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Preface

This volume contains the papers presented at ProvSec 2019: the 13th International
Conference on Provable and Practical Security held during October 1-4, 2019, in
Cairns, Australia.

There were 51 submissions. Each submission was reviewed by at least two Program
Committee members. The committee decided to accept 18 full papers and 6 short
papers.

Provable security is an essential tool for analyzing the security of modern
cryptographic primitives. The research community has witnessed the great contribu-
tions that the provable security methodology made to the analysis of cryptographic
schemes and protocols. Today, cryptographic primitives without a rigorous “proof”
cannot be regarded as sound. Also, the methodology has been used to discover security
flaws in the cryptographic schemes and protocols, which were considered seemingly
secure without formal analysis. On the one hand, provable security provides confidence
in using cryptographic schemes and protocols for various real-world applications, but
on the other hand, schemes with provable security are sometimes not efficient enough
to be used in practice, and correctness of the proofs may be difficult to verify.

Therefore, this year we decided to enrich the scope of this conference, by adding
“Practical Security” to the theme. The new theme brought together researchers and
practitioners to provide a confluence of new practical cyber security technologies,
including their applications and their integration with IT systems in various industrial
sectors.

We would like to thank the general co-chairs, Joseph K. Liu and Wei Xiang, the
publication chair, Jiangshan Yu, and the publicity co-chairs, Xingliang Yuan and Yu
Wang, for organizing the conference.

October 2019 Ron Steinfeld
Tsz Hon Yuen
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Abstract. Authenticated encryption (AE) is very suitable for a
resources constrained environment for it needs less computational costs
and AE has become one of the important technologies of modern commu-
nication security. Identity concealment is one of research focuses in design
and analysis of current secure transport protocols (such as TLS1.3 and
Google’s QUIC). In this paper, we present a provably secure identity-
concealed authenticated encryption in the public-key setting over ideal
lattices, referred to as RLWE-ICAE. Our scheme can be regarded as
a parallel extension of higncryption scheme proposed by Zhao (CCS
2016), but in the lattice-based setting. RLWE-ICAE can be viewed as
a monolithic integration of public-key encryption, key agreement over
ideal lattices, identity concealment and digital signature. The security of
RLWE-ICAE is directly relied on the Ring Learning with Errors (RLWE)
assumption. Two concrete choices of parameters are provided in the end.

Keywords: Authenticated encryption + RLWE - Lattice-based -
Identity-concealed - Provable security

1 Introduction

Authenticated encryption (AE) is a form of encryption that guarantees the con-
fidentiality and authenticity of data at the same time. Because AE can sign and
encrypt messages in single step, the computational cost of it is lower than that
of traditional signature-then-encryption methods. Some works also shows that
AE is functionally equivalent to one-pass authenticated key-exchange [7,11,19].
Since Zheng proposed the first AE scheme [29] in 1997, it has become one of the
important technologies of modern communication security.

By identity concealment, we mean that the protocol transcript shouldn’t leak
participants’ identity information. ID concealment is relevant for several reasons.

© Springer Nature Switzerland AG 2019
R. Steinfeld and T. H. Yuen (Eds.): ProvSec 2019, LNCS 11821, pp. 3-18, 2019.
https://doi.org/10.1007/978-3-030-31919-9_1
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For instance, if the identity is not protected in a wireless device, an attacker
can eavesdrop the communications to track the user’s location, which leads to
attacks directed towards selected users. Identity concealment is mandated or
recommended by many standardized and deployed cryptographic protocols like
TLS1.3 [22], QUIC [24], EMV [5], etc. Furthermore, we say that a player enjoys
forward ID-privacy if his ID-privacy preserves even through his static secret-
key is compromised. For some famous protocols such as Zheng’s signcryption
[3,29] and one-pass HMQV (HOMQV) [12,14], the issue of ID-concealment was
not considered. In 2016, Zhao [28] introduced that ID-concealment can be inte-
grated with AE to solve the problem of 0-RTT (zero-round trip time) with client
authentication. A 0-RTT option protocol allows the establishment of a secure
connection in “one-shot”, which means that cryptographically protected pay-
load data can be sent immediately along with the first single message sent from
a sender to a receiver, without the need for a latency-incurring prior handshake
protocol. Many large projects have been developed and experimented with 0-
RTT protocols, such as Google’s QUIC [15], TLS1.3 and Facebook’ Zero proto-
cols [13]. But QUIC and TLS1.3 are now only supporting 0-RTT mode without
client authentication. Zhao proposed higneryption [28] which solved the problem
of 0-RTT with client authentication by integrating public-key encryption, entity
authentication and ID-concealment into a single primitive.

Some other properties are considered in nowadays public-key settings. A pro-
tocol enjoys “receiver deniability”, which means that the session transcript, espe-
cially the authentication value, can be simulated by a receiver with public param-
eters and his own secret-key. A protocol enjoys x-security [12], which means that
the leakage of ephemeral secret does not cause the exposure of sender’s static
secret or pre-shared secret. For some well-known protocols, Zheng’s signcryption
[3,29] does not enjoy x-security and is receiver undeniable. Krawczyk’s one-pass
HMQV (HOMQV) [12] scheme enjoys receiver deniability and z-security, but
without forward ID-privacy. Zhao’s higneryption [28] has a novel design, and
enjoys forward ID-privacy, receiver deniability and z-security.

But above existed authenticated encryptions are mainly based on the clas-
sic hard problems, such as the computational/decisional DH problem. It is well
known that DH problem is vulnerable to quantum computers [25]. Since the rapid
development of quantum computers, searching other counterparts based on prob-
lems which are believed to be resistant to quantum attacks is more and more
urgent. Naturally we think of such a question: can we come up with an authenti-
cated encryption that can resist quantum attacks and enjoys above several good
properties such as ID-concealment, receiver deniability and x-security? Note that
lattice-based cryptographic schemes have many advantages such as asymptotic
efficiency, conceptual simplicity and worst-case hardness assumption, and it is a
perfect choice to build lattice-based authenticated encryption in the public-key
settings.

Our Contributions. In this paper, we propose a new authenticated encryption
to solve the above motivating questions. We choose Ring Learning With Errors
(RLWE), which is as hard as some worst case lattice problems on ideal lattices
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[10,18] to construct our scheme. By utilizing some useful properties of RLWE
and discrete Gaussian distributions, we present an approach to combine pub-
lic/secret key in a manner similar to higncryption [28]. Our scheme not only
enjoys many nice properties of higncryption such as identity concealment, 0-
RTT option, forward ID-privacy, receiver deniability and x-security, but also
enjoys some properties of lattice-based cryptography, such as worst-case hard-
ness assumption, and resistance to quantum computer attacks. We manage to
establish a full proof of our scheme’ security in the Zhao’s strong model [28] by
replacing the Diffie-Hellman core of Zhao’s model with the lattice-based core.
Our scheme may have some other applications. For example we give a direct
application of one-pass ID-concealed authenticated key exchange protocol. In
the end, we choose the concrete parameters and give the security assessment.

Techniques in Our Scheme. In higncryption, the sender (the encryption party)
and the receiver (the decryption party) would compute a same element, which
is used in encrypting communication data. Since higncryption works on “nicely-
behaved” cyclic groups, which have the property of commutativity, such a “key
agreement” can be easily realized. While for lattice-based cryptographic, ben-
efitting from the growth of lattice-based key exchange protocols [4,8,21], we
can utilize the key agreement technique to construct our scheme. Ding et al.
[8] firstly introduced the key reconciliation mechanism to “handling the noises”
of RLWE. And Peikert [21] gave an improved version of reconciliation mecha-
nism. We use Peikert’s reconciliation mechanism to achieve the key agreement
in our scheme. Furthermore, since the perfect randomization properties of cyclic
groups, the static key can be “perfectly hidden” in the communication data.
While for RLWE based scheme, the goal of perfectly hiding the keys can be
realized by using rejection sampling [16]. In the security aspect, secret hidden is
necessary, so we apply the rejection sampling technique in our scheme. To prove
the security of our scheme, we introduce vVPWE assumption, which is a variant
of Pairing with Errors (PWE) assumption introduced by Ding et al. [9], and we
show that vPWE assumption can be reduced to the RLWE problem. As long as
the vPWE assumption is hard, the security of our scheme can be guaranteed.

Related Works. For authenticated protocols from ideal lattices, in 2015, Zhang
et al. [27] proposed an authenticated RLWE based key exchange and a one-pass
authenticated key exchange over ideal lattices. In 2017, Ding et al. [9] proposed
RLWE-based password authenticated key exchange, whose security is proved by
using PWE assumption. Yang et al. [26] introduced a RLWE-based two-message
key exchange scheme in 2018, and they used Peikert’s reconciliation mechanism
to construct the scheme.

Roadmap. In Sect. 2, we introduce some backgrounds such as notations, security
models, RLWE and some tools used in scheme. Our protocol RLWE-ICAE is
introduced in Sect. 3. And in Sect. 4, a theorems is given to guarantee the security
of the scheme. The parameters and the security assessment of our scheme are
presented in Sect.5. Finally, we conclude and discuss some further works in
Sect. 6.
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2 Preliminaries

2.1 Notations

Let n be an integer of the power of 2. Denote the ring of integer polynomials R
as Zlz]/(z™ + 1), and Ry := Zg[x]/(z™ + 1) as the ring of integer polynomials
modulo z™+1 with every coefficient is reduced modulo positive integer ¢. Let the
norm of a polynomial be the norm of its coefficients vector. Let x & x denote the
coefficients of = are sampled based on the probability distribution x. For any pos-
itive real # € R, and a vector ¢ € R™, let the continuous Gaussian distribution
over R™ with standard deviation § centered at ¢ be defined by the probability

2
function s e(x) = (=)"eap(~5z1%). Let Dar g e(x) = 7255 to indi

cate the m-dimensional discrete Gaussian distribution. The subscripts 8 and ¢
are omitted when they are 1 and 0. Usually x3 denotes Gaussian distribution
with standard deviation 3 and centered at 0.

2.2 Authenticated Encryption with Associated Data

An authenticated encryption with associated date (AEAD) scheme transforms a
message M and a public packet header, which is usually implicitly determined
from the context, into a ciphertext C' which provides both privacy (of M) and
authenticity (of C' and H) [23]. We state the security of AEAD in [28] as follows.

AFEAD Security. Let [ = (K, &, D) be a symmetric encryption scheme. The key
space K = {0,1}" is a finite nonempty set of strings. There is a probabilistic
polynomial-time algorithm takes a security parameter s as input and samples
a key K from K. The polynomial-time encryption algorithm & : k x {0,1}* x
{0,1}* — {0,1}* U {L} and the polynomial-time decryption algorithm D : k x
{0,1}* x {0,1}* — {0,1}* U { L} satisfy:

Pr[K « K;H € {0,1}"; M € {0,1}*;C « Ex(H, M) : D (C) # M| < negl(k),

where negl is a negligible function. Generally, we assume the ciphertext C' has
the associate data H. Let A be a polynomial-time adversary. A security game for
AEAD is described in Table 1. The advantage of A is defined to be Adv‘f—f”d (A) =

|2 Pr[AEADf‘I returns true] — 1|. And we say [] scheme is AEAD-secure, if for
all sufficiently large &, AdvﬁEAD (A) < negl(k).

2.3 Security Model for ICAE

We recall the security model for identity-concealed authenticated encryption
(ICAE) scheme from [28]. An ICAE scheme ZC is specified with four polynomial-
time algorithms (Setup, Keygen, Encrypt, Decrypt) as follows:

— Setup: takes the security parameter x as input and outputs the system
parameter params used in the scheme.
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Table 1. AEAD security game

main AEADﬁ: procedure Enc(H, My, M1): procedure Dec(C’):

K—K If |Mo| # | M, Ret L If o =1AC" ¢C then
o {0,1} Co «— Ex(H, M) Ret Dk (C")
o' = APreDee Oy Ex(H, M) else Ret L

Ret (o' = 0) IfCo=LlorCi =1, Ret L
C < C,; Ret C,

— Keygen: takes params as input and outputs a key pair (pk, sk) used for
encryption and decryption.

— Encrypt: takes the sender’s private key sk; and public identity informa-
tion pids = (ids, pks, certs) where certs is issued by a certificate author-
ity, a receiver’s public identity information pid, = (id,., pk,,cert,), message
M € {0,1}*, and associated data H € {0,1}* as input. It returns a cipher-
text C' or L which indicate encrypt failure. We allow pids = (ids, pks, certs)
equal to pid, = (id,, pk,, cert,), which means that a user encrypts a message
to himself. We also assume some offline-computable intermediate randomness
used in generating C' is stored in a variable S7 ¢.

— Decrypt: takes a receiver’s private key sk,., the receiver’s public identity
information pid, = (id,,pk,,cert,), a ciphertext C' as input. It outputs
(pids, M) or an error L.

We say that an ICAE scheme is correctness if for all sufficiently large secu-
rity parameter x, key pairs (pks, sks) and (pk,., sk,.) which are output by Key-
gen(1%), there is

Pr[Decrypt(sk,, pid,, Encrypt(sk,, pids, pid,, H, M)) # (pids, M)] < negl(x)

where H, M € {0,1}* such that Encrypt(sks, pids, pid,, H, M) # L, and negl
is a negligible function.

Now we present the security model for ICAE. We assume each user possesses
a single key pair for encryption and decryption, and each user can encrypt mes-
sages to himself. In this model the adversary is allowed to register users adap-
tively (hence has dishonest users). Let the number of users in the system be N,
which is a polynomial in the security parameter x. We assume all the honest
users’ key pairs are generated by the challenger according to the key generation
algorithm specified in the system. Denote by HONEST (reps., DISHONEST),
the set of public identity information of all the honest (resp., dishonest) users.
We denote the public identity information of a user id; as pid; (1 < i <n), the
sender’s (resp., the receiver’s) public identity information as pids (resp., pid,.).
The adversary’s abilities are formalized by providing the adversary with the
following oracles:

— ENO: takes (pids, pid,, H, M) as inputs, where pid,, € HONEST | JDISH—
ONEST. If pids € HONEST, the oracle returns Encrypt(sks, pids, pid,,
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H, M), otherwise return L. In order to allow for later Exposure query
against a ciphertext C, some specified offline-computable intermediate ran-
domness to generate C' are allowed to be stored into S7 ¢.

— DEO: takes (pid,,C) as inputs. If pid, € HONEST, the oracle returns
Decrypt (sk., pid,, C), otherwise, returns L.

— Exposure: takes C' # 1 as input. If C is output by an earlier ENO query,
the oracle returns the offline-computable intermediate randomness (stored in
ST ¢) used in generating C.

— Corrupt: takes pid, € HONEST as input, (1 < i < N), and returns user
id;’s private key sk;.

Outsider Unforgeability. Consider the following experiment for A°V:

The encryption experiment Encry-forge jov 7¢(k):

— A°U ig given the all the honest users’ public keys and can register arbitrary
public keys on its own with security parameter x.

— A9 is allowed to issue ENO, DEO, Exposure and Corrput queries. A°Y
then outputs (pid,~, C*) as its output.

— AU succeeds if and only if:

1. Decrypt(sk,«, pid,«,C*) = (pids-, M*), where pids- € HONEST;

2. A9Y has not issued Corrupt(pids-) or Corrupt(pid,-) query, but is
allowed to query Exposure(C*) to expose the intermediate randomness
in generating C*.

3. C* is not the output of ENO(pids«,pid,~, H*, M*) issued by A°Y,
but AU is still allowed to query ENO(pidy, pid,., H', M') for (pids,
pidy, H', M') # (pidg«, pid,.~, H*, M*) and in particular (pidgs«, pid,«, H',
M*) for H # H*. AU can even query ENO(pid,-, pid,~, H*, M*) as
long as its outputs returned is not C*. And parts of C* (the H*) may
appear in previous outputs of ENO.

— The experiment returns 1 if A°Y succeeds, otherwise returns 0.

We say that an ICAE scheme ZC has outside unforgeability, if for any PPT
adversary APV there is a negligible function negl such that:

Pr[Encry-forge qou 7c(k) = 1] < negl(x).

Next we introduce the definition of insider confidentiality, which is identical
to outsider unforgeability, except that Corrupt(pid,-) is allowed to the adver-
sary.

Insider Confidentiality. We assume that all the users have equal length public
identity information. Consider the following experiment for an adversary A¢:

The encryption experiment Encry-Confident 4ic 7¢(k):

— A!% is given the all the honest users’ public keys and can register arbitrary
public keys on its own with security parameter x.
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— A€ is allowed to issue ENO, DEO, Exposure and Corrput queries. A'¢
then outputs two equal length messages (Mg, M;), an associated data H*,
and two pairs of public identity information of equal length (pz‘dsg, pid,~) and
(pidsy, pid,~) where pidss, pids:, pid,- € HONEST.

— A uniform bit v € {0,1} is chosen, and then a ciphertext C* = Encrypt
(sksx, pids: , pid,~, H*, M) is computed and given to AIC,

— The adversary AC can continue executing the second phase, except ask-
ing DEO(pid,~,C*), Exposure(C*) or Corrupt(pid,-) which will cause
A'C win the game trivially. But the adversary AC is allowed to issue
Corrupt(pid,;) and Corrupt(pids: ), which can capture forward ID-privacy.
Eventually, A’ outputs a bit /.

— The output of the experiment is defined to be 1 if v/ = ~, and 0 otherwise. If
the output of the experiment is 1, we say that A/¢ succeeds.

We say that an ICAE scheme ZC has insider confidentiality, if for any PPT
adversary AC there is a negligible function negl such that:

Pr[Encry-Confident 4ic 7c (k) = 1] < negl(x).

Note that the definition of outsider confidentiality is identical to that of insider
confidentiality, except that neither Corrupt(pid; ) nor Corrupt(pidy, ).

2.4 Ring Learning with Errors

In 2010, Lyubashevsky, Peikert and Regev [18] proposed the Ring Learning with
Erros problems (RLWE), which is based on the Learning with Errors (LWE)

in the ring setting. Assume there are uniform random elements a, s & R, and
an error distribution x. Let A, denote the distribution of the RLWE pair

(a,as + e), where the error e S X- Given polynomial number of samples, the
search version of RLWE is to find the secret s, while the decision version of the
RLWE problem (DRLWE, , ) is to distinguish A, from an uniform distribution
pair (a,b) on Ry x Ry. RLWE enjoys a worst case hardness guarantee, which we
state here.

Theorem 1 ([18], Theorem 3.6). Let R = Z[z]/(z™ + 1) where n is a power of
2,6 =d(n) < /logn/n, and ¢ =1 mod 2n which is a ploy(n)-bounded prime
such that 6q > w(y/logn). Then there exists a ploy(n)-time quantum reduction
from O(\/n/8)-SIVP (Short Independent Vectors Problem) on ideal lattices in
the ring R to solve DRLWE, ,, with l—1 samples, where x = Dz ¢ is the discrete
Gaussian distribution with parameter ¢ = 6q - (nl/log(nl))*/*/\/27.

We have the following useful facts.
Lemma 1 ([16], Lemma 4.4). For any k > 0, Pry,,(|z| > kf) < 2e~k*/2,

Note that taking k = 13 gives tail probability approximating 27121,
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Lemma 2 ([20]). Letting real 8 = w(y/logn), constant n > \/%?, then we have

that Pr 5 [|v]| > n-Bv/n] < D", where D = W 2me-e=™" . In particular,
vé&—Dyn g
P < 27nth
we have Pr [ vl > 0 <

2.5 The Rejection Sampling

Now, we recall the rejection sampling from [17].

Theorem 2 ([17], Theorem 3.4). Let S be a subset of Z™, all the elements of
S have norms less than T, 8 = w(T+/logm) be a real, and ¢ : S — R be a
probability distribution. Then the distribution of the following algorithm F:

Y i ¢;
3
— Z — DZm,ﬁ,c;

- output (z,c) with probability min( Dam p(a) 1),

M-Dym g c(2z)°

27w(lugm)

s within statistical distance o from the distribution of the following algo-

rithm G:

- C i ¢;
— Z i Dzmﬁ;
— output (z,c) with probability ﬁ

where M = O(1) is a constant. Moreover, the probability that F outputs some-

thing is at leat 122709 e concretely, if 8 =nT for any positive n, then

M = e2/141/27°) gnd the output of algorithm F is within statistical distance
27100

of the output of G, and the probability that F outputs something is at leat

1_9—100
-

2.6 Reconciliation Mechanism

Firstly, We recall the reconciliation mechanism proposed by Peikert in [21] for
transforming approximate agreement to exact agreement. For integer ¢ > p > 2,
we define the modular rounding function |-], : Zq — Zy as [z]p := |2 - 2] and
downward-rounded function |-|, : Zqy — Z, as |x], := L% cx].

Even Modulus. Let the modulus ¢ > 2 is even, define two disjoint intervals I :=
{0,1,...,[§1-1}, I :={—=[%],..., —1} mod ¢. Then when v € (Io+4)U(l;+1),
|v]2 = 1, and when v € Iy U I1, |[v]2 = 0. Here we define the cross-rounding
function (-)g : Zy — Zs as (v)g := L% -v| mod 2. Obviously, (v)2 = b € {0,1}
such that v € I, U (4 + I).

Lemma 3 ([21], Claim 3.1). For g > 2 is even, if v is uniformly random chosen
from Z,, then given (v)a, |v]2 is uniformly random.
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Define the set £ := [~{, 1) N Z. Suppose v,w € Z, are sufficiently close, and
given w and (v)2, we can recover |v|z using the reconciliation function rec:
TLg X Ly — Liy:

0 ifwe I, + E(modg),

rec(w, b) = )
1 otherwise.

Lemma 4 ([21], Claim 3.2). For q¢ > 2 is even, if w = v + e mod ¢ for some

v E€Zy and e € E, then rec(w, (v)2)= |v]2.

Odd Modulus. When ¢ is odd, Peikert proposed a randomized function dbl:
Zq — Z3q to avoid the bias produced in the rounding function. Let v € Z,,
function dbl is defined to be dbl(v) := 2v — é € Zy, where é € Z is independent
of v and uniformly random modulo two. Usually we write v with an overbar to
means that v « dbl(v).

Lemma 5 ([21], Claim 3.3). For q > 2 is odd, if v is uniformly random chosen
from Zg and © «— dbl(v) € Zag, then |V]s is uniformly random given (0)s.

Define function HelpRec(X): (1) X « dbl(X); (2) W « (X)2, K « | X]a;
(3) return (K, W).

Note that for w,v € Z,, we need apply the appropriated rounding function
from Zsg to Zs, (which means that |z, = [ - z], (z)2 = L% -2|), and similar
to rec function. Then if (K, W) « HelpRec(X) and Y = X + e with |[e[|oc < ,
then rec(2-Y, W) = K. By applying coeflicient-wise to the coeflicients in Z, of
a ring elements we also can extend these definitions to R,. That is, for a ring

elements v = (vg,...,Un—1) € Ry, setting |v]a = ([vo]2,. .., [Un-1]2); (V)2 =
((vo)2, .-, (Un—1)2), HelpRec(v) = (HelpRec(vy), . . . , HelpRec(v,—1)) and for a
binary-vector b = (by,..., bh—1) € {0,1}", setting rec(v,b) = (rec(vo, bo),- - - ,

rec(Vn—1,bn—1)).

2.7 A Variant of Pair with Errors Problem

The vPWE Assumption. In [9], Ding et al. propose the Pairing with Errors
(PWE) assumption based on Ding’s reconciliation mechanism [8]. Here we pro-
posed a variant of their PWE assumption and we call it vPWE assumption.
We replace the Ding’s reconciliation mechanism with Peikert’s reconciliation
mechanism. Let xg be a Gaussian distribution for fixed 8 € R%. For any
(X,s) € Ry X Ry, if (K, W) «HelpRec(X - s), then set 7(X,s) := K = [ X - 5]».
Let A be probabilistic, polynomial-time algorithm. A takes inputs of the form
(a, X,Y,W), where (a,X,Y) € Ryx Ry x R, and W € {0,1}", and outputs a list
of values in {0,1}". Given s randomly chosen from xg, ¥ which is a “small addi-
tive perturbation” of a - s, and W « (X - s)9, A’s objective will be outputting
the string 7(X, s).

To states the hardness of vPWE assumption, We define the decision version
of vPWE problem vDPWE as follows. If vDPWE is hard, so is vVPWE.
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Definition 1 (vDPWE). Given (a, X,Y,W,0) € Ryx Ry x Ry x{0,1}"x{0,1}"
where W = (K)y for some K € R, (K « dbl(K)), and o = rec(2 - K,W).
The Decision vPWE problem (VDPWE) is to decide whether K = Xs + ey,
Y = as + ez for some s,e1,eq are drawn from xg, or (K,Y) are uniformly

random in Ry X R,.

In order to show the reduction of the vDPWE problem to the RLWE problem,
we would like to introduce a definition to what we called the RLWE-DH problem
[9] which can be reduced to RLWE problem.

Definition 2 (RLWE-DH). Let R, and xg be defined as above. Given an
input ring element (a,X,Y, K ), where (a,X ) is uniformly random in Rg, The
DRLWE-DH problem is to decision if K is Xs+e; and Y = as + es for some

s,€e1,6 S xp or (K,Y) are uniformly random in Ry X R,.

Theorem 3 ([9], Theorem 1). Let R, and xg be defined as above, then the
RLWE-DH problem is hard to solve if RLWE problem is hard.

Theorem 4. Let R, and xg be defined as above. The vVDPWE problem is hard
if the RLWE-DH problem is hard.

Proof. Suppose there exists an algorithm D which can solve the vDPWE
problem on input (a,X,Y,W,o) where for some K € R,, W = (K)2 and
o = rec(2 - K, W) with non-negligible advantage. By using D as a subroutine,
we can build a distinguisher D’ on input (a’, X', Y’, K’), solve the RLWE-DH

problem:
— Compute W = (K')3 and o = rec(2- K',W).
— Run D using the input (a’, X' Y’, W, 0).
e If D outputs 1 then K’ is X's + e; for some e & xg and Y/ = as+ ey
for some s, e; & X3

e Else (K',Y’) is uniformly random element from R, x R,.

Because D solves vDPWE with non-negligible advantage, D’ solves RLWE-
DH with non-negligible advantage as well, which contradicts RLWE-DH’s hard-
ness. O

3 Protocol Construction of Encryption

3.1 The RLWE-ICAE

In this section we present a practical and carefully designed scheme: RLWE-
ICAE. The scheme consists of the following four algorithms, Setup, Keygen,
Encrypt and Decrypt.

Setup: On a security parameter x, Setup(1*) returns params = (n,q, «, 3, a)
specifying the underlying ring R,, Gaussian distribution xq,xs used in the
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scheme and public element a & R, where n is a power of 2 and ¢ is an odd
prime such that ¢ mod 2n = 1.

Keygen: On the parameters params, for each honest user i, (1 < i < N),

Keygen samples s;, e; i Xa, Sets pk; = a - s; + e; and sk; = s;, and outputs
the keypair (pk;, sk;). The CA issue a certificate cert; used to authenticated the
binding between user identity id; and public-key pk;.

Encrypt: Let [ = (K,&,D) be an AEAD scheme. Let h : {0,1}* — x4 be
a cryptographic hash function that always outputs invertible elements in R,,
M € {0,1}* be the message to be encrypted with an associated data H and
KDF : G x {0,1}* — {0,1}" be a key derivation function. We denote by
Alice the sender with public identity information pids = (ida,pka = pa =

a-ss+es € Ry, certa), where sa,ea & Xa, and secret-key ska = s4, and by

Bob the receiver with possesses public identity information pidg = (idp, pkp =

pB =a-Sp+ep € Ry, certg), where sp,ep & Xa, and secret-key skp = sp.
Encrypt(ska, pida, pidg, H, M) works as follows:

1. Sample r, f & Xxg and compute X =a -7+ f € Ry;
2. Compute d = h(X, pida,pidg),  =r+ sad and f = f + ead;

D 2n (V) .
Wmal), where v € Z*" is the

3. Go to step 4 with probability min(
coeflicient vector of element 7 concatenated with the coefficient vector of f ,
and v; € Z?" is the coefficient vector of s 4d concatenated with the coefficient
vector of e ad; otherwise go back to step 1;

Sample g & X, and compute X = pa-d+ X, PSa=pp-(r+sad) +g;
Compute (PS,w) < HelpRec(PS4);

Derive key K1 = KDF(PS, X||pidg), where K; € K;

Compute Cag < Ex, (H, pida|| X||M);

Finally, send the ciphertext C' = (H, X, w,Cag) to the receiver.

®© N ot

Decrypt(skg, pidg, C(= (H,X’, w,Cag))) works as follows:

1. Compute PSp = X - sp and pre-shared secrecy PS = rec(2- PSp,w), and
derive the key Ky = KDF(PS, X||pidp);

2. Run Dk, (H,Cag). If Dk, (H,Cag) returns L, abort; otherwise get (pida =
(ida,pa, certa), X, M);

3. Compute d = h(X, pida,pidg). If X equals to ps - d + X and pid 4 is valid,
accept (pida, M); otherwise, abort.

Our scheme is presented in Fig.1. Note that we use rejection sampling in our
scheme, and this technique can protect the secret information sd and e d from
X =a-(sad+7)+ (ead + f). In our proof of insider confidentiality, such a
“secret hidden” is necessary. Reconciliation mechanism is used to compute P.S
from two approximate values PS4 and PSp, and this can be regarded to be a
key agreement of the sender and the receiver.
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pida pidp
pka:pa<a-sa+ea pkp :pp < a-sp+ep
ska:sa skp : sB

$ $
where sa,e4 <— Xa where sp,ep < Xa

X<—a-r+fwherer,fixg
d — h(X,pida,pids)

)? =pa-d+ X
PSa—pp-(r+sa-d)+g
where g & X3

(PS,w) < HelpRec(PSa)

K1 — KDF(PS, X||pidp)

Cap — Ex, (H,pida|| X||M) 2X9C4E, pgy o X . sp
PS «—rec(2- PSp,w)
K, — KDF(PS, X||pidz)
(pida, X, M) «— Dg, (H,Cag)
d — h(X,pida,pidp)
Accept if pida valid and X = pa-d+ X

Fig. 1. Protocol structure of RLWE-ICAE.

One-Pass CAKE. In the RLWE-ICAE, there is Ky = KDF(PS, X||pidp).
We can redefine K DF to construct an one-pass CAKE. Define (K;,Ks2) =
KDF(PS, X||pidg). Then to cast the RLWE-ICAE scheme into one-pass
identity-concealed authenticated key-exchange (CAKE), we need set the session-
key to be K5 which is computationally independent of the key K;. Hence the
exposure of K; does not affect the session key security. Note that a similar
scheme is Zhang’s one-pass key exchange protocol from ideal lattices [27]. Com-
pared Zhang’s protocol, our scheme provides identity concealment.

3.2 Correctness

Note that in protocol, if [PSal]z2 = rec(2- PSp,w), where PS4 «— dbl(PSy),
the protocols would be correct. By the definition of the reconciliation mechanism
and Lemma 4, there needs to |[[PSs — PSp||e < . We have
PSa=pp(r+sad)+g=(asg+ep)(r+sad)+g
=adsasp +epsad+arsg +reg + g,
PSp = )Z'SB = (pad+ X)sp = (asad + ead + ar + f)sp
= adsasp +easpd+arsg + fspg,

therefore, we need ||[PSy — PSp||ec = |lepsad+rep +g—easpd— fspllcc <
with overwhelming probability.
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4 Security for RLWE-ICAE

We assume K DF' to be a random oracle.

Theorem 5. The scheme RLWE-ICAFE in Fig. 1 satisfies outsider unforgeability
and insider confidentiality in the random oracle model, under the AEAD security
and the vVPWE assumption.

The proof of Theorem 5 is presented in the full version of this paper in ePrint.
We construct a scheme simulator S, which is computationally indistinguishable
from that in the real attack game from the view of the adversary and proof that
if the adversary can break the outsider unforgeability or insider confidentiality
security, vPWE problem can be solved with non-negligible probability.

5 Concrete Parameters

In this section, we present the choices of parameters and give the complexity
assessment of RLWE-ICAE.

We use the property for product of two Gaussian distributed random val-
ues which are stated in [27]. Let z,y € R be two polynomials with degree of
n. Assume that the coefficients of x and y are distributed according to a dis-
crete Gaussian distribution with parameter 3,3y, respectively. Then we have
that the individual coeflicients of the polynomial xy are approximately normally
distributed around zero with parameter (3,3,+/n. Hence for ||PSa — PSp||ec =
llepsad + rep + g — fsp — easpd||« < %, applying Lemma 1 we have that
llka — kBlloo > 13 - \/2na232 + 32 + 2n2a5 with probability approximating
27121 We set 13 - \/2na2(? + 32 + 2n2ab < ¢ to make sure the correctness
of the scheme. Note that since the Theorem 1 of rejection sampling, the distri-
butions of r 4+ s4d is according to x3. We follow a way of parameter choosing
in [27]. To choose an appropriate 3, we set n = 1/2 in Lemma 2 such that
[[sad|| < 1/2na? with probability at most 2 - 0.9437". In order to make the
rejection sampling work, we need to set 3 > ( - 1/2na? for some constant (.
When we set ( = 12, by Theorem 1, there is an expect number of rejection
sampling about M = 2.72 and a statistical distance about 2%

For the security of our parameters, Alkim et al. [2] analysised RLWE and
LWE using two BKZ types attacks: prime attack and dual attack [6]. The
thoughts of their approach is to replace the enumeration core-SVP algorithm
in BKZ by sieve algorithm, and only evaluate the cost of one call to an SVP
oracle in dimension b. For more detail, we refer to [2]. We use their techniques
to assess the core-SVP security. But to estimate the security of our scheme more
accurately, we follow Albrecht’s estimation [1] about the number for the calls to
core-SVP oracle. Albrecht estimated it to be 8d, where d is the dimension of the
embedding lattice. We will first compute the core-SVP security, then multiple it
with 8d to obtain the final security.

Two recommend parameters choices is given in Table 2. Remark that ¢ must
be a prime and satisfies ¢ = 1 mod 2n. In the table, we denote classical security
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Table 2. Recommend Parameters for RLWE-ICAE

1 11
n power of 2 1024 2048
o 2.828 2.828
B > na®¢ = ina® - 12 49152 98304
log2f3 ~15.6 ~16.6
q > 104 - \/2na?B2 + (42 + 2n2ab | 231362561 | 654340097
logaq ~27.8 ~29.3
Classical security 120 bits | 256 bits
Quantum security 110 bits 234 bits

as the best-known classical attack time complexity, and quantum security as the
best-known quantum attack time complexity [2].

6 Conclusion

We proposed the first lattice based identity-concealed authenticated encryption
scheme: RLWE-ICAE. The scheme enjoys many nice properties of higncryption
such as 0-RTT option, forward ID-privacy, receiver deniability and z-security.
Meanwhile since our scheme is based on RLWE, it also enjoys the properties of
lattice-based cryptography, such as conceptual simplicity, worst-case hardness
assumption, and resistance to quantum computer attacks. Our scheme benefits
from Peikert’s reconciliation mechanism [21] technique which can help two par-
ties compute a same element from two approximate values. We use the rejection
sampling technique to hide the static secret information. To prove the security
of our scheme, we introduce vVPWE assumption, which is a variant of Pairing
with Errors assumption [9] by replacing the reconciliation mechanism in [9] with
Peikert’s version [21]. For further works, we will consider to construct an identity
concealed key exchange from RLWE.
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Abstract. Public key encryption with equality test (PKEET) allows the
testing of equality of underlying messages of two ciphertexts. PKEET is
a potential candidate for many practical applications like efficient data
management on encrypted databases. Identity-based encryption scheme
with equality test (IBEET), which was introduced by Ma (Informa-
tion Science 2016), can simplify the certificate management of PKEET.
Potential applicability of IBEET leads to intensive research from its first
instantiation. Ma’s IBEET and most of the constructions are proven
secure in the random oracle model based on number-theoretic hardness
assumptions which are vulnerable in the post-quantum era. Recently, Lee
et al. (ePrint 2016) proposed a generic construction of IBEET schemes
in the standard model and hence it is possible to yield the first instan-
tiation of IBEET schemes based on lattices. Their method is to use a
3-level hierarchical identity-based encryption (HIBE) scheme together
with a one-time signature scheme. In this paper, we propose, for the first
time, a concrete construction of an IBEET scheme based on the hardness
assumption of lattices in the standard model and compare the data sizes
with the instantiation from Lee et al. (ePrint 2016). Further, we have
modified our proposed IBEET to make it secure against insider attack.

1 Introduction

The concept of IBEET is the combination of PKEET and identity-based encryp-
tion (IBE). IBEET can simplify the certificate management of PKEET with all
messages encrypted with the receiver’s public identity. IBEET is a special kind
of IBE featuring equality test between ciphertexts under different as well as the
same identity. This property is very useful in various practical applications, such
as keyword search on encrypted data, encrypted data partitioning for efficient
encrypted data management, personal health record system and spam filtering in
encrypted email systems. Due to its numerous practical applications, there have
been elegant research outcomes in this direction with the appearance of improved
schemes or ones with additional functionalities [8,10,15]. However, they are all
proven secure in the random oracle model which does not exist in reality. There-
fore it is necessary to construct such a scheme in the standard model. Moreover,
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all aforementioned existing schemes base their security on some number-theoretic
hardness assumptions which will be efficiently solved in the quantum era [13]. Up
to the present, there is only one IBEET scheme secure in the standard model,
which was generically constructed by Lee et al. [7]. Their method is to use a
3-level hierarchical identity-based encryption (HIBE) scheme together with a
one-time signature scheme. This is the first one with the possibility of yielding
a post-quantum instantiation based on lattices, since lattice-based cryptogra-
phy is the only one among other post-quantum areas up to present offers HIBE
primitives, e.g., [1]. Hence it remains a question of either yielding an efficient
instantiation or directly constructing an IBEET based on lattices.

On the other hand, supporting equality tests makes the security of IBEET
schemes weaken. If the adversary can have a trapdoor for the equality test on
the target ciphertext, he can generate a ciphertext of any message by himself
and perform equality tests between the target ciphertext and the ciphertext
generated by himself. We call this type of attacks as an insider attack [15].
IBEET secure against insider attack is proposed by Wu et al. [15]. There is a
security flaw which is fixed by Lee et al. [9]. However, the construction is secure
in the random oracle model based on number-theoretic hardness assumption.
So, it is required to consider the secure construction in standard model based
on the hardness assumptions which will remain secure in post-quantum era.

Table 1. Comparison of proposed IBEET with instantiation from [7].

Scheme Ciphertext Public key Master secret key | Secret key
Proposed 2t + 4m (I+3)mn +nt 2m? 4dmt
Instantiation® | 8m + 2t + 2mt | (I 4 3)mn + nt | 2m? 2mt

from [7]

*See Appendix A; **Data sizes are in number of field elements. In case of [7], we
do not count the part of ciphertex which is possible to obtain from the public key.

Our Contribution: In this paper, our contribution is twofold:

— According to the best of our knowledge, we propose the first concrete con-
struction of an addaptive secure IBEET scheme secure in the standard model
based on the hardness assumption of lattices. From Table 1, it is evident that
the proposed construction outperformed the instantiation from [7].

— We have modified the proposed IBEET to make it secure against insider
attack. This is also secure in the standard model based on the hardness
assumption of lattices, whereas the previous constructions are secure in the
random oracle model based on the number-theoretic hardness assumptions.

Our ideas come from the use of the full lattice-based IBE in the standard model
by Agrawal et al. [1] and a recent technique by Duong et al. [6] in directly
constructing a PKEET based on lattices in the standard model.
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Remark 1. Our proposed schemes achieve only IND-CPA security (defined in
Sect. 2), which can be modified to achieve IND-CCAZ2 security by using the HIBE
scheme in [1] through the BCHK’s transformation [4]. Hence in definition of
security model in Sect. 2, we provide only the definition of CPA-security models,
i which the adversary cannot query the decryption oracle.

2 Preliminaries

2.1 Identity-Based Encryption with Equality Test (IBEET)

Definition 2 (IBEET). An identity-based encryption with equality test
(IBEET) consists of the following polynomial-time algorithms:

— Setup(A): On input a security parameter A and set of parameters, it outputs
a public parameter PP and a master secret key MSK. Note that PP consists
of the information of the message space M and we assume that all other
algorithms take PP as an input implicitly without stated.

— Extract(PP,MSK, ID): On input PP, MSK and an identity D, it outputs a user
ID’s secret key SKip.

~ Enc(PP,ID,m): On input PP, an identity ID and a message m, it outputs a
ciphertext CT.

— Dec(PP,SKp, CT): On input PP, a user ID’s secret key SK and a ciphertext
CT, it outputs a message m’ or L.

- Td(SKip): On input the secret key SKip for the user D, it outputs a trapdoor
tdip.

— Test(tdip,, tdip;, CTip,, CTip,): On input two trapdoors tdip,,tdip, and two
ciphertexts CTip,, CTip; for users ID; and ID; respectively, it outputs 1 or 0.

Correctness. We say that an IBEET scheme is correct if the following condi-
tions hold:

(1) For any security parameter A, any user ID; and any message m, it holds that

SKip « Extract(PP, MSK, ID)
Pr Dec(PP, SK|D, CT|D) = 1m =1
CTip < Enc(PP,ID, m)

or any security parameter A, any users ID;, ID; and any messages m;, m,
2) F it ter A ID;, ID; and y
it holds that:

SKp, < Extract(PP, MSK, ID;)
tdip, CTip, < Enc(PP,ID;, m;)
tdip; tdip, < Td(SKip,)
Pr | Test CTio, | 1 SKip,; « Extract(PP,MSK, ID;)
CTio. CTIDj — Enc(PP, ID;, mj)
J tdID]- — Td(SK|Dj)

is 1 if m; = m; and is negligible in A for any ciphertexts CT;, CT; such that
Dec(SK;, CT;) # Dec(SK;, CT;), regardless of whether i = j.
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Security Model of IBEET. For the security model of IBEET, we consider
two types of adversaries:

e Type-I adversary: for this type, the adversary can request to issue a trapdoor
for the target identity and thus can perform equality tests on the challenge
ciphertext. The aim of this type of adversaries is to reveal the message in the
challenge ciphertext.

e Type-II adversary: for this type, the adversary cannot request to issue a
trapdoor for the target identity and thus cannot perform equality tests on
the challenge ciphertext. The aim of this type of adversaries is to distinguish
which message is in the challenge ciphertext between two candidates.

The security model of a IBEET scheme against two types of adversaries above
is described in the following.

OW-ID-CPA Security Against Type-I Adversaries. We illustrate the
game between a challenger C and a Type-I adversary A4 who can have a trap-
door for all ciphertexts of the target identity, say ID*, that he wants to attack,
as follows:

1. Setup: The challenger C runs Setup()) to generate the pair (PP, MSK), and
sends the public parameter PP to A.
2. Phase 1: The adversary A may make queries polynomially many times adap-
tively and in any order to the following oracles:
— OB an oracle that on input an identity ID (different from ID*), returns
the ID’s secret key SKip.
— OT9: an oracle that on input an identity ID, return td;p by running tdp «
Td(SKip) using the secret key SKp of the identity ID.
3. Challenge: C chooses a random message m in the message space and run
CTp- < Enc(PP,ID*,m), and sends CT|p- to A.
4. Phase 2: A can query as in Phase 1 with the constraint that the identity
ID* cannot be queried to the key generation oracle OF<,
5. Guess: A output m’.

The adversary A wins the above game if m = m’ and the success probability of
A is defined as
AdVOTERET (A) == Prlm = m'].

Remark 3. If the message space is polynomial in the security parameter or the
min-entropy of the message distribution is much lower than the security param-
eter then a Type-1 adversary A with a trapdoor for the challenge ciphertext can
reveal the message in polynomial-time or small exponential time in the secu-
rity parameter, by performing the equality tests with the challenge ciphertext
and all other ciphertexts of all messages generated by himself. Hence to prevent
this attack, we assume that the size of the message space M is exponential in the
security parameter and the min-entropy of the message distribution is sufficiently
higher than the security parameter.
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IND-ID-CPA Security Against Type-II Adversaries. We present the
game between a challenger C and a Type-II adversary A who cannot have a
trapdoor for all ciphertexts of the target identity ID* as follows:

1. Setup: The challenger C runs Setup(\) to generate (PP, MSK) and gives the
public parameter PP to A.

2. Phase 1: The adversary A may make queries polynomially many times adap-
tively and in any order to the following oracles:

— OB an oracle that on input an identity ID (different from ID*), returns
the ID’s secret key SKp.

— O79: an oracle that on input an identity ID, return tdp by running td;p «
Td(SKip) using the secret key SK|p of the identity ID.

3. Challenge: A selects a target user ID*, which was never queried to the
OBt and OT9 oracles in Phase 1, and two messages mg m; of same length
and pass to C, who then selects a random bit b € {0,1}, runs CTjp. }, «
Enc(PP,ID*, m;) and sends CT|p- ;, to A.

4. Phase 2: A can query as in Phase 1 with the constraint that the target
identity ID* cannot be queried to the secret key extraction oracle @& and
the trapdoor generation oracle OT9.

5. Guess: A output ¥'.

The adversary A wins the above game if b = b’ and the advantage of A is defined
as

_ID- 1
AdNOIDCPA ‘Pr[b . 2‘ |

2.2 IBEET Against Insider Attack

Definition 4. An IBEET against insider attack consists of the following
polynomial-time algorithms:

— Setup(A): On input a security parameter X, it outputs a public parameter PP,
a master secret key MSK and a master token key MTK.

- Extract(ID, MSK, MTK): On input an identity |D, the master secret key MSK
and a master token key MTK, it outputs the secret key SKip and token tokp
for the identity 1D.

It is assumed that SK\p and tokip are delivered to the user of identity ID and
the token tokp is delivered to all group users via secure channel.

— Enc(PP,m, ID, tokip): On input PP, an identity ID with its token tokp and a
message m, it oultputs a ciphertext CT.

— Dec(CT, SKip, tokip): On input a ciphertext CT, the secret key SKip and token
tokip of the identity ID, it outputs a message m’ or L.

— Test(CT;, CT;): On input two ciphertexts CT; and CT;, it outputs 1 or 0.

Correctness. We say that the above IBEET is correct if the following holds:
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(1) For any security parameter A, identity ID and message m, it holds that
PI‘[HI — Dec(CT, SK|D,tOk|D)] =1

where (PP, MSK, MTK) « Setup(}), (SKip, tokip) « Extract(ID, MSK, MTK)
and CT < Enc(PP, m, ID, tokp).

(2) For any security parameter A, identities ID;,|D; and messages m;, mj, it
holds that

(PP,MSK, MTK) « Setup(\)

(SK|Di,tOk|Di) — Extract(IDZ-, MSK, MTK)
Pr | Test (CT;,CT;) = 1| (SKip,, tokip,) «— Extract(ID;, MSK, MTK)

CT; «< Enc(PP,m,, ID;, tokp,)

CT; < Enc(PP,m;, ID;, tokp,)

is 1 if m; = m; and negligible in the security parameter A otherwise.

Security Model. The security model of IBEET against insider attack [15] is
slightly weaker than the formal security model of traditional IBE. In such a
scheme, two messages my and m; submitted by the adversary to the challenger
should not be queried to the encryption oracle before and after the challenge
phase. We call this security model the weak indistinguishability under adaptive
identity and chosen message attacks (wWIND-ID-CPA). In particular, we present
the game between the challenger C and the adversary A as the following.

1. Setup: The challenger C runs Setup(A) to generate (PP, MSK,MTK) and
gives the public parameter PP to A.

2. Phase 1: The adversary A may make queries polynomially many times adap-
tively and in any order to the following oracles:

— OP%: an oracle that on input an identity ID, returns the ID’s secret key
SKip, where (SK|p, tok)p) < Extract(ID, MSK, MTK).

— OFre: an oracle that on input a pair of an identity ID and a message m,
returns the output of Enc(PP, m, ID, tokp).

3. Challenge: A submits a target identity ID* and two messages mg, m; of
same length to C, where ID* was never queried to O®* and mg, m; were
never queried to OF"® in Phase 1. Then C picks a random bit b € {0, 1}, runs
CTip- » < Enc(PP, my, ID*, tokip+ ), and sends CT|p- ; to A.

4. Phase 2: A can query as in Phase 1 with the following constraints:

— The target identity ID* cannot be queried to OB,
— The submitted messages mg, m; cannot be queried to OF";

5. Guess: A outputs a bit b'.

The adversary A wins the above game if b = b’ and the advantage of A is defined
as

AdvNBER ST == |Pr[b = b] — .

2

!
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2.3 Lattices

Throughout the paper, we will mainly focus on integer lattices, which are discrete
subgroups of Z™. Specially, a lattice A in Z™ with basis B = [by, -+ ,b,] €
Z™*"™ where each b; is written in column form, is defined as

n
A= {szxlthZVl:l, ,n} cz™.

i=1

We call n the rank of A and if n = m we say that A is a full rank lattice. In
this paper, we mainly consider full rank lattices containing ¢gZ™, called g-ary
lattices, defined as the following, for a given matrix A € Z"*"™ and u € Zy

Ag(A) := {e € Z s.t. Is € Z where ATs =e mod a}
4L N m —

A7 (A):={e€Z™ st. Ae=0 mod q}

AJ(A):=={ee€Z™ st. Ae=u mod q}

Note that if t € AY(A) then AF(A) = Ay (A) +t.

Let S = {s1,---,sk} be a set of vectors in R™. We denote by ||S] :=
max; ||s;|| for ¢ = 1,--- , k, the maximum Iy length of the vectors in S. We also
denote S := {8;,---,8;} the Gram-Schmidt orthogonalization of the vectors
S1,--- ,s) in that order. We refer to ||S|| the Gram-Schmidt norm of S.

Ajtai [2] first proposed how to sample a uniform matrix A € Zy*™ with an
associated basis S4 of A (A) with low Gram-Schmidt norm. It is improved later
by Alwen and Peikert [3] in the following Theorem.

Theorem 1. Let ¢ > 3 be odd and m := [6nlogq]|. There is a probabilistic
polynomial-time algorithm TrapGen(q,n) that outputs a pair (A € Z3*™,S €
Z™m*™) such that A is statistically close to a uniform matriz in Zy*™ and S is
a basis for /1ql (A) satisfying

ISl < O(v/nlogg) and ||S|| < O(nlogq)

with all but negligible probability in n.

Definition 1 (Gaussian distribution). Let A C Z™ be a lattice. For a vector
c € R™ and a positive parameter o € R, define:

X—C 2
pret) = e (rEZEL) el = et
xEAN

The discrete Gaussian distribution over A with center ¢ and parameter o is

ch()’)
vyeAd , D ocly)=— .
Aol = ")
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For convenience, we will denote by p, and D, , for pg, and D, 0 respec-
tively. When o = 1 we will write p instead of p;. We recall below in Theorem 2
some useful results. The first one comes from [11, Lemma 4.4]. The second one is
from [5] and formulated in [1, Theorem 17] and the last one is from [1, Theorem
19].

Theorem 2. Let ¢ > 2 and let A, B be a matriz in Zy*™ with m > n and B
is rank n. Let Ty, Tg be a basis for A;-(A) and A;-(B) respectively. Then for
ceR™ and U € Zy**:

1. Let M be a matriz in Zy*™ and o > |Tallw(y/Tog(m + m1)). Then there
exists a PPT algorithm SampleLeft(A, M, T4,U, o) that outputs a vector e €
Zmr e distributed statistically close to Dpu(ry),o where Fy := (A | M). In
particular e € AqU(Fl), i.e., F1-e=U mod q.

2. Let R be a matriz in ZF*™ and let sp = SUp|x=1 | Bx[|. Let Fy :=

(A| AR+ B). Then foro > ||ﬂ|\st(\/log m), there exists a PPT algorithm
SampleRight(A, B, R, Ts,U, o) that outputs a vector e € Z™+* distributed
statistically close to DA([ZJ(F2)7O-. In particular e € A (Fy), ie., Fy-e =U
mod q.

Note that when R is a random matriz in {—1,1}"*™ then sg < O(y/m) with
overwhelming probability (cf. [1, Lemma 15]).

The security of our construction reduces to the LWE (Learning With Errors)
problem introduced by Regev [12].

Definition 2 (LWE problem). Consider publicly a prime q, a positive integer
n, and a distribution x over Zq. An (Zq,n, x)-LWE problem instance consists of
access to an unspecified challenge oracle O, being either a noisy pseudorandom
sampler Os associated with a secret s € Zy, or a truly random sampler Og who
behaviors are as follows:

Os: samples of the form (u;,v;) = (w;,uls + z;) € Zy x Lq where s € Zy is
a uniform secret key, w; € Zy is uniform and x; € Zq 15 a noise withdrawn
from x.

Og: samples are uniform pairs in Zy X Zq.

The (Zq,n, x)-LWE problem allows responds queries to the challenge oracle O.
We say that an algorithm A decides the (Zq,n, x)-LWE problem if

AdvI;\lNE = ‘Pr[.AOs =1] — Pr[A% = 1]’
is non-negligible for a random s € Zj.

Regev [12] showed that (see Theorem 3 below) when Y is the distribution ¥,
of the random variable |¢X] mod ¢ where o € (0,1) and X is a normal random
variable with mean 0 and standard deviation «/+/27 then the LWE problem is
hard.
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Theorem 3. If there exists an efficient, possibly quantum, algorithm for decid-
ing the (Zq,n,¥o)-LWE problem for q > 2\/n/«a then there is an efficient quan-
tum algorithm for approrimating the SIVP and GapSVP problems, to within
O(n/a) factors in the ly norm, in the worst case.

Hence if we assume the hardness of approximating the SIVP and GapSVP
problems in lattices of dimension n to within polynomial (in n) factors, then it
follows from Theorem 3 that deciding the LWE problem is hard when n/« is a
polynomial in n.

3 Proposed Construction: IBEET

3.1 Construction

Setup(A): On input a security parameter A, set the parameters q,n,m, o, « as
in Sect. 3.2
1. Use TrapGen(g,n) to generate uniformly random n x m-matrices 4, A’ €
Zy*™ together with trapdoors T4 and T/ respectively.
Select [ + 1 uniformly random n X m matrices Ay, -+, Aj, B € Zj*™.
Select a uniformly random matrix U € Z7**.
H :{0,1}* — {0,1}! is a hash function.
H':{0,1}* — {0,1}! is a hash function.
Output the public key and the secret key

A i o

PK = (A, A" Ay, , A, B,U) , MSK = (T4, Ta).

Extract(PP, MSK, ID): On input the public parameter PP, a master secret key
MSK and an identity ID = (by,--- ,b) € {—1,1}"
1. Let Ap =B+ ZliJrl b;A; € ngm.
2. Sample Eip, B, € Z2™*" as

Eip «— SamplelLeft(A, App,Ta,U,0) , Ejp < SampleLeft(A’, Aip, T4+, U, o).

3. Output SK|[) = (EID7E|/D)-

Let Fip = (A|A|D),F|ID = (A/|A|D) € Zg then Fip - Ep = U, FIID . EI/D =U in
Z4 and Eip, E| are distributed as DAEIJ(F‘ID)70-7 DAEIJ(FIB)J respectively.

Encrypt(PP,ID,m): On input the public parameter PP, an identity ID and a

message m € {0, 1}, do:

1. Let App = B+ Y5, biA; € ZP7™.

2. Set Fip := (A|A|D),F1|/D = (A/‘A“)) S ZZXQm

3. Choose uniformly random s1,s2 € Zy

4. Choose x1,X5 € @ta and compute
CT1:UT51 +X1+mL%J R CTQZUTSQ+X2+H(m)LgJ EZZ.

5. Choose [ uniformly random matrices R; € {—1,1}"*™ for i = 1,---,1
and define Rip = Y\ biR; € {—1,--- , [}™*m.
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6. Choose y1,y2 € ¥, and set z; = REy1,2z2 = REys € Zy
7. Compute

CT3 = F|Dsl + |: :| CTy = (FIID) So + |:)Z,j:| € ng

8. The ciphertext is
CT|D = (CTl, CTQ, CT3, CT4) S Z§t+4m.

Decrypt(PP,SK|p, CT): On input public parameter PP, private key SKip =
(Eip, E|p) and a ciphertext CT = (CT,CT,,CT3,CTy), do
1. Compute w « CT; — EECT3 € Zk.
2. For each i = 1,---,t, compare w; and [4]. If they are close, output
m; = 1 and otherwise output m; = 0. We then obtain the message m.
3. Compute w' — CTy — (E[p)"CT4 € ZL.
4. Foreachi =1,--- ,t, compare wj and [ {|. If they are close, output h; = 1
and otherwise output h; = 0. We then obtain the vector h.
5. If h = H(m) then output m, otherwise output L.
Trapdoor(SKp): On input an identity’s secret key SKip = (Eip, E|p), it outputs
a trapdoor td; = E|,
Test(tdip,, tdip,, CT|D CT|D ): On input trapdoors tdip,,tdip, and ciphertexts
CTip,,CTp, for 1dent1t1e5 ID;, ID; respectively, computes
1. For each i (resp. 7), compute w; — CT;o — (E|D )ICTyy € Zt For each

k=1,---,t, compare each coordinate w;; with L | and output h;; =1
if they are close, and 0 otherwise. At the end, we obtain the vector h;
(resp. h;).

2. Output 1 if h; = h; and 0 otherwise.

Theorem 4. Proposed IBEET construction above is correct if H is a collision-
resistant hash function.

Proof. 1t is easy to see that if CT is a valid ciphertext of m then the decryption
will always output m. Moreover, if CTip, and CTp; are valid ciphertext of m
and m’ of identities ID; and ID; respectively. Then the Test process checks
whether H(m) = H(m'). If so then it outputs 1, meaning that m = m’, which
is always correct with overwhelming probability since H is collision resistant.
Hence, proposed IBEET described above is correct. O

3.2 Parameters

We follow [1, Sect.7.3] for choosing parameters for our scheme. Now for the
system to work correctly we need to ensure

— the error term in decryption is less than ¢/5 with high probability, i.e., ¢ =
Q2(oem?/?) and «a < [olmw(y/Togm)] 1,

— that the TrapGen can operate, i.e., m > 6nloggq,

— that o is large enough for SampleLeft and SampleRight, i.e., o > Ilmw(y/logm),
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— that Regev’s reduction applies, i.e., ¢ > 2/n/a,
— that our security reduction applies (i.e., ¢ > 2Q where @ is the number of
identity queries from the adversary).

Hence the following choice of parameters (¢, m, o, «) from [1] satisfies all of the
above conditions, taking n to be the security parameter:

m=6n'" | ¢=max(2Q,m*°w(\/logn))
o =milw(y/logn) , a=[?m*w(y/logn)]™!

and round up m to the nearest larger integer and ¢ to the nearest larger prime.
Here we assume that § is such that n® > [logq] = O(logn). In [1, Sect. 7.5], it is
shown that one can remove the restriction ¢ > 2Q and that ¢ = m?°w(y/logn)
is sufficient.

(1)

3.3 Security Analysis

In this section, we claim that our proposed scheme is OW-ID-CPA secure against
Type-1 adversaries (cf. Theorem 5) and IND-ID-CPA secure against Type-II
adversaries (cf. Theorem 6). The proofs will follow a similar argument of Theo-
rem 8. We omit them in the current version and refer to the full version.

