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Abstract. One of the main challenges in the analysis of probabilis-
tic programs is to compute invariant properties that summarise loop
behaviours. Automation of invariant generation is still at its infancy and
most of the times targets only expected values of the program variables,
which is insufficient to recover the full probabilistic program behaviour.
We present a method to automatically generate moment-based invariants
of a subclass of probabilistic programs, called Prob-solvable loops, with
polynomial assignments over random variables and parametrised distri-
butions. We combine methods from symbolic summation and statistics
to derive invariants as valid properties over higher-order moments, such
as expected values or variances, of program variables. We successfully
evaluated our work on several examples where full automation for com-
puting higher-order moments and invariants over program variables was
not yet possible.

1 Introduction

Probabilistic programs (PPs), originally employed in cryptographic/privacy pro-
tocols and randomised algorithms, are now gaining momentum due to the several
emerging applications in the areas of machine learning and AT [12].

One of the main problems that arise from introducing randomness into the
program is that we can no longer view variables as single values; we must think
about them as distributions. Existing approaches, see e.g. [5,19,27] usually take
into consideration only expected values, or upper and lower bounds over pro-
gram variables. As argued by [29], such information is however insufficient to
characterize the full value distributions of variables; (co-)variances and other
higher-order moments of variables are also needed. Computing such moments
is however challenging, if possible at all — see [17] for an insight on the hard-
ness of analyzing expected values and (co-)variances of PPs. We illustrate the

This research was supported by the Austrian Science Fund (FWF) under grants S11405-
N23, S11409-N23 (RiSE/SHINE), the ERC Starting Grant 2014 SYMCAR 639270,
the Wallenberg Academy Fellowship 2014 TheProSE and the Austrian FWF project
W1255-N23.

© Springer Nature Switzerland AG 2019

Y.-F. Chen et al. (Eds.): ATVA 2019, LNCS 11781, pp. 255-276, 2019.
https://doi.org/10.1007/978-3-030-31784-3_15


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31784-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-31784-3_15

256 E. Bartocci et al.

real x:=-1,y:= 1; A || real x:=rand (-9, 7), y := rand (-7, 9); B
reals:=0,f:=0, d; reals:=0, f:=0;
while (true){ while (true){
f :=1[3/4]0; 9 f :=1[3/4]0; 9
x =x+f*rand(1-d, 1+d); | E[s,] = " x :=x+f*rand(-3,5); E[sp,]=—-n
y :=y+f*rand(2-2d,2+2d); y :=y+f*rand(-6,10); 4
s =Xty 2 s =Xty
20d“ + 27 347 128
= V: =— —_
} Var[s,] T } ar(s,] 6"t 3
real x:=-1,y:= 1; C || real x :=rand (-9, 7), y :=rand (-7, 9); D
reals:=0,f:=0,d; E[S]_§n3+§n2_n reals:=0,f:=0; . _3 R 3 R
while (true){ nl=3g 3 while (true){ [sn] = g" + gh—n
f:=1[3/410; f :=1[3/4]0;
- * .
x =x+f*rand(1-d, 1+d); X :=x+f*gauss(1,16/3);
y :=y+f*rand(2-2d,2+2d); y =y +f*rand(-6,10);
s =s+x*y; s =s+x*y;
} _ (6d%+9\ 5 | (8d*+84d2+27\ 4 ’
Yartonl = (8.11(152;: 9+ ( 1::4“422"3 ’ } Var[s,] = z ns + 3419 nt+ 2903 nd +
- 3 - 2 Y 92 E>E
(=R w + () + B Y
80d*+324d2-9 n24 2
( 1440 ) 64 288

Fig. 1. Examples of four Prob-solvable loops. £ := 1[3/4]0 is a statement that assigns
to £ the value 1 with probability % and the value 0 with probability 1 — % = i. The
function rand(a, b) samples a random number from a uniform distribution with support
in the real interval [a,b] and the function gauss(u, 0*) samples a random number from
a normal distribution with mean p and variance o2. For each loop, we provide the
moment-based invariants for the first (E[]) and second moments (Var[]) of s computed
using our approach, where n denotes the loop counter.

importance of computing higher-order moments beyond expected values, by con-
sidering for example the PPs of Fig. 1(A) and (B): the expected value of variable
s at each loop iteration is the same in both PPs, while the variance of the
value distribution of s differs in general (a similar behaviour is also exploited
by Fig.1(C)—~(D)). Thus, Fig.1(A) and (B) do not have the same invariants
over higher-order moments; yet, current approaches would fail identifying such
differences and only compute expected values of variables.

One of the main challenges in analysing PPs and computing their higher-
order moments comes with the presence of loops and the burden of computing
so-called quantitative invariants [19]. Quantitative invariants are properties that
are true before and after each loop iteration. Weakest pre-expectations [19,27]
can be used to compute quantitative invariants. This approach, supported for
example in PRINSYS [13], consists in annotating a loop with a template invari-
ant and then solve constraints over the unknown coefficients of the template.
Other methods [2,24] use martingales that are expressions over program vari-
ables whose expectations remain invariant. The aforementioned approaches are
however not fully automatic since they require user guidance for providing tem-
plates and hints. In addition, they are limited to invariants over only expected
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values: with the exception of [24], they do not compute higher-order moments
describing the distribution generated by the PP (see Sect.6 for more details).

In this paper we introduce a fully automated approach to compute invariant
properties over higher-order moments of so-called Prob-solvable loops, to stand
for probabilistic P-solvable loops. Prob-solvable loops are PPs that extend the
imperative P-solvable loops described in [23] with probabilistic assignments over
random variables and parametrised distributions. As such, variable updates are
expressed by random polynomial, and not only affine, updates (see Sect. 3). Each
program in Fig.1 is Prob-solvable; moreover, Fig. 1(C)—(D) involve nonlinear
updates over s.

Our work uses statistical properties to eliminate probabilistic choices and
turn random updates into recurrence relations over higher-order moments of
program variables. We show that higher-order moments of Prob-solvable loops
can be described by C-finite recurrences (Theorem 1). We further solve such
recurrences to derive moment-based invariants of Prob-solvable loops (Sect.4).
A moment-based invariant is a property that holds at arbitrary loop iterations
(hence, invariants), expressing closed form solutions of higher-order moments of
program variables. To the best of our knowledge, no other method is able to
derive higher-order moments of PPs with infinite loops in a fully automated way
— for example, the work in [11] provides the exact probabilistic inference only
for PPs with bounded loops. Our work hence allows to replace, for example,
the required human guidance of [13,25] for Prob-solvable loops. We also sup-
port PPs with parametrised distributions (e.g., in Fig. 1(A)): instead of taking
concrete instances of a given parametrised distribution, we automatically infer
invariants of the entire class of PPs characterised by the considered parametrised
distribution.

