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Abstract Organism-specific genome-scale metabolic models (GEMs) can be
reconstructed using genome annotation and biochemical data available in literature.
The systematic inclusion of biochemical reactions into a coherent metabolic network
combined with the formulation of appropriate constraints reveals the set of metabolic
capabilities harbored by an organism, hereby allowing the computation of growth
phenotypes from genotype information. GEMs have been used thoroughly to assess
growth capabilities under varying conditions and determine gene essentiality. This
simulation process can rapidly generate testable hypotheses that can be applied for
the systematic evaluation of growth capabilities in genome reduction efforts and the
definition of a minimal cell. Here we review the most recent computational methods
and protocols available for the reconstruction of genome-scale models, the formu-
lation of objective functions, and the applications of models in the prediction of gene
essentiality. These methods and applications are suited to the emerging field of
genome reduction and the development of minimal cells as biological factories.
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1 Introduction

1.1 Engineering Biology

Biologists of the past 200 years have provided a breadth of knowledge on the
fundamentals of life on Earth. Current theories and dogmas emerged from a maze
of suppositions and hypotheses through the succession of key findings and incre-
mental advances. Nowadays, few molecular functions necessary to support life
remain unknown. While biology has considerably matured as a science discipline,
we will discuss here how the exhaustive characterization of organisms along with
proper modeling frameworks should drive a new era, in which cell engineering will
develop into an independent discipline. Because of their lower complexity, micro-
organisms—particularly minimal bacteria—are expected to play a very important
role in this endeavor.

Scientists investigate that which already is; Engineers create that which has never been.
—Albert Einstein

We discuss here the historical context and key steps leading to the birth of
biological engineering. This historical recap should highlight the importance of
minimal cell models while providing readers with a perspective on the entire field
of biology. We divided it in four stages: classical biology, molecular biology,
genomics, and finally synthetic biology (Fig. 1).

1.1.1 Classical Biology

In 1859, Darwin published his work entitled “On the Origin of Species by Means of
Natural Selection, or, the Preservation of Favoured Races in the Struggle for Life.”
Less than a decade later, in 1865, Mendel proposed mechanisms for heredity. Both
theories used observable phenotypes at the organism level to infer potential mech-
anisms driving their evolution. While Darwin’s work explained the driving forces
underlying the emergence of phenotypes and speciation, Mendel’s work was
focused on a mechanistic explanation of the basic principles of genetics. While not
specifically described by Mendel, his conclusions gave birth to the concept of gene.
Understanding the chemical basis of the gene and heredity then became the main
endeavor of this first era of biology, defined here as the classical biology era (Fig. 1).
This objective remained one of the grand challenges of biology until, in 1953,
Watson and Crick published the structure of deoxyribonucleic acid (DNA) (Watson
and Crick 1953). This historically significant finding allowed scientists to ask more
intricate questions on the molecular functions sustaining life, marking the beginning
of the molecular biology era (Waddington 1961).
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1.1.2 Molecular Biology

With the structure of the DNA double helix, the gene concept became tangible, greatly
accelerating the pace of discovery. Iconic, groundbreaking findings of the molecular
biology era include the cracking of the genetic code (Nirenberg et al. 1965; Holley
1965) and the definition of the operon by Jacob and Monod, which, for the first time,
revealed molecular mechanisms underlying gene expression (Jacob et al. 1960). The
later discovery of a restriction enzyme (enzyme capable of cutting DNA at a specific
sequence) in Haemophilus influenzae (Smith and Wilcox 1970) and its application to
cut the genome of the human virus SV40 (Danna and Nathans 1971) marked the
beginning of DNA manipulations (Roberts 2005). The repurposing of a restriction
enzyme provided the first genetic engineering tool, and biologists were now poised to
start deciphering the molecular mechanisms that underlie cellular phenotypes.

Cleaving DNA at specific sites is useful, but a pending important challenge was to
decode the sequence of genes. Given the determination of the genetic code in 1963
(Nirenberg et al. 1963), DNA sequencing would provide the amino acid sequence of
proteins, which in turn mediates its function. In 1977, Frederick Sanger published a
method for the sequencing of DNA by random incorporation of radiolabeled

Fig. 1 Synthetic biology and minimal cells: a historical perspective. Elucidating the DNA double
helix marked the beginning of the molecular biology era, and it became possible to study molecular
mechanisms that underpinned observable phenotypes. DNA sequencing methods improved, lead-
ing to whole-genome sequencing at the end of the 1990s. Methods for mathematical cell modeling
were developed during the 1980s and 1990s, and genome-scale models of metabolism, as well as
computer simulations of metabolic networks, could be reconstructed. A defining moment took place
in 2008 (red), with the creation of the first artificial genome that mimicked the genetic information
of M. genitalium, the smallest genome, free-living, non-synthetic organism known to date. Thanks
to developments in next-generation sequencing (NGS) methods, this was paired with the rise of
large-scale genome sequencing ventures, such as the Human Microbiome and the 1000 Genomes
Projects. Advances in whole-genome synthesis, assembly, and transplantation helped create the first
cell living with an entirely synthetic genome shortly after. Altogether, these achievements marked
the coming of age for synthetic biology (Reproduced from Lachance et al. 2019a)
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nucleotides lacking the 30-OH group necessary for chain elongation (Sanger et al.
1977a). This method enabled sequencing the complete 5375 bp genome of phage
ϕX174 (Sanger et al. 1977b). While Sanger’s dideoxy termination method generated
sequences ranging from 15 to 200 nucleotides, massive scaling up was necessary to
allow more ambitious sequencing efforts.

The automated DNA sequencer (Smith et al. 1986) and the advent of shotgun
sequencing (Anderson 1981) considerably increased the capacity of DNA sequenc-
ing, resulting in longer whole-genome sequences (WGS) (Heather and Chain 2016).
Following the Santa Cruz workshop in 1985 (Sinsheimer 1989), the Human Genome
Project (HGP) was initiated and reached completion in 2001 (Venter et al. 2001;
Lander et al. 2001). Taking advantage of the technologies developed for the HGP,
smaller-scale WGS projects were completed before the new millennium (Fig. 1). In a
historic reference to the first type II restriction enzyme isolated, the first WGS of a
free-living organism, Haemophilus influenzae, was reported in 1995 (Fleischmann
et al. 1995). The genome of Mycoplasma genitalium, the smallest free-living organ-
ism, was published shortly after (Fraser et al. 1995). The more complex model
organisms Saccharomyces cerevisiae and Escherichia coli followed in 1996 and
1997, respectively (Goffeau et al. 1996; Blattner et al. 1997).

1.1.3 Genomic

We arbitrarily defined the beginning of the genomic era with the completion of the
first WGS of a free-living organism, the ~1.9 million bp genome of Haemophilus
influenzae (Fleischmann et al. 1995) (Fig. 1). The number and size of WGS made
available following this first sequencing effort steadily increased, eventually includ-
ing the ~3.2 billion base pairs (bp) haploid human genome (Venter et al. 2001;
Lander et al. 2001). Automation and computational tools were further improved to
expand the capacity of Sanger sequencing. Nevertheless, the advent of next-
generation sequencing (NGS) technologies developed by private companies upon
the completion of the Human Genome Project represented a major breakthrough.
While the sequencing by synthesis paradigm was preserved between Sanger
sequencing and the NGS methods, the ability to parallelize the sequencing within
one reaction massively increased the throughput (Heather and Chain 2016).

