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Preface

The goal of industrial or white biotechnology is the generation of products and
services by employing living organisms or their components. The aim is the devel-
opment of commercially viable processes for the transformation of renewable raw
materials into useful products, thus replacing technologies based on the use of
nonrenewable fossil feedstocks whose processing and utilization generates toxic
by-products. While most organisms can be employed in biotechnological processes,
microbes are widely used since they can be grown and genetically modified with
relative ease. The development and optimization of a biotechnological process entail
diverse goals; one of them is to improve the performance of a microbial cell as a
factory. This objective is mainly achieved by employing a wide array of techniques,
collectively known as genetic engineering, which enable the modification of the
information in the genome of the organism. The capacity for genetic modification
started as modest changes in specific gene regions and the transfer and expression of
genes among species. Over the last few years, genetic engineering techniques have
improved considerably, allowing precise and extensive genetic modifications. These
methodologies have been recently complemented by the emergence of synthetic
biology. This new field applies engineering principles to biology and is based on
mathematical modeling to design and create novel biological parts, devices, and
systems.

The genome of each organism specifies all the cellular functions required for its
growth and survival. A fraction of the genes in the genome is required for essential
functions, while many other genes become active only under specific conditions in
the continuously changing natural environment. The gene set required for self-
replicating life is considered the minimal genome. Approaches such as the genera-
tion and analysis of mutants, the comparison of sequenced genomes, the generation
and analysis of genome-scale metabolic models, and the study of bacteria with small
genomes have enabled the estimation of the minimal number of genes that could
sustain life. These methods place the number of essential genes around two to three
hundred. In addition to its value for basic science, the minimal cell concept has
implications in biotechnology. In contrast to a natural environment, in industrial
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production processes, physicochemical conditions are highly controlled to remain at
specific values. In this context, many of the genes in the genome are not required for
production performance. The replication and expression of genes required for
survival in the natural environment could represent a waste of energy in an industrial
bioreactor. In addition, the presence of repeated and self-replicating genetic elements
in the genome can result in production strain instability. Therefore, it is expected that
the elimination of genome regions that are not required for cell replication and the
synthesis of the desired product could result in minimal cells with improved pro-
duction performance. A cell with a reduced or minimal genome can be considered as
a chassis where natural or synthetic functions could be added to generate a cell
specialized for the synthesis of a specific biotechnological product. Moreover, a
reduced genome may decrease the rate of interactions between the synthetic genetic
program and the chassis genome (e.g., insertions of genes of the genome into an
expression vector plasmid).

The objective of this book is to provide reviews on the current knowledge related
to the design, characterization, and use of minimal cells. Leading experts wrote the
book chapters and included up-to-date information as well as the in-depth analysis of
current issues and challenges on this topic. This book aims to become a source of
reference for researchers and students working in this field in academia and industry.
Chapters in this book describe the specific approaches employed for the generation
of minimal cells of the microbes Escherichia coli, Pseudomonas species, Bacillus
subtilis, Corynebacterium glutamicum, Lactococcus lactis, Streptomyces species,
Schizosaccharomyces pombe, and Saccharomyces cerevisiae. These organisms are
employed as production strains in industry and as models in basic biological
research. Genome reduction in these organisms has resulted in strains with improved
productivity and genetic stability. Specific chapters also address the various methods
employed to define the minimal gene set required for the generation of minimal cells.
Genome-scale metabolic models can be employed to predict gene essentiality based
on computational simulations and also to determine the growth phenotypes
expressed from the minimal genomes. Specific chapters also address the concepts
of gene persistence based on metabolic functions and optimal cellular resource
allocation as alternatives to define the minimal gene set for the generation of chassis
strains.

Support from the Universidad Autónoma Metropolitana and Universidad
Nacional Autónoma de México is gratefully acknowledged by the editors.

Ciudad de Mexico, Mexico Alvaro R. Lara
Cuernavaca, Mexico Guillermo Gosset
July 1, 2019
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Reduced and Minimal Cell Factories
in Bioprocesses: Towards a Streamlined
Chassis

Martin Ziegler and Ralf Takors

Abstract The rapid advances in molecular genome engineering, systems biology
and synthetic biology over the past decade have laid the ground for extensive
engineering of bacterial and fungal genomes and the rational setup of synthetic
biological systems. In order to optimize the production host for biotechnical pro-
cesses, the genomes of many industrial workhorse microorganisms such as
Escherichia coli, Bacillus subtilis, Corynebacterium glutamicum, Streptomyces
species, Pseudomonas species, Saccharomyces cerevisiae, and Lactococcus lactis
have been successfully reduced. Here, we evaluate this progress in the context of
biotechnical application for the production of industrially attractive products. Based
on the view of microbial cells as factories, we discuss the concept of relevant genes.
We attempt to estimate the theoretical benefits of genome reduction which form the
basis of target selection. Subsequently, we comprehensively discuss existing studies
on genome-reduced strains. The current limits of beneficial genome reduction and
potential future developments in both prokaryotic and eukaryotic systems are
considered.

Keywords Genome reduction · Minimum genome · Microbial cell factory ·
Chassis · Essential genes · Relevant genes

1 Introduction

In 1982, the complete sequencing of the genome of Bacteriophage Lambda marked
the beginning of a new era in Biosciences (Sanger et al. 1982). The extensive
availability of sequence information promised to revolutionize our understanding
of life. Technical progress such as shotgun sequencing technology enabled sequenc-
ing of much larger genomes in the following decade with the Haemophilus
influenzae genome being the first published genome of a free-living organism
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(Fleischmann et al. 1995). The complete sequence of Saccharomyces cerevisiae
assembled in 1996 was not only the first eukaryotic sequence but also the first of an
economically relevant organism (Goffeau et al. 1996). Only 1 year later, the
sequences of model organisms Escherichia coli K-12 and Bacillus subtilis were
reported (Blattner et al. 1997; Kunst et al. 1997), and in 2001 sequencing of the
human genome was finished (Venter et al. 2001). Since then thousands of genomes
have been sequenced and are publicly available through resources such as GenBank
(Benson et al. 2013).

At the same time, the scientific community initiated first projects yielding cells
with a reduced genome. The aim was the generation of deletions up to the point of a
minimal set (Koob et al. 1994). Already then a major motivation was to simplify the
model organism Escherichia coli for research purposes and to improve its accessi-
bility and predictability as an industrial workhorse organism. Since then, advances in
molecular biology have enabled genome modifications and functional genomics in a
vast variety of microorganisms and eukaryotic cell lines. With the availability of
CRISPR-Cas technology, this process has once again accelerated (Ford et al. 2018;
Salsman and Dellaire 2017). Complementary research has targeted our understand-
ing and annotation of genomic information as well as the application of this
knowledge for the purpose of metabolic engineering (Stephanopoulos 1999; Tao
et al. 1999).

This contribution aims to provide an overview of the current progress in genome
reduction both from the viewpoint of the molecular biologist and with the eyes of the
metabolic engineer. Our considerations will always be directed towards the utiliza-
tion of microbes in an industrial production scenario. The target conditions assumed
are thus controlled cultivations in bioreactor systems. We will begin with a short
presentation of the cell factory concept, followed by an in-depth look at the theo-
retical gains expected from genome reduction. Modern methods from the field of
molecular biology for the generation of genome-reduced organisms will be
addressed only superficially as they have been extensively reviewed elsewhere
(Adli 2018; Freed et al. 2018; Guha et al. 2017; Nakashima and Miyazaki 2014;
Oesterle et al. 2017). Instead we thoroughly summarize and examine published
studies on genome-reduced strains. We critically consider their potential benefits
for industrial production.

2 The Concept of Microbial Cell Factories

In the early 2000s, the first generation of genome reduction studies focusing on
Escherichia coli were published (Kolisnychenko et al. 2002; Yu et al. 2002).
Remarkably, although a significant portion of the E. coli genome was deleted the
resulting strains did not show growth defects. It was proposed that the combination
of these approaches with complete essentiality libraries like the KEIO collection
might even form the basis for accurate modeling of cellular responses to real-time
changes in its environment (Baba et al. 2006; Smalley et al. 2003). Following this
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concept the idea of creating cells with a minimal genome resulted in various projects
to reduce the genomes of several industrially relevant microorganisms with the
purpose of improving their basic production parameters (Ara et al. 2007; Giga-
Hama et al. 2007; Mizoguchi et al. 2007). On the contrary, molecular biology and
synthetic biology showed interest in finding the essential set of genes needed to
sustain life and to artificially create it (Burgard et al. 2001; Fraser et al. 1995).

Both approaches have in common that the cell is regarded as a complex but defined
self-replicating factory. Similar to a macroscopic industrial facility, there are core
components that cannot be replaced and auxiliary components for special situations.
On a molecular level, the scientific community generally accepts the interpretation of
complex multi-protein structures as biological machines (Alberts and Miake-Lye
1992). A cell is consequently an assembly line consisting of such biological
machines. However, given that the number of some reaction partners in a cell is
very low—in the extreme case of genomic information it can equal one—metabolism
is also inherently stochastic (Kiviet et al. 2014; Kurakin 2005). The inherent
stochasticity of growth, enzymatic reactions, and gene expression leading to pheno-
typic variability of single cells in a clonal population can be assessed based on single-
cell data and computational simulation (Kiviet et al. 2014; Thomas et al. 2018). Under
the conditions of an industrial large-scale reactor another layer of stochasticity is
added: variations in the local environment of cells due to imperfect mixing. The
extracellular stimuli from fluctuating substrate gradients enhance existing phenotypic
variability through their interaction with cellular regulation (Delvigne et al. 2009).
The concept of regarding cells as microbial factories holds though—as long as we
consider cellular individuality and plasticity.

From the simplest point of view, cells convert Gibbs free energy of substrates into
biomass and products, thereby linking Gibbs free negative catabolic reactions with
Gibbs free positive anabolism. It should be noted that net Gibbs free energy is negative
which usually coincides with an increase in systemic entropy. Thus, the cell works
very similar to a chemical refinery—with the bonus of being able to duplicate itself by
self-assembly. From a chemical engineer’s perspective such systems are called auto-
catalytic: One of the reaction products (biomass) is a catalyst for the reaction (substrate
turnover). For a simple conversion process observed from maximum distance we can
describe this behavior as if an entire population of cells was working as a single
catalytic unit. This black-box approach leads to an unstructured, unsegregated model
(Weuster-Botz and Takors 2018). The empiric description of the resulting process
kinetics results in the well-known Monod model (Monod 1949).

Looking closer into what happens inside the cell reveals the complex metabolic
network and its regulation behind this behavior. The flow of carbon through the
central metabolism alone involves dozens of conversions, forks, and joints. Models
integrating this information are called structured. In analogy to a refinery, enzymes
can be seen as the workforce, information carrier proteins serve as managers and the
genome represents the administrative headquarter. If we now consider that not all
cells in a bioreactor are exactly identical, we reach a segregated model including
microbial individuality (Weuster-Botz and Takors 2018). Population heterogeneity
can arise on various levels: Bioreactor populations are clonal expansions from single
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cells, but randommutations and plasmid loss occur frequently. If mutants grow faster
than their parent strain they can become a significant fraction of total biomass or even
overtake the population. Frequently such mutations lead to the generation of
non-producer populations. Speaking in macroscopic terms such cells are on
strike—they refuse to produce the desired product. In recent years, other sources of
heterogeneity have been increasingly investigated. Imperfect mixing leads to the
generation of spatial gradients in bioreactors and can be the cause for heterogeneity
on the transcriptional level and in production parameters (Delvigne et al. 2009; Simen
et al. 2017).

A real-world factory is planned and managed by intelligent beings. Microbes on
the other side are naturally only optimized in a trial-and-error fashion: through
mutation and selection. The evolutionary pressure experienced by microorganisms
over billions of years on earth has unquestionably converted them into complex,
adaptable, and versatile living beings. However, they were not selected for serving
modern humanity’s need for efficient conversion of chemicals on an industrial scale.
There are rare exceptions: Various strains of Saccharomyces species, which were
domesticated hundreds of years ago, have evolved favorable traits for ethanol
production such as utilization of maltotriose (Gallone et al. 2018). In general,
however, we can expect microbes to behave imperfectly in the artificial production
scenarios imposed on them. For instance, Bacillus subtilis, traditionally utilized for
natto fermentation and the major workhorse for industrial enzyme production
(Schallmey et al. 2004), has an inherently suboptimal flux distribution which directs
carbon and energy towards adaptive responses even under optimal growth condi-
tions (Fischer and Sauer 2005). Moreover it displays rigid regulation at the flux
distribution ratio of glycolysis and pentose phosphate pathway which points towards
excess production of NADPH independent of process conditions (Fischer and Sauer
2005). Bacillus species thus appear predestined for metabolic improvement through
genome reduction and flux rerouting.

The optimization of cellular factories through addition of novel production
streets, removal of wasteful auxiliary systems and optimization of pathway flux is
the raison d’ être of the metabolic engineer (Stephanopoulos 1999). The goal is to
redesign cellular metabolism and regulation in an intelligent way (Bailey 1991;
Takors et al. 2007).

The interpretation of cells as living factories is helpful for this purpose, because
similar concepts like in real world factories can be applied. Similar to macroscopic
production facilities they have an inherently modular structure embedded in a
complex framework. Modularity does not mean orthogonality. In the chaotic envi-
ronment of a crowded cell all molecules interact with each other and all fluxes are
interdependent. Bailey (1999) pointed out that the metabolic and regulatory frame-
work of a cell interacts with all its modules. Thorough understanding is consequently
only possible at the systemic level (Bailey 1999). For example, knockouts of
pyruvate kinase in E. coli have surprisingly little impact on global flux ratios as
the lack of this enzymatic activity is subsequently compensated on systemic level by
the activation of phosphoenolpyruvate carboxylase and malic enzyme (Emmerling
et al. 2002). Flux rigidity is often observed in single knockout strains and based on
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the evolutionary evolved regulation of enzyme activities and cellular concentrations.
Minimization of metabolic adjustment (MOMA) provides a method for estimating
flux distributions in a rigid flux ratios scenario (Segrè et al. 2002). Compare these
findings to the situation in a real-world factory. Imagine what would happen if you
removed a single workstation in a manufacturing line due to safety issues. There are
two possible outcomes: Either the workstation is critical for the entire process and
production will completely shut down or workers will quickly find a bypass by
taking an alternative route or using a similar workstation to compensate for loss.
Overall production will likely be lower but the ratios of manufactured good fluxes on
the level of the entire facility will hardly change. It will take time to find a new
production optimum. Management might be involved and order more workers to the
alternative workstation. Changes in preceding or following stations might be appro-
priate. Going back to the cell adaptive and evolutionary mechanisms will finally
optimize disturbed fluxes to reach optimal growth in single knockout and genome
reduction strains (McCloskey et al. 2018; Nishimura et al. 2017).

Global interdependence of all cellular components is a fact, but many operons and
the pathways their encoded enzymes partake in are organized as modules. A prime
example of cellular modularity is the synthesis of terpenoid-derived compounds. The
primary precursor for terpenoid biosynthesis, isopentenyl diphosphate (IPP), is
accessible either through the methylerythritol-phosphate (MEP) pathway native to
E. coli or through the mevalonate (MVA) pathway native to S. cerevisiae (Schempp
et al. 2018). A chassis for the production of terpenoids in E. coli can thus be designed
by two approaches: debottlenecking and deregulation of the native MEP pathway or
heterologous expression of MVA pathway enzymes (Du et al. 2014; Willrodt et al.
2014). These two modules are embedded in the complex network of cellular
reactions, and they do not interact identically with it. Stoichiometric calculations
indicate that with glycerol or glucose as the primary carbon source utilization of the
MEP pathway to IPP may be advantageous as it is balanced in reducing power and
offers higher carbon conservation (Ajikumar et al. 2010; Dugar and Stephanopoulos
2011). If IPP is converted into more complex terpenoids, the excess NADH gener-
ated by the MVA pathway might be advantageous though by providing necessary
reducing power or ATP through respiration. The intelligent choice of production
strategy lies in the hands of metabolic engineers.

In the end, improvements can be made on both scales: in single modules like
aromatic amino acid production pathways and on a global scale using systematic
approaches (Bailey et al. 2002; Lee and Kim 2015; Takors et al. 2007). By adopting
a holistic view, unnecessary systems that decrease the overall efficiency can be
removed, converting the cell into a lean system (Leprince et al. 2012; Valgepea et al.
2015). The primary characteristics of such a cell would be a reduced maintenance
demand and an increase in productivity while preserving other physiologically
relevant parameters (Fig. 1). Vickers et al. (2010) proposed that starting from
minimal cells chassis organisms can be derived through the addition of reactions
or modulation of metabolic fluxes. Such a chassis may serve as a platform organism
for the production of sets of chemicals or proteins (Vickers et al. 2010).
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The concept of microbial cell factories has been adapted by authors from diverse
research fields (Gong et al. 2017; Pscheidt and Glieder 2008; Villaverde 2010).
While new genetic hosts are on the rise, the majority of industrial bioprocesses, for
instance, biopharmaceutical production, utilizes a small set of reoccurring species
(Ferrer-Miralles et al. 2009). The construction of chassis organism tailored towards
the production of a subset of chemicals appears as a logical way to simplify research
and development processes and increase process performance (Esvelt and Wang
2013; Sauer and Mattanovich 2012). An already heavily optimized chassis is
Corynebacterium glutamicum, one of the leading microbes for amino acid produc-
tion (Becker and Wittmann 2012; Lee et al. 2016). With the use of systems biology
and synthetic biology tools plus the availability of efficient genome-engineering
methods, simplification through intelligent genome reduction becomes a realistic
target as another layer of improvement (Colin et al. 2011; Gao et al. 2010). Or, to
stay with the analogy of a factory: The aim is to cut the operating costs of living cells.

Fig. 1 Desired traits of lean microbial cell factories. In comparison to wild-type cells (upper part),
the genome-reduced lean cell (lower part) directs a greater proportion of nutrients to product
synthesis. The maintenance demand is reduced while substrate uptake rates may improve. Nutrient
versatility is conserved
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3 Theoretical Considerations on Genome Reduction

What is genome reduction? In the context of this contribution, we will run with the
following working definition:

Genome reduction is the repeated deletion of irrelevant genes by methods of genetic
engineering with the purpose of constructing a functionalized cell for a selected application.

This somewhat bulky definition attempts to distinguish genome reduction from
other deletion attempts. Clearly, simple deletions targeted at the understanding of
gene function such as the Keio collection (Baba et al. 2006) cannot be considered
genome reduction as they lack the cumulative nature of the approach. On the other
hand, reductive evolution, which may very well be consecutive in nature (Wolf and
Koonin 2013), must be excluded, hence the requirement for genetic engineering
methods.

It is difficult to accurately delimit genome reduction from metabolic engineering.
Looking at the definition of metabolic engineering proposed by Gregory
Stephanopoulos provides us with a basis: “Here we define metabolic engineering
as the directed improvement of product formation or cellular properties through the
modification of specific biochemical reactions or the introduction of new ones with
the use of recombinant DNA technology” (Stephanopoulos 1999). Genome reduc-
tion as defined by us differs in that specificity is not necessarily assumed and single
knockouts to reroute intracellular fluxes are excluded. However, recent approaches
towards genome reduction discussed later in this contribution are increasingly
knowledge-driven and specific in their target selection. Consequently, there is a
gray area where metabolic engineering and genome reduction overlap. If we adopt a
broader interpretation of Stephanopoulos’s definition of metabolic engineering and
integrate the concept of cell factories within it, then genome reduction becomes a
subset of metabolic engineering.

The Concept of Relevant Genes Our definition of genome reduction specifically
mentions irrelevant genes in an attempt to circumvent the fuzzy term (non-)
essential genes. For years, there has been an ongoing discussion on which genes
are essential for life (Commichau et al. 2013; Juhas et al. 2014; Koonin 2000;
Szathmáry 2005). Unfortunately, definitions of the term vary and are complicated
by inconsequent use and addition of descriptive operators like critical, core or
superessential (Barve et al. 2012; Gil et al. 2004; Hooven et al. 2016). Simulated
minimal metabolic networks—albeit being valuable tools—provide no uniform
answer either (Ye et al. 2016). Elementary mode analysis can be used to compute
all minimal sets of reactions or enzymes necessary to support a metabolic network
at steady state, but there is typically more than one solution for a given network
(Schuster and Hilgetag 1994; Trinh et al. 2008). Additionally, inferring a biolog-
ically meaningful minimal set of enzymes from such calculations is difficult as
enzymes may be promiscuous or their regulation may not allow an elementary
mode to be actually realizable in vivo. Some authors restrict the term essential to
only the most basic cellular functions such as DNA replication and protein
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biosynthesis implying that many metabolites are readily available for uptake in an
artificially defined system (Gil et al. 2004). Others emphasize the fact that essen-
tiality depends on the outer circumstances in which a living system thrives
(Burgard et al. 2001).

For the application of microbes in an industrial setting these definitions are
insufficient. In the defined niche of a bioreactor it is necessary to individually
consider which genes are required for survival and replication. Next, genes which
are beneficial towards economically relevant parameters such as product tolerance
are identified. Following a recently proposed definition, the union of these genes is
termed relevant genes and entirely dependent on the specific needs of a process
(Noack and Baumgart 2018; Unthan et al. 2015). For example, in an E. coli process
substrate uptake must be fulfilled by a suitable transporter. Depending on the choice
of carbon source the associated transporter is a relevant gene: Regarding a glycerol-
based process glpF is a major relevant gene (Hénin et al. 2008). In a glucose-based
process, it falls into the category of irrelevant genes and is in consequence a potential
deletion target (Noack and Baumgart 2018). In summary we limit genome reduction
to a point where the cell retains its ability to replicate on its own while displaying
advantageous production traits in a specific and predefined environment.

In the previous sections, we have discussed the concept of microbial cell facto-
ries. Genome reduction from this perspective attempts to simplify the host reducing
its carbon and energy waste. The question arises what improvements in terms of
measurable parameters can be expected from a genome-reduced organism and how
to identify promising deletion targets.

Reduction of Genomic DNA Content DNA replication is not a free lunch. In
minimal medium nucleotides are synthesized de novo from glucose and salts, and
polymerization requires further energy input. Theoretical calculations on biomass
composition alone estimate the cost of DNA synthesis under these conditions at
around 3% of total cellular ATP expenses (Stouthamer 1973). Since even under
optimal conditions about half of the available ATP is apparently not channeled into
biomass but lost in membrane potential upkeep and other processes (Farmer and
Jones 1976), this value decreases to approximately 1.5% of total ATP generated. The
potential to save energy merely from reduced DNA synthesis is thus relatively small.
On the other hand, even small contributions can be impactful under the conditions of
an economically strained large-scale process. One of the largest successful deletion
series in E. coli comprises roughly 22% of the genome (Mizoguchi et al. 2008)
which by itself would be estimated to reduce ATP expenses by about 0.33%. From a
carbon balance point of view, this strain would save roughly 0.5% of carbon
molecules per division assuming 2% DNA content in dry biomass at growth rates
close to 0.3 h�1 (Taymaz-Nikerel et al. 2010).

Are there other potential benefits accompanying reduced genomic DNA content?
Choe et al. (2015) proposed that a smaller genome might result in faster doubling
times since DNA replication time exceeds doubling times under fast-growing
conditions in E. coli (Choe et al. 2016). However, E. coli naturally balances this
situation by multifork replication (Fossum et al. 2007). Studies on different E. coli
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deletion series did not yield uniform outcomes, and none conclusively showed an
increase in the maximum specific growth rate μmax. In fact several groups indepen-
dently observed detrimental effects in μmax over cumulative deletions based on
different criteria (Hashimoto et al. 2005; Karcagi et al. 2016; Kurokawa et al.
2016). Simply assuming benefits of genome reduction by saving of energy on
DNA replication ignores side effects that may be caused by multifunctionality of
genes or promiscuity of encoded enzymes. In contrast, if deletion regions were
specifically selected based on neutrality towards growth no decrease, but also no
increase, in μmax could be observed (Mizoguchi et al. 2008). The probably most
comprehensive study on process relevant parameters of a genome-reduced organism
showed an increase in μmax from 0.38 to 0.53 in Pseudomonas putida with deletions
comprising only 4.3% of the genome (Lieder et al. 2015). Obviously, this increase
cannot be caused by the reduced DNA content alone, and it is impossible to
accurately attribute potential contributions. Perhaps only a reversed approach can
solve this issue: artificially burdening a microbial wild-type genome with
non-expressible junk DNA.

Reduction of RNA and Protein Synthesis Costs While ATP used for DNA
replication appears to be a minor fraction, things change if we look at the synthesis
costs for RNA and proteins. Under the same assumptions as mentioned in the prior
section, and regarding the exemplary case of E. coli, monomer synthesis and
polymerization make up about 35% of total cellular ATP expenses (Farmer and
Jones 1976; Stouthamer 1973). Comprehensive work on the lac operon showed that
the process of expressing useless genes burdens cells considerably, resulting in a
growth disadvantage in competition experiments (Stoebel et al. 2008). The actual
presence of useless protein in turn does not confer a competitive disadvantage—at
least under the conditions of aforementioned study. These findings are well in line
with theoretical estimations that appraise polymerization of proteins as the most
costly cellular process (Noack and Baumgart 2018; Stouthamer 1973). However it
remains unclear whether occupation of RNA polymerases and ribosomes contributes
significantly to the observed disadvantage (Stoebel et al. 2008).

In consequence, if we free a strain from the expression of certain proteins it will
have more resources available for the formation of biomass or target products. Gene
expression is heavily regulated though raising the question to what extent expression
of unnecessary proteins occurs. The well-known lac operon is strongly repressed up
to 1300-fold by Lac repressor in the absence of lactose (Oehler et al. 1990). Under
such circumstances its products are regularly below the detection limit of proteomic
methods. To achieve its strong repression, Lac repressor is sufficient in minimal
quantities, typically in the range of ten molecules per cell (Schmidt et al. 2016,
supplementary material). Compared to the total number of proteins per cell, which is
estimated at roughly 3,000,000 (Milo 2013), the impact of single deletions targeted
at unused operons does not appear promising. Even the combined benefit of dozens
of deleted operons with similarly tight regulation is unlikely to lead to measurable
advantages.
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In this respect Valgepea et al. (2015) proposed to delete proteins with high
synthesis costs, in other words proteins that are both abundant and relatively large
(Valgepea et al. 2015). Proteomic studies in E. coli have shown that under the
majority of conditions tested, about two thirds of the total proteome mass belonged
to proteins grouped into only four COG categories: translation, ribosomal structure,
and biogenesis, energy production and conversion, amino acid transport and
metabolism, and carbohydrate transport and metabolism (Schmidt et al. 2016). In
all categories many but not all genes are required for normal growth in minimal
medium. Therefore, handpicking of relevant and irrelevant genes is a necessity.
Regulation of fundamental features such as growth rates is very complex as recently
observed for C. glutamicum (Baumgart et al. 2018). Accordingly, deleting members
of complex modulons is a tedious work and likely initially compensated by
counteracting gene expression to keep the previous cellular state. Interestingly,
complementary experimental studies indicate that about 22% of the E. coli proteome
have no measurable benefit in glucose minimal medium (Price et al. 2016). A
substantial fraction of the unused proteins is attributed to preadaption to changing
nutrient availability and stress resistance (O’Brien et al. 2016). Given that the major
external stressors pH, temperature, and medium composition are controlled in
bioprocesses anyway the underlying genes are promising targets for impactful
deletion series.

Can we generalize these findings to other organisms than E. coli? The vast
majority of superfluous proteins are present at extremely low levels in Saccharomy-
ces cerevisiae (Ghaemmaghami et al. 2003). Deletion studies have regularly failed to
identify beneficial phenotypes from single deletions (Sliwa and Korona 2005).
Mutations leading to the loss of mating functions by silencing of 23 genes were
shown to confer a small but measurable growth advantage (Lang et al. 2009). In
conclusion, the situation appears to be very similar in the case of yeast and poten-
tially also in other organisms.

Reduction of Secondary Cost Secondary costs accompany many cellular pro-
cesses: ATP is hydrolyzed, reduction equivalents are consumed or the potential
energy of gradients is used. One of the most prominent examples of secondary cost is
the flagellar apparatus. Its biosynthesis is already quite resource intensive, resulting
in an estimated fitness cost of about 2% (Macnab 1992). Once a flagellum is
assembled, its operation is energy dependent. Macnab (1992) estimated the value
for energy consumed by rotating flagella at approximately 10�15 W per cell, thus
arriving at a fraction of total energy expenditure of 0.1% (Macnab 1996). From our
point of view, this estimation is quite conservative, and we present an alternative
calculation here.

The number of flagella ranges from about 1 to 10 in E. coli (Mears et al. 2014).
Each rotating flagellum uses an influx of roughly 1200 protons per revolution and
operates under free-swimming conditions slightly above 100 Hz (Berg 2003; Lowe
et al. 1987). Assuming a constant H+/ATP ratio of 4 (Turina et al. 2003), this
translates into an ATP hydrolysis of around 1.5 � 105 molecules per second for an
exemplary E. coli with five flagella rotating at 100 Hz each (Lowe et al. 1987). How
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does this compare to the total ATP turnover in E. coli? Assuming exponential growth
in glucose minimal medium oxygen uptake rate is in the range of 27 mmol O2 per
gram biomass dry weight and hour (Jain and Srivastava 2009). Literature data on
P/O ratio vary considerably, but for the purpose of this calculation, we will assume a
constant P/O ratio of 1.5 (Noguchi et al. 2004; Taymaz-Nikerel et al. 2010). Given
that a single E. coli roughly weighs 3 � 10�12 g, we arrive at a net ATP production
of about 4 � 106 ATP molecules per cell and second. Under the conditions chosen,
flagellar motion can thus consume about 3.75% of the total aerobic cellular
ATP-generating potential.

This number is a rough estimate and not necessarily representative for specific
conditions. The number of flagella varies, we have neglected swimming and tum-
bling behavior and flagellar rotation is temperature and voltage dependent (Berg
2003; Lowe et al. 1987). Our calculation for net ATP production per cell is based on
the assumption of exponential aerobic growth. If, in the absence of external electron
acceptors, fermentative metabolism is used, ATP productivity is expected to be
substantially lower. Macnab (1996) reported that the proton motive force in such a
scenario is subsaturating, which results in lower rotation speed. Given that our
calculation assumes five flagella per cell and a rotation speed of 100 Hz, our result
is higher than previously reported values (Macnab 1996). Also we calculate the
fraction of ATP-generating potential used by flagella, not the fraction of total energy
expenditure. To sum up, the true fraction of ATP-generating potential consumed is
likely in the range of 0.1–10%.

Note that it is unclear whether the flagellar motor proteins actually transport
protons under the conditions of a bioreactor. Flagella are prone to shearing and, at
least in small-scale bioreactors with high power input per volume, shearing forces
are regularly sufficiently high to displace the outer parts of E. coli flagella. Our
calculation is supported by experimental evidence from pilot-scale reactors though.
Studies on Pseudomonas putida deletion strains lacking flagella showed that the
deletion of flagellar genes led to an increase in biomass yield of 1–7% depending on
growth rate (Lieder et al. 2015). Lieder et al. (2015) collected this data under the
controlled conditions of a small-scale bioreactor operating in chemostat mode.

Aside from this example the accurate attribution of secondary costs of metabolic
processes is often difficult. Particularly in the case of global regulation it is hardly
possible. Löffler et al. (2016) and Simen et al. (2017) attempted to measure metabolic
costs caused by oscillatory regulatory patterns in scale-down systems mimicking
gradients in large-scale reactors. They estimated that the secondary costs due to
aberrant gene expression increase maintenance energy demand by about 15–50%
depending on the limitation scenario (Löffler et al. 2016; Simen et al. 2017). The
calculated increase is distributed over dozens of genes though. Moreover, E. coli
rapidly accumulate inactivating mutations in the major stress sigma factor rpoS under
the conditions of a glucose-limited chemostat indicating potential inherent inefficien-
cies or trade-offs (Ferenci 2005; Notley-McRobb et al. 2002). While the aforemen-
tioned studies indicate potential deletion targets on a comprehensible basis, the
observed growth or fitness advantages are entirely cryptic in other cases. In strains
of Escherichia coli, B silencing deletions of the rbs operon responsible for ribose
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degradation conferred a measurable competitive fitness advantage of about 1–2% per
generation in glucose minimal medium (Cooper et al. 2001). The authors concluded
that absence of ribose catabolism itself is supposedly advantageous in glucose media,
but the molecular basis of this effect is unknown. Also the possibility remains that the
energy savings from silencing or deleting the rbs operon are responsible for the
competitive advantage. Another study found an association of loss of cspC expres-
sion with an unusually high increase in fitness in complex medium (Rath and Jawali
2006). The absence of a clear molecular basis for cspC functions makes it difficult to
deduce a robust deletion strategy in such a case.

Side Effects of Genome Reduction So far this section has mainly covered possible
benefits of genome reduction. For a complete picture, potential imponderables must
be considered as well. Besides the obvious pitfalls—poor choice of target genes or
unexpected side effects after deletion of uncharacterized genes—there are two issues
we would like to briefly discuss here: transcription factor DNA binding sites and
chromosome organization.

Current information in RegulonDB (Gama-Castro et al. 2016) estimates the
number of transcription factors in E. coli to be slightly more than 200. Only 30 of
these transcription factors have more than 20 binding sites on the E. coli chromo-
some. Given that gene expression is inherently stochastic (Raj and van Oudenaarden
2008), even small reductions in the balance of transcription factor availability and
number of genomic binding sites may cause off-target effects in the form of stronger
repression or activation on the remaining sites. This pitfall can likely be
circumvented by deleting coding regions only and leaving regulatory DNA elements
intact. Alternatively, if entire operons or pathways are chosen as deletion targets,
their regulatory transcription factors could be deleted simultaneously.

The chromosomal structure of microorganisms serves a function, and its disrup-
tion must be carefully considered. Evidence that caution needs to be exercised when
potentially tampering with nucleoid architecture is provided by various studies. It
has been shown that changes in the level of expression are correlated between genes
at defined long-range distances in both E. coli and B. subtilis (Carpentier et al. 2005).
Moreover, there is a periodicity in the expression pattern of the E. coli genome in
accordance with a solenoidal nucleoid architecture (Képès 2004). Consequently,
when planning the deletion of large regions, potential side effects on nucleoid
architecture must be taken into consideration. To complicate this issue, large dis-
crepancies in the size of the two replichores lead to severe growth defects (Esnault
et al. 2007). While deletions of single genes or small operons are unlikely to be
problematic on the scale of nucleoid architecture, large deletions should be designed
to be neutral towards replichore length and expression periodicity.
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4 Achievements in Genome Reduction: Organisms
and Process Parameters

This section covers studies on the construction and evaluation of genome-reduced
organisms organized by species. While for some projects short remarks on the
construction of the deletions are included, we focus on the phenotypic properties
of the deletion strains. Table 1 contains an overview of the studies examined.

Escherichia coli The Gram-negative bacterium Escherichia coli is the most well-
studied prokaryotic model organism and often the first choice for industrial production
hosts (Baeshen et al. 2015; Dong et al. 2011; Terpe 2006). The idea to derive a
genome-reduced or even minimal cell was born with E. coli in mind (Koob et al.
1994). The advantages of working with E. coli are numerous: rapid growth on a
variety of carbon and nitrogen sources in both minimal and complex media, the
availability of many sequenced variants, sophisticated molecular biology tools, well-
defined functional annotation, and the knowledge required for scale-up and commer-
cialization of processes.

One of the first reported attempts at constructing a genome-reduced E. coli
MG1655 was based on a transposon library to identify non-essential regions
(Yu et al. 2002). The combination of some of these regions culminated in a strain
lacking about 6.8% of its parent’s genome. While the molecular biology involved in
this study was highly sophisticated, the resulting strains were only rudimentarily
characterized—a reoccurring issue in genome reduction studies.

Transposon-based approaches are appealing from a number of viewpoints: their
random nature requires little sequence knowledge, they work in a vast array of hosts,
and some enable the capturing of deleted genomic regions on conditional plasmids
(Goryshin et al. 2003). Ultimately, they did not prevail, as the wide array of genomic
tools and the sequence information available in E. coli made other systems, partic-
ularly recombineering based on phage λ and P1 transduction, more attractive.

Another early attempt at constructing deletion strains culminated in a 29.7%
genome-reduced strain (Hashimoto et al. 2005). The strains displayed reduced
fitness compared to their parent MG1655. All of them grew substantially slower in
LB or similar rich media. Moreover, the deletion strains had aberrant cell size and
nucleoid structure. While these phenotypes are certainly not suitable for production,
the study nevertheless yielded valuable information. The construction of large
genomic deletions per se is laborious but manageable. The difficulty lies in target
selection. Target regions must be chosen very carefully and tested for neutrality
towards growth or other desired characteristics.

The most famous series of deletion mutants is probably the “MDS” series based
on the strain E. coli K-12 MG1655 with a native genome size of about 4.6 Mb
(Blattner et al. 1997). Initially, comparative genomics between phylogenetically
distinctly related E. coli strains lead to the identification of strain-specific islands
within a core genome of about 3.7 Mb (Kolisnychenko et al. 2002). Deletions of
12 strain-specific regions were performed with a phage λ-derived homologous repair
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Table 1 Overview of genome reduction projects

Scope of Genome Reduction Results Source

Escherichia coli K-12 MG1655

Up to 6.8% non-essential
regions identified by transposon
insertion

Normal growth in LB Yu et al. (2002)

Up to 29.7% Reduced growth in rich media; aberrant
nucleoid organization and cell size

Hashimoto et al.
(2005)

8.1% 12 strain-specific regions Normal growth in minimal medium Kolisnychenko
et al. (2002)

15% strain-specific regions; IS
elements

No differences in growth or protein
production; higher electroporation effi-
ciency; no IS-related mutations;
increased plasmid stability

Pósfai et al. (2006)

Strains from Pósfai et al. (2006) No differences in fermentation parame-
ters for MDS40 and MG1655

Sharma et al.
(2007b)

Strains from Pósfai et al. (2006) Expression of recombinant CAT leads
to acetate accumulation in MDS41 and
MDS42 but not in MG1655; no differ-
ences in fermentation parameters for
inactive protein

Sharma et al.
(2007a)

Strains from Pósfai et al. (2006) Engineering of threonine production:
About twofold increase in titer com-
pared to WT, final titer in fermentation
of 40.1 g/ll

Lee et al. (2009)

Strains from Pósfai et al. (2006) Increased plasmid stability when toxic
ORF is present

Umenhoffer et al.
(2010)

Strains from Pósfai et al. (2006) Increased plasmid stability when large
direct repeat regions are present

Chakiath and
Esposito (2007)

Strains from Pósfai et al. (2006) Chromosomal periodicity of MDS42
reduced to 6, transcriptional changes
partly overlap with heat shock response

Ying et al. (2013)

Up to 20%
based on strains from Pósfai
et al. (2006)

MDS strains are overgrown by the wild-
type in competition assays and have
reduced biomass yield as well as ele-
vated rpoS levels

Karcagi et al.
(2016)

23% deletion of IS elements and
non-essential regions

MS56 stably maintains plasmids and
heterologous protein production

Park et al. (2014)

Escherichia coli BL21(DE3)

Up to 9% Slightly altered growth phenotypes;
substantially stabilized genome and
plasmids

Umenhoffer et al.
(2017)

Escherichia coli K-12 W3110

22% MGF-01 reaches 1.5 times higher cell
density in M9 minimal medium and
produces twice as much threonine as the
wild-type (unpublished results by
H. Mizoguchi)

Mizoguchi et al.
(2007), Mizoguchi
et al. (2008)

(continued)
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Table 1 (continued)

Scope of Genome Reduction Results Source

Up to 36% based on strains from
Mizoguchi et al. (2008)

Reduced lag phase and faster growth to
higher optical densities in corn steep
liquor medium

Hirokawa et al.
(2013)

Strains from Mizoguchi et al.
(2008)

Decreased maximum specific growth
rate and biomass yield with increasing
deletion size

Kurokawa et al.
(2016)

Bacillus subtilis

7.7% prophages and AT-rich
islands

No major differences in phenotypical
parameters; alterations in motility

Westers et al.
(2003)

Up to 24% prophages, polyke-
tide synthesis, several
non-essential regions

Slightly reduced growth rate in minimal
and complex media; comparable protein
production

Ara et al. (2007)

20.7% prophages, polyketide
synthesis and 11 non-essential
regions

Strain MGB874: Reduced maximum
growth rate; no sporulation; identical
growth under production conditions;
increased sugar consumption rate and
protein production; altered transcrip-
tional profile

Morimoto et al.
(2008)

Strains from Morimoto et al.
(2008)

Strain MGB874: Identification of
rocDEF-rocR regulatory effects and
elevated transcript levels of heterolo-
gous gene

Manabe et al.
(2011)

Strains from Morimoto et al.
(2008)

Strain MGB874: Deletion of rocG fur-
ther increases heterologous protein
production in ammonia controlled
pH-auxostat

Manabe et al.
(2013)

Up to 19.7% prophages, antibi-
otic gene clusters, non-essential
regions

Minimal medium: Reduced growth rate
and specific glucose uptake rate, but
increase in biomass yield; reduced
autolysis, sporulation rate and transfor-
mation efficiency; reduced maintenance
coefficient; higher transcript levels of
overexpressed genes and elevated pro-
duction of thymidine and guanine

Li et al. (2016)

36% non-essential regions,
based on strains from Westers
et al. (2003)

Reduced growth rate; filamentous phe-
notype; transcriptional and proteomic
changes; reduced flux through glycoly-
sis; altered amino acid metabolism

Reuß et al. (2017)

Corynebacterium glutamicum R

11 individual SSIs Slightly improved growth in minimal
medium

Suzuki et al.
(2005a)

5.7% eight SSIs previously
identified

No significant differences detected Suzuki et al.
(2005b)

Corynebacterium glutamicum ATCC13032

6% prophages CGP1, CGP2,
CGP3

Higher specific growth rate under CPG3
inducing conditions otherwise no dif-
ferences in growth; increased

Baumgart et al.
(2013)

(continued)
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Table 1 (continued)

Scope of Genome Reduction Results Source

transformability and plasmid copy
number

13.4% several irrelevant geno-
mic regions

Identical growth of C. glutamicum C1�
and its parent in minimal and rich
medium

Baumgart et al.
(2018)

Deletions of IS elements
families

Improved plasmid stability resulting in
increased production of fluorescent
protein, PHB and GABA

Choi et al. (2015)

Pseudomonas putida KT2440

1.1% flagellar genes Reduced lag phase when growing on
fructose; higher oxidative stress resis-
tance but failure to use various carbon
sources; sensitivity to antibiotics and
low pH stress

Martínez-García
et al. (2014b)

2.6% all annotated prophage
regions

Increased tolerance to UV light and
DNA damaging agents

Martínez-García
et al. (2015)

4.3% flagella, prophages, trans-
posons, DNA restriction-
modification system

Combinatorial phenotype similar to
previous studies; reduced maximum
specific growth rate in complex medium
but increase in minimal glucose
medium

Martínez-García
et al. (2014a)

4.3% strains from Martínez-
García et al. (2014a)

Phenotyping in bioreactors: Increased
maximum specific growth rate and bio-
mass yield in glucose minimal medium;
reduced maintenance coefficient; higher
AEC; higher plasmid stability and spe-
cific protein productivity; reduced
organic acid formation

Lieder et al. (2015)

Pseudomonas chlororaphis

Up to 10.3% 22 regions
containing non-essential genes
(rich medium)

Some strains show impeded growth and
production, others display substantially
increased phenazine production

Shen et al. (2017)

Lactococcus lactis NZ9000

2.83% four non-essential
regions containing prophage
proteins

Improved growth parameters and higher
final cell densities, higher mRNA and
protein production levels

Zhu et al. (2017)

Streptomyces coelicolor

2% four native antibiotic gene
clusters

Normal growth and sporulation of strain
M1146; increased production of chlor-
amphenicol and congocidine; reduced
side peaks in HPLC analysis

Gomez-Escribano
and Bibb (2011)

Up to 14% ten secondary
metabolite clusters and a 900 kb
subtelomeric region

Normal growth of all strains; some
strains show potentially increased
actinorhodin biosynthesis

Zhou et al. (2012)

(continued)
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mechanism assisted by nuclease counter-selection. The final strain MDS12 lacked
8.1% of the wild-type genome. Its maximum growth rate was not statistically
different from the wild-type, but it reached slightly higher final cell densities
(Kolisnychenko et al. 2002). Further deletions of strain-specific regions, IS elements,
and pseudogenes lead to strain MDS43 with a 15% reduced genome (Pósfai et al.
2006). The MDS strains did not show apparent growth defects in minimal or
complex medium, but also did not have increased protein productivity in a
fed-batch process. Their most outstanding properties reported were increased trans-
formation efficiency and stable maintenance of plasmids due to the absence of IS
elements (Pósfai et al. 2006).

Some strains of the “MDS” series were the subject of further investigations. The
fermentation profile of strain MDS40 was examined (Sharma et al. 2007b). No
striking differences between MDS40 and MG1655 could be observed. MDS41
and MDS42 showed an increased acetate formation and reduced biomass yield in
fed-batch fermentations if recombinant chloramphenicol-acetyltransferase (CAT)
was produced as a model protein (Sharma et al. 2007a). This was not the case
with mutated inactive CAT. It remains unclear why this activity occurs in MDS41
and MDS42 but not in their wild-type parent (Sharma et al. 2007a). In another study
MDS42 was engineered to produce L-threonine (Lee et al. 2009). In shaking flask
cultivations, the engineered strain based on MDS42 reached almost twice the final
concentration of L-threonine than an identically engineered strain based on
MG1655. Transcriptional profiling indicated that the strain based on MDS42 had
higher transcript levels of several process relevant genes. An exemplary jar fermen-
tation was also conducted with the engineered strain reaching a final titer of 40.1 g/l

Table 1 (continued)

Scope of Genome Reduction Results Source

Streptomyces avermitilis

Up to 18.5% 1.4 Mb
subtelomeric region, several
secondary metabolite clusters

3–5-fold higher titers of streptomycin in
SUKA5 strain than its parent; absence
of secondary metabolites

Komatsu et al.
(2010)

See previous study Strains SUKA 5 and SUKA17 reach
higher final cell densities than the wild-
type; SUKA 17 displays higher pro-
ductivity of seven antibiotics

Komatsu et al.
(2013)

Saccharomyces cerevisiae SH5209

Up to 5%
15 chromosomal regions
predicted to be non-essential

Aberrant expression patterns; reduced
mitochondrial functions, reduced
growth in liquid media; increase in eth-
anol production by 1.8 fold compared to
parent strain

Murakami et al.
(2007)

Schizosaccharomyces pombe

5.2% four large deletions, one
on each arm of chromosomes I
and II

Slightly reduced specific glucose uptake
rate and ethanol production, extended
lag phase, higher ATP levels and pro-
tein production

Sasaki et al. (2013)
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threonine (Lee et al. 2009). Unfortunately, no control experiment with the
engineered MG1655-based strain was conducted.

The absence of IS elements in MDS42 proved to be advantageous for research
purposes in the stable maintenance of plasmids encoding toxic genes (Umenhoffer
et al. 2010). While in MG1655 the toxic ORF examined was regularly inactivated by
transposon insertion, this did not happen in MDS42. Only one in ten cultures of
MDS42 carrying the toxic plasmid grew to high optical densities by mutational
inactivation of the toxic ORF (Umenhoffer et al. 2010). Similar results were obtained
with lentiviral expression vectors (Chakiath and Esposito 2007). These plasmids
contain long direct repeat regions and are often unstable in E. coli. MDS42
outperformed all other examined E. coli strains in terms of plasmid stability, even
strains that are commonly used for faithful cloning (Chakiath and Esposito 2007). To
strengthen this trait Csörgo et al. (2012) further engineered MDS42 by removing
stress-induced mutagenesis mechanisms. Mutation rates in the resulting strains were
significantly reduced to less than half of those observed in MG1655 and almost two
orders of magnitude lower than in E. coli BL21(DE3), a strain commonly used for
protein production (Csörgo et al. 2012). This effect was even more pronounced
under stress conditions. Notably, the engineered strains had growth rates identical to
those of MG1655. The ability of MDS42 to reliably carry plasmid DNA initiated
further comparative studies between MG1655 and MDS42 (Akeno et al. 2014). It
was found that MDS42 suffered a higher burden than MG1655 when carrying
plasmids of different sizes. Expression of foreign genes on plasmids was much
stronger in MDS42 than in MG1655 at the expense of growth (Akeno et al. 2014).

A complementary approach aimed at investigating differences in transcriptional
profiles between MDS42 and MG1655 (Ying et al. 2013). It was found that the
transcription profile of MDS42 has a reduced chromosomal periodicity of six periods
instead of seven under normal growth conditions. Given that MDS42 lacks about
one seventh of its genome this might point at an altered chromosomal architecture.
Upon heat shock treatment, the chromosomal periodicity of transcription was also
reduced to six in MG1655, but it did not further decrease in MDS42. The overall
transcriptional alterations in MDS42 showed partly overlapping patterns of heat
shock effect and genome reduction effect in both antagonistic and synergistic ways
(Ying et al. 2013). This study clearly shows that chromosomal periodicity must be
taken into account when rationally designing large deletion series.

In continuation of the MDS deletion series Karcagi et al. (2016) created new
strains by further reducing the K-12 genome. The final strain in this study was
MDS69 with a genome reduced by about 20%. Over the course of the deletions, it
became increasingly apparent that some deletions affected the fitness of the strains.
To elucidate this, competition assays against MG1655 were performed. All tested
strains from the MDS lineage, even early strain MDS14, were outcompeted by the
wild-type, and this effect was more pronounced in the strains with more extensive
reductions. Furthermore, the MDS strains showed reduced biomass yield in
chemostat cultures with either glucose or ammonia as the limiting nutrient. The
maintenance coefficient remained unchanged though (Karcagi et al. 2016). In
summary, the basic fermentative parameters of the MDS series strains turned out
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not to be superior to those of their wild-type parent—a result that could have been
available for several years if the early MDS strains had been tested more thoroughly
in bioreactors.

What do the studies on the MDS series of strains teach us? First, proper choice of
targets for genome reduction is essential. The removal of K-islands proved to be
almost neutral towards growth, and the removal of IS elements provided the basis for
an application of the strains. The increased genomic stability is a significant advantage
in special applications. Second, thorough testing of the strains is mandatory. Charac-
terization should take place under conditions as close to industrial application as
possible. Unfortunately, while the potential for molecular biology applications was
identified quickly, the economic potential of the MDS strains has hardly been inves-
tigated. Production of CAT as a model protein showed no advantages, but this might
be based on the nature of the protein produced. The increase in L-threonine production
reported is a most promising result, but even in this study the characterization in a
bioreactor system was rudimentarily at best. When finally, after the construction of
MDS69 fundamental parameters were accurately measured it became apparent that the
hope for improvements in the basic physiology would not be fulfilled. Nevertheless,
the strains from the MDS series have been commercialized by Scarab Genomics LLC,
and patents have been filed for the production of recombinant non-toxic mutant
derivative of diphtheria toxin CRM197 by MDS42 and MDS69 (Blattner et al.
2017). The company claims to produce CRM197 at productivities of 3—5 g/l/day in
a continuous fermentation mode using a strain designated MDS69meta. The activities
of Scarab Genomics LLC prove that genome-reduced strains with advantageous
properties have industrial relevance—even if these advantages are mainly genomic
and plasmid stability. Since we can expect that MDS42 and MDS69 will outperform
their wild-type parent in other scenarios involving the maintenance of unstable DNA
constructs, these strains can truly be regarded as chassis strains for this extraordinary
application.

Based on the experiences collected with the MDS strains, Umenhoffer et al.
(2017) attempted the construction of a genome-reduced chassis based on BL21
(DE3). After inactivation or deletion of prophages, IS elements and error-prone
DNA polymerase the resulting strain BLK16 showed increased transformation
efficiency and dramatically improved plasmid stability. Its genome is a mosaic of
BL21(DE3) and K-12 sequences. The authors found minor alterations in growth, but
clear disadvantages were not apparent (Umenhoffer et al. 2017). An in-depth
characterization of its production properties is still pending, but it might quite well
be that BLK16 emerges as an intelligently reduced chassis strain for protein
production.

The “MGF” minimum genome factory deletion series initially followed a similar
path like the “MDS” series (Anazawa 2014; Mizoguchi et al. 2007; Mizoguchi et al.
2008). Candidate regions for deletion were derived from a comparison of the E. coli
K-12 genome with that of Buchnera species. These regions were deleted individu-
ally and those not affecting growth transferred into a single genome for a total
genome reduction of about 22% in strain MGF-01. Note that strain MGF-01 is based
on E. coli K-12 W3110. E. coli W3110 is a close relative of MG1655 but shows
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some alterations in central carbon metabolism (Vijayendran et al. 2007). MGF-01
reaches a 1.5-fold higher final cell density in M9 minimal medium than W3110. This
is likely based on a reduced overflow metabolism as MGF-01 accumulated substan-
tially less acetate than W3110 while displaying identical maximum specific growth
rate. The effect of elevated final cell densities was gradual and increased with the
number of deletions. Additionally, MGF-01 reached 2.4-fold higher threonine titers
than MG1655 after a threonine production cassette was integrated in both strains
(Mizoguchi et al. 2007, 2008).

In direct contrast to these findings later studies found a significant decrease in
maximum specific growth rate and cell yield for the deletion strains leading to
MGF-01 (Kurokawa et al. 2016). The effects were also gradual and more pro-
nounced with an increase in the deletion size. The observed effects were not
independent of the growth medium chosen and much more severe in minimal
media. The data was collected from microplate cultivations without process control
which limits their meaningfulness, but the findings are well in line with the obser-
vation that the MDS strains which carry deletions similar in size are overgrown by
the wild-type in competition assays (Karcagi et al. 2016). Further investigations on
MGF-01 and its parent strains revealed an altered mutational rate of these strains
(Nishimura et al. 2017). Strains carrying a reduced genome showed higher muta-
tional rates than their wild-type parent concomitant with a reduction in growth rate.
Upon serial transfer of one deletion strain for approximately 400 generations its
growth rate increased by 30% to wild-type levels and its mutational rate decreased
by one order of magnitude also to wild-type levels (Nishimura et al. 2017). It appears
likely that over the course of serial transfer beneficial mutations restoring the
disturbed organization of cellular resources by genome reduction were fixated within
the population rescuing initial flux maldistribution (Fig. 2).

Based on MGF-01 Hirokawa et al. (2013) constructed further deletion strains.
The removal of IS elements and other non-essential regions was accompanied by
rational reinsertion of some important sequences to maintain good growth as well as
reversal of the well-known K-12 mutations in ilvG and rph-1. To reflect this change
in strategy, the constructed series was renamed “DGF” for designed genome factory.
The DGF strains have substantially reduced genomes only slightly larger than 3 Mb,
and DGF-298 is even below this threshold (Hirokawa et al. 2013). They all show
similar or better growth in minimal medium M9 and corn steep liquor like W3110,
but it is difficult to pinpoint the “best” strain within their series. What remains to be
shown is their putative superiority in the production of proteins or small molecules in
a bioreactor fermentation scenario.

Apart from the MDS and MGF projects other groups have also attempted to
construct superior deletion strains with similar design principles. The “MS” series
reached a total genomic reduction content of 23% in strain MS56 based on MG1655
(Park et al. 2014). Target deletion regions were chosen similar to MDS42 and
specifically included all IS elements. MS56 lacked IS element-based inactivation
of plasmid genes and stably maintained a plasmid over serial cultivation for 20 days.
Upon intentionally co-cultivating mixed populations of MS56 carrying active or
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Fig. 2 Schematic depiction of genotypes and corresponding metabolic fluxes. Suboptimal flux
distribution in genome-reduced strains can be improved on a short time-scale by adaption on
transcriptional level. Adaptive laboratory evolution enables the fixation of beneficial mutations
that rescue flux distribution deficits

Reduced and Minimal Cell Factories in Bioprocesses: Towards a. . . 21



inactive plasmids, the authors could demonstrate that inactive plasmid-carrying cells
rapidly take over the population (Park et al. 2014).

Bacillus subtilis Bacillus species are the major source of technical enzymes
(Schallmey et al. 2004). Their unrivaled ability to efficiently secrete native proteins
and the surprising versatility of different species regarding robustness to external
stress has placed them at the top of enzyme production (Liu et al. 2013). The Gram-
positive model species Bacillus subtilis has been extensively studied for years and is
well accessible through molecular biology methods (Earl et al. 2008; Kunst et al.
1997). Various research groups have put substantial effort into unraveling its
“essential” set of genes which facilitates genome reduction studies (Commichau
et al. 2013; Kobayashi et al. 2003; Tanaka et al. 2013). Moreover, it has been shown
that a significant proportion of energy available to B. subtilis is directed towards
preadaptive responses even under optimal growth conditions (Dauner et al. 2001).
Bacillus species thus appear as promising species for genome reduction.

Bacillus subtiliswas among the first organisms whose genome was reduced. In an
initial study, Westers et al. (2003) deleted about 7.7% of its genome, freeing it of
prophages and certain AT-rich islands. The deletions were well tolerated, and the
resulting phenotype did not display major alterations proving the feasibility of this
approach (Westers et al. 2003). Some years later, Reuß et al. (2017) established a
new deletion series based on this strain. The final strains of this series, PS38 and
PG10, displayed slightly reduced growth rates and a filamentous growth phenotype
composed of cells not fully separated. Interestingly, PS38 and PG10 showed differ-
ences in amino acid metabolism. The authors did not investigate the production
potential of these strains, but transcriptional and proteomic profiling of the deletion
strains point towards more promising targets for successful deletions (Reuß et al.
2017).