Our approach is both sound and terminating: given a Prob-solvable loops
and an integer £ > 1, we automatically infer the moment-based invariants over
the kth moments of our input loop (see Sect.4). Unlike the approach of [23]
for deriving polynomial invariants of non-probabilistic (P-solvable) loops, our
work only computes closed form expressions over higher-order moments and
does not employ Grobner basis computation to eliminate loop counters from the
derived closed forms. As such, our moment-based invariants are not restrictive
to polynomial properties but are linear combinations of polynomial expressions
and exponential sequences over the loop counter. Moreover, Prob-solvable are
more expressive than P-solvable loops as they are not restricted to deterministic
updates but allow random assignments over variables.

Contributions. Our main contributions are: (1) we introduce the class of Prob-
solvable loops with probabilistic assignments over random variables and distribu-
tions (Sect. 3); (2) we show that Prob-solvable loops can be modelled as C-finite
recurrences over higher-order moments of variables (Theorem 1); (3) we provide
a fully automated approach that derives moment-based invariants over arbitrary
higher-order moments of Prob-solvable loops (Algorithm 1); (4) we implemented
our work as an extension of the Aligator package [15] and evaluated over several
challenging PPs (Sect. 5).



258 E. Bartocci et al.

2 Preliminaries

We recall basic mathematical properties about recurrences and higher-order
moments of variable values — for more details see [22,26]. Throughout this paper,
let N, Z, R denote the set of natural, integer and real numbers. We reserve capital
letters to denote abstract random variables, e.g. X,Y, ..., and use small letters
to denote program variables, e.g. x,y, ..., all possibly with indices.

2.1 C-Finite Recurrences

While sequences and recurrences are defined over arbitrary fields of characteristic
zero, in our work we only focus over sequences/recurrences over R.

Definition 1 (Sequence). A univariate sequence in R is a function f : Z — R.
A recurrence for a sequence f(n) is

fn+r7r)=R(f(n), f(n+1),..., f(n+r—1),n), with n € N,

for some function R : R"T' — R, where r € N is called the order of the recur-
rence.

For simplicity, we denote by f(n) both the recurrence of f(n) as well as
the recurrence equation f(n) = 0. When solving the recurrence f(n), one is
interested in computing a closed form solution of f(n), expressing the value of
f(n) as a function of n for any n € N. In our work we only consider the class of
linear recurrences with constant coefficients, also called C-finite recurrences.

Definition 2 (C-finite recurrences). A C-finite recurrence f(n) satisfies the
linear homogeneous recurrence with constant coefficients:

f(n+r) =aof(n)+ar f(n+1)+.. . +ar_1 f(n+r—1), with r,n € N, (1)
where r is the order of the recurrence, and ag,...,a._1 € R are constants with
agp 7é 0.

An example of a C-finite recurrence is the recurrence of Fibonacci numbers
satisfying the recurrence f(n+2) = f(n+1)+ f(n), with initial values f(0) =0
and f(1) = 1. Unlike arbitrary recurrences, closed forms of C-finite recurrences
f(n) always exist [22] and are defined as:

f(n) = Pi(n)0 + - - + Ps(n)07, (2)

where 01,...,05; € R are the distinct roots of the characteristic polynomial of
f(n) and P;(n) are polynomials in n. Closed forms of C-finite recurrences are
called C-finite expressions. We note that, while the C-finite recurrence (1) is
homogeneous, inhomogeneous C-finite recurrences can always be translated into
homogeneous ones, as the inhomogeneous part of a C-finite recurrence is a C-
finite expression.

In our work, we focus on the analysis of Prob-solvable loops and consider loop
variables x as sequences x(n), where n € N denotes the loop iteration counter.
Thus, x(n) gives the value of the program variable x at iteration n.
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2.2 Expected Values and Moments of Random Variables
Here we introduce the relevant notions from statistics that our work relies upon.

Definition 3 (Probability space). A probability space is a triple ({2, F, P)
consisting of a sample space §2 denoting the set of outcomes, where 2 # (),

a o-algebra F with F C 2%, denoting a set of events, a probability measure
P:F —[0,1] s.t. P(£2) = 1.

We now define random variables and their higher-order moments.

Definition 4 (Random variable). A random variable X : 2 — R is a mea-
surable function from a set {2 of possible outcomes to R.

In the context of our Prob-solvable loops, for each loop variable x, we con-
sider elements of its corresponding sequence z(n) to be random variables. When
working with a random variable X, one is in general interested in expected values
and other moments of X.

Definition 5 (Expected value). An expected value of a random variable X
defined on a probability space (12, F, P) is the Lebesgue integral: E[X] = fQ X-dP.
In the special case when (2 is discrete, that is the outcomes are X1, ... XN with
corresponding probabilities p1, ...pn, we have E[X]| = vazl X, -p;. The expected
value of X is often also referred to as the mean or p of X.

For program variables x of Prob-solvable loops, our work computes the
expected values of the corresponding sequences z(n) but also higher-order and
mixed moments.

Definition 6 (Higher-Order Moments). Let X be a random variable, ¢ € R
and k € N. We write Momy[c, X]| to denote the kth moment about ¢ of X, which
1s defined as:

Momyle, X] = E[(X — ¢)"] (3)

whenever this exists.

All random distributions we consider in this paper have finite (existing)
moments. In the rest of this section we also assume the moments exist and
are finite. In our work we will be almost solely interested in moments about 0
(called raw moments) and about the mean E[X] (called central moments). We
note though that we can move to moments of X with different centers using
Proposition 1.

Proposition 1 (Transformation of center). Let X be a random wvariable,
c,d € R and k € N. The kth moment about d of X, can be calculated from

k NG i k—i
moments about ¢ of X by: E [(X —d)*] = Z <Z)E (X —o)] (c—a)f".
=0
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Similarly to higher-order moments, we also consider mized moments, that is
E[X -Y], where X and Y are random variables. For arbitrary random variables
X and Y, we have the following basic properties about their expected values
and other moments:

— Elc] = ¢ for a constant ¢ € R,

— expected value is linear, E[X + Y] = E[X] + E[Y] and E[c- X] = ¢- F[X],
— expected value is not multiplicative, in general E[X - Y] # E[X] - E[Y]

— expected value is multiplicative for independent random variables.

