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Abstract. In this paper, we present a novel dataset named MVB (Multi
View Baggage) for baggage ReID task which has some essential differ-
ences from person ReID. The features of MVB are three-fold. First, MVB
is the first publicly released large-scale dataset that contains 4519 bag-
gage identities and 22660 annotated baggage images as well as its surface
material labels. Second, all baggage images are captured by specially-
designed multi-view camera system to handle pose variation and occlu-
sion, in order to obtain the 3D information of baggage surface as com-
plete as possible. Third, MVB has remarkable inter-class similarity and
intra-class dissimilarity, considering the fact that baggage might have
very similar appearance while the data is collected in two real airport
environments, where imaging factors varies significantly from each other.
Moreover, we proposed a merged Siamese network as baseline model and
evaluated its performance. Experiments and case study are conducted
on MVB.
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1 Introduction

At international airports, baggage from flights normally need to be scanned by
security check devices based on X-ray imaging due to safety issues and customs
declaration. To increase the customs clearance efficiency, X-ray security check
devices have been deployed in BHS (Baggage Handling System) at many newly
constructed airports. After flight arrivals, all check-in baggage will go through
security check devices, which are connected with conveyor of BHS. Therefore,
the X-ray image of each baggage is generated and inspected before baggage
claim. Currently, the common practice is attaching RFID (Radio Frequency
Identification) tags onto interested baggage right after security check devices, in
order to indicate the baggage to be further manually unpacked and inspected.
As passengers claim interested baggage with RFID tags and carry it to RFID
detection zone, alarms will be triggered.

Nevertheless, RFID tag detection has certain drawbacks. First, tags might
fall off in the process of transfer. Certain passengers might also deliberately tear
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off tags in order to avoid inspections. The loss of tags will directly result in
detection failures of interested baggage. Second, tagging need to be conducted
by manpower or certain equipment, which causes additional cost together with
the tag itself and might affect customs clearance rate. Moreover, baggage of
metal material surface will interfere with detection signal of RFID tags, thus it
also leads to false negative cases.

Considering these defects, a security inspection approach that requires no
physical tags will show great advantages in avoiding detection miss and metal
interference, reducing costs, and increasing efficiency. An approach based on
baggage appearance images is thus employed. Concretely, images of baggage
appearance will be captured at BHS and bundled with inspection information
before baggage claim. While passengers carrying the baggage and entering the
customs checkpoint, i.e. the area for customs declaration and security check
before leaving the airport, the appearance image will be taken again. These
checkpoint images will be analyzed by comparing with those taken at BHS to
identify whether certain baggage is of interest. Practically, passengers often place
feature items such as stickers or ropes on baggage, which can serve as cues in
distinguishing baggage, thus each baggage could be to be unique within certain
time interval. Since the baggage is re-identified cross cameras, the process is
referred as baggage ReID later in this paper.

Similar to the person ReID [1], the baggage ReID task also faces chal-
lenges such as object occlusion, background clutter, motion blurring and vari-
ations of lighting, pose, viewpoint, etc. Particularly, some of these aspects
are even more challenging for baggage ReID. For instance, the baggage pose
often differs between images captured at BHS and checkpoint, as well as per
each baggage. It brings extra difficulties for applying part-based person image
retrieval approaches [2,16] to baggage ReID, since pedestrian in video surveil-
lance mostly remains canonical standing/walking pose. Meanwhile, similar to
vehicle ReID [3,4], baggage images from different view-points vary much more
than the case of person ReID. Furthermore, it is not uncommon that many bag-
gage has very similar appearance thus are less distinctive compared with person.
All these characteristics make baggage ReID a uniquely challenging task.

Recent years, research and application in computer vision have seen great
development, especially with the help of deep learning. An important enabling
factor of the rapid development of deep learning is the availability of large scale
datasets [5,6,10]. Taking person ReID as example, datasets such as Market-
1501 [7], MARS [8], CUHK03 [9], etc., have contributed to improving the state-
of-the-art performance continuously [16,19]. These large-scale datasets played a
key role to evolve the person ReID task from lab problem to real-world industrial
application.