The Bacillus subtilis “minimum genome factory” project aimed specifically at
increasing the production capabilities of Bacillus subtilis. The involved groups
consequently screened for deletions enhancing the production of secreted proteins
(Ara et al. 2007). Sequential deletions of a total of 24% of the wild-type genome
resulted in B. subtilis MG1M which displayed about 10% reduced growth rate in
complex and minimal medium. The desired trait of increased enzyme production
could not be shown though (Ara et al. 2007). In a subsequent study, Morimoto et al.
(2008) noticed that MG1M’s phenotype was unstable after successive culture and
decided to establish a new deletion series. Strain MGB874 lacked 20.7% of its
parent’s genome. Its maximum growth rate in both complex LB and minimal SMM
medium was substantially reduced. However, under the conditions of heterologous
protein production in 2xL-Mal medium in a jar fermenter, its growth rate was similar
to that of the wild-type. Substantial transcriptional changes could be observed as
well as an increased sugar consumption rate towards the end of the cultivation. The
authors observed a concomitant increase in heterologous protein activity in the
culture supernatant (Morimoto et al. 2008). To further elucidate the underlying
phenotypic changes, Manabe et al. (2011) constructed partial deletion strains and
identified the rocDEF-rocR region as critical. Deletion of this region alone was
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sufficient to increase the specific cell yield in the parent B. subtilis strain 168 and
compensated for the reduction in cell yield caused by other deletions in MGB874.
Due to the absence of this region arginine catabolism was inactive. The presence of
arginine in the later stages of the fermentation then repressed arginine biosynthesis
from glutamate, leading to elevated intracellular glutamate levels (Manabe et al.
2011). Glutamate feeding also increased the cell yield for all strains but did not
improve protein production on top. It was found that plasmid copy numbers and
transcript per plasmid levels were increased in the deletion strain MGB874 during
late fermentation stages which was likely a major cause for its higher protein
productivity (Manabe et al. 2011). To further increase the production potential of
strain MGB874, deletion of rocG was performed next (Manabe et al. 2013). While
this deletion reduced the protein production in the jar fermenters used up to this
point, the authors could demonstrate that this effect was caused by ammonia
starvation and low external pH. Fermentation of MGB874 ΔrocG in an ammonia-
controlled pH-auxostat not only rescued the production phenotype but also lead to an
extended production phase in MGB874 ΔrocG. Ultimately, MGB874 ΔrocG
surpassed the titers achieved by its parent strain for a final alkaline cellulase
Egl-237 concentration of 5.5 g/l (Manabe et al. 2013). Once again deletion of
rocG in the parent strain B. subtilis strain 168 also increased its protein production,
but the high levels of MGB874 ΔrocG could not be reached.

What do we learn from the Bacillus subtilisminimum genome factory? It enabled
the identification of the effect of the rocDEF-rocR deletion which is substantial in
the medium used in the described studies. Its reintroduction in the parent strain is
also quite beneficial in terms of cell yield. On the other hand, it is not surprising that
heterologous protein production is higher in MGB874 since it displays higher
transcriptional levels of the target gene. This effect should also be achievable in
B. subtilis wild-type by proper choices of plasmid system and expression cassette. It
is difficult to assess how the remaining global effects regarding delayed stationary
phase and sporulation contribute to MGB874’s enhanced protein productivity.
Deletion of rocG further prolonged MGB874’s production phase if fermented with
ammonia surplus and pH control. It should be noted that the growth defects of
MB874 observed in LB medium and minimal medium did not translate to the jar
fermentations in 2xL-Mal medium. The reduced production of MGB874 ΔrocG in
the same medium turned into an advantage once pH was externally controlled by
ammonia addition which is easily implemented technically. These two findings teach
us an important lesson: apparently disadvantageous features of chassis organism can
be quite well acceptable as long as they are compensated by the applied production
strategy. Chassis organisms should be tailored for the niche of a bioreactor with
process control—and this is the only suitable environment to evaluate them.

In a more recent study, Li et al. (2016) capitalized on the experience collected in
the B. subtilis minimum genome factory project. A new series of deletion strains
based on B. subtilis strain 168 derivatives was created by deleting prophages,
antibiotic gene clusters and several large non-essential regions. It culminated in
strain BSK814G2 lacking 19.7% of the parent genome (Li et al. 2016). The strains
were thoroughly characterized in bioreactors and shaking flaks. A substantial
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increase in biomass yield concomitant with reduced maintenance coefficients was
observed. On the downside, maximum specific growth rate and specific glucose
uptake rates were reduced. Interestingly, the effects were gradually more pro-
nounced in strains carrying longer deletions. The strains along with their parent
strain were then engineered to overproduce either guanosine or thymidine. In both
cases the genome-reduced strains produced severalfold higher titers than the iden-
tically engineered control strain. Similar to the behavior of MGB874 from the
minimum genome factory project, BSK814G2 had elevated transcript levels of the
overexpressed enzymes which might partly explain its production advantages
(Li et al. 2016). The case of BSK841G2 is particularly interesting because it
performs well in small molecule production, thus showing that genome-reduced
Bacillus species will also be useful for applications other than enzyme production.

Corynebacterium glutamicum The actinobacterium Corynebacterium glutamicum
is the dominating microbial host for the production of amino acids and similar
compounds (Lee et al. 2016). Production of glutamic acid and lysine is a billion
dollar market, and C. glutamicum is increasingly used for other products as well
(Becker and Wittmann 2012; Eberhardt et al. 2014). Due to its accessibility as a host
and the availability of genomic information and functional annotation, its properties
can be rapidly modified. Combined with the long experience in fermentation of
C. glutamicum this allows rapid commercialization of new processes (Ikeda and
Nakagawa 2003).

The first major deletion series in C. glutamicum was conducted to test for the
essentiality of strain-specific islands (SSIs) identified by the comparison of
C. glutamicum ATTC 13032 to C. glutamicum R (Suzuki et al. 2005a). The deletion
of 11 SSIs from the genome of C. glutamicum R was performed. Remarkably, the
strains displayed no negative traits compared to their parent wild-type. In fact
doubling time in minimal medium was slightly improved in some mutants, although
the observed effects were very small (Suzuki et al. 2005a). Nevertheless, the
feasibility of this approach was demonstrated successfully. Next, 8 of 11 SSIs
were combined in a single strain for a total genome reduction of 5.7% (Suzuki
et al. 2005b). The genome-reduced strain had no significantly different growth in
minimal medium. In-depth phenotyping of the strain was not conducted.

Corynebacterium glutamicum ATCC 13032 carries several prophages which can
be induced under stress conditions. The observation that spontaneous induction is
possible and in dtxr mutants the largest prophage CGP3 is frequently excised under
stress conditions initiated further investigations (Frunzke et al. 2008; Nanda et al.
2014). By deletion of the CGP1, CGP2, and CGP3 regions from the C. glutamicum
ATCC 13032, the strain MB001 was obtained (Baumgart et al. 2013). Its growth
behavior was identical to that of the wild-type, and even in direct competition assays,
no fitness difference could be detected. However, its growth in the presence of
mitomyin C, which triggers CPG3 induction, was more stable and faster compared to
its parent, but both strains reached identical final cell densities. Moreover, MB001
showed increased transformability and carried a higher plasmid copy number. These
differences could be traced back to the deletion of the restriction-modification
system within CPG3. As a consequence of the increased plasmid copy number,
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the production of heterologously expressed fluorescent protein was also increased
(Baumgart et al. 2013). The creation of MB001 is a particularly interesting case
because its advantages can be clearly assigned to genetic alterations within the
deleted regions while its construction was planned simply on the premise of deleting
all prophages as a whole. MB001 itself formed the base for a new genome reduction
study targeted at the identification of irrelevant genomic regions based on conser-
vation among C. glutamicum and related species (Unthan et al. 2015). Twenty-six
irrelevant genomic regions which did not affect growth in minimal medium were
identified. The authors could show that some combinatorial deletions of irrelevant
regions were not compatible resulting in reduced growth rates, while other combi-
nations were possible without fitness losses (Unthan et al. 2015). In a follow-up
study Baumgart et al. (2018) constructed the chassis strain C. glutamicum C1� from
MB001 by adding compatible deletions for a total genome reduction of 13.4% of the
C. glutamicum ATCC 13032 genome. C. glutamicum C1� displays identical growth
like its parent on minimal glucose and complex medium (Baumgart et al. 2018).
Note that the proposed theoretical combination of all initially identified irrelevant
genomic regions would have led to a genome reduction of 22% (Unthan et al. 2015).
It is evident that for the construction of chassis organisms, trade-offs must be made.
Some initially irrelevant genes complement each other, and deletion of one such
gene converts the other one in a relevant gene. Deletion targets must be handpicked
and, in the absence of phenotypic information on gene functions predicting the
compatibility is not always possible. What remains to be shown is an actual
advantage of C. glutamicum C1� over its wild-type parent in the development or
final performance of a bioprocess.

Another genome reduction approach in C. glutamicumATCC 13032 was targeted
at insertion sequence (IS) elements (Choi et al. 2015). Insertion sequences are mobile
genetic elements and well known for their ability to alter the expression of genes.
Insertion into an overexpressed protein coding DNA abolishes target protein pro-
duction. Moreover it often confers a growth advantage which can lead to
non-producers overtaking the entire population. C. glutamicum lacking all IS ele-
ments of either family ISCg1 or ISCg2 had identical growth like their wild-type
parent. They had higher content of polyhydroxybutyrate or produced more recom-
binant protein or γ-aminobutyric acid when the necessary genes for the biosynthesis
of the products were provided on a plasmid. Additionally, the reduced strains had a
higher transformation efficiency (Choi et al. 2015). Overall, the removal of IS
elements is an attractive starting point for genome reduction: Plasmid gene inacti-
vation is a relevant parameter in many biotechnological applications, and side effects
of IS elements removal are typically not expected.

Pseudomonas putida The Gram-negative soil bacterium Pseudomonas putida is
well known for its robustness towards external stressors and versatile catabolic
capabilities (Loeschcke and Thies 2015). In recent years it has attracted increased
attention for its potential to synthesize bioplastics and bioactive compounds
(Poblete-Castro et al. 2012). Due to the complexity of its metabolism, P. putida is
an attractive target for genome reduction studies.
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Many Pseudomonas species are highly mobile (Sampedro et al. 2015), and first
studies targeted the flagellar operon for deletions (Martínez-García et al. 2014b).
Mixed results were obtained: The resulting strain lacking flagella displayed impaired
growth on a variety of carbon sources. This data was collected in microtiter plates
though where sufficient oxygen supply must be carefully evaluated (Wewetzer et al.
2015). Wild-type Pseudomonas putida KT2440 can use aerotaxis to move towards
the surface of a culture broth which may be a major advantage under such condi-
tions. Interestingly, the deletion strain showed a reduced lag phase, particularly if
cultivated on fructose. It also displayed aberrant stress resistance with reduced
resistance towards several antibiotics and an acidic environment. On the other
hand, there was an increase in stress resistance against oxidative stressors concom-
itant with an increase in reducing power availability (Martínez-García et al. 2014b).

In a parallel study, Martínez-Garcia et al. (2015) deleted annotated prophage
regions in P. putida leading to an increased tolerance against DNA damage by UV
light or chemical DNA damaging agents. Finally the combination of both
approaches yielded strain P. putida EM383 with a genome reduced by 4.3%. It
produced a phenotype which retained all advantageous traits previously observed for
the individual deletions (Martínez-García et al. 2014a). While its growth in complex
media was slower than that of its wild-type parent, it reached a higher final cell
density and displayed faster growth in glucose minimal medium.

Lieder et al. (2015) subsequently thoroughly tested P. putida EM383 generated in
the aforementioned study in small-scale bioreactors. Strikingly, under the controlled
conditions of a bioreactor, it outcompeted its parent strain in every single process
relevant parameter measured: maximum specific growth rate in minimal medium,
biomass yield in minimal medium, maintenance coefficient, organic acid byproduct
formation, availability of energy as measured by adenylate energy charge (AEC),
plasmid stability, and specific heterologous protein productivity (Lieder et al. 2015).
This study stands out among the competition and for good reason: It is the only study
in which a genome-reduced microorganism was actually thoroughly phenotyped in a
realistic production scenario. It clearly shows that intelligent genome reduction can
substantially impact the performance of strains in bioreactors. Note that the pheno-
typic advantages were much less apparent in the preceding studies where cultiva-
tions were not performed under sufficiently controlled conditions. Therefore we can
learn an important lesson from this research: Deletion strains must be tested with the
same effort as they are constructed, and this characterization must take place in the
only industrially relevant niche—the controlled environment of a bioreactor.

Recently, an attempt at genome reduction has also been made in Pseudomonas
chloraphis GP72, a strain from the green pepper rhizosphere which produces
antifungal compounds (Liu et al. 2007). Major regions predicted to be
non-essential were deleted from the chromosome (Shen et al. 2017). While growth
of deletion strains was in general equal or worse than that of the wild-type, some
deletion strains displayed improved production of phenazines, valuable secondary
metabolites. On the downside, essentiality of genes was chosen with regard to
growth in complex media only which putatively eliminates the chance of cultivating
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deletion strains in defined media. Nevertheless, it will be most interesting to follow
the future path of this promising microbe.

Lactococcus lactis The Gram-positive bacterium Lactococcus lactis is traditionally
used in the production of dairy products due to its ability to efficiently produce lactic
acid from lactose (Song et al. 2017). In recent years L. lactis has increasingly
attracted attention as a host for other industrial processes such as protein production
(Mierau et al. 2005). To date, there is only one study dedicated to genome reduction
of L. lactis (Zhu et al. 2017). Four large genomic regions containing prophage
proteins were deleted for a total genomic reduction of 2.83%. The resulting strains
displayed lower lag phases and increased maximum specific growth rates in micro-
titer plates. While differences in complex medium M17G were relatively small, final
cell densities in defined medium SA containing glucose and amino acids were up to
40% higher than for the wild-type strain. The authors could further show that
plasmid-based expression of lecC leads to higher mRNA levels and larger leucocin
C inhibitory zones on agar plates. These findings were confirmed on mRNA and
protein level using RFP as a reporter in microtiter plates (Zhu et al. 2017). We are
eager to see whether the promising performance gains observed will hold in the
controlled environment of a bioreactor.

Streptomyces Species Streptomyces species are mycelial Gram-positive bacteria
used extensively to produce antibiotics for human therapy (Bérdy 2005; Procópio
et al. 2012). To date studies on genome reduction have been performed in
S. avermitilis and S. coelicolor.

Gomez-Escribano and Bibb (2011) constructed S. coelicolor M1146 which is
devoid of native antibiotic gene clusters. It displayed normal growth compared to its
wild-type parent. HPLC analysis of its products was facilitated due to the absence of
disturbing secondary metabolites. Fermentation data from shaking flasks indicates
increased mRNA levels of heterologously expressed genes for the production of the
antibiotics chloramphenicol and congocidine. A concomitant increase in antibiotic
titers could also be measured although data scatters considerably. In another study as
much as 14% of the parent genome was deleted in S. coelicolor (Zhou et al. 2012).
The strains exhibited normal growth and showed differences in actinorhodin syn-
thesis. No clear verdict on the benefit of this substantial genome reduction is possible
though as the authors observed major fluctuations in their fermentation attempts
(Zhou et al. 2012).

The situation is clearer in Streptomyces avermitilis. Deletion strain SUKA5
lacking a major 1.4 Mb subtelomeric region and oligomycin biosynthesis genes
produced severalfold higher titers of streptomycin than its parent strain (Komatsu
et al. 2010). The heterologously expressed streptomycin biosynthesis genes origi-
nated from S. griseus. Under the conditions of this study, S. avermitilis strain
SUKA5 also easily surpassed S. griseus in terms of streptomycin productivity. It
appears likely that the removal of endogenous secondary metabolism as demon-
strated by HPLC measurements dramatically improved the availability of precursors
for the new product. In a follow-up study, the authors could demonstrate that
SUKA5 and its daughter strain SUKA17 reached higher final cell densities than
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S. avermitilis wild-type in defined medium (Komatsu et al. 2013). Additionally,
SUKA17 displayed higher productivity for seven heterologously produced
antibiotics.

The data collected in this study exemplifies the gray area between genome
reduction and metabolic engineering. From the perspective of a metabolic engineer,
one could quite well argue that Komatsu and his colleagues in effect performed flux
rerouting by increasing precursor supply. On the other hand, they successfully
removed a total of 18.5% of S. avermitilis genomic DNA, much more than what
would have been necessary for simple flux rerouting. Moreover, the methods applied
by them are clearly not derived from the standard repertoire of metabolic engineers.
Ultimately, if we consider the fate of every single carbon atom entering a cell, then
any manipulation leads to flux rerouting. Genome reduction as defined by us then
becomes a segment of metabolic engineering.

Yeasts: Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Their
Relatives The history of the domestication of yeast is almost as long as that of
sessile humanity. Initially used for the production of bread and alcoholic beverages,
yeast strains have found countless applications in modern biotechnology and bio-
chemistry (Gallone et al. 2018; Pscheidt and Glieder 2008). Despite their importance
in biotechnology, yeasts have so far scarcely been the subject of major genome
reduction attempts. The S. cerevisiae genome of approximately 12 Mb contains
substantial genetic redundancy but is also less accessible than that of most prokary-
otic model organisms (Goffeau et al. 1996). Things are complicated by the fact that
many different yeast strains (not restricted to the species S. cerevisiae) are circulating
in laboratories all over the world and are actively used for research and production
(Pscheidt and Glieder 2008).

While a substantial portion of the yeast genome is considered to be non-essential,
competition experiments with single deletion mutants of S. cerevisiae BY4743 did
not unveil potential benefits of such deletions (Sliwa and Korona 2005). Given that
the vast majority of proteins is expressed at very low levels (Ghaemmaghami et al.
2003), it is quite possible that only major deletions will lead to appreciable benefits.
In contrast, another study found the mating pathway of S. cerevisiae DBY15084 to
be sufficiently energy intensive so as to be an identifiable potential deletion target
(Lang et al. 2009). In the only study specifically targeted at reducing a yeast genome,
about 5% of the genome of S. cerevisiae SH5209 were deleted (Murakami et al.
2007). The resulting strains showed impaired growth in liquid media and reduced
mitochondrial functions but also increased ethanol formation.

Another model organism, the “fission yeast” Schizosaccharomyces pombe, has
also been the subject of genome reduction (Giga-Hama et al. 2007). Deletions of
single genes as well as up to 100 kb in a single experiment have been performed
successfully (Hirashima et al. 2006). In a parallel study, strains with multiple
protease knockouts were constructed to improve the production of heterologous
proteins (Idiris et al. 2006). The resulting multiple deletion strains display reduced
proteolytic capabilities and improved production of the human growth hormone
hGH. Similar results were reported from other studies (Sasaki et al. 2013). S. pombe
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lacking 5.2% of its parent’s genome had higher intracellular ATP concentration and
showed improved protein production. On the other hand specific glucose uptake rate
and growth rate were slightly reduced (Sasaki et al. 2013). S. pombe continues to be
the subject of research. New genomic modification systems based on the CRISPR-
Cas9 toolbox have been developed and will make this species more accessible (Zhao
and Boeke 2018). Yet, much effort is still necessary to further promote this some-
what underdeveloped expression host and characterize its deletion mutants.

5 Future Prospects

Molecular biologists have shown that large genomic deletions are feasible in many
species. While the majority of early genome reduction studies were conducted using
E. coli or B. subtilis, the genome of other industrially relevant organisms is in
principle also accessible (see Table 1). Some groups of organisms such as Strepto-
myces species appear to be particularly appealing targets of genome reduction
studies. The reduction of their extensive secondary metabolism promises to increase
precursor availability for synthesis of the target compounds. Moreover, Streptomy-
ces species are well-established hosts in the pharmaceutical industry which facili-
tates strain testing and process development.

Besides, new or poorly characterized hosts are on the rise. Strains of
Komagataella phaffii (formerly known as Pichia pastoris) produce a plethora of
heterologously expressed proteins (Macauley-Patrick et al. 2005). Other yeasts like
Yarrowia lipolytica or Kluyeromyces lactis have special niche applications (Rebello
et al. 2018). Geobacter species might be the missing link towards electrification of
biotechnological processes (Bond and Lovley 2003; Franks and Nevin 2010). Vibrio
natriegens is waiting in the wings to accelerate strain development and bioprocesses
(Hoffart et al. 2017; Weinstock et al. 2016). To date, none of these promising hosts
has been the subject of genome reduction. Given the experience collected with other
hosts we would expect to see fast and positive results by elimination of superfluous
intrinsic pathways and genomic sequences.

The major challenge in all genomic reduction studies is the proper choice of
targets. The genomic reduction series designed so far followed two strategies. The
first approach used comparative genomics to predict non-essential regions. The
initial targets in the MDS and MGF series of E. coli deletion mutants were identified
by this method (Kolisnychenko et al. 2002; Mizoguchi et al. 2007). Early steps in
C. glutamicum genome reduction were also based on the comparison of related
strains (Suzuki et al. 2005a). If closely related species are compared, this strategy
promises quick results coupled with good neutrality towards growth, but the number
of identifiable targets is limited. Comparing more distantly related genomes yields
more targets but at an increased risk of hitting indispensable functions. The second
approach is knowledge-based and initially involves the removal of sequences
acquired by orthogonal gene transfer such as prophages and insertion elements
(Baumgart et al. 2018; Li et al. 2016; Morimoto et al. 2008; Pósfai et al. 2006).
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Next, secondary metabolism and traits superfluous in the context of a bioreactor like
the flagellar biosynthesis are targeted (Lieder et al. 2015; Martínez-García et al.
2014b). The major downsides of this strategy are that handpicking of genes is
required and interactions between deletions are often unpredictable.

With an increasing availability of sequence and metabolic data, we expect
knowledge-driven approaches to dominate genome reduction studies in the future.
Many of the studies summarized in Table 1 have shown that benefits from genome
reduction are frequently associated with undesired side effects (Hashimoto et al.
2005; Murakami et al. 2007; Reuß et al. 2017). The avoidance of side effects
requires limiting genome reduction to impactful genes for the specific needs defined.
The identification of such impactful genes can be based on transcriptomic or
proteomic data. Löffler et al. (2016) found oscillating transcription profiles for
many genes during repeated short-term passage of cells through a low-nutrient
zone. Such zones exist in large-scale bioreactors, and a genome-reduced chassis
for this environment could carry deletions in differentially expressed genes. In
general, tailored approaches are attractive for another reason: The scope of genome
reduction is clearly defined, which enables early support by bioinformatics analysis
such as essentiality prediction or flux balance analysis (Daniels et al. 2016; Erdrich
et al. 2015). After genome reduction and engineering, tailored microorganisms can
be assayed in the niche they were designed for (Fig. 3).

Besides the few studies on yeasts, eukaryotic systems have not been the target of
genome reduction so far. With the advent of CRISPR-Cas technology, their acces-
sibility has dramatically increased. Tumor biology has demonstrated impressively
that eukaryotic genomes are quite flexible despite their size. Cancer cells often show
surprising chromosomal instability and rapid fixation of point mutations—a subject
that has been thoroughly covered elsewhere (Greaves and Maley 2012; Meacham
and Morrison 2013). It thus appears feasible to extensively engineer and select
eukaryotic cell lines used for biopharmaceutical production in the future. The use
of CRISPR-Cas editing for the generation of advantageous cell lines has been
demonstrated by several research groups in Chinese Hamster Ovary (CHO) cell
lines (Kellner et al. 2018; Shin et al. 2018; Wang et al. 2018). If it is possible to
remove almost a fourth of E. coli’s 4.6 MB genome, how much genomic DNA can
be removed from the 2359 MB of the CHO genome? Studies on genomic and
chromosomal stability of immortalized CHO cell lines indicate high plasticity in
all but seven or eight chromosomes (Cao et al. 2012; Derouazi et al. 2006). We
believe that genome reduction studies have great potential in CHO cells in terms of
functional annotation, increase in cell stability and predictability, and the reduction
of superfluous side metabolism.
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Fig. 3 Schematic workflow for the generation of genome-reduced hosts with increased process
performance
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6 Conclusion

As our understanding of the complex interactions in cellular metabolism increases,
so does our ability to manipulate biological systems. Genome reduction is an
approach to reduce them. Smaller, leaner systems tailored to the specific needs of
a bioprocess are theorized to be less wasteful and thus more efficient. The wide array
of organisms which have been the subject of successful genome reduction indicates
general applicability.

A critical step in genome reduction is the proper evaluation of strains. Strains
must be evaluated in the niche they were designed for as the case of B. subtilis
MGB874 ΔrocG has demonstrated (Manabe et al. 2013). Generally speaking, a
holistic view and clear process targets are necessary. Growth, substrate uptake rate,
or other general parameters can be criteria for constructing useful deletion strains,
but others may be just as important. The commercialization of E. coli strains from the
MDS series, despite their slightly reduced process performance in standard cultiva-
tions, was based on their extreme genetic stability (Chakiath and Esposito 2007;
Karcagi et al. 2016). These strains fill a niche: complex protein production in
continuous cultivation enabled by excellent plasmid stability (Blattner et al. 2017).
On the other hand, well-chosen targets for genome reduction in P. putida positively
affected all process relevant parameters, indicating general superiority of the reduced
strains in the niche of a controlled bioreactor (Lieder et al. 2015).

Studies on E. coli by Nishimura et al. (2017) showed that evolution after genome
reduction can restore growth defects generated by large deletions. These results are
well in line with observations made by evolving E. coli key enzyme knockout
mutants (Long et al. 2017). Initially, knockout strains display suboptimal flux
distribution and metabolite concentrations. Mutations in regulatory networks as
well as relevant single enzymes then restore initial flux distributions or enable new
optima to be found (McCloskey et al. 2018). Applying adaptive laboratory evolution
after extensive genome reduction should thus be a standard practice if unexpected
growth defects occur.

Evolution itself has demonstrated that organisms with very small genomes are
feasible. Increases and decreases in cellular and organismal complexity are
reoccurring phenomena over the history of life (Wolf and Koonin 2013). Reductive
evolution has led to some species losing the majority of their genome as they adapt to
a specialized niche (Andersson and Kurland 1998). In principle the controlled milieu
of a bioreactor production process could reasonably be such a niche as well. It is up
to molecular and systems biologists to find applicable design principles for small
genomes. With the availability of sequence information, the powerful methods of
modern systems biology and the extensive information collected on many model
organisms, genome reduction is about to become a feasible tool for host
optimization.

32 M. Ziegler and R. Takors



References

AdliM (2018) The CRISPR tool kit for genome editing and beyond. Nat Commun 9:1911. https://doi.
org/10.1038/s41467-018-04252-2

Ajikumar PK, Xiao W-H, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B,
Stephanopoulos G (2010) Isoprenoid pathway optimization for Taxol precursor overproduction
in Escherichia coli. Science 330:70–74. https://doi.org/10.1126/science.1191652

Akeno Y, Ying B-W, Tsuru S, Yomo T (2014) A reduced genome decreases the host carrying
capacity for foreign DNA. Microb Cell Factories 13:49. https://doi.org/10.1186/1475-2859-13-49

Alberts B, Miake-Lye R (1992) Unscrambling the puzzle of biological machines: the importance of
the details. Cell 68:415–420. https://doi.org/10.1016/0092-8674(92)90179-G

Anazawa H (2014) The concept of the Escherichia coli minimum genome factory. In: Anazawa H,
Shimizu S (eds) Microbial production: from genome design to cell engineering. Springer,
Tokyo, pp 25–32

Andersson SG, Kurland CG (1998) Reductive evolution of resident genomes. Trends Microbiol
6:263–268

Ara K, Ozaki K, Nakamura K, Yamane K, Sekiguchi J, Ogasawara N (2007) Bacillus minimum
genome factory: effective utilization of microbial genome information. Biotechnol Appl
Biochem 46:169–178. https://doi.org/10.1042/BA20060111

Baba T, Ara T, HasegawaM, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M,Wanner BL,
Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants:
the Keio collection. Mol Syst Biol 2:0008. https://doi.org/10.1038/msb4100050

Baeshen MN, Al-Hejin AM, Bora RS, Ahmed MMM, Ramadan HAI, Saini KS, Baeshen NA,
Redwan EM (2015) Production of biopharmaceuticals in E. coli: current scenario and future
perspectives. J Microbiol Biotechnol 25:953–962. https://doi.org/10.4014/jmb.1412.12079

Bailey JE (1991) Toward a science of metabolic engineering. Science 252:1668–1675
Bailey JE (1999) Lessons from metabolic engineering for functional genomics and drug discovery.

Nat Biotechnol 17:616–618. https://doi.org/10.1038/10794
Bailey JE, Sburlati A, Hatzimanikatis V, Lee K, Renner WA, Tsai PS (2002) Inverse metabolic

engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol
Bioeng 79:568–579. https://doi.org/10.1002/bit.10441

Barve A, Rodrigues JFM, Wagner A (2012) Superessential reactions in metabolic networks. Proc
Natl Acad Sci U S A 109:E1121–E1130. https://doi.org/10.1073/pnas.1113065109

Baumgart M, Unthan S, Rückert C, Sivalingam J, Grünberger A, Kalinowski J, Bott M, Noack S,
Frunzke J (2013) Construction of a prophage-free variant of Corynebacterium glutamicum
ATCC 13032 for use as a platform strain for basic research and industrial biotechnology.
Appl Environ Microbiol 79:6006–6015. https://doi.org/10.1128/AEM.01634-13

Baumgart M, Unthan S, Kloß R, Radek A, Polen T, Tenhaef N, Müller MF, Küberl A, Siebert D,
Brühl N, Marin K, Hans S, Krämer R, Bott M, Kalinowski J, Wiechert W, Seibold G, Frunzke J,
Rückert C, Wendisch VF, Noack S (2018) Corynebacterium glutamicum chassis C1�: building
and testing a novel platform host for synthetic biology and industrial biotechnology. ACS Synth
Biol 7:132–144. https://doi.org/10.1021/acssynbio.7b00261

Becker J, Wittmann C (2012) Bio-based production of chemicals, materials and fuels – Coryne-
bacterium glutamicum as versatile cell factory. Curr Opin Biotechnol 23:631–640. https://doi.
org/10.1016/j.copbio.2011.11.012

Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013)
GenBank. Nucleic Acids Res 41:D36–D42. https://doi.org/10.1093/nar/gks1195

Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26. https://doi.org/10.1038/ja.2005.1
Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54. https://doi.

org/10.1146/annurev.biochem.72.121801.161737
Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD,

Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B,
Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science
277:1453–1462

Reduced and Minimal Cell Factories in Bioprocesses: Towards a. . . 33

https://doi.org/10.1038/s41467-018-04252-2
https://doi.org/10.1038/s41467-018-04252-2
https://doi.org/10.1126/science.1191652
https://doi.org/10.1186/1475-2859-13-49
https://doi.org/10.1016/0092-8674(92)90179-G
https://doi.org/10.1042/BA20060111
https://doi.org/10.1038/msb4100050
https://doi.org/10.4014/jmb.1412.12079
https://doi.org/10.1038/10794
https://doi.org/10.1002/bit.10441
https://doi.org/10.1073/pnas.1113065109
https://doi.org/10.1128/AEM.01634-13
https://doi.org/10.1021/acssynbio.7b00261
https://doi.org/10.1016/j.copbio.2011.11.012
https://doi.org/10.1016/j.copbio.2011.11.012
https://doi.org/10.1093/nar/gks1195
https://doi.org/10.1038/ja.2005.1
https://doi.org/10.1146/annurev.biochem.72.121801.161737
https://doi.org/10.1146/annurev.biochem.72.121801.161737


Blattner CR, Frisch D, Novy RE, Henker TM, Steffen EA, Blattner FR, Choi H, Posfai G, Landry
CF (2017) Enhanced production of recombinant CRM197 in E. coli. (US patent 20170073379)

Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to
electrodes. Appl Environ Microbiol 69:1548–1555. https://doi.org/10.1128/AEM.69.3.1548-
1555.2003

Burgard AP, Vaidyaraman S, Maranas CD (2001) Minimal reaction sets for Escherichia coli
metabolism under different growth requirements and uptake environments. Biotechnol Prog
17:791–797. https://doi.org/10.1021/bp0100880

Cao Y, Kimura S, Itoi T, Honda K, Ohtake H, Omasa T (2012) Construction of BAC-based
physical map and analysis of chromosome rearrangement in Chinese hamster ovary cell lines.
Biotechnol Bioeng 109:1357–1367. https://doi.org/10.1002/bit.24347

Carpentier A-S, Torrésani B, Grossmann A, Hénaut A (2005) Decoding the nucleoid organisation
of Bacillus subtilis and Escherichia coli through gene expression data. BMC Genomics 6:84.
https://doi.org/10.1186/1471-2164-6-84

Chakiath C, Esposito D (2007) Improved recombinational stability of lentiviral expression vectors
using reduced-genome Escherichia coli. Biotech 43:466–470. https://doi.org/10.2144/
000112585

Choe D, Cho S, Kim SC, Cho B-K (2016) Minimal genome: worthwhile or worthless efforts toward
being smaller? Biotechnol J 11:199–211. https://doi.org/10.1002/biot.201400838

Choi JW, Yim SS, Kim MJ, Jeong KJ (2015) Enhanced production of recombinant proteins with
Corynebacterium glutamicum by deletion of insertion sequences (IS elements). Microb Cell
Factories 14:207. https://doi.org/10.1186/s12934-015-0401-7

Colin VL, Rodríguez A, Cristóbal HA (2011) The role of synthetic biology in the design of
microbial cell factories for biofuel production. J Biomed Biotechnol 2011:601834. https://doi.
org/10.1155/2011/601834

Commichau FM, Pietack N, Stülke J (2013) Essential genes in Bacillus subtilis: a re-evaluation
after ten years. Mol BioSyst 9:1068–1075. https://doi.org/10.1039/c3mb25595f

Cooper VS, Schneider D, Blot M, Lenski RE (2001) Mechanisms causing rapid and parallel losses
of ribose catabolism in evolving populations of Escherichia coli B. J Bacteriol 183:2834–2841.
https://doi.org/10.1128/JB.183.9.2834-2841.2001

Csörgo B, Fehér T, Tímár E, Blattner FR, Pósfai G (2012) Low-mutation-rate, reduced-genome
Escherichia coli: an improved host for faithful maintenance of engineered genetic constructs.
Microb Cell Factories 11:11. https://doi.org/10.1186/1475-2859-11-11

Daniels W, Bouvin J, Busche T, Kalinowski J, Bernaerts K (2016) Finding targets for genome
reduction in Streptomyces lividans TK24 using flux balance analysis. IFAC-PapersOnLine
49:252–257. https://doi.org/10.1016/j.ifacol.2016.12.134

Dauner M, Storni T, Sauer U (2001) Bacillus subtilis metabolism and energetics in carbon-limited
and excess-carbon chemostat culture. J Bacteriol 183:7308–7317. https://doi.org/10.1128/JB.
183.24.7308-7317.2001

Delvigne F, Boxus M, Ingels S, Thonart P (2009) Bioreactor mixing efficiency modulates the
activity of a prpoS: GFP reporter gene in E. coli. Microb Cell Factories 8:15. https://doi.org/10.
1186/1475-2859-8-15

Derouazi M, Martinet D, Besuchet Schmutz N, Flaction R, Wicht M, Bertschinger M, Hacker DL,
Beckmann JS, Wurm FM (2006) Genetic characterization of CHO production host DG44 and
derivative recombinant cell lines. Biochem Biophys Res Commun 340:1069–1077. https://doi.
org/10.1016/j.bbrc.2005.12.111

Dong X, Quinn PJ, Wang X (2011) Metabolic engineering of Escherichia coli and Corynebacterium
glutamicum for the production of L-threonine. Biotechnol Adv 29:11–23. https://doi.org/10.
1016/j.biotechadv.2010.07.009

Du F-L, Yu H-L, Xu J-H, Li C-X (2014) Enhanced limonene production by optimizing the
expression of limonene biosynthesis and MEP pathway genes in E. coli. Bioresour Bioprocess
1:10. https://doi.org/10.1186/s40643-014-0010-z

34 M. Ziegler and R. Takors

https://doi.org/10.1128/AEM.69.3.1548-1555.2003
https://doi.org/10.1128/AEM.69.3.1548-1555.2003
https://doi.org/10.1021/bp0100880
https://doi.org/10.1002/bit.24347
https://doi.org/10.1186/1471-2164-6-84
https://doi.org/10.2144/000112585
https://doi.org/10.2144/000112585
https://doi.org/10.1002/biot.201400838
https://doi.org/10.1186/s12934-015-0401-7
https://doi.org/10.1155/2011/601834
https://doi.org/10.1155/2011/601834
https://doi.org/10.1039/c3mb25595f
https://doi.org/10.1128/JB.183.9.2834-2841.2001
https://doi.org/10.1186/1475-2859-11-11
https://doi.org/10.1016/j.ifacol.2016.12.134
https://doi.org/10.1128/JB.183.24.7308-7317.2001
https://doi.org/10.1128/JB.183.24.7308-7317.2001
https://doi.org/10.1186/1475-2859-8-15
https://doi.org/10.1186/1475-2859-8-15
https://doi.org/10.1016/j.bbrc.2005.12.111
https://doi.org/10.1016/j.bbrc.2005.12.111
https://doi.org/10.1016/j.biotechadv.2010.07.009
https://doi.org/10.1016/j.biotechadv.2010.07.009
https://doi.org/10.1186/s40643-014-0010-z


Dugar D, Stephanopoulos G (2011) Relative potential of biosynthetic pathways for biofuels and
bio-based products. Nat Biotechnol 29:1074–1078. https://doi.org/10.1038/nbt.2055

Earl AM, Losick R, Kolter R (2008) Ecology and genomics of Bacillus subtilis. Trends Microbiol
16:269–275. https://doi.org/10.1016/j.tim.2008.03.004

Eberhardt D, Jensen JVK, Wendisch VF (2014) L-citrulline production by metabolically
engineered Corynebacterium glutamicum from glucose and alternative carbon sources. AMB
Express 4:85. https://doi.org/10.1186/s13568-014-0085-0

Emmerling M, Dauner M, Ponti A, Fiaux J, Hochuli M, Szyperski T, Wüthrich K, Bailey JE, Sauer
U (2002) Metabolic flux responses to pyruvate kinase knockout in Escherichia coli. J Bacteriol
184:152–164. https://doi.org/10.1128/JB.184.1.152-164.2002

Erdrich P, Steuer R, Klamt S (2015) An algorithm for the reduction of genome-scale metabolic
network models to meaningful core models. BMC Syst Biol 9:48. https://doi.org/10.1186/
s12918-015-0191-x

Esnault E, Valens M, Espéli O, Boccard F (2007) Chromosome structuring limits genome plasticity
in Escherichia coli. PLoS Genet 3:e226. https://doi.org/10.1371/journal.pgen.0030226

Esvelt KM, Wang HH (2013) Genome-scale engineering for systems and synthetic biology. Mol
Syst Biol 9:641. https://doi.org/10.1038/msb.2012.66

Farmer IS, Jones CW (1976) The energetics of Escherichia coli during aerobic growth in contin-
uous culture. Eur J Biochem 67:115–122. https://doi.org/10.1111/j.1432-1033.1976.tb10639.x

Ferenci T (2005) Maintaining a healthy SPANC balance through regulatory and mutational
adaptation. Mol Microbiol 57:1–8. https://doi.org/10.1111/j.1365-2958.2005.04649.x

Ferrer-Miralles N, Domingo-Espín J, Corchero JL, Vázquez E, Villaverde A (2009) Microbial
factories for recombinant pharmaceuticals. Microb Cell Factories 8:17. https://doi.org/10.1186/
1475-2859-8-17

Fischer E, Sauer U (2005) Large-scale in vivo flux analysis shows rigidity and suboptimal
performance of Bacillus subtilis metabolism. Nat Genet 37:636–640. https://doi.org/10.1038/
ng1555

Fleischmann R, Adams M, White O, Clayton R, Kirkness E, Kerlavage A, Bult C, Tomb J,
Dougherty B, Merrick J (1995) Whole-genome random sequencing and assembly of
Haemophilus influenzae Rd. Science 269:496–512. https://doi.org/10.1126/science.7542800

Ford K, McDonald D, Mali P (2018) Functional genomics via CRISPR-Cas. J Mol Biol 43(1):48–65.
https://doi.org/10.1016/j.jmb.2018.06.034

Fossum S, Crooke E, Skarstad K (2007) Organization of sister origins and replisomes during
multifork DNA replication in Escherichia coli. EMBO J 26:4514–4522. https://doi.org/10.
1038/sj.emboj.7601871

Franks AE, Nevin KP (2010) Microbial fuel cells, a current review. Energies 3:899–919. https://doi.
org/10.3390/en3050899

Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage
AR, Sutton G, Kelley JM, Fritchman JL, Weidman JF, Small KV, Sandusky M, Fuhrmann J,
Nguyen D, Utterback TR, Saudek DM, Phillips CA, Merrick JM, Tomb J-F, Dougherty BA,
Bott KF, Hu P-C, Lucier TS (1995) The minimal gene complement ofMycoplasma genitalium.
Science 270:397–404. https://doi.org/10.1126/science.270.5235.397

Freed E, Fenster J, Smolinski SL, Walker J, Henard CA, Gill R, Eckert CA (2018) Building a
genome engineering toolbox in nonmodel prokaryotic microbes. Biotechnol Bioeng 115
(9):2120–2138. https://doi.org/10.1002/bit.26727

Frunzke J, Bramkamp M, Schweitzer J-E, Bott M (2008) Population heterogeneity in Corynebac-
terium glutamicum ATCC 13032 caused by prophage CGP3. J Bacteriol 190:5111–5119.
https://doi.org/10.1128/JB.00310-08

Gallone B, Mertens S, Gordon JL, Maere S, Verstrepen KJ, Steensels J (2018) Origins, evolution,
domestication and diversity of Saccharomyces beer yeasts. Curr Opin Biotechnol 49:148–155.
https://doi.org/10.1016/j.copbio.2017.08.005

Reduced and Minimal Cell Factories in Bioprocesses: Towards a. . . 35

https://doi.org/10.1038/nbt.2055
https://doi.org/10.1016/j.tim.2008.03.004
https://doi.org/10.1186/s13568-014-0085-0
https://doi.org/10.1128/JB.184.1.152-164.2002
https://doi.org/10.1186/s12918-015-0191-x
https://doi.org/10.1186/s12918-015-0191-x
https://doi.org/10.1371/journal.pgen.0030226
https://doi.org/10.1038/msb.2012.66
https://doi.org/10.1111/j.1432-1033.1976.tb10639.x
https://doi.org/10.1111/j.1365-2958.2005.04649.x
https://doi.org/10.1186/1475-2859-8-17
https://doi.org/10.1186/1475-2859-8-17
https://doi.org/10.1038/ng1555
https://doi.org/10.1038/ng1555
https://doi.org/10.1126/science.7542800
https://doi.org/10.1016/j.jmb.2018.06.034
https://doi.org/10.1038/sj.emboj.7601871
https://doi.org/10.1038/sj.emboj.7601871
https://doi.org/10.3390/en3050899
https://doi.org/10.3390/en3050899
https://doi.org/10.1126/science.270.5235.397
https://doi.org/10.1002/bit.26727
https://doi.org/10.1128/JB.00310-08
https://doi.org/10.1016/j.copbio.2017.08.005


Gama-Castro S, Salgado H, Santos-Zavaleta A, Ledezma-Tejeida D, Muñiz-Rascado L, García-Sotelo
JS, Alquicira-Hernández K,Martínez-Flores I, Pannier L, Castro-Mondragón JA,Medina-Rivera A,
Solano-Lira H, Bonavides-Martínez C, Pérez-Rueda E, Alquicira-Hernández S, Porrón-Sotelo L,
López-Fuentes A, Hernández-Koutoucheva A, Del Moral-Chávez V, Rinaldi F, Collado-Vides J
(2016) RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif
clustering and beyond. Nucleic Acids Res 44:D133–D143. https://doi.org/10.1093/nar/gkv1156

Gao H, Zhuo Y, Ashforth E, Zhang L (2010) Engineering of a genome-reduced host: practical
application of synthetic biology in the overproduction of desired secondary metabolites. Protein
Cell 1:621–626. https://doi.org/10.1007/s13238-010-0073-3

Ghaemmaghami S, Huh W-K, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK,
Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425:737–741.
https://doi.org/10.1038/nature02046

Giga-Hama Y, Tohda H, Takegawa K, Kumagai H (2007) Schizosaccharomyces pombe minimum
genome factory. Biotechnol Appl Biochem 46:147–155. https://doi.org/10.1042/BA20060106

Gil R, Silva FJ, Peretó J, Moya A (2004) Determination of the core of a minimal bacterial gene set.
Microbiol Mol Biol Rev 68:518–537. https://doi.org/10.1128/MMBR.68.3.518-537.2004

Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD,
Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG
(1996) Life with 6000 genes. Science 274:546–567

Gomez-Escribano JP, Bibb MJ (2011) Engineering Streptomyces coelicolor for heterologous
expression of secondary metabolite gene clusters. Microb Biotechnol 4:207–215. https://doi.
org/10.1111/j.1751-7915.2010.00219.x

Gong Z, Nielsen J, Zhou YJ (2017) Engineering robustness of microbial cell factories. Biotechnol J
12:1700014. https://doi.org/10.1002/biot.201700014

Goryshin IY, Naumann TA, Apodaca J, Reznikoff WS (2003) Chromosomal deletion formation
system based on Tn5 double transposition: use for making minimal genomes and essential gene
analysis. Genome Res 13:644–653. https://doi.org/10.1101/gr.611403

Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481:306–313. https://doi.org/10.
1038/nature10762

Guha TK, Wai A, Hausner G (2017) Programmable genome editing tools and their regulation for
efficient genome engineering. Comput Struct Biotechnol J 15:146–160. https://doi.org/10.1016/
j.csbj.2016.12.006

Hashimoto M, Ichimura T, Mizoguchi H, Tanaka K, Fujimitsu K, Keyamura K, Ote T,
Yamakawa T, Yamazaki Y, Mori H, Katayama T, J-i K (2005) Cell size and nucleoid
organization of engineered Escherichia coli cells with a reduced genome. Mol Microbiol
55:137–149. https://doi.org/10.1111/j.1365-2958.2004.04386.x

Hénin J, Tajkhorshid E, Schulten K, Chipot C (2008) Diffusion of glycerol through Escherichia coli
aquaglyceroporin GlpF. Biophys J 94:832–839. https://doi.org/10.1529/biophysj.107.115105

Hirashima K, Iwaki T, Takegawa K, Giga-Hama Y, Tohda H (2006) A simple and effective
chromosome modification method for large-scale deletion of genome sequences and identifica-
tion of essential genes in fission yeast. Nucleic Acids Res 34:e11. https://doi.org/10.1093/nar/
gnj011

Hirokawa Y, Kawano H, Tanaka-Masuda K, Nakamura N, Nakagawa A, Ito M, Mori H, Oshima T,
Ogasawara N (2013) Genetic manipulations restored the growth fitness of reduced-genome
Escherichia coli. J Biosci Bioeng 116:52–58. https://doi.org/10.1016/j.jbiosc.2013.01.010

Hoffart E, Grenz S, Lange J, Nitschel R, Müller F, Schwentner A, Feith A, Lenfers-Lücker M,
Takors R, Blombach B (2017) High substrate uptake rates empower Vibrio natriegens as
production host for industrial biotechnology. Appl Environ Microbiol 83:e01614–e01617.
https://doi.org/10.1128/AEM.01614-17

Hooven TA, Catomeris AJ, Akabas LH, Randis TM, Maskell DJ, Peters SE, Ott S, Santana-Cruz I,
Tallon LJ, Tettelin H, Ratner AJ (2016) The essential genome of Streptococcus agalactiae.
BMC Genomics 17:406. https://doi.org/10.1186/s12864-016-2741-z

36 M. Ziegler and R. Takors

https://doi.org/10.1093/nar/gkv1156
https://doi.org/10.1007/s13238-010-0073-3
https://doi.org/10.1038/nature02046
https://doi.org/10.1042/BA20060106
https://doi.org/10.1128/MMBR.68.3.518-537.2004
https://doi.org/10.1111/j.1751-7915.2010.00219.x
https://doi.org/10.1111/j.1751-7915.2010.00219.x
https://doi.org/10.1002/biot.201700014
https://doi.org/10.1101/gr.611403
https://doi.org/10.1038/nature10762
https://doi.org/10.1038/nature10762
https://doi.org/10.1016/j.csbj.2016.12.006
https://doi.org/10.1016/j.csbj.2016.12.006
https://doi.org/10.1111/j.1365-2958.2004.04386.x
https://doi.org/10.1529/biophysj.107.115105
https://doi.org/10.1093/nar/gnj011
https://doi.org/10.1093/nar/gnj011
https://doi.org/10.1016/j.jbiosc.2013.01.010
https://doi.org/10.1128/AEM.01614-17
https://doi.org/10.1186/s12864-016-2741-z


Idiris A, Tohda H, K-w B, Isoai A, Kumagai H, Giga-Hama Y (2006) Enhanced productivity of
protease-sensitive heterologous proteins by disruption of multiple protease genes in the fission
yeast Schizosaccharomyces pombe. Appl Microbiol Biotechnol 73:404–420. https://doi.org/10.
1007/s00253-006-0489-0

Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on
biotechnological processes. Appl Microbiol Biotechnol 62:99–109. https://doi.org/10.1007/
s00253-003-1328-1

Jain R, Srivastava R (2009) Metabolic investigation of host/pathogen interaction using MS2-infected
Escherichia coli. BMC Syst Biol 3:121. https://doi.org/10.1186/1752-0509-3-121

Juhas M, Reuß DR, Zhu B, Commichau FM (2014) Bacillus subtilis and Escherichia coli essential
genes and minimal cell factories after one decade of genome engineering. Microbiology
160:2341–2351. https://doi.org/10.1099/mic.0.079376-0

Karcagi I, Draskovits G, Umenhoffer K, Fekete G, Kovács K, Méhi O, Balikó G, Szappanos B,
Györfy Z, Fehér T, Bogos B, Blattner FR, Pál C, Pósfai G, Papp B (2016) Indispensability of
horizontally transferred genes and its impact on bacterial genome streamlining. Mol Biol Evol
33:1257–1269. https://doi.org/10.1093/molbev/msw009

Kellner K, Solanki A, Amann T, Lao N, Barron N (2018) Targeting miRNAs with CRISPR/Cas9 to
improve recombinant protein production of CHO cells. Methods Mol Biol 1850:221–235.
https://doi.org/10.1007/978-1-4939-8730-6_15

Képès F (2004) Periodic transcriptional organization of the E.coli genome. J Mol Biol
340:957–964. https://doi.org/10.1016/j.jmb.2004.05.039

Kiviet DJ, Nghe P, Walker N, Boulineau S, Sunderlikova V, Tans SJ (2014) Stochasticity of
metabolism and growth at the single-cell level. Nature 514:376–379. https://doi.org/10.1038/
nature13582

Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M, Asai K, Ashikaga S,
Aymerich S, Bessieres P, Boland F, Brignell SC, Bron S, Bunai K, Chapuis J, Christiansen LC,
Danchin A, Débarbouille M, Dervyn E, Deuerling E, Devine K, Devine SK, Dreesen O,
Errington J, Fillinger S, Foster SJ, Fujita Y, Galizzi A, Gardan R, Eschevins C, Fukushima T,
Haga K, Harwood CR, Hecker M, Hosoya D, Hullo MF, Kakeshita H, Karamata D, Kasahara Y,
Kawamura F, Koga K, Koski P, Kuwana R, Imamura D, Ishimaru M, Ishikawa S, Ishio I, Le
Coq D, Masson A, Mauël C, Meima R, Mellado RP, Moir A, Moriya S, Nagakawa E,
Nanamiya H, Nakai S, Nygaard P, Ogura M, Ohanan T, O’Reilly M, O’Rourke M, Pragai Z,
Pooley HM, Rapoport G, Rawlins JP, Rivas LA, Rivolta C, Sadaie A, Sadaie Y, Sarvas M,
Sato T, Saxild HH, Scanlan E, Schumann W, Seegers JFML, Sekiguchi J, Sekowska A, Séror
SJ, Simon M, Stragier P, Studer R, Takamatsu H, Tanaka T, Takeuchi M, Thomaides HB,
Vagner V, van Dijl JM, Watabe K, Wipat A, Yamamoto H, Yamamoto M, Yamamoto Y,
Yamane K, Yata K, Yoshida K, Yoshikawa H, Zuber U, Ogasawara N (2003) Essential Bacillus
subtilis genes. Proc Natl Acad Sci U S A 100:4678–4683. https://doi.org/10.1073/pnas.
0730515100

Kolisnychenko V, Plunkett G, Herring CD, Fehér T, Pósfai J, Blattner FR, Pósfai G (2002)
Engineering a reduced Escherichia coli genome. Genome Res 12:640–647. https://doi.org/10.
1101/gr.217202

Komatsu M, Uchiyama T, Omura S, Cane DE, Ikeda H (2010) Genome-minimized Streptomyces
host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci U S A
107:2646–2651. https://doi.org/10.1073/pnas.0914833107

Komatsu M, Komatsu K, Koiwai H, Yamada Y, Kozone I, Izumikawa M, Hashimoto J, Takagi M,
Omura S, Shin-ya K, Cane DE, Ikeda H (2013) Engineered Streptomyces avermitilis host for
heterologous expression of biosynthetic gene cluster for secondary metabolites. ACS Synth Biol
2:384–396. https://doi.org/10.1021/sb3001003

Koob MD, SHAWAJ, CAMERON DC (1994) Minimizing the genome of Escherichia coli. Ann N
Y Acad Sci 745:1–3. https://doi.org/10.1111/j.1749-6632.1994.tb44359.x

Koonin EV (2000) How many genes can make a cell: the minimal-gene-set concept. Annu Rev
Genomics Hum Genet 1:99–116. https://doi.org/10.1146/annurev.genom.1.1.99

Reduced and Minimal Cell Factories in Bioprocesses: Towards a. . . 37

https://doi.org/10.1007/s00253-006-0489-0
https://doi.org/10.1007/s00253-006-0489-0
https://doi.org/10.1007/s00253-003-1328-1
https://doi.org/10.1007/s00253-003-1328-1
https://doi.org/10.1186/1752-0509-3-121
https://doi.org/10.1099/mic.0.079376-0
https://doi.org/10.1093/molbev/msw009
https://doi.org/10.1007/978-1-4939-8730-6_15
https://doi.org/10.1016/j.jmb.2004.05.039
https://doi.org/10.1038/nature13582
https://doi.org/10.1038/nature13582
https://doi.org/10.1073/pnas.0730515100
https://doi.org/10.1073/pnas.0730515100
https://doi.org/10.1101/gr.217202
https://doi.org/10.1101/gr.217202
https://doi.org/10.1073/pnas.0914833107
https://doi.org/10.1021/sb3001003
https://doi.org/10.1111/j.1749-6632.1994.tb44359.x
https://doi.org/10.1146/annurev.genom.1.1.99


Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessières P,
Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron S,
Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi SK, Cordani JJ, Connerton
IF, Cummings NJ, Daniel RA, Denziot F, Devine KM, Düsterhöft A, Ehrlich SD, Emmerson
PT, Entian KD, Errington J, Fabret C, Ferrari E, Foulger D, Fritz C, Fujita M, Fujita Y, Fuma S,
Galizzi A, Galleron N, Ghim SY, Glaser P, Goffeau A, Golightly EJ, Grandi G, Guiseppi G,
Guy BJ, Haga K, Haiech J, Harwood CR, Hènaut A, Hilbert H, Holsappel S, Hosono S, Hullo
MF, Itaya M, Jones L, Joris B, Karamata D, Kasahara Y, Klaerr-Blanchard M, Klein C,
Kobayashi Y, Koetter P, Koningstein G, Krogh S, Kumano M, Kurita K, Lapidus A,
Lardinois S, Lauber J, Lazarevic V, Lee SM, Levine A, Liu H, Masuda S, Mauël C,
Médigue C, Medina N, Mellado RP, Mizuno M, Moestl D, Nakai S, Noback M, Noone D,
O’Reilly M, Ogawa K, Ogiwara A, Oudega B, Park SH, Parro V, Pohl TM, Portelle D,
Porwollik S, Prescott AM, Presecan E, Pujic P, Purnelle B, Rapoport G, Rey M, Reynolds S,
Rieger M, Rivolta C, Rocha E, Roche B, Rose M, Sadaie Y, Sato T, Scanlan E, Schleich S,
Schroeter R, Scoffone F, Sekiguchi J, Sekowska A, Seror SJ, Serror P, Shin BS, Soldo B,
Sorokin A, Tacconi E, Takagi T, Takahashi H, Takemaru K, Takeuchi M, Tamakoshi A,
Tanaka T, Terpstra P, Togoni A, Tosato V, Uchiyama S, Vandebol M, Vannier F,
Vassarotti A, Viari A, Wambutt R, Wedler H, Weitzenegger T, Winters P, Wipat A,
Yamamoto H, Yamane K, Yasumoto K, Yata K, Yoshida K, Yoshikawa HF, Zumstein E,
Yoshikawa H, Danchin A (1997) The complete genome sequence of the gram-positive bacte-
rium Bacillus subtilis. Nature 390:249–256. https://doi.org/10.1038/36786

Kurakin A (2005) Stochastic cell. IUBMB Life 57:59–63. https://doi.org/10.1080/
15216540400024314

Kurokawa M, Seno S, Matsuda H, Ying B-W (2016) Correlation between genome reduction and
bacterial growth. DNA Res 23:517–525. https://doi.org/10.1093/dnares/dsw035

Lang GI, Murray AW, Botstein D (2009) The cost of gene expression underlies a fitness trade-off in
yeast. Proc Natl Acad Sci U S A 106:5755–5760. https://doi.org/10.1073/pnas.0901620106

Lee SY, Kim HU (2015) Systems strategies for developing industrial microbial strains. Nat
Biotechnol 33:1061–1072. https://doi.org/10.1038/nbt.3365

Lee JH, Sung BH, KimMS, Blattner FR, Yoon BH, Kim JH, Kim SC (2009) Metabolic engineering
of a reduced-genome strain of Escherichia coli for L-threonine production. Microb Cell
Factories 8:2. https://doi.org/10.1186/1475-2859-8-2

Lee J-Y, Na Y-A, Kim E, Lee H-S, Kim P (2016) The Actinobacterium Corynebacterium
glutamicum, an industrial workhorse. J Microbiol Biotechnol 26:807–822. https://doi.org/10.
4014/jmb.1601.01053

Leprince A, van Passel MWJ, dos Santos VAPM (2012) Streamlining genomes: toward the
generation of simplified and stabilized microbial systems. Curr Opin Biotechnol 23:651–658.
https://doi.org/10.1016/j.copbio.2012.05.001

Li Y, Zhu X, Zhang X, Fu J, Wang Z, Chen T, Zhao X (2016) Characterization of genome-reduced
Bacillus subtilis strains and their application for the production of guanosine and thymidine.
Microb Cell Factories 15:94. https://doi.org/10.1186/s12934-016-0494-7

Lieder S, Nikel PI, de Lorenzo V, Takors R (2015) Genome reduction boosts heterologous gene
expression in Pseudomonas putida. Microb Cell Factories 14:23. https://doi.org/10.1186/
s12934-015-0207-7

Liu H, He Y, Jiang H, Peng H, Huang X, Zhang X, Thomashow LS, Xu Y (2007) Characterization
of a phenazine-producing strain Pseudomonas chlororaphis GP72 with broad-spectrum antifun-
gal activity from green pepper rhizosphere. Curr Microbiol 54:302–306. https://doi.org/10.
1007/s00284-006-0444-4