As a consequence of the above, expected values of monomials over arbitrary
random variables, e.g. E[X - Y?], cannot be in general further simplified.

The moments of a random variable X with bounded support fully charac-
terise its value distribution. While computing all moments of X is generally very
hard, knowing only a few moments of X gives useful information about its value
distributions. The most common moments are variance, covariance, skewness, as

defined below.

Definition 7 (Common moments). Variance measures how spread the distri-
bution is and is defined as the second central moment: Var[X] = Moms[E[X], X].
Covariance is a mized moment measuring variability of two distributions and
is defined as: Cov[X,Y]| = E[(X — E[X]) - (Y — E[Y])].
Skewness measures asymmetry of the distribution and is defined as the nor-
malised third central moment: Skew[X] = %

Basic results about variance and covariance state: Cov[X, X| = Var[X],
Var[X] = E[X?] — (E[X]?), and Cov[X,Y] = E[X - Y] — E[X] - E[Y].

Definition 8 (Moment-Generating Function (MGF)). A moment gener-
ating function of a random variable X is given by:

Mx(t) = E[e"X], witht€R (4)
whenever this expectation exists.

Moment-generating functions, as the name suggests, can be used to compute
higher-order moments of a random variable X . If we take the kth derivative of the
moment-generating function of X, evaluated at 0, we get the kth moment about 0
of X, that is Mom4[0, X]!. For many standard distributions, including Bernoulli,
uniform and normal distributions, the moment-generating function exists and
gives us a way to compute the moments for random variables drawing from these
distributions. Thanks to these properties, we can use common distributions in
our Prob-solvable programs.

2 2 3 3
! due to the series expansion e’ = 14+tE[X]+ % + %[,X] + ... and derivative
w.r.t. t.
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3 Programming Model: Prob-Solvable Programs

We now introduce our programming model of Prob-solvable programs, to
stand for probabilistic P-solvable programs. P-solvable programs [23] are non-
deterministic loops whose behaviour can be expressed by a system of C-finite
recurrences over program variables. Prob-solvable programs build upon P-
solvable programs by also allowing probabilistic assignments over random vari-
ables and distributions.

Prob-Solvable Loops. Let m € N and z4,...,z,, denote real-valued program
variables. We define Prob-solvable loops with zq,...,z,, variables as programs
of the form:

I;while (true) {U}, where: (5)

— I is a sequence of initial assignments over x1, ..., Z,,. That is, I is an assign-
ments sequence Ti = C1;T3 = C2;...,Tm = Cm, With ¢; € R representing
a number drawn from a known distribution? - in particular, ¢; can be a real
constant.

— U is the loop body and is a sequence of m random updates, each of the form:

x; = a;x; + Pi(x1, ... xic1) [po] bizi + Qi(z1, ..., Tiz1), (6)

or, in case of a deterministic assignment,

xX; = aixi—i—Pi(xh...,xi,l), (7)
where a;,b; € R are constants and P;, Q; € R[zy,...,x;_1] are polynomials
over program variables 1, ...,z;—1. Further, p; € [0,1] in (6) is the prob-

ability of updating z; to a;x; + P;(x1,...,2;_1), whereas the probability to
update z; to b;z; + Q;(z1,...,2;-1) in (6) is 1 — p;.

The coefficients a;, b; and the coefficients of P; and Q); in the variable assign-
ments (6)-(7) of Prob-solvable loops can be drawn from a random distribution
as long as the moments of this distribution are known and are independent from
program variables x1, ..., x,,. Hence, the variable updates of Prob-solvable loop
can involve coefficients drawn from Bernoulli, uniform, normal, and other distri-
butions. Moreover, Prob-solvable support parametrised distributions, for exam-
ple one may have the random distribution rand(d,d,) with arbitrary dq,ds € R
symbolic constants. Similarly, rather than only considering concrete numeric val-
ues of p;, the probabilities p; in the probabilistic updates (6) of Prob-solvable
loops can also be symbolic constants. Notice that our current model assumes
‘true’ loop condition. We will see later that it allows us to compute invariants
for any loop with set number of iterations. In the future we plan to extend the
model to work with more general loop conditions.

2 a known distribution is a distribution with known and computable moments.
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Ezxample 1. The programs in Fig.1 are Prob-solvable, using uniform distribu-
tions given by rand(). Figure1(D) also uses a normal distribution given by
gauss(). Note that while the random distributions of Fig. 1(B, D) are defined in
terms of concrete constants, Fig. 1(A, C) have a parametrised random distribu-
tion, defined in terms of d € R.

Prob-Solvable Loops and Moment-Based Recurrences. Let us now con-
sider a Prob-solvable program with n € N denoting the loop iteration counter.
We show that variable updates of Prob-solvable programs yield special recur-
rences in n, called moment-based recurrences. For this, we consider program vari-
ables x1,...,Z,, as sequences x1(n),..., T, (n) allowing us to precisely describe
relations between values of x; at different loop iterations. Using this notation,
probabilistic updates (6) over x; turn z;(n) into a random variable, yielding the
relation (similarly, for deterministic updates (7)):

zi(n+1) = a;zi(n)+ Pi(x1(n),...,x;—1(n)) [pi] bizi(n) + Qi(x1(n), ..., x;—1(n)).

The relation above could be treated as a recurrence equation over random vari-
ables z;(n) provided the probabilistic behaviour depending on p; is encoded (as
an extension) into a recurrence equation. To analyse such probabilistic updates of
Prob-solvable loops, for each random variable z;(n) we consider their expected
values E[z;(n)] and create new recurrence variables from expected values of
monomials over original program variables (e.g. a new variable E[z; - x;]). We
refer to these new recurrence variables as E-variables. We note that any program
variable yields an E-variable, but not every E-variable corresponds to one single
program variable as E-variables are expected values of monomials over program
variables. We now formulate recurrence equations over E-variables rather than
over program variables, yielding moment-based recurrences.

Definition 9 (Moment-Based Recurrences). Let 2(n) be a sequence of ran-
dom variables. A moment-based recurrence for x is a recurrence over E-variable

Elz(n+7r)] = R(E[x(n)],E[z(n+1)],...,Elz(n+r—-1)],n) (n€N),

for some function R : R"™t! — R, where r € N is the order of the moment-based
recurrence.

