f ∈ L(G)} ⊆ F
n
q ,

where L(G) is defined in (1).
The minimum distance of an [n, k] EC code is either d = n−k or d = n−k+1,

as shown in [5,30]. If d = n−k+1, the EC code is a Maximum Distance Separable
(MDS) code, otherwise it is an Almost MDS(AMDS) code.

An [n, k] EC code C(D,G) is an AMDS code iff there exists k elements
Pi1 , . . . , Pik ∈ Supp(D) such that divisor

Pi1 + . . . + Pik − G

is a principle divisor according to [30].

2.4 List Decoding of Algebraic-Geometry Codes

In 1999, Guruswami and Sudan [12] proposed a list decoding algorithm for both
RS and AG codes. The algorithm is able to efficiently output a list of codewords

228 F. Zhang and S. Liu

which lie in the sphere of radius up to t = n − √
nk centered around the per-

turbed (noisy) codeword (i.e., received vector). More precisely, the list decoding
algorithm ListDecode(C, r, t) takes as input a linear [n, k] code C, a received vec-
tor r and a parameter t ≤ n − √

nk, and it outputs a list of codewords whose
Hamming distances to r are at most t.

Now we recall the Guruswami-Sudan list coding algorithm ListDecode(C, r, t)
for an [n, k, d] AG-code CL(D,G) [13], where D = P1 + P2 + . . . + Pn and G is
a one-point divisor of a curve X of genus g, i.e., G = αQ and Q /∈ supp(D).
Assume α > 2g − 2, then dim(L(αQ)) = k = α − g + 1 by the Riemann-Roch
theorem.

The Guruswami-Sudan list decoding consists of three steps: initialization,
interpolation and root finding. We will give a brief (and basic) description
of the algorithm. We refer the reader to [12] and [13] for details.

The Guruswami-Sudan List Decoding Algorithm: ListDecode(C, r, t).

Input: An AG-code CL(D,G) determined by curve X over Fq and divisors G =
αQ and D, a received vector r = (r1, . . . , rn) and an error bound t, which
determines the maximal number of coordinates in which a codeword disagrees
with vector r in order for the codeword to be included on the output list.

Output: a list Ωr of codewords such that dis(r, c) ≤ t.

Initialization.
0.1 Ωr := ∅.
0.2 Compute list decoding parameters l from n, t and g, where l ≥ α.
0.3 Fix a pole basis {φj1 : 1 ≤ j1 ≤ l − g + 1} of L(lQ) such that φj1 has

at most j1 + g − 1 poles at Q.
0.4 For each Pi, 1 ≤ i ≤ n, find a zero basis {ψj3,Pi

: 1 ≤ j3 ≤ l − g + 1} of
L(lQ) such that Pi is a zero of ψj3,Pi

with multiplicity (or at least) j3 −1.
0.5 Compute the set {aPi,j1,j3 ∈ Fq : 1 ≤ i ≤ n, 1 ≤ j1, j3 ≤ l − g + 1} such

that for every i and every j1, we have φj1 =
∑

j3
aPi,j1,j3ψj3,Pi

.
Interpolation. Set s = l−g

α . Find a nonzero polynomial H ∈ L(lQ)[T] of the
form

H[T] =
s∑

j2=0

l−g+1−αj2∑

j1=1

hj1,j2φj1T
j2 .

Root Finding. Find all roots h ∈ L(αQ)) ⊆ L(lQ)) of H[T]. For each h, check
if h(Pi) = ri for at least n − t values of i ∈ {1, 2, . . . , n}, and if so, put h in
Ωr .

Return Ωr .

3 Finding Minimum Weight Codewords Using List
Decoding

By means of List Decoding with proper parameters, it is possible for us to
find a minimum weight codeword. Beforehand, we introduce two lemmas. The

Solving ECDLP via List Decoding 229

first lemma tells us the property of list decoding when d = u + t, where d is
the minimum distance of a [n, k] linear code, u is the number of errors in the
received vector (i.e., the Hamming distance between the received vector and
causal codeword is u) and t is the error bound of list decoding. The second
lemma analyzes the average number of falsely decodable (noncausal) codewords
when d = u + t and u ≤ t.

Lemma 1. For any linear [n, k, d] code C, let c′ = c+e be a received vector with
causal codeword c ∈ C and error vector e with wt(e) = u. Denote the output of
the list decoding algorithm ListDecode(C, c′, t) by set Ωc′ .

1. If |Ωc′ \ {c}| ≥ 1, then for any codewords c1 ∈ Ωc′ \ {c}, it holds that
dis(c1, c) ≤ u + t.

2. If u + t = d and u ≤ t, then either Ωc′ = {c} or |Ωc′ | ≥ 2. If the latter case
happens, then for all c1 ∈ Ωc′ \ {c}, we have ĉ = c − c1 is the minimum
weight codeword.

Proof. 1. List decoding algorithm ListDec(C, c′, t) will output codewords in the
sphere of radius t centered around c′. If |Ωc′ \ {c}| ≥ 1, we have that
dis(c1, c′) ≤ t. Together with the fact dis(c, c′) = wt(e) = u, we have
dis(c, c1) ≤ u + t by the triangle inequality.

2. If u ≤ t, then dis(c, c′) = u ≤ t. As a result, c ∈ Ωc′ always holds. The
linearity of code C ensures that ĉ := c−c1 ∈ C. Hence wt(ĉ) ≥ d. If u+ t = d,
then d ≤ wt(ĉ) = dis(c, c1) ≤ u+t = d, which means wt(ĉ) = d and ĉ = c−c1
is the minimum weight codeword.

Recall that L̄(u, t) denotes the average number of noncausal codewords in a
decoding sphere of radius t over all error patterns of weight u. In [2], Berlekamp
and Ramsey presents how to compute L̄(u, t) for RS codes when u + t = d and
u ≤ t (see Theorem 1). Now we can generalize this result to any [n, k, d] linear
code. Specifically, we obtain L̄(u, t) for elliptic codes when u + t = d and u ≤ t.

Lemma 2. For any [n, k, d] linear code in which the number of minimum weight
codewords is μ, the average number of noncausal codewords in a decoding sphere
of radius t over all error patterns of weight u satisfies

L̄(u, t) =
μ ·

(
d
t

)

(
n
u

)

(q − 1)u

if u + t = d and u ≤ t. (2)

Specifically, for an [n, k] Elliptic Code C(G,D) where G is a divisor of degree k
and D = P1 + P2 + . . . + Pn. If u + t = d and u ≤ t, then

L̄(u, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
(q−1)u−1

(
n − u

t

)

if d = n − k + 1;

λ·
⎛
⎝u + t

t

⎞
⎠

⎛
⎝n

u

⎞
⎠(q−1)u−1

if d = n − k,
(3)

230 F. Zhang and S. Liu

where λ denotes the number of subsets J = {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n} such
that G − ∑

j∈J Pj is a principal divisor.

Proof. Recall that if 0 = (0, ..., 0) is the transmitted (causal) codeword, and
e is a received vector, then f(e, t) := |{c ∈ C \ {0} : |e − c| ≤ t}| counts the
number of noncausal codewords within distance t centered around e. Meanwhile,
L̄(u, t) =

∑
|e |=u f(e,t)⎛

⎝n
u

⎞
⎠(q−1)u

according to [20].

By Lemma 1, if u + t = d and u ≤ t, then either Ωe = {0} or |Ωe | ≥ 2.
If |Ωe | ≥ 2, then we have the following facts.

– For each c1 ∈ Ωe \{c}, the codeword c1 is a noncausal codeword and it must
be a codeword of minimum weight d.

– For each c1 ∈ Ωe \{c}, define e′ = c1−e, then e′ is of weight t. Meanwhile the
indices of ones in e and e′ must be disjoint, i.e., {i | ei = 1, i ∈ [n]}∩{i | e′

i =
1, i ∈ [n]} = ∅.

There might be many error patterns e resulting in the same codeword of
minimum weight. For each codeword of minimum weight, there are exactly(

d
t

)

(=
(

d
u

)

) choices of e of weight u. If there are totally μ codewords of

minimum weight, then there are totally μ ·
(

d
t

)

vector e of weight u, each of

which exactly results in a noncausal codeword in its sphere.

Equation (2) holds since there are totally
(

n
u

)

(q − 1)u vectors of weight u.

For an [n, k] Elliptic Code, the minimal distance d is either n−k+1 or n−k.
If d = n− k +1, then the Elliptic code is MDS code, the number of the minimal

weight codewords is
(

n
d

)

·(q−1). Hence L̄(u, t) =

⎛
⎝d

t

⎞
⎠·

⎛
⎝n

d

⎞
⎠·(q−1)

⎛
⎝n

u

⎞
⎠(q−1)u

=

⎛
⎝n − u

t

⎞
⎠

(q−1)u−1 ,

which is consistent to the result for RS codes in [2].
Now we consider the case of d = n − k. Given a subset J = {i1, i2, . . . , ik} ⊆

{1, 2, . . . , n}, define a divisor as D′ =
∑

j∈J Pj − G. If D′ is a principal divisor,
then there exists a function f ∈ L(G) such that D′ = div(f) due to the fact that
D′ +G is effective. For such an f ∈ L(G), we have f(Pij) = 0 with j ∈ [k]. Con-
sequently, the Hamming weight of the codeword c = (f(Pi1), f(Pi2), . . . , f(Pin))
is n−k, which suggests that α·c is a codeword of minimum weight for all α ∈ F

∗
q .

If there are λ subsets J = {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n} such that
∑

j∈J Pj −G
is a principal divisor, then there are (q − 1)λ codewords of minimum weight.

Consequently L̄(u, t) =

⎛
⎝d

t

⎞
⎠·λ·(q−1)

⎛
⎝n

u

⎞
⎠(q−1)u

according to Eq. (2).

Solving ECDLP via List Decoding 231

Lemma 1 suggests us a way of finding a codeword of minimum weight code-
word. If the minimum distance d of C is known, we can obtain such a codeword
of minimum weight, as long as u + t = d, u < t and the list decoding algorithm
outputs a list of size at least two. According to this idea, we design an algorithm
of finding minimum weight codewords for a code C with unknown minimum
distance d, as shown in the next subsection. Lemma 2 helps us to analyze the
success probability of the algorithm.

3.1 How to Find Codewords of Minimum Weight

When the minimum distance d is unknown, the intuition is to try a guess d′

of the minimum distance. Now we design an algorithm named FindCodeword
which takes as input a guess d′ of the minimum distance, an error weight u
and a bound tm of the decoding radius of List Decoding for code C. Firstly,
randomly choose a codeword c from C and an random error of weight u. Compute
the perturbed vector c′ := c + e. Then invoke the List Decoding algorithm to
decode the perturbed vector c′ to output a list Ωc′ of codewords . By linearity,
for every ci ∈ Ωc′ , ci − c is a codeword of C. We hope that one of ci − c is a
minimum weight codeword. Below we describe the algorithm and then analyze
the probability that the algorithm outputs such a minimum weight codeword.

Algorithm FindCodeword(C, u, d′, tm):

Input: A [n, k] linear code C which is list-decodable up to tm errors; two param-
eters u, d′ ∈ Z

+ with u < tm < d′.
Output: Abort symbol ⊥ or a codeword ĉ ∈ C.
Procedure: 1. If d′ − u > tm, return ⊥.

2. Randomly choose a codeword c ∈ C.
3. Randomly choose an error pattern e such that wt(e) = u. Compute c′ :=

c + e. Set Ωc′ := ∅.
4. Invoke Ωc′ ← ListDecode(C, c′, d′ − u).
5. If Ωc′ \ {c} = ∅, Return(⊥). Otherwise for each codeword ci ∈ Ωc′ \ {c}

and compute ĉi := ci − c, where i = 1, 2, . . . , |Ωc′ | − 1.
6. Choose ĉ of minimal weight from {ĉ1, . . . , ĉ|Ωc ′ |−1}.
7. Return(ĉ).

According to [12], the Guruswami-Sudan list decoding algorithm is applica-
ble when tm = n−√

nk, and the complexity of ListDecode is O(λ6n3) for any AG
codes (here λ is the designed list size). The computational complexity of Algo-
rithm FindCodeword(C, u, d′) is dominated by ListDecode, hence is of O(λ6n3) as
well. There are many works aiming to improve the computational complexity of
Guruswami-Sudan list decoding algorithm. For example, Beelen et al. [1] defined
a general class of one-point algebraic-geometry codes and proposed a more effi-
cient algorithm for the interpolation step in the Guruswami-Sudan list decoder
and the complexity was improved to O(λ5n2 log2(λn) log log(λn)).

Suppose that the minimum distance of the [n, k] code C is d. In the case of u ≤
d/2, d−u ≤ tm, we analyze the probability that Algorithm FindCodeword(C, u, d)
successfully outputs a codeword of minimum weight.

232 F. Zhang and S. Liu

Theorem 3. For a [n, k, d] linear code C, let μ be the number of minimum
weight codewords. If u ≤ d/2 and d − u ≤ tm, then

Pr [ĉ ← FindCodeword(C, u, d, tm) : wt(ĉ) = d] ≈
μ ·

(
d
u

)

(
n
u

)

(q − 1)u

, (4)

where μ is the number of minimum weight codewords in C.

Proof. It directly follows from Lemma 2.

3.2 The Final Algorithm of Finding Minimal Weight Codewords

With a correct guess of d, Algorithm FindCodeword(C, u, d) might be able to
output a codeword of minimum weight with some probability (determined by
(4)) according to Theorem 3. So we will try to guess the distance with d′ =
3, 4, . . . , n − k + 1. Given a specific guess d′ of the distance, we will invoke
FindCodeword(C, u, d′) multiple times. This leads to our final algorithm of finding
minimal weight codewords as shown below.

Algorithm MinWeiCodeword(C, Γ, tm, Tm):
Input: A [n, k] linear code C which is list-decodable with an unknown minimum

distance d; A set Γ which is a subset of {3, 4, . . . , n − k + 1}. We assume
that the elements in Γ is in ascending order. tm is the bound determined
by the list decoding algorithm and Tm is the maximal number of invoking
FindCodeword(C, u, d′).

Output: Abort symbol ⊥ or a codeword ĉ ∈ C.
ĉ := ⊥; wt(ĉ) := n
For each d′ ∈ Γ (taking d′ in ascending order)

For u = d′ − tm to �d′/2�
For i = 1 to Tm

ĉ′ ← FindCodeword(C, u, d′, tm);
If wt(ĉ′) < wt(ĉ) then ĉ := ĉ′.

Return(ĉ)

For an [n, k, d] code C, as long as d ∈ Γ , the guess of d′ takes the
value of d sooner or later. In case of d′ = d, the probability that Algo-
rithm FindCodeword(C, u, d) outputs a minimum weight codeword is given by
(4) according to Theorem 3. In MinWeiCodeword(C, Γ, Tm), there are Tm times
of invocations of FindCodeword(C, u, d) and u can take values from d − tm up to
�d/2�. Therefore, MinWeiCodeword successfully outputs a minimum distance
codeword with probability at least

Pr [ĉ ← MinWeiCodeword(C, {d}, tm, Tm) : wt(ĉ) = d]

≥ 1 −
�d/2�∏

u=d−tm

⎛

⎜
⎜
⎝1 −

μ ·
(

d
u

)

(
n
u

)

(q − 1)u

⎞

⎟
⎟
⎠

Tm

. (5)

Solving ECDLP via List Decoding 233

If the minimum distance d of C is known, then we can set Γ = {d}, then
MinWeiCodeword successfully outputs a minimum distance codeword with prob-
ability at least

Pr [ĉ ← MinWeiCodeword(C, {d}, tm, Tm) : wt(ĉ) = d] ≈ 1 −

⎛
⎜⎜⎝1 −

μ ·
(

d
u

)

(
n
u

)
(q − 1)u

⎞
⎟⎟⎠

Tm

. (6)

This approach applies to all list decodable codes. For some linear [n, k, d]
codes over Fq, when the choices of n, k, d, q, tm make (5) noticeable, then it is
possible for us to find a codeword of minimum weight in polynomial time with
the help of Algorithm MinWeiCodeword(C, Γ, tm, Tm).

For any list decodable [n, k, d] code, if we already know d or have a correct
guess of d, Algorithm FindCodeword(C, u, d) might be able to output a codeword
of minimum weight with some probability (determined by (4)).

Due to the fact that d = u + t, given d we can always choose u as small as
possible to make the probability in (4) bigger, as long as t = d−u is allowable in
the list decoding algorithm. For AG code, The Guruswami-Sudan list decoding
algorithm can make t up to be tm = �n − √

nk�(This bound is called by GS
bound or Johnson bound).

If new development on list decoding makes tm exceed the current bound
of �n − √

nk�, then Algorithm FindCodeword(C, u, d) will become more efficient
by setting smaller values for u. For example, if we have an efficient list decod-
ing algorithm to correct the maximum fraction of errors, i.e., tm = n − k (this
is called by the Singleton bound) for some codes, then the codeword of mini-
mum weight of these such codes can be efficiently computed using Algorithm
FindCodeword(C, u, d).

There do exist some codes, such as Folded Reed-Solomon Codes or Folded AG
codes, that achieve or approach Singleton bound of tm = n−k for every code rate
k/n [14,15,24]. However, it seems impossible for elliptic codes to have effective
list decoding algorithm to achieve or approach the Singleton bound, otherwise
P = NP is proved (due to the fact that the minimum distance problem of elliptic
codes is NP-hard under RP-reduction [3])! This also means that the problem
to show if P=NP can be reduced to the existence of an efficient List decoding
algorithm for elliptic codes closing or reaching Singleton bound.

3.3 Instantiation from Elliptic Code C[G,D]

Now we employ MinWeiCodeword(C, Γ = {n − k}, Tm) to find minimum weight
codewords of an [n, k, d] elliptic code C[G,D] with d = n − k (recall that it
is an easy problem if d = n − k + 1). The essential step is the invocation of
Guruswami-Sudan list decoding algorithm. Now we show the implementation of
Guruswami-Sudan list decoding for one-point elliptic codes (as far as we know, no
work is available suggesting the concrete implementations of Guruswami-Sudan
list decoding for EC codes).

234 F. Zhang and S. Liu

For an elliptic curve E defined over Fq, let G = kO be a divisor of degree k
and D = P1 +P2 + . . .+Pn where Pi’s are rational points over E . Then C(G,D)
is an elliptic code. The first and important step of the Guruswami-Sudan list
decoding algorithm for elliptic codes is finding out two types basis of L(lO): the
pole basis and zero basis.

It is easy to obtain the pole basis of L(lO), which is {φ1, φ2, ..., φl} :=
{1, x, y, x2, xy, x3, x2y, .., xiyj | j = 0 or 1, 2i + 3j = l)}.

For each Pi, 1 ≤ i ≤ n, we will find a zero basis {ψj3,Pi
: 1 ≤ j3 ≤ l}

of L(lO) such that Pi is a zero of ψj3,Pi
with multiplicity (or at least) j3 − 1.

Consider the principle divisor

div(fm,Pi
) = mPi + (−m · Pi) − (m + 1)O.

If m < l, then div(fm,Pi
)+ lO is effective, hence div(fm,Pi

) ∈ L(lO). Meanwhile,
Pi is a zero of div(fm,Pi

) with multiplicity m. Set

ψ1,Pi
= 1, ψ2,Pi

= div(f1,Pi
), ..., ψl,Pi

= div(fl−1,Pi
),

then for point Pi, we obtain a zero basis of L(lO). To compute the rational
function fm,Pi

from the divisor mPi + (−m · Pi) − (m + 1)O, we can use the
method described in [22] and Chap. 11 in [37]. Note that {φi} and {ψj3,Pi

} are all
the bases of vector spaces L(lO), so it is easy to get the set {aPi,j1,j3 ∈ Fq : 1 ≤
i ≤ n, 1 ≤ j1, j3 ≤ l} such that for every i and every j1, φj1 =

∑
j3

aPi,j1,j3ψj3,Pi

holds. The Interpolation step and the Root finding step just follow the the
original algorithm shown in Subsect. 2.4.

We show an implementation for an elliptic code via Magma [18]. Here is an
example.

The finite field is F127, The elliptic curve (over F127) is E : y2 = x3 −3x+72.
The order of E(F127) is 137.

Let P = (44, 65) be a random point of E . Obviously 〈P 〉 = E(F127). Let O
be the infinite point. Then 137P = O.

Set divisor G := 4O, and divisor D := P1 + P2 + . . . + P20 with supp(D) =
{P1 = P, P2 = (50, 9), P3 = (49, 90), P4 = (105, 83), P5 = (74, 43), P6 =
(114, 94), P7 = (120, 125), P8 = (40, 43), P9 = (112, 60), P10 = (36, 97), P11 =
(10, 91), P12 = (126, 70), P13 = (108, 126), P14 = (2, 57), P15 = (14, 19), P16 =
(46, 49), P17 = (90, 87), P18 = (7, 93), P19 = (54, 23), P20 = (36, 30)}. We get an
[n, k] Algebraic Geometric Code C[G,D] with n = 20, k = 4.

According to [12,13], set l := 31 in the Guruswami-Sudan list decoding algo-
rithm for above [n, k] = [20, 4] elliptic codes. It is easy to see that

{φ1, φ2, ..., φ31} = {1, x, y, x2, xy, x3, x2y, .., x15, x14y}
is a pole basis of L(31O).

For each point Pi, we can obtain a zero basis of L(lO) using follows Magma
code:

for j:=1 to l do

T, ZB[j+1]:=IsPrincipal(j*Divisor(P_i)+Divisor((-j)P_i)-(j+1)*Divisor(O));

end for;

Solving ECDLP via List Decoding 235

In this way, we obtain 20 zero-bases of of L(31O). For example, a zero basis
for P20 = (36, 30) is
{1,

x + 91,

y + 94x + 15,

80y + 38x2 + 85x + 29,

(41x + 27)y + 88x2 + 112x + 25,

(124x + 91)y + 7x3 + 62x2 + 86x + 45,

(x2 + 48x + 75)y + 40x3 + 74x2 + 112x + 32,

(114x2 + 26x + 99)y + 34x4 + 29x3 + 125x2 + 107x + 92,

(30x3 + 33x2 + 86x + 113)y + 33x4 + 28x3 + 59x + 61,

(30x3 + 99x2 + 82x + 24)y + 114x5 + 121x4 + 119x3 + 10x2 + 89x + 78,

(8x4 + 46x3 + 41x2 + 46x + 105)y + 66x5 + 115x4 + 122x3 + 31x2 + 15x + 11,

(35x4 + 116x3 + 55x2 + 29x + 72)y + 91x6 + 89x5 + 18x4 + 31x3 + 100x2 + 37x + 38,

(55x5 + 49x4 + 102x3 + 72x2 + 32x + 82)y + 119x6 + 69x5 + 55x4 + 87x3 + 125x2 + 3x + 95,

(80x5 + 20x4 + 51x3 + 51x2 + 39x + 48)y + 117x7 + 57x6 + 71x5 + 40x4 + 90x3 + 59x2 + 103x + 73,

(106x6 + 105x5 + 17x4 + 85x3 + 92x2 + 107x + 13)y + 59x7 + 126x6 + 34x5 + 118x4 + 5x3 + 59x2 + 9x + 83,

(83x6 + 100x5 + 56x4 + 99x3 + 7x2 + 26x + 11)y + 15x8 + 53x7 + 39x6 + 101x5 + 80x4 + 3x3 + 27x2 + 95x + 7,

(32x7+109x6+91x5+16x4+66x3+32x2+52x+54)y+63x8+126x7+26x6+87x5+40x4+42x3+109x2+112x+40,

(119x7 + 10x6 + 111x5 + 45x4 + x3 + 40x2 + 53x + 26)y + 10x9 + 56x8 + 108x7 + 80x6 + 58x5 + 56x4 + 101x3 +

123x2 + 43x + 28,

(21x8 + 61x7 + 78x6 + 58x5 + 114x4 + 28x3 + 95x2 + 54x + 45)y + 63x9 + 111x8 + 119x7 + 9x6 + 88x5 + 123x4 +

112x3 + 44x2 + 86x + 111,

(29x8 + 21x7 + 115x6 + 75x5 + 98x4 + 13x3 + 5x2 + 21x + 1)y + 46x10 + 69x9 + 80x8 + 18x7 + x6 + 81x5 + 60x4 +

100x3 + 126x2 + 29,

(64x9 + 106x8 + 38x7 + 30x6 + 20x5 + 110x4 + 87x3 + 61x2 + 16x + 84)y + 79x10 + 15x9 + 10x8 + 9x7 + 123x6 +

104x5 + 73x4 + 73x3 + 126x2 + 65x + 103,

(57x9 + 80x8 + 41x6 + 52x5 + 102x4 + 81x3 + 5x2 + 92x + 26)y + 45x11 + 86x10 + 114x9 + 103x8 + 95x7 + 11x6 +

58x5 + 50x4 + 3x3 + 116x2 + 48x + 34,

(114x10 + 3x9 + 15x8 + 117x7 + 116x6 + 72x5 + 16x4 + 57x3 + 83x2 + 31x+118)y +2x11 + 33x10 + 74x9 + 20x8 +

112x7 + x6 + 83x5 + 78x4 + 55x3 + 69x2 + 47x + 67,

(108x10 +64x8 +14x7 +95x6 +67x5 +99x4 +113x3 +124x2 +35x+101)y +59x12 +5x11 +34x10 +2x9 +33x8 +

95x7 + 112x6 + 65x5 + 69x4 + 33x3 + 119x2 + 111x + 104,

(104x11 + 125x10 + 109x9 + 23x8 + x7 + 32x6 + 2x5 + 90x4 + 5x3 + 7x2 + 44x + 95)y + 7x12 + 103x11 + 74x10 +

88x9 + 81x8 + 83x7 + 124x6 + 116x5 + 39x4 + 91x3 + 120x2 + 29x + 39,

(25x11 +41x10 +58x9 +17x8 +77x7 +43x6 +90x5 +99x4 +109x3 +58x2 +30x+14)y +80x13 +97x12 +93x11 +

126x10 + x9 + 66x8 + 93x7 + 60x6 + 58x5 + 112x4 + 60x3 + 29x2 + 22x + 27,

(19x12 +101x11 +56x10 +94x9 +121x8 +60x7 +88x6 +41x5 +42x4 +71x3 +25x2 +21x+35)y +4x13 +29x12 +

101x11 + 119x10 + 81x9 + 110x8 + 122x7 + 97x6 + 46x5 + 121x4 + 51x3 + 23x2 + 15x + 75,

(45x12 + 34x11 + 30x10 + 65x9 + 111x8 + 11x7 + 96x6 + 62x5 + 123x4 + 59x3 + 39x2 + 82x + 94)y + 117x14 +

38x13 + 119x12 + 123x11 + 123x10 + 107x9 + 122x8 + 80x7 + 23x6 + 41x5 + 112x4 + 58x3 + 120x2 + 25x + 70,

(60x13 + 45x12 + 77x11 + 54x10 + 49x9 + 123x8 + 103x7 + 51x6 + 91x5 + 90x4 + 37x3 + 82x2 + 115x + 119)y +

77x14 + 62x13 + 20x12 + 58x11 + 44x10 + 24x9 + 34x8 + 59x7 + 77x6 + 75x5 + 34x4 + 99x3 + 9x2 + 25x,

(10x13 +29x12 ++43x11 +120x10 +37x9 +114x8 +57x7 +53x6 +112x5 +94x4 +60x3 +47x2 +77x+7)y+49x15 +

40x14 + 112x13 + 78x12 + 30x11 + 116x10 + 5x9 + 61x8 + 39x7 + 68x6 + 28x5 + 5x4 + 108x3 + 33x2 + 62x + 29,

236 F. Zhang and S. Liu

(47x14+16x13+81x12+25x11+36x10+119x9+107x8+120x7+30x6+72x5+28x4+125x3+95x2+35x+117)y+

60x15 +102x14 +x13 +85x12 +113x11 +59x10 +x9 +53x8 +108x7 +99x6 +13x5 +98x4 +60x3 +27x2 +122x+98,

(54x14 + 118x13 + 10x12 + 108x11 + 54x10 + 120x9 + 67x8 + 118x7 + 6x6 + 65x5 + 74x4 + 16x3 + 95x2 + 82x +

119)y + 10x16 + 20x15 + 76x14 + x13 + 54x12 + 88x11 + 6x10 + 102x9 + 74x8 + 96x7 + 73x6 + 110x5 + 76x4 +

62x3 + 106x2 + 119x + 15}

Now we assume that the received vector is

r = (24, 29, 87, 42, 99, 57, 25, 97, 49, 64, 58, 31, 97, 8, 120, 122, 34, 36, 64, 95).

Then we can construct a nonzero polynomial H(T) ∈ L(lO)[T] using the
pole basis, all the zero basis for each Pi and r, where
H(T) = (52x14 +56x13 +44x12 +94x11 +107x10 +75x9 +96x8 +35x7 +23x6 +77x5 +118x4 +3x3 +61x2 +27x+

89)y+112x16+119x15+83x14+102x13+4x12+8x11+111x10+74x9+13x8+90x7+33x6+110x5+51x4+116x3+

111x2+18x+77+((43x12+93x11+118x10+92x9+8x8+61x7+25x6+91x5+25x4+88x3+109x2+119x+82)y+

81x14+47x13+61x12+47x10+27x9+50x8+36x7+55x6+x5+31x4+60x3+87x2+65x+90)T +((81x10+82x9+

90x8 +35x7 +114x6 +62x5 +124x4 +35x3 +29x2 +57x+10)y+22x12 +115x11 +124x10 +59x9 +104x8 +27x7 +

112x6+63x5+113x4+71x3+122x2+x+72)T2+((76x8+17x7+78x6+80x5+106x4+123x3+71x2+92x+23)y+

5x10+24x9+45x8+5x7+46x6+84x5+87x4+13x3+96x2+56x+19)T3+((125x6+59x5+79x4+80x3+113x2+

3x+55)y+35x8+74x7+100x6+49x4+x3+74x2+124x+88)T4+((37x4+35x3+37x2+74x+36)y+119x6+52x5+

125x4+73x3+119x2+67x+52)T5+((41x2+49x+80)y+61x4+5x3+55x2+44x+115)T6+(59y+21x2+119x+53)T7.

In the Root finding step, we obtain two roots of H(T), which are 68+8x+
23y+66x2 and 81+102x+100y+37x2 respectively. Consequently, the decoding
results are

c1 := (24, 67, 87, 90, 99, 72, 25, 43, 49, 112, 78, 85, 97, 8, 91, 122, 52, 36, 64, 95)

c2 := (24, 29, 46, 42, 38, 57, 91, 97, 49, 64, 58, 31, 97, 37, 120, 81, 34, 97, 84, 95)

It is easy to verify that they are both valid codewords, and the distance of
c1 and r is 7, and distance of c2 and r is 9. Meanwhile,

c1 − c2 = (0, 38, 41, 48, 61, 15, 61, 73, 0, 48, 20, 54, 0, 98, 98, 41, 18, 66, 107, 0)

is a minimum-weight codeword.

4 New Approach to ECDLP

4.1 A Warm-Up

Let us first discuss the relation between ECDLP and minimum-weight codewords
of EC code. Let E be an elliptic curve defined over Fq, E(Fq) be the elliptic curve
group, P1, P2, . . . , Pn ∈ E(Fq), and G be a divisor of degree k. Let C(G,D) be the
EC code determined by divisors G and D = P1+P2+ . . .+Pn. We know that the
minimum distance d of C(G,D) is either n−k or n−k+1. If d = n−k+1, then
the EC code is a MDS code, otherwise the EC code is an almost MSD (AMDS)
code. Whether C(G,D) is an MDS code or an AMDS code depends on whether

Solving ECDLP via List Decoding 237

there exist {Pi1 , Pi2 , . . . , Pik} ⊆ (P1, P2, . . . , Pn) such that Pi1+Pi2+. . .+Pik −G
is a principal divisor.

It is easy to find a codeword of minimum weight for a MDS-EC code. As for
AMDS-EC code, we show that finding codewords of minimum weight is closely
related to solving ECDLP (see the following theorem).

Theorem 4. Let E be an elliptic curve over Fq. Let P be a point over group
E(Fq). Suppose the order of P is a prime p. Let n = �log2 p�. For any point Q
from subgroup 〈P 〉, define an elliptic code C(G,D) with divisor G := Q+(k−1)O
and divisor D := P + 2P + . . . + 2n−1P . If there exists an algorithm A who can
find a codeword of minimum weight in C(G,D) with probability ε, then another
algorithm B can be constructed to solve the ECDLP s := logP Q with probability
ε/(n + 1).

Proof. Suppose that B has an ECDLP instance (Fq, E(Fq),
, Q, P) where P is
a generator of subgroup G of prime order p and Q ∈ G. B aims to determine
s ∈ Zp such that Q = sP .

Express s ∈ Zp with binary string s = (s1, s2, . . . sn) with n = �log2 p�. B
constructs an EC code to solve the ECDLP as follows.

Algorithm B
Input: (Fq, E(Fq), p,Q, P)
Output: s′

(1) k ← {0, 1, . . . , n}.
(2) Define divisor G = Q + (k − 1)O of degree k.
(3) Let Pi = 2i−1P for i = 1, 2, . . . , n;
(4) Define divisor D = P1 + P2 + . . . + Pn;
(5) Construct an EC code C(G,D);
(6) Invoke algorithm A to find a codeword c = (c1, c2, . . . , cn) of minimum

weight for the EC code C(G,D).
(7) Suppose the nonzero components in c are ci1 , ci2 , . . ., cik . Then compute

s′ =
∑k

j=1 2ij−1.
(8) Return(s′)

Note that k is randomly chosen from {0, 1, . . . , n}. Obviously, the probability
that k = wt(s) is 1/(n + 1).

Now we assume that the event k = wt(s) happens, or equivalently, the
event that C(G,D) constructed by B is an AMDS-EC code happens. Since
s = (s1, s2, . . . sn), we have Q =

∑n
i=1 siPi. If si1 = si2 = . . . = sik = 1

and sj = 0 for j /∈ {i1, i2, . . . , ik}, then Q =
∑k

j=1 sijPij .
Define a principal divisor div(f) := Pi1 + Pi2 + . . . + Pik − Q − (k − 1)O.

It is easy to see that div(f) ∈ L(G) since div(f) + G is effective. Consequently,
c := (f(P1), f(P2), . . . , f(Pn)) is a codeword of C(G,D), and f(Pi) = 0 iff i ∈
{i1, i2, . . . , ik}.

If A successfully outputs a codeword of minimum weight, then the codeword
c must be of weight n− k. According to Theorem 2, the principal divisor div(f)
suggests that Pi1 + Pi2 + . . . + Pik − Q − (k − 1)O is O when “+” and “−” are

238 F. Zhang and S. Liu

implemented with the elliptic curve group operation. As a result, Q = Pi1 +
Pi2 + . . . + Pik holds on the group of E(Fq), hence Q =

∑k
j=1 2ij−1P .

In this way, B solves the ECDLP by invoking algorithm A with probability
ε/(n + 1).

Note that in Sect. 3, we construct algorithm MinWeightCode which outputs

codewords of minimum weight with probability 1−

⎛

⎜
⎜
⎝1 −

μ·
⎛
⎝n − k

u

⎞
⎠

⎛
⎝n

u

⎞
⎠(q−1)u

⎞

⎟
⎟
⎠

Tm

. Hence

we can construct B to solve the ECDLP with probability

1
n + 1

·

⎛

⎜
⎜
⎜
⎝

1 −

⎛

⎜
⎜
⎝1 −

μ ·
(

n − k
u

)

(
n
u

)

(q − 1)u

⎞

⎟
⎟
⎠

Tm
⎞

⎟
⎟
⎟
⎠

.

4.2 The Algorithm of Solving ECDLP

In the proof of the theorem in the previous subsection, algorithm B wins only
if it correctly guesses the Hamming weight of s(= logP Q). Hence the security
reduction suffers from a security loss of factor (n+ 1). In this subsection, we try
to decrease the security loss factor. We have two observations.

(1) For a random s ∈ Zp, the hamming weight of s belongs to {0, 1, . . . , �log2 p�)}
and it takes the value of �(log2 p + 1)/2� with the maximal probability.

(2) If we increase the number of elements in the support of D and add random
elements in the support of divisor D, it is possible for us to improve the
probability that ∃i1, i2, . . . , ik such that Pi1 + Pi2 + . . . + Pik − G is principal
divisor. Hence, the probability of C(G,D) being an AMDS-EC code will be
greatly increased.

Based on the above observations, we present a probabilistic algorithm of solv-
ing ECDLP by constructing AMDS-EC codes and finding codewords of minimum
weight with help of list decoding.

Let P be a point of prime order p in the group E(Fq), where E is an elliptic
curve defined over Fq. Given P and Q(= sP) ∈ 〈P 〉 and the parameter of E ,
the following algorithm SolveECDLP aims to compute s (= logP Q) by invoking
MinWeiCodeword which aims to find minimum weight codeword of elliptic codes.

Algorithm SolveECDLP(E(Fq), P,Q, p):

Input: An elliptic curve group E(Fq), a generator P of prime order p, and an
element Q ∈ 〈P 〉.
Output: s ∈ Zp (such that Q = sP).

Solving ECDLP via List Decoding 239

1. Define θ := �log2 p�, n := 2θ, k := �(θ + 1)/2�. If wt(p) = k, then k :=
�(θ + 1)/2� + 1.

2. Define divisor G := kO and define Pi := 2i−1P for i = 1, 2, . . . , θ.
3. Randomly choose r2, r3, . . . , rn−θ from Zp. Set r1 := 1 and define Pθ+j := rjQ

for j = 1, 2, . . . , n − θ.
4. Construct an Elliptic code C(G,D) where divisor D = P1 + P2 + . . . + Pn.
5. Set tm = n − √

nk and Tm = O(poly(n)).
6. Invoke c ← MinWeiCodeword(C(G,D), {n − k}, tm, Tm);
7. If c = ⊥, goto Step 3.
8. If c �= ⊥, then wt(c) = n − k. Parse c = (c1, c2, . . . , cn). Suppose the zero

components of c are ci1 , ci2 , . . . , cik .
9. Suppose ij−1 ≤ θ and ij > θ, then compute s′ :≡ −(rij−θ + rij+1−θ + . . . +

rik−θ)−1(2i1−1 + 2i2−1 + . . . + 2ij−1−1) mod p.
10. If Q = s′P then Return(s′); else Return(⊥).

In the above algorithm, it is possible for us to choose the parameters n and
k flexibly as to optimize the algorithm.

Take the example in Subsect. 3.3. Let P = P1, Q = P9. Let r1 = 1 and choose
r2 = 29, r3 = 93, r4 = 49, r5 = 5, r6 = 98, r7 = 54, r8 = 10, r9 = 103, r10 =
59, r11 = 15, r12 = 108. Then P10 = 29Q,P11 = 93Q,P12 = 49Q,P13 =
5Q,P14 = 98Q,P15 = 54Q,P16 = 10Q,P17 = 103Q,P18 = 59Q,P19 =
15Q,P20 = 108Q. The output of MinWeiCodeword is the minimum-weight code-
word

(0, 38, 41, 48, 61, 15, 61, 73, 0, 48, 20, 54, 0, 98, 98, 41, 18, 66, 107, 0).

Therefore, P1+P9+P13+P20 = O, which means 1+s+5s+108s ≡ 0 mod 137.
This immediately leads to a correct output of s = 6 since Q = 6P .

4.3 Analysis of Algorithm SolveECDLP

Now we analyze the success probability of Algorithm SolveECDLP via the proof
of the following theorem.

Theorem 5. Let E be an elliptic curve over Fq. Let P be a point over group
E(Fq). Suppose the order of P is a prime p. Let θ := �log2 p�, n := 2θ, k :=
�(θ + 1)/2�, u ≤ (n − k)/2 and u ≥ n − k − tm. then algorithm SolveECDLP
successfully solves the ECDLP problem with probability
⎛

⎜
⎜
⎜
⎝

1 −

⎛

⎜
⎜
⎝1 −

(
θ

k − 1

)

2θ

⎞

⎟
⎟
⎠

n−θ
⎞

⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎝

1 −

⎛

⎜
⎜
⎝1 −

λ ·
(

n − k
u

)

(
n
u

)

(q − 1)u−1

⎞

⎟
⎟
⎠

Tm
⎞

⎟
⎟
⎟
⎠

·
(

1 − 1
p

)

,

where λ denotes the number of subsets J = {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n} such
that G − ∑

j∈J Pj is a principal divisor.

240 F. Zhang and S. Liu

Proof. Note that for G := kO, the Elliptic Code C(G,D) is an AMDS code
iff there exists a principal divisor div(f) := Pi1 + Pi2 + . . . + Pik − kO ∈ L(G).
Equivalently, there exist Pi1 , Pi2 , . . . , Pik such that Pi1 +Pi2 +. . .+Pik +kO = O,
i.e,

Pi1 + Pi2 + . . . + Pik = O,

where the addition is over the elliptic group E(Fq). There are three cases all
together.

Case I: i1 ≤ θ and ik > θ. In this case, suppose that ij−1 ≤ θ and ij > θ, then
(2i1−1 + 2i2−1 + . . . + 2ij−1−1)P + (rij−θ + rij+1−θ + . . . + rik−θ)Q = O, that
is, −(rij−θ + rij+1−θ + . . . + rik−θ)s ≡ (2i1−1 + 2i2−1 + . . . + 2ij−1−1) mod p.

Case II: i1 > θ. In this case, (ri1−θ + ri2−θ + . . . + rik−θ)Q = O, i.e., ri1−θ +
ri2−θ + . . . + rik−θ ≡ 0 mod p.

Case III: ik ≤ θ. In this case, (2i1−1 + 2i2−1 + . . . + 2ik−1)P = O, i.e., (2i1−1 +
2i2−1 + . . . + 2ik−1) ≡ 0 mod p. Recall that θ := �log2 p�, and k = �θ/2� + 1.
Then (2i1−1 + 2i2−1 + . . . + 2ik−1) < 2p.

Clearly, Case II happens with probability 1/p when r�’s are randomly chosen,

 ∈ {2, 3, . . . , n − θ}, and Case III never happens since wt(p) �= k.

Now we consider the probability that C(G,D) is an AMDS code, when
s, r2, . . . rn−θ are randomly chosen from Zp.

Pr [C(G, D) is AMDS]

= Pr
[∃i1, . . . , ik ∈ [n] s.t. divisor Pi1 + Pi2 + . . . + Pik − G is principal

]

= Pr
[∃i1, . . . , ik ∈ [n] s.t. Pi1 + Pi2 + . . . + Pik = O]

(addition is over E(Fq))

= Pr [∃i1, . . . , ik ∈ [n] s.t. Case I happens] + Pr [∃i1, . . . , ik ∈ [n] s.t. Case II happens]

+Pr [∃i1, . . . , ik ∈ [n] s.t. Case III happens]

= 1/p + Pr [∃i1, . . . , ik ∈ [n] s.t. Case II happens] + 0 (7)
≥ Pr [∃i1, . . . , ik s.t. Case II happens]

= Pr

[∃i1, . . . , ik ∈ [n]
∃ij−1 ≤ θ, ij > θ

: −(rij−θ + . . . + rik−θ)s = (2i1−1 + . . . + 2ij−1−1) mod p

]

≥ Pr

[∃i1, . . . , ik ∈ [n]
∃ik > θ

: −rik−θs = (2i1−1 + . . . + 2ik−1−1) mod p

]

= 1 − Pr
[
�ik, ik ∈ [n], ik > θ s.t. − rik−θs = (2i1−1 + . . . + 2ik−1−1) mod p

]

= 1 −

⎛
⎜⎜⎝1 −

(
θ

k − 1

)

2θ

⎞
⎟⎟⎠

n−θ

. (8)

Given that C(G,D) is an AMDS elliptic code, then the minimum distance of
C(G,D) is d = n−k. According to (6), MinWeiCodeword(C(G,D), {n−k}, tm, Tm)
successfully outputs a codeword c = (c1, c2, . . . , cn) of minimum weight with
probability

1 −

⎛

⎜
⎜
⎝1 −

λ ·
(

n − k
u

)

(
n
u

)

(q − 1)u−1

⎞

⎟
⎟
⎠

Tm

.

Solving ECDLP via List Decoding 241

Suppose that the zero components of the minimum weight codeword c are
given by ci1 , ci2 , . . . , cik . Then it must hold that Pi1 + Pi2 + . . . + Pik = O.
Similarly, there are three cases: i1 ≤ θ and ik > θ; i1 > θ; ik ≤ θ. As analyzed
before, the second case happens with probability 1/p and the third case never
happens. Therefore, the first case happens with probability 1 − 1/p. Meanwhile
the first case means that ∃ij−1 ≤ θ, ij > θ, so that

(2i1−1 + 2i2−1 + . . . + 2ij−1−1)P + (rij−θ + rij+1−θ + . . . + rik−θ)Q = O,

i.e.,

s ≡ −(rij−θ + rij+1−θ + . . . + rik−θ)−1(2i1−1 + 2i2−1 + . . . + 2ij−1−1) mod p.

In this case, Algorithm SolveECDLP successfully solves the ECDLP problem.
Consequently,

Pr [SolveECDLP succeeds] (9)
= Pr [C(G, D) is AMDS ∧ MinWeiCodeword succeeds ∧ Case I happens] (10)
= Pr [C(G, D) is AMDS] (11)

·Pr [MinWeiCodeword succeeds | C(G, D) is AMDS] (12)
·Pr [Case I happens | MinWeiCodeword succeeds, C(G, D) is AMDS] (13)

=

⎛
⎜⎜⎜⎝1 −

⎛
⎜⎜⎝1 −

(
θ

k − 1

)

2θ

⎞
⎟⎟⎠

n−θ⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝1 −

⎛
⎜⎜⎝1 −

λ ·
(

n − k
u

)

(
n
u

)
(q − 1)u−1

⎞
⎟⎟⎠

Tm
⎞
⎟⎟⎟⎠ · (1 − 1

p
), (14)

where λ denotes the number of subsets J = {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n} such
that G − ∑

j∈J Pj is a principal divisor.

Remark. The probability of (8) only shows a lower bound of the probability
that C(G,D) is an AMDS code. Even if it is only a lower bound, (8) is already
close to 1 (as compared with the loss factor 1/(n+1) in the previous subsection).
For instance, now we choose the Certicom curve ECCp-131 over a prime field
of 131-bit to construct a EC code, then θ = 131, k = 66. Take n = 262, then the
probability is at least 0.99992.

Recall that in algorithm MinWeiCodeword(C(G,D), {n − k}, tm, Tm), there
are Tm times of invocations of FindCodeword(C(G,D), u, d, tm). For each invoca-
tion, FindCodeword succeeds in finding a codeword of minimum weight via the
Guruswami-Sudan list decoding with probability

Pr [ĉ ← FindCodeword(C, u, d, tm) : wt(ĉ) = d] ≈
λ ·

(
d
u

)

(
n
u

)

(q − 1)u−1

. (15)

Therefore, the times Tm of invocations of FindCodeword should be of order
(

n
u

)

(q − 1)u−1

λ ·
(

d
u

) (16)

242 F. Zhang and S. Liu

for MinWeiCodeword to succeed. Algorithm FindCodeword is dominated by the list
decoding algorithm. Recall that list decoding algorithms, either the Guruswami-
Sudan or Shokrollahi-Wasserman algorithm [31], are polynomial-time algorithms
in the codeword length. However, the probability (15) is too small to make Tm a
polynomial. Therefore, the algorithm SolveECDLP is not efficient, and it is even
not of square-root time algorithm. To decrease the computational complexity of
SolveECDLP, a possible way is to increase the error bound tm of the list decoding.
Recall that u + t = d and t ≤ tm. A larger tm implies that we can take a small
value of u, so the probability in (15) will be improved which in turn to decrease
the computational complexity of SolveECDLP. On the other hand, for a concrete
security parameter κ such that q ≈ 2κ, a more efficient list decoding algorithm
will also help us to improve the efficiency of SolveECDLP.

5 Conclusion

We proposed a new method to solve the ECDLP problem. For any ECDLP, we
first construct an Elliptic Code, then resort to techniques of List Decoding to
find codewords of minimum weight. With such a codeword, we are able to solve
the ECDLP problem. Our method of solving ECDLP is still not efficient enough,
due to the small probability of finding minimum-weight codeword. Nevertheless,
this is a totally new approach and we believe the efficiency can be improved with
the new development of List Decoding.

Acknowledgements. This work is supported by the National Natural Science Foun-
dation of China (No. 61672550 and 61672346) and the National Key R&D Program of
China(2017YFB0802503).