Liu L, Liu Y, Shin H-D, Chen RR,Wang NS, Li J, Du G, Chen J (2013) Developing Bacillus spp. as
a cell factory for production of microbial enzymes and industrially important biochemicals in the
context of systems and synthetic biology. Appl Microbiol Biotechnol 97:6113–6127. https://
doi.org/10.1007/s00253-013-4960-4

38 M. Ziegler and R. Takors

https://doi.org/10.1038/36786
https://doi.org/10.1080/15216540400024314
https://doi.org/10.1080/15216540400024314
https://doi.org/10.1093/dnares/dsw035
https://doi.org/10.1073/pnas.0901620106
https://doi.org/10.1038/nbt.3365
https://doi.org/10.1186/1475-2859-8-2
https://doi.org/10.4014/jmb.1601.01053
https://doi.org/10.4014/jmb.1601.01053
https://doi.org/10.1016/j.copbio.2012.05.001
https://doi.org/10.1186/s12934-016-0494-7
https://doi.org/10.1186/s12934-015-0207-7
https://doi.org/10.1186/s12934-015-0207-7
https://doi.org/10.1007/s00284-006-0444-4
https://doi.org/10.1007/s00284-006-0444-4
https://doi.org/10.1007/s00253-013-4960-4
https://doi.org/10.1007/s00253-013-4960-4


Loeschcke A, Thies S (2015) Pseudomonas putida-a versatile host for the production of natural
products. Appl Microbiol Biotechnol 99:6197–6214. https://doi.org/10.1007/s00253-015-6745-4

Löffler M, Simen JD, Jäger G, Schäferhoff K, Freund A, Takors R (2016) Engineering E. coli for
large-scale production – strategies considering ATP expenses and transcriptional responses.
Metab Eng 38:73–85. https://doi.org/10.1016/j.ymben.2016.06.008

Long CP, Gonzalez JE, Feist AM, Palsson BO, Antoniewicz MR (2017) Dissecting the genetic and
metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in
Escherichia coli. Proc Natl Acad Sci U S A 115:222–227. https://doi.org/10.1073/pnas.
1716056115

Lowe G, Meister M, Berg HC (1987) Rapid rotation of flagellar bundles in swimming bacteria.
Nature 325:637–640. https://doi.org/10.1038/325637a0

Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production
using the Pichia pastoris expression system. Yeast 22:249–270. https://doi.org/10.1002/yea.1208

Macnab RM (1992) Genetics and biogenesis of bacterial flagella. Annu Rev Genet 26:131–158.
https://doi.org/10.1146/annurev.ge.26.120192.001023

Macnab RM (1996) Flagella and motility. In: Neidhardt FC, Curtiss R (eds) Escherichia coli and
Salmonella: cellular and molecular biology, 2nd edn. ASM, Washington D.C, pp 123–145

Manabe K, Kageyama Y, Morimoto T, Ozawa T, Sawada K, Endo K, Tohata M, Ara K, Ozaki K,
Ogasawara N (2011) Combined effect of improved cell yield and increased specific productivity
enhances recombinant enzyme production in genome-reduced Bacillus subtilis strain MGB874.
Appl Environ Microbiol 77:8370–8381. https://doi.org/10.1128/AEM.06136-11

Manabe K, Kageyama Y, Morimoto T, Shimizu E, Takahashi H, Kanaya S, Ara K, Ozaki K,
Ogasawara N (2013) Improved production of secreted heterologous enzyme in Bacillus subtilis
strain MGB874 via modification of glutamate metabolism and growth conditions. Microb Cell
Factories 12:18. https://doi.org/10.1186/1475-2859-12-18

Martínez-García E, Nikel PI, Aparicio T, de Lorenzo V (2014a) Pseudomonas 2.0: genetic
upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb
Cell Factories 13:159. https://doi.org/10.1186/s12934-014-0159-3

Martínez-García E, Nikel PI, Chavarría M, de Lorenzo V (2014b) The metabolic cost of flagellar
motion in Pseudomonas putida KT2440. Environ Microbiol 16:291–303. https://doi.org/10.
1111/1462-2920.12309

Martínez-García E, Jatsenko T, Kivisaar M, de Lorenzo V (2015) Freeing Pseudomonas putida
KT2440 of its proviral load strengthens endurance to environmental stresses. Environ Microbiol
17:76–90. https://doi.org/10.1111/1462-2920.12492

McCloskey D, Xu S, Sandberg TE, Brunk E, Hefner Y, Szubin R, Feist AM, Palsson BO (2018)
Evolution of gene knockout strains of E. coli reveal regulatory architectures governed by
metabolism. Nat Commun 9:3796. https://doi.org/10.1038/s41467-018-06219-9

Meacham CE, Morrison SJ (2013) Tumor heterogeneity and cancer cell plasticity. Nature
501:328–337. https://doi.org/10.1038/nature12624

Mears PJ, Koirala S, Rao CV, Golding I, Chemla YR (2014) Escherichia coli swimming is robust
against variations in flagellar number. elife 3:e01916. https://doi.org/10.7554/eLife.01916

Mierau I, Leij P, van Swam I, Blommestein B, Floris E, Mond J, Smid EJ (2005) Industrial-scale
production and purification of a heterologous protein in Lactococcus lactis using the nisin-
controlled gene expression system NICE: the case of lysostaphin. Microb Cell Factories 4:15.
https://doi.org/10.1186/1475-2859-4-15

Milo R (2013) What is the total number of protein molecules per cell volume? A call to rethink
some published values. BioEssays 35:1050–1055. https://doi.org/10.1002/bies.201300066

Mizoguchi H, Mori H, Fujio T (2007) Escherichia coli minimum genome factory. Biotechnol Appl
Biochem 46:157–167. https://doi.org/10.1042/BA20060107

Mizoguchi H, Sawano Y, J-i K, Mori H (2008) Superpositioning of deletions promotes growth of
Escherichia coli with a reduced genome. DNA Res 15:277–284. https://doi.org/10.1093/dnares/
dsn019

Reduced and Minimal Cell Factories in Bioprocesses: Towards a. . . 39

https://doi.org/10.1007/s00253-015-6745-4
https://doi.org/10.1016/j.ymben.2016.06.008
https://doi.org/10.1073/pnas.1716056115
https://doi.org/10.1073/pnas.1716056115
https://doi.org/10.1038/325637a0
https://doi.org/10.1002/yea.1208
https://doi.org/10.1146/annurev.ge.26.120192.001023
https://doi.org/10.1128/AEM.06136-11
https://doi.org/10.1186/1475-2859-12-18
https://doi.org/10.1186/s12934-014-0159-3
https://doi.org/10.1111/1462-2920.12309
https://doi.org/10.1111/1462-2920.12309
https://doi.org/10.1111/1462-2920.12492
https://doi.org/10.1038/s41467-018-06219-9
https://doi.org/10.1038/nature12624
https://doi.org/10.7554/eLife.01916
https://doi.org/10.1186/1475-2859-4-15
https://doi.org/10.1002/bies.201300066
https://doi.org/10.1042/BA20060107
https://doi.org/10.1093/dnares/dsn019
https://doi.org/10.1093/dnares/dsn019


Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3:371–394. https://doi.org/
10.1146/annurev.mi.03.100149.002103

Morimoto T, Kadoya R, Endo K, Tohata M, Sawada K, Liu S, Ozawa T, Kodama T, Kakeshita H,
Kageyama Y, Manabe K, Kanaya S, Ara K, Ozaki K, Ogasawara N (2008) Enhanced recom-
binant protein productivity by genome reduction in Bacillus subtilis. DNA Res 15:73–81.
https://doi.org/10.1093/dnares/dsn002

Murakami K, Tao E, Ito Y, Sugiyama M, Kaneko Y, Harashima S, Sumiya T, Nakamura A,
Nishizawa M (2007) Large scale deletions in the Saccharomyces cerevisiae genome create
strains with altered regulation of carbon metabolism. Appl Microbiol Biotechnol 75:589–597.
https://doi.org/10.1007/s00253-007-0859-2

Nakashima N, Miyazaki K (2014) Bacterial cellular engineering by genome editing and gene
silencing. Int J Mol Sci 15:2773–2793. https://doi.org/10.3390/ijms15022773

Nanda AM, Heyer A, Krämer C, Grünberger A, Kohlheyer D, Frunzke J (2014) Analysis of
SOS-induced spontaneous prophage induction in Corynebacterium glutamicum at the single-
cell level. J Bacteriol 196:180–188. https://doi.org/10.1128/JB.01018-13

Nishimura I, Kurokawa M, Liu L, Ying B-W (2017) Coordinated changes in mutation and growth
rates induced by genome reduction. MBio 8:e00676–e00617. https://doi.org/10.1128/mBio.
00676-17

Noack S, Baumgart M (2018) Communities of niche-optimized strains: small-genome organism
consortia in bioproduction. Trends Biotechnol 37(2):126–139. https://doi.org/10.1016/j.tibtech.
2018.07.011

Noguchi Y, Nakai Y, Shimba N, Toyosaki H, Kawahara Y, Sugimoto S, Suzuki E-I (2004) The
energetic conversion competence of Escherichia coli during aerobic respiration studied by 31P
NMR using a circulating fermentation system. J Biochem 136:509–515. https://doi.org/10.
1093/jb/mvh147

Notley-McRobb L, King T, Ferenci T (2002) rpoS mutations and loss of general stress resistance in
Escherichia coli populations as a consequence of conflict between competing stress responses.
J Bacteriol 184:806–811. https://doi.org/10.1128/JB.184.3.806-811.2002

O’Brien EJ, Utrilla J, Palsson BO (2016) Quantification and classification of E. coli proteome
utilization and unused protein costs across environments. PLoS Comput Biol 12:e1004998.
https://doi.org/10.1371/journal.pcbi.1004998

Oehler S, Eismann ER, Krämer H, Müller-Hill B (1990) The three operators of the lac operon
cooperate in repression. EMBO J 9:973–979

Oesterle S, Wuethrich I, Panke S (2017) Toward genome-based metabolic engineering in bacteria.
Adv Appl Microbiol 101:49–82. https://doi.org/10.1016/bs.aambs.2017.07.001

Park MK, Lee SH, Yang KS, Jung S-C, Lee JH, Kim SC (2014) Enhancing recombinant protein
production with an Escherichia coli host strain lacking insertion sequences. Appl Microbiol
Biotechnol 98:6701–6713. https://doi.org/10.1007/s00253-014-5739-y

Poblete-Castro I, Becker J, Dohnt K, dos Santos VM, Wittmann C (2012) Industrial biotechnology
of Pseudomonas putida and related species. Appl Microbiol Biotechnol 93:2279–2290. https://
doi.org/10.1007/s00253-012-3928-0

Pósfai G, Plunkett G, Fehér T, Frisch D, Keil GM, Umenhoffer K, Kolisnychenko V, Stahl B,
Sharma SS, de Arruda M, Burland V, Harcum SW, Blattner FR (2006) Emergent properties of
reduced-genome Escherichia coli. Science 312:1044–1046. https://doi.org/10.1126/science.
1126439

Price MN, Wetmore KM, Deutschbauer AM, Arkin AP (2016) A comparison of the costs and
benefits of bacterial gene expression. PLoS One 11:e0164314. https://doi.org/10.1371/journal.
pone.0164314

Procópio REL, Silva IR, Martins MK, Azevedo JL, Araújo JM (2012) Antibiotics produced by
Streptomyces. Braz J Infect Dis 16:466–471. https://doi.org/10.1016/j.bjid.2012.08.014

Pscheidt B, Glieder A (2008) Yeast cell factories for fine chemical and API production. Microb Cell
Factories 7:25. https://doi.org/10.1186/1475-2859-7-25

40 M. Ziegler and R. Takors

https://doi.org/10.1146/annurev.mi.03.100149.002103
https://doi.org/10.1146/annurev.mi.03.100149.002103
https://doi.org/10.1093/dnares/dsn002
https://doi.org/10.1007/s00253-007-0859-2
https://doi.org/10.3390/ijms15022773
https://doi.org/10.1128/JB.01018-13
https://doi.org/10.1128/mBio.00676-17
https://doi.org/10.1128/mBio.00676-17
https://doi.org/10.1016/j.tibtech.2018.07.011
https://doi.org/10.1016/j.tibtech.2018.07.011
https://doi.org/10.1093/jb/mvh147
https://doi.org/10.1093/jb/mvh147
https://doi.org/10.1128/JB.184.3.806-811.2002
https://doi.org/10.1371/journal.pcbi.1004998
https://doi.org/10.1016/bs.aambs.2017.07.001
https://doi.org/10.1007/s00253-014-5739-y
https://doi.org/10.1007/s00253-012-3928-0
https://doi.org/10.1007/s00253-012-3928-0
https://doi.org/10.1126/science.1126439
https://doi.org/10.1126/science.1126439
https://doi.org/10.1371/journal.pone.0164314
https://doi.org/10.1371/journal.pone.0164314
https://doi.org/10.1016/j.bjid.2012.08.014
https://doi.org/10.1186/1475-2859-7-25


Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene expression and its
consequences. Cell 135:216–226. https://doi.org/10.1016/j.cell.2008.09.050

Rath D, Jawali N (2006) Loss of expression of cspC, a cold shock family gene, confers a gain of
fitness in Escherichia coli K-12 strains. J Bacteriol 188:6780–6785. https://doi.org/10.1128/JB.
00471-06

Rebello S, Abraham A, Madhavan A, Sindhu R, Binod P, Babu AK, Aneesh EM, Pandey A (2018)
Non-conventional yeast cell factories for sustainable bioprocesses. FEMS Microbiol Lett 365
(21):fny222. https://doi.org/10.1093/femsle/fny222

Reuß DR, Altenbuchner J, Mäder U, Rath H, Ischebeck T, Sappa PK, Thürmer A, Guérin C,
Nicolas P, Steil L, Zhu B, Feussner I, Klumpp S, Daniel R, Commichau FM, Völker U, Stülke J
(2017) Large-scale reduction of the Bacillus subtilis genome: consequences for the transcrip-
tional network, resource allocation, and metabolism. Genome Res 27:289–299. https://doi.org/
10.1101/gr.215293.116

Salsman J, Dellaire G (2017) Precision genome editing in the CRISPR era. Biochem Cell Biol
95:187–201. https://doi.org/10.1139/bcb-2016-0137

Sampedro I, Parales RE, Krell T, Hill JE (2015) Pseudomonas chemotaxis. FEMS Microbiol Rev
39:17–46. https://doi.org/10.1111/1574-6976.12081

Sanger F, Coulson AR, Hong GF, Hill DF, Petersen GB (1982) Nucleotide sequence of bacterio-
phage λ DNA. J Mol Biol 162:729–773. https://doi.org/10.1016/0022-2836(82)90546-0

Sasaki M, Kumagai H, Takegawa K, Tohda H (2013) Characterization of genome-reduced fission
yeast strains. Nucleic Acids Res 41:5382–5399. https://doi.org/10.1093/nar/gkt233

Sauer M, Mattanovich D (2012) Construction of microbial cell factories for industrial bioprocesses.
J Chem Technol Biotechnol 87:445–450. https://doi.org/10.1002/jctb.3711

Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial
production. Can J Microbiol 50:1–17. https://doi.org/10.1139/w03-076

Schempp FM, Drummond L, Buchhaupt M, Schrader J (2018) Microbial cell factories for the
production of Terpenoid flavor and fragrance compounds. J Agric Food Chem 66:2247–2258.
https://doi.org/10.1021/acs.jafc.7b00473

Schmidt A, Kochanowski K, Vedelaar S, Ahrné E, Volkmer B, Callipo L, Knoops K, Bauer M,
Aebersold R, Heinemann M (2016) The quantitative and condition-dependent Escherichia coli
proteome. Nat Biotechnol 34:104–110. https://doi.org/10.1038/nbt.3418

Schuster S, Hilgetag C (1994) On elementary flux modes in biochemical reaction systems at steady
state. J Biol Syst 02:165–182. https://doi.org/10.1142/S0218339094000131

Segrè D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic
networks. Proc Natl Acad Sci U S A 99:15112–15117. https://doi.org/10.1073/pnas.232349399

Sharma SS, Campbell JW, Frisch D, Blattner FR, Harcum SW (2007a) Expression of two
recombinant chloramphenicol acetyltransferase variants in highly reduced genome Escherichia
coli strains. Biotechnol Bioeng 98:1056–1070. https://doi.org/10.1002/bit.21491

Sharma SS, Blattner FR, Harcum SW (2007b) Recombinant protein production in an Escherichia coli
reduced genome strain. Metab Eng 9:133–141. https://doi.org/10.1016/j.ymben.2006.10.002

Shen X, Wang Z, Huang X, Hu H, Wang W, Zhang X (2017) Developing genome-reduced
Pseudomonas chlororaphis strains for the production of secondary metabolites. BMC Genomics
18:715. https://doi.org/10.1186/s12864-017-4127-2

Shin J, Lee N, Cho S, Cho B-K (2018) Targeted genome editing using DNA-free RNA-guided Cas9
ribonucleoprotein for CHO cell engineering. Methods Mol Biol 1772:151–169. https://doi.org/
10.1007/978-1-4939-7795-6_8

Simen JD, Löffler M, Jäger G, Schäferhoff K, Freund A, Matthes J, Müller J, Takors R (2017)
Transcriptional response of Escherichia coli to ammonia and glucose fluctuations. Microb
Biotechnol 10:858–872. https://doi.org/10.1111/1751-7915.12713

Sliwa P, Korona R (2005) Loss of dispensable genes is not adaptive in yeast. Proc Natl Acad Sci U
S A 102:17670–17674. https://doi.org/10.1073/pnas.0505517102

Smalley DJ, Whiteley M, Conway T (2003) In search of the minimal Escherichia coli genome.
Trends Microbiol 11:6–8. https://doi.org/10.1016/S0966-842X(02)00008-2

Reduced and Minimal Cell Factories in Bioprocesses: Towards a. . . 41

https://doi.org/10.1016/j.cell.2008.09.050
https://doi.org/10.1128/JB.00471-06
https://doi.org/10.1128/JB.00471-06
https://doi.org/10.1093/femsle/fny222
https://doi.org/10.1101/gr.215293.116
https://doi.org/10.1101/gr.215293.116
https://doi.org/10.1139/bcb-2016-0137
https://doi.org/10.1111/1574-6976.12081
https://doi.org/10.1016/0022-2836(82)90546-0
https://doi.org/10.1093/nar/gkt233
https://doi.org/10.1002/jctb.3711
https://doi.org/10.1139/w03-076
https://doi.org/10.1021/acs.jafc.7b00473
https://doi.org/10.1038/nbt.3418
https://doi.org/10.1142/S0218339094000131
https://doi.org/10.1073/pnas.232349399
https://doi.org/10.1002/bit.21491
https://doi.org/10.1016/j.ymben.2006.10.002
https://doi.org/10.1186/s12864-017-4127-2
https://doi.org/10.1007/978-1-4939-7795-6_8
https://doi.org/10.1007/978-1-4939-7795-6_8
https://doi.org/10.1111/1751-7915.12713
https://doi.org/10.1073/pnas.0505517102
https://doi.org/10.1016/S0966-842X(02)00008-2


Song AA-L, In LLA, Lim SHE, Rahim RA (2017) A review on Lactococcus lactis: from food to
factory. Microb Cell Factories 16:55. https://doi.org/10.1186/s12934-017-0669-x

Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1:1–11. https://
doi.org/10.1006/mben.1998.0101

Stoebel DM, Dean AM, Dykhuizen DE (2008) The cost of expression of Escherichia coli lac
operon proteins is in the process, not in the products. Genetics 178:1653–1660. https://doi.org/
10.1534/genetics.107.085399

Stouthamer AH (1973) A theoretical study on the amount of ATP required for synthesis of
microbial cell material. Antonie Van Leeuwenhoek 39:545–565. https://doi.org/10.1007/
BF02578899

Suzuki N, Okayama S, Nonaka H, Tsuge Y, Inui M, Yukawa H (2005a) Large-scale engineering of
the Corynebacterium glutamicum genome. Appl Environ Microbiol 71:3369–3372. https://doi.
org/10.1128/AEM.71.6.3369-3372.2005

Suzuki N, Nonaka H, Tsuge Y, Inui M, Yukawa H (2005b) New multiple-deletion method for the
Corynebacterium glutamicum genome, using a mutant lox sequence. Appl Environ Microbiol
71:8472–8480. https://doi.org/10.1128/AEM.71.12.8472-8480.2005

Szathmáry E (2005) Life: in search of the simplest cell. Nature 433:469–470. https://doi.org/10.
1038/433469a

Takors R, Bathe B, Rieping M, Hans S, Kelle R, Huthmacher K (2007) Systems biology for
industrial strains and fermentation processes–example: amino acids. J Biotechnol 129:181–190.
https://doi.org/10.1016/j.jbiotec.2007.01.031

Tanaka K, Henry CS, Zinner JF, Jolivet E, Cohoon MP, Xia F, Bidnenko V, Ehrlich SD, Stevens
RL, Noirot P (2013) Building the repertoire of dispensable chromosome regions in Bacillus
subtilis entails major refinement of cognate large-scale metabolic model. Nucleic Acids Res
41:687–699. https://doi.org/10.1093/nar/gks963

Tao H, Bausch C, Richmond C, Blattner FR, Conway T (1999) Functional genomics: expression
analysis of Escherichia coli growing on minimal and rich media. J Bacteriol 181:6425–6440

Taymaz-Nikerel H, Borujeni AE, Verheijen PJT, Heijnen JJ, van Gulik WM (2010) Genome-
derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respi-
ratory ATP stoichiometry. Biotechnol Bioeng 107:369–381. https://doi.org/10.1002/bit.22802

Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from
molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol
72:211–222. https://doi.org/10.1007/s00253-006-0465-8

Thomas P, Terradot G, Danos V, Weiße AY (2018) Sources, propagation and consequences of
stochasticity in cellular growth. Nat Commun 9:4528. https://doi.org/10.1038/s41467-018-06912-9

Trinh CT, Wlaschin A, Srienc F (2008) Elementary mode analysis: a useful metabolic pathway
analysis tool for characterizing cellular metabolism. Appl Microbiol Biotechnol 81:813–826.
https://doi.org/10.1007/s00253-008-1770-1

Turina P, Samoray D, Gräber P (2003) H+/ATP ratio of proton transport-coupled ATP synthesis
and hydrolysis catalysed by CF0F1-liposomes. EMBO J 22:418–426. https://doi.org/10.1093/
emboj/cdg073

Umenhoffer K, Fehér T, Balikó G, Ayaydin F, Pósfai J, Blattner FR, Pósfai G (2010) Reduced
evolvability of Escherichia coli MDS42, an IS-less cellular chassis for molecular and synthetic
biology applications. Microb Cell Factories 9:38. https://doi.org/10.1186/1475-2859-9-38

Umenhoffer K, Draskovits G, Nyerges Á, Karcagi I, Bogos B, Tímár E, Csörgő B, Herczeg R,
Nagy I, Fehér T, Pál C, Pósfai G (2017) Genome-wide abolishment of mobile genetic elements
using genome shuffling and CRISPR/Cas-assisted MAGE allows the efficient stabilization of a
bacterial chassis. ACS Synth Biol 6:1471–1483. https://doi.org/10.1021/acssynbio.6b00378

Unthan S, Baumgart M, Radek A, Herbst M, Siebert D, Brühl N, Bartsch A, Bott M, Wiechert W,
Marin K, Hans S, Krämer R, Seibold G, Frunzke J, Kalinowski J, Rückert C, Wendisch VF,
Noack S (2015) Chassis organism from Corynebacterium glutamicum–a top-down approach to
identify and delete irrelevant gene clusters. Biotechnol J 10:290–301. https://doi.org/10.1002/
biot.201400041

42 M. Ziegler and R. Takors

https://doi.org/10.1186/s12934-017-0669-x
https://doi.org/10.1006/mben.1998.0101
https://doi.org/10.1006/mben.1998.0101
https://doi.org/10.1534/genetics.107.085399
https://doi.org/10.1534/genetics.107.085399
https://doi.org/10.1007/BF02578899
https://doi.org/10.1007/BF02578899
https://doi.org/10.1128/AEM.71.6.3369-3372.2005
https://doi.org/10.1128/AEM.71.6.3369-3372.2005
https://doi.org/10.1128/AEM.71.12.8472-8480.2005
https://doi.org/10.1038/433469a
https://doi.org/10.1038/433469a
https://doi.org/10.1016/j.jbiotec.2007.01.031
https://doi.org/10.1093/nar/gks963
https://doi.org/10.1002/bit.22802
https://doi.org/10.1007/s00253-006-0465-8
https://doi.org/10.1038/s41467-018-06912-9
https://doi.org/10.1007/s00253-008-1770-1
https://doi.org/10.1093/emboj/cdg073
https://doi.org/10.1093/emboj/cdg073
https://doi.org/10.1186/1475-2859-9-38
https://doi.org/10.1021/acssynbio.6b00378
https://doi.org/10.1002/biot.201400041
https://doi.org/10.1002/biot.201400041


Valgepea K, Peebo K, Adamberg K, Vilu R (2015) Lean-proteome strains – next step in metabolic
engineering. Front Bioeng Biotechnol 3:11. https://doi.org/10.3389/fbioe.2015.00011

Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans
CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q,
Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor
Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ,
Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D,
Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K,
Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M,
Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K,
Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME,
Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV,
Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S,
Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C,
Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S,
Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H,
Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A,
Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L,
Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S,
Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S,
Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L,
Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R,
Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E,
Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S,
Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigó R, Campbell MJ, Sjolander KV,
Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A,
Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D,
Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M,
Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H,
Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J,
Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A,
Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T,
Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M,
Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A,
Zandieh A, Zhu X (2001) The sequence of the human genome. Science 291:1304–1351. https://
doi.org/10.1126/science.1058040

Vickers CE, Blank LM, Krömer JO (2010) Grand challenge commentary: chassis cells for industrial
biochemical production. Nat Chem Biol 6:875–877. https://doi.org/10.1038/nchembio.484

Vijayendran C, Polen T, Wendisch VF, Friehs K, Niehaus K, Flaschel E (2007) The plasticity of
global proteome and genome expression analyzed in closely related W3110 and MG1655
strains of a well-studied model organism, Escherichia coli-K12. J Biotechnol 128:747–761.
https://doi.org/10.1016/j.jbiotec.2006.12.026

Villaverde A (2010) Nanotechnology, bionanotechnology and microbial cell factories. Microb Cell
Factories 9:53. https://doi.org/10.1186/1475-2859-9-53

Wang Q, Chung C-Y, Rosenberg JN, Yu G, Betenbaugh MJ (2018) Application of the CRISPR/
Cas9 gene editing method for modulating antibody fucosylation in CHO cells. Methods Mol
Biol 1850:237–257. https://doi.org/10.1007/978-1-4939-8730-6_16

Weinstock MT, Hesek ED, Wilson CM, Gibson DG (2016) Vibrio natriegens as a fast-growing host
for molecular biology. Nat Methods 13:849–851. https://doi.org/10.1038/nmeth.3970

Westers H, Dorenbos R, van Dijl JM, Kabel J, Flanagan T, Devine KM, Jude F, Seror SJ, Beekman
AC, Darmon E, Eschevins C, de Jong A, Bron S, Kuipers OP, Albertini AM, Antelmann H,
Hecker M, Zamboni N, Sauer U, Bruand C, Ehrlich DS, Alonso JC, Salas M, Quax WJ (2003)
Genome engineering reveals large dispensable regions in Bacillus subtilis. Mol Biol Evol
20:2076–2090. https://doi.org/10.1093/molbev/msg219

Reduced and Minimal Cell Factories in Bioprocesses: Towards a. . . 43

https://doi.org/10.3389/fbioe.2015.00011
https://doi.org/10.1126/science.1058040
https://doi.org/10.1126/science.1058040
https://doi.org/10.1038/nchembio.484
https://doi.org/10.1016/j.jbiotec.2006.12.026
https://doi.org/10.1186/1475-2859-9-53
https://doi.org/10.1007/978-1-4939-8730-6_16
https://doi.org/10.1038/nmeth.3970
https://doi.org/10.1093/molbev/msg219


Weuster-Botz D, Takors R (2018) Wachstumskinetik. In: Chmiel H, Takors R, Weuster-Botz D
(eds) Bioprozesstechnik, 4. [überbearbeitete und aktualisierte] Auflage, vol. 40. Springer,
Berlin, pp 45–70

Wewetzer SJ, Kunze M, Ladner T, Luchterhand B, Roth S, Rahmen N, Kloß R, Costa E, Silva A,
Regestein L, Büchs J (2015) Parallel use of shake flask and microtiter plate online measuring
devices (RAMOS and BioLector) reduces the number of experiments in laboratory-scale stirred
tank bioreactors. J Biol Eng 9:9. https://doi.org/10.1186/s13036-015-0005-0

Willrodt C, David C, Cornelissen S, Bühler B, Julsing MK, Schmid A (2014) Engineering the
productivity of recombinant Escherichia coli for limonene formation from glycerol in minimal
media. Biotechnol J 9:1000–1012. https://doi.org/10.1002/biot.201400023

Wolf YI, Koonin EV (2013) Genome reduction as the dominant mode of evolution. BioEssays
35:829–837. https://doi.org/10.1002/bies.201300037

Ye Y-N, Ma B-G, Dong C, Zhang H, Chen L-L, Guo F-B (2016) A novel proposal of a simplified
bacterial gene set and the neo-construction of a general minimized metabolic network. Sci Rep
6:35082. https://doi.org/10.1038/srep35082

Ying B-W, Seno S, Kaneko F, Matsuda H, Yomo T (2013) Multilevel comparative analysis of the
contributions of genome reduction and heat shock to the Escherichia coli transcriptome. BMC
Genomics 14:25. https://doi.org/10.1186/1471-2164-14-25

Yu BJ, Sung BH, Koob MD, Lee CH, Lee JH, Lee WS, Kim MS, Kim SC (2002) Minimization of
the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nat Biotechnol
20:1018–1023. https://doi.org/10.1038/nbt740

Zhao Y, Boeke JD (2018) Construction of designer selectable marker deletions with a CRISPR-
Cas9 toolbox in Schizosaccharomyces pombe and new design of common entry vectors. G3:
genes. G3 (Bethesda) 8:789–796. https://doi.org/10.1534/g3.117.300363

Zhou M, Jing X, Xie P, Chen W, Wang T, Xia H, Qin Z (2012) Sequential deletion of all the
polyketide synthase and nonribosomal peptide synthetase biosynthetic gene clusters and a
900-kb subtelomeric sequence of the linear chromosome of Streptomyces coelicolor. FEMS
Microbiol Lett 333:169–179. https://doi.org/10.1111/j.1574-6968.2012.02609.x

Zhu D, Fu Y, Liu F, Xu H, Saris PEJ, Qiao M (2017) Enhanced heterologous protein productivity
by genome reduction in Lactococcus lactis NZ9000. Microb Cell Factories 16:1. https://doi.org/
10.1186/s12934-016-0616-2

44 M. Ziegler and R. Takors

https://doi.org/10.1186/s13036-015-0005-0
https://doi.org/10.1002/biot.201400023
https://doi.org/10.1002/bies.201300037
https://doi.org/10.1038/srep35082
https://doi.org/10.1186/1471-2164-14-25
https://doi.org/10.1038/nbt740
https://doi.org/10.1534/g3.117.300363
https://doi.org/10.1111/j.1574-6968.2012.02609.x
https://doi.org/10.1186/s12934-016-0616-2
https://doi.org/10.1186/s12934-016-0616-2


Construction of Minimal Genomes
and Synthetic Cells

Donghui Choe, Sun Chang Kim, Bernhard O. Palsson, and Byung-Kwan Cho

Abstract A minimal genome strain containing only genes necessary for maintaining
self-replicable life was proposed as a potential platform having various advantages in
chemical and pharmaceutical industries. With recent advances in high-throughput DNA
sequencing and synthesis technology, many reduced genomes have now been
constructed. In this chapter, we will review previously constructed artificially reduced
genomes to confirm the potential of their industrial utility. Some of them exhibit growth
rates similar to those of their parental wild-type strains while offering higher genetic
stability and productivity. Furthermore, we will discuss some technological hurdles and
limitations encountered during the design and construction of reduced genomes.
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Abbreviations

ALE Adaptive laboratory evolution
asRNA Antisense RNA
CDS Coding sequence
COG Clusters of orthologous genes
CRISPR Clustered regularly interspaced short palindromic repeats
IS element Insertion sequence element
kbp Kilo base pair
LUCA Last universal common ancestor
Mbp Mega base pair
ORF Open reading frame
RNAi RNA interference
sgRNA Single guide RNA

1 Cell Factories and Small Genomes

1.1 Cell Factories

With the emergence of recombinant DNA technology, biological systems have been
widely used in a variety of fields, such as the chemical and pharmaceutical indus-
tries. Bio-based production has many advantages compared to chemical production:
(1) it does not require precious (sometimes toxic) catalysts, (2) it is carried out under
mild conditions, (3) protein catalysts (enzymes) have high stereoselectivity, and
(4) it is capable of producing macromolecules (e.g., protein drugs) and complex
bio-active compounds (e.g., antibiotics). Cells specialized to manufacture these
products are called cell factories, and they have been built from bacteria, yeast,
and even mammalian cells. Cell factories have been built largely dependent on their
innate metabolic capability, and also optimized successfully through metabolic
engineering. However, cell factories often encounter systematic failures, such as
low yield or productivity limited by endogenous metabolic capability, a complex
process for removing biological components, low predictability of complex cellular
processes, and low stability originating from clonal variations and mutations.

Synthetic biology and systems biology can address these problems. With recent
advances in DNA sequencing and synthesis technology, synthetic biology can be
used to design and build the new high-potential biological systems based on
synthetic genetic circuits and pathways. Systems biology provides collective infor-
mation concerning complex biological processes for the design step in the design-
build-test-learn cycle of synthetic biology. Thus, systems and synthetic biology
together offer the possibility of building designed cells for predictable, efficient,
and streamlined production through minimization of a genome to contain only those
genes necessary and sufficient for cell replication and product production.
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1.2 Small Genomes in Nature

Minimal genomes exist in nature. Living organisms from the three domains of life
have diverse genome sizes ranging from a few hundred thousand base pairs to more
than a hundred billion base pairs. Among them, Buchnera spp., an intracellular
symbiont split from a common ancestor with E. coli, lost 75% of its ancestral
genome down to 250 kbp (McCutcheon and Moran 2011; Moran and Mira 2001).
Considering that wild-type E. coli genomes are generally over 5 Mbp, Buchnera is
an amazing example of massive natural genome reduction. Minimized genomes are
found not only in Buchnera spp., but also many other symbiotic bacteria. Nasuia
deltocephalinicola, an insect symbiont, has the smallest self-replicable genome with
a size of 112 kbp (Bennett and Moran 2013). These examples demonstrate an
evolutionary trend of niche-adapted genomes. Symbionts do not require genes
related to environmental response in diverse conditions, because their host provides
a stable nutrient supply and protects against harsh environmental changes. These
unnecessary genes have been removed from their genomes over long-term evolu-
tionary periods.

Conversely, bacteria have genomes of several million base pairs. For example,
the most widely studied model organism, E. coli, has a far larger genome (> 4 Mbp)
than the symbionts, genomes that contain more than 4000 genes, including over a
thousand of unknown function (Ghatak et al. 2019; Riley et al. 2006). E. coli can
propagate under a variety of conditions, including in aerobic and anaerobic envi-
ronments and with a wide range of nutrients, pH, and temperature. Many genes are
responsible for handling environmental stresses and utilizing a diversity of nutrients.
However, in laboratory conditions, where the environment is defined, and many
stress responses are not needed many E. coli genes can be deleted without a negative
effect on cell growth (Baba et al. 2006). Thus, bacterial genomes encode many genes
that are not needed for laboratory use and industrial fermentation. These gene
functions can result in wastage of energy and biomass precursors, replication of
unnecessary genome sections, and synthesis of functionally redundant or useless
transcripts, proteins, and metabolites. Thus, it was hypothesized that an organism
without these unnecessary genes could be a completely novel platform for the
production of valued products under laboratory conditions (Moya et al. 2009).

1.3 Small Genome Advantages

Biological systems are extremely sophisticated; we cannot fully predict the func-
tioning of even the simplest of life forms, the bacteria. However, it is obvious that
genomes with fewer genes should have more predictable phenotypes. Consider a
computational model that predicts industrially relevant features such as growth rate,
biomass yield, and productivity of E. coli cells versus those of Chinese hamster
ovary (CHO) cells. It is relatively easier to reconstruct the regulatory and metabolic
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networks for modeling the cellular features of E. coli than CHO cells. As a result,
there are hundreds of computational bacterial models available, while only a handful
have been reported for CHO cells (Hartleb et al. 2016; Hefzi et al. 2016; Nolan and
Lee 2011; Orth et al. 2011; Weaver et al. 2014).

A minimal genome is convenient for genetic manipulation. For example, the
genetically recoded E. coli for codon expansion has been constructed, in which the
rarest stop codons, 321 UAG, were completely replaced with the UAA stop codon
(Lajoie et al. 2013). Although the UAG codon is rare, genome editing of over
300 loci remains challenging. A minimal genome with fewer genes will reduce
this effort substantially. Apart from the symbiont examples such as Buchnera spp.
and N. deltocephalinicola, previously constructed artificial minimal genomes
showed advantages such as high genetic stability (Park et al. 2014), chemical
productivity (Mizoguchi et al. 2008), and transformation efficiency (Pósfai et al.
2006).

2 Elucidating Essential Parts of a Genome

2.1 Essential Gene Set

To construct a minimal genome, genes essential for maintaining life need to be
elucidated. First, a minimal gene set was computationally deduced by comparing the
first three fully sequenced genomes. In the 1990s, when few small bacterial genome
sequences were available, Mushegian and Koonin compared M. genitalium and
Haemophilus influenza (Mushegian and Koonin 1996). These bacteria both have
relatively small genomes and exhibit distinct evolutionary tracks. By the logic of
comparative genomics, genes conserved in multiple organisms are likely to have an
essential function. A total of 240 orthologous genes were found inM. genitalium and
H. influenza; however, several genes encoding essential cellular functions, such as
phosphoglycerate mutase and nucleoside diphosphate kinase, were missed in the
analysis. Interestingly, the two species have different phosphoglycerate mutases
unrelated to each other, so clearly non-orthologous genes can occasionally replace
an ancient gene, disrupting conservation. Including non-orthologous gene displace-
ment, a total of 262 genes were predicted to constitute the core biological functions
of the two species. Considering 1.5 billion years of evolution between the two
bacteria and their common ancestor, it is striking that 50% of genes remain
conserved.

With advances in high-throughput sequencing technology, tens of thousands of
genome sequences have become available since 2000. Scientists compared hundreds
of genomes to determine genes that are ubiquitous across species; interestingly, few
genes were. Brown and colleagues compared 45 genomes and found only 23 con-
served genes (Brown et al. 2001). Similarly, Harris and colleagues reported 80 core
genes from the Clusters of Orthologous Groups (COG) database (Harris et al. 2003),
and Koonin reported 63 ubiquitous genes from 100 genomes (Koonin 2003).
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Charlebois and Doolittle compared 147 prokaryotic genomes among 14 phyla and
found only 34 universal genes (Charlebois and Doolittle 2004). Although parameters
and conservation measures differed among the reports, they all indicated that there
are only a handful of conserved genes, which are definitely insufficient for
maintaining life. The number of universal genes tends to decrease when more
genomes are considered. This decrease is related to the distance of the last universal
common ancestor (LUCA). The earlier the LUCA differentiated, the greater the
chance that non-orthologous displacement occurred, resulting in a smaller number of
universal genes. Thus, the theoretical prediction of essential genes using compara-
tive genomics is limited concerning genes of unknown function, non-orthologous
displacements, and billions of years of evolutionary history.

Besides computational predictions, investigators used experimental methods to
probe essential genes. The simplest method is to remove a specific locus from the
genome and see if life is sustained.Mycoplasma genitalium has the smallest genome
(580 kbp) of any free-living organism known to date. Even though it has the smallest
genome (517 genes encoded in this genome), many genes inM. genitalium could be
disrupted by transposons (Hutchison et al. 1999). In Bacillus subtilis, 79 random
genomic regions had been mutated (Itaya 1995). Only six loci were indispensable,
comprising an estimated 318–562 kbp of the B. subtilis genome, similar to the size
of theM. genitalium genome. Thus, various methods were devised to determine gene
essentiality in bacteria. Direct inactivation of individual genes via recombination,
transposon insertion, and antisense RNA (asRNA) has been conducted as well. By
disrupting individual genes in B. subtilis with the insertion of a non-replicating
plasmid, Kobayashi and colleagues found that only 271 of 4101 genes are essential
(Kobayashi et al. 2003). In E. coli, 3985 of 4288 open reading frames (ORFs) were
knocked out, indicating that the remaining 303 ORFs are essential for life (Baba
et al. 2006). The number of essential genes in B. subtilis and E. coli is comparable to
that of M. genitalium. Although the targeted gene knockout study provides direct
evidence of gene essentiality, the method is time-consuming and requires intensive
works to generate thousands of deletion experiments.

To overcome these limitations, high-throughput methods employing the disrup-
tive characteristics of transposon mutagenesis have been widely used. The transpo-
son is a genetic element that can randomly move within a genome, disrupting the
gene where the transposon DNA is inserted. When a transposon is introduced to a
genome, a mutant with insertion in an essential gene cannot survive. Using these
characteristics, one can discriminate essential and non-essential genes by identifying
the transposon insertion site in surviving mutants. Genome-wide transposon inser-
tion maps have been elucidated in M. genitalium using 1300 and 3000 mutants,
showing that 265–382 coding sequences (CDSs) are essential (Glass et al. 2006;
Hutchison et al. 1999). A transposon insertion map composed of 3000 unique
insertion sites has a resolution of approximately one insertion per 200 bp on average.
With this resolution, the essentiality of small genetic elements such as functional
RNAs (e.g., tRNAs and ncRNAs) could not be examined. Furthermore, some
essential genes were resistant to transposon insertion at the 30 end because short
truncation or elongation did not affect their functionality. To circumvent this
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limitation, a method to inactivate genes by asRNAs was invented (Ji et al. 2001).
Using asRNA, a certain gene can be conditionally knocked down, unlike irreversible
gene disruption by transposons. Thus, once an asRNA-containing library is
constructed, investigators can assess gene essentiality or fitness in multiple environ-
mental conditions and iterations without repeatedly constructing knockout strains or
transposon mutants.

Identification of transposon insertion sites is dependent on isolation of single
clones and Sanger sequencing. When combined with high-throughput sequencing
techniques, numerous insertion sites can be identified in parallel. Thus, transposon
mutagenesis coupled with next generation sequencing (Tn-Seq) enables elucidation
of essential genes using transposon mutagenesis at an unprecedented resolution.
From a 2 � 105 E. coli transposon mutant library, 620 of 4291 protein-coding genes
were estimated to be essential according to statistical analysis (Gerdes et al. 2003).
The discrepancy between Tn-Seq and individual knockout studies might originate
during cell propagation. Even though a gene is not strictly essential, inactivation of
an important gene can result in severe growth defects, which might be under-
represented or diminished during cell propagation. Also, statistical cutoffs and
varying experimental conditions may cause this discrepancy.

Finally, with the recent revolution of clustered regularly interspaced short palin-
dromic repeats (CRISPR) technology, catalytically inactive Cas9 (dCas9) can tran-
scriptionally repress a target gene expression (Qi et al. 2013). Since the CRISPR
system requires only a 20-nt proto-spacer sequence in chimeric single-guide RNA
(sgRNA) for its specificity, a massive genome-wide sgRNA library can be easily
constructed via DNA synthesis. Genome-wide CRISPR interference (CRISPRi)
elucidated 379 essential genes in E. coli by inhibiting all genes with ~59,000
sgRNAs (Rousset et al. 2018). The number of essential genes estimated by the
CRISPRi technique is slightly larger than those estimated by other methods. In
bacteria, many genes are transcribed polycistronically. That is, disruption of a leader
polycistron inactivates downstream genes contained in the operon. Thus, even if the
leader gene is inessential, transcriptional inhibition can lead to lethal effects in an
essential downstream gene. The polycistron structure induces an overestimation of
essential genes, resulting in a higher estimate of essential genes by CRISPRi
compared to other methods. With current high-throughput DNA synthesis technol-
ogy, large sgRNA libraries could be easily synthesized; thus, gene essentiality of
organisms with far larger genomes, such as humans, could be elucidated (Shalem
et al. 2014; Wang et al. 2014).

Overall, multiple efforts have been made to elucidate essential genes in various
organisms. Although the exact number of essential genes varies among methods,
300–500 genes are considered to be sufficient for maintaining life. Lastly, the direct
examination of individual gene essentiality using single-gene knockout studies,
Tn-Seq, and CRISPRi have inherent limitations. These methods rely on removal
or inactivation of a single-gene, while inactivation of more than two genes simulta-
neously has never been tested. For example, assume that two genes have the same
essential function in E. coli. These genes can be deleted individually because the
other gene can rescue the function; however, simultaneous inactivation of both will
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be lethal. Construction of all double knockout strains in even the simplest bacterium,
M. genitalium, requires a quarter million strains. Considering the time and expense
of constructing ~4000 E. coli single gene knockout strains are huge (Baba et al.
2006), technological innovation is required to unveil higher-order combinatorial
gene essentiality.

2.2 Essentiality of Sub- and Non-genic Elements

With a high-resolution essentiality scan using Tn-Seq, the essentiality of genetic
elements smaller than a gene, such as promoters, terminators, and RNA genes, was
reported (Christen et al. 2011; Lluch-Senar et al. 2015). Strikingly, different protein
domains in one gene can differ in essentiality. For example, the C-terminal ATPase
domain of the essential tyrosine kinase DivL, involved in cell cycle regulation in
Caulobacter crescentus, was tolerant of disruptive transposon insertion, while other
domains were not (Christen et al. 2011). Furthermore, genomic regions that encode
virtually no functional product (e.g., protein or functional RNA) can still be pivotal
for maintaining life. For instance, the origin of replication is an essential part of a
genome despite encoding no functional products. In addition, bacterial genomes
seem to have a more complex ordered structure than previously believed due to
nucleoid-associated proteins (NAPs) (Srinivasan et al. 2015). It has been reported
that NAP binding regions are important for replication (Lin and Grossman 1998).
Likewise, there are many factors that must be considered when designing a minimal
genome. A thorough examination and understanding of the genome are required
during design.

3 Reduced Genomes

3.1 Reduced E. coli Genomes

E. coli is the most extensively studied model organism, and many reduced genomes
have been constructed with deletion sizes ranging from 300 kbp to 1.38 Mbp
(Table 1 and Fig. 1). Considering that laboratory E. coli K-12 strains have genomes
of approximately 4.64 Mbp, deletions span from 6.8 to 29.7% of the original
genome.

3.1.1 E. coli CDΔ3456

Two reduced-genome E. coli strains were reported in 2002. One, CDΔ3456, was
reported by Yu and colleagues with a deletion size of over 300 kbp (Yu et al. 2002).
The strain was constructed by deleting a large genomic region between two loxP
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sites recognized by Cre site-specific recombinase (Fig. 2). The loxP sites were
pre-inserted at a random position in the genome using transposons. Specifically,
two different transposon mutant libraries were made with two different antibiotic-
resistance gene cassettes, and all transposon insertion sites were identified. Genomes
of two mutants (containing two different marker genes) with transposons positioned
each at one end of the region targeted for deletion were fused together via P1
transduction. Two different antibiotic-resistance gene markers were used to screen
for successfully transduced cells. Then, two loxP sites in the fused genome were
recombined by Cre recombinase, generating a large targeted deletion. Six deletion
strains were built, and multiple deletions were cumulated into one genome using
additional P1 transductions. During cumulative deletion, some deletions could not
be combined together. This phenomenon occurs frequently during genome reduc-
tion. Some genomic regions can be deleted from a genome individually; however,
specific combinations cannot be deleted simultaneously. This kind of relationship is

Table 1 Summary of reduced genomes

Ancestor Name

Original
genome
size

Reduction
(proportion) Note

Escherichia coli str.
K-12 substr. MG1655

CDΔ3456 4.64 Mbp 313 kbp
(6.8%)

Normal growth

Escherichia coli str.
K-12 substr. MG1655

MDS12 4.64 Mbp 376 kbp
(8.1%)

Normal growth, 10% higher
cell density

Escherichia coli str.
K-12 substr. MG1655

MDS42 4.64 Mbp 708 kbp
(15.3%)

Normal growth, increased
transformation efficiency

Escherichia coli str.
K-12 substr. MG1655

MS56 4.64 Mbp 1068 kbp
(23.0%)

Normal growth, increased
genetic stability

Escherichia coli str.
K-12 substr. MG1655

Δ16 4.64 Mbp 1377 kbp
(29.7%)

Lower growth rate, aberrant
nucleoid structure

Escherichia coli str.
K-12 substr. W3110

MGF-01 4.65 Mbp 1030 kbp
(22.2%)

50% higher cell density,
higher threonine production

Bacillus subtilis str.
168

Δ6 4.22 Mbp 320 kbp
(7.7%)

Normal growth

Bacillus subtilis str.
168

PG10 4.22 Mbp 1456 kbp
(34.5%)

Lower growth rate

Bacillus subtilis str.
168

PG38 4.22 Mbp 1535 kbp
(36.4%)

Lower growth rate

Bacillus subtilis str.
168

MGB469 4.22 Mbp 469 kbp
(11.1%)

Normal growth

Bacillus subtilis str.
168

MG1M 4.22 Mbp 991 kbp
(23.5%)

Normal growth

Bacillus subtilis str.
168

MBG874 4.22 Mbp 874 kbp
(20.7%)

Lower growth rate, higher
protein production

Streptomyces
avermitilis

SUKA17 9.03 Mbp 1674 kbp
(18.5%)

Higher antibiotics
production

Schizosaccharomyces
pombe

A8 12.6 Mbp 657 kb
(5.2%)

Higher protein production

52 D. Choe et al.



called synthetic lethality, which may be due to gene duplication or orthologs
(Nijman 2011). When one copy of two genes is deleted, the other copy can maintain
biological function, while a double mutant cannot. Avoiding synthetically lethal
combinations, four regions were combined in CDΔ3456, which lacks 287 open
reading frames (ORFs) containing 179 unknown genes and genes related to histidine
biosynthesis, fimbriae, and several transporters. The final clone had a growth rate
equivalent to the parental E. coli.

Fig. 1 Genomic map of reduced E. coli genomes. The outermost track contains the position of all
genes in E. coli MG1655 (“Gene” in both strands). Colored bars indicate the positions of deleted
regions in each reduced genome strain. Red arrowheads indicate origin or terminus of DNA
replication
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3.1.2 E. coli MS56 and Its Relatives

The reduced-genome E. coliMDS12 was reported in 2002, which lacks 12 K-islands
from the E. coli K-12 strain (Kolisnychenko et al. 2002). The K-islands are genomic
regions that K-12 acquired via horizontal gene transfer. K-islands contain unneces-
sary genes, such as prophages and transposons, making the genome unstable. The
12 K-islands were sequentially deleted by the scarless deletion method using I-SceI
meganuclease and the double-strand break repair system (Fig. 3). Specifically, a
DNA cassette containing a chloramphenicol resistance gene was introduced into
E. coliMG1655, and the cassette replaced a homologous target region. Although the
target was deleted, removal of the resistance gene was required for the next round of
deletion; thus, the gene was excised by I-SceI. After deletion, the double-strand
break was repaired by RecA, resulting in a scarless deletion strain. After 12 iterative
deletions and P1 transductions, the combined length of deletions was 376 kbp,
containing 409 ORFs. Since the deleted genes have no essential functions, MDS12

Fig. 2 Genome reduction method for E. coli CDΔ3456. loxP recognition sequence of the site-
specific DNA recombinase Cre, cat chloramphenicol resistance gene, Neo kanamycin resistance
gene, CmR and KmR chloramphenicol- and kanamycin-resistant phenotypes
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showed no difference in growth rate and DNA transformation efficiency. Interest-
ingly, MDS12 exhibited an approximately 10% higher final cell density than wild-
type E. coli. In MDS12, conserved energy and material may be converted to
biomass, demonstrating an advantage of a reduced genome.

Four years later, Pósfai and colleagues reported E. coli MDS41, 42, and
43, descendants of MDS12 containing additional deletions (a total deletion of
663–708 kbp from wild-type) (Pósfai et al. 2006). MDS42 is free of all transposable
and insertion sequence (IS) elements. In E. coli, it has been reported that 20–25% of
all mutations are related to IS elements (Pósfai et al. 2006). MDS42 showed no
IS-mediated gene inactivation. With this property, MDS42 stably propagated plas-
mid DNA carrying toxic ORFs, and genomic components were also stable. E. coli

Fig. 3 Genome reduction method for E. coli MS56 and its relatives. Cat chloramphenicol
resistance gene, CmS and CmR chloramphenicol-sensitive and chloramphenicol-resistant pheno-
types, I-SceI intron-encoded meganuclease
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has a silent bgl operon that enables salicin utilization; thus, E. coli cannot normally
utilize salicin as its sole carbon source. When grown with salicin alone, the bgl
operon activation rate in MDS41 was less than 8% of that for MG1655. Furthermore,
MDS42 produced over 80% more threonine than wild-type E. coli (Lee et al. 2009).

With the success of MDS strains, Park and colleagues introduced 14 additional
deletions to MDS42 to construct E. coliMS56 (Park et al. 2014). Dispensable genes
and genetic elements including hydrogenases, fimbriae-like adhesin, and anaerobic
respiratory enzymes were removed in addition to the deletions in MDS42, yielding a
1.07 Mbp genome reduction. Heterologous genes encoding human proteins that
arrest E. coli growth could be successfully expressed in MS56 without any
IS-mediated inactivation, which occurs rapidly in normal IS-containing E. coli.

3.1.3 Δ16

Hashimoto and colleagues constructed E. coli Δ16, which has a genome reduced by
1.377 Mbp (29.7% of its original genome), the largest reduction reported. Like other
reduced genomes, Δ16 was constructed by homologous recombination-based serial
deletions combined by P1 transduction (Fig. 4). Hashimoto et al. conducted the
deletion using two methods: positive and negative selections (Hashimoto et al.
2005). First, a DNA cassette containing sequence ends homologous to the target
region was constructed. The cassette also contained three genes: chloramphenicol
acetyltransferase (cat), rpsL, and sacB. Following cassette introduction, a clone with
a target genomic region replaced by the cassette was selected using chloramphenicol.
Then, the cassette was replaced by a new homologous DNA cassette, followed by
negative selection with the rpsL and sacB genes, making the cell sensitive to
streptomycin and sucrose. Sixteen scarless deletions were combined using P1
transduction to make the final strain Δ16 with a cumulative deletion of 1.377
Mbp. During the sequential deletions, the doubling time increased sequentially
from 26.2 min in MG1655 to 45.4 min in Δ16. The shape of the cell became longer
and wider, and the nucleoid showed irregular distribution and asynchronous repli-
cation with respect to cell division.

3.1.4 MGF-01

Based on non-essential gene information obtained by comparing E. coli and
Buchnera spp. (a symbiont discussed earlier), Mizoguchi and colleagues constructed
E. coliMGF-01 by removing E. coli-specific genes from E. coliW3110 (Mizoguchi
et al. 2008). As with other deletion methods, MGF-01 was constructed using
sequential deletions combined with repetitive P1 transductions (Fig. 5). Briefly,
the target DNA sequence was removed by homologous replacement with a DNA
cassette containing sacB and cat genes. Then, selection markers were replaced by
another replacement DNA cassette, and a markerless clone was selected by negative
selection with sucrose. Finally, 53 deletions were accumulated in 28 P1 transduction
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cycles, resulting in the combined deletion length of 1.03 Mbp. Interestingly,
MGF-01 yielded a 1.5 times higher final biomass than the wild-type parent. It was
claimed that MGF-01 utilizes glucose more efficiently than the parental strain due to
a significant reduction in overabundant acetate accumulation (from 1.37 to 0.50 g/L
in E. coli W3110 and MGF-01, respectively). Moreover, MGF-01 showed 2.44 and
1.69 times higher threonine titer and yield, respectively, with a significantly lower
acetate byproduct compared to the wild-type. These unexpected beneficial properties
of MGF-01 are distinct from those of other reduced-genome E. coli that have
phenotypes similar to their wild-type ancestors. However, further study on the
differences in MGF-01 is required.

Fig. 4 Genome reduction method for E. coli Δ16. sacB levansucrase, which produces the toxic
fructose polymer levan from sucrose, Cat chloramphenicol resistance gene, CmS and CmR

chloramphenicol-sensitive and chloramphenicol-resistant phenotypes, SucS and SucR sucrose-
sensitive and sucrose-resistant phenotypes
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3.2 Reduced Genomes in Other Species

3.2.1 B. subtilis PG38 and Its Relatives

Bacillus subtilis is one of the most widely studied gram-positive bacteria, and it is a
good production host for various proteins through its secretion system. Westers and
colleagues constructed genome-reduced B. subtilisΔ6 by removing six genomic loci
containing genes responsible for polyketides, protein antibiotic biosynthesis, pro-
phages, and prophage-like elements (Westers et al. 2003). These loci contain
332 genes in total, spanning 320 kbp. Deletions were carried out by integrating
and excising the selection marker using the integration plasmid pG+ host4 (Biswas
et al. 1993) (Fig. 6). Genome-reduced B. subtilis Δ6 had no apparent changes in cell
physiology. The strain had the same growth rate, glucose/acetate metabolic fluxes,
heterologous protein secretion, and biomass yield compared to its parental strain.
Unexpectedly, Δ6 showed increased cell motility on an agarose plate, although no

Fig. 5 Genome reduction method for E. coli MGF-01. sacB levansucrase, which produces toxic
fructose polymer levan from sucrose, Cat chloramphenicol resistance gene, CmS and CmR

chloramphenicol-sensitive and chloramphenicol-resistant phenotypes. SucS and SucR sucrose-
sensitive and sucrose-resistant phenotypes
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deleted genes were related to cell motility. Genome-reduced strains occasionally
show unexpected phenotypes such as this, illustrating our limited understanding of
even small bacterial genomes (Choe et al. 2019).

The genome of B. subtilis Δ6 was further reduced to produce PG10 and PG38
(Reuß et al. 2017). Reuß and colleagues constructed two independent genome-
reduced strains, PG10 and PG38, containing 88 and 94 iterative deletions, respec-
tively. The deletions contain non-essential genes related to sporulation, motility,
antibiotic production, and secondary metabolism. During the serial deletions, inter-
mediate strains lost DNA competence progressively. Thus, they introduced addi-
tional competence proteins (ComK and ComS) into the genome to effectively transfer
DNA required for deletion. The two derivative strains showed a slower growth rate
(~40% longer doubling time) and long filamentous cell morphology. Although
growth rate of the two strains was reduced, they had the largest proportion of genome
reduction by far (1.46 and 1.54 Mbp; over one-third of their original genomes) from
that required for viable cells.

