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Abstract. A single-hop beeping network is a distributed communica-
tion model in which each station can communicate with all other but
only by 1 − bit messages called beeps. In this paper, we focus on resolv-
ing two fundamental distributed computing issues: the naming and the
counting on this model. Especially, we are interested in optimizing energy
complexity and running time for those issues. Our contribution is to have
design randomized algorithms with an optimal running time of O(n logn)
and optimal O(log n) energy complexity whether for the naming or the
counting for a single-hop beeping network of n stations.
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1 Introduction

Introduced by Cornejo and Kuhn in 2010 [8], the beeping model makes little
demands on the devices which need only to be able to do carrier-sensing, differ-
entiating between silence and the presence of a jamming signal on the network
(considered as 1− bit message or one beep). Such devices have unbounded local
power computation [6]. They note in [8] that carrier-sensing can typically be done
much more reliably and requires significantly less energy and other resources
than message-sending models. Minimizing such energy consumption per node
arises as all nodes are battery-powered. Since sending or receiving messages costs
more energy than internal computations, the energy consumption is measured
by the maximal waking time of any node (beeping or listening to the network)
[6,16,17,19,21,29]. It is more realistic when the nodes have no prior information
about the topology of the network and are initially indistinguishable (have no
identifier denoted ID). To break such symmetry, researchers designed various
protocols such as leader election ([6,11,12,15,17–19,23,26]) Maximal Indepen-
dent Set ([1,28]) and naming protocols ([2,7,13,20,21]). In this paper, we con-
sider the naming problem on the single-hop1 beeping networks which consists in
assigning a unique label � ∈ {1, 2, ...n} to each node. On the previously described
model, we design an energy optimal randomized naming algorithm succeeding
1 The underlying graph of the network is a complete graph.
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in O(n log n) time slots with high probability2 (w.h.p.), having O(log n) energy
complexity. We start by presenting a deterministic algorithm naming M nodes
(M ≤ n) in O(M log n) time slots with O(M + log n) energy (Sect. 2). We then
consider the case when n is unknown in Sect. 3. This is then adapted to solve
the counting problem, consisting in assigning their exact number to all nodes
(Sect. 3). Thereafter, we use derandomization techniques to adapt our algorithm
in order to have a deterministic one if n is known beforehand (Sect. 4) terminat-
ing with O(log n) energy complexity. As customary in deterministic settings, we
assume that the nodes have unique ID ∈ {1, 2, ...N} (N is a polynomial upper
bound of n). Finally, we prove a lower bound of Ω(log n) on the energy com-
plexity for naming a beeping network in Sect. 5 and present maple simulation
results illustrating our works in Sect. 6.

1.1 The Models

In a single-hop beeping network, nodes communicate with each other via a shared
beeping channel.

As shown in the following
Figure, this can be used for
modeling an ad hoc network
where all nodes are in each
other’s communication range.
The nodes can send 1−bit mes-
sages and do a carrier sensing
in order to detect any trans-
mission.

At each synchronous discrete time slot, a node independently decides whether
to transmit a beep, to listen to the network or to remain idle (asleep). Only lis-
tening nodes can receive the state of the common channel which can be, Beep if
at least one node is transmitting or Null when no node transmits. This model
is also called BL or Beep Listen model. In this paper, we use in general the BL
except for the randomized counting protocol for which we use the BCDL model
(Beep with Collision Detection Listen) where transmitters can detect collisions
[1,28].

1.2 Related Works and New Results

As a fundamental distributed computing problem [20], many results exist for
the naming problem. Let us first consider the simplest model, the single-hop
network, where the underlying graph of the network is complete. In [13], Hayashi,
Nakano and Olariu presented a O(n) running time randomized protocol for radio
networks with collision detection (RNCD). Later, Bordim, Cui, Hayashi, Nakano
and Olariu [2] presented an algorithm terminating w.h.p. in O(n) time slots, and
O(log n) energy complexity. In [22], for radio network with no collision detection
2 An event εn occurs with high probability if P[εn] ≥ 1 − 1

nc for any constant c > 0.
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(RNnoCD), Nakano and Olariu designed a protocol terminating in O(n) time
slots w.h.p. with O(log log n) energy complexity. The results on beeping model
appeared very recently when Chlebus, De Marco and Talo [7] presented their
algorithm terminating in O(n log n) time slots w.h.p. for the BL model and
provided Ω(n log n) lower bound on the time complexity. Moreover, Casteigts,
Métivier, Robson and Zemmari [4] presented a counting algorithm for the BCDL
model terminating in O(n) time slots w.h.p. They noticed that adapting their
algorithm to the BL model will cost a logarithmic slowdown in time complexity.
The following Table shows our results on single-hop networks (Table 1).