In this paper, a large-scale baggage ReID dataset called MVB (Multi View
Baggage) is proposed. First, as a large-scale image dataset, MVB consists of
4519 baggage identities and 22660 annotated hand-drawn masks and bounding
boxes, as well as surface material labels. Second, all baggage images are cap-
tured by specially-designed multi-view camera system to handle pose variation
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Fig. 1. Baggage ReID application and multi-view camera system at: (a) checkpoint (b)
BHS.

and occlusion. The multi-view images contribute to obtaining 3D information
of baggage surface as complete as possible, which is crucial to the ReID prob-
lem, since there could be notably different textures on specific area of baggage.
Third, in real scenario at airports, the imaging factors like lighting, background,
viewpoint, motion, etc., are quite different between BHS and checkpoint, mak-
ing the baggage ReID task of our dataset tend to be a cross domain problem,
which is more challenging and inspiring. Moreover, baggage might have very
similar appearance thus are hardly distinctive. These aspects make our dataset
have remarkable inter-class similarity and intra-class dissimilarity which domain
adaptation approach [17,18] in person ReID could be applied. To the best of our
knowledge, MVB is the first publicly available baggage ReID dataset, which will
enable utilizing deep learning methods on baggage ReID and benefit research
and application on general object ReID tasks. Additionally, we also propose
baseline models using merged Siamese network with ablation study to under-
stand how baggage ReID performance benefit from features like self-attention,
hard example mining, foreground mask, etc.

This paper is organized as follows. In Sect. 2, MVB dataset will be introduced
in detail. Task and evaluation method on MVB will be given in Sect. 3. Baseline
models and corresponding experiment results will be shown in Sects. 4 and 5. In
Sect. 6, a short conclusion will be summarized.

2 Dataset

2.1 Raw Data Collection System

As raw data, images containing baggage are all captured at an international
airport. The baggage ReID application is illustrated in Fig. 1. The data collection
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process can be divided to two stages, i.e. BHS and checkpoint, both have multi-
view image capture system deployed.

In BHS stage, after unloaded from landed airplanes, baggage is put on BHS
conveyor and transferred to a security check device for X-ray scan in sequence.
At the entrance of the device, a portal frame is set up over the conveyor. In
order to get 3D information of baggage appearance as complete as possible,
three cameras were placed on different position of the frame to capture multi-
view images: right-front, top, and left-back respectively. These cameras receive
the trigger signal as baggage passes by and take three images simultaneously. As
the baggage being scanned by the device next to the frame, the generated X-ray
image can be inspected by staff or algorithm in real-time, then the information
of whether certain baggage is of interest is bundled with the multi-view images
taken by the cameras.

Table 1. Annotation statistics.

#Baggage images #Full-sized images Average views per identity

BHS 13028 13028 2.88

Checkpoint 9632 9237 2.13

Overall 22660 22265 5.01

The second stage for capturing multi-view images is at the checkpoint for cus-
toms clearance. According to procedure of customs clearance, passengers along
with baggage are required to pass through gate at checkpoint after baggage
claim. The checkpoint usually contains several gates. At each gate, four cameras
are embedded for multi-view image capturing. Two pairs of cameras are located
near the exit and entrance of the gate at each side, taking images against and
along the passenger moving direction respectively. The two pairs of cameras are
triggered in proper order to adapt many passenger actions such as pushing a
baggage cart, dragging/pushing a mobile suitcase, etc. The intention of embed-
ding four cameras is trying to capture baggage with different possible poses, such
as lying on baggage cart and standing on ground, considering the fact that in
some view the particular baggage might be heavily occluded by person or other
baggage.

2.2 Data Annotation

Based on the multi-view image capturing system, raw image data were collected
at an airport from actual flight during several days. In real case, a baggage ReID
pipeline consists of two sequential steps, baggage detection and baggage retrieval.
In this paper, the detection step is not considered in the pipeline of baggage ReID
for mainly two reasons. First, we have trained Faster-R-CNN [11] based object
detection models using annotated bounding boxes on full-sized images, it showed
that using detection result for retrieval task has almost the same performance
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compared to using ground truth. Second, a baggage can be identified means it
has at least one valid baggage image taken at BHS and checkpoint respectively.
Since there could be many hold-on baggage also appeared in checkpoint image
besides check-in baggage, the annotation for detection might bring the dataset
many irrelevant baggage which are unable to identify. Therefore, we refer baggage
retrieval as baggage ReID in our paper.

The annotation process can be described as follows. Images taken at BHS and
checkpoint would be annotated if there is a valid baggage. Valid baggage denotes
that one integrated surface of baggage is exposed at checkpoint or more than
50% of baggage surface is exposed at BHS. Each mask is a hand-drawn polygon
and each corresponding bounding box is then cropped as minimum enclosing
rectangle of annotated mask. Because there are four camera views at checkpoint
and three camera views at BHS, the first annotation for ReID is to couple the
same baggage separately based on time. The second step is finding the same
identity between checkpoint and BHS, which is quite a time-consuming work.
Therefore, a ReID model is trained based on a few identities and computed the
scores of similarity between baggage at BHS and checkpoint, the ground-truth
identity would be much easier to locate based on ranking. At last, the annotator
confirms that each identity consists of images from BHS and checkpoint.