NGS allowed the elaboration of new initiatives such as the 1000 Genomes Project
(Spencer 2008) and the Human Microbiome Project (McGuire et al. 2008), both
initiated in 2008. The power of NGS technologies could not be exemplified any
better than by considering that, in spite of their much greater scale, these projects
reached their primary goals within 4 years (1000 Genomes Project Consortium
2012; Human Microbiome Project Consortium 2012), merely one third of the time
required for the HGP. The accessibility of sequencing now contributes to an
unprecedented breadth of knowledge that is meant to continue. Recently, the devel-
opment by Oxford Nanopore (minION) of a portable, benchtop, real-time sequencer
(Lu et al. 2016) further expands the applications of NGS for fundamental discovery.

Obtaining the genome sequences of a wide number of species is of paramount
importance for understanding their phylogenetic relationships and the potential
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functions they encode. However, the genetic information encrypted in the DNA of a
cell is essentially static and does not reveal the dynamic nature of molecular pheno-
types. This reality became evident shortly after the completion of the HGP, when the
predicted number of genes in human was found to have been grossly overestimated
(Brower 2001). Gladly, the efforts for high-throughput interrogation of other important
cellular components started early with the development of untargeted approaches for
the sequencing of proteins (Mørtz et al. 1996). More than a decade later, the elabora-
tion of a protocol for high-throughput RNA sequencing using NGS technologies
revealed the full transcriptomic profile of yeast (Nagalakshmi et al. 2008). From that
point on, the three main macromolecules of the central dogma of biology (Crick 1970)
could be sequenced at a genome-scale in an untargeted way.

The remaining components of the cell are less ubiquitous, and the application of
untargeted methods for organism-wide identification is more complex. The identi-
fication of all water-soluble components is termed metabolomic, whereas the hydro-
phobic content is generally referred to as lipidomic (Riekeberg and Powers 2017).
Liquid chromatography followed by mass spectrometry (LC-MS) allows for both
metabolomic and lipidomic determination (Riekeberg and Powers 2017; Yang and
Han 2016) with the difference in extraction method reflecting the polarity of the
compounds. These methods along with others (Ingolia et al. 2009; Lahner et al.
2003; Zamboni et al. 2009) allow the characterization of a dynamic state of the cell
that can be leveraged in systems biology (Haas et al. 2017).

1.1.4 Synthetic Biology

The term synthetic biology is closely associated with the application of engineering
principles to biological systems. DNA synthesis enabled the generation and assem-
bly of synthetic DNA parts. In turn, these capabilities allowed creating “that which
did not exist,” hence defining synthetic biology as a field (Andrianantoandro et al.
2006; Heinemann and Panke 2006; Hughes and Ellington 2017). The first attempt at
synthesizing DNA happened shortly after the elucidation of its structure. In 1957,
Bessman and colleagues used the DNA polymerase from E. coli to produce DNA
fragments. They noted that the presence of polymerized DNA is necessary for the
reaction. This concept was later reused both by Sanger for DNA sequencing (Sanger
et al. 1977a) and later for the famous polymerase chain reaction (PCR) (Saiki et al.
1985). The DNA oligonucleotide primers used for the development of PCR were
produced using the phosphoramidite method (Matteucci and Caruthers 1981;
Beaucage and Caruthers 1981). This chemistry is still currently used in most modern
DNA synthesis platforms (LeProust 2016) but is limited by the oligonucleotide
length that can be obtained without accumulating undesired mutations. This problem
was circumvented by Stemmer in 1995, who first reported a technique to generate a
long synthetic DNA fragment (>1000 bp) by assembling oligonucleotides (Stemmer
et al. 1995). While the cost of DNA synthesis stayed more or less the same in the last
10 years (Hughes and Ellington 2017), recent progress toward high-throughput
DNA synthesis strategies using microarrays may soon overcome this issue (LeProust
2016) and promise to make the synthesis of large DNA fragments an affordable
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solution for routine molecular biology experiments or industrial strain design
(Hughes and Ellington 2017; Bassalo et al. 2016).

The utmost objective of DNA synthesis is the conception and assembly of entire
genomes. To reach this goal, the development of robust methods to assemble DNA
fragments into larger sequences was necessary. This goal was met in 2008 when a team
at the John Craig Venter Institute (JCVI) realized the complete synthesis and assembly
of the Mycoplasma genitalium genome (Gibson et al. 2008). This achievement was
made possible by a hierarchical strategy relying on in vitro recombination of DNA
cassettes (Gibson et al. 2009). The assembly of overlapping DNA oligonucleotides to
create larger fragments was later shown to be even more effective in vivo using yeast
(Gibson 2009). The development of whole-genome synthesis and assembly methods
together with that of whole-genome transplantation (Lartigue et al. 2007) enabled the
creation of the first cell living with an entirely synthetic genome (Gibson et al. 2010).

Recent years have seen groundbreaking synthetic biology efforts that will
undoubtedly have an impact on the future of this field. In 2014, Romesberg and
colleagues created a bacteria functioning with an altered DNA containing six
different bases (Malyshev et al. 2014), thereby offering an additional base pairing
combination. No known living organism contains these synthetic nucleobases,
resulting in a new life form on Earth. Following the path of the first free-living
organism containing a synthetic genome, the team at JCVI designed and assembled a
cell with a greatly reduced gene content, resulting in a working approximation of a
minimal cell (Hutchison et al. 2016). Finally, the Sc2.0 project was initiated and in
2017 an international consortium reported the complete de novo synthesis of five
entire chromosomes of the yeast Saccharomyces cerevisiae (Richardson et al. 2017).

With the advent of NGS, multiple omics methods for the dynamic characteriza-
tion of the cell, targeted genome editing methods (Qi et al. 2013), and the develop-
ment of high-throughput DNA synthesis and assembly methods, synthetic biology is
now poised to create life forms that will revolutionize many industrial research fields
such as microbial drug synthesis, biofuel production, or alternative approaches for
disease treatment (Smolke et al. 2018).

1.2 The Minimal Cell Concept

The hydrogen atom of biology
—Harold J. Morowitz

The idea of a minimal cell was approached by biophysicist Harold J. Morowitz in
a guest lecture in 1984 (Morowitz 1984) where he reasoned that a free-living
organism would have a lower limit on the number of atoms from which it is
composed. Below this number, the necessary functions to support life would not
be met. This logical deduction somewhat resembles that of Schrödinger in his
famous book What is life? (Schrodinger 1967), where the famous physicist
questioned the material support of the gene and applied limitations imposed by
quantum physics to correctly predict that it would be a molecule that could form a
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crystal. In his lecture, Morowitz proposed that the mollicutes, a phylogenetic group
of bacterium deprived of a cell wall, would be the best candidates to match the
constraint and the endeavor of generating what he then defined as a “minimal cell.”
The choice was made firstly according to their size with the idea that the smaller cell,
much like the hydrogen atom in physics, would be the simplest system to study and
hence yield fundamental understanding applicable to other, more complex biological
systems. The prediction was accurate. The mollicute Mycoplasma genitalium, sec-
ond entirely sequenced free-living organism (Fig. 1) (Fraser et al. 1995), has the
smallest gene content of any known naturally occurring organisms. The purpose of
studying minimal cells was then clearly stated: defining the basic principles of life
(Glass et al. 2017).

As soon as more than one whole-genome sequence was generated, Mushegian and
Koonin sought to compare the two phylogenetically distant species in the hope of
finding orthologous genes that would be a working approximation of a minimal gene
set (Mushegian and Koonin 1996). The initial proposition was that 256 genes would
be sufficient to support life. This proposition was later experimentally shown to be a
relatively low estimate. Gene essentiality in genome-reduced bacteria probed with
random transposon insertion estimated that the number of genes would be between
265 and 350 (Hutchison et al. 1999). With the increasing number of whole-genome
sequences available, comparative genomics allowed to deepen the understanding of
the concept of minimal gene set. When comparing the eukaryote Saccharomyces
cerevisiae to its initial proposition, Koonin realized that very few genes were con-
served (only 40%) (Koonin 2000). The suggested explanation for this was that
non-orthologous gene displacement (Koonin et al. 1996) (NOD) would have a higher
frequency than originally anticipated. The definition of NOD states that genes with
similar functions can evolve independently. This induced a paradigm shift in the
concept of minimal gene set, where the identity of the genes themselves was deferred
to a second level, with the functional activity they provide becoming more important.
From an engineering standpoint, the minimal set of functions is indeed more interest-
ing than the set of genes (Danchin and Fang 2016). In this context, the various genes
become interchangeable parts to accomplish a given function (Fig. 2).