References

1. Beelen, P., Brander, K.: Efficient list decoding of a class of algebraic-
geometrycodes. Adv. Math. Commun. 4(4), 485–518 (2010)

2. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.: On the inherent intractability
of certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978)

3. Cheng, Q.: Hard problems of algebraic geometry codes. IEEE Trans. Inf. Theory
54, 402–406 (2008)

4. Cheng, Q., Wan, D.: On the list and bounded distance decodability of Reed-
Solomon codes (extended abstract). In: FOCS, pp. 335–341 (2004)

5. Driencourt, Y., Michon, J.F.: Elliptic codes over fields of characteristics 2. J. Pure
Appl. Algebra 45(1), 15–39 (1987)

6. Elias, P.: List decoding for noisy channels. In: 1957-IRE WESCON Convention
Record, pp. 94–104 (1957)

7. Frey, G., Rück, H.: A remark concerning m-divisibility and the discrete logarithm
in the divisor class group of curves. Math. Comput. 62, 865–874 (1994)

8. Galbraith, S.D., Gaudry, P.: Recent progress on the elliptic curve discrete logarithm
problem. Des. Codes Cryptogr. 78(1), 51–72 (2016)

9. Gaudry, P., Hess, F., Smart, N.P.: Constructive and destructive facets of Weil
descent on elliptic curves. J. Cryptol. 15(1), 19–46 (2002)

Solving ECDLP via List Decoding 243

10. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: Pro-
ceedings of the Twenty First Annual ACM Symposium on Theory of Computing,
pp. 25–32 (1989)

11. Goppa, V.D.: Codes on algebraic curves. Soviet Math. Dokl. 24(1), 170–172 (1981)
12. Guruswami, V., Sudan, M.: Improved decoding of reed-solomon and algebraic-

geometry codes. IEEE Trans. Inf. Theory 45(6), 1757–1767 (1999)
13. Guruswami, V., Sudan, M.: On representations of algebraic-geometric codes for

list decoding. IEEE Trans. Inf. Theory 47(4), 1610–1613 (2001)
14. Guruswami, V., Rudra, A.: Explicit codes achieving list decoding capacity: error-

correction with optimal redundancy. IEEE Trans. Inf. Theory 54(1), 135–150
(2008)

15. Guruswami, V., Xing, C.: List decoding reed-solomon, algebraic-geometric, and
gabidulin subcodes up to the singleton bound. In: Proceedings of the 45th Annual
ACM Symposium on Theory of Computing (STOC), pp. 843–852. ACM (2013)

16. Kiayias, A., Yung, M.: Cryptographic hardness based on the decoding of reed-
solomon codes. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo,
R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 232–243. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9 21

17. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987)
18. MAGMA Computational Algebra System. http://magma.maths.usyd.edu.au/

magma/
19. Menezes, A., Okamoto, T., Vanstone, S.: Reducing elliptic curve logarithms to

logarithms in a finite field. IEEE Trans. Inf. Theory 39(2), 1639–1646 (1993)
20. McEliece, R.J.: On the average list size for the Guruswami-Sudan decoder. In: 7th

International Symposium on Communications Theory and Applications (ISCTA),
July 2003

21. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 31

22. Miller, V.: Short programs for functions on curves (1986, unpublished manuscript)
23. Moreno, C.: Algebraic Curves over Finite Fields. Cambridge Tracts in Mathemat-

ics, vol. 97. Cambridge University Press, Cambridge (1991)
24. Parvaresh, F., Vardy, A.: Correcting errors beyond the Guruswami-Sudan radius in

polynomial time. In: 46th Annual IEEE Symposium on Foundations of Computer
Science, pp. 285–294 (2005)

25. Pollard, J.M.: Monte Carlo methods for index computation mod p. Math. Comput.
32, 918–924 (1978)

26. Semaev, I.A.: Evaluation of discrete logarithms in a group of p-torsion points of
an elliptic curve in characteristic p. Math. Comput. 67(221), 353–356 (1998)

27. Smart, N.P.: The discrete logarithm problem on elliptic curves of trace one. J.
Cryptol. 12(3), 193–196 (1999)

28. Satoh, T., Araki, K.: Fermat quotients and the polynomial time discrete log algo-
rithm for anomalous elliptic curves. Comm. Math. Pauli 47(1), 81–92 (1998)

29. Silverman, J.H.: The Arithmetic of Elliptic Curves. Springer, New York (1986).
https://doi.org/10.1007/978-1-4757-1920-8

30. Shokrollahi, M.A.: Minimum distance of elliptic codes. Adv. Math. 93, 251–281
(1992)

31. Shokrollahi, M.A., Wasserman, H.: List decoding of algebraic-geometric codes.
IEEE Trans. Inf. Theory 45(2), 432–437 (1999)

32. Stichtenoth, H.: Algebraic Function Field and Codes. Springer, Heidelberg (1993)

https://doi.org/10.1007/3-540-45465-9_21
http://magma.maths.usyd.edu.au/magma/
http://magma.maths.usyd.edu.au/magma/
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/978-1-4757-1920-8

244 F. Zhang and S. Liu

33. Sudan, M.: Decoding of reed solomon codes beyond the error-correction bound. J.
Complex. 13, 180–193 (1998)

34. Sudan, M.: List decoding: algorithms and applications. In: van Leeuwen, J., Watan-
abe, O., Hagiya, M., Mosses, P.D., Ito, T. (eds.) TCS 2000. LNCS, vol. 1872, pp.
25–41. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44929-9 3

35. Tsfasman, M.A., Vlǎdut, S.G.: Algebraic-geometric Codes. Kluwer Academic Pub-
lishers (1991)

36. Vardy, A.: The intractability of computing the minimum distance of a code. IEEE
Trans. Inf. Theory 43(6), 1757–1766 (1997)

37. Washington, L.: Elliptic Curves: Number Theory and Cryptography. Chapman and
Hall/CRC (2003)

38. Wozencraft, J.M.: List decoding. Quarterly Progress Report, Research Laboratory
of Electronics, MIT, vol. 48, pp. 90–95 (1958)

https://doi.org/10.1007/3-540-44929-9_3

Protocols

Provably Secure Proactive Secret Sharing
Without the Adjacent Assumption

Zhe Xia1, Bo Yang2(B), Yanwei Zhou2, Mingwu Zhang3,4, Hua Shen3,
and Yi Mu5

1 School of Computer Science and Technology, Wuhan University of Technology,
Wuhan, China

xiazhe@whut.edu.cn
2 School of Computer Science, Shaanxi Normal University, Xi’an, China

{byang,zyw}@snnu.edu.cn
3 School of Computers, Hubei University of Technology, Wuhan, China

csmwzhang@gmail.com, cshshen@hbut.edu.cn
4 State Key Laboratory of Cryptology, Beijing, China

5 Fujian Provincial Key Laboratory of Network Security and Cryptology,
College of Mathematics and Informatics, Fujian Normal University, Fuzhou, China

ymu.ieee@gmail.com

Abstract. In secret sharing (SS), the secret is shared among a num-
ber of parties so that only a quorum of these parties can recover the
secret, but a smaller set of parties cannot learn any information about
the secret. However, the traditional SS technique is insufficient to pro-
tect the secret with a long lifetime, because the adversary may gradually
compromise enough parties to retrieve the secret over the long time. To
solve this issue, proactive secret sharing (PSS) divides the lifetime of the
secret into many short time periods and the parties jointly update their
secret shares in each time period. The benefit is that if the adversary
cannot break into enough parties in a single time period, her compro-
mised shares will become obsolete after the shares being updated.

In the last two decades, many PSS schemes have been proposed and
they are widely used in various security protocols. However, the majority
of existing PSS schemes require the adjacent assumption, i.e. if a party is
corrupted during an update phase, it is corrupted in both time periods
adjacent to that update phase. Note that this assumption not only hin-
ders the security model to capture the mobile adversary’s abilities, but
also prevents PSS schemes being used in many real-world applications.
In this paper, we revisit the research of PSS, and our work contributes
in the following aspects. Firstly, we discuss why some existing schemes
(including Herzberg’s PSS scheme) cannot maintain their security when
the adjacent assumption is removed. Secondly, we use the polynomial
truncation method to improve Herzberg’s PSS scheme. To the best of
our knowledge, our proposed scheme is the first provably secure PSS
scheme without the adjacent assumption.

c© Springer Nature Switzerland AG 2019
R. Steinfeld and T. H. Yuen (Eds.): ProvSec 2019, LNCS 11821, pp. 247–264, 2019.
https://doi.org/10.1007/978-3-030-31919-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_14&domain=pdf
https://doi.org/10.1007/978-3-030-31919-9_14

248 Z. Xia et al.

1 Introduction

The secret sharing (SS) technique, first introduced by Shamir [28] and Blak-
ley [5], is an important building block in cryptology to protect secrecy and avail-
ability of sensitive information. The secret is divided into a number of shares and
each share is held by an individual party. Therefore, if the adversary wants to
learn or destroy the secret, she has to break into multiple parties. For example,
in a (t, n)-threshold secret sharing, the secret is shared among n parties so that
any t parties work together can recover the secret, but less than t parties cannot
learn any information of the secret. And the adversary needs to compromise
at least n − t + 1 parties if her purpose is to destroy the secret. However, the
traditional SS technique is not suitable for some cases. For example, it might be
insufficient to protect the secret with a long lifetime, e.g. crypto master keys,
legal documents, medical records, etc. In these cases, the adversary may grad-
ually compromise enough parties to learn the secret or destroy it, because she
breaks into the parties in a monotonic fashion and she has a very long time to
mount the attack.

To mitigate the above issue, proactive secret sharing (PSS) has been intro-
duced in which the entire lifetime of the secret is divided into many short time
periods and the parties jointly update the shares at the beginning of each time
period with the original secret unchanged. The update includes a share recovery
protocol and a share refreshment protocol. In the share recovery protocol, any
lost or tampered share is recovered for the corresponding party without disclosing
it to the other parties. In the share refreshment phase, the parties interactively
compute new shares of the same secret and erase old shares. Because old shares
and new ones are independent, if the adversary cannot break into enough parties
before the update, any compromised share learned by the adversary will become
obsolete after the update. In the case of a (t, n)-threshold PSS, the adversary has
to compromise t parties in a single time period in order to learn the secret. This
is opposed to compromising t parties over the entire lifetime in traditional SS
schemes. For example, suppose some legal document needs to be protected for
10 years. If the shares are updated weekly, then the time slot for the adversary
to break into t parties has been dramatically reduced from 10 years to 1 week.

The motivation of PSS is to protect the secret against the mobile adver-
sary [23] who can compromise different parties at different time periods.
Throughout the entire lifetime of the secret, the mobile adversary may corrupt
all parties or break into some parties several times. But the requirement is that
she can only compromise less than a quarom of parties in each time period. If a
party is no longer corrupted by the mobile adversary, it will be “rebooted” into
the safe state immediately.

Informally, proactive security refers to secrecy and robustness in the presence
of the mobile adversary, where secrecy guarantees that the mobile adversary can-
not learn any information about the secret in the entire lifetime of the secret,
and robustness ensures that the secret can be correctly reconstructed in any
time period even in the presence of some corrupted parties. Moreover, a PSS
scheme is said to be optimal resilient if it is robust against any minority of cor-

PSS Without the Adjacent Assumption 249

rupted parties. Note that this threshold is the maximum number of corrupted
parties allowed in SS schemes. In the literature, the threat model widely used in
analysing PSS schemes requires the adjacent assumption, i.e. if a party is cor-
rupted during an update phase, it is corrupted in both time periods adjacent to
that update phase. In this paper, we investigate the necessity and implications of
the adjacent assumption, and explore the design of provably secure PSS schemes
without this assumption.

1.1 Related Works

The concept of mobile adversary was first introduced by Ostrovsky and Yung
in [23]. The same paper also showed that if there exists pairwise secure commu-
nication channels and the parties can erase part of their memory, a lot of secure
multiparty computation protocols (e.g. [3,10,26]) can be extended to withstand
the mobile adversary. However, this idea only works theoretically, because the
computation is done by secure distributed circuit evaluations and the communi-
cation costs are proportional to the size of circuits. For some specific problems,
more efficient solutions are desired. Later, Canetti and Herzberg [9] introduced
an efficient method to construct a distributed pseudorandom generator that can
be maintained proactively. Canetti et al. [8] also demonstrated how to ensure
authenticated and secret communication among parties that is robust against
break-ins and key exposures.

Among the research of proactive security, PSS has attracted the most inter-
ests. Not only because it is a useful technique to protect secret with a long
lifetime, but also it is an important building block for various security proto-
cols, such as proactive threshold cryptosystems [19], proactive secure multiparty
computation [2,30], key management in the ad hoc networks [18,31], and so on.
In PSS, the secret is initially shared among the parties. The tricky part is how
to jointly update the shares among the parties. For this task, three approaches
have been introduced that achieve the optimal resilience property:

– Herzberg’s approach [20]: before the update, the secret s is shared among
the parties in a (t, n)-threshold fashion using a t − 1 degree polynomial f(x)
such that f(0) = s. To update the shares, the parties jointly generate a
random t − 1 degree polynomial δ(x) with δ(0) = 0. After the update, each
party holds a new share of the t − 1 degree polynomial f ′(x) = f(x) + δ(x).
Because f ′(0) = f(0) + δ(0) = s, the shares have been updated without
changing the original secret s.

– Frankel’s approach [12]: before the update, the secret is also shared among
the parties in a (t, n)-threshold fashion. To update the shares, the parties first
jointly transform the (t, n) polynomial sharing of the secret into an (n, n) addi-
tive sharing of the secret. To achieve optimal resilience, each share of the (n, n)
additive sharing is further shared among the parties in the (t, n)-threshold
fashion. Then, the parties jointly transform the (n, n) additive sharing of the
secret back to a (t, n) polynomial sharing of the secret. Note that in both
transformations, the secret is not revealed to any individual party, and after

250 Z. Xia et al.

the update, the polynomial used to share the secret is independent from the
one before the update.

– Rabin’s approach [25]: before the update, the secret is additively shared
among the parties. To achieve optimal resilience, each of the old share is
further shared among the parties in the (t, n)-threshold fashion. To update
the shares, each party first shares her old share among the parties using
another (n, n) additive sharing. In this process, each party will receive a
share of the old share, called fragement, from every other party. Then, each
party sums the received fragements, obtaining the new share of the secret.
For optimal resilience, each party also needs to further share this new share
among the parties in the (t, n)-threshold fashion. Now, the new shares form
an independent (n, n) additive sharing of the original secret.

Based on the above PSS schemes, a lot of further investigations have been
carried out in proactive security in the last two decades. For example, Stinson and
Wei [29] have proposed an unconditionally secure PSS scheme using symmetric
bivariate functions, in which both the secrecy and robustness properties are
unconditionally protected. Canetti [7], followed by Frankel [14] and Almansa [1],
have introduced the methods to extend PSS to withstand adaptive adversaries
who can choose which parties to corrupt at any time during the run of the
protocol. Cachin [6] and Zhou [32] have introduced PSS that is secure in the
asynchronous communication model. Schultz et al. [27] have introduced a mobile
PSS scheme that allows on-the-fly reconfiguration of the threshold, so that the
scheme is able to accommodate more changes in the environment.

1.2 Our Contributions

In this paper, we revisit the research of provably secure and optimal resilient
PSS, and we contribute in the following aspects:

– Firstly, although the adjacent assumption is widely used in existing PSS
schemes, it not only hinders the security model to capture the mobile adver-
sary’s abilities, but also prevents PSS schemes from being used in many real-
world applications. However, if this assumption is removed, we show that some
existing schemes (including Herzberg’s PSS scheme) will become insecure.

– Secondly, we use the polynomial truncation method to improve Herzberg’s
PSS scheme, resulting a provably secure PSS scheme without the adjacent
assumption. To the best of our knowledge, it is the first PSS scheme satisfying
this feature.

1.3 Organisation of the Paper

The rest of the paper is organised as follows: Sect. 2 outlines some preliminar-
ies, including a new threat model without the adjacent assumption and some
cryptographic building blocks. In Sect. 3, we show that the secrecy property in
Herzberg’s PSS scheme might be violated by the mobile adversary in our threat
model. In Sect. 4, we use the polynomial truncation method to modify Herzberg’s
scheme, making it secure in our threat model. Finally, we conclude in Sect. 5.

PSS Without the Adjacent Assumption 251

2 Preliminaries

2.1 Models and Definitions

The Players. The players in our environment are n parties P1, P2, . . . , Pn and
the mobile adversary A. We assume that all these players can be modelled as
probabilistic polynomial time (PPT) Turing machines [17]. Moreover, we assume
that the system is synchronised, the parties can access to some common global
clock, and each party has a local source of randomness. In this paper, we denote
n = 2t − 1, where t is the threshold.

Time Periods. The entire lifetime of the secret is divided into many short time
periods (e.g. a day, a week, etc.) which are determined by the common global
clock. At the beginning of the first time period, there is a share distribution phase
in which the secret is shared among the parties either by a trusted party or in a
distributed fashion [16]. For all the other time periods, there is an update phase
at the beginning of each time period. After the update, the lost or tampered
shares are recovered and the parties hold new shares of the secret while the old
shares are erased.

The Mobile Adversary. Following the description in [23], the mobile adversary
can be envisioned as follows: it has t − 1 pebbles, and at the beginning of each
time period, she places the pebbles on any t − 1 parties. If the pebble is placed
on a party, this party is corrupted by the mobile adversary. Corrupting a party
means learning this party’s private information, changing its intended behaviour,
disconnecting it, and so on. When the pebble is removed from a party, this party
will be “rebooted” to the safe state at the beginning of the next time period,
and her share will be jointly recovered by the parties. After each time period,
the mobile adversary can move pebbles from a set of parties to a different set
of parties. Therefore, the mobile adversary has more power than the ordinary
adversary in traditional SS schemes, because the mobile adversary may corrupt
all parties or break into some parties multiple times throughout the lifetime of
the secret. However, it is assumed that the mobile adversary corrupts less than
t parties in each time period.

The Communication Channel. We assume that all players are connected
to a common authenticated broadcast channel C, such that any message sent
through C can be heard by the other players. The mobile adversary cannot mod-
ify messages send by an uncorrupted party through C, nor she can prevent an
uncorrupted party from receiving messages from C. Moreover, we assume that
there are pairwise secure communication channels among the parties, and the
mobile adversary is unable to tamper or intercept the messages send through
these secure channels. With these assumptions, we can focus our discussions
on the proactive secret sharing schemes without considering the low level tech-
nical details. We note that both the authenticated broadcast channel and the
pairwise secure channels can be implemented using standard techniques such as
encryption and signature functions.

252 Z. Xia et al.

In the majority of existing PSS schemes (e.g. [1,12–15,20,21,27]), there is an
assumption that if a party is corrupted during an update phase, it is corrupted
during both time periods adjacent to that update phase. In comparison, our
threat model does not require this assumption. We only assume that if a party
is corrupted during an update phase, it is corrupted in the same time period but
not in the preceeding time period. We show that this gives the adversary more
power and such an adversary better mimics the mobile adversary. To simplify
the description, considering the case that the entire lifetime of the secret has
been divided into two time periods (as shown in Fig. 1). In the existing works,
the adversary who corrupts t − 1 parties during the update phase will corrupt
the same parties throughtout the lifetime of the secret. In this case, the mobile
adversary does not have more power than the ordinary adversary in traditional
SS schemes. But in our threat model, the mobile adversary can corrupt some
parties in time period 1 and then move to corrupt some other parties in time
period 2. Therefore, the mobile adversary in our threat model has more power
and our model better captures the ability of the mobile adversary. Moreover,
the adjacent assumption will prevent the PSS schemes being used in many real-
world applications. For example, PSS schemes were suggested to be used in Ad
Hoc networks to safeguard the crypto keys in the distributed fashion [18,31].
But since the topology structure of the networks may change dynamically, and
nodes may join or leave any time, the existing PSS schemes with the adjacent
assumption are not suitable for these circumstances.

Fig. 1. A demonstration of the time periods

In order to provide rigorous security analysis for our proposed PSS scheme,
we use the following security definitions:

Definition 1 (Robustness:) A proactive secret sharing scheme is robust if in
the presence of the mobile adversary, the secret can be correctly recovered in any
time period throughout the entire lifetime of the secret.

Definition 2 (Secrecy:) A proactive secret sharing scheme is secret if after
polynomially many updates, the mobile adversary still cannot learn any infor-
mation of the secret.

Definition 3 (Optimal resilience:) A proactive secret sharing scheme is opti-
mal resilient if it is robust against the mobile adversary who has the ability to
corrupt any minority of the parties.

PSS Without the Adjacent Assumption 253

2.2 Cryptographic Building Blocks

Shamir’s Secret Sharing [28]. Denote p as a large prime such that p >
n. In the rest of this paper, we assume that all computations are modulo p
unless otherwise stated. To share the secret s ∈ Zp, the dealer first generates a
polynomial f(x) = a0 +a1x+ · · ·+at−1x

t−1 over Zp with degree t− 1 such that
a0 = s. Then the dealer evaluates the polynomial f(x) at different public and
pre-defined values xi for i ∈ {1, 2, . . . , n}, and she sends the share si = f(xi)
to the party Pi through the secure channel. If any t parties work together, they
can recover the secret using polynomial interpolation as s =

∑t
i=1 si · Li, where

Li =
∏t

j=1,j �=i xj/(xj −xi) is the Lagrange coefficient. It is obvious that Shamir’s
SS is correct. To see why any t−1 colluding parties cannot learn any information
of the secret, the t−1 points (x1, s1), . . . , (xt−1, st−1) are known by these parties.
But for each possible value s′ ∈ Zp, the point (0, s′) can be used to interpolate a
unique polynomial, and the probability of these polynomials is equal. However,
Shamir’s SS is not robust: the cheating parties may release fake shares when
recovering the secret. To solve this issue, either of the following verifiable secret
sharing (VSS) techniques can be used.

Feldman’s VSS [11]. Let p be a large prime and g is a generator of a subgroup
of Z

∗
p in which the discrete logarithm cannot be solved in polynomial time. To

share the secret s ∈ Zp, the dealer first generates a t − 1 degree polynomial
f(x) = a0 + a1x + · · · + at−1x

t−1 over Zp such that a0 = s. Then, the dealer
computes Ai = gai for i ∈ {0, 1, . . . , t − 1}, and makes these values public.
Finally, the dealer computs and sends the share si = f(xi) to each party. Once
receiving the share, the party can verify its validity by

gsi =
t−1∏

j=0

Aj
xj
i

When recovering the secret, anyone can also use the above equation to verify
that the parties have revealed the correct shares.

Pedersen’s VSS [24]. Let p, q be two large primes such that q|p − 1, and G
is a subgroup of Z

∗
p with order q. Both g and h are elements of G, but nobody

knows the value logg h1. To share the secret s ∈ Zq, the dealer generates two
random polynomials f(x) and f ′(x) over Zq with degree t − 1:

f(x) = a0 + a1x + · · · + at−1x
t−1 f ′(x) = b0 + b1x + · · · + bt−1x

t−1

1 It is crucial that nobody knows the value logg h. To generate g and h, we first select g
in the group G. Then, a distributed coin flipping protocol [3] can be used to generate
a random value r ∈ Z

∗
p. Finally, h can be computed as h = r(p−1)/q. In case if h = 1,

we can go back to select another random value r ∈ Z
∗
p until h �= 1.

254 Z. Xia et al.

where a0 = s. Then the dealer publishes Ci = gaihbi for i ∈ {0, 1, . . . , t − 1}.
Finally, the dealer computes and sends the share si = f(xi) and s′

i = f ′(xi) to
each party. Once receiving the share, the party can verify its validity by

gsihs′
i =

t−1∏

j=0

Cj
xj
i

When recovering the secret, anyone can also use the above equation to verify
that the parties have revealed the correct shares.

3 Analysis of Herzberg’s PSS Scheme

In this section, we first briefly review Herzberg’s PSS scheme [20]. We then show
that the secrecy property of Herzberg’s scheme might be violated by the mobile
adversary in our threat model. We also discuss the impact of this vulnerability
with respect to some other PSS schemes.

3.1 Review of Herzberg’s PSS Scheme

Denote p as some large prime, and {x1, x2, . . . , xn} be the public index values
associated with each party, respectively. In the k-th time period, the secret s ∈ Zp

is shared among the parties through the t − 1 degree polynomial f (k)(x) =
a0 + a1x + · · · + at−1x

t−1 over Zp such that a0 = s. The party Pi holds the
share s

(k)
i = f (k)(xi). At the beginning of the (k +1)-th time period, the parties

will jointly update these shares. And the update phase includes a share recovery
protocol followed by a share refreshment protocol.

Share Recovery. The set of parties in Λ, where |Λ| ≥ t, jointly recover the lost
share s

(k)
r for the party Pr as follows:

1. Pi picks a random t−1 degree polynomial δi(x) = δi,0+δi,1x+ · · ·+δi,t−1x
t−1

over Zp such that δi(xr) = 0. For example, Pi can first randomly pick the coef-
ficients {δi,j}j∈{1,...,t−1} from Zp, and then computes δi,0 = −∑t−1

j=1 δi,jxr
j .

2. Pi computes ui,j = δi(xj) and sends it to each other party Pj using the secure
channel.

3. Pi computes s′
i = s

(k)
i +

∑
j∈Λ uj,i and sends this value to Pr using the secure

channel.
4. Finally, Pr uses the received values to interpolate a polynomial g(x) =

f (k)(x) +
∑

i∈Λ δi(x), obtaining s
(k)
r = g(xr).

Because each of the polynomial δi(x) is randomly chosen, Pr cannot learn the
polynomial f (k)(x). Hence, Pr cannot learn the secret. And the share s

(k)
r is

recovered for Pr without being disclosed to the other parties.

PSS Without the Adjacent Assumption 255

Share Refreshment. Each party Pi, i ∈ {1, 2, . . . , n}, performs the share
refreshment protocol as follows:

1. Pi picks random values {λi,j}j∈{1,2,...,t−1} from Zp. These values define the
polynomial λi(x) = λi,1x + · · · + λi,t−1x

t−1 over Zp such that λi(0) = 0.
2. Pi computes wi,j = λi(xj) and sends it to each other party Pj using the

secure channel.
3. Pi computes its new share s

(k+1)
i = s

(k)
i +

∑n
j=1 wj,i, and erases the old

share s
(k)
i as well as all the intermediate values. Now, the same secret is

shared among the parties through the t − 1 degree polynomial f (k+1)(x) =
f (k)(x) +

∑n
i=1 λi(x).

To achieve the robustness property, Feldman’s VSS is used both in the share
recovery and in the share refreshment, ensuring that the parties have generated
and shared the polynomial properly.

3.2 Threat Analysis of Herzberg’s Scheme in Our Threat Model

The security of Herzberg’s PSS scheme have been proved in [21]. However, the
proof relies on the adjacent assumption. Now, we show that if this assumption
is removed, as in our threat model, the secrecy property of Herzberg’s scheme
may be violated by the mobile adversary.

To simplify the description, considering the case that the entire lifetime
of the secret is divided into two time periods, as shown in Fig. 1. We allow
the mobile adversary to corrupt some parties in time period 1 and then move
on to corrupt some other parties in time period 2. Without loss of generality,
we assume that the parties {P1, P3, P4 . . . , Pt} are corrupted in time period 1,
and the parties {P2, P3, P4, . . . , Pt} are corrupted in time period 2. Because the
mobile adversary can learn the corrupted parties’ private information, for each
polynomial λi(x) in the share refreshment protocol, the mobile adversary knows
that t − 1 points (x2, wi,2), (x3, wi,3), . . . , (xt, wi,t) will pass this polynomial. In
addition, the mobile adversary also knows that the point (0, 0) will pass this
polynomial. Therefore, these t points allows the mobile adversary to interpo-
late the polynomial λi(x). With the knowledge of all these polynomials λi(x) for
i ∈ {1, 2, . . . , n}, the old shares and the new shares are no longer independent. In
other words, the mobile adversary knows how a given share in time period 1 has
been updated into time period 2. Therefore, the mobile adversary can combine
P1’s share in time period 1 with the t − 1 shares of P2, P3, . . . , Pt in time period
2 to recover the secret2.

Note that in the share recovery protocol, the mobile adversary may also find
out all polynomials δi(x) for i ∈ Λ, because she knows t − 1 points held by the
corrupted parties and an additional point (xr, 0). Hence, these t points can be
used to interpolate each of these polynomials. However, since these polynomials
2 Note that a similar problem has been independently discovered by Nikov and Nikova

in [22]. But its consequences were not elaborated and no solution of this problem
was proposed in that work.

256 Z. Xia et al.

are only used privately by the party Pr, the knowledge of these polynomials does
not affect the secrecy property in Herzberg’s scheme.

3.3 Some Other PSS Schemes in Our Threat Model

In the literature, several other proactive secret sharing schemes are suffering
similar vulnerabilities. A common feature of these schemes is that they all use
t − 1 degree polynomials to update the shares. For example, in [21], Jarecki has
introduced a scheme that replaces Feldman’s VSS with Pedersen’s VSS, while
the other technical details remain the same as in Herzberg’s scheme. In [29],
Stinson et al. have introduced an unconditional secure proactive secret sharing
scheme, in which a t−1 degree symmetric bivariate function is used to refresh the
shares. In [27], Schultz et al. have introduced a PSS scheme that allows on-the-fly
reconfiguration of the threshold. In Schultz’s scheme, the share recovery protocol
is combined with the share refreshment protocol, and t − 1 degree polynomials
are used to refresh the shares. Therefore, the secrecy property in these scheme
also might be violated by the mobile adversary in our threat model.

The above discussions may give the readers a false intuition that any PSS
scheme using t − 1 degree polynomials to update the shares is vulnerable in
our threat model. A counterexample is that although Ostrovsky and Yung [23]
also have used t − 1 degree polynomials to update the shares, the above threat
analysis does not apply to it. Because Ostrovsky’s scheme has used two layers
of SS, while the other vulnerable schemes only use one layer of SS. For similar
reasons, this threat analysis is not directly applicable with Frankel’s scheme [12]
or Rabin’s scheme [25]. However, we note that these schemes are not specially
designed to withstand the mentioned attack, and it is still unknown whether
their security can be formally proved in our new threat model.

4 Modification of Herzberg’s PSS Scheme

In this section, we modify Herzberg’s PSS scheme, making it secure against the
mobile adversary in our threat model. Because the share recovery protocol in
Herzberg’s scheme does not suffer the vulnerability discussed in the previous
section, we focus our description on the share refreshment protocol.

As a high level overview, we use 2t − 1 degree random polynomials with 0
in the constant coefficient to refresh the shares. Hence, the mobile adversary
who corrupts t − 1 parties cannot learn any information of these polynomials.
However, after adding these 2t − 1 degree random polynomials with the original
t − 1 degree polynomial that shares the secret, the result polynomial will have a
degree 2t−1 rather than t−1. But this implies that the secret cannot be recovered
by any t parties, violating the optimal resilience property. To further address this
issue, the parties need to jointly truncate the 2t − 1 degree polynomial into a
t − 1 degree polynomial with the constant coefficient unchanged.

PSS Without the Adjacent Assumption 257

4.1 Jointly Polynomial Truncation

In [3], Ben-Or et al. have introduced a novel technique to jointly truncate polyno-
mials. We adapt this method in our proposed scheme with two necessary changes.
Firstly, in Ben-Or’s scheme, a 2t degree polynomial is truncated into a t degree
polynomial with the first t + 1 coefficients unchanged. While in our proposed
scheme, a 2t − 1 degree polynomial is truncated into a t − 1 degree polynomial
with only the constant coefficient unchanged. In other words, we truncate the
polynomial in a randomised fashion instead of a fixed one. And we show later
that this change is crucial for the security of our proposed scheme. Secondly,
to ensure the robustness property, error correction codes are used in Ben-Or’s
scheme, but we use VSS instead in order to achieve the optimal resilience prop-
erty.

Lemma 1. For i ∈ {1, 2, . . . , n}, suppose ai is some public constant and zi

is the private input of the party Pi, then the linear function F (z1, z2, . . . , zn) =
a1z1+a2z2+· · ·+anzn can be computed by the parties in a secure and distributed
fashion.

Proof. (Sketch) Firstly, each party Pi shares its private input zi among the par-
ties using (t, n)-threshold verifiable secret sharing. Denote si,j as the share of zi

held by the party Pj . Then a1s1,j +a2s2,j + · · ·+ansn,j will be the corresponding
share of a1z1 + a2z2 + · · · + anzn held by Pj , thanks to the homomorphic prop-
erty of secret sharing [4]. If the result is supposed to be made public, each party
broadcasts its computed share and anyone can retrieve the result by polynomial
interpolation. And if the result is supposed to be known by some certain party,
then each party sends its computed share to this party using the secure channel.
Therefore, the function F (z1, z2, . . . , zn) can be computed in a secure and dis-
tributed fashion. Here, the word “secure” implies both correctness and secrecy.
Correctness means that if the private inputs are properly shared, the correct
result can always be computed even in the presence of any minority of cheating
parties, and this property can be ensured using VSS. Secrecy means that apart
from the final result, the adversary who corrupts any minority of parties learns
no additional information.

Lemma 2. Suppose M is a public n × n matrix. For i ∈ {1, 2, . . . , n}, zi is
the private input of the party Pi. Denote Z as a vector [z1, z2, . . . , zn] and Y
as another vector [y1, y2, . . . , yn]. Then Y = Z · M can be computed in a secure
and distributed fashion, such that by the end of the computation, each party Pi

obtains the value yi without leaking any other information.

Proof. Since yi is the vector Z times the i-th column of the matrix M. It can
be computed in a secure and distributed fashion by Lemma 1. By the end of
the computation, each party sends its computed share to the party Pi using the
secure channels. Hence, only Pi knows the value yi. If this process is repeated
for i ∈ {1, 2, . . . , n}, the desired computation can be carried out in a secure and
distributed fashion.

258 Z. Xia et al.

Theorem 1. Suppose h(x) = h0+h1x+h2x
2+ · · ·+h2t−1x

2t−1 is a polynomial
with degree 2t − 1, and each party Pi holds a share of h(x) as si = h(xi).
Then, these parties can jointly truncate h(x) into a t − 1 degree polynomial
k(x) = k0 + k1x + · · · + kt−1x

t−1 in a secure and distributed fashion with the
constant coefficient unchanged, i.e. h0 = k0. By the end of the computation, each
party holds a share of k(x) as ri = k(xi).

Proof. (Sketch) Denote B as an n × n Vandermonde matrix

B =

⎛

⎜
⎜
⎜
⎝

1 1 . . . 1
x1 x2 . . . xn

...
...

. . .
...

xn−1
1 xn−1

2 . . . xn−1
n

⎞

⎟
⎟
⎟
⎠

H = [h0, h1, . . . h2t−1, . . . , 0] is an n-vector that represents the coefficients of
h(x); K = [k0, k1, . . . kt−1, 0, . . . , 0] is an n-vector that represents the coefficient
of k(x); the n × n projection matrix P satisfies H · P = K (i.e. the first column
is a vector led by 1 and followed by 0s, the second column till the t-th column
are random vectors generated in a distributed fashion and shared among the
parties [16], and the other columns are all zero vectors); S = [s1, s2, . . . , sn] is an
n-vector that represents the shares of h(x); R = [r1, r2, . . . , rn] is an n-vector that
represents the shares of k(x). Hence, we have H ·B = S and K ·B = R. Moreover,
because B is a Vandermonde matrix, it is always reversible as its determinant
cannot be 0. Therefore, we have S · (B−1 · P · B) = R. Denote T = B−1 · P · B,
we have S ·T = R, where T can be jointly computed in a secure and distributed
fashion. By Lemma 2, the 2t−1 degree polynomial h(x) can be truncated into a
t−1 degree k(x) in a secure and distributed fashion with the constant coefficient
unchanged.

4.2 Our Proposed Scheme

Our proposed scheme works as follows: denote p as a large prime and g is a
generator of a subgroup of Z

∗
p in which the discrete logarithm cannot be solved

in polynomial time. Suppose in the k-th time period, the secret s ∈ Zp is shared
among the parties P1, P2, . . . , Pn using a t − 1 degree polynomial f (k)(x) =
a0 + a1x + · · · + at−1x

t−1 over Zp such that s = a0, and the commitments
Ai = gai for i ∈ {0, 1, . . . , t − 1} are made public. Each party Pi’s secret share is
s
(k)
i = f (k)(xi), and Pi can verify the validity of its share by

gs
(k)
i =

t−1∏

j=0

Aj
xj
i

In the share refreshment, each party Pi, for i ∈ {1, 2, . . . , n}, performs as follows:

1. Pi generates a random 2t − 1 degree polynomial as λi(x) = λi,1x + λi,2x
2 +

· · ·+λi,2t−1x
2t−1 over Zp such that λi(0) = 0. Pi also broadcasts Bi,j = gλi,j

for j ∈ {1, 2, . . . , 2t − 1}.

PSS Without the Adjacent Assumption 259

2. Pi computes wi,j = λi(xj) and sends it to each other parties Pj using the
secure channel. Pi can verify whether its received share wj,i from each other
party is valid by

gwj,i =
2t−1∏

k=1

Bj,k
xk
i

3. In order to achieve the optimal resilience property, once receiving the value
wj,i, Pi needs to further share this value among the parties in a (t, n)-threshold
fashion. If some parties are found faulty in Step 2 or in Step 3, they will be
disqualified from the protocol and their polynomials will be excluded. At this
moment, the set of the remaining parties is denoted as Λ.

4. Pi computes si = s
(k)
i +

∑
j∈Λ wj,i, and this value is a share of the 2t − 1

degree polynomial

h(x) = f (k)(x) +
∑

j∈Λ

λj(x) = h0 + h1x + · · · + h2t−1x
2t−1

The commitments of h(x) can be publicly computed as Ci = ghi = Ai ·∏
j∈Λ Bj,i for i ∈ {0, 1, . . . , t − 1} and CI = ghI =

∏
j∈Λ Bj,I for I ∈ {t, t +

1, . . . , 2t − 1}.
5. Finally, the parties jointly truncate the 2t − 1 degree polynomial h(x) into a

t−1 degree polynomial k(x) with the constant coefficient unchanged. Denote
S = [s1, s2, . . . , sn] as the n-vector that represents the shares of h(x), and
R = [r1, r2, . . . , rn] as the n-vector that represents the shares of k(x), the
truncation is done by S · T = R, where T can be computed in a secure
and distributed fashion as shown in Theorem 1. Now, k(x) is the updated
polynomial that will be used in the (k + 1)-th time period as f (k+1)(x),
and each party Pi holds a share s

(k+1)
i = ri. Note that if any party Pi is

found cheating in this step, the corresponding share si will be recovered by
the uncorrupted parties. And this ensures that this step will always finish
successfully.

4.3 Security Analysis

Theorem 2. Our proposed PSS scheme is robust and secret in the presence of
the mobile adversary who has the ability to corrupt any minority of the parties.

Proof. We prove this theorem using the inductive method. Firstly, we assume
that at initialisation of the protocol, the secret is properly shared among the
parties through (t, n)-threshold secret sharing. Furthermore, we assume that in
each time period 1, 2, . . . , k, the above theorem holds. And we prove that in the
time period k + 1, the adversary who has the ability to corrupt any minority
of the parties can neither prevent the secret from being recovered nor learn any
information of the secret.

Robustness: In each time period, the validity of the shares can be verified
using the public commitments. Without loss of generality, we assume that the

260 Z. Xia et al.

shares s
(k+1)
1 , s

(k+1)
2 , . . . , s

(k+1)
t are valid and they will be used to recover the

secret. Denote Li =
∏t

j=1,j �=i xj/(xj − xi) as the Lagrange coefficients for i ∈
{1, 2, . . . , t}. Then we have

t∑

i=1

s
(k+1)
i · Li = f (k+1)(0) = f (k)(0) +

∑

j∈Λ

λ′
j(0) = s

where λ′
j(x) = λ′

i,1x+λ′
i,2x

2 + · · ·+λ′
i,t−1x

t−1. Although the polynomials λ′
j(x)

and λj(x) are independent because of the randomised truncation, the equation
λ′

j(0) = λj(0) = 0 always holds for all j ∈ Λ. Therefore, based on the assumption
that the mobile adversary cannot corrupt more than t− 1 parties in time period
k + 1, there exists at least t uncorrupted parties and the secret can be correctly
recovered.

Secrecy: To prove that the proposed scheme achieves the secrecy property. We
prove that there exists a PPT simulator SIM who can simulate the mobile
adversary’s view in share refreshment, and the simulated view is indistinguish-
able from the one in the real run of the protocol. Without loss of generality, we
assume that the parties P1, P2, . . . , Pt−1 are corrupted and the mobile adversary
knows their shares s

(k)
1 , s

(k)
2 , . . . , s

(k)
t−1. The simulator SIM works as follows:

1. Each party Pi generates a random 2t−1 degree polynomial as λ̃i(x) = λ̃i,1x+
λ̃i,2x

2 + · · · + λ̃i,2t−1x
2t−1 over Zp such that λ̃i(0) = 0. Pi also broadcasts

B̃i,j = g
˜λi,j for j ∈ {1, 2, . . . , 2t − 1}.

2. Pi computes w̃i,j = λ̃i(xj) and sends it to each other party Pj using the secure
channel. Pi can verify the validity of w̃j,i using the public commitments B̃j,k

for k ∈ {1, 2, . . . , 2t − 1}. Those values received by the corrupted parties are
forwarded to the mobile adversary.

3. Once receiving the value w̃j,i, Pi further shares this value among the parties
using (t, n)-threshold verifiable secret sharing. Similarly, any cheating party
will be disqualified, and the set of the remaining parties is denoted as Λ.

4. In this step, the simulator SIM computes si = s
(k)
i +

∑
j∈Λ w̃j,i for i ∈

{1, 2, . . . , t − 1}, and it sends these values to the mobile adversary.
5. In order to truncate the 2t − 1 degree polynomial h(x) into a t − 1 degree

polynomial k(x) with the constant coefficient unchanged, each party Pi needs
to share its value si among the parties in a (t, n)-threshold fashion. For those
corrupted parties, the simulator SIM can share their values in the normal
way. However, SIM does not know the values st, st+1, . . . , sn. To simulate the
(t, n)-threshold secret sharing of these values, the simulator SIM computes

gsi = gs
(k)
i ·

∏

l∈Λ

gw̃l,i =
t−1∏

j=0

Aj
xj
i ·

∏

l∈Λ

gw̃l,i

for i ∈ {t, t + 1, . . . , n}. Then, for each of the value {gsi}i∈{t,t+1,...,n}, SIM
selects t−1 random values {εi}i∈{1,2,...,t−1} and sends these values to the t−1
corrupted parties respectively. Denote M as the following t × t matrix

PSS Without the Adjacent Assumption 261

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 . . . 0
1 x1 x2

1 . . . xt−1
1

1 x2 x2
2 . . . xt−1

2
...

1 xt−1 x2
t−1 . . . xt−1

t−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and σi,j is the (i, j)-th entry of M−1. Now, SIM broadcasts the commit-
ments {Di}i∈{0,1,...,t−1}, where D0 = gsi and Dj = (gsi)σj,1 · ∏t−1

l=1(gεl)σj,l+1

for j ∈ {1, 2, . . . , t−1}. Note that these commitments ensures that the mobile
adversary will accept the values {εi}i∈{1,2,...,t−1} as the shares of si. As fol-
lows, the parties jointly trancate the polynomial h(x) into k(x).

It is obvious that the above simulation can finish in polynomial time. Now, we
show that the mobile adversary cannot distinguish the above simulated conver-
sation from a real run of the protocol.

– Indistinguishability of information in Step 1 and 2: the 2t − 1 degree
polynomials {λi(x)} and {λ̃i(x)} for i ∈ {1, 2, . . . , n} are randomly selected
both in the real protocol and in the simulation. Hence, they are indistinguish-
able.

– Indistinguishability of information in Step 3: both the real protocol
and the simulation share the values wj,i and w̃j,i among the parties using a
random t − 1 degree polynomial. Hence, they are indistinguishable.

– Indistinguishability of information in Step 4: the si values hold by the
corrupted parties are randomly distributed in Zp both in the real protocol
and in the simulation. Hence, they are indistinguishable.

– Indistinguishability of information in Step 5: the mobile adversary’s
view of sharing the values {si}i∈{1,2,...,n} is consistent both in the real pro-
tocol and in the simulation. Moreover, by Theorem 1, the joint polynomial
truncation can be done in a secure and distributed fashion. Hence, the real
protocol and the simulation in this step is also indistinguishable.

Therefore, the simulated view cannot be distinguished from the one in the real
run of the protocol. In other words, the mobile adversary cannot learn any
information of the secret in time period k + 1.

4.4 Some Discussions

Once the reason is clear why Herzberg’s PSS scheme fails to maintain its security
in our new threat model, it is quite natural to come up with the idea of using
polynomials with higher degrees to update the shares in the share refreshment
and then truncating the resulting polynomial to the desirable degree. However,
we show that if one uses Ben-Or’s polynomial truncation method directly, the
construction still suffers the same problem as in Herzberg’s PSS scheme.

262 Z. Xia et al.

Ben-Or’s original method is also capable of truncating a 2t−1 degree polyno-
mial into a t−1 degree polynomial. But it keeps the first t coefficients unchanged
rather than just keeping the constant coefficient unchanged as in our proposed
scheme. Recall that λ(x) is the polynomial used to refresh the shares, h(x) is the
polynomial before truncation and k(x) is the polynomial after the truncation.
Their shares are wi, si, ri, respectively. Denote p(x) as a polynomial with degree
t − 1 containing the first t coefficients of the polynomial λ(x). The relationship
h(x)−k(x) = λ(x)−p(x) always holds if Ben-Or’s polynomial truncation method
is used directly. Thanks to the homomorphic property of SS, the value wi+ri−si

represents a share for the polynomial p(x). Therefore, if the mobile adversary
A is assumed to corrupt t − 1 parties, A can obtain t − 1 shares of p(x). And
this implies that A is able to launch the same attack as shown in Sect. 3.2. This
is why we have adapted a variant of Ben-Or’s method in our proposed scheme
so that the truncation is performed in the randomised fashion instead of a fixed
one.

5 Conclusion

In this paper, we revisited the research of provably secure and optimal resilient
PSS. We discussed the negative aspects caused by the adjacent assumption which
is widely used in the existing PSS schemes. And this motivates us to consider
whether this assumption can be removed from the threat model in PSS schemes.
However, we showed that if it is removed, many existing schemes will become
insecure. We then used the polynomial truncation method to improve Herzberg’s
PSS scheme, making it secure without the adjacent assumption. To the best of
our knowledge, this is the first PSS scheme satisfying this feature.

Acknowledgement. This work was partially supported by the National Natural
Science Foundation of China (Grant No. 61572303, 61772326, 61822202, 61672010,
61702168, 61872087). We are very grateful to the anonymous reviewers for pointing
out an error in a previous version of this paper as well as many valuable comments.