3.2.2 B. subtilis MGB874 and Its Relatives

Ara and colleagues constructed a reduced-genome B. subtilis MGB469 from
B. subtilis strain 168 (Ara et al. 2007). The reduced strain lacks nine genomic loci

Fig. 6 Genome reduction method for B. subtilisΔ6 and its relatives.H1 and H2 homology regions.
ermC erythromycin resistance gene, EmS and EmR erythromycin-sensitive and erythromycin-
resistant phenotypes
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related to prophages or prophage-like elements and two antibiotic synthesis genes
(plipastatin and polyketide). The loci were first removed from the B. subtilis genome
individually to confirm that they contained no essential genes. Then, the deletions
were combined sequentially, so that the removed regions spanned 469 kbp alto-
gether (Fig. 7). The resulting strain, MGB469, showed no difference in growth rate
and protein productivity, which led to further genome reduction. They sought a
genomic locus which could be reduced to increase protein productivity to finally
construct a genome-reduced strain with higher productivity than its ancestor. Six
genomic loci that enhance cellulase productivity when deleted individually were
further removed from MGB469, creating strain MG1M with 991 kbp total genome
reduction. However, cellulase and protease production in MG1M showed no notice-
able change.

As B. subtilis strains MGB469 and MG1M had phenotypes comparable to their
wild-type counterpart, and there was no benefit in further genome reduction,

Fig. 7 Genome reduction method for B. subtilis MGB874 and its relatives. Tet tetracycline
resistance gene, Cat chloramphenicol resistance gene, Upp uracil phosphoribosyl transferase that
make cell sensitive to 5-fluorouracil, TetS and TetR tetracycline-sensitive and tetracycline-resistant
phenotypes, CmS and CmR chloramphenicol-sensitive and chloramphenicol-resistant phenotypes,
5FUS and 5FUR 5-fluorouracil-sensitive and 5-fluorouracil-resistant phenotypes
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Morimoto and colleagues revisited intermediate strain MGB469 to construct a new
genome-reduced B. subtilis with advantageous characteristics (Morimoto et al.
2008). They tested the deletion of 74 genomic regions, including prophages and
secondary metabolic genes. Of 63 regions where deletion was possible, 11 sequential
deletions were introduced into MGB469, resulting in B. subtilis strain MGB874 with
a deletion length of 874 kbp. Although MGB874 had normal cell morphology and
nucleoid structure, its growth rate was reduced to 70% that of wild-type B. subtilis.
Unlike other reduced genomes of B. subtilis, MGB874 managed to produce 1.7- and
2.5-fold more cellulase and protease than B. subtilis 168. An investigation into the
strain’s transcriptome indicated that a number of transcriptomic changes, including
sporulation, degradative enzyme secretion, and sigma factors, were responsible for
its increased productivity. The strain MGB874 demonstrates a reduced genome as a
potent host for industrial protein production.

3.2.3 Streptomyces avermitilis SUKA17

Streptomyces is an industrially and clinically important Actinobacteria genus known
for producing most biologically active secondary metabolites such as antibiotics.
Streptomyces have relatively large genomes among bacteria, and their chromosomal
DNA is linear rather than circular. Komatsu and colleagues constructed SUKA17
from Streptomyces avermitilis, one of the most widely used industrial species
(Komatsu et al. 2010). S. avermitilis harbors more than 20 secondary metabolite
biosynthetic gene clusters, and these clusters are located mainly at the end of the
genome, called the subtelomeric region. Comparative genomics studies on Strepto-
myces griseus, Streptomyces coelicolor, and S. avermitilis revealed essential core
genes located at the center of the genome. Thus, genes related to major secondary
metabolism in the subtelomeric region, including terpene metabolism, were removed
from S. avermitilis using homologous recombination and Cre-mediated recombina-
tion (Fig. 8). S. avermitilis is not recombinogenic like E. coli and B. subtilis. Thus,
two loxP sites were first introduced into the genome from a circular DNA template
via homologous recombination. Then, the large genomic locus target was removed
by Cre-mediated recombination. The deletion consisted of genomic regions
containing 1272 ORFs with a collective size of 1.67 Mbp. With its simpler genome
lacking the metabolic burden of secondary metabolite synthesis, SUKA17
containing the heterologous gene cluster produced more streptomycin and
cephamycin C than native producers S. griseus and S. clavuligerus.

3.2.4 Schizosaccharomyces pombe A8

While we have discussed several prokaryotes, there is also a genome-reduced
eukaryote. Giga-Hama and colleagues reported genome-reduced fission yeast
Schizosaccharomyces pombe A8 (Giga-Hama et al. 2007). They obtained informa-
tion about essential genes by comparing the S. pombe genome with closely related
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budding yeast Saccharomyces cerevisiae. Using the latency to universal rescue
(LATOUR) method (Fig. 9) (Hirashima et al. 2006), a 657.3 kbp region in chromo-
somes I and II was deleted from the 12.6 Mbp genome. S. pombe A8, lacking 223 of
5100 genes, showed growth comparable to wild-type. Intracellular energy levels
(ATP and GTP) in A8 were higher than wild-type; as a result, the strain showed
30 times higher production of human growth hormone, likely due to an increased
GTP level, a limiting factor of translation. A eukaryotic platform strain is important
for producing protein products (such as protein therapeutics) that cannot be produced
by prokaryotic hosts because of post-translational modification and folding. The
eukaryotic reduced-genome factory A8 is a milestone in this field.

As described earlier, the minimal genome is a fascinating concept, and many
efforts have been made to construct artificial minimal genomes from well-known
organisms. With a variety of practical advantages such as increased biomass yield,
productivity, and genomic stability, the reduced genome will be a great tool for
industry and biotechnology.

Fig. 8 Genome reduction method for S. avermitilis SUKA17. loxP recognition sequence of site-
specific DNA recombinase Cre, hph hygromycin B phosphotransferase, Aph neomycin
phosphotransferase, NeoS and NeoR neomycin-sensitive and neomycin-resistant phenotypes, HgS

and HgR hygromycin B-sensitive and hygromycin B-resistant phenotypes
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4 Synthetic Genomes and Cells

Reduced genomes discussed previously were all constructed using a top-down
genome reduction as indicated by their names. However, investigators have synthe-
sized genomes of viruses, phages, and bacteria from scratch. Mycoplasma JCVI-
syn1.0 constructed by Gibson and colleagues harbors a fully chemically synthesized
genome, a replica of the 1.08 Mbp Mycoplasma mycoides genome with slight
modifications (Gibson et al. 2010). After elucidating essential genes in
M. mycoides via transposon mutagenesis, the minimal genome M. mycoides JCVI-
syn3.0 was synthesized (Hutchison et al. 2016). The JCVI-syn3.0 genome contains
only 473 genes with a collective length of 531 kbp. Although the doubling time of
JCVI-syn3.0 was three times longer (~180 min) than that of JCVI-syn1.0, it was
much shorter than that of the natural minimal genome of M. genitalium (~16 hr
doubling time). Recently, artificial yeast chromosomes were designed and are being
synthesized through a worldwide consortium (Richardson et al. 2017). Although full
genome synthesis requires astronomical time and expense (Sleator 2010), there is no
doubt that it is an attractive alternative for genome reduction.

In this chapter, we described the design, build, and test cycle (DBT cycle) of a
minimal genome (Fig. 10). We first looked into the designing step of a minimal
(or reduced) genome based on an essential gene set elucidated by various methods.

Fig. 9 Genome reduction method for S. pombe A8. ura4 orotidine 50-phosphate decarboxylase,
Uraauxo and Uraauto uracil auxotroph and autotroph phenotypes
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Computational investigation of essential genes by comparing multiple genomes
indicated that less than three hundred genes are essential. However, the comparison
underestimates the number of essential genes because function of genes can be
replaced by other genes. Experimental assessment using transposon mutagenesis,
knockout study, asRNA, and CRISPR technique showed direct and precise infor-
mation of gene essentiality. However, because the listed experimental methods used
gene disruption or inactivation, combination of gene inactivation (e.g., synthetic
gene lethality) could not be examined. To elucidate interconnected epistatic inter-
actions between genes, a more delicate method is required to be invented.

Then we described characteristics of previously constructed reduced genomes
with their construction methods. Even though high-throughput DNA synthesis
technology has been improved, current technology level is far behind from full
genome synthesis. Thus, scientists have tried to reduce pre-existing genomes to
make minimal genomes. Genome reductions were accomplished by iterative dele-
tion of the genome by homologous recombination. Because deletions needed to be
accumulated multiple times, all the deletion methods include a removal step of the

Fig. 10 Design, build, and test cycle of minimal genome research. WGS whole genome sequenc-
ing. ChIP chromatin immunoprecipitation Tn-Seq transposon mutagenesis coupled with next
generation sequencing
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selective marker. Therefore, multiple deletions were accumulated in a sequential
manner or sometimes combined by P1 transduction.

Most of the reduced genomes have growth rates comparable to their ancestors.
Some of them have growth rate and final biomass yield even higher than their
parental strains. Furthermore, the reduced genomes had advantageous characteristics
such as increased transformation efficiency (Pósfai et al. 2006) and biochemical
production (Lee et al. 2009). Rarely, reduced genome showed unexpected pheno-
types such as growth retardation and aberrant cell morphology (Choe et al. 2019;
Hashimoto et al. 2005) although genes related to growth, cell cycle, and morphology
were not modified. A recent study proposed an adaptive laboratory evolution (ALE)
technique to improve the growth phenotype of a reduced-genome E. coli (Choe et al.
2019). Multi-omics analyses of the evolved strain indicated that unbalanced metab-
olism induced growth retardation and transcriptome and translatomic remodeling via
ALE rewired metabolic perturbation. This illustrates our incomplete understanding
of gene functions, metabolism, and genomes, and thus a more thorough study on
bacterial genomes is a required task to fill our knowledge gaps.

Other than genome reduction, Hutchison et al. fully synthesized the Mycoplasma
minimal genome from scratch (Hutchison et al. 2016). Even though a minimal
genome was synthesized, it could not support self-replicating life. Thus, authors
restored genes that are not essential but necessary for robust growth, called quasi-
essential genes. The synthetic minimal genome is a milestone in the field of synthetic
biology and high-throughput gene synthesis technology is on its way of develop-
ment (Plesa et al. 2018; Quan et al. 2011). With proven advantages, minimal
genomes are a fascinating biological platform for science, industry, and many
other applications. Despite that there are many hurdles remained, ever-improving
cutting-edge technologies in systems and synthetic biology will overcome those
challenges.
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Engineering Reduced-Genome Strains
of Pseudomonas putida for Product
Valorization

Nicolas T. Wirth and Pablo I. Nikel

Abstract Environmental bacteria, such as strains of the genus Pseudomonas, con-
stitute ideal starting points for the design of robust cell factories. These microorgan-
isms are pre-endowed with a number of metabolic and stress-endurance traits that
make them optimal for the needs of contemporary biotechnology. Significant tech-
nological advances in recent times opened new avenues for metabolic engineering of
Pseudomonas species. Against this background, in this chapter we discuss the current
engineering efforts aimed at launching the Gram-negative soil bacterium P. putida as
a chassis for product valorization and refinement. We focus on the use of reduced-
genome strains of P. putida, endowed with enhanced physiological characteristics
(e.g., increased availability of ATP and NADPH, the energy and redox currencies of
the cell), for the construction of bacterial cell factories that can be used across a range
of operating conditions. Cutting-edge synthetic biology approaches for genome
engineering, which significantly reduced the time needed for the construction of
such reduced-genome variants of P. putida, are likewise discussed. We conclude
the chapter by discussing future trends and bottlenecks toward the establishment of a
minimal-genome chassis based on P. putida.
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1 The Potential of Pseudomonas putida as a Chassis
for Biotechnology

1.1 A Historical Perspective on Microbial Chassis
for Biotechnology Applications

The microorganisms most frequently used as cell factories in microbial fermentation
processes are species that have historically been adopted as model organisms in the
laboratory (Calero and Nikel 2019), such as the Gram-negative bacterium
Escherichia coli or the archetypal baker’s yeast Saccharomyces cerevisiae—together
with a few other microbial species that had been exploited for their natural capacity to
produce a defined set of compounds (Beites andMendes 2015). Examples of this sort
include amino acids [e.g., Corynebacterium glutamicum (Baritugo et al. 2018)],
antibiotics and other antimicrobials [e.g., Actinomycetes (Palazzotto et al. 2019)],
proteins [e.g., Bacillus subtilis (Gu et al. 2018)], and the methylotrophic yeast Pichia
pastoris (Yang and Zhang 2018; Peña et al. 2018). Before the inception of techno-
logical advances in biological sciences (and, in particular, genetic and genome
engineering approaches), most of the strain engineering efforts were heavily reliant
on the limited knowledge (i.e., physiology, genetics, and biochemistry) that had been
gathered laboriously over the second half of the twentieth century for a modest
number of organisms. Success stories of metabolic engineering have thus often
focused on the overproduction of natively synthesized metabolites or molecules
that are easily accessible from the extant metabolic network [i.e., cis-metabolism
(Nikel and de Lorenzo 2018)] by the addition of simple biochemical pathways.

More recently, the field of metabolic engineering had witnessed a significant
increase in the number and nature of the potential microbial chassis that can be
used for biotechnological purposes (Danchin 2012; Kim et al. 2016). This occurrence
stems from the fact that not only has the knowledge on alternative microbial species
expanded enormously, but also the technology bottlenecks for engineering their core
properties have been (for the most part) solved. Achievements within the “omics”
fields enabled us to gain the required knowledge about essentially any microbial
platform on a much shorter time-scale—and synthetic biology has provided us with
tools to manipulate an unprecedented number of living cells at will (Abram and
Udaondo 2019). When organisms were previously chosen due to the availability of
genetic engineering tools or their innate ability to produce a desired compound, we
are now experiencing a shift in paradigm: one first tries to establish the characteristics
that an ideal biological platform should display for the desired application, e.g., the
production of a given target product (including adverse metabolic effects of genetic
implants and a suitability for a specific set of production conditions). Then, a suitable
chassis can be chosen that naturallymeets the defined criteria in the best possible way
and is then engineered to fulfill its task. This led to an increased interest in species that
are true generalists in their nature and that are often found as free-living organisms in
diverse environments. As indicated in Sect. 1.2, many of such environmental micro-
organisms are found within the genus Pseudomonas and herein, particularly
Pseudomonas putida has made a name for itself as a promising cell factory.
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1.2 Bacteria from the Genus Pseudomonas as Chassis

Representatives of the species Pseudomonas putida are classified as Gram-negative,
obligate aerobic γ-proteobacteria with one or several polar flagella that are found in
most soil and water habitats where oxygen is available (Timmis 2002; Palleroni
2010; Palleroni et al. 1973). Members of these bacteria can grow at temperatures
between 4 and 40 �C (although they grow optimally between 25 and 30 �C; Poblete-
Castro et al. 2017), and they can form biofilms (Volke and Nikel 2018; Benedetti
et al. 2016), through a process coordinated by cell-to-cell-communication systems
(i.e., quorum sensing) in a cell density-dependent manner (Moore et al. 2006). Due
to the ever-changing nature of their natural habitat, P. putida is endowed with a
versatile metabolic network that provides it with the ability to adapt to many
different physicochemical conditions, some of which are of special interest for
industrial fermentation setups (e.g., extreme pH values, temperature gradients, and
high concentrations of toxic substances) (Poblete-Castro et al. 2012, 2019; Jiménez
et al. 2002). In particular, one of its most remarkable physiological traits was the
very reason why its most prominent representative, P. putida strain mt-2, was
discovered in the first place: the ability to degrade and consume recalcitrant xeno-
biotic compounds, such as toluene and xylenes (Nakazawa 2002)—and this trait
goes hand in hand with a remarkably high tolerance to organic solvents (Segura et al.
2012). This outstanding feature results from the presence of, inter alia, very effective
efflux systems that make P. putida an ideal producer of such compounds or a suitable
biocatalyst for production processes in two-phase systems (Heipieper et al. 2007;
Simon et al. 2014; Blank et al. 2008). The ability to tolerate high concentrations of
organic solvents and aromatic compounds furthermore allows for the use of complex
alternative feedstocks that are not accessible for other bacteria (Nikel and de Lorenzo
2018). An outstanding example in this sense is the wealth of substrates that can be
derived from plant biomass, a large fraction of which is represented by lignin.
Because bioproduction processes established thus far exploited lignocellulose pre-
dominantly as a source of sugars, the lignin fraction remains to be a largely unused
waste product that is often used for the production of heat and electric energy via
combustion. Pseudomonas, however, is able to consume a large variety of the
aromatic monomers that are derived from lignin after hydrolysis—even enabling
the non-hierarchical co-utilization of these substrates (Beckham et al. 2016). More-
over, although P. putida is not able to efficiently consume the most abundant sugars
present in lignocellulose besides glucose, xylose, and arabinose, it can be easily
engineered to do so (Wang et al. 2019; Dvořák and de Lorenzo 2018). As a
consequence, it is now possible to utilize a large proportion of the carbon that is
stored in plant biomass for the production of value-added compounds in fermenta-
tion approaches. Another possibility for the valorization of complex feedstocks
containing arenes is to make direct use of the assimilatory pathways that are present
within the cis-metabolism of P. putida. The well-studied meta- and ortho-cleavage
routes to degrade a range of aromatic compounds (Marqués and Ramos 1993)
converge into the central metabolic intermediate catechol, which is subsequently
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converted into cis,cis-muconic acid [(2E,4E)2,4-hexanedioic acid] (Chua and Hsieh
1990; Vardon et al. 2015; Johnson et al. 2016; Kohlstedt et al. 2018). The latter
molecule has recently gained significant attention in the chemical industry as a
platform chemical, representing a precursor for the synthesis of terephthalic acid,
3-hexenedioic acid, 2-hexenedioic acid, 1,6-hexanediol, ε-caprolactam, and
ε-caprolactone; all of which serve as building blocks for value-added commercial
polymers [e.g., polyethylene terephthalate (PET) from terephthalic acid or Nylon-6,6
from adipic acid]. Recently, the substrate spectrum that is suitable to produce cis,cis-
muconic acid from aromatic precursors in P. putida was further expanded by
introducing heterologous functions that feed the catechol branch with intermediates
from degradation routes that produce protocatechuic acid as central metabolic
intermediate. These operations resulted in a complex converging metabolic network
that converts a diverse mix of aromatic substrates into catechol and consequently cis,
cis-muconic acid (Linger et al. 2014). As discussed in Sect. 1.3, engineering the
synthesis of this type of compounds (among many others) in Pseudomonas species is
possible largely due to a specific metabolic wiring characteristic of this species.

1.3 Central Carbon Metabolism in Pseudomonas putida

Pseudomonas putida represents a striking example of a bowtie framework (Sudarsan
et al. 2014), where a large variety of different nutrients are assimilated through a
catabolic funnel into a core metabolic network to produce activated carriers and
precursor metabolites for the synthesis of larger building blocks that constitute
biomass (Fig. 1). The central carbon metabolism of P. putida exhibits a rather
special architecture when it is exposed to the sugar substrate that is widely preferred
in industry, glucose (Fig. 1). Fructose is the only carbohydrate known to be
transported into the cytoplasm through a phosphoenolpyruvate-carbohydrate
phosphotransferase system (PTS) system (Chavarría et al. 2016). All other sugars
use active non-PTS transport systems, often at the costs of a higher energy demand.
As many other (aerobic) prokaryotes, most pseudomonads lack a functional
6-phosphofructo-1-kinase (Pfk), a key enzyme of the Embden–Meyerhof–Parnas
(EMP) glycolytic pathway, and thus rely on the Entner–Doudoroff (ED) route for the
consumption of sugars and sugar acids (Flamholz et al. 2013; Conway 1992). The
initial steps of glucose consumption occur through a set of three pathways that
converge in 6-phosphogluconate (6PG) as a central node, and each includes sub-
strate oxidation (generating reduced cofactors) and ATP-dependent phosphorylation
steps. The activated intermediate 6PG is then subjected to dehydration (catalyzed by
Edd) and aldol cleavage (catalyzed by Eda) that yield the two C3 intermediates
pyruvate and glyceraldehyde-3-P (GA3P). GA3P can then be further processed to
pyruvate through the lower block of glycolysis (yielding one ATP and one NADH)
or be recycled through a cyclic metabolic route termed the EDEMP cycle
[a metabolic architecture involving enzymes belonging to the ED, EMP, and pentose
phosphate (PP) pathways]. This recycling of metabolites enables Pseudomonas to

72 N. T. Wirth and P. I. Nikel



Fig. 1 Relevant metabolic characteristics of the Gram-negative environmental bacterium Pseudo-
monas putida as a chassis for biotechnology. (a) Strains of P. putida can be isolated in most soil and
water habitats where oxygen is available, including wastewater reservoirs from chemical plants. (b)
The metabolic network of P. putida KT2440 represents a striking example of a bowtie framework,
where a large variety of different substrates are funneled through catabolic pathways into a set of
central biochemical reactions that produce activated energy/redox carriers and precursor metabolites
(the 12 elemental metabolites in this network (Noor et al. 2010) are highlighted in red) for the
formation of biomass. (c) Biochemical pathways involved in glucose catabolism inP. putidaKT2440.
The metabolic flux revolves around the EDEMP cycle (highlighted in green) that includes activities
from the Entner–Doudoroff pathway (reactions shown in dark green), the pentose phosphate pathway
(reactions shown in orange), and the Embden–Meyerhof–Parnas route (reactions shown in red) (Nikel
et al. 2015). Reactions of the tricarboxylic acid (TCA) cycle are indicated in blue. Transport reactions
across the plasmamembrane are shown with dashed lines. Note that the exact transport mechanism for
2-ketogluconate is unknown (shown with a dashed arrow). Abbreviations of metabolites are as
follows: G6P glucose-6-P, 6PG 6-phosphogluconate, F6P fructose-6-P, 6PG 6-phosphogluconate,
FBP fructose-1,6-P2,DHAP dihydroxyacetone-P, KDPG 2-keto-3-deoxy-6-phosphogluconate, Ru5P
ribulose-5-P, R5P ribose-5-P, S7P sedoheptulose-7-P, E4P erythrose-4-P, G3P glyceraldehyde-3-P,
3PG glycerate-3-P, 2PG glycerate-2-P, PEP phosphoenolpyruvate and acetyl-CoA acetyl-coenzyme
A. Enzymes in this scheme are abbreviated as follows:Gcd glucose dehydrogenase,GADH gluconate
dehydrogenase,GtsABCD D-glucose ABC-transporter, GntT gluconate/H+ symporter, KguT putative
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generate additional NADPH reducing power and is a key mechanism to counter high
levels of oxidative stress (Nikel et al. 2015). A complex regulatory network leads to
a sequential uptake of substrates if several carbon sources are present, whereby
glucose is taking a subordinate role in favor of some organic acids and amino acids.
For details about the regulatory systems that orchestrate the use of different carbon
compounds in Pseudomonas, we recommend a previous review written by Rojo
(2010). Because of the complexity and idiosyncrasies that characterize metabolic
regulation in Pseudomonas species, a lack of knowledge (particularly about
genotype–phenotype relationships) often becomes a bottleneck if one tries to predict
the outcome of genetic interventions. As argued below, the inception of a set of
dedicated tools for the engineering of Pseudomonas have emerged and considerably
accelerated the design of whole-cell biocatalysts based on this species.

1.4 Toward the Domestication of Pseudomonas putida
as a Chassis

Since the beginning of the twenty-first century, various modern techniques that were
developed in the field of synthetic as well as systems biology were made available
for P. putida and contributed to its broad acceptance as a promising and reliable
biotechnological platform. The fully sequenced (Nelson et al. 2002) and extensively
annotated (Belda et al. 2016) genome of P. putida KT2440 provided a solid
fundament for the integration of several systems biology applications and enabled
the defined manipulation of phenotypical traits useful for biotechnological purposes.
It furthermore formed the basis to a set of genome-scale metabolic models that were
regularly used to guide metabolic engineering strategies and helped elucidating the
physiologic response of P. putida to different environments and physicochemical
conditions (Nogales et al. 2008; Puchałka et al. 2008; Sohn et al. 2010; Oberhardt
et al. 2011). Along the same lines, genetic amenability facilitated the adaptation and
development of increasingly refined synthetic biology tools developed for specific
gene and genome manipulations. A milestone for establishing a standardized

Fig. 1 (continued) 2-ketogluconate transporter, Glk glucose kinase, GnuK gluconate kinase, KguK
2-ketogluconate kinase, KguD 2K6PG reductase, Pgi phosphohexose isomerase, Zwf glucose-6-P
dehydrogenase, Pgl phosphogluconolactonase, Edd 6-phosphogluconate dehydratase, Eda
2-dehydro-3-deoxy-6-phosphogluconate aldolase, Fba fructose-1,6-P2 aldolase, Fbp fructose-1,6-
P2 phosphatase, Gnd phosphogluconate dehydrogenase, Rpi ribose-5-P isomerase, Rpe ribulose-5-
P 3-epimerase, Tkt transketolase, Tal transaldolase, Tpi triosephosphate isomerase, Gap
glyceraldehyde-3-P dehydrogenase, Pgk phosphoglycerate kinase, Pgm phosphoglycerate mutase,
Eno enolase, Pyk pyruvate kinase, PDHC pyruvate dehydrogenase complex, GltA citrate synthase,
Acn aconitase, Idh isocitrate dehydrogenase, SucAB 2-ketoglutarate dehydrogenase, SucCD
succinyl-CoA synthetase, Sdh succinate dehydrogenase, Fum fumarate hydratase, Mdh malate
dehydrogenase, AceA isocitrate lyase, and GlcB malate synthase
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toolbox of well-characterized molecular tools has been the creation of the Standard
European Vector Architecture (SEVA) platform (Martínez-García et al. 2014a;
Silva-Rocha et al. 2013), containing various genetic elements (e.g., promoters,
antibiotic resistance determinants, origins of plasmid replication, and reporter func-
tions) built in a modular and easily interchangeable fashion. The inducible promoter
systems within the SEVA collection were further complemented with synthetic
libraries of constitutive promoters that allow for the predictable adjustment of the
transcription strength of any desired gene and gene clusters (Elmore et al. 2017;
Zobel et al. 2015). However, the strength of a promoter alone does not determine the
overall expression strength of a gene, since translation heavily depends on the
sequence context within the messenger RNA around the ribosome-binding site.
This issue can be solved by exploiting the mechanism of translational coupling,
which uses standardized, non-coding 50-untranslated regions and leader sequences
that are placed in front of a gene of interest, as firstly established for E. coli (Mutalik
et al. 2013) and later demonstrated for P. putida as well (Zobel et al. 2015).

The plethora of tools and approaches for gene and genome manipulation of this
species paved the way toward genetic domestication of P. putida as a chassis for
biotechnology. However, despite considerable progress in our ability to access
genetic manipulations of Pseudomonas, this bacterium still shows deficits when it
comes to high-throughput genome engineering. This state of affairs can be explained
to some extent by present knowledge gaps compared to the microbial forerunners of
synthetic biology. More importantly, P. putida lacks the high capacity for homolo-
gous recombination (HR) displayed by other well-established chassis, e.g.,
S. cerevisiae or B. subtilis (Davy et al. 2017), or an inventory of well-characterized
bacteriophages, e.g., phages characterized for E. coli (Li et al. 2019), that, together,
provide the molecular tools for an efficient recombineering system. Since the
availability of such systems would be instrumental for the development of veritable
reduced-genome variants of P. putida (leading to the long-sought-after goal of
constructing minimal-genome strains), several alternatives have emerged over the
last few years to overcome the technical limitations in genome engineering. In the
next section of the chapter (Sect. 2), we review state-of-the-art techniques for
genome manipulation in Pseudomonas species, highlighting the advantages and
disadvantages of these procedures.

2 Strategies for Genome Reduction of Pseudomonas Species

The knowledge that was accumulated over the time with a growing body of research
helped to identify cellular functions within P. putida that are either neutral or disad-
vantageous for the construction of a robust cell factory. Examples of such functions
will be addressed in further detail in the next section (Sect. 3). Genetic determinants of
such “dispensable” functions—although the concept of dispensability here would
largely depend on the intended application of the resulting strains—can be found
clustered together or highly dispersed over the bacterial chromosome. The method of
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choice to erase several stretches of DNA at different locations should thus either
enable the editing of multiple regions at once or require as little time as possible for
each iteration in a stepwise approach—while at the same time being insensitive to the
length of the removed sequence. Driven by the revolution of synthetic biology,
different approaches have been designed, attempting to provide reliable, quick, and
easy ways to implement defined genetic modifications in P. putida. Originally, these
methods exclusively relied on native HR functions mediated by recA, which enables
the allelic exchange of a plasmid-encoded sequence with a homologous counterpart on
the bacterial chromosome (as discussed in Sect. 2.1). However, one disadvantage
inherent to the HR-mediated mechanism is its impartiality regarding the result of the
recombination. In some cases, this occurrence can increase the screening efforts to
identify the desired mutant cells in a (sometimes, larger) population of wild-type cells
with an increased fitness. This technical weakness could be overcome with the advent
of the CRISPR/Cas9 technologies that enables the specific counter-selection against
the unwanted (i.e., wild-type) genotype (as explained in Sect. 2.2).

2.1 Genome Engineering of Pseudomonas Using Suicide
Plasmids

In the most established genome engineering methods, the template DNA sequences
needed for efficient HR are delivered into Pseudomonas encoded on suicide plas-
mids carrying selectable markers (e.g., antibiotic resistance determinants). These
template DNA sequences include the desired genetic changes flanked on each side
by DNA segments (typically ca. 500 bp) that are homologous to the target site of the
genome. In this context, a (conditional) suicide vector is a plasmid carrying an origin
of vegetative replication (oriV) which is natively not functional in its target host. The
most prominent and widely used example of a suicide ori in P. putida represents that
of the plasmid R6K, whose functionality relies on the presence of its cognate
replication factor π, encoded by the pir gene (Rakowski and Filutowicz 2013).
The advantage of such a vector is that bacterial strains harboring pir can be used
without limitations for the cloning and propagation of the plasmid, while survival of
Pseudomonas under selection pressure depends on the integration of antibiotic
resistance determinants into the chromosome. This is mediated by HR of the
plasmid-encoded inserts and the target genomic sequence (Fig. 2). This allelic
exchange can be performed within a single step (double crossover), where the two
homologous arms (HAs) flanking a mutagenesis region recombine at the same time,
or in two consecutive steps (i.e., insertion followed by excision). Hereby, the whole
plasmid sequence is co-integrated into the chromosome through a single crossover
event at either of the two individual homologous regions (HA1 and HA2). A second
HR leads to the resolution of the plasmid and can leave behind the desired genetic
modification. For systems relying on a double-crossover mechanism, a selectable
marker is firstly introduced between the two homology regions that can later be
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removed by means of the site-specific recombination systems Flp/FRT from yeast
(Hoang et al. 1998) or Cre/lox from phage P1 (Ayres et al. 1993; Marx and Lidstrom
2002). These systems have the inherent disadvantage of leaving behind scars within
the chromosome at the sites of recombination, which, after repeated use of the
system for multiple genome interventions, are prone to recombine with each other,
potentially leading to the deletion or inversion of large genomic segments.

Fig. 2 Genome engineering of Pseudomonas using suicide plasmids. The molecular mechanisms
that lead to the desired chromosomal modification are shown for the deletion of gene xyz with a
recently published method (Wirth et al. 2019). Two homology arms (HA) that flank the target
mutagenesis site are cloned into the plasmid pGNW, which acts as a suicide vector in P. putida. The
plasmid is co-integrated into the chromosome through RecA-mediated homologous recombination
at either of the two HAs, thereby conferring a selectable antibiotic resistance as well as a
fluorescence signal to identify transformed cells. Introduction of a replicable plasmid [e.g., vector
pSEVA628S, harboring the gene encoding the homing endonuclease I-SceI, the expression of
which is inducible upon addition of 3-methylbenzoate (3-mBz)] results in the meganuclease-
dependent cuts on the two I-SceI target recognition sites located within pGNW thereby introducing
DNA double strand breaks in the genome. To avoid the lethal cutting mediated by I-SceI, the cells
undergo a second homologous recombination, which yields either the desired mutant or a revertant
genotype, depending on which of the two HRs recombine
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For two-step based genome engineering approaches, one predominant problem
was the low efficiency that is inherent in the natural HR system of Pseudomonas
(Martínez-García and de Lorenzo 2017). Consequently, different methods have been
exploited either to enforce the resolution of the plasmid or to counter-select against
cells, which did not undergo the second HR, respectively. One of the first counter-
selection strategies adapted to P. putida was based on the sacB gene derived from
Bacillus subtilis, encoding for a levansucrase that acts on sucrose to produce levan
polysaccharides, which accumulate in the periplasm of Gram-negative bacteria where
they exert a toxic effect (Steinmetz et al. 1983). The resolution of a suicide plasmid
encoding sacB can therefore be selected for by growth in a sucrose-containing
medium. A similar approach is based on the upp gene whose natural function in
P. putida is to phosphoribosylate uracil to yield uridine monophosphate (UMP,
50-uridylic acid), which is a required step in the pyrimidine salvage pathway. Upp
furthermore acts on the antimetabolite 5-fluorouracil (5-FU) that is thereby converted
into 5-fluoro-UMP. After metabolic transformation of 5-FU into 5-fluoro-UMP, this
compound acts as a suicide inhibitor of the essential enzyme thymidylate synthase,
resulting in cell death. Cells deficient in the uracil phosphoribosyltransferase function
show no physiological effect after exposure to 5-FU. After deletion of the
non-essential upp in P. putida, the gene can be used as a counter-selectable marker
for molecular tools by merely adding 5-FU to the culture medium (Graf and
Altenbuchner 2011). Equally working on the biosynthesis of pyrimidine nucleobases
is a dual-selection system based on a deletion of the gene pyrF, combined with the
antimetabolite 5-fluoroorotidine-50-P (Galvão and de Lorenzo 2005). The gene
product of pyrF (orotidine-50-P decarboxylase) is responsible for the formation of
UMP from orotidine-50-P (OMP), which makes it essential for the de novo biosyn-
thesis of uracil. With a pyrF deletion, cells become auxotrophic for uracil and can be
“rescued” via the ectopic expression of pyrF from a plasmid (positive selection). At
the same time, OMP decarboxylase acts on 5-fluoroorotidine-50-P (5-FOMP) and
converts it into 5-fluoro-UMPwith the same toxic effect as described above, allowing
for a negative selection of genetic elements carrying pyrF. However, all counter-
selection methods have shown to display shortcomings. The compound that is
externally added for negative selection often does not suppress growth completely,
making it difficult to identify cells that performed the second HR, especially when
trying to eliminate (conditionally) essential functions whose deletion results in a
growth deficiency. The upp/5-FU and the pyrF/5-FOMP methods furthermore
require the deletion of relevant metabolic functions in the host, which is not desired
in a robust cell factory. Finally, all the counter-selection methods that are based on the
action of a single gene are prone to mutate, rendering them ineffective over repeated
use of the markers and key genetic elements. In principle, all these drawbacks could
be solved by establishing counter-selection techniques based on highly specific
endonucleases that are produced endogenously. A widely adopted method uses a
suicide plasmid harboring the conditional origin of replication R6K, an antibiotic
resistance determinant and a polylinker region (i.e., multiple cloning site) flanked by
two recognition sequences for the homing nuclease I-SceI from S. cerevisiae
(Martínez-García and de Lorenzo 2011; Wirth et al. 2019). Upon co-integration of

78 N. T. Wirth and P. I. Nikel



the plasmid via homologous recombination, the SCEI gene is expressed from an
additional helper plasmid and the meganuclease produced thereof introduces double-
stranded breaks at both target sites encoded on the integrative plasmid. Cells can
escape this lethal cleavage within the chromosome if they get rid of the I-SceI
recognition sites by a second crossover event (Fig. 2). The redundancies of the target
sequences, as well as the SCEI gene, which is encoded on plasmids that are
maintained at multiple copy numbers, make this system highly efficient and robust.
A remaining disadvantage of all counter-selection systems discussed in this section is
their limited selectiveness regarding the resulting DNA sequence in the chromosome.
In order to introduce a change in the genetic sequence, the modified target region is
flanked by two homologous arms (HA1 and HA2, Fig. 2). Each of the two crossover
events that first lead to the co-integration of the suicide plasmid and then to its
resolution can be performed by either of the two HAs. Only if the site of recombina-
tion differs between the first and the second crossover, a mutant genotype is created
(Fig. 2). If both HR events involve the same HA, the wild-type sequence is restored.

2.2 CRISPR/Cas9 Technologies and Recombineering
Approaches for Pseudomonas

Until recently, established genome engineering strategies were not able to discrim-
inate between mutant and wild-type cells unless a genetic manipulation resulted in a
clear selectable phenotype. On the contrary, the introduction of new biochemical
functions or the deletion of genes with a relevant physiological role often results in
an evolutionary advantage for the wild-type cells in such a way that often significant
screening efforts had to be made for selecting the mutants. This problem has been
largely solved when customized CRISPR/Cas9 systems were made accessible after
their first introduction in 2012 (Jinek et al. 2012; Gasiunas et al. 2012; Jakočiūnas
et al. 2017). Cas9 serves as an endonuclease that can be guided to a specific DNA
sequence through its association with a synthetic guide RNA (sgRNA) and is
therefore suitable to select against particular genotypes. Shortly after its emergence,
the new technology was combined with traditional molecular tools for genetic
engineering to create new, powerful gene edition systems that further facilitated
engineering approaches in several cell factories (Fernández-Cabezón et al. 2019).

Different approaches for P. putida intended to perform chromosomal modifica-
tions within a single step (Fig. 3), by using CRISPR/Cas9 counter-selection to
stimulate the allelic exchange of a sequence from either a plasmid via a double-
crossover (Cook et al. 2018) or with a synthetic DNA fragment (either single or
double stranded) in a process called recombineering (Choi et al. 2018; Aparicio et al.
2018). Indeed, it has been established in E. coli that one can simply insert modifi-
cations into any chromosomal target site using linear, double-stranded (ds) DNA
(e.g., PCR products), by flanking fragments with short (typically 40–50 bp) homol-
ogous arms and delivering them into cells that overexpress the three genes of the Red
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system from phage λ (Murphy 2016). These genes encode (1) a 50 ! 30 exonuclease
(Exo) that digests one of the two strands on the DNA fragment, (2) a dsDNA-binding
protein (Gam) that protects the introduced fragment from the attack of endogenous
nucleases, and (3) a single-stranded (ss) DNA-binding protein (Beta) that shields the
single-stranded product from degradation and mediates recombination (Fig. 3). It
was also shown that recombineering approaches work even more efficiently when

Fig. 3 Genome engineering applications in Pseudomonas species using CRISPR/Cas9 as counter-
selection system. A plasmid-based CRISPR/Cas9 expression system is shown in the scheme with
vector pS448∙CsR as an example, as described by Wirth et al. (2019). This plasmid encodes a
streptomycin-resistance gene (SmR), the cas9 gene under the control of the inducible XylS/Pm
expression system as well as a constitutively-expressed (with the PEM7 promoter), customizable
cassette including a specific synthetic guide RNA (sgRNA). Autonomous replication of this vector
is controlled by the ColE1 origin of vegetative replication [oriV(ColE1)]. The steps needed for
genome engineering of Pseudomonas using this system are as follows: (1) upon induction of the
system via addition of 3-methylbenzoate (3-mBz), Cas9 is produced and the protein associates with
the sgRNA to introduce a double-stranded (ds) break in the DNA at the target locus that is lethal for
cells harboring the wild-type sequence. This counter-selecting action of CRISPR/Cas9 can be
combined with methods of recombineering (2). Thereby, a linear DNA fragment [e.g., dsDNA
obtained via PCR (2.1) or a chemically synthesized single-stranded (ss) DNA fragment, both
containing homologous arms (HA) to the target locus on each end] is used to introduce genetic
modifications (indicated with a red star) at a target site. If dsDNA is used (2.2), one of the two DNA
strands can be digested with an exonuclease (e.g., Beta and Exo, from the λ Red system commonly
used in E. coli), leaving a ssDNA fragment that is protected from further degradation by a ssDNA-
binding protein (e.g., Beta, SSR, or RecT). The two flanking HAs mediate the introduction of the
mutagenic ssDNA fragment into the chromosome via homologous recombination or as an Okazaki
fragment during the replication of the bacterial chromosome (2.3). Moreover, CRISPR/Cas9
counter-selection of the wild-type sequence allows for the allelic exchange of a homologous
DNA fragment containing the desired modifications directly from a plasmid via a double-crossover
mechanism (3). If the sgRNA target is changed during this mutagenesis procedure, only the cells
having the allelic exchange can survive in the presence of both Cas9 and the expressed sgRNA
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using an ssDNA fragment (e.g., a synthetized oligonucleotide)—thereby requiring
only the function of protein Beta (Ellis et al. 2001). This method can generate up to
6% of recombinant cells within a single round of treatment without any means for
selection. Traditionally, λ Red recombineering is often used in a two-step approach,
similar to strategies based on suicide plasmids, where an antibiotic resistance gene is
first introduced at the target site together with a counter-selectable marker. With the
second round of recombineering, using a different DNA fragment, the inserted gene
cassette is removed, leaving behind only the desired mutation (i.e., scarless modifi-
cation). Moreover, λ Red recombineering can be combined with CRISPR/Cas9
counter-selection, which enabled the introduction of any genetic change within a
single step supplying only linear DNA fragments. This technology is particularly
powerful when performed multi-cycled and in an automated way, e.g., with the
CRMAGE method (CRISPR/Cas9 and λ Red recombineering based Multiplex Auto-
mated Genome Engineering) (Ronda et al. 2016).

In spite of its many advantages, all approaches employing CRISPR/Cas9 tech-
nologies suffer from a lack of understanding about the characteristics that qualify an
effective sgRNA sequence. Consequently, these methods can only have low effi-
ciency and extensive screening efforts are often required to identify mutant cells
without the introduction of counter-selectable markers. An additional bottleneck for
recombineering approaches in P. putida has been the identification of recombinase
enzymes that function efficiently (Ricaurte et al. 2018). In contrast to E. coli,
P. putida is missing (or they are yet to be identified) active bacteriophages that
could provide DNA-editing enzymes that are specifically tailored to work optimally
within its host. Attempts to render the λ Red system functional in Pseudomonas
species were reported (Lesic and Rahme 2008; Liang and Liu 2010), but the
information available in the literature would indicate an inferior performance when
compared to conventional methods. Recent progress was made by identifying the
RecET system in Pseudomonas syringae, where the genes are part of a putative
prophage (Swingle et al. 2010). The protein pair resembles the λ Red system in that
they share homologies with the Exo and Beta components of the λ Red system,
respectively, and thus provide the same functions. Due to the close relationship of its
native host and P. putida, there are good chances that the identified system performs
well in the latter as well. The first reported attempt to employ RecET-based genome
engineering in P. putida was reported by Choi et al. (2018), who used the system to
enable recombineering with linear donor dsDNA. However, the reported efficiency
of the RecET system was relatively low and was by far outperformed by a suicide
plasmid-based approach that the authors combined with the action of RecET as well.
However, since the characteristics and reported efficacy of the combined method
resembled that of the native recA-mediated homologous recombination, the role of
RecET in boosting HR is yet to be analyzed in detail. In a similar approach, another
promising candidate was proposed with the λ Red Beta-like recombinase SSR found
in P. putida strain DOT-T1E (Aparicio et al. 2018). The ssr gene was transplanted
into the Pseudomonas cell factory of choice, strain KT2440, and shown to promote
recombination with linear ssDNA fragments, although the procedure had lower
efficiencies than in E. coli with the λ Red system. In general, further optimization
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would be required for both the RecET-based and the SSR-based systems in order to
become standard, established methods for genome engineering in the laboratories.

A reliable, recombineering-based system for site-directed mutagenesis in the
chromosome (especially when working with large libraries of mutagenic oligonu-
cleotides) is thus far one of the most desired tools within the Pseudomonas commu-
nity. In particular, it remains to be shown how CRISPR/Cas9 counter-selection, as
well as a repetitive cyclization by process automation, could help to overcome the
present limitations in generating mutants by recombineering. Nevertheless, if com-
bined with the conventional two-step mutagenesis approach using suicide plasmids,
the sequence-specific counter-selection capability that CRISPR/Cas9 systems offer
enables the deletion of genes that before could be achieved only with significant
efforts—if at all. Specifically directing Cas9 to the wild-type sequence that is
intended to be deleted or modified selects for those cells, which resolve the previ-
ously co-integrated plasmid in a way that yields the desired mutation (Wirth et al.
2019). One way or the other, the constellation of available tools for genome
engineering of Pseudomonas species and, in particular, of P. putida, has signifi-
cantly enabled our ability to interrogate core functions of the cell. The genome
manipulation of these species has paved the way to expanding the fundamental
knowledge on bacterial physiology—and also enabled the design and construction
of reduced-genome variants of P. putida with enhanced properties for biotechno-
logical applications.

3 Biotechnological Applications of Reduced-Genome
Variants of P. putida

With a wide palette of efficient molecular tools that are compatible with P. putida at
hand, very extensive chromosome editing projects are possible. With the genetic
engineering process itself no longer constituting any major bottleneck, scientists can
take up the search for functions within the genome that are of no use or even
undesired for a robust microbial cell factory. The concept of a synthetic minimal
cell has been proposed for different organisms, further examples of which can be
found throughout this book. A wide variety of experimental approaches has been
used within the last decade to identify and study essential genes, e.g., in E. coli,
B. subtilis or P. aeruginosa. These methods comprise targeted gene deletions, the
generation of conditional knockout mutants, genome-wide RNA interference
screens, and libraries acquired through saturation transposon mutagenesis
(Yu et al. 2002; Kobayashi et al. 2003; Baba et al. 2006; Kato and Hashimoto
2007; Liberati et al. 2006; Goodall et al. 2018; Juhas et al. 2014). In E. coli, the list of
genes considered to be essential consists of 300 open reading frames (ORFs) out of a
number of 4288 (Goodall et al. 2018). These ORFs encode functions required for
protein synthesis and quality control, cell wall biosynthesis, cell division, DNA
replication and chromosome maintenance, RNA synthesis and degradation, as well
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as core metabolic functions (Juhas et al. 2014). However, while we understand more
and more about the genes that allow a biological cell to survive and sustain growth,
we still lack knowledge about functions that become essential in conditions different
from the ones that were defined to study gene essentiality. Moreover, within the
category of genes considered non-essential there can be found some that ensure cell
robustness and resistance to different types of stress, and many genes still encode for
functions that thus far have not been identified (Acevedo-Rocha et al. 2013; Danchin
and Fang 2016). Because of these deficits in our understanding about complex
biological systems, the idea of designing a “minimal cell” from its roots is currently
less auspicious than identifying a suitable biological chassis that already displays all
desired characteristics and remove unnecessary and unwanted properties—while
adding others.

As indicated in Sect. 1.2, and being a ubiquitous bacterium that can be found in a
large variety of different habitats, P. putida is adapted to survive and thrive under
very diverse conditions and with using a wealth of different substrates. It has
therefore acquired many functions that are not essential for survival under the
controlled conditions of a bio-fermentation setup. Although a set of “essential”
genes depends on the given application, one can identify certain gene sets that
encode functions generally classified as having negative effects. First, these func-
tions can be related with metabolic regulations and biochemical processes that affect
the consumption of a chosen substrate and its conversion into a desired product
(Nikel and de Lorenzo 2018). When adopting synthetic devices or systems to
produce heterologous enzymes in order to access new metabolic routes or to produce
such proteins themselves, the accompanying biochemical functions should not
interfere with the extant metabolism. Consequently, they should be largely meta-
bolically inert, or completely decoupled from the host biochemistry (Durante-
Rodríguez et al. 2018). Molecular devices should furthermore not interfere with
the native regulation patterns—which in some cases are poorly understood. A
suitable approach to design a microbial platform for the production of certain
aromatic compounds could thus be to first remove the comprehensive collection of
functions related to their metabolism and to subsequently implement completely
orthogonal systems for their production (Yu et al. 2019). When adopting the widely
used XylS/Pm regulator/promoter system for the inducible expression of genes
(Gawin et al. 2017), for instance, the native regulation system in P. putida was
shown to respond by activating a range of different metabolic and regulatory genes
upon exposure to one of the system’s diverse effectors (benzoic acid and derivatives
thereof) (Pérez-Pantoja et al. 2015; Volke et al. 2019). In addition, a well-known
nuisance when using P. putida for the production of biofuels (and structurally related
molecules) is its remarkable capacity to degrade the final products and intermediate
metabolites by the action of many different and promiscuous oxido-reductases and
other catabolic activities (Vallon et al. 2015). Thus, getting rid of such metabolic
activities while at the same time taking advantage of the other metabolic and stress-
endurance traits that the chassis provides is a key step toward creating an ideal
whole-cell biocatalyst.

There is a variety of cellular processes that affect the internal supply of metabolic
currencies that are needed within a myriad of biochemical processes [e.g., NAD(P)H
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and ATP, reflected in the energy charge and redox ratios] without providing a benefit
in a production setup. Besides being used to facilitate biochemical reactions that
would otherwise be unfavorable, ATP is required in large quantities to ensure the
proper folding of polypeptides, mediated by the essential chaperon complex GroEL/
ES. In fact, GroEL/ES is one of the cellular processes with the highest demand for
ATP, especially when the proteome is compromised by physical and chemical
stresses (Billerbeck et al. 2013). It seems thus obvious that one limiting factor for
the quantitative production of foreign proteins is the supply of ATP. One example of
an energy-wasting process is the flagellar motion that many bacteria use to move
from a location of nutrient scarcity to one that provides substrates that are needed for
growth as well as oxygen—a process that appears redundant in a stirred fermentation
tank. In 2014, Martínez-García et al. (2014b) reported the removal of a large stretch
of DNA (~70 kb, corresponding to ~1.1% of the genome) from the chromosome of
P. putida KT2440, including 69 relevant structural and regulatory genes for the
assembly and export of flagella as well as several chemotaxis functions. This
operation resulted in a diverse set of different physiological changes in the
reduced-genome strain. Most obviously, a complete absence of cell motility was
observed, resulting in higher sedimentation rates. The loss of the outer membrane-
associated flagella furthermore decreased surface hydrophobicity, a property that is
of advantage for mixed planktonic culture systems because it reduces the formation
of biofilms that complicate purification processes and impairs fermentation equip-
ment. Indeed, non-flagellated cells demonstrated substantial decreased biofilm for-
mation in an early phase of the cultivation. However, after 24 h of prolonged
cultivation, the formation of biofilms was increased compared to the wild-type strain
due to an elevated production of exopolysaccharides, possibly triggered by incipient
nutrient starvation and oxygen limitation. It will have to be determined which effect
is dominant in a large-scale production setup or if the long-term response can be
countered by further strain engineering. Most significant were however the changes
that could be observed within the mutant metabolism. The lag phase after exposure
to various carbon sources was reduced, and the maximum growth rate was signif-
icantly altered (i.e., decreased for growth in complex medium and in minimal
medium with glucose and succinate as sole carbon sources, increased for growth
on fructose). This was accompanied by a change in the ATP/ADP ratio (i.e., the
energy charge of the cell) by a factor of ~1.3. Concurrently, the non-flagellated
mutant had a 1.2-fold higher NADPH/NADP+ ratio than the wild-type strain while
the catabolic charge (i.e., the NADH/NAD+ ratio) remained essentially constant. An
increased availability of NADPH does not only enhance the anabolic capacity of the
cell for biosynthesis but also increase its tolerance toward oxidative stress and UV
exposure (Martínez-García et al. 2014c)—a trait that is useful for most industrially
relevant fermentation and biotransformation applications.

An essential property of a cell factory in large-scale production scenarios is its
genetic stability (de Lorenzo and Couto 2019). Unless countered via the implemen-
tation of some sort of product-addiction mechanism that ensures that cells maintain a
producing phenotype, genetically modified cell factories tend to escape the meta-
bolic burden that was imposed on them through evolutionary mechanisms. These
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processes result in mutations that lead to a loss of function within the overexpressed
genes or pathways. Genetic diversity within a population of bacterial cells is
favorable in a natural context because it enables the adaptation of the organism to
changing environments, but it is detrimental for a robust cell factory (Fernández-
Cabezón et al. 2019). In nature, mutations in the genome can be caused through
errors made by DNA polymerases during replication, by error-prone DNA repair
mechanisms, or because of external stress factors, e.g., UV irradiation or mutagenic
chemicals. Yet another source of genetic instability lies dormant within the chromo-
some of many bacteria in the form of viral DNA and transposing elements, where
these elements can constitute up to 20% of the chromosome (Casjens 2003).
Lysogenic phages can be found within the genomic sequence of many bacteria,
where they usually become inactive until cells encounter certain stresses such as
DNA damage or nutrient starvation, or because of stochastic events that trigger their
excision and the resumption of a lytic cycle (Casjens 2003; Ilves et al. 2001).
Although subject to a continuous decay while resting within the bacterial chromo-
some, they often retain some of their gene functions if they provide a benefit for the
host. For example, prophages can express immunity and exclusion systems that
provide a barrier for the superinfection with a related phage, or the prophage could
have introduced fitness-enhancing genes that it had acquired horizontally from
different sources [e.g., antibiotic or stress resistance determinants (Winstanley
et al. 2009; Wang et al. 2010)]. Another function that is regularly retained is that
of transposition within the genome. While mobile genetic elements might contain
beneficial functions under certain (selective) conditions, thus being selected for in a
positive way, they also represent a disruptive mutagenic force by randomly inserting
into gene clusters that are crucial for a producing phenotype.

In P. putida KT2440, 2.6% of the genome was found to encode phage-related
functions, distributed about four prophage elements, each one containing up to
72 ORFs (Martínez-García et al. 2014d). Intensive studies on their functionality
revealed that none of the prophages was able to re-initiate a lytic cycle despite having
the ability to be excised under specific environmental conditions. However, deletion
of all prophage regions by means of the methods discussed in Sect. 2.1 led to an
enhanced tolerance to a diverse set of stress factors. Prophage-less P. putida showed
increased survival in stationary phase and a lower sensitivity to UV-irradiation and
to various types of chemical mutagens. Moreover, the removal of the proviral load
led to an increase in fitness in a set of different culture media compositions
(Martínez-García et al. 2014d). Extensive analysis of the annotated genome of
P. putida KT2440 further revealed the presence of 54 transposable elements, one
of which has been reported to become particularly active in vivo under carbon
starvation (Ilves et al. 2001). In a study published in 2014, Martínez-García et al.
(2014d) removed all of these mobile genetic elements together with the previously
established targets for genome reduction in P. putida (i.e., the flagellar system and
proviral elements) as well as dsDNA-degrading systems that are likely to interfere
with the introduction of foreign DNA during genetic engineering efforts. The deleted
regions comprised a total number of 299 genes corresponding to ~4.3% of the
genome in P. putida KT2440 and resulted in the cell-factory strain P. putida
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EM42. This strain was subjected to extensive physiological and genetic character-
ization. As already described for a flagella-less strain, lag phases were consistently
decreased on various carbon sources, likely due to an increased NADPH/NADP+

ratio that enabled the cells to overcome oxidative stress during starvation (Martínez-
García et al. 2014c; Rolfe et al. 2012). The growth performance of such reduced-
genome variant in complex medium was slightly decreased, while growth in defined
media was not affected for any of the various carbon sources tested. However, the
genome-reduced strain was able to form significantly more biomass from the same
amount of substrate, suggesting that the multiple deletions reduced the maintenance
requirements during the cultivation. This experimental observation is in line with an
elevated energy charge in strain EM42 (likely due to the absence of flagella, as
described above), as well to as an increased intracellular concentration of the central
metabolite acetyl-CoA—thereby indicating a better availability of resources for the
synthesis of biomass components. The altered maintenance requirements of genome-
reduced P. putida strains were later confirmed quantitatively (Lieder et al. 2015).

Because of the ATP-dependency that is inherent to the expression of heterologous
proteins, an increased energy availability resulted in a more efficient production of
foreign polypeptides by P. putida EM42, as shown within the same study as well as
in further experiments (Martínez-García et al. 2014c; Lieder et al. 2015). Finally, the
surplus of ATP allows strain EM42 to survive and even grow at elevated tempera-
tures (42 �C) that are usually lethal for wild-type strain P. putida KT2440 (Aparicio
et al. 2019). Altogether, these effects distinguish the genome-reduced P. putida
strain as a powerful cell factory, combining the native metabolic versatility and
stress resistance of the parental strain and adding further performance-enhancing
characteristics as well as an increased genetic stability.

4 Conclusion and the Way Ahead

P. putida represents a striking example for the journey of an environmental bacte-
rium from its natural habitat into becoming a cell factory useful for contemporary
biotechnology. After its discovery in 1960 in Japan, it was first studied as a model
organism for the biodegradation for a range of natural and later also xenobiotic
arenes (Nakazawa 2002). It was only later that researchers recognized that these
outstanding metabolic capacities go hand in hand with physiological characteristics
that give it the potential as a potent industrial cell factory. Examples of cellular and
molecular features that distinguish P. putida from other microbial chassis are
abundant, and some were characterized in further detail (a selection of traits was
discussed in the previous chapters). However, since the publication of the full
genome sequence of strain KT2440 in 2002, only 79% of all genes were associated
with a (potential) function, many of which are only putative based on homologies
with proteins whose function was identified in other organisms (Belda et al. 2016).