The many progresses in synthetic biology realized by scientists at the JCVI led to
the design and synthesis of the first working approximation of a minimal cell: JCVI-
syn3.0 (Hutchison et al. 2016). The 463 genes encoded in the chromosome of this
cell is a lower number than any other known free-living organism (Glass et al. 2017)
but is substantially higher than computationally and experimentally determined
minimal gene sets (Mushegian and Koonin 1996; Hutchison et al. 1999; Koonin
2000; Glass et al. 2006). Although essential for cell growth, a significant fraction
(149/463, ~30%) of the JCVI-syn3.0 gene set had no proposed function (Hutchison
et al. 2016; Glass et al. 2017; Danchin and Fang 2016). Danchin and Fang exten-
sively reviewed these genes in search for a molecular mechanism that would need to
be fulfilled (Danchin and Fang 2016) and provided potential functions based on
known or projected necessities for 32 of those 84 generic and 65 “unknown
unknowns.” The validity of these hypotheses has yet to be determined, and therefore
the original question raised by Morowitz, seeking for the completeness of molecular
biology, remains unanswered.
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While absolute minimal cells should inform on the first principles of life, heavily
reduced cells entail a strong interest from an engineering perspective. Cho and
colleagues reviewed some of the potential advantages of reduced bacteria for strain
design (Choe et al. 2016). As mentioned, high-throughput characterization of cellu-
lar phenotypes through omic data generation and increase in throughput of DNA
synthesis should allow for in vitro fabrication of designed genomes (Fig. 2). We list
here some of the advantages that were pointed out.

Fig. 2 Design of cells using a computer model. (a) Naive representation of a cellular chassis in
which all mandatory cellular functions and their interactions are understood and characterized. (b)
The generation of computer models for minimal cells can accelerate the identification of missing
knowledge and facilitate the generation of hypothesis for essential uncharacterized cellular func-
tions. (c) A design-build-test-analyze loop for the generation of minimal cells and their improve-
ment toward production strains. Mathematical models are used to predict functional genotypes, and
the current DNA synthesis technologies mentioned in the text are used to generate the proposed
genome. Cloning of entire genomes in living cells allows to test for viability, and multiple omic
datasets are used to characterize the synthetic organism
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The first bacterium harboring a synthetic chromosome, JCVI-syn1.0 (Gibson
et al. 2010), was reported to represent a 40-million-dollar endeavor (Sleator 2010).
A smaller genome obviously results in a reduced DNA synthesis cost. While a
decrease in the price per base was announced by companies such as Twist Biosci-
ence, others do not foresee a price reduction that would defeat Moore’s law (Smolke
et al. 2018). Hence, the economic impact of generating several small genomes would
remain significant. From a systems biology or design perspective, a reduced number
of genes translate into a lower probability of negative interactions that could affect
the desired outcomes of the initiated design. The development of high-throughput
and untargeted approaches in the genomic era has allowed the rapid characterization
of cells, but the outcome of genetic modifications is still not entirely reliable. The
idea here is that genome-scale modeling of minimal cells could lead to more accurate
model predictions. For instance, efforts have already been invested in reducing the
complexity of metabolic models in the attempt of making the generated solutions
more human readable (Ataman and Hatzimanikatis 2017). Genome reduction and
minimization also allows for the design of biocontainment strategies. These include
auxotrophy(ies) or programmed cell death, which will be highly beneficial as
synthetic biology becomes more common in commercial applications. Finally, for
more complex organisms, the deletion of genomic sections could accelerate genome
replication while potentially increasing genomic stability through the removal of
duplicated elements.

2 Constraint-Based Modeling

In the last section, we reviewed how biology developed from a pure science
discipline at its inception to a mechanistic and engineering discipline in our times.
The advent of high-throughput characterization methods for organisms together with
biological reductionism that entails mechanistic description of processes sustaining
life led to the birth of synthetic biology as a field. In this context, we reviewed the
idea of a minimal cell, which should be a functional chassis for the design of
production strains or a platform for fundamental understanding of biology (Danchin
2012). As mentioned, the current status of minimal cell research, with the 149 genes
with no function associated with the synthetic organism JCVI-syn3.0 (Hutchison
et al. 2016), requires further characterization of molecular functions to reach a
complete understanding of every molecular functions necessary to sustain life.
This biological reductionism approach should feed into a computational framework
geared toward integrative analysis where in silico simulations based on mathemat-
ical models take advantage of the high-throughput methods to generate predictions.
In this section we describe flux balance analysis (FBA) (Orth et al. 2010), a
mathematical approach that allowed the generation of genome-scale models from
whole-genome sequences around the new millennium (Edwards and Palsson 1999,
2000). This modeling approach is a solid basis on which minimal cells can be
designed in silico.
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2.1 Concept of Constraints in Metabolism

Flux balance analysis (FBA) arose from an attempt at generating simple coarse-
grained models for the fermentation of the chemical industry’s feedstocks in bacte-
rial hosts (Papoutsakis 1984). One initial model suggested by Papoutsakis relied on
the assumption that the fermentative process could be resumed in a single stoichio-
metric equation where elemental balance is conserved. Interestingly, the definition of
the so-called fermentation equation utilized the known stoichiometry of reactions
involved in the fermentation of butyric acid. The stoichiometry of biochemical
reactions in a metabolic network was later used by Majewski and Domach in an
attempt to establish a theoretical understanding for acetate overflow metabolism in
Escherichia coli cells grown under aerobic conditions (Majewski and Domach
1990). The model presented for the acetate overflow entailed many key elements
of FBA. The proposed hypothesis was that a flow network with a given objective
could represent and explain the shift in metabolic state of E. coli responsible for the
excretion of acetate.

The problem was summarized as a linear optimization problem on which network
constraints would apply. Fixing the objective as to maximize the production of ATP
and applying two constraints, (1) limiting the amount of reducing equivalents that
can be produced by the electron transport chain and (2) assuming that a given
enzyme of the Krebs cycle is limiting hereby limits the flux through a given reaction,
the authors demonstrated that linear programming could correctly predict a bacterial
metabolic state.

The use of a metabolic flux network optimized with linear programming served as
a basis for the development of mathematical formalism for FBA (Savinell and
Palsson 1992a, b). The concept was extended with the definition of a stoichiometric
matrix (S). In this matrix, each column represents a reaction in the metabolic
network, and each row is a different metabolite (Fig. 3). The mathematical formu-
lation of the metabolite concentration over time using the S matrix then becomes:

dX
dt

¼ S ∙ v ð1Þ

where X is the vector of metabolites and v is the vector of fluxes. FBA assumes that
the metabolic network will reach a steady state. In this case, the concentration of
metabolites over time should be in equilibrium where the inputs are equal to the
outputs so that:

0 ¼ S ∙ v ð2Þ

FBA has the advantage of requiring only the stoichiometry of the reactions to
operate. The details of thermodynamics for each reaction are not necessary. Never-
theless, reaction directionality can be obtained from thermodynamics, hereby adding
another set of constraint on the system. A physiologically meaningful objective (Z)
can be defined in order to simulate the desired metabolic phenotype.
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maximize Z,

0 ¼ S ∙ v

ai < vi < bi ð3Þ

This mathematical formulation can be solved using linear programming and
allows finding the optimal solution of a given metabolic network at steady state.
We will now review how this formulation allows for the generation of genome-scale
models and how the objective function can be tailored to represent specific physi-
ological states.