References

1. Almansa, J.F., Damg̊ard, I., Nielsen, J.B.: Simplified threshold RSA with adaptive
and proactive security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 593–611. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 35

2. Baron, J., Defrawy, K., Lampkins, J., Ostrovsky, R.: How to withstand mobile virus
attacks, revisited. In: ACM Symposium on Principles of Distributed Computing
(PODC 2014), pp. 293–302 (2014)

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the 20th
ACM Symposium on Theory of Computing (STOC 1988), pp. 1–10 (1988)

4. Benaloh, J.C.: Secret sharing homomorphisms: keeping shares of a secret secret
(extended abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
251–260. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 19

https://doi.org/10.1007/11761679_35
https://doi.org/10.1007/3-540-47721-7_19

PSS Without the Adjacent Assumption 263

5. Blakley, R.: Safeguarding cryptographic keys. In: Proceedings of the National Com-
puter Conference, vol. 48, pp. 313–317 (1979)

6. Cachin, C., Kursawe, K., Lysyanskaya, A., Strobl, R.: Asynchronous verifiable
secret sharing and proactive cryptosystems. In: 9th ACM Conference on Computer
and Communication Security (CCS 2002), pp. 88–97 (2002)

7. Canetti, R., Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Adaptive security
for threshold cryptosystems. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 98–116. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 7

8. Canetti, R., Halevi, S., Herzberg, A.: Maintaining authenticated communication
in the presence of break-ins. In: Proceedings of the 16th ACM Symposium on
Principles of Distributed Computing (PODC 1997), pp. 15–24 (1997)

9. Canetti, R., Herzberg, A.: Maintaining security in the presence of transient faults.
In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 425–438. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5 38

10. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols.
In: Proceedings of the 20th ACM Symposium on Theory of Computing (STOC
1988), pp. 11–19 (1988)

11. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
Proceedings of the 28th IEEE Symposium on Foundation of Computer Science
(FOCS 1987), pp. 427–437 (1987)

12. Frankel, Y., Gemmell, P., MacKenzie, P., Yung, M.: Optimal-resilience proactive
public-key cryptosystems. In: Proceedings of the 38th IEEE Symposium on the
Foundations of Computer Science (FOCS 1997), pp. 384–393 (1997)

13. Frankel, Y., Gemmell, P., MacKenzie, P.D., Yung, M.: Proactive RSA. In: Kaliski,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 440–454. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0052254

14. Frankel, Y., MacKenzie, P., Yung, M.: Adaptively-secure optimal-resilience proac-
tive RSA. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS,
vol. 1716, pp. 180–194. Springer, Heidelberg (1999). https://doi.org/10.1007/978-
3-540-48000-6 15

15. Frankel, Y., MacKenzie, P.D., Yung, M.: Adaptive security for the additive-sharing
based proactive RSA. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 240–263.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2 18

16. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. J. Cryptol. 1, 51–83 (2007)

17. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a
completeness theorem for protocols with honest majority. In: Proceedings of the
19th ACM Symposium on Theory of Computing (STOC 1987), pp. 218–229 (1987)

18. Hegland, A., Winjum, E., Mjolsnes, S., Rong, C., Kure, O., Spilling, P.: A survey
of key management in ad hoc networks. IEEE Commun. 8(3), 48–66 (2006)

19. Herzberg, A., Jakobsson, M., Jarecki, S., Krawczyk, H., Yung, M.: Proactive public
key and signature systems. In: 4th ACM Conference on Computer and Communi-
cation Security (CCS 1997), pp. 100–110 (1997)

20. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: how
to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 339–352. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
44750-4 27

21. Jarecki, S.: Proactive secret sharing and public key cryptosystems. Master’s thesis,
Department of Electrical Engineering and Computer Science, MIT (1995)

https://doi.org/10.1007/3-540-48405-1_7
https://doi.org/10.1007/3-540-48658-5_38
https://doi.org/10.1007/BFb0052254
https://doi.org/10.1007/978-3-540-48000-6_15
https://doi.org/10.1007/978-3-540-48000-6_15
https://doi.org/10.1007/3-540-44586-2_18
https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/3-540-44750-4_27

264 Z. Xia et al.

22. Nikov, V., Nikova, S.: On proactive secret sharing schemes. In: Handschuh, H.,
Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 308–325. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30564-4 22

23. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks. In: Proceedings
of the 10th ACM Symposium on the Principle of Distributed Computing (PODC
1991), pp. 51–61 (1991)

24. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

25. Rabin, T.: A simplified approach to threshold and proactive RSA. In: Krawczyk,
H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 89–104. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055722

26. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority. In: Proceedings of the 21st ACM Symposium on Theory of Com-
puting (STOC 1989), pp. 73–85 (1989)

27. Schultz, D., Liskov, B., Liskov, M.: MPSS: mobile proactive secret sharing. ACM
Trans. Inf. Syst. Secur. 13(4), 34 (2010)

28. Shamir, A.: How to share a secret. In: Proceedings of 22nd Communication of
ACM, pp. 612–613 (1979)

29. Stinson, D.R., Wei, R.: Unconditionally secure proactive secret sharing scheme
with combinatorial structures. In: Heys, H., Adams, C. (eds.) SAC 1999. LNCS,
vol. 1758, pp. 200–214. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-46513-8 15

30. Yung, M.: The “mobile adversary” paradigm in distributed computation and sys-
tems. In: ACM Symposium on Principles of Distributed Computing (PODC 2015),
pp. 171–172 (2015)

31. Zhou, L., Haas, Z.: Securing ad hoc networks. IEEE Netw. 13, 24–30 (1999)
32. Zhou, L., Schneider, F., Renesse, R.: APSS: proactive secret sharing in asyn-

chronous systems. ACM Trans. Inf. Syst. Secur. 8(3), 259–286 (2005)

https://doi.org/10.1007/978-3-540-30564-4_22
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/BFb0055722
https://doi.org/10.1007/3-540-46513-8_15
https://doi.org/10.1007/3-540-46513-8_15

A Coin-Free Oracle-Based Augmented
Black Box Framework

Kyosuke Yamashita1(B), Mehdi Tibouchi1,2, and Masayuki Abe1,2

1 Graduate School of Informatics, Kyoto University, Kyoto, Japan
yamashita.kyousuke.75w@st.kyoto-u.ac.jp, abe.masayuki.7a@kyoto-u.ac.jp

2 Secure Platform Laboratories, NTT Corporation, Tokyo, Japan
tibouchi.mehdi@lab.ntt.co.jp

Abstract. After the work of Impagliazzo and Rudich (STOC, 1989),
the black box framework has become one of the main research domain
of cryptography. However black box techniques say nothing about non-
black box techniques such as making use of zero-knowledge proofs. Brak-
erski et al. introduced a new black box framework named augmented
black box framework, in which they gave a zero-knowledge proof oracle
in addition to a base primitive oracle (TCC, 2011). They showed a con-
struction of a non-interactive zero knowledge proof system based on a
witness indistinguishable proof system oracle. They presented augmented
black box construction of chosen ciphertext secure public key encryption
scheme based on chosen plaintext secure public key encryption scheme
and augmented black box separation between one-way function and key
agreement.

In this paper we simplify the work of Brakerski et al. by introducing
a proof system oracle without witness indistinguishability, named coin-
free proof system oracle, that aims to give the same construction and
separation results of previous work. As a result, the augmented black
box framework becomes easier to handle. Since our oracle is not witness
indistinguishable, our result encompasses the result of previous work.

Keywords: Black box construction · Zero-knowledge proof · NIZK ·
Witness indistinguishability

1 Introduction

Investigating the relationships between cryptographic primitives is one of the
most important task in theoretical cryptography. After the work of Impagliazzo
and Rudich [6], the black box framework has become one of the main research
domain of cryptography. Non-black box techniques are also extensively studied,
whereas black box techniques say nothing about them. A widely known non-
black box construction result is the work of Naor and Yung [8], which makes
use of a zero-knowledge (ZK) proof [5] to construct a chosen ciphertext secure
public key encryption scheme (CCA-PKE) based on a chosen plaintext secure
public key encryption scheme (CPA-PKE).

This chapter was supposed to appear under the Part Title: Short Papers. The correction
to this chapter is available online at https://doi.org/10.1007/978-3-030-31919-9 25

c© Springer Nature Switzerland AG 2019
R. Steinfeld and T. H. Yuen (Eds.): ProvSec 2019, LNCS 11821, pp. 265–272, 2019.
https://doi.org/10.1007/978-3-030-31919-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_15&domain=pdf
https://doi.org/10.1007/978-3-030-31919-9_25
https://doi.org/10.1007/978-3-030-31919-9_15

266 K. Yamashita et al.

Although black box and non-black box techniques are developed indepen-
dently each other, a new framework that combines them came into existence.
Brakerski et al. [2] introduced the augmented black box framework, which makes
use of a ZK oracle in addition to a cryptographic primitive oracle. They presented
an oracle that instantiates a witness indistinguishable (WI) proof system [4] and
showed that they could construct a non-interactive zero-knowledge proof (NIZK)
based on the oracle in a black box manner. They demonstrated the power of
the framework by showing construction and separation results; the Naor-Yung
construction [8], and the separation between one-way function (OWF) and key
agreement (KA) [3] in their model respectively.

Here we explain the motivation of our work. In the black box research, mak-
ing an oracle that implements a base primitive simpler is an important direc-
tion. Introducing a simplified oracle helps to handle the oracle. Moreover it may
make security proofs simpler. One of the major black box technique is relativiz-
ing reduction [9], which assures that a black box construction/reduction result
holds relative to any oracle that implements a base primitive. In the begin-
ning of the line of the black box task, researchers treated simple oracles such
as implementing OWF [8]. However as more sophisticated primitives appeared,
researchers had to deal with oracles that implement these primitives in the black
box framework. For instance they began to handle oracles implementing trapdoor
permutation [1,12], which led more advanced security proof. Moreover in [2], the
augmented black box framework was accompanied by further complicated oracle
that implements a NIZK. Although the augmented black box framework is an
elegant framework, security proofs in this framework might become cumbersome
task due to the high complexity of the oracle. Thus it it fruitful to simplify the
oracle in the augmented black box framework.

In this paper we simplify the work of [2] by introducing a simpler proof
system oracle without witness indistinguishability that aims to give the same
construction and separation results of previous work. More concrete we simplify
the interface of the proof system oracle and show the construction of a WI proof
system from the simplified oracle. Then our result encompasses the results of
[2], as the new oracle implements a general proof system.

2 Preliminaries

We follow the terminologies in [2]. Throughout this paper n ∈ IN denotes the
security parameter. We denote polynomial functions and negligible functions
by poly and negl respectively. An oracle machine is a Turing machine which
is allowed to make queries to an oracle. We write MO an oracle machine M
with oracle access to an oracle O. For any L ∈ NPO, we let RL denote an NP-
relationship associated with L. For an oracle O, we say that a primitive P exists
relative to O if there exists a secure implementation fO of P .

Definition 1. A tuple of Turing machines (Crs,Prv,Vrf,CrsSim, PrvSim) that
work as follows is a non-interactive zero-knowledge proof system for a language
L where Vrf is deterministic and others are probabilistic:

A Coin-Free Oracle-Based Augmented Black Box Framework 267

Crs: crs ← Crs(1n) takes 1n, and outputs crs.
Prv: π ← Prv(crs, x, w) takes crs, an instance x and a witness w, and outputs

a proof π or ⊥.
Vrf: b ← Vrf(crs, x, π) takes crs, an instance x and a proof π, and outputs

b ∈ {0, 1}.
CrsSim: (crs, τ) ← CrsSim(1n) takes 1n, and outputs τ and crs.
PrvSim: π ← PrvSim(crs, x, τ) takes crs, an instance x and τ , and outputs π.

Definition 2. A NIZK (Crs,Prv,Vrf, CrsSim,PrvSim) for a language L is a
NIZK with perfect complete, statistical sound and adaptive black box zero-
knowledge properties if it has the following properties;

perfect completeness: for any n ∈ IN, for any (x,w) ∈ RL and any crs ∈
{0, 1}poly(n), Vrf(crs, x,Prv(crs, x, w)) = 1;

statistical soundness: for any n ∈ IN, for any x /∈ L and any π ∈ {0, 1}poly(n),
Prcrs ← Crs(1n)Vrf(crs, x, π) = 1 ≤ negl; and

adaptive black box zero-knowledge: for any adversary A, the following is
negligible;

∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎣

crs ← Crs(1n);
(x,w) ← A(crs); : A(π) = 1
π ← Prv(crs, x, w) ∧ (x,w) ∈ RL

⎤

⎥
⎦

−Pr

⎡

⎢
⎣

(crs, τ) ← CrsSim(1n);
(x,w) ← A(crs); : A(π) = 1
π ← PrvSim(crs, x, τ) ∧ (x,w) ∈ RL

⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣
.

We simply denote a NIZK (Crs,Prv,Vrf, CrsSim,PrvSim) with perfect complete,
statistical sound and adaptive black box zero-knowledge properties by a NIZK.

3 WI Proof System Oracle

In this section we review [2]. They introduced an instantiation of a WI proof
system oracle and presented a construction of a NIZK based on the oracle.
Moreover they defined the augmented black box framework and demonstrated
the power of the framework by showing the construction and separation results.

Definition 3. A pair (P,V) of machines that works as follows is a proof system
for a language L;

P: π ← P(x,w, r) takes an instance x, a witness w and a random coin r, and
outputs a proof π, and

V: b ← V(x, π) takes an instance x and a proof π, and outputs a bit b, where V
accepts π if b = 1 and V rejects otherwise.

Definition 4. A proof system (P,V) for a language L is a proof system with
perfect complete and statistical sound properties if it has the following properties;

268 K. Yamashita et al.

perfect completeness: for any n ∈ IN, for any (x,w) ∈ RL, and any random
coin r ∈ {0, 1}n, V(x,P(x,w, r)) = 1;

perfect soundness:for any n ∈ IN, any x /∈ L, and any π ∈ {0, 1}poly(n),
V(x,P(x,w, r)) = 0.

We simply say a proof system with perfect complete and perfect sound properties
a proof system.

Definition 5. A proof system WI = (P,V) for a language L is a witness indistin-
guishable proof system, if for any adversary A the advantage |Pr[ExptWIA(n) =
1] − 1

2 | of the following experiment ExptWIA(n) is negligible;

(x,w0, w1) ← AWI(1n);
b ← {0, 1}; r ← {0, 1}n; if (x,w0), (x,w1) ∈ RL

π ← P(x,wb, r); : output 1 iff b′ = b
b′ = AWI(1n, π) else output a random bit.

Instantiation of a WI Proof System Oracle
For the reminder of this paper, we set L = CIRCUIT-SATO where O is an oracle
that implements a primitive. The WI proof system oracle WI = (P,V) is defined
as follows;

prover oracle: The prover oracle P is a random function s.t. P : {0, 1}3n →
{0, 1}7n. The input is parsed as tuples (x,w, r) ∈ {0, 1}n ×{0, 1}n ×{0, 1}n.
Note that P does not check if (x,w) ∈ RL.

verifier oracle: The verifier oracle V is a function s.t. V : {0, 1}8n → {0, 1}.
The input is parsed as pairs (x, π) ∈ {0, 1}n × {0, 1}7n. V is defines as

V(x, π) =

{

1 if ∃w, r s.t. π = P(x,w, r) ∧ (x,w) ∈ RL
0 otherwise.

They showed that WI is a WI proof system oracle.

Theorem 1. Let O be an oracle s.t. there exists a OWF fO relative to O, and
WI be a WI proof system oracle. Then fO is one-way relative to O and WI.

Theorem 2. There exists a construction of a NIZK with perfect complete, sta-
tistical sound and adaptive black box zero-knowledge properties, based on WI.

Definition 6. There exists an (fully) augmented black box construction of a
primitive Q based on a primitive P if there are PPTs G and S s.t.

– for any oracle O and WI proof system oracle WI for NPO where O implements
P , the oracle machine GO,WI implements Q; and

– for any oracle O, WI proof system oracle WI for NPO and adversary A that
breaks GO,WI, the adversary SA,O,WI breaks O or breaks witness indistin-
guishability of WI.

Theorem 3. There is an augmented black box construction of a CCA-PKE
based on a CPA-PKE.

Theorem 4. There is no augmented black box construction of KA based on
OWF.

A Coin-Free Oracle-Based Augmented Black Box Framework 269

4 Simplified Proof System Oracle

4.1 Coin-Free Proof System Oracle

In this section we introduce a more simplified proof system oracle. In [2], they
constructed a NIZK by making use of witness indistinguishability of WI proof
system oracle defined in Sect. 3. However as the prover oracle is a random func-
tion, we observe that we can omit the random coin r from its interface, resulting
a simpler prover oracle. We first introduce such simplified proof system oracle.
Then we present that we can construct a WI proof system based on the simplified
oracle in the black box manner.

Definition 7. A pair (P,V) of oracles is a coin-free proof system oracle for a
language L if it works as following;

prover oracle: The prover oracle P is a random function P : {0, 1}2n →
{0, 1}6n. The input is parsed as pairs of the form (x,w) ∈ {0, 1}n × {0, 1}n.
Note that P does not check if (x,w) ∈ RL.

verifier oracle: The verifier oracle V is V : {0, 1}7n → {0, 1}. The input is
parsed as pairs of the form (x, π) ∈ {0, 1}n × {0, 1}6n. V is defined as

V(x, π) =

{

1 if ∃w s.t. π = Pn(x,w) ∧ (x,w) ∈ RL
0 otherwise.

It is clear that (P,V) constitutes a proof system. We denote a coin-free proof
system oracle by CF = (P,V). We remark that CF is no longer witness indistin-
guishable, since an adversary, given a proof π, can decide which of witness w0

or w1 was used to generate π by making queries P(x,w0) and P(x,w1).

Construction of WI Proof System
We show the construction of a WI proof system based on a coin-free proof
system oracle. Our construction is similar to the construction of the NIZK in [2].
The key difference is an “extended” language. We introduce a language that
includes randomness, and this randomness yields the witness indistinguishability.
However it does not work simply adding a randomness in the new language (if
so, the WI prover have to send the randomness itself to prove her knowledge
about it). Thus we include a OWF in the new language and let the WI prover
to prove her knowledge about the output of OWF. A OWF f is ε-OWF or has
ε-security if for any PPT A, Pr[A(f(x)) ∈ f−1(f(x))] ≤ negl.

Let O be an oracle and CF = (P,V) be a coin-free proof system oracle for L
s.t. there exists an ε-OWF fO : {0, 1}n → {0, 1}2n relative to O and CF. We can
argue this due to Theorem1 and the fact that a WI proof system implies a proof
system generally. We define L′ := {(x, c) | ∃ w, r s.t. c = fO(r) ∧ (x,w) ∈ RL}.

We construct a WI proof system (Prv,Vrf) as follows:

Prv: π̂ ← Prv(x,w)
Given x,w ∈ {0, 1}n. Choose r ← {0, 1}n, and compute c = fO(r). Let
x′ := (x, c) and w′ := (w, r). Note that if (x,w) ∈ RL then (x′, w′) ∈ RL′ .

270 K. Yamashita et al.

Apply Levin reduction to (x′, w′) ∈ RL′ to obtain (x̂, ŵ) ∈ RL. Compute
π = P(x̂, ŵ), and output π̂ := (c, π).

Vrf: b ← Vrf(x, π̂)
Given x ∈ {0, 1}n and π̂ = (c, π) ∈ {0, 1}n ×{0, 1}6n. Let x′ := (x, c). Apply
Levin reduction to x′ ∈ L′ to obtain x̂ ∈ L. Output b = V(x̂, π).

Lemma 1. The above (Crs,Prv) is a WI proof system for L ∈ NPO.

Proof. The perfect completeness property is immediate. We show that (Prv,Vrf)
is perfectly sound. Considering the definition of L′, we can apply Karp reduc-
tion [7] to an instance of L to obtain an instance of L′. Thus if there exists an
instance (x, c) /∈ L′ but applying Levin reduction results in an instance x̂ ∈ L,
then we can break the perfect soundness of CF.

We show the witness indistinguishability of (Prv,Vrf) following the idea of
the proof of Theorem3 in [2]. Let A be an adversary and q be a polynomial upper
bound on the number of queries that A can make. We note that an adversary
in the experiment ExptWI has oracle access to O and CF. We abuse notation to
write A to denote AO,CF. Without loss of generality, we assume that A outputs
values (x,w0, w1) with (x,w0), (x,w1) ∈ RL. Then A is given a proof π̂ = (c, π)
for the instance (x,wb) where b ∈ {0, 1} and tries to decide whether w0 or w1

was used to generate π̂. In the following we first define an bad event s.t. A breaks
the witness indistinguishability by accident and prove that such an event occurs
only with negligible probability. Then we show that, assuming such event never
happens, if A breaks the witness indistinguishability of (Prv,Vrf), then there
exists an adversary that breaks the ε-security of fO.

Let Spoof be the event that A makes a query V(x∗, π∗) returning 1, yet
no query P(x∗, w∗) with (x∗, w∗) ∈ RL was made previously. We prove that
the probability Spoof occurs is negligible. At most 22n elements are uniformly
distributed in the domain of P, and the size of the range is 26n. Although making
a P-query reveals one point in the range, it tells nothing about other points since
P is a random function. Thus the probability that A makes a query V(x∗, π∗)
returning 1 yet π∗ was not output by P previously is at most 2−4n. Taking a
union bound, the probability that Spoof occurs is at most q · 2−4n.

We prove that, assuming Spoof never occurs, if (Prv,Vrf) is not witness indis-
tinguishable then there exists an adversary A′ that breaks the ε-security of fO.
Since P is a random function, the adversary A that breaks the witness indistin-
guishability of (Prv,Vrf) makes the P-query resulting in π̂. In the course of such
computation, A has to find the pre-image of c as c is independent of the witness
wb. Thus an adversary A′, given c, simulates A and outputs the pre-image of
c, which contradicts the ε-security of fO. Summing the above discussion, the
probability that an adversary breaks witness indistinguishability of (Prv,Vrf) is
at most q · 2−4n + ε, which is negligible.

Corollary 1. Let O be an oracle that implements a primitive Q, WI be a WI
proof system oracle and CF be a coin-free proof system oracle. If there exists
an augmented black box construction of a primitive P based on O and CF, then
there exists an augmented black box construction of P based on O and WI.

A Coin-Free Oracle-Based Augmented Black Box Framework 271

We say an augmented black box construction that making use of a coin-free
proof system oracle a simplified augmented black box construction.

4.2 Construction

We show that we can construct a CCA-PKE based on a CPA-PKE in the sim-
plified augmented black box model. If we can construct a NIZK, then we can
construct a CCA-PKE by following the Naor-Yung construction [8]. Due to the
construction of the NIZK in Theorem3 and Lemma 1, we can construct a NIZK
based on a coin-free proof system oracle. Thus we can construct a CCA-PKE
based on a CPA-PKE in the simplified augmented black box model.

Let O be an oracle that implements a CPA-PKE (G,E,D) and CF = (P,V)
be a coin-free proof system oracle. As shown in the previous discussion, we can
construct a NIZK (Crs,Prv,Vrf, CrsSim,PrvSim) in the simplified augmented
black box model. Moreover we can translate (Prv,Vrf) into a simulation sound
NIZK [10] (PrvssZK , VrfssZK) for a language
L′ = {(c0, c1, pk0, pk1) | ∃ m, r0, r1 s.t.c0 = EO

pk0
(m, r0) ∧ c1 = EO

pk1
(m, r1)}.

Lemma 2. Let O be an oracle that implements a CPA-PKE and CF be a coin-
free proof system oracle. We can construct a CCA-PKE based on O and CF.

4.3 Separation

As stated in Sect. 1, one of the motivation of our work is to simplify security
proofs in the augmented black box framework. However, in the separation proof
of [2], they did not make use of the witness indistinguishability (i.e., the random
coin r) of the proof system oracle, resulting the same proof logic in the simplified
augmented black box framework. (We omit the construction of the adversary
because of space limitation, and describe the adversary in the full version of this
paper [11].) Thus, we can construct the same adversary by simply replacing
a WI proof system oracle with a coin-free proof system oracle. To sum up the
above, we obtain the following lemma:

Lemma 3. Let O be a random oracle and CF be a coin-free proof system oracle
s.t. a OWF f exists relative to O and CF. There is no simplified augmented black
box construction of KA with perfect completeness based on f .

5 Conclusion

In this paper we introduced coin-free proof system oracle, a more simplified one,
and showed the same construction and separation results as in [2]. Thus when we
apply the augmented black box framework to some black box work, we become
to be able to prove it in more simplified and general condition.

There are open questions still remain. One of such question is to show other
construction or separation results in the simplified black box model (especially to
known black box separation results). Focusing on specific topic, the construction
of the NIZK is based on a proof system oracle for NP-complete language, which
seems too strong. It is still debatable whether we can construct a NIZK based
on a proof system oracle for more restricted language.

272 K. Yamashita et al.

References

1. Boneh, D., Papakonstantinou, P., Rackoff, C., Vahlis, Y., Waters, B.: On the impos-
sibility of basing identity based encryption on trapdoor permutations. In: Proceed-
ings of the 2008 49th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2008, pp. 283–292. IEEE Computer Society, Washington, DC, USA
(2008). https://doi.org/10.1109/FOCS.2008.67

2. Brakerski, Z., Katz, J., Segev, G., Yerukhimovich, A.: Limits on the power of zero-
knowledge proofs in cryptographic constructions. In: Ishai, Y. (ed.) TCC 2011.
LNCS, vol. 6597, pp. 559–578. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19571-6 34

3. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory
22, 644–654 (1976). https://doi.org/10.1109/TIT.1976.1055638

4. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
Proceedings of the Twenty-second Annual ACM Symposium on Theory of Com-
puting, STOC 1990. pp. 416–426. ACM, New York (1990). https://doi.org/10.
1145/100216.100272

5. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: Proceedings of the Seventeenth Annual ACM Symposium on
Theory of Computing, STOC 1985, pp. 291–304. ACM, New York (1985). https://
doi.org/10.1145/22145.22178

6. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Proceedings of the Twenty-first Annual ACM Symposium on Theory
of Computing, STOC 1989, pp. 44–61. ACM, New York (1989). https://doi.org/
10.1145/73007.73012

7. Karp, R.M.: Reducibility among Combinatorial Problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
The IBM Research Symposia Series, pp. 85–103. Springer, Boston (1972). https://
doi.org/10.1007/978-1-4684-2001-2 9

8. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: Proceedings of the Twenty-Second Annual ACM Sympo-
sium on Theory of Computing, STOC 1990. pp. 427–437. ACM, New York (1990).
https://doi.org/10.1145/100216.100273

9. Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between crypto-
graphic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 1

10. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: Proceedings of the 40th Annual Symposium on Foundations
of Computer Science. FOCS 1999, p. 543. IEEE Computer Society, Washington,
DC (1999)

11. Yamashita, K., Tibouchi, M., Abe, M.: A coin-free oracle-based augmented black
box framework. Cryptology ePrint Archive, Report 2019/859 (2019). https://
eprint.iacr.org/2019/859

12. Yao, A.C.: Theory and application of trapdoor functions. In: Proceedings of the
23rd Annual Symposium on Foundations of Computer Science, SFCS 1982, pp.
80–91. IEEE Computer Society, Washington, DC (1982). https://doi.org/10.1109/
SFCS.1982.95

https://doi.org/10.1109/FOCS.2008.67
https://doi.org/10.1007/978-3-642-19571-6_34
https://doi.org/10.1007/978-3-642-19571-6_34
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1145/100216.100272
https://doi.org/10.1145/100216.100272
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/73007.73012
https://doi.org/10.1145/73007.73012
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1145/100216.100273
https://doi.org/10.1007/978-3-540-24638-1_1
https://eprint.iacr.org/2019/859
https://eprint.iacr.org/2019/859
https://doi.org/10.1109/SFCS.1982.95
https://doi.org/10.1109/SFCS.1982.95

Blockchain

A Lattice-Based Anonymous Distributed
E-Cash from Bitcoin

Zeming Lu1, Zoe L. Jiang1,2(B) , Yulin Wu1 , Xuan Wang1,2 ,
and Yantao Zhong3

1 Harbin Institute of Technology, Shenzhen, China
zoeljiang@hit.edu.cn

2 Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen, China
3 Shenzhen Network Security Testing Technology Co. Ltd, Shenzhen, China

Abstract. Although Bitcoin was the first widely adopted cryptographic
currency system, it provides a limited form of anonymity and privacy. To
protect the anonymity and privacy of Bitcoin transactions, many Bitcoin-
based cryptocurrency extensions were proposed. However, most of the
systems with anonymity and privacy are based on traditional crypto-
graphic algorithms, which may become insecure in the next decades due
to the attack of quantum computing. In this paper, we propose a lattice-
based distributed e-cash scheme protecting payer’s anonymity, which is
built upon the framework of Zerocoin and lattice-based zero-knowledge
argument. Firstly, payer who owes a transaction redeems it to a newly-
minted coin. Secondly, to pay for the next transaction, he/she collects a
set of such coins to hide his owns, which can further hide his/her identity.
Thirdly, to prove that the payer has one of the coins and no attempts
to double-spend have occurred, we adapt a zero-knowledge argument of
membership based on a lattice-based accumulator and a commitment
protocol. Finally, the security proof of the scheme are given.

Keywords: Bitcoin · Anonymity · Lattice-based cryptocurrency ·
Zero-knowledge argument

1 Introduction

Bitcoin has become the most popular cryptographic currency in the last few
years. While Bitcoin offers new ways for transaction, it has serious anonymity
problems. Bitcoin relies on pseudonyms (addresses) for providing anonymity,
which was initially thought to be powerful enough. However, it soon became
clear that as blockchain makes all information about Bitcoin transactions pub-
lic, it can sometimes track the flow of money among pseudonyms, which could
conclude that pseudonyms can be controlled by the same person [7]. In order to
solve the anonymity problem, some schemes have been designed and some new
cryptographic currencies based on Bitcoin have been developed. Yet no proposed
Bitcoin system with anonymity and privacy can resists attacks by quantum com-
puters.
c© Springer Nature Switzerland AG 2019
R. Steinfeld and T. H. Yuen (Eds.): ProvSec 2019, LNCS 11821, pp. 275–287, 2019.
https://doi.org/10.1007/978-3-030-31919-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_16&domain=pdf
http://orcid.org/0000-0002-8944-7444
http://orcid.org/0000-0001-7952-7136
http://orcid.org/0000-0002-3512-0649
https://doi.org/10.1007/978-3-030-31919-9_16

276 Z. Lu et al.

With the emergence of quantum computers, the concept of security in most
cryptographic applications will change. Shor pointed out in his breakthrough
work that quantum computers can effectively attack secure encryption schemes
based on the hardness assumed by number theory [15]. Since then, many efforts
have been made to find alternatives to meet this challenge. Lattice-based cryp-
tography is a promising option.

Over the past years, a number of highly efficient cryptographic systems have
emerged whose security is based on the hardness of the well-studied lattice prob-
lem. Unlike RSA and other classical structures, there is no subaxial time attack
for lattice problem that are relevant for practice. All known attacks run in expo-
nential time and thus provide a solid argument for a transition to lattice-based
cryptosystems.

Our Idea. Our high-level idea to design the scheme is as follows. In Bitcoin sys-
tem, each transaction tx clearly shows the pseudonyms of payer and payee, as
well as the value. When payee intends to initiate a new transaction and changes
his/her identity to payer, he/she should generate a trapdoor skc and mint a coin
d using skc which is actually a commitment to I, followed by generate the signa-
ture of tx and d using his/her secret key. By doing so, transaction tx is redeemed
to coin d and d belongs to the payer. To spend the coin, payer randomly col-
lects a set of coins C in condition that d ∈ C, then provides proof that (1)
he/she owns one of the coins in C and (2) the coin has never been spent before.
It is achieved by using accumulator and zero-knowledge argument of member-
ship, as well as the commitment mentioned above. Note that transaction-specific
information is also included in the proof by adapting Fiat-Shamir heuristic [18].

The rest of this paper proceeds as follows: Sect. 2 discusses the existing Bit-
coin anonymity schemes, Sect. 3 formally defines the notion of decentralized e-
cash scheme of Zerocoin [13], and reviews the lattice-based accumulator and
zero-knowledge argument [9]. Then describe the newly-designed lattice-based E-
cash scheme in Sect. 4 and analyze the security in Sect. 5. Section 6 concludes
the paper with some future work.

2 Related Work

Bitcoin Anonymity. To provide anonymity in Bitcoin, users can create new
pseudonyms (addresses) at any time, which, was argued, can provide anonymity
early. However due to the public nature of blockchain, it quickly became clear
that sometimes it is possible to trace the transaction between pseudonyms [7].
Hence, many Bitcoin’s cryptocurrency extensions extend the protocol to allow
completely anonymous currency transactions.

In Mixcoin [3], Bonneau et. al proposed coinjoin technique, which can provide
a third-party mix system to users. Blindcoin [17] extended Mixcoin. However,
both of them have obvious shortcomings: the correlation between addresses can
still be analyzed by asymmetric change address amount as they do not use
cryptography, and they are not a distributed system.

A Lattice-Based Anonymous Distributed E-Cash from Bitcoin 277

Zerocoin [13] used zero-knowledge proof to provide anonymity: a prover
(payer) sets a sublist of all available coins including his/her own coin. Using RSA-
based zero-knowledge proof, others can check if his coin is included in without
knowing which one the coin is. In doing so, payer’s anonymity is achieved.

Zerocash [14] is an even stronger scheme than Zerocoin, which is based on ZK-
SNARKs [19]. Neither payer and payee’s identities nor the transaction amount
will be exposed to others are hidden. However, it is very difficult to detect
vulnerabilities or problems in its trusted setup.

CryptoNote used ring signatures, and Monero further improved the protocol
by using a variant of linkable ring signature [10], and named it as Ring Con-
fidential Transactions (RingCT). RingCT 2.0 [16] targeted to improve RingCT
protocol by reducing the size.

3 Preliminaries

In this section, firstly, we introduce the decentralized e-cash scheme of Zerocoin,
followed by reviewing the lattice-based accumulator and zero-knowledge proof
using the concept and notation of [9].

3.1 Zerocoin

Bitcoin defines a cryptocurrency as a chain of digital signatures. Each owner
(payer) of the cryptocurrency spends it to others by adding the digital signature
of the hash of the previous transaction ptx and the next owner (payee)’s public
key pk to the end of the cryptocurrency. The payee can prove that it is the payer
of the chain by verifying the digital signature. As shown in Fig. 1, user1 has a
previous transaction ptx0−1 (indicating that the transaction is given to user1 by
user0). User1 uses ptx0−1 and the public key (address) pk2 to HASH(ptx0−1||pk2)
and outputs h1−2, then signs h1−2 with user1’s private key sk1. The above

Fig. 1. Transaction on Bitcoin

278 Z. Lu et al.

transaction is named ptx1−2 = (ptx0−1, pk2, σ1−2). The miners on the blockchain
verify ptx1−2 using user1’s public key pk1. If Verify(ptx1−2, pk1) = 1, then user2
owns the transaction ptx1−2, which means user2 owns the corresponding Bitcoin
of ptx1−2. User2 can transfer ptx1−2 to user3 as follows.

In Bitcoin system, user’s public key is used as a pseudonym to ensure the
user’s privacy of both sides of transaction, which is not secure enough as dis-
cussed above.

Fig. 2. Transaction on Zerocoin

Hence, Zerocoin was proposed, which can protect the anonymity of transac-
tions. The idea is as follows: randomly create digital coins which do not have
value or owner, then assign them value and owner by combining it with trans-
actions. After passing miners’ verification on blockchain, they become to valid
Zerocoins (ZC). When user1(payer) spends ZC, he/she randomly selects a num-
ber of ZCs of equal denomination from all valid ZCs on blockchain as a set
C = ZCi|i = 1, · · · , n. Then create a zero-knowledge proof π by non-interactive
zero-knowledge proof protocol, which can prove that (1) the payer has one ZC
in C, while it is unable to know which one it is (anonymity); and (2) this ZC
has not been redeemed into Bitcoin (to prevent double spending). π is also a
signature of the message m (m mainly includes transaction information such as
C and pk2), which can prevent modifying the information of this transaction.

The proposed scheme is similar to the scheme above instead of adapting
lattice-based cryptography to construct, and has the correctness and security
properties as [13].

3.2 Cryptographic Accumulator

An accumulator scheme was designed by [4] as follows:

– TSetup(n): Take security parameter n as input, output pp as the public
parameter.

A Lattice-Based Anonymous Distributed E-Cash from Bitcoin 279

– TAccpp: Take a set R = {di|i = {0, 1, · · · , N − 1}} as input, output an
accumulator value u with constant size.

– TWitnesspp: Take R and a value di as input. If di ∈ R, output w for di as a
witness that di is accumulated in TAcc(R). Otherwise, output ⊥.

– TVerifypp: take u, di, and d′
is witness w as input. The algorithm outputs 1 if

(di, w) is valid for the accumulator u. Otherwise, output 0.

3.3 Lattice-Based Merkle-Tree Accumulator

One of the techniques used in our scheme is Merkle hash tree constructed by a
lattice-based hash function, whose security relies on Small Integer Solution (SIS)
problem, which is modified by the hash functions considered in [1,6,12]. Thus,
we introduce the SIS problem first [2,5]:

Definition 1. SIS∞
n,m,q,β problem is defined as follows: Given uniformly random

matrix A ∈ Z
n×m
q find a non-zero vector x ∈ Z

m such that ‖x‖∞ ≤ β and
A · x = 0mod q.

If m,β = poly(n), and q > β · ˜O(
√

n), then the SIS∞
n,m,q,β problem is at least

as hard as the worst-case lattice problem SIVPγ for some γ = β · ˜O(
√

nm) ([5]).
Specifically, when β = 1, q = ˜O(n),m = 2n�log q�, the SIS∞

n,m,q,1 problem is at
least as hard as SIVP

˜O(n).
Then define a kind of matrix:

G =

⎡

⎢

⎢

⎣

1 2 4 . . . 2k−1

1 2 4 . . . 2k−1

. . .
1 2 4 . . . 2k−1

⎤

⎥

⎥

⎦

∈ Z
n×nk
q .

Then bin(v) ∈ {0, 1}nk denotes the binary representation of v such that
v = G · bin(v) for every v ∈ Z

n
q .

Definition 2. The function family H mapping {0, 1}nk ×{0, 1}nk to {0, 1}nk is
defined as H = {hA|A ∈ Z

n×m
q }, where for A = [A0|A1] with A0,A1 ∈ Z

n×nk
q ,

and for any (u0,u1) ∈ {0, 1}nk × {0, 1}nk, we have:

hA(u0,u1) = bin
(

A0 · u0 + A1 · u1 mod q
) ∈ {0, 1}nk.

This function is collision-resistant according to Lemma 1 [9].
Basing on the hash function H defined above, a Merkle tree accumulator can

be constructed as follows, the definition of this accumulator is a litte different
from above:

TSetup(n): Randomly select a matrix A ∈ Z
n×m
q , output A as public param-

eter pp.
TAccA(R = {d0, . . . ,dN−1}): Let dj = uj1,...,j�

, note that (j1, . . . , j�) is the
binary form of j. the algorithm works as follows:

280 Z. Lu et al.

If the depth i 	= 0, the node ub1,...,bi
= hA(ub1,...,bi,0,ub1,...,bi,1). (b1, . . . , bi) ∈

{0, 1}i is the binary string.
If the depth i = 0, the root u = hA(u0,u1). Then output the root value u.
TWitnessA(R,d): If d is not a member of R, return ⊥. Otherwise, output the

witness w =
(

(j1, . . . , j�), (uj1,...,j�−1,j̄�
, . . . ,uj1,j̄2 ,uj̄1)

) ∈ {0, 1}� × ({0, 1}nk
)�,

as d = dj in the tree.
TVerifyA

(

u,d, w
)

: On input values (u,d, w) and public parameter A, the
algorithm computes the path v�,v�−1, . . . ,v1,v0 ∈ {0, 1}nk as follows: let v� = d
and

∀i ∈ {� − 1, . . . , 1, 0} : vi =
{

hA(vi+1,wi+1), if ji+1 = 0;
hA(wi+1,vi+1), if ji+1 = 1.

Returns 1 if v0 = the root value u. Otherwise, returns 0.

Fig. 3. A Merkle tree accumulator with 8 leaves

The accumulator above is secure if the SIVP
˜O(n) problem is hard [9].

Further, a zero-knowledge argument system can be constructed. It supports
prover P to convince verifier V to accept a statement: prover P knows a secret
value (d) is accumulated into the root which computed by the accumulator
described above.

To describe the zero-knowledge argument system, firstly, several supporting
notations and techniques must be introduced as defined in [9]: Bnk

m , Sm, ext(b,v),
Fb,π. As defined above, and the accumulator computes path as follows:

∀i ∈ {� − 1, . . . , 1, 0} : vi =
{

hA(vi+1,wi+1), if ji+1 = 0;
hA(wi+1,vi+1), if ji+1 = 1.

(2)

Equation (2) then can be interpreted as:

A · ext(ji+1,vi+1) + A · ext(j̄i+1,wi+1) = G · vi mod q. (3)

P has to convince V in ZK that P knows (d, w)(V can not get them) satisfying
{

A · ext(j1,v1) + A · ext(j̄1,w1) = G · umod q;
∀i ∈ [� − 1] : A · ext(ji+1,vi+1) + A · ext(j̄i+1,wi+1) = G · vi mod q

(4)

A Lattice-Based Anonymous Distributed E-Cash from Bitcoin 281

(4) can be rewritten by zi = ext(ji,v∗
i) and yi = ext(j̄i,w∗

i) , and names the
new equation (5).

The argument system can develop by a Stern-type protocol [8], first, Extend
matrix and vectors as in [9] and get A∗, G∗, v∗

1, . . . ,v
∗
� ,w∗

1, . . . ,w
∗
� .

P wants to prove in ZK that (1): v∗
i ,w∗

i ∈ Bnk
m , zi = ext(ji,v∗

i), yi =
ext(j̄i,w∗

i) for all i ∈ [�]; (2): equation (5) holds. P works as follows:

1. For each i ∈ [�], P samples πi, φi
$←− Sm and bi

$←− {0, 1}, then shows
V that:πi(v∗

i) ∈ Bnk
m , φi(w∗

i) ∈ Bnk
m , and Fbi,πi

(zi) = ext(ji ⊕ bi, πi(v∗
i)),

Fb̄i,πi
(yi) = ext(ji ⊕ bi, φi(w∗

i)). Because of the randomness of πi, φi and bi,
V can convince the facts P wants to prove, but learning nothing useful.

2. P samples vectors r(1)v , . . . , r(�−1)
v

$←− Z
m
q ; r(1)z , . . . , r(�)z , r(1)y , . . . , r(�)y

$←− Z
2m
q

in uniform random way, and then it shows V that equation (5) holds in ZK.
The detail of the interaction between prover P and verifier V above is in [9].
Further, the interaction above can be used to construct a ring signature [9]. In

the ring signature scheme, let bin(A ·xmod q) = d, and sk = x, pk = d. P has to
convince V one more thing that he knows a vector x such that bin(A ·xmod q) =
d. We modify it in our scheme and show details in next section.

4 Lattice-Based Distributed E-Cash Scheme

We now describe our lattice-based distributed E-cash scheme used on Bitcoin,
which is based on the lattice-based accumulator [9]. It includes 4 algorithms as
defined in [13]:

– Setup(n) → params: On input a security parameter n,then sample the
matrix A and B such that A,B ∈ Z

n×m
q as q = ˜O(n),m = 2n�log q�. Output

params as (A,B, n,m, q).

– Mint(params) → (d, skc). Select I,x ∈ {0, 1}m and compute A · x+B · I =
G · dmodq. Set skc = (I,x) and output (d, skc).

– Spend(params,d, skc,M,C) → (Π,S). If d 	∈ C output ⊥. Otherwise com-
pute TAccA(C) to build the Merkle tree accumulator, and obtain the root u.
Run TWitness(C,d) to get a witness ω. Output (Π,S) where Π comprises
the following zero-knowledge argument of knowledge:

Π = ZKAoK[M]{(d, w,x) : TVerify(u,d, w) = 1∧(A·x+B·I = G·dmodq}

Specially, we should consider how to compute Π with the ring signature. On
input (x,d, w), repeat the protocol in Fig. 4 κ = ω(log n) times. The next
challenge is how to make non-interactive, this is done via the Fiat-Shamir
heuristic: compute Π = ({CMTi}κ

i=1,CH, {RSP}κ
i=1), where

CH = HFS

(

M, {CMTi}κ
i=1,A,B,u,C

) ∈ {1, 2, 3}κ.

282 Z. Lu et al.

1. Commitment. P samples randomness ρ1, ρ2, ρ3 for COM and

b1, . . . , b
$←− {0, 1};π1, . . . , π , φ1, . . . , φ

$←− Sm; τ $←− S2m;

r(1)v , . . . , r(−1)
v

$←− Z
m
q ; r(1)z , . . . , r()

z , r(1)y , . . . , r()
y , rx

$←− Z
2m
q .

It then sends V commitment CMT = (C1, C2, C3), where
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

C1 = COM {bi;πi;φi}i=1; τ ;A
∗ · r(1)z +A∗ · r(1)y ;A · rx − G∗ · rv(l);

{A∗ · r(i+1)
z +A∗ · r(i+1)

y − G∗ · r(i)v } −1
i=1 ; ρ1

C2 = COM {πi(rv(i));Fbi,πi(rz(i));Fb̄i,φi
(ry(i))}i=1; τ(rx); ρ2

C3 = COM {πi(v∗
i + rv(i));Fbi,πi(zi + rz(i));Fb̄i,φi

(yi + ry(i))}i=1;
τ(x∗ + rx); ρ3

2. Challenge. V sends challenge Ch
$←− {1, 2, 3} to P after received CMT.

3. Response. P checks Ch and sends the response RSP as follows:

– Case Ch = 1: Let sx = τ(x∗); tx = τ(rx) and for eachi ∈ [], let:

ai = ji ⊕ bi; s(i)v = πi(v∗
i); s

(i)
w = φi(w∗

i);

t(i)v = πi(r(i)v); tz(i) = Fbi,πi(rz
(i)); ty(i) = Fb̄i,πi

(ry(i))

Then let RSP1 = {ai; s
(i)
v ; t(i)z ; t(i)v ; s(i)w ; t(i)y }i=1; sx; tx; ρ2; ρ3

– Case Ch = 2: Let τ = τ , ex = x∗ + rx and for each i ∈ [], let:

ci = bi;πi = πi;φi = φi; e(i)v = v∗
i + r(i)v ; e(i)z = zi + r(i)z ; e(i)y = yi + ry(i);

Then let RSP2 = {ci;πi;φi; e
(i)
v ; e(i)z ; e(i)y }i=1; τ ; ex; ρ1; ρ3

– Case Ch = 3: Let τ = τ , px = rx and for each i ∈ [], let:

di = bi;πi = πi;φi = φi;p(i)
v = r(i)v ;p(i)

z = r(i)z ;p(i)
y = r(i)y ;

Then let RSP3 = {di;πi;φi;p
(i)
v ;p(i)

z ;p(i)
y }i=1; τ ;px; ρ1; ρ2

Verification. Receiving RSP, V proceeds as follows.

– Case Ch = 1: Parse RSP1. Check that sx ∈ Bm
2m, and s(i)v , s(i)w ∈ Bnk

m for all
i ∈ []. Next, for each i ∈ [], let s(i)z = ext(ai, s

(i)
v) and s(i)y = ext(ai, s

(i)
w).

Then check that:

C2 = COM {t(i)v ; t(i)z ; t(i)y }i=1; tx; ρ2
C3 = COM {s(i)v + t(i)v ; s(i)z + t(i)z ; s(i)y + t(i)y ; }i=1; sx + tx; ρ3

– Case Ch = 2: Parse RSP2 and check that:

Fig. 4. A modified zero-knowledge argument of knowledge

A Lattice-Based Anonymous Distributed E-Cash from Bitcoin 283

⎧

⎪

⎨

⎪

⎩

C1 = COM {ci;πi;φi}i=1; τ ;A
∗ · e(1)z +A∗ · e(1)y − G · u;A · ex −

G∗ · e()
v +B · I; {A∗ · e(i+1)

z +A∗ · e(i+1)
y − G∗ · e(i)v } −1

i=1 ; ρ1
C3 = COM {πi(e

(i)
v);Fci,πi

(e(i)z);Fc̄i,φi
(e(i)y)}i=1; τ(ex); ρ3

– Case Ch = 3: Parse RSP3 and check that:

⎧

⎪

⎨

⎪

⎩

C1 = COM {di;πi;φi}i=1; τ ;A
∗ · p(1)

z +A∗ · p(1)
y ;A∗ · px − G∗ · p(l)

v ;
{A∗ · p(i+1)

z +A∗ · p(i+1)
y − G∗ · p(i)

v } −1
i=1 ; ρ1

C2 = COM {πi(p
(i)
v);Fdi,πi

(p(i)
z);F

d̄i,φi
(p(i)

y)}i=1; τ (px); ρ2

In each case, V outputs 1 if all the conditions hold. Otherwise outputs 0.

Fig. 4. (continued)

– Verify(params,Π, I,M,C) → {0, 1}. On input these values, this algorithm
proceeds as follows:
1. Compute the root u of C by TAccA(C);
2. If CH 	= HFS

(

...) defined above, return 0;
3. For each i = 1, 2, ..., κ , run the verification phase of the protocol from
Fig. 4. If any of the conditions is not valid, return 0;
4. If I is not a new serial number, return 0. Otherwise, return 1.

5 Security Analysis

The proposed scheme is also required the correctness and security properties as
in [13]. The proof of the correctness is straightforward and omitted. Now we
mainly discuss how to prove the security.

Anonymity and Balance games were used to define the security of a decen-
tralized e-cash scheme [13].

Theorem 1. If the zero-knowledge argument of knowledge is statistically zero-
knowledge in the random oracle model, then the scheme satisfies Anonymity
property.

Proof. The simulation is shown as follows: first, the parameters are generated,
and uniformly samples two vectors d0,d1 from the set of {0, 1}m as two coins. A1

inputs these values. Then outputs a set C and an information string M whatever
scheme it uses. Next, runs A2 with the input including a simulated Π and a
random number I. Note that if Π is at least statistical zero-knowledge, from
the perspective of A, the simulation works as in the real world with negligible
probability, which means A’s advantage in this game is negligible.

284 Z. Lu et al.

Theorem 2. If the signature proof Π is sound in the random oracle model, the
SIVPγ problem is hard, then the scheme (Setup,Mint,Spend,Verify) satisfies
the Balance property.

Proof. Suppose A is an adversary who wins the Balance game with non-
negligible advantage ε. The simulation first constructs an algorithm B that takes
input as defined above:(A,B, n,m, q), and outputs a solution of SIVPγ problems
for some γ = β · ˜O(

√
nm). B works as follows:

On input public values, setup parameters. For i = 1, mint coins
by running (di, skci) ← Mint(params), store (Ii, xi) as skci, and run
A(params,d1, . . . ,dK). Use secret values to answer A’s queries to Ospend. Let
(I1, R1),
. . . , (Il, Rl) be the set of values as the oracle records.

1. If the extractor can not extract the values, abort and label this event as
EVENTEXT.

2. If d∗
j 	∈ C′

j , abort and label this event as EVENTACC.
3. If d∗

j ∈ {d1, . . . ,dK}:
(a) If (I′

j ,x
∗
j) = (Ii,xi) and R′

j 	= Ri for some i, abort and label this event as
EVENTFORGE.

(b) Otherwise if (I′
j ,x

∗
j) = (Ii,xi) for some i, abort and label this event as

EVENTCOL.
(c) Otherwise set (a, b) = (Ii,xi).
(d) If d∗

j = d∗
i for some i, set (a, b) = (I′

i,x
∗
i).