The full metabolic potential of this host has still to be fully exploited. Tradition-
ally, the identification of specific physiological aspects of a microbe relied on

86 N. T. Wirth and P. I. Nikel



methods that were established within the fields of classical microbiology and
biochemistry (including laborious and time-consuming experiments, studying one
function at a time). The current progress made within the data sciences (with all
varieties within the “omics” field), accompanied by technologies for the automation
of wet-laboratory tasks, are taking these endeavors to a new level. More and more
effort is put into the development of high-throughput screening methods for the
identification of new biochemical functions, and their combination with transcrip-
tional and proteomic profiles allows for the identification of new genotype–pheno-
type relationships. With DNA synthesis becoming accessible to everyone at very
low costs and even at large scale, any gene or variants thereof can be simply
synthesized and cloned into a suitable expression system, ready to be delivered
into the cell factory of choice in a very short time for further analysis of their function
(s). Especially if manual tasks are performed by robots, the combination of DNA
synthesis and high-throughput cloning, expression and screening allows for the
collection of innumerable data that can be combined with the analytic power of
newly developed machine-learning algorithms to systematically explore genotype–
phenotype relations (Riordon et al. 2019; Presnell et al. 2019). These developments
will be of particular value to harness the full metabolic potential P. putida provides.
It is expected that more biochemical functions and pathways will be revealed with
the collective volume of data gathered in “omics” experiments under various
cultivation conditions and with a diversity of substrates. The combination of
knowledge-based, machine-learning guided design of efficient catalysts will thus
result in minimal-genome strains with enhanced performance to fulfill the require-
ments of contemporary biotechnology—marking the transition into a veritable
bioeconomy (de Lorenzo et al. 2018; Martinelli and Nikel 2019).
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Genome-Reduced Corynebacterium
glutamicum Fit for Biotechnological
Applications

Volker F. Wendisch

Abstract Genome minimization ultimately leads to the smallest genome sustaining
life of a given cell; however, growth of this cell may be very slow and may require
multiple supplements, e.g., to overcome amino acid auxotrophies. By contrast,
genome reduction of industrially relevant bacteria such as Corynebacterium
glutamicum does not aim at generating minimal cells. Rather chassis cells are
developed that are as fit as the wild type with respect to a target function, for example,
growth of C. glutamicum in glucose minimal medium. Thus, a balance between
reducing the burden of expressed genes and maintaining fast growth with glucose
without the requirement for supplements such as amino acids is required. Here, the
application of this concept to C. glutamicum is discussed. Moreover, an outlook on
how the advent of genome editing by CRISPR-Cas9 or CRISPR-Cas12a(Cpf1)
impacts genome reduction and how highly parallel genome editing must be met by
highly parallel strain characterization is presented. Finally, metabolic engineering
approaches for the overproduction of amino acids, organic acids, terpenoids, and
diamines making use of genome-reduced C. glutamicum strains are detailed.
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1 Corynebacterium glutamicum: One of the Pillars
of Biotechnology

1.1 Role of C. glutamicum in the Bioeconomy

It is believed that bioeconomy will play an important role in the world’s future.
White biotechnology, also known as industrial biotechnology, makes use of bio-
technology for the sustainable processing and production of chemicals, materials,
and fuel (Frazzetto 2003). Corynebacterium glutamicum is a central pillar of white
biotechnology. C. glutamicum has a history of more than 50 years of safe production
of food and feed amino acids, an industrial process which operates at the million-ton
scale per annum (Lee and Wendisch 2017) and shows a compound annual growth
rate of 5.6% over 2017–2022 reaching US$25.6 billion by 2022 (Wendisch 2019).

Strain development for C. glutamicum has embraced and driven technological
development in the classical (Leuchtenberger et al. 2005; Ohnishi et al. 2008), genetic
engineering (Kirchner and Tauch 2003; Ikeda 2003), systems biology (Ma et al.
2017), synthetic biology (Lee and Wendisch 2017; Wendisch 2014), and systems
metabolic engineering eras (Lee and Wendisch 2017; Becker and Wittmann 2012;
Contador et al. 2009). Currently, this is obvious by the application and further
development of CRISPR interference (Cleto et al. 2016), CRISPR-Cas9 (Cho et al.
2017) and CRISPR-Cas12a (Jiang et al. 2017) genome editing and CRISPR
multiplexing (Wang et al. 2018a), biosensor-driven strain selection (Zhao et al.
2016; Steffen et al. 2016; Mahr et al. 2015; Eggeling et al. 2015; Siedler et al.
2014; Mustafi et al. 2012, 2014) and flux control (Zhou and Zeng 2015a, b), and
new process concepts such as coproduction (Henke et al. 2018a) and synthetic
consortia (Sgobba et al. 2018) that have been applied to C. glutamicum.

1.2 C. glutamicum as Host for a Multitude of Production
Processes

C. glutamicum has been engineered for the production of a broad spectrum of value-
added compounds including specialty amino acids (Perez-Garcia et al. 2016, 2017)
such as N-alkylated amino acids (Mindt et al. 2018a, b, 2019a, b) and omega-amino
acids (Jorge et al. 2016, 2017a, b; Rohles et al. 2016); diamines such as putrescine and
cadaverine (Imao et al. 2017; Schneider and Wendisch 2011); organic acids such as
pyruvate (Wieschalka et al. 2013), succinate (Tsuge et al. 2013; Kim et al. 2015;
Litsanov et al. 2012, 2013), glutarate (Perez-Garcia et al. 2018), and itaconate (Otten
et al. 2015); alcohols such as isobutanol (Blombach et al. 2011; Smith et al. 2010) and
n-propanol (Siebert and Wendisch 2015); aromatic compounds such as PHBA
(Syukur Purwanto et al. 2018; Kallscheuer and Marienhagen 2018; Kitade et al.
2018), 7-bromo- or 7-chloro-L-tryptophan (Veldmann et al. 2019a, b),
phenylpropanoids (Kallscheuer et al. 2016a), and anthocyanine (Zha et al. 2018);
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vitamins such as pantothenate (Chassagnole et al. 2002) and riboflavin (Taniguchi
and Wendisch 2015); terpenoids such as patchoulol (Henke et al. 2018b) and
astaxanthin (Henke et al. 2016); and polymers such polyhydroxyalkanoates
(Jo et al. 2007), hyaluronic acids (Hoffmann and Altenbuchner 2014), chondroitin
(Cheng et al. 2019), and proteins (Freudl 2017, 2018). To facilitate biorefinery
applications, a flexible carbon feedstock concept has been realized for production
processes from various second-generation feedstocks without competing uses in
human and animal nutrition (Zahoor et al. 2012; Wendisch et al. 2016).

1.3 C. glutamicum Genome and Genome-Scale Tools

C. glutamicum possesses a single circular chromosome with 3.3 Mb (Kalinowski
et al. 2003; Ikeda and Nakagawa 2003) and more than 3000 protein encoding
sequences (CDS). Genome-scale methods have been developed early (Wendisch
2003; Wendisch et al. 2006). Based on the complete genome sequence (Kalinowski
et al. 2003), genome-scale metabolic models were reconstructed. The first genome-
scale metabolic models followed the approach for the E. coli genome-scale metabolic
model (Feist et al. 2007) and comprised 446 and 502 reactions, respectively, involv-
ing 441 and 423metabolites, respectively (Shinfuku et al. 2009; Kjeldsen andNielsen
2009). The genome-scale model iEZ475 added balances for protons and water
(https://www.13cflux.net/models/Corynebacterium_glutamicum/index.jsp) and con-
tains 475 metabolic reactions involving 408 metabolites (340 intra- and 68 extracel-
lular) that could be grouped to central carbon metabolism (about 42 reactions), amino
acid synthesis (about 110 reactions) as well as to oxidative phosphorylation, mem-
brane lipid metabolism, nucleotide salvage pathway, cofactor biosynthesis, biomass
formation, alternate carbon metabolism, and about 90 transport reactions (https://
www.13cflux.net/models/Corynebacterium_glutamicum/index.jsp). Biosynthesis
reactions leading to protein, DNA, RNA, and cell wall components were accounted
for based on their weight fraction of the biomass. The most advanced model
(iCW773) has recently been described and reconstructs 773 genes, 950 metabolites,
and 1207 reactions, of which 252 are transport reactions (Zhang et al. 2019).
Although all these models are named genome-scale, only about 26% of all ORFs
are covered by the most advanced model. These stoichiometric models were
complemented by a regulatory model involving 97 transcriptional regulator proteins
and 1432 regulatory interactions which later was extended to include other coryne-
bacterial species and E. coli (Pauling et al. 2012).

Transcriptomics was developed for C. glutamicum, first based on DNA
microarrays (Wendisch 2003) and later by RNAseq (Pfeifer-Sancar et al. 2013). A
landscape RNAseq study helped to refine genome annotation with a re-annotation of
200 gene starts and the finding that among the 2000 transcriptional start sites
identified, about 33% belonged to leaderless transcripts (Pfeifer-Sancar et al.
2013). Differential RNAseq is nowadays used to compare global gene expression
patterns (Lee et al. 2013; Neshat et al. 2014; Freiherr von Boeselager et al. 2018;
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Taniguchi et al. 2017). Proteomics for cytoplasmic proteins, membrane fraction
proteins, cell wall-associated proteins, and secreted proteins are now available
(Hermann et al. 2000; Schaffer et al. 2001; Schluesener et al. 2007; Fischer and
Poetsch 2006; Hansmeier et al. 2006). This, for example, led to the discovery of
pupylation as posttranslational modification that is relevant for iron release from the
iron storage protein ferritin independent of degradation (Kuberl et al. 2014, 2016).
Metabolomics has been developed for C. glutamicum (Klatt et al. 2018; Zhang et al.
2018) and, for example, helped to identify a new pathway involving γ-glutamyl
transpeptidase with γ-glutamyl dipeptides (γ-Glu-Glu, γ-Glu-Gln, γ-Glu-Val,
γ-Glu-Leu, γ-Glu-Met) having been detected by HPLC-MS in concentrations from
0.15 to 0.4 mg/g CDW (Walter et al. 2016).

2 Prophage-Cured Strains

2.1 MB001 Derived from Wild-Type ATCC 13032

The C. glutamicum genome contains three prophage DNA islands (CGP1, CGP2,
and CGP3). CGP1 comprises genes cg1507 to cg1524 (13.5 kbp), CGP2 comprises
genes cg1746 to cg1752 (3.9 kbp), and CGP3 is the largest prophage region with
187.3 kbp (comprising genes cg1890 to cg2071 (Kalinowski et al. 2003; Frunzke
et al. 2008). The activity of bacteriophages and phage-related mobile elements is a
major source for genome rearrangements and genetic instability of their bacterial
hosts. Genome-wide expression analysis often revealed differential expression of
phage genes (Sindelar and Wendisch 2007; Krings et al. 2006). Moreover, the large
prophage CGP3 has recently been shown to be excised under SOS-response-induc-
ing conditions (Frunzke et al. 2008). Single-cell analyses with transcriptional fusions
of promoters of phage genes (Pint2 and Plysin) to fluorescent protein reporter genes
revealed that 0.01–0.08% of the cells grown in standard minimal medium induced
CGP3 spontaneously, which reduced their viability. Apparently, spontaneously
occurring DNA damage induced the SOS response and as consequence prophage
induction (Nanda et al. 2014). This process required actively proliferating cells,
whereas sporadic SOS induction was still observed in resting cells (Helfrich et al.
2015). The prophage CGP3-encoded nucleoid-associated protein CgpS binds
AT-rich DNA as prevails in the entire CGP3 prophage region, but is scarce through-
out the rest of the genome. In its absence, a significantly increased induction
frequency of the CGP3 prophage resulted, whereas a strain lacking the CGP3
prophage displayed stable growth (Pfeifer et al. 2016). Based on the properties of
the prophages and the resulting genetic instability, the first target for genome
reduction was the deletion of these prophage DNA islands (Baumgart et al. 2013).

Deletion of the three prophage DNA islands reduced the genome size of
C. glutamicum ATCC 13032 by 6% and resulted in strain MB001. Its growth
properties were unchanged under standard and stress conditions. Under SOS-
response-inducing conditions that trigger CGP3 induction in the C. glutamicum
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wild type, strain MB001 fared better than the wild type showing improved growth
and fitness. In addition, strain MB001 exhibited increased transformation efficiency.
This was attributed to the loss of the restriction-modification system (cg1996–
cg1998) located within CGP3. Furthermore, plasmid copy number appeared to be
increased since production of a heterologous model protein (enhanced yellow
fluorescent protein, eYFP) was 30% higher than in the wild type. Similarly, deletion
of the genes for restriction-modification system (cg1996–cg1998) improved eYFP
production (Baumgart et al. 2013).

These results characterized MB001 as an intermediate strain to be improved by
further genome reduction (s. below), e.g., by targeting mobile IS elements, and as a
suitable strain for metabolic engineering (stable, growing as fast as wild type on
glucose minimal medium, higher plasmid copy number, and better transformation
efficiency). C. glutamicum MB001 was used as host for the production of various
value-added compounds: amino acids (Eberhardt et al. 2014; Lubitz et al. 2016;
Jensen et al. 2015; Wu et al. 2019; Lubitz and Wendisch 2016), phenylpropanoids
(Kallscheuer and Marienhagen 2018; Kallscheuer et al. 2016a, b), isoprenoids
(Henke et al. 2016, 2018a; Heider et al. 2014a, b; Binder et al. 2016), alcohols
(Huang et al. 2017), carboxylic acids (Lubitz and Wendisch 2016; Chen et al. 2017),
and proteins (Kortmann et al. 2015; Hemmerich et al. 2016, 2018a, 2019). In
addition, MB001 and derivatives have been used to study Mu-transposition
(Gorshkova et al. 2018), assembly of the septal cell envelope (Zhou et al. 2019),
infection with phages φ673 and φ674 phages (Yomantas et al. 2018), identification
of an isoprenoid pyrophosphate-dependent transcriptional regulator (Henke et al.
2017), cAMP phosphodiesterase CpdA (Schulte et al. 2017), and cryptic prophages
(Pfeifer et al. 2016), as basis for ALE toward higher growth rates on glucose minimal
medium (Pfeifer et al. 2017) and to assemble bacterial microcompartments (Huber
et al. 2017).

2.2 Prophage-Cured Lysine-Producing Model Strain GRLys1

The concept of prophage island DNA deletion was transferred from the wild type
(see above) to the lysine-producing model strain DM1933 (Unthan et al. 2015a). The
prophage DNA sequences of the three phages CGP1, CGP2, and CGP3 were deleted
from the base strain DM1933 that contained the following genomic modifications
promoting lysine overproduction: Δpck, pycP458S, homV59A, 2 copies of lysCT311I,
asd, dapA, dapB, ddh, lysA, and lysE (Unthan et al. 2015a). Derivatives of GRLys1
were used to overproduce L-pipecolic acid (L-PA) (Perez-Garcia et al. 2016, 2017,
2019), 5-aminovaleric acid (5AVA) (Jorge et al. 2017b), glutarate (Perez-Garcia
et al. 2018), and for the coproduction of astaxanthin with lysine (Henke et al. 2018a).
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3 IS Element-Free Strain

3.1 MB001-Derived IS Element-Free Strain CR099

All copies of IS elements ISCg1 and ISCg2 were deleted from the genome of strain
MB001. In addition, it contains mutation A468T in Cg1720 which was inadvertently
introduced. Cg1720 encodes the ATPase component of an uncharacterized ABC
transporter. This strain was used to characterize synthetases and a hydrolase of the
small alarmone (pp)pGpp (Ruwe et al. 2017, 2018). In a similar approach two IS
element-free C. glutamicum strains were derived from ATCC 13032: one lacking IS
elements ISCg1a, ISCg1b, ISCg1c, ISCg1e and another lacking ISCg2b, ISCg2c,
ISCg2e, ISCg2f (Choi et al. 2015). Increased protein production was demonstrated
in the IS element-free strains (Choi et al. 2015).

4 C. glutamicum Chassis Strain C1� Derived from ATCC
13032

A chassis strain based on C. glutamicum ATCC 13032 was constructed in a
targeted top-down approach. As target function, uncompromised growth in glu-
cose minimal medium was chosen. C. glutamicum MB001 was used as starting
strain. Next, genes were classified either as (a) known to be nonessential from
prior experiments, (b) likely nonessential based on transposon mutagenesis
screens, (c) unclassifiable or (d) likely essential due to high conservation
(Fig. 1). From these, genomic clusters with genes classified as (likely) nonessen-
tial were chosen for deletion from the genome of MB001. The generated deletion
mutants were evaluated with respect to growth in glucose minimal medium. This
phenotyping step proved crucial to identify nonessential gene clusters that are
irrelevant for maintaining the biological fitness of the wild type (WT). A total of
26 gene clusters were found to be nonessential and their individual deletions
shown not to compromise growth in glucose minimal medium.

Based on this mutant collection, combinatorial deletions of these gene clusters
were performed resulting in a library of 28 strains. After statistical analysis of a
thorough phenotypic screen and one genetic correction, the final chassis strain C1�,
exhibiting a genome reduction of 13.4% (412 deleted genes; Fig. 2) but showing
wild-type-like growth behavior in glucose minimal medium, robustness against
several stresses (including oxygen limitation), and long-term growth stability in
defined and complex growth media, was selected (Baumgart et al. 2018).

Notably, genome sequencing of the penultimate strain, named C1, revealed a
mutation in the promoter region of regulatory gene ramA (Auchter et al. 2011), i.e., a
promoter downmutation (TGCACT instead of the conserved�10-region TACACT).
Moreover, this mutation is located in the SugR binding sites overlapping the �10
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region (Engels et al. 2008; Engels and Wendisch 2007). A transcriptome analysis
revealed sixfold reduced ramARNA levels and reduced RNA levels for several genes
of the ramA regulon. Therefore, this point mutation in C. glutamicum C1 was
reversed to yield the chassis strain C. glutamicum C1� (Baumgart et al. 2018).

Fig. 1 Definitions and workflow for the construction of a chassis organism of Corynebacterium
glutamicum [Copyright © 2015 Unthan, Baumgart, Radek, Herbst, Siebert, Brühl, Bartsch, Bott,
Wiechert, Marin, Hans, Krämer, Seibold, Frunzke, Kalinowski, Rückert, Wendisch, Noack;
reproduced from (Unthan et al. 2015a)]. (a) Definitions considering the interplay of gene set,
cultivation medium, and application range for different types of organisms. (b) Scheme of our
targeted top-down approach toward a chassis covering only genes that are relevant for growth on
defined medium and maintaining the broad application range of the wild-type organism
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C. glutamicum C1� showed slightly impaired growth with some alternative
carbon sources such as acetate, pyruvate, arabitol, and gluconate. These results are
possible since the target function chosen was uncompromised growth with glucose
as sole carbon and energy source. However, these physiological peculiarities have to
be remembered when constructing and evaluating C1�-derived strains for produc-
tion purposes. As in the case of reversion of the ramA promoter down mutation
present in C1, other SNPs may have to be reverted to allow for fast growth with
acetate, pyruvate, gluconate, or arabitol.

For all glucose-based production purposes, C. glutamicum C1� is an ideal starting
point for metabolic engineering as a biotechnologically relevant chassis.

Fig. 2 C. glutamicum ATCC 13032 genome map with classification results of essential, nones-
sential, and unclassifiable genes. [Copyright © Reprinted with permission from Baumgart M,
Unthan S, Kloss R, Radek A, Polen T, Tenhaef N, Muller MF, Kuberl A, Siebert D, Bruhl N,
Marin K, Hans S, Kramer R, Bott M, Kalinowski J, Wiechert W, Seibold G, Frunzke J, Ruckert C,
Wendisch VF, Noack S (2018) Corynebacterium glutamicum Chassis C1�: Building and Testing a
Novel Platform Host for Synthetic Biology and Industrial Biotechnology. ACS Synth Biol
7 (1):132–144. Copyright 2018 American Chemical Society (Baumgart et al. 2018)]. All clusters
deleted in C1� are shown in blue. Clusters that could not be deleted or deletions leading to impaired
growth in defined CGXII medium are shown in yellow. Black arrows are pointing toward glycolysis
genes pgi (cg0973), pfkA (cg1409), fda (cg3068), tpi (cg1789), gap (cg1791), pgk (cg1790), gpmA
(cg0482), eno (cg1111), pyk (cg2291), aceE (cg2466), lpd (cg0441), and sucB (cg2421)
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5 Applications of Genome-Reduced Strains

5.1 Applications of Prophage-Cured Strain MB001
and Derivatives

C. glutamicum MB001 found manifold biotechnological applications (Table 1).
Derivatives of this prophage-cured strain were used for the production of proteins
(Kortmann et al. 2015), citrulline (Eberhardt et al. 2014; Lubitz et al. 2016), proline
(Jensen et al. 2015), lysine (Wu et al. 2019), decaprenoxanthin (Heider et al. 2014a,
b), astaxanthin (Henke et al. 2016, 2018a), ciprofloxacin-triggered glutamate and
oxoglutarate production (Lubitz andWendisch 2016), valencene (Binder et al. 2016),
3-hydroxypropionic acid (Chen et al. 2017), coproduction of 1,3-propanediol and
glutamate (Huang et al. 2017), and phenylpropanoids (Kallscheuer and Marienhagen
2018; Kallscheuer et al. 2016a, b).

As an example, the construction and use of strain MB001(DE3) for protein
production based on an IPTG-inducible T7 expression system will be discussed.
Part of the DE3 region from the protein production host E. coli BL21(DE3) including
the T7 RNA polymerase gene 1 driven by the E. coli lacUV5 promoter, which also is
active in C. glutamicum, was integrated into the chromosome of C. glutamicum
MB001 (Kortmann et al. 2015). The corresponding expression vector pMKEx2
was developed to express (a) the lacI gene encoding E. coli lac repressor and
(b) genes of interest under the control of a T7 promoter followed by lacO1 for
induction by IPTG (Kortmann et al. 2015). The inducibility of the system was
shown to be 450-fold when expression of the fluorescence protein reporter gene
eyfp was analyzed. Fully IPTG-induced T7 RNA polymerase-dependent expression
was about 3.5 times higher than the expression from the fully IPTG-induced tac
promoter in a control strain with the endogenous RNA polymerase. Importantly, fully
IPTG-induced T7 RNA polymerase-dependent expression led to a uniform popula-
tion with 99% of all cells showing high fluorescence as shown by flow cytometry
(Kortmann et al. 2015). As an impressive application example, overexpression of the
endogenous pyruvate kinase gene pyk was demonstrated. The already very high pyk
gene expression in the wild type (leading to a specific pyruvate kinase activity of
2.6 U/mg) was boosted about 50-fold (135 U/mg) (Kortmann et al. 2015).

5.2 CORYNEX

C. glutamicum strain ATCC13869 was commercialized as a protein expression
system under the trademark CORYNEX® by the Japanese company Ajinomoto.
When using the CORYNEX® strain YDK010, secretion of the Fab fragment of
human anti-HER2was low. Deletion of the genes encoding penicillin-binding protein
(PBP1a), which is involved in cell wall peptidoglycan synthesis, and the surface (S)-
layer protein CspB, showed a synergistic effect allowing efficient Fab production

Genome-Reduced Corynebacterium glutamicum Fit for Biotechnological Applications 103



Table 1 Biotechnological applications using genome-reduced C. glutamicum strains

Product
Base
strain Production parameter(s) References

3-hydroxy-propionic
acid

Chen et al. (2017)

Arginine MB001 Y: 0.30 g�g�1 Jensen et al. (2015)

Astaxanthin MB001 C: 1.7 mg g�1 DCW;
V: 0.4 mg L�1 h�1;

Henke et al. (2016,
2018a)

Noreugenin MB001 T: 53 mg/L Milke et al. (2019)

Citrulline MB001 T: 44.1 � 0.5 mM;
Y: 0.38 � 0.01 g�g�1;
P: 0.32 � 0.01 g�l�1�h�1

Eberhardt et al.
(2014), Lubitz et al.
(2016)

Coproduction of
1,3-propanediol and
glutamate

Huang et al. (2017)

Coproduction of
astaxanthin with
glutamate

MB001 Astaxanthin: T: 2.33 mg�L�1;
Y ¼ 2.22 g�g�1;
P: 0.12 mg�L�1�h�1

Glutamate: T: 0.05 g�L�1;
Y: 0.13 g�g�1; V: 005 g�L�1�h�1

Henke et al. (2018a)

Coproduction of
astaxanthin with lysine

GRLys1 Astaxanthin: T: 10 mg�L�1;
C: 0.4 mg�g�1; Y ¼ 0.07 g�g�1

Lysine: T: 48 g�L�1; Y: 0.35 g�g�1

Henke et al. (2018a)

Coproduction of
decaprenoxanthin with
glutamate

MB001 Decaprenoxanthin: T: 8.66 mg�L�1;
Y ¼ 0.97 g�g�1;
P: 0.05 mg�L�1�h�1

Glutamate: T: 0.02 g�L�1;
Y: 0.48 g�g�1; V: 0.18 g�L�1�h�1

Henke et al. (2018a)

Coproduction of
decaprenoxanthin with
lysine

GRLys1 Decaprenoxanthin: T: 6.10 mg�L�1;
Y ¼ 0.34 g�g�1;
P: 0.19 mg�L�1�h�1

Lysine: T: 2.79 g�L�1;
Y: 0.15 g�g�1; V: 0.09 g�L�1�h�1

Henke et al. (2018a)

Decaprenoxanthin MB001 C: 0.4 mg g�1 DCW Heider et al. (2014a,
b)

Glutamate (triggered by
ciprofloxycin)

MB001 T: 37 mM; Y: 0.13 g g�1 Lubitz and
Wendisch (2016)

Lycopene MB001 C: 0.43 mg g�1 DCW Henke et al. (2016,
2018a)

Lysine Wu et al. (2019)

Ornithine MB001 Y: 0.52 g�g�1 Jensen et al. (2015)

Oxoglutarate (triggered
by ciprofloxycin)

MB001 T: 18 mM Lubitz and
Wendisch (2016)

4-hydroxy-butyrate MB001 T: 3.3 g g�1 Kallscheuer and
Marienhagen
(2018)

Resveratrol MB001 T: 158 mg L�1 Kallscheuer et al.
(2016a, b)

Proline MB001 Y: 0.29 g�g�1 Jensen et al. (2015)

(continued)
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using the CORYNEX® system. This indicated at least two major permeability
barriers to Fab secretion, i.e. peptidoglycan and the S-layer (Matsuda et al. 2014).

5.3 Applications of Prophage-Cured Strain GRLys1
and Derivatives

Derivatives of GRLys1 were used to overproduce 5AVA (Jorge et al. 2017b), L-PA
(Perez-Garcia et al. 2016, 2017, 2019), glutarate (Perez-Garcia et al. 2018), and for
the coproduction of astaxanthin with lysine (Henke et al. 2018a).

As example, glutarate production based on the prophage-cured, lysine-producing
model strain GRLys1 will be discussed (Fig. 3). Systems metabolic engineering
included flux enforcement, which refers to coupling a biosynthetic production
pathway to a metabolite pathway required for growth. This strategy has previously
been applied to amino acid production by E. coli and C. glutamicum. Coupling of a
production pathway involving a 2-oxoglutarate-dependent hydroxylase to growth by
deletion of 2-oxoglutarate dehydrogenase subunit gene sucA has first been shown for
4-hydroxy-L-isoleucine production by E. coli (Smirnov et al. 2010) and later for
4-hydroxy-L-proline production (Theodosiou et al. 2017). Thus, these production
pathways became part of an artificial TCA cycle. This concept was extended in
succinyl-CoA synthetase-negative (ΔsucCD), lysine-producing C. glutamicum
strains. In this case, the succinylase branch of L-lysine production metabolically
complemented the TCA cycle disrupted due to the sucCD deletion (Kind et al.
2013). Also coupling of the major ammonium assimilating enzyme glutamate
dehydrogenase to transamination reactions was used for flux enforcement when
cadaverine/putrescine transaminase PutA and GABA/5AVA aminotransferase
GabT introduced for glutarate production metabolically complemented for the

Table 1 (continued)

Product
Base
strain Production parameter(s) References

Proteins MB001 Pyruvate kinase: Sp.act. 135 U/mg Kortmann et al.
(2015)

Protocatechuate MB001 T: 2 g g�1 Kallscheuer and
Marienhagen
(2018)

Putrescine MB001 Y: 0.17 g�g�1 Jensen et al. (2015)

Zeaxanthin MB001 C: 1.2 mg g�1 DCW Heider et al. (2014a,
b)

β-Carotene MB001 C: 12 mg g�1 DCW; V:
3.4 mg L�1 h�1

Henke et al. (2016,
2018a)

Abbreviations: T titer or concentration in culture broth, Y product yield on substrate (unless
otherwise indicated glucose was used as substrate), V volumetric productivity, C cellular content,
CDW cell dry weight
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absence of glutamate dehydrogenase (Perez-Garcia et al. 2018). This prophage-
cured, flux-enforced strain in addition required expression of a heterologous gene
for lysine decarboxylase for glutarate production. In this five-step synthetic pathway,
lysine was decarboxylated to cadaverine by lysine decarboxylase, and cadaverine
converted to glutarate by two transamination (catalyzed PutA, GabT) and two
oxidation steps (catalyzed by PutD and GabD) to the targeted product glutarate
(Perez-Garcia et al. 2018).

Fig. 3 Schematic representation of the metabolic engineering strategy for glutarate production by
recombinant C. glutamicum [Copyright © 2018 Pérez-García, Jorge, Dreyszas, Risse and
Wendisch; reproduced from (Perez-Garcia et al. 2018)]. The biosynthetic pathway for glutarate
production was implemented by heterologous expression in an L-lysine producer and coupled with
endogenous L-glutamate synthesis. PPP pentose phosphate pathway, TCA tricarboxylic acid cycle,
AR anaplerotic reactions, glnA glutamine synthase gene, gltBD glutamine aminotransferase
complex genes, gdh glutamate dehydrogenase, ldcC L-lysine decarboxylase, patA putrescine
transaminase, patDγ-aminobutyraldehyde dehydrogenase, gabT GABA/5AVA aminotransferase
gene, gabD succinate/glutarate-semialdehyde dehydrogenase gene. Magenta arrows depict trans-
amination reaction in the 5AVA pathway. Green arrows depict transamination reaction in the
glutarate pathway. Gray-shadowed genes are originally from E. coli and were added by heterol-
ogous overexpression. Green-shadowed genes are originally from C. glutamicum, P. putida,
P. syringae, or P. stutzeri and were added by heterologous overexpression
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6 Outlook on Construction and Testing of New Genome-
Reduced Strains

Targets for gene deletions relevant for genome reduction can be scored by CRISPR
interference (Wiedenheft et al. 2012) as applied first to C. glutamicum with respect to
lysine production (Cleto et al. 2016). Evaluation of groups of genes for combined
deletion can be done by multiplex CRISPRi (Park et al. 2018). Sequential or parallel
targeted genome deletions and replacements in C. glutamicum by CRISPR genome
editing are facile since this bacterium lacks efficient nonhomologous end-joining.
Although genome reduction in C. glutamicum has until now relied on genome
editing by two-step homologous recombination using the conditionally lethal
levansucrase (sacB) for positive selection (Jäger et al. 1992), genome editing by
CRISPR/Cas9 or CRISPR/Cas12a as developed for C. glutamicum (Cho et al. 2017;
Jiang et al. 2017; Wang et al. 2018a, b; Cameron Coates et al. 2019; Liu et al. 2017)
will find application in further genome streamlining.

Highly parallel strain characterization relies on microbioreactor systems that are
based either on shaken microtiter plate cultivation devices or on downscaled stirred
tank reactors (Hemmerich et al. 2018b). These systems allow for optical, noninva-
sive, online monitoring of important process parameters such as biomass concentra-
tion, dissolved oxygen, pH, or reporter protein fluorescence. Their use is potentiated
by combination with liquid handling robots for automatization of operation pro-
cedures. On-line and off-line strain phenotyping under industrially relevant condi-
tions enables identification of the optimal combination of producer strain and
bioprocess control strategy. Of course, the strain collections generated in genome
reduction projects can be scored very well using microbioreactor systems as has
been shown for characterizing growth (Hemmerich et al. 2017), protein secretion
(Hemmerich et al. 2016, 2019), or amino acid production (Steffen et al. 2016;
Baumgart et al. 2013, 2018; Unthan et al. 2015a, b).
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Reduction of the Saccharomyces cerevisiae
Genome: Challenges and Perspectives

Luis Caspeta and Prisciluis Caheri Salas Navarrete

Abstract The fact that genomes contain many nonessential genes of limited or
occasional importance for a cell has become the statement of the minimal genome
idea, which postulates that cell genomes can be reduced to an unembellished
minimum. Following François Jacob’s observations, the minimal genome of Sac-
charomyces cerevisiae could be drawn up as a sort of ancestral genome that acquired
complexity through the acquisition of new properties to sustain the nucleus, organ-
elles, cytoplasmic structures, as well as cell cycle. This imposes new restrictions with
several consequences. What is the nature of these restrictions and limitations that
may make yeast to have a minimal genome 15 times larger than bacterial? Some
answers are sketched out in this perspective.

Keywords Saccharomyces cerevisiae · Minimal genome · Genome reduction ·
Synthetic biology · Gene essentiality

1 Synthetic Biology and Minimal Genomes

1.1 Synthetic Biology, Minimal Cell, and Cell Factory

Molecular biology has given the means for studying the molecular basis of synthesis
and interactions among molecules, specifically DNA, RNA, and proteins, with the
“leading idea of explaining large-scale manifestations of classical biology” (Astbury
1961). Whole genome sequencing and genomic tools have been providing with a
catalog of genes as well as their functions and interactions that make life possible and
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diverse. The next challenge in biology is “the synthetic phase, [where] we will devise
new control elements and add these . . . To the existing genomes or built up wholly
new synthetic genomes and finally, other synthetic organisms”—a Wacław
Szybalski thought quoted in Vickers (2016). Accordingly, synthetic biology is a
discipline aiming to design and synthesize predictable, controllable, and transform-
able biological elements to construct new biological systems (Lee et al. 2013;
Lachance et al. 2019). As a conspicuous way to ensure maximal control over these
tasks, the synthetic biology will use cells with minimal genomes, i.e., minimal cells,
as base frameworks.

Minimal cells contain a bare minimum of genetic information to sustain free-
living, self-replicating life, and hence will serve as “programmable biological
chassis” (Maniloff 1996; Lee et al. 2013; Vickers 2016; Lachance et al. 2019).
Minimal cells have been suggested to be advantageous for having the potential of
faster-replicating genomes to produce larger progeny cell yields, reduce the energy
burden and loss of genome sequences with deleterious mutations (Maniloff 1996).
Therefore, the future of biotechnological applications is the design of minimal
genome species, e.g., a well-known model organism with this chassis generates a
cell factory by adding genetic modules that include product-specific pathways,
regulatory networks, and biosensors, among others (Fig. 1). In line with these
ideas, cell factories using minimal genomes will have the potential for ruling the
development of commercially relevant products like biofuels, chemicals, bioplastics,
and medicines, as well as novel medical treatments.

1.2 Genome Reduction to Generate a Minimal Cell

Using comparative/functional genomics for analyzing families of gene orthologs in
M. genitalium, Escherichia coli, andHaemophilus influenzae, the first set of 256 essen-
tial genes to sustain life was proposed (Mushegian and Koonin 1996). This number
increased to ~360 genes obtained from gene lethality assays (Hutchison et al. 1999;

Fig. 1 In the future, cell factories will be constructed on the base of a minimal cell as chassis and by
adding DNA modules with the required functions
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Glass et al. 2006) and then to 473 genes to construct a fully functional cell (Hutchison
et al. 2016). The latter minimal-functional genome has unknown biological functions
in 30% of its genes, which might be shortly revealed, and hence provide knowledge of
the fundamental principles of life with a very reduced genome (0.53 Megabase pairs,
Mbp)—almost one-tenth of Escherichia coli genome (4.64 Mbp) and ~23 times
smaller than the S. cerevisiae genome (Blattner et al. 1997).

Following the former reasoning for constructing a minimal prokaryotic cell, in the
construction of a reduced eukaryote cell a good model could be Encephalitozoon
cuniculi, which possess the smallest known eukaryote genome so far (~2.9 Mbp)
(Keeling et al. 2010). Comparative and functional genomics using bacteria, archaea,
and E. cuniculi, among other eukaryotes, can provide information about the genes
necessary for sustaining life in a minimal prokaryotic cell and the genetic modules
necessary to construct a eukaryotic cell. S. cerevisiaewith an accumulated functional
gene annotation of 85% could serve as a useful model for minimal cell designing
purposes. In this chapter, we discuss the minimal parts required to construct a
minimal cell of S. cerevisiae.

2 Eukaryotes with Reduced Genomes

2.1 Small Genomes in Microsporidia

Genome compaction and reduction have been shaping very small genomes among
eukaryotes (È Katinka et al. 2001; Worden et al. 2009; Nakjang et al. 2013).
Microsporidia is a division of unicellular parasites from the fungi kingdom whose
representatives possess one of the smallest genomes known for the Eukarya domain
(Peyretaillade et al. 2011). For example, E. intestinalisis and E. cuniculi have
chromosome sizes of 2.3 Mbp and 2.9 Mbp, respectively (È Katinka et al. 2001;
Corradi et al. 2010). Compared with the genome sizes of S. cerevisiae (12 Mbp) and
Amoeba dubia (the largest known genome 670,000 Mbp), Encephalitozoon
genomes are ~4 to ~300,000 times smaller. However, these small Eukaryotic
genomes are larger than those found in the small genomes of parasitic prokaryotes
ranging from 0.16 Mbp to 0.6 Mbp (Tamas et al. 2002). Curiously, mitochondrial
genomes from yeast and plants have ~0.1 Mpb and 0.6 Mbp of DNA, respectively
(Foury et al. 1998; Morley and Nielsen 2017). Parasitic life then seems to have been
shaping small genomes in both domains and driven permanent endosymbiotic
relationships, such as that between the specialized bacteria that originated mitochon-
dria. Curiously, mitochondrial absence and an atypical Golgi apparatus are relevant
features of the Encephalitozoon sp. (Peyretaillade et al. 2011).

The extreme reduction of DNA content in Microsporidia is associated with a large
reduction in eukaryotic-like biological functions; a comparison of genome charac-
teristics and associated gene functions in E. cuniculi and S. cerevisiae is shown in
Table 1. Particularly, Encephalitozoon species do not have mitochondria and asso-
ciated functions, namely the electron transport chain and the tricarboxylic-acid cycle
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(Van de Peer et al. 2000; È Katinka et al. 2001). They also lack peroxisomes, and to
contend against oxidative stress, they have glutathione, thioredoxin-based systems,
and a manganese superoxide dismutase as antioxidant in a pseudo-organelle called
mitosome (È Katinka et al. 2001). Also, and due to a decrease in gene paralogs
(Nakjang et al. 2013), they have a much lower number of tRNA coding genes,
compared with S. cerevisiae, a lower number of protein-coding genes for metabo-
lism, and a very reduced number of gene-coding functions of the transcription and
translation apparatuses (Van de Peer et al. 2000; È Katinka et al. 2001). The loss of
these and other biological functions typically found in a eukaryote-like S. cerevisiae
has resulted in a reduction of Encephalitozoon genome to ~2.6 Mbp on average.
Moreover, genome evolution in E. cuniculi includes its compaction to 0.84 genes/
kbp, compared with 0.5 genes/kbp of yeast and 0.013 genes/kbp of human. There-
fore, this microsporidium genome encodes one-third of yeast functions but with one
fifth of the size of the yeast genome. Notwithstanding the reduction in cellular
functions, Microsporidia is a very robust microorganism capable of adapting to
multiple environmental conditions and is parasitizing many animal species (Van
de Peer et al. 2000; Texier et al. 2010; Peyretaillade et al. 2011). This specialization,
however, makes these parasites highly dependent on their hosts.

During the evolution of microsporidia genomes, it seems there was a massive loss of
gene families when the Microsporidia phyla separated from the Ascomycota (Nakjang
et al. 2013). However, Microsporidia retain ancestral genes that are highly connected
and expressed and therefore appear to be essential. Among the conserved gene features,
the prokaryote like ribosomal RNAs can be highlighted, i.e., the small subunit of

Table 1 Comparison of some
relevant features between
E. cuniculi and S. cerevisiae

E. cuniculi S. cerevisiae

Genome-relevant features

Genome size (Mbp) 2.9 12.1

Total ORFs 1999 5807

Average gene density (gene/kb) 0.84 0.5

Number of chromosomes 11 16

Gene content in illustrative biological processesa

Glycolytic process 12 25

Pentose-phosphate pathway 5 10

Trehalose metabolism 4 7

Fatty acid biosynthesis 20 27

Transcriptional control 44 226

60s and 40s ribosomal proteins 77 130

tRNA synthetases 21 39

rRNA processing 20 72

tRNA modification 7 19

tRNAs 46 299

Subtotal 256 829
aData corresponding to the number of genes for E. cuniculi bio-
logical processes were taken from supplementary table NC from
(Keeling et al. 2010)
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rRNA; hence they were considered as primitive protozoa which emerged before
mitochondrial endosymbiosis (Van de Peer et al. 2000). The invalidity of this hypoth-
esis was suggested from genome sequencing that revealed the presence of gene-coding
proteins for assembling the Fe-S cluster, necessary for cytoplasmic ribosome biogen-
esis (È Katinka et al. 2001). Therefore, these parasites are cataloged as fungi with the
highly reduced genome (Van de Peer et al. 2000; Peyretaillade et al. 2011).

2.2 Some Yeasts Have Reduced Genomes

It is important to understand the universality of life through gene families analysis
between distant species, but it is also relevant to pay attention of the natural diversity
and evolutionary origin of yeasts, which can provide clues on yeast gene variability,
chromosomal evolution, and conservation of the basic core of genes (Dujon and
Louis 2017; Legras et al. 2018). The Saccharomycotina subphylum contains
S. cerevisiae and many more yeast genera with more than a couple of hundred
million years of history (Prieto and Wedin 2013). Through this history, yeasts have
experienced massive genome duplications, tandem gene repeat formations, segmen-
tal duplications, and extensive gene loss and gain, which have been critical for
functional differentiation among yeast species, mainly modeled by wild and anthro-
pogenic niches (Wolfe and Shields 1997; Dujon and Louis 2017). Despite these
events, yeast genome sizes do not vary meaningfully (Table 2). A paradigmatic
event around some yeasts is the whole genome duplication (WGD), which occurred
~100 million years ago, leading to the apparition of the Saccharomyces (i.e.,
S. cerevisiae (S)) and Candida (C. glabrata (C)) genera, which separated from the
Kluyveromyces genus (i.e., K. lactis (K) and K. waltii) (Table 2) (Fischer et al. 2000;
Kellis et al. 2003; Dujon et al. 2004). This genomic event defines one subgroup of
the four major subgroups of Saccharomycotina defined from genome architectures
(Dujon and Louis 2017); the others are the CTG—(CTG) (i.e., D. hansenii (D)),
methylotrophs (MT) (i.e., komagataella phaffii (Pichia pastoris)), and the basal
lineages (BL) (i.e., Yarrowia lipolytica (Y)) subgroups.

Functional genomics analysis of homologous gene families (HGFs) in five yeasts,
i.e., S, C, K, D, and Y (see prefixes in the previous paragraph), representing the four
subgroups, i.e. Y, WGD, CTG and BL was performed (Dujon et al. 2004). This
study showed that 40% of HGFs are common in SCKDY, i.e., 805 (from 2014
families and 17,153 genes). These genes seem to be universally or largely conserved
during evolution in yeasts and thus will be part of a reduced genome. The most
reduced genome among these five yeasts is C. glabrata (Table 2), which has also
experienced dynamic compaction, as it can be seen by the smaller number of introns;
probably caused by its type of life as a human pathogen. Interspecific gene conser-
vations allow distinguishing genes conserved by the yeast lifestyle (Gabaldón et al.
2013). In fact, most abundant patterns were among SCK (WGD subgroup) and DY
(CTG and BL subgroups) followed by SCKD (WGD and CTG subgroups),
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suggesting that genome evolution accompanied specific lifestyle among yeasts,
shaping different reproduction and physiological properties (Dujon et al. 2004).

Learning on genome yeast evolution is crucial to understand the role of gene
variation, especially gene conservation, loss and gain events. Analysis of horizontal
gene exchanges and interspecies hybridization on yeast genomes sequenced until
2017 revealed that there are genes of bacterial origin in almost all yeast genomes,
many of them are associated with basic metabolic functions (Koonin et al. 2004;
Dujon and Louis 2017). In Saccharomycotina, evolution led to the loss of essential
gene functions associated with RNA processing and chromatin modification which
are critical in other eukaryotes (Dujon and Louis 2017). Gene paralog analysis of
protoploid yeasts, i.e., pre-WGD, revealed that these conserve around 100 pairs of
gene paralogs (Dujon and Louis 2017); in comparison S. cerevisiae contains around
500. Gene loss and gain can result in novel adaptive functions after alternating
regulatory networks (Gabaldón et al. 2013). For example, the acquisition of the
bacterial gene URA1, which compared to the yeast URA9, this is strictly anaerobic,
and suggests that its incorporation allowed yeast evolution under anaerobiosis
(Gojković et al. 2004). The Saccharomycetaceae family lost the genes for complex
I of the mitochondrial DNA (Marcet-Houben et al. 2009; Dujon and Louis 2017).
Loss of complex I can be associated with the duplication of nuclear genes for
alternative dehydrogenases (Marcet-Houben et al. 2009; Legras et al. 2018), which
are basic in respire-fermentative metabolism (Larsson et al. 1998). It is interesting
that massive gene loss is accompanied with a small number of essential genes, but
functionally coordinated genes tend to be lost in parallel (Lafontaine and Dujon
2010; Gabaldón et al. 2013). The evidence overall suggests that, despite this

Table 2 Gene compaction and reductions among yeasts from the Saccharomycotina phylum

Species Chromosomes
Genome size
(Mbp) ORFs

Gene density
(Genes/Mbp) Intronsa tRNAs

S. cerevisiaeb 16 12.1 5807 455 247 274

C. glabratac 13 10.6 5283 417 76 207

K. waltiid 8 10.7 5230 488 222 240

K. lactise 6 10.6 5329 488 125 162

A. gossypiif 7 9.2 4917 538 211 199

D. hanseniie 7 11.2 6906 548 334 205

Y. lipolyticae 6 20.5 6703 291 632 510

S. pombeg 3 12.5 4824 392 2238 174

E. cuniculih 11 2.9 1999 799 14 46

The features of E. cuniculi genome are included for comparisons
aIvashchenko et al. (2009)
bGoffeau et al. (1996)
cKoszul et al. (2003)
dKellis et al. (2004 )
eDujon et al. (2004)
fDietrich et al. (2004)
gWood et al. (2002)
hÈ Katinka et al. (2001)
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observation, a massive gene loss occurred among yeast species, and there is not a
sort of minimal yeast genome; it seems that this event was compensated with gene
duplications.

3 Deciphering Essential Parts of the S. cerevisiae Genome

The knowledge on yeast S. cerevisiae’s physiology and molecular biology was
determinant for a group of scientists to take the decision of completing its genome
sequence in 1996 (Goffeau et al. 1996). The sequence consisted of 12,068 kilobases
including ~5885 potential protein-coding genes, i.e., open reading frames (ORFs),
distributed in 16 chromosomes. Comparative genomics through Escherichia coli
proteome and expression analysis using Northern blot let researchers recognize that
around 50% of ORFs were unidentified (Goffeau et al. 1996; Velculescu et al. 1997).
Analysis of gene expression patterns of the great majority of genes under classical
fermentation conditions allowed recognizing temporal expression and expression
patterns for unknown genes, which provide clues to their functions (DeRisi et al.
1997; Velculescu et al. 1997; Eisen et al. 1998; Gasch et al. 2000). Large-scale gene
deletions linked to growth defects have been another approach to identify gene
function (Winzeler et al. 1999; Giaever et al. 2002; St Onge et al. 2007). Moreover,
the increasing number of bioinformatics tools for analyzing cell phenotypes in silico,
i.e., genome-scale metabolic models, has accelerated functional recognition of
unknown yeast genes (Förster et al. 2003a, b; Duarte et al. 2004; Bordel et al.
2010). Therefore, by employing these methods, the total of known ORF functions
rapidly raised from ~50 to ~85% (Botstein and Fink 2011). Nowadays, this figure is
around 90%. Hence, the yeast S. cerevisiae is the best-known eukaryote. With these
antecedents on how the analysis of gene functions has evolved, the following
sections in this chapter highlight on gene essentiality as a means to decipher
indispensable parts of an S. cerevisiae minimal genome.

3.1 Clusters of Orthologous Groups (COG) Analysis

Orthologous groups of genes are collections of homologous genes that arise from a
common DNA ancestral sequence without further specification of the evolutionary
scenario and, therefore, the history of orthologous groups reflects the history of
species (Fitch 1970). As each group is assumed to have evolved from an individual
ancestral gene, its conservation presupposes a relevant function among major clades
(Doolittle et al. 1996; Mushegian and Koonin 1996; Tatusov et al. 1997; Koonin
2005). In line with this idea, the 323 COGs found between species characteristic of
main clades, i.e., bacteria, eukarya, and archaea (Tatusov et al. 1997), represent a set
of gene functions that must be included in a minimal S. cerevisiae genome (Table 3).
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A deeper COG analysis with data from https://www.ncbi.nlm.nih.gov/COG/,
which includes 66 genomes and 4873 COGs, makes it possible to conclude that
there are 687 COGs found in eukaryotes, bacteria, and archaea (102); eukaryotes
exclusively (E. cuniculi, Schizosaccharomyces pombe, and S. cerevisiae) (478),
eukaryotes and archaea (187), and in bacteria and eukaryotes (63). As expected,
COGs’ relationship between eukaryotes and archaea includes 187 elements mainly
associated with the translational machinery, archaeal/vacuolar-type H+-ATPase.
Many COGs of translational machinery, ribosomal proteins, and tRNA synthetases
are shared among archaea, bacteria, and eukarya. Processes for RNA processing and
modification, regulation of transcription, posttranslational modification, signal trans-
duction mechanism, and intracellular trafficking are similar among eukaryotes.

Table 3 Phylogenetic patterns in COGs obtained from the analysis of 66 genomes of species from
tree may or domains (data obtained from https://www.ncbi.nlm.nih.gov/COG/)

Biological processes/lineagesa sce euk
euk (w/o
ecu)

arch
euk

bact
euk

RNA processing and modification 21 20 1

Chromatin structure and dynamics 8 8

Energy production and conversion 73 20 44 5

Cell cycle control, cell division, chromosome
partitioning

14 10 4 2 1

Amino acid transport and metabolism 102 10 86 2

Nucleotide transport and metabolism 48 11 35 5 1

Carbohydrate transport and metabolism 58 24 24 8

Coenzyme transport and metabolism 67 5 57 2

Lipid transport and metabolism 42 18 20 5

Translation, ribosomal structure, and biogenesis 175 131 42 96 52

Transcription 62 57 4 11 4

Replication, recombination, and repair 61 43 13 14 4

Cell wall/membrane/envelope biogenesis 15 4 10 2

Cell motility 3 1 1

Posttranslational modification, protein turnover,
chaperones

85 59 24 6 2

Inorganic ion transport and metabolism 45 11 28

Secondary metabolites biosynthesis, transport, and
catabolism

12 8

General function prediction only 133 65 50 15 1

Function unknown 91 44 34 2

Signal transduction mechanisms 27 16 9 1

Intracellular trafficking, secretion, and vesicular
transport

39 38 1 5 3

Defense mechanisms 4 3 1

Nuclear structure 1 1

Cytoskeleton 7 7
asce S. cerevisiae, euk eukaryotes, ecu E. cuniculi, arch archaea, bact bacteria
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196 out of the 262 universal genes required for prokaryotic cell life are present in
S. cerevisiae (Velculescu et al. 1997).

An extensive analysis of COGs between three eukaryotes E. cuniculi, S. pombe,
and S. cerevisiae leads to the recognition of 676 gene functions shared between
them. This amount is close to the number of gene families shared among the
Saccharomycotina phylum (Dujon et al. 2004)—804 (Sect. 2.2). Around
100 COGs are virtually exclusive of S. cerevisiae. Several COGs involved in
DNA replication, recombination, and repair, transcription, lipid metabolism, and
posttranslational modification and protein turnover are exclusive of eukaryotes. As
expected, functions for RNA processing and modification and chromatin structure
are also only present in eukaryotes. Translation, ribosomal structure, and biogenesis
are highly conserved among three kingdoms. However, these processes are more
closely related between archaea and eukarya.

3.2 Gene Ontology, Lethal Gene Deletions, and Gene
Paralogs Analyses

3.2.1 Gene Ontology and Lethal Gene Deletions

An analysis of gene ontology (GO), i.e., genes and gene product attributes
(Ashburner et al. 2000; www.yeastgenome.org), across S. cerevisiae can let us
know that 21% of genome ORFs is dedicated to protein synthesis, processing/
modification, and protein synthesis regulation. Transcriptional processes with
17.4% of genome dedication are in second place, followed by DNA replication,
maintenance, segregation, and repair with 14.5%; metabolic functions 7.1% and cell
internal/external transport use 14.6%; cell budding, morphogenesis, cell division,
and cell cycle 14.6%; organization of organelles 6.1%; and stress responses 6.7%. In
terms of total GOs per cell structure and organelle, the cytoplasm contains 29%
followed by nucleus with 27% and mitochondria with 19%; Golgi, vacuole, and
peroxisome accumulate 7% (Table 4).

Table 4 GO, gene interactions, and inviable gene deletion analyses among cell structure and
organelle (data obtained from www.yeastgenome.org)

Cell structure and organelle
(major GOs)

Gene functions (%
total)

Gene interactions
(average)

Inviable gene
deletions

Cytoplasm 1729 (29) 88 296

Nucleus 1612 (27) 104 391

Mitochondrion 1130 (19) 65 151

Endoplasmic reticulum 555 (9) 77 96

Plasma membrane 415 (7) 82 40

Fungal-type vacuole 287 (4) 42 4

Golgi apparatus 126 (2) 92 19

Peroxisome 60 (1) 50 8
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Gene interaction measures the functional association between genes, i.e., epista-
sis. This parameter has been also associated with the essentiality of a gene. Most
interactions occur between protein–protein, protein–RNA, protein–DNA, RNA–
RNA, and RNA–DNA. Therefore, there are a large number of interactions in the
nucleolus and, consequently, a higher number of essential genes (39% of total). An
intriguing result of this analysis is the fact that the mitochondrion has many
associated gene functions with a low gene interaction average; however, this organ-
elle contains 151 essential genes, of which just 40 genes pertain to metabolism. With
low inviable gene functions, the vacuole and peroxisome, associating 347 genes, are
possibly indispensable cell parts.

3.2.2 Lethal Gene Deletions and Gene Ontology

Evaluation of the growth phenotypes in single gene-disruption mutants was done for
96% of annotated ORFs (Giaever et al. 2002). This study showed that ~83% of genes
are nonessential for growth in rich medium at 30 �C, while the remaining ~1000
genes are essential. From the 83% nonessential genes, 15% of viable homozygous
deletion strains grew at a slow rate (12–90% of wild-type growth). Interestingly,
many of the genes included in this percentage encode proteins for ribosomal
functions and for mitochondrial functions related to respiration, which means that
these processes are required in high demand for S. cerevisiae. In fact, many of these
genes are highly expressed during vigorous growth (Velculescu et al. 1997).

In the analysis performed for this chapter, it was calculated that 43% of cell
functions dedicated to transcriptional processes are essential (~780) (Fig. 2). This
percentage is the highest of function essentiality in yeast. For example, DNA
processes and translational functions corresponded to 29.3 and 23.8% of essential
functions (450 and 546, respectively)—notice that some functions overlap with
transcriptional processes. It is interesting to notice that cellular transport and metab-
olism, which together have 2295 functions, included only ~370 gene essentials. In
the case of metabolism, most essential functions concentrate on lipid metabolism
(68 of 122). Transport essential genes accumulate 171 essential functions of a total
of 250. These include transport of nucleobases, nucleosides, nucleotides, and nucleic
acids, into and out of the cell, as well as Golgi vesicle and transmembrane transport.
No lethal phenotypes in the transport of carbohydrates have been detected.

S. cerevisiae has evolved tolerance for certain stressful conditions through acti-
vating general and specific cell stress responses. The first response is devoted to
preadapting the cell to further stress and the latter one is used for a specific type of
stress (Mitchell et al. 2009). The robustness of these responses appears to be related
with the number of components rather than their essentiality, since essential func-
tions represent 5% of the genome. As the mitochondria have coevolved with the
yeast genome and it is an essential part of yeast thermotolerance and resistance to
oxidative stress, it is not surprising to find that, out of ~650 gene functions devoted
to organelles organization, 46 of the 98 essential gene functions are found in
mitochondria.
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Fig. 2 Gene ontology and essentiality analyses in the yeast S. cerevisiae. These analyses were
performed for this chapter, with information obtained from www.yeastgenome.org
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3.2.3 Functional Relationship Among Genes

Synthetic lethalit, namely the condition when simultaneous mutation of two genes
provoke cell death, was evaluated in S. cerevisiae (Tong et al. 2004; Costanzo et al.
2016). The results of these studies are summarized here. Simultaneous mutation of
two genes from the nonessential subgroup of genes often showed a fitness defect
resembling the corresponding single mutants. Negative interactions, i.e., when a
double mutant displays a more extreme fitness defect than expected, were more
enriched among genes belonging to the same biological process. This occurred in
both a nonessential and an essential interaction network and between nonessential
genes in different biological processes, like in linear metabolic pathways. From
nearly one million genetic connections, 61% were negative interactions. Essential
genes were more than 25-fold more densely connected than nonessential genes.
Supervised and unsupervised clustering of interaction network identified that inter-
actions among nonessential genes involving vacuolar transport, peroxisome, and
mitochondria were less densely connected, whereas nonessential genes involving
cell polarity, chromosome segregation, rRNA processing, mRNA splicing, and
proteolysis functions were more densely connected—similar results are shown in
Fig. 2. Interaction network identifies multifunctional genes which deletion is lethal
for the cell. Pleiotropic genes, i.e., those involved in diverse functions, included
genes with functions in translation, RNA processing, vesicle trafficking, and lipid
and acetyl Co-A metabolism (Costanzo et al. 2016).

Nonessential gene group includes genes with the lowest interaction degree
(Costanzo et al. 2016). These are often targeted with more deleterious single-
nucleotide polymorphisms (SNPs), a higher ratio of nonsynonymous and synony-
mous nucleotide substitutions (dN/dS), and higher variations in gene expression
under different genetic backgrounds and environmental changes. These genes are
under reduced evolutionary and condition-specific constraints and regulation.

3.2.4 Gene Paralogs and Gene Lethality

Duplication of the ancestral yeast genome occurred approximately 100 million years
ago. This event was followed by genome evolution leading S. cerevisiae to lose
around 90% of the duplicated genome (Wolfe and Shields 1997; Seoighe and Wolfe
1998; Kellis et al. 2004). The remaining gene duplications generated paralogs, i.e.,
homologous genes as the result of gene duplication, which sum ~1509 (Gu et al.
2003). Analyzing large surveys of lethal phenotypes in single gene deletion assays
(Giaever et al. 2002; Gu et al. 2003; Cherry et al. 2012), one can conclude that from
the ~1100 unviable deletions, 5% involve duplicated genes and 95% occur in
nonduplicated genes. These percentages suggest there is a significantly higher
probability of functional compensation for a duplicate gene than for a singleton.
Hence, the question arising here is whether one can delete copies of duplicated
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genes, which sum ~500 genes, namely, ~1.05 Mb (2.1 Kb/gene � 500 genes),
whereas no significant negative impact would occur in yeast performance.