Similarly to [27], note that variable updates x; := fi(x;) [p:] fo(z;) yield the
relation:

Elai(n+1)] = Elp; - fi(zi(n)) + (1 = p;) - fa(i(n))] (8)
=pi- E[fi(zi(n)] + (1 = p;) - E[fa(ws(n))]
Thanks to this relation, probabilistic updates (6) are rewritten into the moment-
based recurrence equation:

Elz;(n+1)] =p; - E[aixi(n) + P(z1(n),... ,xi_l(n))] )
+(1 —pi) - E[bizi(n) + Qs(z1(n), ..., xi—1(n))].
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In particular, we have E[z;(n+1)] = p; - Fla;z;(n) + Pi(z1(n),...,z;-1(n))] for
the deterministic assignments of (7) (that is, p; = 1 in (7)).

By using properties of expected values of expressions expry, exprs over ran-
dom variables, we obtain the following simplification rules:

Elexpry + expra] — Elexpri] + Elexprs]

Elexpry - expre] — Elexpri] - Elexprs], if expri, expry are independent
Elc- expri] — ¢+ Elexpr] (10)
E[¢] —c

E[D - expr] — E[D] - Elexpr]

where ¢ € R is a constant and D is a known independent distribution.

Ezample 2. The moment-based recurrences of the Prob-solvable loop of
Fig. 1(A) are:

Elf(n+1)] = $E[1] + LE[0)

Elz(n+1)] = E[z(n) + f(n+1) - rand(1 — d,1 + d)]
Ely(n+1)] = Ely(n) + f(n+1) - rand(2 — 2d, 2 + 2d)]
Els(n+1)] = Elz(n+1) +y(n+1)]

By using the simplification rules (10) on the above recurrences, we obtain the
following simplified moment-based recurrences of Fig. 1(A):

E[f(n+1)] =}

Elz(n+1)] = Elx(n)] + E[f(n+1)] - E[rand(1 — d,1 + d)] (11)
Ely(n+1)] = Ely(n)]+ E[f(n+1)] - E[rand(2 — 2d,2 + 2d)]
E[s(n+1)] = Elz(n+1)] + Ely(n + 1)]

In Sect.4 we show that Prob-solvable loops can further be rewritten into a
system of C-finite recurrences over E-variables.

Prob-Solvable Loops and Mutually Dependent Updates. Consider PP
loops with mutually dependent affine updates:

X = Zai,kxk + ¢ [pi] Zbi,klfk +d;, (12)
k=1 k=1

where a; 1, b; 1, ¢i, d; € R are constants. While such assignments are not directly
captured by updates (6) of Prob-solvable loops, this is not a restriction of our
work. Variable updates given by (12) yield mutually dependent C-finite recur-
rences over E-variables. Using methods from [22], this coupled system of C-finite
recurrences can be rewritten into an equivalent system of independent C-finite
recurrences over E-variables, yielding an independent system of moment-based
recurrences over which our invariant generation algorithm from Sect.4 can be
applied. Hence probabilistic loops with affine updates are special cases of Prob-
solvable loops.
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Multi-path Prob-Solvable Loops. While (5) defines Prob-solvable programs
as single-path loops, the following class of multi-path loops can naturally be
modeled by Prob-solvable programs:

I;while(true) {if ¢ then U; else U}, where: (13)

I is as in (5), t is a boolean-valued random variable, and U; and U, are respec-
tively sequences of deterministic updates z; := a;z; + P;i(x1,...,2;-1) and
x; = bix; + Qi(x1,...,2;—1) as in (7). PPs (13) can be rewritten to equiva-
lent Prob-solvable loops, as follows. A pair of updates = := w [p]v; from U; and
Z = ug[plve from Us is rewritten by the following sequence of updates:

f=1[pl0;
g = 1[p]0; (14)
z=t(urf +vi(1— f)) + (1 —t)(u2g +va(l — g))

with f, g fresh program variables. The resulting program is Prob-solvable and
we can thus compute moment-based invariants of multi-path loops as in (13).
The programs COUPON, RANDOM_WALK_2D of Table 1 are Prob-solvable loops
corresponding to such multi-path loops. Notice that the last term in (14) grows
exponentially in terms of branch degree. This is similar to the weakest pre-
expectation reasoning approach [19,27].

4 Moment-Based Invariants of Prob-solvable Loops

Thanks to probabilistic updates, the values of program variables of Prob-solvable
loops after a specific number of loop iterations are not a priori determined. The
value distributions x;(n) of program variables x; are therefore random variables.
When analysing Prob-solvable loops, and in general probabilistic programs, one
is therefore required to capture relevant properties over expected values and
higher moments of the variables in order to precisely summarise the value dis-
tribution of program variables.

Moment-Based Invariants. We are interested in automatically generating so-
called moment-based invariants of Prob-solvable loops. Moment-based invariants
are properties over expected values and higher moments of program variables such
that these properties hold at arbitrary loop iterations (and hence are invariants).

Automated Generation of Moment-Based Invariants of Prob-Solvable
Loops. Our method for generating moment-based invariants of Prob-solvable
loops is summarized in Algorithm 1. Algorithm 1 takes as input a Prob-solvable
loop P and a natural number k£ > 1 and returns moment-based invariants over
the kth moments of the program variables {z1,...,z,,}. We denote by n the
loop counter of P.
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Algorithm 1. Moment-Based Invariants of Prob-solvable Loops

Input: Prob-solvable loop P as defined in (5), with variables {z1,...,zm}, and kK > 1
Output: Set M I of Moment-based invariants of P over the kth moments of {z1,...,zm}
Assumptions: n € N is the loop counter of P

1: Extract the moment-based recurrence relations of P, for i =1,...,m:

E[zi(n+1)] = p; - E[ajzi(n) + Pi(z1(n), ..., zi—1(n))]
+(1 —pi) - Ebiwi(n) + Qi(w1(n), ..., zi—1(n))].