If the simulation is successful, we now get (d∗
j ,x

∗
j , I

′
j , a, b) and have the

equation: d∗
j ≡ [A,B]

(

x∗
j

I′
j

)

≡ [A,B]
(

a
b

)

. Output a nonzero solusion z =
(

x∗
j − a
I′
j − b

)

for [A,B] z = 0.

The analysis of this simulation is similar to [13]. Briefly, when the simulation
does not abort, A wins this game by two ways: 1) A has spent one coin that
does not belong to him by providing a new serial number for it; or 2) A has
double spent the same coin. Both of them means that we get a solusion of SIVPγ

problems.
Abort probability
1. Apparently, the probability of the extractor fails is negligible. Let ν1(λ) be

the negligible probability(same as ν2(λ), ν3(λ) below), Pr[EVENTEXT] ≤ (M +
1)ν1(λ).

2. The EVENTCOL implies that for some i, A has produced a pair
(

x∗
j

I′
j

)

=
(

xi

Ii

)

where I′
j has not been produced by Ospend.

Theorem 3. ([11], Theorem 8) For any matrix A ∈ Z
n×m
q and a uniformly

random x ∈ {0, 1}m, the probability that there exists another x′ ∈ {0, 1}m\{x}
such that A · x = A · x′ mod q is at least 1 − 2n·log q−m.

A Lattice-Based Anonymous Distributed E-Cash from Bitcoin 285

According to the theorem 3, there are l(l ≥ 2) distinct vectors satisfy d∗
j ≡

[A,B]
(

x
I

)

with overwhelming probability, and they are independent in A′s

view. Thus Pr[EVENTCOL] ≤ 1/l.
3. If the SIVP

˜O(n) problem is hard to solve, then Pr[EVENTACC] ≤ ν2(λ).
This proof is similar to those used by [9] Appendix C. In the nutshell, let A′

be an adversary who induces EVENTACC with non-negligible probability ε′ in the
simulation above. An algorithm B′ can break the security of the accumulator with
non-negligible probability by the support of A′: B′ defines the public parameters.
It generates (d1, . . . ,dK), then runs A′. To induce EVENTACC, A′ produces valid
output (Π ′,C′) and a c∗ 	∈ C′. B′ now extracts ω∗ from Π ′ which means breaking
the security of the accumulator, makes the SIVP

˜O(n) problem is not hard.
4. Observe that our scheme uses the modification of the ring signature scheme,

thus it satisfies the same property according to theorem 4 and clearly that
Pr[EVENTFORGE] ≤ ν3(λ):

Theorem 4. ([9], Theorem 4) The scheme provides unforgeability w.r.t. insider
corruption in the random oracle model if the SIVP

˜O(n) problem is hard.

To summarize, if A wins the Balance game with non-negligible advantage ε,
then B succeeds with probability = ε[(1 − (M + 1)ν1(λ)) × (1 − ν2(λ)) × (1 −
ν3(λ)) × (1 − 1/l))].

6 Concluding Remarks and Future Work

We propose a latticed-based distributed e-cash scheme based on Zerocoin’s
framework, which can protect payer’s anonymity and resist quantum computer’s
attacks. We modify a ring signature based on a zero-knowledge argument scheme
to achieve this goal, and show the security proof of this scheme. In future work,
it is worthy considering replace [9] with more efficient lattice-based accumulator
or ring signature [20,21].

Acknowledgements. This work is supported in part National Natural Sci-
ence Foundation of China (No. 61872109), Guangdong Key R&D Program
(No. 2019B010136001), Key Technology Program of Shenzhen, China, (No.
JSGG20170824163239586).

References

1. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6 1

2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
Miller, G.L. (ed.) STOC, pp. 99–108. ACM (1996)

https://doi.org/10.1007/3-540-48523-6_1

286 Z. Lu et al.

3. Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mix-
coin: anonymity for bitcoin with accountable mixes. In: Christin, N., Safavi-Naini,
R. (eds.) FC 2014. LNCS, vol. 8437, pp. 486–504. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45472-5 31

4. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 5

5. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, pp. 197–206. ACM (2008)

6. Goldreich, O., Goldwasser, S., Halevi, S.: Collision-free hashing from lattice prob-
lems. In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. Miscellanea
on the Interplay between Randomness and Computation. LNCS, vol. 6650, pp. 30–
39. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22670-0 5

7. Herrera-Joancomart́ı, J.: Research and challenges on bitcoin anonymity. In: Garcia-
Alfaro, J., et al. (eds.) DPM/QASA/SETOP -2014. LNCS, vol. 8872, pp. 3–16.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17016-9 1

8. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes
based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89255-7 23

9. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 1

10. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signa-
ture for Ad Hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP
2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27800-9 28

11. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks.
In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78440-1 10

12. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. In: 45th Annual IEEE Symposium on Foundations of Computer Science,
pp. 372–381. IEEE (2004)

13. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed e-
cash from bitcoin. In: 2013 IEEE Symposium on Security and Privacy, pp. 397–411.
IEEE (2013)

14. Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In:
2014 IEEE Symposium on Security and Privacy, pp. 459–474 (2014). https://doi.
org/10.1109/SP.2014.36

15. Shor, J.S., Bemis, L., Kurtz, A.D., Grimberg, I., Weiss, B.Z., Macmillian, M.F.,
Choyke, W.J.: Characterization of nanocrystallites in porous p-type 6H-SiC. J.
Appl. Phys. 76(7), 4045–4049 (1994)

16. Sun, S.-F., Au, M.H., Liu, J.K., Yuen, T.H.: RingCT 2.0: a compact accumulator-
based (linkable ring signature) protocol for blockchain cryptocurrency monero.
In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol.
10493, pp. 456–474. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66399-9 25

https://doi.org/10.1007/978-3-662-45472-5_31
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/978-3-642-22670-0_5
https://doi.org/10.1007/978-3-319-17016-9_1
https://doi.org/10.1007/978-3-540-89255-7_23
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-78440-1_10
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-319-66399-9_25
https://doi.org/10.1007/978-3-319-66399-9_25

A Lattice-Based Anonymous Distributed E-Cash from Bitcoin 287

17. Valenta, L., Rowan, B.: Blindcoin: blinded, accountable mixes for bitcoin. In: Bren-
ner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp.
112–126. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48051-
9 9

18. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

19. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

20. Lu, X., Au, M.H., Zhang, Z.: Raptor: a practical lattice-based (linkable) ring sig-
nature. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS
2019. LNCS, vol. 11464, pp. 110–130. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-21568-2 6

21. Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-based
zero-knowledge arguments with standard soundness: construction and applications.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 147–
175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 6

https://doi.org/10.1007/978-3-662-48051-9_9
https://doi.org/10.1007/978-3-662-48051-9_9
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-030-21568-2_6
https://doi.org/10.1007/978-3-030-21568-2_6
https://doi.org/10.1007/978-3-030-26948-7_6

A Centralized Digital Currency System
with Rich Functions

Haibo Tian(B), Peiran Luo, and Yinxue Su

Guangdong Key Laboratory of Information Security,
School of Data and Computer Science, Sun Yat-Sen University,

Guangzhou 510275, Guangdong, People’s Republic of China
tianhb@mail.sysu.edu.cn

Abstract. The developments of cryptocurrencies push central banks of
many countries to consider their own digital fiat currencies. As banks
are usually taken as a trusted third party, it is unnecessary to rebuild
a blockchain system to rebuild trust. However, cryptocurrencies provide
many interesting features except the basic financial functions. It is natu-
rally to absorb the interesting parts of cryptocurrencies to the centralized
bank system. We here extract a stateful authentication mechanism from
the practice of Ethereum and show how to run puzzle and payment chan-
nel templates in a centralized system, based on which we may build a
fiat currency lighting network to support direct exchanges of users.

Keywords: Digital fiat currency · Stateful authentication ·
Payment channel · Lighting network

1 Introduction

Digital fiat currency is a new concept. Bordo and Levin [8] define a digital
currency as an asset stored in electronic form as physical currency. Bitcoin [10]
and Ether [21] could be viewed as kinds of digital currency if they could be
viewed as assets. Meaning et al. [5] define a central bank digital currency as an
electronic, fiat liability of a central bank that can be used to settle payments
or as a store of value. RSCoin [3] could be viewed as fiat coin since it relies on
a central bank to issue coins. Yao [22] describes fiat currency as a credit and
algorithm based smart currency supported by cryptographic techniques. So a
main difference about fiat currency and non-fiat currency is the issuer of coins.
Note that the fiat currency here is not similar to the traditional e-cash concept
[24] since there are no digital coins to be really transferred between users.

As a new form of coin, digital fiat currency has attracted the attention of
many central banks. The Bank of England has published a serial of staff working
papers to discuss topics about fiat currency [13]. The work of Meaning et al. [5]
is just one of their achieved papers. The RSCoin system is also inspired by their
research agenda [3]. The Bank of Canada [12] has also published a serial of
staff working papers and a Jasper project is in progressing to settle interbank
c© Springer Nature Switzerland AG 2019
R. Steinfeld and T. H. Yuen (Eds.): ProvSec 2019, LNCS 11821, pp. 288–302, 2019.
https://doi.org/10.1007/978-3-030-31919-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_17&domain=pdf
https://doi.org/10.1007/978-3-030-31919-9_17

A Centralized Digital Currency System with Rich Functions 289

payments. The European Central Bank [23], the Sveriges Riksbank [15] and the
People’s Bank of China [22] also give research works and experimental projects
to study the digital fiat currency.

Among the experimental projects, the RSCoin [3] system is designed for a
central bank. It uses the Bitcoin transaction formats so that the coins are embed-
ded in unspent transaction outputs (UTXOs). The UTXOs are divided into
shards by transaction identities and each shard is managed by a few mintettes.
When some coins are to be spent, a user has to find endorsements from the
mintettes managed the coins, and to register new coins to responsible mintettes,
which is the essence of their two-phase commitment consensus. The changes of
managed coins are recorded by mintettes locally and are submitted to a central
bank to form a public ledger. New coins could be poured into the system by
the central bank with a blank input. Han et al. [4] gave a user friendly RSCoin
system to improve the efficiency of user’s client.

Corda [9] system is also designed for financial services. It heavily developed
the script abilities of Bitcoin. A transaction is used as a contract of involved
participants. Notaries are trusted entities in the system to track the status of
transaction outputs. There is no global ledger but notaries may run some con-
sensus algorithm to maintain a permissioned ledger. Quorum [14] system also
maintains a permissioned ledger. Smart contracts are used to ensure that only
known parties can join the network. For private transactions, only hashes of the
transactions are maintained in the permissioned ledger. The plain transaction is
kept locally by related nodes.

Tian et al. [19] proposed an AFCoin framework with basic financial functions.
Their framework is designed for the central bank and commercial bank binary
architecture. It includes a central bank, some commercial banks and a lot of
users. The central bank issues fiat currencies to commercial banks, manages
a public ledger and a private database for all users and commercial banks. A
commercial bank manages fiat currency and normal bank accounts with real
identities for users in the bank. A commercial bank submits blocks to the central
bank, which includes only hash values of transactions. The AFCoin system is
scalable, supports regulations, provides enough privacy for users and could be
deployed step by step.

1.1 Related Works

The templates in our paper work in a similar way to smart contracts in the
Ethereum and function similar to payment channels in Bitcoin. We here give a
short survey about smart contracts and payment channels.

It is generally believed that smart contracts are Nick Szabo’s idea [16]. The
Ethereum platform makes the concept practical. Delmolino et al. [2] show their
experiences to develop a secure smart contract on Ethereum. They revealed a
serial of problems including transaction order dependence (TOD), stack size,
logic errors and privacy protection. Luu et al. [7] identifies four problems of
smart contracts including the time stamp dependence problem. They propose to
improve the Ethereum platform to solve problems like TOD. The basic idea is

290 H. Tian et al.

to rely on user’s predication to judge whether the starting point of a transaction
is correct. They also propose an automatic detection tool “Oyente” which found
out about 45% problematic smart contracts at that time. Recently, some new
tools emerge like MAINA [11], Mythril [17], Securify [20] and so on.

The payment channel technique is developed to solve the scalability problem
of Bitcoin. Poon and Dryja [6] proposed the Bitcoin lighting network. A pay-
ment channel of the lighting network is maintained by two users. They should
establish a fund transaction and two initial commitment transactions. The fund
transaction is published after the initial commitment transactions are exchanged.
Users should exchange remedy transaction to falsify the previous commitment
transactions and establish new commitment transactions reflecting the new bal-
ances of users in the channel. The Raiden network [18] has a similar goal as the
Bitcoin lighting network. They provide smart contracts to open, fund, withdraw
and close a channel. Users of a channel exchange balance proofs to confirm new
status of the channel.

1.2 Contributions

We extract a stateful authentication mechanism from the practice of Ethereum.
And we give templates and procedures using the stateful authentication mecha-
nism to enable lighting network in a centralized system. For simplicity, we show
a commercial bank could provide smart functions such as puzzle prize or pay-
ment channel. Our payment channel template is different to the Bitcoin payment
channel or Ethereum Raiden contract. We technically fuses the Raiden and light-
ing networks. We use counters to differentiate new and old commitments that
is similar to the Raiden network. And we require two signatures to open or set-
tle a channel that is similar to the lighting network. The fused templates and
procedures are more compact.

2 Stateful Authentication

In Ethereum, a user has an account in the global state maintained by each honest
Ethereum node independently. When a user sends a transaction to Ethereum
nodes, the user needs to read a counter in its local wallet as Tn. A transaction
looks like

T = (Tn, . . . , Tω, Tr, Ts)

where (Tω, Tr, Ts) is the signature of the user. The user then increase the counter
by one. The Ethereum nodes will verify the signature. If the signature is correct,
it checks whether Tn = σ[S(T)]n where S(T) is the user’s account address, σ
is the global state of Ethereum, and σ[S(T)]n is the counter of the user in the
global state. If they are not equivalent, the transaction is dropped. Otherwise,
the counter will be increased by one in the global state.

Boyd et al. [1] defined a general stateful authentication scheme. We adapt it
to the signature case.

A Centralized Digital Currency System with Rich Functions 291

Definition 1. A stateful authentication scheme Π for a message space M, a
key space K, and an output space C is a tuple of algorithms:

– Kgn(1λ) →$ (sk, pk): A probabilistic key generation algorithm that outputs a
signing key sk and a verification key pk where λ is a security parameter.

– Snd(sk,m) →$ c: A probabilistic authentication algorithm that takes as input
a key sk ∈ K, a message m ∈ M, and outputs a message signature pair c ∈ C.

– Rcv(pk, c) → α: A deterministic verification algorithm that takes as input a
verification key pk ∈ K, a message signature pair c ∈ C, and outputs a bit
α ∈ {0, 1}.
Correctness is that for all m ∈ M, all (sk, pk) ← Kgn(1λ), all c such that

c ← Snd(sk,m), we have that Rcv(pk, c) = 1.
The security of a stateful authentication scheme of the level 4 in [1] is adapted

as follows.

Definition 2. Let Π be a stateful authentication scheme and let A be an
adversary algorithm. The stateful authentication experiment for Π is given by
Expauth

Π (A). The advantage of adversary is defined as

Advauth
Π (A) := Pr

[
Expauth

Π (A) = 1
]
.

The experiment is defined as follows:

Expauth
Π (A) :=

⎛

⎜
⎜
⎜
⎜
⎝

(sk, pk)←Kgn(1λ)
u ← 0, v ← 0
r ← 0
ASend(·),Recv(·)()
return r

⎞

⎟
⎟
⎟
⎟
⎠

where the Send(·) and Recv(·) oracles are defined as follows:

Send(m) :=

⎛

⎝
u ← u + 1
sentu ← Snd(sk,m)
return sentu to A

⎞

⎠

Recv(c) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

v ← v + 1
rcvdv ← c
α ← Rcv(pk, c)
if (α = 1) ∧ ((u < v) ∨ (c �= sentv)) then

r ← 1
return r to A

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

According to the Ethereum rules, define c := (m,Tω, Tr, Ts) where Tn ∈ m,
and pk could be recovered from (Tω, Tr, Ts). That is, the Snd function uses
the ECDSA algorithm to sign a message such that signer’s public key could be
recovered. Rcv(pk, c) in the Ethereum has an explicit counter check step, that
is Tn = σ[S(T)]n. If Tn �= σ[S(T)]n, a transaction will be dropped, which means
α �= 1.

292 H. Tian et al.

Theorem 1. Let c := (m,Tω, Tr, Ts) where Tn ∈ m, and assume that the Rcv
function includes an explicit counter check step. If there is an adversary that
could win the Expauth

Π (A) experiment with an advantage ε, then the adversary
could forge an ECDSA signature with the same advantage.

Proof. Note that if an adversary wins the game, it outputs 1. There are only two
conditions for the adversary to request the Recv oracle to set r as 1. The first
condition is that α = 1 and u < v. u < v means that the Snd function has not
produced the v-th signature and the Rcv function receives the v-th signature.
Since α = 1, the counter and signature of the v-th signature is correct, which
means a successful ECDSA forgery. The second condition is that α = 1 and
c �= sentv. By assumption, Rcv function includes an explicit counter check step.
If α = 1, it means the counter in m is equivalent to v so that c = sentv. So the
second condition is always false. This means that the advantage of the adversary
against the Expauth

Π (A) experiment is the same as the advantage of an adversary
against an ECDSA signature scheme.

The above theorem shows that the Ethereum implies a stateful authentication
scheme. According to the level 4 definition in [1], the stateful authentication
scheme is secure against forgeries, replays, reordering of messages, and dropped
messages.

3 A Smart Commercial Bank

A smart commercial bank could provide many services that is unavailable tradi-
tionally. However, to enable these services, a user should have an address account.
The AFCoin framework provides an “Open Account” method to fulfil this task.
But the normal account number of a user and the password of the account is
plain. We here use the stateful authentication method to allow a user to open
account with privacy. Since there is money transfer in the procedure, we call this
operation as “Load”.

3.1 Load

A user in a CMB has a normal bank account with real identity of the user. On
request of the user, the CMB could set an address account for the user. By the
Snd function of the stateful authentication, the user sets

mLoad = (Load, {NAN,PWD,SN}pkCMB
, vn, NonceA, TSA)

where Load is the identifier of the message, NAN is the normal bank account
number of the user, PWD is the password of the normal account, SN is a
sequence number for stateful authentication, {NAN,PWD,SN}pkCMB

denotes
a ciphertext encrypted by the public key of the commercial bank CMB, vn

is the initial value transferred from the normal bank account to the address
account, and TSA is the user’s timestamp. Then the user produces a key pair by

A Centralized Digital Currency System with Rich Functions 293

(sk, vk) ← Kgn(1λ), computes c ← Snd(sk,mload). The user establishes a TLS
channel to the CMB and submits c to the CMB through the channel. Initially,
NonceA and SN are zeros.

The CMB extracts pk from c and uses Rcv(pk, c) to receive user’s message.
If α = 1 and NonceA = 0, a new account should be opened. CMB decrypts the
ciphertext {NAN,PWD,SN}pkCMB

. It verifies that (NAN,PW) is valid and
the SN is zero. Then CMB computes an address account addrA = h(pk) where
h(·) is a hash function. CMB stores (NAN, 0, addrA) in its private database.
CMB then verifies the balance of the NAN and the value vn. If the balance of
NAN is less than vn, it returns

RLoad = (h(c), addrA, 0, TSCMB , δCMB)

where 0 indicates the address account has no money, TSCMB is the bank’s
timestamp and δCMB is a signature of the CMB. If the balance of NAN is not
less than vn, it reduces the balance in the NAN by subtracting vn. CMB then
returns

RLoad = (h(c), addrA, vn, TSCMB , δCMB)

to the user. The state of the address account addrA is updated as (UA, vn, 1)
where UA means that the address account is a user account, vn is the balance
of the account, 1 is the nonce value of addrA.

Next, if α = 1 and NonceA �= 0, CMB decrypts the ciphertext

{NAN,PWD,SN}pkCMB
.

It verifies that (NAN,PW) is valid and the SN is equivalent to one plus the
sequence number stored in the bank’s private database. Then CMB updates
(NAN,SN, addrA) in its private database. It then verifies the balance of the
NAN and the value vn as before, and returns RLoad to the user. The state of
the address account addrA is updated as (UA, v + vn, 1) where v is the balance
of the address account before the “Load” operation.

No matter which value NonceA is, CMB puts (h(c), h(RLoad)) to its
local block template and stores (h(c), c), (h(RLoad), RLoad) to its local private
database. When the number of hashes in the block template exceeds a threshold
or a timeout event happens, a block is produced by the CMB.

Note that we use twice the stateful authentication mechanism. One is about
the usage of user’s normal bank account. The other is about the state update of
an address account.

3.2 Puzzle Prize Template

After a user has an address account, the user could transfer or deposit coins as
specified by the AFCoin framework. Further, a commercial bank may develop
various conditional transfer templates to enable their users to transfer their
money under some conditions. For example, Alice may want to pay fiat coins to
anybody who could solve a hash puzzle.

We here define a puzzle prize template. Some symbols in the template will
be explained later.

294 H. Tian et al.

– Name: PuzzlePrize
– Inputs: A puzzle string s, a prize integer vn and a withdraw time t.
– Execution:

1. Timeout Event: If the local time is greater than the state variable t of the
template address, it checks the state variable vn of the template address.
If the value is greater than zero, it transfers the value to the creator
address account, clears the template address account, and returns false.
When the amount of the template address is zero, it directly clears the
template address account, and returns false.

2. Prize Event: If the local time is not greater than the state variable t of the
template address, it checks state variables of an answer a′ and a beneficial
address. If they are invalid or empty, it returns true and stops. If the two
state variables are valid, it verifies whether h(a′) = s. If the equation
holds, it transfers vn value to the beneficial address, clears the template
address account, and returns false.

– Outputs: A boolean value that indicates the existence of the template
address.

To understand the template, we give a user case as follows. Suppose the
commercial bank is CMB. It provides the “PuzzlePrize” template. Now a user
Alice with an address account in the CMB wants to set a puzzle.

– Alice selects an answer a at random and computes s = h(a). She sets the
prize v and the deadline of the puzzle t. Then an mOpen message is created,
and is wrapped by the Snd function. The output c of the Snd function is
sent to CMB.

mOpen = (Open, PuzzlePrize, s, t, vn, TSA)

where (s, t, vn) is the inputs arguments of the PuzzlePrize template.
– CMB uses the Rcv function to receive c. If α = 1, CMB checks the Open

and PuzzlePrize identifiers in the message mOpen. If the two identifiers exist,
CMB creates a template address as

addrA1 = h(pkA, NonceA, PuzzlePrize)

where pkA and NonceA are extracted from the message c. CMB updates the
state of the addrA1 as

(TA, vn, 0, s, t, TSA, addrA)

where TA denotes a template account, v is the balance of the account, 0 is
the nonce value of the account, s and t are the puzzle string and withdraw
time, TSA is the timestamp of Alice, addrA is the creator address account.
The state of addrA is updated as

(UA, v − vn, NonceA + 1).

CMB returns addrA1 to Alice as part of a ROpen message.

A Centralized Digital Currency System with Rich Functions 295

Now Alice publishes addrA1 with deadline t and the challenge s. Suppose a
user Bob gets an answer a′ of s. Bob creates an answer message as

mAnswer = (Answer, addrA1, a
′, TSB)

and wraps the message by the Snd function. The output c of the Snd functions
is sent to the CMB in a secure channel.

CMB uses the Rcv function to receive c. If α = 1, CMB checks the identifier.
If it is Answer, CMB checks whether addrA1 exist. If the template address
exists, CMB updates the state of the addrA1 by adding the answer a′ and a
beneficial address addrB . CMB then runs the template.

In summary, a puzzle prize template could be opened to have an independent
address account storing its long term variables. The variables are the data to be
operated by the code in a template. When a template is executed, the address
account could be updated or removed.

3.3 Payment Channel Template

Payment channel is an important technique to enable off the chain payment
in the fields of cryptocurrencies. As a centralised system, a CMB could also
provide a payment channel template to function similarly.

– Name: PaymentChannel
– Inputs: An address addrA, a value vA, an address addrB , a value vB, and a

timeout parameter t.
– Execution:

1. Timeout Event: If the local time is greater than state variable t of the
template address, it checks the state variables vA and vB of the tem-
plate address. If vA �= 0 or vB �= 0, it transfers the non-zero values
to their corresponding accounts, separately. And then clears the tem-
plate address account, and returns false. Otherwise, it clears the template
address account, and returns false.

2. Channel Settlement: If the local time is not greater than state variable t
of the template address, it checks the sum of state variables svA and svB.
It the sum is not equal to vA +vB , it returns true and stops. Else it checks
whether the state variable sn is less than the state variable nsn. If the
check fails, it returns true and stops. Else it sets sn ← nsn, vA ← svA,
vB ← svB, t ← nt where nt is a state variable, and returns true.

– Outputs: A boolean value that indicates the existence of the template
address.

Now suppose a commercial bank CMB provides the PaymentChannel tem-
plate. User Alice and user Bob want to establish a payment channel.

– Alice negotiates with Bob the channel parameters about address accounts
addrA and addrB , values vA and vB and the time parameter t.

296 H. Tian et al.

– Alice signs the negotiated parameters mA = (addrA, vA, addrB , vB , t, TSA)
with the private key of addrA to get a signature δA. Alice sends (mA, δA) to
Bob.

– Bob creates an mOpen message as

mOpen = (Open, PaymentChannel,mA, δA, 0, TSB)

where 0 is the initial sequence number of the payment channel. Bob uses Snd
function to wrap the mOpen message and sends the output c to CMB.

– CMB uses Rcv function to receive c. If α = 1, CMB checks that the iden-
tifiers are Open and PaymentChannel. If the identifiers are correct, it then
checks the timestamp in mA and verifies the message signature pair (mA, δA).
If all verifications passed, it creates a template address as

addrB1 = h(pkB , NonceB , PaymentChannel).

CMB sets the state of addrB1 as

(TA, vA + vB, 0, vA, addrA, vB , addrB , t, TSA, TSB)

where vA + vB denotes the balance of the template address account, 0 is
the last sequence number of the payment channel as the state variable sn,
TSA and TSB are timestamps in the message c, other state variables are the
input arguments of a payment channel template. CMB updates the balance
of addrA as v−vA and the balance of addrB as v′ −vB where v and v′ are the
original balances of the address accounts, respectively. CMB returns addrB1

to Bob in a ROpen message.

Bob sends the template address addrB1 to Alice. Alice could check the state
of the address for confirmations from the CMB. Then with this channel, Alice
and Bob could exchange values without the help of a bank.

– If Alice wants to pay v1
A value to Bob, she signs a message

m1
A = (addrB1, addrA, vA − v1

A, addrB , vB + v1
A, t1, 1, TS1

A)

where vA − v1
A and vB + v1

A are the new balances of the two addresses addrA

and addrB in the channel, t1 is a new timeout parameter, 1 is the new
sequence number of the channel, TS1

A is a timestamp. Alice signs m1
A to get

a signature δ1A. Alice sends the message signature pair to Bob.
– Bob checks whether the new sequence number in m1

A is equivalent to its
local current sequence number plus one, and whether the timeout parameter
is greater than its local stored timeout value, and checks the validity of
balances, addresses, and the timestamp in m1

A. If these parameters are valid,
Bob updates its local sequence number and new balances of the channel. Bob
could create a commitment message m1

C to update the channel state now.
m1

C is defined as
m1

C = (m1
A, δ1A, TS1

B , δ1B).

A Centralized Digital Currency System with Rich Functions 297

Bob sends back Alice values similarly. When Alice and Bob could create a
commitment message with a higher sequence number, the older messages with
smaller sequence numbers could be deleted.

Alice or Bob has the ability to update a payment channel with a commitment
message.

– If Alice or Bob wants to update a payment channel, it submits a commitment
transaction by the Snd function. Suppose Alice produces an update message
as

mUpdate = (Update,mi
C , TSA)

where mi
C is the i-th commitment message. mUpdate is wrapped in the Snd

function to produce a message c that is sent to the CMB.
– CMB runs Rcv function to verify the received c. If α = 1 and the identifier

is Update, CMB finds the address parameter addrB1. If the address account
is not exist, CMB stops. Otherwise, CMB checks the timestamps and sig-
natures in mi

C . For example, the two timestamps should be close enough.
CMB checks the addresses in mi

C are the same as the addresses in the state
of addrB1. If all the checks are correct, CMB updates the state of the address
by adding new state variables svA ← vA − vi

A and svB ← vB + vi
A, nt ← ti,

and nsn ← i. CMB then executes the payment channel template.

Remark 1. Note that only the timeout event of the payment channel may remove
a payment channel template account. So for payment channel users, before the
timeout of a payment channel, they should check the sequence number in the
template address account and the sequence number in their local storage. If Alice
or Bob does have a higher sequence number commitment message, they should
certainly submit the new commitment message to update the payment channel.
In this way, the impact of an older commitment message could be removed.

In summary, we build a payment channel template. Users could establish a
bidirectional payment channel, change the status of the channel, and close the
channel. Especially, the status changing operations are executed without the
help of a bank.

3.4 Hashed Time Lock Contract

The hashed time lock contract (HTLC) technique is critical to change payment
channels to payment network. It is easy to support HTLC in a centralized system.
The PaymentChannel template keeps unchanged. When Alice or Bob exchange
values in the channel, an extra hash value hv and a hash preimage hp are added.

– If Alice wants to pay v1
A value to Bob conditioned on that Bob provides the

hash preimage of hv, she signs a message

m1
A = (addrB1, addrA, vA − v1

A, addrB , vB + v1
A, t1, hv, 1, TS1

A)

where the only change is to add a parameter hv.

298 H. Tian et al.

– Bob checks m1
A as before. Now if Bob knows the hash preimage hp such that

hv = hash(hp), it could create a commitment message m1
C to update the

channel state, where

m1
C = (m1

A, δ1A, hp, TS1
B , δ1B).

When the new type of commitment message are sent to a CMB, the CMB
adds a verification to check that hv = hash(hp).

– The mUpdate has not changed.
– CMB now checks whether hv = h(hp). If all the checks are correct, CMB

operates as before.

3.5 Payment Network

With the HTLC ability, users with payment channels could establish a payment
network without a bank similarly to the Bitcoin lighting network.

Suppose there are three users Alice, Bob and Charlie. Alice has established
a payment channel with Bob at address addrB1, and Bob has established a
payment channel with Charlie at address addrC1. Now, Alice wants to transfer
one fiat coin to Charlie with the help of Bob.

– Alice contacts Charlie to obtain a hash value hv.
– Alice signs a message

mi
A = (addrB1, addrA, vA − 1, addrB , vB + 1, ti, hv, i, TSi

A)

where i is the new payment channel sequence number of Alice and Bob. Alice
sends this message and its signature to Bob with the identity of Charlie.

– Bob signs a message

mj
B = (addrC1, addrB , vB − 1, addrC , vc + 1, tj , hv, j, TSj

B)

where j is the new payment channel sequence number of Bob and Charlie.
Bob sends this message and its signature to Charlie.

– Charlie signs a commitment message

mj
C = (mj

B , δj
B , hp, TSj

C , δj
C).

Charlie sends back this message and its signature to Bob.
– Bob signs a commitment message

mi
C = (mi

A, δi
A, hp, TSi

B , δi
B).

Bob sends back this message and its signature to Alice.

Now the channel states of the two channels are changed without the help of a
bank. Alice sends one fiat coin to Bob and Bob transfers one fiat coin to Charlie.
It is natural for Bob to set a transferring fee for this service. Then a profitable
payment network without a bank could be established.

A Centralized Digital Currency System with Rich Functions 299

Remark 2. In the above example, after Bob sends values to Charlie, Charlie
should send back the corresponding commitment message. If Charlie does not
send back such a commitment message, Bob could update the payment channel
of Bob and Charlie with a commitment message containing an older sequence
number. So Bob should have the last commitment message before Bob transfers
new coins to Charlie.

4 Security Analysis

4.1 Regulations of Commercial Banks

We have shown that CMB could provide new services for users with an address
account. It seems that a user has to totally trust its CMB. However, in the
framework of AFCoin, this problem is alleviated.

In the AFCoin framework, each CMB should have a valid certificate from
the trustable central bank CB. That is, a CMB registers its public key pkCMB

to the CB through a register interface provided by CB. They may follow a
registration routine in a certificate authority. The CB only communicates with
registered CMBs. Each registered CMB stores a certificate of CB.

CMB should pack the hashes of transactions and responses into a block. The
block head includes a Merkel tree root whose leaves are hash pairs, a Merkle
Patricia tree root about the global state of the bank, and a previous block head
hash value to form a chain. Note that all blocks in a chain are produced by
the same CMB. CMB are expected to submit its blocks, related transactions,
responses, a list of states and templates to the CB. CB may use some blind
test policies to check the validity of blocks. For valid blocks, CB put them in a
distributed database. CB sets a public read right so that anybody could check
the blocks in the database.

So in the AFCoin system, the public ledger is simply a distributed database
with public read rights and private write rights. A block chain is produced by
a CMB. Different CMBs have different block chains. Except block heads, the
only useful information in the public ledger is hash values. Hash values are useful
for a user to confirm their transactions. If a user receives a response from their
CMB, and the user could not find the hashes of the transaction and response
from the public ledger after a reasonable waiting time, the user could complain
the CMB through an interface provided by the CB. The CB should take some
actions to punish a careless CMB if a complain is confirmed.

The AFCoin system also provides an idea to alleviate the burden of CB.
CB may produce a list of CMBs in the public ledger. Periodically, CB may
put a random number in the public ledger too. Then a CMB could use the last
random number in the ledger to select two random audit CMBs. Then the CMB
submits a new block with its related transactions, responses and templates to
the audit CMBs. For correct blocks, an audit CMB should produce a list of
states to be updated by the block with their signature. Then the CMB could
submit blocks with the extra two valid signatures and a list of states to CB. For

300 H. Tian et al.

a block with three signatures, CB could skip the verification steps and update
the states according to the list.

So a CMB is regulated by users, random audit CMBs and the CB. A user
could put their trust on the whole system instead of a single CMB.

4.2 Templates Security

Note that templates in our design are provided by banks. It is impossible for a
user to develop a hostile template and wish it to be invoked by a bank. These
templates should be checked carefully to remove logic errors and other com-
mon errors such as memory overflow before they serve users. Then there left a
transaction order dependence problem and a time stamp dependence problem.

If our templates are deployed as smart contracts on the Ethereum, they suffer
from the two problems. If the “PuzzlePrize” template serves as a smart contract,
the transaction order dependence problem is obvious. Suppose two users send
their valid answers at almost the same time. A miner could select one of them as
the lucky one to get the prize. Or a miner could create their own transaction with
the right answer, and put the transaction before other transactions. The time
stamp dependence problem also exists since we use timestamps in the templates.

However, in the AFCoin framework, the above problems are weakened. Note
that a CMB should give a response to a transaction. The timestamps on the
responses and transactions could be used as evidences in the regulation phase
if CMB executes a transaction in a wrong order. Additionally, a CMB has
a certificate from CB. It is not a random node in the Ethereum. If a CMB
behaves dishonestly, it may be revoked from the financial system, which is a cost
higher than obtaining some benefits from their users. Finally, it is more easy
for a regulated system to establish a trusted time mechanism than the totally
distributed system like Ethereum. Time stamps could be used in the templates
and protocols.

5 Conclusion

We show that a centralized system could provide templates to provide smart
services like other cryptocurrencies. In fact, banks should select some typical
services of the cryptocurrencies, build well-tested templates for their users. For
simplicity, we here do not consider the inter-bank cases of the smart functions.
We notice that the AFCoin framework provides an inter-bank transfer procedure,
which may be used here to enable smart functions serving inter-bank users.

Acknowledgment. This work is supported by the National Key R&D Program of
China (2017YFB0802500), Guangxi Key Laboratory of Cryptography and Information
Security (No. GCIS201711), Natural Science Foundation of China (61672550), Funda-
mental Research Funds for the Central Universities (No. 17lgjc45). Natural Science
Foundation of Guangdong Province of China (2018A0303 130133).

A Centralized Digital Currency System with Rich Functions 301

References

1. Boyd, C., Hale, B., Mjølsnes, S.F., Stebila, D.: From stateless to stateful: generic
authentication and authenticated encryption constructions with application to
TLS. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 55–71. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-29485-8 4

2. Delmolino, K., Arnett, M., Kosba, A., Miller, A., Shi, E.: Step by step towards
creating a safe smart contract: lessons and insights from a cryptocurrency lab.
In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K.
(eds.) FC 2016. LNCS, vol. 9604, pp. 79–94. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53357-4 6

3. Danezis, G., Meiklejohn, S.: Centrally banked cryptocurrencies. In: Network and
Distributed System Security Symposium 2016, NDSS 2016, pp. 1–14. ACM (2016)

4. Han, X., Liu, Y., Xu, H.: A user-friendly centrally banked cryptocurrency. In:
Liu, J.K., Samarati, P. (eds.) ISPEC 2017. LNCS, vol. 10701, pp. 25–42. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-72359-4 2

5. Meaning, J., Dyson, B., Barker, J., Clayton, E.: Broadening narrow money:
monetary policy with a central bank digital currency (2018). https://www.
bankofengland.co.uk/working-paper/2018/. Accessed 12 Aug 2018

6. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant pay-
ments (2016). http://lightning.network/lightning-network-paper.pdf

7. Luu, L., Chu, D.-H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2016, New York, NY, USA, pp. 254–269. ACM
(2016)

8. Bordo, M.D., Levin, A.T.: Central bank digital currency and the future of monetary
policy (2017). https://www.hoover.org/sites/default/files/bordo-levin bullets for
hoover may2017.pdf. Accessed 12 Aug 2018

9. Hearn, M.: Corda: a distributed ledger (2016)
10. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://

bitcoin.org/bitcoin.pdf. Accessed 4 Aug 2017
11. Nikolic, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding the greedy,

prodigal, and suicidal contracts at scale (2018). https://arxiv.org/abs/1802.06038.
Accessed 1 July 2019

12. Bank of Canada: Staff working papers (2018). https://www.bankofcanada.ca/
research/browse/?content type[]=31. Accessed 12 Aug 2018

13. Bank of England: Staff working papers (2018). https://www.bankofengland.co.uk/
news/publications. Accessed 12 Aug 2018

14. Quorum: Welcome to the quorum wiki! (2016). https://github.com/
jpmorganchase/quorum/wiki. Accessed 12 Aug 2018

15. Riksbank, S.: The Riksbank’s e-krona project (2018). https://www.riksbank.se/
globalassets/media/rapporter/e-krona/2017/handlingsplan ekrona 171221 eng.
pdf. Accessed 12 Aug 2018

16. Szabo, N.: Formalizing and securing relationships on public networks. First Monday
2(9), 1 (1997)

17. M. Team. Mythril (2018). https://github.com/ConsenSys/mythril. Accessed 1 July
2019

18. R. N. Team: Raiden network 0.100.3 documentation (2019). https://raiden-
network.readthedocs.io/en/latest

https://doi.org/10.1007/978-3-319-29485-8_4
https://doi.org/10.1007/978-3-662-53357-4_6
https://doi.org/10.1007/978-3-662-53357-4_6
https://doi.org/10.1007/978-3-319-72359-4_2
https://www.bankofengland.co.uk/working-paper/2018/
https://www.bankofengland.co.uk/working-paper/2018/
http://lightning.network/lightning-network-paper.pdf
https://www.hoover.org/sites/default/files/bordo-levin_bullets_for_hoover_may2017.pdf
https://www.hoover.org/sites/default/files/bordo-levin_bullets_for_hoover_may2017.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://arxiv.org/abs/1802.06038
https://www.bankofcanada.ca/research/browse/?content_type[]=31
https://www.bankofcanada.ca/research/browse/?content_type[]=31
https://www.bankofengland.co.uk/news/publications
https://www.bankofengland.co.uk/news/publications
https://github.com/jpmorganchase/quorum/wiki
https://github.com/jpmorganchase/quorum/wiki
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2017/handlingsplan_ekrona_171221_eng.pdf
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2017/handlingsplan_ekrona_171221_eng.pdf
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2017/handlingsplan_ekrona_171221_eng.pdf
https://github.com/ConsenSys/mythril
https://raiden-network.readthedocs.io/en/latest
https://raiden-network.readthedocs.io/en/latest

302 H. Tian et al.

19. Tian, H., Chen, X., Ding, Y., Zhu, X., Zhang, F.: AFCoin: a framework for dig-
ital fiat currency of central banks based on account model. In: Guo, F., Huang,
X., Yung, M. (eds.) Inscrypt 2018. LNCS, vol. 11449, pp. 70–85. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-14234-6 4

20. Tsankov, P.: Security analysis of smart contracts in datalog. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 316–322. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03427-6 24

21. Wood, D.G.: Ethereum: a secure decentralised generalised transaction ledger home-
stead (2014). http://gavwood.com/paper.pdf. Accessed 4 Aug 2017

22. Yao, Q.: A systematic framework to understand central bank digital currency. Sci.
China Inf. Sci. 61(3), 033101 (2018)

23. Mersch, Y.: Digital base money: an assessment from the ECB’s perspective
(2017). http://www.ecb.europa.eu/press/key/date/2017/html/sp170116.en.html.
Accessed 12 Aug 2018

24. Zhang, F., Zhang, F., Wang, Y.: Fair electronic cash systems with multiple banks.
In: Qing, S., Eloff, J.H.P. (eds.) SEC 2000. ITIFIP, vol. 47, pp. 461–470. Springer,
Boston, MA (2000). https://doi.org/10.1007/978-0-387-35515-3 47

https://doi.org/10.1007/978-3-030-14234-6_4
https://doi.org/10.1007/978-3-030-03427-6_24
http://gavwood.com/paper.pdf
http://www.ecb.europa.eu/press/key/date/2017/html/sp170116.en.html
https://doi.org/10.1007/978-0-387-35515-3_47

Chameleon Hash Time-Lock Contract
for Privacy Preserving Payment Channel

Networks

Bin Yu1,2, Shabnam Kasra Kermanshahi1,2(B), Amin Sakzad1,
and Surya Nepal2

1 Monash University, Melbourne, VIC 3800, Australia
{bin.yu,shabnam.kasra,amin.sakzad}@monash.edu
2 CSIRO Data 61, Melbourne, VIC 3008, Australia

Surya.Nepal@data61.csiro.au

Abstract. Payment channel networks (PCNs) have been proposed to
address the low transaction throughput of the permissionless blockchain
protocols. Though the PCNs allow users to have the unlimited num-
ber of transactions in the channel without interacting with blockchain,
it leaks the entire payment paths to the public. To address the pay-
ment path leakage issue, we propose a Chameleon-hash based payment
protocol, called Chameleon Hash Time-Lock Contract (CHTLC). Using
Chameleon-hash function in a multi-layer fashion guarantees that no user
can recover the payment path if at least one intermediate payment node
is honest. For the same payment path, compared with Multi-hop Hash
Time-Lock Contract (MHTLC) protocol of Malavolta et al. [1], CHTLC
is 5 times faster in the payment data initialisation, and the communica-
tion bandwidth is reduced significantly from 17, 000KB to just 7.7 KB.

Keywords: Blockchain · Payment channel networks · Payment privacy

1 Introduction

Bitcoin [2] and Ethereum [3] are two largest cryptocurrencies in the world.
Instead of storing the transactions on a centralised ledger, these transactions
are stored on different participants in an immutable chain structure database.
However, due to the scalability nature, it is difficult to have all the nodes to
achieve consistency in a relatively short time which results in the low transac-
tion throughput. On average, Bitcoin can only handle 7 transactions per second
[4], while Visa can handle 2000 transactions per second [4].

To address the low transaction throughput issue, Bitcoin proposes a new pay-
ment scheme called “lightning network” [5] which supports off-chain transactions
to avoid the transaction confirmation time. In a nutshell, a pair of users open
a payment channel by locking their bitcoins in the smart contract as deposits.
After that, off-chain payment transactions can be placed by agreeing on the new
distribution of the deposits. The payment channel is closed by publishing the
c© Springer Nature Switzerland AG 2019
R. Steinfeld and T. H. Yuen (Eds.): ProvSec 2019, LNCS 11821, pp. 303–318, 2019.
https://doi.org/10.1007/978-3-030-31919-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_18&domain=pdf
https://doi.org/10.1007/978-3-030-31919-9_18

304 B. Yu et al.

allocation of the final deposit on the blockchain by any party. Though the trans-
action throughput is increased by avoiding putting all the transactions on the
blockchain, it limits the payment to be settled between two direct users. It is
a great convenience if the existing payment channels can forward the payment
for the users who has no direct payment channels. To address this issue, pay-
ment channel networks (PCNs) are proposed and instantiated by some popular
protocols [6–9]. However, there exists a serious payment privacy leakage in the
PCNs [10–12]. If some/all the intermediate nodes who are involved in the pay-
ment path put the transaction on the chain as the closing transaction, anyone
can recover the partial/full payment path. Additionally, intermediate nodes can
collude with each other to identify part/all of the nodes that are involved in a
given payment path.

For all the PCNs, all the payment protocols should ensure that the payment
is secured which means none of the participants loses their money if the payment
channel is terminated unexpectedly. Additionally, to make the PCNs more attrac-
tive to privacy-sensitive users, the system should prevent others from knowing who
is paying whom. PriPay [13] leverages the trusted hardware to encrypt the PCNs
data at the server and uses oblivious algorithms to hide the access patterns. Nev-
ertheless, PrivPay suffers from the low scalability and single point failure. Tum-
bleBit [14] employs a trusted intermediary to achieve the privacy of the payment
path, however, all the participants should trust the intermediary. SlientWhisper
[12] employs the long-term keys and temporary keys schemes to ensure that the
payment between each intermediate nodes are signed by different keys, thus, no
one can link the transactions in a payment. However, the participants need to
run a complicated key management process. MHTLC [1] avoids the complicated
key management and can work in a trust-free environment. Our protocol aims
to prevent the blockchain observer from knowing the payment value between the
sender and the receiver. In our framework, unless all the intermediate nodes col-
lude with each other, none can recover the payment path between the sender and
the receiver. Compared with MHTLC, for each intermediate node, we reduce the
communication size from 1650 KB to 0.32 KB; additionally, we avoid the time-
consuming zero-knowledge proof generation process, which consumes 309 ms in
MHTLC. Hence the contributions of our work are as follows:

– We propose a new payment protocol called Chameleon Hash Time-Lock Con-
tract (CHTLC), which hides the payment path from the view of payment
participants and the observer who analyses the blocks that are committed
on the chain. We also prove the security of CHTLC and show that CHTLC
achieves the same level of security as MHTLC.

– Our protocol is efficient in both time and space. Our experimental results
indicate that in comparison with MHTLC protocol [1], our protocol is much
more efficient in payment forwarding. That is, MHTLC spends 309 ms per
user to generate the zero-knowledge proof required for the payment, whereas
such procedure is avoided in our protocol. For each intermediate node,
MHTLC needs to transmit 1, 650 KB data between each node, while it is
reduced to only 0.96 KB data in our CHTLC protocol.

Chameleon Hash Time-Lock Contract 305

(a) Off-chain payment.

(b) HTLC payment channel networks.

Fig. 1. PCNs.

2 Background

We first present the preliminaries required for understanding this paper. For
the sake of readability, the notations which are used frequently are presented in
Table 1.

2.1 Payment Channel

A payment channel [15–17] establishes a private peer-to-peer medium, ruled by a
set of pre-set instructions, e.g., smart contract. The payment channel allows the
involved participants to consent to the state updates unanimously by exchang-
ing authenticated state transitions off-chain [18]. Figure 1a demonstrates how
the payment channel is established between two entities. Before the payment is
placed, they need to agree on a transaction known as the opening transaction
to be put on the blockchain. In the opening transaction, two parties make the
deposit to the “joint-account” of which the signatures from both parties are
required to spend the money. Both parties can have the transactions off the
chain once the channel is opened. Any party can close the channel by putting
the latest transaction known as the closing transaction on the blockchain which

306 B. Yu et al.

Table 1. Notations

Notation Definition

B Blockchain

t Expiration time

f fee

v Channel capacity

c〈u,u′〉 A unique channel identifier between users u and u′

F Ideal functionality

L List of the off-chain payments

C List of the closed channels

|B| = t Time corresponds to the number of entries of the blockchain

h Entry identifier in L
u A user

Hi(x, r) Chameleon hash using public key of ui with input x and randomness r

shows how the money in the “joint account” is distributed back to them. To
avoid any party publish the historical transaction unilaterally as the closing
transaction of his favor to invalid the rest of the transactions1, asymmetric revo-
cable commitment schemes are employed [19]. Payment channels can be further
extended with a special type of smart contract (e.g., Hash Time-Locked Con-
tracts (HTLC) [15,20], Global Preimage [11]) that allows the participants to
commit funds to a redeemable secret with an expiration time [19]. HTLS has
already been integrated with Bitcoin Lightning network [16] and DMCs [15]. We
assume the sender Alice wants to pay Bob, x dollars, with the expectation y, the
hash function Hash and the locked time t, the HTLC looks like the following
[16]:

HTLC(Alice,Bob, x, y, t) If B can provide the condition R∗ such that
Hash(R∗) = y before t seconds, Alice pays Bob, x dollars.
Else if t seconds elapsed, Alice will be fully refund.