Table 1. Our results

Problem and model Time
complexity

Energy
complexity

Succeed with
probability

Randomized naming in BL network O(n logn) Θ(log n) 1 − O( 1
nc )

Indistinguishable nodes, n unknown, Theorem2, 5 c > 0

Unconditional Deterministic naming in BL O(n logn) O(n) -
Unique ID ∈ {1, N}, n unknown, Theorem1

Derandomized Deterministic naming in BL O(n logn) O(log n) 1 − O( 1
nc )

Unique ID ∈ {1, N}, n unknown, Theorem4 c > 0

Randomized Counting in BL O(n logn) Θ(log n) 1 − O( 1
nc )

Theorem3, 5 c > 0

The more realistic model where the underlying graph of the network is an arbi-
trary connected graph (it is called the multi-hop network model) also gained in
importance as subject of researches [24]. The only analysis for the initialization
protocol in such a multi-hop case was given in [27] and was restricted to a set
of nodes randomly thrown in a square. It will then be very interesting to adapt
our designed protocols to work on such a model.

2 New Approach: Deterministic Naming of M Nodes

Let N be a polynomial upper bound of n known by the nodes, each node having
a unique identifier denoted ID ∈ {1, 2, ...N}. In the next sections, N is randomly
approximated by the nodes if unknown and the nodes randomly generate unique
ID w.h.p. In this section, we use a known method consisting in representing ID
by its binary encoding and sending the obtained bits one by one in reverse order
[14]. If M nodes (M ≤ n) hold such unique ID, they firstly encode their ID into
a binary code-word denoted CID = [CID[1]CID[2]...CID[�log2 N�]] such that
CID[i] ∈ {0, 1} (CID[1] corresponds to 2�log2 N� and CID[�log2 N�] corresponds
to 20). Each participant then sends its CID bit by bit during �log2 N� = O(log n)
time slots in order to know if it has the largest ID of all participants. If a node
detects that one of its neighbors has a higher ID, it gets eliminated (it is no longer
a candidate to take the next available label). Then, the unique node holding the
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largest ID gets such next available label. Such an algorithm can be considered as
M deterministic seasons S1, S2, ...SM (the nodes do not know M). In one season
Sj , each node sends its CID bit by bit during �log2 N� steps t1, t2, ...t�log2 N�.
We define the Test(i) protocol, called at a step ti and taking the step number
‘i’ as parameter. It encodes one bit CID[i] into two communication steps ti,0 and
ti,1 and outputs a status ∈ {Eliminated, Active,Null}.

-Test(i): If the node s running Test(i) has CID[i] = 0, then it beeps at ti,0 and
listens to the network at ti,1 = ti,0 + 1. If it hears beep at ti,1, Test(i) returns
Eliminated. Otherwise, it returns Null. If s has CID[i] = 1, then it listens at
ti,0. If it hears beep at ti,0, Test(i) returns Active, otherwise, it returns Null.

Then at any step ti, by executing Test(i), each participant knows if at least
one of them has CID[i] = 1. In such case, each node s having CID[i] = 0 gets
eliminated until the next season Sj+1. At the end of the season Sj , the last
non-eliminated node takes the label j. By looping these computations until no
node remains unlabeled, this method produces a naming algorithm terminating
in O(M log n) time slots.

Energy Optimization Principle: The latter algorithm is not energy efficient
because all nodes have to be awake during the whole O(M log n) time slots. To
improve such energy consumption, we remark that each node s must be awake
only during two specific set of steps in order to know if any of its neighbors has
a higher ID. Thus, we introduce the following two definitions of such steps.

Definition 1 (Step To Listen: STL). A STL is one step ti recorded by the
node s during any season Sj. A node s receiving Test(i) = Eliminated records
i into STL and on the next seasons Sj+1, ...SM , s wakes up and listens at ti,0 in
order to verify if it is still eliminated at this step. s may not sleep after ti.