2: MBRecs ={E[z;(n+1)] | i=1,...,m} > initial set of moment-based recurrences

3 Si={ak,.. . 2k} > initial set of monomials of E-variables
as Momy[0,z;(n)] = E[z;(n)F]

4: while S # () do

5: M :=][%, z;*", where and M € S o; €N

6: S:=S\{M}

7: M’ = Mz — upd;], for each i =m,...,1 > replace each z; % in M with upd;

where upd; denotes:
pi - (aizi + Pi(z1, ..., 2-1)) " + (L —pi) - (bsmi + Qilz1, ..., 25-1)) ™

8: Rewrite M’ as M’ = >~ N; for monomials N; over z1,...,Zm
9: Simplify the moment-based recurrence E[M(n + 1)] = E[>" N;] using the rules (10)
> M(n + 1) denotes [/, z;(n + 1)
10: MBRecs = MBRecs U{E[M(n+ 1)]}
> add E[M(n + 1)] to the set of moment-based recurrences

11: for each monomial N; in M do
12: if E[N;]  MBRecs then > there is no moment-based recurrence for N;
13: S:SU{N]‘} > add Nj to S

14: end while
15: Solve the system of moment-based recurrences M B Recs
16: MI = {E[z;(n)*] — CFi(k,n) =0 | i=1,...m}
> CF;(k,n) is the closed form solution of E[z¥]
17: return the set M1 of moment based invariants of P for the kth moments of z1,...,zm

Theorem 1. Higher-order moments of variables in Prob-solvable loops can be
modeled by C-finite recurrences over E-variables.

Proof. We want to show that E[z;"] can be expressed using recurrence equations.
The idea is to express x;*(n+1) in terms of the value of z; at the n-th iteration.
Value of z;(n + 1) is a;z;(n) + Pi(z1(n+1),...,2,-1(n + 1) with probability p;
and b;x;(n) + Q;(x1(n+1),...,z;—1(n+ 1) with probability (1 — p;). From here
we can derive that E[z{" (n +1)] = Elp; - (a;2; + Pi(z1,...,zi-1)) " + (1 —p;) -
(biz; + Qi(x1,...,2;-1))""]. For arbitrary monomial M = [z (n + 1) we can
express E[M] by substituting each «3"*(n+1) as above. This process is captured
by line 7 of Algorithm 1. The new equations can be further simplified using
properties of expected values and the simplification rules (10) to give recurrence
equations over E-variables.
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We now describe Algorithm 1. Our algorithm first rewrites P into a set
M BRecs of moment-based recurrences, as described in Sect. 3. That is, program
variables x; are turned into random variables z;(n) and variable updates over x;
become moment-based recurrences over E-variables by using the relation of (8)
(lines 1-2) of Algorithm 1).

The algorithm next proceeds with computing the moment-based recurrences
of the kth moments of x1, ..., x,,. Recall that the kth moment of z; is given by:

Momyg 0, z;(n)] = Elzi(n)*].

Hence, the set S of monomials yielding E-variables for which moment-based
recurrences need to be solved is initialized to {z%,...,2%} (line 3 of Algo-
rithm 1). Note that by considering the resulting E-variables E[z¥] and solv-
ing the moment-based recurrences of E[z¥], we derive closed forms of the kth
moments of {z1,...,z,} (line 16 of Algorithm 1). To this end, Algorithm 1
recursively computes the moment-based recurrences of every E-variable arising
from the moment-based recurrences of E[z¥] (lines 4-14 of Algorithm 1), thus
ultimately computing closed forms for E[z¥]. One can then use transformations
described in Proposition 1 to compute closed forms for other moments, such as
variance and covariance. In more detail,

— for each monomial M =[] :c?j from S, we substitute =7 in M by its prob-
abilistic behaviour. That is, the update of x; in the Prob-solvable loop P
is rewritten, according to (8), into the sum of its two probabilistic updates,
weighted by their respective probabilities (lines 5—7 of Algorithm 1). Rewrit-
ing in line 7 of Algorithm 1 represents the most non-trivial step in our algo-
rithm, combining non-deterministic nature of our program with polynomial
properties. The resulting polynomial M’ from M is then reordered to be
expressed as a sum of new monomials N; (line 8 of Algorithm 1); such a sum
always exists as M’ involves only addition and multiplication over x1, ..., Zm,
(recall that P; and @; are polynomials over z1,...,Z,).

— By applying the simplification rules(10) of E-variables over the moment-based
recurrence of E[>_ N;], the recurrence of E[M (n+1)] is obtained and added to
the set M BRecs. Here, M (n+1) denotes []\", z;(n+1)*. As the recurrence
of E[M(n + 1)] depends on E[N;], moment-based recurrences of E[N;] need
also be computed and hence S is enlarged by N; (lines 9-13 of Algorithm 1).

As a result, the set M BRecs of moment-based recurrences of E-variables cor-
responding to S are obtained. These recurrences are C-finite expressions over
E-variables (see correctness argument of Theorem 3) and hence their closed
form solutions exist. In particular, the closed forms CF;(k,n) of E[z;(n)¥] is
derived, turning E[z;(n)*] — CF;(k,n) = 0 into a inductive property that holds
at arbitrary loop iterations and is hence a moment-based invariant of P over the
kth moment of x; (line 16 of Algorithm 1).
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Theorem 2 (Soundness). Consider a Prob-solvable loop P with program vari-
ables x1,...,Tym and let k be a mon-negative integer with k > 1. Algorithm 1
generates moment-based invariants of P over the kth moments of x1,...,Zpy,.

Note when k& = 1, Algorithm 1 computes the moment-based invariants as
invariant relations over the closed form solutions of expected values of z1, ..., Z.,.
In this case, our moment-based invariants are quantitative invariants as in [19].

Ezample 3. We illustrate Algorithm 1 for computing the second moments (i.e.
k = 2) of the Prob-solvable loop of Fig. 1(A).

Our algorithm initializes M BRecs = {E[f(n + 1)], E[z(n + 1)], E[ly(n +
D], E[s(n+1)]} and S = {f?, 2%, y?, s*}.

We next (arbitrarily) choose M to be the monomial f? from S. Thus, S =
{2?%,y?, s?}. Using the probabilistic update of f, we replace f2 by %-12+(1—%)~02,
that is by 2. As a result, MBRecs = MBRecs U{E[f(n+1)?] = 2} and S
remains unchanged.