Fig. 3 Constraint-based modeling using linear programming. (a) A given metabolic network
composed of metabolites (nodes) and reactions (links) can be represented in the form of a
stoichiometric matrix S. (b) In this matrix, each row represents a metabolite while each column is
associated with a reaction. The variation of metabolite concentration over time dX

dt

� �
can then be

represented as the matrix-vector product of S by v, the vector of fluxes for each reaction in the
network. (c) Defining a physiologically meaningful objective Z, the optimal solution for the
metabolic network can be represented as a linear optimization problem with given flux constraints
on metabolic reactions, and, at steady state, the variation in metabolite concentration is equal to
0. (d) The application of constraints on the optimization problem limits the solution space, while
applying a proper objective allows finding the line of optimality within that bounded convex
solution space
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2.2 Metabolic Network Reconstruction

The completion of whole-genome sequences in the genomic era (Fig. 1) allowed the
generation of genome-scale metabolic models (GEMs). In most cases, genome
annotation yields the predicted function of proteins encoded by an organism. For
the metabolic enzymes, the annotation together with extensive literature research can
link a DNA sequence to a biochemical reaction in the metabolic network. The
process of extracting a maximum number of reactions from the genome is termed
reconstruction and has been reviewed in detail (Thiele and Palsson 2010). We
explain the key steps in the reconstruction of a stoichiometric matrix at the genome
scale (Fig. 4).

First, a draft reconstruction must be generated. The process of building this draft
can be performed manually or automatically. The automated methods for draft
reconstruction of metabolic networks are reviewed in Sect. 3. The generation of a
draft reconstruction process consists in extracting biochemical reactions from
genome annotation. Through this process, the stoichiometry of every reaction in
the network is obtained. The reactions can be fetched from annotated EC numbers or
gene names, and the candidate metabolic genes are linked to a reaction of the S
matrix. The association between a gene and its reaction is key for future predictions
generated by the model and should therefore be evaluated carefully.

Second, the initial draft is examined more closely through a refinement step. The
key elements of this step are the examination of the mass-balance conservation for
each reaction; that is the number of atoms in the reactants should be equal to the
number of atoms in the products. The same rationale goes for the charge of the
reactions. The balanced equations should have a neutral charge. These assumptions
are linked to the fundamental principles of chemistry, hereby ensuring that no mass
or energy is created in any reaction of the metabolic network. The gene-protein-
reaction (GPR) association is then verified for all reactions, and a confidence score is
attributed that facilitates further evaluation of the results once the model simulations
are compared to experimental data.

Non-gene-associated reactions are then added. Spontaneous reactions are reac-
tions for which no gene is associated and represent the natural occurrence of a
reaction that is thermodynamically favorable without the need for a gene-encoded
catalyst (enzyme). Other non-gene-associated reactions are exchange, sinks, and
demands. These reactions represent the environment/culture media of the cell. They
are not mass-balanced or charge-balanced by default since they represent the uptake/
dumping of metabolites from/to the media. They are nevertheless necessary for the
simulation of growth phenotypes under a given environment. Finally, a biomass
reaction and ATP maintenance (ATPM) are added. The idea of a biomass reaction is
to force the model to produce metabolites necessary for the growth of the organism,
and its potential in simulating growth will be discussed later. The ATPM reaction is
an ATP hydrolysis reaction that allows modelers to set a certain rate of ATP
consumption for a growing cell. Knowing the experimental energy requirements
hereby allows for more precise growth rate predictions.
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Finally, the reconstructed network is ready for validation and simulation. Setting
simulation constraints together with a defined objective allows the formulation of
predictions that can be tested. The model may or may not yield a feasible solution. In
the latter case, extensive unit testing may be required to address issues in the
formulated reconstruction (e.g., metabolite accumulation). Iteratively fixing those
issues allows the generation of a functional model that can be used for simulation.
The comparison of the formulated predictions with readily available experimental
data can either confirm how the system is expected to function or reveal potential
gaps in knowledge.

2.3 Objective Function

In linear programming, the objective function is the numerical value to maximize or
minimize. The significance of the value to be optimized is dependent on the situation
that the modeler wishes to simulate. For instance, Papoutsakis (Papoutsakis 1984)
generated a model for butyrate production. In that case, the numerical value is the
amount of butyrate (a feedstock of the chemical industry) that can be produced over
time. To simulate and explain acetate overflow,Majewski and Domach (Majewski and
Domach 1990) maximized the ATP production by the network. Finally, the FBA red
blood cell (RBC) model (Bordbar et al. 2011) maximizes the flux through the Na+/K+
ATPase pump. The choice of the objective function hence reflects the physiological
situation and is key for the predictions generated by the model. Since the RBC cannot
duplicate itself, it is assumed that the actual biological objective of the cell is to
maintain a proper gradient of sodium and potassium, a task that requires the produc-
tion of energy in the form of ATP. This proper objective definition along with the
integration of high-throughput experimental data allowed the identification of bio-
markers for RBC degradation upon storage (Yurkovich et al. 2017).

A common objective for modelers is to predict a growth phenotype. In this case, a
biomass objective function (BOF) is defined that contains every metabolite neces-
sary for the doubling of the cell (Feist and Palsson 2010). The BOF is modeled
through the addition of an extra reaction (column) of the stoichiometric matrix (S).
The proportion of each element within the cell is given as stoichiometric coefficients
in the reaction. In order to provide an estimation of growth rate, a basis is given
(Varma and Palsson 1993) such that the product of cell weight by time is equal to 1 g
of cellular dry weight per hour (gDW/h). While the metabolite composition of the
BOF may vary from a species to another, many components are shared across
prokaryotes that are necessary for growth (Xavier et al. 2017). The proper integration
of biomass components effectively present along with the stoichiometric coefficients
that reflect the experimental composition of the cell (Beck et al. 2018) in species
changes the accuracy of the model predictions (Lachance et al. 2018). The definition
of the BOF is therefore crucial to generate gene essentiality predictions, a key topic
for the endeavor of generating minimal cells in silico through genome-scale model-
ing with FBA.
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2.4 Conversion into a Mathematical Format and Evaluation

Genome-scale models have the power to simulate the organism’s metabolic capa-
bilities. Converting the reconstruction into a mathematical format through the
establishment of proper objective (e.g., precise definition of the biomass objective
function) and constraints (e.g., media definition, internal flux bounds, uptake and
secretion rates, etc.) provides the model with that potential. The model can then be
used to formulate predictions of the metabolic state of the organism. The predictions
formulated by the model and the datasets used to validate them vary based on the
scientific objective of the conducted research.

A common objective used to enhance the quality of the model is growth (max-
imize flux through the biomass reaction). The direct prediction is the growth rate,
which can be matched with the experimentally determined value. Getting a correct
doubling time is dependent on correctly determining the cellular energy expenses
and the stoichiometric coefficients of biomass precursors included in the biomass
reaction. Optimizing for biomass production can also be used to determine gene
essentiality by iteratively removing single genes and solving the model, a common
measure of a model’s quality, and will be covered in more detail later (see Sect. 4).
Finally, FBA provides a flux state with the given solution. While FBA finds a unique
optimal solution for the given objective function, many flux states may lead to
it. Different methods have been developed that study the variability of the flux states
that will be covered later (Gudmundsson and Thiele 2010). Modelers can then
sample and study the variability of the flux state to identify fluxes that are out of
biologically feasible ranges and apply supplementary constraints that improve the
model’s quality.