Theorem 5. The IBEET with parameters (q,n,m,o,«) as in (1) is
OW-ID-CPA secure provided that H is a one-way hash function and the
(Zq,n,ifa)-LWE assumption holds. In particular, suppose there exists a prob-
abilistic algorithm A that wins the OW-ID-CPA game with advantage €, then
there is a probabilistic algorithm B that solves the (Zq,n, ¥, )-LWE problem with
advantage €' such that

where eg ow s the advantage of breaking the one-wayness of H.

Theorem 6. The IBEET with parameters (q,n,m,c,a) as in (1) is
IND-ID-CPA secure provided that H is a one-way hash function and the
(Zq,n,@a)—LWE assumption holds. In particular, suppose there exists a prob-
abilistic algorithm A that wins the IND-ID-CPA game with advantage €, then
there is a probabilistic algorithm B that solves the (Zq,n, ¥, )-LWE problem with
advantage €' such that

€ > 4% (€ — —€mow)

where e ow s the advantage of breaking the one-wayness of H.

4 Proposed Construction: IBEET Against Insider Attack

4.1 Construction

Setup()\): On input a security parameter A, set the parameters ¢,n,m, o, «a as
in Sect. 3.2
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1. Use TrapGen(g,n) to generate uniformly random n x m-matrices 4, A’ €
Zy*™ together with trapdoors T4 and T/ respectively.

Select [ + 1 uniformly random n X m matrices Ay,---, Aj, B € Zy*™.
Select a uniformly random matrix U € Z;’Xt.

H :{0,1}* — Z7" is a hash function.

Output the public parameter, the master secret key MSK and the master
token MTK:

Gl w o

PP=(A,A Ay, A,BU) , MSK=T4 , MTK=Ty.

Extract(ID, MSK, MTK): On input a master secret key MSK, a master token
MTK and an identity ID = (by,--- , b)) € {—1,1}"
1. Let Ap =B+ Zerl b;A; € Z;zxm.
2. Sample Eip € Z2™*" as Eip — SampleLeft(A, Aip,Ta, U, 0).
3. Output SKp := E|D and tokip = T'4.
Let Fip = (A|Ap) then Fip - Ep = U in Z, and Epp is distributed as
DAg(FID),U'
Encrypt (PP, ID, tok;p, m): On input the public parameter PP, an identity 1D
with its token tokip and a message m € {0,1}?, do:
1. Let Ap =B+ Zl-‘rl b;A; € ngm and set Fip := (A|A|D) S ZZX2m.
2. Choose uniformly random s’,s € Ly".

3. Choose x € @i and compute

CTy=Tas" + Hm|Ta) € Z]* , CTy= UTs+x+mL2jeZt.

4. Choose [ uniformly random matrices R; € {—1,1}™*™ for ¢ = 1,---,1
and define Rip = Y\, biR; € {—1,--- ,1}™*™.

5. ChooseyG@ and set z = R yEZm

6. Compute

CTs=Fls+ { } ez
7. The ciphertext is
CTip = (CT1,CT,, CT3) € ZLH™.

Decrypt(SKip, tokip, CT): On input the private key SK|p = E|p, token tokp =
T4 and a ciphertext CT = (CT,CT,,CT3), do
1. Compute w «— CTy — E[5CT3 € ZE.
2. For each i = 1,---,t, compare w; and [4]. If they are close, output
m; = 1 and otherwise output m; = 0. We then obtain the message m.
3. Compute h := A’CT; mod gq.
4. If h = A’H(m||T4/) mod ¢, then output m, otherwise output L.
Test(CTip,,CTip,): On input ciphertexts CTp, ,CT.D for identities ID;,1D;
respectively, if A'CT;; = A’CT,; then output 1, and 0 otherwise.
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Theorem 7. The above construction is correct if H is a collision-resistant hash
function.

Proof. It is easy to see that if CT is a valid ciphertext of m then the decryption
will always output m. Moreover, if CT|p, and CT|p, are valid ciphertext of m and
m’ of identities ID; and ID; respectively. Then the Test process checks whether
H(m||T4/) = H(m'||T4/). If so then it outputs 1, meaning that m = m’, which
is always correct with overwhelming probability since H is collision resistant.
Hence, proposed construction described above is correct. O

4.2 Security Analysis
In this section, we prove that our IBEET scheme is wIND-ID-CPA secure.

Theorem 8. The IBEET construction with parameters (q,n,m,o,«) as in (1)
1s wIND-ID-CPA secure provided that H is a one-way hash function and the
(Zq,n,ifa)-LWE assumption holds. In particular, suppose there exists a prob-
abilistic algorithm A that wins the wiIND-ID-CPA game with advantage €, then
there is a probabilistic algorithm B that solves the (Zq,n, ¥, )-LWE problem with

advantage €' such that
"> )
€ >—(e—e¢
Z 14 H,0W
where e ow s the advantage of breaking the one-wayness of H.

Proof. Assume that there is an adversary A who breaks the wIND-ID-CPA secu-
rity of the IBEET scheme with non-negligible probability €. We construct an
algorithm B who solves the LWE problem using .4. We now describe the behav-
ior of B. Assume that ID* is the target identity of the adversary A and the
challenge ciphertext is CTjp« = (CTp« 1, CTip+ o, CTjp« 3)-

We will proceed the proof in a sequehce of games. In game i, let WW; denote the
event that the adversary A correctly guesses the challenge bit. The adversary’s
advantage in Game i is [Pr[W;] — 3|.

Game 0. This is the original wIND-ID-CPA game between the ttacker A against
the scheme and the wIND-ID-CPA challenger.

Game 1. This is similar to Game 0 except the way the challenger B generates
the public key for the identity ID*, as the following. Let R} € {—1,1}™*™
for i =1,--- ] be the ephemeral random matrices generated for the creation
of the ciphertext CT|y+. In this game, the challenger chooses [ matrices R}
uniformly random in {—1,1}™*™ and chooses [ random scalars h; € Z, for
i=1,---,1. Then it generates A, T4 and B as in Game 0 and constructs the
matrices A; fori =1,---,[ as

Aj— A R} —hi- Be ™™

The remainder of the game is unchanged with R}, i = 1,---,[, used to
generate the challenge ciphertext. Similar to the proof of [1, Theorem 25] we
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have that the A; are close to uniform and hence they are random independent
matrices in the view of the adversary as in Game 0. Therefore

Pr[Wi] = PrW).

Game 2. This is similar to Game 1 except that at the challenge phase, B chooses
arbitrary message m’ from the message space and encrypts m’ in CTip ;.
Other steps are similar to Game 1. Here we can not expect the behavior of A.
Since A’ is public, A can obtain A’H(m'||T). At the end if A outputs m’,
call this event Fs, then A has broken the one-wayness of the hash function
H. Therefore we have

Pr[Wi] — Pr[Wa] < emow

where ey ow is the advantage of A in breaking the one-wayness of H.
Game 3. This game is similar to Game 2 except that we add an abort that is
independent of adversary’s view. The challenger behaves as follows:
— The setup phase is identical to Game 2 except that the challenger also
chooses random h; € Zg, i = 1,--- ,1 and keeps it to itself.
— In the final guess phase, the adversary outputs a random guess b’ € {0,1}

for b. The challenger now does the following;:
1. Abort check: for all queries CTp to the decryption oracle OPec,

the challenger checks whether the identity ID = (by,--- ,b;) satisfies
1+ Z?:l bih; # 0 and 1+ 2?21 bfh; = 0. If not then the challenger
overwrites b’ with a fresh random bit in {0,1} and aborts the game.
2. Artificial abort: the challenger samples a message I' such that
Pr[I" = 1] is calculated through a function G (defined as in [1]) evalu-
ated through all the queries of A. If I' = 1 the challenger overwrites b’
with a fresh random bit and aborts the game (due to artificial abort);

see [1] for more details.
It follows from the proof of [1, Theorem 25] that

1 1
PI‘[Wg] - ‘ > —

2|~ 4q 2

Pr[Ws] — 1‘ .

Game 4. We now change the way how A and B are generated in Game 3.
In Game 4, A is a random matrix in Z¢*™ and B is generated through
TrapGen(g,n) together with an associated trapdoor T for A} (B). The con-
struction of A; for ¢ = 1,--- I remains the same as in Game 3, i.e., 4; =
AR? — h;B. When A queries OF(ID) for the secret key of ID = (by,--- ,by),
B performs as follows:

— B sets l

Fip = (A|B+ > _A;) = (A|[AR + hipB)
=1
where
l l
R bRy €Zp*™ and hp«— 1+ Y bh; € Zy. (2)

i=1 i=1
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— If hyp = 0 then abort the game and pretend that the adversary outputs
a random bit ¢’ as in Game 3.

— Set Eip < SampleRight(A, hpB, R, T,U,0) € ng”. Note that since
hip is non-zero, and so T is also a trapdoor for hyB. And hence the
output E\p satisfies Fip - Eip = U in ZZ. Moreover, Theorem 2 shows

that when o > ||7A];H5Rw(\/ﬁ) with sg := ||R||, the generated Eip is
distributed close to D v (Fip) as in Game 2.
— Return SKp := Ep. !
Game 4 is otherwise the same as Game 3. In particular, in the challenge
phase, the challenger checks if ID* = (b}, - ,b}) satisfies 1 + 2221 bih; = 0.
If not, the challenger aborts the game as in Game 3. Similarly, in Game 4,
the challenger also implements an artificial abort in the guess phase. Since

Game 3 and Game 2 are identical in the adversary’s view, we have that
PI‘[W4] = PI‘[W3].

Game 5. Game 5 is identical to Game 4, except that the challenge ciphertext
is always chosen randomly. And thus the advantage of A is always 0.

We now show that Game 4 and Game 5 are computationally indistinguishable.
If the abort event happens then the games are clearly indistinguishable. We,
therefore, consider only the queries that do not cause an abort.

Suppose now A has a non-negligible advantage in distinguishing Game 4 and
Game 5. We use A to construct B to solve the LWE problem as follows.

Setup. First of all, B requests from O and receives, for each j = 1,--- ,t a fresh
pair (a;,d;) € Zy xZ, and for each i = 1,--- ,m, a fresh pair (u;,v;) € Zj xZy.
A announces an identity ID for the target identity. B constructs the public
parameter PP as follows:

1. Assemble the random matrix A € Zg*™ from m of previously given LWE
samples by letting the i-th column of A to be the n-vector u; for all
1=1,---,m.

2. Assemble the first ¢t unused LWE samples aq,--- ,a; to become a public
random matrix U € Zj*".

3. Run TrapGen(gq, o) to generate uniformly random matrices A’, B € Zy*™
together with their trapdoor T4 and T respectively.

4. Choose ! random matrices Rf € {—1,1}™*™ fori=1,---,l and [ random
scalars h; € Zq for ¢ = 1,---,l. Next it constructs the matrices A; for
i=1,---,l as

Ai — AR} — h;B € ZI%™.

Note that it follows from the leftover hash lemma [14, Theorem 8.38] that
Aq,---, A; are statistically close to uniform.
5. Set PP := (A, A", Ay, -+, A;, B,U) and send to A.
Queries. B answers the queries as in Game 4, including aborting the game if
needed.
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Challenge. Now when A sends B two messages mg and m; and a target identity
ID*. B choose a random bit b € {0,1} and computes the challenge ciphertext
CTip- = (CTip+ 1, CTip+ 5, CTp« 3) for my as follows:

1. Choose a random s’ € Zyg" and compute

CTipe 1 =Tas™™ + H(my||Tar) € Z.

2. Assemble dy,--- ,ds, vy, , vy, from the entries of the samples to form
d* =[dy, - ,dy]" € ZL and v* = [vy, - ,v,]|" € 2.

3. Set CTips o «—d* + my[ 2] € Zfl.

Compute Riy. := S\0_ bIR} € {—1,--- ,[}™*m,

5. Set

=

v*

(Rip-)"v*
Then B sends CTjp- = (CTp« 1, CTip 5, CTip+ 3) to A.

Note that in case of no abort, one has hip~ = 0 and so Fip- = (A|ARj5«).
When the oracle is pseudorandom, i.e., @ = Og then v* = ATs 4 y for some
random noise vector y « @, . Therefore CT|p- 3 in Step 5 satisfies:

CTip- 3= [ } ez

. Als+y _ (T y
Tio- 3 = (ARI*D*)TS_"(RI*D*)TY:| = (Fip) s + (Rip )"y |

—t
Moreover, d* = UT's + x for some x « ¥, and therefore

CTip o =UTs+x+ mbL%j.

Therefore CT |y« is a valid ciphertext.
When O = Og we have that d* is uniform in Z{ and v* is uniform in Z".
Then obviously CTjp«, is uniform. It follows also from the leftover hash
lemma (cf. [14, Theorem 8.38]) that CTjp. 5 is also uniform.

Guess. After Phase 2, A guesses if it is interacting with a Game 4 or Game 5.
The simulator also implements the artificial abort from Game 4 and Game 5
and output the final guess as to the answer to the LWE problem.

We have seen above that when O = Og then the adversary’s view is as in Game
4. When O = Og then the view of the adversary is as in Game 5. Hence the
advantage € of B in solving the LWE problem is the same as the advantage of
A in distinguishing Game 4 and Game 5. Since Pr[W5] = 0, we have

Pr(Wy] = Pr[Wy] — Pr[Ws] < €.
Hence combining the above results yields the desired result. We obtain that
e = Pr[Wy] < emow + 4q€’
which implies
e > L (e—e )
< 1q H,0W

as desired. 0O
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5 Conclusion

In this paper, we propose a direct construction of IBEET based on the hardness
of Learning With Errors problem. Efficiency is the reason to avoid the instan-
tiation of lattice-based IBEET from the generic construction by Lee et al. [7].
In addition, we also modify our scheme to obtain an IBEET against insider
attack. We will leave as a future work for improving our schemes to achieve
CCA2-security as well as to support flexible authorisation.
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Appendix A: An Instantiation of Lee et al.’s Construction

In this section, we will present a lattice-based IBEET which is an instantiation
of the Lee et al.’s construction [7]. In their generic construction, they need (i)
a multi-bit HIBE scheme and (ii) an one-time signature scheme. To instantiate
their construction, we modify the lattice based single-bit HIBE of [1] to multi-bit
one and use it, along with the signature scheme, to have following construction of
lattice based IBEET. Even though one needs only a one-time signature scheme,
we choose the full secure signature scheme from [1] to unify the system, since
in such case, both signature and HIBE schemes use the same public key. It is
required to use multi-bit HIBE and signature scheme to have IBEET from Lee
et al.’s [7].

In what follows, we will denote by [id;.ids.id3] the identity of a 3-level HIBE
scheme where id; is the first level identity, ids is the second level identity and
ids is third level identity. Below, we follow [7] to denote by [ID.0] (resp. [ID.1])
an identity in the second level in which we indicate that ID is the identity of the
first level.

A.1 Construction

Setup())
On input security parameter A, and a maximum hierarchy depth 3, set the
parameters ¢, n, m, o, @. The vector & & @ € R? and we use 0; and a; to refer
to their - th coordinate.
1. Use algorithm TrapGen(g,n) to select a uniformly random n x m- matrix
A A" € Zy*™ with a basis Ta, Tar for A(JI-(A) and A(JI-(A’), respectively.
Repeat this Step until A and A’ have rank n.
2. Select [ + 1 uniformly random m X m matrices Ay, A, Az, -+, A}, B €
Zyxm.
Select a uniformly random matrix U € Z"*¢.
4. We need some hash functions H : {0,1}* — {0,1}, H; : {0,1}* —
{=1,1}t, Hy : {0,1}* — Zy and a full domain difference map H' : Zj —
Zy*™ as in [1, Sect. 5].

e
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5. Output the public key and the secret key
PK:(A7A/aA17A27A37"' 7Al7BaU) ) MSK:TA» sks = T

Extract(PP,MSK,ID): On input the public parameter PP, a master secret key
MSK and an identity ID(€ Z}) = (by,--- ,b;) € {1, 1}
1. Let Ap = Ay, + H'(ID)B € Zy*™.
2. Sample E € Z2™*" as

E — SampleBasisLeft(A, Aip, Ta, U, 0).
3. Output SKp := FE.
Let Fip = (A]App) € Z)"*™ then Fip - E = U in Z, and E is distributed as
Dy (pp),o
Enc(PP, D, m)

On input the public key PK and a message m € {0,1} do
1. Choose uniformly random sy, ss € Zy.

2. Choose x1,x2 € @i and compute

cp = UT51 + x1 —|—mL%J S ZZ,

Co ZUTSQ+X2+H(m)L%J EZZ.
3. Set vks = Ay - - || 4.
4. Set id := Ha(vks) € Zy.

5. Build the following matrices in ZZX4m:

Fip.o.wk, = (Fip|A2 + H'(0) - B|As + H'(id) - B),
Fip.1.vk, = (Fip|A2 + H'(1) - B|As + H'(id) - B).

&

Choose a uniformly random n x 2m matrix R in {—1,1}7X3™m,

Choose y1,y2 € @;n and set z; = RTy1,20 = RTy, € ng.
8. Compute

~

cs = Fibgor.s1+ [yi 21" € Zy™,

Cq = Flgi.vkzss2 +[y3lz3]" € Zém~

9. Let b := Hy(c1||cz]|eslles) € {—1,1} and define a matrix

l
F=(AB+) bA;) ez

i=1
10. Extract a signature e € Z2™*? by

l
e « SampleBasisLeft(A’, B+ > b;A;, Tas,0,0).
i=1

Note that F'-e =0 mod g.
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11. Output the ciphertext
CT = (vk,c1,ca,c3,C4q,€).

Dec(PP, SK|D, CT)
On input a secret key SK|p and a ciphertext CT, do
1. Parse the ciphertext CT into

(vk,c1,ca,c3,Cy,€).
2. Let b := Hy(cy||calles||cs) € {—1,1} and define a matrix
!

F=(AB+) bA;)ezy®m.

i=1

37

3. If F-e =0in Z, and |le| < ov2m then continue to Step 4; otherwise

output L.
4. Set id := Hy(vk) € Zj; and build the following matrices:

Fip.o = (Fip|A2 + H'(0) - B) € Z**™,
Fip.1 = (Fip|A2 + H'(1) - B) € Z %™

Fip.ovk, = (Fip|42 + H’(O) - B|As —I—H’(id) .B) € ng4m’
FVID‘I.'ukS = (.F|D|A2 + Hl(l) . B|143 + H/(Zd) . B) c Z;lX4m.

5. Generate

Ep.o « SampleBasisLeft(Fip, A> + H'(0) - B, E,U, o)

s.t. Fipo-Epo=U

Eip.1 «+ SampleBasisLeft(Fip, A + H'(1) - B, E,U, o)

st. Fip1-Ep1=U

Ep.o.vk, < SampleBasisLeft(Fip.o, A3 + H'(0) - B, Eip.o, U, o)
s.t. Fip.o.wk, " Bip.owk, = U

Ep.1.vk, « SampleBasisLeft(Fip.1, A3 + H'(1) - B, Eip.1,U, o)
s.t. Fip.1.wk, " Eip.1.ok, = U.

6. Compute w «— ¢; — Ef ;.. C3 € ZL,.

7. For each i = 1,---,t, compare w; and [4]. If they are close, output

m; = 1 and otherwise output m; = 0. We then obtain the message m.

*®

/ T t
Compute W' «— ¢ca — Ejp 1 1. €4 € Zy.

9. Foreachi =1,--- ,t, compare wj and | Z]. If they are close, output h; = 1

and otherwise output h; = 0. We then obtain the vector h.
10. If h = H(m) then output m, otherwise output L.
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Td(SK;)
On input the secret key SK;(= E;) of a user U;, run

td; « SampleBasisLeft(Fip, As + H'(1) - B, E;,U, o).

Test(tdz-, tdj, CTZ, CT])
On input trapdoors td;,td; and ciphertexts CT;,CT; of users U; and Uj
respectively, for k =i, j, do the following
1. Parse CT}, into
(vkk, €k 1,Ck 2, Ck 3, Ck 4, €F)-

2. Sample Eip, 1.0k, € ng” from
SampleBasisLeft(Fip, 1, Ax3 + H'(1) - Bg, Eip,.1,U, 0).

3. Use Eip,.1.0k, to decrypt ci 2, €k 4 as in Step 8-9 of Dec(SK, CT) above
to obtain the hash value hy.
4. If h; = h; then ouput 1; otherwise output 0.

Theorem 5 (Correctness). The above IBEET is correct if the hash function H
is collision resistant.

Proof. Since we employ the multi-bit HIBE and signature scheme from [1], their
correctness follow from [1]. The Theorem follows from [7, Theorem 1]. O

A.2 Parameters

We follow [1, Sect.8.3] for choosing parameters for our scheme. Now for the
system to work correctly we need to ensure

— the error term in decryption is less than ¢/5 with high probability, i.e., ¢ =
2(om?3/?) and a < [olmw(y/Togm)] ™,

that the TrapGen can operate, i.e., m > 6nlogq,

— that o is large enough for SampleLeft and SampleRight, i.e., o > Imw(y/logm),
— that Regev’s reduction applies, i.e., ¢ > 2\/n/a,

Hence the following choice of parameters (q,m, o, «) from [1] satisfies all of the
above conditions, taking n to be the security parameter:

m=06n'"" | ¢=max(2Q,m*°w(\/logn))
o =milw(y/logn) , a=[*m2w(y/logn)]

and round up m to the nearest larger integer and g to the nearest larger prime.
Here we assume that ¢ is such that n® > [log ¢] = O(logn).

3)

Theorem 6. The IBEET constructed in Sect. 5 with paramaters as in (3) is
IND-ID-CCA2 secure provided that Hy is collision resistant.
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Proof. The HIBE is IND-sID-CPA secure by [1, Theorem 33] and the sig-
nature is strongly unforgeable by [1, Sect.7.5]. The result follows from
[7, Theorem 5]. O

Theorem 7 ([7, Theorem 3]). The IBEET with parameters (q,n,m,o,a) as
in (3) is OW-ID-CCA2 provided that H is one-way and Hy is collision resistant.

Proof. The HIBE is IND-sID-CPA secure by [1, Theorem 33] and the sig-
nature is strongly unforgeable by [1, Sect.7.5]. The result follows from
[7, Theorem 6]. O
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Abstract. The isogeny-based cryptosystems are considered as one of
post-quantum cryptosystems. Taraskin et al. proposed a password-based
authenticated key exchange (PAKE) scheme from isogeny by extend-
ing Jao et al.’s supersingular isogeny Diffie-Hellman (SIDH) protocol. In
their scheme, a new group action is introduced in addition to SIDH due
to non-commutativity of SIDH in order to embed the password to the
DH public key. Also, in the security proof, new non-standard assump-
tions regarding the new group action are necessary. It is not clear if these
assumptions are really hard.

In this paper, we propose new PAKE schemes, SIDH-EKE and
CSIDH-EKE, which are secure under the standard assumptions (cor-
responding to the computational DH assumption). Our schemes are
obtained by a combination of SIDH (or CSIDH, commutative SIDH)
and EKE (encrypted key exchange). We prove security of our schemes
under the same standard assumptions as original SIDH and CSIDH in
the random oracle model and ideal cipher model. CSIDH-EKE achieves
more compact communication overhead than Taraskin et al.’s scheme.

Keywords: Authenticated key exchange -
Password-based authenticated key exchange -
Isogeny-based cryposystems

1 Introduction

1.1 Backgrounds

Post-quantum cryptosystems (PQC) are one of hottest research topics in cryp-
tography due to emerging of quantum computers. Though the most studied
PQC is lattice-based, other alternatives are also required to risk diversifica-
tion as NIST’s PQC standardization [1]. Isogeny-based cryptosystems are one of
candidates of PQC. Given two elliptic curves E, E’/IF,,, non-zero homomorphism
¥ : E — F’is called an isogeny. By Vélu’s formula [39], given elliptic curve E and
point R, we can efficiently compute an isogeny ¢ : E — E/(R) with kernel (R).
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On the other hand, given two isogenous elliptic curves E and E’; to find a (com-
pact representation of) isogeny v : F — E’ (the isogeny computation problem)
is believed to be hard even for quantum computers. Isogeny-based cryptosystems
rely on the isogeny computation problem and its derivations. The advantage of
isogeny-based cryptosystems against other PQC candidates is compactness of
the key size and the ciphertext size.

Couveignes [13] initiated the research of isogeny-based cryptography by for-
mulating the basic notion of hard homogeneous spaces (HHSs) which is an
abstract form of isogeny graphs and class groups of endomorphism rings of
(ordinary) elliptic curves. Rostovtsev and Stolbunov [37] proposed a DH type
key exchange scheme from ordinary elliptic curve isogenies. On the other hand,
Childs et al. [12] showed that the isogeny computation problem on ordinary
elliptic curve isogenies can be analysed in quantum subexponential time. Then,
Jao et al. [16,25] proposed supersingular isogeny-based DH type key exchange
(SIDH) scheme because no quantum subexponential time analysis is known for
the isogeny computation problem on supersingular elliptic curve isogenies. It is
known that j-invariants j(E) = j(E’) (where j(FE) is deterministically derived
from E) iff elliptic curves E and E’ are isomorphic. SIDH uses this property
to share j-invariants as the common session key between parties. Also, Cas-
tryck et al. [11] proposed a new HHS-based key exchange scheme called CSIDH
(commutative SIDH), which is constructed from a group action on the set of
supersingular elliptic curves defined over a prime field. Since the group action is
commutative in CSIDH, we can deal with it as a similar manner to classical DH
key exchange. In CSIDH, a common secret curve is obtained between parties
resulting from the group action, and the Montgomery coefficient of the curve
is shared as the common session key. Moreover, validity of public keys can be
efficiently verified while SIDH has no efficient method yet. Hence, CSIDH is very
compatible to classical DH.

There is a trade-off between the SIDH system and the CSIDH system. The
advantage of SIDH is that computational time is relatively faster than the CSIDH
while it is slower than other PQC candidates. For the security level corresponding
to 64 bit quantum security and 128 bit classical security (i.e., NIST category
1 [1]), computational time for the SIDH key exchange is about 10 times faster
than the CSIDH key exchange. On the other hand, the advantage of CSIDH is
that the key size is more compact than SIDH while the key size of SIDH is also
more compact than other PQC candidates. For the parameter of NIST category
1, the key size is about one fifth of these of SIDH. Also, another major advantage
of CSIDH is efficient puiblic key validation.

Since SIDH and CSIDH are only secure against passive (i.e., just eavesdrop-
ping) adversaries, authenticated key exchange (AKE) schemes [18,19,33,34,40]
from isogeny have been recently studied. AKE schemes aim to ensure security
against active adversaries such as impersonation resilience, known-key security,
and forward secrecy. In AKE, each party has a pre-established static secret key
as the credential, and publishes the corresponding static public key. Thus, some
public key infrastructure (PKI) is necessary.
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On the other hand, in the real world, the most popular authentication mech-
anism is the password authentication. Hence, password-based authenticated key
exchange (PAKE) is important to study in a practical sense. In PAKE, par-
ties shares a human-memorable password in advance, they do not need any
PKI. Since passwords are chosen from a small dictionary, we must consider on-
line and off-line dictionary attacks as well as security of AKE. Many PAKE
schemes based on the classical DH key exchange have been introduced such as
[3,5,9,10,20,21,23,26-30,32,35]. Taraskin et al. [38] introduced the first PAKE
scheme (TSJL scheme) from isogeny. The TSJL scheme is an extension of SIDH
to password-based. The construction idea is simple: each party encodes the pass-
word to SIDH public key, and decodes the received public key with the password.
To achieve such an encoding, they proposed a new group action. Also, security
of the TSJL scheme is proved in the Bellare-Pointcheval-Rogaway (BPR) model
under new assumptions related to the new group action in the random oracle
(RO) model. However, in [38], justification of new assumptions is not sufficiently
discussed. Thus, it is desirable to construct a PAKE scheme based on a standard
isogeny problem.

1.2 Owur Contribution

We propose two new PAKE schemes from isogeny, called SIDH-EKE and CSIDH-
EKE, which are secure under the standard isogeny assumptions. Our main idea
is to compose SIDH (or CSIDH) and encrypted key exchange (EKE) [4]. EKE is
a PAKE scheme based on classical DH key exchange, and security is proved in
[3] as EKE2. Each party encrypts the DH public key with the password as the
key, and decrypts the received ciphertext with the password. The session key
is generated by hashing the session key of the classical DH key exchange with
session-specific information. In (C)SIDH-EKE, each party encrypts the (C)SIDH
public key with the password, and decrypts the received ciphertext with the
password. By the same way as (C)SIDH, the key material of the session key
can be generated, and the session key is the hashed value of the key material
and session-specific information. The computational cost and the communication
cost is almost the same as (C)SIDH. We prove that (C)SIDH-EKE is secure in
the BPR model under the standard (C)SIDH assumption (i.e., corresponding
to the classical computational DH assumption) in the RO model and the ideal
cipher (IC) model. The security proof follows the proof of EKE. However, since
algebraic structures are different between (C)SIDH-EKE and EKE, we cannot
directly use the proof strategy of EKE. Hence, we give the modification of the
proof of EKE according to the algebraic structure of (C)SIDH by using the
hybrid argument.

The advantage of our SIDH-EKE against the previous PAKE scheme from
isogeny (i.e., the TSJL scheme) is that SIDH-EKE can be proved under the
standard SIDH assumption while the TSJL scheme is proved under non-standard
assumptions. The advantage of our CSIDH-EKE against the TSJL scheme is
communication overhead. Though the TSJL scheme (and SIDH-EKE) need 2640
bit overhead for each party, CSIDH-EKE only needs 512 bit overhead for the
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same security level (NIST category 1)! in exchange for the computational cost.
The detailed efficiency comparison is given in Table 1.

1.3 Related Work

Many post-quantum key exchange schemes have been studied. Fujioka et al. [17]
proposed a generic construction of AKE from KEM, and showed instantiations
from lattices and codes. Ding et al. [15] proposed an AKE schemes from the
Learning with Errors (LWE) problem and the Ring-LWE (RLWE) problem.
Bos et al. [8] proposed an RLWE-based AKE scheme for TLS, and Alkim et
al. [2] improved it as NewHope. Also, Bos et al. [7] proposed a LWE-based AKE
scheme, Frodo.

On the other hand, there are few post-quantum PAKE schemes. Katz and
Vaikuntanathan [31] proposed the first PAKE scheme based on lattices. To
remove noise from the shared session key, their scheme uses an error-correcting
code; and thus, it needs three moves. Ding et al. [14] proposed RLWE-based
PAKE schemes. One guarantees explicit authentication with three moves, and
the other needs two moves (not one-round). Generally, isogeny cryptosystem is
advantageous to lattice cryptosystem in key sizes. Hence, (C)SIDH-EKE can be
implemented by smaller key sizes than these lattice-based PAKE schemes. Also,
(C)SIDH-EKE can be executed in one-round (i.e., parties can exchange public
keys simultaneously) while known lattice-based PAKE schemes are not.

2 Preliminaries

In this section, we recall SIDH, HHS, CSIDH, EKE and the BPR model.

Throughout this paper we use the following notations. If M is a set, then by
m €r M we denote that m is sampled randomly from M. If R is an algorithm,
then by y <« R(x;r) we denote that y is output by R on input 2 and randomness
r (if R is deterministic,  is empty). The security parameter is A.

2.1 SIDH

Here, we recall the SIDH system [16,25].

For two small primes £4,¢p (e.g., L4 = 2,5 = 3), let p be a large prime
such that p£ 1 = f - £50¢;F for a small f and (' = (7 = 200N Let E over
F,2 be a random supersingular elliptic curve with E(F,2) ~ (Z/(p = 1)Z)? 2

! Very recently, Peikert [36] showed a new quantum security analysis of CSIDH-512,
corresponding to NIST category 1, by using the collimation sieve technique, and
CSIDH-512 is broken by 40 bit quantum memory and 2'® quantum oracle queries
(i-e., 56 bit quantum security). Hence, He estimates that the quantum security level
of CSIDH-512 is rather weaker than NIST category 1. On the other hand, the quan-
tum circuit for the group operation of CSIDH is very high cost. Thus, by considering
such external overheads of circuits in addition to his evaluation, CSIDH-512 still
seems safe in reality.
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(ZJUAZ)? @ (Z)0FPZ)%. For isogenies ¢4 and ¢p with kernels of orders £
and (77, respectively, let kervpy = (Ra) C E[{}'], keryp = (Rp) C E[{F],
keripa = (Yp(Ra)) C Eplly'] and kerap = (Ya(Rp)) C Ealli’]. Then,
for Y4 : B — E4 = E/(R4) and ¥vp : E — Ep = E/(Rp), Yap : E4 —
E/(Ra,Rp) and g4 : Egp — E/(Ra, Rp) hold. Thus, we can use j-invariants
J(E/{Ra,Rp)) as the common secret computed by two ways. Please see [16,25]
for the detail of the mathematical foundation of the SIDH system.

In the SIDH system, hardness assumptions are defined as classical DH. We
recall the computational DH-type assumptions for SIDH defined in [16].

Definition 1 (SI-CDH Problem [16]). For a €r Z/{}'Z, b €r L/ITZ,
E[KZA] = <PA5QA>7 E[eeBB} = <PB7QB>7 RA = PA +aQA; RB = PB +bQB7
Ya : E — Eq = E/(Ra) and ¥vp : E — Ep = E/(Rp), the advantage
of a PPT solver S in the SI-CDH problem for public parameter Param =
(E,Pa,Qa, Pp,Qp) is defined as

AdVE Ty o (S) =
Pr[S(Param, (Ea,va(Ps),%a(Qp)), (Es,¥5(Pa),¥v5(Qa))) — j(E/(Ra, Rb))].

The SI-CDH problem corresponds to the classical computational DH prob-
lem.

Protocol of SIDH. Here, we recall the protocol of SIDH [25].

Public Parameters. Let E[(5] = (Pa,Qa) and E[{}’] = (Pp,Qp). The public
parameters are (E, P4, Q4, Pp,QB).

Session. Parties A and B executes a key exchange session as follows:

1. Party A chooses a €p Z/l5*Z, computes Ry = Py +aQ4 and ¢4 : E —
E4 = E/(R,4), and sends the public key A = (E4,1%4(Pg),%(Qp)) to party
B

2. Party B chooses b €r Z/{377Z, computes Rg = Pp +bQp and ¢ : E —
Ep = E/(Rg), and sends the public key B = (Eg, ¢ p(Pa),¥5(Q4)) to party
A.

3. On receiving B, party A computes Rps = ¥p (Pa)+ayp(Qa) and generates
the session key SK = j(Ep/{Rpa)).

4. On receiving A, party B computes Rap = tha(Pg)+bi4(Qp) and generates
the session key SK = j(Ea/{Rapg)).

Since Ep/(Rpa) and F4/(Rap) are isomorphic, j(Eg/{(Rpa)) = j(Ea/{Rag))
holds.

It is obvious that the session key SK is hard to find for any passive adversary
if the SI-CDH problem is hard.
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2.2 Hard Homogeneous Space and CSIDH

Here, we recall the definition of HHS [13], and the CSIDH system [11] as an
instantiation of HHS.

Definition 2 (Freeness and Transitivity). X denotes a finite set, and G
denotes an abelian group. We say that G acts efficiently on X freely and transi-
tively if there is an efficiently computable map * : G x X — X as follows:

— for any x € X and g,h € G, g * (hxx) = (gh) *x x holds, and there is an
identity element id € G such that id x x = x,

— for any (z,y) € X x X, there is g € G such that gz =y, and

— for any x € X and g,h € G such that gxx = hxxz, g = h holds.

Definition 3 (Hard Homogeneous Space). A HHS consists of a finite
abelian group G acting freely and transitively on some set X such that the fol-
lowing tasks are efficiently executable:

- Computing the group operation on G

— Sampling randomly from G with (close to) uniform distribution

— Deciding validity and equality of a representation of elements of X

— Computing the action of a group element g € G on some x € X (i.e., g*x)

The CSIDH system is an instantiation of HHS from [F)-rational supersingular
elliptic curves and their Fj-rational isogeny. Let £0¢,(O) be the set of elliptic
curves over IF,, whose IF,-rational endomorphism ring is some fixed quadratic
order O, and cl(O) be the ideal class group of O. Then, the CSIDH system
is regarded as HHS by setting X = &/(,(0) and G = cl(O) as the parameter
of HHS. For curve E € X and ideal class [g] € G, the group action [g] * E
corresponds to the map ([g], E) — E/g. Since E/g is a supersingular curve,
the form of E/g is y* = 23 + ca® +z for ¢ € F,. Then, [g] * E can be represented
as such Montgomery coefficient c.

Due to commutativity of cl(O), for [g], [¢'] € G, E € X, Eg = E/gand Ey =
E/g, curves Ey /g and Ey/g’ are identical. Thus, we can use the Montgomery
coefficient of E/gg’ (ie., ([g][¢']) * E) as the common secret computed by two
ways. Please see [11] for the detail of the mathematical foundation of the CSIDH
system. In this paper, we use the notation of HHS as the CSIDH system for
simplicity.

In the CSIDH system, hardness assumptions are defined as classical DH by
using HHS. We recall the computational DH-type assumption for HHS defined
in [6].2

Definition 4 (CSI-CDH Problem [6]). For Ey € X, [a],[b] €r G, E, =
[a] * Eg and Ey = [b] * Ey, the advantage of a PPT solver S in the CSI-CDH
problem is defined as

AdvET(S) = Pr[S(Eo, Ea, Es) — ([a][b]) * Eq].

2 In [6], assumptions are defined as a generalized form for n-way by using cryptographic
invariant maps (CIM). In the case of n =1, CIM is the same as HHS.
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The CSI-CDH problem corresponds to the classical computational DH prob-
lem.

Protocol of CSIDH. Here, we recall the protocol of CSIDH [11].

Public Parameters. Let p = (4-¥¢1---¢,_1) be a large prime where each ¢; is
a small distinct odd prime. Then, the supersingular elliptic curve Ey : y? =
23 + x over F, with endomorphism ring @ = Z[r] is constructed where 7 is
the Frobenius endomorphism satisfying 72 = —p. For the notation of HHS, G is
denoted by cl(O) and X is denoted by &04,(O); and thus, Ey € X = &/,(0).
[g] €r G means that integers (eg,...,e,) are randomly sampled from a range
{-=m,...,m} and [g] = [T - 5] € cl(O) where [; = (¢;,7 — 1). [g] * Ep is
represented by the Montgomery coefficient ¢ € F, of the elliptic curve [g]Ep :
y? = 23 + cx? + = by applying the action of [g] to Ep.
The public parameters are (G, X, Ep).

Session. Parties A and B executes a key exchange session as follows:

. Party A chooses [a] €r G, and sends the public key /:1 = [a] * Ey to party B.
. Party B chooses [b] € G, and sends the public key B = [b] * Ey to party A.

. On receiving B, party A generates the session key SK = [a] 3
4. On receiving /1, party B generates the session key SK = [b]

W N =

x A

Since G is an abelian group, [a][b] = [b][a] holds. Therefore, [a] * B = [a] * ([b] *
Eo) = ([a][6]) % Eq = ([b][a]) % Eo = [b]*([a] % Eo) = [6]* A holds from Definition 2.

It is obvious that the session key SK is hard to find for any passive adversary
if the CSI-CDH problem is hard.

2.3 EKE
Here, we recall the protocol of EKE [3,4].

Public Parameters. Let p be a A-bit prime, G’ be a cyclic group of order p
with a generator ¢’. Let H : {0,1}* — {0,1}* be a hash function modelled
as a RO. Let (Enc,Enc™') be a symmetric key encryption scheme with key
size & bit and input/output size ¢-bit where Enc : {0,1}* x {0,1}* — {0,1}*
is the encryption algorithm. It is modelled as an IC; that is, for each key k
it is equivalent to a random permutation. Then, output a public parameter
params := (p,g',G’', H, (Enc, Enc™1)).

Session. Parties A and B having password pw = pwap executes a key exchange
session as follows:

1. Party A chooses a €r Z,, computes A= g'*, and sends @ = Enc,,(A) to
party B.

2. Party B chooses b €g Z,, computes B = ¢, and sends 8 = Encpw(é) to
party A.
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3. On receiving (3, party A decrypts B Enc;li (6) and generates the session
key SK = H(A, B, A, B, B%). A
4. On receiving «, party B decrypts A

key SK = H(A, B, A, B, AY).

Enc;li(oz) and generates the session

We briefly explain why the IC is necessary. In EKE, password pw is used as
the key of the symmetric key encryption scheme. However, pw is chosen from
dictionary D which is smaller than the key size. Thus, if we use a concrete
symmetric key encryption scheme, security is not guaranteed in the provable
way. On the other hand, in the IC model, the adversary must pose query (k, m)
to Enc (or query (k,¢) to Enc™!) in order to do encryption (or decryption). Also,
the IC is guaranteed to be independent random permutations for distinct keys.
Hence, the adversary must guess the password and pose query (pw’,-) to the
IC in order to impersonate a party. Its successful probability is bounded by the
number of Send query because the IC guarantees information-theoretic security.

2.4 BPR Model
Here, we recall the BPR model [3] for PAKE.

Protocol Participants and Passwords. A PAKE scheme contains two par-
ties (an initiator and a responder, or a client and a server) who will engage in the
protocol. We suppose that the total number of parties in the system is at most
N. Let passwords for all pairs of parties be uniformly and independently chosen
from a fixed dictionary D. This uniformity requirement is made for simplicity
and can be easily removed by adjusting security of an individual password to be
the min-entropy of the distribution, instead of 1/|D|. Parties P and P’ share a
password pwpp:.

Session. We denote with IT5 the i*" instance of key exchange sessions that
party P runs. Each party can concurrently execute the protocol multiple times
with different instances. We suppose that the total number of instances of a
party is at most £. The adversary is given oracle access to these instances and
may also control some of the instances itself. We remark that unlike the standard
notion of an “oracle”, in this model instances maintain state which is updated
as the protocol progresses. In particular the state of an instance II% includes the
following variables (initialized as null):

— sid’: the session identifier which is the ordered concatenation of all messages
sent and received by ITp; '

- pid}: the partner identifier whom IT% believes it is interacting (pid% # P);

— acch: a Boolean variable corresponding to whether II}, accepts or rejects at
the end of the execution.

We say that two instances IT5 and IT {3/ are partnered if the following properties
hold: pidp = P’ and pid%, = P, and sidp = sid}, # null except possibly for the
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final message.? Partnered parties must accept and conclude with the common
session key.

Security Definition. An adversary is given total control of the external net-
work connecting parties. This adversarial capability is modeled by giving some
oracle accesses? as follows:

— Execute(P, i, P',j): This query models passive attacks. The output of this
query consists of the messages that were exchanged during the honest execu-
tion of the protocol.

— Send(P, i, m): This query models active attacks. The instance IT5 runs accord-
ing to the protocol specification and updates state. The output of this query
consists of the message that the party P would generate on receipt of mes-
sage m. If the input message is empty (say L), the query means activating
the initiator and the output of the query consists of the first move message.

— Reveal(P,i): This query models leakage of session keys by improper erasure
of session keys after use or compromise of a host machine. The output of this
query consists of the session key SK of II}, if accl, = 1.

— Test(P,4): At the beginning a hidden bit b is chosen. If no session key for
instance IT5 is defined, then return the undefined symbol L. Otherwise, return
the session key for instance IT% if b = 1 or a random key from the same domain
if b = 0. This query is posed just once.

The adversary is considered successful if it non-trivially guesses b correctly
or if it breaks correctness of a session.

Definition 5 (Freshness). We say that an instance I is fresh unless one of
the following is true at the conclusion of the experiment:

— the adversary poses Reveal(P, 1), ‘ ‘
— the adversary poses Reveal(P',j) if II}, and II4,, are partnered.

We say that an adversary A succeeds if either:

— A poses Test(P,i) for a fresh instance IT% and outputs a bit &' = b,
— H}; and [T, are partnered, and accﬂp = accﬂp, = 1, but session keys are not
identical.

The adversary’s advantage for protocol IT is formally defined by:
/—\dv‘;ilg’(A) = |Pr[A succeeds] — 1/2],
where A is a security parameter.

3 The exception of the final message for matching of sid is needed to rule out a trivial
attack that an adversary forwards all messages except the final one.

4 The model does not contain any explicit corruption oracle access (i.e., to reveal
passwords). In the password-only setting, such an oracle is unnecessary because
an adversary can internally simulate these oracles by itself. Please see [22, pp.190,
footnote 8] for details.
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Definition 6 (Security of PAKE). We say a PAKE protocol is secure if for
a dictionary D and any PPT adversary A that makes at most qsend queries of
Send to different instances the advantage Adv%alg(.A) is only negligibly larger

than gsend/|D| for A.

3 (C)SIDH-EKE: PAKE from Isogeny Under (C)SI-CDH
Assumption

In this section, we show our new PAKE schemes based on SIDH and CSIDH,
named SIDH-EKE and CSIDH-EKE, respectively.

3.1 SIDH-EKE

Our first scheme (SIDH-EKE) is obtained by a combination of SIDH and EKE.
SIDH-EKE relies on the RO model and the IC model as EKE. The protocol
is basically the same as EKE. Though EKE is based on the classical DH key
exchange, SIDH-EKE uses SIDH to share a key material between users. Specifi-
cally, each user encrypts the public key of SIDH (i.e., A = (Ea, ¥a(Pg), ¥4(QB))
and B = (Ep,¥B(Pa),¥5(Q4))) with the password as the key for the IC,
decrypts the public key of the peer, and computes the session key of SIDH (i.e.,
J(E/{Ra, Rp))) as the key material of our scheme. In the session key generation,
public keys are contained in inputs of the hash function as EKE, but j-invariants
of a part of public keys are used to reduce the bandwidth.
The protocol of SIDH-EKE is as follows.

Public Parameters. Let (E, Pa,Qa, Pp,Qp) be the public parameters of SIDH.
Let H : {0,1}* — {0,1}* be a hash function modelled as a RO. Let (Enc, Enc™ ")
be a symmetric key encryption scheme modelled as an IC with key size x bit
(2 > |D|) and domain (F,2)? x (Z/¢5*7Z)*. Then, output a public parameter
params = (E, Px,Qa, Ps,Qp, H, (Enc, Enc™')).

Session. Parties A and B having password pw = pwap executes a key exchange
session as follows:

1. Party A chooses a €g Z/l5}Z, computes Ry = Pa + aQa, Y4 : E —
E/(R4) and A = (E4,¢4(Pg),va(Qp)), and sends (A, = Encpy(
party B.

2. Party B chooses b € Z /{3 Z, computes Rp = Pg +bQp, Y5 : E — Ep
E/(Rp) and B = (Eg,¢¥5(Pa),¥5(Q4a)), and sends (B, = Encp,(B)) to
party A.

3. On receiving (B, [3), party A decrypts B = Enczjul)(ﬁ)7 computes Rgpa =
Yp(Pa) + app(Qa) and Z = j(Ep/(Rpa)), and generates the session key
SK = H(A,B,j(Ea), j(EB),Z). .

4. On receiving (4, «), party B decrypts A = Enc;ul)(oz), computes Rap =
Ya(Pp) + bpa(Qp) and Z = j(Ea/(Rap)), and generates the session key
SK = H(A,B,j(Ea), j(EB), Z).

Ea
A)) to
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Security. Here, we show security of SIDH-EKE in the BPR model. The security
proof is slightly different with the security proof of EKE due to the structure
of the SIDH system. In EKE, if we set A= g - ¢ and B= g% - g%, the session
key is SK = H(A, B, A B, Z =g". gu0. g . ¢ ) Thus, in the EKE proof, in
order to change the session key generation in the Execute oracle, the simulator
embeds instances of the CDH problem to ¢% and ¢°, sets public keys as above
by choosing # and ¢ for each session, and finally obtains g% (i.e., the answer of
the CDH problem) from Z. However, in SIDH-EKE, such a simulation does not
work because j(E4) and j(Epg) have no algebraic structure (i.e., j-invariants).
Specifically, for j(Ea)-j(Eg) and j(Ep)-j(Ey), Z = j(Ea/(Rag))-j(Ea/(Rag))-
J(Eg/(Rpe)) - j(Eg/{Res)) is not guaranteed. Hence, in our proof, we simulate
the Execute oracle gradually by using the hybrid argument. Specifically, the
output of the Execute query is gradually changed in hybrid experiments, and
the simulator sets the public keys of the changed session to be the same as
instances of the SI-CDH problem. The simulator directly obtains the answer
of the SI-CDH problem as Z for each hybrid experiment. Also, our scheme
is secure against off-line dictionary attacks E4 1n the ephemeral public key
A is an elliptic curve having form y? = 2 + az® 4+ 3 for o, € F,2, and
Ya(Pp),va(QB) € ZJ/I}Z are some points of E,. Hence, Encpw(/i) is the
ciphertext of (a, 3,14 (Pg),¥a(Qp)). The adversary can observe Encp,,(A) and
try to find pw by posing (pw’, Encpw(/l)) to Enc™! oracle for guessing password
pw’. However, since any information of (a, 3,194 (Pg),%a(Qp)) is not leaked
from Encp, (A) because (Enc, Enc™!) is the IC, the adversary cannot determine
if the guess is valid or not. Thus, our scheme prevents off-line dictionary attacks.
Therefore, we can prove security of SIDH-EKE.

Theorem 1. For the advantage Adv%"@?lB (S) of the SI-CDH problem, the

advantage Advg;heekeD( ) of CSIDH-EKE is as follows in the RO model and
the I1C model:

: GSend + GE 2 i GSend
Advfijlrfeke,D (A) < ( = 4p2 xecute) + (QExecute + C]Send) ! Adv%,céd:,fg (S) + |Ze)n|
where qsend and Qexecute denote the upper bound of Send and Execute queries,
respectively.

3.2 CSIDH-EKE

Our second scheme (CSIDH-EKE) is obtained by a combination of CSIDH and
EKE as SIDH-EKE. Specifically, each user encrypts the public key of CSIDH
(i.e., A or B) with the password as the key for the IC, decrypts the public key
of the peer, and computes the session key of CSIDH (i.e., ([a][b]) * Ey) as the
key material of our scheme.

The protocol of CSIDH-EKE is as follows.
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Public Parameters. Let (G, X) be an abelian group and a finite set con-
structing HHS, and Ey € X be the supersingular elliptic curve Eq : y? = 2% +
over Fp. Let H : {0,1}* — {0,1}* be a hash function modelled as a RO. Let
(Enc, Enc_l) be a symmetric key encryption scheme modelled as an IC with
key size k bit (2¢ > |D|) and domain F,. Then, output a public parameter
params := (G, X, Ey, H, (Enc,Enc™1)).

Session. Parties A and B having password pw = pw 4 g executes a key exchange
session as follows:

1. Party A chooses [a] €r G, computes A = [a] * Ey, and sends (A,a =
Encpw(A)) to party B.

2. Party B chooses [b] €r G, computes B = (6] x Eg, and sends (B, =
Encpw(B)) to party A.

3. On receiving 0), party A decrypts B= Enc;uf (8) and generates the session

(B,
key SK = H(A, B, A, B, [a] % B).

4. On receiving (A, ) party B decrypts A = Enc,, 1 (@) and generates the session
key SK = H(A, B, A, B, [6] + B).

Security. Security of CSIDH-EKE can be proved by a similar manner as SIDH-
EKE. Here, we discuss security against off-line dictionary attacks. A corresponds
to the Montgomery coefficient ¢ € F), of the elliptic curve [a] Ej : y? = 23 4cx’+a
by applying the action of [a] to Ey. Hence, Encpw(fl) is the ciphertext of c¢. The
adversary can observe Encpw(jl) and try to find pw by posing (pw’, Encpw(/l))
to Enc™! oracle for guessing password pw’. However, since any information of
¢ is not leaked from Encp,(A) because (Enc,Enc™') is the IC, the adversary
cannot determine if the guess is valid or not. Thus, CSIDH-EKE prevents off-
line dictionary attacks.

Theorem 2. For the advantage AdvCSI dh of the CSI-CDH problem, the advan-

tage Advg_ggﬁ_ekep of CSIDH-EKE is as follows in the RO model and the IC
model:

Ad pake A) < (QSend 'i‘(]Execute)2 Ad csi- cdh S 4Send
Vesidh-eke, D( ) = 2 + <QExecute + QSend) Vg ( ) + |D‘

where qsend and Qexecute denote the upper bound of Send and Execute queries,
respectively.

4 Comparison

In this section, we give an efficiency comparison of our schemes and the TSJL
scheme [38]. The comparison is shown in Table 1.
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Table 1. Comparison among PAKE from isogeny

Assumption Communication | Computational
overhead time
TJSL scheme [38] SI-CDH & SI-APC & |2640 bit ~ 5.0ms
SI-APD & C-SGA
SIDH-EKE (Sect.3.1) |SI-CDH 2640 bit ~ 5.0 ms
CSIDH-EKE (Sect. 3.2) | CSI-CDH 512 bit ~ 80.6 ms

SI-APC, SI-APD and C-SGA mean the supersingular isogeny auxiliary point com-
putation assumption, the supersingular isogeny auxiliary point decision assumption
and the computational simultaneous group action assumption, respectively, intro-
duced in [38].

To compare SIDH-based schemes and the CSIDH-based scheme, we use
parameters having the same security level (i.e., NIST category 1 [1]) corre-
sponding to the key search on a block cipher with a 128 bit key (i.e., k = 128).
For SIDH, the parameter corresponding to NIST category 1 is estimated as
SIKEp434 in [24]. The public key is an element in (F,2)? x (Z/¢5*Z)?, and the
size is estimated as 2640 bit. Computational time of a public key generation and
time for a session key generation of SIDH are about 1.9 ms and about 3.1 ms,
respectively, based on the performance evaluation of x64-assembly implementa-
tion on a 3.4GHz Intel Core i7-6700 (Skylake) processor in [24, Table2.1]. The
TSJL scheme and SIDH-EKE contain an ephemeral public key of SIDH as the
message, and computations of a public key generation and a session key genera-
tion of SIDH for each party. For CSIDH, the parameter corresponding to NIST
category 1 is estimated as CSIDH-512 in [11]. The public key is an element in F),
and the size is estimated as 512 bit. Computational time of a group action and
time for a public key validation of CSIDH are about 40.3 ms and about 1.6 ms,
respectively, based on the proof-of-concept implementation on a 3.5GHz Intel
Core i5 (Skylake) processor in [11, Table 2]. CSIDH-EKE contains an ephemeral
public key of CSIDH as the message, and computations of a public key genera-
tion and a session key generation of CSIDH for each party. We simply add these
values without any acceleration technique. As shown in Table 1, CSIDH-EKE is
more compact than the TSJL scheme, and SIDH-EKE is secure only under the
SI-CDH assumption while the TSJL scheme relies on additional assumptions.

5 Conclusion

We introduced two new one-round PAKE schemes, SIDH-EKE and CSIDH-EKE,
based on isogeny, which are secure under the standard hardness assumptions.
Also, CSIDH-EKE is advantageous in communication overhead though the com-
putational cost is worse. The security proof follows the proof of EKE in the RO
and IC model, but there is a technical issue due to the difference between alge-
braic structures of EKE and (C)SIDH-EKE. Excluding symmetric cryptography
operations, the computational cost and communication cost of (C)SIDH-EKE is
almost the same as original (C)SIDH.
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A remaining problem of further researches is removing idealized building

blocks such as ROs and ICs. Otherwise, giving a security proof in the quantum
RO (or IC) model is another direction.
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Abstract. Vehicular ad hoc networks (VANETS) are fundamental com-
ponents of building a safe and intelligent transportation system. How-
ever, due to its wireless nature, VANET's have serious security and pri-
vacy issues that need to be addressed. The conditional privacy-preserving
authentication protocol is one important tool to satisfy the security and
privacy requirements. Many such schemes employ the certificateless sig-
nature, which not only avoids the key management issue of the PKI-
based scheme but also solves the key escrow problem of the ID-based
signature scheme. However, many schemes have the drawback that the
computational expensive bilinear pairing operation or map-to-point hash
function are used. In order to enhance the efficiency, certificateless signa-
ture schemes for VANETSs are usually constructed to support signature
aggregation or online/offline computation. In this paper, we propose an
efficient conditional privacy-preserving authentication scheme using an
online/offline certificateless aggregate signature, which does not require
bilinear pairing or map-to-point hash function, to address the security
and privacy issues of VANETSs. Our proposed scheme is proven to be
secure with a rigorous security proof, and it satisfies all the security and
privacy requirements with a better performance compared with other
related schemes.

1 Introduction

®

Check for
updates

Thanks to the rapid advancement of wireless technologies, the vehicular ad-hoc
network (VANET) is introduced to build a safe and intelligent transportation
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system in metropolitan cities. In VANET, drivers can get a better awareness of
their driving environment and can take early action to respond to an emergent
situation to avoid any possible damage or to follow a better route by circum-
venting traffic bottleneck. However, the transmitted message, which may include
sensitive data concerning the drivers’ privacy, in DSRC wireless protocol could
be easily monitored, altered and forged. For example, a malicious vehicle may
broadcast a fake message to cause a traffic accident. For message security, the
receiver should verify the legitimacy and integrity of the received message before
taking further action. In terms of the privacy issue, anonymity must be provided
to prevent the adversaries from extracting private information, such as the real
identity, from the transmitted messages. However, privacy protection should be
conditional, as traceability should also be guaranteed, which indicates that the
TA should be able to reveal the real identity of a malicious vehicle when it is
necessary.

Many privacy-preserving authentication schemes based on traditional pub-
lic key infrastructure (PKI) [11,18] have been proposed to address the security
and privacy issues. However, in PKI-based authentication scheme, a certificate
is required for every public key of the vehicle and the RSU, which means that
a certificate authority needs ma to manage all the certificates and vehicles may
have to preload a large number of public/private key pairs together with the
corresponding certificates in the local storage. This causes huge storage burden
and also makes it difficult for the authority. Due to this drawback, PKI-based
scheme is not practical and still infeasible for use in VANETS. In order to remove
the burden of certificates, papers such as [3,10], proposed ID-based authentica-
tion scheme to enhance the computation and communication efficiency. However,
these mechanisms are considered suitable only for private networks, because of
the key escrow problem [9]. To solve the key escrow problem of ID-based sig-
nature scheme, the concept of certificaletess signature was firstly introduced
by Al-Riyami and Paterson [1]. Since then, many authentication schemes using
certificateless signatures have been proposed to tackle the security and privacy
problems in VANET [5,13,15,25].

Since the OBU only has limited computation capacity and the communica-
tion window of VANET is very short, participants in VANETSs need to handle a
large flow of messages. Hence, aggregate signature is proposed to improve mes-
sage authentication efficiency in vanet. Signature aggregation means that given
n signatures on n distinct messages from n distinct users, it is possible to aggre-
gate all these signatures into a single short signature [4]. This is very useful in
the scenario, where RSUs aid the communications in VANET by collecting and
aggregating a large set of individual signatures of each vehicle into one signa-
ture and broadcasting this aggregated signature to the vehicles, which greatly
enhances the efficiency of verification and reduces the communication overhead.
Apart from the aggregated signature, an online/offline signature is another app-
roach to further decrease the computation cost. In the offline phase, some heavy
computations are executed and the intermediate results are stored in resource-
constrained devices. Then in the online phase, on receiving a message, the device
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can very efficiently compute a signature using the intermediate result from the
offline phase.