2.2 Payment Channel Network

The design of having the established channel firstly before having the transac-
tions disadvantages discourages some parties who may not be willing to make
a deposit to the one they do not have the transactions frequently. To address
this issue, HTLC based PCNs are proposed to avoid setting up the payment

1 For instance, the sender pays the receiver 10 times through the channel, however,
the sender may put the first transaction on the chain to invalid the rest of the
transactions.

Chameleon Hash Time-Lock Contract 307

channels while preserving the high transaction throughput. In PCNs, the sender
involves the nodes in the network to help them relay the payment by offering
transaction fees as the award for forwarding the payment. Figure 1b demon-
strates how Alice as a sender pays $4 to Alan as a receiver through the payment
network (we assume the transaction fees for all the intermediate nodes are set to
$1). Firstly, Alan sends hash value of a random secret R∗ to Alice. In the second
step, Alice creates a payment with Jan asking her to forward the payment to
Tom. In the payment, “Alice is committing 7 of her channel balance to be paid
to Jan if Jan releases the secret R∗ in 10 s, or the money is refunded back to
Alice if 10 s elapsed”. On receiving this payment, Jan knows that Tom can show
her the secret R∗ and helps her to get the money that Alice committed to her.
She deducts $1 from the payment amount as the transaction fee and creates a
similar payment between herself and Tom. Finally, in step 5, Alan receives this
$4 payment commitment, as he is the one who has the secret R∗, thus revealing
R∗ to Jim to redeem the money from Jim’s commitment. Since Jim can only
redeem the payment from Tom by revealing the R∗, Jim sends the R∗ to Tom
and claims the money. In this way, the payment between Alice and Alan is settled
without having a payment channel established directly.

In HTLC, every participant is assigned with a maximum time frame that
they can pull the money from the sender to avoid any part suspends the channel
by refusing forwarding the payment. Though HTLC is compatible with Bitcoin,
it leads to serious privacy leakages. First, for any colluded nodes, by exchanging
the Hash(R∗) they received and sent, they can tell whether they are involved
in the same payment. Additionally, if they are the nodes that linked directly
with the sender and receiver, they can release the identities of the sender and
receiver. Second, if the HTLC commitments are broadcast on the blockchain,
observers who are not involved in the payment can recover the payment path by
identifying the transactions on the blockchain with the same Hash(R∗).

Syntax of PCN. We define the payment channel as a directed graph G :=
(V,E) where V is the set of Bitcoin accounts and E is the set of currently open
payment channels. A PCN consists of following algorithms [1].

– OpenChannel(ui, uj , β, t, f) → {0, 1}: This algorithm admits two Bitcoin
addresses ui, uj ∈ V, an initial channel capacity β, a timeout t, and a fee
value f , if the operation is authorized by ui, and ui owns at least β bitcoins.
Then, it creates a new payment channel

(
c〈ui,uj〉, β, f, t

) ∈ E, where c〈ui,uj〉
is a fresh channel identifier. Then this channel identifier is uploaded to B and
returns 1. Otherwise, it returns 0.

– CloseChannel(c〈ui,uj〉, v) → {0, 1}: This algorithm gets a channel identifier
c〈ui,uj〉 and a balance v as inputs. If the operation is authorized by both
users, CloseChannel removes the corresponding channel from G, includes the
balance v in B, and finally returns 1. Otherwise, it returns 0.

– Pay
((

c〈u1,u2〉, . . . , c〈un−1,un〉
)
, v

) → {1, 0}: This algorithm inputs a list of
channel identifiers

(
c〈u1,u2〉, . . . , c〈un−1,un〉

)
which form a path from the

308 B. Yu et al.

sender u1 to the receiver un and a payment value v. If each payment
channel c〈ui,ui+1〉 in the path has at least a current balance γi ≥ v′

i, with
v′

i = v − ∑i−1
j=1 feeuj), the Pay operation decreases the current balance for

each payment channel c〈ui,ui+1〉 by v′
i and returns 1. Otherwise, none of the

balances at the payment channels is modified and the Pay operation returns 0.

PCN Security and Privacy Goals. The security and privacy goals of our
PCNs system are summarised as follows:

– Balance security: It guarantees that any honest user involved in a payment
does not lose money even when the other involving participants are corrupted.

– Serializability: We require that the executions of PCN are serializable. That
is, for every concurrent execution of Pay operation, there exists an equivalent
sequential execution.

– (Off-path) Value Privacy: This ensures that for a Pay operation involving only
honest users, corrupted users outside the payment path learn no information
about the payment value.

– (On-path) Relationship Anonymity: Given two simultaneous successful Pay
operations of the form

{
Payi

((
c〈si,u1〉, . . . , c〈un,ri〉

)
, v

)}
i∈[0,1]

with at least
one honest intermediate user uj∈[1,n] corrupted intermediate users cannot
determine the pair (si, ri) for a given Payi with probability better than 1/2.

Ideal World Functionality. To satisfy the security and privacy of our con-
struction, we apply the ideal functionality as defined in [1]. This model captures
Balance security, Serializability, Value privacy, and Relationship anonymity (see [1]
for detailed discussions). The ideal world functionality F for PCNs consists of
three main algorithms: OpenChannel, CloseChannel, and Pay. This is a trusted
functionality, which interacts with the users and maintains the blockchain B
using two lists L and C. The adversary A is a probabilistic polynomial-time
machine which is capable of adding users to the system and corrupt them at
any time to gain the internal state of the users and all of incoming/outgoing
communications.

– OpenChannel: This algorithm inputs
(
Open, c〈u,u′〉, v, u′, t, f

)
from a user u.

The ideal functionality F checks c〈u,u′〉 for valid identifiers and not being
duplicated, then sends

(
c〈u,u′〉, v, t, f

)
to u′. If u′ authorizes the operation,

F appends
(
c〈u,u′〉, v, t, f

)
to B and

(
c〈u,u′〉, v, t, h

)
to L, for some random h.

F returns h to u and u′.
– CloseChannel: This algorithm inputs

(
Close, c〈u,u′〉, h

)
from u or u′. In this

framework, F checks B for
(
c〈u,u′〉, v, t, f

)
and L for

(
c〈u,u′〉, v, t, h

)
where h �=

⊥. If (c〈u,u′〉 ∈ C or t > |B| or t′ > |B|) the functionality aborts. Otherwise,
the ideal functionality F adds

(
c〈u,u′〉, u′, v′, t′

)
to B and adds c〈u,u′〉 to C.

Then, F notifies both users involved with a message
(
c〈u,u′〉,⊥, h

)
.

– Pay: Given
(
Pay, v,

(
c〈u1,u2〉, . . . , c〈un−1,un〉

)
, (t0, . . . , tn)

)
from u1, the ideal

functionality F performs the interactive payment protocol as presented in
Algorithm 1.

Chameleon Hash Time-Lock Contract 309

As defined in Algorithm 1, F first ensures that the channel has enough capac-
ity. Then, each user decides to accept or reject a payment. At the end, F updates
the L and notifies the involving users.

Algorithm 1. Payment protocol in Ideal world
Input:

(
Pay, v,

(
c〈u1,u2〉, . . . , c〈un−1,un〉

)
, (t0, . . . , tn)

)

Output: updated L
1: for i = 2, . . . , n do
2: Sample hi at random

3: if
(

c〈ui−1 , u′
i

〉
, vi, t′

i, fi) ∈ B then

4: Send
(

hi, hi+1, c〈ui−1,ui〉, c〈ui,ui+1〉, v − ∑n
j=i fj , ti−1, ti

)
to ui�=n via private channel

5: Send
(

hn+1, c〈un−1,un〉, v, tn
)

to the receiver

6: for
(

c〈ui−1,ui

〉
, v′

i, ·, ·) ∈ L do

7: if v′
i ≥

(
v − ∑n

j=i fj

)
& ti−1 ≥ ti then

8: Add di =
(

c〈ui−1,ui〉,
(

v′
i −

(
v − ∑n

j=i fj

))
, ti, ⊥

)
to L

9: else
10: Delete all di added in this phase to L and abort.

11: else
12: Abort
13: for i = n, . . . , 1 do
14: Query ui with (hi, hi+1) via private channel
15: if ∃ uj return ⊥ s.t. all ui returned � (i > j) then
16: j = 0

17: for i = j + 1, . . . , n do
18: Update di ∈ L to (−, −, −, hi)
19: Send (success, hi, hi+1) to ui

20: for i = 1 . . . , j where j �= 0 do
21: Remove di from L
22: Send (⊥, hi, hi+1)

23: return updated L

2.3 Routing in PCNs

For an effective routing protocol, it should work out the payment path from
the sender to the receiver with a short time delay. It is also important that
the routing protocol can be applied in the dynamic PCNs, in which nodes may
join/leave the network frequently. Since it is impossible for the sender to store
all the payment paths in the network, landmark routing technique [21] is pro-
posed to maintain a set of paths between the sender and the receiver. The key
idea is to provide a path from the sender to the receiver through an intermedi-
ate node called landmark node. However, the landmark nodes may not contain
all the possible paths which may result in a payment path with low success
probability [10,13]. Flare [22] asks all the participants to maintain some of the
path information of the neighbors. This design discourages the client which has
limited computation source (e.g., smart phone payers), additionally, it cannot
guarantee that the provided payment path has the relatively low transaction
fee. SpeedyMurmurs [23] is another routing algorithm for PCNs which provides

310 B. Yu et al.

formal privacy guarantees in fully distributed settings. However, because of the
overhead in privacy guarantees, it is not that effective in a dynamic PCNs.

2.4 Chameleon-Hash Functions

Chameleon-hash functions [24] also known as trapdoor-hash functions are the
hash functions which have a trapdoor allowing one to find arbitrary collisions
in the domain of the functions. However, as long as the trapdoor is not known,
Chameleon-hash functions are collision resistant. A chameleon-hash function CH
consists of the following algorithms:

– CHSetup: This algorithm first chooses two large prime numbers p and q such
that p = kq + 1 for an integer k. Then, selects g of order q in Z

∗
p. Finally, it

outputs ξ ∈ Z
∗
q as the private key sk and y = gξ mod p as the public key

pk.
– CHash: On an input value x, this algorithm chooses a random value r ∈ Z

∗
q

and outputs Hpk(x, r) = gxyr mod p.
– Trapdoor collision: Given x, x′, r ∈ Z

∗
q as input, this algorithm outputs r′

such that Hpk(x, r) = Hpk(x′, r′). This is done by solving for r′ in x + ξr =
x′ + ξr′ mod q.

Definition 1. (Indistinguishability). For all pairs of message x and x′, the
probability distribution of the random value Hpk(x, r) and Hpk(x′, r) are compu-
tationally indistinguishable.

Definition 2. (Collision-Resistance). Without the knowledge of trapdoor key
sk, there exists no efficient algorithm that, on input x, x′, and a random string
r, outputs a string r′ that satisfy Hpk(x, r) = Hpk(x′, r′), with non-negligible
probability.

3 CHTLC Construction Overview

We consider the following assumptions and research scope regards to our
CHTLC.

– The underlying blockchain system which PCNs interacts with is secure and
free from attacks. The security issues related with blockchain itself is beyond
the scope of this paper.

– We focus on design of the CHTLC protocol, the efficiency of the routing
protocols in PCNs is beyond our research scope. We applied the routing
protocol proposed in Flare [22] in our CHTLC.

– All the intermediate nodes in the PCNs are reasonable nodes. That is, they
are motivated by collecting transaction fees to forward the transactions unless
they are corrupted. Reasonable nodes will not disclose their secret key for
encrypted communication between other nodes or any message they received
through private channels to the public.

Chameleon Hash Time-Lock Contract 311

– Some intermediate nodes might collude, while it is impossible for all the
nodes that include in a payment path to collude with each other.

– The communication between each pair of nodes in the network is encrypted.
– The network is bounded by a weak synchronous communication [25]. This

indicates that the participants in the network can achieve the same status
within a suitable time t. This assumption can be achieved by applying a
loosely synchronised clock among the users in PCN [26].

– The security of the individual node is beyond our research scope. The system
cannot prevent the compromised nodes from paying other nodes through
PCNs.

We now present a brief overview of CHTLC through an example. To make
the discussion concise, we take as an example the payment between uA and uD

with no direct payment channel to demonstrate the functionally of our protocol.
To make the illustration simple we avoid the details of the messages (e.g., the
payment value, the time for lock the deposit) that exchanged between two nodes
and assume there exists a payment path of 4 nodes shown in Fig. 2. We define
uA as the S̊dr and uD as the R̊cv, the intermediate nodes are uB , uC and uD.
Firstly, uA receives the random value x from uD and calculates μD = HD(x, rD),
μC = HC(μD, rC), μB = HB(μC , rB), and μA = HA(μB , rA) with the public
key of each node retrieved from B. Second, uA sends (μB , rA), (μC , rB) to uB

and uC respectively through the private channels. Now, the payment can be
carried out as uA makes a commitment to uB saying if uB can provide a value
(pB , rA) such that HA(HB(pB), rA) collides with μA given seconds2, uA pays
uB. User uB firstly checks that the μB on the blockchain satisfies the condition
that μA == HA(μB , rA), otherwise aborts the payment. Since uB does not know
the input μ′

B , rB such that μB = HB(μ′
B , rB), uB makes a commitment with

uC saying that if uC can provide (pC , rB) such that μB == HB(HC(pC), rB),
node uB will pay uC the promised money. Finally, uD with its secret key and
secret value x, generates the collision against Hd(x, rD) with (x′, r′) and sends
p = (x′, r′, rC) to uC . Similarly, uC generates pC that satisfy HB(HC(p′), rB)
collides with μB and forwards (pC , rB) to uB . Finally, all the nodes are paid
with the promised amount of money.

3.1 CHTLC Construction

In this section, we discuss the details of the following operations:
OpenChannel(ui, uj , β, t, f): This operation establishes a direct channel

between ui and uj . f indicates the transaction fee charged by ui if ui helps
other users to forward the transaction to uj . β indicates the total amount of
money that ui can transfer to uj . To open a channel, ui needs to create an
opening transaction in which the input is β from ui’s wallet and the output is
the joint-wallet in which the money need both ui’s and uj ’s permission to be

2 The money is locked within this time slot, if uB fails to satisfy uA, the money is
refunded to uA.

312 B. Yu et al.

Fig. 2. CHTLC diagram.

spent. To avoid the scenario that uj ’s does not cooperate and β is locked in the
contract, the money in the join-wallet will refund to ui if has not been spent
within a given time. After ui puts the opening transaction and path information
cij = (eij , fij , β, t) on B, this payment channel is accepted by PCNs.

CloseChannel(c〈ui,uj〉, v): When node ui wants to terminate the channel with
node uj , it needs to create a closing transaction. The input of the closing trans-
action is the joint wallet and the output of the transaction is the ui’s private
wallet and uj ’s private wallet. Let v as the balance in the joint wallet, vi, vj as
the money that paid to node ui and uj respectively. The close commitment is
invalid if v �= vi + vj . ui and uj sign on the closing transaction and any node
upload the close commitment on the B to finalize the close channel operation.

Pay
((

c〈u1,u2〉, . . . , c〈un−1,un〉
)
, v

)
:The function pay pays v dollars from the u1

to un (as the sender and receiver, respectively). The sender initiates the payment
protocol by running the setup algorithm shown in Algorithm 2.

We assume that there exists a payment path denoted as P = {u1, u2, . . . , un}
where u1 is the payer and un is the receiver. un samples a random value denoted
as x and sends it to u1 in a private channel. Sender u1 retrieves the public key of
all the nodes from B to generate the commitment value μ for each intermediate
nodes.

We denote the cost of sending v dollars from u1 to un as v1 which is v1 =
v +

∑n−1
i=2 fee(ui). If u1 does not have enough money to pay all the transaction

fees, it aborts the process.
The detailed algorithm is shown in Algorithm3 (pay sender). u1 finds out

the length of the payment path, works out the path and locked time for each
intermediate node. It forwards (μi, ri−1) and path c〈ui,ui+1〉 to the intermediate
nodes (line 9 in Sender node section Algorithm 3). Then, it creates a HTLC
commitment with u2 saying that if u2 can provide a pair (p2, r1) within t seconds
such that H1(H2(p2), r1) = μ1, user u1 pays v1 dollars to u2 (line 10 in Sender

Chameleon Hash Time-Lock Contract 313

node section Algorithm 3). Finally, u1 sends message mn to the receiver un to
enable un claim the money from un−1.

For the intermediate node ui, when it receives the payment commitment from
the node ui−1, it verifies that 1. it has enough money to fulfill the payment. 2.
The correctness of the contract lock time ti+1. 3. whether node ui−1 provides the
valid commitment (line 2 in Intermediate node Algorithm 3). Then it makes
the HTLC commitment with the successor node ui+1. Finally, ui waits for ui+1

to send back m∗ = (pi+1, ri) to claim the money from ui (line 7 in Intermediate
node Algorithm 3). With the help of pi+1, node ui generate (pi) (line 9,10 in
Intermediate node Algorithm 3) and sends (pi, ri−1) to node ui−1 and claims
the money (line 11 in Intermediate node Algorithm 3).

For the receiver un, once it receives the commitment μn−1 from the previous
node, it verifies the validity of the commitment and whether it can meet the
condition within the time tn (line 1 in Receiver Algorithm 3). Then it applies
(x, r) with its secret key to generate pn and send (pn, rn−1) to ui−1 to claim the
money.

Since every intermediate node redeems the money by generating the collision
with the parameter it received from the successor nodes, it has to wait for the
successor node to redeem the money firstly. Finally, all the nodes are paid with
the promised money.

Algorithm 2. Setup

1: function Setup(P, x, n)
2: for ui ∈ P do
3: µi ← GenMsg(x, ui, n)

4: Return µi

5: function GenMsg(x, ui, n)
6: for i = n, ..., 1 do
7: Choose a random value ri ∈ Z∗

q

8: if i = n then
9: µi = Hi(x, ri)

10: else
11: µi = Hi (GenMsg(x, µi+1, n)) , ri)

12: i ← i − 1

13: Return µi

3.2 Security Discussion

The proposed construction provides the same level of the security as [1] without
requiring zero knowledge proofs. The security of CHTLC follows the security
model introduced by [1] according to the universal composable (UC) security
paradigm [27]. Let EXECπ,A ,E be the ensemble of the outputs of the environment
E when interacting with the adversary A and parties running the protocol π.
The UC-Security is defined as follows.

314 B. Yu et al.

Algorithm 3. Payment Protocol

Sender node:

1: v1 = v +
∑n−1

i=2 fee(ui)

2: if v1 ≤ cap(c〈u1,u2〉) then

3: cap(c〈u1,u2〉) := cap
(
c〈u1,u2〉

) − v1

4: t0 := tnow + Δ · n
5: for 1 < i < n do
6: vi := v1 − ∑i−1

j=1 fee (uj)

7: ti := ti−1 − Δ
8: μi ← Setup(P, x, n)
9: Send mi = (c〈ui−1,ui〉, c〈ui,ui+1〉,

vi+1,ti, ti+1,μi, ri−1) to ui

10: HTLC(u1, u2, v1,μ1,t1)
11: Send mn = (c〈un−1,un〉, vn,tn, μn,

rn−1,rn) to un

12: else
13: Abort

Receiver node (mn):

1: if Hn(x, rn) = μn and tn > tnow + Δ then
2: Select x′ and compute r′ s.t. Hn(x

′, r′)
collides with μn

3: pn ← (x′, r′)

4: Send (pn, rn−1) to un−1
5: else
6: Abort

Intermediate node (mi):

1: Read μi−1 from B
2: if vi+1 ≤ cap(c〈ui,ui+1〉) and ti+1 = ti − Δ

and Hi−1(μi, ri−1) = μi−1 then

3: cap(c〈ui,ui+1〉) := cap
(

c〈ui,ui+1〉
)

−
vi+1

4: HTLC(ui, ui+1, vi+1,μi,ti+1)
5: else
6: Abort
7: if receive m∗ = (pi+1 = (μ′

i+1, r′
i+1), ri)

from ui+1 then
8: if Hi(Hi+1(pi+1), ri) = μi then
9: Select μ′

i and compute r′
i s.t.

Hi(μ
′
i, r′

i) collides with μi

10: pi ← (μ′
i, r′

i)
11: Send (pi, ri−1) to u−1
12: else
13: Abort
14: else
15: Abort

Definition 3. A protocol π UC-realizes an ideal functionality F if for any
adversary A there exists a simulator S such that for any environment E, the
ensembles EXECπ,A ,E and EXECF,S,E are computationally indistinguishable.

Theorem 1. Let H : {0, 1}∗ → {0, 1}λ be a Chameleon hash function mod-
elled as a random oracle, then CHTLC UC-realizes the ideal functionality F (as
defined in Sect. 2.2).

Proof. We define the simulator S which simulates the real world execution
protocol while interacting with the ideal functionality F as defined in Sect. 2.2.
It also handles users corrupted by the adversary A and impersonates them
until the environment E makes a corruption query on one of the users. Upon
such query, S hands over to A the internal state of the target user and routes
all of the subsequent communications to A , who can reply arbitrarily. E does
not expect any interaction with S regarding the operations exclusively among
corrupted users. Moreover, A does not learn anything about communication
between honest users that happened through secure channels. S simulates the
random oracle H via lazy-sampling. The operations to be simulated for a PCN
are described in the following.

OpenChannel
(
c〈u1,u2〉, β, t, f

)
: Let u1 be the user that initiates the request,

the are two possible cases as follows:

– Corrupted u1: A sends a request
(
c〈u1,u2〉, β, t, f

)
on behalf of u1 to S who

in turn initiates a two-user agreement protocol with A to convey upon a

Chameleon Hash Time-Lock Contract 315

local fresh channel identifier c〈u1,u2〉. If the protocol successfully terminates,
S sends

(
open, c〈u1,u2〉, β, t, f

)
to F , which eventually returns

(
c〈u1,u2〉, h

)
.

– Corrupted u2: S receives a message
(
c〈u1,u2〉, v, t, f

)
from F engages A in a

two-user agreement protocol on behalf of u1 for the opening of the channel. If
the execution is successful, S sends an accepting message to F which returns(
c〈u1,u2〉, h

)
, otherwise it outputs ⊥.

If the opening was successful the simulator initializes an empty list Lc〈u1,u2〉
and appends the value (h, v,⊥,⊥).

CloseChannel
(
c〈u1,u2

〉
, v): similar to Open Channel, there are two cases that

might happen as follows (assuming u1 is an initiator):

– Corrupted u1: A sends a closing request on behalf of u1 to S who fetches
Lc〈u1,u2〉 for some value (h, v, x, y). If such a value does not exist then it
aborts. Otherwise it sends

(
close, c〈u1,u2〉, h

)
to F .

– Corrupted u2: S receives
(
c〈u1,u2〉, h,⊥)

from F and simply notifies A of the
closing of the channel c〈u1,u2〉.

Pay
((

c〈u1,u2〉, . . . , c〈un−1,un〉
)
, v

)
: the users acting differently according to

their role in the protocol, thus we consider the cases separately.
Sender : In order to initiate a payment, A must provide each honest user

ui with mi =
(
c〈ui−1,ui〉, c〈ui,ui+1〉, vi+1, ti, ti+1, μi, ri−1

)
and notifies the receiver

with
(
c〈un,un+1〉, vn, tn, μn, rn−1, rn

)
.

If ti ≥ ti+1 then S sends
(
Pay, vi, (c〈ui−1,ui〉, c〈ui,ui+1〉), ti−1, ti

)
to F and

sends
(
Pay, v, c〈un−1,un〉, tn

)
to the receiver, otherwise it aborts. For each inter-

mediate user ui the simulator confirms the payment only when receives from the
user ui+1 a pair (pi+1, ri) such that Hi(Hi+1(pi+1), ri) collides with μi. If the
receiver is honest then S confirms the payment if the amount v corresponds to
what agreed with the sender and if Hn(pn, rn−1) = μn. If the payment is con-
firmed the entry (hi, v

∗ − vi, μi) is added to Lc〈ui−1,ui〉 , where (h∗
i , v

∗, ·, ·) is the
entry of Lc〈ui−1,ui〉 with the lowest v∗, and the same happens for the receiver.

Receiver : S receives some
(
h, c〈un−1,un〉, v, tn

)
from F , then it samples

two random x, r ∈ {0, 1}λ and returns pn = (x, r) to A the tuple
(pn,Hn(pn, rn−1), v). If A returns p∗ = pn, then S returns � to F , otherwise it
sends ⊥.

Intermediate user : S is notified that a corrupted user is involved in a payment
with a message of the form

(
hi, hi+1, c〈ui−1,ui〉, c〈ui,ui+1〉, v, ti−1, ti

)
by F .

S samples three random values r, x′, r′ ∈ {0, 1}λ, sets p′ = (x′, r′)
then sends the tuple

(
c〈ui−1,ui〉, c〈ui,ui−1〉, μi = Hi(Hi+1(p′), r), μi+1 = Hi+1(p′),

p′, v, ti−1, ti) to A . If A outputs r∗ such that Hi(Hi+1(p′), r∗) collides with
μi, then S aborts. At some point of the execution the simulator is queried
again on (hi, hi+1), then it sends r to A on behalf of ui+1. If A outputs
μ′

i = Hi(Hi+1(p′), r) which collides with μi, the simulator sends � to F and
appends (hi, v

∗ − v, μ′
i,Hi+1(p′)) to Lc〈ui−1,ui〉 , where (h∗

i , v
∗, ·, ·) is the entry of

Lc〈ui−1,ui〉 with the lowest v∗, otherwise it sends ⊥.

316 B. Yu et al.

The OpenChannel and CloseChannel algorithms are exactly the same as [1]
and the indistinguishability argument is trivial. Thus, we exclude further discus-
sion about them. For the payment, the sender provides the values to the user
via private channel which mimics exactly the real-world protocol. Each user ui

confirms the transaction to F only once it receives the values pi+1 and ri such
that Hi(Hi+1(pi+1), ri) collides with μi. The payment chain does not stop at a
honest node (excluding the sender), thus the simulation does not aborts. The
simulation aborts if adversary aim to interrupt the payment by outputting r∗

such that Hi(Hi+1(pi+1), r∗) collides with μi without getting r from the sim-
ulator. According to Indistinguishability and Collision-Resistance properties of
Chameleon hash function as defined in Sect. 2.4, the probability that A be able
to output p∗ in such a way is negligible, hence Pr[abort] ≤ negl(λ).

4 Experimental Results

To evaluate the CHTLC protocol, we implement it in Golang language. We
deploy our experiment on the server equipped with i7-4770k CPU and 32 GB
memory. We set the chameleon-hash key size as 2048 bits and the output of the
hash function is 2048 bits. According to our observation, 90% of the payment
can be finished within 10 nodes, thus we set our evaluation in the payment path
consists of 10 nodes. We compare the size of data transmitted and the protocol
time consumption in CHTLC with MHTLC proposed in [1].

Table 2. Performance comparison

Scheme Performance

Key pair
generation

Generate
message

Verify
message

Redeem
payment

Multi-Hop HTLC NA 309ms 130ms Not provided

CHTLC 8 ms 55 ms 20ms 8ms

Data Size. In CHTLC, the sender needs to forward the secret value to each
of the intermediate nodes which accounts for 2048 bits (256 Bytes). For the
path that consists of 10 nodes, the total number of data sent by the sender is
roughly 2.56 KB. However, according to the experiment demonstrated in [1], the
sender needs to forward about 17 MB data. In MHTLC protocol, the communi-
cation between the intermediate nodes is required to ensure the correctness of
the received data from the sender while it is not necessary for our scenario. In
conclusion, the data needed to be transmitted in much smaller than the MHTLC
approach.

Chameleon Hash Time-Lock Contract 317

Time Consumption. We evaluate the time consumption in CHTLC and make
the comparison with MHTLC protocol in Table 2. For CHTLC, we need each
node to generate the chameleon hash key pairs which takes about 8 ms. In
MHTLC, since it is based on a general hash function, this step is not needed(As
it is shown as not available in Table 2). It takes 55 ms (for the first intermediate
node, it take 10 ms while the last node it takes 100 ms) on average to generate the
message which sent to each intermediate node. However, in MHTLC, it takes
309 ms. To verify the correctness of the message(proof in MHTLC), CHTLC
needs 20 ms while MHTLC consumes 130 ms. To redeem the commitment from
the previous node, our protocol needs 8 ms to generate the collision of the com-
mitted hash value, while in [1], this evaluation is not addressed by the authors
(As it is shown as not discussed in Table 2).

In conclusion, the data transferred in our protocol is much small than that
transferred in MHTLC. Our protocol also has a great advantage in the time con-
sumption of generating/verifying the message (proof). It takes 8 ms to redeem
the money from the commitment which is totally accepted by most of the sce-
narios.

5 Conclusion

In this paper, we propose a new payment protocol called CHTLC to address
the payment path privacy issue in PCNs. With the help of chameleon hash
function, no one can recover the payment path by analysing the payment com-
mitment made by the payment participants. It is demonstrated by the evaluation
that compared with MHTLC, our protocol consumes less bandwidth while much
faster in transaction processing.

References

1. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency
and privacy with payment-channel networks. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pp. 455–471.
ACM (2017)

2. Nakamoto, S., et al.: Bitcoin: a peer-to-peer electronic cash system (2008)
3. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.

Ethereum Proj. Yellow Pap. 151, 1–32 (2014)
4. Bitcoin transaction throughput. https://en.wikipedia.org/wiki/Bitcoin scalability

problem. Accessed on 14 Feb
5. Bitcoin lightning network. https://en.wikipedia.org/wiki/Lightning network.

Accessed on 14 Feb 2018
6. Ghosh, A., Mahdian, M., Reeves, D.M., Pennock, D.M., Fugger, R.: Mechanism

design on trust networks. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS,
vol. 4858, pp. 257–268. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-77105-0 25

7. Stellar protocol. www.stellar.org. Accessed on 14 Feb 2018
8. Ripple network. https://ripple.com/. Accessed on 14 Feb 2018

https://en.wikipedia.org/wiki/Bitcoin_scalability_problem
https://en.wikipedia.org/wiki/Bitcoin_scalability_problem
https://en.wikipedia.org/wiki/Lightning_network
https://doi.org/10.1007/978-3-540-77105-0_25
https://doi.org/10.1007/978-3-540-77105-0_25
http://www.stellar.org/
https://ripple.com/

318 B. Yu et al.

9. Fugger, R.: Money as IOUs in social trust networks & a proposal for a decentralized
currency network protocol. Hypertext document, vol. 106 (2004). http://ripple.
sourceforge.net

10. Viswanath, B., Mondal, M., Gummadi, K.P., Mislove, A., Post, A.: Canal: scaling
social network-based sybil tolerance schemes. In: Proceedings of the 7th ACM
European Conference on Computer Systems, pp. 309–322. ACM (2012)

11. Miller, A., Bentov, I., Kumaresan, R., McCorry, P.: Sprites: payment channels that
go faster than lightning. arXiv preprint arXiv:1702.05812 (2017)

12. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M.: SilentWhispers: enforcing
security and privacy in credit networks. In: 24th Annual Network and Distributed
System Security Symposium, NDSS (2017)

13. Moreno-Sanchez, P., Kate, A., Maffei, M., Pecina, K.: Privacy preserving payments
in credit networks. In: Network and Distributed Security Symposium (2015)

14. Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: TumbleBit:
an untrusted bitcoin-compatible anonymous payment hub. In: Network and Dis-
tributed System Security Symposium (2017)

15. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin
duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015.
LNCS, vol. 9212, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21741-3 1

16. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant pay-
ments (2016)

17. McCorry, P., Möser, M., Shahandasti, S.F., Hao, F.: Towards bitcoin payment
networks. In: Liu, J.K.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9722, pp.
57–76. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40253-6 4

18. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: SoK: off the
chain transactions. Cryptology ePrint Archive, Report 2019/360 (2019). https://
eprint.iacr.org/2019/360

19. Antonopoulos, A.M.: Mastering Bitcoin: Unlocking Digital Cryptocurrencies.
O’Reilly Media Inc., Sebastopol (2014)

20. Hashed timelock contracts. https://en.bitcoin.it/wiki/Hashed Timelock
Contracts. Accessed 14 Feb 2018

21. Tsuchiya, P.F.: The landmark hierarchy: a new hierarchy for routing in very large
networks. In: ACM SIGCOMM Computer Communication Review, vol. 18, no. 4,
pp. 35–42. ACM (1988)

22. Prihodko, P., Zhigulin, S., Sahno, M., Ostrovskiy, A., Osuntokun, O.: Flare: an
approach to routing in lightning network. White Paper (2016)

23. Roos, S., Moreno-Sanchez, P., Kate, A., Goldberg, I.: Settling payments fast and
private: efficient decentralized routing for path-based transactions. arXiv preprint
arXiv:1709.05748 (2017)

24. Krawczyk, H., Rabin, T.: Chameleon hashing and signatures. IACR Cryptol. ePrint
Arch. 1998, 10 (1998)

25. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and
Advanced Topics, vol. 19. Wiley, Hoboken (2004)

26. Cristian, F., Aghili, H., Strong, R.: Approximate clock synchronization despite
omission and performance failures and processor joins. In: Proceedings of the 16th
International Symposium on Fault-Tolerant Computing, pp. 218–223 (1986)

27. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings 2001 IEEE International Conference on Cluster Com-
puting, pp. 136–145. IEEE (2001)

http://ripple.sourceforge.net
http://ripple.sourceforge.net
http://arxiv.org/abs/1702.05812
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-40253-6_4
https://eprint.iacr.org/2019/360
https://eprint.iacr.org/2019/360
https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts
https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts
http://arxiv.org/abs/1709.05748

Short Papers

On-demand Privacy Preservation
for Cost-Efficient Edge Intelligence

Model Training

Zhi Zhou(B) and Xu Chen

School of Data and Computer Science, Sun Yat-sen University,
Guangzhou 51006, China

{zhouzhi9,chenxu35}@mail.sysu.edu.cn

Abstract. With the advancement of Internet-of-Things (IoT), enor-
mous IoT data are generated at the network edge, incurring an urgent
need to push the frontiers of artificial intelligence (AI) to network edge
so as to fully unleash the potential of the IoT big data. To match this
trend, edge intelligence—an emerging paradigm that hosts AI applica-
tions at the network edge—is being recognized as a promising solution.
While pilot efforts on edge intelligence have mostly focused on facilitat-
ing efficient model inference at the network edge, the training of edge
intelligence model has been greatly overlooked. To bridge this gap, in
this paper, we investigate how to coordinate the edge and the cloud to
train edge intelligence model, with the goal of simultaneously optimizing
the resource cost and preserving data privacy in an on-demand man-
ner. Leveraging Lyapunov optimization theory, we design and analyze a
cost-efficient optimization framework to make online decisions on train-
ing data scheduling to balance the tradeoff between cost efficiency and
privacy preservation. With rigorous theoretical analysis, we verify the
efficacy of the presented framework.

1 Introduction

As a key driver that boosts development of artificial intelligence (AI), big data is
undergoing a radical shift of data source from the mega-scale cloud datacenters
to the increasingly widespread mobile devices and IoT devices. Pushing the AI
frontier to the IoT ecosystem that resides at the last mile of the Internet, how-
ever, is highly non-trivial, due to the concerns on performance, cost and privacy.
To address these challenges, edge computing [1] has recently been proposed.
With edge computing, resources and services are pushed from the centralized
clouds to the network edges that are in closer proximity to IoT devices and data
sources, promising benefits on performance, cost-efficiency and privacy protec-
tion [1]. Indeed, the marriage of edge computing and AI has given rise to a new
research area, namely ‘edge intelligence’ or ‘edge AI’ [2].

Research and practice on edge intelligence is still in its infancy. In partic-
ular, a majority of existing efforts focus on optimizing the inference phase of
c© Springer Nature Switzerland AG 2019
R. Steinfeld and T. H. Yuen (Eds.): ProvSec 2019, LNCS 11821, pp. 321–329, 2019.
https://doi.org/10.1007/978-3-030-31919-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_19&domain=pdf
http://orcid.org/0000-0002-0987-9344
http://orcid.org/0000-0001-9943-6020
https://doi.org/10.1007/978-3-030-31919-9_19

322 Z. Zhou and X. Chen

edge intelligence, i.e., reducing the latency and/or energy consumption of model
(e.g., deep learning model) inference on resource- and energy-constrained IoT
devices [3–6]. Instead, the training of edge intelligence model has been greatly
overlooked. This is due to the fact that compared to model inference, model
training is far more data- and resource-intensive, and delay-tolerant. Therefore,
the current de-facto standard for edge intelligence is to train the model at the
cloud and then distribute the trained model to the IoT devices for local inference.
Undoubtedly however, with the burgeoning of data volumes, training IoT data
fully at the vulnerable cloud is increasingly insecure and susceptible to attacks
due to the high concentration of information of a big pile of users [1,7,8].

To address the above challenge, in this paper we advocate a privacy-
preserving and cost-efficient optimization framework for edge intelligence model
training. The basic intuition is to coordinate the edge and the cloud to train
the model in a cloud-edge synergic manner, and thus to simultaneously embrace
the cost-efficiency advantage of the cloud and the privacy-preserving benefit of
the edge. To strike a new balance between the above dual goals, we propose to
minimize the resource cost over the long run, under the constraint of a long-
term privacy preservation requirement (in terms of percentage of the training
data outsourced to the cloud) that can be pre-defined by the system operator in
an on-demand manner. With cloud-edge synergy, the delay-tolerance of model
training further enables us to exploit the resource price which typically show
both spatial (edge v.s. cloud) and temporal diversities. That is, by temporally
buffering the training data in a data queue, and deferring data training to the
near future when the resource price of the edge or the cloud falls down, the
resource cost for model training can be greatly reduced.

With the presence of time-varying and bursty data arrivals that are typically
unpredictable, optimizing the performance-cost tradeoff in the long run is by no
means trivial, since the on-demand privacy preservation constraint and the queu-
ing dynamics of the training data couple the control decisions across time slots.
In response, we leverage Lyapunov optimization theory to rigorously design a
cost-efficient and online optimization framework. Our framework is able to effec-
tively incorporate the long-term privacy preservation requirement into a series
of on-shot optimization problems, and thus to make simple and effective decision
on dynamic training data scheduling, without requiring any future information
as a priori. The upshot of our new online framework is that it is rigorously
proved to facilitate a delicate [O(1/V), O(V)] cost-privacy tradeoff that can be
flexibly adjusted by a tunable control parameter V , which represents how much
we emphasize the cost minimization compared to privacy preservation.

2 System Model and Problem Formulation

2.1 System Overview

As illustrated in Fig. 1, we consider an edge computing service provider run-
ning an AI-based intelligent services as exemplified by video surveillance, smart

On-demand Privacy Preservation 323

driving and industrial internet-of-things (IIoT). This intelligent service continu-
ously senses large volumes of edge big data (e.g., video, picture and audio) from
the widespread and intelligent end-devices, ranging from smartphone and video
cameras to internet-of-vehicles (IoV) [1].

Fig. 1. A cloud-edge synergic system for edge intelligence model training, in which the
training data are buffered in the data queue before scheduled to the edge or the cloud
for processing.

In line with the recent modeling work on edge computing [9], we adopt a dis-
crete time-slotted model to fully characterize and leverage the system dynamics
(e.g., time-varying data arrival and resource cost), each time slot t = (0, 1, 2, ...)
matches the time scale at which the control decisions are updated. At each time
slot t, the arrival of the training data of the intelligent service is denoted as a
random variable A(t). Without loss of generality, a deterministic peak level of
training data arrival Amax

i is assumed, such that {A(t) ≤ Amax,∀t}. However,
since the data arrivals in the edge computing environment are usually time-
varying and unpredictable (e.g., due to the mobility of end-devices), our model
does not assume any priori knowledge of the statistics of A(t),∀t.

2.2 Data Training Model

Unlike EI inference task that is mission critical and requires low delay, EI model
training task is typically delay-tolerant, i.e., the data can be deferred to be
trained at some time in the future. This flexibility provides great optimization
opportunities for cost reduction of the model training, by temporally shifting
workload to exploit the time-varying resource prices of the edge node and the
cloud. To this end, the arrived training data with an amount of A(t) is first
buffered in a data queue at the edge node, and then scheduled to processed
when the resource price falls down. Since the training data of the EI model
can be processed in both the edge node and the remote cloud, we use x(t) to
denote the amount of buffered training data processed at the edge, and y(t) to
denote the amount of buffered training data transmitted to and processed in the
cloud, at time slot t. Since the edge node is resource-limited, then x(t) satisfies
the resource capacity constraint {x(t) ≤ C(t),∀t}, where C(t) is the amount
of available resource of the edge node at time slot t. Considering the limited
bandwidth of the wide-area-network (WAN) link between the edge node and the

324 Z. Zhou and X. Chen

cloud, y(t) follows the bandwidth constraint {y(t) ≤ B(t),∀t}, where B(t) is the
available WAN bandwidth at time slot t.

For the queue that temporally buffers the training data, its departure rate at
each time slot t is given by x(t)+y(t). Besides, recall that the arrival rate of newly
generated training data to the queue at each time slot t is A(t). Then if we further
use backlog Q(t) to denote the total amount of buffered training data in the
queue, it evolves according to the dynamics: Q(t+1) = Q(t)−x(t)−y(t)+A(t),
here the constraint x(t)+y(t) ≤ Q(t) ensures that the amount data to be trained
at each time slot is no more than the amount of data buffered in the queue.

2.3 Cost Model

For the edge intelligence model training system, its primary objectives is to
minimize the cost of the cloud and edge resource usage when training the edge
intelligence model. For modern computing systems ranging from edge servers
to cloud datacenters, it is widely recognized that the energy cost consists the
majority of the operational expenditure (OpEX). While in real-time electricity
markets where the edge servers and cloud datacenters participate in, the electric-
ity prices are determined dynamically and thus fluctuate over time. Therefore,
achieving this goal of cost saving requires us to carefully exploit both spatial (i.e.,
cloud v.s. edge) and temporal heterogeneities of the resource usage price. Here
we use PE(t) and PC(t) to denote the resource price of training one unit data
at the edge and at the cloud, respectively. Clearly, both PE(t) and PC(t) can be
time-varying in practice. Then, at each time slot t, the resource cost of the edge
intelligence training system can be denoted as Cost(t) = PE(t)x(t) + PC(t)y(t).
Due to the delay-tolerance and deferability of the training data, optimizing the
training cost at each individual time slot t does not necessarily minimize the
training cost over the long-term. Intuitively, to optimize the long-term train-
ing cost, the time-average limT→∞ 1

T

∑T−1
t=0 E{Cost(t)} over the long-term is

expected to be minimized.

2.4 On-Demand Privacy Preservation Model for Training Data

Fully preserving privacy for edge intelligence training requires that no training
data would be offloaded to the cloud. However, this is neither cost-efficient nor
scalable since the computing capability of the edge node is expensive and limited.
For better cost-efficiency and scalability, we propose to preserve the privacy for
edge intelligence model training in an on-demand manner. Specifically, we first
quantify the degree of privacy preservation with the ratio of the total amount
of data processed in the cloud to the total amount of data arrival over the long-
term, i.e., limT→∞

∑T−1
t=0 y(t)

∑T−1
t=0 A(t)

. Clearly, a smaller ratio indicates that less data is
offloaded to the cloud, and the privacy is better preserved. In this paper, we
realize training data privacy preservation via enforcing the above ratio within a
tolerable level as follows: limT→∞

∑T−1
t=0 y(t)

∑T−1
t=0 A(t)

≤ K. Here K is a tunable parameter
representing the maximum tolerable degree of training data privacy pre-defined

On-demand Privacy Preservation 325

by the system. By tuning K, the system is able to flexibly adjust the degree of
training data privacy in an on-demand manner.

2.5 Queue Stability Model

Recall that when computing the resource cost Cost(t), we account for the pro-
cessed training data rather than the arrived and buffered training data. In this
case, the system would aggressively defer the training and buffer them in the
data queue to jointly reduce the resource cost and preserve the data privacy.
To prevent from this dilemma, we introduce the queue stability model to ensure
that all the arrived training data would be processed within finite deadline. For-
mally, queue stability refers to the situation that as the data arrives persistently
over time, the time-averaged backlog of the edge queues and cloud queues are
deterministically bounded as follows: Q = limT→∞ 1

T

∑T−1
t=0 E{Q(t)} < ∞. Note

that the queue stability constraint implies finite time-averaged queue backlog,
and hence, finite average delay for the arrived training data according to the
celebrated Little’s law [10].

2.6 Problem Formulation

Having formulated the resource cost model, the on-demand privacy preservation
model and the queue stability model, we are now ready to minimize the long-term
time-averaged cost under the privacy preserving and queue stability constraint.

min lim
T→∞

1
T

T−1∑

t=0

E{Cost(t)} (1)

s.t. lim
T→∞

∑T−1
t=0 y(t)

∑T−1
t=0 A(t)

≤ K (2)

Q = lim
T→∞

1
T

T−1∑

t=0

E{Q(t)} < ∞ (3)

Q(t + 1) = Q(t) − x(t) − y(t) + A(t), (4)
x(t) + y(t) ≤ Q(t), (5)
0 ≤ x(t) ≤ C(t), 0 ≤ y(t) ≤ B(t). (6)

For this problem, since the privacy preservation constraint captured in Eq. (2)
and the queue stability constraint captured in Eq. (3) temporally couple the
control decisions across time slots, therefore decisions at current slot can have a
non-negligible impact on the decisions in the future. Therefore, it is unpractical
to solve the problem in an offline manner. Instead, an online approach that does
require any future information as a priori is highly desirable.

326 Z. Zhou and X. Chen

3 An Online Optimization Framework

3.1 Problem Transformation with Lyapunov Optimization

We first transform the long-term privacy preservation constraint in Eq. (2) into
a well-studied queue stability problem. To this end, we introduce a virtual
queue H(t) for the system. Initially, we let the virtual queue to be empty, i.e.
H(0) = 0. Then, we update the virtual queue at each time slot t + 1 according
to H(t + 1) = max{H(t) + y(t) − KA(t), 0}. Intuitively, for this virtual queue
H(t), y(t) can be viewed as its arrival rate, while the term KA(t) can be viewed
its service rate. Then, maintaining the privacy preservation constraint can be
interpreted as enforcing that the long-term total arrivals

∑T−1
t=0 y(t) is no larger

than the long-term service rate
∑T−1

t=0 KA(t) of the virtual queue. Interestingly,
the length of the virtual queue H(t) actually acts as the historical measure-
ment of the accumulated difference between the total arrivals

∑τ−1
t=0 y(t) and

the total service rate
∑τ−1

t=0 KA(t) during the interval [0, t − 1]. Motivated by
these insights, a straightforward approach to satisfying the on-demand privacy
preservation constraint is to enforce the stability of the virtual queue H(t), as
suggested by the following Theorem1.

Theorem 1. If the virtual queue H(t) is stable over time, i.e., limT→∞
E{H(T)}

T = 0, the on-demand privacy preservation constraint in Eq. (2) is satis-
fied.

Theorem 1 indicates that by introducing the virtual queue H(t), we can trans-
form the original privacy preserving constraint into a well-studied queue stabil-
ity control problem. Towards ensuring finite upper bounds for Q(t) and H(t) to
maintaining the stability of both real and virtual queues, we resort to Lyapunov
optimization which is a powerful tool to control and stabilize queuing systems in
control theory. For our problem in specific, we let we let Θ(t) = [Q(t),H(t)] be
a concatenated vector of all the real and virtual queues. We also define a widely
adopted quadratic Lyapunov function [10] as L(Θ(t)) = 1

2 [Q2(t) + H2(t)]. Intu-
itively, by persistently pushing the Lyapunov function towards a lower congestion
state, we can keep the real and virtual queues strongly stable, i.e., with finite
upper bounds. To this end, we further introduce Δ(Θ(t)) as the one-step con-
ditional Lyapunov drift Δ(Θ(t)) = E{L(Θ(t + 1)) − L(Θ(t))|Θ(t)}. The drift
Δ(Θ(t)) measures the change of the Lyapunov function between two consec-
utive slots. Clearly, by minimizing the drift per slot to restrain the Lyapunov
function, we can prevent the queue backlogs of the real and virtual queues from
unbounded growth, and thus maintain the system stability.

In the sense of Lyapunov control, our underlying two-fold objectives of min-
imizing the time-averaged cost while still maintaining the stability of the queue
system, is now transformed to minimize the drift-plus-cost at each time slot t:
Δ(Θ(t)) + V E{Cost(t)|Θ(t)}. Here the control parameter V (≥ 0) represents
a design knob of the stability-cost tradeoff, i.e., how much we shall emphasize
minimizing the unified cost compared to relieving the congestion of the queues.