Ribosomal biogenesis, translation, regulation of translation, posttranslational
modifications, and regulatory modifications are associated with ~2300 gene func-
tions. Among these functions, 546 are essential. Protein synthesis is considered the
most important cellular process to support vigorous growth and stress resistance.
Therefore, it is not surprising that most of the gene paralogs are mainly found in this
biological process. For instance, cytosolic translation possesses 113 gene paralog
functions of 194 gene functions.

During long-term evolution of the yeast genome, the accumulation of mutations
in both duplicated genes could result in differences of gene expression, function loss,
and functional divergence between two copies (Hughes 1994; Koonin 2005; DeLuna
et al. 2008). In distant paralogs, deletion of a functional copy can result in a lethal
phenotype (Wagner 2000; Gu et al. 2003). There is also the possibility that one copy
expressed at a very low rate when compared to the other paralog can also cause a
strong negative or lethal phenotype, i.e., when duplicates are distributed in different
compartments (Kuepfer et al. 2005). Furthermore, high-level expression of the two
paralog members could suggest dosage amplification as the factor determining their
retention in the genome (DeLuna et al. 2008). Another fact is that gene pairs in
metabolism or translation increase average fitness, which will be advantageous
during competition (DeLuna et al. 2008).

The association between redundancy and robustness or back-up functions does
not seem to be the driving force to retain a pair of paralogs. Evidence suggest that
gene retention occurred when one gene gains a new function, expression pattern,
and/or localization (Kellis et al. 2004) and when gene dosage is needed to boost the
activity of key functions (Seoighe and Wolfe 1998; DeLuna et al. 2008). Although it
has been suggested that many paralogs play a relevant role in S. cerevisiae adapta-
tion to fermentation during domestication (Wolfe 2004), deletion of 12 genes from
the 27 related to fermentation caused no differences in fermentation capacity (Solis-
Escalante et al. 2015). Conserved genes were, however, the highly expressed copy of
a paralogous family. Null mutations of all genes in chromosome V showed that
around 40% of them have little or no effect on growth rate in five different conditions
(Smith et al. 1996).

3.3 Essentiality of Noncoding DNA

3.3.1 Introns

S. cerevisiae genome contains 295 introns located in 280 genes—0.147 Mbp in total,
which is a very small intron density (0.04 introns/gene) compared with other fungi
(0.96–2.42 intron per gene) (Kupfer et al. 2004). The systematic deletion of yeast
introns showed that they are nonessential when yeast is growing in rich medium but
promote stress resistance during starvation (Morgan et al. 2019; Parenteau et al.
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2019). Although the presence of intron is not necessary for growth in rich media,
genes lethally in the COG mRNA splicing via spliceosome are very high (52 out of
the 88 genes associated are indispensable). However, it would be possible that
combining intron deletion and gene deletion should avoid the accumulation of
pre-mRNA, but some excised spliceosomal introns can have biological functions
(Morgan et al. 2019). Thus, excised introns may have a regulatory role in cell
adaptation, especially to starvation (Parenteau et al. 2019).

3.3.2 Long Terminal Repeats and Transposable Elements

Long terminal repeat (LTR) retrotransposons are widespread transposable elements in
eukaryotes. Transposable elements in many systems appear to cause chromosomal
rearrangements, such as deletions, inversions, and translocations. Since the replicative
mode of transposition of these LTRs is by means of an RNA intermediate, the number
of copies from these elements can rapidly increase and thereby the genome size of the
host. Therefore, these elements show a correlation between their abundance and
genome size and the coding information content (Boeke and Devine 1998). In yeast,
there are 388 LTRs, which represent around ~1.5% of the genome—0.2 Mbp
(Bleykasten-Grosshans et al. 2013). In humans, this percentage is ~45% (Consortium
2001). The deletion of LTRs from various yeast chromosomes did not show any
negative impact in yeast growth (Dymond et al. 2011; Richardson et al. 2017).

Transposable elements (TE) are ubiquitous DNA elements in eukaryotes that can
move to new genome locations and generate chromosomal deletions and
rearrangements, sometimes affecting gene expression (Williamson 1983; Bleykasten-
Grosshans and Neuvéglise 2011). In yeast these elements are called Ty (yeast TE) and
are present in a relatively small number (~91 elements of ~5.7 kb each, 0.6 Mbp),
generating disperse repeated sequences which can rearrange the yeast genome and
thereby induce plasticity. For example, Ty-related chromosomal rearrangements, espe-
cially segmental duplications and hence gene amplifications, increase the fitness of
strains under stressful selective pressure (Dunham et al. 2002; Caspeta et al. 2014).
Interestingly, these chromosomal rearrangements are reversible and therefore are
temporal solutions to stress (Yona et al. 2012). TE also generate genome insertions
which can cause pleiotropic effects by interrupting gene expression of a,
e.g. transcription factors (Kvitek et al. 2008). However, deletion in the region between
Ty2 and RAHS causes respiratory deficiency (Oliver et al. 1992).

3.3.3 Autonomous Replicative Sequences

An autonomous replicative sequence (ARS) contains the origin of replication in
yeast chromosomes. Spacing between ARS was estimated to be from 32 to 40 kb
(Chan and Tye 1980), which is four to ten times shorter than the necessary to ensure
chromosomal DNA replication (Williamson 1965; Newlon 1988). Based on reported
fork rates (2.4–6.3 kb/min) and S phase length (25–40 min) at 30 �C, 120–500 kb of
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DNA could be replicated from a single origin during the S phase (Newlon 1988;
Dershowitz and Newlon 1993). Therefore, ~30 ARS of the 352–429 found in yeast
chromosome could be required for chromosomal replication (0.23 Mbp) (Wyrick
et al. 2001). In fact, chromosome III has nine replication origins. Remotion of some
origins has little effect since replication continues over other origins. As more
replication origins are deleted, the chromosome is gradually lost as cells divide,
presumably because replication is too slow (Koshland et al. 1985; Newlon 1988).
However, some ARS elements may be inactive during the replication process
(Reynolds et al. 1989).

The ARSs have high A+T content (73–82%) when compared to chromosomal
DNA (60%) and have 10–11 copies of consensus 50-(A/T)TTTAT(A/G)TTT(A/T)-
30 (Broach et al. 1983), namely, 110–122 bp. In four ARSs of yeast, a small region of
25–65 bp seems to be essential for function. Deletion of 100–300 bp of the flanking
region reduces function. These observations changed with ARN orientation:
flanking sequences from the 30 have a more profound effect than those on the 50

(Newlon 1988). There is a possibility that ARS binding proteins are not required for
ARS function and that their binding to DNA is fortuitous; instead, they may function
in transcription termination (Buchman et al. 1988).

3.3.4 Telomeres and Chromosome Size

Telomeres are DNA fragments of repetitive sequences located at the end of each
chromosome, and hence S. cerevisiae contains 32. These contain two kinds of
subtelomeric elements (STEs) called X and Y0. X elements are heterogeneous and
have a size ranging from 300 to 3 kb, whereas Y0 elements are only found in a half or
two-thirds of yeast chromosomes (Newlon 1988). Although these sequences protect
chromosomal ends from degradation and fusion to other chromosomes, they also
function as fillers to increase chromosome size to some minimum required for its
stability, and as barriers against transcriptional silencing, among others (Bussey et al.
1995; Louis 1995). For example, two DNA fragments of 245 bp and 252 bp found
on the right arm and left end of chromosome III have high homology with an X
element contained in yeast telomeres. This suggests that this chromosome was once
shortened and that there is pressure against short chromosomes (Newlon 1988;
Oliver et al. 1992). Artificial chromosomes of around 150 kb in size are mitotically
unstable (Newlon 1988).

Deletions of chromosome III fragments resulting in lengths ranging from 50 to
300 kb were stable as the length increased over 120 kb and dramatically unstable
when were smaller than 100 kb (Surosky et al. 1986). On the other hand, mutant
yeast strains with telomeric paths shorter than normal showed a very long lag growth
phase (Lustig and Petes 1986).
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3.3.5 tRNAs

S. cerevisiae contains 299 tRNA coding genes. The tRNA pool is a key component
of translation, since during translation elongation the selection of a tRNA for various
codons is the rate-limiting step (Varenne et al. 1984). Among yeasts, the number of
tRNA varies from 126 to 510 with S. cerevisiae in the middle of the distribution.
Compared with E. cuniculi, this organism has one tent of tRNAs (46). Interestingly
K. lactis only has 125 tRNAs and can grow at a rate of 0.34 1/h in defined medium,
which is very similar to what is observed with S. cerevisiae. Hence, a relation
between duplication time and a number of tRNAs is not proportional. Deletion of
most of the tRNA genes showed no appreciable phenotype in rich medium (Bloom-
Ackermann et al. 2014). However, the authors observed that stressful environments
showed a set of condition-specific tRNA phenotypic defects. They also observed that
the codeletion of tRNAs can be compensated by associates of the equivalent or
different anticodon families.

4 Perspectives About Genome Reduction of S. cerevisiae

4.1 Synthetic Genomes of S. cerevisiae

As can be perceived after reading the previous paragraphs, whole genome analyses
have provided a lot of insights about systems-level behavior of the yeast
S. cerevisiae. However, a basic understanding of genome structure is not yet
complete. Therefore, in the first attempt to generate a synthetic yeast genome (the
Sc2.0 project), the researchers opted for a bottom-up approach. Hence, in that
project, the replacement of each part of the genome by a synthetic one is followed
by learning the relevance of every piece in the context of the phenotype (Murakami
et al. 2007; Dymond et al. 2011; Annaluru et al. 2014; Richardson et al. 2017; Zhang
et al. 2017; Luo et al. 2018). The core sequence specifications were predicted to
generate a wild-type phenotype, with a highly stable genome and genetic flexibility.
This approach also includes a Synthetic Chromosome Rearrangement and Modifi-
cation by LoxP-mediated Evolution (SCRaMblE) process to generate a large level of
genetic diversity, including deletions of chromosomes, chromosome arms, large and
small portions, and genes (Dymond and Boeke 2012; Jia et al. 2018; Shen et al.
2018). Therefore, repeated rounds of SCRaMbLE could be effective to generate
minimal genomes (Dymond and Boeke 2012).

Another attempt to generate an artificial yeast genome was the design and
construction of an S. cerevisiae single circular genome. The authors created a
circular chromosome by the successive end-to-end fusion of the 16 yeast chromo-
somes (Shao et al. 2018). Their design contemplated the deletion of 15 centromeres,
30 telomeres, and 19 long repeats and hence reduced the genome size to 11.8 Mb.
Although significant changes were generated in the structure of the circular genome,
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the pattern of gene expression was similar to the wild-type strains containing the
16 chromosomes. These results support the idea that interchromosomal interactions
have little effect on gene transcription.

4.2 Reduction of the S. cerevisiae Genome

Today, S. cerevisiae genome reductions account for 5%, 8%, and 9% of the wild-
type genome (Murakami et al. 2007; Richardson et al. 2017; Shao et al. 2018). These
reductions are mainly associated with deletion of Ty elements and LTR repeats to
generate more stable genomes (Dymond et al. 2011; Richardson et al. 2017);
removal of telomeres, long repeats, and centromeres (Shao et al. 2018); and deletion
of 247 genes, which were predicted to improve ethanol production (Murakami et al.
2007).

Derived from data analyses completed for this synopsis, one can see that reducing
yeast genome further than previous efforts is not apparently manageable. Many
aspects related to, for example, complex gene interactions, genome structure, cellu-
lar stress responses, regulation of stress response and respiro-fermentative metabo-
lism, organelle essentiality, and plasticity are not well understood. Therefore, one
can conclude that the bottom-up strategy followed by the Sc2 consortium is the most
likely path to asses a minimal genome of S. cerevisiae.

Summarizing the potentially nonessential genetic parts considered in Sect. 3, our
calculations result in a genome reduction of ~3Mbp to give a genome of 9Mbp—close
the chromosome of A. gossypii. Remarkably, for 95% of A. gossypii protein-coding
genes, there are both homology and pattern of synteny with S. cerevisiae (Dietrich et al.
2004). Furthermore, the number of protein-coding genes from A. gossypii and
S. pombeare is ~4800 which is close to the number of protein-coding genes remaining
after the proposed gene deletion (~4500) calculated for this chapter. S. pombe and
A. gossypii are both yeasts that speciated before the WGD event. After all, ~4500 genes
and a genome of ~9 Mb could be potentially close to the minimum number of genes
and minimal size of a free-living S. cerevisiae.
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The Use of In Silico Genome-Scale Models
for the Rational Design of Minimal Cells

Jean-Christophe Lachance, Sébastien Rodrigue, and Bernhard O. Palsson

Abstract Organism-specific genome-scale metabolic models (GEMs) can be
reconstructed using genome annotation and biochemical data available in literature.
The systematic inclusion of biochemical reactions into a coherent metabolic network
combined with the formulation of appropriate constraints reveals the set of metabolic
capabilities harbored by an organism, hereby allowing the computation of growth
phenotypes from genotype information. GEMs have been used thoroughly to assess
growth capabilities under varying conditions and determine gene essentiality. This
simulation process can rapidly generate testable hypotheses that can be applied for
the systematic evaluation of growth capabilities in genome reduction efforts and the
definition of a minimal cell. Here we review the most recent computational methods
and protocols available for the reconstruction of genome-scale models, the formu-
lation of objective functions, and the applications of models in the prediction of gene
essentiality. These methods and applications are suited to the emerging field of
genome reduction and the development of minimal cells as biological factories.
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1 Introduction

1.1 Engineering Biology

Biologists of the past 200 years have provided a breadth of knowledge on the
fundamentals of life on Earth. Current theories and dogmas emerged from a maze
of suppositions and hypotheses through the succession of key findings and incre-
mental advances. Nowadays, few molecular functions necessary to support life
remain unknown. While biology has considerably matured as a science discipline,
we will discuss here how the exhaustive characterization of organisms along with
proper modeling frameworks should drive a new era, in which cell engineering will
develop into an independent discipline. Because of their lower complexity, micro-
organisms—particularly minimal bacteria—are expected to play a very important
role in this endeavor.

Scientists investigate that which already is; Engineers create that which has never been.
—Albert Einstein

We discuss here the historical context and key steps leading to the birth of
biological engineering. This historical recap should highlight the importance of
minimal cell models while providing readers with a perspective on the entire field
of biology. We divided it in four stages: classical biology, molecular biology,
genomics, and finally synthetic biology (Fig. 1).

1.1.1 Classical Biology

In 1859, Darwin published his work entitled “On the Origin of Species by Means of
Natural Selection, or, the Preservation of Favoured Races in the Struggle for Life.”
Less than a decade later, in 1865, Mendel proposed mechanisms for heredity. Both
theories used observable phenotypes at the organism level to infer potential mech-
anisms driving their evolution. While Darwin’s work explained the driving forces
underlying the emergence of phenotypes and speciation, Mendel’s work was
focused on a mechanistic explanation of the basic principles of genetics. While not
specifically described by Mendel, his conclusions gave birth to the concept of gene.
Understanding the chemical basis of the gene and heredity then became the main
endeavor of this first era of biology, defined here as the classical biology era (Fig. 1).
This objective remained one of the grand challenges of biology until, in 1953,
Watson and Crick published the structure of deoxyribonucleic acid (DNA) (Watson
and Crick 1953). This historically significant finding allowed scientists to ask more
intricate questions on the molecular functions sustaining life, marking the beginning
of the molecular biology era (Waddington 1961).
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1.1.2 Molecular Biology

With the structure of the DNA double helix, the gene concept became tangible, greatly
accelerating the pace of discovery. Iconic, groundbreaking findings of the molecular
biology era include the cracking of the genetic code (Nirenberg et al. 1965; Holley
1965) and the definition of the operon by Jacob and Monod, which, for the first time,
revealed molecular mechanisms underlying gene expression (Jacob et al. 1960). The
later discovery of a restriction enzyme (enzyme capable of cutting DNA at a specific
sequence) in Haemophilus influenzae (Smith and Wilcox 1970) and its application to
cut the genome of the human virus SV40 (Danna and Nathans 1971) marked the
beginning of DNA manipulations (Roberts 2005). The repurposing of a restriction
enzyme provided the first genetic engineering tool, and biologists were now poised to
start deciphering the molecular mechanisms that underlie cellular phenotypes.

Cleaving DNA at specific sites is useful, but a pending important challenge was to
decode the sequence of genes. Given the determination of the genetic code in 1963
(Nirenberg et al. 1963), DNA sequencing would provide the amino acid sequence of
proteins, which in turn mediates its function. In 1977, Frederick Sanger published a
method for the sequencing of DNA by random incorporation of radiolabeled

Fig. 1 Synthetic biology and minimal cells: a historical perspective. Elucidating the DNA double
helix marked the beginning of the molecular biology era, and it became possible to study molecular
mechanisms that underpinned observable phenotypes. DNA sequencing methods improved, lead-
ing to whole-genome sequencing at the end of the 1990s. Methods for mathematical cell modeling
were developed during the 1980s and 1990s, and genome-scale models of metabolism, as well as
computer simulations of metabolic networks, could be reconstructed. A defining moment took place
in 2008 (red), with the creation of the first artificial genome that mimicked the genetic information
of M. genitalium, the smallest genome, free-living, non-synthetic organism known to date. Thanks
to developments in next-generation sequencing (NGS) methods, this was paired with the rise of
large-scale genome sequencing ventures, such as the Human Microbiome and the 1000 Genomes
Projects. Advances in whole-genome synthesis, assembly, and transplantation helped create the first
cell living with an entirely synthetic genome shortly after. Altogether, these achievements marked
the coming of age for synthetic biology (Reproduced from Lachance et al. 2019a)
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nucleotides lacking the 30-OH group necessary for chain elongation (Sanger et al.
1977a). This method enabled sequencing the complete 5375 bp genome of phage
ϕX174 (Sanger et al. 1977b). While Sanger’s dideoxy termination method generated
sequences ranging from 15 to 200 nucleotides, massive scaling up was necessary to
allow more ambitious sequencing efforts.

The automated DNA sequencer (Smith et al. 1986) and the advent of shotgun
sequencing (Anderson 1981) considerably increased the capacity of DNA sequenc-
ing, resulting in longer whole-genome sequences (WGS) (Heather and Chain 2016).
Following the Santa Cruz workshop in 1985 (Sinsheimer 1989), the Human Genome
Project (HGP) was initiated and reached completion in 2001 (Venter et al. 2001;
Lander et al. 2001). Taking advantage of the technologies developed for the HGP,
smaller-scale WGS projects were completed before the new millennium (Fig. 1). In a
historic reference to the first type II restriction enzyme isolated, the first WGS of a
free-living organism, Haemophilus influenzae, was reported in 1995 (Fleischmann
et al. 1995). The genome of Mycoplasma genitalium, the smallest free-living organ-
ism, was published shortly after (Fraser et al. 1995). The more complex model
organisms Saccharomyces cerevisiae and Escherichia coli followed in 1996 and
1997, respectively (Goffeau et al. 1996; Blattner et al. 1997).

1.1.3 Genomic

We arbitrarily defined the beginning of the genomic era with the completion of the
first WGS of a free-living organism, the ~1.9 million bp genome of Haemophilus
influenzae (Fleischmann et al. 1995) (Fig. 1). The number and size of WGS made
available following this first sequencing effort steadily increased, eventually includ-
ing the ~3.2 billion base pairs (bp) haploid human genome (Venter et al. 2001;
Lander et al. 2001). Automation and computational tools were further improved to
expand the capacity of Sanger sequencing. Nevertheless, the advent of next-
generation sequencing (NGS) technologies developed by private companies upon
the completion of the Human Genome Project represented a major breakthrough.
While the sequencing by synthesis paradigm was preserved between Sanger
sequencing and the NGS methods, the ability to parallelize the sequencing within
one reaction massively increased the throughput (Heather and Chain 2016).

NGS allowed the elaboration of new initiatives such as the 1000 Genomes Project
(Spencer 2008) and the Human Microbiome Project (McGuire et al. 2008), both
initiated in 2008. The power of NGS technologies could not be exemplified any
better than by considering that, in spite of their much greater scale, these projects
reached their primary goals within 4 years (1000 Genomes Project Consortium
2012; Human Microbiome Project Consortium 2012), merely one third of the time
required for the HGP. The accessibility of sequencing now contributes to an
unprecedented breadth of knowledge that is meant to continue. Recently, the devel-
opment by Oxford Nanopore (minION) of a portable, benchtop, real-time sequencer
(Lu et al. 2016) further expands the applications of NGS for fundamental discovery.

Obtaining the genome sequences of a wide number of species is of paramount
importance for understanding their phylogenetic relationships and the potential
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functions they encode. However, the genetic information encrypted in the DNA of a
cell is essentially static and does not reveal the dynamic nature of molecular pheno-
types. This reality became evident shortly after the completion of the HGP, when the
predicted number of genes in human was found to have been grossly overestimated
(Brower 2001). Gladly, the efforts for high-throughput interrogation of other important
cellular components started early with the development of untargeted approaches for
the sequencing of proteins (Mørtz et al. 1996). More than a decade later, the elabora-
tion of a protocol for high-throughput RNA sequencing using NGS technologies
revealed the full transcriptomic profile of yeast (Nagalakshmi et al. 2008). From that
point on, the three main macromolecules of the central dogma of biology (Crick 1970)
could be sequenced at a genome-scale in an untargeted way.

The remaining components of the cell are less ubiquitous, and the application of
untargeted methods for organism-wide identification is more complex. The identi-
fication of all water-soluble components is termed metabolomic, whereas the hydro-
phobic content is generally referred to as lipidomic (Riekeberg and Powers 2017).
Liquid chromatography followed by mass spectrometry (LC-MS) allows for both
metabolomic and lipidomic determination (Riekeberg and Powers 2017; Yang and
Han 2016) with the difference in extraction method reflecting the polarity of the
compounds. These methods along with others (Ingolia et al. 2009; Lahner et al.
2003; Zamboni et al. 2009) allow the characterization of a dynamic state of the cell
that can be leveraged in systems biology (Haas et al. 2017).

1.1.4 Synthetic Biology

The term synthetic biology is closely associated with the application of engineering
principles to biological systems. DNA synthesis enabled the generation and assem-
bly of synthetic DNA parts. In turn, these capabilities allowed creating “that which
did not exist,” hence defining synthetic biology as a field (Andrianantoandro et al.
2006; Heinemann and Panke 2006; Hughes and Ellington 2017). The first attempt at
synthesizing DNA happened shortly after the elucidation of its structure. In 1957,
Bessman and colleagues used the DNA polymerase from E. coli to produce DNA
fragments. They noted that the presence of polymerized DNA is necessary for the
reaction. This concept was later reused both by Sanger for DNA sequencing (Sanger
et al. 1977a) and later for the famous polymerase chain reaction (PCR) (Saiki et al.
1985). The DNA oligonucleotide primers used for the development of PCR were
produced using the phosphoramidite method (Matteucci and Caruthers 1981;
Beaucage and Caruthers 1981). This chemistry is still currently used in most modern
DNA synthesis platforms (LeProust 2016) but is limited by the oligonucleotide
length that can be obtained without accumulating undesired mutations. This problem
was circumvented by Stemmer in 1995, who first reported a technique to generate a
long synthetic DNA fragment (>1000 bp) by assembling oligonucleotides (Stemmer
et al. 1995). While the cost of DNA synthesis stayed more or less the same in the last
10 years (Hughes and Ellington 2017), recent progress toward high-throughput
DNA synthesis strategies using microarrays may soon overcome this issue (LeProust
2016) and promise to make the synthesis of large DNA fragments an affordable
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solution for routine molecular biology experiments or industrial strain design
(Hughes and Ellington 2017; Bassalo et al. 2016).

The utmost objective of DNA synthesis is the conception and assembly of entire
genomes. To reach this goal, the development of robust methods to assemble DNA
fragments into larger sequences was necessary. This goal was met in 2008 when a team
at the John Craig Venter Institute (JCVI) realized the complete synthesis and assembly
of the Mycoplasma genitalium genome (Gibson et al. 2008). This achievement was
made possible by a hierarchical strategy relying on in vitro recombination of DNA
cassettes (Gibson et al. 2009). The assembly of overlapping DNA oligonucleotides to
create larger fragments was later shown to be even more effective in vivo using yeast
(Gibson 2009). The development of whole-genome synthesis and assembly methods
together with that of whole-genome transplantation (Lartigue et al. 2007) enabled the
creation of the first cell living with an entirely synthetic genome (Gibson et al. 2010).

Recent years have seen groundbreaking synthetic biology efforts that will
undoubtedly have an impact on the future of this field. In 2014, Romesberg and
colleagues created a bacteria functioning with an altered DNA containing six
different bases (Malyshev et al. 2014), thereby offering an additional base pairing
combination. No known living organism contains these synthetic nucleobases,
resulting in a new life form on Earth. Following the path of the first free-living
organism containing a synthetic genome, the team at JCVI designed and assembled a
cell with a greatly reduced gene content, resulting in a working approximation of a
minimal cell (Hutchison et al. 2016). Finally, the Sc2.0 project was initiated and in
2017 an international consortium reported the complete de novo synthesis of five
entire chromosomes of the yeast Saccharomyces cerevisiae (Richardson et al. 2017).

With the advent of NGS, multiple omics methods for the dynamic characteriza-
tion of the cell, targeted genome editing methods (Qi et al. 2013), and the develop-
ment of high-throughput DNA synthesis and assembly methods, synthetic biology is
now poised to create life forms that will revolutionize many industrial research fields
such as microbial drug synthesis, biofuel production, or alternative approaches for
disease treatment (Smolke et al. 2018).

1.2 The Minimal Cell Concept

The hydrogen atom of biology
—Harold J. Morowitz

The idea of a minimal cell was approached by biophysicist Harold J. Morowitz in
a guest lecture in 1984 (Morowitz 1984) where he reasoned that a free-living
organism would have a lower limit on the number of atoms from which it is
composed. Below this number, the necessary functions to support life would not
be met. This logical deduction somewhat resembles that of Schrödinger in his
famous book What is life? (Schrodinger 1967), where the famous physicist
questioned the material support of the gene and applied limitations imposed by
quantum physics to correctly predict that it would be a molecule that could form a
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crystal. In his lecture, Morowitz proposed that the mollicutes, a phylogenetic group
of bacterium deprived of a cell wall, would be the best candidates to match the
constraint and the endeavor of generating what he then defined as a “minimal cell.”
The choice was made firstly according to their size with the idea that the smaller cell,
much like the hydrogen atom in physics, would be the simplest system to study and
hence yield fundamental understanding applicable to other, more complex biological
systems. The prediction was accurate. The mollicute Mycoplasma genitalium, sec-
ond entirely sequenced free-living organism (Fig. 1) (Fraser et al. 1995), has the
smallest gene content of any known naturally occurring organisms. The purpose of
studying minimal cells was then clearly stated: defining the basic principles of life
(Glass et al. 2017).

As soon as more than one whole-genome sequence was generated, Mushegian and
Koonin sought to compare the two phylogenetically distant species in the hope of
finding orthologous genes that would be a working approximation of a minimal gene
set (Mushegian and Koonin 1996). The initial proposition was that 256 genes would
be sufficient to support life. This proposition was later experimentally shown to be a
relatively low estimate. Gene essentiality in genome-reduced bacteria probed with
random transposon insertion estimated that the number of genes would be between
265 and 350 (Hutchison et al. 1999). With the increasing number of whole-genome
sequences available, comparative genomics allowed to deepen the understanding of
the concept of minimal gene set. When comparing the eukaryote Saccharomyces
cerevisiae to its initial proposition, Koonin realized that very few genes were con-
served (only 40%) (Koonin 2000). The suggested explanation for this was that
non-orthologous gene displacement (Koonin et al. 1996) (NOD) would have a higher
frequency than originally anticipated. The definition of NOD states that genes with
similar functions can evolve independently. This induced a paradigm shift in the
concept of minimal gene set, where the identity of the genes themselves was deferred
to a second level, with the functional activity they provide becoming more important.
From an engineering standpoint, the minimal set of functions is indeed more interest-
ing than the set of genes (Danchin and Fang 2016). In this context, the various genes
become interchangeable parts to accomplish a given function (Fig. 2).

The many progresses in synthetic biology realized by scientists at the JCVI led to
the design and synthesis of the first working approximation of a minimal cell: JCVI-
syn3.0 (Hutchison et al. 2016). The 463 genes encoded in the chromosome of this
cell is a lower number than any other known free-living organism (Glass et al. 2017)
but is substantially higher than computationally and experimentally determined
minimal gene sets (Mushegian and Koonin 1996; Hutchison et al. 1999; Koonin
2000; Glass et al. 2006). Although essential for cell growth, a significant fraction
(149/463, ~30%) of the JCVI-syn3.0 gene set had no proposed function (Hutchison
et al. 2016; Glass et al. 2017; Danchin and Fang 2016). Danchin and Fang exten-
sively reviewed these genes in search for a molecular mechanism that would need to
be fulfilled (Danchin and Fang 2016) and provided potential functions based on
known or projected necessities for 32 of those 84 generic and 65 “unknown
unknowns.” The validity of these hypotheses has yet to be determined, and therefore
the original question raised by Morowitz, seeking for the completeness of molecular
biology, remains unanswered.
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While absolute minimal cells should inform on the first principles of life, heavily
reduced cells entail a strong interest from an engineering perspective. Cho and
colleagues reviewed some of the potential advantages of reduced bacteria for strain
design (Choe et al. 2016). As mentioned, high-throughput characterization of cellu-
lar phenotypes through omic data generation and increase in throughput of DNA
synthesis should allow for in vitro fabrication of designed genomes (Fig. 2). We list
here some of the advantages that were pointed out.

Fig. 2 Design of cells using a computer model. (a) Naive representation of a cellular chassis in
which all mandatory cellular functions and their interactions are understood and characterized. (b)
The generation of computer models for minimal cells can accelerate the identification of missing
knowledge and facilitate the generation of hypothesis for essential uncharacterized cellular func-
tions. (c) A design-build-test-analyze loop for the generation of minimal cells and their improve-
ment toward production strains. Mathematical models are used to predict functional genotypes, and
the current DNA synthesis technologies mentioned in the text are used to generate the proposed
genome. Cloning of entire genomes in living cells allows to test for viability, and multiple omic
datasets are used to characterize the synthetic organism
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The first bacterium harboring a synthetic chromosome, JCVI-syn1.0 (Gibson
et al. 2010), was reported to represent a 40-million-dollar endeavor (Sleator 2010).
A smaller genome obviously results in a reduced DNA synthesis cost. While a
decrease in the price per base was announced by companies such as Twist Biosci-
ence, others do not foresee a price reduction that would defeat Moore’s law (Smolke
et al. 2018). Hence, the economic impact of generating several small genomes would
remain significant. From a systems biology or design perspective, a reduced number
of genes translate into a lower probability of negative interactions that could affect
the desired outcomes of the initiated design. The development of high-throughput
and untargeted approaches in the genomic era has allowed the rapid characterization
of cells, but the outcome of genetic modifications is still not entirely reliable. The
idea here is that genome-scale modeling of minimal cells could lead to more accurate
model predictions. For instance, efforts have already been invested in reducing the
complexity of metabolic models in the attempt of making the generated solutions
more human readable (Ataman and Hatzimanikatis 2017). Genome reduction and
minimization also allows for the design of biocontainment strategies. These include
auxotrophy(ies) or programmed cell death, which will be highly beneficial as
synthetic biology becomes more common in commercial applications. Finally, for
more complex organisms, the deletion of genomic sections could accelerate genome
replication while potentially increasing genomic stability through the removal of
duplicated elements.

2 Constraint-Based Modeling

In the last section, we reviewed how biology developed from a pure science
discipline at its inception to a mechanistic and engineering discipline in our times.
The advent of high-throughput characterization methods for organisms together with
biological reductionism that entails mechanistic description of processes sustaining
life led to the birth of synthetic biology as a field. In this context, we reviewed the
idea of a minimal cell, which should be a functional chassis for the design of
production strains or a platform for fundamental understanding of biology (Danchin
2012). As mentioned, the current status of minimal cell research, with the 149 genes
with no function associated with the synthetic organism JCVI-syn3.0 (Hutchison
et al. 2016), requires further characterization of molecular functions to reach a
complete understanding of every molecular functions necessary to sustain life.
This biological reductionism approach should feed into a computational framework
geared toward integrative analysis where in silico simulations based on mathemat-
ical models take advantage of the high-throughput methods to generate predictions.
In this section we describe flux balance analysis (FBA) (Orth et al. 2010), a
mathematical approach that allowed the generation of genome-scale models from
whole-genome sequences around the new millennium (Edwards and Palsson 1999,
2000). This modeling approach is a solid basis on which minimal cells can be
designed in silico.
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2.1 Concept of Constraints in Metabolism

Flux balance analysis (FBA) arose from an attempt at generating simple coarse-
grained models for the fermentation of the chemical industry’s feedstocks in bacte-
rial hosts (Papoutsakis 1984). One initial model suggested by Papoutsakis relied on
the assumption that the fermentative process could be resumed in a single stoichio-
metric equation where elemental balance is conserved. Interestingly, the definition of
the so-called fermentation equation utilized the known stoichiometry of reactions
involved in the fermentation of butyric acid. The stoichiometry of biochemical
reactions in a metabolic network was later used by Majewski and Domach in an
attempt to establish a theoretical understanding for acetate overflow metabolism in
Escherichia coli cells grown under aerobic conditions (Majewski and Domach
1990). The model presented for the acetate overflow entailed many key elements
of FBA. The proposed hypothesis was that a flow network with a given objective
could represent and explain the shift in metabolic state of E. coli responsible for the
excretion of acetate.

The problem was summarized as a linear optimization problem on which network
constraints would apply. Fixing the objective as to maximize the production of ATP
and applying two constraints, (1) limiting the amount of reducing equivalents that
can be produced by the electron transport chain and (2) assuming that a given
enzyme of the Krebs cycle is limiting hereby limits the flux through a given reaction,
the authors demonstrated that linear programming could correctly predict a bacterial
metabolic state.

The use of a metabolic flux network optimized with linear programming served as
a basis for the development of mathematical formalism for FBA (Savinell and
Palsson 1992a, b). The concept was extended with the definition of a stoichiometric
matrix (S). In this matrix, each column represents a reaction in the metabolic
network, and each row is a different metabolite (Fig. 3). The mathematical formu-
lation of the metabolite concentration over time using the S matrix then becomes:

dX
dt

¼ S ∙ v ð1Þ

where X is the vector of metabolites and v is the vector of fluxes. FBA assumes that
the metabolic network will reach a steady state. In this case, the concentration of
metabolites over time should be in equilibrium where the inputs are equal to the
outputs so that:

0 ¼ S ∙ v ð2Þ

FBA has the advantage of requiring only the stoichiometry of the reactions to
operate. The details of thermodynamics for each reaction are not necessary. Never-
theless, reaction directionality can be obtained from thermodynamics, hereby adding
another set of constraint on the system. A physiologically meaningful objective (Z)
can be defined in order to simulate the desired metabolic phenotype.
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maximize Z,

0 ¼ S ∙ v

ai < vi < bi ð3Þ

This mathematical formulation can be solved using linear programming and
allows finding the optimal solution of a given metabolic network at steady state.
We will now review how this formulation allows for the generation of genome-scale
models and how the objective function can be tailored to represent specific physi-
ological states.

Fig. 3 Constraint-based modeling using linear programming. (a) A given metabolic network
composed of metabolites (nodes) and reactions (links) can be represented in the form of a
stoichiometric matrix S. (b) In this matrix, each row represents a metabolite while each column is
associated with a reaction. The variation of metabolite concentration over time dX

dt

� �
can then be

represented as the matrix-vector product of S by v, the vector of fluxes for each reaction in the
network. (c) Defining a physiologically meaningful objective Z, the optimal solution for the
metabolic network can be represented as a linear optimization problem with given flux constraints
on metabolic reactions, and, at steady state, the variation in metabolite concentration is equal to
0. (d) The application of constraints on the optimization problem limits the solution space, while
applying a proper objective allows finding the line of optimality within that bounded convex
solution space
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2.2 Metabolic Network Reconstruction

The completion of whole-genome sequences in the genomic era (Fig. 1) allowed the
generation of genome-scale metabolic models (GEMs). In most cases, genome
annotation yields the predicted function of proteins encoded by an organism. For
the metabolic enzymes, the annotation together with extensive literature research can
link a DNA sequence to a biochemical reaction in the metabolic network. The
process of extracting a maximum number of reactions from the genome is termed
reconstruction and has been reviewed in detail (Thiele and Palsson 2010). We
explain the key steps in the reconstruction of a stoichiometric matrix at the genome
scale (Fig. 4).

First, a draft reconstruction must be generated. The process of building this draft
can be performed manually or automatically. The automated methods for draft
reconstruction of metabolic networks are reviewed in Sect. 3. The generation of a
draft reconstruction process consists in extracting biochemical reactions from
genome annotation. Through this process, the stoichiometry of every reaction in
the network is obtained. The reactions can be fetched from annotated EC numbers or
gene names, and the candidate metabolic genes are linked to a reaction of the S
matrix. The association between a gene and its reaction is key for future predictions
generated by the model and should therefore be evaluated carefully.

Second, the initial draft is examined more closely through a refinement step. The
key elements of this step are the examination of the mass-balance conservation for
each reaction; that is the number of atoms in the reactants should be equal to the
number of atoms in the products. The same rationale goes for the charge of the
reactions. The balanced equations should have a neutral charge. These assumptions
are linked to the fundamental principles of chemistry, hereby ensuring that no mass
or energy is created in any reaction of the metabolic network. The gene-protein-
reaction (GPR) association is then verified for all reactions, and a confidence score is
attributed that facilitates further evaluation of the results once the model simulations
are compared to experimental data.

Non-gene-associated reactions are then added. Spontaneous reactions are reac-
tions for which no gene is associated and represent the natural occurrence of a
reaction that is thermodynamically favorable without the need for a gene-encoded
catalyst (enzyme). Other non-gene-associated reactions are exchange, sinks, and
demands. These reactions represent the environment/culture media of the cell. They
are not mass-balanced or charge-balanced by default since they represent the uptake/
dumping of metabolites from/to the media. They are nevertheless necessary for the
simulation of growth phenotypes under a given environment. Finally, a biomass
reaction and ATP maintenance (ATPM) are added. The idea of a biomass reaction is
to force the model to produce metabolites necessary for the growth of the organism,
and its potential in simulating growth will be discussed later. The ATPM reaction is
an ATP hydrolysis reaction that allows modelers to set a certain rate of ATP
consumption for a growing cell. Knowing the experimental energy requirements
hereby allows for more precise growth rate predictions.
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Finally, the reconstructed network is ready for validation and simulation. Setting
simulation constraints together with a defined objective allows the formulation of
predictions that can be tested. The model may or may not yield a feasible solution. In
the latter case, extensive unit testing may be required to address issues in the
formulated reconstruction (e.g., metabolite accumulation). Iteratively fixing those
issues allows the generation of a functional model that can be used for simulation.
The comparison of the formulated predictions with readily available experimental
data can either confirm how the system is expected to function or reveal potential
gaps in knowledge.

2.3 Objective Function

In linear programming, the objective function is the numerical value to maximize or
minimize. The significance of the value to be optimized is dependent on the situation
that the modeler wishes to simulate. For instance, Papoutsakis (Papoutsakis 1984)
generated a model for butyrate production. In that case, the numerical value is the
amount of butyrate (a feedstock of the chemical industry) that can be produced over
time. To simulate and explain acetate overflow,Majewski and Domach (Majewski and
Domach 1990) maximized the ATP production by the network. Finally, the FBA red
blood cell (RBC) model (Bordbar et al. 2011) maximizes the flux through the Na+/K+
ATPase pump. The choice of the objective function hence reflects the physiological
situation and is key for the predictions generated by the model. Since the RBC cannot
duplicate itself, it is assumed that the actual biological objective of the cell is to
maintain a proper gradient of sodium and potassium, a task that requires the produc-
tion of energy in the form of ATP. This proper objective definition along with the
integration of high-throughput experimental data allowed the identification of bio-
markers for RBC degradation upon storage (Yurkovich et al. 2017).

A common objective for modelers is to predict a growth phenotype. In this case, a
biomass objective function (BOF) is defined that contains every metabolite neces-
sary for the doubling of the cell (Feist and Palsson 2010). The BOF is modeled
through the addition of an extra reaction (column) of the stoichiometric matrix (S).
The proportion of each element within the cell is given as stoichiometric coefficients
in the reaction. In order to provide an estimation of growth rate, a basis is given
(Varma and Palsson 1993) such that the product of cell weight by time is equal to 1 g
of cellular dry weight per hour (gDW/h). While the metabolite composition of the
BOF may vary from a species to another, many components are shared across
prokaryotes that are necessary for growth (Xavier et al. 2017). The proper integration
of biomass components effectively present along with the stoichiometric coefficients
that reflect the experimental composition of the cell (Beck et al. 2018) in species
changes the accuracy of the model predictions (Lachance et al. 2018). The definition
of the BOF is therefore crucial to generate gene essentiality predictions, a key topic
for the endeavor of generating minimal cells in silico through genome-scale model-
ing with FBA.
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2.4 Conversion into a Mathematical Format and Evaluation

Genome-scale models have the power to simulate the organism’s metabolic capa-
bilities. Converting the reconstruction into a mathematical format through the
establishment of proper objective (e.g., precise definition of the biomass objective
function) and constraints (e.g., media definition, internal flux bounds, uptake and
secretion rates, etc.) provides the model with that potential. The model can then be
used to formulate predictions of the metabolic state of the organism. The predictions
formulated by the model and the datasets used to validate them vary based on the
scientific objective of the conducted research.

A common objective used to enhance the quality of the model is growth (max-
imize flux through the biomass reaction). The direct prediction is the growth rate,
which can be matched with the experimentally determined value. Getting a correct
doubling time is dependent on correctly determining the cellular energy expenses
and the stoichiometric coefficients of biomass precursors included in the biomass
reaction. Optimizing for biomass production can also be used to determine gene
essentiality by iteratively removing single genes and solving the model, a common
measure of a model’s quality, and will be covered in more detail later (see Sect. 4).
Finally, FBA provides a flux state with the given solution. While FBA finds a unique
optimal solution for the given objective function, many flux states may lead to
it. Different methods have been developed that study the variability of the flux states
that will be covered later (Gudmundsson and Thiele 2010). Modelers can then
sample and study the variability of the flux state to identify fluxes that are out of
biologically feasible ranges and apply supplementary constraints that improve the
model’s quality.

Compliance with experimental data can then be assessed. As mentioned, the gene
essentiality prediction of the model is commonly used as a reference for a model’s
general quality since it accounts for the quality of the assigned GPRs together with
the network topology, biomass, and media composition. A Punnett matrix is often
used to visualize the predictions formulated by the model with all four combinations
of true/false positive/negative represented. A metric such as accuracy or Matthews
correlation coefficient can be used to quantify the quality of the model’s prediction in
a single number.

3 Computational Methods for Genome-Scale
Reconstruction

With whole-genome sequences available for a greater number of species, the number
of genome-scale metabolic models (GEMs) developed over the last two decades
increased steadily (Monk et al. 2014). The number of computational tools tailored
for the reconstruction of biological metabolic networks as well as the analysis and
integration of omics data in these models has been developed accordingly (Lewis
et al. 2012). In this section we review the methods and databases used for the
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reconstruction of the stoichiometric matrix (S), filling reaction gaps in the network
and objective definition.

3.1 Tools for Network Reconstruction

The reconstruction of a GEM begins with the reconstruction of the stoichiometric
matrix of reactions and metabolites (Fig. 4). Careful inspection of the genome
annotation allows to link a gene and its sequence to a particular function in the
network. In order to connect these elements together, modelers can use the many
publicly available databases of pathways and biochemical reactions that are specif-
ically designed to provide the association between genes, biochemical reactions,
and/or the metabolic pathways (Kanehisa et al. 2017; Artimo et al. 2012; Placzek
et al. 2017; Wattam et al. 2017; Aziz et al. 2008; Devoid et al. 2013; Fabregat et al.
2018; King et al. 2016; Caspi et al. 2008).

The identification of metabolic candidates in the reference genome is the first step
of genome-scale reconstruction. To do so, modelers can either obtain enzyme
commission numbers (EC) from specialized software (Nursimulu et al. 2018) or
extract the information contained in the publicly available databases. In both cases,
the standardization of metabolite and reaction identifier is key for the consistency
and readability of the model. Since these identifiers vary considerably from one
database to another, draft reconstructions may not be readable in another format.
This type of issue has been addressed and can potentially be overcome by the use of
MetaNetX (Moretti et al. 2016) or BiGG (King et al. 2016). MetaNetX is a
web-based platform that attempts to centralize the identification of metabolite and
reactions while also providing methods for automated genome-scale reconstructions.
The main focus of the BiGG database is to list GEMs formulated in the BiGG
nomenclature. Nevertheless, reactions and metabolites stored on BiGG are linked to
other commonly used databases such as Reactome, KEGG, SEED, CHEBI, BioCyc,
and MetaNetX. Choosing an identification system and ensuring the conversion from
an annotation system to another is therefore key for the establishment of the draft
reconstruction of the model.

The network reconstruction can be executed in different frameworks based on
modeler’s preferences. The SEED (Devoid et al. 2013) and Merlin (Dias et al. 2015)
both allow for the automated generation of GEMs. While these functional models
provide predictions, exhaustive literature search and model fine-tuning are usually
necessary before a model is released (Thiele and Palsson 2010). The Open COBRA
(Constraint-Based Reconstruction and Analysis) suite is designed to include every step
of the process and is currently available under three different programming languages:
Python (COBRApy, Ebrahim et al. 2013), MatLab (COBRA Toolbox 3.0,
Schellenberger et al. 2011), and Julia (COBRA.jl, Heirendt et al. 2017). Implemented
in MatLab, the RAVEN toolbox (Agren et al. 2013) is another option for reconstruc-
tion that also entails the visualization of the metabolic networks. The sybil toolbox
allows R users to operate FBA, MOMA (Segrè et al. 2002), and ROOM (Shlomi et al.
2005) in their preferred language (Gelius-Dietrich et al. 2013). While Open COBRA
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does not specifically entail visualization, the generated network can be visualized by
building a metabolic map with Escher (King et al. 2015).

3.2 Tools for Network Analysis

The main functionalities of the reconstruction toolboxes mentioned above are to
allow the creation of foundational elements of models (metabolite, reaction, and
gene objects) and store them into a model object that can be saved or imported in the
desired format(s). These toolboxes also include basic model simulation functional-
ities such as the definition of objective and a bridge to the solver interface necessary
to optimize the model. These preliminary simulation functionalities are useful for the
conversion of the model into a mathematical format which can later be used for more
intensive simulation processes and the evaluation of the organism’s metabolic
capabilities. We cover here some of the algorithms that have been developed to
increase the quality of models before they are used for simulation.

3.2.1 Gaps in Network

In order to reveal biological capabilities, the network needs to be maximally
functional, that is, flux can go through as many reactions as possible. As discussed,
the mathematical formulation of FBA (steady-state assumption) does not allow for
the accumulation of metabolites. This means that for a given linear pathway, a single
missing reaction would block flux through every upstream and downstream reac-
tions. The entire pathway would then be considered unfunctional, a hypothesis of
debatable biological value that should be handled with care by modelers.

Several algorithms have been developed that aim at identifying problematic metab-
olites and reactions, solving gaps in the biological network, finding reactions that could
fill those gaps and eventually proposing genes that could catalyze the suggested
reaction(s) (Orth and Palsson 2010; Pan and Reed 2018). As mentioned, the general
framework of these algorithms first identifies dead-end metabolites, that is, metabolites
that cannot be produced or consumed in the metabolic network. Solving a gap in the
network may be accomplished by adding one or many reactions. To find candidate
reactions, these algorithms usually query larger reaction databases such as those
contained in KEGG (Kanehisa et al. 2017) or MetaCyc (Caspi et al. 2008). The value
of adding a given specific set of reactions can only be measured by the relatedness of
this proposed mechanism to the actual species being studied. Therefore, the third step
aims at identifying the best possible genes that can associate with those reactions.

The first gap filling algorithm (Satish Kumar et al. 2007) did not include this third
task, but subsequent versions incorporated different ways to input experimental data
along with the suggested reactions. GlobalFit (Hartleb et al. 2016) and ProbAnnoPy
(King et al. 2018) are good examples of gap filling methods attempting to improve a
metabolic model based on experimental data. For a deeper coverage of the available
methods, interested readers can consult this review by Pan and Reed (Pan and Reed
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2018). GlobalFit was used to increase the quality of two GEMs, Escherichia coli
iJO1366 and Mycoplasma genitalium iPS189. It uses a bi-level optimization prob-
lem to minimize the gap between predicted gene essentiality and the experimental
data and allows the incorporation of new reactions within the model or new
exchange reactions (media components) as well as biomass precursors (metabolites
of the BOF). ProbAnno (Web and Py) attributes a probability based on BLASTp
search e-value to rank the reactions used to fill the gaps in the network.

Such approaches are relevant in the current context of minimal cell research and
design. While a minimal cell has already been generated experimentally, the number
of genes it contains for which a precise function could not be attributed is a
significant portion of the complete genome (149/463). An ideal cellular chassis
should have no unknown properties (Danchin 2012) since it would serve as a
blueprint for further design. Hence, reconstructing metabolic networks and using
gap filling algorithms that provide functional annotation are systematic ways to
address the fulfillment of missing knowledge.

3.2.2 Objective Functions

The metabolic objectives of the cells can be summarized in a reaction of the
stoichiometric matrix and set as an objective: the biomass objective function
(BOF). The identification of key components necessary for a cell to grow is
nevertheless a daunting task. This process can be accomplished in a biased way,
which attempts at incorporating as much of the current knowledge of the organism’s
composition as possible or in an unbiased way where experimental data is utilized to
infer the cellular objectives. A worthy effort at summarizing the current knowledge
on prokaryotic biomass composition was accomplished by Rocha and colleagues
(Xavier et al. 2017). In this extensive study, the biomass composition of 71 manually
curated models available in the BiGG database (King et al. 2016) was compared
along with the phylogenetic distance of the species that they represent. Swapping the
BOF from a model to another showed that reaction essentiality prediction is sensitive
to the BOF composition. Further studying the impact of biomass composition on
gene essentiality predictions of several species, the authors found a set of universally
essential cofactors in prokaryotes. This foundational knowledge highlights the
importance of accurate BOFs for gene essentiality prediction by GEMs and provides
an important resource for future modeling work.

Using previously established essential cell components, modelers can partly
define the BOF for their organism of interest. Nevertheless, the remaining part of
the BOF is species-specific and can be completed using an unbiased approach. Much
like gap filling, cellular objective search can be performed algorithmically. Histor-
ically, most algorithms developed for that purpose have used metabolic flux analysis
(MFA) data together with various optimization methods (Burgard and Maranas
2003; Gianchandani et al. 2008; Zhao et al. 2016). While MFA is a particularly
well-suited type of data for flux models, the state-of-the-art number of fluxes
generated by the method does not scale to the number of reactions included in
GEMs. Recently developed algorithms attempt to use other types of data to find
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cellular objectives. BOFdat (Lachance et al. 2019b) uses a genetic algorithm to find
the biomass compositions that provide the best match between predicted and exper-
imental gene essentiality. The metabolites identified by the algorithm are then
clustered based on their relative distance in the metabolic network to form clusters
of metabolic objectives that can be interpreted by modelers. Another approach called
BIG-BOSS integrates multiple omics data types to formulate the cellular objective
by using a proteome constrained model, with a bi-level optimization problem similar
to BOSS (Gianchandani et al. 2008). By augmenting MFA for a subset of fluxes with
proteomics, the biomass composition was recovered more accurately than using just
one data type alone.

4 Data Integration and Phenotypic Predictions

Once a GEM is reconstructed, converted into a mathematical format, and validated
with experimental data, systematic model-driven hypothesis generation can take
place that will guide the design of the desired strain. Much like the design of a
production strain, the realization of a minimal cell requires in-depth knowledge of
the organism that can be acquired through the generation of extensive high-
throughput data. The integration of such data is made possible by GEMs, and a
plethora of software has been written that helps modelers in this task. Here we cover
available methods for the integration of high-throughput data as well as strain design
algorithms that can be leveraged for the design of synthetic minimal cells (Fig. 6).

4.1 Cellular Objectives and Gene Essentiality Prediction

A key concept for the design of minimal cells is the identification of removable
content. That is: “what genes are non-essential under laboratory conditions?”. To
formulate such prediction in silico, one must first determine the requirements for
growth (Fig. 6). As we mentioned, those are represented by the BOF in GEMs. The
definition of the BOF is tightly linked to the evolutionary pressure applied on the
strain, which is in turn function of its growth environment. For instance, given an
E. coli cell suddenly shifted from aerobic to anaerobic conditions, the instantaneous
modification in phenotype is the result of chemical and physical properties, i.e.,
utilization of new substrate, shift in metabolic state, changes in gene expression, etc.
This rapid adaptation can be termed proximal causation (Palsson 2015). Its counter-
part, termed distal causation, happens over time and is the result of evolutive
adaptation. Distal causation is proper to biological systems and entails a modifica-
tion of the genotype to fit the constraints imposed by the environment under which
the species is grown. Since the biomass composition of a cell is a result of its
evolution, each species entails different metabolite requirements for growth with
some essential components shared across a wide range of organisms (Xavier et al.
2017) (Fig. 6).
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4.1.1 Gene Essentiality Prediction

GEMs can be used to formulate reaction or gene essentiality predictions (Fig. 6). To
formulate that prediction, all reactions in the model are individually removed, and
every time, the model is optimized for growth (Suthers et al. 2009a; Joyce and
Palsson 2008). An appropriate threshold is necessary to discriminate between viable
and nonviable phenotypes. This allows determining which reactions are essential to
carry flux through the biomass reaction in the model. The proper definition of the
BOF is therefore critical for the accurate prediction of gene essentiality. The
qualitative definition of the BOF defines the growth requirements of the organism,
and the pathways that lead to the production of these metabolites are then activated.
Other constraints such as the growth media, uptake rates of the main carbon sources,
and/or oxygen also impact gene essentiality predictions.

The added value of GEMs is that most reactions within the framework are
associated with one or many genes. This association between gene and reactions is
termed GPR and accounts for reactions catalyzed by a single gene or multiple genes
in a complex, symbolized by an “and” rule, as well as isozymes, symbolized by an
“or” rule (Fig. 6). Whole-model gene essentiality can be generated easily using the
reconstruction toolboxes mentioned previously since they include an implementa-
tion of this function.

It is noteworthy that GEMs are very efficient at predicting gene essentiality.
Highly curated models like that of E. coli have achieved essentiality predictions on
different growth conditions with accuracies up to 93.4% (Monk et al. 2017). The
quality of the prediction relies both on the high level of biochemical information
included in the E. coli reconstruction and the precise knowledge of the growth
conditions. These limitations will be discussed later.

4.1.2 Beyond Single Gene Deletion

An advantage of GEMs is the ability to formulate predictions of synthetic lethality
(SL) (Fig. 6). The phenomenon was reported early in the classical era of biology in
an attempt to describe the observation that the combination of observable traits did
not yield viable descendants (Bridges 1922). At the gene level, SL is known as the
observation that simultaneously knocking out two genes yields a lethal phenotype
when their independent individual knockout provided a viable phenotype (Fig. 6).
Experimentally studying SL at the systems level is complex since it involves
screening several combinations of gene knockouts. For an organism containing
N individually nonessential genes, the number of combinations is the binomial
coefficient: n!

k! n�kð Þ!. Obtaining all possible SL combinations for an organism implies

generating a library of knockouts on top of a knockout library. This task has been
accomplished for heavily studied organisms such as Saccharomyces cerevisiae in
which gene editing methods are commonplace (Goodson et al. 1996; Deutscher et al.
2006) but is generally too demanding to be generated for most species.
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The computation of SL genes in FBA models is computationally expensive but
still orders of magnitude faster than generating the data experimentally. Using this
approach can guide the design of minimal genomes since it adds a level of infor-
mation that could not be otherwise fetched from the genome or single knockout
libraries. GEMs also provide the possibility to expand the SL study to more than
gene pairs and include triple or quadruple knockouts (Suthers et al. 2009a), an
undeniable advantage over the strictly experimental approach.

An interesting usage of SL analysis is the MinGenome algorithm written by
Wang and Maranas (2018). This algorithm takes as input the genome sequence of
the organism of interest, a GEM, genome-scale in vivo essentiality data, operon and
promoter sites, and transcription factor information. Using this information,
MinGenome iteratively finds the largest section of DNA that can be removed
without killing the cell. The operon structure along with the promoters and tran-
scription factor information are used to keep regulatory elements in place which
should increase the probability that the suggested minimal genome is functional
in vivo.

4.2 Multiple Omics Dataset Integration

As previously mentioned, the genomic era has enabled the generation of high-
throughput data (“omic”) for many different types of molecules. The integration of
these sizeable datasets into comprehensive biological knowledge requires a proper
framework. Metabolic models have been shown to provide a systematic way for the
integration of multiple omic datasets for mechanistic understanding (Monk et al.
2014; Bordbar et al. 2014). Ralser and colleagues discussed the integration of seven
types of omic datasets: genomic, transcriptomic, proteomic, lipidomic, metabolomic,
ionomic, and phenomic (Haas et al. 2017). The approach used to incorporate this
multi-omics information in GEMs will be discussed below.

GEMs use genomic information to extract biological functions of metabolic
genes. While the regulation of gene expression is not accounted in metabolic models,
the transcriptomic and proteomic datasets can be used to apply supplementary
constraints on the model. The flux bound can be limited based on the level of
expression or simply shut down when the genes are not expressed so that the
reaction(s) associated with these genes cannot carry flux (Fig. 6). The concept of a
minimal cell assumes a very specialized cell with reduced metabolic capabilities.
Integrating the gene expression datasets in models hence has the potential to
generate context-specific models that meet the expectation of highly specialized
minimal cells.

Other datasets characterize molecules outside the central dogma of biology (Crick
1970). Metabolite concentrations themselves are not included in standard FBA, but a
variant termed uFBA (Bordbar et al. 2017) allows the incorporation of time-course
metabolomics into GEM resulting in more accurate predictions of the metabolic state
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of the cell. Lipidomic and ionomic results are useful to determine the composition of
the cell, valuable information for the definition of the BOF.