In this paper, we propose an efficient pairing-free online/offline aggregated
certificateless signature scheme with conditional privacy-preserving for VANETSs.
Our scheme satisfies all the security and privacy requirements for VANETSs with
a rigorous security proof. In order to further enhance authentication efficiency,
our scheme supports online/offline signing, signature aggregation, and batch ver-
ification. Moreover, we analyse its computation efficiency, specifically the signing,
verifying and aggregated verifying cost and make comparisons with some other
similar schemes to demonstrate that the efficiency of our scheme is better than
most of other related schemes.

1.1 Related Works

The introduction of the first certificateless signature (CL-PKS) by Al-Riyami
and Paterson [1] has inspired a large body of research work on improving the
CL-PKS scheme. Yum and Lee [23] described a general method to construct
a CL-PKS scheme from any ID-based signature scheme. Later, Li et al. [14]
proposed the first CL-PKS scheme using bilinear pairings. Au et al. [2] presented
a new security model for CL-PKS schemes, in which a malicious KGC attack
is considered. He et al. [7] developed the first CL-PKS without using bilinear
pairings. However, in [21], the scheme in [7] is found to be insecure against a
strong type IT attack. More recently, Yeh et al. [22] proposed a CL-PKS scheme
for ToT deployment. However, Jia et al. [12] pointed out that it has security
flaws, as any malicious KGC can impersonate the KGC and it cannot resist a
public key replacement attack.

The first online/offline signature scheme was introduced by Even, Goldreich
and Micali [6]. But, the method is impractical since the size of the signature
increases by a quadratic factor [16]. Liu et al. [16] proposed an efficient iden-
tity based online/offline signature scheme, but it has the key escrow problem.
Recently, Cui et al. [5] proposed an efficient certificateless aggregated signature
scheme without pairing for VANETSs. However, Kamil et al. [13] found a security
flaw in [5)].

2 Preliminaries and Background

2.1 Elliptic Curve Cryptosystem and Assumptions

Let F}, be a finite field, which is determined by a A-bit prime number p. Let a set
of elliptic curve points E over F}, be defined by the curve form: y? =3 +ax+b,
where p > 3, a,b € F,, and (4a® + 27b%) mod p # 0, and the point at infinity
be O. All the points on FE including O form an additive group G with order ¢
and generator P. The point addition ‘4’ of element in cyclic group G is defined
as follows: Let P,@Q € G, [ be the line containing P,Q (tangent line to E if
P = (@), and R is the third point of the intersection of [ and E. Let I’ be the
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line connecting R and O. Then P ‘+’ @ is defined as the third point such that
" intersects with E at R and O, which is -R. Scalar multiplication over E/F,
can be defined as follows:

mP =P+ P+ P+ ...+ P (m times), where m € Z;

The following complexity assumptions are used in security proof of the pro-
posed scheme. We will use the Discrete Logarithm (DL) assumption and the
Computational Diffie-Hellman (CDH) assumption over the additive cyclic group
G, which can be defined as follows.

Definition 1 (The DL Assumption). Discrete Logarithm (DL) Assumption:
Given a random point Q) € G on E, it is hard to compute an integer x € Z; in
polynomial time such that QQ = x P with non-negligible probability.

Definition 2 (The CDH Assumption). Computational Diffie-Hellman
(CDH) Assumption: Given two random point Q, R € G on E, where Q = zP,
R =yP, x,y € Z;, it is hard to compute xyP in polynomial time with non-
negligible probability.

2.2 System Model

Typically, a two-layer vehicular ad hoc network model is suitable for VANETSs.
Figure 1 shows the typical architecture of VANETSs. The lower layer composed
of vehicles and roadside units (RSUs) located at the critical points along the
road. Each vehicle is equipped with an onboard unit (OBU), which enables
vehicles to communicate with other vehicles or RSUs. The communication of
Vehicle-to-Everything(V2X), mainly the Vehicle-to-Vehicle (V2V) and Vehicle-
to-Infrastructure (V2I), is realized by the dedicated short-range communica-
tions (DSRC) protocol, which is identified as IEEE 802.11p. The upper layer
of VANET consists of an application server(such as traffic control and analysis

Communication technology:
:Wired connection

i GIEEE802.11p

Fig. 1. A typical architecture of VANETSs
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center), and key generation center (KGC) and trace authority (TRA). The TRA
is responsible for RSU and vehicle registration by generating pseudo identities
for them and can reveal the real identity of a vehicle from its signed message.
The KGC is in charge of generating public and private keys for RSU and vehi-
cles. Besides, we assume that the KGC and TRA are always trusted and cannot
be comprised, which is usually assumed in VANET scheme as in [17,24]. The
KGC and TRA have sufficient computation power and storage capacity. KGC
and TRA are two separate authorities, which can communicate with each other
securely using wired networks and secure protocols, such as Transport Layer
Security (TLS) protocol. We also assume that each vehicle is equipped with a
tamper-proof device, which can prevent the adversary from extracting data from
the device. The OBU only has limited computation power, and RSU has greater
computation power than OBU. The OBU and RSU are not trusted, and the
message sent by them should be authenticated.

3 The Proposed Authentication Scheme

In this section, we present our proposed authentication scheme in detail. First,
we define some notations that will be used in the scheme as listed in Table 1.

Table 1. Notations and descriptions

Notation | Description

Vi The i-th vehicle

psk; A partial private key of vehicle V;
1D, A secret key of vehicle V;

vpkrp, A public key of vehicle V;

(Ppub, @) | The public/private key pair of KGC
(Tpub, B8) | The public/private key pair of TRA

RID; The real identity of a vehicle V;
PID,; The pseudo identity of a vehicle V;
Hi, Ha, H3 | Secure hash functions

T; A valid period of the pseudo identity
t; A current timestamp

m; A traffic-related message

D The exclusive OR. operation

[ The message concatenation operation

3.1 System Parameter Setup

In this phase, the TRA and KGC will generate the system parameters, such as
a finite field, an elliptic curve, public keys, etc.
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— Given a security parameter 7, the TAs will generate two large primes p and
q, and will choose a non-singular elliptic curve E, which is defined by the
equation y? = 2% + ax + b, where p > 3, a,b € F,, and (4a® + 27b%) mod p#
0.

— The TAs will choose a generator P of the additive group G with the order of q.
And it will also choose three secure hash functions which are Hy: G x {0, 1}* x
{0,1}* — Z7, Ho: {0,1}* x G — Z7, H3: {0,1}* x{0,1}* x G x G x {0, 1}* —
Z.

- T(}Ile TRA will randomly choose number 8 € Z7 as its master private key for
traceability, and compute T}, = - P as its public key.

— The KGC will randomly choose number o € Z7 as its master private key for
partial private key extraction, and compute Pp,; = a - P as its public key.

— Then, the public parameters are params = {P,p,q, E,G, H1, Hy, Hs, Py,
Tpup }- Finally,each vehicle pre-loads the public parameters into its temper-
proof device and RSU stores params into its local storage.

3.2 Pseudo-Identity-Generation and Partial-Private-Key-Extraction

In this phase, vehicles register with the TRA and KGC to obtain its pseudo
identity and partial private key.

— The vehicle choose a random value k; € Z;, and calculate PID;; = k;P.
Then the vehicle sends its real identity RID; and PID;; to the TRA in a
secure way.

— Once the TRA receives (RID;, PID; 1) from the vehicle, it first check whether
RID; is valid or not. If RID; exist in its local database, then TRA computes
PIDLQ = RIDz @H1(<ﬁ . PIDz,l)HTzHTpub) and send the PIDi’Q to the vehi-
cle. Then, the pseudo identity of the vehicle is PID; = (PID,; 1, PID; 2, T;)
where T; is the valid period of the pseudo identity.

— A vehicle will use its pseudo identity PID; to communicate with other
participants in the VANET. Since only TRA know its master private key
0, it has the ability to reveal the real identity of a vehicle by computing
RID; = PID; 2 @& H1((8 - PID;1)||T;||Tpup) in some situation. Then, the
TRA will also send the pseudo identity PID; to KGC in a secure way.

— After the KGC receives the pseudo identity, it choose a random number d; €
Zy and compute Qp, = d;P. Then it calculates the partial private key as
pskip, = di + Hy(PID;||Q1p,) - o (mod q).

— Then the KGC transmits (Qrp,,pskrp,) to the vehicle via a secure channel.
Finally the vehicle obtains its pseudo identity PID; and partial private key
pskrp,. And the vehicle can check the validity of the partial private key using
the public parameters by verifying whether the equation pskrp, - P = Qrp, +
Hy(PID;||Qrp,) - Ppus holds or not. If it holds, then the vehicle will store the
pseudo identity (PID;) and partial private key(pskrp,) in its temper-proof
device for further use. Note that the value Qrp, should be public.
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3.3 Vehicle-Key-Generation

In this phase, the vehicle choose a random number z;p, € Z; as its secret key
and compute vpkrp, = xrp, - P as its public key.

3.4 Offline-Sign

In order to maintain the message authentication and integrity, the traffic-related
message should be signed before transmitted. Since the computation power of
the OBU is limited, we propose to use online-offline signature technique, which
allows the vehicles to offline compute some part of the signature when OBU is
idle or the traffic density is not high, to enhance the efficiency of generating
signatures. The offline signature is generated as follows:

— V; randomly selects a number r; € Z;
— V; computes R; =r; - P
— V; stores the offline ¢; = (r;, R;) locally

Generating the offline signature does not require the message, thus a large set of
these offline signature pairs could be pre-generated and stored locally for future
use.

3.5 Online-Sign

Firstly, it randomly picks a pseudo identity PID; from its storage and selects
the latest timestamp t;, which is used to prevent the replay message attacks. On
input a traffic-related message m;, it signs the message as the followings steps.

— V; obtains a fresh offline signature tuple ¢; = (r;, R;) from its storage.

— Vi computes the full private key sk; = x1p, + pskrp,

— Vi computes hz; = Hz(m;||PID;|lvpkrp,||Ri||t:).

— Vi computes s; = hs; - m; + sk; (modq)

The output signature is o; = (R;,s;). Finally, the vehicle V; broadcasts
{mi, PID;,0;,t;,vpkip,, Qrp,} to nearby RSUs and vehicles for verification.

3.6 Individual-Verify

In this phase, RSUs or vehicles verify the validity of an individual received
message. Once it receives the message {m;, PI1D;, 0;,t;,vpkip,, Qrp,} , it checks
the validity of the signature as follows.

— Firstly, the verifier will check the freshness of the timestamp ¢;. If it is not
fresh, then the verifier reject the message and stop the verifying process.

- Then, calculate hgl' = HB(mzHPIDzHrUkaDlHRz”tz) and hgi = H2
(PID||Q1p,)

— Then,check whether the equation s; - P = hs; - R; +vpkip, + Qrp; + hai - Ppup
holds or not. If this equation holds, then the verifier acepts this message,
otherwise reject.
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Proof of Correctness: Since hs; = Hsz(m||PID;||vpkrp,||Rillt:), hoi =
H2(PIDZ‘||QIDi), sk; = Tip, +pSk1D“ ri- P = R, TIp, - P = UkaD“ and
pskrp, - P = Q1p, + hai - Ppup, if the signature is generated correctly, then the
following equation will hold

Si'P:h3i‘7’i'P+x1qu 'P+p5kIDi - P
= hs; - R; + vpkrp, + Qrp, + ho; - Ppup

3.7 Aggregate

In some scenarios where the density of transmitted messages is very high, RSUs
need to aid the communication by aggregating a collection of certificateless sig-
natures into one. Signature aggregation is the process that on receiving a set of
messages {m;, PID;,0;,t;,vpkip,,Qrp,} from n vehicles {V;, V3, ....,V,,}, where
i = 1,2,3,..n, the RSU aggregate the signature by calculating S = Y"1, s;.
Then RSUs output o = (Ry1, Ra, R3...R,, S) as the aggregated signature.

3.8 Aggregate-Verify

This algorithm is assumed to be performed by RSUs or the application cen-
ters, such as a traffic control center. Once receiving the aggregated signature
o = (Ry, Rz, R3...R,,, S) from a set of vehicles {V1, V3, V3,...,V,, }, with the cor-
responding parameters {m;, PI1D;, t;,vpkip,,Qrp,}, where i = 1,2,3,...n, the
RSUs or application centers check the validity of the aggregated signature by
performing the following steps.

— Firstly, the verifier will check the freshness of the timestamp t;, for ¢ =
1,2,3,...n. If it is not fresh, then the verifier reject the message and stop
the verifying process.

— Calculate hgi = Hg(miHPIDiHUpk[Di||Ri||ti) and hgi = HQ(PIDiHQIDi)a
fort=1,2,3,...n

— Check whether the following equation holds or not: S- P =>""  (hs; - R;) +
S Qrp; + >y vpkip, + (O ha;) - Pyup. If this equation holds, the
verifier will accept the aggregated signature.

Proof of Correctness: Since we have hs; = Hg(m;||PID;||vpkrp,||Rillt:),
ha; = Hy(PIDs||Qrp,), ski = xrp, +pskip,, 7s- P = R;, x1p, - P = vpkrp,, and
pskip, - P = Qrp, + hoi - Ppup, then we can check the correctness as follows:

§P=3" 5P
= 22;1(}131' -ri- P+xrp, - P+ pskrp, P)
= Z¢=1(h3i Ry) + Zi:l Qrp; + Zi:l vpkip; + <Z¢=1 hai) - Ppub
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3.9 Batch Verification

Sometimes, a participant in VANETS needs to verify multiple signatures in a
single instance instead of aggregating them. In this scenario, we need to use
the batch verification technique, which allows multiple signatures to be verified
at a time. To ensure the non-repudiation of signatures using batch verification,
we use the small exponent test technology [10]. On receiving multiple messages
{mi, PID;,0;,t;,vpkip,, Qrp,} where i = 1,2,3,...n, the verifier checks the sig-
nature validity using public parameters. The verification process is presented as
follows.

— Firstly, the verifier will check the freshness of the timestamp t;, for ¢ =
1,2,3,...n. If it is not fresh, then the verifier reject the message and stop
the verifying process.

— The verifier randomly choose a vector v = {v1,v2,vs, ..., v, },, where v; is a
small random integer in [1,2!] and ¢ is a small integer that incurs very little
computation head.

— The verifier checks whether the following equation hols, if it holds, it accepts
the messages, otherwise rejects the messages.

(Dimy sivi) - P= 3700 (hai - Ry vi) + 3500 (vpkrp, -vi) + 312, (Qrp, - vi) +
(Zzlzl ha - Ui) : Ppub

Proof of Correctness: The process is similar to that in the aggregated verify.
We have hgl' = ];Ig(’fnﬂ|P[1)z||’l)p]€[[)7 R1||tl), hQ»L' = HQ(PIDlHQID,), Ski =
xrp, +pskip,, ri- P = R;, x1p, - P = vpkp,, and pskip, - P = Qrp, + h2 - Ppup-
We obtain that:

(ijl si-v;) - P
= ijl((hm “1ri +xrp;, +pskip,) - vi) - P
n n n
= Zizl(h&' iy P)+ Zizl(vi “xrp; - P)+ Zizl(vi “pskip; - P)
= Zi:l(hsi “Ri-v) + Zi:l(pSkIDi ") + Zi:l((QIDi + h2;  Ppup) - vi)
= Z:L:l(hm‘ ‘R -vi) + ijl(vkaDi “v;) + Z:;l(QIDi “v;) + (Zj:1 ha; - vi) - Ppup

4 Security Proof

In this section, we give a formal security proof on the proposed certificateless
signature scheme. We use a similar approach in [7] to prove the security of the
proposed signature scheme. The detailed security proof is shown in the appendix.

5 Discussion

In this section, we first present the security and privacy analysis with respect
to the identity privacy-preserving, message authentication, and integrity, trace-
ability, unlinkability and resistance to various attacks. Then we will analyze the
performance of the proposed online/offline certificateless signature scheme and
compare with some other similar schemes.
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5.1 Security Analysis

1.

Identity Privacy Preserving: Each participant in VANET needs to register
with the TRA to obtain a pseudo identity, which is generated by the TRA
using its master private key 3. The only way for an adversary to reveal the
real identity is to compute RID; = PID; o ®H,((8-PID;1)||T;||Tpus), which
means that the adversary has to know the master private key 8 to calculate
B-PID; ;. However, it is infeasible for the adversary to obtain 3 from T}, =
B - P, as this contradicts the DL assumption. Therefore, our scheme meets
the requirement of identity privacy preserving.

Message Authentication and Integrity: Each transmitted message is
signed by a legitimate user before broadcasting in VANET. According to
Theorems 1 and 2, there is no polynomial-time adversary can forge a valid
signature based on the DL assumption. Hence the verifier can check the valid-
ity and integrity of the signature, which guarantees that the message comes
from a legitimate user and it is not modified during transmission, by verifying
the equation s; - P = hs; - R; +vpkrp, + Qrp, + hoi - Ppup. Hence, the proposed
scheme ensures the message authentication and integrity.

Traceability: The pseudo identity is generated using the master private
key of the TRA. From the pseudo identity PID; = (PID;1,PID,,T;),
where PIDI'J = kZP, PID»L‘,Q = RID1 D Hl((ﬁ . PIDl,l)HEHTp’LLb)a the
TRA can extract the real identity by computing RID; = PID; o & H1((5 -
PID; )||T;||Tpus)- Hence, the traceability is also provided by our scheme.
Unlinkability: During the pseudo identity generation phase, the OBU
choose a random value k; € Z7 to calculate PID;; = k;P and PID; 5 =
RID; ® H1((B - PID;1)||T;||Tpus) which compose the pseudo identity. As for
the signature generation, a random value r; € Z7 is also selected by the vehi-
cle and used to compute the signature. Due to the randomness of k; and r;, it
is infeasible for the adversary to link two anonymous identities or signatures
generated by the same vehicle. Hence, the requirement of unlinkability is also
guaranteed by our scheme.

Resistance to Various Attacks: In this part, we show that our scheme can
resist various attacks, including reply attack, modification attack, imperson-
ation attack and stolen verifier table attack.

— Reply Attack: The timestamp ¢; inside the message {m;, PID;, o,
ti, vpkip,, Qrp,} is used to resist the reply attack. Before verifying the
validity of the signature, the verifier will check the freshness of the times-
tamp t;. If it is not a fresh timestamp, the message will be rejected. Hence,
the reply attack is avoided in our scheme by using the timestamp.

— Message Modification Attact: Since each message is signed by the
sender, any modification of the message will lead to the result that equa-
tion s; - P = hs; - R; + vpkip, + Q1p, + hai - Ppus does not hold when the
verifier checks the validity of the signature. Then the modified message
will be disregarded. Hence, our scheme can resist modification attack.

— Impersonation Attack: In order to launch a successful imperson-
ation attack, the adversary should be able to output a message
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{m;, PID;,0;,t;,vpkrp,,Qrp,} that can pass the verification of the
receiver. This means that the adversary should be able to forge a valid
signature. However, this is infeasible according to the Theorems 1 and 2.
Hence the impersonation attack is impossible for our scheme.

— Stolen Verifier Table Attack: In our scheme, OBU and RSU does not
maintain a verifier table for message authentication. Therefore, stolen
verifier table attack is also impossible for our scheme.

5.2 Performance Evaluation

We adopt a similar approach in [8] to analyze the performance. Below we define
the benchmark and security level for comparisons.

For bilinear pairing-based authentication schemes, we use a bilinear pairing
€ : G1 XxG1 — G4 with the security level of 80-bits, where G is an additive group
generated by a point P with the order of § on the super singular elliptic curve
E :y? = 23 4+ x mod p with the embedding group degree 2, p is a 512-bit prime
number, § is a 160-bit Solinas prime number and the equation p+1 = 12¢r holds.
For ECC-based identity-based authentication scheme, we achieve the security
level of 80-bits by using an additive group G generated by a point P with the
order ¢ on a non-singular elliptic curve E, which is defined by the equation
y? = 2% + ax + b, where p > 3, a,b € F,, p,q are 160-bit prime number, and
(4a® + 27b%) mod p # 0.

5.3 Computation Cost Analysis

We first define some notations about the execution time of the cryptographic
operations. The execution time is evaluated using the famous MIRACL cryp-
tographic library. We use the cryptographic operation time directly from [8] to
evaluate the performance. Note that some very light operations, such as addition
operation in Z; and multiplication operation in Z; are ignored, as the execution
time is relatively small.

e Tp,: The operation time of a bilinear pairing operation é(P, @), where P.Qec
G1, 4.2110 ms;

® Ty, m: The operation time of a scalar multiplication z- P related to a bilinear
pairing, where P € G,z € Z;, 1.7090 ms;

e Ty, _o: The operation time of a point addition P + @ related to a bilinear
pairing, where P,Q € G, 0.0071 ms;

e T..._.mn: The operation time of a scalar multiplication x - P related to the
ECC, where P € G and z € Z;, 0.4420 ms;

® T.cc_q: The operation time of a point addition P 4+ @ related to the ECC,
where P,Q € G, 0.0018 ms;

e T: The execution time of a map-to-point hash function operation, 4.406 ms;

e Tj: The execution time of an ordinary one-way hash function operation,
0.0001 ms.
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Table 2. Computation cost comparisons of the proposed scheme with others

Schemes Sign (ms) Individual verify (ms) Total (ms)
[19] ATy + 2Thp o + Th ~ 6.8503 3Ty, + 3Thp_pm + Thp_a + 2Th ~ 17.7673  |24.6176

9] 2Thp m + Top—a + Th ~ 3.4252  |3Thp + Top—m + Thp—a + T + Th ~ 18.7552(22.1804
[15] 3Thp_m ~ 5.127 3Thp + 2Th + 2Thp_m ~ 24.863 29.99

[25] 3Thp_m ~ 5.127 3Thp + Thr + 2Thp o ~ 20.457 25.584

5] Teco—m + Th + Tece—a & 0.4439  |3Teco—m + 2Tece—aq + 2T) ~ 1.3298 1.7737
[13] 3Teec—m + 3Th + 2Teco—aq ~ 1.32992Tcco_m + Tecea + Th ~ 0.8859 2.2158
Our scheme|Toge—m + Tp ~ 0.4421 3Teco—m + 3Tece—a + 2T}, ~ 1.3316 1.7737

Table 3. Computation cost comparisons of the proposed scheme with others

Schemes Aggregated verify (ms)

[19] 3Thp + 3nTop—m + nTop—a + 20T}

[9] 3T + nTop—m + nTop—a + nTu + nTh
[15] 3oy + (n+ 1)Tu + 2nTip—m

[25] 3Top + nTH + 2nTop—m

[5] M+ 2)Tece—m + 2nTece—a + 20T

[13] 2Tece—m + NTecc—a + nTh

Our scheme | (1 4 2)Tece—m + 3nTecc—a + 20T},

We make comparisons with the recent authentication schemes in VANET [5,
9,13,15,19,25]. The comparisons of computation cost of signing, verifying one
message and aggregated verify are given in Tables2 and 3. From Tables2 and
3, it is obvious to see that schemes [9,15,19,25] with pairing operation and
map-to-point hash functions are much more computationally expensive than
schemes based on ECC cryptographic primitives and simple one-way hash func-
tions. Then, comparing to similar schemes [5,13], which also does not require
pairing and map-to-point hash function, our scheme also has some advantages.
Even through [5] almost has the same computation efficiency as our scheme, it
is shown to be insecure under the existing security model in [13]. Kamil et al.
[13] proposed an improved scheme after its cryptanalysis of Cui’s scheme [5].
Although, the individual verifying phase of our scheme is more expensive than
that in [13], the signing cost of our scheme is much lower than that in [13]. And
note that, the total cost of signing and verifying a single message is also small
than that in [13]. More importantly, our scheme supports online/offline sign,
which means that some cryptographic operations can be pre-computed and used
directly when signing a message. Hence in our scheme, the signing cost could be
lower and only be T}, as the operation of the relatively expensive scalar mul-
tiplication corresponding to Teee—sm can be pre-computed and does not incur
computation overhead.
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Fig. 2. Aggregated verification time vs. Number of signatures

In Fig. 2, we further investigate the aggregated verification time with respect
to the number of signatures. Figure 1 indicates that the aggregated verification
time with regards to number of signatures of the schemes, which require bilinear
pairings and map-to-point hash functions, increases much faster than that of
the schemes without pairings or map-to-point hash functions. The aggregated
verification time with regards to the number of signatures of our scheme grows a
little faster than that of [13]. However, we argue that typically a RSU is assumed
to have much more computation power than the OBU. Hence, in many scenarios,
the need to enhance the signing efficiency is more significant than the need to
improve the aggregated verification efficiency, which means that the advantage
of an efficient sign phase outweight the advantage of an efficient aggregated
verification phase. Therefore, our scheme has a slight edge comparing to the
scheme [13] in the sense that the signing efficiency is higher than that in [13].

6 Conclusions

In this paper, we propose an efficient conditional privacy-preserving authenti-
cation scheme using online/offline certificateless aggregate signature to address
the security and privacy issues of VANETSs. Our proposed scheme is proven to
be secure with a rigorous security proof, and it satisfies all the security and
privacy requirements of VANET. The online/offline signature allows some com-
putational expensive operations to be pre-computed offline, thus reducing the
computation overhead when signing a message online. Moreover, the proposed
scheme does not require the computational expensive bilinear pairing opera-
tion and map-to-point hash function, and it supports signature aggregation and
batch verification, which are very useful for VANETSs scenario. As a result of
using these techniques, the proposed scheme has a better computation efficiency
compared with many other related schemes.
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A Security Proof

Typically, for a certificateless signature scheme, we define two types of security,
namely Type-I security and Type-II security, which corresponds to two types of
adversaries A; and As.

— Type-I Adversary: A; can launch a public key replacement attack by
replacing the public key of any vehicle with a value of its choice. A; does
not know the master secret key or the partial private key.

— Type-II Adversary: A, acts as a malicious-but-passive KGC, which knows
the master key and the partial private key, but cannot replace any user’s
public key.

Theorem 1. The proposed scheme is (g,t,qc, qs,qn)- secure against the adver-
sary Ai in the random oracle model, assuming that DL assumption hold in G,
where qc, qn,qs are the numbers of Create, Hash and Sign queries that the
adversary is allowed to make.

Proof. Assume there is a probabilistic polynomial-time forger A, we construct
an algorithm F that make use of A; to solve the discrete logarithm prob-
lem(DLP). Suppose F is given the DLP instance (P, Q) to compute z € Z
such that @ = zP. F chooses a random identity 1D* as the challenged ID and
answers the oracle queries from A; as follows:

— Setup(ID) query: F sets P, =  and sends the parameters
{P,p, q, E, G, HQ, Hg, Ppub} to .A1.

— Create(ID) query: F maintains a hash list L. of tuple (ID,Q;p,
vpkip,pskip,xrp, ha). When A; makes a query on ID, if ID is in L., F
responds with (ID, Qrp,vpkrp,pskip,xrp,hs). Otherwise, F will simulate
the oracle as follows. It randomly selects three value a,b,c € Z;, and sets
QID = a-PpuH—b-P, Upk]D = C'P,pSk'[D = b, rrp = C, h2 = HQ(ID”Q[D) —
—a(modq). Then it responds with (ID,Qrp,vpkip,pskip,xip,hs2), and
inserts (ID,Qrp,h2) to Ly,. Note that the equation pskip - P = Qrp +
hg - Py holds, which means that the partial secret key is valid.

— Hy query: When adversary makes a Hs query with (ID,Qrp), if ID is
already in the hash list Ly, F just returns the corresponding hs. Otherwise,
F runs Create(ID) to get ho, and send hy to Aj.

— Partial-Private-Key-Extract(ID) query: If ID = ID*, F stops the sim-
ulation. Otherwise, F checks the hash list L., if I D in the list, then F response
with pskrp. If ID is not in L., F queries Create(ID) to get the pskrp, and
sends it to A;.

— Public-Key (/D) query: On receiving the query on ID, if ID is already in
L., F response with pkrp = (Qrp,vpkrp). Otherwise, F queries Create(ID)
to get the (Qrp,vpkrp), and sends it to A;.

- Public-Key-Replacement(ID,pk/]D) query: F maintains a hash list Lg
of tuple (ID,d;,Qrp,zrp,vpkrp). When A; queries with (ID,pk/ID), where

Q}D zd;-P, Upk}D = x}D - P and pk}D :(Q}D,vpk‘}D), F sets Qrp = Q}D,
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vpkrp = vpk/[D, pskip =1, and z;p = x/ID. Then F updates the list Lgr to
be (ID,d;, Q' vpkyp, Ty p)

— Hj query: F maintains a hash list Ly, of tuple (m,ID, R, vpk;p,t,hs). If
the queries ID is in this list, F just responds with hs. Otherwise it chooses a
random hg, sets hg = Hs(m||ID||vpkrpl||R||t), add it into Ly, and responds

— Sign(ID,m) query: When A; makes a sign query on (ID,m), if ID is
in Lg, F generates random numbers a,b,c € Z7, sets s = a,R = P,hy =
Hs(m||ID||vpkrpl||R||t) < (a —b— c¢)mod(q), inserts (m, D, R, vpk;p,t, hs)
into Lp,. The output signature is (R, s). If ID is not in Lg, F acts like the
description of the scheme.

Finally, A; outputs a forged signature o = (R, s{13) on (I.D,m), which satisfies
the verification process of the verifier. If ID # I D* F fails and aborts. From the
forking lemma in [20], F rewinds 4; to the point where it queries Hs, and use a
different value. A; will output another valid signatures (R, s;2y) with the same
R. Then we have:

sgiy - P =hs, - R+vpkip + Qip + ho - Py, where i =1,2

S2—381

From these two linear equations, we can derive the value r by PP v—
23 "3y

Another rewind on Ho will allow computation on x.

Probability Analysis: The simulation of Create(ID) oracle fails when the
random oracle assignment Ho(ID||Qp) causes inconsistency, which happens
with the probability at most gp/q. The probability of successful simulation of g
times is at least (1 — (¢n/q))% = 1 — (qngc/q). Also, the simulation is successful
qn, times with the probability at least (1—(gn/q))" = 1—(q¢?/q). And ID = I D*
with the probability 1/q.. Therefore, the overall successful simulation probability
is (1 - quge/0) (1 — (¢2/)) (1/ac)-.

The time complexity of the algorithm F is dominated by the exponentiations
performed in the Create and Sign queries, which is equal to t+0O(g.+¢s)S, where
S is the time of a scalar multiplication operation.

Theorem 2. The proposed scheme is (g,t,qc, qs,qn)- secure against the adver-
sary As in the random oracle model, assuming that DL assumption hold in G,
where qc,qn,qs are the numbers of Create, Hash and Sign queries that the
adversary is allowed to make.

Proof. Assume there is a probabilistic polynomial-time forger As, we construct
an algorithm F that make use of Ay to solve the discrete logarithm prob-
lem(DLP). Suppose F is given the DLP instance (P,Q) to compute y € Z;
such that @ = yP. F chooses a random identity I D* as the challenged ID and
answers the oracle queries from Ay as follows:

— Setup(ID) query: F sets Py, = - Pz € Zy and sends the parameters
{Pap7 q, E; G; HQ, H37 Ppub} to AQ.
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— Create(ID) query: F maintains a hash list L. of tuple (ID,Q;p,
vpkrp,pskrp,xrp, ha). When A; makes a query on ID, if ID is in L., F
responds with (ID,Qrp,vpkrp,pskip,xip,he). If ID = ID* F choose
a,b € Zy randomly, sets Qip = aP,vpkip = Q,ha = Hz(ID||Qrp)
b,pskip = a + x - ho,zyp =L. If ID # ID* F select three random
number a,b,c, and sets Qrp = aP,vpkrp = bP,hy = H2(ID||Qip) «—
¢,pskip = a + x - ho,zyp = b. Finally, F response the query with
ID, Q[D,Upk[D,pSk]D,SC]D, hg and add ID, Q]D, hg into the hash list LH2

— Hy query: When adversary makes a Hy query with (ID,Qrp), if ID is
already in the hash list Lg,, F just returns the corresponding hs. Otherwise,
F runs Create(ID) to get ha, and send hg to A;.

— Partial-Private-Key-Extract(/D) query: On receiving the query on ID,
F checks the hash list L., if ID in the list, then F response with psk;p. If
ID is not in L., F queries Create(ID) to get the psk;p, and sends it to A;.

— Public-Key (/D) query: On receiving the query on ID, if ID is already in
L., F response with pkrp = (Qrp,vpkrp). Otherwise, F queries Create(ID)
to get the (Qrp,vpkrp), and sends it to A;.

— Secrety-Key-Extract(ID) query: If ID = ID*, F aborts the simulation.
Otherwise, if ID is already in L., F response with z;p.If ID is not already
in L., F runs Create(ID) to get ID,Qrp,vpkip,pskip,zrp,hs, and sends
zrpto the adversary.

— Hj query: F maintains a hash list Ly, of tuple (m,ID, R, vpkrp,t,hs). If
the quries ID is in this list, F just responds with hz. Otherwise it chooses a
random hg, sets hg = Hs(m||ID||vpkrpl||R||t), add it into Ly, and responds

— Sign(ID,m) query: If ID # ID* F acts like the description of the
scheme.Otherwise, F generates random numbers a,b, f € Z, sets s =
a,hs = Hs(m||ID||vpkrpl||R||t) «— f,R = hg1~ (bPpup — @), and response
eith the signature as (R, s). This signature is valid as the equation s - P =
hs - R+ Qrp +vpkrp + ha - Ppyp holds.

Finally, A; outputs a forged signature o = (R, s{1}) on (1D, m), which sat-
isfies the verification process of the verifier. From the forking lemma in [20], F
rewinds As to the point where it queries Hs, and use a different value. A, will
output another valid signature (R, s;oy) with the same R. Then we have:

S14} -P= h3{i} “R+vpkrp +Qrp + ha - Ppyy, where 1 =1,2
8{i} Zhg{i} ‘r+y+d; + hox,i=1,2

Only y, r are unknown. Hence, from these two linear equations, we can derive
the two unknown value r,y, and output y as the solution of the DL problem.

Probability Analysis: The simulation of Create(/D) oracle fails when the
random oracle assignment Hy(ID||Qrp) causes inconsistency, which happens
with the probability at most ¢, /q. The probability of successful simulation of ¢,
times is at least (1 — (¢n/q))% = 1 — (gnq./q). Also, the simulation is successful
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qn times with the probability at least (1—(gn/q))" = 1—(q¢?/q). And ID = I D*
with the probability 1/q.. Therefore, the overall successful simulation probability

is (1= qnge/q)(1 = (q7/q))(1/qe)e.

The time complexity of the algorithm F is dominated by the exponentiations

performed in the Create and Sign queries, which is equal to t+O(g.+¢s)S, where
S is the time of a scalar multiplication operation.
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Abstract. Eikemeier et al. introduced and formalized sequential aggre-
gate MAC in 2010. They also constructed a history-free scheme for
sequential aggregate MAC using a pseudorandom permutation and a
MAC function. In this paper, we reconsider history-free sequential aggre-
gate MAC. We give a definition of its security requirement, which is
more general than that of Eikemeier et al. Then, we propose two new
schemes for history-free sequential aggregate MAC. The first scheme
is constructed with a pseudorandom permutation and a pseudorandom
function. The second scheme is constructed only with a pseudorandom
function under two keying strategies and without a pseudorandom per-
mutation. We reduce the security of the proposed schemes to the security
properties of their underlying primitives. We also discuss an instantia-
tion of the second scheme using a pseudorandom function based on a
cryptographic hash function such as HMAC with SHA-2 in some detail.

Keywords: Message authentication - Aggregate MAC - Block cipher -
Hash function - Provable security

1 Introduction

Background. Message authentication is one of the important roles of symmetric
cryptography. A cryptographic primitive for message authentication is called
a MAC function. Let MAC be a MAC function. Two communicating parties,
a sender and a receiver, share a secret key SK. The sender sends a message
Msg to the receiver together with an authenticator Tag — MAC(SK, Msg),
which is often called a tag. After receiving (Msg, Tag), the receiver computes
Tag' +— MAC(SK, Msg) and accepts Msg if and only if Tag’ = Tag.

For authenticated transmission of multiple messages, each message is trans-
mitted with its tag in common cases. Aggregate MAC, which was proposed by
Katz and Lindell [17], enables us to aggregate multiple tags into a single tag of
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the same length as each of the tags. It is useful for energy-constrained applica-
tions such as IoT since a tag makes the amount of transmitted data (more than)
double for a very short message.

The Katz-Lindell aggregate MAC scheme aggregates the tags by bitwise mod-
ular addition. Thus, it obviously does not reflect the ordering of the messages
in the aggregate tag. On the other hand, Eikemeier et al. [11] introduced and
formalized sequential aggregate MAC, which enables us to detect any change
in the ordering as well as the messages. The scheme proposed by Eikemeier et
al. produces a new aggregate tag from a new message and an aggregate-so-far
tag without the messages corresponding to the aggregate-so-far tag. Thus, it is
called history-free.

Our Contribution. History-free sequential aggregate MAC is reconsidered in
this paper. First, its syntax and security requirement are formalized. They are
based on those of Eikemeier et al. [11]. The definition of security requirement is,
however, more general than theirs in terms of restriction imposed on adversaries.
Second, two new schemes are presented. The first scheme is called cipher-based
since it requires a pseudorandom permutation and suitable for instantiations
using a block cipher such as AES [13]. The second scheme is called hash-based
since it requires a pseudorandom function with two keying strategies and suitable
for instantiations using a cryptographic hash function such as SHA-2 [12]. The
second scheme is just a simple cascade of a pseudorandom function, and it may
be interesting in that the scheme presented by Eikemeier et al. [11] requires a
pseudorandom permutation as well as the first scheme in the current paper.

Related Work. Inspired by aggregate signatures [8], Katz and Lindell introduced
aggregate MAC [17]. They also proposed an aggregate MAC scheme which aggre-
gates tags by bitwise modular addition. The unforgeability of their scheme is
reduced to the unforgeability of its underlying MAC function.

Eikemeier et al. [11] gave formal descriptions of sequential aggregate MAC
and its security requirement. They also proposed a history-free scheme using
a pseudorandom permutation and a MAC function, which was shown to be
unforgeable. To aggregate tags, their scheme uses secret keys of the involved
users as well as the new schemes proposed in the current paper. Sato, Hirose
and Shikata proposed another type of sequential aggregate MAC [20]. Their
scheme does not use secret keys of the involved users to aggregate tags.

Aggregate MAC has the following drawbacks: (i) All the messages are
required to verify their authenticity with respect to their aggregate tag, and
(ii) invalid messages are not identified in the case that the result of authenticity
verification is invalid. For the first drawback, aggregate MAC with on-the-fly ver-
ification was proposed [9]. For the second drawback, group-testing [10] is applied
to aggregate MAC of the Katz-Lindell type [16].

Ma and Tsudik [18] introduced forward-secure sequential aggregate MAC and
proposed a scheme using a MAC function and a cryptographic hash function.
Ma and Tsudik [19] discussed its application to secure audit log. Hirose and
Kuwakado proposed a scheme without cryptographic hash functions [15].



History-Free Sequential Aggregate MAC Revisited 79

Organization. Notations and definitions are introduced in Sect.2. Syntax and
a security requirement of history-free sequential aggregate MAC are formalized
in Sect. 3. Generic constructions using a block cipher and a hash function are
presented in Sects. 4 and 5, respectively. Their unforgeability and instantiations
are also discussed in these sections. A brief concluding remark is given in Sect. 6.

2 Preliminaries

2.1 Notation

For integers n; and no satisfying ny < na, let [n1,ns] be the set of integers
between n; and nq inclusive.

Selecting an element s uniformly at random from a set S is denoted by s «— S.

For a set S, let S* £ J;5,S" and ST £ J,5, S*. For non-negative integers
ny1 and ng satisfying ny < ng, let Slrnz] & U?im St

Let X £ {0,1}. For a non-negative integer I, let X' be the set of all -
sequences of length [. Let € be the Y-sequence of length 0. For x € X*, let ||
be the length of . For z,y € X*, let z||y be the concatenation of x and y.

Let Fpr be the set of all functions from D to R. Let Pp be the set of all
permutations over D. For Pp, let id be the identity permutation: id(x) = « for
every x € D.

For a function f, let time(f) be the amount of time required to compute f.

2.2 Pseudorandom Function and Permutation

A pseudorandom function (PRF) [14] is a keyed function f € Fixp r, where K is
its key space. The security requirement of a PRF is indistinguishability [4,6,14].
An adversary D against f is given an oracle, which is either fx or p, where
K « K and p «— Fp . It makes queries in D to the oracle adaptively and
obtains the corresponding outputs. Finally, it outputs 0 or 1. The prf-advantage
of D against f is defined by

Advi(D) £ |Pr[D/x = 1] — Pr[D” = 1],

where D is regarded as a random variable. Informally, f is called a secure PRF
if any adversary with realistic computational resources can only have negligible
prf-advantage against f.
For a pseudorandom permutation (PRP) p € Fixp p, the prp-advantage is
defined similarly:
Advy?(D) £ |Pr[DP% = 1] — Pr[D® = 1]|

)

where K «— K and w «— Pp.
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2.3 PRF Under Related-Key Attack

The notion of a PRF under related-key attacks [5] is formalized by Bellare and
Kohno. Let @ C Fi x be a set of key-deriving functions. Let key € Foxx i be a
function such that key(y, K) = ¢(K). Let D be an adversary making a ¢-related-
key attack (P-RKA) against f € Ficxp,r. D is given an oracle g(key(-, K), ),
where g is either f or p «— Fxxp,r, and K «— K. For each query (p,z) € & x D
made by D, g(key(+, K),-) returns g(p(K),z). g(key(-, K),-) is denoted by g[K]
for simplicity. The prf-rka-advantage of D against f is defined by

Advy™ (D) £ |Pr[D/IE) = 1) — PrDPIMT = 1]

2.4 PRF with Affix

The notion of a PRF with affix is introduced to prove the PRF property of H?2-
MAC by Yasuda [21]. The attack scenario of PRF-AX is similar to that of PRF
except that an adversary can also obtain information called affix. An adversary
D against f € Ficxp,r is given access to a pair of oracles (g, ¢'), which are either
(- fie) or (p, ), where K « K, f' € Fiexprze, and (p, o) — (For, For ).
g’ accepts only a single query 2’ made by D and returns ¢’(z’) to D. The prf-
ax-advantage of D is defined by

AdV?rf—ax*(D) a |Pr[D(fK,f}<) =1] - pr[D(p,p’) =1]|.

The formalization here is actually slightly different from that of [21], where
the query to ¢’ is fixed and cannot be chosen by D. Thus, the notation prf-ax*
is used instead of prf-ax of [21].

2.5 Multi-oracle Setting

The prf-advantage can be generalized to the multi-oracle setting. In this set-

ting, an adversary D against f € Fixp,r is given oracles, which are either

fris froy ooy [K,, O p1,p2,...,pm, where K; «— K and p; «— Fpgr for
€ [1,m]. The prf-advantage of D against f is defined by

m-prf ceoPm —
AdviPH(D) £ [Pr[D/®u o J5m = 1] — Pr[DP1oofm = 1]
The prf-advantage degrades at most linearly with the number of the oracles:

Lemma 1 (Lemma 3.3 in [3]). For any adversary Dy, against f with access
to m oracles, there ezists some adversary Dy against f such that

AdvP P (D) < m - AdvE (D).

The run time of Dy is approximately total of that of Dy, and the time to compute
f for the queries made by Dy,. The number of the queries made by Dy is at most
max{q; |7 € [1,m]}, where q; is the number of the queries from Dy, to its i-th
oracle.

The prp-advantage, the prf-rka-advantage, and the prf-ax-advantage can be
generalized to the multi-oracle setting in the similar manner. The similar results
to Lemma 1 also hold for these advantages.
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2.6 Keyed Merkle-Damgard Iteration

For a keyed function f : V x D — V with its key space V, Let MD’ : V x D* — ¥
be the keyed Merkle-Damgard iteration of f with its key space V. Namely, for
V €V and an empty sequence ¢ € DY, MD/ (e,V) 2V and

MDf((D11D27 e 7D’n)7 V) £ f(D’nu MDf((D17D27 .. '7Dn71)u V))u

where D; € D for i € [1,n]. MDY (-, V) is also denoted by MD{,(-).

2.7 Collision Resistance

Let Hpr C Fpr and |D| > |R|. Let A be an adversary which takes as input
a function in Hp g and returns a pair of elements in D. The cr-advantage of A
against Hp r is defined by

AdvS) (A) & Pr[(z,2)) « A(h) : x # 2’ A h(z) = h(2))],

Ho, R

where h «— Hp r.

3 History-Free Sequential Aggregate MAC

3.1 Syntax

A history-free sequential aggregate MAC (SAM) scheme is defined to consist of
the following algorithms:

Key generation K «— KG(17).
This algorithm takes as input a security parameter p and produces a secret
key K.

Aggregate Tagging T « STag(K;, M, 1,T").
This algorithm takes as input a pair of a message and an ID (M,I), an
aggregate-so-far tag 7' and a secret key K of the user I, and produces as
output a new aggregate tag T.

Verification d — SVer((Ky,,...,Kr,),(M1,I),...,(My,I1,,)), T,).
This algorithm takes as input a tuple of pairs of a message and an ID
((My,I),...,(Mp,I,)), a tag T,, and secret keys (K7, ,..., Ky, ) and returns
a decision d € {T, L}.

For (My, L), ...,(My,,I,,)), let T} = STag(Ky,, M;,I;,T!_;) for i € [1,n],
where T is a fixed constant. Then, SVer((Ky,, ..., Ky, ), (M1, 1), ..., (M,, I,)),
T,) returns T if T, = T, and L otherwise.

A sequential aggregate MAC scheme is called history-free if the new aggregate
tag depends on the previous messages and IDs only through the aggregate-so-
far tag as in the current formalization. A history-free sequential aggregate MAC
scheme is simply called a sequential aggregate MAC scheme in the remaining
parts of this paper.
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3.2 Security Requirement

The security requirement of an SAM scheme SAM = (KG, STag, SVer) is unforge-
ability. An adversary F against SAM is given access to aggregate tagging, veri-
fication and corrupt oracles.

The aggregate tagging oracle receives a pair of a message and an ID (M, I)
and an aggregate-so-far tag T” as a query and returns the tag T «— STag(K, M,
I, 7). The verification oracle receives pairs of a message and an ID ((My, 1), ...,
(M,,I,)) and a tag T, as a query and returns the decision d <« SVer((Ky,,...,
Kp,),((My, I),...,(My, 1)), Ty). The corrupt oracle receives an ID I as a query
and returns the corresponding secret key K.

F is allowed to make multiple queries adaptively to the aggregate tagging
oracle and the corrupt oracle and finally a query to the verification oracle. Let
Forge(F) be an event that F succeeds in asking the verification oracle a query
(((My, 1), ..., (M,,I,)), T,) satisfying the following conditions:

- SVer((Kp,,..., K1), (M1, I),...,(M,, 1), T,) = T.

— Let T] = STag(Ky,, M;,I;,T!_,) for i € [1,n]. There exists some j € [1,7n]
such that F asks neither (M;, I;, T;_l) to the aggregate tagging oracle nor I;
to the corrupt oracle.

Then, the advantage of F against SAM with respect to unforgeability is defined
by

Advihy (F) £ Pr[Forge(F)] .

SAM is informally said to be unforgeable if Advihy (F) is negligibly small for
any adversary F with realistic computational resources.

3.3 Discussion

The differences between the formalization of Eikemeier et al. [11] and that of
this paper are described below.

In the formalization of unforgeability by Eikemeier et al., an adversary F
works in two phases. In the first phase, F is allowed to ask queries only to the
corrupt oracle. In the second phase, F is allowed to ask queries only to the sequen-
tial aggregate tagging oracle SeqAgg, which receives an aggregate-so-far tag T’
and a sequence of pairs of a message and an ID P = ((My, I ),...,(M,,I,))
as a query and returns a corresponding tag T as an answer. Let Qco be the
set of ID’s F' asks to its corrupt oracle as queries in the first phase. Then, as is
mentioned later, it is required that I,, € Qcor. Let Qseq be the set of pairs of a
query by F to SeqAgg and the corresponding answer ((T”, P),T'). At the end of
the second phase, F outputs a sequence of pairs of a message and an ID and a
tag.
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To define the successful forgery by F, Eikemeier et al. define the closure of
queries made by F. Let

TriVia|QSeq7QCov(Pl7 T/) é {Pl} U U TriVia|QSeq;QCor(PlHP’ T)
((T/1P)7T)€Q56q

U U Trivialos.,, 0, (P'[|(M,1),T) .
Ie QCon(M,T) s.t.
T—STag(K;,M,I,T")

Then, the closure is defined by

Closure(Qseq, Qcor) = Trivialg,,, o, (¢, cT),

where cT is a constant used as an aggregate-so-far tag for the first message'.

Suppose that F outputs the sequence of pairs of a message and an ID
and the corresponding tag (]5, T) at the end of the second phase, where
P2 ((My,1),...,(M,,1,)). Then, F succeeds in forgery if

SVer((Kj ,..., Kz ), (My, L),...,(My,,1,)),T) =T

e
and P ¢ Closure(Qseq, Qcor). The security of a sequential aggregate MAC scheme
is quantified by the probability of successful forgery. Informally, a sequential
aggregate MAC scheme is said to be unforgeable if any adversary with realistic
computational resources succeeds in forgery only with a negligible probability.

The security formalization of this paper is more general than that of Eike-
meier et al. from the following reason: In the formalization of Eikemeier et al.,
F works in two phases and its oracle access is restricted in both of the phases,
while such restriction is not assumed in the formalization of this paper.

In the formalization of Eikemeier et al., the oracle SeqAgg receives as a query
an aggregate-so-far tag and a sequence of pairs of a message and an ID and
returns a corresponding tag. On the other hand, in the formalization of this
paper, F gets a tag for a sequence of pairs of a message and an ID by successive
queries to the oracle STag. Thus, F may not obtain any of the aggregate-so-far
tags in the formalization of Eikemeier et al., while it obtain all of the aggregate-
so-far tags in the formalization of this paper. In the formalization of Eikemeier
et al., from the definition of the closure of queries made by F, F succeeds in
forgery if it can make a correct guess for an aggregate-so-far tag. However, we
have to notice the following point.

Let (M3, 1),...,(My,1,)),T") be a query made by F to SeqAgg. Then, it
must hold that I,, € Qceor. The reason is described below.

In the proof of the unforgeability of the sequential aggregate MAC scheme by
Eikemeier et al., it is required that there exists an efficient algorithm to compute
T’ for given T, Ky, M,I if T — STag(K;, M,I,T"). Then, suppose that F asks
((My,I),...,(Mp,I)),cT) as a query to SeqAgg and obtains the correspond-
ing tag T,,. In addition, suppose that Qcor = {I,,}. Then, F can obtain T,,_; from

! Though the tag for the first message is computed without an aggregate-so-far tag in
the formalization of Eikemeier et al., this change is minor.
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T, K1, , My, I,. Notice that T,,_ is a valid tag for (M1, 11),...,(Mp—1,In-1))
and ((My,1h),...,(Mp—1,I,—1)) is not included in the closure. Thus, F succeeds
in forgery by outputting (((Mi,1I1),..., (Mn-1,1n-1)), Tn-1)-

4 Generic Construction Based on Block Cipher

A SAM scheme is presented, which is constructed from a pseudorandom function
and a pseudorandom permutation. Then, it is shown to be unforgeable. Since
the scheme uses a pseudorandom permutation, it is suitable for instantiations
using a block cipher and is called a cipher-based scheme.

4.1 Scheme

The cipher-based SAM scheme SAM, £ (KG., STag,_, SVer.) is constructed from
a PRF F : K x M — L with its key space K and a PRP G : L x T — T with
its key space L as follows:

— KG, simply returns K; «— K for a user I.

— T « STag (K7, M, I,T"), where T £ G(F(K;, M),T").

— SVer.((Kp,,...,Kr,), (M, I), . (MmI )),T ) returns T if T,, = T, and
L otherwise, where T} = G(F(KI ,M;),T!_,)) for i € [1,n] and T} is some
constant cT € 7.

The aggregate tagging of SAM. is depicted in Fig. 1.

”F ) ”F ”F

cT%G

rLl

Fig. 1. The aggregate tagging of the proposed scheme SAM.. The triangle of a box
indicates that the corresponding input is a secret key to F' or G.

The crucial idea of the proposed scheme is to use the “tag” of a message by
F as a secret key of G for aggregate.
4.2 Unforgeability

It is shown that SAM, is unforgeable if F' is a secure PRF and G is a secure
PRP.
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Theorem 1. Suppose that SAM. has at most u users. For any adversary F
against SAM, running in time at most s, making at most q; queries to the aggre-
gate tagging oracle, at most q. queries to the corrupt oracle and a query of length
at most £ to the verification oracle, there exist some adversaries D1 and Do such
that

T T é
Advgch(F) S u <AdVII);f(D1) + (qt + E) AdeGp(DQ) + |,T|q>
—q
D runs in time at most about s + (g + ) (time(F) + time(G)) + uge. and makes
at most g, + £ queries to its oracle. Do runs in time at most about s + 2(q; +
0)(time(F) 4 time(G)) 4+ uge and makes at most ¢, + £ queries to its oracle.

Proof. Let T be the set of the users of SAM., where |Z| < u. The adversary D,
against F works as follows. It first chooses a user I «— Z and assigns a secret
key K; «— K of F to each user I # I. Then, it runs F. It responds to each oracle
query from F as follows:

— For an aggregate-tagging query (M, I,T"), it returns G(F (K, M), T") if I #
I, and G(f(M),T’) otherwise, where f is the oracle of D;.

— For a corrupt query I, it returns Kj if I # I, and outputs 0 and aborts
otherwise.

— For a verification query (((My, I1),...,(My,I,)), T,), it evaluates the validity
of the query using K, for I; # I and f for I; = I, and returns the result to
F.Let T{,T3},..., T} be the intermediate tags obtained during the evaluation.
D; outputs 1 and terminates if the evaluation result is T and there exists
some j € [1,n] such that I; = [ and F does not ask (Mj, I;,T; ;) to the
aggregate tagging oracle before the verification query. (Notice that D; aborts
as soon as F asks I to the corrupt oracle.) Otherwise, D; outputs 0 and
terminates.

Then,

1 1
Pr[Df% = 1] > mPr[porge(F)] > = Advily, (F)
u c

where K « K. Let p «— Faq . Since Pr[DI® = 1] < Adv® (D) + Pr[D? = 1],
Adviiy, (F) < uwAdvR'(Dy) + uPr[Df = 1].

D; runs in time at most about s+ (g + £) (time(F') + time(G)) + ug. and makes
at most q; + ¢ queries to its oracle.

For Pr[D} = 1], let us consider an adversary D, against G. D, is given
q £ ¢, + ¢ permutations g1, g, . . . ,9q in Pt as its oracles. ]331’92""’9“ works in
the same way as D{ except for the following cases:

— For an aggregate-tagging query (M, I, T") made by F, it returns ga(an)y(T").
— For a verification query (((My, 1), ..., (M, I,)), T,) made by F, it evaluates
the validity of the query using Ky, for I; # I and gq(ps,) for I; = 1.
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Here, d is a mapping satisfying that 1 < d(M) < ¢ and that d(M) # d(M’) if
M # M'. Then,

Pr[Df = 1] = Pr[Dy 2 G = g
< Adv% prp(DQ) + Pr[le e — )

where L; «— L and w; «— P for i € [1,¢].

Let us consider Pr[D5 "% = 1]. For a verification query (((My, 1), ...,
(M, I,)),T,) made by F, let Ty, Tj,..., T be the intermediate tags obtained
during the verification of the query. Suppose that 7 is the maximum value of
i such that, for any i’ < 4, Iy # I or (I, My, T}, ) is an aggregate-tagging
query made by F. Suppose that i is the minimum value of i such that T} =
G(F(Kyp,, M), T _) if Iy # I and F obtains T// by an aggregate-tagging
query (M, Iir, T/ _|) if Iy = I for i < i’ < n and T/ = T,,. Notice that T/ is
uniquely determined by T}, since G is a keyed permutation and wy,...,w, are
permutations. Let J 2 {i|I; = I Ai <i < i}. Then,

Pr(T} = T}] = Pr[(T; = T{) A\ (T] = T))] + Pr[(T] = T7) A \/ (T} = T7)]

ieJ i€J
<P\ (= 10)] + Pe{r =77 | \/ (1 = 77)
ieJ icJ
/
< )
|T|*Qt

where the condition T} = T}’ is ignored if (M;, I;, T!_;) is asked to the aggregate-
tagging oracle before the verification query. Thus,
~ 14
Pr[DyV 2% — 1] < ———.
[Pz < m=a
From the lemma similar to Lemma 1, there exists some adversary D5 such that
AdvEP™(Dy) < ¢+ AdvRP(Dy) .

D5 runs in time at most about s+ 2(g +¢) (time(F') + time(G)) 4+ ug. and makes
at most q; + ¢ queries to its oracle. a

4.3 Discussion

The proposed scheme SAM. may not be secure if G is not a keyed permutation.
Suppose that G is a secure PRF except that WK is a weak key of G. Suppose
that G(WK,T') = Tg for any T' € 7. Then, the following attack on SAM, always
succeeds in forgery:

1. Ask I to the corrupt oracle and obtain K ;-
2. Compute M such that F(K;, M) = WK. Notice that it is possible if, for

example, ' is a block cipher or a PRF based on CBC-MAC such as CMAC.
3. Ask (((M,I),(M,I)),Tg) to the verification oracle, where I # I.

It is easy to see that SVer. (K1, K;), (M, ),(M,I)),Tg) = T for any (M, I).



History-Free Sequential Aggregate MAC Revisited 87

5 Generic Construction Based on Hash Function

The other SAM scheme is presented, which is constructed from a pseudorandom
function in two keying strategies. Then, it is shown to be unforgeable. As is
discussed later, the scheme is suitable for instantiations using a hash function
and is called a hash-based scheme.

5.1 Scheme

The hash-based SAM scheme SAM;, £ (KGp, STag,,, SVery,) is constructed from
a keyed function H : K x M x T — T as follows:

— KGy, simply returns K; «— K for a user I.

~ T2 H(K;,M,T"), where T « STag, (K, M,I,T").

- SVerh,(Kp,..., K1), (M1, I), ..., (M,, I,)), T,) returns T if T,, = T, and
1 otherwise, where T = H(Kj,,M;, T/_;) for i € [1,n] and T} is some
constant c¢T € 7.

The aggregate tagging SAMy, is depicted in Fig. 2.

M, M, M,
bt f
KI] KI2 KIH

Fig. 2. The aggregate tagging of the proposed scheme SAMy,.

5.2 Unforgeability

It is shown that SAMy, is unforgeable if H is a secure PRF in two keying strate-
gies. Let H* and H' denote the function H : K x M x T — T with key space
K and 7T, respectively.