On-demand Privacy Preservation 327

3.2 An Online Optimization Algorithm

So far, we have transformed the original long-term problem to a set of one-shot
drift-plus-cost minimization subproblems over each time slot t ∈ {0, 1, 2, · · · , T}.
However, directly minimizing the drift-plus-cost Δ(Θ(t)) + V E{Cost(t)|Θ(t)}
requires to handle the implicit max[∗] terms. In response, we seek to design an
online algorithm to minimize the supremum derived by the following Theorem.

Theorem 2. For any queue backlogs Θ(t) at each time slot t, the drift-plus-
cost Δ(Θ(t))+V E{Cost(t)|Θ(t)} of the edge intelligence model training system
under any data training decision satisfies the following inequality, where Φ �
1
2 [(Cmax + Bmax)2 + B2

max + (1 + K2)A2
max] is a finite constant.

Δ(Θ(t)) + V E{Cost(t)|Θ(t)} ≤ Φ + V E{Cost(t)|Θ(t)}
−E{Q(t)[x(t) + y(t) − A(t)]|Θ(t)} − E{H(t)[KA(t) − y(t)]|Θ(t)} (7)

Theorem 2 derives a supremum of drift-plus-cost Δ(Θ(t)) + V E{Cost(t)|Θ(t)}
at each time slot t, which only involves the current information and resource
provisioning decision. By omitting the constant terms Q(t)A(t) and KH(t)A(t)
in the right-hand-side of Eq. (7), we obtain the following real-time and determin-
istic optimization problem which minimizes the supremum of the drift-plus-cost
expression at each time slot t.

V × Cost(t) − Q(t)[x(t) + y(t)] + H(t)y(t) (8)

For this weighted linear programming, we propose a price-based greedy scheme
for resource allocation to the training data, as elaborated in the following cases.

– Case 1: V PE(t)−Q(t) ≥ 0 and V PC(t)−Q(t)+H(t) ≥ 0, then the objective
in Eq. (8) is increasing on both x(t) and y(t). Therefore leading to the “full
data deferring” optimal solution that aggressively defers the buffer training
without provisioning any resource to it, i.e., x∗(t) = y∗(t) = 0.

– Case 2: V PE(t) − Q(t) ≥ 0 while V PC(t) − Q(t) + H(t) ≤ 0, then the
objective in Eq. (8) is increasing on x(t) but decreasing on y(t). Therefore
leading to the “training in the cloud” optimal solution that trains as more
data in the cloud as possible, i.e., x∗(t) = 0, y∗(t) = min{B(t), Q(t)}.

– Case 3: V PE(t) − Q(t) ≤ 0 while V PC(t) − Q(t) + H(t) ≥ 0, then the
objective in Eq. (8) is decreasing on x(t) but increasing on y(t). Therefore
leading to the “training at the edge” optimal solution that trains as more
data at the edge as possible, i.e., x∗(t) = min{C(t), Q(t)}, y∗(t) = 0.

– Case 4: V PE(t) − Q(t) ≤ V PC(t) − Q(t) + H(t) ≤ 0, then the objective
in Eq. (8) is increasing on x(t) and y(t). Since the net price of the edge
resource is more cheaper, it leads to the “edge prioritized hybrid training”
optimal solution that trains as more data at the edge as possible, and further
trains data in the cloud if the capacity of the edge node is not enough, i.e.,
x∗(t) = min{C(t), Q(t)}, y∗(t) = min{Q(t) − x∗(t), B(t)}.

328 Z. Zhou and X. Chen

– Case 5: V PC(t) − Q(t) + H(t) ≤ V PE(t) − Q(t) ≤ 0, then the objective
in Eq. (8) is increasing on x(t) and y(t). Since the net price of the cloud
resource is more cheaper, it leads to the “cloud prioritized hybrid training”
optimal solution that trains as more data in the cloud as possible, and further
trains data at the edge if the bandwidth of the WAN is not enough, i.e.,
x∗(t) = min{C(t), Q(t) − y∗(t)}, y∗(t) = min{Q(t), B(t)}.

Theorem 3. For any control parameter V > 0, the presented online optimiza-
tion algorithm guarantees that all the real and virtual queues are strongly stable
over time slots:

Q(t) ≤ V Pmax + Amax, (9)
H(t) ≤ 2V Pmax + Amax, (10)

where Pmax = maxt max{PE(t), PC(t)}, Amax = maxt A(t). Furthermore, the
gap between the achieved time-averaged unified cost and the offline optimal solu-
tion Costopt is within Φ/V , where Φ is a constant defined in Theorem1.

lim
T→∞

1
T

T−1∑

t=0

E{Cost(t)} ≤ Costopt +
Φ

V
(11)

4 Conclusion

In response to the burgeoning IoT data originated at the network edge, this paper
designs and analyzes a cost-efficient and privacy-preserving online control frame-
work of edge intelligence model training. To address the challenge of time-varying
and unpredictable data arrivals, our framework leverages Lyapunov optimization
theory to make online control decisions on scheduling of the training data. The
upshot of our new online framework is that it can approach a long-term resource
cost that is arbitrarily close to the offline optimum, yet preserving the training
data privacy which can be pre-defined in an on-demand manner, without requir-
ing any future information as a priori. Rigorous theoretical analysis verifies the
efficacy of our proposed framework.

References

1. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges.
IEEE IoT J. 3(5), 637–646 (2016)

2. Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., Zhang, J.: Edge intelligence: paving
the last mile of artificial intelligence with edge computing. Proc. IEEE (2019)

3. Li, E., Zhou, Z., Chen, X.: Edge intelligence: on-demand deep learning model co-
inference with device-edge synergy. In: Proceedings of ACM MECOMM (2018)

4. Kang, Y., et al.: Neurosurgeon: collaborative intelligence between the cloud and
mobile edge. In: Proceedings of ACM ASPLOS (2017)

5. Liu, S., Lin, Y., Zhou, Z., Nan, K., Liu, H., Du, J.: On-demand deep model compres-
sion for mobile devices: a usage-driven model selection framework. In: Proceedings
of ACM Mobisys (2018)

On-demand Privacy Preservation 329

6. Guo, P., Hu, B., Li, R., Hu, W.: FoggyCache: cross-device approximate computa-
tion reuse. In: Proceedings of ACM Mobicom (2018)

7. Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.B.: A survey on mobile edge
computing: the communication perspective. IEEE Commun. Surv. Tutor. 19,
2322–2358 (2017)

8. Abbas, N., Zhang, Y., Taherkordi, A., Skeie, T.: Mobile edge computing: a survey.
IEEE IoT J. 5, 450–465 (2017)

9. Zhou, Z., Wu, Q., Chen, X.: Online orchestration of cross-edge service function
chaining for cost-efficient edge computing. IEEE J. Sel. Areas Commun. 37, 1866–
1880 (2019)

10. Neely, M.J.: Stochastic Network Optimization with Application to Communication
and Queueing Systems. Morgan & Claypool, San Rafael (2010)

One-Round Authenticated Group Key
Exchange from Isogenies

Atsushi Fujioka1, Katsuyuki Takashima2, and Kazuki Yoneyama3(B)

1 Kanagawa University, Yokohama, Japan
2 Mitsubishi Electric, Kamakura, Japan

3 Ibaraki University, Hitachi, Japan
kazuki.yoneyama.sec@vc.ibaraki.ac.jp

Abstract. This paper proposes two one-round authenticated group key
exchange protocols from newly employed cryptographic invariant maps
(CIMs): one is secure in the quantum random oracle model and the other
resists against maximum exposure where a non-trivial combination of
secret keys is revealed. The security of the former (resp. latter) is proved
under the n-way decisional (resp. n-way gap) Diffie–Hellman assumption
on the CIMs in the quantum random (resp. random) oracle model.

We instantiate the proposed protocols on the hard homogeneous spaces
with limitation where the number of the user group is two. In particular,
the protocols instantiated by using the CSIDH, commutative supersin-
gular isogeny Diffie–Hellman, key exchange are currently more realistic
than the general n-party CIM-based ones due to its realizability. Our
two-party one-round protocols are secure against quantum adversaries.

Keywords: One-round authenticated group key exchange ·
Cryptographic invariant maps · Hard homogeneous spaces ·
Commutative supersingular isogeny Diffie–Hellman · G-CK model ·
G-CK+ model · Quantum adversary

1 Introduction

1.1 Background

Recently, National Institute of Standards and Technology (NIST) has initi-
ated a process to standardize quantum-resistant public-key cryptographic algo-
rithms [17], so, to study quantum-resistant cryptosystems is a hot research area.
A wide range of quantum-resistant primitives (i.e., mathematical foundations)
have been scrutinized by experts on cryptography and mathematics over the
world. They include lattice-based, code-based, and multivariate cryptography.
We treat with one (relatively) newly entered quantum-resistant primitive, which
is called isogeny-based cryptography.

Key establishing over insecure channels is one of important cryptographic
techniques. Recent researches on this have led to authenticated key exchange

c© Springer Nature Switzerland AG 2019
R. Steinfeld and T. H. Yuen (Eds.): ProvSec 2019, LNCS 11821, pp. 330–338, 2019.
https://doi.org/10.1007/978-3-030-31919-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_20&domain=pdf
https://doi.org/10.1007/978-3-030-31919-9_20

One-Round Authenticated Group Key Exchange from Isogenies 331

(AKE) and its multiparty extension, that is, authenticated group key exchange
(AGKE). We then propose quantum-resistant AKE and AGKE schemes from
isogenies on elliptic curves. In fact, we establish them on some abstract notions
obtained from isogenies called cryptographic invariant maps (CIMs) and hard
homogeneous spaces (HHSs).

HHS, CIM and CSIDH Key Exchange. In an unpublished but seminal
paper [3], Couveignes initiated the research of isogeny-based cryptography where
he formulated the basic notion of HHSs which is an abstract form of isogeny
graphs and class groups of endomorphism rings of (ordinary) elliptic curves.

Independently, Rostovtsev and Stolbunov [18] proposed a Diffie–Hellman
type key exchange from ordinary elliptic curve isogenies, which is now called
RS key exchange and intensively studied very recently in [4]. While the RS key
exchange uses ordinary curves, De Feo et al. employed supersingular isogenies
for a practical key exchange protocol called supersingular isogeny Diffie–Hellman
(SIDH) key exchange since ordinary isogeny problems suffer from subexponential
quantum attacks. Jao et al. submitted an isogeny-based encryption scheme called
SIKE (supersingular isogeny key encapsulation) to the NIST post-quantum cryp-
tography competition, and the scheme is an enhanced form of the SIDH key
exchange.

Castryck et al. [2] put forward a new HHS-based cryptographic construction
called CSIDH (commutative SIDH) key exchange, which is constructed from a
group action on the set of supersingular elliptic curves defined over a prime field.
This ingenious key exchange opened a new research avenue in isogeny cryptog-
raphy. As another new proposal, Boneh et al. [1] initiated to study a candidate
multiparty non-interactive key exchange on CIMs, whose underlying structure is
given by a HHS, (X,G), where X is a finite set and G is a finite abelian group,
and the invariant map is defined on the n-th product Xn equipped with nice
homomorphic (or equivariant) properties. As in the traditional Diffie–Hellman
and pairing primitives, we can consider n-way computational, decisional, and
gap Diffie–Hellman problems and assumptions on CIMs.

The notions of HHS and CIM give very concise conceptualizations of the
above wonderful recent developments. We propose a generic conversion method
from these key exchanges to authenticated ones.

We omit definitions, proofs and discussions because of page limitation. See [6]
in details.

1.2 Our Contributions

One-Round AGKE from CIM. We propose two one-round AGKE protocols
on the CIMs. One is called n-UM (n-Unified Model) which satisfies the G-CK
security. The security of n-UM is proved under the n-way DDH assumption in
the quantum random oracle model. The other is called BC n-DH (biclique n-
Diffie–Hellman) which satisfies the G-CK+ security. The security of BC n-DH
is proved under the n-way GDH assumption in the random oracle model. The

332 A. Fujioka et al.

Table 1. Comparison of one-round AGKE protocols.

#parties Assumption Model Post-quantum Proof

[10] n KEM, PRF weak G-CKa Based on ingredients StdM

[16] 3 gap-BDH G-eCK No ROM

[19] 3 DBDH G-CK+ No StdM

[14] n MLMs G-eCK No StdM

[12] n iO G-CK No StdM

n-UM n n-DDH G-CK Yes QROM

BC n-DH n n-GDH G-CK+ Yes ROM
aThe model does not capture weak perfect forward secrecy (wPFS).

BC n-DH protocol requires that the number of the user group is bounded by
logarithm of the security parameter. Comparison with existing one-round AGKE
protocols is shown in Table 1.

Instantiating One-Round Two-Party AKE from HHS. We instantiate
the proposed protocols on the HHS with limitation where the number of the
user group is two. In particular, the CSIDH-based protocols are currently more
realistic than the general n-party CIM-based ones due to its realizability. Our
two-party one-round protocols are secure against quantum adversaries.

Compared to the previous SIDH-based one-round (two-party) AKE proto-
cols [5,7], the proposed protocols have several merits. While Galbraith et al. [8]
proposed an active attack on the SIDH protocol by using the auxiliary points
exchanged between users, the attack cannot be applied to our CSIDH-based
ones since they include no auxiliary points. In [9], one attack scenario for the

Table 2. Comparison of isogeny-based AKE protocols.

Assumption Model #rounds Proof

SIDH TS2 [7] SI-CDH CK 1a ROM

AKE-SIDH-SIKE [15] SI-DDH CK+ 2 ROM

LJA [13] SI-DDH qCK 2 QROM

AKESIDH-2 [20] SI-DDH CK+ 2 ROM

SIDH UM [5] SI-DDH CK 1 QROM

biclique SIDH [5] di-SI-GDH CK+ 1 ROM

HKSU [11] IND-CPA PKE modified CK 2 QROM

HHS-UM 2-DDH CK 1 QROM

HHS-BC 2-GDH CK+ 1 ROM
aGalbraith claims that the protocol is one-round however the description shows
that it is two-round as the responder generates the response after receiving the
first message [7].

One-Round Authenticated Group Key Exchange from Isogenies 333

gap Diffie–Hellman (GDH) problem on the SIDH protocol is given since the
degrees of isogenies used are fixed by public parameters as �ei

i for small primes
�i, e.g., �1 = 2, �2 = 3. As the CSIDH protocol uses random multiples consisting
of several primes �i (i = 1, . . . , n) for the degrees and they are not fixed by
public parameters, the attack cannot be applied to the CSIDH setting. Thus,
the GDH assumption on CSIDH has no effective attacks at present, and we have
a strong confidence on the security of our CSIDH-based BC protocol, which is
reduced from the CSIDH GDH assumption. Comparison with existing isogeny-
based AKE protocols is shown in Table 2.

2 n-UM: G-CK Secure n-Party Authenticated Group
Key Exchange

2.1 Protocol

Public Parameters. We set Π = nUM. Let λ be a security parameter.
Let MapGen be a generation algorithm of a cryptographic invariant map, and
(X,S,G, e) ←R MapGen(1λ) and x ←R X are chosen. Let H : {0, 1}∗ →
{0, 1}λ be a hash function modeled as a quantum random oracle. Public param-
eters are (Π,X, S,G, e, x,H).

Static Secret and Public Keys. Party Ui chooses ti ∈ G as the SSK. Then,
Ui computes Ti = ti ∗ x as the SPK.

Key Exchange. W.l.o.g, we suppose a session executed by U = (U1, . . . , Un) ⊆
U .

1. Ui chooses ri ←R G as the ESK, and computes Ri = ri ∗ x as the EPK.
Then, Ui broadcasts (Π, rolei′ , Ui, Ri) to U \ Ui.

2. On receiving (Π, rolej′ , Uj , Rj) for all j �= i, Ui computes Z1 = en−1(T1, . . . ,
Ti−1, ti∗Ti+1, . . . , Tn) and Z2 = en−1(R1, . . . , Ri−1, ri∗Ri+1, . . . , Rn).1 Then,
Ui generates the session key SK = H(Π, U1, . . . , Un, R1, . . . , Rn, Z1, Z2),
and completes the session (Fig. 1).

T1 = t1 ∗ x · · · Ti = ti ∗ x · · · Tn = tn ∗ x

R1 = r1 ∗ x · · · Ri = ri ∗ x · · · Rn = rn ∗ x
R1−→ · · · Ri←− Ri−→ · · · Rn←−
Z1 = en−1(T1, . . . , Ti−1, ti ∗ Ti+1, Ti+2, . . . , Tn)
Z2 = en−1(R1, . . . , Ri−1, ri ∗ Ri+1, Ri+2, . . . , Rn)

SK = H(Π, U1, . . . , Un, R1, . . . , Rn, Z1, Z2)

Fig. 1. Outline of n-UM protocol.

1 Ti and Ri are indexed in the cyclic manner in modulo n. For example, when i = n,
then Z1 = en−1(tn ∗ T1, . . . , Tn) and Z2 = en−1(rn ∗ R1, . . . , Rn).

334 A. Fujioka et al.

2.2 Security

Theorem 2.1. Suppose that H is modeled as a quantum random oracle and
that the n-DDH assumption holds. Then the n-UM protocol is a post-quantum
G-CK-secure n-party authenticated group key exchange protocol in the quantum
random oracle model.

In particular, for any quantum adversary A against the n-UM protocol that
runs in time at most t, involves at most nu honest parties and activates at most
ns sessions, and makes at most nh queries to the quantum random oracle and
nq SessionReveal queries, there exists a n-DDH quantum solver S such that

Advn-DDH
S (λ) ≥ 2Advg-ck

nUM,A(λ)2

n2
un2

s(8nhnq + 3(nh + nq + 1)4)
,

where S runs in time t plus time to perform O(
(nu + ns)λ

)
group action opera-

tions.

3 Biclique n-DH : G-CK+ Secure n-Party Authenticated
Group Key Exchange

3.1 Protocol

Public Parameters. We set Π = BCnDH. Let λ be a security parameter.
Let MapGen be a generation algorithm of a cryptographic invariant map, and
(X, S, G, e) ←R MapGen(1λ) and x ←R X are chosen. Let H : {0, 1}∗ →
{0, 1}λ be a hash function modeled as a random oracle. Public parameters are
(Π,X, S,G, e, x,H).

Static Secret and Public Keys. Party Ui chooses ti ∈ G as the SSK. Then,
Ui computes Ti = ti ∗ x as the SPK.

Key Exchange. As in Sect. 2, we suppose a session executed by U = (U1, . . . ,
Un) ⊆ U .

1. Ui chooses ri ←R G as the ESK, and computes Ri = ri ∗x as the EPK. Then,
Ui broadcasts (Π, rolei′ , Ui, Ri) to U \ Ui.

2. On receiving (Π, rolej′ , Uj , R1, . . . , Rn), Ui computes Z∅ = en−1(T1, . . . , Ti−1,
ti ∗Ti+1, Ti+2, . . . , Tn), . . . , ZI = en−1(R1, . . . , Ri−1, ri ∗Ri+1, Ri+2, . . . , Rn)
as follows:2 for all P ∈ P(I),

– if i ∈ P , then vi = ri, and else if i �∈ P , then vi = ti,
– for all k ∈ I (k �= i), if k ∈ P , then Vk = Rk, and else if k �∈ P , then

Vk = Tk, and
– Ui computes ZP as ZP = en−1(V1, . . . , Vi−1, vi ∗ Vi+1, Vi+2, . . . , Vn).

Then, Ui generates the session key SK = H(Π, U1, . . . , Un, R1, . . . , Rn,
Z∅, . . . , ZI), and completes the session (Fig. 2).

2 Ti and Ri are indexed in the cyclic manner in modulo n.

One-Round Authenticated Group Key Exchange from Isogenies 335

T1 = t1 ∗ x · · · Ti = ti ∗ x · · · Tn = tn ∗ x

R1 = r1 ∗ x · · · Ri = ri ∗ x · · · Rn = rn ∗ x
R1−→ · · · Ri←− Ri−→ · · · Rn←−
Z∅ = en−1(T1, . . . , Ti−1, ti ∗ Ti+1, Ti+2, . . . , Tn)

...
ZI = en−1(R1, . . . , Ri−1, ri ∗ Ri+1, Ri+2, . . . , Rn)
SK = H(Π, U1, . . . , Un, R1, . . . , Rn, Z∅, . . . , ZI)

Fig. 2. Outline of biclique n-DH protocol.

It is worth to note here that we need to assume that the number of the user
group is bounded by logarithm of the security parameter, λ.

Otherwise, we need exponential computations in λ as the number of the
shared values is 2n.

3.2 Security

Theorem 3.1. Suppose that H is modeled as a random oracle and that the
n-way GDH assumption holds for S. Then the biclique n-DH protocol is a post-
quantum G-CK+ secure n-party authenticated group key exchange protocol in the
random oracle model.

In particular, for any AGKE quantum adversary A against the biclique n-
DH protocol that runs in time at most t, involves at most nu honest parties and
activate at most ns sessions, and makes at most nh queries to the random oracle,
there exists a n-way GDH quantum solver S such that

Advn-GDH
S (λ) ≥ min

{ 1
nn

u

,
1

nn−1
u ns

, . . . ,
1

nunn−1
s

,
1
nn

s

}
· Advg-ck+

BCnDH,A(λ),

where S runs in time t plus time to perform O(
(nu + ns)λ

)
group action opera-

tions and make O(nh + ns) queries to the n-DDH oracle.

4 Two-Party Authenticated Key Exchanges from Hard
Homogeneous Spaces

4.1 G-CK Secure AKE Protocol (from HHS)

We give our HHS-based UM protocol. Public parameters are pp = (X,G). We
set Π = HHS-UM, that is, the protocol ID is “HHS-UM.” The secret-key space
for initiators and responders is given by the group G.

User U1 has static public key, T1 = t1 ∗ x, where t1 ←R G, and t1 is U1’s
static secret key. User U2 has static public key, T2 = t2 ∗x, where t2 ←R G, and
t2 is U2’s static secret key. Here, ephemeral secret keys for U1 and U2 are given
as r1 ←R G, and r2 ←R G, respectively. U1 sends a ephemeral public key R1

336 A. Fujioka et al.

T1 = t1 ∗ x T2 = t2 ∗ x

R1 = r1 ∗ x
R1−→ R2 = r2 ∗ x
R2←−

Z1 = t1 ∗ T2 Z1 = t2 ∗ T1

Z2 = r1 ∗ R2 Z2 = r2 ∗ R1

SK = H(Π, U1, U2, R1, R2, Z1, Z2)

Fig. 3. Outline of HHS UM protocol.

T1 = t1 ∗ x T2 = t2 ∗ x

R1 = r1 ∗ x
R1−→ R2 = r2 ∗ x
R2←−

Z1 = t1 ∗ T2 Z1 = t2 ∗ T1

Z2 = r1 ∗ T2 Z2 = t2 ∗ R1

Z3 = t1 ∗ R2 Z3 = r2 ∗ T1

Z4 = r1 ∗ R2 Z4 = r2 ∗ R1

SK = H(Π, U1, U2, R1, R2, Z1, Z2, Z3, Z4)

Fig. 4. Outline of HHS biclique protocol.

as R1 = r1 ∗ x to U2, U2 sends back a ephemeral public key R2 as R2 = r2 ∗ x
to U1.

U1 computes Z1 = t1 ∗ T2, and Z2 = r1 ∗ R2, and then, obtains the session
key SK as SK = H(Π, U1, U2, R1, R2, Z1, Z2), where H is a hash function.

U2 can computes the session key SK as SK = H(Π, U1, U2, R1, R2, Z1, Z2)
from Z1 = t2 ∗ T1, and Z2 = r2 ∗ R1 (Fig. 3).

It is clear that the session keys of both parties are equal.
The security of this scheme is given as a corollary of Theorem 2.1.

Corollary 4.1. Suppose that H is modeled as a quantum random oracle and
that the 2-DDH assumption holds on the HHS (X,G). Then the 2-UM protocol
is a post-quantum G-CK-secure 2-party authenticated key exchange protocol in
the quantum random oracle model.

4.2 G-CK+ Secure AKE Protocol (from HHS)

We give our HHS-based biclique protocol. Public parameters are pp = (X,G). We
set Π = HHS-BC, that is, the protocol ID is “HHS-BC.” Static and ephemeral
keys are the same as our HHS UM protocol. The secret-key space for initiators
and responders is given by the group G.

User U1 has static public key, T1 = t1 ∗ x, where t1 ←R G, and t1 is U1’s
static secret key. User U2, also, has static public key, B = t2∗x, where t2 ←R G,
and t2 is U2’s static secret key. Here, ephemeral secret keys for U1 and U2 are
given as r1 ←R G, and r2 ←R G, respectively. U1 sends an ephemeral public
key R1 as R1 = r1 ∗ x to U2, U2 sends back an ephemeral public key R2 as
R2 = r2 ∗ x to U1.

U1 computes the non-trivial combinations of the ephemeral and static public
keys as Z1 = t1 ∗ T2, Z2 = r1 ∗ T2, Z3 = t1 ∗ R2, and Z4 = r1 ∗ R2, and then,
obtains the session key SK as SK = H(Π, U1, U2, R1, R2, Z1, Z2, Z3, Z4), where
H is a hash function.

U2 can computes the session key SK as SK = H(Π, U1, U2, R1, R2, Z1, Z2, Z3,
Z4) from Z1 = t2 ∗ T1, Z2 = t2 ∗ R1, Z3 = r2 ∗ T1, and Z4 = r2 ∗ R1 (Fig. 4).

It is clear that the session keys of both parties are equal.
The security of this scheme is given as a corollary of Theorem 3.1.

One-Round Authenticated Group Key Exchange from Isogenies 337

Corollary 4.2. Suppose that H is modeled as a random oracle and that the
2-way GDH assumption holds on the HHS (X,G). Then the biclique 2-DH pro-
tocol is a post-quantum G-CK+ secure authenticated key exchange protocol in
the random oracle model.

References

1. Boneh, D., et al.: Multiparty non-interactive key exchange and more from isogenies
on elliptic curves. In: MATHCRYPT 2018 (2018). https://eprint.iacr.org/2018/665

2. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03332-3 15

3. Couveignes, J.M.: Hard homogeneous spaces. IACR Cryptology ePrint Archive
2006, 291 (2006). http://eprint.iacr.org/2006/291

4. De Feo, L., Kieffer, J., Smith, B.: Towards practical key exchange from ordinary
isogeny graphs. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part III.
LNCS, vol. 11274, pp. 365–394. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03332-3 14

5. Fujioka, A., Takashima, K., Terada, S., Yoneyama, K.: Supersingular isogeny
Diffie–Hellman authenticated key exchange. In: Lee, K. (ed.) ICISC 2018. LNCS,
vol. 11396, pp. 177–195. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-12146-4 12

6. Fujioka, A., Takashima, K., Yoneyama, K.: One-round authenticated group key
exchange from isogenies. IACR Cryptology ePrint Archive 2018, 1033 (2018).
http://eprint.iacr.org/2018/1033

7. Galbraith, S.D.: Authenticated key exchange for SIDH. IACR Cryptology ePrint
Archive 2018, 266 (2018). http://eprint.iacr.org/2018/266

8. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingular
isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part
I. LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53887-6 3

9. Galbraith, S.D., Vercauteren, F.: Computational problems in supersingular elliptic
curve isogenies. IACR Cryptology ePrint Archive 2017, 774 (2017). http://eprint.
iacr.org/2017/774

10. Gorantla, M.C., Boyd, C., González Nieto, J.M., Manulis, M.: Generic one round
group key exchange in the standard model. In: Lee, D., Hong, S. (eds.) ICISC 2009.
LNCS, vol. 5984, pp. 1–15. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-14423-3 1

11. Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D.: Generic authenticated key
exchange in the quantum random oracle model. IACR Cryptology ePrint Archive
2018, 928 (2018). http://eprint.iacr.org/2018/276

12. Lan, X., Xu, J., Guo, H., Zhang, Z.: One-round cross-domain group key exchange
protocol in the standard model. In: Chen, K., Lin, D., Yung, M. (eds.) Inscrypt
2016. LNCS, vol. 10143, pp. 386–400. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-54705-3 24

13. LeGrow, J., Jao, D., Azarderakhsh, R.: Modeling quantum-safe authenticated key
establishment, and an isogeny-based protocol. IACR Cryptology ePrint Archive
2018, 282 (2018). http://eprint.iacr.org/2018/282

https://eprint.iacr.org/2018/665
https://doi.org/10.1007/978-3-030-03332-3_15
http://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-030-03332-3_14
https://doi.org/10.1007/978-3-030-03332-3_14
https://doi.org/10.1007/978-3-030-12146-4_12
https://doi.org/10.1007/978-3-030-12146-4_12
http://eprint.iacr.org/2018/1033
http://eprint.iacr.org/2018/266
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
http://eprint.iacr.org/2017/774
http://eprint.iacr.org/2017/774
https://doi.org/10.1007/978-3-642-14423-3_1
https://doi.org/10.1007/978-3-642-14423-3_1
http://eprint.iacr.org/2018/276
https://doi.org/10.1007/978-3-319-54705-3_24
https://doi.org/10.1007/978-3-319-54705-3_24
http://eprint.iacr.org/2018/282

338 A. Fujioka et al.

14. Li, Y., Yang, Z.: Strongly secure one-round group authenticated key exchange in
the standard model. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS
2013. LNCS, vol. 8257, pp. 122–138. Springer, Cham (2013). https://doi.org/10.
1007/978-3-319-02937-5 7

15. Longa, P.: A note on post-quantum authenticated key exchange from supersingular
isogenies. IACR Cryptology ePrint Archive 2018, 267 (2018). http://eprint.iacr.
org/2018/267

16. Manulis, M., Suzuki, K., Ustaoglu, B.: Modeling leakage of ephemeral secrets in
tripartite/group key exchange. IEICE Trans. 96–A(1), 101–110 (2013)

17. National Institute of Standards and Technology: Post-Quantum crypto standard-
ization: Call for Proposals Announcement, December 2016. http://csrc.nist.gov/
groups/ST/post-quantum-crypto/cfp-announce-dec2016.html

18. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. IACR
Cryptology ePrint Archive 2006, 145 (2006). http://eprint.iacr.org/2006/145

19. Suzuki, K., Yoneyama, K.: Exposure-resilient one-round tripartite key exchange
without random oracles. In: ACNS 2013, pp. 458–474 (2013)

20. Xu, X., Xue, H., Wang, K., Tian, S., Liang, B., Yu, W.: Strongly secure authenti-
cated key exchange from supersingular isogeny. IACR Cryptology ePrint Archive
2018, 760 (2018). http://eprint.iacr.org/2018/760

https://doi.org/10.1007/978-3-319-02937-5_7
https://doi.org/10.1007/978-3-319-02937-5_7
http://eprint.iacr.org/2018/267
http://eprint.iacr.org/2018/267
http://csrc.nist.gov/groups/ST/post-quantum-crypto/cfp-announce-dec2016.html
http://csrc.nist.gov/groups/ST/post-quantum-crypto/cfp-announce-dec2016.html
http://eprint.iacr.org/2006/145
http://eprint.iacr.org/2018/760

TumbleBit++: A Comprehensive Privacy
Protocol Providing Anonymity

and Amount-Invisibility

Yi Liu1,2, Zhen Liu1(B), Yu Long1(B), Zhiqiang Liu1(B), Dawu Gu1(B),
Fei Huan1(B), and Yanxue Jia1

1 School of Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University, Shanghai, China

{1780790324,liuzhen,longyu,ilu zq,dwgu,huanfei,jiayanxue}@sjtu.edu.cn
2 Shanghai Viewsource Information Science and Technology Co., Ltd.,

Shanghai, China

Abstract. Since the advent of bitcoin, the privacy of bitcoin has become
a hot issue. Many coin mixing protocols guarantee the anonymity and
unlinkability of the payer and payee of a transaction. However, due to
the publicity of blockchain, the confidentiality of transaction amounts
has not been provided. Everyone has the chance to get the amount of a
transaction, which poses a challenge to the privacy of users.

To overcome the problem, we propose an improved mixing protocol
based on TumbleBit, which is named TumbleBit++. TumbleBit++ com-
bines confidential transactions with centralized untrusted anonymous
payment hub, and achieves the protection of transaction amounts with-
out undermining the anonymity of TumbleBit. TumbleBit++ allows mul-
tiple payers to trade in different transaction amounts, and Tumbler, as
an untrusted third party, does not know the exact amount of each trans-
action and the flow of funds between the payer and payee of one trans-
action.

Keywords: TumbleBit · Confidential transactions · Bitcoin

1 Introduction

The most important aspect of bitcoin’s privacy is the hiding of transaction infor-
mation, such as transaction address and transaction amount. In order to achieve
the anonymity of bitcoin, the technology of coin mixing [1,2,9] has been adopted
to separate the relationship between the input and output addresses. TumbleBit
[2], as a centralized mixing protocol, uses an untrusted third party, Tumbler,
to offer mixing service with transaction flow invisible to the third party. How-
ever, an attacker can still get information about the flow of transactions by the
increasing or decreasing amount of money [2]. Confidential transactions [3] real-
ized the protection of transaction amounts on blockchain, but with no concern
of anonymity.
c© Springer Nature Switzerland AG 2019
R. Steinfeld and T. H. Yuen (Eds.): ProvSec 2019, LNCS 11821, pp. 339–346, 2019.
https://doi.org/10.1007/978-3-030-31919-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_21&domain=pdf
https://doi.org/10.1007/978-3-030-31919-9_21

340 Y. Liu et al.

Several currencies have contributed to the protection of amounts. Monero is
a cryptocurrency based on the CryptoNote protocol [4], which provides unlink-
ability and untraceability by ring signature, stealth address and Pedersen com-
mitment [11]. However, the ring signature requires space and verification over-
heads on blockchain and makes it difficult for clients to distinguish the spent
transaction outputs for pruning [5]. Zerocoin [6] is a zero-knowledge-proof-based
currency. Users can mint bitcoin into zerocoin with hidden addresses for trading.
Zerocash [7] uses the non-interactive zero-knowledge proof technology which is
zk-SNARK to achieve privacy and anonymity and to support arbitrary denom-
ination transactions. Because of the need for complex mathematical calcula-
tion, the cost of Zerocoin and Zerocash is high. Besides, the dependence on
trusted setup and the non-falsifiable cryptographic assumptions [8] makes it
have low acceptance. Valueshuffle [10] based on Coinshuffle++ [9], aims at hiding
the amounts of transactions by combining confidential transactions and stealth
address. In Valueshuffle, DiceMix protocol is run to mix output triples, which
consist of output addresses, value commitments and range proofs. However, since
the range proof is quite large, Valueshuffle splits the output triple into chunks
to mix and recombines the messages after mixing. This arrangement demands
high computation costs and more redundance. Inheriting the features of Coin-
shuffle++, the scheme can not resist DoS attacks and Sybil attacks.

Our Contribution: TumbleBit++. In this paper, we present TumbleBit++,
a complete privacy protection protocol that combines confidential transactions
with centralized coin mixing protocol, TumbleBit. TumbleBit++ provides the
invisibility of amounts on the basis of anonymity, which makes the amounts and
flow of transactions invisible to not only users but also the third party.

TumbleBit++ modifies the 2-of-2 escrow smart contract of TumbleBit, and
allows multiple bitcoins to be packaged in one transaction without revealing
the value. Verification, blinding and zero-knowledge proof steps are applied to
prevent theft and provide anonymity.

2 Preliminaries

TumbleBit. TumbleBit [2] is a centralized coin mixing scheme with an
untrusted anonymous payment hub, which is compatible with bitcoin. TumbleBit
uses RSA encryption algorithm [13] and ECDSA [14] to ensure the anonymity
and unforgeability of transactions. TumbleBit uses off-chain puzzle payments to
replace on-chain payments, which also improves the efficiency of coin mixing.

Puzzle-promise protocol and RSA-puzzle-solver protocol are two important
sub-protocols of TumbleBit, which turn bitcoin payments into off-chain puzzle
payments. Puzzle-promise protocol generates puzzle pairs for off-chain payments
between Tumbler and the payee. RSA-puzzle-solver protocol provides the solu-
tion to the specific puzzle through interactions between the payer and Tumbler.

The anonymity of TumbleBit is achieved by blinding. The payee B uses the
blind factor r, which is only visible to B, to blind the puzzle z. So that the third

TumbleBit++: A Comprehensive Privacy 341

party T cannot link the blinded puzzle z̄ from the payer A to the original puzzle
z, which splits the relationship between A and B. In TumbleBit, the blinding of
puzzle z is based on RSA encryption process. For a blind factor r, the blinding
of puzzle z is z̄ = rez mod N .

Pedersen Commitment. Pedersen commitment [11] is a scheme which allows
the user to commit to a secret value without revealing it. Besides, the value can
be revealed later and the user can prove the revealed value to be correct [15].
Pedersen commitment is applied in confidential transactions to hide the amounts
of transactions.

Pedersen commitment is a homomorphic commitment, which means that the
commitment of sum equals the sum of commitments. For example, the com-
mitment of value x1 is com1 = com(x1, r1), while the commitment of value
x2 is com2 = com(x2, r2). r1 and r2 are random values for encryption. The
homomorphic property makes it that the commitment of value (x1 + x2) is
com(x1 + x2, r1 + r2) = com1 ⊕ com2 = com(x1, r1) ⊕ com(x2, r2). Therefore,
homomorphic commitment makes it convenient and effective to verify the bal-
ance of transaction amounts.

3 TumbleBit++

3.1 System Entities and Overview

The system entities of TumbleBit++ are similar to that of TumbleBit. The payer
is Alice A, and the payee is Bob B. Tumbler T is an untrusted third party.

In TumbleBit++, the amounts of all on-chain transactions, which are the four
transactions in Fig. 1, are hidden in commitments. For example, the transaction

Fig. 1. System entities of TumbleBit++, in which the values in four transactions are
hidden. In theory, values a and b should be equal.

342 Y. Liu et al.

amount in the escrow transaction between A and T, which is the upper limit
Q of one round, is committed with the random value r1 of A; The transaction
amount in the escrow transaction between T and B, which is also the upper limit
Q, is committed with the random value r2 of T. In cash-out transactions which
are used to activate the escrow transactions, the amounts a and b are committed
with random values of A and B separately.

Before the interactions, A escrows Q BTCs on chain and T also escrows Q
BTCs on chain. Through the interactions of TumbleBit++ protocol, a BTCs
in escrow transaction flow from A to T, and b BTCs flow from T to B. In one
payment, a and b should be equal. Meanwhile, T does not know the relationship
between A and B and the transaction amounts which are a and b. After one
round of payments, which includes multiple transactions, unspent bitcoins in
escrow transactions will be withdrawn.

The interactions of TumbleBit++ protocol involve interactions between T
and B through puzzle-promise protocol, interactions between A and T through
RSA-puzzle-solver protocol, and interactions between A and B for parameter
values. The details are described in Sect. 3.2.

In the enhanced 2-of-2 escrow smart contract of TumbleBit++, we stipulate
that the transaction value in Tfulfill [2] is a commitment of the actual amount
of transaction between A and B, and the amount that Tfulfill can take from
Tescrow is exactly the amount committed in Tfulfill, rather than the fixed 1
BTC in TumbleBit.

3.2 Concrete Protocol

As Fig. 2 shows, TumbleBit++ has three phases.

Escrow Phase. In this phase, there are three steps.

– On-chain escrow transactions.
A and T escrow Q BTCs in commitments in escrow transactions separately
on chain. The detailed output addresses are described in TumbleBit.

– Puzzle-promise protocol.
If B aims to get b BTCs from T, B and T generate a puzzle pair (c, z) through
puzzle-promise protocol. Different from TumbleBit, the signature σ of T to
the cash-out transaction is committed in comm(σ, rc) and rc is a random
value of T. The commitment is encrypted by puzzle solution ε.

– Blinding.
Besides the blinding of puzzle z, the commitment of value b, which is cB is
also blinded by blinding factor rB of B. However, the blinding of puzzle z is
based on RSA encryption algorithm which can be found in Sect. 2, while the
blinding of cB is based as follows.

TumbleBit++: A Comprehensive Privacy 343

For a commitment c = comm(v, r) = v · H + r · G, the random blind factor
r1 is selected and the commitment is blinded to c̄ = c + r1 · G.

After blinding, Δr1 is calculated by B at the same time. z̄, c̄B and Δr1 are
prepared to send to A for verification and puzzle solution.

Fig. 2. TumbleBit++ protocol.

Payment Phase. Compared to TumbleBit, the most important step in this
phase is verification. Since multiple bitcoins are packaged into one transaction,
it is necessary for third-party Tumbler to ensure the balance of revenue and
expenditure of one transaction. In commitments, the value of a is committed in
cA = comm(a, ra), and the value of b is committed in cB = comm(b, rb). The
additive homomorphism of Pedersen commitment [11] ensures verifiability.

The phase has two steps.

– Off-chain puzzle payment.
A makes a payment to B for a blinded puzzle z̄, c̄B and Δr1. For the later
verification, A calculates Δr2 for prepare.

344 Y. Liu et al.

Fig. 3. Verification of TumbleBit++.

– RSA-puzzle-solver protocol and verification.
In the RSA-puzzle-solver protocol, it is necessary for T to verify cA = c̄B +
Δr2. The correctness of the verification can be verified in Fig. 3.

If the verification is proved, A obtains the solution ε̄ of z̄ through RSA-puzzle-
solver protocol with T and sends it to B.

Cash-Out Phase. In order to prevent A and B from cheating T with wrong
verification information, constraint using zero-knowledge proof is added in this
phase.

Three steps are involved in the cash-out phase.

– Unblinding.
After receiving ε̄ from A, B unblinds it by the blind factor rB and gets the
solution ε. As mentioned in the escrow phase, in puzzle-promise protocol of
TumbleBit++, the signature σ of Tcash(T,B) from T, are protected by com-
mitment. The information B gets by decrypting after getting ε is comm(σ, rc)
rather than the signature σ.

– Constraint.
In order to open the commitment to get σ, B is supposed to provide T with
a zero-knowledge proof, which can proof that the blinded value c̄B of cB is
included in a set of c̄B maintained by T and T doesn’t know exactly which
c̄B is the value. Obviously, T knows a set of c̄B from all previous interactions
with A.
In this scheme, if A generates c̄B and Δr2 at will, the set of c̄B will not include
the corresponding commitment of cB , so that B cannot get σ, which has no
benefit to A.

After the verification of zero-knowledge proof, T opens the commitment to B
and B obtains the signature σ to complete the cash-out transaction.

– On-chain cash-out transactions.
Finally, B claims bitcoins from T’s escrow transaction by on-chain cash-out
transaction. Unspent bitcoins in escrow transactions will be withdrawn.

TumbleBit++: A Comprehensive Privacy 345

Since TumbleBit++ is an enhancement of TumbleBit protocol, some details
such as cut and choose scheme and smart contract can be found in TumbleBit [2].

4 Security Analysis

TumbleBit++ has several security properties. Due to the limitation of space, we
conclude the properties briefly.

– Anonymity.
Inherited from TumbleBit, anonymity is provided by blinding scheme, which
includes blinding of puzzle and blinding of commitments.

– Amounts invisibility.
Invisibility of amounts is realized by Pedersen commitments of confidential
transactions. In addition, TumbleBit++ can mix transactions with different
amounts, which means that it is more efficient and flexible than the traditional
fixed-value transactions in TumbleBit.

– Tumbler untrustworthiness.
Inherited from TumbleBit, Tumbler is unable to know the amount and flow
information in the transaction, which is realized by commitments and blind-
ing.

– Theft prevention.
The verification step and constraint based on zero-knowledge proof prevent
theft from payers and payees effectively. Besides, the authority of generating
commitments avoids Tumbler modifying values of commitments.

– DoS resistance.
Inherited from TumbleBit, since the independence between users of coin mix-
ing transactions, even if some network resources are occupied, it does not
affect the process of mixing.

– Sybils resistance.
Sybil attack [12] is a form of attack in peer-to-peer networks. The property
is also inherited from TumbleBit.

5 Conclusion

In the privacy protection of bitcoin, many mixing schemes can provide anonymity
reasonably, but there is no systematic mechanism for the amounts concealment.
Confidential transaction is a scheme that hides the amounts of transactions with
Pedersen commitments.

In this paper, based on TumbleBit protocol and CT scheme, TumbleBit++
protects the amounts, and inherits the anonymity and the third party’s untrust-
worthiness of TumbleBit, which is realized by blinding on commitments, veri-
fication, and constraint based on zero-knowledge proof. In summary, we get a
comprehensive privacy protocol, TumbleBit++, which provides anonymity and
amount-invisibility.

346 Y. Liu et al.

Acknowledgement. The authors are supported by the National Natural Science
Foundation of China (Grant No. 61672347, 61572318, 61672339, 61872142), the
National Cryptography Development Fund (No. MMJJ20170111) and Minhang Tech-
nology Innovation Program for SMEs, a finance business platform based on blockchain
technology (2018MH110).

References

1. Ruffling, T., Moreno-Sanchez, P., Kate, A.: Coinshuffle: practical decentralized coin
mixing for bitcoin. In: Kutylowski, M., Vaudya, J. (eds.) ESORICS 2014. LNCS,
vol. 8713, pp. 345–364. Springer, Cham (2014)

2. Heilman, E., AlShenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: TumbleBit:
an untrusted Bitcoin-compatible anonymous payment hub. In: NDSS 2017 (2017)

3. Maxwell, G.: Confidential transactions (2015). https://people.xiph.org/∼greg/
confidential values.txt

4. Noether, S.: Review of CryptoNote white paper. https://downloads.getmonero.
org/whitepaper review.pdf

5. OmegaStarScream: Bitcoin Core & pruning mode. Bitcoin Forum. https://
bitcointalk.org/index.php?topic=1599458.0

6. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed
e-cash from Bitcoin. In: S&P 2013 (2013)

7. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from Bitcoin.
In: S&P 2014 (2014)

8. Gentry, C., Wiches, D.: Separating succinct non-interactive arguments from all
falsifiable assumptions. In: STOC 2011 (2011)

9. Ruffling, T., Moreno-Sanchez, P., Kate, A.: P2P mixing and unlinkable Bitcoin
transactions. In: NDSS 2017 (2017)

10. Ruffing, T., Moreno-Sanchez, P.: ValueShuffle: mixing confidential transactions for
comprehensive transaction privacy in bitcoin. In: Brenner, M., et al. (eds.) FC
2017. LNCS, vol. 10323, pp. 133–154. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70278-0 8

11. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

12. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.)
IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45748-8 24

13. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

14. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1, 36–63 (2001)

15. Damg̊ard, I.: Commitment schemes and zero-knowledge protocols. In: Damg̊ard,
I.B. (ed.) EEF School 1998. LNCS, vol. 1561, pp. 63–86. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48969-X 3

https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://downloads.getmonero.org/whitepaper_review.pdf
https://downloads.getmonero.org/whitepaper_review.pdf
https://bitcointalk.org/index.php?topic=1599458.0
https://bitcointalk.org/index.php?topic=1599458.0
https://doi.org/10.1007/978-3-319-70278-0_8
https://doi.org/10.1007/978-3-319-70278-0_8
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/3-540-48969-X_3

Secure Online/Offline Attribute-Based
Encryption for IoT Users in Cloud Computing

Xiang Li1, Hui Tian1(&), and Jianting Ning2

1 College of Computer Science and Technology, National Huaqiao University,
Xiamen, People’s Republic of China

xlics@stu.hqu.edu.cn, cshtian@126.com
2 School of Computing, National University of Singapore, Singapore, Singapore

jtning88@gmail.com

Abstract. To ensure the security of mass data sharing in the Internet of Things,
the cloud computing platform is supposed to provide data-storage services. The
ciphertext-policy attribute-based encryption (CP-ABE) schemes has attracted
wide-scale attention since users can access the cloud platform in a fine-grained
manner. However, there are still some problems in the existing CP-ABE
schemes when directly applied in the Internet of Things environment. The
problem of simultaneously achieves large computational cost in the encryption
and decryption. Moreover, the privacy of access control policy actually still
remains unresolved. To fill the gap of the existing schemes, this paper proposes
a suitable data sharing scheme for IoT devices which can’t always be online. We
use the online/offline CP-ABE technology with privacy, while hiding the access
control structure and reducing the computational cost of the devices when they
are online. The asymptotic complexity comparison also shows that our scheme
achieves high computation efficiency.

Keywords: Internet of Things � Cloud computing � Online/offline encryption �
Privacy protection � Hidden access structure

1 Introduction

Nowadays, the Internet of Things (IoT) has attracted the attention of researchers in
academia and industry. With the development of Internet of Things technology con-
tinuously, it is widely used in some areas, such as aviation, rail transit, safe city,
industrial manufacturing, logistics management, medical and health, and smart home,
etc. However, the computing and storage resources of IoT devices are often limited,
which greatly limit the application of the Internet of Things in various fields. Cloud
computing provides an on-demand service that provides users with useful and con-
venient network access. Therefore, cloud computing services can solve the problems,
which include technically limited of IoT devices, and satisfy the exchange and sharing
requirements of large data volume that the Internet of Things requires. However, cloud
computing service providers are not completely trusted. When the data owner stores the
data on the cloud server, it loses absolute control over the data. Cloud service providers
(CSP) may privately share data to unauthorized users when they are tempted by

© Springer Nature Switzerland AG 2019
R. Steinfeld and T. H. Yuen (Eds.): ProvSec 2019, LNCS 11821, pp. 347–354, 2019.
https://doi.org/10.1007/978-3-030-31919-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_22&domain=pdf
https://doi.org/10.1007/978-3-030-31919-9_22

interests. Cloud service providers may also receive internal and external attacks,
resulting in authorization exceptions and data leakage for their users and roles. In the
IoT environment, sensor devices are characterized by massiveness, device differenti-
ation and security and privacy protection difficulty. Thus, Internet of Things users have
higher requirements for data security and privacy protection.