We next choose M to be z? and set S = {y?,s?}. We replace 22 by its
randomised behaviour, yielding E[M (n+ 1)] = E[z(n+ 1)?] = E[(z(n) + f(n+
1) -rand(1 —d,1+ d))Q}. By the simplification rules (10) over E-variables, we
obtain:

1

Elz(n+1)%] = Elz(n)?]+2-Elz(n)]- E[f(n+1)] + E[f(n+1)?]- 5 (d* +3), (15)

w

as f(n+1) is independent from z(n) and E[rand(1 —d,1 +d)?] = +(d?+3). We
add the recurrence (15) to M BRecs and keep S unchanged as the E-variables
E[z(n)], E[f(n +1)], E[f(n + 1)?] have their recurrences already in M BRecs.
We next set M to y? and change S = {s?}. Similarly to E[z(n+ 1)2], we get:
4
Ely(n+1)’] = Ely(n)*]+4- Bly(n)]- E[f (n+1)]+ E[f (n+1)*]- (d* +3), (16)
by using that f(n+ 1) is independent from y(n) and E[rand(2 — 2d, 2 + 2d)*] =
%(d2 + 3). We add the recurrence (16) to M BRecs and keep S unchanged. We
set M to s2, yielding S = (). We extend M BRecs with the recurrence:

Els(n+1)% = E[(z(n + 1) + y(n + 1))*] = E[z(n + 1)?] + 2E[(zy)(n + 1)] + E[y(n + 1)?]

and add zy to S. We therefore consider M to be xzy and set S = (). We obtain:
E[(zy)(n+1)] = E[(zy)(n)]+2-Elz(n)]-E[f (n+1)+ E[y(n)]- E[f (n+1)]+2-E[f (n+1)°],

by using that E[rand(1 —d,1+4d)] = 1 and F[rand(2 —2d,2 + 2d)] = 2. We
add the recurrence of E[(zy)(n + 1)] to M BRecs and keep S = (.

As a result, we proceed to solve the moment-based recurrences of M B Recs.
We focus first on the recurrences over expected values:

Elf(n+1)] =}

Elz(n+1)] = Elz(n)] + E[f(n+ 1) -rand(1 —d,1+d)] = Elz(n)] + 32
Ely(n+1)] = Ely(n)] + E[f(n+1) - rand(2 — 2d,2 4 2d)] = E[z(n)] +2- 2
E[s(n+1)] = Elx(n+1)] + E[y(n + 1)]
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Note that the above recurrences are C-finite recurrences over E-variables. For
computing closed forms, we respectively substitute E[f(n + 1) by its closed
form in E[y(n + 1)] and Elz(n + 1)], yielding closed forms for E[y(n + 1)] and
E[z(n+ 1)], and hence for E[s(n + 1)]. By also using the initial values of Fig. 1,
we derive the closed forms:

Bli(m)] = 3 Bls(n)] = §
Elz(n)] = qn—1 Ely(n)]=sn+1

We next similarly derive the closed forms for higher-order and mixed moments:

E[f(n)? =3 E[s(n)?] = $fn? + 24520y
Elz(n)?] = é%nz + 4d21—6—21n+1 Ely(n)?] = %nz + 4dzj15nJr 1
Bl(zy)(n)] = gn* — §n —1

yielding hence the moment-based invariants over the second moments of variables
of Fig. 1. Using Proposition 1 and Definition 7, we derive the variance of s(n) as

Var(s(n)) = %;2771. O

Let us finally note that the termination of Algorithm 1 depends on whether
for every monomial M (from the set S, line 4 of Algorithm 1) the moment-based
recurrence equation over the corresponding E-variable E[M (n+ 1)] can be com-
puted as a C-finite recurrence over E-variables. We prove this using transfinite
induction over monomials and properties of inhomogeneous C-finite recurrences.

Theorem 3 (Termination). Foranynon-negative integerk withk > 1 and any
Prob-solvable loop P with program variables x1, . .., Ty, Algorithm 1 terminates.
Moreover, Algorithm 1 terminates in at most O(K™ -d"=1-d™~2 ... . d}) steps,

where d; = max{deg(P;),deg(Q;),1} with deg(P;),deg(Q;) denoting the degree
of polynomials P; and Q; of the variable updates (6).

Proof. We associate every monomial with an ordinal number as follows:

Qp—1 o k

g 1 O k—1
ZTp" Ty 4 .. X W .

ot w Qp_1--+taq,

and order monomials M, N such that M > N if (M) > o(NN). Algorithm 1
terminates if for every monomial M (from the set .S, line 4 of Algorithm 1) the
moment-based recurrence equation over the corresponding E-variable E[M (n+1)]
can be computed as a C-finite recurrence over E-variables. We will show that this
is indeed the case by transfinite induction over monomials.

Let M = Hle z* be a monomial and assume that every smaller monomial
has a closed form solution in form of a C-finite expression. Let

xiai = (cixi—i—Pi(.fl,"‘xifl))ai (17)
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be the updates of our variables after removing the probabilistic choice, as in
line 5 of Algotithm 1. Then the recurrence for M is:

EM(n+1)]= E[ﬁ (pi < (a;z; + Py(x, . ..xi_l))ai

i=1

(= pi) - (bimi+ Quln, i 1)™ ) ()]
J
n)] + ij - E[N;(n)] (18)

for some J, constants b; and monomials Ny,..., N, all different than M. By
Lemma 1, we have an inhomogeneous C-finite recurrence relation E[M (n+1)] =
E[M (n)]+, for some C-finite expression «. Hence, the closed form of E[M (n+1)]
exists and is a C-finite expression. O

We finally prove our auxiliary lemma, used in the above proof of Theorem 3.

Lemma 1. In the recurrence (18) over E-variables, we have M > N; for all
J<J.

Proof. Let M = Hszl xp* and have N; = Hszl xg’“ coming from

K
T (cimi + Pitar, - im1)) ™ (19)
i=1

Assume M < Ny, ie. wE ag+ -+ ar <wE B+ -+ B1, so we have
ak < k. Note that in (19) zx only appears in factor cxxx + Pk (z1,... Tx—1).
Considering the multiplicity, we get at most a i th power of z g, hence ax > Ok.
Thus ag = Bk. So for M < N; we need N; from (cxzg)*™ - Hfi}l (Cil‘i +
B($1> - xifl))ai.

Proceeding similarly for xx_1,Zx_2, ..., we get that for each k < K we have
oy, = B, which contradicts the assumption, thus M > N; as needed.