Definition 2 (Steps To Notify: STN). A STN is a set of steps {ti, tk, ...}
recorded by the node s1 during any season Sj. A node s1 receiving Test(i) =
Active knows there is at least one node s2 having CID[i] = 0 while it has
CID[i] = 1. It saves i into STN because at the next seasons, it has to beep at
ti,1 in order to notify that s2 is still eliminated at this step. When s1 adds i into
STN, it has no more active neighbor holding CID[k] = 1, k > i. Thus, s1 empties
STL.

Description of the Energy Efficient Algorithm: All nodes are initially
sleeping and run the following computations during some seasons S1, S2, . . .
until being labeled. For any season Sj (j ∈ {1, 2, . . . ,M} and the nodes do not
know M), a node s wakes up only at the first step ti found in its STL or STN.
If such i ∈ STN, then s sleeps before moving at ti+1. Otherwise, if i ∈ STL
and s has Test(i) = Eliminated, then it sleeps until the next season. s stays
awake and moves on ti+1 if Test(i) = Active. At the end of season Sj , the
last remaining awake node sets � = j, empties STN and STL and sleeps. For a
better comprehension, we represent the execution of the algorithm by a binary
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tree as done in [10]. One path of such a tree represents the CID of a device
and one of its edges represents one bit of such CID. In the figures showing such
representation, we consider the execution of the naming algorithm for only one
device. In such figures, the hexagons represent the STL, the squares represent
the STN and the circles represent the other waking steps. The number inside
these shapes represents the season during which the node wakes up.

Algorithm 1. DeterministicNaming(N) on any node s

Input : Upper bound N of n, unique ID ∈ {1, 2, ...N}
Output: Node s has unique label � ∈ {1, 2, ...M}
1 encode ID into binary code-word CID = {0, 1}�log2 N�;
2 � ← 0; STL ← Null; STN ← Null; S ← 1; Test ← Null.
3 while � = 0 do
4 for i ← 0 to �log2 N� do
5 if i ∈ STL then
6 wake up at ti; Test ← Test(i)
7 if Test = Eliminated then
8 sleep
9 end

10 end
11 if i ∈ STN then
12 wake up at ti, run Test(i) and sleep
13 end
14 if s is awake and i /∈ STL then
15 Test ← Test(i)
16 if Test = Active then
17 add i into STN and empty STL
18 end
19 if Test = Eliminated then
20 add i into STL and sleep
21 end
22 end
23 end
24 if s is awake then
25 � ← S; STL ← Null; STN ← Null; Test ← Null; sleep
26 end
27 S ← S + 1
28 end
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Fig. 1. Example of execution
of Algorithm 1

The presented example in the following Figure
is for 9 devices having ID ∈ {15, 14, 13, 12,
11, 10, 9, 8, 7}. The black leaf represents the device
having CID = [1010]. s wakes up at step t1 of sea-
son S1 (1 inside a circle for the root node in the
figure). It has CID[1] = 1 and hears that some
nodes have CID[1] = 0 then saves 1 into its STN
(Fig. 1).

It wakes up at t2 (1 inside a circle for the next
node in the left of the root). As CID[2] = 0 and s
hears that some nodes have CID[2] = 1, it adds 2 into its STL and sleeps until
the end of S1. s wakes up at t1 of S2 because 1 is in its STN (2 inside a square
for the root). Then it wakes up at t2 as 2 is in its STL (2 inside an hexagons
for the left node after the root). As there remains a node having CID[2] = 1, it
sleeps until the end of the season S2. s do the same computations for seasons
S3, . . . , S6 and gets labeled at S6.

Lemma 1. In single hop beeping networks of size n, there is a deterministic
algorithm naming some M participating nodes in O(M log n) time slots with no
node being awake for more than O(M + log n) steps.

Proof. Algorithm1 terminates deterministically in M × �logN� = O(M log n)
time slots. In the following, let Ws be the total waking times of any node s in
the previously defined Algorithm 1, WSTN , WSTL and Wother correspond to STN
total waking time, STL and other total waking times. Similarly, (WSTN )worst,
(WSTL)worst and (Wother)worst are the worst waking times of all nodes. We have

Ws = WSTN+WSTL+Wother ≤ (WSTN)worst+(WSTL)worst+(Wother)worst . (1)

In order to find (WSTN )worst and (WSTL)worst, we can simulate a complete
binary tree to be the tree representation of the networks devices as done in [10].
For a better comprehension, we illustrate how we obtained the two following
figures in Appendix 1 and Appendix 2.