Compliance with experimental data can then be assessed. As mentioned, the gene
essentiality prediction of the model is commonly used as a reference for a model’s
general quality since it accounts for the quality of the assigned GPRs together with
the network topology, biomass, and media composition. A Punnett matrix is often
used to visualize the predictions formulated by the model with all four combinations
of true/false positive/negative represented. A metric such as accuracy or Matthews
correlation coefficient can be used to quantify the quality of the model’s prediction in
a single number.

3 Computational Methods for Genome-Scale
Reconstruction

With whole-genome sequences available for a greater number of species, the number
of genome-scale metabolic models (GEMs) developed over the last two decades
increased steadily (Monk et al. 2014). The number of computational tools tailored
for the reconstruction of biological metabolic networks as well as the analysis and
integration of omics data in these models has been developed accordingly (Lewis
et al. 2012). In this section we review the methods and databases used for the
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reconstruction of the stoichiometric matrix (S), filling reaction gaps in the network
and objective definition.

3.1 Tools for Network Reconstruction

The reconstruction of a GEM begins with the reconstruction of the stoichiometric
matrix of reactions and metabolites (Fig. 4). Careful inspection of the genome
annotation allows to link a gene and its sequence to a particular function in the
network. In order to connect these elements together, modelers can use the many
publicly available databases of pathways and biochemical reactions that are specif-
ically designed to provide the association between genes, biochemical reactions,
and/or the metabolic pathways (Kanehisa et al. 2017; Artimo et al. 2012; Placzek
et al. 2017; Wattam et al. 2017; Aziz et al. 2008; Devoid et al. 2013; Fabregat et al.
2018; King et al. 2016; Caspi et al. 2008).

The identification of metabolic candidates in the reference genome is the first step
of genome-scale reconstruction. To do so, modelers can either obtain enzyme
commission numbers (EC) from specialized software (Nursimulu et al. 2018) or
extract the information contained in the publicly available databases. In both cases,
the standardization of metabolite and reaction identifier is key for the consistency
and readability of the model. Since these identifiers vary considerably from one
database to another, draft reconstructions may not be readable in another format.
This type of issue has been addressed and can potentially be overcome by the use of
MetaNetX (Moretti et al. 2016) or BiGG (King et al. 2016). MetaNetX is a
web-based platform that attempts to centralize the identification of metabolite and
reactions while also providing methods for automated genome-scale reconstructions.
The main focus of the BiGG database is to list GEMs formulated in the BiGG
nomenclature. Nevertheless, reactions and metabolites stored on BiGG are linked to
other commonly used databases such as Reactome, KEGG, SEED, CHEBI, BioCyc,
and MetaNetX. Choosing an identification system and ensuring the conversion from
an annotation system to another is therefore key for the establishment of the draft
reconstruction of the model.

The network reconstruction can be executed in different frameworks based on
modeler’s preferences. The SEED (Devoid et al. 2013) and Merlin (Dias et al. 2015)
both allow for the automated generation of GEMs. While these functional models
provide predictions, exhaustive literature search and model fine-tuning are usually
necessary before a model is released (Thiele and Palsson 2010). The Open COBRA
(Constraint-Based Reconstruction and Analysis) suite is designed to include every step
of the process and is currently available under three different programming languages:
Python (COBRApy, Ebrahim et al. 2013), MatLab (COBRA Toolbox 3.0,
Schellenberger et al. 2011), and Julia (COBRA.jl, Heirendt et al. 2017). Implemented
in MatLab, the RAVEN toolbox (Agren et al. 2013) is another option for reconstruc-
tion that also entails the visualization of the metabolic networks. The sybil toolbox
allows R users to operate FBA, MOMA (Segrè et al. 2002), and ROOM (Shlomi et al.
2005) in their preferred language (Gelius-Dietrich et al. 2013). While Open COBRA
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does not specifically entail visualization, the generated network can be visualized by
building a metabolic map with Escher (King et al. 2015).

3.2 Tools for Network Analysis

The main functionalities of the reconstruction toolboxes mentioned above are to
allow the creation of foundational elements of models (metabolite, reaction, and
gene objects) and store them into a model object that can be saved or imported in the
desired format(s). These toolboxes also include basic model simulation functional-
ities such as the definition of objective and a bridge to the solver interface necessary
to optimize the model. These preliminary simulation functionalities are useful for the
conversion of the model into a mathematical format which can later be used for more
intensive simulation processes and the evaluation of the organism’s metabolic
capabilities. We cover here some of the algorithms that have been developed to
increase the quality of models before they are used for simulation.

3.2.1 Gaps in Network

In order to reveal biological capabilities, the network needs to be maximally
functional, that is, flux can go through as many reactions as possible. As discussed,
the mathematical formulation of FBA (steady-state assumption) does not allow for
the accumulation of metabolites. This means that for a given linear pathway, a single
missing reaction would block flux through every upstream and downstream reac-
tions. The entire pathway would then be considered unfunctional, a hypothesis of
debatable biological value that should be handled with care by modelers.

Several algorithms have been developed that aim at identifying problematic metab-
olites and reactions, solving gaps in the biological network, finding reactions that could
fill those gaps and eventually proposing genes that could catalyze the suggested
reaction(s) (Orth and Palsson 2010; Pan and Reed 2018). As mentioned, the general
framework of these algorithms first identifies dead-end metabolites, that is, metabolites
that cannot be produced or consumed in the metabolic network. Solving a gap in the
network may be accomplished by adding one or many reactions. To find candidate
reactions, these algorithms usually query larger reaction databases such as those
contained in KEGG (Kanehisa et al. 2017) or MetaCyc (Caspi et al. 2008). The value
of adding a given specific set of reactions can only be measured by the relatedness of
this proposed mechanism to the actual species being studied. Therefore, the third step
aims at identifying the best possible genes that can associate with those reactions.

The first gap filling algorithm (Satish Kumar et al. 2007) did not include this third
task, but subsequent versions incorporated different ways to input experimental data
along with the suggested reactions. GlobalFit (Hartleb et al. 2016) and ProbAnnoPy
(King et al. 2018) are good examples of gap filling methods attempting to improve a
metabolic model based on experimental data. For a deeper coverage of the available
methods, interested readers can consult this review by Pan and Reed (Pan and Reed
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2018). GlobalFit was used to increase the quality of two GEMs, Escherichia coli
iJO1366 and Mycoplasma genitalium iPS189. It uses a bi-level optimization prob-
lem to minimize the gap between predicted gene essentiality and the experimental
data and allows the incorporation of new reactions within the model or new
exchange reactions (media components) as well as biomass precursors (metabolites
of the BOF). ProbAnno (Web and Py) attributes a probability based on BLASTp
search e-value to rank the reactions used to fill the gaps in the network.

Such approaches are relevant in the current context of minimal cell research and
design. While a minimal cell has already been generated experimentally, the number
of genes it contains for which a precise function could not be attributed is a
significant portion of the complete genome (149/463). An ideal cellular chassis
should have no unknown properties (Danchin 2012) since it would serve as a
blueprint for further design. Hence, reconstructing metabolic networks and using
gap filling algorithms that provide functional annotation are systematic ways to
address the fulfillment of missing knowledge.

3.2.2 Objective Functions

The metabolic objectives of the cells can be summarized in a reaction of the
stoichiometric matrix and set as an objective: the biomass objective function
(BOF). The identification of key components necessary for a cell to grow is
nevertheless a daunting task. This process can be accomplished in a biased way,
which attempts at incorporating as much of the current knowledge of the organism’s
composition as possible or in an unbiased way where experimental data is utilized to
infer the cellular objectives. A worthy effort at summarizing the current knowledge
on prokaryotic biomass composition was accomplished by Rocha and colleagues
(Xavier et al. 2017). In this extensive study, the biomass composition of 71 manually
curated models available in the BiGG database (King et al. 2016) was compared
along with the phylogenetic distance of the species that they represent. Swapping the
BOF from a model to another showed that reaction essentiality prediction is sensitive
to the BOF composition. Further studying the impact of biomass composition on
gene essentiality predictions of several species, the authors found a set of universally
essential cofactors in prokaryotes. This foundational knowledge highlights the
importance of accurate BOFs for gene essentiality prediction by GEMs and provides
an important resource for future modeling work.