MDH" (K x M)* x T — T be the keyed Merkle-Damgard iteration of H*

with key space 7. MD*" is a secure PRF against adversaries making only a
single query if H® is a secure PRF:

Lemma 2. For any adversary D against MD*" making a single query in (K x
M)[O’q, there exists some adversary D' against H® such that

prf
AdVM

DH*

(D) < - AdvPr(D").

The run time of D’ is approzimately total of that of D and the time to compute
HY for the query made by D. D’ makes at most a single query.
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The proof of Lemma 2 is omitted since it follows from the simple and standard
hybrid argument.

Theorem 2. Suppose that SAMy has at most u users. For any adversary F
against SAMy, running in time at most s, making at most q; queries to the
aggregate tagging oracle, at most q. queries to the corrupt oracle and a query of
length at most £ to the verification oracle, there exist some adversaries Dy and
Ds such that

1
AdVLSI,th (F)<u (AdeHrlf (Dy) + ¢2 Advgf(Dg) 4 lgy + > .

7]

D; runs in time at most about s+ (gy+£)-time(H)+uq. and makes at most g, +£
queries to its oracle. Dy runs in time at most about s+ (qy+£?+2¢)-time( H)+ugq.
and makes at most a single query to its oracle.

Proof. At first, the proof is very similar to that of Theorem 1. Let Z be the set
of the users of SAMy,, where |Z| < u. The adversary D; against H* works as
follows. It first chooses a user I «— 7 and assigns a secret key K; «— K of F to
each user I # I. Then, it runs F. It responds to each oracle query from F as
follows:

— For an aggregate-tagging query (M, I,T"), it returns H (K7, M,T") if I # I,
and f(M,T’) otherwise, where f is the oracle of Dy.

— For a corrupt query I, it returns Kj if I # I , and outputs 0 and aborts
otherwise.

— For a verification query (((M1, I1), ..., (M,,I,)),T,), it evaluates the validity
of the query using K7, for I; # I and f for I, = I, and returns the result to
F. Let Ty, T3, ..., T, be the intermediate tags obtained during the evaluation.
D; outputs 1 and terminates if the evaluation result is T and there exists
some j € [1,n] such that I; = I and F does not ask (Mj,I;,T]_;) to the
aggregate tagging oracle before the verification query. (Notice that Dy aborts
as soon as F asks I to the corrupt oracle.) Otherwise, D; outputs 0 and
terminates.

Then,

P H?{ _ i 1 uf
Dy =1] > ] Pr[Forge(F)] > " Advgam, (F),

k
where K «— K. Let p «— Faqxr,7- Since Pr[DfIK =1] < Advgi(Dl)—i-Pr[Df =
1],
Advily, (F) < uAdvPr (D) +uPr[Df = 1].

D; runs in time at most about s+ (g + ¢) - time(H ) + ug. and makes at most
¢t + £ queries to its oracle.

For Pr[DY = 1], let us consider an adversary D, against MD*". D, has ¢ ora-
cles, which are either (I\/IDHgl ey MDHEZ) or (¢1,--.,¢¢), where S; «— 7 and
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¢« Fuexamoa 7 fori € [1,4]. D, runs D? by simulating p with lazy evaluation
until F asks a query to its verification oracle. Let (((M1,I1),...,(My,Ip,)), Tn)
be the query made by F to its verification oracle. Notice that n < ¢. Suppose
that I;, = I;, = :Iit:ffor1§i1<i2<-~-<it§nandfi7éj
for i € [1,n]\ {21,22, ...yit}. For (M, 1h),...,(My,I,)),T,), Dy computes
T! — STagy, (Ky,, M;, I;, T!_;) for i = 1,2,..., where T} = cT, until D, finds a
new input to p. Without loss of generality, suppose that (M;,,T; ;) is the new
input. Then, for j = 1,2,...,t—1, D, asks ((Klijﬂ,Mi]H), (Kliﬁz, M;, 42),...,
(Kfij+171 )
exists some j* € [2,t] such that (M;,., T} _,) is not new, then D, outputs 1
and aborts. Otherwise, Dy asks (K1, 05 Miyy1), (K1, 40 Miyy2), -, (K, My))
to its 7,-th oracle and gets T?, as the answer. Dy outputs 1 if 7/, = T}, (F succeeds
in forgery) and 0 otherwise. Then,

M;;,,-1)) to its ij-th oracle and gets T} _, as the answer. If there

H
Pr[D? = 1] < Pr[DMD o MDTEE ]
L-prf N MY P1oeees _
< AdVMch (Ds3) + Pr[Dg* % = 1]

< Adv Pl (Do) +

D, runs in time at most about s + (g 4 £) - time(H) + ug. and makes at most
a single query to each of its ¢ oracles.
From Lemmas 1 and 2, there exists some adversary D4y such that
Adv Pl (Dy) < 2 Adviy(Dy)
D, runs in time at most about s+ (q; + ¢* + 2¢) - time(H) + ug. and makes at
most a single query to its oracle. a

5.3 Instantiation with HMAC

The case where HMAC using SHA-1 or SHA-2 [12] is used for the aggregate-
tagging function H is discussed. HMAC using SHA-1 or SHA-2 will be simply
called HMAC.

Let h : ¢ x X® — X° be the compression function of the underlying hash
function for HMAC, where ¢ < b. For a key K, an aggregate-so-far tag 7" and
a message M, the aggregate-tagging function T« H (K, M,T"), which is called
EMD", is defined in Algorithm 1. Here, T" € X¢, it is assumed that K € X°
and M € (X%)*, and the padding for M is omitted just for simplicity. IV € X¢,
ipad, opad € X° and pad € X*~¢ are constants. The aggregate-tagging function
EMD" (K, M, T") is also depicted in Fig. 3.

Since EM Dh(K, M, T') with its key K is actually HMAC, it is shown to be
a PRF under the assumption that A is a PRF with two keying strategies, that
is, keyed via chaining variable and keyed via message [1], where the first and
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Algorithm 1. The aggregate-tagging function EMD" (K, M, T") using HMAC

1: function EMD" (K, M, T") bKeXl Mc(Z)T, T ecxe
2: S« h(h(IV, K @ ipad), T'[|0°~°)

3 V «— MD"(S, M)

4 T «— h(h(IV, K & opad), V|/pad)
5: return 7'

6: end function

K®ipad T')|0b—¢ M([1] Mm)|

Fig. 3. The aggregate-tagging function EMD" using HMAC. M = M[1]||M[2]]|--- ||
M[m] and M[i] € %° for i € [1,m).

the second arguments of h are called the chaining variable and the message,
respectively.

Here, EM Dh(K, M, T") with its key T is shown to be a PRF under reasonable
assumptions on h. The proof is similar to the proof for H>-MAC [21].

For h: X x X% — ¥¢, the keyed function h with its key space X¢ and X is
denoted by A™ and h°, respectively. hy(-) 2 h(IV,-).

For EMD", let emdh(S, K, M) be the function defined by the steps 3, 4
and 5 of Algorithm 1. EMD"(K, M, T") = emd" (S, K, M) if S «— h(h(IV,K &
ipad),T”[|0°=¢). emd" (S, K, M) is regarded as a keyed function with its key S.

Lemma 3. For any adversary D against emd” running in time at most s, hav-
ing access to q oracles and making at most q queries in X° x (Eb)[l’l], there exists
some adversary D’ against h®Y having access to q oracles such that

AVIPT(D) < (14 1) - AdviRT= (D).

emd”

D’ runs in time at most s + (I + 2)q - time(h) and makes at most q queries.

The proof is similar to that of Lemma 3 in [21]. It also uses the multi-oracle-to-
multi-oracle reduction in [2].

In the statement of the following theorem, the notation of cr-advantage is
abused. Though the compression function h should be chosen uniformly at ran-
dom from some set of functions, it is not explicit in this subsection.

Theorem 3. For any adversary D against EMD" running in time at most s
and making at most q queries in X x (Z‘b)[l’l], there exist some adversaries D1,
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Dy and D3 such that

AdvPH

VP (D) < AdVE(Dy) + (1 + 1)g - AdvEE™ (D) + Adv (Dy).

D, runs in time at most s + (I 4+ 2)q - time(h) and makes at most q queries. Dy
runs in time at most s+ (I +3)q-time(h) and makes at most q queries. Ds runs
n time at most s.

Proof. For any adversary D against EM D",

Adv prf

vt (D) = [Pr[DEMP = 1] — Pr[D” = 1]|,

where 7" «— X and p «— Fypy (sb)+ se-

Let Dy be an adversary against h™ working as follows. D; runs D. For a
query (K, M) made by D, Dy asks its oracle h(IV, K @ ipad) and gets S as an
answer. Then, D; returns emdh(S, K, M) to D. Finally, D; outputs the same
output as D. Then, Advh (D) = |Pr[D}1LT' = 1]—Pr[DY = 1]|, where 7" «— X¢

and v «— Fxe xe, and Pr[Dl?/ = 1] = Pr[DEMP% — 1]. D, runs in time at most
s+ (+2)q- tlme(h) and makes at most q queries.

Let Dy be an adversary agalnst emd” "(S,-, ) with its key S. D, is given ¢
oracles which are either (emdsl, ce emdSq) or (f1,..., lq), where S; «— X¢ and
i 4= Fspy(swy+ se for i € [1,q]. D, runs D. For the i-th query (K, M) made
by D, D, asks (K, M) to its d(i)-th oracle and returns the answer to D, where
d(i) « d(¢') if there exists some '(< i) such that the i'-th query is (K, M’) for
some M', and d(i) < ¢ otherwise. Finally, D, outputs the same output as D.

h
mds1 - ,emdsq

Then, DY is equivalent to D2

mdsl,

as long as D finds no collision for hry

.emd’ .
during the execution of D, e Thus, there exists some D3 such that

emds1 - ,emdsq

|Pr[DY = 1] — Pr[D, 1]] < Advj! (Ds) ,

and D3 runs in time at most s. In addition, D5 is equivalent to D? and

Pr[D,* "] = Pr[D? = 1]. Dy runs in time at most s and makes at most ¢
queries.
Putting all things together,

Adv prf

vt (D) = yPr[DEMD’T‘/ —1] - Pr[D* = 1]|

< Advii(Dy) + |Pr[DY = 1] - Pr[D” = 1|
< AdvPT(D ) + AdvIP (D) + Advi, (D3) -

From Lemma 3 and the lemma similar to Lemma 1, there exists some adversary
D5 such that

AdvP" (D2) < (1 +1)g - AdviE™ (D) .

D5 runs in time at most s + (I + 3)q - time(h) and makes at most ¢ queries. O
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Conclusion

This paper has presented two schemes for history-free sequential aggregate MAC.
One is suitable for instantiations using a block cipher and the other is suitable for
instantiations using a hash function. Future work is to prove the unforgeability
of the proposed schemes for adversaries making multiple verification queries.
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Development for Expansion of Radio Wave Resources funded by the Ministry of Inter-
nal Affairs and Communications, Japan.
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Abstract. In this work, we construct a lattice-based efficient Sequen-
tial Aggregate Signature (SAS) scheme that is provably secure in stan-
dard ideal cipher model with some slight changes. This framework is
inspired by the scheme of Gentry et al. at PKC 2018 which presented
trapdoor-permutation-based sequential aggregate signatures. Since to
present, there is no known method to construct a lattice-based trap-
door permutation, we use lattice-based trapdoor function instead to
design SAS scheme. In particular, our scheme is history-free, where the
sequentially-executed aggregation operation does not need to take the
previous messages in order as one part of its input. We also give soft-
ware implementation of our SAS scheme using FALCON based trapdoor
function, which originates from the provably secure NTRUSign signa-
ture scheme proposed by Stehlé and Steinfeld at Eurocrypt 2011. The
experiment results show our scheme is efficient and practical.

Keywords: Sequential aggregate signature * Lattice -
Trapdoor function - Software implementation

1 Introduction

The concept of Aggregate Signature (AS) is first introduced in [5]. It enables any
third party to combine n individual signatures produced by a group of different
signers on different messages into a single short signature, while maintaining
the same security as n individual signatures. Sequential aggregate signatures
(SAS), proposed in [25], differ from the conventional AS schemes by requiring
signers to compute the aggregated signature in a sequence and imposing an
order-specific generation of aggregate signatures. In particular, one signer uses
the output of its predecessor as one part of its input during the signing process.
(Sequential) Aggregate signatures are important mechanisms applied to many
areas in order to decrease the amount of transmitted data, such as authenticated
network routing protocols, sensor data, PKI certification chains, and blockchain
protocols. In this paper, we focus on sequential aggregate signatures (SAS).
Existing designs of SAS have mostly been dominated by (RSA based) trapdoor
permutations [1,6,15,25,29] and bilinear pairings [3,10,21-23].
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On the other hand, since the groundbreaking work of Shor [32], the hard-
ness of classical number theoretic assumptions is extremely reduced when faced
to an attacker featured with a powerful quantum computer. This induced a lot
of research work to replace those affected classical schemes with alternatives
of post-quantum security. Due to the features of conjectured security against
quantum attacks, algorithmic simplicity and high parallelism, and strong secu-
rity guarantees from worst-case hardness, lattice-based cryptography is one of
the most popular post-quantum cryptography and has been used to construct
versatile and powerful cryptographic objects such as encryption schemes, digital
signature schemes, identity-based encryption, fully homomorphic encryption and
so on. In Post-Quantum Cryptography Standardization of NIST, lattice-based
cryptographic schemes account for a large proportion.

However, to the best of our knowledge, there is not much prior work devoted
to constructing the lattice-based (sequential) aggregate signature scheme.
Hohenberger et al. [19] built the first identity-based aggregate signature scheme
that admits unrestricted aggregation that is based on leveled multilinear map
setting from [12], yet the underlying hardness assumptions are not directly con-
nected to worst-case lattice problems. Inspired by [25,29], Bansarkhani et al.
[9] first attempted to construct a lattice-based sequential aggregate signature
scheme that is secure in the random oracle model. Their SAS scheme can be
instantiated by preimage sampleable trapdoor functions and the security model
is similar to that in [25,29]. In the design of [9], before operating the signing pro-
cess, each signer needs to verify the signatures received from the previous signers.
This additional check prevents fast aggregate signing. Besides, their SAS scheme
is somewhat complex and its security proof is subtle. Lu et al. [24] used the “Lat-
tice Intersection Method” proposed in [4] to construct lattice-Based unordered
aggregate signature scheme, while in their AS scheme, aggregator needs to solve
a linear congruential equation in lattice. This may make the aggregate scheme
have a slow computation speed and hard to be implemented in practice. And
unfortunately, none of the above schemes considered specific software implemen-
tation.

1.1 Our Results and Contribution

In this paper, we provide a practical sequential aggregate signature scheme based
on the hardness of lattice-based trapdoor function. Inspired by the work of [15],
which used trapdoor permutation and Ideal Cipher Model to construct SAS
schemes, we replace trapdoor permutation with trapdoor function as so far there
is no successful construction of lattice-based trapdoor permutation. To a lattice-
based trapdoor function, the sizes of input and output are different. Therefore,
we add the encoder-decoder technique proposed in [29] to match the domain
and range of trapdoor function with those of ideal cipher. Similar to [15], the
security of our scheme is in Variant Ideal Cipher Model that has some slight
changes compared with Ideal Cipher Model.

Our construct is history-free [10], which means that the sequentially-executed
aggregation algorithm does not need to receive the previous messages in order
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as one part of its input. Compared to the work of [9], in our SAS the “aggregate-
so-far” check is removed, which prompts the improvement of aggregate singing
speed and decreases the data of input during the signing process. The main exe-
cution that dominates aggregate signing’s speed is the preimage sample operation
of generate function.

We implement our SAS scheme using the trapdoor generate function in FAL-
CON [11] due to its efficiency and simplicity compared to other lattice-based
trapdoor generate functions. The FALCON-based trapdoor function works on
ring variant lattice. We experimentally evaluate the performance of our con-
struction. Each aggregate signing and verifying algorithm runs for approximately
1/10ms on a modern laptop. The aggregation rate is about 50%.

1.2 Organization

The remainder of this paper is structured as follows. In Sect. 2, we present our
notations, models, and preliminary definitions. Section 3 describes our proposed
SAS scheme in details. Section4 gives the security analysis of our proposed
scheme. Section 5 presents an analysis of our SAS scheme instantiated with FAL-
CON and RSA. In Sect. 6 we make our conclusion and discuss the future works.

2 Preliminaries

2.1 Notation

If n € N, then {0,1}"™ is the set of all n-bit strings, and 0™ is the bit string
containing n zeros. {0,1}* is the set of all strings. Let 0 denote the empty
vector. For an n-bit string x and an integer 0 < k < n, x ;) denotes the first
k bits of x. For two bit strings x and y, x||y denotes these two bit strings are
stitched together. If S is a set, and y € S, then * = (z1,...,x,) € S™ is a
n-dimensional vector, & Uy is the (n + 1)-dimensional vector (z1, ..., Zn,y). |S|
denotes the number of elements in S. 2z < U(S) denotes the uniform selection
of an element from S. If A is an algorithm then y «— A(z1, ..., z,; ) means that
we run A on input (x4, ...,x,) and coins r and denote y as the output.

2.2 Random Oracle Model

The random oracle is a powerful cryptographic tool introduced by Bellare and
Rogaway in [2]. All parties in the random oracle model have oracle access to
a function H : {0,1}* — {0,1}* where for any x € {0,1}*, H(x) is chosen
uniformly at random of some desired output length. Informally speaking, this
means that one regards the function H as a black box that responds to a query for
the value of H(x) by giving a random value. For each query, the oracle makes
an independent random choice, except that it keeps a record of its responses
H(z) and repeats the same response if x is queried again. In this paper, a hash
function is modeled as a random oracle.
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2.3 Ideal Cipher Model

In ideal cipher model [31], all parties have oracle access to two functions, 7 :
{0,1}* x {0,1}2F — {0,1}2F and 7= : {0,1}* x {0,1}2* — {0,1}=*, where the
first is such that for every K € {0, 1}* and every input length n > k, (K, -) is an
independent random permutation on {0,1}". The second is such that for every
K € {0,1}* and every input length n > k, 7~!(K,-) is the inverse of 7(K,-) on
{0,1}". Ideal cipher model is mainly used for blockcipher construction and AES
can be modeled as an ideal cipher with fixed block length.

In our work, we consider a wariant ideal cipher model with two functions,
IT : {0,1}* x {0,1}* — {0,1}* and 117! : {0,1}* x {0,1}* — {0,1}", where
the first is such that for every K € {0,1}* and every input = with length n,
II(K,z) = n(K,x[ ), where 2 j) is the first & bits of z. The second is such that
for every K € {0,1}* and every input y with length k, IT~*(K,y) = n(K,y)||z,
where z is a bit string chosen from {0,1}"~* with (n > k).

2.4 Cryptographic Problems on Lattices

Lattices. A lattice A is the set of all integer combinations of some linearly
independent basis vectors, B = {b1,..,b,,} € R™*™ A(B) = {31, z;ib;, z; €
Z}. An m-dimensional full-rank lattice A is a discrete additive subgroup of R™.
The polynomial ring R = Z[z]/(z™ + 1) is isomorphic to the integer lattice Z"
where n is a power of 2. A polynomial f = >""7! f; - 2’ in R corresponds to the
integer vector (fo, .., fn—1) in Z™. In our instantiation we work with polynomials
over R, or Ry = R/qR = Zg[z]/(2"™ + 1) where ¢ is a prime and ¢ =1 mod 2n.
Gaussian Distribution. The n-dimensional Gaussian function of center

2
¢ € R" and width parameter o is defined as pyc(x) = exp —qllz=cll

)

N——"

for all ® € R™ It can be extended to an n X n-matrix B: pg.(x) =
exp (—m(x — )T X7 (x — c)), where ¥ = B - B”. The discrete Gaussian dis-

Po.c (m)
Po,c (A) .

Ring-SIS/Ring-LWE. We use Ring-SIS and Ring-LWE proposed in [26,30]
and [27,33,34], which are proven to be at least as hard as the GapSVP/SIVP
problems on ideal lattices.

tribution over a lattice A is defined as Dy s c(x) =

Definition 1 (R-SIS, 3,m). Given a positive real 3 and m uniformly random
elements a; € Ry, defining a vector a € R, find a nonzero vector z € R™ of
norm ||z|| < B such that fo(a) =a'-z2=>" a; -z =0€R,.

Definition 2 (Decision R-LWE, ;p, ). Given m uniformly random ele-
ments a; € Ry, defining a vector a € R, and b= a - s+ e, where s — U(R,)
and e < Dgm ,, distinguish (a,b = a-s+e) from (a,b) drawn from the uniform

distribution over R;” X Rg‘,
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2.5 Lattice-Based Trapdoor Function

Informally, a trapdoor function is a function that is easy to evaluate and hard
to invert on its own, but which can be generated together with some extra
“trapdoor” information that makes inversion easy. There are many versions of
this basic concept, depending on whether the function in question is injective,
surjective, bijective, “lossy,” etc.

In lattice cryptography, the trapdoor function is usually presented as a ran-
dom integer matrix A € Zg*™ (with uniform entries modulo ¢) and a T 4 (typi-
cally T 4 is a short basis for the lattice defined by A). The strong trapdoor is used
to efficiently “invert” the (Ring) Short Integer Solution (SIS) and (Ring) Learn-
ing with Errors (LWE) functions f4 = Az and g (s, e) = s'A + ¢! associated to
the matrix A. Theoretical solutions to these trapdoor generation and function
inversion problems have long been known. There are two distinct but closely
related methods to constitute a lattice-based trapdoor function, constructed
from short bases [7,16] or gadget [13,20,28]. According to [16], there exists a
polynomial-time algorithm TrapGen that on input the security parameter 1™
outputs a public key A and the corresponding trapdoor T 4 such that the trap-
door function fa(-) : B, — R, can be inverted by a function SamplePre(T 4, -)
easily with T 4.

We consider the preimage sampleable trapdoor functions that are collision
resistant, meaning that it is infeasible to find a collision fa(z1) = fa(x2) where
r1,x9 € B, and x; # x5. For a trapdoor-collision-finding algorithm C' and
n € N, define its CF-advantage against TrapGen as

Adv;"frapGen,C (n)
=Pr[fa(z1) = fa(x2)|(fa, A, Ta) — TrapGen(1™), (z1,x2) — C(fa, A)]

C' is said to (t,€)-breaks a collision-resistant preimage sampleable trapdoor
function f4 if it outputs a collision with CF-advantage Adv;f;apgenyc(n) at least
€ and has running time t. Notice that if C' find a collision of trapdoor function
fa, it can solve the underlying lattice problem (Ring) Short Integer Solution
(SIS) or (Ring) Learning with Errors (LWE).

2.6 History-Free Sequential Aggregate Signature

A history-free sequential aggregate signature scheme is a tuple (KeyGen,
AggSign, AggVer) of algorithms defined as follows.

— KeyGen: The key generation algorithm KeyGen on input 1" outputs a public
key pk and matching secret key sk: (pk, sk) — KeyGen(1™).

— AggSign: The history-free aggregate signing algorithm AggSign on input
secret key sk, message m and aggregate-so-far signature ¢*, outputs a new
aggregate signature o: o « AggSign(sk,m,c*).

— AggVer: The aggregate verification algorithm AggSign on input public key
pk and messages (pk1,m1), ..., (pki, m;) and aggregate signature o outputs a
bit: 1 or 0— AggVer((pki,m1), ..., (Dki,m;),0).
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Security Model. The security notion we use is same to that in [6,15,29]. To
a history-free sequential aggregate signature scheme SAS and a forger F, we
associate for every n € N a SAS unforgeability experiment Expsz_ SAS.F (n)
that runs in three phases:

— Setup: The experiment generates (pk, sk) — KeyGen(1™).

— Attack: Then, the experiment runs F' on input pk with oracle access to
AggSign(sk,-,-) and other random functions.

— Forgery: Eventually, F' halts with output parsed as (pki,m1), ..., (pkn, mn),
0. The experiment outputs 1 iff: (1) AggVer((pki,m1), ..., (pki,m;), o) out-
puts 1, (2) pk = pk;+ for some 1 < ¢* < n, (3) F did not make an oracle
query of the form AggSign(sk,m;,-).

Define the history-free S AS-unforgeability advantage of F' as

AdvilfIfFfsAS,F<n) = Pr[Expzfp,SAS’F(n) outputs 1]

Aggregation Rate. For a sequential aggregate signature scheme with n signers,
we define size( ;) as the size of the individual signature o; for 1 < i < n and
size(osag) as the size of the final aggregate signature ogas. The aggregation
rate rate(n), which measures the storage savings due to the SAS scheme, is
defined as

size(osas)

Tate(n) =1- m
3 Sequential Aggregate Signatures from Lattice-Based
Trapdoor Function

The following Algorithms1 and 2 provide the main steps of our SAS scheme.
In our scheme we use the encoder-decoder technique enc and dec proposed by
[29].

enc :{0,1}" — {0,1}* x {0,1}*

dec :{0,1}* x {0,1}* — {0,1}"
The encoder-decoder technique is originally designed to allow for hiding of addi-
tional information to decrease the total data to be sent. In our work, we use it to
break and merge the signature in order to map the trapdoor function f’s domain

space and range space to these of function 7. H; and Hy are two functions which
hash any bit string down to 7 bits: H; : {0,1}* — {0,1}7, Hy : {0,1}* — {0,1}".

Theorem 1. If there exists a forger F that (t,qu,qm,qs,€)-breaks SAS in the
ideal cipher model, then there exists a collision-finding algorithm C' that (L,
€ )-breaks the collision-resistant trapdoor function f with

2 2 2 2
(s (e Vstan)” qntan (| les+aqu)”) () i tan
2 2k 2 2k

t <t+(qu+qs+am) tv+ (gs+qm) t
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Algorithm 1. AggSign for ith signer in the sequence.

Input: public key f;, secret key T;, message m;, aggregate-so-far signature o;_1;
Output: new aggregate signature oy;

1: If i = 1, then:
2 xo «— 0", g «— ok H
3: Else:
4: (zi—1,i-1) < 0i—1;
5: Ki — fil[Hi(m:)|[Hz(0ti-1);
6: (Zi—ly ai) — enc(z:i_l);
T yi — (Ko, zio1);
8 x; < SamplePre(T;,y;);
9. Q; <— ;-1 Uai;

0: g; = (a:i, ai)

1: return oy;

—_ =

Algorithm 2. AggVer
Input: public key and messages (f1,m1), ..., (fn, mn), aggregate signature o;
Output: a bit 0 or 1;

1: (zn,an) — 0o

2: For ¢ = n down to 1 do:

3: yi — fi(@i);

4 Ki — fil[[Hy (ma)|[Ha (ti1);

5: Zi—1 HT((Ki,yi);
6: ZTi—1 — dec(zi—1, ®5);
T
8:

If zo = 0", then return 1;
Else return 0;

F is said (¢,qm,qm, gs, €)-breaks SAS if its S AS-unforgeability advantage
AdvqﬁfFisAS’F(n) is at least € with making at most ¢ times II-queries or
IT~'-queries, qy times Hy-queries or Hy-queries and gg times sequential signing
queries. ty is the time of each execution of function U(-) and ¢ is the time of
each execution of function f(-).

4 Security Proof

We first give a Variant Chain-to-Zero Lemma originating from [15] that plays a
key role in the security analysis of our scheme.

Consider an adversary A has access to the variant ideal cipher model where
its key K describes a function f : {0,1}" — {0,1}* (n > k) unrelated to the
function IT : f x {0,1}" — {0,1}* and its inverse IT~! : f x {0,1}* — {0,1}".
A may submit a IT-query form as IT[f,y] to receive a random z € {0,1}", or a
IT-1-query form as IT~![f, x] query to receive a random y € {0, 1}*.

We say that IT-table entry x; = II[f;11,y;+1] is linked to II-table entry
xi—1 = H[fi,yi] if fi(x;) = y;. We define a IT-table entry = II[f,y] to be
chained to zero if x = 0™ or it is linked to an entry that is chained to zero.
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The length of a chain is defined as the number of entries linked in this chain.
A II-table entry x = II[f,y] is a forward query if it is received by making a
IT-query and a backward query if it is received by making a IT~!'-query.

Lemma 1 (Variant Chain-to-Zero Lemma). Consider an adversary A
makes at most qr queries to the variant ideal cipher oracle. Define BADp
to be the event that some forward query in II-table is chained to zero. Then

Pr[BADy) < 4kin

Proof (Proof of Lemma 1). We give a brief proof of Lemma 1 using the proof
method in [15] with some changes.

Consider function f : {0,1}" — {0,1}* (n > k) and g7 random bit strings
Y1y Ygu € 10,1}F. For 1 < i < g, let Y; be the random variable giving the
size of the pre-image set of f~1(y;) and let Y,,,4..; be the random variable giving
the maximum over i the size of the pre-image set of f~!(y;). Then we compute

1 1
ElY] = Z ok |f = wa)l = ok Z If~ )| = 27"
yi€{0,1}% v €{0,1}F
+oo
E[Ymaxz <Zj PI‘ mazx,i — J ZPr max,i >]]
Jj=1
+oo qm

<> D Prii> :;Em = g2

§=0 i=1

Define Coll; to be event that a forward query x; = IT[f; 11, yi+1] is linked to some
already existing backward query x;_1 = II[f;, y;]. We say that a forward query
collides if satisfies the condition for Colly. Let B@,,q4e denotes the number of
backward queries that have been made. Then we have

an
Pr[Coll;] = Z Pria forward query x = II[f,y] collides if BQmade = M|

m=1

o oo
< Z Zj'Pr[Ymax,i =7,1<i< m} .9—n
m=1 j=1
qr
= Z E[Ymagc,h 1< < m] .o

m=1

qr
< Zm_zn—k.2—n
m=1

a3

= ok

Define Coll, to be event that a backward query z;—; = II[f;,y;] is linked
to some already existing query x; = II[fit1,y;+1]. For an existing query
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= II[fi+1,vyi+1] and a backward query z;—1 = II[f;,y:], y; is chosen ran-

domly and independently while f;(z;) is already defined before y; is chosen.
Thus Pr[f;(z;) = y;] = 27%, which infers

qrr

Pr[Colly] < oF

Define Coll = Coll; Vv Colly, then

Pr[Coll] < Pr[Coll;] + Pr[Coll,]

_@htan

Finally, combine the definitions of BAD,,, and Coll, we have

Pr[BAD,,| < Pr[BAD,, | Coll] + Pr[Col]]
=0+ Pr[Col]]

q127+QH

Proof (Proof of Theorem 1). Given the challenge trapdoor function f*, C
runs F' on inputing f* and simulates the environment as follows:

Setup: At the beginning of this game C' sets up four empty tables Hi[,],
H2['7 ']’ H['? ] and f*[7 ]

Response to Hi-query: When F' makes a Hi-query of message m, C draws
r uniformly from {0,1}7: r — U({0,1}7), records Hy(m) = r in the Hj-table
and returns r to F.

Response to Hy-query: When F makes a Hs-query of a, C' draws s uni-
formly from {0,1}7: s < U({0,1}7), records Ha(cx) = s in the Ha-table and
returns s to F.

Response to II-query: When F' makes a II-query of f||r||s and y, C draws
2 uniformly from {0,1}™: = «— U({0,1}"), records II[f||r||s,y] = = in the
II-table and returns z to F.

Response to I !-query: When F makes a IT~'-query of f||r||s and z, C
draws & uniformly from {0,1}™: & « U({0,1}"), then computes f*(&) = y.
Records II[f||r||s,y] = & in the II-table and records f*(Z) = y in the f*-
table. Finally returns y to F.

Response to aggregate signing query: When F' makes a aggregate signing
query of m and o, C draws s and r uniformly from {0,1}7: r — U({0,1}7)
and s <« U({0,1}7).

If r is in the H;-table or s is in the Hs-table, then C' aborts.

Else C parses o: (z;,-1,a;-1) «— o, draws x; uniformly from {0,1}": x; —
U({0,1}") and computes f*(z;) = y;. Then records II[f]||r||s,y:] = x; in the
IT-table and encodes x;_; to obtain («;, 2;): (e, z;) < enc(xz;—1); Appends
; to aj—1: @; — a;—1 Uay; Finally returns o; = (z;, ;) to F;
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Finally, let (f5,m7), ..., (fX,m%), o* be the output of forger F. The collision
finding algorithm C' proceeds as in Algorithm 3 in order to obtain a collision
of f*.

Algorithm 3. Collison-finder of f*

Input: The output of forger F: (fi,m}), ..., (fn,mn), o
Output: (z1, z2) that satisfy f*(z1) = f*(x2)
C checks the output of forger F'. If there does not exist 1 < 7" < n such that f% = f~,
then C return L;
If AggVer((fi,mi),...,(fn,mn),0") outputs 0, then C also return L;
Else C does:
Parses o*: (2, ) < 05
For i = n down to i* + 1 does:
yi — fi(zi);
ri — Hi(mi);
57« Hz(aj_1);
ziy — H[f||r7s7, yil;
Yir — i (@i);
C looks for yj« in the f*-table. If ¥} is not in f*-table, then C return L.
Else let &7+ be the index of y;« in the f*-table, C return (zj, &« );

*

Consider executions of SAS unforgeability experiments with F' and of the
trapdoor-collision-finding algorithm C over a common set of random coin
sequences with the same coins used for common choices across both experi-
ments. In the execution of C in its experiment, let BAD be the event that
any forward query is chained to zero. Let ABORT be the event that C aborts.
Let FORGE be the event that F' outputs a valid forgery in its experiment. We
claim that

Adv{ . Gen c(n) > Pr[FORGE A ABORT A BAD ]
— Pr[FORGE | ABORT A BAD] - Pr[ABORT | BAD] - Pr[BAD/]

2
EPﬂFORGE|ABORTABADHyPﬂABORT|BADHy(1—3£§£5)
The first inequality is because on coin sequences where C' does not abort, the
execution of F' in its experiment and when run by C is equal. Hence, on such
coin sequences F also forges in its execution by C'. And since F' finally produces a
valid forgery, it can be inferred that the IT-table entry ¥, = IT[fF||m}||sT, y]]
is chained to zero. Conditioning on BAD 7, xf_; = II[f}||m}||sf, y}] must be
obtained by a backward query. Thus, C can find the index £} of y}. in the
f*-table, which leads to a collision f*(&;+) = f*(x;+). The last line is due to the
Variant Chain-to-Zero Lemma 1.

Next, we prove that

(gs + qm)?

Pr[ABORT | BADy]| > 1— o
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On each signing query and hash query, s or r is chosen independently at ran-
dom. BAD; and ABORT are independent. The probability that » = Hj(m) is
already in the Hp-table or s = Hs(a) is already in the Hs-table on a given
signing query is at most qs;f“{ . Summing over all signing queries we have
Pr[ABORT | BAD]| < (g5 + qu)?/2".

We finally compute

Pr[FORGE | ABORT A BAD//]
Pr[FORGE A ABORT A BAD/]
B Pr[ABORT A BAD;
_ Pr[FORGE A ABORT V BAD//]
B Pr[ABORT A BAD ]
_ Pr[FORGE — Pr[FORGE | ABORT V BAD | - PrlfABORT V BAD ]
- Pr[ABORT A BAD/]
> Pr[FORGE — PrJABORT V BAD/]
> Pr[FORGE] — Pr[ABORT] — Pr[BAD]

_(gs+4qn)®  qh+an
2 2"

> AdVTIfIfF—SAs,F(")
Combining all the above, we have

-f
Adv;"ra,pGen,C (TL)

u qs +qu)’  qf qs + qu)’ qh +aqn
2(AdVHfF—SAS,F(”)_(Qif)_Q%)'(1_(277) B 2 £ B CT4

We derive an upper bound for the running time of C' considering only sample
function U(S) which appears in all four types of query, where S = {0,1}" or
S =1{0,1}7, and function f, which appears in I1~!-query and aggregate signing
query. Therefore, the running time t is upper bounded by:

t <t+(qu +qs+aqm)-tv+(gs+aqm) -ty

5 Instantiation

In general, any collision-resistant trapdoor function can be used to construct our
SAS scheme. In this section we instantiate and analyze our sequential aggregate
signature scheme in conjunction with FALCON [11].

FALCON [11] is a candidate cryptographic signature algorithm in the round
2 of NIST Post-Quantum Cryptography Project. It is based on the theoretical
framework of lattice-based trapdoor function construction in [16] and is instan-
tiated over NTRU lattices [18], with a trapdoor sampler called “fast Fourier
sampling” [8]. The underlying hard problem is the short integer solution prob-
lem (SIS) over NTRU lattices [33], for which no polynomial time solving algo-
rithm is currently known in the general case, even with the help of quantum
computers. Main elements in FALCON are polynomials of degree with integer
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coefficients. The degree n is normally a power of two(typically 512 or 1024) or
a small multiple of a power of two (e.g. 768). Computations are done modulo
a monic polynomial of degree n denoted ¢ which is a cyclotomic polynomial in
practice.

The public key A is a basis for a lattice of dimension 2n:

—h| I,
A= [qfn On]

where I, is the identity matrix of dimension n, O,, is the zero matrix of dimension
n, and h is a polynomial modulo ¢ for an n X n sub-matrix. ¢ is a specific small
prime, and in practice is either ¢ = 12289 or ¢ = 18433. h’s coefficients are
integers between 0 and ¢ — 1.

The corresponding trapdoor T4 is expressed as:

o= 8]

where f, g, F and G are short integral polynomials modulo ¢, which satisfy:

h=g/f mod¢ modgq
fG—gF =q mod ¢

The trapdoor function in our work is:

fa Zlz]/(9) x Zlz] /() — Zylx]/(¢)
fa(s1,82) =81 +s2-h modgq

where [|(s1, s2)|| < S for a given positive acceptance bound 5. The SamplePre
function is expressed as SamplePre (Ta,y) = (s1,s2) mod ¢, where s1, s and
y satisfy fa (s1,s2) =y mod gq.

In our scheme, the aggregate rate is 7(n) = 1 — Szze(%;:%;;l(ii?e(ai). If

~1— size(a;)

size(x;) "
tical implementation, the input « of f is an array with length 2048, which are
integer coefficients of polynomial in Z[z] and the output y of f is an array
with length 1024, which are integer coefficients of polynomial in Zg,[z]. Let
$1 = @[o,1023) and S2 = T[1024,2047)- Function enc is simply used to split x
into (0,1023], T[1024,2047]) and function dec merges two arrays with length 1024
to one array with length 2048. We use AES several times to serve as a block
cipher and use SHA256 as a hash function. Other parameters we use the recom-
mended values in [11]. We implement our SAS scheme written using language C
on tripe-core Intel i5 3.30 GHz CPU with standard CPU benchmarks. Figure 1
shows the efficiency of our AggSign algorithm and AggVer algorithm. In Fig. 1,
we add 10 ms to the value of average verify time and 20 ms to the value of aver-
age key generate time in order to make a visible difference between the curves
of average verify time, average sign time and average key generate time.

size(ay;) and size(x,) are not dependent on 4, then 7(n) In prac-
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We also make an RSA-based trapdoor function construction of our SAS. The
public key is (NV,d) and the corresponding trapdoor is (N,e), where N = pgq,
p and ¢ are primes, and ed = 1 mod ¢(N). The trapdoor function f on input
x € Z3 outputs f(r) = z° mod N and the SamplePre function on input
y € Z% outputs SamplePre(y) = y? mod N. In our implementation, the input
of trapdoor function is an array with length 244 and the output array is with
length 256. Table 1 gives a comparison of aggregate rate and efficiency of SAS
based on FALCON trapdoor function and RSA trapdoor function for one signer.

Efficiency of Aggregated Signature based on Falcon

—— Total time of AggSign for n signers
—— Total time of AggVrfy for n signers
—— Total time of key Generation for n signers
—- Average time of AggSign
—- Average time of AggVrfy plus 10ms
6] — Average time of key Generation plus 20ms

50 60 70 80 90 100
Number of signer

Fig. 1. Efficiency of sequential aggregate signature scheme based on FALCON

Table 1. Comparison of Aggregate rate and Efficiency of SAS based on FALCON
trapdoor function and RSA trapdoor function for one signer

Type of trapdoor | rate 7(n) | KeyGen | Sign Verify
FALCON ~50% 0.302ms | 0.161ms | 0.150 ms
RSA ~95% <0.001 ms | 1.582ms | 0.065 ms

6 Conclusion and Future Works

In this paper we address the problem of constructing lattice-based sequential
aggregate signature. We give a practical SAS scheme based on lattice trapdoor
function. The scheme is provably secure in ideal cipher model. We do a soft-
ware implementation of SAS using FALCON-based trapdoor and RSA-based
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trapdoor. The experimental results show that our lattice-based SAS scheme has
a high computation speed (approximately 1/10 ms) and can save about 50%
storage or transmission costs. Any trapdoor function can be used to construct
our SAS, such as the recently improved lattice trapdoor function in [13,14,17],
yet our aggregate rate is not optimal as a result of the difference between trap-
door function’s sizes of input and output. One interesting open problem is to
construct lattice-based trapdoor permutation to improve aggregate rate.
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Abstract. Certificateless Public-key Authenticated Encryption with
Keyword Search (CLPAEKS) is derived from the Public-key Authen-
ticated Encryption with Keyword Search (PAEKS) and simultaneously
combines the features of the Public Key Cryptography (CLPKC). In
a CLPAEKS scheme, the ciphertext is designed to meet the need for
both confidentiality and authentication, i.e., on one hand, the cipher-
text is the encryption of the keyword; on the other hand, adversaries are
incapable of generating a valid ciphertext without the owner’s private
key. He et al. formalized security models for CLPAEKS and proposed
a CLPAEKS scheme. However, we find their models are incomplete to
capture the security requirements for CLPAEKS and re-formalize the
security requirements for CLPAEKS in terms of trapdoor privacy and
ciphertext indistinguishability. Besides, we point out that their scheme
is vulnerable to the Keyword Guessing Attack (KGA) by a malicious
receiver, which is not considered in their security model. Then we mod-
ify He et al.’s scheme and prove that the new scheme meets the new
security requirements.

Keywords: Public Key Authenticated Encryption with Keyword
Search - Keyword Guessing Attack - Certificateless

1 Introduction

Since the widespread of the concept and corresponding applications of the cloud
storage, performing search on encrypted data has become a popular research
topic. Among all potential solutions, the Public-key Encryption with Keyword
Search (PEKS) has attracted considerable attentions from researchers, since it
was put forth by Boneh et al. [5]. Due to the properties inherited from the
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public key encryption, PEKS not only allows multiple data providers to upload
data together with the searchable ciphertext to the server, but permits multiple
request users to generate a trapdoor in order to launch a query with underlying
keywords of interest as well. A number of PEKS schemes have been presented
and proven to be Semantic Secure under Chosen Keyword Attack (SS-CKA).

However, we have to highlight that the security definition of SS-CKA only
considers the risk of revealing information from the searchable ciphertext and
does not consider the potential leakage from the trapdoor. We take the well-
known attack named Keyword Guessing Attack [8,21] as an example. An
attacker may collect one trapdoor with the underlying keyword w from the
communications between an authorized request user and the server. Then the
attacker generates all searchable ciphertexts by exhaustively computing the
searchable ciphertext for each keyword in the universal keyword set of limited
size. Finally, the attacker matches each searchable ciphertext generated from the
underlying keyword w’ with the collected trapdoor. Once they match, it means
that w = w’. In short, some information about the underlying keyword of the
trapdoor or query is revealed to the attacker. This attack can be launched in
an off-line way on schemes with small keyword space. A considerable number of
existing PEKS works are found vulnerable to this attack. On one hand, secu-
rity model outlining the privacy leakage from trapdoors should be taken into
account. On the other hand, generic solution which is naturally immune to this
attack should be constructed.

To resist such attacks especially the Inside Keyword Guessing Attack (IKGA)
which are launched by the server, PAEKS and its derivation CLPAEKS come
into play [12,13]. Both of their ideas are to take the sender’s private key as the
input of the ciphertext generation algorithm, so that other parties can never
impersonate the sender to make a ciphertext. In short, their ciphertexts are
supposed to be unforgeable by other parties. Unfortunately, though the scheme
in [12] can resist the IKGA from the server, it is vulnerable to KGA launched
by other parties, say, the receiver. That is, without the private key of the sender
S but with the private key Skg of the receiver R, it is possible to modify a real
ciphertext C's_, g(w) to a valid ciphertext C'_, p/(w). Then the malicious receiver
R can learn whether the underlying keyword of the current trapdoor Ts_, g (w’)
sniffed from the communication channel is the same as that of Cg_, p (w) by
running the test algorithm on the new ciphertext and the trapdoor. That is
to say, the trapdoor privacy can no more be guaranteed. Furthermore, R can
in advance impersonate S and upload C%_, p/(w) with its own document D to
the server, resulting in matching C%_, p/(w) with the trapdoor Ts_, g (w) and
additionally returning D to the innocent receiver R'.

In addition, in an open network environment, there is no fully trusted par-
ties. This is also applicable to the outsourced data storage applications. That
is, any party involved in the cloud storage system can be untrusted or even
malicious and the forementioned attacks are practical and potential. Thus, a
well-defined security model with the ciphertext oracle like [13] is needed. How-
ever, the security models of [12] which only consider the searchable ciphertext
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indistinguishability without accessing the ciphertext oracle cannot accurately
capture the security requirements for CLPAEKS.

1.1 Related Work

With the advent of the cloud storage technique, the public are more willing
to store their personal data on the cloud after encryption. Even though data
encrypted leaks less privacy, direct operations on data such as computations and
search are prevented. During the long journey of seeking the solution to enabling
search on encrypted data, Public-key Encryption with Keyword Search (PEKS)
was proposed [5]. From then on, a large number of PEKS works and its variants
[10,15-18] have emerged. However, the security model of the semantic security
against chosen keyword attack in [5] only takes the leakage of ciphertext into
consideration and does not consider that of trapdoor. That is, schemes do not
satisfy the tradoor privacy have the leakage risk against the Keyword Guessing
Attack [8,21].

Then some subsequent researches [9,11] focus on designing constructions
resisting KGA. As one of the solutions, the Public-key Encryption with Fuzzy
Keyword Search (PEFKS) was formalized and a detailed construction was pre-
sented which is secure against outside keyword guessing attack in [20]. An alter-
native solution to KGA prevention is to deploy two servers, assuming the servers
never collude [19].

Another creative solution against KGA is the Public-key Authenticated
Encryption with Keyword Search (PAEKS) proposed by [13], in which besides
computing the searchable ciphertext from each keyword, the data provider also
needs to authenticate the searchable ciphertext with her/his secret key. That
means the secret key of the data provider is also input of the encryption algo-
rithm. Then the problem naturally comes to defining the security model depict-
ing unforgeability, which is similar to that of signcrpytion [22] to a certain degree.

In order to get rid of unconditional trust in Private Key Generator (PKG),
Certificateless Public Key Cryptography (CLPKC) was proposed by Al-Riyami
and Paterson [1], keeping users’ private key unrevealed to Key Generation Cen-
ter (KGC) by allowing users to set a secret value themselves. Based on this
concept, Certificateless Public Key Encryption (CLPKE) [2,3] and Certificate-
less Signature (CLS) [1,14] schemes are constructed. Recently, the certificateless
public key encryption with keyword search (CLPAEKS) [12] was proposed to
avoid the certificate management and the key escrow problem of PAEKS with
the help of the certificateless primitive. Similarly, CLPAEKS should also consider
unforgeability which is inherited from the security requirements of PAEKS.

1.2 Owur Contributions
We outline the contributions of this work as follows:

— We reconsider the security definitions against two types of adversaries and
present new security models which better depict the security requirements
for CLPAEKS.
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— By analyzing the weakness of an existing scheme under our security models,
we present a new CLPAEKS scheme.
— We prove that the new scheme is secure under the formalized security models.

2 Preliminaries

2.1 Bilinear Pairing

Let e : Gy x Gy — Gy be a bilinear pairing, where G1,Gs are cyclic groups of
the same prime order ¢. It satisfies the following [6]:

— For any z,y € Z, P,Q € Gy e(zP,yQ) = e(P, Q)*".
— For any generator P € Gy, e(P, P) is a generator of Ga.
— For any P,Q € Gy, e(P,Q) can be computed efficiently.

2.2 Decisional Bilinear Diffie Hellman Problem

Given a generator P € G; and elements =P, yP,zP € Gy where x,y,z are
randomly chosen from Z,, distinguish e(P, P)*¥* from a random element from
G2 [7].

2.3 Decisional Linear Problem

Given a generator Q € G; and elements x1Q, 2@, zx1Q, yx2Q € Gy where
x,y, %1, 2 are randomly chosen from Z,, distinguish (z + y)@ from a random
element Z from Gy [4].

3 Certificateless Public-Key Authenticated Encryption
with Keyword Search

3.1 Definition

The syntax of CLPAEKS is outlined in [12]: Setup, Extract — partial—
private — key, Set — secret — value, Set — private — key, Set — public—
key, CLPAEKS, Trapdoor, Test. We omit this session due to limited space.

3.2 Security Models

In this section, we will discuss the security requirements which should be
equipped with a CLPAEKS scheme. First of all, CLPAEKS is foremost a PAEKS
which should possess trapdoor privacy and ciphertext indistinguishability men-
tioned in [13]. Then it is a scheme in the form of the certificateless public
key cryptography in which given that the scheme has no certificates, a fur-
ther strengthened security model is taken into account, allowing adversaries to
replace the public key of any entity with a value of their choice. In short, the
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games depicting security requirements for CLPAEKS are designed after taking
those of both PAEKS and the certificateless public key cryptography into con-
sideration. As the security requirements of CLPKC, two types adversaries are
taken into account in CLPAEKS to depict the outside adversaries (type 1) and
the inside adversaries (type 2), respectively [1].

Remark: Type 1 adversary depicts the outside adversary who may be one of
the legal system users. That means it can access the secret value and decide
the corresponding public key. Thus, type 1 adversary can replace public keys
and should designate the public key for replacement at the very beginning. In
contrast, type 2 adversary depicts the inside adversary like KGC who can access
the master key, but cannot replace public keys.

Trapdoor Privacy. Similar to the security requirement in [13], the adver-
sary should not distinguish two trapdoors given access to responses for a range
of queries, including the extract partial private key query, the extract secret
value query, the request public key query, the trapdoor query and the cipher-
text query which outline the practical capability of the adversary. Besides, the
security requirements for the certificateless public key aspect should be taken
into consideration. That is, type 1 adversary should be permitted to launch the
replace public key query and type 2 adversary should be permitted to access the
master key due to the feature of certificateless cryptography [1]. The model is
divided into the following two parts correspondingly:

Game 1 (type 1 adversary):

Setup: Given a security parameter A, the adversary A chooses the challenge
sender’s identity IDg and the new public key Pk}, the challenge receiver’s
identity IDp, the challenger C generates and sends (Param, Pkrp,) to A.

Query: The adversary A is allowed to issue the following queries:

— Hash query: A is allowed to issue queries to all hash oracles.

— Extract partial private key query: Given an identity ID;, the challenger C
computes the corresponding partial private key drp, and returns d;p, to A.
A is prohibited from querying the partial private key of I Dg.

— Extract secret value query: Given an identity ID;, the challenger C computes
and returns the corresponding secret value zrp, to A. A is prohibited from
querying the secret value z;p, for the identity ID; s.t. the corresponding
public key Pk; has been replaced by a replace public key query, and the
secret value xrp, for the challenge receiver’s identity IDpg .

— Request public key query: Given an identity ID;, the challenger C computes
the corresponding public key Pkrp, and returns Pkrp, to A.

— Replace public key query: Given an identity I D;, the adversary A can ask the
challenger C to replace the corresponding public key Pkrp, with a new public
key Pk p,- A is prohibited from replacing the public key for the challenge
receiver’s identity IDp before the challenge phase which would enable A to
receive a challenge trapdoor under a secret value known by A and trivially
win the distinguishing game.
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— Trapdoor query: Given a keyword w, I Dg: and IDpg/, the challenger C com-
putes the corresponding trapdoor T, with respect to IDg, and I Dgs, returns
T, to A.

— Ciphertext query: Given a keyword w, IDg and IDpg/, the challenger C
computes the corresponding ciphertext C,, with respect to IDg/ and IDg/,
returns C,, to A.

Challenge: A chooses two keywords wg,w; s.t. (Pkrpg,Pkipg,wo),
(Pkrpg, Pkrp,,w1) have not been queried for trapdoor and ciphertext, sends
them to the challenger C. C randomly chooses b € {0, 1}, returns T,,, to A.

Query: A continues launching queries as the above with the same restric-
tions.

Guess: A outputs a bit o'. It wins the game if ¥’ = b.

Game 2 (type 2 adversary):

The differences of this game from the above game are as follows:

1. the adversary A chooses the challenge sender’s identity I Dg and the challenge
receiver’s identity I Dg, the challenger C sends (Param, Pkg, Pks) to A in
the Setup phase.

2. the master key s is given to the adversary A in the Setup phase.

the adversary A is prohibited from launching any replace public key queries.

4. the adversary A is prohibited from launching extract secret value queries on
the challenge identities IDg and I Dg.

@

Definition 1. We say that a CLPAEKS satisfies the trapdoor privacy if for any
probabilistic polynomial-time (PPT) adversary A, the advantage

1
AdvngAEKS,A(A) = [Pr[t) = 0] — 5\

is negligible.

Ciphertext Indistinguishability. Similar to the security requirement in [13],
the adversary should not distinguish two ciphertexts given access to responses
for the similar range of queries to that of the trapdoor privacy. Similarly, type 1
adversary should be permitted to launch the replace public key query and type
2 adversary should be permitted to access the master key due to the feature of
certificateless [1]. The model is devided into the following two parts correspond-
ingly:

Game 3 (type 1 adversary):

Setup: Given a security parameter A, the adversary A chooses the challenge
sender’s identity I Dg, the challenge receiver’s identity I Dgr and the public key
for replacement Pkjp, , the challenger C generates and sends (Param, Pkrps)
to A.

Query: The adversary A is allowed to issue similar queries as in Game 1.
In the replace public key query, A is prohibited from replacing I Dg’s public key.
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Challenge: A chooses two keywords wg,w; s.t. (Pkipg, Pkipg,wo),
(Pkrpg, Pkip,,w1) have not been queried for trapdoor and ciphertext, sends
them to the challenger C. C randomly chooses b € {0, 1}, returns C,,, to A.

Query: A continues launching queries as the above with similar restrictions.

Guess: A outputs a bit o'. It wins the game if ¥’ = b.

Game 4 (type 2 adversary):

The differences of this game from the above game is the same to the Game
2 of the trapdoor privacy. For simplicity, we omit the repeated details.

Definition 2. We say that a CLPAEKS satisfies the ciphertext indistinguisha-
bility if for any PPT adversary A, the advantage

1
AdvgiPAEKS,.A()‘) = \Pf[bl =b] — 5\

18 negligible.

4 Weakness of He et al.’s Scheme

In this section, we review He et al.’s scheme [12] and point out the scheme is
vulnerable to the KGA according to our trapdoor privacy security model.

4.1 He et al.’s Scheme
In this section, we first revisit the CLPAEKS proposed in [12].

1. Setup : Given a security parameter [, KGC chooses a cyclic additive group
G, and a cyclic multiplicative Gy of the same prime order ¢ > 2!, a generator
P of Gy, a bilinear pairing e : G1 x G1 — G2, a random number s € Zj
as the master key, computes P, = sP, selects three hash functions: h :
{0,1}* X Gl — Z;, H2 : {071}* e Gh hg : {0,1}* X Gl X Gl X Gl — ZZ,
publishes Param = {l,G1, Ga, e, ¢, P, Pyup, h1, Ha, hs} and keeps s secret.

2. Extract — partial — private — key : Given the sender’s identity IDg €
{0,1}* and the master key s, KGC chooses a random number 7/pg € Z;,
computes RIDS = T[DSP, Qrpg = hl(IDs,R]DS), and dIDs = TIDg +
sarpg(mod ¢). Then KGC returns dyp, and Ryp, to the sender.
drp, and Ryp, are computed and returned in the same way as above.

3. Set — secret — value : Given the sender’s identity IDg € {0,1}* and the
receiver’s identity IDr € {0,1}*, the sender chooses a random number
Tipg € ZZ as its secret value, the receiver chooses a random number
Tripg € Z,’; as its secret value.

4. Set — private — key : Given the sender’s secret value x;p, and the sender’s
partial private key drpg, the sender’s private key is set as SKip, =
(z1Ds,drpg). Given the receiver’s secret value xyp, and the reciver’s partial
private key dip,,, the receiver’s private key is set as SK;p,, = (zrpg.dipy)-
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5. Set — public — key : Given the sender’s secret value x;p., the partial pub-
lic information R;pg, the receiver’s secret value z;p,, and the partial pub-
lic information Rjp,, the sender computes Prp, = x;psP, Pkips =
(Prpg, Ripg) is set as the sender’s public key, the receiver computes Prp, =
21pa Py Pkipr, = (Prpn, Ripy) is set as the receiver’s public key.

6. CLPAEKS : Given the sender’s identity IDg, the receiver’s identity IDpg,
the sender’s secret key SKjp., the receiver’s public key Pkrp,, and the
keyword w, the sender chooses a random number r € Zj, computes
Brps = hs(IDs, Py, Pipg, Ripg)s Bipr = ha(IDg, Ppuy, Pipg, Ripg),
C1 = (dips+PBrpsxrps)Ha(w)+7P, Co = (Brpr Prpr + Ripgp +rpg Ppus),
and returns the ciphertext C, = (C1, Cs).

7. Trapdoor : Given the sender’s identity IDg, the receiver’s identity IDpg, the
sender’s public key Pkrp, and the receiver’s private key SKp,, the receiver
computes
Brps = hs(IDs, Pyuy, Pips, Ripg), Brpg = h3(IDR, Ppus, Prpy, Ripy) and
Tw =e((dipg + Brpr®rpg)H2(w), Brps Prps + Rips + arpg Ppub)-

8. Test : Given the receiver’s identity IDpr and public key Pkrp,, the
trapdoor T,,, and the ciphertext C\,, the server computes Brp, =
h3(IDR)Pp’u.b7PIDR,RIDR) and checks if Twe(CQ,P) = e(Cl;BIDRPIDR +
Ripy + arpg Pous)-

4.2 Weakeness of He et al.’s Scheme

We will follow our Game 1 of the trapdoor privacy step by step in order to
present the weakness of He et al.’s scheme [12]. The main idea is to make a valid
ciphertext Cy, for one of the challenge keywords with respect to the challenge
sender IDg and the challenge receiver IDpg, by processing another ciphertext
C,,, for the same keyword wq with respect to /Dg and another receiver IDp/
with the private key of IDg/ at the beginning, then to run the algorithm Test,
given the challenge trapdoor Ty, for the challenge keyword w, € {wp, w1} and
Cuw, as the inputs.
Query: The adversary A issues the following queries:

— Extract partial private key query: A sends a query for an identity I Dg/, the
challenger C returns the corresponding partial private key d;p,, to A.

— Extract secret value query: The adversary A sends a query for an identity
IDpg, the challenger C returns the corresponding secret value x7p,, to A.