Fig. 2. Worst case for STL.

The node s having (WSTL)worst (the
black node in this Figure) wakes up T
times (T Seasons) at any step ti of STL
until no other node has a higher ID. This
value T is at most half of participants on
t1 and gets halved every i. We can see
(by the hexagons shapes), that s wakes
up M

2 + 1 times in season S1 (Fig. 2).
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Fig. 3. Worst case for STN.

Furthermore, as for STL, a node s
wakes up at ti ∈ STN during as many
times (Seasons) as the number of nodes
with a higher ID. I.e., half the number
of participants at step t1. This value gets
halved every i and we have (Fig. 3)

(WSTN )worst ∼ (WSTL)worst ≤
M∑

i=1

(
M

2i
+ 1

)
≤ O(M) (2)

A node s wakes up just once at any step ti not in STN and STL (we can see
that by the round shapes in the Figures). Hence, we have

(Wother)worst ≤
logN∑

i=1

O(1) ≤ O(logN) ≤ O(log n) . (3)

�
A Maple simulation illustrates our results in Sect. 6.

Theorem 1. In single-hop beeping networks of size n, if no node knows n but
a polynomial upper bound N of n is given in advance to all nodes and the nodes
have a unique ID ∈ {1, 2, ...N}, there is an energy efficient deterministic naming
algorithm, assigning unique label to all nodes in O(n log n) time slots, with no
node being awake for more than O(n) time slots.

Proof. Applying Lemma1 to M = n, we reach the desired result. �

In Sect. 3, we use Algorithm1 as a subroutine to design a randomized energy
efficient naming protocol, having O(log n) energy complexity. To do so, we dis-
tribute the nodes into O

(
n

log n

)
groups in order to have Θ(log n) nodes in each

group. The main idea is to make Θ(log n) nodes running the Deterministic-

Naming(N) protocol O
(

n
logn

)
times (each group executes Deterministic-

Naming(N) one time) instead of n nodes calling DeterministicNaming(N)
one time. This leads us to a O(log n) waking time per node.

3 Energy Efficient Randomized Algorithms

We assume that the total number of nodes is unknown and that the nodes are ini-
tially indistinguishable. All the nodes then have to know a linear approximation
u of n. This approximation problem was well studied in the distributed com-
puting area. Brandes, Kardas, Klonowski, Pająk and Wattenhofer [3] designed
a randomized linear approximation algorithm, terminating w.h.p. in O(log n)
rounds. Our main idea is to make all nodes approximating u in O(log n) time
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slots using algorithm presented in [3], which can be parameterized in order to
have u ∈ [ 12n, 2n] in O(log n) time slots (i.e. 2u ∈ [n, 4n] is locally known by
the nodes). Then each node chooses uniformly at random to enter into one of
� 2u
log (2u)� = O( n

logn ) groups.

Lemma 2. As a classical result (see for instance [25]), if n nodes randomly and
uniformly choose to enter into � n

logn� groups, there is at most 4 log n nodes in
each group with high probability.

Proof. The probability to enter any group Gi is O
(

logn
n

)
. As a consequence, if

|Gi| denotes the number of nodes in a group Gi, then E[|Gi|] = O(log n). Hence,
by means of Chernoff bound, |Gi| ≤ O(log n) with probability at least 1−O

(
1
n

)
.

�

After that, each node takes a unique ID uniformly from {1, 2, ...(2u)2}.
We then sequentially run DeterministicNaming((2u)2) on each group one
group at a time. Firstly, each node in the group G1 works during at most
�log(2u)2� = O(log n) time slots to name itself. Then, during extra O(log n)
time slots, the last labeled node in G1 sends its label bit by bit to the next
group G2. In parallel, all the nodes in G2 wake up and listen to the network
during O(log n) time slots. Those nodes save the received value into a variable
�prev. By running DeterministicNaming(N), all nodes in G2 have a label
� ∈ {1, 2, . . . , |G2|}. Then, each of them has to update � ← � + �prev in order to
make a labeling ∈ {1, 2, . . . , n}. We apply these computations to each couple of
groups {{G1, G2, }, {G2, G3}, . . . } one by one.