MVB consists of 4519 baggage identities and 22660 bounding boxes. Each
identity is examined to be unique. For each bounding box, mask of baggage is
also given as annotation information. 22660 baggage images (13028 at BHS, 9632
at checkpoint) are cropped from 22265 full-sized images (13028 at BHS, 9237
at checkpoint). Most identities have three baggage images taken at BHS. The
number of baggage images at checkpoint gate for each identity fluctuates more.
Most frequent occurrence of missing baggage image from certain view at BHS is
due to missed camera capture, while at checkpoint is more often due to serious
occlusion caused by passenger body parts or cloth, baggage cart, other baggage
on cart or on ground. On average, each baggage identity has respectively 2.88
and 2.13 baggage images at BHS and checkpoint. The statistics of annotation is
listed in Table 1.

For better baggage ReID evaluation, the dataset has also provided the
attribute annotation of baggage surface material. The attribute labels of four
categories are: hard (metal, plastic, etc.), soft (fabric, leather, etc.), paperboard
and others (protective cover, etc.). Table 2 showed the sample baggage images
and label distributions.

Table 2. Surface material annotation.

Categories Hard Soft Paperboard Others

#Identities 2767 1120 198 434

Sample Image
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Table 3. Samples of inter-class similarity on MVB. Images in each row are from one
identity.

SHBtniopkcehC
View1 View2 View1 View2 View3

a

b

Table 4. Samples of intra-class dissimilarity on MVB. Blank cell indicates correspond-
ing view image is not valid. Images in each row represent the same identity.

SHBtniopkcehC
View1 View2 View3 View4 View1 View2 View3

a

b

c

d

e

2.3 Dataset Characteristics

In MVB dataset, each identity of baggage can be regarded as an individual
class containing several images taken at BHS and checkpoint together. It is
necessary to point out the characteristics of inter-class similarity and intra-class
dissimilarity. For inter-class similarity, we have to admit that some baggage is
naturally very hard to distinguish from each other according to their appearance,
even more difficult than the case in person ReID. For instance, Table 3 gives two
baggage that looks very similar but actually has different identities. The cues to
distinguish them are hiding in detail of images. Meanwhile, the images of BHS
and checkpoint are substantially different. The intra-class dissimilarity aspects
are listed in Table 4.
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Background: as most of images in Table 4 indicate, baggage images have quite
different backgrounds between BHS and checkpoint. In BHS images, background
mainly consists of black conveyor belt and security check device entrance. Mean-
while in checkpoint baggage images background varies from passenger body
parts, clothes, baggage cart, floor, etc.

Occlusion: other baggage on cart can easily lead to heavy occlusion in check-
point image as shown in Table 4d, while checkpoint image might be also partially
invisible in BHS image because surface is at bottom, which corresponds to the
case in Table 4c.

Viewpoint and pose: they are essentially unlike due to different locations of
cameras, and baggage can be in various poses such as Table 4a showed.

Lighting: lighting conditions at BHS and checkpoint are not the same which
often leads to color and reflection differences. For instance, Table 4b displays
obviously different color characteristic at BHS and checkpoint.

Motion blur: as passengers walking through checkpoint gate at different speed,
motion blur makes baggage image to be less distinctive, as shown in Table 4e.

All these above factors make baggage ReID on MVB a challenging and inspir-
ing task between different domains.

3 Task and Evaluation Metric

The task of baggage ReID on MVB is to assign a baggage identity to a given
probe by searching among gallery. In baggage ReID task on MVB, definition of
probe and gallery are not exactly the same as person ReID based on application
scenario. Due to the cross domain characteristic, probe and gallery are naturally
separated. Specifically, baggage will be taken appearance images at BHS before
the domain is transferred from BHS to checkpoint. Baggage will be detected
in checkpoint domain and then searched in BHS domain. Therefore, baggage
images captured at checkpoint and BHS are defined as probe and gallery respec-
tively. During test, gallery images from different views of the same identity are
supposed to be treated as a whole in identifying whether a probe corresponds to
a certain identity. Specifically, for each probe, inference result is supposed to be
a possibility rank of all identities rather than all gallery images. Information of
which gallery images belong to the same identity is given in test set, which can
be easily obtained due to the same trigger signal introduced in Sect. 2.1.