Using previously established essential cell components, modelers can partly
define the BOF for their organism of interest. Nevertheless, the remaining part of
the BOF is species-specific and can be completed using an unbiased approach. Much
like gap filling, cellular objective search can be performed algorithmically. Histor-
ically, most algorithms developed for that purpose have used metabolic flux analysis
(MFA) data together with various optimization methods (Burgard and Maranas
2003; Gianchandani et al. 2008; Zhao et al. 2016). While MFA is a particularly
well-suited type of data for flux models, the state-of-the-art number of fluxes
generated by the method does not scale to the number of reactions included in
GEMs. Recently developed algorithms attempt to use other types of data to find
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cellular objectives. BOFdat (Lachance et al. 2019b) uses a genetic algorithm to find
the biomass compositions that provide the best match between predicted and exper-
imental gene essentiality. The metabolites identified by the algorithm are then
clustered based on their relative distance in the metabolic network to form clusters
of metabolic objectives that can be interpreted by modelers. Another approach called
BIG-BOSS integrates multiple omics data types to formulate the cellular objective
by using a proteome constrained model, with a bi-level optimization problem similar
to BOSS (Gianchandani et al. 2008). By augmenting MFA for a subset of fluxes with
proteomics, the biomass composition was recovered more accurately than using just
one data type alone.

4 Data Integration and Phenotypic Predictions

Once a GEM is reconstructed, converted into a mathematical format, and validated
with experimental data, systematic model-driven hypothesis generation can take
place that will guide the design of the desired strain. Much like the design of a
production strain, the realization of a minimal cell requires in-depth knowledge of
the organism that can be acquired through the generation of extensive high-
throughput data. The integration of such data is made possible by GEMs, and a
plethora of software has been written that helps modelers in this task. Here we cover
available methods for the integration of high-throughput data as well as strain design
algorithms that can be leveraged for the design of synthetic minimal cells (Fig. 6).

4.1 Cellular Objectives and Gene Essentiality Prediction

A key concept for the design of minimal cells is the identification of removable
content. That is: “what genes are non-essential under laboratory conditions?”. To
formulate such prediction in silico, one must first determine the requirements for
growth (Fig. 6). As we mentioned, those are represented by the BOF in GEMs. The
definition of the BOF is tightly linked to the evolutionary pressure applied on the
strain, which is in turn function of its growth environment. For instance, given an
E. coli cell suddenly shifted from aerobic to anaerobic conditions, the instantaneous
modification in phenotype is the result of chemical and physical properties, i.e.,
utilization of new substrate, shift in metabolic state, changes in gene expression, etc.
This rapid adaptation can be termed proximal causation (Palsson 2015). Its counter-
part, termed distal causation, happens over time and is the result of evolutive
adaptation. Distal causation is proper to biological systems and entails a modifica-
tion of the genotype to fit the constraints imposed by the environment under which
the species is grown. Since the biomass composition of a cell is a result of its
evolution, each species entails different metabolite requirements for growth with
some essential components shared across a wide range of organisms (Xavier et al.
2017) (Fig. 6).
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4.1.1 Gene Essentiality Prediction

GEMs can be used to formulate reaction or gene essentiality predictions (Fig. 6). To
formulate that prediction, all reactions in the model are individually removed, and
every time, the model is optimized for growth (Suthers et al. 2009a; Joyce and
Palsson 2008). An appropriate threshold is necessary to discriminate between viable
and nonviable phenotypes. This allows determining which reactions are essential to
carry flux through the biomass reaction in the model. The proper definition of the
BOF is therefore critical for the accurate prediction of gene essentiality. The
qualitative definition of the BOF defines the growth requirements of the organism,
and the pathways that lead to the production of these metabolites are then activated.
Other constraints such as the growth media, uptake rates of the main carbon sources,
and/or oxygen also impact gene essentiality predictions.

The added value of GEMs is that most reactions within the framework are
associated with one or many genes. This association between gene and reactions is
termed GPR and accounts for reactions catalyzed by a single gene or multiple genes
in a complex, symbolized by an “and” rule, as well as isozymes, symbolized by an
“or” rule (Fig. 6). Whole-model gene essentiality can be generated easily using the
reconstruction toolboxes mentioned previously since they include an implementa-
tion of this function.

It is noteworthy that GEMs are very efficient at predicting gene essentiality.
Highly curated models like that of E. coli have achieved essentiality predictions on
different growth conditions with accuracies up to 93.4% (Monk et al. 2017). The
quality of the prediction relies both on the high level of biochemical information
included in the E. coli reconstruction and the precise knowledge of the growth
conditions. These limitations will be discussed later.

4.1.2 Beyond Single Gene Deletion

An advantage of GEMs is the ability to formulate predictions of synthetic lethality
(SL) (Fig. 6). The phenomenon was reported early in the classical era of biology in
an attempt to describe the observation that the combination of observable traits did
not yield viable descendants (Bridges 1922). At the gene level, SL is known as the
observation that simultaneously knocking out two genes yields a lethal phenotype
when their independent individual knockout provided a viable phenotype (Fig. 6).
Experimentally studying SL at the systems level is complex since it involves
screening several combinations of gene knockouts. For an organism containing
N individually nonessential genes, the number of combinations is the binomial
coefficient: n!

k! n�kð Þ!. Obtaining all possible SL combinations for an organism implies

generating a library of knockouts on top of a knockout library. This task has been
accomplished for heavily studied organisms such as Saccharomyces cerevisiae in
which gene editing methods are commonplace (Goodson et al. 1996; Deutscher et al.
2006) but is generally too demanding to be generated for most species.
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The computation of SL genes in FBA models is computationally expensive but
still orders of magnitude faster than generating the data experimentally. Using this
approach can guide the design of minimal genomes since it adds a level of infor-
mation that could not be otherwise fetched from the genome or single knockout
libraries. GEMs also provide the possibility to expand the SL study to more than
gene pairs and include triple or quadruple knockouts (Suthers et al. 2009a), an
undeniable advantage over the strictly experimental approach.

An interesting usage of SL analysis is the MinGenome algorithm written by
Wang and Maranas (2018). This algorithm takes as input the genome sequence of
the organism of interest, a GEM, genome-scale in vivo essentiality data, operon and
promoter sites, and transcription factor information. Using this information,
MinGenome iteratively finds the largest section of DNA that can be removed
without killing the cell. The operon structure along with the promoters and tran-
scription factor information are used to keep regulatory elements in place which
should increase the probability that the suggested minimal genome is functional
in vivo.

4.2 Multiple Omics Dataset Integration

As previously mentioned, the genomic era has enabled the generation of high-
throughput data (“omic”) for many different types of molecules. The integration of
these sizeable datasets into comprehensive biological knowledge requires a proper
framework. Metabolic models have been shown to provide a systematic way for the
integration of multiple omic datasets for mechanistic understanding (Monk et al.
2014; Bordbar et al. 2014). Ralser and colleagues discussed the integration of seven
types of omic datasets: genomic, transcriptomic, proteomic, lipidomic, metabolomic,
ionomic, and phenomic (Haas et al. 2017). The approach used to incorporate this
multi-omics information in GEMs will be discussed below.

GEMs use genomic information to extract biological functions of metabolic
genes. While the regulation of gene expression is not accounted in metabolic models,
the transcriptomic and proteomic datasets can be used to apply supplementary
constraints on the model. The flux bound can be limited based on the level of
expression or simply shut down when the genes are not expressed so that the
reaction(s) associated with these genes cannot carry flux (Fig. 6). The concept of a
minimal cell assumes a very specialized cell with reduced metabolic capabilities.
Integrating the gene expression datasets in models hence has the potential to
generate context-specific models that meet the expectation of highly specialized
minimal cells.