Regarding the termination time of Algorithm 1, let us look at what monomials
can possibly be added to S. Let M = [[z;" € S. Based on the above reasoning,
it is clear that in case « = m we have a,,, < k. For any ¢ < m the maximum value
of a; is @41 - di+1. Therefore, we have a; < k - HJ i1 d;. Thus, we can count all
possible monomials and hence derived the upper bound on the time complexity of
Algorithm 1 as the product of theses upper bounds. That is, the upper bound on
the time complexity of Algorithm 1 is given by k™ - d~1 . dﬁ:? ..o dd a

5 Implementation and Experiments

We implemented our work in the Julia language, using Aligator[15] for handling
and solving recurrences. We evaluated our work on several challenging proba-
bilistic programs with parametrised distributions, symbolic probabilities and /or
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both discrete and continuous random variables. All our experiments were run on
MacBook Pro 2017 with 2.3 GHz Intel Core i5 and 8GB RAM. Our implemen-
tation and benchmarks are available at: github.com/miroslav21l/aligator.

Benchmarks. We evaluated our work on 13 probabilistic programs, as fol-
lows. We used 7 programs from works [5,7,9,19,24] on invariant generation.
These examples are given in lines 1-7 of Table 1; we note though that BINOMIAL
(“p”) represents our generalisation of a binomial distribution example taken from
[7,9,19] to a probabilistic program with parametrised probability p. We further
crafted 6 examples of our own, illustrating the distinctive features of our work.
These examples are listed in lines 8-13 of Table 1: lines 8-11 correspond to the
examples of Fig. 1; line 12 of Table 1 shows a variation of Fig. 1, with a parametrized
distribution p; line 13 corresponds to a non-linear Prob-solvable loop computing
squares. All our benchmarks are available at the aforementioned url.

Experimental Results with Moment-Based Invariants. Results of our
evaluation are presented in Table 1. While Algorithm 1 can compute invariants
over arbitrary kth higher-order moments, due to lack of space and readability,
Table1 lists only our moment-based invariants up to the third moment (i.e.
k < 3), that is for expected values, second- and third-order moments. The first
column of Table1 lists the benchmark name, whereas the second column gives
the degree of the moments (i.e. k = 1,2,3) for which we compute invariants.
The third column reports the timings (in seconds) our implementation needed
to derive invariants. The last column shows our moment-based invariants; for
readability, we decided to omit intermediary invariants (up to 30 for some pro-
grams) and only show the most relevant invariants.

We could not perform a fair practical comparison with other existing meth-
ods: to the best of our knowledge, existing works, such as [2,13,19,24], require
user guidance/templates/hints. Further, most of the existing techniques do not
support symbolic probabilities and /or parametrised distributions - which are, for
example, required in the analysis of programs STUTTERINGA, STUTTERINGC,
STUTTERINGP of Table 1. We also note that examples COUPON, STUTTERINGC,
STUTTERINGP involve non-linear probabilistic updates hindering automation in
existing methods, while such updates can naturally be encoded as moment-based
recurrences in our framework. We finally note that while second-order moments
are computed only by [24], but with the help of user-provided templates, no
existing approaches compute moments for k& > 3. Our experiments show that
inferring third-order moments are in general not expensive. Yet, for examples
STUTTERINGA , STUTTERINGC, STUTTERINGP with parametrized distribution-
s/probabilities more computation time is needed. This increase in time comes
from handling more complex symbolic expressions due to the non-linear updates
and parametrized distributions, and from non-optimal recurrence solving.
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Table 1. Moment-based invariants of Prob-solvable loops, where n is the loop counter.

Program Moment | Runtime (s) | Computed Moment-Based Invariants
Coupon [24] 1 0.37 Ele(n)] = (2™ — 1)/(2™)
2 0.40 E[%(n)] = (2™ — 1)/(2™)
3 0.34 E[c?(n)] = (2" — 1)/(2")
Coupon4 [24] 1 0.90 Ele(n)] = (4™ — 3%)/(4™)
2 1.1 E[*(n)] = (4" - 3%)/(4")
3 1.3 E[*(n)] = (4" = 3%)/(4™)
RANDOM_WALK-1D_CTS [24] |1 0.12 E[z(n)] =n/5
2 0.45 Elz%(n)] = n?/25 + 22n/75
3 1.00 E[z®(n)] = n®/125+n%22/125 - n21/250
SUM_RND_SERIES [7] 1 0.31 Elz(n)] =n?/4 4+ n/4
2 2.89 Elz%(n)] = n*/16 + 5n° /24
+3n2/16 +n/24
3 17.7 E[z3(n)] = n®/64 4+ ™n® /64 + 13n* /64 +
9n>/64 + n?/32
PRODUCT_DEP_VAR (7] 1 0.65 Elp(n)] =n?/4 —n/4
2 6.27 E[p(n)] =n?/16 — n®/8 + 3n?/16 — n/8
3 37.5 E[p3(n)] = n%/64 — 3n°/64 + 9n* /64 —
21n3/64 4+ 1512 /32 — n/4
RANDOM_WALK_2D [5,24] 1 0.07 Elz(n)] =0
2 0.26 E[z?(n)] = n/2
3 0.49 Elz®(n)] =0
BINOMIAL(“p”) [7,9,19] 1 0.17 Elz(n)] = np
2 0.47 E[z?(n)] = n®p? + np(1 — p)
3 1.6 E[z3(n)] = n®p® — 3n2p® + 3n%p? 4 2np?
— 3np? 4+ np
STUTTERINGA — F1G. 1(A) |1 0.44 E[s(n)] =9n/4
2 2.2 E[s*(n)] = 81n? /16 + (20d> + 27)/16n
3 8.48 E[s®(n)] = 81d*n?/16 + 63d%n/16 +
72913 /64 + 9n? (4d? — 9)/32 + 9n>(4d® +
9)/16 + 567n2 /64 + 3n(—6d> — 21)/8 +
3n(6d? — 12)/16 + 243n/32
STUTTERINGB — Fia. 1(B) |1 0.49 E[s(n)] =9n/4
2 2.03 E[s*(n)] = 81n%/16 + 347/16n + 128/3
3 7.43 E[s®(n)] = 729n> /64 + 9369n> /64
+ 1359n/32=
SturTERINGC — FiG. 1(C) |1 1.8 E[s(n)] = 3n3/8 +3n?%/8 —n
2 72.5 E[s?(n)] = 9n%/64 4 3n°(8d% +
27)/160 4+ n*(8d* 4 84d* — 90)/192 +
n®(32d* + 216d* — 252)/288 + n?(8d* +
44d? +61) /64 4+ n(80d* + 324d? — 9) /1440
3 2144 E[s*(n)] = 27n° /512 + 2708 (164> +
39)/2560 + 3n7(824d* + 6444d% +
1242) /17920 + n®(1900d* + 3996d% —
4365)/2560 + n°(2004d* + 1704d> —
54) /2560 + n*(—1900d* — 7056d> +
13446) /7680 + n>(—6948d* — 12708d> —
6969) /7680 + n?(—1900d* — 3114d> —
315)/38404n(—108d* —603d>+288) /6720