— Request public key query: The adversary A sends a request public key query
for the same identity I D g/, the challenger C returns the corresponding public
key PkIDR/ where PKIDR/ = (PIDR"RIDR’)'

— Ciphertext query: The adversary A sends a ciphertext query for a keyword
wq of its choice and the same receiver I Dpg/, the challenger C returns the
corresponding ciphertext C;, with respect to IDs and IDg to A. C}, =
(C1,C%) where Cf = (dIDs Jrﬂ[DSSc]DS)HQ(wQ) +7r'P,C) = T’(ﬂ[DR, PIDR/ +
Rip,, +arp,, Ppub)-
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A firstly computes Brpy, = hs(IDg, Py, Pips; Ring), Bipg =
h3(IDg, Pyuv, Pipyr, Ripr), BiD,,, = h3(IDgr/, Pyuy, Pip,,, Rip,, ), and 7'P =
(/BIDR,SEIDR,er]DR,)’lCé, then computes C]—r'P = (dipy,+Brpsxipg ) Ha(wp).

A randomly choses 1 € Z; and forges a searchable ciphertext Cy,, = (C1,C2)
for the same keyword wy with respect to the challenge identities IDg and I Dg:
C1 = (dips + Brpstips)Ha(wo) + 7P, Co = r(Brpp Prpg + Ripg + arpp Poub)-

Challenge: The adversary A chooses another keyword wy, sends wq, w; and
the challenge identity IDg to the challenger C. C randomly chooses b € {0,1},
computes T,,, < Trapdoor(wsy, Pkg, Skr) and returns it to A.

The adversary A runs Test(Pkrp,,, Tw,, Cw,) — ¢

Guess: If ¢ = 1, the adversary A outputs a bit ¥’ = 0; otherwise, A outputs
a bit b’ = 1. It always wins the game since b’ = b holds.

5 Our New CLPAEKS Scheme

In this section, we first present a new CLPAEKS scheme by improving He et
al.’s scheme [12] and then prove that it satisfies our security definitions.

5.1 Construction

To obtain our new scheme, we modify their Setup, CLPAEKS, Trapdoor, and
Test algorithms. We only outline the improved four algorithms for simplicity.

1. Setup : Given a security parameter [, besides the parameter choice in the
original algorithm, KGC additionally chooses a generator @ of G;.

2. CLPAEKS : Given the sender’s identity I Dg, the receiver’s identity IDpg, the
sender’s secret key SKrp,, the receiver’s public key Pkrp,, the keyword w,
the sender chooses a random number r € Z7, computes Spg, Brpg,C2 as
before and C7 = (dIDs + ﬁ[DSI]DS)HQ(IDS,IDR,w) +rQ.

3. Trapdoor : Given the sender’s identity IDg, the receiver’s identity IDpg,
the sender’s public key Pkrp, and the receiver’s private key SKip,,
the receiver computes Orpg,Brp, as before and T, = e((dip, +
Bippipr)H2(IDs, IDR,w), Brps Pips + Rips + arps Ppub)-

4. Test : Given the receiver’s identity I Dp, the receiver’s public key Pk;p,,, the
trapdoor T,,, and the ciphertext C,,, the server computes S;p, as before,
and checks if Twe(C'27Q) = e(Cl,ﬁ]DRP[DR + RIDR + aIDRPpub)~

5.2 Security Proof

We only provide the proof sketch here. The probability computation is detailed
in the full version of this paper!.

1 Please contact the authors for it.
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Theorem 1. If the adversary A wins the trapdoor privacy game with advantage
er, then there exists a probabilistic polynomial time (PPT) adversary B which
can solve the DBDH problem with advantage

2 2 1 1

2
7)¢st . e - ( _ 7)qsv+q;:m< .
Thy (gr + qo)e Thy (ar +qc)e

€EDBDH zmin{Ej“(l* }
where qpn, s the number of h1 queries, gsv is the number of extract secret value
queries, qppri s the number of partial private queries, qr is the number of
trapdoor queries and qc is the number of ciphertext queries.

Proof. Assume that there is a PPT adversary A which breaks the trapdoor
privacy of our CLPAEKS scheme with a non-negligible advantage e, we will
use it to construct another PPT algorithm B to solve the DBDH problem.

Game 1 (type 1 adversary):

Setup: The algorithm B takes a DBDH problem instance as input, i.e.,
(G1,Ga,e,q, P,xP,yP, 2P, Z) where z,y,z are randomly chosen from Z,. Z
is either e(g,g)*¥* or a random element of Gz. Let b be a bit such that
b = 0if Z = e(P,P)**, and b = 1 if Z is random. A chooses the
challenge sender’s identity IDg and the challenge receiver’s identity IDg.
The new public key for the replace public key query with respect to IDg
is PI’DS. B randomly chooses t,arpg,Bips € Zj, Rips € Gi, computes
Q = tP,Ppub = QILS (LL'P — /BIDSPI/DS — R[DS), adds <ID57R[DS,Oé[DS>
to the Ly, and <IDg,Ripy,L,Brps> to Lg,, sets the public parameters as
Param = {G1,Ga,e,q, P,Q, Ppup}, the challenge receiver IDpg’s public key as
Prp, =yP,adds <IDg, L, Pip,> to the Lg, and sends (Param, Prp,) to the
adversary A.

Query: The adversary A is allowed to issue the following queries:

— hi query: B maintains an Ly, list, which contains tuples <ID;, Rrp,, a;>.
Upon receiving A’s query on (ID;, Ryp,), if the tuple <ID;, Rip,, ;> is
already in the Ly, list, B returns a;; otherwise, B randomly chooses «; € Zg,
adds <ID;, R;p,,a;> to the Ly, list and returns o;.

— Hy query: B maintains an Ly, list, which contains tuples <w;,
IDgi, IDgs, ui, c;, H;>. Upon receiving A’s query, if the tuple <w;, IDgr,
IDps, pi,c;, H;> is already in the Ly, list, B returns H;; otherwise, B ran-
domly chooses yi; € Zj, tosses a coin ¢; € {0,1} so that Prlc; = 0] =6, B
sets H; = (1 —¢;)zP + pu; P, adds <w;, IDg/,IDpgs, pu;, ¢;, H;> to the Ly, list
and returns H;.

— hs query: B maintains an L, list, which contains tuples <ID;, Pip,,
Rip,,B;>. Upon receiving A’s query on (ID;, Pip,,Rip,), if the tuple
<ID;, Prp,, Rip,, ;> is already in the Lj, list, B returns (;; otherwise,
B randomly chooses 3; € Z;, adds <ID;, Prp,, Rip,, ;> to Ly, list and
returns f;.

— Extract partial private key query: B maintains an Lg, list, which con-
tains tuples <ID,, Rrp,,drp,,3;>. Upon receiving A’s query on ID;, if
<ID;,Rip,,drp,, ;> is already in the Lg, list, B returns §;; otherwise,
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1.if ID; # IDg, B randomly chooses dip,,a; € Z;, computes
Rip, = dip,P — a;Ppu, adds <ID;, Ryp,,0;> to the Ly, list and
<ID;,Rip,,dp,, ;> to Lg,.

2. if ID; = IDg, B aborts. (This event is denoted by Ey.)

— Extract secret value query: B maintains an Lg, list, which contains tuples
<ID;,xrp,, Prp,>. Upon receiving A’s query on 1D,

1. if ID; # IDg, B randomly chooses z; € Z;, computes Prp, = zrp, P,
adds <ID;,xrp,, Prp,> to the Lg, list and returns z;p,.
2. if ID; = IDg, B aborts. (This event is denoted by Ej.)

— Request public key query: Upon receiving A’s query on ID;, B retrieves the
corresponding Rrp,, Prp, from Lg,, Lg, and returns the public key Pkrp, =
(RID“PIDi) to A.

— Replace public key query: Upon receiving A’s query on (ID;, Rrp,, Pip,), B
sets Prp, = PI’Di, drp, = L,zrp, = L. Ais prohibited from replacing IDpg’s
public key, which would enable A to trivially win the distinguishing game. A
is also prohibited from both replacing the public key for the challenge sender’s
identity I Dg before the challenge phase and extracting the partial private key
for IDg, which would enable A to obtain both parts of I Dg’s private key.

— Trapdoor query: Upon receiving A’s query, B retrieves <w;, [Dgr,
IDps, i, ciy H;> from the Ly, list,

1. if ¢; = 0, B aborts. (This event is denoted by F.)
2. otherwise, B gets PkIDR/ = (R[DR, y P]DR,), PkIDS/ = (RIDS/ s P]DS,)
by launching the request public key query, retrieves ajp,,,Brpg,,

OzIDR,,ﬂ[DR, from the Ly, Ly, list, computes T, = e(ﬂi(RIDS/ +
arpg Ppuv +Brpg Prpg, )s Brp,, Pro,, + Rip,, +arpg, Ppus), returns Ty,
to A.

— Ciphertext query: Upon receiving A’s query, B retrieves <w;, IDgr,

IDp/, i, ci, H;> from the Ly, list,

1. if ¢; = 0, B aborts. (This event is denoted by E5.)

2. OtheI‘WiSG, B gets PkIDR/ = (RIDR/aPIDR/);PkIDS/ = (RIDS”PIDS’)
by launching the request public key query, retrieves ajpg,,Brpg,,
arpg,Bipy, from Ly, Ly,, computes C1 = pi(Brpg, Pip,, + Rip,, +
arpg Ppus) +7Q,C2 = r(Bip,, Prp,, + Rip,, + arp,, Ppu), returns
C = (01702) to A.

Challenge: The adversary A chooses two keywords wq,w; s.t.
(Pkipg, Pkipy,wo), (Pkips, Pkipy,w1) have not been queried for trapdoor
and ciphertext, sends them to B. B retrieves <wg,IDg,IDg, o, co, Hy >, <
wy,IDg,IDgr, p1,c1, H1> from Ly, .

1. if ¢g = ¢ = 1, B aborts and outputs a random bit o’ as its guess. (This event
is denoted by Fjs.)

2. otherwise, let b be the bit s.t. ¢;, = 0, B computes the challenge trapdoor Ty,
as follows and returns it to A.

Ty, =e(zP, xP)4Pre( P,z P)%Prti ZP1DR e(y P, g P) PRI,
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If Z = e(P, P)*¥*, then we have:
Tw, =e((dipg + Bipr®ipgr)H2(IDs, IDRr, wy), Bips Pipg + Ripg + arpg Ppub)-
If Z is a random element from G, so is Twé.

Query: A continues launching queries with the same restrictions.

Guess: The adversary A outputs a bit &/. If ¥ = b, B outputs &/ = 0;
otherwise, it outputs ¥’ = 1.

Game 2 (type 2 adversary):

Setup: The algorithm B takes a DBDH problem instance as input, i.e.,
(G1,Ga,e,q, P,xP,yP, 2P, Z) where z,y,z are randomly chosen from Z,. Z
is either e(P, P)"™* or a random element of Gy. Let b be a bit such that
b=0if Z = e(g,9)*¥*, and b = 1 if Z is random. A chooses the chal-
lenge sender’s identity IDg and the challenge receiver’s identity IDg. B ran-
domly chooses t,s € Zj, computes ) = tP, Py, = sP and sets the public
parameters as Param = {G1,Gq,e,q, P,Q, Ppup}, the challenge sender IDg’s
public key as Prp, = 2P and the challenge receiver IDpg’s public key as
Prp,, = yP, adds <IDg, 1, Pips, >,< IDpg, L, Prp,> to the Lg,, and sends
(Param, Prpg, Prp,) to the adversary A.

Query: Here we only detail different answers from that of Game 1:

— Extract partial private key query: B maintains an Lg, list, which con-
tains tuples <ID;, Rip,,drp,,3:;>. Upon receiving A’s query on ID;, B
randomly chooses rrp, € Z; and looks up the Lj, list. If the tuple
<ID;, Rip,,c;> is already in the Lj, list, B retrieves «;; otherwise, ran-
domly chooses ayp, € Z; and adds <ID;, Rip,,arp,> to the Ly, list. B
computes drp, = rrp, + sa(mod q), Ryp, = rip, P, adds <ID;, R;p,,drp,>
to the L, list and returns Ryp,,drp,-

— Extract secret value query: B maintains an Lg, list, which contains tuples
<ID;,xrp,, Prp,>. Upon receiving A’s query on 1D,

1. if ID; # IDg,IDpg, B randomly chooses x; € Z;, computes Prp, =
xrp, P, adds <ID;,z;p,, Prp,> to the L, list and returns x;p,.

2. if ID; = IDg, B aborts. (This event is denoted by Ej.)

3. if ID; = IDg, B aborts. (This event is denoted by Ej.)

— Request public key query: Upon receiving A’s query on ID;, BB retrieves the
corresponding Ryp,, Prp, from Lg,, Lg, and returns the public key Pkrp, =
(Rip,, Prp,) to A. replacing the public key for the challenge receiver’s identity
IDpg before the challenge phase and extracting the partial private key for IDg
in some phase, which would enable A to receive a challenge trapdoor under
a public key for which it could compute the private key.

Challenge: The adversary A chooses two keywords wg,w; s.t.
(Pkipg, Pkipg,wo), (Pkips, Pkrpy,w1) have not been queried for trapdoor
and ciphertext, sends them to B. B retrieves <wq,IDg,IDg, ug,co, Hy >,
< wi,IDg,IDpg, p1,c1,H1> from Ly,.
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1. if ¢g = ¢ = 1, B aborts and outputs a random bit b’ as its guess. (This event
is denoted by FEj3.)

2. otherwise, let b be the bit s.t. ¢; = 0, B computes the challenge trapdoor Ty,
as follows and returns it to A.

ng =e(zP, xp)dIDRrHIDS e(P, xp)dIDRll«igIDs 7BrppBipg e(yP, xp)ﬂIDR#iﬁIDS
e(2P, Rips + arpg Ppub) " Pre(P, Ripg + arpg Ppup) 1 PrH

e(yP, zP)ﬁIDRd’DS e(yP, Ripg + arpg Ppub)-
If Z = e(P, P)*¥#, then we have:
Tw; =e((dipg + Bippwipg)H2(IDs, IDRr,wy), Bips Pips + Ripg + @ipg Ppub).
If Z is a random element from G, so is ng.

Query: A continues launching queries with the same restrictions.
Guess: The adversary A outputs a bit &'. If b’ = b, B outputs ' = 0;
otherwise, it outputs b’ = 1.

Theorem 2. If the adversary A wins the ciphertext indistinguishability game
with advantage €c, then there exists a PPT adversary B which can solve the
DLIN problem with advantage
2 2 1 2

>min (1—- =)asv. - (1= —)\svtapPk . %
CPEIN = fee - qh, (gr +qo)e co qh,y ) (gr +qo)e
where qp, is the number of h1 queries, qsv is the number of extract secret value
queries, qppr s the number of partial private queries, qr is the number of
trapdoor queries and qc is the number of ciphertext queries.

Proof. Assume that there is a PPT adversary A which breaks the ciphertext
indistinguishability of our CLPAEKS scheme with a non-negligible advantage
€c, we will use it to construct another PPT algorithm B to solve the DLIN
problem.

Game 3 (type 1 adversary):

Setup: The algorithm B takes a DLIN problem instance as input, i.e.,
(G1,6,q,Q,21Q,22Q, x21Q, yx2Q, Z) where x,y,x1,2z2 are randomly chosen
from Z,. Z is either (z + y)Q or a random element of G;. Let b be a bit such
that b = 0if Z = (x + )@, and b = 1 if Z is random. A chooses the chal-
lenge sender’s identity I Dg and the challenge receiver’s identity IDg. The new
public key for the replace public key query with respect to IDpg is P}DR. B
sets P = x1Q, the challenge sender I Dg’s public key as Prp, = ©P = zz:Q,
randomly chooses arpy, Bips € Z}, Rip, € Gi1, adds <IDg, Rips,arps> to
the Ly,, <IDg,Rips,L,Brps> to Lg,, <IDg, 1, Pip,> to the Lg,, sets the
master public key as Ppyup = ﬁ(sz —Brpy Pip,, — Ripy), the public param-
eters as Param = {G1,Ga,e,q, P,Q, Pyu}, and sends (Param, Prp,) to the
adversary A.

Query: Here we only detail different answers from that of Game 1:
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— Hy query: B maintains an Ly, list, which contains tuples <wj, y;, c;, H;>.
Upon receiving A’s query on w;, if the tuple <w;, p;, ¢;, H;> is already in the
Ly, list, B returns H;; otherwise, B randomly chooses u; € Z;, tosses a coin
¢; € {0,1} so that Pr[c; = 0] = 4, B sets H; = ¢;u; P + (1 — ¢;)1;Q, adds
<wj, Wi, i, H;> to the Ly, list and returns H;.

— Extract partial private key query: B answers queries and denotes event 4 in
the similar way as in Game 1. The only difference is the two cases are divided
by checking whether I D; = I Dy rather than checking ID; = I Dg.

— Extract secret value query: B answers queries and denotes event F; in the
similar way as in Game 1. The only difference is the two cases are divided by
checking whether ID; = I Dg rather than checking ID; = I Dpg.

— Replace public key query: B answers queries in the same way as in Game 1. A
is prohibited from replacing I Dg’s public key, and both replacing the public
key for the challenge receiver’s identity ID g before the challenge phase and
extracting the partial private key for IDpg.

Challenge: The adversary A chooses two keywords wg,w; s.t. (Pkipg,
wg), (Pkrps,w1) have not been queried for trapdoor and (Pkrpg,wo),
(Pkrpg,w1) have not been queried for ciphertext, sends them to B. B retrieves
<wy, ko, Co, Ho >, < w1, p1,c1, H1> from LHz'

1. if ¢g = ¢; = 1, B aborts and outputs a random bit &’ as its guess. (This event
is denoted by Ej.)

2. otherwise, let b be the bit s.t. ¢; = 0, B computes the challenge ciphertext Cj
as follows and returns it to A.

Cip =dips - 1@ + Brps - 1y - (r +9)@Q,
Cy = Bips - 1y - y22Q-
If Z = (z + y)Q, then we have:

C 4 =(dips + Bips 210 ) QR + Brps + 1y - Y@
02,13 =Brps - 1y - Y(drpr P+ Brpr Prpy)-

If Z is a random element from Gy, so is C| ;.

Query: A continues launching queries with the same restrictions.

Guess: The adversary A outputs a bit &/. If ¥ = b, B outputs &/ = 0;
otherwise, it outputs ¥’ = 1.

Game 4 (type 2 adversary):

Setup: The algorithm B takes a DLIN problem instance as input, i.e.,
(G1,e,¢,Q,11Q, 12Q, xx1Q, yr2Q, Z) where x,y,x1,2x2 are randomly chosen
from Z,. Z is either (z+y)Q or a random element of G;. Let b be a bit such that
b=0if Z = (z+y)Q, and b = 1 if Z is random. A chooses the challenge sender’s
identity IDg and the challenge receiver’s identity IDg. B randomly chooses
s € Ly, computes Py, = sP, sets P = 1@, the public parameters as Param =
{G1,G2,¢,q,P,Q, Pyup}, the challenge sender IDg’s public key as Prpg
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P = 221Q. B randomly chooses arp,,"ipg, Bipr € Zj;, computes drp, =
ripg + sa(mod q), Rip, = rip, P. B sets the challenge receiver IDpg’s public
key as Prp, = ﬁ(ﬂsz —dipg - 1Q), st. (dipp P + BrpyPrpy) = 22Q. B
adds <IDR,R1DR,a1DR >, < IDR,P[DR,R[D”ﬁ]DR >, < IDR7RIDR,dIDR>
to the Ly, , Lp,, Ly, list, respectively, and sends (Param, Pipg, Prp,) to the
adversary A.

Query: Here we only detail different answers from that of Game 2:

— Hy query: B maintains an Ly, list, which contains tuples <w;,
IDgi, IDpgs, pi, c;, H;>. Upon receiving A’s query on w;, if the tuple
<w;, IDg/,IDps, p;, ci, H;> is already in the Ly, list, B returns H;; oth-
erwise, B randomly chooses p; € Zj, tosses a coin ¢; € {0,1} so that
Pric; = 0] = 6, B sets H; = c;pu; P + (1 — ¢;)1:Q, adds <w;, p;, ¢;, H;>
to the Lp, and returns H;.

Challenge: The adversary A chooses two keywords wg, wy s.t. (Pkrpg, wp),
(Pkrpg,w1) have not been queried for trapdoor and (Pkjp,,wp), (Pkrp,,w:)
have not been queried for ciphertext, sends them to B. B retrieves
<wo, Ko, Co, Hy >, < wi, ,LL1,61,H1> from LHQ.

1. if ¢g = ¢; = 1, B aborts and outputs a random bit b’ as its guess. (This event
is denoted by Fjs.)
2. otherwise, let b be the bit s.t. ¢; = 0, B computes the challenge ciphertext Cj
as follows and returns it to A.
Cyp =dips - 13Q + Brps - 1y - (z +y)Q,
Cy 4 =Brps - 1y, - Yy22Q.
If Z = (z + y)Q, then we have:

Cp =(dips + Brps - 21ps) 1@ + Bips - 13, - YQ,
Cyp =BIDs * 1y - y(dipp P+ BrprPrpy)-

If Z is a random element from G, so is C| ;.

Query: A continues launching queries with the same restrictions.
Guess: The adversary A outputs a bit ¢'. If b’ = b, B outputs ¥ = 0;
otherwise, it outputs ¥’ = 1.

6 Conclusion

In this work, we re-formalized the security definitions of CLPAEKS. Under the
proposed security models, we pointed out the weakness of an existing scheme
and worked out a new scheme by modifying the original one. Finally, we proved
the new scheme is secure under the assumptions of DBDH and DLIN.
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Abstract. A searchable symmetric encryption (SSE) scheme is a
method which searches encrypted data without decrypting it. In this
paper, we address the substring search problem such that for a set D of
documents and a pattern p, we find all occurrences of p in D. Here a docu-
ment and a pattern are defined as strings and are encrypted. A directed
acyclic word graph (DAWG), which is a deterministic finite automa-
ton, is known for solving a substring search problem on a plaintext. We
improve a DAWG so that all transitions of a DAWG have distinct sym-
bols and present a space-efficient and secure substring SSE scheme using
an improved DAWG. The novel feature of an improved DAWG is that
we can solve the substring search problem using only the labels of tran-
sitions. The proposed substring SSE scheme consists of an index with a
simple structure and the size is O(n) for the total size n of documents.

1 Introduction

1.1 Backgrounds

In recent years, remote storage services are rapidly spreading in cloud computing.
In such a system, there is often a case where a user wants to protect the confiden-
tiality of data on a remote server. In the field of information retrieval, developing
a technique for efficiently searching the encrypted data while protecting the con-
fidentiality of data and a query is a major topic. Such a search technique is
called searchable encryption, and in particular, a scheme using symmetric key
encryption is called searchable symmetric encryption (SSE). To securely search
data (or documents) with an SSE scheme, the user first generates an encrypted
data, including an encrypted index, and stores it on the server. Later, the user
interacts with the server to carry out a search on encrypted data. Up to now,
researches on SSE schemes have been actively done under such a background
[4,6,8,10-13,16,17,19-22,25].
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1.2 Owur Contributions

Most of SSE schemes proposed until now support only exact keyword search, and
therefore one of the challenging problems for SSE is to develop a secure scheme
to efficiently search for all substrings appearing in a document. Here a document
is a text string. A trivial technique is that we store all substrings occurring in
a document in an index. However, this method generates a huge index because
there are O(n?) substrings in a document of length n. Reducing the size of an
index is an important problem. Toward solving this problem, several substring
search schemes have been proposed [7,9,13,18,23,26].

A directed acyclic word graph (DAWG) [1,2] for a string w is a determin-
istic finite automaton (DFA) that accepts all substrings of w and is known as
an efficient data structure for representing all substrings. Yamamoto [26] has
developed a substring SSE scheme (YA-scheme) using a DAWG by introducing
an idea of block words. However YA-scheme needs a large index to enhance the
security because the size is in proportion to the size of a block word. Furthermore
YA-scheme cannot completely hide the occurrence frequencies of all characters
and meets only non-adaptive security.

We will propose a new substring SSE scheme by improving a DAWG. In gen-
eral, all symbols of transitions of a DAWG are not always distinct. We improve
a DAWG by allowing a transition with a string so that all transitions are per-
formed by distinct strings. The improved DAWG is called an augmented DAWG
(ADAWG) and a string used by a transition of an ADAWG is called a meta-
symbol. The big advantage of an ADAWG is that we can simulate an ADAWG
using only meta-symbols. Therefore we do not need to store transitions of an
ADAWG in an index. Furthermore, since all meta-symbols of transitions of an
ADAWG are distinct, our scheme can completely hide the occurrence frequen-
cies of characters and the structure of an ADAWG without using dummy data.
These features enable us to design a space-efficient and secure substring SSE
scheme. The schemes [7,18] need dummy data to hide the tree structure or the
occurrence frequencies of characters. The drawback is that the search time get
larger a little at the worst case. Let us summarize our scheme below. Here let
D = {dy, - ,dny_1} be a set of N documents and ¢ be a query of length m.
np = Y 4.epldi| and D(q) is the set of all document ID and position pairs
(id, pos) such that ¢ appears at position pos in document d;q. A document and
a query are defined as a string on an alphabet X

— For any query ¢ of length m, the proposed scheme finds all document ID
and position pairs at which ¢ appears. The size of the index is O(np) and
the search time is O(m? + |D(q)|). Our scheme consists of an index with
a simpler structure than other substring SSE schemes, and it is possible to
make the hidden constant factor of O(np) small. The number of rounds of
communication between a user and a server is three for a search.

— Adaptive Security: It can be proved that the proposed scheme is adaptively
secure under similar leakages as the scheme in [7].
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— Frequency and Structure: Our scheme hides frequencies of all characters
occurring in a document and a query. If N > 2 then the number of occur-
rences of ¢ per a document does not leak out. Furthermore our scheme hides
the structure of an ADAWG.

Table 1. Comparison of substring search schemes. Here k, = |X| and 7 is the length
of a block word. The column “# of rounds” denotes the number of rounds of com-
munication between a user and a server for a search. The terms adapt and non-adapt
mean adaptive security and non-adaptive security, respectively. The column “Struct”
has “o” if the scheme can hide a data structure underlying an index and A if the
scheme requires dummy data. The column “VL” has “o” if the scheme can search for a
string of any length. The column “Freq” has “o” if the scheme can hide the occurrence

frequency of any character and A if the scheme requires dummy data.

Scheme # of rounds|Index size|Search time Security |Struct|Freq/VL
CS-scheme [7] |4 O(konp) |O(kem + |D(q)]) Adapt A o o
SOR-scheme [24]|3 O(np) Oo(m? 4+ |D(q)|) Adapt X A o
YA-scheme [26] |3 O(ynp) |O((m/v)lognp +|D(q)|)|Non-adapt|o A o
LM-scheme [18] |3 O(np) |O(np) Adapt o A A
This work 3 O(np) O(m? +|D(q)])) Adapt o o )

1.3 Related Works

Several substring SSE schemes have been proposed [7,9,13,18,23,26]. To the
best of our knowledge, the existing substring SSE schemes can be classified into
two types. One is a scheme which uses an advanced data structure which is used
in a substring search for a plaintext to achieve sub-linear search time in np,
and the other is a scheme which does not use such data structure. The schemes
of [7,18,23,26] and our scheme belong to the former and the schemes of [9,13]
belong to the latter. Faber et al. [9] applied the conjunctive search scheme of
[5] to a substring search problem. Their scheme parses a string to k-grams (k
consecutive characters) and then searches for the conjunction of the k-grams.
The scheme can make a search in one round of communication, but the search
time can be O(np) because the time depends on the number of occurrences
of a k-gram. Hahn [13] proposed a new substring SSE scheme for the existing
database, but they use a special encryption scheme called frequency-hiding order-
preserving encryption.

The schemes [7,18,23,26] using an advanced data structure aim to achieve
search time sublinear in np and index size linear in np. Since our scheme is
also the same type, we compare our scheme with these schemes. Table1 gives
a comparison of these schemes. The search time of the user includes the time
to make a trapdoor, but not include the time to decrypt encrypted documents
returned from the server. Since we have already discussed YA-scheme, we discuss
the other schemes.
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Chase and Shen [7] proposed a scheme (CS-scheme) based on a suffix tree
which is a data structure constructed from all suffixes of a string. They say
that the number of rounds of communication is three in [7]. However, the user
gets encrypted IDs from the serve after the third round. Therefore, for the user
to get the documents corresponding IDs from the server, the user must send
decrypted IDs to the server. Hence CS-scheme needs four rounds. The time and
space complexity of CS-scheme depend on k, = |X|. Therefore CS-scheme runs
faster if k, is small. However, if k, > m, then the running time is slower than
our scheme. Furthermore the size of the index can be drastically large because
CS-scheme must insert so many dummy data in the index in order to hide the
structure of a suffix tree.

Leontiadis and Li [18] (LM-scheme) have presented a new substring SSE
scheme by employing a data structure called FM-index, which is a combination
of BWT transformation and a suffix array, for reducing the index size of CS-
scheme. The size of the index is O(np) and the hidden constant factor is small.
LM-scheme regards a k-gram (which is called a bucket) as one symbol and inserts
dummy buckets into the original string in order to hide the frequency of buckets.
Since the search time depends on the number of occurrences of a bucket, the time
becomes O(np) in the worst case. Furthermore, for a query such that the length
is less than k, LM-scheme does not clearly describe the search procedure. The
described search procedure cannot search for such a query or always takes O(np)
time even if searching for it.

Strizhov and Ray [23,24] proposed a new substring SSE scheme (SOR-
scheme) for a space-efficient scheme. SOR-scheme [24] is the revised version
of the scheme in [23] and is based on a position heap tree for a string. Their
scheme first generates a position heap tree and then builds an encrypted index
by encrypting each node of the tree. Hence the structure of the position heap
tree is revealed. Furthermore SOR-scheme must compare a query and a docu-
ment character by character to verify that the query occurs in the document. For
that reason, SOR~scheme needs another index made by encrypting a character of
documents one by one. This index leaks the frequency of characters. The search
takes O(m? + |D(q)|) time and needs three rounds of communication.

2 Preliminaries

Throughout this paper, X' denotes an arbitrary finite alphabet, and a document
and a query denote a string (word) in X*. The empty string is denoted by
e. For a string w € X*, |w| denotes the length of w. When W is a set, |W|
denotes the number of elements of W. For strings w,z,y,z € X*, if w = zyz,
then y is called a substring of w. Let FACT(w) = {y | yisasubstringof w}
and FACT(W) = Uuew FACT (w). For two strings « and y, z||y denotes the
concatenation of z and y.

We consider the following substring search problem. Let D = {dy,...,dy_1}
be the set of N documents. We denote by ID(d) the identifier of a docu-
ment d, which is called a document ID. For a document d;, ID(d;) = i.
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Fig. 1. A DAWG for {secure, system}

For a document d, we define ng = |d|, np = > ,cpna, and D(q) =
{(i,7) | gappears at position j ind; }. Then the substring search problem is, for a
given string ¢ (g is called a query), to find D(q). In this paper, we address the
substring search problem on encrypted documents using a symmetric encryption
scheme. A symmetric encryption scheme consists of three (probabilistic) polyno-
mial time algorithms SKE = (KeyGen, Enc, Dec), where KeyGen(1*) takes as an
input a security parameter A and randomly outputs a secret key sk; Enc(sk, d)
takes as inputs a secret key sk and a document d, and returns an encrypted
document ¢; Dec(sk,c) takes as inputs a key sk and an encrypted document ¢
of d, and returns d if sk is the key that is used to produce c. As seen in [6],
we require a symmetric encryption scheme to be secure against pseudorandom
chosen-plaintext attacks (PCPA-security). For simplicity, by Encs () we denote
an encryption function Enc(sk, -) with a secret key sk. In addition, we use a pseu-
dorandom function F : {0,1}* x {0,1}"* — {0, 1}!2, which is a polynomial-time
function that cannot be distinguished from a random function (for example, refer
o [15] for the definition). We write Fyi(z) for F(sk,z). We define a negligible
function for a security definition.

Definition 1. A function f from natural numbers to positive real numbers is
negligible in a security parameter A if for every positive polynomial p(-) there is
an integer Ng such that for any A > Ao it holds that f(X) < 1/p(N).



Space-Efficient and Secure Substring Searchable Symmetric Encryption 135

Our SSE scheme consists of two parties, a user and a server. The user is the
owner of data and stores data in the server in an encrypted form. The user wants
to search encrypted data on the server without revealing the contents of data to
the server. We assume that the server is honest but curious. The SSE scheme
works as follows.

1. Setup phase: The user constructs a secure index from the set D of documents
and encrypts all documents d;. After that, the user stores them in the server.

2. Search phase: For a query ¢, the user makes a trapdoor TRAP(q) of ¢ and
sends it to the server. The user and the server search for the set D(g) following
a search protocol, and the user finally gets D(q) and {¢; | (i,7) € D(q)}. The
user decrypts each ¢; and gets the original document d;.

3 An Augmented Directed Acyclic Word Graph

A directed acyclic word graph (DAWG) is data structure proposed by Blumer,
Blumer and Haussler [1] for implementing efficient substring search. In this
section, we propose a new data structure called an augmented DAWG by improv-
ing a DAWG.

3.1 A Directed Acyclic Word Graph

A DAWG for a string w € X* is a deterministic finite automaton (DFA) that
accepts FACT (w). Blumer et al. [2] extended a DAWG for a set of strings.
We here give definitions and properties of a DAWG. Let W = {wy, ..., wn_1}
be the set of text strings on X. For any string w = a;---a, € W and v €
X*, let end-set(v,w) = {i | v = aj_|y|41---a;}. In particular, end-set(e,w) =
{0,1,...,n}. Then, we define an equivalence class such that strings = and y in X*
are equivalent on W if and only if for all w € W, end-set(x,w) = end-set(y, w).
A DAWG M(W) = (Q, X, 9, init) is a DFA such that M (W) accepts FACT (W)
and the set @ of states consists of all equivalence classes on W, where § is the
transition function and init is the initial state. Since all states of () become final
states for a DAWG, we omit a set of final states. As with [26], we give a simple
algorithm BuildDawg to construct a DAWG M (W) from W in Algorithm 1. The
algorithm BuildDawg uses the subset construction method which is the standard
method to translate a nondeterministic finite automaton (NFA) into a DFA (for
example, see [14]). In a nutshell, we first make a DFA DF (W) which is a trie
of W, and then constructs M (W) from DF(W) by setting the initial state of
M (W) to the set @ of states. A trie is a data structure for searching a text (for
example, see [3]) and can be viewed as a DFA. The algorithm BuildDawg(W) runs
in time O(nj, ), where ny = Y, -y |wl|. The following proposition is obtained
from the results of [1,2].
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Algorithm 1. BuildDawg(W)

Input: W = {ws,...,ws} where w; is a string on an alphabet ¥
1: make a trie TR = (V, E) for W where V is the set of nodes and E is the set of
directed edges. Then TR can be regarded as a DFA DF(W) = (Q, X, d,p) where

= {v | v € V} is a set of state, and the initial state p is the root of TR.

Furthermore §(v1,a) = w2 if and only if (vi,v2) € E and the edge is labeled a
symbol a.

: {constructing a DAWG M (W) from DF (W) using the subset construction}

: let us set the initial state of M (W) to the set Q of states,

: construct a DAWG M (W) according to DF(W), using the subset construction

: number states of M (W) from 0, where the initial state is numbered 0

: return M (W)

DU W N

Proposition 1. (1) The number of states of M(W) is at most 2nyw — 1, and

the number of transitions is at most 3ny — 4,

(2) for any state of M(W), all the incoming transitions of the state have the
same symbol,

(3) for any string x € X*, M(W) accepts x if and only if there is w € W such
that © € FACT (w).

We say that for any string x, z is accepted by M (W) at state st if M (W)
reaches state st after reading =. For any state st of M (W), let WORD(st) be
the set of strings accepted by M (W) at state st. Then note that WORD(st)
becomes the equivalence class corresponding to st.

Ezample 1. Let us give an example of a DAWG in Fig. 1. Given a DFA of (A) for
{secure, system}, the DAWG of (B) is constructed using the subset construction
method by setting the initial state of the DAWG to all states of (A). If we regard
all states of (B) as the final states, then the DAWG exactly accepts all substrings
of secure and system.

3.2 An Augmented DAWG

To make a secure index, we want to improve a DAWG such that all transitions
have a distinct symbol. We achieve this purpose by allowing a DAWG to have a
transition by a string. Let M (W) = (Q, X, 9, stg) be the DAWG for a set W of
strings. Then we give a new DAWG M (W) = (Q, 2,4, sto) called an augment
DAWG (ADAWG), which is defined as follows.

1. for any sti, sty € @, if d(st1,a) = sty is defined for a symbol a € X, then we
define 6(st1,0a) = sto, where ¢ is the shortest string in WORD((sty).

2. ¥ = {0 | 0 € FACT(W) such that 3sty, sty € Q, 6(st1,0) = sty is defined}.
We call o € X a meta-symbol. Note that a meta-symbol is a string over X.

Since each state of a DAWG corresponds to an equivalence class, the shortest
string in WORD(st1) is exactly one. Therefore 6 can be defined. We give an
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Algorithm 2. BuildADawg(WW)
Input: W = {wo,...,wNn_1}
1: make a DAWG M (W) = (Q, X, 0, sto) from W using BuildDawg
: State — {sto} and NEW «— @
: for all st € (Q do

2

3

4:  sts<¢

5: end for

6: while State # () do

7 for all st’ € State do

8 for all transitions 6(st’,a) = st do

9: if a transition from st’ to st in & is not defined then

10: o « st'.s||a, define §(st’, o) = st and add o to X,

11: if st.s = ¢ then

12: st.s «— o {note that o is the shortest string reachable to st.}
13: end if

14: NEW «— NEW U {st}

15: end if

16: end for

17: end for

18: State «— NEW and NEW «— 0
19: end while ~ L
20: return ADAWG M (W) = (Q, X, 4, sto)

algorithm BuildADawg to construct an ADAWG in Algorithm 2 (Fig.2). The
algorithm BuildADawg(WW) runs in time linear in the number of transitions of
M(W). An ADAWG M (W) = (Q, X, 6, stg) has the following property.

Proposition 2. (1) The number of states in M(W) is the same as that of
MW),

(2) the number of transitions in M (W) is the same as that of M (W),

(3) for any two transitions 6(5151, o1) and 5(st2, 02), 01 # 03.

Proof. Properties (1) and (2) of Proposition 2 are obvious from the definition
of an ADAWG. We prove property (3). Since the case st; = sto is obvious, we
prove the case st; # sto. Let us assume that o1 = 09 and o7 = ao. We note that
for any two states st; and stg in @, the sets WORD(st1) and WORD(sts) are
always disjoint because M (W) is a DFA. Therefore, the state reachable by ¢ on
M (W) is exactly one. Hence st; = sty and then the property (3) holds.

Property (3) is a crucial property for security of our scheme because this
leads that all transitions of an ADAWG have distinct meta-symbols. M (W)
and M (W) have the same structure except for symbols of transitions. Now let
q be a string accepted by M (W) at state st and &, be a sequence of meta-
symbols accepted by M (W) at state st. Then there is a one-to-one correspon-
dence between ¢ and ,. We can design an algorithm to translate ¢ into o,. We
give the algorithm Translate in Algorithm 3. The following proposition holds for
Translate.
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Algorithm 3. Translate(q, X)
Input: ¢g=a1---am
1: Used — 0 and 64 — ¢
:if a1 € 3 then

2

3: o1 a1 and 64 < F4||o1
4: end if

5 fori=2,...,mdo

6: forj=1,...,i—1do
7 O < Q5+ Q;

8

if 0; ¢ Used and o; € 5 then

9: Gq < 0q4l||loi and Used «— Used U {o;}

10: break {go to the next i.}

11: end if

12:  end for

13: end for

14: if |64| = m then

15:  return &, {this means that 6, = o1 --- o, has been generated.}
16: else

17:  return 0§

18: end if

Proposition 3. Let ¢ € X*, |q| = m and let 64 be an output of Translate(g, X).
Then q is accepted by M (W) at state st if and only if 64 = 01+ 0 (0; € X)
and G4 is accepted by M (W) at state st.

We must note that if we know X then we can compute 04 from ¢ using
Translate. Proposition 3 states that we know X then we can check if ¢ is accepted
by M(W) without simulating M (W) on &,. In other words, if we can make &,
that is not () from ¢ using Translate then we know that ¢ is accepted by M (W).
This fact leads to a secure and space-efficient substring SSE scheme.

3.3 A State-Set Tree

By Proposition 3, we can know whether there is a text string w in W such
that w contains a given string x using an ADAWG. However, we cannot know
which text string w contains x. We need additional information to identify a
text string and a position in which the string x appears. We introduce a state-
set tree corresponding to an ADAWG. The state-set tree was originally defined
for a DAWG in [1,2]. We use a state-set tree to identify a text string and a
position. In Sect. 3.1, we defined an equivalence relation on X* with respect to
W using end-set(z, w). For any & € X*, let [x]w be an equivalence class to which
x belongs. As defined in [1,2], we construct a state-tree Ty from equivalence
classes as follows.

1. The nodes of Ty consist of equivalence classes.
2. The root of Ty is [e]w.
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em

Fig. 2. An augmented DAWG obtained from the DAWG given in Fig. 1.

3. Let [z]w be any node of Ty and x be the longest string in [z]w . Then, for
any a € X, if ax € FACT(W), then [az]w is a child of [x]w.

It is obvious from the definition of Ty that the following proposition holds.

Proposition 4. Let [z1]w and [z2]w be any two nodes of Ty such that [z2]w
is a descendant of [x1]w . Then for any strings s1 € [x1]w and s9 € [x2]w, $1 is

a suffiz of sa.

Let M(W) be the DAWG for W. Recall that a state of M (W) also cor-
responds to an equivalence class. Hence there is a one-to-one correspondence
between a state of M (W) (that is, a state of M (W)) and a node of Ty . Proposi-
tion 4 states that if s € [z]y for some node [z]y, then s appears in all strings of
[#']w which is a descendant of [z]y . By this property, we assign text string ID
and position pairs to a node of Ty as follows. Let [z]y be any node of Ty, and
z be a string in [z]y . Furthermore let (idq, pos1), ..., (id;, pos;) be a text string
ID and a position (an end position) pairs in which = appears. Then, for any
1 <4 <[, if (id;, pos;) does not appear in a descendant of [x]w, then (id;, pos;)
is assigned to [z]w; otherwise not assigned. We call a node with text string ID
and position pairs an info-node. As an example, we give Ty, for the DAWG of
Fig. 1 in Fig. 3. The nodes of Ty correspond to the states of the DAWG. The
info-nodes are 1, 3,4, 5,6, 7, 8,9, 10, 11, and 12. We assign a number to each pair
attached to info-nodes of Ty in preorder. In Fig. 3, such a number is attached to
the outside of each pair. We use these numbers when constructing indexes. Note
that the state-set tree Ty, can be constructed together with the corresponding
DAWG because a node of Ty corresponds to a state of a DAWG.

Now, by L, we denote the set of document ID and position pairs assigned to
a node v, and by Ty (v) we denote the subtree of Ty rooted by v. Furthermore,
let us define L(Tw (v)) = Uyev Ly, where V is the set of nodes of Ty (v). Then
it follows from Proposition 4 that we obtain the following proposition.
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Fig. 3. A state-set tree Tw with (id, pos) for the DAWG given in Fig. 1. The pair (i, j)
of numbers in a dotted square denotes the text string ID (document ID) and position.
Here W = {secure, system} where ID(secure) =1 and ID(system) = 2.

Proposition 5. For any string x € X*, let x be accepted by M (W) at state st
and let vy be the node of Ty corresponding to st. Then, x occurs in position j

of w; if and only if (i,7) € L(Tw (vst)).

3.4 Outline of Search Using an ADAWG and a State-Set Tree

Let us explain an outline of a search procedure using an ADAWG and a state-
set tree. Given a keyword ¢, we first make &, from ¢ by Translate(q, Z:’) By
Proposition 3, if we can make ¢, then we know that ¢ appears; otherwise ¢ does
not appear. Let st be the state reached after reading ,. We find the node vy
corresponding to st and gets L(Tw (vs)). In the following section, we describe a

substring SSE scheme which securely performs the above mentioned procedure.

4 A Secure Substring SSE Scheme

In the previous section, we used the set W of strings to explain an ADAWG
and a state-set tree. Since the set D of documents corresponds to W, we use D
instead of W to explain our substring SSE scheme. Our substring SSE scheme
SUB_SSE = (KeyGen, Enc, Trapdr, BuildIndex, Search, Dec) consists of six (prob-
abilistic) polynomial-time algorithms such that

~ KeyGen(1%) is an probabilistic algorithm that takes as an input a security
parameter A and returns secret keys SK = (sko, sk, ska, sks, skq),

— Enc(sk,d) is a probabilistic algorithm that takes as inputs a secret key sk and
a document d and returns an encrypted document ¢, that is, ¢ =Encgx(d). In
particular, Encs, (D) = Ugep {Encsx(d)},

— Trapdr(SK, q) is a deterministic algorithm that takes as inputs secret keys
SK and a query ¢, and returns a trapdoor TRAP(q) of g. In our scheme, this
consists of MakeTrapl and MakeTrap2,

— BuildIndex(SK, D) is a probabilistic algorithm that takes as inputs a secret
key SK, a set D of documents and a false positive parameter v and returns an
encrypted index IT = (LSET,NMAP,IND) and a set of encrypted documents,
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Fig. 4. Index IT = (LSET, NMAP, IND)

— Search(q, IT) is a protocol between the user and the server to search for D(q)
using an encrypted index I7. This is described as a search protocol in Sect. 4.2,

— Dec(sk,c) is a deterministic algorithm that takes as inputs a secret key sk
and an encrypted document ¢ and returns the decrypted document d.

In the following, we describe details of Trapdr, Buildindex, and Search.
Our secure indexes are made from an ADAWG and a state-set tree using
SKE = (KeyGen, Enc, Dec) and a pseudorandom function Fyj for a secret key sk.

4.1 Constructing a Secure Encrypted Index

The encrypted index II = (LSET,NMAP,IND) consists of three sub-indexes
LSET, NMAP, and IND. The sub-index LSET is the set of encrypted meta-
symbols. The sub-index NMAP have information of a state reachable by the
last transition of an encrypted ADAWG. The sub-index IND has pairs of docu-
ment ID and position, and is built from a state-set tree. We will explain these
three sub-indexes. We give an algorithm BuildIndex in Algorithm 4 which con-
structs an encrypted index IT. Here M (D) = (Q, %,4,0) is an ADAWG and T
is state-set tree for the set D of documents. We give an outline of the index IT
in Fig. 4, where ¥ = {o1,...,01} and t = np.

Sub-index LSET. We make LSET so that LSET = {F.;, () | ¢ € &}. Thus
LSET consists of encrypted meta-symbols which appears on transitions of M (D).

Sub-index NMAP. We store information of info-nodes corresponding to
a state reachable by transitions of M (D) in NMAP for a given query. Let
g be a query of length m and 6, = o1 -0, be a sequence obtained by
Translate(q, X). Then if a DAWG M (D) reaches a state st by ¢, then the
corresponding ADAWG M (D) also reaches the state st by &,. Then we set
NMAP[Fsk, (0m)] = (min, maz) ® Fsi, (o). Here min and maz is the mini-
mum number and the maximum number among document ID and position pairs
attached to info-nodes of the subtree corresponding to a state st. Note that min
and maz are computed from the state-set tree.

Sub-index IND. The sub-index IND is used to get pairs of a document ID
and a position in which a query appears. IND is an array of np entries in which
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Algorithm 4. BuildIndex(SK, D)

Input: SK = {sko, sk1, ska, sks, ska}, D = {do,...,dn-1}
1: generate an ADAWG M(D) = (Q, %, 4,0) and a state-set tree Ip
Let Th(v) be a subtree of Tp rooted by a node v.
{Constructing LSET}
for all 0 € ¥ do
X « Fy, (o) and add X to LSET
end for
{Constructing NMAP and IND}
for all ¢ € ¥ do
compute min and maz of T(vns) where nst is a state such that §(st,o) = nst
for some state st and v,s is the node of Th corresponding to nst,
10: compute all (id;, pos;) appearing in T (Vnst)
11:  NMAP[Fsk, (0)] < (min, maz) & Fap, (o)

12:  for all min < i < maz do
13: IND[Z] < Encqr, (id;||pos),
14: end for

15: end for

16: return II = (LSET,NMAP,IND) and {c | ¢ € Encs,(D)}.

document lists are stored. IND is also built from the state-set tree. IND is an array
with a document ID and an occurrence position. Each info-node of a state-set tree
corresponds to a string occurring in D and has document ID and position pairs
in which the string appear. Then, for randomly selected position i, a document
ID and position pair (id, pos) is stored in IND[¢] in the form Encgy, (id||pos). We
have the following theorem from Proposition 2.

Theorem 1. Let D be a set of documents and let I = (LSET,NMAP,IND).
Then, the size of IT is O(np).

4.2 A Search Protocol

In our security model, we assume that the server is honest-but-curious. A
search protocol is performed in three rounds of communication between a user
and a server as follows. For any query ¢, we first generate TRAP(q) using
MakeTrapl(q), which is used to check if ¢ appears in a document. If appears,
the user generates (Y, Z) using MakeTrap2(g) in order to gets encrypted pairs of
a document ID and a position. Finally the user gets the desired documents. We
present the search protocol for a keyword ¢ = ay - - - a,, in the following.

1. User: Using MakeTrapl(q), the user makes TRAP(q) = (X1,...,Xn) and
sends TRAP(q) to the server.

2. Server: Let EXIST be an output of ExistTest(TRAP(q),LSET). Then the
server sends EXIST to the user.

3. User: If EXIST = () then the search halts. If EXIST # () then the user
makes a trapdoor (Y, Z) by MakeTrap2(q, EXIST). The user sends (Y, Z) to
the server.
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A

lgorithm 5. MakeTrapl(q)

Input: g=a1---am

1

2
3
4
5:
6:
7.
8
9
0
1

: X1 — Fskl(al), Xl — {Xl} and SYM «— @

:for j=2,...,mdo
k+—1
fori=1,...,7—1do
o—ai-a;
if 0 ¢ SYM then
Xk <_F5k1(0')7 Xj <—XjU{Xk}, k—|—+, and SYMHSYMU{O'}
end if
end for
: end for

: return TRAP(q) = (X1,...,Xm)

Algorithm 6. ExistTest(TRAP(q),LSET)

Input: TRAP(q) = (X1,...,Xm)

1: for j=1,...,mdo
2:  Flag < false
3: fori=1,...,|X;| do
4: take X; from X
5: if X; € LSET then
6: if j =m then
7. return X;
8: end if
9: Flag < true and break {exit this for-loop}
10: end if
11:  end for
12:  if Flag = false then
13: return ()
14:  end if
15: end for
4. Server: Receiving (Y,Z), the server gets (min,maz) by computing

NMAP[Y] & Z. For all min < i < maz, the server sends the value of
IND[¢] (= R;) to the user.
User: Receiving (Ruin, - - - , Rmaz ), the user gets (id;, pos;) by decrypting R;

for all min < i < maz. The user sends (id,in, - - -, idmas) to the server.
Server: Receiving (idmin, - - -, idmaz ), the server sends (¢4, ;- - -, Cid,,,) tO
the user.

User: The user decrypts c¢;q,,, and gets a document d,q,, . If ¢ appears at
POSmmin 10 d;iq, . , then the user knows that ¢ appears in ¢;q, (min < i < maz);
otherwise the user knows that ¢ does not appear.

min

Lemma 1. For any query q of length m, let EXIST be an output of
ExistTest(TRAP(q), LSET). Then EXIST # 0 if and only if q¢ appears in docu-
ments of D.
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Algorithm 7. MakeTrap2(q, EXIST)
Input: g=a1---am
1: if m =1 then

2: X « Fyy(ar)

3:  if X = EXIST then

4: Y — Foy(a1) and Z — Fypy(a1)
5: end if

6: end if

7: if m > 2 then

8 fori=1,...,m—1do

9: 0 a; - am and X «— Fyp, (0)
10: if X = EXIST then

11: Y « Faiy(0), Z «— Fopy (o), and break
12: end if

13: end for

14: end if

15: return (Y, 2)

The lemma is obtained from Proposition 3. That is, ExistTest carries out the
same task as that of Translate in an encrypted world. It follows from Lemma 1
and Proposition 5 that the following theorem holds. In the search protocol, the
user may get false positive answers with all but negligible probability by collisions
of pseudorandom functions. However, the user can filter out these answers by
checking just one pair of a document and a position at Step 7.

Theorem 2. For any query q of length m, the search protocol finds D(q) in
O(m? + |D(q)|) time and in three rounds of communication.

5 Security Analysis

We will prove that the proposed scheme meets adaptive security. For the security
analysis, we consider a real game REAL 4 and a simulation game SIM 4 s, which
are played by three players, a challenger, an adversary and a simulator. As you
see below, REAL 4 plays using the proposed scheme, while SIM 4 s simulates
the real scheme using only information that an adversary (that is, a server) can
get. Then leakage information LEAK for SUB_SSE is listed as follows.

— The length of each document |dg|,- - ,|dy—1| and the collection of encrypted
documents, the size ny of LSET, the size no of NMAP, and the size nz of IND.
(access pattern) For a query ¢, (min, maz) and the set {id | (id, pos) € D(q)}.
Note that a position pos at which ¢ appears does not leak out.

(search pattern) For a query q, TRAP(q) = (X1, -+ ,Xy) and (Y,Z). In
addition, the set LX = X NLSET, where X = X; U---UX,,.

— (prefix pattern) For any query ¢, the adversary can know whether ¢ is a prefix

of the previous queries from the above information leaked.
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[adaptive semantic security model]

REAL 4()\)

— The adversary A chooses D, where D = {dp,...,dy_1} is the set of docu-
ments. After that, A sends them to the challenger C.

— C generates randomly a secret key SK = (sko, sk, ska, sks, skq) using KeyGen
(1*), and builds IT by Buildlndex(SK, D). After that, C sends (II, Enc, (D))
to A.

— repeat the following polynomially many times.

1. A selects a query ¢ and sends ¢ to C.
2. Perform a search protocol between A and C, where A plays as the server
and C plays as the user.

— Finally, A outputs a bit b € {0,1}.

SIM A,S ()\)
— The adversary A chooses D where D = {dg,...,dy_1} is the set of docu-
ments, and then .4 sends them to the challenger C.
— C sends leakage information LEAK to the simulator S.
— & builds an index IT*, a set {c{,...,cy_1} of encrypted documents, using
LEAK. After that, S sends them to A.
— Repeat the following polynomially many times.
1. A selects a query ¢ and sends ¢ to S.
2. Perform a search protocol between A and S, where A plays as the server
and S plays as the user.
— Finally, A outputs a bit b € {0, 1}.

Definition 2. We say that a substring SSE scheme meets adaptive semantic
security if for all probabilistic polynomial time adversaries A, there is a proba-
bilistic polynomial time simulator such that

|Pr(Aoutputsb = 1in REAL 4()\)) — Pr(Aoutputsb = 1in SIM 4 s(A))]
1s megligible.

Since a symmetric encryption scheme satisfies PCPA-security, the following
theorem holds.

Theorem 3. The proposed scheme SUB_SSE meets adaptive semantic security.

Proof (Sketch). We will describe an outline of the proof. We show a polynomial
time simulator S such that the advantage of any probabilistic polynomial time
adversary A to distinguish between the outputs of REAL 4()) and SIM 4 s(\)
is negligible. Let D = {dp,--- ,dny_1} be a set of documents. S has three sets
TRAP,, TRAP,, and TRAP, and initially sets them to (.

— Simulating encrypted documents for the document set D. Simulator S gener-
ates a random strings ¢} of |d;| bits for a document d; (0 < ¢ < N—1). Since a
symmetric encryption scheme is PCPA-secure, ¢; and ¢ is indistinguishable.
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— Simulating an encrypted index for the set D of documents.
The simulator S builds an index IT* = (LSET*, NMAP*,IND*) using LEAK
as follows.

1. Simulating LSET. The simulator & knows the size n; of LSET from
LEAK. Then S generates n; random strings X7,..., X, and builds
LSET" as the set {X7{,...,X} }. We note that all transitions of an
ADAWG are done by distinct meta-symbols and LSET is built using a
pseudorandom function. Therefore LSET and LSET* are indistinguish-
able with all but negligible probability.

2. Simulating NMAP and IND. The simulator S knows the size no of NMAP
and the size n3 of IND from LEAK. & makes NMAP™ in the following
way. S generates np random strings Y7, ..., Y,” and ng random strings
Zf, ..., Zy, , and sets NMAP™ = {(Y;*, Z}) | 1 < i < np}. Next S generates
n3 random strings R7,..., Ry, to build IND and sets IND*[i] = R} for
all 1 < ¢ < ng. All elements of NMAP are independent of each other
and are randomized by a pseudorandom function. Therefore NMAP and
NMAP™ are indistinguishable with all but negligible probability. Similarly,
since IND is built using a PCPA-secure encryption scheme and all pairs
of a document ID and a position are distinct, IND and IND* are also
indistinguishable with all but negligible probability.

— Simulating a search at time ¢. Let ¢ = a1 - - - a,,, be a query at time ¢. S knows
TRAP(q) = (X1, , X)), LX, (min, max), and {id | (id, pos) € D(q)} from
LEAK. Given ¢, § makes X to simulate X; by modifying MakeTrapl as
follows. Here we note that S can know a substring of ¢ from which X is made
for each X € X because elements of X is sequentially numbered.

1. if (a1, X*) € TRAP, then add X* to X}; otherwise if X € &} generating

from a; is in £LX then randomly choose unused X* from LSET* and if
X € X is not in LX then generate a random string X* not in £LX'. After
that add X* to A} and (a1, X*) to TRAP,

2. for o at line 5 of MakeTrapl do the following:
if (0, X") € TRAP, then add X~ to X}; otherwise if X € &; generating
from o is in £LX then randomly choose unused X* from LSET* and if
X € X; is not in LX then generate a random string X* not in LSET™.
After that add X* to X7 and (0, X*) to TRAP,.

Clearly &X; and X' have the same number of elements. Let LX™ = X*NLSET"

where X* = X U---U X%, Then LX and LX™ also have the same number

of elements. Since X is randomized by a pseudorandom function, A cannot

distinguish &; and X7 with all but negligible probability. Similarly .A cannot

distinguish £X and L£X*. Next S makes a trapdoor (Y*,Z*) to simulate

(Y, Z) made by MakeTrap2 as follows. If (¢,Y’,Z’) € TRAP, for q then set

Y* =Y’ and Z* = Z'. This case means that ¢ has been used in a search

previously.

Let us consider the case (¢,Y’,Z") ¢ TRAP, for q. Then S randomly chooses

an unused position Y’ in NMAP* and sets Y* = Y. Furthermore S generates

Z' so that (min, maz) = NMAP*[Y']|® Z’ and sets Z* = Z'. S adds (¢,Y’, Z')
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to TRAP,. After that, S sends (Y*,Z*) to A. Receiving (Y*, Z*), A sends
IND*[¢] (min < i < maz) to S. Finally, since S knows all document IDs id
such that a document d;4 contains ¢, he sends these IDs to A.