To know if any node s has the last label of its group, we modify the Deter-

ministicNaming(N) algorithm such that a node labeled at a season Sj wakes
up during the entire season Sj+1 and listens to the network, finding out if there
remain unlabeled nodes. This extra O(log n) waking time doesn’t affect our
O(log n) energy complexity.

Theorem 2. In single-hop beeping networks of size n, if n is unknown by all
nodes and nodes are initially indistinguishable, there is an energy efficient ran-
domized naming algorithm, assigning a unique label to all nodes in O(n log n)
rounds w.h.p, with no node being awake for more than O(log n) time slots.

Proof. The latter described algorithm uses DeterministicNaming(N) and is
therefore quasi deterministic. As by [3], u = Θ(n), if we note the time complexity
of DeterministicNaming(N = (2u)2) algorithm by TD, our naming algorithm
terminates in � 2u

log(2u)�×TD time slots. Then by Lemma 2, the number of partic-
ipants is at most O(log n) w.h.p. Thus, by using M = O(log n) in Lemma 1 we
get TD = O(log2 n), implying the O(n log n) time complexity of our randomized
naming algorithm.
Therefore, each node s is awake only during the execution of the Determin-

isticNaming((2u)2) protocol and O(log n) extra times for checking if s has
the last label as well as sending it to the next group. Consequently, the energy
complexity is O(log n). �
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Using such an algorithm, we can design a counting algorithm with O(n log n)
time complexity and O(log n) energy complexity on the single-hop BL network.
To do so, we add the following computations. As it terminates after at most
� 2u
log(2u)� × �log2(2u)� = �2u log(2u)�, all nodes wake up after �2u log(2u)� time

slots (counted from the first time slot of the Season S1 for the first group) and
the last labeled node send its label bit by bit.

Theorem 3. In single-hop beeping networks of size n, if n is unknown by all
nodes and nodes are initially indistinguishable, there is an energy efficient ran-
domized counting algorithm allowing all the nodes to know the exact number
of the participants, terminating in O(n log n) rounds w.h.p, with no node being
awake for more than O(log n) time slots.

Proof. If at the end of the last group G� 2u
log(2u) �, all nodes wake up and the last

labeled node sends its label bit by bit, this value corresponds w.h.p. to the exact
number of nodes on the network. �

4 Deterministic Energy Efficient Naming Algorithm

The randomized part of our algorithm consists in the assignment of all nodes
to O

(
n

logn

)
groups of size O(log n) each. Then, the nodes execute the Deter-

ministicNaming(N) protocol one group at a time in order to have each node
awake for at most O(log n) time slots. In this Section, we consider a network of
n nodes that know the exact value of n. Each node has a unique ID taken from
{1, N} where N is a polynomial upper bound of n. Our goal is to do the previous
group assignment in a deterministic manner, with a very small error rate. To do
so, we use a hash function in order to map each node’s ID into � n

logn� values,
such that the nodes holding the same value belong to the same group.

Celis, Reingold, Segev and Wieder [5] construct such hashing function, by
encoding integer values into binary code-words of length O(log n log log n), such
that there is at most O( logn

log log n ) integers mapped to the same code-word with a
probability greater than 1 − O

(
1
nc

)
, c being a positive constant. Having this in

mind, each node firstly maps its ID into a code-word, using the hashing function
described in [5]. The nodes having the same code-word are in the same group.
Then, the nodes having the first code-word (the nodes in the first group) execute
DeterministicNaming(N) in order to be labeled. The last labeled node sends
� bit by bit to the next group during O(log n) time slots when the nodes having
the second code-word listen to the network. Those nodes in the second group
run DeterministicNaming(N) and add the previously received label to the
latter computed label. The last labeled node in the group 2 sends � to the next
group and so on.

With such adaptations, we have the following result.

Theorem 4. In single-hop beeping networks of size n, if n is known in advance
by all nodes and nodes have a unique ID ∈ {1, 2, ...N} (N is a polynomial upper
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bound of n), there is an energy efficient deterministic naming algorithm, assign-
ing unique label � ∈ {1, 2, ...n} to all nodes in O(n log n) time slots, having no
node being awake for more than O(log n) time slots, with a probability of error
less than O

(
1
nc

)
, for some constant c > 0 independent of n.