Attributes-based encryption (ABE) can well meet the needs of data confidentiality
and fine-grained access control in the Internet of Things. We divide ABE into two
categories: KP-ABE [1] and CP-ABE [2]. In the CP-ABE scheme, the access policy is
related to the ciphertext, while the key is connected to the attribute. KP-ABE scheme is
the opposite. For reducing equipment burden, some selectively efficient ABE schemes
[3–6] were proposed, such as outsource data to third parties which can save local
storage and computing resources. At the same time, some efficient online/offline
encryption solutions [7–10] have proposed.

In the above solution, the data provider needs to be online in real-time while the
ciphertext is related to the access control policy, which resulting in increasing the
encrypting computational overhead. In addition, during the decryption phase, the cloud
service provider needs to send the access control policy to data users along with the
ciphertext, while the access policy may contain some sensitive information. If the
access control policy for this data is compromised, it may be illegal. Therefore, how to
reduce the encryption computing overhead while realizing the hiding of access policies
has become one of the urgent problems in the cloud computing environment.

In this paper, we proposed a secure online/offline attribute-based encryption for IoT
users in cloud computing. Our scheme mainly uses the online/offline ABE technology
to solve the problem of large computing cost in ABE that the most expensive encrypt
operations have been executed in the offline phase. What’s more, in order to protect the
security of access control structure. When the user uploads and downloads the
ciphertext, the access control structure will be hiding.

2 Related Work

Currently, the attribute-based encryption (ABE) system has been widely used. Its main
dependency is to use a set of attributes that describe the user’s identity to represent the
identity of the user. The data user’s key is generated by the authorization center
according to each user’s attribute set, which is a set of characteristic information of the
data user. Matching relationship between the user attribute set and the access structure,
the decryption capability of the user is determined by realizing the control of the
ciphertext. The data provider does not need to distribute the corresponding key for each
data consumer. They only need to manage the attributes of the corresponding file by
modifying the access control structure, which greatly increases the flexibility of access
control. Considering the computational burden of the IoT device during the encryption
and decryption phase, it is mainly to delegate the complex calculation by constrained
IoT devices to the enough computing power nodes at present. In 2010, to address the

348 X. Li et al.

burden of key distribution and data management, Yu et al. [3] strengthened the
attribute-based access strategy, while allowing data owners to put most of their com-
puting tasks on the cloud server. Hur et al. proposed an attribute-based access control
method [4] using CP-ABE to enforce access control policies with efficient attribute and
user revocation capability. This fine-grained access control method is implemented by
the ABE and the double encryption mechanism of the selective group key distribution
method in each attribute group. For the ABE outsourcing decryption scheme, in the
literature [5], they adopt the bilinear pairing method to realize the outsource decryption,
that is, the calculate operation in the resource-constrained client is outsourced to the
semi-trusted third party. However, in the above scheme, the user still needs to operate
the index and multiplication operations multiple times. Green et al. [6] proposed an
outsourced decryption scheme based on LSSS matrix, which allows the cloud to
convert ciphertexts satisfying user attributes into ciphertext of constant size, while the
cloud cannot read any part of the user’s message.

Meanwhile, IoT devices include not only sensor devices with weak underlying
computing capabilities, but also devices with strong computing power. These devices
are sufficient to perform encryption and decryption work, but there is no guarantee that
resources will be online in real time. Online/offline cryptography is an effective tool for
improving encryption efficiency. The complex encryption operations are preprocessed
by using high-performance devices that makes lightweight devices only need to per-
form a small amount of simple operations. Hohenberg [7] first proposed constructing
an online/offline ABE encryption scheme in which the computational work is divided
into two phases: the offline phase (preparation process) and the online phase. In 2015,
Datta [8] combines searchable encryption and access control with security proof. Later,
Cui [9] uses outsourced ABE technology to place most of the decryption work on the
cloud server while implementing keyword search, which greatly reduces the user’s
computational cost. Considering resources with limited resources, Liu [10] quickly
performs keyword encryption or token generation by consuming costs to the offline
phase, while the mobile device is powered without consuming battery. However, the
above operations do not consider the operation of the multi-authority ABE. We know
that the computing power of sensor devices is limited. Before sending the sensitive
message to users, we must encrypt these messages for protecting the privacy. This is a
great challenge for the IoT sensor devices. Consequently, it would be much better to do
a part of encrypt operation in the free time.

3 System Design

3.1 System Model and Design Goals

As shown in Fig. 1, the system architecture of our proposed scheme consists of four
entities: a cloud service provider (CSP), an attribute authority (AA), data owners
(DOs) and data users (DUs).

Secure Online/Offline ABE for IoT Users in Cloud Computing 349

• CSP is responsible for storing a large amount of data generated in the Internet of
Things which is composed of multiple servers. It has strong computing power,
which is honest and curious.

• AA is an independent attribute authority that can generate a public key and a master
secret key for DO by executing an AuthoritySetup algorithm. After receiving the
attribute set from the user, it returns the attribute private key generating by
SecretKeyGen algorithm.

• DO is the owner of the data. In the IoT environment, the data owner is a resource-
constrained entity. It cannot guarantee that its computing resources are always
online. Since most of costly computations can evaluated by running Offline.Encrypt
algorithm, the efficiency of encryption can be greatly improved because Online.
Encrypt algorithm only incurs little computation costs.

• DU refers to the actual user of the actual data in the Internet of Things. The entity
can obtain a plaintext message through the Decrypt algorithm.

In our scheme, we prescribe some security assumptions to meet the real IoT
environment’s needs. we assume AA is fully trusted while does not reveal user data and
collude with users. The CSP is semi-trusted (honest-but-curious) entity which can
honestly save user-uploaded data and perform user’s tasks. But it may be curious about
the data content. Meanwhile, users are not completely trusted. Malicious users may
hide their identity to obtain sensitive information.

3.2 Proposed Scheme

This section is dedicated to proposing our scheme, which has six algorithms: Glo-
balSetup, AuthoritySetup, SecretKeyGen, Offline.Encrypt, Online.Encrypt, Decrypt.

CSP

AA

DUDO
(Offline Encryption)

DO
(Online Encryption)

Fig. 1. System architecture of the scheme in cloud model

350 X. Li et al.

System Initialization. Similar to the scheme [11], this phase is required to initial-
ization the public parameter and to generation public keys and secret keys.

GlobalSetupð1kÞ ! ðPPÞ This algorithm inputs a security parameter 1k, and then
outputs public parameter

PP ¼ g; h; e; p;G;GT ;Hf g:

The algorithm chooses two random generators g; h from G. And selects two bilinear
groups G�G ! GT of prime order e; p. Furthermore, we employ a strong collision-
resistant hash function H : 0; 1f g ! G.

AuthoritySetup PPð Þ ! PK;MSKð Þ. Taking as input the system public parameters
PP, the authority chooses a; b; c randomly from Zp. Then, AA picks random generators
u from G. AA publishes the public key and the master secret key

PK ¼ e g; gð Þa; hb; gc; u� �
;MSK ¼ PK; af g:

Secret Key Generation. In this phase, the attribute authority issues a key extract
algorithm with hidden access structure, which not get any information about user’s
identifier and attributes to protect user’s privacy.

SecretKeyGen PP;GIDU ; PK;U;DeID;CMIDð Þ ! SKUð Þ. Firstly, data user execute
commitment algorithm Commit PP;GIDUð Þ ! CMID;DeIDð Þ and send CMID;DeIDð Þ
to attribute authority. Then AA take public parameters PP, an attribute set
U ¼ A1;A2.;Anf g, the public key PK and commitment CMID;DeIDð Þ as input.
Then if Decommit algorithm output the right sight, it computes K1 ¼ gb; and for i ¼ 1
to n, it computes Ki;1 ¼ ðuAihbÞti ;Ki;2 ¼ gti . Otherwise, it outputs the error messages
and the SecretKeyGen algorithm is terminated. The algorithm outputs

SKU ¼ K1; Ki;1;Ki;2
� �

i2 1;n½ �
n o

which authority picks t1; t2; . . .; tn 2 Zp.

Encryption. This phase is divided into the offline data creation and online data cre-
ation. Data owner who is resource-limited generates offline ciphertexts by running
Offiline.Encrypt and generates the final ciphertext by running Online.Encrypt.

Offline.Encrypt PP; PKð Þ ! CTOff
� �

. The offline encryption algorithm takes in the
public parameters only. The algorithm randomly picks s; k 2 Zp and computes
C0 ¼ gs. Next it chooses random sj; xj 2 Zp for each j 2 1; n½ � The algorithm sets
key ¼ e g; gð Þas;Cj;1 ¼ g�sj ;Cj;2 ¼ uxjhb

� �sj ;Cj;3 ¼ hxj . The algorithm outputs

CTOff ¼ key;C0; fCj;1;Cj;2;Cj;3; xj; sjgj2 1;n½ �
n o

:

Online.Encrypt PP;U;CTOff ; PK
� � ! CTð Þ. The online encryption algorithm takes

as input the public parameters PP, the data owner’s attribute U, an offline ciphertext
CTOff and the public key PK. The owner computes Pj ¼ e hb;H Uj

� �� �
for each

Secure Online/Offline ABE for IoT Users in Cloud Computing 351

j 2 1; Y½ �, where Uj denotes attribute of access policy T and Y is the number of
attributes in T. Next, the access policy T is converted to LSSS access control structure
M; qð Þ, while we use Pj to replace the attribute Uj in the access policy. The structure
control matrix M is an l� n matrix and l� P. It set the vector y ¼ s; y2; . . .; ynð ÞT in
which y2; . . .; yn 2 Zp is random where T denotes the transpose of the matrix. Then it
computes a vector of shares of s as k1; k2; . . .; klð ÞT¼ My. The algorithm computes
Cj;4 ¼ kj � xj;Cj;5 ¼ sj Aj � xj

� �
. Eventually, the algorithm sets the ciphertext as

CT ¼ M; qð Þ;C0;C1; fCj;1;Cj;2;Cj;3;Cj;4;Cj;5
� �

j2 1;P½ �
n o

:

Decryption. In this phase, data user downloads a ciphertext CT from CSP, and per-
forms the following algorithm Decrypt based on secret key SKu to recover the con-
sequent message.

Decrypt SK;CTð Þ ! key: It takes a secure private key SKU ¼
K1; Ki;1;Ki;2

� �
i2 1;n½ �

n o
from SecretKeyGen algorithm and a ciphertext CT ¼

M; qð Þ;C0;C1; fCj;1;Cj;2;Cj;3;Cj;4;Cj;5
� �

j2 1;P½ �
n o

for hiding access structure M; qð Þ. If
SKU does not satisfy the hiding structure, then the algorithm outputs an error message.
Or else, the algorithm computes constants

P
i2I wiki ¼ s for making wi 2

Zp; I� 1; 2; . . .; lf g and setting ki is the result of the secret s share. The cloud computes

e g; gð Þas¼ e K0;C0ð Þ
e h

P
i2Iwi�Cj;4 ;K1ð Þ �Qi2I e Ki;1;Cj;1

� �� � � e Ki;2;Cj;2 � uCj;5
� � � e K1;Cj;3

� �Þwi

where j is the index of the attribute Ai in S (it depends on i).

4 Performance Evaluation

In this section, we provide estimate on the performance of the comparison results in
Table 1, which compare the proposed scheme with some existing schemes in the
efficient respects. The comparison results are summarized in Table 1, where A, G, P,
E and M represent the number of attributes, the size of an element in Zp, a pairing
operation, an exponentiation operation and a multiplication operation in bilinear

Table 1. Computation cost comparisons of online/offline attribute-based encryption schemes

Schemes Offline encryption Online encryption Decryption (user side)

OOABE [7] (3N + 3)E + N�M (|A| + 1)M 3kP + 2kE + 3km

DCP-ABKS-CKDO [11] 2M + (5M + G) E + M+2(M + G) 2kE + 2km

ABDS [12] 3E 4P + (2k + 2)E + (3k + 2)M + H 3kP + 2kE + 3km

OOABKS [9] G + 4E + N�M (|A| + 1)M + G kP + kE

Ours 3E + 2N�M E + H+(|A| + 1)M 3kP + kE + 3km

352 X. Li et al.

groups, respectively. And the complexity of the access structure is denoted by k. The
symbol H is a chameleon hash operation. The symbol N means the size of offline
ciphertext pool and it is determined by the size of the attribute universe (Table 2).

We compare the proposed scheme with the state-of-the-art schemes with regard to
the generation cost of the offline encryption cost, the online encryption cost and the
decryption cost. In the online phase, our scheme reduces nearly half of cost compared
with ABDS [12] while it less than other schemes. Because in our scheme, we only
complete the encryption of using the access control policy in this phase. Our scheme
incurs more computation costs than ABDS [12] in the offline phase, but the total
workload of the user can be significantly reduced, which is suitable for the resource-
limited users. Thus, the proposed scheme is efficient with respect to the computation
costs on the user side and achieves security goals. Consider the function of our pro-
posed scheme and several related schemes, we can observe that our scheme is superior
to other schemes. All the online/offline schemes are allowed LSSS ciphertext policies.

5 Conclusion

In this paper, aiming at tackling the computation efficiency and weak data security
issues, we proposed a secure online/offline attribute-based encryption for IoT users in
cloud computing. Different from existing CP-ABE schemes, our scheme realizes effi-
cient data encryption and privacy protection while heavy encryption computations are
performed during the offline phase making the whole encryption phase faster and more
efficient than existing schemes. For protect the access control, we hide the access
structure in online phase and protect the data user key in secret key generation phase.
Theoretical analysis indicate that the proposed data sharing scheme is extremely
suitable for IoT users who have enough computing power but not real-time online. The
security of our scheme is proven secure in the proposed selective chosen attribute set.
The performance analysis show that our solution can be used to control access for
shared data in an internet of things environment.

Table 2. Function compare between our scheme and other scheme

Schemes Access
structure

Hidden
policy

Protect GID
privacy

Online/Offline
encryption

OOABE [7] LSSS No No Yes
DCP-ABKS-
CKDO [11]

LSSS No No Yes

ABDS [12] LSSS No No Yes
OOABKS [9] LSSS No No Yes
CSCD [13] (AND/OR)m Yes Yes No
HCPABE [14] AND Yes No No
Ours LSSS Yes Yes Yes

Secure Online/Offline ABE for IoT Users in Cloud Computing 353

Acknowledgements. This research is supported by the National Natural Science Foundation of
China under Grant Nos. U1536115 and U1405254, the Natural Science Foundation of Fujian
Province of China under Grant No. 2018J01093, and the Subsidized Project for Postgraduates’
Innovative Fund in Scientific Research of Huaqiao University No. 18013083012.

References

1. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained
access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer
and Communications Security - CCS 2006, Alexandria, Virginia, USA, pp. 89–98. ACM
Press (2006)

2. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: 2007
IEEE Symposium on Security and Privacy (SP 2007), pp. 321–334 (2007)

3. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained data access
control in cloud computing. In: 2010 Proceedings IEEE INFOCOM, pp. 1–9 (2010)

4. Hur, J., Noh, D.K.: Attribute-based access control with efficient revocation in data
outsourcing systems. IEEE Trans. Parallel Distrib. Syst. 22, 1214–1221 (2011)

5. Tsang, P.P., Chow, S.S.M., Smith, S.W.: Batch pairing delegation. In: Miyaji, A., Kikuchi,
H., Rannenberg, K. (eds.) IWSEC 2007. LNCS, vol. 4752, pp. 74–90. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-75651-4_6

6. Green, M., Hohenberger, S., Waters, B.: Outsourcing the decryption of ABE ciphertexts, 16
7. Hohenberger, S., Waters, B.: Online/offline attribute-based encryption. In: Krawczyk, H.

(ed.) PKC 2014. LNCS, vol. 8383, pp. 293–310. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-642-54631-0_17

8. Datta, P., Dutta, R., Mukhopadhyay, S.: Fully secure online/offline predicate and attribute-
based encryption. In: Lopez, J., Wu, Y. (eds.) ISPEC 2015. LNCS, vol. 9065, pp. 331–345.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17533-1_23

9. Cui, J., Zhou, H., Xu, Y., Zhong, H.: OOABKS: online/offline attribute-based encryption for
keyword search in mobile cloud. Inf. Sci. 489, 63–77 (2019)

10. Liu, Z., Jiang, Z.L., Wang, X., Huang, X., Yiu, S.M., Sadakane, K.: Offline/online attribute-
based encryption with verifiable outsourced decryption. Concurr. Comput. Pract. Exper. 29,
e3915 (2017)

11. Xu, Q., Tan, C., Zhu, W., Xiao, Y., Fan, Z., Cheng, F.: Decentralized attribute-based
conjunctive keyword search scheme with online/offline encryption and outsource decryption
for cloud computing. Future Gener. Comput. Syst. 97, 306–326 (2019)

12. Li, J., Zhang, Y., Chen, X., Xiang, Y.: Secure attribute-based data sharing for resource-
limited users in cloud computing. Comput. Secur. 72, 1–12 (2018)

13. Zhang, Y., Li, J., Yan, H.: Constant size ciphertext distributed CP-ABE scheme with privacy
protection and fully hiding access structure. IEEE Access 7, 47982–47990 (2019)

14. Phuong, T.V.X., Yang, G., Susilo, W.: Hidden ciphertext policy attribute-based encryption
under standard assumptions. IEEE Trans. Inf. Forensics Secur. 11, 35–45 (2016)

354 X. Li et al.

http://dx.doi.org/10.1007/978-3-540-75651-4_6
http://dx.doi.org/10.1007/978-3-642-54631-0_17
http://dx.doi.org/10.1007/978-3-642-54631-0_17
http://dx.doi.org/10.1007/978-3-319-17533-1_23

FSPVDsse: A Forward Secure Publicly
Verifiable Dynamic SSE Scheme

Laltu Sardar2(B) and Sushmita Ruj1,2

1 CSIRO Data61, Marsfield, NSW, Australia
2 Indian Statistical institute, Kolkata, India

laltuisical@gmail.com, sushmita.ruj@csiro.au

Abstract. A symmetric searchable encryption (SSE) scheme allows
a client (data owner) to search on encrypted data outsourced to an
untrusted cloud server. The search may either be a single keyword search
or a complex query search like conjunctive or Boolean keyword search.
Information leakage is quite high for dynamic SSE, where data might be
updated. It has been proven that to avoid this information leakage an
SSE scheme with dynamic data must be forward private. A dynamic SSE
scheme is said to be forward private, if adding a keyword-document pair
does not reveal any information about the previous search result with
that keyword.

In SSE setting, the data owner has very low computation and stor-
age power. In this setting, though some schemes achieve forward privacy
with honest-but-curious cloud, it becomes difficult to achieve forward
privacy when the server is malicious, meaning that it can alter the data.
Verifiable dynamic SSE requires the server to give a proof of the result
of the search query. The data owner can verify this proof efficiently. In
this paper, we have proposed a generic publicly verifiable dynamic SSE
(DSSE) scheme that makes any forward private DSSE scheme verifiable
without losing forward privacy. The proposed scheme does not require
any extra storage at owner-side and requires minimal computational cost
as well for the owner. Moreover, we have compared our scheme with the
existing results and show that our scheme is practical.

Keywords: Searchable encryption · Forward privacy · Verifiability ·
BLS signature · Cloud computing

1 Introduction

Data stored in untrusted servers is prone to attacks by the server itself. In order
to protect confidential information, clients store encrypted data. This makes
searching on data quite challenging. A searchable symmetric encryption (SSE)
scheme enables a client or data owner to store its data in a cloud server without
loosing the ability to search over them. When an SSE scheme supports update,
it is called a dynamic SSE (DSSE) scheme.

This chapter was supposed to appear under the Part Title: Protocols. The correction
to this chapter is available online at https://doi.org/10.1007/978-3-030-31919-9 25

c© Springer Nature Switzerland AG 2019
R. Steinfeld and T. H. Yuen (Eds.): ProvSec 2019, LNCS 11821, pp. 355–371, 2019.
https://doi.org/10.1007/978-3-030-31919-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_23&domain=pdf
http://orcid.org/0000-0002-7433-0497
http://orcid.org/0000-0002-8698-6709
https://doi.org/10.1007/978-3-030-31919-9_25
https://doi.org/10.1007/978-3-030-31919-9_23

356 L. Sardar and S. Ruj

There are plenty of works on SSE as well as DSSE. Most of them considers
the cloud server to be honest-but-curious. An honest-but-curious server follows
the protocol but wants to extract information about the plaintext data and the
queries. However, if the cloud itself is malicious, it does not follow the protocol
correctly. In the context of search, it can return only a subset of results, instead
of all the records of the search. So, there is need to verify the results returned
by the cloud to the Yoneyamaquerier. An SSE scheme for static data where the
query results are verifiable is called Verifiable SSE (VSSE). Similarly, if the data
is dynamic the scheme is said to be a verifiable dynamic SSE (VDSSE).

There are single keyword search VSSE schemes which are either new con-
structions supporting verifiability or design techniques to achieve verifiability
on the existing SSE schemes by proposing generic algorithm. VSSE with sin-
gle keyword search has been studied in [5,7,13]. In [20,21] etc., VSSE scheme
with conjunctive query has been studied. Moreover, there are also works that
gives VDSSE scheme for both single keyword search [14] as well as complex
query search including fuzzy keyword search [26] and Boolean query [9]. How-
ever, Most of them are privately verifiable. A VSSE or VDSSE scheme is said to
be privately verifiable if only querier, who receive search result, can verify it. On
the other hand, a VSSE or VDSSE scheme is said to be publicly verifiable if any
third party, including the database owner, can verify the search result without
knowing the content of it.

There is also literature on public verifiability. Soleimanian and Khazaei [18]
and Zhang et al. [24] have presented SSE schemes which are publicly verifiable.
VSSE with Boolean range queries has been studied by Xu et al. [22]. Though,
their verification method is public, since the verification is based over blockchain
databases, it has extra monetary cost. Besides, Azraoui et al. [1] presented a con-
junctive search scheme that is publicly verifiable. In case of dynamic database,
publicly verifiable scheme by Jiang et al. [9] supports Boolean Query and that
by Miao et al. [14] supports single keyword search.

However, file-injection attack [25], in which the client encrypts and stores files
sent by the server, recovers keywords from future queries, has forced researchers
to think about dynamic SSE schemes to be forward private where adding a
keyword-document pair does not reveal any information about the previous
search result with that keyword. In addition, in presence of malicious cloud
server, the owner can outsource the verifiabilty to a third party auditor to
reduce its computational overhead. The only forward private single keyword
search VSSE scheme is proposed by Yoneyama and Kimura [23]. However, the
scheme is privately verifiable and the owner requires significant amount of com-
putation for verification.

1.1 Our Contribution

In this paper, we have contributed the followings in the literature of VSSE.

1. We have formally define a verifiable dynamic SSE scheme. Then, we have
proposed a generic publicly verifiable dynamic SSE scheme (Ψf) which is
very efficient and easy to integrate.

FSPVDsse: A Forward Secure Publicly Verifiable Dynamic SSE Scheme 357

2. Our proposed scheme is forward private. This property is necessary to protect
a DSSE scheme from file injection attack. However, no previous publicly
verifiable scheme is forward private. In fact, only forward private scheme [23]
is privately verifiable.

3. We present formal security proof for this scheme and show that it is adap-
tively secure in random oracle model.

The scheme does not use any extra storage, at owner side, than the embedded
schemes. Thus, for a resource constrained client, the scheme is very effective and
efficient.

In Table 1, we have compared our proposed scheme with existing ones.

Table 1. Different verifiable SSE and DSSE schemes

Data type Static Dynamic

Query type Single Complex Single Complex

Verification Private Public Private Public Private Public Private Public

Schemes [5], [7], [16], [13], [18] [21], [11], [22] [18] [23], [3] [14], Ψf [26] [9]

Forward private Not applicable [23], Ψf

1.2 Organization

We have briefly described the works related to verifiable SSE in Sect. 2. We
have discussed the required preliminary topics in Sect. 3. In Sect. 4, we present
our proposed generic construction of publicly verifiable DSSE scheme in details.
We have compared its complexity with similar publicly verifiable schemes in
Sect. 5. Finally, we summaries our work in Sect. 6 with possible future direction
of research.

2 Related Works

The term Searchable Symmetric Encryption is first introduced by Curtmola et
al. [8] where they have given formal definition of keyword search schemes over
encrypted data. Later, Chase et al. [6] and Liesdonk et al. [12] presented sin-
gle keyword search SSE for static database. Thereafter, as the importance of
database updating is increased, the work has been started on dynamic SSE. SSE
deals with set of documents where each contains some keywords. There are works
considering graph data where queries are shortest distance query, link prediction
query [17], neighbor query [6] etc.

Kamara et al. [10] first have introduced a dynamic single keyword search
scheme based on encrypted inverted index. There are remarkable works on single
keyword search on dynamic database. However, file-injection attack, by Zhang
et al. [25] have forced the researchers to think about dynamic SSE schemes to be
forward private. It is easy to achieve forward privacy with ORAM. However, due

358 L. Sardar and S. Ruj

to large cost of communication, computation and storage, ORAM based schemes
are almost impractical.

In 2016 Bost [2] has presented a non-ORAM based forward private dynamic
SSE scheme. Later, few more forward private schemes have been proposed.
Though, the works [4], [19] etc. provide backward privacy, now we are not bother
about it since there is no formal attack on non-backward private DSSE schemes.
Though, till now there are no formal attack on non-backward private DSSE
schemes, there are works [4] and [19] that provide backward privacy. In most of
the above mentioned schemes, the cloud service providers are considered to be
honest-but-curious. However, the schemes fails to provide security in presence of
malicious cloud server.

Chai and Gong [5] have introduced the first VSSE scheme. They stores the set
of document identifiers in a trie like data structure where each node correspond-
ing to some keyword stores identifiers containing it. Secure indistinguishability
obfuscation based VSSE scheme, proposed by Cheng et al. [7], supports Boolean
queries and provides publicly verifiability on the return result. Ogata and Kuro-
sawa [16] have presented a no-dictionary generic private verifiable SSE scheme
using cuckoo hash table. With multi-owner setting, Liu et al. [13] have presented
a VSSE with aggregate keys. However, all of the above schemes were for static
database and are privately verifiable where the VSSE schemes by Soleimanian
and Khazaei [18] and Zhang et al. [24] are publicly verifiable.

The above works are only for static data. There are few works also that deals
with complex queries when the data is static. Conjunctive query on static data
has been studied by Sun et al. [20], Miao et al. [15], Wang et al. [21], Li et al. [11]
etc. These schemes have private verifiability. Boolean range queries on SSE has
been studied by Xu et al. [22]. Though, their verification method is public, since
the verification is based over blockchain databases it has good monetary cost.

Dynamic verifiable SSE with complex queries also has been studied. Zhu et
al. [26] presented a dynamic fuzzy keyword search scheme which is privately
verifiable and Jiang et al. [9] has studied Publicly Verifiable Boolean Query on
dynamic database. Moreover, single keyword search scheme on dynamic data is
described by Yoneyama and Kimura [23], Bost et al. [3] etc.

A publicly verifiable SSE scheme is recently also proposed by Miao et al. [14].
Yoneyama and Kimura [23] presented a scheme based on Algebraic PRF which
is verifiable as well as forward private that performs single keyword search. How-
ever, the scheme is privately verifiable and the owner requires significant amount
of computation for verification.

Our proposed scheme Ψf is generic forward private verifiable scheme which
is compatible with any existing forward private DSSE scheme. Our scheme also
do not use any extra owner-storage for verifiability and has minimal search time
computation for the owner.

FSPVDsse: A Forward Secure Publicly Verifiable Dynamic SSE Scheme 359

3 Preliminaries

3.1 Cryptographic Tools

Bilinear Map. Let G and GT be two (multiplicative) cyclic groups of prime
order q. Let G = <g>. A map ê : G × G → GT is said to be an admissible non-
degenerate bilinear map if – (a) ê(ua, vb) = ê(u, v)ab, ∀u, v ∈ G and ∀a, b ∈ Z

(bilinearity) (b) ê(g, g) �= 1 (non-degeneracy) (c) ê can be computed efficiently.

Bilinear Hash. Given a bilinear map ê : G × G → GT and a generator g, a
bilinear hash H : {0, 1}∗ → G maps every random string to an element of G.
The map is defined as H(m) = gm, ∀m ∈ {0, 1}∗.

Bilinear Signature (BLS). Let ê : G × G → GT be a bilinear map where
|G| = |GT | = q, a prime and G =< g >. A bilinear signature (BLS) scheme
S=(Gen, Sign, Verify) is a tuple of three algorithms as follows.

– (sk, pk) ← Gen: It selects α
$←− [0, q − 1]. It keeps the private key sk = α.

publishes the public key pk = gα.
– σ ← Sign(sk,m): Given sk = α, and some message m, it outputs the signa-

ture σ = (H(m))α = (gm)α where H : {0, 1}∗ → G is a bilinear hash.
– {0/1} ← Verify(pk,m, σ): Return whether ê(σ, g) = ê(H(m), gα).

3.2 System Model

In this section, we briefly describe the system model considered in this paper.
In our model of verifiable dynamic SSE, there are three entities–Owner, Auditor
and Cloud. The system model is shown in the Fig. 1. We briefly describe them
as follows.

Fig. 1. The system model

1. Owner: Owner is the owner as well as user of the database. It is considered
to be trusted. It builds an secure index, encrypts the data and then outsources
both to the cloud. Later, it sends encrypted query to the cloud for searching.
Therefore, it is the querier as well. It is the client who requires the service.

360 L. Sardar and S. Ruj

2. Cloud: Cloud or the cloud server is the storage and computation service
provider. It stores the encrypted data sent from the owner and gives result
of the query requested by it. The cloud is assumed to be malicious. It can
deviate from protocol by not only computing on, or not storing the data but
also making the querier fool by returning incorrect result.

3. Auditor: Auditor is an honest-but-curious authority which does not collude
with the cloud. Its main role is to verify whether the cloud executes the
protocol honestly. It tells the querier whether the returned result is correct
or not.

3.3 Design Goals

Assuming the above system model, we aim to provide solution of the verifiability
problem of existing forward private schemes. In our design, we take care to
achieve the following objectives.

1. Confidentiality: The cloud servers should not get any information about
the uploaded data. On the other hand, queries should not leak any informa-
tion about the database. Otherwise the cloud may get knowledge about the
plaintext information.

2. Efficiency: In our model, the cloud has a large amount of computational
power as well as good storage. The owner is weak. So, in the scheme the
owner should require significantly small amount of computation and storage
cost while performing verifiability.

3. Scalability: Since, the owner have to pay for the service provided by the
cloud, it is desirable to outsource as much data as possible. The owner should
capable to outsource large amount of data to the cloud. On the other hand,
the cloud should answer the queries fast using less computation power.

4. Forward privacy: It is observed previously that a DSSE scheme without
forward privacy is vulnerable to even honest-but-curious adversary. So, our
target is to make a publicly verifiable DSSE scheme without loosing its for-
ward privacy property.

3.4 Definitions

Let W be a set of keywords. D be the space of document identifiers and DB
be the set of documents to be outsourced. Thus, DB ⊆ D. For each keyword
w ∈ W, the set of document identifiers that includes w is denoted by DB(w) =
{idw

1 , idw
1 , . . . , idw

cw
}, where cw = |DB(w)| and idw

i ∈ DB. Thus,
⋃

w∈W
DB(w) ⊆

DB. Let DB = {cid : id ∈ D} where cid denotes the encrypted document that
has identifier id.

We assume that there is a one-way function H ′ that maps each identifier id
to certain random numbers. These random numbers is used as document name
corresponding to the identifier. The function is can be computed by both the
owner and cloud. However, from a document name, the identifier can not be

FSPVDsse: A Forward Secure Publicly Verifiable Dynamic SSE Scheme 361

recovered. Throughout, we use identifiers. However, when we say cloud returns
documents to the owner, we assume the cloud performs the function on every
identifiers before returning them.

Let, H : {0, 1}∗ → {0, 1}λ be a cryptographic hash function, H be a bilinear
hash, R : {0, 1}∗ → {0, 1}∗ be a PRNG and F : {0, 1}λ × {0, 1}∗ → {0, 1}λ be a
HMAC. A stateful algorithm stores its previous states and use them to compute
the current state.

3.5 Verifiable Dynamic Searchable Symmetric Encryption (VDSSE)

An SSE scheme allows a client to outsource a dataset it owns to a cloud service
provider in encrypted form without loosing the ability to perform query over
the data. The most popular query is the keyword search where the dataset is a
collection of documents. The client can retrieve partial encrypted data without
revealing any meaningful information to the cloud. Throughout we take query
as single keyword search query.

A dynamic SSE (DSSE) scheme is a SSE scheme that supports updates. A
Verifiable DSSE (VDSSE) scheme is a DSSE scheme together with verifiability.
The verification can be done either by an external auditor or the owner. The
primary reason to bring a auditor is to reduce computational costs of verifiability
at owner-side. This allows an owner to be lightweight.

Though a VDSSE scheme supports update, we do not verify whether the
cloud updates the database correctly or not. We only want to get the correct
result with respect to current state of the database. If cloud updates the database
incorrectly, it can not give the actual result. Due to verifiability, it will be failed in
verification process to the auditor. We define a verifiable DSSE scheme formally
as follows.

Definition 1 (Verifiable Dynamic SSE.) A verifiable dynamic SSE
(VDSSE) scheme Ψ is a tuple (VKeyGen, VBuild, VSearchToken, VSearch,
VUpdateToken, VUpdate) of algorithms defined as follows.

– K ← VKeyGen(1λ): It is a probabilistic polynomial-time (PPT) algorithm
run by the owner. Given security parameter λ it outputs a key K.

– (DB, γ) ← VBuild(K,DB): The owner run this PPT algorithm. Given a key
K and a set of documents DB, it outputs the encrypted set of documents
DB and an encrypted index γ.

– τs ← VSearchToken(K,w): On input a keyword w and the key K, the owner
runs this PPT algorithm to output a search token τs.

– (Rw, νw) ← VSearch(ts, γ): It is a PPT algorithm run by the cloud and the
auditor collaboratively that returns a set of document identifiers result Rw

to the owner with verification bit νw.
– τu ← VUpdateToken(K, id): It is a owner-side PPT algorithm that takes the

key K and a document identifier id and outputs a update token τu.
– (DB

′
, γ′) ← VUpdate(τu, op, γ,DB): It is a PPT algorithm run by the cloud.

It takes an update token τu, operation bit op, the encrypted document set
DB and the index γ and outputs updated (DB

′
, γ′).

362 L. Sardar and S. Ruj

Computational Correctness. A VDSSE scheme Ψ is said to be correct if
∀λ ∈ N, ∀K generated using KeyGen(1λ) and all sequences of search and update
operations on γ, every search outputs the correct set of identifiers, except with
a negligible probability.

Verifiability. Note that, when we are saying a scheme is verifiable, it means
that it verifies whether the search result is from the currently updated state of
the database according to the owner. Verification does not include update of
the database at cloud side. For example, let an owner added a document with
some keywords and the cloud does not update the database. Later, if the owner
searches with some keywords present in the document and it should get the
identifier of the document in the result set. Then, the result can be taken as
verified.

3.6 Security Definitions

We follow security definition of [18]. There are two parts in the definition –
confidentiality and soundness. We define security in adaptive adversary model
where the adversary can send query depending on the previous results. Typically,
most of the dynamic SSE schemes define its security in this model.

A DSSE, that does not consider verifiability, considers honest-but-curious
(HbC) cloud server. In these cases, The owner of the database allows some leak-
age on every query made. However, it guarantees that no meaningful information
about the database are revealed other than the allowed leakages. Soundness def-
inition ensures that the results received form the cloud server are correct.

Confidentiality. Confidentiality ensures that a scheme does not give any mean-
ingful information other than it is allowed. In our model, we have considered the
cloud to be malicious. However, the auditor is HbC. Since, verifiability has some
monetary cost for the owner, it wants verifiability only when it is required. Also
the auditor does not have the database and search ability. Given the proof, it
only verifies the result. Thus, if the scheme is secure from cloud, it is so from
auditor. Again, we have assumed that the cloud and the auditor do not collude.
Hence, we do not consider the auditor in our definition of confidentiality.

Definition 2 (CKA2-Confidentiality.)
Let Ψ = (VKeyGen, VBuild, VSearchToken, VSearch, VUpdateToken) be a verifi-
able DSSE scheme. Let A, C and S be a stateful adversary, a challenger and a
stateful simulator respectively. Let L = (Lbld,Lsrch,Lupdt) be a stateful leakage
algorithm. Let us consider the following two games.

RealA(λ):

1. The challenger C generates a key K ← VKeyGen(1λ).
2. A generates and sends DB to C.
3. C builds (DB, γ) ← VBuild(K,DB) and sends (DB, γ) it to A.

FSPVDsse: A Forward Secure Publicly Verifiable Dynamic SSE Scheme 363

4. A makes a polynomial number of adaptive queries. In each of them, it sends
either a search query for a keyword w or an update query for a keyword-
document pair (w, id) and operation bit op to C.

5. C returns either a search token τs ← VSearchToken(K,w) or an update token
τu ← VUpdateToken(K, id) to A depending on the query.

6. Finally A returns a bit b that is output by the experiment.

IdealA,S(λ):

1. A generates a set DB of documents and gives it to S together with Lbld(DB).
2. S generates (DB, γ) and sends it to A
3. A makes a polynomial number of adaptive queries q. For each query, S is

given either Lsrch(w,DB) or Lupdt(op, w, id) depending on the query.
4. S returns, depending on the query q, to A either search token τs or update

token τu.
5. Finally A returns a bit b′ that is output by the experiment.

We say Ψ is L-secure against adaptive dynamic chosen-keyword attacks if ∀
PPT adversary A, ∃ a simulator S such that

|Pr[RealA(λ) = 1] − Pr[IdealA,S(λ) = 1]| ≤ μ(λ) (1)

where μ(λ) is negligible in λ.

Soundness. The soundness property ensures that if a malicious cloud tries to
make the owner fool by returning incorrect result it will be caught to the auditor.
We define game-based definition of soundness as follows.

Definition 3. Let Ψ be a verifiable DSSE scheme with Ψ = (VKeyGen, VBuild,
VSearchToken, VSearch, VUpdateToken). Let us consider the following game.

soundA,Ψ (λ):

1. The challenger C generates a key K ← VKeyGen(1λ).
2. A generates and sends DB to C.
3. C computes (DB, γ) ← VBuild(K,DB) and sends (DB, γ) to A.
4. A makes a polynomial number of adaptive queries. In each of them, it sends

either a search query for a keyword w or an update query for a keyword-
document pair (w, id) and operation bit op to C.

5. C returns either a search token τs ← VSearchToken(K,w) or an update token
τu ← VUpdateToken(K, id) to A depending on the query.

6. After making polynomial number of queries, A chooses a target keyword w
and send search query to C.

7. C returns a search token τs. A executes and gets (Rw, νw) where νw = accept
is verification bit from C.

8. A generates pair (R∗
w) for a keyword w and gets verification bit ν∗

w = accept.
9. If ν∗

w = accept even when R∗
w �= DB(w), A returns 1 as output of the game,

otherwise returns 0.

We say that Ψ is sound if ∀ PPT adversaries A, Pr[soundA,Ψ (λ) = 1] ≤ μ(λ).

364 L. Sardar and S. Ruj

4 Our Proposed FSPVDsse Scheme

In this section, we propose a simple generic dynamic SSE scheme which is forward
secure as well as verifiable. Let Σf = (KeyGen, Build, Search, SearchToken,
Update, UpdateToken) be a result revealing forward secure dynamic SSE scheme.

It is to be noted that any forward private SSE scheme stores the present
state of the database at client side. Corresponding to each keyword, most of
them stores the number of documents containing it. Let C = {cw : w ∈ W} be
the list of such numbers.

Since, it considers any forward secure scheme Σf , it only adds an additional
encrypted data structure to make the scheme verifiable. The algorithms of Our
proposed scheme are given in Fig. 2. They are divided into three phases– initial-
ization, search and update.

Initialization Phase: In this phase, secret and public keys are generated by
the owner and thereafter the encrypted searchable structure is built. During key
generation, three types of keys are generated – KΣf

for the Σf ; (sk, pk) for
the bilinear signature scheme; and two random strings Ks,Kt for seed and tag
generation respectively.

Thereafter, a signature table Tsig is generated, before building the secure
index γ and encrypted database DB, to store the signature corresponding
to each keyword-document pair. For each pair (w, idw

i), the position posw
i =

F (tagw, idw
i ||i) is generated with a HMAC F . The position is actually act as key

of a key-value pair for a dictionary. The document identifier is bounded with
posw

i together with tagw = F (Kt, w). The tagw is fixed for a keyword and is
given to the server to find posw

i . The signature σw
i for the same pair is also

bounded with random number rw
i which can only be generated from PRG R

with the seed sw. Then (σw
i , posw

i) pair is added in the table Tsig as key-value
pair. After the building process, the owner outsources γ, DB and Tsig to the
cloud.

Search Phase: In this phase, the owner first generates a search token τΣf
to

search on Σf . Then, it regenerates the tagw and the seed sw and then, sends
them to the cloud.

The cloud performs search operation according to Σf and use the result
identifiers {id1, id2, . . . idc′

w
} to gets the position in Tsig corresponding to each

pair. It is not able to generate the positions if it does not search for the document
identifiers. It collects the signatures stored in those positions, multiplies them
and sends multiplication result to the auditor as its part pfc of the proof. It
sends the search result to the owner.

The owner first generates random numbers {r1, r2, . . . rc′
w
} and regenerates

aggregate message m =
∑i=c′

w
i=1 ri.id

w
i mod q of the identifiers and sends m

to the auditor as pfo, owner’s part of the proof. After receiving pfc and pfo,
the auditor only computes S.Verify(pk,m, σ′). It outputs accept if signature
verification returns success. We can see that the no information about the search
results is leaked to the auditor during verification.

FSPVDsse: A Forward Secure Publicly Verifiable Dynamic SSE Scheme 365

Ψf .VKeyGen(1λ)

1. KΣf ← Σf .KeyGen(1λ)
2. (sk, pk) ← S.Setup(1λ)
3. Ks ← {0, 1}λ

4. Kt ← {0, 1}λ

5. Return KΨf = (Kt, Ks, sk, pk, KΣf)

Ψf .VBuild(DB, KΨf)

1. Tsig ← empty list of size |W|
2. for w ∈ W

(a) sw ← F (Ks, w); tagw ←
F (Kt, w)

(b) for i = 1 to cw(= |DB(w)|)
i. rw

i ← R(sw||i);
ii. mw

i ← rw
i .idw

i mod q
iii. σw

i ← S.Sign(sk, mw
i)

iv. posw
i ← F (tagw, idw

i ||i)
v. Tsig[posw

i] ← σw
i

3. (γ, DB) ← Σf .Build(DB, KΣf)
4. Return (γ, DB, Tsig) to the cloud

Ψf .VSearchToken(w, KΨf)

1. (Kt, Ks, sk, pk, KΣf) ← KΨf

2. τΣf ← Σf .SearchToken(w, KΣf)
3. tagw ← F (Kt, w);
4. τ

Ψf
s ← (τΣf , tagw)

5. Return τ
Ψf
s to cloud

Ψf .VSearch(γ, τ
Ψf
s)

Cloud:

1. Receive τΨf = (τΣf , tagw) from
Owner

2. {id′w
1 , . . . , id′w

c′
w

} ← Σf .Search(γ, τΣf)
3. for i = 1 to c′

w

(a) posw
i ← F (tagw, id′w

i ||i)
(b) σ′

i ← Tsig[posw
i];

4. σ′ ← ∏c′
w

i=1 σ′
i

5. Rw ← {id′w
1 , id′w

2 , . . . , id′w
c′
w

}
6. pfc ← σ′

7. Return pfc to auditor and Rw to
Owner

Owner:

1. Receives Rw

2. cw ← C[w]
3. If cw �= c′

w Return reject bit.
4. sw ← F (Ks, w)
5. for i = 1 to cw do

(a) rw
i ← R(sw||i)

(b) mw
i ← id′w

i .rw
i mod q

6. m =
∑cw

i=1 mw
i mod q

7. Send pfo = m to the auditor

Auditor:
1. Receives pfo = m from owner and

pfc = σ′ from cloud
2. bv ← S.Verify(pk, m, σ′)
3. If bv = failure, Return reject

Ψf .VUpdateToken(KΨf , w, id)

1. τu ← Σf .UpdateToken(KΣf , w, id)
2. Return τu

Ψf .VUpdate(Ttag, γ, τu)

Owner:
1. {w1, w2, . . . , wnid} ∈ id
2. for i = 1 to nid

(a) τu ← Ψf .VUpdateToken(KΨf , wi, id)
∀i ∈ [cw]

(b) bv ← Σf .Update(γ, τu)
(c) if bv �= succsess Return

3. for i = 1 to nid

(a) tagwi ← F (Kt, wi)
(b) cwi ← C[wi]
(c) sw ← F (Ks, w);
(d) r ← R(sw||(cwi + 1))
(e) m ← id.r mod q
(f) σi ← S.Sign(sk, m)
(g) posi ← F (tagwi , id||(cwi + 1))
(h) C[w] = C[w] + 1

4. pos ← {pos1, pos2, . . . , posnid}
5. σ ← {σ1, σ2, . . . , σnid}
6. send τ

Ψf
u = (pos, σ) to cloud

Cloud:
1. {pos1, pos2, . . . , posnid} ← pos
2. {σ1, σ2, . . . , σnid} ← σ
3. Tsig[posi] ← σi, ∀i ∈ [nid]

Fig. 2. Generic verifiable dynamic SSE scheme Ψf without extra client storage

Update Phase: In our scheme, while adding a document, instead of being
updated only a keyword-document pair, we assume that all such pairs corre-

366 L. Sardar and S. Ruj

sponding to the document is added. To add a document with identifier id and
keyword set {w1, w2, . . . , wnid

}, the owner generates the position and the corre-
sponding signature for each containing keyword. The cloud gets them from the
owner and adds them in the table Tsig.

Correctness. For correctness it is enough to check the following.

ê(H(m), pk) = ê(gm, gα) = ê(gα
∑

mi , g) = ê(
∏

gαmi , g) = ê(
∏

σi, g) = ê(σ, g)

Cost for Verifiability. We achieve, forward privacy as well as public verifia-
bility without client storage in Ψf . This increases the cloud-storage by O(N),
where N is the number of document-keyword pairs. The proof has two parts one
from the client and another from the owner. For a keyword w, the sizes of them
are one group element and one random λ-bit string only. Thus Auditor receives
one element from both. The owner has to compute Rw integer multiplication
and addition, and then has to send one element.

Forward Privacy. We can see that while adding a document, it only adds some
keyword-document pair, in the form of key-value pairs. So, During addition, the
cloud server is adding key-value pairs in the dictionary. From these pairs, it can
not guess the keywords present in it. Again, when it perform searches, it gets
about the key (i.e., position on the table) only when it gets the identifiers. The
one possibility to get the newly added key-value pair linked with the previous
is if the added document gives the identifier of it. Since, the one-way function
H ′ gives the document-name of the adding document, the cloud server can not
linked it with the previously searched keywords.

4.1 Security

The security of the scheme is shown in two parts – confidentiality and soundness.

Soundness. The cloud server can cheat the owner in three ways by sending

1. Incorrect number of identifiers – but it is not possible as the owner keeps the
number of identifiers.

2. Same size result of other keywords – m is generated with a random numbers
which can be generated only with the searched keyword and signatures are
bound with that. So, the signature verification will be failed.

3. Result with some altered identifiers – since signatures are bounded with
keywords and the random number, altering any will change m and similarly
the signature verification will be failed.

Thus the owner always will get the correct set of document identifiers.

Confidentiality. Let LΣf = (LΣf

bld ,LΣf

srch,LΣf

updt) the leakage function of Σf . Let

LΨf = (LΨf

bld,LΨf

srch,LΨf

updt) be the leakage function of Ψf , given as follows.

FSPVDsse: A Forward Secure Publicly Verifiable Dynamic SSE Scheme 367

LΨf

bld(DB) = {LΣf

bld(DB), |Tsig|}
LΨf

srch(w) = {LΣf

srch(w), {(idw
i , posw

i , σw
i) : i = 1, 2, . . . , cw}}

LΨf

updt(f) = {id, {(LΣf

updt(wi, id), poswi , σwi) : i = 1, 2, . . . , nid}}

We show that Ψ is LΨf -secure against adaptive dynamic chosen-keyword attacks
in the random oracle model, in the following theorem.