By these setting, S can let A search for ¢ in a similar way to the real world.
Thus A cannot distinguish REAL 4 and SIM 4 s with all but negligible proba-
bility. Hence the theorem has been proved.

6 Conclusions

We proposed a secure substring SSE scheme by improving a DAWG. Comparing
with substring SSE schemes proposed previously, the proposed SSE has a simple
structure and is space-efficient, but the search time increases. This is because it
takes more time to generate a trapdoor TRAP(q) for a query ¢. Improving the
search time without weakening security is one of future works.
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Abstract. The notion of plaintext-checkable encryption (PCE) has
recently emerged in the application of search on encrypted data only
by plaintexts. We observe that existing PCE schemes are not sufficient
to guarantee check correctness in the case of a malicious encryptor. To
address this concern, we put forth the concept of plaintext-verifiably-
checkable encryption (PVCE), which captures the basic requirement of
output correctness: If M is thought to be the plaintext for a ciphertext
ct by the Check algorithm, ct is actually a valid encryption of M. In
other words, it does not exist any maliciously generated ciphertext could
succeed in plaintext checking. This property guarantees a meaningful
notion of correctness and is crucial in several applications. We propose a
PVCE construction using pairing-friendly smooth projective hash func-
tion with modified language representation and prove it to be unlink-
cca security in the standard model. This is the first verifiable plaintext-
checkable encryption that provides both verifiable checkability and the
most desirable security in the standard model. To this end, we show a
PVCE instantiation from k-MDDH assumption.

Keywords: Plaintext checkable encryption - Verifiability -
Smooth projective hash function - Pairing friendly -
k-MDDH assumption

1 Introduction

Encryption technology with functionalities, for example, public/private keyword
search or equality test, plays important roles in era of cloud computing, which
has been achieved much attraction in recent years. A typical primitive is pub-
lic key encryption with keyword searh (PEKS) [1-5] to search on ciphertexts
by a trapdoor from secret key and keyword. Any user owing the trapdoor could
infer whether any ciphertext contains the same keyword in the trapdoor without
the knowledge of the underlying keyword. Another variant is public key encryp-
tion with equality test (PKEET) [6-10] to search on ciphertexts by a candidate
ciphertext. Any tester (or authorized tester) could know whether two ciphertexts
share the same message.
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In this paper, we consider the primitive plaintext-checkable encryption (PCE)
to search on ciphertext only by plaintext. It is no surprise that in PCE frame-
work if the check algorithm on a ciphertext and a plaintext returns true, the
tester could easily obtain the plaintext underlying a ciphertext. Otherwise, the
ciphertext should not leak any other knowledge of the plaintext. Compared with
PEKS, the trapdoor of PCE is a plaintext without taking any secret informa-
tion as input while the trapdoor of PEKS is generated only by the data owner
using its secret key. Compared with PKEET, PCE provides more simple search
way (only by plaintext) without additional encryption of compared plaintext,
possibly under different public keys.

We observe that existing PCE schemes are not sufficient to guarantee check
correctness. This is essential in the case of a malicious encryptor, where the
maliciously generated ciphertext could possibly succeed in plaintext checking. A
seemly proper technology is to adopt signature to guarantee the well-formedness
of ciphertexts, which is similar to [10] to ensure all unchecked elements in the
ciphertexts have not been tampered with. However, this technology is only used
in the scenario which implies an assumption that all encryptors are honest. Here
we emphasize that this intention is different from our goal to exclude all
invalid ciphertexts which are possibly generated by malicious encryp-
tors. Next, we use some examples to explain our goal.

e In [11], two PCE constructions in random oracle model do satisfy the verifiable
checkability because the test procedure could totally recover the randomness
in the encryption procedure and then the verifiability follows.

e In [11], one PCE construction in standard model also satisfies the verifiable
checkability, using the pairing property on the check elements in Gs.

e In [12], the ciphertext is CT = (W,U,W',V) = (W, ProjHash,(hp,, W) x
M, W' ProjHash,(hp,, (W, U, W"))). In the check procedure, W’ could be
reconstructed and then V is verified by the witness 7 of W’. However, U
could not be guaranteed to be correct. In other words, a ciphertext with-
out well formedness would pass the check phase. For instance, the adversary
could randomly choose y € ) and compute the ciphertext C' = (W,y x*
M, W’ ProjHashy (hp,, (W, U, W))), where W’/ = WordGen(I'(W,y, M)).
Therefore, even if C’ is thought to be the encryption of M by the check
algorithm, C’ is actually not the encryption of M!

Note that although the schemes in [11] satisfy the verifiable checkability, they
can not achieve the best desirable unlink-cca security. To the best of our knowl-
edge, we have not seen PCE constructions that have both verifiable checkability
and the strongest unlink-cca security in the literature. This is the motivation of
our work.

1.1 Related Work

Canard et al. [11] first proposed generic PCE constructions in the random oracle
model based on any probabilistic or deterministic encryption and a practical
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Scheme Setting | Model Join Aut| Secy, Sec, |Verif
Yang et al. [6] public key RO full-encrypted | X - ow-cca X
Tang [7] public key RO full-encrypted | / | ow-cca | ind-cca X
Tang [8] public key RO full-encrypted | / |ow-cca | ind-cca X
Ma et al. [10] public key RO full-encrypted | / | ow-cca | ind-cca X
Huang et al. [9] public key RO full-encrypted | / |ow-cca | ind-cca X
Ma et al. [16] public key RO full-encrypted | / |ow-cca | ind-cca X
Carbunar et al. [13] |private key|standard| full-encrypted | / |one-way| ind-cpa X
Furukawa et al. [14]|private key| RO full-encrypted | / |one-way| ind-cpa X
Pang et al. [15] private key|standard| full-encrypted | / |one-way| ind-cpa V4
Canard et al. [11] public key RO  |[semi-encrypted| X - unlink va
Canard et al. [11] public key |standard |semi-encrypted| X - unlink V4
Ma[12] public key |standard [semi-encrypted| X — s-priv-cca X
This paper public key |standard |semi-encrypted| X - unlink-cca| +/

Fig. 1. Comparison with related work.

construction using pairing groups in the standard model, whose security notion
is defined as unlink. Recently, Ma et al. [12] proposed a PCE scheme with s-priv1-
cca security, which is independent with unlink. As shown in [12], the most desired
security of PCE is unlink-cca. In the application, PCE is a useful primitive for
private join on encrypted database, where a join attribute is sensitive to be pro-
tected and another join attribute is stored in plain. Privacy-preserving join on
encrypted database has been received much attention, where most constructions
work under the condition that both joined attributes are encrypted. Carbunar
and Sion [13] first studied private join on outsourced database in a private key
setting, which supports general binary join predicates including range, equal-
ity and Hamming distance. Furukawa and Isshiki [14] provided a scheme where
the server requires an authorization from the data owner to execute an equi-
join. Yang et al. [6] introduced the notion of public key encryption with equality
test (PKEET) as a useful primitive for join on two encrypted columns in multi-
user setting. Several follow-on [7-10] studies extended PKEET with authorized
equality test such that only authorized server can perform equality test on cipher-
texts, which is accordance with only authorized server can perform equijoin on
encrypted attributes. We show Fig. 1 to summarize the properties of related work
according to public/private setting, random oracle/standard model, full/semi-
encrypted join, authorization, security with/without authorization and verifica-
tion, where full-encrypted join denotes join on both two encrypted attributes and
semi-encrypted join denotes join on one encrypted attribute and another non-
encrypted attribute. We see that only our work has both verifiable checkability
and the most desirable security.
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2 Pairing-Friendly Smooth Projective Hash Function

2.1 Definition of SPHF

A smooth projective hash function (SPHF) is based on a domain X and an N'P
language £ C X. An SPHF system over £ onto a set ) is defined as follows [17].

— SPHFSetup(k): It takes as input a security parameter k and outputs
(L, param) as the global parameters.

— HashKG(L, param): It generates a hashing key hk.

— ProjKG(hk,(L,param), W): It derives the projection key hp from the hashing
key hk, possibly depending on the word W.

— Hash(hk,(£, param), W): It outputs the hash value hv € Y from the hashing
key on any word W € X.

— ProjHash(hp,(£,param), W,w): It outputs the hash value hv' € Y from the
projection key hp and any word W € & with the witness w.

In this paper, we additionally define a WordVF algorithm to verify a word W
using a witness w:

— WordVF((£, param),w, W): It outputs 1 if w is the witness of W, or 0 other-
wise.

Correctness. The correctness of SPHF assures that if W € £ with a witness w,
then Hash(hk, (£, param), W) = ProjHash(hp, (£, param), W, w).

Smoothness. The smoothness of SPHF assures that if W € X\L, then the fol-
lowing two distributions are statistically indistinguishable:

{((L, param), W, hp, hv)|hv = Hash(hk, (£, param), W)},
{((£, param), W, hp, hv)|hv & V}.

where (L,param) = SPHFSetup(k), hk = HashKG(L,param) and hp =
ProjKG(hk, (£, param), W).

2-Smoothness. The 2-smoothness of SPHF assures that if Wy, Wa € X\LAW, #
W, then the following two distributions are statistically indistinguishable:

{((L, param), W7, Wo, hp, hvy, hva)|hve = Hash(hk, (£, param), W5)},
{((Ev param)7 le W27 hpa th, hV2)|hV2 i y}v

where (£, param) = SPHFSetup(k), hk = HashKG(L, param), hp = ProjKG(hk,
(L, param), W5) and hvy = Hash(hk, (£, param), 7).

Extended SPHF. An extended SPHF additionally takes an auxiliary element
auzx along with word W as input of Hash and ProjHash algorithm.
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2.2 Modified Language Representation

For SPHF, classical language representation has been described in [17-19]. We
omit it for brevity. By making modification on classical language representation
[17-19], we provide an alternative language representation of a language L.
For a language L,,x, there exist two positive integers k and n, a word basis
function 7 : Set — GF*™ and a family of functions Ouu : Set — G'*™, such
that for any word C' € Set, (C € Lan) <= (Ip € Z,%) A (3§ € Zp*™) such
that Ouux(C) = ¢ e (§ @ I'(C)), where ¢ is independent of any word C. In other
words, we say that C' € L, if and only if éaux(C) is a linear combination
of (the exponents in) the rows of some matrix § ¢ I'(C). It also requires that
a user, who knows a witness w of the membership C' € L,,4, can efficiently
compute the above linear combination ¢. We emphasize that it is difference
from the language representation in the literature that the linear combina-
tion ¢ is required to be independently chosen randomness, while the
linear combination X in the classical language representation possibly
includes both the independently chosen randomness and possibly non-
independently random elements. This might be a quite strong requirement
but this is actually verified by very expressive language over ciphertexts such as
ElGamal, Cramer-Shoup and variants.

We briefly illustrate it on an SPHF for the language of Cramer-Shoup cipher-
text encrypting a message M = aux. Words in the language Ly is C = (u; =
g7 up = gy,e = M - h",v = (cd®)"), with r € Zj, and { = H(l,u,e) € Z5. We
choose k = 2,aux = M,n = 5, and the modified language representation on the
language of Cramer-Shoup ciphertext is shown as follows.

_ (911 g2hec _ Aol = (g7,97%, 95, h", (cd®)")
I'= (1 o1 1d> A=(rre) 5 )= (u1, u§, uz, e/M, v).

_ (011 g2he _ _(10) @e(5el) = (g7,97° g5, k", (cd®)")
I'= (11 9 121d) $=(nrr) 5*<0§> B21(C) = (u1,ul,uzse/M,0).

2.3 Transformation from SPHF to PF-SPHF

Let PGGen be a probabilistic polynomial time (PPT) algorithm that on input
k returns a description PG = (P, G,G,Gr, e, g, g) of asymmetric pairing group,
where (f}, G and G are cyclic groups of order p for a k-bit prime p, g and g are
generators of G and G, respectively, and e : G x G is a bilinear map between
them.

Notations. We focus here on cyclic group G; for s € {1,2,T} of prime order p
and define three operators on the group:

1. Gs *Gs — G;. For any u € G5 and v € Gy, ux v € Gg. Specifically, for any
element u € G, we define uxu~! = 1g_, which is the identity element of G,.
Sometimes we also use uv = vu € G4 for u,v € G;.
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2. Z,0Gs — G4 (or GsoZ, — G,). For any r € Z, and u € G, reu = uer = u’.
3. G1 © Gy — Gp (OI‘ Go ® Gy — GT) For u; € G; and ug € Go, uy ©® ug =
up @ up = e(u, uz).

Assume that every pairing-less SPHF has the modified language representa-
tion, implying a hash value is represented as O,;x(C) = @ o (§ @ y(C)). A first
naive approach to transform every pairing-less SPHF into PF-SPHF in a bilinear
setting is described in the Table 1, where we will always use the implicit notation
of elements in G, i.e., we let [ulg, = g be an element in G,. The key idea is
to put pairing-less SPHF in a source group G (resp. @) of pairing along with an
element g in another source group G (resp. G), whose combination contributes
to computing a pairing value. Actually, a pairing-friendly SPHF (PF-SPHF) has
been used to construct particular SPHFs with the interesting properties, for
instance, the structure-preserving SPHF [18] and the trapdoor SPHF [19].

Table 1. Transformation from SPHF to PF-SPHF.

SPHF PF-SPHF
Word C(©(C)) [AeI'(C)e AeI(C)le

Witness w A A

hk o o

hp(v(C)) [ o I'(C)]c [a e I'(C)]e

Hash [ e O(C)]c [90 (axeO(C))]cr

ProjHash [pe(dev(C)lc [(peg)® (dev(C))ler

WordVF — Check [§® (A o I'(C))]ey = [(A07) ® I'(C)lcy

Correctness. Correctness is inherited for word in £ as this reduces to computing
the same value but in Gy.

Smoothness. For the words outside the language, the unchanged projection key
do not reveal new information, therefore the hash value remain smoothness.

Ezxamples. Two examples of classical SPHF on Diffie-Hellman and Cramer-Shoup
encryption of M and their counterparts with PF-SPHF are described in [18]. We
omit them for brevity.

2.4 2-Smoothness SPHF

[17] provides an efficient group-theoretic way (See Theorem 3 in [17]) to construct
universals projective hash family from universal projective hash family. Actu-
ally, applying the same technology we can also obtain 2-smoothness extended
SPHF directly from smoothness SPHF. Let SPHF = (SPHFSetup, HashKG, Pro-
jKG, Hash, ProjHash) is smooth projective hash function on X derived from
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1. SPﬁS\etup(k): It is the same as the SPHFSetup algorithm in SPHF.

2. HQWG(L7 param): For ¢ € {0,...,n}, it generates a hash key hk = {hk; =
HashKG(L, param)}7_ .
3. m(lﬁ(, (L, param), W): For 7 € {0,...,n}, it derives the projection key lﬁ) from the hashing

key lﬁ(, possibly depending on the word W: hAp = {ProjKG(hk;, (£, param), W)} I

i=0"
4. Hash(hk, (£, param), W, aux): It outputs the hash value hv € Y from the hash key hk on any
word W € X and auxz € E using Hash algorithm:

hv = Hash(hko, (£, param), W) H Hash(hk;, (£, param), W)7i,
i=1

where (1, ,vn) = I'(W, aux).
5. ProjHash(hp, (£, param), W, w, auz): It outputs the hash value hv/ € ) from the projection key
hp and any word W € X and auxz € E with the witness w using ProjHash algorithm:

n
hv/ = ProjHash(hp, (£, param), W, w) H ProjHash(hp,, (£, param), W, w)7

i=1

where (71, -+ ) = (W, auz).

Fig. 2. Constructing 2-Smoothness SPHF from SPHF

G of order prime p, we define an extended projective hash function SPHF =
(SPHFSetup, HashKG, ProjKG, Hash, ProjHash, WordVF) for (X x E, L x E) based
on SPHF as follows and fix an collusion-resistance hash function

r:-xXxxr—{0,---,p—1}",

where n is sufficiently large. The way to construct 2-smoothness SPHF from
SPHF is shown in Fig. 2.

3 Definitions

3.1 Plaintext-Verifiably-Checkable Encryption

We define here the notion of plaintext-verifiably-checkable encryption. Let k € N
be a security parameter. A plaintext-verifiably-checkable encryption (PVCE) is
composed of the following five algorithms:

1. Setup(k) — pp. The setup algorithm takes as input k and outputs a public
system parameter pp.

2. KeyGen(pp) — (pk, sk). The key generation algorithm takes as input a public
system parameter pp and outputs a key pair (pk, sk) of public and secret key,
respectively.

3. Enc(pk, M) — ct. The encryption algorithm takes as input pk and a plaintext
M and outputs a ciphertext ct.

4. Dec(sk,ct) — M. The decryption algorithm takes as input sk and a cipher-
text ct, and outputs a plaintext M or L.
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5. VerifyCheck(ct, M) — 1/0. The verifiable check algorithm takes as input a
ciphertext ct and a plaintext M, and outputs 1 if ct is indeed generated
correctly for M under the public key pk, and 0 otherwise.

Correctness. The correctness of PCE must verify the following two conditions:

1. Correctness of decryption. For any k € N and m € {0, 1}*,

Prlpp & Setup(k), (pk, sk) & KeyGen(pp), ct & Enc(pk, M) :
Dec(sk,ct) = M| = 1.

2. Correctness of plaintext check. For any k € N and m € {0,1}*,

Pr(pp & Setup(k), (pk, sk) & KeyGen(pp), ct & Enc(pk, M) :
Check(M,ct) =1] = 1.

Verifiability. If M is thought to be the plaintext for a ciphertext ct by the
Check algorithm, ct is actually a valid encryption of M.

Prlpp < Setup(k), (pk, sk) < KeyGen(pp), (ct, M) < A(pp, pk) :
Check(ct, M) =1 : 3r A Enc(pk, M;r) =ct] = 1.

We assume that PCE plaintexts are drawn from a space of high min-entropy
[11] since the adversary could win the game definitely when PCE plaintexts
come from a space without enough entropy. This assumption is reasonable and
has existed in many searchable encryptions.

Definition 1 (High min-entropy). An adversary A= (As, Ay) is legitimate
if there exists a function ((-) s.t. for all pk and m € [A; (1%, pk)] we have |m| =
U(k). Moreover, we say that an adversary A= (Ays, Ay) has min-entropy p if

Vk € N Vpk Vm : Pr[m’ « Af(lk,pk) cm' =m] < o—nu(k)

A is said to have high min-entropy if it has min-entropy u with u(k) € w(logk).

3.2 Unlink-CCA Security

Informally, the unlink-cca security assures that the adversary A = (A, 43) as a
pair of polynomial time algorithms could not get any partial information about
the plaintext under the ciphertext even provided the access to a decryption
oracle, where A; and As share neither coins nor state. A; takes input pk
and returns two plaintexts (Mo, M7). Ay takes input pk and a ciphertext ct, and
tries to guess b. Note that Ay does not see My and M, as the output of A; and
hence cannot guess whether ct; is the encryption of My and M;. The following
experiment Exp‘,’,\‘}%‘éfﬁa(k) is defined for the adversary A with high min-entropy
against unlink-cca security, which wins with negligible probability.
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DL S (1)

1. Setup Phase. The challenger runs the KeyGen(k) algorithm to generate
(pk, sk) and sends pk to the adversary A = (A1, As).

2. Probing Phase I. The adversary 4; submits a ciphertext ct to the chal-
lenger. The challenger decrypts ct using its secret key sk and returns the
plaintext M back to Aj.

3. Challenge Phase. The adversary A; randomly selects two messages My and
M, and presents them to the challenger. The challenger selects a random
bit b € {0,1} and sends (ct;, ct}) = (Enc(pk, M,), Enc(pk, My)).

4. Probing Phase II. For Ay’s submitted ciphertext ct, the challenger
responses the same as in the probing phase I with the only constraint that
ct is not equal to ct*.

5. Guessing Phase. A, outputs a bit b’. The adversary A is said to win the
game if b’ = b, inducing the output of experiment is 1, and 0 otherwise.

We say PVCE has unlink-cca security if for any polynomial adversary A,

)

AQVEEES? () = | Prib = 1] -

1
2

which is negligible on the security parameter k.

4 PVCE Construction

Let the language £ be hard-partitioned subset. Let SPHF=(SPHFSetup,
HashKG, ProjKG, Hash, ProjHash) be a smooth projective hash function
and SPHF = (SPﬁS\etup7 HmG,PWG,m,P@Sh) be 2-smoothness
extended smooth projective hash function, which are both defined on the
domain & for the same language £ under the same security param-
eter k. Let PF-SPHF and PF-SPHF be transformed from SPHF and
SPHF wusing the technology in Sect.2.4. We present a construction of
PVCE = (PVCE.Setup, PVCE.KeyGen, PVCE.Enc, PVCE.Dec, PVCE.VerifyCheck)

as follows.

1. Setup PVCE.Setup(k):

The setup algorithm does the following;:

(a) Taking the security parameter k as input, run the SPHFSetup algorithm
of SPHF to generate the public parameter (£, param) on (G, p).

(b) Define the public parameter (£, param, = (@,G,GT,e,ﬁ,g,p)) for the
transformed PF-SPHF in Type 2 paring, which is a type of pairing with
the condition G_# G but there is an efficiently computable homomor-
phism ¢ : G — G.

(c) Generate a collision-resistant hash functions f defined on: X xGr xGr —
Gand I' : X x Gy x G — (Z,)™, n is an integer.

The public system parameter is pp = <L, param,, f, ['>.
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. KeyGen PVCE.KeyGen(pp):

The key generation algorithm does the following:
(a) Compute the private key:
hk = HashKG(L, param),
For i € {0, ...,n}, hk; = HashKG(L, param).
(b) Compute the public key:
hp = ProjKG(hk, (£, param)),
For i € {0, ...,n}, hp, = ProjKG(hk,, (£, param)).
The pubhc/prlvate key pair (pk, sk

) is
skt (hk,hk) = (hk, (hko, hki, - - , hky)),
pk: (hp,ﬁg) (hpa(hp07hp17 ahpn))

. Encryption PVCE.Enc(pk, M) :

To encrypt a message M, the encryption algorithm does the following;:
(a) Randomly pick a word W € £ with the witness w € Z,,.

(b) Assume Pmsh(ﬁﬁ, (W, X,Y),w) is defined as
ProjHash(hp, (W, X,Y'), w) = ProjHash(hp, W, w) [ | ProjHash(hp;, W, w),
1=1

where (y1,---,7v,) = I'(W, X,Y) € (Z,)". Compute the encryption of
M:

X = PF-ProjHash(g, ProjHash(hp, W, w)) * M,

Y =(gew)x f(W.X* M1 M),

7 = PF—ﬁoj\Hash@, Pro/jl-Esh(E[\), (W, X.Y), w)).
The output of the algorithm is the ciphertext ct = (W, XY, Z).

. Dec PVCE.Dec(sk, CT):

This algorithm decrypts the ciphertext ct = (W, X,Y, Z) using the secret key

sk in the following way:
(a) Compute M « X x PF-Hash(g, Hash(hk, W))~1
(b) Check whether

7 = ¢(g, Hash(Rk, (W, X, 1)),
ZZG(Y*f_l(VV,X*M_l,M)7H5.(17’yl,-~' a,)/’n))

where (1, ,7) = I'(W, X,Y) and ﬁBo (1,71, ,7vn) is defined as
hpohp]* ... hp,". If the above equations hold, it outputs the plaintext M
for the ciphertext ct. Else it outputs 0.

. Check PVCE.VerifyCheck (M, ct):

Check whether
WordVF(Y * f~(W, M), W) = 1,
Xs«M ' = e(Y « LW, X # M—l,M),hAp),

Z:6<Y*f71(W7X*M71’M)aH|;.(17717"' a’yn))
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hold or not, where (v1, -+ ,v,) = I'(W, X,Y). If the above equations hold,
it outputs 1 indicating that M is the plaintext of ct. Else, it outputs 0.

Correctness. We omit the correctness analysis of Dec algorithm and
only provide the correctness analysis of Check algorithm as follows. (1)
WordVF(Y * f~Y(W,M),W) = WordVF(w e g, W) = 1, (2) XM~ =
e(g, ProjHash(hp, W, w)) = e(w @ g,hp) = e(Y’ (WX * M~1 M), hp) and
(3) zZ = e(§7 PI’OJHaSh(hp,/(\VV,X,Y),’LU)) - (U) d gvhp hd ( y Y1y af)/n)) -
e(Yxf=L (W, X+«M~1 M), hpe (1,71, - ,7¥n)). Therefore, if the above equations
hold, we say that ct is the encryption of M.

Verifiability. Consider any public key pk, any ciphertext ct and any plaintext
M such that VerifyCheck(pk,ct, M) = 1. The key element for verification is
7=Yx f7Y(W, X * M~1 M) = g*. Because of the property of PF-SPHF, 7
denoted as ¢ @ g in the modified language representation is the witness of both
PF-Hash(g, Hash(hk, W)) and PF-Hash(g, Hash(hk, (W, X,Y))). Meanwhile, it is
also the witness of W under the pairing. Therefore, the ciphertext could be
correctly verified.

4.1 Security Proof

Theorem 1. PVCE satisfies unlink-cca if it is computationally hard to distin-
guish any random element W* € L from any random element from X\L.

Proof. We show that the existence of an adversary A against unlink-cca security
with significant advantage implies the existence of an efficient algorithm B that
decides a random element W € £ or W € X\L. We define the following game
between a simulator (as a role of the distinguisher for the hard subset mem-
bership problem) and an adversary A = (Ay,.42) that carries out an unlink-cca
attack.

Gamej: Gamey is the initial security game.

1. Setup Phase. This simulator emulates the initialization of the system as fol-
lows. It runs the Setup(k) algorithm by itself to generate the public parameter
pp =< L, param, = (@, G,Gr,e,q,9,p), f, ' >. Then it runs the KeyGen(pp)
algorithm to generate a public/secret key pair (pk, sk) = ((hpjﬁ), (hk,ﬂ)).
It gives (pp, pk) to A.

e Under the alternative language representation in Sect. 2, we define a new
function I' : Set ~— G**!. It comes possibly from any column of I'(W)
batlsfylng that X e I'(W (W) is completely determined by . We denote it by
Oaux(W) = X @ I'(W), which is an element of the vector in ©,u(W). The
simulator emulates g € G in the following special way:

§=o((aX)© [(W)),

where a is randomly chosen from Z,,.
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2. Probing Phase I. For A;’s submitted ciphertext ct, the simulator returns
the plaintext M via the Dec algorithm using its secret key sk.

3. Challenge Phase. A; presents two random messages My and M; to the
simulator. The simulator computes the ciphertext ct; = (W*, X*,Y™* Z*) of
M, as follows:

e The simulator chooses a random word W* € L, where W* is the value
input to the simulator, and computes

X* = PF-Hash(g, Hash(hk, W*)) x M,
Y* = g((aX) o D(W*))  f(W*, X 5 My, My)
= a® ¢ e L(W)) x fW*, X* % My, My)
a® OW™))  f(W*, X" % M, ", Mp)
Z* = PF-Hash(g, Hash(hk, (W*, X*,Y™))

and honestly computes the ciphertext ctj = Enc(pk, M7). Then it returns
(ctf,ct}) to As.

4. Probing Phase II. For Ay’s submitted query on the ciphertext ct, the sim-
ulator responses the same as in the probing phase I with the only constraint
that ct is not equal to ctj.

5. Guessing Phase. A; outputs its guess b'.

We consider the behaviour of this simulator in two cases:

Case 1: The simulator is given a random element W* € L. Let Yes(!) be the
event that the simulator outputs 1 in this case.

Case 2: The simulator is given a random element W* € X\ L. Let No™) be the
event that the simulator outputs 1 in this case.

Let

AdvP*(k) = | Pr[Yes™] — Pr[No™]|, (1)

which is the distinguishing advantage of the simulator. Our goal is to show that
Advgr{}géﬁa(k) is negligible provided Adv®™ (k) is negligible. We now analyze
the behaviour of the simulator in these two cases:

Case 1: W* € L. In this case, the simulator is perfect. Therefore, we have
Prlvest] - | > AdvEESE (D) )

Case 2: W* € X\ L. We will use the game-hopping technique for this case.

Game;: Game; is the same as Gamey, so that in addition to reject-

ing a ciphertext C = (W, X,Y,Z) but Z = e((a  p(O(W))) x f(W,X x
M=, M)),Hash(hk, W, X,Y)). Let F be the event that Z = e((a e ¢(O(W)))
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FW, X « M_I,M)),m;](m, (W,X,Y))). We define the advantage of A in

Game;

Game; as Advpycg 4 (k) and claim that
AdvREEy (k) — Adviigey (k)| < Pr(F] 3)

Next, we analyze the probability that the event I happens. For all ciphertxts
C=W,X,Y,Z) € X xGr xGxGr with W € X\L submitted to a decryption
oracle after the challenge phrase, we divide them into two cases:

1. W, X,Y)=(W* X*,Y*). Since Z is uniquely determined by (W, X,Y), the
simulator returns L.

2. (W, X,Y) # (W*, X*,Y*). Given W and X, sk is still uniformly distributed
with the only constraint that hp = ProjKG(hk) and HB = PERG(HE). Under
this condition, we further divide all queried ciphertexts into two cases:

(a) (W, X) = (W*, X*). Since Y is uniquely determined by (W, X), the
simulator returns L.

(b) (W, X) # (W*,X*). Due to the 2-smoothness property of PI{SE-IF,

—

PF/—I-Esh(hk, (W, X,Y)) is uniformly distributed over ). Therefore, the
probability that the adversary outputs a valid ciphertext (W, X, Y, -) with
W € X\L submitted to the decryption oracle is negligible.

Assume that Q(k) denotes the number of decryption queries. From the above
analysis, we have

Pr[F] < 2-smooth(k) - Q(k), 4)

where 2-smooth(k) denotes the distinguishable probability in the definition of the
2-smoothness property of PF-SPHF. We define Advg\‘;én;g(k) as the advantage
of the adversary A in Game; and claim that

Advg’@g;;‘(k) - Advg\%“é‘;l(k) < 2-smooth(k) - Q(k), (5)

by combining the relations (3) and (4).

Gamey: Games is the same as Game; except that the simulator sets X* =
y1 * My in stead of computing X* = PF-Hash(g, Hash(hk, W*)) x M,, and sets
Z*=¢c(ae qb(é(W*)) x f(W*,y1, My), H/ag'n(@, (W*, X*,Y™*)) in stead of com-
puting Z* = e(a ® ¢>(é(W*)) « f(W*, PF-Hash(g, Hash(hk, W*)), M), @(@,
(W*, X*,Y*))), where y1 € Gr is chosen at random. We define Advg\s}gﬁa(k)
as the advantage of the adversary A in Game, and claim that

AdvESEE? (k) — Advddsy (k)| < 2 smooth(k), (6)

due to the smoothness property of PF-SPHF.
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Games: Games is the same as Game, except that the simulator sets
Z* = o & Gr in stead of computing Z* = e(a o G(O(W?*)) x
FOV* oy, My), H/aa(ﬂ, (W*, X*,Y*)). We define the advantage of A in Games
as Advg\j"é‘éfj(k) be the advantage of the adversary A in Games and claim
that

Advg\‘";én,f;‘(k) - Adv§3g“,§§4(k) < smooth(k) (7)

due to the smooth property of PF-SPHF. It is evident that the output b of
adversary with high min-entropy in Games is totally independent of the hidden
bit b. Therefore, we have

1
Advgieesi (k) = 5 + 270, (8)

Combining the relations (5), (6), (7) and (8), we claim that

Pr[NoW] — ;‘ < 2-smooth(k) - Q(k) + 2 - smooth(k) 4 27#*), 9)

Combining the relations (2) and (9), we claim that
Ade’{,”C”EfZa(k) < AdvPSt (k) + 2-smooth(k) - Q(k) + 3 - smooth (k) + 27+,

from which the theorem immediately follows.

5 Instantiated PVCE Construction Under k-MDDH
Assumption

In this section, we show a concrete PVCE construction by instantiating SPHF in
pairing groups. Because DDH problem is easy on the group G in the a Type-2
pairing used in the PVCE construction, we can not use the SPHF instances from
Diffie-Hellman or Cramer Shoup encryption in [18]. Therefore, we choose Matrix
Diffie-Hellman assumption on which to instantiate SPHF for the transformation
to PF-SPHF since it is still hard in Type-2 pairing.

Notations. For s € {1,2,T} and a € Z, we let [a] = g* € G be an element in G
or [b]s be an element in G,. More generally, for a matrix A = (a;;) € Zy*™ we

gall e gal'm.
define [A]; as the implicit representation of A in G;: [A], := < s ; > €

ggnl e ggnm
G7*™. Given [a]1, [b]2 one can efficiently compute [ab]r using the pairing e. For
a,b € Zk define e([a]y, [b]2) = [a"b]r € Gr.

Definition 2 (Matriz Distribution). Let k € N. We call Dy, a matric distri-

bution if it outputs matrices in Z;kH)Xk of full rank k in polynomial time.
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Definition 3 (Dy-Matriz Diffie-Hellman D,-MDDH). Let Dy, be a matriz dis-
tribution and s € {1,2,T}. We say that the Dy-Matriz Diffie-Hellman (Dy,-
MDDH) assumption holds relative to PGGen in group G if for all PPT adver-
saries D,

Advp, (D) := | Pr[D(PG, [A]s, [Aw]s) = 1] — Pr[D(PG, [Al]s, [u]s) = 1]| = negl(k),

where the probability is taken over PG & PGGen(k), A & Dy, w & Z’Tf, ud

k+1
ZE+.

5.1 Smooth Projective Hash Function on k-MDDH Assumption

Let Dy be a matrix distribution. We build a smooth hash proof system
SPHF = (SPHFSetup, HashKG, ProjKG, Hash, ProjHash, WordVF), whose hard
subset membership problem is based on the Dj-Matrix Diffie-Hellman Assump-
tion.

1. SPHFSetup(k): It generates a group G of prime order p with an underlying
matrix assumption using a base matrix [A] € G+ *k Define the language:
Li.mppH = {[c] = [Ar] e GFF!:r € Z’;}. The output of param is (G, p, [A]).

2. HashKG(Ly mppH, param): It generates a hashing key hk = x € Z’;H.

3. ProjKG(hk, (Lx-mppH, param)): It derives the projection key hp = [T A] €
G*.

4. Hash(hk, (Lx-mppH, param), [¢] € G**1): It computes the hash value hv =

z'c.

5. I[Drojl-}|ash(hp, (Lk-mpDH, param), [¢] € G*+1 r): Using the witness r of [c], it
computes the hash value hv' = [(zT A)r].

6. WordVF([c] € G*!,7): It outputs 1 if e([1]z, [c]) = e([F]z,[Al]g) € GhH,
where [1]z = (g,...,9) € @f;“, 7l = (4G",....9") € @’;+1 and 1 =
(1,...,1) e Zk.

5.2 PVCE Instantiation Under k-MDDH Assumption

Based on the above SPHF instantiation from k-MDDH assumption, we immedi-
ately obtain a PVCE construction under k-MDDH assumption as follows.

1. Setup(k): It generates the public parameter (Li-mppw,param) on G using
the SPHFSetup(k) algorithm of SPHF on k-MDDH assumption and hence
the public parameter (L;-mppH, param, (@ G,Gr,e,g,9,p,A)) is defined
for the transformed PF-SPHF in Type 2 pairing. It chooses a hash f :
G*! x Gy x Gy — G and I' : GF+1 X Gp x G — Z,, where we set n = 1
for 2-smoothness SPHF generation [17]. It sets the public system parameter
pp =< Lk_-MDDH, param,, T >.
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2. KeyGen(pp): It outputs the following public/private key pair (pk, sk) for the
PVCE scheme.

pk : (hp, hp) = ([Ax], ([AZ1], [AZ2))),
sk : (hk,hk) = (z, (Z1,2)).

3. Enc(pk, M): Tt chooses a random number r € Z, and set r = (r,...,7) € ZF
and computes

W =[c]=[Ar], X =c¢(g,[(z"A)r]) M,
Y=g fWXM ' M), Z=e(g[@ Ar](Z; A)Or)]),

where v = I'(W,X,Y) € Z,. Finally, it outputs the ciphertext ct =
(W, X,Y, Z) for the plaintext M.

4. Dec(sk,ct): Upon parsing ct as (W, X, Y, Z), it computes M «— X -e(g, [z ¢c])
and then verifies if

Z = oG, [#] |- [#5 (ve)],
Z=e(Y - fHW, XM7Y, M), [#] A1][3] Av)),

hold or not, where 1 = (1,---,1) € ZF, v = (y,---,7) € Z} and
~v = I'(W,X,Y). Through this validation, it returns the plaintext M for
the ciphertext ct, or L otherwise.

5. Check(M,ct): Upon parsing ct as (W, X,Y,7), we set [1]g = (g,...,9) €
GEt', b = (b,...,b) € GE*! where b = YV - f~Y (W, XM~ M), 1 =
(1,---,1) € ZF and v = (y,--- ,7) € ZF where v = I'(W, X,Y). Then it
checks if

e([1g, [c]) = e(b, [A1]),
XM~ =e(b, [x" A1]),
Z = e(b, [#] Al][z; Av]),

hold or not. Through this validation, it returns 1 indicating that M is the
plaintext of ct under pk, or 0 otherwise.

6 Conclusion

We provided a notion of plaintext-verifiably-checkable encryption (PVCE) to
ensure that any valid ciphertext could be correctly verified in the test procedure,
which prevents a maliciously generated ciphertext passing the check algorithm.
We proposed a PVCE construction in the standard model, which has unlink-
cca security using pairing-friendly smooth projective hash functions (PF-SPHF)
as underlying building block. Finally, we obtain a PVCE instantiation from k-
MDDH assumption.
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Abstract. With the purpose of achieving fine-grained access control
over the signing and decryption capabilities in the context of a tradi-
tional digital signcryption scheme, the concept of functional signcryption
(FSC) is introduced by Datta et al. (ProvSec 2015) to provide the func-
tionalities of both functional encryption (FE) and functional signature
(FS) in an integrated paradigm. In this paper, we introduce the notion of
hierarchical functional signcryption (HFSC), which augments the stan-
dard functional signcryption with hierarchical delegation capabilities on
both signcrypting and unsigncrypting, thereby significantly expanding
the scope of functional signcryption in hierarchical access-control appli-
cation. More precisely, our contributions are two-fold: (i) we formalize
the syntax of HFSC and its security notion, (ii) we provide a generic
construction of HFSC based on cryptographic building blocks including
indistinguishability obfuscation (iO) and statistically simulation-sound
non-interactive zero-knowledge proof of knowledge (SSS-NIZKPoK) for
NP relations, and we formally shows that it satisfies selective message
confidentiality and selective ciphertext unforgeability.

Keywords: Hierarchical functional signcryption -
Indistinguishability obfuscation - Statistically simulation-sound
non-interactive zero-knowledge proof of knowledge

1 Introduction

In order to provide the confidentiality as well as authentication guarantees, dig-
ital signcryption is introduced by Zheng [13] as a cryptographic primitive that
unifies the functionality of both encryption and authentication in an efficient
manner. With the purpose of achieving fine-grained access control over the sign-
ing and decryption capabilities in the context of a traditional digital signcryption
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scheme, the concept of functional signcryption (FSC) is introduced by Datta et
al. [7] to provide the functionalities of both function encryption (FE) and func-
tional signature (FS) in an integrated paradigm.

In an FSC scheme, in addition to a master secret key that is held by a trusted
authority and can be used to signerypt (unsignerypt) any message, there are sec-
ondary signing keys for some signing functions f (called SKy), as well as func-
tional decryption keys DK, for some decryption functions g, both of which are
derived from the master secret key. Such a signing key SK; enables a signcrypter
to signerypt (i.e., encrypt and authenticate simultaneously) any message in the
range of f, while a decryption key DK, allows one to not only verify the authen-
ticity of the ciphertext, but also unsigncrypt the ciphertext (the signeryption of
some message m) and retrieve g(m). The notions of security for FSC are message
confidentiality and ciphertext unforgeability. The message confidentiality guar-
antees that anyone holding the decryption key DK, and a signcyption of any
message m, cannot learn any additional information about m from a signcyption,
beyond the result g(m), while ciphertext unforgeability assures that given the
signing keys for functions fi, ..., fs of his choice and signcryptions for messages
mi,...,my of his choice, any adversary cannot produce a valid signcryption of
a message m* which is not equal to one of the queried messages mq,...,mq,
and if m™* is not in the range of one of the queried functions fi,..., fs. Based
on the existence of indistinguishability obfuscation (iO) for all polynomial-size
circuits and statistically simulation-sound non-interactive zero-knowledge proof
of knowledge (SSS-NIZKPoK) system for NP relations, Datta et al. [7] proposed
a generic construction of FSC from ordinary public key encryption (PKE) and
digital signature schemes.

Hierarchical Functional Signcryption (HFSC). Motivated by the appli-
cability of FSC for supporting highly controlled, fine-grained access strategies,
in this paper we put forward the new primitive called hierarchical functional
signeryption (HFSC). The hierarchical notion augments the standard functional
signeryption with hierarchical delegation capabilities on both signcrypting and
unsignerypting, significantly expanding the scope of functional signcryption in
hierarchical access-control application.

As we know, in an FSC scheme, the trusted authority who holds the mas-
ter secret key can generate the functional signing key for a signing function f
(called SKy) which allows a signerypter to produce the signeryption of f(z) for
any z € Dy, as well as functional decryption key for a decryption function g
(called DK,) which enables us to unsigncrypt the signeryption of a message m
and to retrieve g(m). Here let f and f’ be functions with domain D; and Dy
respectively, where the range of f’ is a subset of D;. In an HFSC scheme, the
holder of any such functional signing key SK can in turn generate a functional
signing key SK oy corresponding to the function f o f’ for any given function
f’. Then, anyone holding the delegated functional signing key SK.; and any
message z’ € Dy, can produce the signeryption of f(f’(z’)). Furthermore, the
holder of the functional decryption key DK, can in turn generate a functional
decryption key DK o4 corresponding to the function ¢’ o g for any given func-
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tion ¢’. Then, anyone holding the delegated functional decryption key DKo,
and an signcryption of message m, can compute g'(g(m)) but cannot learn any
additional information about the message m.

It is crucial to notice the conspicuous distinction of the delegation right
between functional signing key SK; and functional decryption key DK,. The
user with SK; can only delegate his functional signing capability on a function
f’, the range of which should be a subset of the domain of f, which implies that
the capability of delegation is gradually shrinking from the upper level to lower
level. It makes sense because in fact the upper-level user with signing key SKjy
usually only wants to delegate his signing right on a subset of his domain to a
lower-level user, and the upper-level user can choose the function f’ such that
the range of f’ is exactly the subset that he would like to delegate his signing
right. Therefore, in the delegation of functional signing key, the successor f” is
composed inside the predecessor f. Whereas, the user with functional decryption
key DK, can delegate his functional decryption capability on a function ¢’, the
domain of which should cover the range of g, thus, in the delegation of functional
decryption key, the successor g’ is composed outside the predecessor g.

The significance of considering the hierarchical delegation capability has been
recognized by many works, such as the hierarchical augmentation on functional
encryption called hierarchical functional encryption, which was investigated in
[1,4,6], and hierarchical delegation on functional signature called delegatable
functional signature [2], which realizes the delegation of signing capabilities in a
chained manner.

Our Contributions. We begin with formally introducing the syntax of HFSC
and formalizing its security notion. We then present a generic construction of this
challenging primitive based on cryptographic building blocks including iO and
statistically simulation-sound non-interactive zero-knowledge proof of knowledge
(SSS-NIZKPoK) for NP relations. Furthermore, we prove that our HFSC pro-
posal achieves selective message confidentiality against chosen plaintext attack
(CPA), as well as, selective ciphertext unforgeability against chosen message
attack (CMA).

Technical Overview. Formally, an HFSC scheme consists of the standard algo-
rithms of an FSC scheme, with two additional key delegation algorithms, namely,
a functional signing key delegation algorithm and a functional decryption key
delegation algorithm. Each of delegation algorithms is identical in syntax to the
key generation algorithm of FSC, except that it takes a functional signing (or
decryption) key SKy (or DK,) instead of the master secret key, and the output
of the delegation algorithm is a functional signing (or decryption) key SKyo
(or DK go4) corresponding to the composed function f o f' (or ¢’ o g).

Before showing the main idea of our HFSC construction, we recall how
the FSC scheme proposed by Datta et al. in [7] (denoted as DDM-FSC)
works. In DDM-FSC scheme, the public parameters are set as MPK =
(pkb s PED i 155 VKo, CRS) while the master secret key is set as MSK =
(skb e, sko), where (pkbrep, skbrg) and (pk% g, sk% ;) are PKE key pairs,
(vko, sko) is a signature key pair, and CRS is a common reference string of
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SSS-NIZKPoK. Given a function f, the functional signing key is generated
as SKy = (f,0), where o is the signature (under sko) of f. To signcrypt a
message z with signing key SK; = (f, o), the signcrypter computes a cipher-
text CT = (e1, ez, ™), where ey, ea are ciphertexts of f(z) under pkbh ., k% p i
respectively, and 7 is the proof for the statement that e;, es are encryptions of
f(2) under pkL g, Pk%c ; and o is a signature of f under sky. Given a function
g, the functional decryption key is an obfuscation of the program PY skprcp MPK ,
which on input the signcryption CT = (eq, e2, ), first check the validity of the
proof and then decrypts e; to obtain plaintext m, finally output g(m). The
unsigncryption on a ciphertext C'T is straightforward by running the obfuscated
program on CT'.

Our HFSC scheme is come out from the inspiration of DDM-FSC scheme.
The public parameters and master secret key (M PK, MSK) are set the same
as DDM-FSC scheme. Whereas, our functional signing key is generated as
SKy = (f,vks,o0,sks,7), where o is the signature (under sko) of the concate-
nation of a signing function f and a verification key vk, in a fresh signature key
pair (vky,sky), where (vky, sky) is generated by the key generation algorithm
of a signature scheme using randomness . On input SKy = (f,vkys, oy, sks,7)
and a function f’, the functional signing key delegation algorithm outputs a
delegated functional signing key as SKyop = (f o f/,vks,0f,vksr, 04/, 5k, 7'),
where oy is the signature (under sko) of the concatenation of a signing function
f and vky, and o is the signature (under sky) of the concatenation of func-
tion f’ and vk in a fresh signature key pair (vkys, sky ), where (vkys, sky) is
generated by the key generation algorithm of a signature scheme using random-
ness 7. To signcrypt a message z with SKy o...of,, the signerypter computes a
ciphertext CT = (e, e2,7), where ey, ea are ciphertexts of fyo---o f;(z) under
Pk e s P i p Tespectively, and 7 proves that eq, e are produced honestly, each
oy, (7 € [0,1]) is a signature of f;||vky, (under corresponding verification key
vkq (if j = 0) or vky,_, (if j € [i])), and (vky,, sky,) is a signature key pair.

The decryption key generation algorithm is the same as in DDM-FSC scheme.
When considering the delegation algorithm of functional decryption keys, we take
advantage of the idea from hierarchical functional encryption scheme proposed
by Ananth et al. [1]. Roughly speaking, on input DK, = (g, dk,), where dk, is
an obfuscation of the program P9:skprpMPK , together with a function ¢’, the
functional decryption key delegation algorithm outputs a delegated functional
decryption key DK 44 consisting of function g’ o g together with an obfuscation
of the program Pgl’dkg, where the program P9’dks on input a ciphertext CT =
(e1,e2,m), first evaluates the obfuscation dkg on input C'T' to obtain g(m), then
applies g’ on g(m) to obtain ¢’ o g(m), which is eventually returned back. The
unsigncryption on a ciphertext CT is straightforward by running DK ,....o4, ON
a ciphertext C'T" and output the result.

The notions of security for HFSC that we consider are formalized in the
selective security model, namely, message confidentiality (indistinguishability of
ciphertexts against chosen plaintext attack) and ciphertext unforgeability (exis-
tential unforgeability against chosen message attack). In the selective model, the
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adversary must declare the challenge messages at the very beginning, before the
system parameters are chosen.

Related Works. The significance of considering the hierarchical delegation
capability has been recognized by many works, such as the hierarchical augmen-
tation on FE called hierarchical functional encryption, and hierarchical delega-
tion on FS called delegatable functional signature, which realizes the delegation
of decryption and signing capabilities to another party in a chained manner
respectively.

Hierarchical Functional Encryption (HFE). Ananth et al. [1] formally introduced
the concept of HFE and provided a security notion for HFE schemes. They also
briefly showed how to use a general-purpose indistinguishability obfuscator to
transform the FE scheme of Garg et al. [8] into an HFE scheme. Their HFE
construction can only support hierarchical structures of constant levels. Then,
Chandran et al. [6] proposed an adaptively-secure HFE scheme that supports
hierarchical structures of any pre-determined polynomial levels by using sub-
exponentially-secure i0. Afterwards, Brakerski and Segev [4] present a generic
transformation to convert any general-purpose public-key FE scheme into an
HFE scheme without relying on iO.

Functional Signature (FS). FS was introduced by Boyle et al. [3] to realized the
delegation of the signing capability from a master authority to another party. In
an FS scheme, a trusted authority publishes public parameters and holds a mas-
ter signing key. The master signing key can be used to sign any message, as well
as to derive a functional key SK, a constrained signing key corresponding to
some signing function f. Then the signer with SK; can sign any message in the
range of the function f. Boyle et al. also show how to build an FS scheme with
function privacy and succinctness, relying on the succinct non-interactive argu-
ments of knowledge (SNARKS) and (standard) non-interactive zero-knowledge
arguments of knowledge (NIZKAoKs) for NP languages.

Delegatable Functional Signatures (DFS). Backes et al. [2] introduced DF'S which
enables the signer of a message who holds the master signing key to choose
an evaluator, specify the ways that the party can modify the signature while
keeping its validity, and also allows the evaluator to further delegate its signing
capabilities.

Organization. In Sect. 2, we provide the notations and definitions of the build-
ing blocks that are used through the paper. In Sect.3, we propose the notion
of hierarchical functional signcryption and show a construction. In Sect. 4, we
make a conclusion.

2 Preliminaries

2.1 Notations

We use A to denote the security parameter. Let A(-) be a probabilistic algorithm
and let A(z) be the result of running algorithm A on input z, then we use
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y = A(x) (or y «— A(z)) to denote that y is set as A(z). Let A,.(x) be the
result of running algorithm A on input z with random value r. For a finite set
S, weuse y € S (or y «—pr S) to denote that y is uniformly selected from
S. We use [I] to denote the set {1,2,---,1}. We write negl(-) to denote an
unspecified negligible function, poly(-) an unspecified polynomial. We denote by
|a| the length of string a. We denote by a||b the concatenation of two bit strings
a and b. We use “X = Y™ to denote that probabilistic distributions X and Y are
computationally indistinguishable. For any language L and any instance x € L,
we denote by Ry the efficiently computable binary NP relation for L and then
for any witnesses w of x € L, Ry (z,w) = 1.

2.2 Indistinguishability Obfuscation

Definition 2.1. Indistinguishability obfuscation (iO) [8]. A PPT algo-
rithm 10 is called an indistinguishability obfuscator for a circuit ensemble
{Cx}ren if the following conditions are satisfied:

— (functionality) For all security parameters A € N, for all C' € Cy, and for all
input * we have that Pr[C’(z) = C(z) : ' — iO(1*,C)] = 1.

~ (security) For any PPT distinguisher D, there exists a negligible function
negl(-) such that the following holds: For all security parameters A € N, for
all pairs of same size circuits Cy, Cq € Cy, we have that if Co(x) = Cy1(x) for
all inputs x, then |Pr[D(1*,iO(1*,Cy)) = 1] — Pr[D(1*,i0(1*,Cy)) = 1]| <
negl(\).

The results [5,8,9,14] on iO support our construction of HFSC.

2.3 Statistically Simulation-Sound Non-interactive Zero-Knowledge
Proof of Knowledge

The notion of SSS-NIZKPoK has been introduced and formalized in the full
version of [10]. Now we slightly simplify the original definition following [3,7,8].

Definition 2.2. Statistically Simulation-Sound Non-interactive Zero-
Knowledge Proof of Knowledge: SSS-NIZKPoK. Let R C {0,1}*x{0,1}*
be an NP (binary) relation. For pairs (X, W) € R, we call X the statement and
W the witness. Let L C {0,1}* be the language consisting of statements in R.
An SSS-NIZKPoK system for L consists of the following PPT algorithms:

~ 888-NIZKPoK.Setup(1*): The trusted authority takes as input a security
parameter 1% and publishes a common reference string CRS.

- SSS-NIZKPoK.Prove(CRS, X,W): Taking as input the common reference
string CRS, a statement X € L along with a witness W, a prover outputs a
proof .

- SSS-NIZKPoK. Verify(CRS, X, m): On input the common reference string
CRS, a statement X € {0,1}*, and a proof w, a verifier outputs 1, if the
proof T is acceptable, or 0, otherwise.



Hierarchical Functional Signcryption: Notion and Construction 173

SSS-NIZKPoK.SimSetup(1*, X): The simulator takes as input the secu-
rity parameter 1* together with a statement X € {0,1}*. It produces a simu-
lated common reference string CRS along with a trapdoor TR that enables it
to simulate a proof for X without access to a witness.
SSS-NIZKPoK.SimProve(CRS, TR, X): Taking as input the simulated
common reference string CRS, the trapdoor TR, and the statement X €
{0,1}* for which CRS and TR have been generated, the simulator outputs a
simulated proof .

SSS-NIZKPoK.ExtSetup(1*): The eatractor, on input 1%, outputs an
extraction-enabling common reference string CRS and an extraction trapdoor
TR.

SSS-NIZKPoK.Extr(CRS, TNR, X,m): The extractor takes as input the
extraction-enabling common reference string CRS, the extraction trapdoor
TR, a statement X € {0,1}*, and a proof w. It outputs a witness W.

An SSS-NIZKPoK system should have the following properties:

Perfect Completeness: An SSS-NIZKPoK system is perfectly complete
if for all security parameter X\, all (X,W) € R, all CRS «— SSS-
NIZK PoK .Setup(1*), and all 7 + SSS-NIZK PoK.Prove(CRS, X,W):

SSS-NIZKPoK.Verify(CRS, X, n) = 1.

Statistical Soundness: An SSS-NIZKPoK system is statistically sound if
for all non-uniform adversaries A there exists a negligible function negl such
that for any security parameter \, we have

Pr {CRS «— 888 — NIZKPoK.Setup(1}); (X, 7) « A(CRS) : < negl(\)

$SS — NIZKPoK.Verify(CRS, X,n) =1AX ¢ L = neguia).
Computational Zero-Knowledge: We define the SSS-NIZKPoK system
to be computationally zero-knowledge if for all non-uniform PPT adversaries
A there exists a negligible function negl such that for any security parameter
A, we have for all X € L

CRS « SSS — NIZKPoK.Setup(1);
Pr| n < SSS— NIZKPoK.Prove(CRS,X,W) :
A(CRS, X,m) =1
(CRS,TR) «— SSS — NIZK PoK.SimSetup(1*, X);
—Pr | 7 855 — NIZKPoK.SimProve(CRS, TR, X) : < negl(A),
A(CRS, X,m) =1

where W is a witness corresponding to X.

Knowledge Extraction: We call an SSS-NIZKPoK system a proof of knowl-
edge for R if for any security parameter X\ the following holds: For all non-
uniform adversaries A there exists a negligible function negly such that
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Pr { CRS «— 5SS — NIZKPOK.Setup(lk);}

A(CRS) =1
D Y.
_pr [ 546(*21% ST)R:) f SSS — NIZK PoK.ExtSetup(1 ),} < negh (V).

and for all non-uniform PPT adversaries A there exists a negligible function
negls such that

(CRS,TR) — 5SS — NIZK PoK.ExtSetup(1*);

(X,7) «— A(CRS);

W* — 8SS — NIZK PoK.Extr(CRS, TR, X, ) :

SS8S — NIZKPoK.Verify(CRS,X,m) =1A(X,w*) ¢ R

Pr < negla(A).

e Statistical Simulation-Soundness: An SSS-NIZKPoK system is statis-
tically simulation-sound if for all non-uniform adversaries A there exists a
negligible function negl such that for any security parameter \, we have for
all statements X € {0,1}*

(CRS,TR) « SSS — NIZK PoK.SimSetup(1*, X);
7w« SSS — NIZKPoK.SimProve(CRS, TR, X);
Pr| (X*,7*) — A(CRS,X,7) : < negl(A).
X* £ XAX*¢ LA
SSS — NIZKPoK.Verify(CRS, X*,7*) =1

There are well-known constructions [11,12] of non-interactive zero-knowledge
proof of knowledge (NIZKPoK) for NP relations. Then, based on any NIZKPoK
and a non-interactive perfectly binding commitment scheme we can obtain an
SSS-NIZKPoK for NP relations follows from the similar technique of [8].

3 Hierarchical Functional Signcryption: Notion
and Construction

In this section, we start with presenting the definition of hierarchical functional
signeryption (HFSC), which is adapted from the notions of functional signcryp-
tion [7] and hierarchical functional encryption [4]. And then we show a construc-
tion of HFSC.

3.1 The Notion of Hierarchical Functional Signcryption

Definition 3.1. Hierarchical Functional Signcryption (HFSC). A hier-
archical functional signcryption scheme for a message space M, a family of
signing functions F' = {f : Dy — M}, and a class of decryption functions
G={g9: M — Ry}, where Dy and R, denote the domain of the function f and
range of the function g respectively, consists of the following PPT algorithms:
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~ HFSC.Setup(1*): The trusted authority takes as input the security param-
eter 1 and publishes the public parameters MPK , while keeps the master
secret key MSK to itself.

- HFSC.SKeyGen(MPK,MSK, f): Taking as input the public parameters
MPK, the master secret key MSK, and a signing function f € F from a
signecrypter, the trusted authority provides a signing key SKy to the sign-
crypter.

- HFSC.SKDelegate(MPK,SKy, f'): Taking as input the public parameters
MPK, the signing key SK ¢, and a function f’, the range of which is a subset
of the domain of f, the signcrypter provides a signing key SKyop to another
stgncrypter.

— HFSC.Signcrypt(MPK,SKjyo...of,,2): A signcrypter takes as input the
public parameters MPK, its signing key SKyyo...of, corresponding to some
signing function fo € F' and {f;} ;e[ satisfying that the range of f; is a sub-
set of the domain of fj_1, and an input z € Dy,. It produces a ciphertest C'T’
which is a signeryption of foo---o fi(z) € M.

- HFSC.DKeyGen(MPK, MSK, g): On input the public parameters M PK,
the master secret key MSK, and a decryption function g € G from
a decrypter, the trusted authority hands the decryption key DK, to the
decrypter.

- HFSC.DKDelegate(MPK, DK, g'): Taking as input the public parameters
MPK, a decryption key DK, and a function g satisfying that the domain
of g’ contains the range of g, the decrypter provides a signing key DK g4 to
another decrypter.

- HFSC.Unsigncrypt(MPK,DKg,o...09,09,, CT): A decrypter, on input the
public parameters MPK, its decryption key DKg,o...0g,0g, @SsSociated with
some decryption function go € G and {g;};c}q) satisfying that the domain of g;
contains the range of gj_1, and a ciphertext C'T' signcrypting a message m €
M, attempts to unsignerypt the ciphertext CT and outputs g;o---0giogo(m),
if successful, or a special string L indicating failure, otherwise.