The integration of multiple omic datasets with genome-scale models provides
mechanistic explanation of the organism’s phenotype under different environments
(Lewis et al. 2010). Using multiple omic datasets, Lewis et al. showed that E. coli
strains evolved under different conditions modify their pattern of gene expression in
a manner that is consistent with a variant of FBA termed parsimonious FBA (pFBA).
pFBA uses a bi-level linear programming approach to minimize the enzyme-
associated flux while maximizing biomass production. The flux state generated
using pFBA was consistent with the differential gene expression across conditions.
These findings provided support for the biological relevance of FBA. The implica-
tion for the design of minimal cells is that generating an FBA-based model for such a
cell would allow to design its optimal state ahead of conception.

5 Systems Biology of Minimal Cells

Since the proposition by Morowitz that minimal cells would allow understanding the
basic principles of life (Morowitz 1984), many efforts have been driven toward the
identification of theoretical minimal gene sets through comparative genomics
(Mushegian and Koonin 1996), gene-wide essentiality probing (Glass et al. 2006),
and a combination of these approaches (Baby et al. 2018). Genome reduction in
complex bacteria has also been attempted experimentally for several complex
bacteria (Choe et al. 2016), and ultimately, nearly 10 years of groundbreaking efforts
led to the realization of a working approximation of a minimal cell in vitro (JCVI-
syn3.0) (Hutchison et al. 2016; Sleator 2010).

We covered how the use of GEMs, which are mathematically structured knowl-
edge bases of metabolism, provides phenotypic predictions from genomic informa-
tion and thus can be leveraged for the rational design of minimal cells (Wang and
Maranas 2018). We will now review GEMs for some naturally occurring near-
minimal bacteria from the class of mollicutes and then cover expansion of modeling
methods beyond metabolism.

5.1 Available GEMs for Naturally Occurring Minimal
Organisms

Mollicutes have been the object of much research since they were proposed as the
smallest free-living organisms (Morowitz and Tourtellotte 1962). Extensive knowl-
edge of the particular metabolism (Miles 1992) of these species allowed the gener-
ation of GEMs for the most studied of them. The first GEM for a mollicute was
reconstructed for the human urogenital pathogen Mycoplasma genitalium (Suthers
et al. 2009b). This model includes 189 genes, 168 gene-associated reactions, and
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274 metabolites. Using the experimental essentiality data (Glass et al. 2006), the
model was consistent with 87% of essential genes and 89% of nonessentials. While
this model prediction may be accurate, several approximations were used for the
reconstruction. The biomass composition and the growth and non-growth-associated
maintenance costs that can be calculated from substrate uptake rate and secretion
rates were estimated from E. coli. Since there is no defined media forM. genitalium,
the growth media was also estimated.

Formerly known as Eaton’s agent, Mycoplasma pneumoniae is associated with
atypical pneumonia in humans (Dajani 1965; Lind 1966). Multiple efforts at char-
acterizing M. pneumoniae have been undertaken providing genome re-annotation
(Dandekar et al. 2000), and the transcriptome (Güell et al. 2009), proteome (Kühner
et al. 2009), and metabolism (Yus et al. 2009) have been studied in-depth. This
allowed the generation of a quantitative model for M. pneumoniae (Wodke et al.
2013). The amount of experimental data available allowed modelers to compare
predicted sugar utilization and obtain the energy utilization throughout the growth
phases. Constraining the model with this data allowed dissecting the pathway usages
at different growth stages.

The predictions formulated by theM. pneumoniae model revealed that a substan-
tial amount of ATP is not directed toward biomass production but rather toward cell
maintenance functions such as chaperone-assisted protein folding, DNA mainte-
nance, and posttranslational modifications. Strikingly, the ATPase was responsible
for most of the energy usage (57–80%) in order to maintain intracellular pH and a
favorable proton gradient across the membrane. The authors suggested that four
factors may impact the overall energy usage: the topology of the metabolic network,
the growth rate, the environmental conditions, and the cell size. These findings are
particularly interesting as they show that using a systems biology approach such as
GEMs for the design of bacteria can go beyond gene essentiality prediction and
reveal intrinsic properties affecting cellular energetics. These factors could hardly be
predicted without the integration of experimental data into a mathematically struc-
tured knowledge base.

5.2 Genome-Scale Modeling of Synthetic Minimal Organisms

Recently, modeling efforts were dedicated to JCVI-syn3.0, a synthetic working
approximation of a minimal cell (Breuer et al. 2019). The metabolic reconstruction
was generated using the gene annotation of the parental strain JCVI-syn1.0 (Myco-
plasma mycoides) for which much information is available. Collecting the breadth of
knowledge into a single computational format is a significant step forward in order to
define the functional metabolic requirements of a minimal cell. As discussed, GEMs
can be used to formulate phenotypic predictions such as gene essentiality and
integrate high-throughput data such as gene expression (see Sect. 4). Breuer et al.
recently provided a dataset of high-density transposon mutagenesis operated on
JCVI-syn3.0 as well as a quantitative proteomic dataset. The gene essentiality data
allowed identifying discrepancies between model predictions and observations.
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Together with the reconstruction process, the authors were able to formulate several
hypotheses on the remaining gene functions that could not be removed but never-
theless unknown.

Using proteomic data allowed contextualizing the activity of the expressed pro-
teins in JCVI-syn3.0, but the analysis is nevertheless limited. Indeed, while the
resulting GEM for this organism is the first and closest representation of a synthetic
minimal cell, more accurate model predictions would have required the detailed
biomass composition of this bacterium along with a chemically defined medium.
Including these parameters within the model should expand its predictive
capabilities.

6 Perspectives on the Use of Models for Minimal Cell
Design

A key objective of minimal cell research is to gather exhaustive understanding of the
cell. The FBA framework allows to generate multiple predictions on the metabolic
state of the cell, but the scope is limited to metabolism. Other approaches have been
developed that allow including constraints from various cellular functions such as
the expression machinery, regulatory network, enzyme kinetics, and thermodynam-
ics. We propose here to extend the definition originally proposed by Morowitz for
“the completeness of molecular biology” which entailed that every element in the
cell should be characterized.

What I do not understand I cannot create
—Richard Feynman

6.1 Expanding the Scope of Models Beyond Metabolism

6.1.1 Modeling Gene Expression

Using the constraint imposed by the stoichiometry of reactions was key for the
development of flux balance analysis (Kauffman et al. 2003) and later to genome-
scale models of metabolism. In an attempt to expand the scope of models beyond
metabolism, Thiele et al. reconstructed the expression matrix for E. coli (Thiele et al.
2009). The reconstruction of this matrix, named E-matrix by opposition to the
M-matrix for metabolism, was executed using the same protocol that was mentioned
above (Thiele and Palsson 2010). All reactions necessary for RNA transcription and
protein translation are included in the E-matrix. Interestingly, every element neces-
sary for the synthesis of proteins is considered as a metabolite in the network. For
instance, transfer RNA (tRNA) and ribosomal RNA (rRNA) are both metabolites
that can be produced from the transcription reactions. The tRNA are then charged
and used in another reaction which synthesizes proteins. While the number of genes
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included in the E-matrix (423 genes) was smaller than that of the M-matrix [1515
genes (Monk et al. 2017)], the number of reactions is significantly higher (13,694
reactions in E vs 2719 reactions in M). The large size of the E-matrix is due to the
high number of similar reactions catalyzed by the expression machinery.

Much like the M-matrix, the stoichiometry imposed by the E-matrix can be used
as a constraint, and the reconstruction can be converted into a mathematical format
by applying reaction bounds and fixing an objective. In this case, the uptake rates of
amino acids and nucleotides need to be fixed as they are the necessary metabolites
for the production of every downstream metabolites. The production of ribosome by
the model can then be optimized for different growth rates since ribosome produc-
tion is key for cell growth. Refining the constraints allowed the model to generate a
number of ribosomes matching the experimental data. This work demonstrated the
applicability of FBA to systems other than metabolism.

In order to couple the machinery of gene expression to the metabolism of the cell
and generate a unified model for cellular growth, additional constraints were needed.
Termed “coupling constraints,” these equations are a function of the organism’s
doubling time and account for the dilution of material in doubling cells while
providing upper limits on enzyme expression (Lerman et al. 2012; Lloyd et al.
2018; Thiele et al. 2012; O’Brien et al. 2013). These new constraints are both integer
and linear and therefore define a mixed integer linear programming (MILP) problem.
This type of problem is computationally more intensive than the regular linear
programming problem solved in FBA and also requires more specific solvers
(Yang et al. 2016).

6.1.2 Simulating with ME Models

An ME-model links metabolism to gene expression and can be used to generate
experimentally testable predictions such as growth rate, substrate uptake and secre-
tion rates, metabolic fluxes, and gene product expression levels (O’Brien et al.
2013). This last property is important as it simplifies comparison with experimental
gene expression levels, which can now be routinely generated under many different
environments. The ease of integration of multiple omics data in ME models has
allowed the identification of key biological regularities (Ebrahim et al. 2016).
Experimental proteomic data can provide absolute protein counts within a cell,
which can be used to constrain the amount of protein in the ME model. Fluxomic
data can also be used as a constraint since it provides the flux through a certain
number of reactions. Combining these two types of data into ME-model simulations
allowed to generate turnover rates (keff) for enzymes in the model, an example of
model-driven generation of knowledge.

Simulating ME models over 333 different environmental conditions, Yang et al.
identified genes consistently essential for optimal growth in E. coli (Yang et al.
2015). The formulated model-driven prediction of the core proteome was also found
to be consistent with non-differentially expressed genes. Obviously, the functional
incorporation of expression subsystems provided by the ME matrix allows the
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identification of more functional categories [COG (Koonin et al. 2004)] when
determining a minimal gene set. This was further exemplified by the fact that
DNA replication and repair mechanisms, functional categories absent from the ME
model, were not represented in the core proteome. The further expansion of the
ME-model to include other cellular systems such as a constraint-based approach of
the regulatory machinery would provide a working approximation of a whole-cell
model requiring fewer experimental parameters than what has been previously
generated (Karr et al. 2012).

Potentially because of the size of the E-matrix, the reconstruction of entire ME-
models has been contained to only two species so far, namely, Thermotoga maritima
and E. coli (Lerman et al. 2012; O’Brien et al. 2013). Much like the generation of M-
models is eased by the existence of toolboxes, the reconstruction of ME-models
could be widespread by the recent publication of COBRAme, a Python framework
for the reconstruction of ME-models (Lloyd et al. 2018).

6.2 Perspectives on the Use of Models to Design Minimal
Cells

We delved into the historical evolution of biology and highlighted the possibility that
a part of the discipline could turn into a field of engineering, in which the concept of
a minimal cell would play a central role. The main idea surrounding this minimal cell
concept is that of biological reductionism (Glass et al. 2017), which entails the
complete description of every molecular functions harbored by a free-living cell
(Lachance et al. 2019a). Reaching this level of knowledge is of paramount impor-
tance for the establishment of key design rules for organisms. With the advent of
DNA synthesis techniques and whole-genome assembly, the creation of entirely new
organisms is within reach. Such an example has been achieved with JCVI-syn3.0
(Hutchison et al. 2016), completing the first functional in vitro approximation of a
minimal cell.

JCVI-syn3.0 reveals the state of the art in the design of minimal cells. Cutting-
edge methods together with extensive work over many years have been put in place
in order to produce this framework. The amount of labor necessary is met with the
high-throughput capabilities of our days and age, both in terms of DNA synthesis
and cloning and assembly, but the limiting factor remains the predictability of a
given design. This struggle, relevant for both academic and industrial researchers, is
one of the grand challenges that lays ahead in synthetic biology, and it is understood
that laboratories which possess the best predictive power may outcompete those with
high-throughput production and analysis capabilities.

In this context, the development of models for minimal cells is of paramount
importance. We have reviewed the standard FBA approach for the genome-scale
modeling of metabolism (Figs. 3, 4, and 5) and its applications for high-throughput
data integration and the formulation of phenotypic predictions such as the flux
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through metabolic reactions and gene essentiality (Fig. 6) (Suthers et al. 2009a;
Zomorrodi and Maranas 2010). Integrating this knowledge into a single framework
is important to offer a systematic way of addressing knowledge gaps (Orth and
Palsson 2010; Pan and Reed 2018) as demonstrated by Breuer et al. in their GEM of
JCVI-syn3.0 (Breuer et al. 2019).

What lays ahead is up for debate. Further development of models for mollicutes
will require more exhaustive biomass and growth media definition to impose
relevant constraints on the system. Given their small genomes, the number of
biochemical studies needed before exhaustive characterization is reached is reduced
and, with the help of models, could be addressed rather quickly (Danchin and Fang
2016). A recently developed algorithmic method allows to generate a minimal
genome sequence from transcriptional architecture and an ME-model (Wang and
Maranas 2018) which could help in reducing genomes of more elaborate organisms

Fig. 5 Tools for genome-scale reconstruction and analysis. (a) Non-exhaustive list of computational
tools and databases for the reconstruction of metabolic networks. First, querying annotation databases
allows the identification of metabolic gene candidates (RefSeq, PATRIC). These genes can be associated
to reactions by consulting reaction databases (KEGG, Brenda, ExPaSy, Chebi). The reactions and
metabolites are associated to model specific identifiers using model-oriented databases (BiGG,
MetaNetX,ModelSEED). The reconstruction toolboxes are designed to facilitate the creation of reaction,
metabolite, gene and model objects programmatically (Open COBRA, Sybil, Raven). (b) Non-exhaus-
tive list of computational tools to facilitate the identification of gaps in the network and cellular objectives
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that are already used as production strains such as E. coli and S. cerevisiae. As we
just discussed, constraint-based approaches can be expanded beyond metabolism,
allowing the generation of models of metabolism and expression, ME-models. These
models have already been employed to generate an in silico prediction of the core
proteome by simulating on a wide array of different environments (Yang et al. 2015).
With one of the main conclusions of this study being that the inclusion of more
cellular systems be important for accurate predictions of a minimal gene set, it is
interesting to consider that the expansion of modeling methods beyond metabolism
and expression may be key for the rational design of minimal cells.

Finally, in silico writing of functional genome should be the following step. The
integration of software tools for the conception of genomes is underway with the
“Autocad” for genome recently published (Bates et al. 2017) as well as a genetic
circuit compiler (Waites et al. 2018). Such tools are inspired by the experience
acquired in the field of engineering, and the interest spurred by the community
suggests a widespread application for the future of biology. For now, no organism is
fully characterized, and hence the proposed completeness of biology (Morowitz
1984) is yet to be achieved. The use of genome-scale models together with genome
writing tools might accelerate this process, and once a well-understood minimal cell
chassis is described, strain design will reach a new paradigm.
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From Minimal to Minimized Genomes:
Functional Design of Microbial Cell
Factories

Paul Lubrano, Antoine Danchin, and Carlos G. Acevedo-Rocha

Abstract The minimal genome is a theoretical concept asking what is the minimal
gene set that defines life under a given environment. Experimental efforts show that
stripping off most non-essential genes results in fragile organisms with “minimal
genomes”. By contrast, eliminating cryptic genes and mobile DNA results in strains
with “minimized genomes” suitable for biotechnological applications because they
display enhanced productivity, robust growth and upscalability. While it is believed
that a minimal genome could be used to plug in “metabolic modules”, we argue that
there is no universal “chassis” because different organisms are suited to different
environments. A further issue with the minimal genome is that it places DNA at the
top of the hierarchy that led to the origin of life, ignoring metabolism and supporting
a gene-centric view of evolution. This hardly accommodates the fact that the
invention of nucleotides must have been a late event in prebiotic evolution. In this
work, we take a “metabolism first” approach to describe the emergence of the first
cells and the evolution of selected metabolic pathways that provided different
solutions to the same problem. Understanding such processes provides insights for
developing platform strains in metabolic engineering and industrial biotechnology.
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1 Introduction

Synthetic biology (SB) brings together professionals from various disciplines with
different methods, languages and goals for making biology more predictable and
useful to humankind (Acevedo-Rocha 2016). One such goal is the creation of
synthetic cells that can perform predefined tasks such as the sustainable production
of food, medicines and chemicals. The idea of using synthetic cells as chemical
machines is centuries-old and dates back to Jacques Loeb (Porcar and Peretó 2018).
With the advent of contemporary SB, bioengineers aim to develop not only “micro-
bial cell factories” for the manufacturing of goods but also “minimal cells” to
primarily answer the question: what is the minimal gene set allowing cellular life?
(Juhas et al. 2011) To answer this question, two main experimental approaches have
emerged, both using microbes with a small genome size and suitable for cultivation
in the laboratory: top-down and bottom-up engineering. The former approach uses
massive random combinatorial or directed single-gene mutagenesis techniques to
remove all non-essential genes, resulting in minimal gene sets of 200–1000 genes
(Acevedo-Rocha et al. 2013). Some of these gene sets can be useful to identify
essential genes from pathogenic bacteria to develop new antimicrobial targets (Juhas
et al. 2012). But the gene number depends on the organism, the gene mutagenesis
method used in the construction and the environment—usually rich media where
many metabolites are externally provided in a context where cells cannot produce
their one building block to construct macromolecules (e.g. amino acids). In minimal
media, which is a prerequisite for industrial applications, an additional number of
1000 “essential” genes are needed to provide de novo most basic metabolites
(Danchin 2012).

By contrast, the bottom-up approach, which belongs to the field known as
“synthetic genomics” (Schindler et al. 2018), harnesses high-throughput gene syn-
thesis to build up entire chromosomes of reduced size that can be transplanted into
cells. This remarkable feat has been accomplished in Mycoplasma mycoides using
not only a slightly modified genome of 1000 kb called “JCVI-syn1.0” (Gibson et al.
2010) but also a half reduced version thereof dubbed “JCVI-syn3.0” (Hutchison
et al. 2016). Surprisingly, almost one-third of the genes in that construct were
apparently coding for unknown functions (Coyle et al. 2016). More recently, the
chemical synthesis of larger and recoded genomes including reduced versions of
Caulobacter ethensis-2.0 (Venetz et al. 2019) and Escherichia coli MDS42 has been
reported (Fredens et al. 2019). The ultimate goal of synthetic genomics is to build
from simple chemicals the genomes of eukaryotic cells including yeasts (Pretorius
and Boeke 2018) and humans (Boeke et al. 2016) for understanding genomes and for
developing applications in biotechnology.

A third nonexperimental approach is based on in silico comparative genomics,
which exploits advanced phylogenetic methods of sequence similarity to infer
protein-coding genes present across a series of microbes. However, as the number
of genomes increases (from not only free-living Bacteria and Archaea but also non-
free-living microbes such as symbionts and parasites), the number of conserved
genes decreases down to zero (Acevedo-Rocha et al. 2013). This is because func-
tions must be preserved while different structures can perform the same function.
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Such genes code for specific protein primary, secondary and tertiary structures,
which can be extremely variable, yet the function of these proteins is conserved
(Mazumder and Vasudevan 2008). The absence of gene homologs in closely related
species, even if combined with gene mutagenesis experiments, is a common finding
(Baby et al. 2018), indicating the existence of minimal genomes suited to different
niches.

Several years back, we suggested that, in order to be productive, the concept of
gene essentiality should be replaced by “gene persistence” to be able to find
universal gene functions that can be determined by nonuniversal protein-coding
structures (Acevedo-Rocha et al. 2013). Persistent genes are microbial protein-
coding genes that tend to be conserved in many genomes of widely different clades.
They are mainly located on the leading DNA strand and expressed at a high level.
Using a “functional approach” based on lists of persistent genes, it was possible to
identify universal functions that are needed for life: biogenesis of the cell envelope
(membrane, and cell wall when relevant), energy production and conversion, trans-
port and metabolism of building blocks (organic acids, coenzymes, amino acids,
lipids, carbohydrates, nucleotides) as well as information transfer (replication,
recombination and repair) (Fang et al. 2005, 2008; Forterre et al. 2007). More
recently, a similar functional approach was used to assign function to many of the
unknown genes of Mycoplasma mycoides JCVI-syn3.0, allowing the identification
of one third of genes involved in protein translation, stress response, small molecule
transport as well as in RNA and DNA metabolism (Danchin and Fang 2016).

Obviously, a functional approach alone won’t identify all functions needed to
sustain life because important functions may be overlooked despite careful func-
tional analysis of the cell’s behaviour. To try and identify unexpected functions, it is
important to combine data from large-scale experiments such as proteomics or
metabolomics in order to develop in silico models that can enhance our understand-
ing of apparently unidentified functions within a minimal cell. For example, an in
silico flux balance analysis (FBA) model based on 338 metabolic reactions and
304 metabolites was elaborated and compared with in vivo data for JCVI-syn3A
(Hutchison et al. 2016), revealing the function of genes mostly related to RNA
modification (Breuer et al. 2019). To go further, we need to integrate many other
factors such as isoenzymes and media optimization to improve predictability (Jean-
Christophe Lachance et al. 2019).

Theoretically, a minimal cell might provide a clearer metabolic environment and
reduce potential interactions between the endogenous genome and a targeted meta-
bolic pathway. However, a major issue of minimal cells is that their minimal
genomes are usually adapted to constant temperature and rich media. Moreover,
the elimination of stress-responsive genes and restriction/methylase or toxin/anti-
toxin systems that are dispensable under ideal conditions render fragile cells to
fluctuations of temperature and nutrient availability (Acevedo-Rocha et al. 2013).
In addition, the elimination of two non-essential genes can lead to a lethal pheno-
type, a phenomenon known as synthetic lethality and related to nonadditive epistatic
effects (Butland et al. 2008). Finally, another factor that is often not considered is
growth rate, for instance, JCVI-syn3A has a very long doubling time of 2 h in rich
media. Hence, these minimal cells are not suitable for industrial applications.
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In parallel to the “minimal genome” projects during the past two decades, other
efforts emerged to develop applications with model microbes in Europe (1998 EU
Bacillus subtilis factory project) and Japan (2001 minimum genome E. coli factory
project). These efforts resulted in a better understanding in the processes of protein
expression and secretion in B. subtilis and in E. coli strains more suitable for the
production of the amino acid threonine (Chi et al. 2019). In the USA, besides the
“tour-de-force” works developed in Mycoplasma, other efforts reduced rationally
the genome of E. coli. For instance, it was possible to reduce the genome of E. coli
strain MG1655 from 6 up to ca. 39% (Pósfai et al. 2006), resulting in the E. coliMDS
strain series that lack mostly transposons, mobile genetic elements and cryptic genes
(Fehér et al. 2007; Umenhoffer et al. 2010; Csörgo et al. 2012). Recently such genetic
modifications were transferred to the E. coli BL21 strain, which is commonly used to
produce recombinant proteins (Draskovits et al. 2017).

Since then, many organisms like B. subtilis, Pseudomonas putida, Streptomyces
and yeast have been added to the list (Chi et al. 2019). All those strains can be
defined as cells with “minimized genomes”. Notably, such engineered strains dis-
play features that are superior to produce chemicals and proteins compared to their
ancestors. In some cases, however, some features have been compromised, indicat-
ing that reverse engineering is needed to fix the issues. For example, E. coliMSD42
showed metabolic instability in chemostats (Couto et al. 2018). Likewise, the slow
growth rate of E. coliMS56 in minimal media was improved after applying adaptive
laboratory evolution (Choe et al. 2019). In the case of B. subtilis, the removal of
almost 40% of the chromosome resulted in strains that can grow only in rich media
(Müller et al. 2017; Reuß et al. 2016; Suárez et al. 2019).

In summary, the removal of “junk” sequences has resulted in cells with “mini-
mized genomes” that are more robust for certain biotechnological applications. This
contrasts with cells with “minimal genomes” that are fragile and thus not suitable for
practical applications (Zhang et al. 2010).

In the next section, we examine how persistent functions may have arisen at the
onset of life. We then provide selected examples showing how enzymes were
invented at least twice to solve the same problem but using different approaches
by microorganisms adapting to different environments. Our main goal is to under-
stand better metabolic design principles for designing microbial cell factories, thus
filling a gap between top-down targeted genome reduction and metabolic engineer-
ing efforts.

2 FromMinerals toMetabolism to Encoding of Information
in Genomes

2.1 Origins of Life

The origin of life has always been a matter of debate. The main cause of discrepancy
is the divergent preconceived views that scholars from different disciplines have
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when embarking in such an elusive problem. On the one hand, prebiotic chemists
study the emergence of molecules from conditions that might not have been relevant
early on. On the other hand, other scholars pose RNA at the onset of life and place
the origin when DNA appeared, but this molecule is quite stable and could not have
been present without a wealth of other pre-existing metabolic processes. There will
always be opposite, yet sometimes complementary ideas on the origin or origins of
life on Earth. The scenario below integrates physics, physicochemistry, organic
chemistry, surface chemistry, enzymology, protein evolution, genomics and bioin-
formatics to study the evolution of ions to minerals, cofactors and coenzymes,
followed by peptides, RNAs, protein machineries like the proto-ribosome and finally
DNA. In this scenario, protocells gave birth to protokaryotes, of which Bacteria and
Archaea arose, followed by Eukarya, as summarized in Fig. 1.

2.1.1 From Minerals to RNAs

The scenario presented here is at odds with mainstream views, yet it is built on a
rational exploration of constraints that must have existed on Earth when life began to
develop. It is based on the idea, proposed by Freeman Dyson, that life existence
required at least two origins (Dyson 1985). It also assumes that the early cells are
likely to have been made of fairly large entities. Present-day cells have been
optimized and miniaturized for several billions of years, in a path reminding us
how our awkward and big computers gave birth to smart and small cell phones.

Fig. 1 A possible scenario of the origin of cellular life based on metabolism. CHOPSN carbon
hydrogen oxygen phosphate sulphur nitrogen, AAs amino acids, ALA aminolevulinic acid, RNA
ribonucleotide acid, tRNA transfer RNA, gRNA genomic RNA, rRNA ribosomal RNA, cRNA
complementary RNA
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Cells are built up from atoms. Any scenario of the origins of life must begin with
accounting for the transition between relevant atoms and the building blocks that
make life as we know it. A first finding shows us that, among the atoms listed in
Mendeleev’s table, only a handful are present in all extant organisms (CHOPSN).
The logic of chemistry, which drives stable interactions between atoms, made that
life essentially comprises elements of the first two rows of the table, plus some
metallic ions. Life is also made of macromolecules. It encompasses a subset of
polymer chemistry where polymers are formed with production of a water molecule
during polymerization of monomers. Polymerization is a remarkable process as it
requires that a specific entropy component allows monomers to get together in a
stable subset of conformations. Finally, life is developing in water, and water is a
highly unusual solvent, precisely because it manages a huge entropy component due
to the ubiquitous hydrogen bond-driven interactions between water molecules.

If we are to account for the formation of macromolecules, then it is hardly
possible to allow them to happen in a purely liquid water phase, as hydrolysis
would prevail. The only way out is to benefit from (not fight against!) the entropy
moiety of the energy involved in making polymers. This suggests that the most
likely process would require that polymerization happened on surfaces. This was
proposed by many explorers of the origins of life, among whom Bernal (1951),
Granick (1957), Cairns-Smith (1982) and Wächtershäuser (1988). This would lib-
erate a water molecule free to move in the environment, hence associated with a
large entropy increase, while fitting with a further constructive view of a primitive
metabolism. This metabolism would use surfaces as templates for local concentra-
tion and selective generation of a subset of carbon-based molecules, which would
otherwise have generated an unlimited set of varied compounds, poisoning the
environment (Cairns-Smith 1982; Wächtershäuser 1988; Danchin 1989).

A key feature of extant metabolites is that they are often negatively charged.
Remarkably, their charge is not involved in their function, suggesting that the solid
surfaces that selected the first metabolites comprised metal ions, iron in particular,
diluting out uncharged molecules in the surrounding environment (Wächtershäuser
2007). During this first period, a subset of the amino acids present in extant cells
would be formed on relevant surfaces, with formation of a variety of peptides. In
addition, this peptide-based metabolism would also create lipids, essential for the
synthesis of the membrane of primitive cells, in a process that involved thioester
bonds, sometimes deemed essential for the origin of life (de Duve 1990). Such a
mixture would lead to some reproduction of a subset of the molecules, via a process
named “graded autocatalysis replication domain” (GARD) as described by Lancet
and co-workers (Segré et al. 1998).

The corresponding chemistry has been documented in various experimental
setups (Miller and Urey 1959; Lohrmann and Orgel 1968; Shapiro 2000; Costanzo
et al. 2007; Kim and Benner 2015; Gibard et al. 2018; Xu et al. 2019), rarely
matching plausible prebiotic environments and often ignoring the role of surfaces,
so that the main questions asked for scenarios of origins remain open. How were
coenzymes formed—they are the true effectors of biological catalysis—and what
about nucleotides? Their chemical build-up is a difficult challenge, because
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ribonucleotides, which are essential besides polypeptides for building up the first
ancestors of the life’s effector structures, are extremely unstable. Any relevant
scenario must therefore propose a steady-state process that would continuously
generate ribonucleotides. A further difficulty comes from the fact that nucleotides
are nitrogen-rich, so that, in a redox-neutral atmosphere, nitrogen fixation had to be
discovered very early on.

Several scenarios have been proposed to answer either of these questions, but it
must be acknowledged that it is difficult to see how they could have been actually
implemented. A possibility is that an alternation of humid conditions followed by
desiccation allowed the formation of polyphosphates and ribonucleotide polymers
(Ross and Deamer 2016). But, in order to proceed to life, this must have happened in
environments where a specific nitrogen-fixing process had already developed. A
chemical scenario that makes use of a process related to non-ribosomal peptide
synthesis triggering a reaction reversing that now acting in the synthesis of the
ubiquitous molybdopterin cofactor would generate a guanylate derivative in a single
step involving formic acid assimilation, ending up in the direct creation of a ribose
moiety linked to the nitrogen-rich guanine base without asking for a separate,
independent, generation of ribose (Danchin 1989).

At this point in the development of prebiotic surface chemistry, the environment
of iron-containing surfaces would be enriched in mixtures of peptides and ribonu-
cleotides. Polymerization of the latter would result in the formation of oligonucle-
otides, which, only if associated with peptides—yet another feature showing that
peptides must have been early actors of prebiotic chemistry—would form the correct
30–50 bonds, not the 20–50 bonds that a spontaneous polymerization also generates
(Wieczorek et al. 2013).

2.1.2 RNA Metabolism

When primitive metabolic GARD aggregates reached this level, they comprised
short RNA molecules which, carrying phosphate bonds, could bind metal ions and
progressively substitute to surfaces, where they carried over surface metabolism.
Present-day transfer RNAs are likely to be descendants of these primitive
metabolism-supporting RNAs. Less than 80 nucleotide long, and made of two
similar halves (Hopfield 1978), parents of transfer RNAs are plausible candidates
for an RNA metabolism step. Indeed, in extant organisms, these molecules are
heavily modified (Machnicka et al. 2012), showing that they still interact strongly
with metabolic pathways not necessarily related to the process of translation. tRNA
molecules would then behave as “handles” maintaining selected molecules to be
modified by reactive groups, in a process that has been named “homeotopic trans-
formation” (Danchin 1989). We still recognize this process in the modification of the
first residue of protein, a methionine that is formylated, or in the formation of
glutamine on glutaminyl-tRNA loaded by glutamate, as found in Firmicutes and
related bacterial clades (Feng et al. 2004). Naturally, the very process of peptidyl
transfer in the ribosome belongs to this category of functions (Leung et al. 2011).
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Finally, further witnessing their role as support of metabolism, tRNA molecules are
still used in a variety of cells as a handle in the synthesis of the heme precursor
aminolevulinate (Feng et al. 2004), or in the synthesis of some bacterial envelope
components (Kamiryo and Matsuhashi 1969).

It is therefore plausible to think that metabolism was organized around synthesis
of peptides, nucleotides, coenzymes and lipids, with tRNA ancestors playing the role
that minerals had played previously. This created a novel GARD system centered on
RNA metabolism. Among the first ribonucleotide bases likely to have been present
during this early period, one expects to find, besides guanine derived from the
nitrogen-fixing process, adenine, inosine, uracil and cytosine (note that pyrimidines,
today, derive from amino acid metabolism a feature that may have been present very
early on). The RNA molecules generated with these bases tended to fold on
themselves. This allowed them to discover that A could pair with U and G with C
or U. This uncovered a first type of coding, based on the general law of comple-
mentarity, in the form stressed by Pauling and Delbrück as early as 1940 (Pauling
and Delbrück 1940). Folding generated stems and loops, and more complicated
shapes such as pseudo-knots, that allowed RNA molecules to be able to develop
enzyme activities, becoming ribozymes. Among those, formation of peptide bonds,
with an ancestor of ribosomal RNAs stabilized by relevant peptides, associated
ancestors of tRNAs acting as amino acid carrying handles. Progressively, the
thioester-based synthesis of peptides was replaced by an RNA-based synthesis.
Initially, the overall specificity of the reaction remained limited, forming more or
less random assemblies of amino acids into varied peptides.

It is expected that peptides were not equivalent, with some peptides playing a
critical role in the primitive cell. This entails that the discovery of how to favour their
synthesis became a key function. At times, discovered from early RNA synthesis,
the law of complementarity between RNA bases made it possible to ensure that the
peptidyl transfer would become ordered rather than random, driving selection of a
precise sequence of the amino acids in the neosynthesized peptide. This required that
tRNAs, each loaded with a specific amino acid, could be aligned with some
reference RNA, using complementarity with part of their sequence. Then the
presence of that guiding sequence, playing the role of a mentor RNA (mRNA),
would behave as an indirect template for building up the peptide sequence. In this
process, tRNA acquired a new function besides that of support of metabolism. It
became an adaptor between the mRNA sequence and the peptide sequence. This
function would obviously be subjected to positive selection, in a way fitting well
with the GARD model of primitive evolution.

The complementarity between two classes of RNAs introduced, for the first time,
a law of coding, creating a cipher—a primitive genetic code—that allowed corre-
spondence between a string of nucleotides and a string of amino acids (Danchin
1983). This code associated a short mRNA sequence of nucleotides—a codon—to a
specific amino acid, witnessing the emergence of a totally new function of RNA
molecules, based on management of information.

In summary, besides its role as substrate in its metabolic functions (presentation
of a metabolite for a reaction and ribozyme activity), the RNAmolecular class, under
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the form of mRNAs, now acted as templates carrying the memory of a chemical
reaction (here, the ordered sequence of specific amino acids to form particular
peptides). This brought to light an information, embedded in the arbitrary symbolic
link between a memory (the nucleic acid) and a function (a peptide contributing to
the survival of the protocell). The increasing specification of this relationship
between memory and function developed into the extant rule known as the
genetic code.

At this point, the cell harboured a functional trio: (1) tRNAs, which we can now
truly call “transfer” RNAs; (2) template mRNAs, precursors of what will become
messenger RNAs and genes; and (3) a family of ribozymes, precursors of ribosomes
(peptidyl transferases), catalyzing the reaction required to form peptide bonds and of
other activities. When cells reached this stage, they gradually went through a whole
series of improvements. The RNAs of this world of RNA metabolism kept evolving.
They recruited new chemical abilities, through the evolution of cofactors of enzyme
catalysis, the elimination of parasitic molecules, and the improvement of exchanges
between the inside and the outside of the cell. In parallel, an ever more efficient
management of energy channelled electron transfers and handled polyphosphates
and osmotic pressure via the synthesis of large molecules, including complex sugars,
that behaved as matter and energy storage compounds. How did these primitive cells
store the memory of the most relevant metabolic ensembles? An obvious challenge
is expected here to have evolved some stable solution: indeed, because RNA is so
unstable, a critical question that arose was that of its durability.

2.1.3 RNA Genomes

The protocells containing the RNA trio kept splitting and merging together, some-
times engulfing one another, propagating the most efficient metabolic setups. They
reproduced as described for GARD systems, in parallel with the associated peptide-
coding system. Starting as short peptides, the length of coded peptides increased
progressively with the increase in size of the ribozyme endowed with peptidyl
transferase activity, the future ribosome, and peptides began to further evolve
enzymatic activities. Among the functions invented by ribozymes emerged that
which allowed RNA replication (Lau and Ferré-D’Amaré 2016). This function
derived from the discovery that complementarity between the sequences of nucleo-
tides of a ribozyme or any other RNA allowed that a complimentary copy (a cRNA)
could be maintained faithfully, replicated. This cRNA resulted from a simple coding
rule: A<¼>U and G<¼>C (likely with some ambiguity allowing G<¼>U). The
replication process led to the formation of an RNA double helix, an RNA gene
(gRNA), that comprised two strands in opposite directions. The strand coding the
structure of ribozymes (rRNA) and tRNAs, but also that of the templates ensuring
the generation of peptides of defined sequence (mRNA), was associated with a
complementary strand (cRNA). We must note here that the phosphodiester bond
forming the RNA molecule is not symmetrical: in three dimensions 50–30 bonds
differ from 30–50 bonds. This entails that the copy is orientated in the opposite
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direction to that of the copied strand, and this must be considered by any machinery
using RNA strands. We expect here that some peptides were involved as cofactors of
this primitive RNA replication process, thus interlocking the replication of RNA
with the synthesis of peptides.

Alas, implementing a replication process could not be straightforward because the
double-helix RNAs (gRNAs) form a linear molecule, making that their ends (telo-
meres) are free. Now, the replicative machinery had to bind to these ends, preventing
replication of these extremities. This led to shortening of the RNA genes at each
replicative cycle making them shrink and then progressively disappear. This con-
straint favoured discovery of an RNA-based way out. In extant replication (that
operates in extant cells on DNA, a variant of nucleic acids that is discussed below) an
enzyme, telomerase, fulfills this function. Remarkably, today it still makes use of an
RNA template to extend the extremities of the (DNA) molecule to be replicated
(Wu et al. 2017). This makes it plausible to assume that this patching-up process is
an archive of the primitive RNA replication system that operated in the very first
cells. Finally, the replication process unveiled yet another obvious functional asym-
metry. Indeed, while essential RNAs (mRNAs, tRNAs and rRNAs) were required in
substantial amounts in the cell to perform their function, their complement (the
cRNAs) had only a role in storing a replicable memory. This did not require the
presence of multiple copies. To solve this asymmetry, a new function became
indispensable. Analogous to replication, but asymmetrical and naturally derived
from ribozymes, it consisted in repeatedly transcribing only one of the two strands
of the replicable memory.

Another critical feature of life is likely to have appeared at this stage, especially
when the peptide bond-forming ribosomal RNA increased in size by accretion of
RNA fragments allowing the ribosome to properly accommodate tRNAs
deciphering an mRNA. Indeed, RNA is made of only four nucleotides, and long
RNA molecules may fold in a very large number of structures, only one of which
retaining a proper function. There was an absolute need for channelling folding into
the right shapes in a process discriminating between functional and nonfunctional
entities. This information-loaded step requires specific agents, likely to be poly-
peptides, that load a source of energy, allowing them to selectively identify the
functional structures, letting the other ones to be either refolded or degraded. This
step is reversible, but the agents need to be reset to their original state, and this
requires dissipating the energy from the source they had associated to for their
discriminating role. Remarkably this two-step behaviour (reversible information
identification followed by energy dissipation for reset) follows exactly the principle
discovered by Rolf Landauer in 1961 (Landauer n.d.). That agents displaying related
functions are essential for life is obvious when remarking that minimal genome code
at least for 50 such agents (Boël et al. 2019). Despite its key importance, this family
of functions has been entirely overlooked in all previous explorations of the origins
of life.

At this point, protocells contained sets of double-helix RNAs of various
sequences, as seen today in the genome of some RNA viruses. Transcription
produced the mRNA templates, the tRNAs and the proto-ribosome (rRNA), whereas
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replication increased the copy number of both strands of the ancestral genes.
Transcription, being intrinsically asymmetric, is functionally distinct from replica-
tion. This made that the management by telomerases of the ends of the many
individual double-stranded RNA genes was wasteful and difficult to coordinate
with transcription. This hurdle must have led early on to the splicing of several of
the gRNAs into longer double-stranded RNA coding simultaneously for several
functions as in extant chromosomes.

Remarkably, we note that RNA splicing is therefore likely to have been a
primitive cell function, not a late discovery. Still, the former function, transcription,
required large amounts of RNA, while the latter, clustering memory fragments
within RNA genomes (gRNA), required much less. Consequently, transcription
and replication evolved separately. A first function associated with transcription
was, for example, the separate recognition of the beginning of proto-genes, what we
name promoters today. Furthermore, it seems natural that the processes preceding
formation of the final products of the cell metabolism—transcription and replica-
tion—were confined to a given compartment. This would make a proto-nucleus. Yet,
these protocells must have depended upon a very active metabolism, ensuring the
continuous synthesis of ribonucleotides and polyribonucleotides, chemically unsta-
ble molecules. This process is expected to have developed in a significantly larger
volume than the proto-nucleus, making the first cells fairly large contrivances.
Protocells must have been made of a large compartment, where metabolism was
evolving, and a small compartment, where transcription and replications operated.

2.1.4 DNA Genomes and the First Stable Cells

In a primitive cell, therefore, two types of compartments were expected: a cytoplasm,
including most of the RNA metabolism, and a nucleus, where the elements forming
the RNA genome and the nucleic acids wielding machinery operated, allowing
transcription in most of the cell’s lifetime and replication in a fraction of the time.
This situation remained unstable because of the fragility of RNAs, asking that their
synthesis be continuously ensured. The merging, engulfment, and splitting of
protocells within large populations made it possible to maintain some permanence.
However, these processes missed the selective advantage that would be brought
about by the stabilization, over time, of the memory of past successes. This was not
allowed by the initial memory molecule, the RNA genome, as it was composed of
very fragile nucleotides.

The expected selective stabilization was enabled by the discovery of deoxyribose,
a molecule much more stable than ribose, which solved the problem. Extant forensic
techniques based on DNA, as well as the study of the genomes of organisms that
disappeared millennia ago, are a present-day vivid proof of DNA stability. DNA
appeared only at the very end of a long evolution process that progressively
improved and stabilized the memory that orchestrated the recipes driving metabo-
lism. This new molecule—with a few further changes, such as the discovery of
thymine (an analogue of uracil, U) that allowed it to be told from the rest of the cell
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as much as possible as well as generated a clock for ongoing replication—separated
the memory from the general functioning of the cell. Transcription evolved to
recognize DNA and produce RNA, while replication was essentially acting on
DNA. However, we still have an archive of the previous RNA genomes in the fact
that DNA replication initiates with RNA primers (Bell 2019) and with tRNA primers
in reverse transcription of some viruses (Jin and Musier-Forsyth 2019).

In summary, the first cells, protokaryotes, were born during a long transition, with
a multiplicity of roots. It can be expected that these fairly large cells formed a
population associating, in a single cell, several compartments with different but
complementary destinies. These cells split, merged and engulfed one another. This
allowed exchanges that kept enriching the evolution of metabolic pathways. Pred-
atory organisms, they behaved as rather large cannibals (like many extant protists
are). Yet, this situation was unstable. It created an asymmetry between predators and
preys. This inevitably led to the emergence of a novel function, that which allowed
preys to resist being engulfed by predators. Two solutions were explored: either
discovery of a metabolic pathway allowing the cell to enclose itself in a protecting
envelope, resisting engulfment, or ensure that the cell’s membrane and its various
functions are not assimilated in a productive functional fusion with that of the
predator cell. This led to two very different domains of life, both evolving towards
miniaturization.

Bacteria developed the first solution, losing their nuclear compartment and
forming small cells surrounded by a strong wall. Archaea (cells without nucleus
like Bacteria, thus prokaryotes) discovered how to envelope themselves with a
membrane-escaping predation. To this aim their envelope lipids were based on
structures that mirror, in three dimensions, those of the protokaryotes’ predators.
This discovery may look unlikely. Indeed, until very recently, the transition from
membranes based on a particular lipid symmetry to the opposite chiral form was
perceived as far-fetched. Remarkably, the construction of a bacterium genetically
modified to produce a membrane composed of both forms gives considerable weight
to this view (Caforio et al. 2018). This form of evolution led to a particular autonomy
of Archaea, which then lost the possibility of becoming pathogenic and acquired in
parallel that of occupation of extreme environments.

Bacteria, whose membranes had remained identical to that of the predatory
ancestral cells, subsequently developed another way to evade predation, replacing
it by symbiosis. We can see here how eukaryotes were born (Hartman 1984). They
were the progeny of protokaryotes that recruited certain bacteria as symbionts. This
happened multiple times. The mitochondria—whose central role is not the manage-
ment of energy, but the formation of iron-sulphur clusters (see below), an archive of
the mineral origins of life—are cases in point, displaying a significant variety of
origins (Stairs et al. 2015). Later, after oxygen had been contaminating the Earth’s
atmosphere, cyanobacteria were engulfed in Eukarya, leading to a variety of protists
as well as plants. Bacteria, Archaea and Eukarya further evolved. The former
miniaturized all their metabolic functions while losing all but their introns, and
Eukarya evolved into multicellular organisms, keeping introns as spacers and timers.
These processes match those we are witnessing today in the way our computers have
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evolved into several families of objects, such as very large computers or mobile
phones, more or less incompatible with one another.

In conclusion, the initial steps of life are likely to have been made from a
collection of cells that preyed on one another, fused and split. With this view there
cannot be a last universal common ancestor (LUCA) that would proceed into all life
forms, but a last ancestral cell ensemble (LACE) where horizontal gene transfer was
the norm (Koonin and Wolf 2008). The origin of cells looks more like the reticulated
trunk of a banian tree in tropical countries than a straight trunk, as usually
represented. We are aware that this is an unorthodox scenario, but we must remem-
ber that during the first 3 billion years of life’s development, the Earth underwent
cataclysmic changes, with very hot and very cold periods. This must have created a
series of bottlenecks that are doomed to have obscured the scenario of origins
(Danchin 2007), so that we must refrain from being driven by poorly supported
mainstream views (see Cavalier-Smith (2006) for the reasoning supporting a view
that differs from the present one).

3 Origin and Evolution of Selected Metabolic Pathways

Based on the consideration of LACE instead of LUCA at the onset of cellular life, we
favour a “metabolism first” view on the origins of life (Danchin 2017; Koc and
Caetano-Anolles 2017). This means that we consider reproduction of metabolism
and biochemical reactions as the first step of cellular evolution, followed by the
invention of DNA replication as a memory storage. The evolution of cellular
reproduction and chromosome replication resulted in the immense biodiversity
that we can appreciate nowadays.

3.1 Reproduction Versus Replication

Contrary to their unfortunate name, GARD structures are not replicating structures,
but structures that make similar, not exact copies, of what they are: they reproduce.
How did the transition from reproduction to replication develop? Extant cells can be
compared to programmable factories. They can be designed to produce ad hoc
chemicals and behaviours. However, by contrast with man-made factories, cells
evolve. This results from the separation of two processes in the cell: reproduction of
the cell’s machinery and replication of the genetic programme. While accumulating
errors, reproduction may improve over time, generating replicative processes. In the
course of evolution, since the beginnings of life, cells harnessed processes meant to
accumulate information from whatever source, so that they could produce a progeny
which is systematically fitter than its ageing parents. The requirement of a transition
from reproduction to replication has been demonstrated by Freeman Dyson who
showed that this entails that life had at least two origins, combining reproduction and
replication (Dyson 1985).
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3.2 The First “Metabolic Pathways”

The first steps of biochemical reactions and metabolism were most innovative in
terms of chemistry. To explore new niches and adapt to various environments, cells
needed to exploit the available resources and use them for their reproduction and
afterwards their replication. These processes are ensured by organisms through the
operation of various key functions. To carry on such functions, cells relied on
processes that evolved into enzymes and metabolic pathways.

Non-enzymatic chemical reactions predated their improvement when enzymes
progressively introduced three-dimensional selectivity and lowered the activation
energy of cognate reactions, according to the laws of thermodynamics (Pascal et al.
2013) and organic chemistry (Danchin and Sekowska 2015). For example, a
non-enzymatic origin of primary metabolic pathways such as the Embden-
Meyerhof-Parnas (EMP) and the pentose phosphate pathway (PPP) has been dem-
onstrated experimentally, using Fe(II) as a catalyst in temperature conditions ranging
from 40 to 70 �C (Keller et al. 2014). In a more recent example, it was demonstrated
that 9 out of the 11 TCA cycle intermediates could be formed from two simple
carbon sources (pyruvate and glyoxylate) in the presence of ferrous iron too, an
abundant catalyst in prebiotic chemistry (Muchowska et al. 2019b). Interestingly,
inspired by existing pathways (reductive TCA cycle, Wood-Ljungdahl), CO2 fixa-
tion has been recently achieved by using transition metals (Fe, Zn, Ni) as catalysts
under high temperature and pressure conditions (Muchowska et al. 2019a). Notably,
CO2 fixation, the TCA, EMP or PPP cycles are essential for most modern organisms
directly or indirectly because of the functions they accomplish including, inter alia,
energy storage, respiration, synthesis of intermediates used by other pathways, etc.

3.3 Same Function But Different Process

Studies of the origin of metabolic pathways are still in their infancy, yet thanks to
modern analytical methods, we are gaining insights on the fascinating complexity
and diversity of metabolism. In this section we look at some examples of different
pathways that produce molecules that provide similar functions but using a different
and unrelated process (i.e. enzymes that are not necessarily conserved). We illustrate
some of these functions below (summarized in Fig. 2).

3.3.1 Fe-S Clusters and Isoprenoids

As described at the beginning of this article, among mineral surfaces that are likely to
have been critical for generating the first reactions of life, pyrite-like iron-sulphur
(Fe-S) complexes appear to be omnipresent. In fact, it was hypothesized that the first
chemical reactions were catalysed by Fe-S clusters (Wächtershäuser 1988). Recent
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phylogenetic studies suggest that the first unicellular microorganism would have
contained proteins with Fe-S clusters and S-adenosyl methionine (SAM) as cofactors
(Weiss et al. 2016). Fe-S proteins are involved in electron transfer, gene regulation,
sulphur donation, respiration and DNA repair, etc. (Py and Barras 2010). These
proteins are a relic of the primordial use of Fe-S clusters for various functions in
primordial cells (Hall et al. 1971; Boyd et al. 2017), yet modern cells use sophisti-
cated protein machineries called ISC (iron-sulphur cluster), SUF (sulphur assimila-
tion) and NIF (nitrogen fixation) systems to insert Fe-S cluster into target proteins.
Fe-S clusters come in many forms, but the most common forms are rhombic
[2Fe-4S] and cubane [4Fe-4S] (Fig. 3). For example, ferredoxins have the former
forms, while the latter type of cluster is ubiquitous in radical SAM enzymes. These
enzymes utilize a [4Fe-4S] cluster and SAM to initiate a diverse set of radical
reactions involved in the biosynthesis of vitamins (thiamine, biotin), cofactors
(lipoic acid, F420), amino acids (pyrrolysine), complex metal clusters (FeMoCo,
H-cluster), antibiotics (gentamicin, aminoglycosides), tetrapyrroles (heme, cobala-
min) as well as tRNA and rRNA modifications. Since SAM can be spontaneously
produced from methionine, adenosine and ATP (Laurino and Tawfik 2017), it has
been suggested that the first cells used Fe-S clusters and radical SAM chemistry for
processes such as CO2 and N2 fixation, energy generation and biosynthesis of
complex molecules (Weiss et al. 2016).

Surface-exposed cubane-type Fe-S clusters, however, are extremely sensitive to
oxygen (Giel et al. 2006), compared to rhombic clusters, which are very stable. Thus,
rhombic clusters could have evolved from cubane clusters to avoid their inactivation
by oxygen, and/or some proteins evolved to protect clusters from inactivation (Dai
et al. 2014). If this process was not possible, Fe-S cluster proteins were replaced by
other enzymes using alternative catalytic mechanisms. In E. coli, for example, haem
biosynthesis depends on a crucial catalytic step carried by the radical SAM protein
HemN, but there is also an oxygen-dependent enzyme called HemF that converts
coproporphyrinogen III to Protoporphyrinogen IX using different chemistries

Fig. 2 Emergence and evolution of selected biosynthetic metabolic pathways. LACEs Last Ances-
tral Cell Ensemble, HGT Horizontal Gene Transfer
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(Schobert and Jahn 2002). Despite the different processes, the substrate and product
of both enzymes are the same (the function is conserved).

Another example is the methylerythritol phosphate (MEP) pathway for isopren-
oid biosynthesis that relies on two Fe-S cluster proteins IspG and IspH that are
mostly found in Bacteria (and a few plants and parasites). An alternative to this
pathway, the mevalonate pathway (MVA), which is present mostly in Eukarya and
Archaea (and a few bacteria), does not use Fe-S cluster chemistry. Yet, these two
pathways start from close precursors (pyruvate and acetyl-CoA) and end with the
same products, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate
(DMAPP), which are used to build various isoprenyl chains and thousands of
different compounds (Frank and Groll 2017). Another variation in the MVA

Fig. 3 Different types of Fe-S clusters (Source: Brzóska et al. 2006)
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pathway is the use of three enzymes instead of two for the biosynthesis of IPP from
mevalonate in extreme acidophiles (Vinokur et al. 2016). Figure 4 shows the MEP
and MVA pathways.

Fig. 4 Alternative pathways for the biosynthesis of the universal isoprenoid building blocks IPP
and DMAPP. The pathway on the left corresponds to the MEP pathway, and the MVA pathway can
be found on the right. Sub-pathway variations in the MVA pathway are also represented, notably
using IP as an intermediate. Arrows have similar colour when they represent a single pathway.
Important branching intermediates are named and within a square. Circular arrows represent a
catalytic step that is carried by alternative enzymes with different catalytic mechanisms. Enzyme
names are in black. GAP glyceraldehyde 3-phosphate, IPP isopentenyl diphosphate, IP isopentenyl
phosphate, DMAPP dimethylallyl diphosphate, M5P mevalonate 5-phosphate, MEP
methylerythritol phosphate, MVA mevalonate
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3.3.2 Phospholipids

Among them are notably the composition of bacterial and archaeal cell walls as
discussed above. Cell walls accomplish the same function (compartmentalization).
Archaeal cell walls are mostly made of sn-glycerol-1-phosphate (G1P) linked with
an isoprenoid carbon chain, whereas bacterial cell walls are made of sn-glycerol-3-
phosphate (G3P) linked with fatty acids (Koga et al. 1998).

3.3.3 Lysine

L-Lysine is an essential amino acid and has the particularity of being synthesized by
two different metabolic pathways. The first pathway is called the diaminopimelate
(DAP) pathway, and the second pathway is called the L-2 aminoadipate (L2A)
pathway (Xu et al. 2006). The DAP pathway uses L-aspartate as a starting metab-
olite, whereas the L2A branches out of the TCA cycle through 2-oxoglutarate and
acetyl-CoA. Both pathways use significantly different intermediates and enzymes
(Kanehisa and Goto 2000). There are also variations within the pathways them-
selves. Four different methods for the conversion from (S)-2,3,4,5-
tetrahydrodipicolinate to meso-diaminopimelate have been reported for the DAP
pathway, relying on different enzymatic mechanisms, namely, dehydrogenation,
succinylation, amine group transfer or acetylation (Con Dogovski 2012). It is
notable that Corynebacterium glutamicum, among other microorganisms, have
adopted more than one variation of the DAP pathway in their metabolism
(succinylation and dehydrogenation) (Schrumpf et al. 1991). Two variants of the
L2A pathway have also been reported, both of which share common steps and differ
in the methods used to convert L-2 aminoadipate to L-lysine (Nishida et al. 1999).

3.3.4 Aminolevulinic Acid and Tetrapyrroles

Tetrapyrroles are complex cofactors that play crucial roles in energy generation,
oxygen transfer and catalysis in most organisms (haem, chlorophyll, cobalamin,
F430 cofactor). The main precursor of tetrapyrroles is aminolevulinic acid (ALA),
for which two biosynthetic pathways exist (Dailey et al. 2017). The C4 pathway
depends on a single step, the conversion of succinyl-CoA and glycine into ALA by
ALA synthase (ALAS), whereas the C5 pathway relies on the conversion of
L-glutamate to ALA via three enzymes (GltX, HemA and HemL), with a notable
implication of a tRNA for the first committed step (Zhang et al. 2015). Alternative
pathways for the NADPH-dependent conversion of 2-oxoglutarate to L-glutamate also
exist in E. coli. The nitrogen atom can either be acquired through ammonium by the
enzyme GdhA (Veronese et al. 1975) or through L-glutamine by the [4Fe-4S] cluster
enzyme GltBD (Reitzer 2004). The different enzymatic solutions offered by HemF
and HemN in haem biosynthesis were mentioned above. Their product,
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protoporphyrinogen IX, can be converted to protoporphyrin also by two alternative
enzymes, oxygen-dependant (HemY as in B. subtilis) or independent (HemG as in
E. coli) (Layer et al. 2010). An alternative pathway for haem synthesis can be found in
Archaea and denitrifying bacteria, involving the precursor precorrin-2, obtained after
methylation of the C2 and C7 carbons of uroporphyrinogen III by SUMT (S-adenosyl-
L-methionine-dependent uroporphyrinogen III C methyltransferase) enzymes.
Precorrin-2 is the common precursor of cobalamin, haem d1, sirohaem and F430
cofactor (Fig. 5). The biosynthesis of sirohaem from precorrin-2 requires three steps,
all of which are ensured by a multifunctional enzyme CsyG with a SUMT domain in
E. coli, but differently in other organisms (Vévodová et al. 2004). Synthesis of haem
from precorrin-2 is proposed to involve the conversion of sirohaem into haem via the
enzymes AhbABCD, with AhbC and AhbD being two radical SAM enzymes (Bali
et al. 2011). Other alternatives, like the coproporphyrin-dependent pathway, exist in
this pathway and have been reviewed in detail (Dailey et al. 2017). Notably, the
biosynthesis of other tetrapyrroles can be achieved through different pathways, as
shown by the oxygen-dependent and oxygen-independent cobalamin biosynthesis
route (with the use of the Fe-S protein CobG in the former) (Schroeder et al. 2009;
Fang et al. 2017).

3.3.5 DNA Biosynthesis

As discussed above, DNA was likely first composed of uracil (U) alongside adeno-
sine (A), cytosine (C) and guanidine (G), as a relic of its RNA ancestry. The discovery
of DNA as a backbone in which U is replaced by thymine (T) is assumed to have been
carried on by methylation of the U backbone. Two unrelated enzymes, ThyA and
ThyX, are in charge of such reaction in modern organisms and are essential for de
novo DNA biosynthesis (Forterre et al. 2007). Both enzymes do not carry reductive
methylation of deoxyuridine monophosphate (dUMP) in the same fashion but use the
same substrate, CH2H4-folate. While ThyX uses CH2H4-folate as a methyl donor and
NADPH/FADH as reductants, ThyA uses CH2H4-folate both as a methyl donor and
as a reductant (Cho et al. 2012). Organisms using both ThyA and ThyX have been
described like Mycobacterium tuberculosis (Hunter et al. 2008).