Other datasets characterize molecules outside the central dogma of biology (Crick
1970). Metabolite concentrations themselves are not included in standard FBA, but a
variant termed uFBA (Bordbar et al. 2017) allows the incorporation of time-course
metabolomics into GEM resulting in more accurate predictions of the metabolic state
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of the cell. Lipidomic and ionomic results are useful to determine the composition of
the cell, valuable information for the definition of the BOF.

The integration of multiple omic datasets with genome-scale models provides
mechanistic explanation of the organism’s phenotype under different environments
(Lewis et al. 2010). Using multiple omic datasets, Lewis et al. showed that E. coli
strains evolved under different conditions modify their pattern of gene expression in
a manner that is consistent with a variant of FBA termed parsimonious FBA (pFBA).
pFBA uses a bi-level linear programming approach to minimize the enzyme-
associated flux while maximizing biomass production. The flux state generated
using pFBA was consistent with the differential gene expression across conditions.
These findings provided support for the biological relevance of FBA. The implica-
tion for the design of minimal cells is that generating an FBA-based model for such a
cell would allow to design its optimal state ahead of conception.

5 Systems Biology of Minimal Cells

Since the proposition by Morowitz that minimal cells would allow understanding the
basic principles of life (Morowitz 1984), many efforts have been driven toward the
identification of theoretical minimal gene sets through comparative genomics
(Mushegian and Koonin 1996), gene-wide essentiality probing (Glass et al. 2006),
and a combination of these approaches (Baby et al. 2018). Genome reduction in
complex bacteria has also been attempted experimentally for several complex
bacteria (Choe et al. 2016), and ultimately, nearly 10 years of groundbreaking efforts
led to the realization of a working approximation of a minimal cell in vitro (JCVI-
syn3.0) (Hutchison et al. 2016; Sleator 2010).

We covered how the use of GEMs, which are mathematically structured knowl-
edge bases of metabolism, provides phenotypic predictions from genomic informa-
tion and thus can be leveraged for the rational design of minimal cells (Wang and
Maranas 2018). We will now review GEMs for some naturally occurring near-
minimal bacteria from the class of mollicutes and then cover expansion of modeling
methods beyond metabolism.

5.1 Available GEMs for Naturally Occurring Minimal
Organisms

Mollicutes have been the object of much research since they were proposed as the
smallest free-living organisms (Morowitz and Tourtellotte 1962). Extensive knowl-
edge of the particular metabolism (Miles 1992) of these species allowed the gener-
ation of GEMs for the most studied of them. The first GEM for a mollicute was
reconstructed for the human urogenital pathogen Mycoplasma genitalium (Suthers
et al. 2009b). This model includes 189 genes, 168 gene-associated reactions, and
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274 metabolites. Using the experimental essentiality data (Glass et al. 2006), the
model was consistent with 87% of essential genes and 89% of nonessentials. While
this model prediction may be accurate, several approximations were used for the
reconstruction. The biomass composition and the growth and non-growth-associated
maintenance costs that can be calculated from substrate uptake rate and secretion
rates were estimated from E. coli. Since there is no defined media forM. genitalium,
the growth media was also estimated.

Formerly known as Eaton’s agent, Mycoplasma pneumoniae is associated with
atypical pneumonia in humans (Dajani 1965; Lind 1966). Multiple efforts at char-
acterizing M. pneumoniae have been undertaken providing genome re-annotation
(Dandekar et al. 2000), and the transcriptome (Güell et al. 2009), proteome (Kühner
et al. 2009), and metabolism (Yus et al. 2009) have been studied in-depth. This
allowed the generation of a quantitative model for M. pneumoniae (Wodke et al.
2013). The amount of experimental data available allowed modelers to compare
predicted sugar utilization and obtain the energy utilization throughout the growth
phases. Constraining the model with this data allowed dissecting the pathway usages
at different growth stages.

The predictions formulated by theM. pneumoniae model revealed that a substan-
tial amount of ATP is not directed toward biomass production but rather toward cell
maintenance functions such as chaperone-assisted protein folding, DNA mainte-
nance, and posttranslational modifications. Strikingly, the ATPase was responsible
for most of the energy usage (57–80%) in order to maintain intracellular pH and a
favorable proton gradient across the membrane. The authors suggested that four
factors may impact the overall energy usage: the topology of the metabolic network,
the growth rate, the environmental conditions, and the cell size. These findings are
particularly interesting as they show that using a systems biology approach such as
GEMs for the design of bacteria can go beyond gene essentiality prediction and
reveal intrinsic properties affecting cellular energetics. These factors could hardly be
predicted without the integration of experimental data into a mathematically struc-
tured knowledge base.

5.2 Genome-Scale Modeling of Synthetic Minimal Organisms

Recently, modeling efforts were dedicated to JCVI-syn3.0, a synthetic working
approximation of a minimal cell (Breuer et al. 2019). The metabolic reconstruction
was generated using the gene annotation of the parental strain JCVI-syn1.0 (Myco-
plasma mycoides) for which much information is available. Collecting the breadth of
knowledge into a single computational format is a significant step forward in order to
define the functional metabolic requirements of a minimal cell. As discussed, GEMs
can be used to formulate phenotypic predictions such as gene essentiality and
integrate high-throughput data such as gene expression (see Sect. 4). Breuer et al.
recently provided a dataset of high-density transposon mutagenesis operated on
JCVI-syn3.0 as well as a quantitative proteomic dataset. The gene essentiality data
allowed identifying discrepancies between model predictions and observations.
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Together with the reconstruction process, the authors were able to formulate several
hypotheses on the remaining gene functions that could not be removed but never-
theless unknown.

Using proteomic data allowed contextualizing the activity of the expressed pro-
teins in JCVI-syn3.0, but the analysis is nevertheless limited. Indeed, while the
resulting GEM for this organism is the first and closest representation of a synthetic
minimal cell, more accurate model predictions would have required the detailed
biomass composition of this bacterium along with a chemically defined medium.
Including these parameters within the model should expand its predictive
capabilities.

6 Perspectives on the Use of Models for Minimal Cell
Design

A key objective of minimal cell research is to gather exhaustive understanding of the
cell. The FBA framework allows to generate multiple predictions on the metabolic
state of the cell, but the scope is limited to metabolism. Other approaches have been
developed that allow including constraints from various cellular functions such as
the expression machinery, regulatory network, enzyme kinetics, and thermodynam-
ics. We propose here to extend the definition originally proposed by Morowitz for
“the completeness of molecular biology” which entailed that every element in the
cell should be characterized.

What I do not understand I cannot create
—Richard Feynman

6.1 Expanding the Scope of Models Beyond Metabolism

6.1.1 Modeling Gene Expression

Using the constraint imposed by the stoichiometry of reactions was key for the
development of flux balance analysis (Kauffman et al. 2003) and later to genome-
scale models of metabolism. In an attempt to expand the scope of models beyond
metabolism, Thiele et al. reconstructed the expression matrix for E. coli (Thiele et al.
2009). The reconstruction of this matrix, named E-matrix by opposition to the
M-matrix for metabolism, was executed using the same protocol that was mentioned
above (Thiele and Palsson 2010). All reactions necessary for RNA transcription and
protein translation are included in the E-matrix. Interestingly, every element neces-
sary for the synthesis of proteins is considered as a metabolite in the network. For
instance, transfer RNA (tRNA) and ribosomal RNA (rRNA) are both metabolites
that can be produced from the transcription reactions. The tRNA are then charged
and used in another reaction which synthesizes proteins. While the number of genes
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included in the E-matrix (423 genes) was smaller than that of the M-matrix [1515
genes (Monk et al. 2017)], the number of reactions is significantly higher (13,694
reactions in E vs 2719 reactions in M). The large size of the E-matrix is due to the
high number of similar reactions catalyzed by the expression machinery.