An HFSC scheme should possess the following properties:

e Correctness: An HFSC scheme is correct if for all signing function fo € I
and {f;} epiy) satisfying that the range of f; is a subset of the domain of f;_1,
z € Dy,, and go € G and {g;};cpi,) satisfying that the domain of g; contains
the range of g;—1,
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[ (MPK,MSK) « HFSC.Setup(1?),

SKjy, «— HFSC.SKeyGen(MPK, MSK, fy),

SKjyo...of; — HFSC.SK Delegate(M PK,
Sngo~»-ofj,17fj)7j € [il]a

DK, «— HFSC.DKeyGen(MPK,MSK, g),

Pr | DKy o..0q0 < HFSC.DK Delegate(M PK, > 1 —negl(N).

DKy, o...0g0:95),7 € [i2] :

HFSC.Unsigncrypt (MPK7 DKy, o 0905
HFSC’.Sz'gncrypt(MPK7 SKfDO"'Ofilﬁz))
| =g, 0 -0g0(foo---o fi,(2))

for some negligible function negl.

o Selective Security: An HFSC scheme has two security requirements,
namely, (I) message confidentiality and (II) ciphertext unforgeability which
are described below. In the selective model, the adversary must decide the
challenge messages up front, before the system parameters are chosen.

(I) Message Confidentiality: We define this security notion on indistin-
guishability of ciphertexts against chosen plaintext attack (CPA) through the fol-
lowing game between a probabilistic adversary A and a probabilistic challenger C.

Init: A submits two sequences (fg5 o, f5:,20), (fios s fii21) of signing
function f, o € F and {f;’j}je[i] satisfying that the range of f; ; is a subset of
the domain of f5 ;_y and z%, € Dy- . (o € {0,1}) that will be used to frame the
challenge.

Setup: C performs HFSC.Setup(1*) to obtain (MPK,MSK) and hands
MPK to A.

Query Phase 1: A may adaptively make any polynomial number of queries
which may be of the following types to be answered by C.

- Signing key query: Upon receiving a signing key query for a signing function
fo € F and {f;};epi,) satisfying that the range of f; is a subset of the domain
of fj—1, C hands the signing key SKfyo...of, to A, by performing

SKjy, «— HFSC.SKeyGen(MPK, MSK, fy)
SKfyo..op; +— HFSC.SK Delegate(M PK, SK jyo...of;,_,, fi),J € [i1].

— Decryption key query: When A queries a decryption key for a decryption
function go € G and {g;};en,) satisfying that the domain of g; contains the
range of gj—1 to C subject to the constraint that g(f5go---o f5(25)) =
g(ftoo---o ffi(27)), where g = gi, 0---0go, C provides the decryption key
DK5 to A by running

DK, «— HFSC.DKeyGen(MPK,MSK, g9),

DKy o...09, — HFSC.DK Delegate(MPK, DK, o...09559;5),J € [i2].

95
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— Signcryption query: In response to a signcryption query of A for a signing
function fo € F and {f;};ep,) satisfying that the range of f; is a subset of
the domain of fj—1, and an input z € Dy, , C' hands the ciphertezt CT to A,
which is a signeryption of foo---o fi,(2), by performing

SKy, — HFSC.SKeyGen(MPK,MSK, fo)
SKfyo.0f, — HFSC.SK Delegate(MPK, SK jyo...of, 1, [;),J € [is],
CT « HFSC.Signerypt(M PK, SKyo...of;, + 2)-

Challenge: C flips a random coin'b — {0,1} and generates the challenge cipher-
text CT* by running SKx — HFSC.SKeyGen(MPK, MSK, f;,),

SKj; joofy, — HFSC.SK Delegate(MPK, SKyr ooz . f1;),0 € [4],
CT* «— HFSC.Signerypt(MPK, SKj; o-of; . 21)-

Query Phase 2: A may continue adaptively to make a polynomial number of
queries as in Query Phase 1, subject to the same restriction as earlier, and C
provides the answer to them.

Guess: A eventually outputs a guess b’ for b and wins the game if b’ = b.

An HFSC scheme is defined to be selectively message confidential against CPA if
for all PPT adversaries A there exists a negligible function negl such that for any
security parameter X, AdvaSC’S_IND_CPA()\) = |Pr[t/ = b] — 1/2| < negl(A).

(II) Ciphertext Unforgeability: This notion of security is defined on existen-

tial unforgeability against chosen message attack (CMA) through the following
game between a probabilistic adversary A and a probabilistic challenger C.

Init: A declares a message m* € M to C on which the forgery will be outputted.

Setup: C runs HFSC.Setup(1*) to obtain (MPK, MSK) and hands M PK to
A.

Query Phase: A may adaptively make a polynomial number of queries of the

following types to C' and C' provides the answer to those queries.

- Signing key query: Upon receiving a signing key query for a signing function
Jo € F and { f;}jei,), satisfying that the range of f; is a subset of the domain
of fj—1, subject to the constraint that there exists no z € Dy, such that
foo--ofi,(2) = m*, C hands the signing key SKf,o...of, to A, by performing

SKj, «— HFSC.SKeyGen(MPK,MSK, fo)
SKjyo.0f;, — HFSC.SK Delegate(MPK, SKyo...of, _,, f5),7 € [i1]-

— Decryption key query: When A queries a decryption key for a decryption
function go € G and {g;};e(i,) satisfying that the domain of g; contains the
range of g;—1 to C, C provides the decryption key DKy, o...oq, to A by running

DK, «— HFSC.DKeyGen(MPK,MSK, go),

DKy o...09, «— HFSC.DK Delegate(MPK, DKy, o...0g059;),J € [i2].

95
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— Signeryption query: In response to a signcryption query of A for a signing
function fo € F and {f;};ep,) satisfying that the range of f; is a subset of
the domain of fj—1, and an input z € Dy, , C hands the ciphertext CT to A,
which is a signeryption of foo---o fi,(2), by performing

SK;, «— HFSC.SKeyGen(MPK, MSK, fo)
SKfyo...of; — HFSC.SK Delegate(MPK,SKyo...of,_,, f),7 € [is],
CT « HFSC.Signerypt(MPK, SKyo...of,,, 2)-

— Unsigncryption query: Upon receiving an unsigncryption query from A for a
ciphertext CT under a decryption function go € G and {g;};ci,) satisfying
that the domain of g; contains the range of gj—1, C' performs algorithms

DKy — HFSC.DKeyGen(MPK, MSK, go),
DKy o...09, «— HFSC.DK Delegate(MPK, DK, o...090,9;5):J € [ia],
HFSC.Unsignerypt(MPK, DKy, o...0g,, CT)and sends the result to A.

Forgery: A finally outputs a forgery CT* on m*. A wins the game if CT* is
indeed a valid functional signeryption of m*, i.e., HFSC.Unsigncrypt(M PK,
DK,,CT*) = g(m*) for all g € G, and there does not ezist any (fo, - , fis, 2)
sequence such that (fo, -+, fis,2) was a signeryption query of A and m* =
foo-eo fil2).

An HFSC scheme is defined to be selectively ciphertext unforgeable against
CMA if for all PPT adversaries A there exists a negligible function negl such that
for any security parameter A, Advf{FSC’S_UF_CMA (A\) = Pr[Awins] < negl(N).

3.2 The Construction of Hierarchical Functional Signcryption

In this subsection, we present a generic construction of this challenging prim-
itive, hierarchical functional signcryption, that supports arbitrary polynomial-
size signing and decryption functions from known cryptographic building blocks.
Let A be the underlying security parameter. The cryptographic building blocks
used in our HFSC construction are the following:

— O: An indistinguishability obfuscator for P/poly.

- PKE = (PKE.KeyGen,PKE.Encrypt, PKE.Decrypt): A CPA-secure
public key encryption scheme with message space M C {0, 1}”()‘), for some
polynomial n.

- SIG = (SIG.KeyGen, SIG.Sign, SIG.Verify): An existentially unforgeable
signature scheme with message space {0, 1}”(’\), for some polynomial 7.

- SSS-NIZKPoK = (SSS-NIZKPoK.Setup,SSS-NIZK PoK.Prove,
SSS-NIZKPoK.Verify, SSS-NIZKPoK.SimSetup, SSS-NIZKPoK.
SimProve, SSS-NIZKPoK.ExtSetup,SSS-NIZKPoK.Extr): An SSS-
NIZKPoK system for the NP relation R, with statements of the form

X = (pk}lT’KEapk}%KEvvkslGa61762) S {05 1}*7
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witness of the form W = (m, 2,71, 72, fo, vk, 00y s fis Vs, 08, 8kyp V') €
{0,1}*, and

(X, W)eR = ( e1 = PKE.Encrypt(pkpy g, m; 11
es = PKE.Encrypt(pk® g, m;ra
SIG. Verify(vksia, follvksy,op,) A
SIG . Verify(vky,_,, fillvky;,0p,) = 1 for Vj € [i] A
(vky,, skp,) — SIG.KeyGen(1*;4%) A\

m:foo"'ofi(z))’

”\./\./

A
A
1
1

for a function family F' = {fy : Dy, — M} C P/poly (with representation in
{0,1}%).

Then we build an HFSC scheme for message space M, family of signing
functions F, and the class of decryption functions G = {g : M — Ry} C P/poly.

Construction 3.1. (HFSC scheme).

— HFSC.Setup(1*): The trusted authority takes as input the security param-
eter 1* and proceeds as follows:

It generates (pkbj s Skbyp), (Pk3 g, skbp) «— PKE.KeyGen(1*).

It obtains (vks;q, sksig) < SIG.KeyGen(17).

It generates CRS « SSS-NIZK PoK.Setup(1*).

It publishes the public parameters MPK = (pkbyp,pk% kg, vksic,

CRS), while keeps the master secret key MSK = (skbyp,sksic) to

itself.

— HFSC.SKeyGen(MPK, MSK, f): Taking as input the public parame-
ters MPK, the master secret key MSK, and a signing function f € F
from a signerypter, the trusted authority runs the algorithms (vky, skf) «—
SIG.KeyGen(1*;v) with randomness v and SIG.Sign(sksic, f||vks) to
obtain a signature oy on the concatenation of the signing function f
and the verification key vky, and then returns the signing key SKy =
(f,vky,op, sk, ) to the signerypter.

- HFSC.SKDelegate(M PK, SKy, f'): Taking as input the public parameters
MPK, the signing key SK, and a function f’ (from another signcrypter)
satisfying that the range of f’ is a subset of the domain of f, the signcrypter
proceeds as follows:

It parses SKy = (f, SK},sk:,y).

It obtains (vky, sky/) «— SIG.KeyGen(1*;~') with randomness ~'.

It generates oy «— SIG.Sign(sk, f'||vky).

It returns the signing key SKyop = (fo f', SK';, vk, 04, sk, ~') to the

signcrypter. '

— HFSC.Signcrypt(MPK,SKyo...0f,,2): A signerypter takes as input the
public parameters M PK, its signing key SKjo...o, corresponding to some
signing function fo € F and {f;};c[; satisfying that the range of f; is a subset
of the domain of f;_1, and an input z € Dy,. It prepares the ciphertext as
follows:
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o It parses SKfyo0..0f, = (fo 0o -0 fi,Vksy, 080y Vks,, Of,y 8k, 7).

o It It computes ¢, = PKE.Encrypt(pk'p g, foo -+ o fi(2);r) for 1 = 1,2,
where 7; is the randomness selected for encryption.

o It generates a proof m «— SSS-NIZKPoK.Prove(CRS, X, W), where
X = (pkby g, Pk% g, vksic, €1, e2) is a statement of the NP relation R
and W = (foo-- 'Ofi(z),277'177"2,fO,'Uk'foanm' o afiﬁkamo'fivskfw’yz) is
the corresponding witness.

e It outputs the ciphertext CT = (eq, €2, 7).
— HFSC.DKeyGen(MPK, MSK,g): On input the public parameters M PK,

the master secret key MSK, and a decryption function ¢ € G from a
decrypter, the trusted authority proceeds as follows:
o It parses MSK = (skbyp, sksic)-
o It computes dk, <« O(P%*rxe-MPK) yging the circuit size
max{|P1|,|Pz|}, where the programs P, = P9:skprpMPK (I =1,2) are
defined in Fig. 1.

o It outputs DK, = (g, dk,).
- HFSC.DKDelegate(M PK,DK,, ¢’): Taking as input the public parame-

ters M PK, a decryption key DK, and a function ¢’ (from another decrypter)
satisfying that the domain of ¢’ contains the range of g, the decrypter pro-

ceeds as follows:

o It parses DK, = (g,dkg).

o It computes dkyrog O(Pg/7dk9). The program P 9 on input a cipher-
text CT = (ey, e, ), first evaluates the obfuscation dk, on input CT to
obtain z. It then evaluates ¢’ on = to obtain ¢’(x), which it then outputs.

o It returns the decryption key DKy og = (¢’ © g,dkgrog).

— HFSC.Unsigncrypt(MPK,DKy,o...0q., CT): A decrypter, on input the
public parameters M PK, its decryption key DKg,o...04,, and a ciphertext

CT signerypting a message m € M, decrypts the ciphertext as follows:
o It parses DKy, o...o90 = (gi © - -+ © go, dkg,o0..0q )-
o It computes and outputs y < dkg,o...0g,

f'dk

P = Pg,skipKE,]WPK (l =1, 2)
Given input (eq, es, ), the program proceeds as follows:

—_—

. Bxtract pkb g, k% 5y Vks1G, CRS from M PK.

2. Set X = (pkbep, Pk g, vksiG, €1, €2).

3. If SSS-NIZKPoK.Verify(CRS, X, ) = 0, then output L and stop.
Otherwise, continue to the next step.

4. Output g(PK E.Decrypt(sklb i 3, €1)).

Fig. 1. Programs P, and P»

Correctness: It is oblivious that the correctness of the proposed scheme follows
immediately from the correctness of O, PK E, and SIG, perfect completeness of
the SSS-NIZK PoK system, and the description of the program P; in Fig. 1.
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3.3 Security Analysis

Theorem 3.1 (Message Confidentiality of HFSC). Assuming iO O for
P/poly, CPA-secure public key encryption PKE, and the statistical simulation-
soundness and zero-knowledge properties of the SSS-NIZKPoK system, the
HFESC scheme described in Sect. 3.2 is selectively message confidential against
CPA as per the definition given in Sect. 3.1.

Proof. Suppose that at most ¢ = ¢(\) many decryption key queries are made
by any adversary in the selective CPA-message confidentiality game of Defini-
tion 3.1. Then for simplicity, we assume the adversary to always make exactly
q decryption key queries. We denote g; for ¢ € [¢] to be the i-th composite
decryption function for which a decryption key query is made. By the rules of
the game §;(f3(25)) is constrained to be equal to g;(f;(2})) for ¢ € [q], where
fr= w00 o fuforae{0,1}.

We form our proof here into a sequence of hybrids. As in the first hybrid, the
challenger signcrypts fi(25). And then, we gradually modify the signcryption in
multiple hybrid steps into a signcryption of fl*(z’f ) in the challenge ciphertext.
And we show that each hybrid experiment is indistinguishable from the previous
one, hence then we can show that our HFSC scheme have selective message
confidentiality against CPA.

Sequence of Hybrids:

— Hybg: This corresponds to the honest execution of the selective CPA-message
confidentiality game introduced in Definition 3.1 when the challenger sign-
crypts fi(z5) in the challenge ciphertext CT* = (e}, e, 7*), i.e. the elements
are computed with algorithms e = PKE.Encrypt(pkby g, f5(25); ) for
l=1,2 and 7* «— SSS-NIZKPoK.Prove(CRS, X*,W*), where the state-
ment X* = (pkpj s kb, vksic, €, e3) and W* is a valid witness corre-
sponding to X*.

— Hyby; for i € [0,q]: In this sequence of hybrids, we change the form of
the decryption keys provided to the adversary in response to its decryption
key queries. In hybrid Hyb, ;, the first ¢ decryption keys requested by the
adversary (with go € G and {g;} je[;,) satisfying that the domain of g; contains
the range of g;_1 to C subject to the constraint that go (fg‘ (z5) = go(fr (1))
will result in decryption keys generated as DKy, = (g;, O(P%kpre MPKY)
where g; = g;, 0---0gp and PisskprpMPK and pdiskpreMPK gre depicted
in Fig. 1, while the remaining ¢ + 1 to ¢ decryption keys are generated by
performing

DKQO = (907dk£]0) = (govO(PQOYSk})KE7MPK))7 and fOT JjE€ [ig],
DK go0gy = (g5 0+~ 0 g0, kg o0 0gy) = (g © -+ © go, O(P¥ Tas=re o)),

where P9 @aj-10000 o input a ciphertext CT = (e, e2, ), first evaluates
the obfuscation dkgy, _,o...04, o0 input C'T to obtain z. It then evaluates g; on
x to obtain g;(x). Observe that Hyb ¢ is equivalent to Hyby.
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— Hybs: In this hybrid, the common reference string C' RS included in the public
parameters M PK is generated as

(CRS, TR) «+ SSS-NIZK PoK.SimSetup(1*, X*),
and the proof 7* included in the challenge ciphertext CT™ is simulated as
7" — SSS-NIZKPoK.SimProve(CRS, TR, X™)

where X* = (pkb p, kb 5, Vks1G, €5, €3). The rest of the experiment con-
tinues as in Hyb; 4 using the simulated common reference string CRS.

— Hybs: This hybrid is the same as the last hybrid except that the challenge
ciphertext is computed as

¢; = PKE.Encrypt(pkbc ., f5 (20);77),

¢ = PKE.Encrypt(pkpycp. i (1):73).
7" «— SSS — NIZKPoK.SimProve(CRS, TR, X™)

where X* = (pkp ¢ s PkP i 15> VST, €74 €3).

— Hyby; for i € [0,¢]: In this sequence of hybrids, we change the form
of the decryption keys provided to the adversary in response to its
decryption key queries. In Hyby;, the first ¢ decryption keys requested
by the adversary will result in decryption keys generated as DKj =
(gi, O(Pﬁi’Sk%KE’MPK)) while the remaining i+1 to ¢ decryption keys are gen-
erated as DKg, = (gi, O(P%skpkp-MPKY) a5 in Hybs, where PIi-skpinMPK
and P9iskpxeMPK ape depicted in Fig. 1. Observe that Hyb, o is equivalent
to Hybs.

— Hybs: This hybrid is identical to the hybrid Hyb, , with the exception that
the challenge ciphertext is generated as CT* = (e}, es, 7*) where

e = PKE.Encrypt(pk}:KE, Ji(z1)5r1),
e; = PKE.Encrypt(pk} g, f1(21);73),

and the proof 7* is still simulated.

— Huybg,; for i € [0,q]: In this sequence of hybrids, we again change the
form of the decryption keys provided to the adversary in response to its
decryption key queries. In Hybg;, the first ¢ decryption keys requested
by the adversary will result in decryption keys generated as DKy =
(9i, O(Pg"vsk}’KEvMpK)) while the remaining i+1 to ¢ decryption keys are gen-
erated as DKy, = (gi, O(P@"Sk?DKE’MPK)) as in Hybs, where P9iskbxeMPK
and PJskpreMPK are depicted in Fig. 1. Observe that Hybg o is equivalent
to Hyb5

— Hybz: In this hybrid, the common reference string C'RS included in M PK is
obtained as

CRS « SSS-NIZK PoK.Setup(1*),
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and the proof 7* included in the challenge ciphertext CT* is generated as
7" — SSS-NIZKPoK.Prove(CRS, X*, W*),

where X* = (pkbjp: Pkb i, vksic, €5, €3) and W* is a valid witness cor-
responding to X*. The remainder of the experiment continues as in Hybg 4
using the honestly generated common reference string CR.S.

— Huybsg,; for i € [0,¢]: In this sequence of hybrids, we change the form of
the decryption keys provided to the adversary in response to its decryption
key queries. In hybrid Hybs;, the first ¢ decryption keys requested by the
adversary (with go € G and {g;} je[;,) satisfying that the domain of g; contains

the range of g;_1 to C subject to the constraint that go (fE(z0) = go(f7(21)))
will result in decryption keys DKy, (g; = gi,0- - -0go) generated by performing

DK_% = (907dkg0) = (govO(PQOYSk})KE7MPK))7 and fOT JjE [ig],

DKQJO"'OQO = (gj ©---04o, dkgjo~~ogu) = (gj O -0 4o, O(Pghdkgjflomogo))v

where P9 %s;j-10-200 on input a ciphertext CT = (e1, ea,m), first evaluates
the obfuscation dkg_j_lo.4.090 on input CT to obtain z. It then evaluates g; on
x to obtain g;j(x). The remaining i + 1 to ¢ decryption keys are generated as
DK, = (§i70(P§i,sk};KE,MPK))’ where P9 skpxp-MPK 414 PIi:skbxsMPK
are depicted in Fig.1. Observe that Hybg o is equivalent to Hyb; and that
Hybsg 4 corresponds to the selective CPA-message confidentiality game when

fi(27) is signerypted in the challenge ciphertext.

Proofs of Hybrid Arguments: We now present a sequence of lemmas to show
that no PPT adversary can distinguish with non-negligible advantage between
any two consecutive hybrids described above, hence then the security in the
selective CPA-message confidentiality game follows.

Lemma 1. Assuming O is an iO for P/poly, no PPT adversary can distinguish
with non-negligible advantage between Hyby ; and Hyby ;41 for i € [0,q — 1].

Lemma 2. Assuming SSS-NIZKPoK system is computationally zero-
knowledge, mo PPT adversary can distinguish with non-negligible advantage
between Hyb, 4 and Hybs.

Lemma 3. Assuming PKE is CPA secure, no PPT adversary can distinguish
with non-negligible advantage between the hybrids Hybs and Hybs.

Lemma 4. Assuming O is an iO for P/poly and SSS-NIZKPoK is statistically
stmulation-sound, no PPT adversary can distinguish with non-negligible advan-
tage between Hyby; and Hyby ;41 fori e [0,q — 1].

Lemma 5. Assuming PKFE is CPA secure, no PPT adversary can distinguish
with non-negligible advantage between the hybrids Hyby 4 and Hybs.
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Lemma 6. Assuming O is an 1O for P/poly and SSS-NIZKPoK is statistically
simulation-sound, no PPT adversary can distinguish with non-negligible advan-
tage between Hybg ; and Hybg ;11 fori e [0,q —1].

Lemma 7. Assuming SSS-NIZKPoK
system is computationally zero-knowledge, no PPT adversary can distinguish
with non-negligible advantage between Hybs ¢ and Hyb;.

Lemma 8. Assuming O is an 10 for P/poly, no PPT adversary can distinguish
with non-negligible advantage between Hybs; and Hybs ;11 for i € [0,q — 1].

The proofs of Lemmas 1-8 are available in the full version. O

Theorem 3.2 (Ciphertext Unforgeability of HFSC.) Under the assump-
tion that SIG is existentially unforgeable against CMA and SSS-NIZKPoK is a
proof of knowledge, the HFSC' scheme described in Sect. 3.2 is selectively cipher-
text unforgeable against CMA as per the definition given in Sect. 3.1.

The proof of Theorem 3.2 is available in the full version.

4 Conclusion

In this paper, we investigate hierarchical functional signcryption schemes, which
augments FSC with delegation capabilities, offering significantly more expressive
access control. We first provide formal definition of hierarchical functional sign-
cryption and formulate its security requirements. And then, we present a generic
construction of hierarchical functional signcryption from indistinguishability
obfuscation and statistically simulation-sound non-interactive zero-knowledge
proof of knowledge.
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Abstract. We analyse three game-based definitions of receipt-freeness;
uncovering soundness issues with two of the definitions and complete-
ness issues with all three. Hence, two of the definitions are too weak,
i.e., satisfiable by voting schemes that are not intuitively receipt-free.
More precisely, those schemes need not even satisfy ballot secrecy. Con-
sequently, the definitions are satisfiable by schemes that reveal how voters
vote. Moreover, we find that each definition is limited in scope. Beyond
soundness and completeness issues, we show that each definition captures
a different attacker model and we examine some of those differences.

1 Introduction

Electronic voting, or e-voting, is the process of voting with the use of electronic
aids at some stage in the voting process. We use the term e-voting to refer to
remote e-voting that does not require paper at any point in the process and can
be accomplished anywhere in the world. E-voting is gaining popularity, both for
public office elections and other voting scenarios. In particular, Australia has
used iVote [19] for state general elections in New South Wales since 2011 and
Estonia has implemented Internet voting in municipal elections since 2005 and in
parliamentary elections since 2007 [35]. Moreover, the International Association
for Cryptologic Research (IACR) use Helios [1,17] to elect board members [18].

E-voting has created new opportunities, including the introduction of conve-
nience to the voting process, and the potential to automate the process of tallying
elections when compared to hand-counting ballots in a traditional paper-based
election. It also has the potential to produce verifiable elections, one of the main
security goals of e-voting.! E-voting also creates new challenges. In particular,
voter privacy is a concern. This is not new or unique to electronic voting but is
particularly true for schemes that do not rely on a physical voting booth because

! Verifiability is typically defined as individual verifiability (any voter can check that
their ballot is counted), universal verifiability (anyone can check that the published
tally is correct) and eligibility verifiability (only eligible voters voted). The interested
reader can consult [11,31,34] for a discussion on the subject of verifiability.
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the voter cannot rely upon the privacy afforded by the booth. A step towards
overcoming the challenge of ensuring voter privacy is to provide rigorous privacy
definitions for e-voting schemes, and then formally prove that a scheme satisfies
a given definition.

Privacy for e-voting is often presented as a hierarchy of security proper-
ties [13] as follows. First, ballot secrecy, whereby a voter’s vote remains secret
throughout the election, except when the result of the election reveals the vote,
or when partial information about the vote can be deduced from the result.
Second, receipt-freeness, the property that a voter cannot prove their vote to
anyone. Finally, coercion-resistance, whereby a voter can cast their vote as they
intended, even if they are under the control of an attacker for some time during
the election.

The relationship between these privacy properties is often considered to
be linear [13]. In particular, receipt-freeness strengthens ballot secrecy with
additional protection against vote buying. This ensures that potential attack-
ers have no incentive to buy votes, since a voter cannot prove how they
voted, and therefore cannot prove that their vote was truly ‘bought’. Moreover,
coercion-resistance strengthens receipt-freeness by protecting against randomiza-
tion, abstention and simulation attacks [22]. However, Kiiesters et al. challenge
this hierarchy, showing that increasing the level of ballot secrecy can lead to a
decrease in the level of coercion-resistance [24].

Formal ballot secrecy definitions were surveyed in [5,29], where Bernhard et
al. and Smyth compared existing ballot secrecy definitions from the literature
and presented their own definitions. Similarly, definitions of coercion resistance
were surveyed in [32]. Receipt-freeness, on the other hand, has not been surveyed,
which motivates this work.

The earliest definitions of receipt-freeness are informal, with the first def-
inition credited to Benaloh and Tuinstra [4]. A general shift towards formal
definitions occurred in response to concerns that voting schemes may appear
to be receipt-free when they are not [28]. The early formal definitions, with
the exception of Moran and Naor’s simulation-based definition [27], are formu-
lated in the symbolic model, for example, [2,8,14,15,20,21]. These definitions
use a variety of logical languages to capture the intuition of receipt-freeness. In
fact, these definitions helped to shape the intuition and determine how to define
receipt-freeness. More recently, there has been a movement towards game-based
definitions of receipt-freeness, possibly driven by the simplicity of proof tech-
niques in the model. Given that this is a young area of research and, to the best
of our knowledge, there is no examination that tests the rigour of these game-
based definitions, we revisit existing game-based definitions in the literature and
perform a critical analysis.

1.1 Owur Contributions

We analyse three game-based definitions of receipt-freeness from the literature: a
receipt-freeness definition by Kiayias et al., which we call KZZ [23] (Sect. 3); one
by Chaidos et al., which we call CCFG [9] (Sect. 4); and one by Bernhard et al. for
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schemes that use deniable vote updating, a process that allows a voter to change
their vote without detection, which we call DKV [6,7] (Sect.5). We cast each
definition into our syntax (Definition 1) to facilitate analysis and comparison of
definitions.

We uncover soundness issues with KZZ and CCFG, and find all three defini-
tions to be incomplete. The soundness issue in KZZ arises because the defini-
tion is satisfied by schemes that reveal how voters vote when not all voters vote
(Sect. 3.1). An issue arises in CCFG because Chaidos et al. do not consider strong
consistency (Sect.4.1), a property defined to accompany ballot secrecy defini-
tion BPRIV [5], upon which CCFG is based, and is used to detect some attacks
against ballot secrecy. The definitions are incomplete because some schemes are
out of scope. Schemes that count votes in some particular ways and others that
allow voters to submit multiple ballots are out of scope of KZZ (Sect.3.2). We
prove that neither KZZ nor CCFG is satisfiable by JCJ [22] (Sects. 3.2 and 4.2).
Finally, DKV limits the class of schemes considered to those that use deniable
vote updating.

We discuss the attacker model adopted by each definition, showing that each
definition considers a different attacker model. We find that KZZ models a voter
that attempts to prove their vote to an attacker, without allowing the voter
to interact with the attacker before voting. In particular, the attacker cannot
provide instructions to the voter (Sect.3.3). We demonstrate that the attacker
model in CCFG is much stronger, capturing an attacker with some control over
the voter (Sect.4.3). We also comment that DKV does not model a voter who
attempts to prove their vote, but only asks whether an attacker can determine
whether a voter has updated their vote from the attacker’s choice or not. We
discuss the consequences of these differing attacker models, questioning whether
each definition captures the core intuition of receipt-freeness.

2 Preliminaries

We let A(yi,...,yn;c) denote the output of algorithm A on inputs yi,...,Yn
and coins ¢, and let A(y1,...,y,) denote A(y1,...,yn;c) for some coins ¢ chosen
uniformly at random. Moreover, we let z «— M denote assignment of M to x.
An e-voting scheme typically consists of the following five phases. First
(Setup), the election administrator? computes and publishes public parameters
of the scheme. Secondly (Register), the administrator provides eligible voters
with a public and private credential and adds the public credential to a list L.
Thirdly (Vote), each voter selects their vote v. This vote is stored as a ballot
b on the ballot box BB. Fourthly (7ally), a tallier computes and publishes the
result. Finally (Verification), voters verify that their ballot is on the ballot box
and observers verify that the tally is correct. We now formally introduce the
syntax for an e-voting scheme, adapted from [5,9], that follows this structure.

2 For simplicity, we consider each entity to be a single individual but the role of any
individual can be distributed.
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Definition 1 (E-voting scheme). An e-voting scheme I is a tuple of prob-
abilistic polynomial-time algorithms (Setup, Register, Vote, Append, Tally, Verify)
relative to a result function f : V — R where V is the set of all possible votes
and R is the result space such that:

Setup(l/\) On input security parameter 1*, algorithm Setup outputs an election
key pair pk and sk, where pk is the public key and sk is the private key.
Register(1*) On input security parameter 1*, algorithm Register outputs a pub-
lic/private credential pair upk and usk and updates the list L with upk (i.e.

L — LU{upk}).

Vote(v, usk, pk, 1*) On input vote v, private credential usk, public key pk and
security parameter 1*, algorithm Vote outputs a ballot b.

Append(BB,b) On input ballot box BB and ballot b, algorithm Append updates
BB to include the ballot b and outputs the updated ballot boz.

Tally(BB L, sk, 1) On input ballot box BB, list L, private key sk and security
parameter 1%, algorithm Tally computes the election outcome 7, and outputs
r with a tallying proof p that the tally is correct.

Verify(BB,r, p, pk, 1) On input ballot box BB, election outcome r, proof p, public
key pk and security parameter 1*, any interested party can check that the
outcome of the election was computed correctly. The output of algorithm
Verify is 1 if the election result verifies and 0 otherwise.

E-voting schemes must satisfy correctness: let f be a result function,® my be
the maximum number of ballots and m. be the maximum number of candi-
dates. We say that I' satisfies correctness with respect to f, my and m. if there
exists a negligible function negl such that, for all security parameters X and
choices vy, ...,v,, €V where n, is an integer such that n, < my A |V]| < me,
Pr [(pk,sk) — Setup(1*); fori = 1,...,n,: {(upki,uski) «— Register(1*); b; «
Vote(v;, usk;, pk,1?); BB « Append(BB,bi)}; L — {upky,...,upky,}; (r,p) —
Tally(BB, L, sk, 1) : r = f(v1,.. .,vnv)] > 1 —negl(N).

Our correctness definition uses ideas from the correctness definitions in [5,34] and
considers an experiment in which the outcome is calculated in two ways: (1) the
outcome is calculated in the normal way by running Tally, and (2) the outcome
is computed by applying a result function f to all the votes input to Vote. Those
two ways must compute equivalent outcomes to satisfy the correctness property.

3 Receipt-Freeness by Kiayias, Zacharias and Zhang
(KZZ)

In this section, we analyse the receipt-freeness definition by Kiayias et al. [23],
which we call KZZ. The game captures the following idea: the attacker should be
unable to distinguish between a voter who submits a vote and either proves that
they submitted that vote, or attempts to prove that they submitted a different
vote.

3 Function f must itself be correct, i.e., f must output the election outcome with
respect to vi,...,Un,-
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Definition 2 (KZZ). Let I' = (Setup, Register, Vote, Append, Tally, Verify) be an
e-voting scheme, A be an adversary, S be a simulator,* )\ be a security parameter,
Ny, Ne and t be positive integers and 3 be a bit. Let Expﬁ%? (A, My, ne, t) be the

game that proceed as follows:

1. The challenger initializes BB as an empty list and inputs 1*,n,, n. to adver-
sary A, which outputs a set of eligible voters T = {idy,...,id,,} and a set of
possible vote choices V such that |V]| = n,.

2. The challenger computes Setup(1*) to produce the key pair (pk,sk) and,
for each i € {1,...,n,}, computes Register(1*) to produce a credential
pair (upk,usk). Public credentials are added to the list L, hence, L =
{upky, ..., upky, }. The challenger inputs pk and L to A.

3. For each i € {1,...,n,}, A decides whether id; is corrupt.

— If so, the challenger inputs usk; to A, which outputs a ballot b.

— Otherwise (id; is not corrupt), A outputs votes vg,v1 € V to the chal-
lenger, the challenger computes ballot b < Vote(vg, usk;, pk, 1Y), and the
challenger returns the ballot to A, along with either the view view of the
voter during Vote when 3 =0 or S(view) when 3 = 1.9

Finally, the challenger computes BB «— Append(BB,b).

4. The challenger computes (r, p) « Tally(BB, L, sk, 1) and inputs r, p and BB
to A, which outputs a bit 3.

5. The game outputs 1 if the following conditions are satisfied: (i) ' = 3, (¥)
the number of corrupted voters is bounded by t, and (i) f({voYid;ev,) =
Ffv1)id,ev, ), i-e., with respect to uncorrupted voters, denoted by the set Vy,
the outcome of the election computed via the result function f is the same,
regardless of whether 3 =0 or 3 =1.

An e-voting scheme I' satisfies KZZ for n, voters, n. candidates and at most t
corrupted voters if there exists a probabilistic polynomial-time simulator S and
a negligible function negl such that, for all probabilistic polynomial-time adver-
saries A and all security parameters A\, we have

’Pr [Expi%:(l)ﬂ()\,nc,nv,t) =1] —Pr [Expi%:lp()\,nc,nv, t)=1] ‘ < negl(\).

We demonstrate a soundness issue with KZZ, namely, that KZZ guarantees
receipt-freeness only if all voters vote (Sect.3.1). Moreover, KZZ is incom-
plete because there exists schemes that are receipt-free but do no satisfy KZZ
(Sect. 3.2).

3.1 Soundness Issue

KZZ requires that a single ballot is submitted to the ballot box on behalf of each
voter. As a result, KZZ declares schemes as receipt-free that reveal how voters

4 Simulator S models a voter providing fake evidence of a vote they did not submit.

5 view is defined as the “internal state of the voter” [23]. It refers to any information
that the voter inputs to the voting client to produce a ballot, including, but not
necessarily limited to, private credentials and the coins input to algorithm Vote.
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vote, when not all voters vote. To illustrate this, consider an e-voting scheme
for at most n, voters. If less than n, voters vote and, hence, |BB| < n, — 1,
define algorithm Tally to output an election outcome r = {(idy,v1),... (id;,v;)}
where i < n, — 1, i.e., it lists each voter that voted and the vote submitted
by that voter. Clearly, this scheme is not receipt-free. Indeed, the scheme does
not satisfy ballot-secrecy because the result announces the link between voter
and vote. However, in the KZZ game, a ballot must be submitted for every
voter, so this privacy leakage will not be identified. Therefore, the scheme may
satisfy KZZ whilst not being receipt-free. Consequently, a proven secure scheme
may leak every voter’s vote when a real-world deployment cannot ensure that
all voters vote. Hence, there may exist schemes that are proven secure but, in
practice, do not offer any degree of privacy for voters.

3.2 Completeness Issues

Schemes with Multiple Ballots Are Out of Scope: KZZ requires the sub-
mission of a single ballot on behalf of each voter. Yet, some e-voting schemes
require the submission of more than one ballot to achieve receipt-freeness. For
instance, e-voting schemes may use fake private credentials (that are indistin-
guishable from real private credentials). Such schemes require voters to cast
dummy ballots using fake credentials and prove the contents of dummy ballots
(rather than real ballots) to an attacker. A voter can then cast a ballot for a
different vote using their real credential. In these schemes it is necessary that a
voter submits two ballots in order to submit a vote but prove that they submit-
ted a different vote. JCJ [22] is an e-voting scheme that achieves receipt-freeness
this way, hence, the scheme cannot satisfy KZZ. We obtain the following result,
a proof of which appears in the full version of this paper [16].

Proposition 1. JCJ does not satisfy KZZ.

KZZ Limits the Set of Result Functions for Which a Scheme Can Be
Declared Receipt-Free: We demonstrate this limitation, which exists as a
consequence of the condition f((vo)id,cv,) = f({v1)id,ev, ), by considering an
informal argument used by Bernhard et al. in [5] to show that ballot-secrecy
definition PRIV [3] has the same limitation. Consider an e-voting scheme with
two possible candidate choices, namely V = {0,1}, for which f outputs the
winning candidate, or ‘0’ in the event of a draw. An adversary against the KZZ
game can submit a ballot for ‘1’ on behalf of a corrupted voter and can submit
votes on behalf of all other voters such that (vo);q,ey, has exactly half entries
equal to ‘0’ and half equal to ‘1’, and (v1);4,ey, has all entries equal to ‘0’. Then,
Fvo)idiev,) = f({v1)id;ev,) = 0, but the election outcome r =1 (if 5 = 0) or
0 (if B = 1). Thus, the adversary can output §’ = 8 and the scheme does not
satisfy KZZ.
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3.3 Further Discussion

KZZ models attack scenarios in which a voter provides evidence of their vote
(including their private credential) to the attacker only after voting, thereby
assuming that honest voters do not reveal their private credentials until they
have voted. We illustrate that DEMOS, an e-voting scheme that satisfies KZZ [23,
Theorem 5], is no longer receipt-free if an attacker can compel a voter to reveal
their credentials before voting, that is, when the assumption does not hold.

DEMOS provides each eligible voter with a voting card (which is a private
credential in our terminology). This voting card consists of two parts: the first
part contains a list of candidates and a unique vote code associated with each
candidate. This is repeated on the second part of the voting card, although
the vote codes associated with each candidate are different. To cast a ballot,
each voter selects a part of their voting card (part ‘0’ or part ‘1’, which we
call the coins, using our terminology) and inputs the selected part and the vote
code listed next to their chosen candidate to the voting client. The part of the
voting card and the vote code constitute the voter’s ballot. The ballot box is
updated with the ballot, i.e., algorithm Append outputs BB || b. Intuitively,
DEMOS satisfies KZZ because voters can swap vote codes on the voting card,
and can make the vote code on their ballot correspond to any candidate they
wish. Therefore, the voter can convince the attacker that the submitted vote
code corresponds to the attacker’s choice of candidate.

However, consider the following scenario: an attacker wants a voter to vote for
candidate A but the voter wants to vote for candidate B. The attacker requests
to see the voter’s voting card before voting. Only after seeing the voting card,
the attacker requests that the voter cast a ballot for A. In this scenario, the voter
may not have switched vote codes for A and B. Thus, the voter cannot vote for
A and convince the attacker that they voted for B. In contrast, if an attacker
does not see the voting card until after voting, the voter can switch the vote
codes for A and B. Therefore, DEMOS provides a guarantee of receipt-freeness
only if the voting card is revealed after voting.

The scenario above describes an attacker who interacts with a voter before
voting, which is outside the scope of KZZ. The question is: should this attack sce-
nario be captured by receipt-freeness, or does it fall under the remit of coercion-
resistance?” We do not address this in our informal definition of receipt-freeness
(Sect. 1) because this is a grey area in the literature. For instance, Delaune et
al. define receipt-freeness as the property that “a voter does not gain any infor-
mation (a receipt) which can be used to prove to a coercer that she voted in a
certain way” and coercion-resistance as “a voter cannot cooperate with a coercer
to prove to him that she voted in a certain way” [14]. This suggests that providing
information to an attacker before voting is captured by coercion-resistance, not
receipt-freeness. In fact, Delaune et al.’s definition of receipt-freeness implies
that a voter uses information to prove their vote after voting, whereas pro-
viding information to an attacker before voting is considered cooperation with
an attacker. It appears that KZZ captures this intuition. On the other hand,
some authors take a different approach. We discuss an approach that leads to a
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different conclusion in Sect.4. For now, we note that establishing a boundary
between receipt-freeness and coercion-resistance is an open problem.

4 Receipt-Freeness by Chaidos et al. (CCFG)

In this section, we consider a definition of receipt-freeness by Chaidos et al. [9],
which we call CCFG. Chaidos et al. consider ballot boxes that contain ballots
validated by an algorithm Valid and consider ballot boxes as private, introducing
an algorithm Publish that outputs a public view of a ballot box, which we call
the bulletin board. Formally, Chaidos et al. extend the definition of an e-voting
scheme (Definition 1) to include algorithms Valid and Publish such that:

Valid(BB,b) On input ballot box BB and a ballot b, algorithm Valid outputs T,
if the ballot is valid, or | otherwise.

Publish(BB) On input ballot box BB, algorithm Publish outputs bulletin board
PBB.

Furthermore, algorithm Verify is redefined to take as input a bulletin board PBB,
rather than a ballot box BB. All other aspects of Verify remain the same.’

In this context, Chaidos et al. define CCFG as an extension of the ballot
secrecy game BPRIV by Bernhard et al. [5]. CCFG captures the idea that the
attacker should be unable to determine whether, throughout the game, they are
viewing a real or fake election, when the outcome is always computed for the real
election. As such, CCFG models two ballot boxes, B3y and BB, and, respectively,
two bulletin boards, PBBy and PBB;. The adversary must determine whether
they are viewing PBBy or PBB;, when the outcome is always computed over
the contents of BBj.

CCFG relies on algorithms SimSetup and SimProof, which facilitate the abil-
ity to simulate the tallying proof p such that the outcome computed over the
contents of BB, appears to be computed over the contents of 581, when § = 1.
Algorithms SimSetup and SimProof are defined as follows:

SimSetup(1*) On input security parameter 1*, algorithm SimSetup outputs an
election key pair pk and sk and auxiliary information aux, which is used to
output a simulated proof during the tally phase of the election.

SimProof (BB, r, auz) On input ballot box BB, election outcome r and auxiliary
information auz, algorithm SimProof outputs a proof p that r is the outcome
of an election computed over the contents of BS.

Using those algorithms, CCFG is formalized as follows:

Definition 3 (CCFG). Let I' = (Setup,Register,Vote, Valid, Append, Tally,
Publish, Verify) be an e-voting scheme, A be an adversary, A be a security param-
eter and 3 be a bit. Let EXp%?IFﬂG’ﬁ(A) be the game that proceeds as follows:” the

5 In this section, we use the term e-voting scheme to refer to Definition 1 plus algo-
rithms Valid and Publish.
" We omit SimSetup and SimProof as inputs to game Expjc’FFG’ﬁ()\) for simplicity.
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challenger initializes BBy and BBy as empty lists and V,. and V. as empty sets.
Adversary A can then query the oracles defined in Fig. 1, under the constraint
that Osetup must be queried before any other oracles and Otally appears only as
the final oracle call. The adversary terminates by outputting a bit 3'. The game
outputs 1 if B = 3.

An e-voting scheme I satisfies CCFG if there exists algorithms SimSetup and
SimProof and a negligible function negl such that, for all probabilistic polynomial-
time adversaries A and all security parameters A, we have

’Pr [Expi?;G’O(A) =1] —Pr [Expi?;G’l(A) =1] ’ < negl(\).

We show that CCFG is unsound as it overlooks the needs for strong consistency
(Sect.4.1) and is incomplete, limiting the class of schemes that can be declared
receipt-free (Sect.4.2).

4.1 Soundness Issue

A property called strong consistency is introduced in [5] to accompany BPRIV.
Strong consistency requires that the outcome output by Tally is consistent with
the application of result function f to the votes and is necessary to detect tally
policies that may lead to an attack against ballot secrecy. Therefore, as noted in
[5, Section IV.D], an e-voting scheme must satisfy BPRIV and strong consistency
to achieve ballot secrecy. However, Chaidos et al. do not consider this property
in [9], which results in an unsound definition of receipt-freeness. In fact, there
exists schemes satisfying CCFG that are vulnerable to attacks that violate ballot
secrecy. We briefly recall an example in [5, Section IV.D], that illustrates this:
define an e-voting scheme for two candidates (say, A and B) that outputs a
multiset of the submitted votes as the election outcome. Suppose this scheme
satisfies CCFG. Now, define a modified scheme such that, if the first voter votes
for candidate A, this vote is removed from the election outcome. An adversary
against CCFG cannot distinguish games Expj?;G’O(A) and Expj?IEG’l(A), where I’
is the modified scheme, because the tally is always computed over the contents
of BB, and so the election outcome will be the same in both games. However,
through removal of the first vote, the tally for this modified scheme allows the
adversary to determine whether the first vote is for candidate A or B. Therefore,
the modified scheme reveals how the first voter voted. We refer the reader to
[5, Section IV.D] for full details of this argument. Unfortunately, CCFG cannot
simply adopt the original definition of strong comnsistency by Bernhard et al.,
because it is defined over different syntax. In particular, the original definition
does not consider algorithm Append. Adapting the original definition to consider
this algorithm is a possible direction for future work.

4.2 Completeness Issue

We observe that CCFG is unsatisfiable by schemes for which Append(B85,b) out-
puts BB || b and Publish(BB) outputs BS. That is, Append(B5, b) appends ballot



198 A. Fraser et al.

Osetup() Ovote(id, vo, v1)

if 3 =0 then if vo,v1 € VA (id, upk,usk) € V, then
(pk, sk) — Setup(l’\) bo < Vote(vo, usk, pk, 1)‘)

else b1 < Vote(v1, usk, pk, lk)
(pk, sk, auzx) — SimSetup(1™) BBy < Append(BBo, bo)

return pk BB1 — Append(BBi1, b1)

Oregister(id) Ocast(id, b)

if (id,upk,usk) ¢ V, then
(upk, usk) — Register(1")
L — LU{upk}
V, «— V, U{(id, upk, usk)}

return upk

Ocorrupt(id)

if (id,upk,usk) € V, then
Ve — V.U {(id, upk)}

return (upk, usk)

Oreceipt(id, bo, b1)

if Valid(BBgs,b) = T then
BBy «— Append(BBo,b)
BB, «— Append(BBi,b)

Otally()

if 8 =0 then
(r, p) — Tally(BBo, L, sk, 1)
else
(r,p") — Tally(BBo, L, sk, 1)
p < SimProof (BB1,r, auzx)

return (r, p)

Oboard()

return Publish(BBg)

BBy «— Append(BBo, bo)
BB1 < Append(BBi1,b1)

if (id,upk) € V. A Valid(BBo,bo) = T A Valid(BBi,b1) = T then

Fig. 1. Oracles used in the receipt-freeness game CCFG by Chaidos et al. [9]

b to ballot box BB without processing the ballot in any way and Publish(B5) out-
puts BB such that the ballot that appears on the public view of BB is identical

to the ballot submitted by the voter. Formally, we have the following result.

Proposition 2. Let I' =

(Setup, Register, Vote, Valid, Append, Tally, Publish,
Verify) be an e-voting scheme for which Append(BB,b) outputs BB || b and

Publish(BB) outputs BB. Then I" does not satisfy CCFG.
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Proof. We construct an adversary A against the CCFG game as follows. A queries
pk — Osetup(), upk — Oregister(id) and (upk,usk) < Ocorrupt(id). Then, A
computes by < Vote(vy, usk, pk,1*) and b; « Vote(vy,usk, pk,1*) and queries
Oreceipt(id, by, b1), PBBz < Oboard() and (r,p) < Otally(). It follows that
PBBg contains the single entry by (if 3 = 0) or by (if 8 = 1). Therefore, A can
correctly distinguish Exp%?c’o()\) and Exp%lﬁG’l()\) and outputs 3 = . Thus,
the e-voting scheme I" does not satisfy CCFG. O

CCFG is unsatisfiable by these schemes because, in the CCFG game, the adver-
sary submits two ballots to Oreceipt. To satisfy CCFG, the adversary must be
unable to distinguish a bulletin board that contains ballot by and a bulletin
board that contains ballot by, where the adversary queries Oreceipt(id, by, by)
in the CCFG game. This requires that ballots are modified in some way before
they are appended to BBy and BB;, or before PBBs is published. Otherwise,
the adversary can trivially distinguish as shown in the proof of Proposition 2.
Partly, CCFG excludes these schemes by design. Chaidos et al. acknowledge that
a scheme satisfies CCFG only if it achieves receipt-freeness without the voter rely-
ing on some evasion strategy [9]. Generally, schemes that provide voters with an
evasion strategy, a procedure that the scheme provides to allow the voter to
evade coercion, do not rely on ballot modification but instead on the use of an
evasion strategy to achieve receipt-freeness. This means that schemes that rely
on evasion strategies to achieve receipt-freeness cannot satisfy CCFG despite the
fact that they are receipt-free. For example, JCJ relies on fake credentials, a
type of evasion strategy, to achieve receipt-freeness (Sect.3.2). Thus, we have
the following corollary.

Corollary 1. JCJ does not satisfy CCFG.

The corollary follows from Proposition 2, since JCJ ballots are not modified
before they are appended to the ballot box and Publish(BB) outputs BB.

4.3 Further Discussion

CCFG captures the scenario in which an honest voter constructs their ballot and
gives the attacker the coins used (or possibly uses coins provided by the attacker)
to construct their ballot. This allows the attacker to reconstruct the ballot locally
and then check whether the ballot appears on the bulletin board. CCFG captures
this scenario through the oracle Oreceipt, which allows the adversary to construct
ballots on behalf of voters and then submit these ballots to Oreceipt. The adver-
sary can then view PBBg, and expects to see a ballot corresponding to one of
those submitted to Oreceipt.

Chaidos et al. take a very different approach to the intuition of receipt-
freeness than Kiayias et al. As mentioned in Sect.3.3, Delaune et al. consider
a voter that cooperates with an attacker (e.g. by using coins provided by the
attacker) to fall outwith the scope of receipt-freeness. Moreover, Kiayias et al.
exclude this scenario from the definition of KZZ. However, Chaidos et al. consider
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this to fall within the scope of receipt-freeness although, admittedly, they do
refer to CCFG as a definition of strong receipt-freeness. Therefore, we see that
there is no consensus over the boundary between receipt-freeness and coercion-
resistance in the literature and that definitions of receipt-freeness capture varying
intuitions.

5 Receipt-Freeness for Deniable Vote Updating
by Bernhard, Kulyk and Volkamer (DKV)

In this section, we analyse a definition of receipt-freeness by Bernhard et al. [6,7]
for schemes that use deniable vote updating, which we call DKV. Bernhard et al.
construct a game-based definition of receipt-freeness for KTV-Helios [25], a vari-
ant of the Helios e-voting scheme that uses deniable vote updating whereby a
voter casts a ballot, and then changes their vote, without an attacker detecting
the change. In [7, Section4.1] it was recognized that CCFG does not apply to
KTYV-Helios because deniable vote updating is a type of evasion strategy and the
strategy is required to achieve receipt-freeness. Therefore, Bernhard et al. intro-
duce a new receipt-freeness definition that modifies CCFG to schemes that use
deniable vote updating. We rely on the definition presented in [6] (the technical
report associated with the conference version of the paper [7]).

DKV captures the following idea: the attacker should be unable to distinguish
a voter who submits a vote and a voter who submits the same vote but then
deniably updates their vote, where the adversarial advantage of distinguishing is
denoted §. DKV adopts e-voting syntax (Definition 1) extended with algorithm
Valid (Sect.4) and considers timestamps such that algorithm Vote is redefined
to take additional input of a timestamp ¢, indicating the time at which a ballot
is to be cast. DKV relies on algorithms SimSetup and SimProof (Sect.4) and,
additionally, algorithms DenyUpdate and Obfuscate such that:

DenyUpdate(vg, v1, usk, t,,, pk, 1*) On input votes v, v, private credential usk,
timestamp ¢, chosen uniformly at random from some probability distribution
P, public key pk and security parameter 1*, algorithm DenyUpdate outputs
a ballot that updates a vote from vote vy to vote vy at timestamp .

Obfuscate(BB,id) On input ballot box BB and voter id, algorithm Obfuscate
casts dummy ballots for voter id to hide ballots cast by id in the event that
id deniably updates their vote, and outputs the updated ballot box.

Using those algorithms, DKV is formalized as follows:

Definition 4 (DKV). Let I' = (Setup, Register, Vote, Valid, Append, Tally, Verify)
be an e-voting scheme with timestamps, A be an adversary, A be a security
parameter and 3 be a bit. Let Expi‘f}/’ﬁ()\) be the game that proceeds as fol-
lows: the challenger initializes BBy and BB1 as empty lists. If 3 = 0 (resp.,
B3 = 1), the challenger computes Setup(1*) to produce the keypair (pk, sk) (resp.,
computes SimSetup(1*) to produce the keypair (pk,sk) and auziliary informa-

tion aux) and, for each i € {1,...,n,}, computes Register(1*) to produce a
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Ovote(id, vo, v1,1t) Ocast(id, b)

bo < Vote(vo, usk,t, pk, 1)‘) if Valid(BBg,b) then

b1 < Vote(v1, usk,t, pk, 1X) BBo «+— Append(BBo,b)
if Valid(BBs,bs) = T then BB1 « Append(BB1,b)

BBy «— Append(BBo, bo)

BB1 — Append(BBi1,b1)
Oreceipt(id, vo,v1,1)

if vo,v1 € V then

Otally() bo < Vote(vo, usk,t, pk, 1A)
if =0 BBo < Append(BBo, bo)

(r, p) « Tally(BBo, L, sk, 1) BBy « Append(BBi, bo)
else tu s P

(r,p') — Tally(BBo, £, sk, 1) by — DeniablyUpdate(vo, v1, usk, t., pk, 1)
p < SimProof (BB, 7, auzx) BB1 — Append(BBi,b1)
return (7, p) BBy «— Obfuscate(BBo, id)
BB < Obfuscate(BB1,id)

Fig. 2. Oracles used in the receipt-freeness game DKV by Bernhard et al. [6]

credential pair (upk,usk). Public credentials are added to the list L, namely,
L = {usky,...,usky,,}. The challenger inputs pk, L and BBg® to adversary A.
Adversary A can then query the oracles defined in Fig. 2, under the constraint
that Oreceipt can be queried at most once and Otally appears only as the final
oracle call. The adversary terminates by outputting a bit 3'. The game outputs
1if 8 = B.

An e-voting scheme I' satisfies DKV if there exists algorithms DenyUpdate,
Obfuscate, SimSetup and SimProof and a negligible function negl such that, for
all probabilistic polynomial-time adversaries A and all security parameters \, we
have

‘Pr [Expi‘le’O(A) =1] —Pr [Expi‘fl\f’l(A) =1] - 5‘ < negl(\).

We did not find any soundness issues with DKV. In particular, although DKV
uses the same framework as CCFG, DKV does not overlook the need for strong

8 In this game BB = PBB. Bernhard et al. do not mention adversarial access to BBg
in the technical report [6] but do allow the adversary to ‘see’ BB in the conference
version [7]. We assume that, as DKV is a modification of CCFG, the adversary should
have access to BBg. This could be resolved by providing the adversary with access
to an oracle Opublish as defined for CCFG. This provides the adversary with a view
of BBg, which we assume is the intention in this definition.
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consistency and defines strong consistency in their syntax in [6]. Clearly, DKV is
incomplete because it limits the class of e-voting schemes that can be declared
receipt-free to schemes with timestamps that achieve receipt-freeness through
the use of deniable vote updating, although this is by design.

Bernhard et al. capture a different intuition of receipt-freeness than Kiayias et
al. and Chaidos et al. DKV does not model a voter who interacts with an attacker
to prove their vote. In other words, DKV does not model a voter that provides
an attacker with any proof of their vote. In particular, there is no mechanism
to capture the fact that a voter may try to pass their credentials or coins to
an attacker. Certainly, this definition does not pose any issues with respect
to whether it captures attack scenarios that should be considered under the
heading of coercion-resistance. However, it does raise questions about whether
this definition captures receipt-freeness. As there is no mechanism for a voter
to attempt to prove their vote, we conclude that receipt-freeness is guaranteed
under the assumption that the voter does not pass any proof of their vote to the
attacker.

6 Conclusion

We have systematically analysed game-based definitions of receipt-freeness,
uncovered completeness and soundness issues, and found that each definition
considers a different attacker model.

We proved that KZZ can be satisfied by schemes that leak every voter’s vote.
Moreover, we found that CCFG does not consider strong consistency, which seems
necessary for soundness. By comparison, DKV considers strong consistency, and
we believe coupling CCFG with a suitable notion of strong consistency should
suffice to achieve soundness, albeit defining such a notion is non-trivial.

We found each definition to be incomplete. KZZ requires that each voter
votes, and only once. CCFG is unsatisfiable by a class of schemes that do not
process ballots before adding them to the ballot box and for which the bulletin
board is identical to the ballot box. Consequently, JCJ does not satisfy KZZ
or CCFG. Furthermore, DKV only applies to schemes that use deniable vote
updating. Thus, there is no game-based definition of receipt-freeness that can be
applied to a wide class of schemes.

Each definition captures a different attacker model: KZZ models a voter that
provides evidence of their vote (e.g., coins and credentials) after voting. By
comparison, CCFG captures scenarios wherein the voter uses coins provided by an
attacker. Consequently, KZZ does not capture scenarios where a voter interacts
with an attacker before voting (e.g., by providing the attacker with credentials),
whereas CCFG does. It is unclear whether a definition of receipt-freeness should
capture this scenario, or whether this should be considered beyond the scope of
receipt-freeness and be captured by coercion-resistance. The boundary between
receipt-freeness and coercion-resistance is unclear and we believe establishing a
boundary is an interesting open problem.