5 Lower Bound on Energy Complexity

In [7], the authors presented an Ω(n log n) lower bound for the running time of
any randomized naming algorithm. We use such a lower bound in order prove
the following result.

Theorem 5. The energy complexity of any randomized algorithm solving the
naming problem with constant probability is Ω(log n).

Proof. It was proved in [7] that any randomized algorithm for naming n stations
requires Ω(n log n) expected time slots to succeed with a probability of error
smaller than 1

2 . Their proof uses the Yao’s minimax principle and is combined
to Shannon’s entropy [9]. We use such running time lower bound to prove the
Theorem 5 by contradiction. Let us first remind that the time complexity of any
distributed algorithm is measured by the communication time instead of local
computations and that the energy complexity is measured by the maximal wak-
ing (communication) time of any node. We suppose that there is a randomized
naming algorithm with o(log n) energy complexity. i.e. each node communicates
on the network during at most o(log n) time slots when running such an algo-
rithm. It is then straightforward to see that the total communication time (i.e.
time complexity by definition) of such algorithm is at most o(n log n). This con-
tradicts the given lower bound of Ω(n log n) for time complexity in [7]. �

6 Maple Simulation

In this Section, we present a maple simulation of Algorithm 1: Deterministic-

Naming(N) where n, the total number of nodes, varies from 105 to 1010, 106 by
106. The X −axis corresponds to the values of n while the Y −axis corresponds
to the waking time numbers.
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Fig. 4. The energy complexity of nodes taken ran-
domly from a set of �logN� nodes. (Color figure
online)

For each value of n, N = n2

and M nodes participate to the
naming task (for sake of simplic-
ity, we fix M = �log2 N�). For
each value of n, we randomly
choose one of the M partici-
pating nodes in order to count
the total number of its waking
time. In the following Figure,
the green (or grey) graph rep-
resents the total waking time
of any node si taken randomly
from the M participating nodes
s1, s2...sM for each values of n.
The blue (or bold black) graph
is the values of M for each value
of n and the red (or black)
graph represents c × M (here
c = 3.6) (Fig. 4).

The maple codes are available in

https://www.irif.fr/~nixiton/initLoop.mw or in
https://www.irif.fr/~nixiton/initLoop.pdf

7 Conclusion

In this paper, we focus on the naming problem in single-hop beeping networks.
We start by a deterministic version, when the nodes known N , a polynomial
upper bound of n and all nodes have a unique ID ∈ {1, N}. Such a protocol has
O(n logN) time complexity and O(n) energy complexity. Then, when the nodes
do not know the exact value of n and are initially indistinguishable, we design a
randomized algorithm terminating in optimal O(n log n) time slots w.h.p., and
optimal O(log n) energy complexity. We have also established that for the same
task, Ω(log n) waking time slots are necessary for any randomized algorithm to
succeed with a constant probability. Our algorithm can be used for the count-
ing problem, returning the exact number of the nodes in O(n log n) time slots,
with O(log n) energy complexity. By means of derandomization, we devise an
energy-efficient deterministic naming algorithm that errs with probability less
than O

(
1
nc

)
terminating in O(n log n) time slots with O(log n) energy complex-

ity. Our protocols has optimal time and energy complexity for the single-hop
network. It will be then interesting to consider how to adapt such a protocol to
work on the multi-hop beeping network model which is much more realistic than
the single-hop one.

https://www.irif.fr/~nixiton/initLoop.mw
https://www.irif.fr/~nixiton/initLoop.pdf
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Appendix 1: Worst Case for STL

Here, we show a simulation of the execution of Algorithm 1 on the worst case
for STL in a complete binary Tree to count the number of waking time of this
node.

Legends: hexagons represent the STL waking steps of the node, squares are the
STN waking steps and circles represent the other waking steps. The numbers
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inside these shapes represent the season where the node wakes up. Numbers
without any shape represent the sleeping steps of the node. Dotted lines rep-
resents the transition between two steps ti, ti+1 on any season where the node
starts to sleeps or remains sleeping. And solid lines the transition between two
steps ti, ti+1 on any season where the node wakes up or remains awake.

Appendix 2: Worst Case for STN

In this section, we show a simulation of the execution of Algorithm 1 on the
worst case for STN in a complete binary Tree to count the number of waking
time of this node.
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