Theorem 1. If F is a PRF, R is a PRG and Σf is LΣf -secure, then Ψf is
LΨf -secure against adaptive dynamic chosen-keyword attacks.

Simulating F We simulate R with a table RO.
Given (x, y), If RO[(x, y)] = ⊥, then do
RO[(x, y)] ← {0, 1}λ and return RO[(x, y)], else
return the existing value RO[(x, y)].

Simulating Build Leakage function is given by
LΨf

bld(DB) = {LΣf

bld(DB), |Tsig|}. Let Sbld be re-
turned by the simulator SimΣf

. Let us consider
a table T̃tag. For each keyword w it stores a ran-
dom λ-bit string. On input w, it returns t̃agw ←
T̃tag(w). SimΨf

keeps an extra table T̃ ′
sig such that

it indicates whether the entry is queried or not.
The simulation is done as follows.

1. Take empty tables T̃sig and T̃ ′
sig

2. For each i = 1 to i = |Tsig| do
(a) posi

$←− {0, 1}λ; r′
i

$←− {0, 1}λ

(b) vali
$←− gr′

i

(c) T̃sig[posi] ← vali
(d) T̃ ′

sig[posi] ← 0
3. Simulate Σf with Sbld ← SimΣf

(DB)(LΣf

bld(DB))
4. return (Sbld, T̃sig) and keeps T̃ ′

sig

Simulating Search token Leakage function for a
queried keyword w is given by LΨf

srch(w) =
{LΣf

srch(w), {(idw
i) : i = 1, 2, . . . , cw}}.

We keep a table RO where (t̃agw, id, i) is the
key and pos is the value. Given search leakage cor-
responding to the keyword w, SimΨf

does the fol-
lowing things.

1. If T̃tag[w] is null, i.e, the keyword is searched
first time
(a) t̃agw

$←− {0, 1}λ

(b) T̃tag[w] ← t̃agw

Else
(a) t̃agw ← T̃tag[w]

2. If RO[(t̃agw, idw
i , i)] is not null,

(a) posi ← RO[(t̃agw, idw
i , i)]

Else
(a) posi ← a random posi such that

T̃ ′
sig[posi] = 0

(b) RO[(t̃agw, idw
i , i)] ← posi

(c) T̃ ′
sig[posi] ← 1

3. Simulate Σf with τ̃Σf
← SimΣf

(LΣf

srch(w))
4. return τ̃

Ψf
s = (τ̃Σf

, t̃agw)

Simulating Update token Leakage function to add
a document f with identifier id containing key-
word set {w1, w2, . . . , wnw} is given by

LΨf

updt(f) = {H ′(id), {(LΣf

updt(wi, id)) : i =
1, 2, . . . , nid}}.

1. For each keyword wi ∈ f

(a) τ̃ i
u ← SimΣf

(LΣf

updt(w, id))
(b) If T̃tag[wi] is null, i.e, the keyword is

searched first time
i. t̃agwi

$←− {0, 1}λ

ii. T̃tag[wi] ← t̃agw

Else
i. t̃agwi

← T̃tag[wi]
(c) cwi ← C[wi] + 1
(d) If RO[(t̃agwi

, id, (cwi
+ 1))] is not null,

i. p̃osi ← RO[(t̃agwi
, id, (cv + 1))]

Else
i. p̃osi ← a random posi such that

T̃sig[posi] is null
ii. RO[(t̃agwi

, id, (cwi + 1))] ← p̃osi

iii. T̃ ′
sig[posi] ← 1

(e) σ̃i
$←− G

2. p̃os ← {p̃os1, p̃os2, . . . , p̃osnid
}

3. σ̃ ← {σ̃1, σ̃2, . . . , σ̃nid
}

4. Return τ̃
Ψf
u = (p̃os, σ̃)

Fig. 3. Simulation of build, search token and update token

368 L. Sardar and S. Ruj

Proof. To prove the above theorem, it is sufficient to show that there exists a
simulator SimΣf

such that ∀ PPT adversary A, the output of RealA(λ) and
IdealA,SimΣf

(λ) are computationally indistinguishable.
We construct such a simulator SimΣf

which adaptively simulates the extra
data structure Tsig and query tokens. Let SimΣf

be the simulator of the Σf . We
simulate the algorithms in Fig. 3.

Since, in each entry, the signature generated in Tsig is of the form gαmr

and corresponding entry in T̃sig is of the form gαr′
, where r is pseudo-random

(as R is so) and r′ is randomly taken, we can say that power of g in both are
indistinguishable. Hence, Tsig and T̃sig are indistinguishable.

Besides, the indistinguishability of τ̃
Ψf
u , τ̃

Ψf
s with respect to τ

Ψf
s , τ

Ψf
u respec-

tively follows from the pseudo-randomness of F .

4.2 Deletion Support

Ψf can be extended to deletion support by duplicating it. Together with Ψf for
addition, a duplicate Ψ ′

f can be kept for deleted files. During search, the auditor
verifies both separately. The client gets result from both Ψf and Ψ ′

f , accepts only
if both are verified and gets the final result calculating the difference.

5 Comparison with Existing Schemes

We have compared our verifiable DSSE scheme Ψf with verifiable dynamic
schemes by Yoneyama and Kimura [23], Bost and Fouque [3], Miao et al. [14],
Zhu et al. [26] and Jiang et al. [9]. The comparison is shown in Table 2. From the
table, it can be observed that Ψf is very efficient with respect to low resource
owner. Extra computation needed by the owner, to verify the search, is only |Rw|
multiplication which very less from the others. The owner also does not require
any extra storage than the built in forward secure DSSE scheme.

Table 2. Comparison of verifiable dynamic SSE schemes

Scheme

name

Forward

privacy

Public

verifia-

bility

Extra

Storage

Extra

Computation

Extra Commu-

nication

Owner Cloud Owner Cloud Auditor Owner Auditor

Yoneyama

and

Kimura [23]

� × O(|W|) O(|W|log|DB|) O(|Rw|) O(|Rw|) – O(1) –

Bost and

Fouque [3]

× × O(|W|) O(|W|) O(|Rw|) O(1) – O(1) –

Miao et

al. [14]

× � O(|W|) O(N + |W|) O(|Rw|) O(|Rw|) – O(1) –

Zhu et

al. [26]

× × O(1) O(1) O(|Rw|) O(|Rw| + N) – O(|Rw|) –

Jiang et

al. [9]

× � O(1) O(|W|) O(log |W|) O(|Rw| + N) – O(1) –

Ψf � � O(1) O(N) O(|Rw|) O(|Rw|) O(1) O(1) O(1)

Where N is the #keyword-doc pairs. Here extra storage is calculated over all storage, extra communication

and computation are for a single search.

FSPVDsse: A Forward Secure Publicly Verifiable Dynamic SSE Scheme 369

6 Conclusion

Throughout, we have seen that we have successfully presented a publicly verifi-
able dynamic SSE scheme which is are simple and easy to integrate. Moreover,
the VDSSE scheme achieves forward secrecy. In the scheme, we have achieved
our target to make efficient for low-resource owner. Due to low computational
and communication cost of the owner, we do need an auditor. The presence of
the auditor, who verifies the search result, reduces workload of the owner.

Our proposed scheme is only for single keyword search queries. There are
many other complex queries too. As a future work, one can design complex
queried verifiable DSSE scheme. On the other hand, while designing, keeping
them forward secret is also a challenging direction of research.

References

1. Azraoui, M., Elkhiyaoui, K., Önen, M., Molva, R.: Publicly verifiable conjunctive
keyword search in outsourced databases. In: 2015 IEEE Conference on Communi-
cations and Network Security, CNS 2015, Florence, Italy, 28–30 September 2015,
pp. 619–627 (2015)

2. Bost, R.:
∑

oϕoς: forward secure searchable encryption. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, 24–28 October 2016, pp. 1143–1154 (2016)

3. Bost, R., Fouque, P., Pointcheval, D.: Verifiable dynamic symmetric searchable
encryption: optimality and forward security. IACR Cryptol. ePrint Arch. 2016, 62
(2016)

4. Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private searchable
encryption from constrained cryptographic primitives. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, 30 October–03 November 2017, pp. 1465–1482 (2017)

5. Chai, Q., Gong, G.: Verifiable symmetric searchable encryption for semi-honest-
but-curious cloud servers. In: Proceedings of IEEE International Conference on
Communications, ICC 2012, Ottawa, ON, Canada, 10–15 June 2012, pp. 917–922
(2012)

6. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 33

7. Cheng, R., Yan, J., Guan, C., Zhang, F., Ren, K.: Verifiable searchable symmetric
encryption from indistinguishability obfuscation. In: Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security, ASIA CCS
2015, Singapore, 14–17 April 2015, pp. 621–626 (2015)

8. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: Proceedings of
the 13th ACM Conference on Computer and Communications Security, CCS 2006,
Alexandria, VA, USA, 30 October–3 November 2006, pp. 79–88 (2006)

https://doi.org/10.1007/978-3-642-17373-8_33

370 L. Sardar and S. Ruj

9. Jiang, S., Zhu, X., Guo, L., Liu, J.: Publicly verifiable boolean query over
outsourced encrypted data. In: 2015 IEEE Global Communications Conference,
GLOBECOM 2015, San Diego, CA, USA, 6–10 December 2015, pp. 1–6 (2015)

10. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: The ACM Conference on Computer and Communications Security, CCS
2012, Raleigh, NC, USA, 16–18 October 2012, pp. 965–976 (2012)

11. Li, Y., Zhou, F., Qin, Y., Lin, M., Xu, Z.: Integrity-verifiable conjunctive keyword
searchable encryption in cloud storage. Int. J. Inf. Sec. 17(5), 549–568 (2018)

12. van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P., Jonker, W.: Computationally
efficient searchable symmetric encryption. In: Jonker, W., Petković, M. (eds.) SDM
2010. LNCS, vol. 6358, pp. 87–100. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15546-8 7

13. Liu, Z., Li, T., Li, P., Jia, C., Li, J.: Verifiable searchable encryption with aggregate
keys for data sharing system. Future Gener. Comp. Syst. 78, 778–788 (2018)

14. Miao, M., Wang, J., Wen, S., Ma, J.: Publicly verifiable database scheme with
efficient keyword search. Inf. Sci. 475, 18–28 (2019)

15. Miao, Y., Ma, J., Wei, F., Liu, Z., Wang, X.A., Lu, C.: VCSE: verifiable conjunctive
keywords search over encrypted data without secure-channel. Peer-to-Peer Netw.
Appl. 10(4), 995–1007 (2017)

16. Ogata, W., Kurosawa, K.: Efficient no-dictionary verifiable searchable symmetric
encryption. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 498–516. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70972-7 28

17. Sardar, L., Ruj, S.: The secure link prediction problem. Adv. Math. Commun.
13(4), 733–757 (2019)

18. Soleimanian, A., Khazaei, S.: Publicly verifiable searchable symmetric encryption
based on efficient cryptographic components. Des. Codes Crypt. 87(1), 123–147
(2019)

19. Sun, S., et al.: Practical backward-secure searchable encryption from symmetric
puncturable encryption. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, ON, Canada, 15–19
October 2018, pp. 763–780 (2018)

20. Sun, W., Liu, X., Lou, W., Hou, Y.T., Li, H.: Catch you if you lie to me: efficient
verifiable conjunctive keyword search over large dynamic encrypted cloud data. In:
2015 IEEE Conference on Computer Communications, INFOCOM 2015, Kowloon,
Hong Kong, 26 April–1 May 2015, pp. 2110–2118 (2015)

21. Wang, J., Chen, X., Sun, S.-F., Liu, J.K., Au, M.H., Zhan, Z.-H.: Towards effi-
cient verifiable conjunctive keyword search for large encrypted database. In: Lopez,
J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11099, pp. 83–100.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98989-1 5

22. Xu, C., Zhang, C., Xu, J.: vChain: enabling verifiable boolean range queries over
blockchain databases. CoRR abs/1812.02386 (2018)

23. Yoneyama, K., Kimura, S.: Verifiable and forward secure dynamic searchable sym-
metric encryption with storage efficiency. In: Qing, S., Mitchell, C., Chen, L., Liu,
D. (eds.) ICICS 2017. LNCS, vol. 10631, pp. 489–501. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-89500-0 42

24. Zhang, R., Xue, R., Yu, T., Liu, L.: PVSAE: a public verifiable searchable encryp-
tion service framework for outsourced encrypted data. In: IEEE International Con-
ference on Web Services, ICWS 2016, San Francisco, CA, USA, 27 June–2 July
2016, pp. 428–435 (2016)

https://doi.org/10.1007/978-3-642-15546-8_7
https://doi.org/10.1007/978-3-642-15546-8_7
https://doi.org/10.1007/978-3-319-70972-7_28
https://doi.org/10.1007/978-3-319-98989-1_5
https://doi.org/10.1007/978-3-319-89500-0_42

FSPVDsse: A Forward Secure Publicly Verifiable Dynamic SSE Scheme 371

25. Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: the
power of file-injection attacks on searchable encryption. In: 25th USENIX Security
Symposium, USENIX Security 16, Austin, TX, USA, 10–12 August 2016, pp. 707–
720 (2016)

26. Zhu, X., Liu, Q., Wang, G.: A novel verifiable and dynamic fuzzy keyword
search scheme over encrypted data in cloud computing. In: 2016 IEEE Trust-
com/BigDataSE/ISPA, Tianjin, China, 23–26 August 2016, pp. 845–851 (2016)

A Hidden Markov Model-Based Method
for Virtual Machine Anomaly Detection

Chaochen Shi1(B) and Jiangshan Yu2

1 China Mobile IoT Ltd., Chongqing, China
2011212793@bupt.edu.cn

2 Monash University, Melbourne, Australia
jiangshan.yu@monash.edu

Abstract. The normal operation of virtual machine is a necessity for
supporting cloud service. Motivated by the great desire of automated
abmornal operation detection, this paper proposes a Hidden Markov
Model-based method to conduct anomaly detection of virtual machine.
This model can depict normal outline base of virtual machine oper-
ation and detect system outliers through calculating non-match rate.
Through verifying the method in a real distributed environment, exper-
iment results indicate that this method has 1.1%–4.9% better detection
accuracy compared with two leading benchmarks with a much better
efficiency.

Keywords: Hidden Markov Model · Virtual machine ·
Anomaly detection · Cloud computing

1 Introduction

Cloud computing uses virtualization technology to achieve abstract processing
and dynamic allocation of computing resources. However, as the scale of cloud-
service continues to expand, the current virtualization environment encounters
many hidden security dangers, such as virtual machine sprawl and hardware
performance bottle-neck [1]. All of them lead to the failure rate of cloud environ-
ment staying at a high level. Anomaly detection strategy can check the abnormal
behavior of the system in time and notify the administrator to take actions to
keep the virtual machine running properly. Thus, to improve the security of
cloud-computing system, it is of vital significance to conduct anomaly detection
for virtual machine.

The Hidden Markov Model (HMM) [2] has been well applied in the fields of
genetic analysis and natural language processing, but it has not been applied in
virtual machine anomaly detection. Because the sample space of virtual machine
in cloud environment is large and contains various running parameters, the data
stream is a complex time-varying discrete time series. The HMM is a powerful
statistical tool for describing such discrete-time data samples, which can better
represent the running state of the virtual machine, so the established model is
c© Springer Nature Switzerland AG 2019
R. Steinfeld and T. H. Yuen (Eds.): ProvSec 2019, LNCS 11821, pp. 372–380, 2019.
https://doi.org/10.1007/978-3-030-31919-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_24&domain=pdf
https://doi.org/10.1007/978-3-030-31919-9_24

A HMM-Based Method for Virtual Machine Anomaly Detection 373

more representative and accurate than traditional models. In addition, it only
needs a small amount of data in normal state to build a nearly complete feature
database by HMM; the feature library established by HMM method is small, so
the system exceptions can be detected more quickly; higher mismatching rate
between normal and abnormal states can be obtained by using HMM method,
so as to distinguish normal and abnormal states more efficiently.

Considering advantages mentioned above, this paper presents a HMM-based
virtual machine anomaly detection method. This method aims to use the HMM
to distinguish between normal and abnormal virtual machine running states
and to train and test in a real cloud environment. The basic idea is: building
up corresponding Hidden Markov prediction model and collecting the externally
observable performance data of virtual machine to train HMM. When virtual
machine is operating, deploy the trained HMM to detect the operating system
by collecting data in real time. This method can give full play to the advantages
of HMM, achieving rapid and accurate detection of virtual machine anomalies
without long-time model training.

The rest of this paper is constructed as follows. Section 2 introduces the
related work. Section 3 illustrates the modelling and training methods of HMM.
Section 4 gives the detection strategy based on the trained model. Evaluation
methods and experiment results are given in Sect. 5. Finally, the conclusion and
further study are provided in Sect. 6.

2 Related Work

Related research in the area of anomaly detection methods can be categorized
into two main areas as follows:

The first strategy is based on the clustering algorithm. Smith et al. [3] used
Self-Organization Maps (SOM) and other clustering algorithms to realize data
cluster, then determined the outliers through calculating the distances from test
data to their nearest centers of clusters. However, if outliers are many enough
to form individual clusters, clustering algorithm is difficult to detect this kind
of outliers.

The second strategy is based on the nearest neighbors. Breunig et al. [4]
proposed a nearest neighbor-based anomaly detection algorithm LOF (Local
Outlier Factor). This algorithm puts forward the “local outlier” concept. When
conducting anomaly decision towards any target in the data concentration, it
only considers the local spatial region of the target. Compared with traditional
algorithm detection, this algorithm has higher accuracy when the sample data
is not evenly distributed.

There are some other anomaly detection methods that could be used as
the basis of further study, such as algorithms based on neural network [5] and
Bayesian network [6]. In general, clustering and nearest neighbor algorithms have
disadvantages of high randomness and instability when processing mixed data in
virtual machine environment. Classifiers like SVM need massive labeled data. In
summary, methods with high accuracy, small feature library and short detection

374 C. Shi and J. Yu

period are rare. In this paper, we introduce HMM-based anomaly detection
method to fill the gap in the literature of cloud scenarios.

3 Formal Model

Hidden Markov Model is a dual random process and composed of two aspects;
one is implicit Markov chain that describes state transition, the other is common
random process that describes the corresponding relationship between states
and observed event sequence. Supposing the observed sequence of this model is
O = {O1, O2, . . . , OT }, the HMM system can be described by a quintuplet λ =
{N,M, π,A,B}. The notations used in the scheme are summarized in Table 1,
where the probability of an event A is written as P (A).

Table 1. Notations used in the scheme

N The number of states, the set of states is S = {S1, S2, . . . , SN}
M The number of observations, the set of observations is V = {V1, V2, . . . , VM}
A The transition probability matrix between hidden states q,

A = {aij}, aij = P (qt+1 = Sj | qt = Si) , 1 ≤ i, j ≤ N

B The probability matrix of observable states,
B = {bjk}, bjk = P (Ot = Vk | qt = Sj) , 1 ≤ k ≤ M

π An initial probability distribution over states,
π = {πi}, πi = P (q1 = i) , 1 ≤ i ≤ N

To build up a Hidden Markov Model, firstly, the state sets and monitor sets
of the model should be decided. Other three parameters, π,A,B, can either be
set artificially or be acquired with samples. According to the definition of HMM,
they should satisfy the following relation:

N∑

i=1

πi =
N∑

j=1

aij =
M∑

k=1

bjk = 1 (1)

For virtual machine, property indexes during system operation can be divided
into a time-varying discrete-time data sequence after sampling. The Hidden
Markov Model is a powerful statistical tool for describing discrete-time data
sequence. It has the ability of processing non-linear time-varying signal, so it can
be applied to describe the statistical law existing between the property index
and operation state of virtual machine. As stated above, the Hidden Markov
Model is a dual random process. The application of it here corresponds with
two sequences, one is hidden sequence of the internal operation state of virtual
machine, the other is observable virtual machine property index sequence. The
application of HMM in anomaly detection can be transformed into two main
procedures:

A HMM-Based Method for Virtual Machine Anomaly Detection 375

(1) The training model enables it to depict the normal operation outline of
virtual machine;

(2) The under-detection property index sequence of virtual machine is transmit-
ted into the model after completion of training. If it does not fit in with the
normal out-line, the system is abnormal.

This paper deploys the state set S to represent the state space of the system.
Due to the complexity of computer system [1], the definition of virtual machine
operation states is difficult to be generalized in a concrete way, so here the state
is comprehended as an abstract concept. In this paper, the state set S is set to
be S = {0, 1}, 0 represents normal state while 1 represents abnormal state. The
state amounts N is 2.The monitor set V in this paper is a property index set of
virtual machines.

In this paper, we choose Baum-Welch algorithm [7] to gradually learn three
parameters π,A,B of model λ from the training sample X. It belongs to a normal
EM iterative method. Repeating E-procedure and M-procedure until values of
πi, aij , bjk satisfy the convergence condition, and thus acquiring the trained
Hidden Markov Model.

4 Detection Strategy

The principle of detection is based on the conclusion that the normal behavior
pattern of virtual machine is consistent, and the exception will only cause the
drastic change of behavior pattern in a local range [9]. That is to say, the normal
state transition vector is stable, and the state transition vector obtained during
normal operation of the system should belong to the normal outline base. Once
it is found that the state transition vector is not in the normal outline base,
it indicates an exception. This section introduces the method of establishing
normal outline base and the corresponding anomaly detection method.

4.1 Acquiring the Best Transition Sequence

The hidden state sequence of the model can reflect the system operation situa-
tion more stable than the observable sequence. After the model training, state
sequence of normal operation is able to be input to the model and its corre-
sponding best state transition sequence would be acquired. The corresponding
model decoding problem can be solved by Viterbi algorithm [8]:

step 1: Setting the hidden system state qt to be Sj at the t moment, hidden state
path Q = (q1, q2, . . . , qt) (qt−1 = Si, qt = Sj). Viterbi variable δt(i) is
the maximum probability of observable sequence O = (O1, O2, . . . , Ot).
Thus,

δt(i) = max
1≤j≤N

[δt−1 (j) · aji] · bikt
, (2 ≤ t ≤ T ; 1 ≤ i ≤ N) (2)

376 C. Shi and J. Yu

Setting ϕt(i) to be the precedent state of current hidden state qt on the
state path of maximum probability, thus,

ϕt(i) = arg max
1≤j≤N

[δt−1 (j) · aji], (2 ≤ t ≤ T ; 1 ≤ i ≤ N) (3)

step 2: Deploying Viterbi algorithm to acquire the biggest final state qT
∗:

qT
∗ = arg max

1≤j≤N
[δT (i)] (4)

step 3: Each hidden state qt
∗ can be acquired through backtracking of state

sequence path:

qt
∗ = ϕt+1(j)(qt+1

∗), t = (T − 1, T − 2, . . . , 1) (5)

4.2 Setting up Normal Outline Base

The application of the method in Sect. 4.1 brings about virtual machine state
transition sequence Q = (q1, q2, . . . , qT) which corresponds to virtual machine
property index sequence O = (O1, O2, . . . , OT). Oi represents the i property
index vector in chronological arrangement, oi ∈ {V1, V2, . . . , VM}; qi represents
the i state in chronological arrangement, qi ∈ {S1, S2, . . . , SN}. The size of
sliding window is x. When the sliding window slides the sequence Q succes-
sively, a normal state transition vector e can be acquired each time a state
slides. Similarly, the sliding window slides all the sequences and the normal
state transition vector set E

′ ∈ {e1, e2, . . . , er−x+1} can be acquired, among
them, ei = (qi, qi+1, . . . , qi+x−1). After taking out the same normal state transi-
tion vectors in E

′
, the else constitute the normal outline base E of the system.

4.3 Detection Method

The detection principle bases on such a conclusion: the normal property indexes
of virtual machine have significative consistency, outliers usually cause prop-
erty indexes to change dramatically within a mere local range [9]. That is, the
acquired state transition vector e should belong to normal outline base dur-
ing the normal operation of virtual machine. Once state transition vectors that
appear intensively and are outside the normal outline base are discovered, virtual
machine is found abnormal.

To verify in the real case, within the period of virtual machine being
monitored, the sampled property parameter sequence of the system is O∗ =
(o1, o2, . . . , os). Through the sliding window method mentioned in section B,
state transition vector set E∗ = (e1, e2, . . . , es−x+1) is acquired, among them
ei = (qi, qi+1, . . . , qi+x−1), qi ∈ {S1, S2, . . . , SN}. Because normal outline base
has included all the normal state transition vectors, what we need to do is find-
ing out whether E contains a matching vector of ei. There are many methods
for matching, this paper deploys the most common matching method, complete
matching, to search for the totally same state transition vector in normal outline

A HMM-Based Method for Virtual Machine Anomaly Detection 377

base. If the matching fails, ei is a mismatching state transition vector. Supposing
the amount of mismatching state transition vectors is l, the mismatching rate of
the normal state transition sequence is:

η =
l

s − x + 1
× 100% (6)

η can well reflect outliers of virtual machine, the lower the η is, the more normal
the performance of virtual machine is. The threshold of η can be set flexibly to
adjust the sensitivity of anomaly detection in reality (0.1 in this paper). The
framework of the algorithm is shown as Algorithm1:

Algorithm 1. Framework of anomaly detection for virtual machine.
input: The sampled system property parameter sequence, O∗; A sliding window of

size k; The normal outline base, E; The threshold of anomaly judgement θ;
output: The result of anomaly detection, F (normal or abnormal);
1: Initializing N = 0, l = 0, F = normal. Inputting O∗ into trained Hidden Markov

Model as observed sequence and getting the state transition sequence Q∗ with
Viterbi algorithm;

2: Dividing Q∗ with the sliding window, getting the state transition vector set E∗;
3: Take a vector ei from E∗, finding the matching vector in E. If it is not found, go

to step 4; If all the vectors in E∗ are taken, return F ;
4: l = l + 1, calculating η. If η ≥ θ, F = abnormal, return F ; If not, go to step 3.

5 Experiment Environment and Results

5.1 Experiment Environment

This experiment bases on cluster built up by five servers, including one control
node and four computing nodes. Computing nodes belong to the same local area
network and have same soft hardware, they can be regarded as isomorphic nodes.
The experiment deploys open-source OpenStack Juno to set up a virtual machine
cluster. Each computing node is arranged three virtual machines and installed
CentOS 7.4-version operating system. Libxenstat, libvirt and other tools collect
the system property index vectors of the detected target (virtual machine) dur-
ing the experiment. In addition, Detection Virtual Machine is solely arranged.
DVM is a dedicated virtual machine for anomaly detection, it is equipped with
corresponding anomaly detection programs and used as an anomaly detection
node. Resources of DVM can be configured dynamically according to the load
size of detection tasks (the scale of detected target).In this experimental envi-
ronment, we collected 20 consecutive hours of normal operation data of virtual
machines as model training samples.

Virtual machines in the cloud environment suffer various types of failures,
which can be divided into system failures and network failures. Among system
failures, memory faults and CPU faults are the most common and the most rep-
resentative. For example, memory leak causes a waste of system memory, which

378 C. Shi and J. Yu

slows down the running speed of programs and even lead to the crash of the
cloud system; CPU hog causes processes to be unresponsive and accelerates chip
aging. Among the network failures, network hog caused by excess HTTP requests
are prone to occur in the cloud environment with high data traffic, resulting in
increased network resource occupancy, congestion or outage of network services.
This paper deploys the subjective injecting fault method to simulate abnormal-
ities of virtual machine. Three types of representative faults mentioned above
are injected by Sysbench standard testingprogram, the total number of injected
faults is 50.

5.2 Experiment Results

To verify the validity of HMM-based method in this paper, two typical anomaly
detection methods SOM-based and LOF were compared in the same experiment
environment and acquired corresponding experiment result as Tables 2, 3 and 4.

Table 2. The detection result with memory fault injection

Method Number of
detected
anomalies

Number
of faults

Precision Recall
Rate

F-measure Average
time
cost (s)

HMM-based 50 48 96.0% 96.0% 96.0% 0.21

SOM-based 52 46 92.4% 90.7% 91.5% 0.31

LOF 54 49 93.6% 88.9% 91.1% 0.23

Table 3. The detection result with CPU fault injection

Method Number of
detected
anomalies

Number
of faults

Precision Recall
Rate

F-measure Average
time
cost (s)

HMM-based 51 47 94.1% 92.2% 93.1% 0.27

SOM-based 52 46 90.5% 93.6% 92.0% 0.41

LOF 54 49 89.2% 94.9% 91.9% 0.30

Table 4. The detection result with network I/O fault injection

Method Number of
detected
anomalies

Number
of faults

Precision Recall
Rate

F-measure Average
time
cost (s)

HMM-based 49 45 90.1% 89.6% 89.8% 0.28

SOM-based 50 47 87.7% 84.0% 85.8% 0.46

LOF 53 46 91.3% 87.3% 89.3% 0.33

A HMM-Based Method for Virtual Machine Anomaly Detection 379

Tables 2, 3 and 4 represent the performance of three anomaly detection meth-
ods with three kinds of fault injection. From the tables we can see the HMM-
based method in this paper performs better in all three situations. The F mea-
sure of HMM-based model keeps the highest in all three cases. It also has faster
detecting speed and 1.1%-4.9% better detection accuracy compared with two
benchmarks. The reason is that the collected property indexes well describe
these fault situations. Even the training samples are not sufficient to train a
perfect HMM, the F-measure can still remain at a high level. By contrast, the
performance of SOM-based and LOF method is limited by the high dimensional
data or insufficient training data. In addition, the detection time cost of HMM-
based method is relatively low for the simple matching method. Therefore, this
HMM-based method has certain universality in the virtual machine environment.

6 Conclusion and Further Study

According to common regularity indicated by system parameters when virtual
machine is operating normally, this paper proposes a method for virtual machine
anomaly detection via Hidden Markov Model as well as experiments this method
in the real virtual machine operation environment through the means of fault
injection. Experiment results shows that compared with traditional LOF and
SOM-based algorithm, method in this paper has better performance, less time
cost and better accuracy in virtual machine anomaly detection.

There is practical significance in studying and developing HMM-based
anomaly detection systems. Furthermore, there are still some details to be
explored. For example, how to effectively locate the source of exceptions? And
how to predict possible system failures before it happened? In a future study,
we intend to apply our method to other kinds of virtual machine systems, such
as EVM [10] in Ethereum system.

References

1. Goldberg, R.P.: Survey of virtual machine research. Computer 7, 34–45 (1974)
2. Rabiner, L.R.: A tutorial on Hidden Markov models and selected applications in

speech recognition, 77(2), 257–286 (1989)
3. Smith, R., Bivens, A., Embrechts, M., Palagiri, C., Szymanski, B.: Clustering

approaches for anomaly based intrusion detection. In: Proceedings of Intelligent
Engineering Systems Through Artificial Neural Networks, pp. 579–584 (2002)

4. Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: LOF: identifying density-based
local outliers. In: ACM Sigmod Record, pp. 93–104. ACM

5. Sani, Y., Mohamedou, A., Ali, K., Farjamfar, A., Azman, M., Shamsuddin, S.: An
overview of neural networks use in anomaly intrusion detection systems. In: 2009
IEEE Student Conference on Research and Development (SCOReD), pp. 89–92.
IEEE (2009)

6. Tylman, W.: Anomaly-based intrusion detection using Bayesian networks. In:
Third International Conference on Dependability of Computer Systems, DepCos-
RELCOMEX 2008, pp. 211–218. IEEE (2008)

380 C. Shi and J. Yu

7. Welch, L.R.: Hidden Markov models and the Baum-Welch algorithm. IEEE Inf.
Theory Soc. Newsl. 53, 10–13 (2003)

8. Forney, G.D.: The viterbi algorithm. Proc. IEEE 61, 268–278 (1973)
9. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-

put. Surv. (CSUR) 41, 15 (2009)
10. Hirai, Y.: Defining the Ethereum virtual machine for interactive theorem provers.

In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 520–535. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 33

https://doi.org/10.1007/978-3-319-70278-0_33

Correction to: Provable Security

Ron Steinfeld and Tsz Hon Yuen

Correction to:
R. Steinfeld and T. H. Yuen (Eds.): Provable Security,
LNCS 11821, https://doi.org/10.1007/978-3-030-31919-9

The original structure of the book is incorrect and cannot be corrected. The papers “A
Coin-Free Oracle-Based Augmented Black Box Framework” (Chapter 15) and
“FSPVDsse: A Forward Secure Publicly Verifiable Dynamic SSE Scheme” (Chapter
23) were switched. Chapter 15 was supposed to appear under the Part Title: Short
Papers, while Chapter 23 was supposed to appear under the Part Title: Protocols.

The original chapters can be found online at
https://doi.org/10.1007/978-3-030-31919-9_15
https://doi.org/10.1007/978-3-030-31919-9_23

© Springer Nature Switzerland AG 2019
R. Steinfeld and T. H. Yuen (Eds.): ProvSec 2019, LNCS 11821, p. C1, 2019.
https://doi.org/10.1007/978-3-030-31919-9_25

https://orcid.org/0000-0003-1745-4183
https://orcid.org/0000-0002-0629-6792
http://dx.doi.org/10.1007/978-3-030-31919-9
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31919-9_25&domain=pdf
http://dx.doi.org/10.1007/978-3-030-31919-9_15
http://dx.doi.org/10.1007/978-3-030-31919-9_23
https://doi.org/10.1007/978-3-030-31919-9_25

Author Index

Abe, Masayuki 265
Au, Man Ho 59

Chen, Xu 321

Duong, Dung Hoang 19

Fraser, Ashley 189
Fujioka, Atsushi 330
Fujiwara, Hiroshi 130

Gu, Dawu 339

Hirose, Shoichi 77
Ho, Wang Hei 59
Huan, Fei 339
Huang, Qiong 113, 149

Jia, Keting 3
Jia, Yanxue 339
Jiang, Zoe L. 275

Kermanshahi, Shabnam Kasra 303

Le, Huy Quoc 19
Li, Hongbo 113
Li, Hongda 167
Li, Kang 59
Li, Xiang 347
Li, Ximing 149
Liang, Bei 167
Liu, Chao 3
Liu, Shengli 222
Liu, Xueqiao 113
Liu, Yi 339
Liu, Zhen 339
Liu, Zhiqiang 339
Long, Yu 339

Lu, Zeming 275
Luo, Peiran 288

Ma, Sha 149
Mu, Yi 247

Nepal, Surya 303
Ni, Peifang 167
Ning, Jianting 347
Nitaj, Abderrahmane 206

Pan, Dongxue 167

Quaglia, Elizabeth A. 189

Roy, Partha Sarathi 19
Ruj, Sushmita 355

Sakzad, Amin 303
Sardar, Laltu 355
Shen, Hua 247
Shi, Chaochen 372
Shikata, Junji 77
Smyth, Ben 189
Su, Yinxue 288
Susilo, Willy 19, 113, 206

Takashima, Katsuyuki 330
Tao, Limin 3
Terada, Shintaro 41
Tian, Haibo 288
Tian, Hui 347
Tibouchi, Mehdi 265
Tonien, Joseph 113, 206

Wachi, Yoshihiro 130
Wang, Xuan 275
Wang, Yi Lei 59

Wang, Zhipeng 94
Wu, Qianhong 94
Wu, Yulin 275

Xia, Zhe 247
Xiao, Meiyan 149

Yamamoto, Hiroaki 130
Yamashita, Kyosuke 265
Yang, Bo 247
Yang, Guomin 113

Yoneyama, Kazuki 41, 330
Yu, Bin 303
Yu, Jiangshan 372

Zhang, Fangguo 222
Zhang, Mingwu 247
Zheng, Zhongxiang 3
Zhong, Yantao 275
Zhou, Yanwei 247
Zhou, Zhi 321

382 Author Index

	Preface
	Organization
	Contents
	Post-quantum Cryptography
	Identity-Concealed Authenticated Encryption from Ring Learning with Errors
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Authenticated Encryption with Associated Data
	2.3 Security Model for ICAE
	2.4 Ring Learning with Errors
	2.5 The Rejection Sampling
	2.6 Reconciliation Mechanism
	2.7 A Variant of Pair with Errors Problem

	3 Protocol Construction of Encryption
	3.1 The RLWE-ICAE
	3.2 Correctness

	4 Security for RLWE-ICAE
	5 Concrete Parameters
	6 Conclusion
	References

	Lattice-Based IBE with Equality Test in Standard Model
	1 Introduction
	2 Preliminaries
	2.1 Identity-Based Encryption with Equality Test (IBEET)
	2.2 IBEET Against Insider Attack
	2.3 Lattices

	3 Proposed Construction: IBEET
	3.1 Construction
	3.2 Parameters
	3.3 Security Analysis

	4 Proposed Construction: IBEET Against Insider Attack
	4.1 Construction
	4.2 Security Analysis

	5 Conclusion
	References

	Password-Based Authenticated Key Exchange from Standard Isogeny Assumptions
	1 Introduction
	1.1 Backgrounds
	1.2 Our Contribution
	1.3 Related Work

	2 Preliminaries
	2.1 SIDH
	2.2 Hard Homogeneous Space and CSIDH
	2.3 EKE
	2.4 BPR Model

	3 (C)SIDH-EKE: PAKE from Isogeny Under (C)SI-CDH Assumption
	3.1 SIDH-EKE
	3.2 CSIDH-EKE

	4 Comparison
	5 Conclusion
	References

	Signatures
	An Efficient Conditional Privacy-Preserving Authentication Scheme for Vehicular Ad Hoc Networks Using Online/Offline Certificateless Aggregate Signature
	1 Introduction
	1.1 Related Works

	2 Preliminaries and Background
	2.1 Elliptic Curve Cryptosystem and Assumptions
	2.2 System Model

	3 The Proposed Authentication Scheme
	3.1 System Parameter Setup
	3.2 Pseudo-Identity-Generation and Partial-Private-Key-Extraction
	3.3 Vehicle-Key-Generation
	3.4 Offline-Sign
	3.5 Online-Sign
	3.6 Individual-Verify
	3.7 Aggregate
	3.8 Aggregate-Verify
	3.9 Batch Verification

	4 Security Proof
	5 Discussion
	5.1 Security Analysis
	5.2 Performance Evaluation
	5.3 Computation Cost Analysis

	6 Conclusions
	A Security Proof
	References

	History-Free Sequential Aggregate MAC Revisited
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Pseudorandom Function and Permutation
	2.3 PRF Under Related-Key Attack
	2.4 PRF with Affix
	2.5 Multi-oracle Setting
	2.6 Keyed Merkle-Damgård Iteration
	2.7 Collision Resistance

	3 History-Free Sequential Aggregate MAC
	3.1 Syntax
	3.2 Security Requirement
	3.3 Discussion

	4 Generic Construction Based on Block Cipher
	4.1 Scheme
	4.2 Unforgeability
	4.3 Discussion

	5 Generic Construction Based on Hash Function
	5.1 Scheme
	5.2 Unforgeability
	5.3 Instantiation with HMAC

	6 Conclusion
	References

	A Practical Lattice-Based Sequential Aggregate Signature
	1 Introduction
	1.1 Our Results and Contribution
	1.2 Organization

	2 Preliminaries
	2.1 Notation
	2.2 Random Oracle Model
	2.3 Ideal Cipher Model
	2.4 Cryptographic Problems on Lattices
	2.5 Lattice-Based Trapdoor Function
	2.6 History-Free Sequential Aggregate Signature

	3 Sequential Aggregate Signatures from Lattice-Based Trapdoor Function
	4 Security Proof
	5 Instantiation
	6 Conclusion and Future Works
	References

	Encryption
	Towards Enhanced Security for Certificateless Public-Key Authenticated Encryption with Keyword Search
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Preliminaries
	2.1 Bilinear Pairing
	2.2 Decisional Bilinear Diffie Hellman Problem
	2.3 Decisional Linear Problem

	3 Certificateless Public-Key Authenticated Encryption with Keyword Search
	3.1 Definition
	3.2 Security Models

	4 Weakness of He et al.'s Scheme
	4.1 He et al.'s Scheme
	4.2 Weakeness of He et al.'s Scheme

	5 Our New CLPAEKS Scheme
	5.1 Construction
	5.2 Security Proof

	6 Conclusion
	References

	Space-Efficient and Secure Substring Searchable Symmetric Encryption Using an Improved DAWG
	1 Introduction
	1.1 Backgrounds
	1.2 Our Contributions
	1.3 Related Works

	2 Preliminaries
	3 An Augmented Directed Acyclic Word Graph
	3.1 A Directed Acyclic Word Graph
	3.2 An Augmented DAWG
	3.3 A State-Set Tree
	3.4 Outline of Search Using an ADAWG and a State-Set Tree

	4 A Secure Substring SSE Scheme
	4.1 Constructing a Secure Encrypted Index
	4.2 A Search Protocol

	5 Security Analysis
	6 Conclusions
	References

	Plaintext-Verifiably-Checkable Encryption
	1 Introduction
	1.1 Related Work

	2 Pairing-Friendly Smooth Projective Hash Function
	2.1 Definition of SPHF
	2.2 Modified Language Representation
	2.3 Transformation from SPHF to PF-SPHF
	2.4 2-Smoothness SPHF

	3 Definitions
	3.1 Plaintext-Verifiably-Checkable Encryption
	3.2 Unlink-CCA Security

	4 PVCE Construction
	4.1 Security Proof

	5 Instantiated PVCE Construction Under k-MDDH Assumption
	5.1 Smooth Projective Hash Function on k-MDDH Assumption
	5.2 PVCE Instantiation Under k-MDDH Assumption

	6 Conclusion
	References

	Hierarchical Functional Signcryption: Notion and Construction
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Indistinguishability Obfuscation
	2.3 Statistically Simulation-Sound Non-interactive Zero-Knowledge Proof of Knowledge

	3 Hierarchical Functional Signcryption: Notion and Construction
	3.1 The Notion of Hierarchical Functional Signcryption
	3.2 The Construction of Hierarchical Functional Signcryption
	3.3 Security Analysis

	4 Conclusion
	References

	Attack
	A Critique of Game-Based Definitions of Receipt-Freeness for Voting
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	3 Receipt-Freeness by Kiayias, Zacharias and Zhang (KZZ)
	3.1 Soundness Issue
	3.2 Completeness Issues
	3.3 Further Discussion

	4 Receipt-Freeness by Chaidos et al. (CCFG)
	4.1 Soundness Issue
	4.2 Completeness Issue
	4.3 Further Discussion

	5 Receipt-Freeness for Deniable Vote Updating by Bernhard, Kulyk and Volkamer (DKV)
	6 Conclusion
	References

	Improved Cryptanalysis of the KMOV Elliptic Curve Cryptosystem
	1 Introduction
	2 Preliminaries
	2.1 Coppersmith's Method
	2.2 Continued Fractions
	2.3 Elliptic Curves
	2.4 The KMOV Cryptosystem

	3 A New Improved Attack Based on Continued Fractions
	3.1 The New Attack Based on Continued Fractions
	3.2 Comparison with Former Attacks

	4 A New Improved Attack Based on Coppersmith's Method
	4.1 The New Attack
	4.2 Comparison with Former Attacks

	5 Conclusion
	References

	Solving ECDLP via List Decoding
	1 Introduction
	2 Preliminaries
	2.1 Elliptic Curve and Elliptic Curve Discrete Logarithm Problems
	2.2 Linear Error Correction Codes
	2.3 Algebraic-Geometry Codes and Elliptic Codes
	2.4 List Decoding of Algebraic-Geometry Codes

	3 Finding Minimum Weight Codewords Using List Decoding
	3.1 How to Find Codewords of Minimum Weight
	3.2 The Final Algorithm of Finding Minimal Weight Codewords
	3.3 Instantiation from Elliptic Code C[G, D]

	4 New Approach to ECDLP
	4.1 A Warm-Up
	4.2 The Algorithm of Solving ECDLP
	4.3 Analysis of Algorithm SolveECDLP

	5 Conclusion
	References

	Protocols
	Provably Secure Proactive Secret Sharing Without the Adjacent Assumption
	1 Introduction
	1.1 Related Works
	1.2 Our Contributions
	1.3 Organisation of the Paper

	2 Preliminaries
	2.1 Models and Definitions
	2.2 Cryptographic Building Blocks

	3 Analysis of Herzberg's PSS Scheme
	3.1 Review of Herzberg's PSS Scheme
	3.2 Threat Analysis of Herzberg's Scheme in Our Threat Model
	3.3 Some Other PSS Schemes in Our Threat Model

	4 Modification of Herzberg's PSS Scheme
	4.1 Jointly Polynomial Truncation
	4.2 Our Proposed Scheme
	4.3 Security Analysis
	4.4 Some Discussions

	5 Conclusion
	References

	A Coin-Free Oracle-Based Augmented Black Box Framework
	1 Introduction
	2 Preliminaries
	3 WI Proof System Oracle
	4 Simplified Proof System Oracle
	4.1 Coin-Free Proof System Oracle
	4.2 Construction
	4.3 Separation

	5 Conclusion
	References

	Blockchain
	A Lattice-Based Anonymous Distributed E-Cash from Bitcoin
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Zerocoin
	3.2 Cryptographic Accumulator
	3.3 Lattice-Based Merkle-Tree Accumulator

	4 Lattice-Based Distributed E-Cash Scheme
	5 Security Analysis
	6 Concluding Remarks and Future Work
	References

	A Centralized Digital Currency System with Rich Functions
	1 Introduction
	1.1 Related Works
	1.2 Contributions

	2 Stateful Authentication
	3 A Smart Commercial Bank
	3.1 Load
	3.2 Puzzle Prize Template
	3.3 Payment Channel Template
	3.4 Hashed Time Lock Contract
	3.5 Payment Network

	4 Security Analysis
	4.1 Regulations of Commercial Banks
	4.2 Templates Security

	5 Conclusion
	References

	Chameleon Hash Time-Lock Contract for Privacy Preserving Payment Channel Networks
	1 Introduction
	2 Background
	2.1 Payment Channel
	2.2 Payment Channel Network
	2.3 Routing in PCNs
	2.4 Chameleon-Hash Functions

	3 CHTLC Construction Overview
	3.1 CHTLC Construction
	3.2 Security Discussion

	4 Experimental Results
	5 Conclusion
	References

	Short Papers
	On-demand Privacy Preservation for Cost-Efficient Edge Intelligence Model Training
	1 Introduction
	2 System Model and Problem Formulation
	2.1 System Overview
	2.2 Data Training Model
	2.3 Cost Model
	2.4 On-Demand Privacy Preservation Model for Training Data
	2.5 Queue Stability Model
	2.6 Problem Formulation

	3 An Online Optimization Framework
	3.1 Problem Transformation with Lyapunov Optimization
	3.2 An Online Optimization Algorithm

	4 Conclusion
	References

	One-Round Authenticated Group Key Exchange from Isogenies
	1 Introduction
	1.1 Background
	1.2 Our Contributions

	2 n-UM: G-CK Secure n-Party Authenticated Group Key Exchange
	2.1 Protocol
	2.2 Security

	3 Biclique n-DH : G-CK+ Secure n-Party Authenticated Group Key Exchange
	3.1 Protocol
	3.2 Security

	4 Two-Party Authenticated Key Exchanges from Hard Homogeneous Spaces
	4.1 G-CK Secure AKE Protocol (from HHS)
	4.2 G-CK+ Secure AKE Protocol (from HHS)

	References

	TumbleBit++: A Comprehensive Privacy Protocol Providing Anonymity and Amount-Invisibility
	1 Introduction
	2 Preliminaries
	3 TumbleBit++
	3.1 System Entities and Overview
	3.2 Concrete Protocol

	4 Security Analysis
	5 Conclusion
	References

	Secure Online/Offline Attribute-Based Encryption for IoT Users in Cloud Computing
	Abstract
	1 Introduction
	2 Related Work
	3 System Design
	3.1 System Model and Design Goals
	3.2 Proposed Scheme

	4 Performance Evaluation
	5 Conclusion
	Acknowledgements
	References

	FSPVDsse: A Forward Secure Publicly Verifiable Dynamic SSE Scheme
	1 Introduction
	1.1 Our Contribution
	1.2 Organization

	2 Related Works
	3 Preliminaries
	3.1 Cryptographic Tools
	3.2 System Model
	3.3 Design Goals
	3.4 Definitions
	3.5 Verifiable Dynamic Searchable Symmetric Encryption (VDSSE)
	3.6 Security Definitions

	4 Our Proposed FSPVDsse Scheme
	4.1 Security
	4.2 Deletion Support

	5 Comparison with Existing Schemes
	6 Conclusion
	References

	A Hidden Markov Model-Based Method for Virtual Machine Anomaly Detection
	1 Introduction
	2 Related Work
	3 Formal Model
	4 Detection Strategy
	4.1 Acquiring the Best Transition Sequence
	4.2 Setting up Normal Outline Base
	4.3 Detection Method

	5 Experiment Environment and Results
	5.1 Experiment Environment
	5.2 Experiment Results

	6 Conclusion and Further Study
	References

	Correction to: Provable Security
	Correction to: R. Steinfeld and T. H. Yuen (Eds.): Provable Security, LNCS 11821, https://doi.org/10.1007/978-3-030-31919-9

	Author Index