Much like the M-matrix, the stoichiometry imposed by the E-matrix can be used
as a constraint, and the reconstruction can be converted into a mathematical format
by applying reaction bounds and fixing an objective. In this case, the uptake rates of
amino acids and nucleotides need to be fixed as they are the necessary metabolites
for the production of every downstream metabolites. The production of ribosome by
the model can then be optimized for different growth rates since ribosome produc-
tion is key for cell growth. Refining the constraints allowed the model to generate a
number of ribosomes matching the experimental data. This work demonstrated the
applicability of FBA to systems other than metabolism.

In order to couple the machinery of gene expression to the metabolism of the cell
and generate a unified model for cellular growth, additional constraints were needed.
Termed “coupling constraints,” these equations are a function of the organism’s
doubling time and account for the dilution of material in doubling cells while
providing upper limits on enzyme expression (Lerman et al. 2012; Lloyd et al.
2018; Thiele et al. 2012; O’Brien et al. 2013). These new constraints are both integer
and linear and therefore define a mixed integer linear programming (MILP) problem.
This type of problem is computationally more intensive than the regular linear
programming problem solved in FBA and also requires more specific solvers
(Yang et al. 2016).

6.1.2 Simulating with ME Models

An ME-model links metabolism to gene expression and can be used to generate
experimentally testable predictions such as growth rate, substrate uptake and secre-
tion rates, metabolic fluxes, and gene product expression levels (O’Brien et al.
2013). This last property is important as it simplifies comparison with experimental
gene expression levels, which can now be routinely generated under many different
environments. The ease of integration of multiple omics data in ME models has
allowed the identification of key biological regularities (Ebrahim et al. 2016).
Experimental proteomic data can provide absolute protein counts within a cell,
which can be used to constrain the amount of protein in the ME model. Fluxomic
data can also be used as a constraint since it provides the flux through a certain
number of reactions. Combining these two types of data into ME-model simulations
allowed to generate turnover rates (keff) for enzymes in the model, an example of
model-driven generation of knowledge.

Simulating ME models over 333 different environmental conditions, Yang et al.
identified genes consistently essential for optimal growth in E. coli (Yang et al.
2015). The formulated model-driven prediction of the core proteome was also found
to be consistent with non-differentially expressed genes. Obviously, the functional
incorporation of expression subsystems provided by the ME matrix allows the
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identification of more functional categories [COG (Koonin et al. 2004)] when
determining a minimal gene set. This was further exemplified by the fact that
DNA replication and repair mechanisms, functional categories absent from the ME
model, were not represented in the core proteome. The further expansion of the
ME-model to include other cellular systems such as a constraint-based approach of
the regulatory machinery would provide a working approximation of a whole-cell
model requiring fewer experimental parameters than what has been previously
generated (Karr et al. 2012).

Potentially because of the size of the E-matrix, the reconstruction of entire ME-
models has been contained to only two species so far, namely, Thermotoga maritima
and E. coli (Lerman et al. 2012; O’Brien et al. 2013). Much like the generation of M-
models is eased by the existence of toolboxes, the reconstruction of ME-models
could be widespread by the recent publication of COBRAme, a Python framework
for the reconstruction of ME-models (Lloyd et al. 2018).

6.2 Perspectives on the Use of Models to Design Minimal
Cells

We delved into the historical evolution of biology and highlighted the possibility that
a part of the discipline could turn into a field of engineering, in which the concept of
a minimal cell would play a central role. The main idea surrounding this minimal cell
concept is that of biological reductionism (Glass et al. 2017), which entails the
complete description of every molecular functions harbored by a free-living cell
(Lachance et al. 2019a). Reaching this level of knowledge is of paramount impor-
tance for the establishment of key design rules for organisms. With the advent of
DNA synthesis techniques and whole-genome assembly, the creation of entirely new
organisms is within reach. Such an example has been achieved with JCVI-syn3.0
(Hutchison et al. 2016), completing the first functional in vitro approximation of a
minimal cell.

JCVI-syn3.0 reveals the state of the art in the design of minimal cells. Cutting-
edge methods together with extensive work over many years have been put in place
in order to produce this framework. The amount of labor necessary is met with the
high-throughput capabilities of our days and age, both in terms of DNA synthesis
and cloning and assembly, but the limiting factor remains the predictability of a
given design. This struggle, relevant for both academic and industrial researchers, is
one of the grand challenges that lays ahead in synthetic biology, and it is understood
that laboratories which possess the best predictive power may outcompete those with
high-throughput production and analysis capabilities.

In this context, the development of models for minimal cells is of paramount
importance. We have reviewed the standard FBA approach for the genome-scale
modeling of metabolism (Figs. 3, 4, and 5) and its applications for high-throughput
data integration and the formulation of phenotypic predictions such as the flux
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through metabolic reactions and gene essentiality (Fig. 6) (Suthers et al. 2009a;
Zomorrodi and Maranas 2010). Integrating this knowledge into a single framework
is important to offer a systematic way of addressing knowledge gaps (Orth and
Palsson 2010; Pan and Reed 2018) as demonstrated by Breuer et al. in their GEM of
JCVI-syn3.0 (Breuer et al. 2019).

What lays ahead is up for debate. Further development of models for mollicutes
will require more exhaustive biomass and growth media definition to impose
relevant constraints on the system. Given their small genomes, the number of
biochemical studies needed before exhaustive characterization is reached is reduced
and, with the help of models, could be addressed rather quickly (Danchin and Fang
2016). A recently developed algorithmic method allows to generate a minimal
genome sequence from transcriptional architecture and an ME-model (Wang and
Maranas 2018) which could help in reducing genomes of more elaborate organisms

Fig. 5 Tools for genome-scale reconstruction and analysis. (a) Non-exhaustive list of computational
tools and databases for the reconstruction of metabolic networks. First, querying annotation databases
allows the identification of metabolic gene candidates (RefSeq, PATRIC). These genes can be associated
to reactions by consulting reaction databases (KEGG, Brenda, ExPaSy, Chebi). The reactions and
metabolites are associated to model specific identifiers using model-oriented databases (BiGG,
MetaNetX,ModelSEED). The reconstruction toolboxes are designed to facilitate the creation of reaction,
metabolite, gene and model objects programmatically (Open COBRA, Sybil, Raven). (b) Non-exhaus-
tive list of computational tools to facilitate the identification of gaps in the network and cellular objectives
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that are already used as production strains such as E. coli and S. cerevisiae. As we
just discussed, constraint-based approaches can be expanded beyond metabolism,
allowing the generation of models of metabolism and expression, ME-models. These
models have already been employed to generate an in silico prediction of the core
proteome by simulating on a wide array of different environments (Yang et al. 2015).
With one of the main conclusions of this study being that the inclusion of more
cellular systems be important for accurate predictions of a minimal gene set, it is
interesting to consider that the expansion of modeling methods beyond metabolism
and expression may be key for the rational design of minimal cells.

Finally, in silico writing of functional genome should be the following step. The
integration of software tools for the conception of genomes is underway with the
“Autocad” for genome recently published (Bates et al. 2017) as well as a genetic
circuit compiler (Waites et al. 2018). Such tools are inspired by the experience
acquired in the field of engineering, and the interest spurred by the community
suggests a widespread application for the future of biology. For now, no organism is
fully characterized, and hence the proposed completeness of biology (Morowitz
1984) is yet to be achieved. The use of genome-scale models together with genome
writing tools might accelerate this process, and once a well-understood minimal cell
chassis is described, strain design will reach a new paradigm.
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