We observe that KZZ, CCFG and DKV consider that all election authori-
ties are honest, in particular, the election administrator, tallier and ballot box
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are honest. Moreover, communication channels between voters and/or election
authorities are considered to be private. In practice, trust assumptions may be
difficult to enforce, or it may not be possible to prove that the assumption holds.
Motivated by this, ballot secrecy in the context of a malicious ballot box was
considered in [29,30], whereby the adversary controls the contents of the ballot
box. We believe that this setting warrants further exploration and that security
definitions with minimal trust assumptions are preferable.

A further point of interest is that receipt-freeness (and, more generally, pri-
vacy) does not exist in a vacuum and must be considered in the context of
other desirable security properties. This has been addressed in recent literature
and one notable area of research relates to the relationship between privacy and
verifiability. Some results have shown that this relationship is rather intricate:
for example, receipt-freeness and universal verifiability are incompatible under
certain assumptions on the communication channels and election authorities
[10], but are compatible under different assumptions [9,26]. Moreover, Cortier
and Lallemand recently showed that ballot secrecy implies individual verifiabil-
ity [12], assuming the same trust assumptions for both ballot secrecy and indi-
vidual verifiability, but this result does not hold more generally [33]. We believe
that exploring the relationship between privacy and verifiability, particularly
with respect to trust assumptions, is an interesting area of future research.
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Abstract. This paper presents two new improved attacks on the KMOV
cryptosystem. KMOV is an encryption algorithm based on elliptic curves
over the ring Zny where N = pq is a product of two large primes of equal
bit size. The first attack uses the properties of the convergents of the
continued fraction expansion of a specific value derived from the KMOV
public key. The second attack is based on Coppersmith’s method for
finding small solutions of a multivariate polynomial modular equation.
Both attacks improve the existing attacks on the KMOV cryptosystem.

1 Introduction

The RSA cryptosystem [21], invented in 1978 by Rivest, Shamir and Adleman,
is the most widely used cryptosystem. The main parameters in RSA are two
integers, the RSA modulus N = pq where p and q are large prime numbers, and
the public exponent e, which is an integer satisfying ged(e, (p — 1)(¢ — 1)) = 1.
The private exponent is the integer d satisfying ed =1 (mod (p —1)(¢ — 1)). In
many implementations, the private exponent d is required to be small to ease
decryption and signature. Unfortunately, this scenario is dangerous and can be
used to break the system [3,6]. In 1990, Wiener [24,25] presented an attack to
break the RSA system if the private exponent d satisfies d < ﬁN 1. Since
then, Wiener’s bound has been extended in many situations, mainly by Boneh
and Durfee [2] to d < N©-292,

In 1985, Miller [17] and Koblitz [13] independently proposed to use elliptic
curves in cryptography. Since then, many cryptosystems have been proposed
based on elliptic curves. In the direction of RSA, Koyama, Maurer, Okamoto
and Vanstone [14] proposed a cryptosystem, called KMOV, based on the elliptic
curve En(0,b) where N = pqg is an RSA modulus and Ex(0,b) is the set of
solutions of the modular equation y?> = 2* +b (mod N), together with the point
at infinity, denoted ©O. When the prime factors p and ¢ are such that p = ¢ =2
(mod 3), then any point P € En(0,b) satisfies (p+ 1)(¢+1)P = O. In KMOV,
the public key is a pair (IV, e) where N = pq with two prime integers satisfying
© Springer Nature Switzerland AG 2019
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p=gq=2 (mod 3) and e is an integer satisfying ged(e, (p+ 1)(¢+ 1)) = 1. The
decryption exponent is the integer d such that ed =1 (mod (p + 1)(¢ + 1)).

Notice that the modular equation ed = 1 (mod (p+1)(¢+1)) is equivalent to
the integer key equation ed —k(p+1)(¢+1) = 1. In 1995, Pinch [20] used the key
equation and extended Wiener’s attack to KMOV. He showed that one can factor
the modulus N = pq if d < %Ni. In [11], Ibrahimpasic extended the attack of
Pinch by a few bits using an exhaustive search. Both attacks use the convergents
of the continued fraction expansion of . In [18], Nitaj considered the generalized
equation eu — (p + 1)(¢ + 1)v = w and showed that one can factor the modulus
N = pq if the parameters u, v, w satisfy some specific conditions, especially if
w < ¥2YN The method combines the continued fraction algorithm [4,7] and
Coppersmith’s method [8] for solving univariate modular equations.

In this paper, we extend the former attacks on KMOV. In the first attack
we consider the KMOV key equation ed — k(p + 1)(¢ + 1) = 1 and instead of

using the convergents of <, we use the convergents of ——&———. As a
& & N & N+1+(1+¥)N%

consequence, we show that one can factor the modulus N = pq if the private

3
exponent d is such that d < 2\/§N—\/§ This bound improves the former bound

d< %N i, especially when the public exponent e is significantly smaller then V.
In the second attack we consider the generalized key equation eu— (p+1)(g+
1)v = w and transform it to the modular polynomial equation v(p+¢q+1)+Nv+
w =0 (mod e). We consider the polynomial f(x,y,z) = 2y + Nz + z and apply
Coppersmith’s method to find the small solutions of the modular polynomial
equation f(x,y,2) =0 (mod e). When e = N? u < N and |w| < N7, if

7 1
5 - - - 17
< 6 Y 3\/6ﬂ 6 + g,

where ¢ is a small constant, then Coppersmith’s method enables us to find p +
q + 1, which combined with N = pq gives p and q. We note that in the standard
situation of a KMOV instance with e & N and eu— (p+1)(¢+1)v = 1, our new
bound is § < 0.284 which is much larger than the existing bounds.

The rest of this paper is organized as follows. In Sect. 2, we give some prelim-
inaries on Coppersmith’s method, continued fractions, elliptic curves and recall
the KMOV cryptosystem. In Sect. 3, we present our first attack on KMOV based
on continued fractions. In Sect. 4, we present our second attack on KMOV which
is based on Coppersmith’s method. We conclude the paper in Sect. 5.

2 Preliminaries

In this section, we give some preliminaries on Coppersmith’s methods for solv-
ing modular polynomial equations, continued fractions and elliptic curves. For
completeness, we recall the KMOV cryptosystem.
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2.1 Coppersmith’s Method

One of the difficult problems in algebra is to solve modular polynomial equations
of the form
f(z1,...,2,) =0 (mod e),

where f(z1,...,2,) € Z[z1,...,2,] is multivariate polynomial. In 1996, Cop-
persmith [8] introduced a rigorous method for finding the small solutions of the
univariate polynomial equation f(x) = 0 (mod e) and the small roots of the
bivariate polynomial equation f(z,y) = 0. Coppersmith’s method is based on
lattice reduction and is useful in cryptography, especially for attacking the RSA
cryptosystem (see [1,5,16,19]). Since then, numerous variants of Coppersmith’s
method have been presented for multivariate polynomial equations assuming
certain hypothesis. The following result of Howgrave-Graham [10] is useful for
solving the polynomial equations.

Theorem 1 (Howgrave-Graham). Let e be a positive integer and h(z,y, z) €
Zlz,y, 2] be a polynomial with at most w monomials. Let m be a positive integer.
Suppose that

h(x0,90,20) =0 (mod e™) and

. e
|h(zX,yY,22)|| = i j T Y2 < —=,
2y <

where |zo| < X, |yo| < Y, |z0] < Z. Then h(zo,y0,20) = 0 holds over the
integers.

For a multivariate polynomial modular equation f(z,y,z) = 0 (mod e), the
idea in Coppersmith’s method is to build certain modular polynomials equations
h(z,y,z) = 0 (mod e™) sharing the modular solution (xg,yo,20). These poly-
nomials are generally built by applying Jochemz-May [12] method and applying
lattice reduction techniques such as the LLL algorithm [15]. The LLL algorithm
acts on lattices and the following result is useful (see [12,15,16]).

Theorem 2 (LLL). Let L be a lattice spanned by a basis (u1,. .., uy), then the
LLL algorithm produces a new basis (by,...,b,) satisfying

sy W

w(w—1)
[bull < ... < ||bs]| < 2779 det(L) =77, i=1

To find the root (xg,yo,20), we use a system with three polynomial equations
hi(z,y,2z) =0, =1,2,3. By using Grobuner basis computation or resultant tech-
niques, the system can be solved under the following widely believed assumption.

Assumption 1. The polynomials hi, he,hs € Z[x,y,z] that are derived from
the reduced basis of the lattice in Coppersmith’s method are algebraically inde-
pendent.
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2.2 Continued Fractions

Let £ # 0 be real number. The continued fraction expansion of £ is an expression
of the form
1
{=a+——m,
ag + ———

1
az + —

where ag is an integer and for ¢ > 1, a; is a positive integer. The integers a;,
i > 0 are the partial quotients of the continued fraction expansion. The process
to compute the integers a; for ¢ > 0 is the continued fraction algorithm. The
starting term is o = £ and for ¢ > 0,

1

mi—ai'

a; = Lle7 Tit1 =

When the continued fraction expansion is used with the first k + 1 partial quo-
tients, the fraction is a convergent. The following method is very useful for
computing the convergents of &.

Theorem 3. The k' convergent can be determined as |ao, .. .,ar] = 2=, where
the sequences {p,} and {q,} are specified as follows":

p—2=0, p_1 =1, pp =anpPn-1+Ppn-2, Yn > 0,

q-2 = 17 q-1= 07 Gn = @nQn—1 + qn—2, Vn > 0.

There are many properties related to the theory of continued fractions. One of
the most important results is Legendre’s Theorem (see Theorem 184 of [9]).

Theorem 4. Let £ # 0 be a real number and a, b be two positive integers such
that § ¢ N and (a,b) = 1. If

1
27

then 3 is a convergent of the continued fraction of §.

NE

Note that computing a convergent 3 of £ with the continued fraction algorithm
is done in polynomial time in log(b).

2.3 Elliptic Curves

Let p > 5 be a prime number and a and b two integers satisfying 4a> 4+ 276 # 0
(mod p). An elliptic curve Ey(a,b) over F,, = Z/pZ is the set of solutions (z,y) €
IFIZD satisfying the equation

Ey(a,b): y*=2*+ax+b (mod p), (1)

! The convergents start with p—g7 but it is a convention to extend the sequence index
to —1 and —2 to allow the recursive formula to hold for n = 0 and n = 1.
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together with a point O, called the point at infinity. If P, = (x1,y1) and P =
(z2,y2) are two points, then one have the following properties.
-P+0=0+P =P.

— The opposite of Py is —P; = (z1,—y1).

- Ing:—Pl,thenP1+P2:(9.

- If P2 7& —Pl, then P1 + P2 = P3 = (xg,yg) where

23 =X —21—25 (modp), yz=Aa1—x3)—y (modp),

with
v2 L if €1 7é €2,
To — I
A =
3 2
1 ta if X1 = T2.
2y

With the former addition law, the set E,(a,b) is a group of finite order #E,(a, b)
where #E,(a,b) is the number of solutions (z,y) € F3 of the Eq. (1) together
with the point at infinity. According to a famous Theorem of Hasse (see [23],
Chap. 5), we have #E,(a,b) = p+1—t,, with |t,| < 2,/p, which is close to p+1,
up to a small value ¢,,.

For specific values of p, #E,(a,b) can be explicitly computed as for p = 2
(mod 3) (see [22]).

Theorem 5. Let E,(0,b) be an elliptic curve over F,, with equation v=x3+b
(mod p). If p = 2 (mod 3), then number of points on E,(0,b) is #E,(0,b) =
p+1.

Since #E,(a,b) is the order of the group E,(0,b) for the addition law, then
#FE,(a,b)-P = O for any point P € E,(a,b). When p =2 (mod 3), then for any
point P €, we have (p+ 1)P = O. When N is a composite square free integer
and a and b are integers satisfying 4a® + 27b%> #Z 0 (mod p), one can define an
elliptic curve Ex(a,b) over the ring Z/NZ by the equation

En(a,b): y*=2*+azx+b (mod N), (2)

together with a point O at infinity. An addition law can be defined over Ex(a, b)
by using the same rules as the addition law on E,(a, b) by replacing modulo p by
modulo N. When the division by 2 —x; is not possible, this means that ged(zo—
x1,n) # 1. Since 0 < |zo—x1| < n, then ged(ze—21,n) = p or ged(xe—21,n) = ¢.
If N = pq is an RSA modulus, this is equivalent to factoring N. Since the integer
factorization problem is very hard, especially for RSA moduli, then the scenario
that the addition does not exist is unlikely to happen. By the Chinese remainder
theorem, every point P = (x,y) € En(a,b) is uniquely represented by a pair of
points (P,, P;) € E,(a,b) x E,(a,b) with the convention that O is represented
by the pair of points at infinity (O,,0,) € E,(a,b) x E,(a,b). It follows that for
p=g¢=2 (mod 3) and for any point P € En(0,b), we have

(p+ D@+ 1)P =(p+1)(qg+1)(Pp, Py) = (0p,0y) = O.
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2.4 The KMOYV Cryptosystem

In 1991, Koyama, Maurer, Okamoto and Vanstone proposed a cryptosystem,
called KMOV, based on the elliptic curve En(0,b) where N = pq is an RSA
modulus. The scheme works as follows.

— KMOYV Key Generation algorithm.
1. Choose two distinct prime numbers p and ¢ of similar bit-length with
p=q=2 (mod 3).
Compute N = pq.
Choose e such that ged(e, (p+1)(¢g+ 1)) = 1.
Compute d = e~ (mod (p+1)(g +1)).
5. Keep p, q, d secret, publish N, e.
- KMOV Encryptlon algorithm.
1. For a message m = (mg, m,) € Z3;, compute b = m? —m3 (mod N).
2. Compute the point (¢g, cy) = e(m,, my) on the elliptic curve with equa-
tion y? = 2® + b (mod N). The ciphertext is ¢ = (cz, ¢y).
— KMOYV Decryption algorithm.
1. For a ciphertext ¢ = (¢g, ¢,) € Z%,, compute b = ¢; — ¢3 (mod N)
2. Compute the point (my,m,) = d(cy, ¢,) on the elhptlc curve y? = 23+ b
(mod N). The plaintext is m = (mg, my).

L

The complexity of the encryption and decryption algorithms are based on the
size of the encryption key e and the size of decryption key d, respectively. In a
cryptosystem with a limited resource such as a credit card, it is desirable to have
a smaller value of d or e. Unfortunately, when d is too small, Pinch [20] showed
that one can factor the RSA modulus N = pq if d < %N i, Using a generalized
attack, Nitaj [18] showed that one can factor N when d = £ (mod (p+1)(¢+1))
is much larger under some extra conditions on x and y.

3 A New Improved Attack Based on Continued Fractions

In this section, we give an improved attack on KMOV based totally on the
continued fraction algorithm.

3.1 The New Attack Based on Continued Fractions

The attacks presented in [20] and [11] take advantage on using the convergents of
the continued fraction expansion of . Instead of using the convergents of £, we

will use the convergents of Where ¢o is given by ¢g = N +1+ (1 + 3\[) Nz.
To this end, we will need the following result.

Lemma 1. For any N > 10°, we have

3 1
(ﬁ—Q)Nz+2< )
(N +2Nz)2 8N

3
2
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Proof. Suppose that
3 1
(% - 2) Nit2 oo
N7 TN
(N + 2N§)

Then, clearing the denominators, we get

8N# (<\%—2> N3 +2> < (N% +2)2,

which is equivalent to

(12\/5— 16) N +16N?* < N +4N?% + 4.,

This is true if . )
(12\/5— 16) N +16N* < N +4N?,

or equivalently 12 < (17 — 12/2) N'. This is valid if
12 2
N >10° > () .
17 —12v2
This terminates the proof. a

The following lemma is useful for approximating the sizes of the prime factors
of an RSA modulus N = pg when p and ¢ are of the same bit-size.

Lemma 2. Let N = pq be an RSA modulus with ¢ < p < 2q. Then

1 2 1
2N2 <p+g< %N?

Proof. Assume that ¢ < p < 2¢. Then 1 < \/g < /2, so, since the function

f(z) =2+ L is increasing on [1,+00), we get

p q 1 3V2
2< [+ 2 <V —==25
Vi

If we multiply by N %, we get

3v2
2N%<p+q<TfN .

N

This terminates the proof. a

Now, we present our first improved attack on KMOV based on the continued
fraction algorithm. The following result shows that the secret information p, g, d
in a KMOV cryptosystem can be recovered from public information (e, N).
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Theorem 6. Let (N,e) be a public key in a KMOV cryptosystem with N =
pg > 10°% g < p < 2q and ged(e, (p+1)(¢+1)). Ifed =1 (mod (p+1)(g + 1))
3

and d < 2\/§N—z, then one can factor N in polynomial time in log(N).

Proof. Suppose that N = pq with ¢ < p < 2¢. Then, by Lemma 2, we get

3v2

N+1+2N%<(p+1)(q+1)<N+1+7N%.

We set ¢1 = N+14+2N% and ¢g = N+1+¥N%. Then (p+1)(g+1) €]¢1, ¢a|.

Let
3v2
¢0N+1+<1+\4[>N :

N

be the midpoint of the interval [¢1, ¢2]. Since (p+ 1)(q + 1) € (¢p1, ¢2), then

(p+ 1)(a+1) b0l < 5(62 — 1) (3)

Ifed=1 (mod (p+1)(g+1)), then ed — k(p+1)(g+1) =1, and

e k e e e k
b0 d‘ B <¢o_ (p+1)(q+1)> " ((p+1)(q+1) - d)’
_|ellp+1)(g+1) — ¢o) 1 ‘

do(p+1)(g+1) dip+1)(g+1)
_|ellp+1)(g+1) — ¢o) e ’

do(p+1)(g+1) P+ D@+ D)kE+D@+1)+1)|
Since ¢o(p+1)(g+1) > ¢3 and (p+ 1)(¢+ 1)(k(p+1)(g+ 1) + 1) > ¢3, then
(2 — 1) 1
2 \7e 7 —

PR
2 — P1 + 2

207

Then, combining (3) and ¢1 = N 4+ 1+ 2V N > N + 2/N, we get
(32 -2) VN +2
—.
2 (N + 2\/N)

e—k’<e
¢o d

-5l

Using Lemma 1, for N > 10°, we get
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3
1 ; 2V2N1
Now, suppose that 16;% < 57z, that is d < NG then

ek‘ 1

b0 d| 2

It follows by Theorem 4 that % is a convergent of ﬁ from which we deduce k and
d. Using the equation ed — k(p+1)(¢+1) =1, we get p+q = Edk_l — N —1and
combining with N = pq, we easily find p and ¢. This gives to the factorization of
N = pq. Notice that, since the continued fraction algorithm works in polynomial
time, then finding p and ¢ is done in polynomial time. a

3.2 Comparison with Former Attacks

In [20], Pinch extended Wiener’s attack [25] on RSA to KMOV and showed that
one can factor the modulus N = pgq if the private exponent d satisfies d < %N i,
In [11], Ibrahimpasic slightly extended the attack of Pinch by an extra exhaustive
research. In both attacks, the bounds do not depend on the size of e. In our new

attack, the bound is d < QﬁN—\é and depends on e. In the typical situation
where e =~ N, our bound becomes d < 2\/§Ni ~ 2.828N# while the bound
in [20]is d < %N% ~ 0.333N'%. Observe that our new bound d < 2\/§N—\/§ is
more significative for moderately small e.
Let us consider a numerical example. Consider the 1024 bit modulus N
N = 128072253291560984675731339942623874155571330351805615681477940
737860111553200263411409851831323456088583497355190072283898949
746366445389418926799490964902211240447125449181697155706714427
483626444781096408044876129844375261551528718257946239064984462
426873862229453485949998050716038824410982005466246527621,

and the 999 bit public exponent.

e = 296526935093015710407136686034981189608183689687233930438373260
994003008667647176609955506859286957594312864516062333691 708865
839614673732252521930067346220763331390433471403382719324360755
735108333314843772805919919463508848644534123617058298952149225
5372881221811248133999406005069737107180854644647.

Then, applying the continued fraction algorithm to é and computing the con-

vergents, the 130th convergent is % where
k = 439246113481593542214907254431461323475931905724710548163257922
73119943084,
d = 189713759006418854581978701838234268226797542876185500122247305
6385648715923809927.
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ed,; L Then combining with pg = N, we

Using this convergent, we get p + q =
get
p = 122295652435077729919345520517086986879675097236430221980450907
006278884550539602496027848592931847870084590996181730049111792
44406300082071971851405178417,
q = 104723471964426405086080002568566304601367956338101575543737215
792893331651240463496547152238295322902114471979717345643807495
25832667841702102917782974613.

We notice that g is not among the convergents of < which implies that the
methods of Pinch and Ibrahimpasic will not succeed.

4 A New Improved Attack Based on Coppersmith’s
Method

In this section, we present a new attack on KMOV based on Coppersmith’s
method.

4.1 The New Attack

Theorem 7. Let (N,e) be a public key for the KMOV cryptosystem where N =
pq is an RSA modulus and e = NP. Suppose that e satisfies the equation eu —
(p+1)(g+ 1)v = w with u < N° and |w| < N7. If

for a small positive constant €, then one can factor N in polynomial time.

Proof. Suppose that N = pq is an RSA modulus and e is a public exponent
satisfying eu — (p+1)(¢ + 1)v = w. Since (p+1)(¢+1) = N +p+ g+ 1, then
v(N+p+g+1)+w =0 (mod e), which can be rewritten as v(p+g+1)+Nv+w =
0 (mod e). Consider the polynomial f(z,y,2) = zy + Nz + z, Then (z,y,2) =
(v,p+ ¢+ 1,w) is a solution of the modular polynomial equation f(z,y,2) =0
(mod e). To find the solution (v, p+¢+1,w), we apply Coppersmith’s method [8].
Let m and ¢ be two positive integers to be optimized later. We use f(x,y, z) to
build the sets of polynomials

Gk,il,ig,is, (xaya Z) = leikzlgf(xay7z)kemikv
for k:O,...m, il :k‘,...,m, izzk, i3 :m—il,
Hk,il,l'g,ig (Iv Y, Z) = yiszzlgf(x, Y, Z)kem7k7

for k=0,...m, i1=%k, io=k+1,...,i1 +t, i3 =m — iy.

Let £ denote the lattice spanned by the coefficient vectors of the polynomials
Gl iy in.is (X, Yy, Zz) and Hy 4, 4.0, (X2, Yy, Z2z). By choosing the increasing
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ordering following the i1’s, then the is’s, and the i3’s, one find a left triangular
matrix. For m = 2 and ¢ = 1, the coefficient matrix for £ is presented in Table 1
where the monomials are

3,..2 .2 .3 2 .2 3, 2,2 .32 33 .22 23 2 3,4
{z°, 22, 2%z, 2% xyz”, xyz, x°y, Yz, ©°y°, 2°y°, xy 25, o7y 2, 2ty z, 20y )

The non-zero elements are marked with an ‘®’ and do not influence the value of
the determinant.

Table 1. The coefficient matrix for the case m =2, t = 1.

[ [=5 T o= [ o= [o¥] ay=® [ 2Py= [ o3y [ «®y%= [%y? [«55])
Glyiy,ig,ig
Go,0,03 ||23e3] o 0 0 0 0 0 0 0 0
Go.1.0,2 o |xz2e3| o 0 0 0 0 0 0 0
Gp.2.0.1 0 0o |x2ze3| o 0 0 0 0 0 0
G0.3.0,0 0 0 o |x3 0 0 0 0 0 0
G112 ® 0 0 0 |XYZz2e? o 0 0 0 0
G1,2,1,1 0 ® ® 0 0 x2yze?| o 0 0 0
G1.3,1,0 0 0 ® ® 0 0 x3ye2 0 0 0
G291 ® ® ® 0 ® ® 0 X2y2ze 0 0
G2,3,2,0 0 ® ® ® 0 ® ® 0 x3y2e|l o
G3.3.3,0 ® 0 ® ® ® ® ® ® ® |x3y3
Hi iy ,ig,i3
Hop,0,1,3 0 0 0 0 ® 0 0 0 0 ®
Hy1,2,2 0 0 0 0 ® ® 0 ® 0 0
Hp 23,1 0 Y 0 ® 0 0 ® ® 0 0
H3 34,0 0 0 0 0 ® 0 0 ® ® o
1 [ =222 22y z2yz | a3yT ]
Gl,iy,ig,ig
0.0,0,3 0 0 0 0
G0,1,0,2 0 0 0 0
Go.2.0.1 0 0 0 0
G0,3,0,0 0 0 0 0
Gi1.1.2 0 0 0 0
Gi.2.1.1 0 0 0 0
G1.3.1.0 0 0 0 0
Gaoo1 0 0 0 0
G2.3.2.0 0 0 0 0
G3,3,3,0 0 0 0 0
Hy iq ig,ig
Hoo,1,3 ||[XY22z2e2 0 0 0
Hy1,22 ® x2y3ze 0 0
Hy 531 0 0 |x2vze| o
H3 340 0 0 o |x3y4

The determinant of the triangular matrix is then the determinant of the
lattice £ and can be easily computed as

det(L) = ete X"XY Y Z"Z, (4)
To find the values of the exponents n., nx, ny, nz, define the sum S(a) by

m—i m k 11+t m—iq

SCE 95 3 D SIRTS 9D b ol Wi

[y

=01i1=kio=k iz=m—11 k=01i1=k is=k+1i3=m—11
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By the construction of the polynomials G and H, we get

ne=S(m—k)= %m(m +1)(2m + 3t +4),
nsz@ﬂzémW%+U@m+&+4L

(5)
1
ny = S(iy) = 6(m +1) (m® + 3mt + 3t> + 2m + 3t)
1
ngz = S(iz) = ém(er 1)(m + 3t + 2).

The dimension of the lattice is the number of rows in the matrix. It can be
estimated as

w:ﬂU:;m+Mm+%+n (6)

If we set t = 7m for some positive 7, then the dominant terms of the exponents
in (5) and 6 are

1
Ne ~ 6(37 +2)m3 + o(m?),
1
nx ~ 6(37 + 2)m3 + 0(m3),
1
ny ~ — (372 + 37+ 1) m> + o(m3), (7)

ng ~ =31 + 1)m?> + o(m?),

Next, we apply the LLL algorithm 2 to the lattice £. We then get a reduced
basis where the three first vectors h;, i = 1,2, 3 satisfy

w(w—1)
Ihall < ihall < [[hs]] < 2572 det(£) =,

To apply Howgrave-Graham’s Theorem 1 to hy, hy and hg, we set
w(w=1) 1 e™
23w det(L)v2 < —,
(07 < o
from which we deduce
w(w—1) 1

det(L 27971 ———¢
"o < Vo)

m(w—2).

Using (4), we get

ele XNXY Y 7Nz 9~ w(u;l) (1wzem(w—2). (8)
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Suppose that e = NP u < N? and |w| < N7. Then, using Lemma 2, we
have p4+ ¢+ 1 < 2p < 2v/2V/N. Since p + q + 1 is represented by y, we set
Y = LQ\/ﬁ\/NJ . On the other hand, since (p+ 1)(¢+ 1) > N and |w| < eu, we
get

leu — w] eu + |w| 2eu

(p+1(g+1) = (p+1(g+1) SN

o] = < NP, (9)

Since v is represented by x, we set X = LQNﬁH_lJ . Also, since w is represented
by Z, we set Z = | N7|. It follows that the solution (x,y,z) = (v,p+ ¢+ 1,w)
satisfies |z| < X, |y| <Y and |z| < Z and (8) is satisfied if

1

Vw)

2" (2\@) NneBtnx (BHo-1+ 5 4nzy 9=l SNTE=28 (1)

Using the approximations of n., nx, ny, nz given in (7) and w given 6, the
inequality 8 leads to

N((3T+2),6+(3T+2)(,6+571)+f”2+%+(37+1)7)ms
oo (208) ™ Lo O
(V)

To homogenize the exponentiation of N, we set

—nx (2\/>) M 1 2N—2[3m _ N—p,m?”
(Vw)

where p is a small positive constant. Then, taking logarithms and dividing by
m3log N, we get

3 +31+1

Br+2)B+Br+2)(B+6—-1)+ 5

+Br+1)y—(67+3)8< —p.
The optimal value for the left hand side is 7p = 172‘5%2”, which, plugged in the
former inequality leads to

—120% — 245y — 127 + 83 + 285 + 20y — 15 < —8y,

and consequently
7
0 < 6—7—7\/65 6y+1—c¢,

where € is a small positive constant that depends on m and N. Within this
condition, the reduced lattice has three polynomials h(z,y, 2), ho(x,y, z) and
ha(z,y, z) sharing the root (zg, yo, 20) = (v, p+¢+1,w). Then, applying Grébner
basis or resultant computations, we get the expected solution (zg,yo, 20) from
which we deduce p 4+ ¢ = y — 1. Together with the equation pg = N, this leads
to finding p and g. This terminates the proof. O
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4.2 Comparison with Former Attacks

In [18], Nitaj presented an algorithm for factoring the modulus N = pg when
the public exponent e satisfies an equation of the form eu — (p+1)(¢+ 1)v = w,
where the unknown parameters u, v and w are such that

(p—q)N%v V2V N
— . w < )
3(p+a) 12

The idea in [18] is to compute the convergents of the continued fraction of £,

and for each convergent  with uv < ‘/§1\2/N, to compute U and V' with

U:%—N—L V = /U2 —4N].

Then p = (U + V) is a possible approximation of the prime factor p with error

jw] <

(12)

term of at most 2N%. If so, then by applying Coppersmith’s method, one can
find p, and then factor N.

To compare our new results and the result of [18], suppose that e = N#,
u < N? and |w| < N7. Then, by (9), we get |v| < 2NT9~-1. Hence, the inequal-
ities (12) are fulfilled if

1 +6—1
N’y < 2(p7Q)N4NB , 2N5Nﬁ+571
3(p+4q)

Then, neglecting the constants and assuming that p — ¢ =~ p + ¢, the former two
inequalities are true if

V2V N
<o

1 1
V< B W -1<

This leads to § < % — %B, which is to be compared with the new bound

Define 5 1 7 1
do=-—=0, 01==—7—=-+/60— 1.
0= 25 1=5 =773 66 — 67 +

A typical situation is when e &~ N, that is 8 = 1, and |w| is small, that is v = 0.
Then the bounds dg and d; are §g = 0.25, 07 =~ 0.284. We see that the new
method overcome the method of [18] in the most realistic situations of instances
of KMOV.

5 Conclusion

We have presented two new attacks on the KMOV cryptosystem which is an
RSA type cryptosystem based on elliptic curves. The first attack is based on the
continued fraction algorithm and the second is based on Coppersmith’s method.
Both attacks work when the private key is suitably small and the new results
improve the former attacks on the KMOV elliptic curve cryptosystem.
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Abstract. We provide a new approach to the elliptic curve discrete
logarithm problem (ECDLP). First, we construct Elliptic Codes (EC
codes) from the ECDLP. Then we propose an algorithm of finding the
minimum weight codewords for algebraic geometry codes, especially for
the elliptic code, via list decoding. Finally, with the minimum weight
codewords, we show how to solve ECDLP. This work may provide a
potential approach to speeding up the computation of ECDLP.

Keywords: Elliptic curves discrete logarithms - Elliptic code -
List decoding + Minimum weight codewords

1 Introduction

ECC and ECDLP. In the 1980s, Koblitz [17] and Miller [21] opened the door of
elliptic-curve cryptography (ECC). Since the introduction of ECC, the elliptic-
curve analogues of cryptographic primitives, like public-key encryption, digital
signature, key agreement, etc., were set up and deployed widely in information
systems, due to the smaller key sizes and more efficient implementations than
their traditional siblings with the same security level. In the last decades, ECC
primitives have permeated in cryptographic protocols and deployed in a variety
of applications.

The security kernel of ECC is the hardness of the elliptic curve discrete
logarithm problem (ECDLP). Let £ be an elliptic curve defined over a finite field
F, and &£(F,) be the additive group over €. Let P € £(FF,) be a point of prime
order p, and let (P) be the subgroup generated by P. If @ € (P), then Q = sP for
some integer s (0 < s < p), and s := logp @ is defined as the discrete logarithm
of ) to the base P. The problem of finding s, given P, Q) and the parameters of
&, is called ECDLP. Up to date, Pollard p method [25] with complexity O(,/p)
and its refinements are known as the most efficient solutions to ECDLP, except
for some special elliptic curves [7,9,19,26-28]. A good survey of recent works on
ECDLP can be found in [8].
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ECDLP and Minimum Distance of Elliptic Code. Algebraic geometry
codes (AG codes) were introduced in 1977 by V.D. Goppa [11] as a class of
linear codes. Elliptic Codes belong to AG codes, and they are constructed from
elliptic curve, i.e., algebraic curves of genus g = 1. For any [n, k| elliptic code C
constructed from £ over Fy, the minimum distance of C is either d = n — k or
d = n—k+1 [30]. Meanwhile, the minimum distance of C is closely related to the
solution of the ECDLP over £. This connection was first noticed by Driencourt
and Michon [5], and rediscovered by Cheng [3]. This brought us a new hope
of solving ECDLP: it is possible for us to solve ECDLP over £ if we found a
codeword of minimum distance for the elliptic code over £. However, computing
the minimum distance of a linear code is one of the fundamental problems in
algorithmic coding theory. Vardy [36] showed that it is an NP-hard problem
for general linear codes, while Cheng [3] proved that it is still NP-hard (under
RP-reduction) for elliptic codes. Obviously, the problem of finding Minimum
Weight Codewords for a linear code is NP hard as well, since a codeword of
minimum weight uniquely determine the minimum distance of this linear code.
As a result, it is unlikely for us to design an algorithm of finding codewords of
minimum weight in polynomial time, perhaps even not in subexponential time.
However, for some NP-hard problems, some algorithms of exponential time do
beat the trivial exhaustive search solution.

List Decoding. List decoding is a powerful decoding algorithm for linear error-
correction codes. It has a longer history than elliptic-curve cryptography and
dates back to the works of Elias [6] and Wozencraft [38] in the 1950s. The
breakthroughs of list decoding were due to Goldreich and Levin [10] for the
Hadamard code, and to Sudan [33] for the Reed-Solomon(RS) codes. For any
[n, k, d] linear code, a well-known fact is that if the number of errors ¢ satisfies ¢ <
[(d—1)/2], then there must exist a unique codeword within distance [(d—1)/2]
from the received vector. If ¢ > (d — 1)/2, however, unique decoding is usually
impossible. In 1997, Sudan [33] proposed “List Decoding algorithm” and applied
it to Reed-Solomon codes to break the barrier of ¢ > (d — 1)/2 by allowing the
algorithm outputting a list of codewords. Later, Shokrollahi and Wasserman [31]
extended Sudan’s list decoding algorithm to algebraic-geometry codes. In 1999,
Guruswami and Sudan [12] improved the bound of  to n —+/nk for both RS and
AG codes. Up to now, the list decoding algorithm is one of the most powerful
decoding methods for RS and AG codes.

Beyond its application in the field of coding theory, it also led to new devel-
opments in complexity theory and cryptography. For instance, it results in new
constructions of hardcore predicates from one-way permutations, amplifying
hardness of boolean functions, construction of extractors [34], computation of
the discrete logarithm over finite fields [4], and constructions of cryptographic
schemes [16], etc.

Our Contribution. In this paper, we consider a new approach to the solution
of ECDLP, and provide the first try of using list decoding to solve ECDLP. We
believe that our work merely scratches the surface of the potential power of list
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decoding techniques in solving ECDLP, and expect more results on this topic in
the near future. Our contributions are listed as follows:

1. We present a general algorithm of finding Minimum Weight Codewords for
any linear code that is list decodable. Meanwhile, we show a specific algorithm
of finding minimum weight codewords for AG codes using list decoding.

2. We show how to list decode elliptic codes and designed an algorithm of finding
minimum distance codewords for elliptic codes.

3. Our work provides the first method of solving ECDLP via list decoding, which
is of theoretical significance.

Organization. The rest of our paper is organized as follows. In Sect.2, we
review some preliminaries that will be used in our construction. In Sect. 3, we
show how to use List Decoding to find Minimum Weight Codewords of algebraic
codes, especially of elliptic codes. In Sect. 4, we present an algorithm of solving
ECDLP problems via List Decoding and give the corresponding analysis. Finally,
Sect. 5 concludes this paper.

2 Preliminaries

If n is a positive integer, define [n] := {1,2,...,n}. Let S be a set, then s — S
denotes choose an element s from S uniformly at random. If Alg. is an algo-
rithm, then (b1,bs,...,b;) < Alg.(a1,a2,...,a;) means that the algorithm takes
ai,asz,...,a; as input and outputs b1, b, ..., b;.

2.1 Elliptic Curve and Elliptic Curve Discrete Logarithm Problems

Let IF; be a finite field of ¢ elements. An elliptic curve £ over F, is a cubic curve
defined by Weierstrass equation

£y’ +arwy + azy = 2° + aga® + agx + ag (a; € Fy).
The set of F,-rational points of £ is defined as
S(Fq) = {(x7y) € IFq X IFq : y2 +aixy +azy = z3 + CLQ%‘Q “+ agx + CL6} U {O},

where O is the point of infinity,

Equipped with the so-called “chord-and-tangent” rule, £(FF,;) becomes an
abelian group [[29], II1.2]. Note that if the characteristic of the finite field is
larger than 3, the Weierstrass equation of an elliptic curve £ can be transformed
into a short but isomorphic one

E:y? =2 +ax+0b,

where a,b € F,, 4a3 + 270> # 0 € F,. For detailed information about elliptic
curves, we refer the reader to Silverman’s book [29].



Solving ECDLP via List Decoding 225

Let p be a prime integer which is coprime to ¢. Let GenG be an elliptic curve
group generation algorithm. Taking as input a security parameter 1%, GenG
outputs ¢ which defines a finite field Fy, an Elliptic Curve £ over Fy, and a point
P € E(F,) of order p. Denote by (P) the group of order p generated by P. If
Q € (P), it must holds that Q = sP for some integer s, 0 < s < p, which is
called the logarithm of ) to the base P and denoted by logp@. The problem of
finding s, given P, (@ and the parameters of £, is known as the Elliptic Curve
Discrete Logarithm Problem (ECDLP).

The ECDLP problem is a well-known hard problem. It is an essential base
for elliptic curve cryptography and pairing-based cryptography, and has been a
major research area in computational number theory and cryptography for the
last several decades.

2.2 Linear Error Correction Codes

An [n, k] linear error correction code C over finite field F, is a set of codewords,
where each codeword contains n elements of [, and all codewords constitute a
linear space of dimension k over IF,. Therefore, each codeword can be expressed
as a vector of length n over F,. Given a codeword ¢ = (c1,¢2,...,¢,) € Fy,
its Hamming weight, denoted by wt(c), is defined to be the number of non-zero
coordinates, i.e.,

wt(c) = {i | ¢; #0,1 <i<n}|

The distance of two codewords ¢y, ¢, denoted by dis(cy, ¢2), counts the number
of coordinates in which they differ. The minimum distance d(C) of C is the
minimal value of the distances between any two different codewords. In formula,

d(C) := min dis(eq, c2)-

( ) c1,c2€C,c17#c2 ( ! 2)

By the linearity of C, we know that d(C) is determined by the minimum Hamming
weight among all non-zero codewords in C, i.e.,

d(C) = i t(c).
(€) = zin  wt(c)

If a linear [n, k] code C has d as the minimum distance, then C is called a [n, k, d]
linear code.

For any linear [n, k] code C over finite field F,. Suppose that 0 = (0, ...,0) is
the transmitted (causal) codeword, and e is a received vector. Define f(e,t) :=
[{c € C\{0} : |e—c| < t}| as the number of noncausal codewords within distance
t centered around e. If f(e,t) = m, then e is m-tuply falsely decodable. Define
D(u,t) := 3", |, f(e,t) as the total number of falsely decodable words of weight
u, counting on all possible received vectors of weight u. By the linearity of C, for
any causal codeword ¢ and any error pattern e, f(e,t) also denotes the number
of noncausal codewords within distance ¢ centered around the received vector
r = ¢ + e. According to [2,20], we have the following results.
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Theorem 1 ([2,20]). If |e| = u, then the average number of noncausal code-
words in a decoding sphere of radius t over all error patterns of weight u is given

by
- D(u,t)

L(ut) = W

For an [n,k,d] RS code, Berlekamp and Ramsey proved that D(u,t) =

<?) (Z) (¢g—1) if u+t=d, hence

- 1 n—u\ .

2.3 Algebraic-Geometry Codes and Elliptic Codes

Algebraic-Geometry (AG) Codes are linear error correction codes defined on
algebraic curves. The first AG code was due to Goppa [11] who proposed the
so-called “Goppa Code”. Algebraic-Geometry Codes can be viewed as gener-
alizations of Reed-Solomon codes. Over the years, AG codes attracted much
attention since some AG codes results in linear codes with parameters beating
the Gilbert-Varshamov bound [11,32,35].

Let F, be a finite field with ¢ elements and X be an absolutely irreducible
curve over I, of genus g. Let F,(X') denote the function field defined over X.

A divisor D on a curve X is a formal sum of points D = ZP npP on the
curve X, where np € Z \ {0} for a finite number of points on X. Here np
denotes the multiplicity of the point P on the curve. The degree of a divisor
D =" ,npP is defined as the sum of np, i.e., deg(D) := Y, np. The support
of a divisor supp(D) is the set of points with nonzero coefficients. A divisor is
called effective if all coefficients are non-negative.

For each point P € X and any f € F,(X) \ {0}, we can abstract the notion
of evaluation of f at P (denoted by vp(f)) by local parameter and discrete
valuation function vp : Fg(X) — Z U {oo}. A point P is said to be a zero of
multiplicity m if vp(f) = m > 0, a pole of multiplicity —m if vp(f) =m <0,

Any function f € Fy(X) \ {0} can be associated with a so-called principal
divisor. The principle divisor of f € Fy(X) is defined as div(f) := > pvp(f)P.
According to [32](Theorem 1.4.11), the degree of a principal divisor is always 0,
i.e., deg(div(f)) = 0.

Let G = Y pnpP be any divisor of degree k on X. Denote by L(G) all
rational functions f € F,(X) such that the divisor div(f)+G is effective, together
with the zero function, i.e.,

L(G) :={f | div(f) + G is effective} U {0}. (1)

By the Riemann-Roch theorem, £(G) is a vector space over Fy of finite dimension
and its dimension is given by dim(L(G)) := k — g + 1, where g is the genus of
X.
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Given an irreducible curve X' and the function field F,(X) defined over X,
let Py, Ps,..., P, be distinct rational points on X. The n points determine a
divisor D := P, + P, + ...+ P,. Let G be an arbitrary divisor on X such that
{P1, P2, ..., P} Nsupp(G) = 0. An AG code C(D, G) is defined by the following
injective mapping ev : £L(G) — F} with

ev(f) = (f(Pl)af(P2)avf(Pn))

Hence C(D,G) = image(ev). If G = Y p,npP is a divisor of degree k, then
C(D,G) is an [n,k — g + 1,d] code over F, and d > n — k + 1 — g. The basic
properties of AG codes can be found in [23,32,35].

Elliptic Codes. Elliptic curves can be regarded as a special class of algebraic
curves, they are algebraic curves with genus g = 1, hence Elliptic Codes are just
AG codes constructed from elliptic curve. Let £ be an elliptic curve over Fy and
F,(€) be the elliptic function field. Recall that there exists an additive abelian
group E(F,) with the group operation defined by the “chord-and-tangent” rule
on &£. As a result, principal divisors on elliptic curve £ satisfy the following
property as shown in the following theorem.

Theorem 2. [29] Let £ be an elliptic curve over over F,. Let D =
ZP@E(FQ)”PP be a divisor of €. Then D is a principal divisor if and only
if Zpeg(Fq)TLp = 0 and Zpeg(Fq)np - P = O, where np - P denotes the
scalar multiplication over the Elliptic Curve group E(Fy) and the summation
in ZP@&(]FQ) np - P is implemented with the addition defined over group &(Fy).

Given an elliptic curve € defined over F,, and let F, (&) be the elliptic function
field. Let Py, P,..., P, € EFy). Define D := P, + P, + ... + P, be divisors
on €. Let G be another divisor on &€ such that 0 < deg(G) = k < n and
supp(D) N supp(G) = (. The elliptic code C(D, G) is defined by G and D with

C(D,G) :=A(f(Pr),.... f(Pn)) | f € L(IG)} € Fy,

where £(G) is defined in (1).

The minimum distance of an [n, k] EC code is either d = n—k or d = n—k+1,
as shown in [5,30]. If d = n—k+1, the EC code is a Maximum Distance Separable
(MDS) code, otherwise it is an Almost MDS(AMDS) code.

An [n, k] EC code C(D,G) is an AMDS code iff there exists k elements

P P;, € Supp(D) such that divisor

12

P +..+P, -G

is a principle divisor according to [30].

2.4 List Decoding of Algebraic-Geometry Codes

In 1999, Guruswami and Sudan [12] proposed a list decoding algorithm for both
RS and AG codes. The algorithm is able to efficiently output a list of codewords
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which lie in the sphere of radius up to ¢ = n — v/nk centered around the per-
turbed (noisy) codeword (i.e., received vector). More precisely, the list decoding
algorithm ListDecode(C, 7, t) takes as input a linear [n, k] code C, a received vec-
tor 7 and a parameter ¢ < n — v/nk, and it outputs a list of codewords whose
Hamming distances to r are at most ¢.

Now we recall the Guruswami-Sudan list coding algorithm ListDecode(C, r,t)
for an [n, k,d] AG-code Cz(D,G) [13], where D = Py + P+ ...+ P, and G is
a one-point divisor of a curve X of genus g, i.e., G = a@ and Q ¢ supp(D).
Assume o > 2g — 2, then dim(L(aQ)) = k = o — g + 1 by the Riemann-Roch
theorem.

The Guruswami-Sudan list decoding consists of three steps: initialization,
interpolation and root finding. We will give a brief (and basic) description
of the algorithm. We refer the reader to [12] and [13] for details.

The Guruswami-Sudan List Decoding Algorithm: ListDecode(C,r,t).

Input: An AG-code Cz(D, G) determined by curve X over F, and divisors G =
a@ and D, a received vector r = (rq,...,7r,) and an error bound ¢, which
determines the maximal number of coordinates in which a codeword disagrees
with vector r in order for the codeword to be included on the output list.

Output: a list (2. of codewords such that dis(r, ¢) < t.

Initialization.
0.1 2, :=0.
0.2 Compute list decoding parameters [ from n,t and g, where [ > «.
0.3 Fix a pole basis {¢;, : 1 < ji <1 — g+ 1} of L(IQ) such that ¢;, has
at most j; + g — 1 poles at Q.
0.4 For each P;, 1 <i <n, find a zero basis {¢;, p, : 1 < js <l —g+1} of
L(1Q) such that P; is a zero of ¢;, p, with multiplicity (or at least) j3 — 1.
0.5 Compute the set {ap, j, j, €Fq:1<i<n,1< 51,73 <1 —g+ 1} such
that for every i and every ji, we have ¢j, = . ap, ji jsVjs,P;-
Interpolation. Set s = =2, Find a nonzero polynomial H € L(IQ)[T] of the

«
form
s l—gt+l—aj2

HT) =Y > Do, T2
Jj2=0  j1=1
Root Finding. Find all roots h € L(aQ)) C L£(IQ)) of H[T]. For each h, check
if h(P;) = r; for at least n — ¢ values of i € {1,2,...,n}, and if so, put h in
0,.
Return (2,.

3 Finding Minimum Weight Codewords Using List
Decoding

By means of List Decoding with proper parameters, it is possible for us to
find a minimum weight codeword. Beforehand, we introduce two lemmas. The
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first lemma tells us the property of list decoding when d = u + ¢, where d is
the minimum distance of a [n, k] linear code, w is the number of errors in the
received vector (i.e., the Hamming distance between the received vector and
causal codeword is u) and t is the error bound of list decoding. The second
lemma analyzes the average number of falsely decodable (noncausal) codewords
when d =u+t and u < t.

Lemma 1. For any linear [n, k,d] code C, let ¢ = c+e be a received vector with
causal codeword ¢ € C and error vector e with wt(e) = u. Denote the output of
the list decoding algorithm ListDecode(C, c’,t) by set (2.:.

1. If |02\ {c}| > 1, then for any codewords c¢; € §2. \ {c}, it holds that
dis(e1,c) <u+t.

2. Ifu+t=d and u < t, then either Qo = {c} or || > 2. If the latter case
happens, then for all ¢ € 2.\ {c}, we have é = ¢ — ¢; is the minimum
weight codeword.

Proof. 1. List decoding algorithm ListDec(C, ¢/, t) will output codewords in the
sphere of radius ¢ centered around . If |f2. \ {c}| > 1, we have that
dis(ey,c’) < t. Together with the fact dis(e,¢’) = wt(e) = wu, we have
dis(e,c1) < u+t by the triangle inequality.

2. If uw < ¢, then dis(e,¢’) = u < t. As a result, ¢ € 2. always holds. The
linearity of code C ensures that ¢ := c¢—¢; € C. Hence wt(é) > d. If u+t = d,
then d < wt(¢é) = dis(e,¢1) < utt = d, which means wt(¢) = dand é = c—¢;
is the minimum weight codeword.

Recall that L(u,t) denotes the average number of noncausal codewords in a
decoding sphere of radius ¢ over all error patterns of weight . In [2], Berlekamp
and Ramsey presents how to compute E(u, t) for RS codes when u + ¢ = d and
u < t (see Theorem 1). Now we can generalize this result to any [n, k, d] linear
code. Specifically, we obtain L(u,t) for elliptic codes when v+t = d and u < t.

Lemma 2. For any [n, k,d] linear code in which the number of minimum weight
codewords is p, the average number of noncausal codewords in a decoding sphere
of radius t over all error patterns of weight u satisfies

d
()
I)(u,t)zitifu—kt:dandugt. (2)

(Z) (¢—1)»

Specifically, for an [n,k] Elliptic Code C(G, D) where G is a divisor of degree k
and D=P +Po+ ...+ P,. Ifu+t=d and u < t, then
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where A denotes the number of subsets J = {i1,i2,...,ix} C {1,2,...,n} such
that G — Zjej P; is a principal divisor.

Proof. Recall that if 0 = (0,...,0) is the transmitted (causal) codeword, and
e is a received vector, then f(e,t) := [{c € C\ {0} : |e — ¢| < t}| counts the

number of noncausal codewords within distance ¢ centered around e. Meanwhile,

L(u,t) = Zleizu S0 according to [20].
n

(g—1)™
u

By Lemma 1, if u 4+t = d and u < ¢, then either 2, = {0} or |{2.| > 2.
If |£2¢| > 2, then we have the following facts.

— For each ¢; € (2, \ {c}, the codeword ¢; is a noncausal codeword and it must
be a codeword of minimum weight d.

— For each ¢; € £2.\{c}, define €’ = ¢; —e, then €’ is of weight ¢. Meanwhile the
indices of ones in e and e’ must be disjoint, i.e., {i | e; = 1,7 € [n]}N{i | e} =

1,i € [n]} = 0.

There might be many error patterns e resulting in the same codeword of
minimum weight. For each codeword of minimum weight, there are exactly

(?)(: (S)) choices of e of weight u. If there are totally p codewords of

minimum weight, then there are totally u - vector e of weight u, each of

d
t
which exactly results in a noncausal codeword in its sphere.

Equation (2) holds since there are totally (Z) (g — 1)* vectors of weight wu.

For an [n, k] Elliptic Code, the minimal distance d is either n —k+1 or n—k.
If d = n—k+1, then the Elliptic code is MDS code, the number of the minimal

”) -(g—1). Hence L(u,t) = (?)ﬂ(Z) o - (" : u>

d (q_l)u—l Y
(g—1)»

weight codewords is <

U
which is consistent to the result for RS codes in [2].

Now we consider the case of d = n — k. Given a subset J = {i1,42,...,0} C
{1,2,...,n}, define a divisor as D" =3, ; P; — G. If D' is a principal divisor,
then there exists a function f € £(G) such that D’ = div(f) due to the fact that
D' + G is effective. For such an f € L(G), we have f(P;;) = 0 with j € [k]. Con-
sequently, the Hamming weight of the codeword ¢ = (f(P;,), f(Piy),---» f(Pi,))
is n—k, which suggests that a-c is a codeword of minimum weight for all o € F7 .
If there are A subsets J = {i1,142,...,ix} € {1,2,...,n} such that Zjej P -G
is a principal divisor, then there are (¢ — 1)\ codewords of minimum weight.

B (?)vk-(ql)

Consequently L(u,t) = () according to Eq. (2). |
(g—1)*
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Lemma 1 suggests us a way of finding a codeword of minimum weight code-
word. If the minimum distance d of C is known, we can obtain such a codeword
of minimum weight, as long as u + ¢ = d, u < t and the list decoding algorithm
outputs a list of size at least two. According to this idea, we design an algorithm
of finding minimum weight codewords for a code C with unknown minimum
distance d, as shown in the next subsection. Lemma 2 helps us to analyze the
success probability of the algorithm.

3.1 How to Find Codewords of Minimum Weight

When the minimum distance d is unknown, the intuition is to try a guess d’
of the minimum distance. Now we design an algorithm named FindCodeword
which takes as input a guess d’ of the minimum distance, an error weight u
and a bound t,, of the decoding radius of List Decoding for code C. Firstly,
randomly choose a codeword ¢ from C and an random error of weight u. Compute
the perturbed vector ¢’ := ¢ + e. Then invoke the List Decoding algorithm to
decode the perturbed vector ¢’ to output a list {2, of codewords . By linearity,
for every ¢; € 2./, ¢; — ¢ is a codeword of C. We hope that one of ¢; — c is a
minimum weight codeword. Below we describe the algorithm and then analyze
the probability that the algorithm outputs such a minimum weight codeword.

Algorithm FindCodeword(C, u,d’, t,,):

Input: A [n, k| linear code C which is list-decodable up to ¢,, errors; two param-
eters u,d’ € ZT with u < t,, < d'.
Output: Abort symbol | or a codeword é € C.
Procedure: 1. If d —u > t,,, return L.
2. Randomly choose a codeword ¢ € C.
3. Randomly choose an error pattern e such that wt(e) = u. Compute ¢’ :=
c+e. Set 2. :=0.
4. Invoke (2. « ListDecode(C,c,d" — u).
5. If 20\ {c} = 0, Return(L). Otherwise for each codeword ¢; € 2. \ {c}
and compute & :=¢; — ¢, where i = 1,2,..., || — 1.
6. Choose ¢ of minimal weight from {é,...,¢é o -1}
7. Return(é).

According to [12], the Guruswami-Sudan list decoding algorithm is applica-
ble when t,, = n—+/nk, and the complexity of ListDecode is O(A\%n?) for any AG
codes (here X is the designed list size). The computational complexity of Algo-
rithm FindCodeword(C, u,d’) is dominated by ListDecode, hence is of O(A5n?) as
well. There are many works aiming to improve the computational complexity of
Guruswami-Sudan list decoding algorithm. For example, Beelen et al. [1] defined
a general class of one-point algebraic-geometry codes and proposed a more effi-
cient algorithm for the interpolation step in the Guruswami-Sudan list decoder
and the complexity was improved to O(A\>n? log?(An) log log(An)).

Suppose that the minimum distance of the [n, k] code C is d. In the case of u <
d/2, d—u < t,,, we analyze the probability that Algorithm FindCodeword(C, u, d)
successfully outputs a codeword of minimum weight.
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Theorem 3. For a [n,k,d] linear code C, let y be the number of minimum
weight codewords. If u < d/2 and d —u < t,,, then

d
(1)
Pr [é « FindCodeword(C,u,d, t,,,) : wt(é) = d] % ———— (4)

where 1 is the number of minimum weight codewords in C.

Proof. Tt directly follows from Lemma 2. |

3.2 The Final Algorithm of Finding Minimal Weight Codewords

With a correct guess of d, Algorithm FindCodeword(C,u,d) might be able to
output a codeword of minimum weight with some probability (determined by
(4)) according to Theorem 3. So we will try to guess the distance with d' =
3,4,...,n — k + 1. Given a specific guess d’' of the distance, we will invoke
FindCodeword(C, u, d’) multiple times. This leads to our final algorithm of finding
minimal weight codewords as shown below.

Algorithm MinWeiCodeword(C, I, t,,, T}y, ):

Input: A [n, k] linear code C which is list-decodable with an unknown minimum
distance d; A set I’ which is a subset of {3,4,...,n — k + 1}. We assume
that the elements in I" is in ascending order. t,, is the bound determined
by the list decoding algorithm and 7, is the maximal number of invoking
FindCodeword(C, u,d").

Output: Abort symbol L or a codeword é € C.
é:=1;wt(é):=n
For each d’ € I' (taking d’ in ascending order)

For w =d' —t,, to |d'/2]
For i =1to T,
& — FindCodeword(C, u, d’, t,,);
If wt(é') < wt(é) then é:=¢&'.

Return(é)

For an [n,k,d] code C, as long as d € I, the guess of d' takes the
value of d sooner or later. In case of d = d, the probability that Algo-
rithm FindCodeword(C, u,d) outputs a minimum weight codeword is given by
(4) according to Theorem 3. In MinWeiCodeword(C, I, T},,), there are T}, times
of invocations of FindCodeword(C,u, d) and w can take values from d — t,,, up to
|d/2]. Therefore, MinWeiCodeword successfully outputs a minimum distance
codeword with probability at least

Pr [é — MinWeiCodeword(C, {d}, tm, Tr) : wt(é) = d]

d T’V?‘L
La/2] me
>1- ] |-~ - (5)

u=d—tm (Z) (¢—1)"
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If the minimum distance d of C is known, then we can set I' = {d}, then
MinWeiCodeword successfully outputs a minimum distance codeword with prob-

ability at least
d m
- (3)
- - (6)

(Z) (g—1)»

This approach applies to all list decodable codes. For some linear [n, k, d]
codes over F,, when the choices of n,k,d, g, t,, make (5) noticeable, then it is
possible for us to find a codeword of minimum weight in polynomial time with
the help of Algorithm MinWeiCodeword(C, I, t,,, Trn)-

For any list decodable [n, k, d] code, if we already know d or have a correct
guess of d, Algorithm FindCodeword(C, u, d) might be able to output a codeword
of minimum weight with some probability (determined by (4)).

Due to the fact that d = u + t, given d we can always choose u as small as
possible to make the probability in (4) bigger, as long as t = d —u is allowable in
the list decoding algorithm. For AG code, The Guruswami-Sudan list decoding
algorithm can make ¢ up to be t,, = [n — v/nk](This bound is called by GS
bound or Johnson bound).

If new development on list decoding makes t,, exceed the current bound
of [n — v/nk], then Algorithm FindCodeword(C, u, d) will become more efficient
by setting smaller values for u. For example, if we have an efficient list decod-
ing algorithm to correct the maximum fraction of errors, i.e., t,, = n — k (this
is called by the Singleton bound) for some codes, then the codeword of mini-
mum weight of these such codes can be efficiently computed using Algorithm
FindCodeword(C, u, d).

There do exist some codes, such as Folded Reed-Solomon Codes or Folded AG
codes, that achieve or approach Singleton bound of ¢