3.3.6 Other Examples

How proton gradient systems differ between acetogens and methanogens is also
another interesting example (Pomiankowski and Lane 2014). Whereas ATPases are
shared and conserved by both, Na+ pumping, required for ATP synthesis, is ensured
by unrelated antiporters (A-type for methanogens and F-type for acetogens).

This section aimed to show the versatility of metabolic pathways exploring
functional space. Countless of other examples exist, and the list of metabolic
processes used by different organisms to achieve similar functions is
non-exhaustive (Pereira et al. 2013). The main question is how metabolic pathways
of similar functions but arising from different processes can be harnessed for the
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design of microbial cell factories for industrial biotechnology. In the section below
we provide a few selected examples.

4 A Functional Approach to Design Cell Factories
for White Biotech

Industrial or white biotechnology is an area of research aiming at producing
chemicals, drugs, food ingredients, biofuels and biomaterials (to name a few) by
using enzymes and/or cells as biocatalysts (Lorenz and Zinke 2005; Heux et al.
2015; Straathof et al. 2019). The overall goal is to replace current industrial

Fig. 5 Alternative pathways for the synthesis of aminolevulinic acid (ALA) and tetrapyrroles with
emphasis on haem and sirohaem. The two ALA alternative pathways, C5 (left) and C4 (right), are
represented. Various branchings from important intermediate are shown. The two enzymes carrying
the transformation of precorrin-2 to sirohaem have not been named yet. Arrows with similar colour
represent a single pathway. Important branching intermediates are named and within a square. Bold
arrows correspond to pathways not shown in detail. Circular arrows represent a catalytic step that is
carried by alternative enzymes with different catalytic mechanisms. Enzyme names are in black
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processes that rely on nonrenewable sources such as petroleum-derived compounds
and that require toxic chemicals and/or high energy demand compared to
bioprocesses that are sustainable because they rely on renewable feedstocks and
are more environmentally friendly (Nielsen and Keasling 2016; Yu et al. 2019).

To develop a circular bio-economy, enzymes and microorganisms are powerful
allies. Processes that rely on both enzymes (Choi et al. 2015; Sheldon and Woodley
2018) and organisms (Jullesson et al. 2015; Nielsen and Keasling 2016) are already
found at an industrial scale in different companies. However, enzymes do not often
show the desired characteristics for a bioprocess (activity, selectivity or stability),
but these can be generally solved by directed evolution (Reetz 2013). In the case of
microorganisms, these do not produce large quantities of the targeted molecules to
permit their cost-effective manufacture. To address this issue, metabolic engineering
optimizes the metabolism of microbial hosts to turn them into “cell factories” by
redirecting fluxes and tuning up enzyme levels and genetic regulators. Examples of
microbial cell factories have been reported for antibiotics (Weber et al. 2015; van
Tilburg et al. 2019); biofuels (Zargar et al. 2017); bioplastics (Murphy 2012; Choi
et al. 2019); chemicals (Fact et al. 2019); flavours, fragrances and pharmaceuticals
(Zhang et al. 2017; Cravens et al. 2019); natural products (Zhou et al. 2014; Liu et al.
2017; Cravens et al. 2019; Nielsen 2019); pigments (Tolborg et al. 2017; Frandsen
et al. 2018); and vitamins (Acevedo-Rocha et al. 2019).

It is important to consider certain engineering aspects to develop successful
microbial cell factories. First, the right starting strain needs to be selected depending
on the application. Second, this strain should be ideally converted into a platform
strain. Third, specific metabolic pathways need to be designed and optimized in
iterative cycles of design, building and testing. Finally, the strain should have an
optimal performance during upscaling. Ideally, microbial cell factories require
simple nutritional requirements, their metabolism is versatile and robust to be
adapted to produce different compounds, their genetic modification is straightfor-
ward and there is a substantial knowledge and understanding about their metabolism,
etc. Cell factories must have not only certain ideal characteristics (Table 1) but also
excel in performance during large-scale cultivation to enable large-scale production
(Foley and Shuler 2010).

4.1 Choosing the Chassis

In SB jargon, a so-called chassis is a strain that can be used as a “motherboard” for
various applications (e.g. a cell factory). There are chassis (E. coli, B. subtilis,
Saccharomyces cerevisiae) that have proven to be industrial cell factories, but
there are also emerging strains that have the potential to become industrial work-
horses such as Pseudomonas putida (Calero and Nikel 2019). Microbial species are
diverse and show interesting characteristics for applications in metabolic engineer-
ing, for example, P. putida is well adapted to harsh environmental conditions,
making it an ideal chassis for producing chemicals from feedstocks that other
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organisms would not withstand such as oil spill or lignin (Nikel and de Lorenzo
2018). Other pathways could be tailored for electricity production in Shewanella
oneidensis, biofuel production in Clostridium acetobutylicum (Kim et al. 2016) or
long-chain fatty acid production in the oleaginous yeast Yarrowia lipolytica
(Ledesma-Amaro and Nicaud 2016). More recently, the fast growing Vibrio
natriegens could be used for protein expression (Lee et al. 2019) or the bacterium
Halomonas campaniensis for biopolymers (Ling et al. 2019). The list is ever
expanding (Kim et al. 2016; Nielsen 2019), and it is only limited by our capacities
to characterize new chassis and develop molecular tools. It foreshadows also that the
microbial biodiversity can be used as a tool for human needs.

4.2 Platform Strains

An important concept in the design of cell factories is that of “platform strain”
(Jullesson et al. 2015). A platform strain has the desired characteristics of a robust
cell with a minimized genome (as discussed in Sect. 1). However, a platform cell
goes beyond a robust cell factory because it allows the introduction of different
metabolic pathways that are compatible with the host in a short time and cost-
effective manner. In other words, a platform strain is a chassis that has an assigned
function in which it excels. Platform strains can use different feedstock (e.g. sugars,
waste, CO2), and they are robust for operation under industrial conditions (stress
tolerance, fast growth, performance). The usage of platform strains is important in
the industry to reduce the costs for developing bioprocesses. Since metabolic
pathways are very complex and highly interconnected, it usually takes time to
engineer each pathway for specific molecules. Yet it is common to find in any
organism a metabolite that is at the source of several metabolic pathways of
industrial relevance.

First-generation platform strains are already used in the industry (Jullesson et al.
2015), but second-generation strains are in the horizon. This is well exemplified with
chorismate that allows the biosynthesis of aromatic compounds (phenylalanine,

Table 1 Requisites for an ideal industrial microbial cell factory

Robust cell growth
Robust cell
envelope

Dynamic
stability Metabolic control

• Assimilation of cheap
feedstocks
• Fast growth rate
• Simple chromosome
segregation and cell
division mechanisms
• High levels of viable
biomass

• Hydrodynamic
reliance to shear
forces
• Export of target
compound in
large amounts
• Low product
toxicity or
absence thereof

• Low genetic
drift and evolu-
tionary potential
• Stable
mismatch repair
systems
• Upscalability to
large fermenta-
tion volumes

• Simple controls for replica-
tion, transcription and trans-
lation of target pathway
• Metabolic proofreading
• Predictable metabolic
interactions
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2-aminobenzoate), catechol (Balderas-Hernández et al. 2014) or muconic acid
(Noda et al. 2016), which is a precursor of several bioplastics (Curran et al. 2013).
A platform strain optimized to produce chorismate is essential to produce cost-
effectively chorismate-related compounds. A second example is an ALA platform
strain, which is at the root of numerous tetrapyrrole biosynthetic pathways (Fig. 5)
and can produce various valuable industrial products including ALA itself (Kang
et al. 2011; Zhang et al. 2015), haem production via the C4 or C5 pathways (Zhao
et al. 2018) and vitamin B12 (Fang et al. 2018). Another example is the ubiquity of
SAM as a cofactor for C–C bond formation and/or methylation of a considerable
repertoire of chemical compounds (Struck et al. 2012; Yokoyama and Lilla 2018).
This cofactor is useful for the production of vanillin (Kunjapur et al. 2016), antho-
cyanin (Cress et al. 2017) or methyl anthranilate (Luo et al. 2019). The various
alternative SAM biosynthetic pathways (Sekowska et al. 2019) could also provide
valuable knowledge for the design of an efficient platform strain for the production
of SAM-related compounds.

The development of platform strains requires consideration of both the chassis
and available metabolic pathways. With the increasing discovery of new enzymes
and metabolic pathways, many examples of alternative pathways for the same
function are becoming available. Such knowledge is of considerable value when
designing platform strains because it offers many solutions for a single problem. For
example, there are at least six metabolic pathways for CO2 fixation, each offering
high malleability in their catalytic and metabolic mechanisms (Fuchs 2011). Using
this information, it was possible to implement the most efficient CO2 fixation
pathway in vitro—the CETCH cycle (Schwander et al. 2016). Table 2 provides
further examples of next-generation platform strains that could exploit alternative
solutions to the same problem by using a functional approach.

4.3 Resource Optimization

Metabolic pathway optimization usually takes considerable time and effort. It is
crucial to balance enzyme levels to achieve a high flux, which is usually done in
multicopy systems (plasmids). However, the availability of enzyme cofactors and
resources of the chassis needs to be likewise considered. For example, some
organisms like E. coli have a natural overabundance of enzymes (Donati et al.
2018) to increase its robustness against varying environmental conditions (Mori
et al. 2017). Thus, decreasing enzyme levels for unnecessary functions has the
capacity to improve productivity, as recently shown for aromatic amino acids in
E. coli (Sander et al. 2019). Another approach is to reduce enzyme promiscuity and
thus metabolic noise. Proteins show often unwanted side activities (Nielsen and
Moon 2013). The notion of metabolic proofreading consists in using auxiliary
enzymes in a module that would convert unwanted metabolites back into interme-
diates used in such module (Schwander et al. 2016).

From Minimal to Minimized Genomes: Functional Design of Microbial Cell Factories 199



T
ab

le
2

E
xa
m
pl
es

of
pl
at
fo
rm

st
ra
in

de
ve
lo
pm

en
t
st
ra
te
gi
es

P
la
tf
or
m

na
m
e

S
ta
rt
in
g

m
et
ab
ol
ite

E
nd

m
et
ab
ol
ite

In
du

st
ri
al

ch
as
si
s

ex
am

pl
e

N
um

be
r
of

en
zy
m
es

in
ho

st
de

no
vo

pa
th
w
ay

C
of
ac
to
rs

E
xa
m
pl
es

of
al
te
rn
at
iv
e

pa
th
w
ay
s
an
d
en
zy
m
es

P
ot
en
tia
l

as
so
ci
at
ed

do
w
ns
tr
ea
m

bi
os
yn

th
et
ic

pa
th
w
ay

R
ef
er
en
ce
s

M
E
P

pa
th
w
ay

P
yr
uv

at
e
an
d

G
3P

IP
P
/

D
M
A
P
P

E
.c
ol
i

8
N
A
D
P
H
,

C
T
P
,A

T
P
,

F
e-
S
cl
us
te
r

M
V
A

pa
th
w
ay

an
d

su
b-
pa
th
w
ay
s

Q
6/
8/
10

,z
ea
xa
n-

th
in
,r
es
ve
ra
tr
ol

F
ra
nk

an
d

G
ro
ll
(2
01

7)
N
iu

et
al
.

(2
01

7)

C
ho

ri
sm

at
e

pa
th
w
ay

E
4P

C
ho

ri
sm

at
e

E
.c
ol
i

7
P
E
P
,

N
A
D
P
H
,

A
T
P

S
al
ic
yl
at
e
or

ca
te
ch
ol

sy
nt
he
tic

pa
th
w
ay
s

M
uc
on

ic
ac
id
,

P
A
B
A
,Q

6/
8/
10

N
od

a
et
al
.

(2
01

6)
C
ur
ra
n
et
al
.

(2
01

3)

F
at
ty

ac
id

m
et
ab
ol
is
m

A
ce
ty
l-
C
oA

F
re
e
fa
tty

ac
id

(n
C
)

S.
ce
re
vi
si
ae

3
A
C
P
,H

C
O
3-

,A
T
P

X
yl
os
e
fe
rm

en
ta
tio

n,
in
ve
rt
ed

be
ta
-o
xi
da
tio

n,
A
C
P
en
gi
ne
er
in
g

D
H
A
,E

P
A
,b

io
-

tin
,o

ct
an
oi
c
ac
id

T
ra
n
N
gu

ye
n

H
oa
ng

et
al
.

(2
01

8)
C
ur
ra
n
et
al
.

(2
01

3)
D
el
lo
m
on

ac
o

et
al
.(
20

11
)

H
ay
as
hi

et
al
.

(2
01

6)

S
A
M

bi
os
yn

th
es
is

L
-a
sp
ar
ta
te

S
A
M

E
.c
ol
i

8
A
T
P
,

N
A
D
P
H
,

su
cc
in
yl
-

C
oA

,L
-c
ys
-

te
in
e,

C
H
3-
T
H
F

M
T
A

de
am

in
as
e
(s
al
-

va
ge
),
M
et
A
an
d
C
ys
E

en
gi
ne
er
in
g

V
ita
m
in

B
1
2
,

ha
em

,v
an
ill
in
,

an
th
oc
ya
ni
n,

R
IP
P
s

C
re
ss

et
al
.

(2
01

7)
K
un

ja
pu

r
et
al
.(
20

16
)

D
an
ch
in

an
d

S
ek
ow

sk
a

(2
01

5)

200 P. Lubrano et al.



A
L
A

bi
o-

sy
nt
he
si
s

(C
-5
)

2- ke
to
gl
ut
ar
at
e

A
L
A

E
.c
ol
i

5
N
A
D
P
H
,

A
T
P
,t
-R
N
A

(g
lu
),
N
H
4+

G
ltB

D
,C

4
pa
th
w
ay

C
ob

al
am

in
,

si
ro
ha
em

,h
ae
m
,

p4
50

ex
pr
es
si
on

Z
ha
o
et
al
.

(2
01

8)
K
an
g
et
al
.

(2
01

1)

C
O
2
fi
xa
tio

n
(C
al
vi
n

cy
cl
e)

C
O
2
an
d

D
-r
ib
ul
os
e-

1,
5-

bi
sp
ho

sp
ha
te

3-
P
G

Sy
ne
ch
oc
ys
tis

sp
.P

C
C
68

03
13

A
T
P
,

N
A
D
P
H
,

G
3P

C
E
T
C
H
cy
cl
e,
re
du

ct
iv
e

ci
tr
ic
ac
id

cy
cl
e,

3-
H
yd

ro
xy

pr
op

io
na
te

bi
cy
cl
e,
ot
he
r
al
te
rn
at
iv
e

C
O
2
fi
xa
tin

g
pa
th
w
ay
s

B
io
fu
el
s,

po
ly
ke
tid

es
,f
at
ty

ac
id
s,
be
ta
-

ca
ro
te
ne

S
ch
w
an
de
r

et
al
.(
20

16
)

F
uc
hs

(2
01

1)
C
al
er
o
an
d

N
ik
el
(2
01

9)

L
ev
el

1
pa
th
w
ay
s
gi
ve

th
e
na
m
e
to

th
ei
r
re
sp
ec
tiv

e
pl
at
fo
rm

st
ra
in
s.

T
he
y
co
rr
es
po

nd
to

m
et
ab
ol
ic

pa
th
w
ay
s
sy
nt
he
si
zi
ng

pr
ec
ur
so
rs

us
ab
le

by
va
ri
ou
s

su
b-
pa
th
w
ay
s
(l
ev
el
2)

th
at
le
ad

to
th
e
sy
nt
he
si
s
of

in
du

st
ri
al
ly

re
le
va
nt

co
m
po

un
ds
.V

ar
io
us

al
te
rn
at
iv
e
m
et
ho

ds
,s
up

pl
em

en
tin

g
th
e
on

es
m
en
tio

ne
d
in

S
ec
t.
3,

ar
e
lis
te
d.

A
bb

re
vi
at
io
ns

(f
ro
m

to
p
le
ft
to

bo
tto

m
ri
gh

t)
:
M
E
P
m
et
hy

le
ry
th
ri
to
l
ph

os
ph

at
e,

SA
M

S
-a
de
no

sy
l-
L
-m

et
hi
on

in
e,

A
L
A
am

in
ol
ev
ul
in
ic

ac
id
,
G
3P

gl
yc
er
ol

3-
ph

os
ph

at
e,

E
4P

D
-e
ry
th
ro
se

4-
ph

os
ph

at
e,

IP
P
is
op

en
te
ny

l
di
ph

os
ph

at
e,

D
M
A
P
P
di
m
et
hy

la
lly

l
di
ph

os
ph

at
e,

3-
P
G

3-
ph

os
ph

og
ly
ce
ra
te
,
N
A
D
P
H

ni
co
tin

am
id
e
ad
en
in
e
di
nu

cl
eo
tid

e
ph

os
ph

at
e,

C
T
P
,
cy
tid

in
e
tr
ip
ho

sp
ha
te

A
T
P
ad
en
os
in
e
tr
ip
ho

sp
ha
te
,
P
E
P
ph

os
ph

oe
no

lp
yr
uv

at
e,

A
C
P
ac
yl

ca
rr
ie
r
pr
ot
ei
n,

C
H
3-
T
H
F

m
et
hy

lte
tr
ah
yd

ro
fo
la
te
,
M
V
A

m
ev
al
on

at
e,

M
T
A

m
et
hy

lth
io
ad
en
os
in
e,

C
E
T
C
H

cr
ot
on

yl
-c
oe
nz
ym

e
A

(C
oA

)/
et
hy

lm
al
on

yl
-C
oA

/h
yd

ro
xy

bu
ty
ry
l-

C
oA

,D
H
A
do

co
sa
he
xa
en
oi
c
ac
id
,E

P
A
ei
co
sa
pe
nt
ae
no

ic
ac
id

From Minimal to Minimized Genomes: Functional Design of Microbial Cell Factories 201



4.4 The Challenge of Upscaling

A microbial cell factory should be able to excel at performance in small- and large-
scale conditions; otherwise, it is not possible to develop a bioprocess. Certain cells
are more sensitive to others when it turns to physical stresses including oxygen
availability, product toxicity and mechanical forces. For instance, microbes are
1000-fold more resilient to shear stress than mammalian cells (Foley and Shuler
2010). There are also genetic factors that could affect upscaling. For example,
compared to the parent strain, the minimized genome E. coli strain MDS42 displays
a more stable growth during a simulation of a large-scale fermentation after 60–80
generations that are needed to reach population sizes of 1020 in a 200 m2 fed-batch
reactor (Rugbjerg et al. 2018b). Likewise, a stable fermentation can be achieved by
coupling biosynthetic production genes to essential genes (Rugbjerg et al. 2018a).
Finally, discriminating proper substrates against similar compounds entails that cells
code for information-loaded agents that behave as Maxwell’s demons would (Boël
et al. 2019). Reflection on this requirement for upscaling is just beginning.

5 Conclusions and Perspectives

Although the concept of the minimal genome is useful when trying to understand
minimal life, other approaches like the use of cells with “minimized genomes”might
offer alternative solutions when looking for applications in industrial biotechnology.
For this reason, we aimed to describe a possible scenario for the origin of life to
indicate that we should consider metabolism and biodiversity for the design of
platform strains. The biodiversity available to us in any place of this planet is a
gold mine to find new enzymes and metabolic pathways that can solve challenges in
the production of food, medicine and chemicals. It has been estimated that the
number of microbial species inhabiting Earth ranges approximately from 1011 to
1012 (Locey and Lennon 2016). Even though the vast majority of living organisms
are not cultivable in laboratory settings (Bernard et al. 2018), we can look at new
technologies such as functional genomics to discover new enzymes and pathway
components (Van Der Helm et al. 2018). Microbial cell factories will help to reach
the sustainable development goals (O’Toole and Paoli 2017) and contribute to
economic growth and employment creation (Timmis et al. 2017). Although indus-
trial biotechnology still faces some technical issues (Straathof et al. 2019), perhaps
the biggest challenge lies in economics and politics when it turns to replace chemical
processes with greener and more sustainable bioprocesses (Ramos and Duque 2019).
To address this issue, we will need to increase the literacy in microbiology of our
fellow citizens (Timmis et al. 2019).
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Resource Allocation Principles andMinimal
Cell Design

David Hidalgo and José Utrilla

Abstract Most natural organisms are generalists, as they deploy cellular resources for
growth and survival under changing environments. Minimal cells are thought to be
specialists; therefore, they should display specialized behaviors for very specific
functions. Depending on the required function to display, the cellular resources should
be differentially allocated, generating an optimal resource use that maximizes its
designed function. Recently, many studies have focused on the economy of cellular
resource allocation in different environments. With several tools and approaches,
resource allocation has been extensively studied in natural and engineered cellular
systems. These approaches have generated genome-scale models, coarse-grained
models, and growth laws that may be used in minimal cell design. In this chapter,
we will review the recent advances in econometric approaches to study and engineer
resource allocation. We will propose design principles for cell minimization focusing
on the cellular resource allocation framework to maximize the functions that they are
designed to display.

Keywords Resource allocation · Proteome · Efficiency · Trade-off · Minimal cell ·
Bacteria · Design

1 Cellular Resources

Quantitative studies on the macromolecular composition of cells started as early as the
1950s. These studies were made for exponentially growing cultures. After measuring
the cell’s total quantities of DNA, RNA, and protein, it was seen that at a given
temperature, the RNA/protein ratio of a culture is a direct function of the growth rate
(Fig. 1a). It was determined that these variables present a linear relation (Kjelgaard and
Gausing 1974). Importantly, it was also observed that during fast growth, 86% of
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each coarse-grained sector at two growth conditions in E. coli, a cartoon based on experimental
measurements. (b) Engineering resource allocation for a minimal specialized organism. Engineered
proteome sectors should allow a larger synthetic (Syn) sector for a designed function. M1 and M2
are general and specialized metabolic sectors respectively
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RNA is ribosomal (Neidhardt and Magasanik 1960; Shepherd et al. 1980) and that
ribosomes constitute around 30% of the cell’s dry mass (particularly for E. coli). More
recently (Wilson and Nierhaus 2007), it was seen that about 40% of the cell’s energy
turnover is due to protein synthesis, which is one of the main processes that ensure a
cell’s growth and adaptation (fitness) to changing environments.

Ribosomes consist of three different RNAs (16S, 23S, and 5S) and 52 proteins.
After a single transcript (35S) is processed from one of the seven rrn transcription
units (rrn operons, independent from each other), the three species of rRNA are
derived (Dennis and Bremer 2008). The genes for the 52 different ribosomal proteins
(r-proteins) are located in different transcription units located at 14 different posi-
tions on the E. coli chromosome (Bachmann 1990). According to quantitative
proteomics, up to 40% of the proteome is allocated to the Clusters of Orthologous
Groups (COGs) translation, ribosomal structure, and biogenesis under fast growth in
lysogeny broth (LB) medium (Schmidt et al. 2015). Five ATP molecules are
consumed per peptide bond formation, and the rate of translation is approximately
20 amino acids per second (Kudva et al. 2013).

1.1 Energy

The detailed advances in molecular biology and biochemistry have allowed us to
quantify the energetic needs of many cellular processes. However, even whole cell
models show differences between calculated energy production and energy con-
sumption; a whole cell model ofMycoplasma genitalium shows 44% of discrepancy
(Karr et al. 2012). A classic study is the Pirt maintenance energy definition (Pirt
1965). The maintenance energy is a concept still used these days to balance energy
production and consumption in models aiming to account for all cellular energy. In
his studies, Pirt made two important observations: one is that substrate consumption
per mass unit of an organism increased with the growth rate. The second refers to the
substrate consumption even when the culture is not growing. He, then, called these
processes growth-associated maintenance and non-growth-associated maintenance,
respectively (GAM and n-GAM). For example, for E. coli, the n-GAM for ATP
consumption is 7.6 mmol per gram of dry cell weight per hour (Selvarasu et al.
2009). These two simple parameters are of critical importance due to the fact that
many computational modeling approaches need to perform a mass and energy
balance in order to correctly output a certain phenotype prediction or cell
composition.

1.2 Regulation of Cellular Resource Allocation

Bacteria have regulatory mechanisms that allow them to adjust their growth rate
according to the nutritional environment and the availability of cellular resources.
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When the cell senses an optimal nutritional environment, the expression of ribo-
somal RNA operons is favored, increasing growth rate. Several intracellular signals
regulate the distribution of RNA polymerase (RNAP), the use of different sigma
factors, and other elements of the regulatory network to promote or silence the
transcription of biosynthetic, ribosomal, or stress operons (de Jong et al. 2017).

This extracellular nutrient availability is generally translated into intracellular
signals such as charged tRNAs, 2-oxoglutarate/glutamine ratio, concentration of
energetic molecules (ATP, GTP), and amino acid concentration, among others,
which regulate the formation of (p)ppGpp through the following described mecha-
nisms. During periods of nutrient starvation, particularly amino acids, (p)ppGpp is
synthesized via the relA-dependent system, which induces the well-characterized
stringent response. Normally, (p)ppGpp levels are low. When cells grow exponen-
tially, the basal levels of ppGpp primarily come from a relA-independent system,
where the spoT gene is involved, such that (p)ppGpp levels decrease approximately
from 55 to 6 pmol per OD 460 unit when the exponential growth rate increases from
0.6 to 3.0 doublings/h (Dennis and Bremer 2008). It is important to consider this
regulation because it severely impacts one of the most costly processes of the cell:
ribosome biosynthesis. The seven rRNA (rrn) operons have the same two promoters,
P1 and P2, in tandem. The single 35S transcript is expressed from them. The upstream
region of the P1 promoter is heavily regulated. There are three binding sites for the
protein Fis which is known to stimulate expression from the P1 promoter. On the
other hand, ppGpp and DksA are known to negatively impact transcription from P1
due to its property to bind to the β0 subunit of the RNAP, close to the active site
(Artsimovitch et al. 2004). For the case of the P2 promoter, it has been observed that
when isolated from P1, there seems to be a growth-dependent regulation in which
ppGpp is not necessary (Murray et al. 2003). Additionally, in the presence of other
rRNA operons, stringent regulation occurs, but when rRNA transcription is mostly
repressed (through P1), a minimal (basal) or “background” rRNA transcription is
achieved by the activity of P2 (Baracchini and Bremer 1988). For the case of the
RNAP and ribosomal proteins (r-proteins), in bacteria such as E. coli, the genes for
the RNAP subunits (rpoA, rpoB, rpoC, rpoD) are in three different operons along
with some of the r-protein genes. Since mRNAs from these operons are subject to
degradation (r-proteins bind to their mRNAwhen not bound to rRNA) in the absence
of rRNA, cells modulate ribosome production, at least in part, through modulation of
RNA polymerase and r-protein synthesis. These regulatory systems allow to balance
the cellular composition and the proteome to the external nutritional environment;
therefore, the growth rate is determined mainly by the resource availability through
the regulatory mechanisms described above (Scott et al. 2014).

1.3 Insights into Natural Resource Allocation

The genes for rRNA typically exist in various copies in the form of operons along
bacterial chromosomes (Klappenbach et al. 2000). The survival of a certain species
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in changing environments or in a microbial community depends on its ability to
grow fast (faster than the other members of the consortium), as well as its ability to
quickly adapt to changing conditions. Both features rely on ribosome availability
and activity in order to synthesize the necessary proteins to carry out these processes.
It can then be said that more copies of rRNA genes ensure species robustness, in
other words, what makes it a generalist organism. Although ribosome biosynthesis is
essential, it is also one of the most energetically expensive processes of the cell
(as mentioned above). The essentiality of rRNA genes does not necessarily imply
that all copies present in the chromosome are needed in all environments. In this
context, studies have been made to test the effects of ribosomal (rrn) operon
deletions. A study (Condon et al. 1993) reported the effects of such deletions in
E. coli. In that work, it was seen that on rich medium (LB + glucose) both the growth
rate and the ribosome concentration per cell did not decrease severely until inacti-
vation of at least three rRNA operons. However, the mutants showed a diminished
ability to transition to new nutritional sources, thus reflecting specialization rather
than generalism (Condon et al. 1995) (discussed further in Sect. 4).

In this section, we have reviewed the knowledge on cellular resource allocation.
The protein synthesis is the cellular processes that drain more cellular resources
(estimated 40% of energy turnover as mentioned above); thus great attention is
provided to it. A reference minimal organism to compare how many resources are
channeled to each cellular process is the synthetic organism JCVI-Syn 3.0 with the
smaller genome of any known organism assembled by Hutchinson and co-workers
(Hutchison et al. 2016). In JCVI-Syn 3.0 genome analysis, the largest functional
category is translation with 89 of 373 genes (24%), the next category is RNA (not
mRNA) with 35 genes, and together they sum 124 genes and account for one third of
all the genes in JCVI-Syn 3.0 (33%) (Glass et al. 2017).

2 Coarse-Grained Approaches to Study Resource
Allocation

In this section, we review recent advances on how bacteria allocate resources
according to different modes of growth. For well-known organisms such as
E. coli, of which many kinetic and molecular parameters have been determined,
one might be inclined to use a bottom-up computational model to perform pheno-
typical predictions, simulations, and strain design. However, even with this model
bacteria, there are still many molecular mechanisms (in particular, those regarding
gene expression regulation) to be elucidated to full detail. Coarse-grained models
that describe biological systems contrast with genome-scale approaches in the sense
that they require few parameters to work (e.g., growth rate, RNA/protein ratios, and
knowledge of growth dynamics in response to nutrient or environmental perturba-
tions) and that they are, fundamentally, phenomenological. These top-down
approaches, particularly those that consider robust correlations in growth rate-
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dependent macromolecular parameters and proteome partition, have been success-
fully implemented to understand and explain resource allocation strategies used by
cells (You et al. 2013; Scott et al. 2014; Basan et al. 2015; Mori et al. 2016; Dai et al.
2016). Some of which have been long-known biological conundrums, such as
overflow metabolism. For well-known organisms such as E. coli, of which many
kinetic and molecular parameters have been determined, one might be inclined to use
a bottom-up computational model to perform phenotypical predictions, simulations,
and strain design. However, even with this model bacteria, there are still many
molecular mechanisms (in particular, those regarding gene expression regulation) to
be elucidated to full detail. Coarse-grain models that describe biological systems
contrast with genome-scale approaches in the sense that they require few parameters
to work (e.g. growth rate, RNA/Protein ratios and knowledge of growth dynamics in
response to nutrient or environmental perturbations) and that they are, fundamen-
tally, phenomenological. These top-down approaches, particularly those that con-
sider robust correlations in growth rate-dependent macromolecular parameters and
proteome partition, have been successfully implemented to understand and explain
resource allocation strategies used by cells (You et al. 2013; Scott et al. 2014; Basan
et al. 2015; Mori et al. 2016; Dai et al. 2016). Some of which have been long-known
biological conundrums, such as overflow metabolism.

The growth rate-dependent parameters considered in top-down approaches typ-
ically are the cellular amounts of macromolecules: DNA, RNA, and protein content.
Over 50 years ago, there were already studies regarding the medium-dependent
variation in the growth rate of exponentially growing cells (Neidhardt and
Magasanik 1960), as mentioned before in this chapter. When the medium becomes
richer, more doublings per hour can be achieved by the culture. Also, when the total
amounts of macromolecules were measured, it was seen that the RNA to protein
ratio displayed a positive and linear correlation with the growth rate (Kjelgaard and
Gausing 1974). In an important work (Scott et al. 2010), this correlation was used as
a fundamental basis to introduce the concept of proteome partition as a constraint
that shapes resource allocation. The core of this concept is the consideration of a
finite proteome partitioned into fractions (functional categories), whose sizes can
change at the expense of the others in response to the environment. In the simplest
example, three fractions were considered: a relatively fixed fraction (its size is not
growth-dependent), a ribosomal fraction (ribosomal and ribosome-related proteins),
and a metabolic fraction (catabolism and anabolism). In a rich medium, having
non-limiting amounts of nutrients and added amino acids, cells can reach higher
growth rates. This is because, in this scenario, the proteome fraction related to
metabolism (particularly anabolism) can be diminished due to the amino acid
synthesis enzymes being unnecessary. As a consequence, the ribosomal fraction is
increased. On the contrary, at low growth such as those achieved in minimal medium
with poor carbon sources, the ribosomal fraction should decrease to allow the
metabolic fraction to expand (here, nutrient acquisition and processing become a
priority).

With this simple consideration of how cells allocate resources, various works,
particularly those from the Terrence Hwa research group (You et al. 2013; Scott et al.
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2014; Basan et al. 2015; Dai et al. 2016; Mori et al. 2017), have been able to
establish “growth laws” that describe these strategies. Also, they can better explain
and reconcile experimental data from some of the most long-known and studied
biological processes. The two important growth laws emanating from this approach
are established from the cellular response upon the presence of free amino acids
(Scott et al. 2014). Both of them refer to regulatory loops; one ensures a steady-state
growth by supplying amino acids and is regulated by end-product inhibition. The
other is denominated by the authors as a “supply-driven” activation that acts upon an
imbalance between the use and the consumption of amino acids as molecular
building blocks. As a result, the protein synthesis-dependent amino acid flux is
balanced.

Among the biological phenomena explained by coarse-grained models is cata-
bolic repression mediated by cyclic AMP (cAMP). This regulatory process inhibits
the expression of many catabolic genes in the presence of a rapidly metabolizable
sugar, such as glucose. After analyzing the correlation of growth rate and the
expression of catabolic and biosynthetic genes in various media with carbon and
nitrogen limitation, a study revealed linear correlations between them (You et al.
2013). For catabolic genes, there was a negative effect on the expression with the
increasing growth rate. For biosynthetic genes, the correlation was positive. Under
the consideration of proteome partition as a resource allocation constraint, it was
possible to determine that the way cAMP acts on gene expression guarantees that the
proteome demands for each sector are supplied in accordance to the particular
growth medium. Interestingly, this work also pointed out α-ketoacids as one of the
key catabolites mediating this regulatory response.

Another prominent example of the usefulness of coarse-grained models is the
case of overflow metabolism. This phenomenon widely studied in many microbes
and cell lines occurs when cells perform fermentation instead of respiration even in
the presence of oxygen, therefore seen traditionally as an inefficient strategy to
generate energy. In the study by Basan (Basan et al. 2015), gene expression, acetate
excretion, and growth rates were analyzed. The authors found that the proteome cost
to generate energy by oxidative phosphorylation exceeds that of fermentation. The
growth-dependent demand for energy, protein synthesis, and biomass, according to
the authors, is dealt with through a global strategy reflected in the amounts of acetate
excretion. Since overflow metabolism has been observed in organisms from bacteria
to yeast and even cancer cells, it is likely that this type of analysis will be extended to
gain critical information for the chassis design beyond prokaryotes.

Extending the applicability of these models, a recent study (Dai et al. 2016; Mori
et al. 2017) has pointed out that the translational efficiency and therefore the capacity
for fast growth during the shift from famine to feast (nutrient upshift) are closely
related to the use of inactive ribosomes. These inactive ribosomes appear to be latent
in order to cope with fast growth upon a nutrient upshift. However, there is a high
cost for ribosome synthesis, so this extra ribosomal capacity creates a trade-off in
terms of fast growth in static versus changing environments.

In conclusion, coarse-grained approaches to study biological systems show, with
relative ease, broad regulatory mechanisms that govern resource allocation. On a
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general view, the synthesis of ribosomes (rRNA transcription and r-protein transla-
tion), the growth rate, and the levels and availability of metabolites used as biomass
building blocks create a control circuit signaled by ppGpp levels. The proteome
partitions are controlled in a supply and demand manner. Such partitioning is a
constraint that increases the mass of the currently limited proteome fraction at the
expense of decreasing the mass of the others. Such scheme suggests that biological
systems can be viewed as divided into coarse-grained modules (Fig. 1a).

3 Resource Allocation at the Genome Scale

Resource allocation can be studied using high-throughput technologies that provide
detailed information per each gene in a genome. Many recent studies have applied
proteomics to study resource allocation (Valgepea et al. 2013; Hui et al. 2015; Peebo
et al. 2015). A recent compelling data set used state-of-the-art quantitative mass
spectrometry techniques to measure protein abundance for E. coli in 22 growing
conditions (Schmidt et al. 2016). In addition to protein abundance, they also identify
methylation and acetylation not previously studied in bacteria. This data set is a
valuable source of information to correlate condition-dependent protein abundances,
elucidating the allocation of protein sectors (e.g., metabolic, ribosomal, and house-
keeping) over a wide range of environments. Together with the classically used
parameter of RNA/protein ratio, several cellular strategies for the specific use of
nutrients can be elucidated.

A powerful tool to study resource allocation is the recently developed ribosome
profiling method (Riboseq) (Ingolia et al. 2009). Essentially, Riboseq implies the
sequencing of mRNA but only those molecules that are being translated (protected by
the ribosome) at a certain point in time. This fundamental difference is what gives this
technique a huge advantage over other RNAseq since the correlation of mRNA to
protein quantities has shown to be low (Greenbaum et al. 2003; Ebrahim et al. 2016).
By knowing the exact mRNAs being translated, one can quantify the rates or protein
synthesis with high coverage and with reproducibility similar to that of mRNA
abundances (Li et al. 2014). These important kinetic parameters can be beneficial to
computational models in the sense that they can be used to elucidate cellular strategies
for gene expression control as well as to help make better predictions.

Fine-grained omics studies have documented the excess of ribosomal capacity
beyond bacteria. In the case of Saccharomyces cerevisiae, Metzl-Raz and colleagues
studied proteomics, RNAseq, and Riboseq in a wide variety of growth conditions. In
accordance with bacterial growth laws, they found that the higher the growth rate, the
more ribosomes per cell were present. Interestingly, when they measured the fraction
of inactive ribosomes, they found that a constant fraction of the proteome encodes for
ribosomal proteins that are not actively translating (~8%), and even in fast growth,
cells still maintain a ~25% of their ribosomal proteins inactive. Such a population of
ribosomes seems to point out that cells prepare for possible changes or fluctuations in
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the environment. This consistently explains why there is a higher delay in the
recovery from starvation in cells with a diminished excess ribosome pool.

To understand cellular processes that contribute to observed phenotypes and to
guide resource minimization projects, it is necessary to make genome-wide evalu-
ations of genetic function (functional genomics). To perform such a task, transposon
mutagenesis and sequencing approaches, such as barcoded Tn-seq, are very useful. It
allows the high-throughput generation of mutants which help to measure and track
fitness for a mutant library of an organism. In this technique, transposons are used to
insert randomly in the genome. The generated library of mutants is then sequenced,
and depending on the position where the transposons are inserted, assessment of
gene function and essentiality can be done on a large scale (Deutschbauer et al.
2014). In this study, they reported that using DNA barcoded Tn libraries for
quantitative parallel analysis, 89% of the genes in Zymomonas mobilis ZM4 have
an associated phenotype. Thus, a comprehensive and genome-wide relation between
genotype and phenotype can now be assessed for this important organism. This
approach should prove useful for exploring genotype-phenotype relations for other
industrially important organisms, and it is helpful to assess gene essentiality exper-
imentally. Price and co-workers combined Tn-seq with ribosome profiling data, and
they found which genes are highly translated in E. coli and do not contribute to
fitness in glucose minimal media; these genes are ideal candidates to eliminate since
they consume many resources and do not have an apparent fitness contribution, at
least under laboratory conditions (Price et al. 2016).

Genome-scale data sets require modeling tools and frameworks to be thoroughly
analyzed and understood. The representation of biological systems with a mathe-
matical approach has been mainly done by bottom-up computational approaches.
These approaches account for all known enzyme quantities, reaction rates, and mass
fluxes and, more recently, also include processes associated with the gene expression
machinery at a genome scale. Their usage enables one to predict phenotypes, based
on the input of certain parameters such as gene deletions, the maximization of
growth rate, or biomass production, by defining a mass flux or by constraining the
model via the fractionation of protein modules. A new generation of genome-scale
models includes the gene expression process (transcription and translation) through
the reconstruction of a stoichiometric matrix of these processes (Thiele et al. 2009).
Coupled to classic genome-scale metabolic models, these models of Metabolism and
Expression (ME-models) calculate the macromolecule need of an organism; they
capture several phenomena mentioned here such as growth-dependent biomass
composition, the demand for higher ribosomes, and the specific needs for gene
expression (O’Brien et al. 2014). These genome-scale models allow the calculation
of the needed proteome in a per gene basis for a particular growth condition. These
detailed molecular predictions make ME-model an excellent tool to study resource
allocation and to predict the minimal resource needs of a self-replicating organism.
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4 Suboptimal Resource Allocation Revealed by ALE

Adaptive laboratory evolution (ALE) is a widely used tool to evolve specialist
genotypes. Using this approach, evolved populations accumulate mutations that
confer them a fitness benefit to the specific environment to which they have adapted,
generally causing a fitness trade-off for other environments that were not adapted
to. Using whole-genome resequencing of recurring mutations in an evolutionary
experiment, the causal mutations can be easily identified (LaCroix et al. 2015).
While there are many studies on ALE for a wide array of applications (Dragosits
and Mattanovich 2013), few of them have focused on the resource allocation matter.
It is pertinent to expect that specialist phenotypes will allocate their resources better
and that generalist capacity will come with a fitness cost for the organisms that
express them. The fitness benefit of expressing a non-immediately used proteome
(a reserve or standby proteome) for generalist organisms has been documented by
several authors (Condon et al. 1995; Utrilla et al. 2016; Price et al. 2016). Constraint-
based metabolic models are optimality models; it has been observed that the ALE
endpoint approach to the model predicted optimal phenotype (Edwards et al. 2001;
Lewis et al. 2010). Using compelling data sets such as the Schmidt et al.’s (2016)
proteomic resource (Schmidt et al. 2016), one can compare measured protein
expression to a genome-scale model of metabolism and gene expression
(ME model) predicted optimal proteomes. O’Brien et al. (2016) showed that the
overexpression of the core proteome (compared to theoretical computed needs)
enables a fitness benefit upon encountering an environment that supports a faster
growth rate. The upregulation of stress resistance and nutrient readiness functions
maximizes survival under changing and harsh environments; however, these gener-
alist proteomes may result in a large proteome burden. In such study, they found a
clear correlation between the growth rate and the unused protein fraction. This can
explain why there are similar environments (i.e., growth on galactose minimal media
vs. glucose minimal media) that display large growth rate variation.

Many commonly occurring mutations in ALE experiments are pleiotropic regu-
latory mutations. These kinds of mutations are expected to shift the global state of
the cell to a new one, reprogramming several functions through changes in the
regulatory network. Mutations in the RNAP genes of E. coli are very often found. A
recent study (Utrilla et al. 2016) focused on the resource allocation of the
reprogrammed phenotype. Utrilla et al. (2016) observed that E. coli strains with a
single amino acid change in the beta subunit of the RNAP shifted the cellular state to
a specialized proteome for growth in glucose minimal media increasing growth rate
by 25% and biomass yield by 11%. The regulatory response is a consistent shift of
gene expression from stress preparing functions such as acid resistance, motility,
DNA repair, and nutrient scavenging, among others (also called “hedging func-
tions”) to growth functions. ME-model analysis shows 2–5% reduction of gene
expression allocated to non-ME genes and about one-third of reduction of mainte-
nance energy (Utrilla et al. 2016). In this case, a single amino acid change in an
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RNAP subunit rewires the regulatory network and creates a global resource
reallocation for a specialist reduced proteome.

In order to study bacterial resource allocation at the protein level, Price and
co-workers combined ribosome profiling data to a library of transposon mutants.
They found that many proteins are being expressed but not used. Up to 13% of the
E. coli-expressed proteome is in “standby,” in case conditions change, and 22% of
the expressed proteome did not show any benefit for glucose minimal media growth
(Price et al. 2016). In a related approach, to improve ME-model predictions, Yang
and co-workers (2016) used the Schmidt et al. (2016) proteomics data to generate a
generalist ME model that includes proteome sectors that constrain growth. Using
this approach, they create constraints that force the expression of specific functional
protein groups to account for the costs of non-ME-model protein production. First,
they identified sectors, based on Clusters of Orthologous Groups (COGs), whose
measured mass fractions were greater (over-allocated) or smaller (under-allocated)
compared to the optimal proteomes across different growth conditions. The addition
of proteome sector constraints greatly improved growth rate predictions. The
ME-model analysis showed that at low growth rates (0.1 h�1), up to 95% of the
proteome is not used for growth. They discuss that much of the unused proteome is
for stress-related and hedging functions. For the scope of this chapter, this means that
E. coli cells use much of their resources in stress and change preparation. These
resource allocation principles need to be addressed for minimal cell designed to grow
and thrive in specific environments.

5 Design of a Minimal Cell (From a Resource Allocation
Standpoint)

We foresee the design of a minimal cell as a two-major-step process: (a) Define the
minimal set of genes needed to grow/replicate/thrive in the desired conditions (the
core functions or proteome) and (b) design the minimal amount of resources to
allocate to carry out cell growth and the desired function, in other words the amount
of each gene to be expressed to carry out the desired functions in a proper way
(Fig. 1b). The first part of this process will be thoroughly reviewed elsewhere in
this book.

5.1 The Core Proteome Definition

First, we need to review the core functions since the minimal proteome needs to be
synthesized at least once per every cell division. This will set a constraint on the
minimal requirement on the protein synthesis capacity of a dividing cell. So this
raises the question, what is the minimal proteome needed? Several studies have
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focused on the quest of defining the minimal genome or minimal proteome in this
case. Recently, Yang and co-workers identified the core proteome of E. coli (Yang
et al. 2015). They used genome-scale models to define a core proteome with the aim
of computationally supporting basic cellular functions. Comparing computational
simulations in 333 conditions to expression data sets, they defined a functional core
proteome that consists of 356 proteins consistently expressed in all conditions.
Those proteins account for 44% of the proteome of E. coli by mass, based on
proteomics data. According to the Yang et al. core proteome definition, it is not
the smallest set of genes to allow growth, but it is the set of genes that are
consistently used across a large number of conditions. This means that the core
proteome defined by Yang et al. is the central core that needs to be expressed, but this
set alone will not support growth.

5.2 The Non-core Proteome

If the core proteome is comprised of those functions being expressed consistently,
there is a proteome that is necessary in a condition-specific manner. There have been
a few approaches to define the condition-specific proteome. The most straightfor-
ward manner to define the non-core proteome is using a genome-scale model, since
they capture the specific needs of gene expression requirements to grow on a certain
nutritional environment (Monk et al. 2017; Lloyd et al. 2018). Here we focus on the
resource allocation studies of the non-core proteome in different environments.
Yang et al. (2015) clustered growth conditions into 18 niches depending on the
carbon, nitrogen, phosphorus, and sulfur sources (C/N/P/S). They identified
condition-specific genes, adding 160 genes to the core data set. This data set
shows a close approximation to the genomes of minimal organisms, such as
Buchnera aphidicola and Mycoplasma genitalium, when comparing orthologous
genes among them. O’Brien and collaborators (2016) classify the non-core proteome
into element-dependent proteome, C for carbon, N for nitrogen, P for phosphorus,
and S for sulfur. These are proteins used for growth under alternative C, N, P, and S
sources and are largely of catabolic function. They found that approximately 6% of
the proteome is non-core across the conditions profiled with proteomics by Schmidt
et al. (2016). Comparing the ME-model prediction of proteome needs versus the
proteomics data, they show that most of the non-core proteome is un-utilized. Also,
in those profiled environments, the largest non-core proteome segment is the
C-proteome. The C-proteome is enriched in targets of the transcription factor
CRP, and under some non-preferred carbon sources, the C-proteome represents a
larger fraction of the proteome, presumably as a regulatory response for the cellular
preparation to change in carbon sources. These responses show a proteomic cost of
specific carbon source catabolism and a nutrient generalist cost and partially explain
why similar carbon sources may result in large growth rate differences (glucose
vs. galactose growth in E. coli). In the O’Brien et al. study (2016), it was shown that
the C-proteome abundance decreased linearly with the growth rate. This has been
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also demonstrated in other studies (You et al. 2013). These observations raise a
question, are fast-growing cells expressing a minimal set of functions? Again
comparing theoretical model prediction and actual gene expression has showed
that fast-growing cells meet the theoretical prediction, while slow-growing cells
have a very poor prediction of growth rate (O’Brien et al. 2016) (Fig. 2a). The
correlation between proteome use and proteome requirement has shown that in
certain conditions, nearly half of the proteome mass is unused. A minimal cell
should thus express a minimal specialized proteome; regulatory responses such as
nutrient generalism reduce resource availability for other proteome sector.

5.3 The Proteome Catalytic Efficiency

We can discuss proteome efficiency in two ways: (a) as efficiency in proteome
allocation (Basan et al. 2015) and (b) as efficiency in catalytic rates of the enzymes
comprising the proteome (Heckmann et al. 2018). So far we have discussed prote-
ome allocation; however, the proteome catalytic efficiency is a critical parameter
since the amount of enzyme needed to carry a flux will be reduced if that enzyme is
being used at its highest rate (Fig. 2b). Two recent studies have compared the
proteome allocation dynamics to changing growth rate. Valgepea et al. (2013)
studied transcriptomics and proteomics in steady-state growth in an accelerostat
going from 0.11 h�1 to 0.49 h�1. They found a fivefold growth range in E. coli,
which was due to a 3.7-fold increase of apparent catalytic rates of enzymes and a 2.5-
fold increase of translation rates, demonstrating the importance of the posttransla-
tional regulation of the proteome efficiencies as a mechanism of growth rate increase
(Valgepea et al. 2013). In a similar study, Peebo et al. (2015), performed proteomics
in an accelerostat going from 0.2 h�1 up to 0.9 h�1. They showed that E. coli
achieves faster growth by increasing the catalytic efficiency and the allocation
efficiency (to overflow metabolism) of the proteome (Peebo et al. 2015).

Many studies of the Terence Hwa group have determined the relations between
growth, proteome composition (allocation), and proteome efficiency. As we have
reviewed in this chapter, the growth laws show a linear correlation in the ribosome
content of cells and growth rate (Scott et al. 2010); however, the crowding theory
suggests a limitation in ternary complexes (TCs, comprised by aminoacyl-tRNA,
elongation factor Tu, and GTP), which are the substrates of ribosomes. The
crowding theory postulates that TCs diffuse slowly in a crowded cytoplasm, and
this limits translation efficiencies (Klumpp et al. 2013). In its recent study, they show
a growth rate dependence of protein elongation rate in translation. They show that
the translation efficiency and the protein elongation rate show a Michaelis–Menten-
like dependency on growth rate (Dai et al. 2016). The latter theory reconciles the
difference between ribosomal content and elongation rate. The recent evidence is
clear in that the elongation rate is not constant and the proteome increases its
efficiency as growth rate increases. As mentioned previously, studies have focused
on ribosome use and translation efficiency showing, for example, that at fast growth
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rate, 90% of the ribosomes are active, whereas at slow growth, only less than 20% of
ribosomes are active. When comparing measured proteomes to theoretical
ME-model predictions, O’Brien et al. (2016) documented a higher abundance of
the core proteome than calculated needs (Fig. 2a). These observations point to an

Fig. 2 (a) Core proteome abundance calculations reveal an excess at slow growth rates and meet
measured abundance at high growth rates. (b) Increasing proteome efficiency may reduce proteome
needs by using more efficient enzymes in a proteome sector
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inactive ribosomal fraction or to low efficiency of the translation process. As the
growth rate increases, ME-model predictions get closer to the actual core proteome
fraction, meaning that ME-model shows a better accuracy at high growth rates and
its theoretical calculations match the measured proteome at fast growth. The rela-
tionship between proteome composition and growth rate is affected by the effective
rates in which biological processes occur (Barenholz et al. 2016). Nutrient avail-
ability produces the most efficient proteome; therefore, a cell growing on rich media
achieves higher growth rate and higher catalytic efficiency; thus it may be expressing
an efficient proteome that is naturally reduced since all its capacity is used in full.

To design a cell with minimal proteome we therefore should achieve the best
proteome allocation and the highest catalytic efficiency of the enzymes in that
proteome. Fast-growing cells display the highest proteome efficiency; this observa-
tion has been done under broad nutrient availability, and thus it is based on the
external supply of cellular building blocks such as amino acids, vitamins, cofactors,
etc. However, as we have shown in this chapter, we sustain the hypothesis that a
minimal proteome should be the most efficient one, meaning that it should be
constituted by the most catalytically efficient set of enzymes; this will ensure the
minimal amount of protein needed to perform the necessary functions.

A very interesting bacterium to review for the scope of this chapter is Vibrio
natriegens. It has been recently considered as the new molecular biology host for its
fast duplication time (<10 min) (Weinstock et al. 2016). Some groups are develop-
ing molecular tools and protocols claiming it will speed molecular biology
workflows. Recently, a quantitative study of its metabolic flux distributions was
published. The study found that V. natriegens is able to grow at a specific rate of
1.7 h�1 in glucose minimal media, whereas even laboratory-adapted strains of E. coli
seem to reach a limit around 1.0 h�1 (LaCroix et al. 2015). It also has a much higher
glucose uptake rate (21 vs 8.5 mmol/gDW h), oxygen uptake rate (28 vs. 12 mmol/
gDW h), and cell yield (0.52 vs. 0.48 g/g) on glucose minimal media (Long et al.
2017). V. natriegens do not have a reduced genome; it is even larger than E. coli (5.1
vs. 4.6 Mbps), and it has more ribosomal operon copies than E. coli (12 vs. 7). Its
genome is divided into two chromosomes (Lee et al. 2019; Aiyar et al. 2002; Wang
et al. 2013; Maida et al. 2013). Using a functional genomics assay with CRISRPi, it
was found that V. natriegens’ non-essential core genes were enriched for respiration,
and this may explain its high growth and respiration capacity (Lee et al. 2019). As
we have argued here, we hypothesize that the proteome of V. natriegens may be
catalytically more efficient than that of E. coli. Unfortunately, at this time there are
no resource allocation studies for this organism to compare with the vast information
available on E. coli.

6 Biotechnological Applications

Minimal specialized cells hold a promise to be a leap of technology for biotechno-
logical applications; however, they have not been sufficiently developed nor widely
adopted. In terms of resource allocation, there are many considerations to focus
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on. Several studies have focused on characterizing the cost of expressing genes and
to optimize gene circuit design to minimize burden (Ceroni et al. 2015, 2018). Fewer
studies have focused on the cell resources that need to be allocated to correctly
display a synthetic function (Liao et al. 2017), and no engineering efforts have been
done to remodel the proteome allocation for synthetic biology applications.
Expressing an unused protein, metabolic pathway, or synthetic gene circuit drains
cellular resources for growth (Tan et al. 2009). Weiße et al. (2015) used a trade-off
model to explain how a synthetic circuit, the repressilator (Elowitz and Leibler
2000), competes with host resources. They found that the expression of the circuit
proteins imposes a burden on the cell because they do not contribute to growth or
survival. Their model predicts a sigmoidal decrease in growth for stronger induction
of circuit genes. Comparing the results of simulation of the circuit in isolation and
within the cell (taking in account the competition for cell resources), they predicted
induction regions where cells are overloaded (Weiße et al. 2015). Cells reduce their
growth rate when forced to express high amounts of unused proteins. A recent
modeling approach showed that at weak heterologous gene expression, the amount
of protein output can be increased at the expense of growth reduction. In their work,
Bienick and coworkers (2014) showed a theoretical calculation for a “critical
capacity” above which heterologous protein production and host growth decrease
sharply. With the aid of their modeling approach, they showed that those regions of
sharp decrease are a result of ribosomal scarcity (Nikolados et al. 2019). The cost of
protein production in yeast (Saccharomyces cerevisiae) depends on the growth
conditions, while in nitrogen limitation the cost is likely on the shortage of amino
acids. During slow growth on a non-fermentable carbon source, protein production
was limited by ribosome content; however, under conditions of rapid growth,
ribosome content was not limiting (Kafri et al. 2016). In the case of E. coli, Frumkin
et al. (2017) showed that there are gene architectures that minimize the cost of gene
expression. Such mechanisms are the reduced macromolecular machinery use
(RNAP and ribosomes), slow translation speed, and the use of cheap amino acids.
They showed that these mechanisms are selected to reduce the expression costs of
natural genes and highly expressed genes evolved toward lower expression costs. In
other production models such as Chinese hamster ovary (CHO) cells, a recent study
showed the ribosome profiling-guided silencing of the unnecessary resistance
marker NeoR improved production of a therapeutic antibody (IgG) and growth of
a CHO cell line (Kallehauge et al. 2017).

Detailed studies of protein cost show that regardless of the initial conditions, when
the unused heterologous protein reaches 15% of the total cell mass, growth rate is
reduced at around half. Of course, this is dependent on the other fractions of the
proteome (Bienick et al. 2014), and it is explained by a simple equation derived from
the Scott et al. (2010) growth laws. They showed a theoretical calculation for a
metabolic engineering application in which a six-enzyme heterologous pathway,
assuming typical parameters of protein size and efficiency (Kcat 2.6 s�1, molecular
weight 40 kDa), may reduce growth rate to 50% of the non-producing strain; this
reduction is calculated just taking into account the cost of enzyme production, not
considering carbon loss to the product of interest. If we can minimize the resource
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allocation to unused sectors of the proteome or use the most efficient set of enzymes,
then we may increase the fraction of the proteome that is feasible to be used for
engineered synthetic functions and biotechnological applications. Many
bioprocesses are carried out in well-controlled fermenters where the environment is
somehow homogeneous, and depending on the bioprocess scale and conditions, some
of the environmental hedging functions and regulatory responses may be eliminated
from the host cell. However, many bioprocesses are carried out in large-scale vessels
(from thousands to million liters). We have to consider that in such large-scale
bioreactors, heterogeneities may be formed. For example, heterogeneous regions of
dissolved oxygen, low or high pH regions, or substrate concentration gradients, all
these kinds of stress source need to be taken in account for minimal cell design to be
used in such large-scale vessels (Wehrs et al. 2019). If we know beforehand the nature
and scale of our process, we can design specific stress response mechanisms for
specific stressors. These factors need to be addressed to design the allocation of
resources in minimal cells aimed at specific biotechnological applications.

7 Concluding Remarks

A minimal cell design should take into account the cellular resource need of each
process. Protein synthesis and translation machinery synthesis are the most resource-
extensive cellular processes. Therefore, special attention has to be paid to the
proteome allocation for the desired condition. Cells living in natural changing
environments need to deploy a large number of resources for preparation to
non-ideal conditions, be prepared to change to a wide variety of environments, and
protect themselves from harsh conditions. However, a minimal cell designed for a
specific function can express a minimal specialized proteome. By reviewing recent
literature on resource allocation, we hypothesize on how to reduce cellular resource
consumption and use liberated resources to express an engineered cellular function.
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