(continued)
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Table 1. (continued)

Program Moment | Runtime (s) | Computed Moment-Based Invariants
StuTTERINGD — Fic. 1(D) | 1 1.92 E[s(n)] = 3n®*/8 +3n%/8 — n
2 46.3 E[s?(n)] = 9n%/644-93n° /324-1651n* /96
+ 284913 /72 + 281312 /64 4 5131n/288
3 2076 E[s*(n)] = 27n% /512 + 1593n8 /512

+94587n" /1792 + 545971n5 /2560 +
270117n° /1280 — 58585n* /768 —
13259913 /512 — 536539n2 /3840 —

771n,/140
STUTTERINGP 1 0.28 Els(n)] = 3np
2 1.68 E[s%(n)] = 11n2p? + 3np(—2p + 1) +
np(—p—1) +4np(-p+2) -1
3 6.05 E[s*(n)] = 27n3p® — 3n2p3 + 3n3p?

(—=6p +3) + 12n3p>(—3p + 3) + 12n7p°
(—2p + 3) + 3n1p(4p® — 3p + 3) + 3n1p
(8p® —12p+9)+n1p(p° —3p(—p—1)—3p+
2)/2+2n1p(2p% —6p(—p+2) —6p+13)+6

SQUARE 1 0.38 Ely(n)] =n?+n
2 2.46 E[yz(n)]:n4+6*n3+3*n2—2*n
8.70 Ely®(n)] = n®+15%n° +45xn* —15xn?

—30%n?4+16%n

6 Related Work

Despite the impressive advancements [14,16,21], probabilistic model checking [1]
tools [8,20,25] are in general not able to handle programs with unbounded and
real variables. Model checking algorithms suffer from the state explosion problem
and their performance in terms of time and memory consumption degrades as the
number of reachable states to be considered increases. Furthermore, probabilistic
model checking tools have no support for invariant generation. Our approach,
based on symbolic summation over probabilistic expressions, can instead analyse
probabilistic programs with a potentially infinite number of reachable states.
In [27], one of the first deductive frameworks to reason about probabilistic
programs was proposed by annotating probabilistic programs with real-valued
expressions over the expected values of program variables. Of particular interest
are the annotations as quantitative invariants, summarising loop behaviors. The
setting of [27] considers probabilistic programs where the stochastic inputs are
restricted to discrete distributions with finite support and can deal also with
demonic non-deterministic choice. Although our approach does not yet support
demonic non-determinism, we are not restricted to discrete input distributions as
long as we know their moments (e.g., the Gaussian distribution is characterised
only by two moments: the mean and the variance). Moreover, our work is not
restricted to quantitative invariants as invariants over expected values of program
variables. Rather, we generate moment-based invariants that precisely capture
invariant properties of higher-order and mixed moments of program variables.
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Katoen et al. provided in [19] the first semi-automatic and complete method
synthesising the linear quantitative invariants defined in [27]. The work of [19],
implemented in PRINSYS [13], consists in annotating a loop with a linear tem-
plate invariants and uses a constraint solver to find the parameters for which the
template yields an invariant. The works [7,9] synthesize non-linear quantitative
invariants.

In [3] the authors consider PPs with loops where the assignments in each loop
iteration is statistically independent and identically distributed. This restriction
is powerful enough to encode Bayesian networks in PPs and to obtain automati-
cally a closed-form expression over the expected values of the program variables.
Although the expression in the loop-guard can be more complex than in our
setting, our approach can handle also assignments that depend on previous iter-
ations.

The work in [11] proposes the PSI tool, a symbolic analysis system for exact
inference in probabilistic programs with both continuous and discrete random
variables. PSI can compute succinct symbolic representations of the joint pos-
terior distribution represented by a given PP. However, the tool supports the
analysis only of PP with specified number of loop interations, while our app-
roach can handle arbitrary number of loop iterations and also infinite loops.

Another related line of research is given in [2], where martingales are used
to compute invariants of probabilistic programs. The martingales generated
by [2] however heavily depend on the user-provided hints and hence less generic
hints yield less expressive/precise invariants. Moreover, of [2] mainly focuses
on invariants over expected values and it remains unclear which extensions of
martingales need to be considered to compute higher-order moments. The work
of [24] addresses such generalizations of martingales for computing higher-order
moments of program variables, with the overall goal of approximating runtimes
of randomized programs. The approach in [24] is however again restricted to
user-provided templates. Unlike the works of [2,7,9,13,19,24], our work does not
rely on a priori given templates/hints, but computes the most precise invariant
expression over higher-order or mixed moments of program variables. To do so,
we use symbolic summation to compute closed forms of higher-order moments. In
addition, Prob-solvable loops support parametrized distributions and symbolic
probabilities, which is not the case of [2,24].

There are two orthogonal problems related to quantitative invariants gener-
ation: program termination [10,28] and worst-case execution [4,6,18]. The first
is to assess whether a probabilistic program terminates with probability 1 or
if the expected time of termination is bounded. In principle, one can use our
approach to solve this class of problems for Prob-solvable loops, but this is not
the focus of this paper. The second class of problems is related to finding bounds
over the expected values. In [4] the authors consider bounds also over higher-
order moments for a specific class of probabilistic programs with probabilistic
affine assignments. This approach can handle also nonlinear terms using inter-
val arithmetic and fresh variables, at the price to produce very conservative
bounds. On the contrary our approach supports natively probabilistic polyno-
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mial assignments (in the form of Prob-solvable loops) and provides a precise
symbolic expression over higher-order moments.

7 Conclusion

We introduced a novel approach for automatically generating moment-based
invariants of a subclass of probabilistic programs (PPs), called Prob-solvable
loops, with polynomial assignments over random variables and parametrised
distributions. We combine methods from symbolic summation and statistics to
derive invariants over higher-order moments, such as expected values or vari-
ances, of program variables. To the best of our knowledge, our approach is the
first fully automated method computing higher-order moments of PPs with infi-
nite loops and polynomial assignments over random variables and parametrised
distributions. Extending our approach to a richer class of PPs, in particular by
supporting nested loops and demonic non-determinism, is an interesting line for
future work.
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