Among 4519 identities in MVB, 500 identities randomly selected from all
identities are reserved for test, while all the rest 4019 identities can be used for
training. For the 500 identities test set, there are 1052 probe images and 1432
gallery images. Each probe image will be matched with the 1432 gallery images
and a 500 id-length result vector will be output, indicating the sorted baggage
under certain similarity metric. How to incorporate matching results of probe
with multiple gallery images within an identity to single similarity value is left
to be determined by dataset user. CMC (Cumulated Matching Characteristics)
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is adopted as evaluation metric to measure the performance of baggage ReID
on MVB since there is only one ground-truth identity among gallery of 500
identities. In this paper, CMC at rank1 till rank3 will be evaluated.

4 Baseline Method

One nature of dataset MVB lies in large number of identities yet limited num-
ber of images within each identity, which might make classification scheme less
feasible. In this paper, verification scheme using deep neural network is adopted
for baggage ReID task. A basic Siamese network and a merged Siamese network
are introduced in Sects. 4.1 and 4.2 respectively.

4.1 Basic Siamese Network

Siamese network is originally put forward for verification of signatures [12]. Our
basic Siamese network takes in two input images, processes these inputs using the
same network architecture sharing parameters and subsequently produces two
feature vectors. Ideally the distance under certain metric between the two output
vectors indicates whether the two input vectors are from the same identity or
not.

In the basic Siamese network adopted in our baggage ReID task, VGG16 [13]
is used as backbone model to extract output feature vectors for input probe and
gallery image. Euclidean distance between these two feature vectors is further
calculated as similarity metric. In training phase, contrastive loss is adopted as
loss function, with the intention of pushing Euclidean distance of same identity
feature vectors near while pulling different identity feature vectors apart.

4.2 Merged Siamese Network

Our proposed merged Siamese network treats the verification problem as binary
classification, as shown in Fig. 2. Concretely, feature maps for probe and gallery
image are extracted after the last convolution layer of VGG16. Then an element-
wise subtraction layer is conducted on the feature maps of two paths and the
output is fed into the fully connected layers for binary classification. The classifi-
cation part of network generates possibility of whether probe and gallery images
are from the same baggage identity, cross-entropy loss is adopted as loss function
in training.

Compared with the basic Siamese network, feature maps extracted after the
last convolutional layer contain more spatial information for further merging.
The motivation behind element-wise subtraction lies in that by such operation
co-located similar features at feature maps are suppressed while prominent dis-
similar features are emphasized, meanwhile the spatial information is reserved.
The subtraction output is further fed into binary classification network with
fully connected layers to learn a similarity metric, which has more nonlinear-
ity compared with Euclidean distance metric. Given the remarkable difference
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Fig. 2. Architecture of merged Siamese network.

between probe domain and gallery domain, batch normalization [15] is added
in Conv4 and Conv5, and it should be noted that all parameters except batch
normalization are shared for feature extraction of probe and gallery.

Considering that channels of feature map might have different representa-
tion power, a channel-wise module based on Squeeze-and-Excitation (SE) [14]
is inserted after pooling layer in Conv4 and Conv5, aiming at learning
weighted inter-channel relationship explicitly. The motivation behind Squeeze-
and-Excitation module is to assign higher weight for more informative feature
channels meanwhile lower weight for less informative ones. In baggage ReID
problem specifically, feature channels can be reasonably assumed to be informa-
tive to different extent. For instance, channels in which more activated features
are from background rather than baggage should be suppressed. Since no exter-
nal information other than feature itself is needed, channel-wise attention in
form of SE can be viewed as a self-attention mechanism. The parameters for SE
module are shared between probe and gallery.

5 Experiments

The basic and merged Siamese networks that introduced in Sect. 4 are evaluated
on MVB dataset. 4019 identities and 500 identities are employed for training
and test respectively. Both Siamese networks are finetuned from a pretrained
VGG16 model, setting parameters in Conv1 and Conv2 to be frozen. Training is
performed on 4×NVIDIA Tesla P100 GPUs for 50k iterations with a minibatch
of 128 image pairs. All probe and gallery images are resized to 256 × 256 and
then randomly cropped to 224 × 224 in training phase.

For generating the pair data for Siamese network training, all positive pairs,
i.e. pair of baggage images with the same identity, among 4019 identities are
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used as training data, meanwhile negative training pairs are randomly sampled
among different identities, forming a training set balanced in positive and neg-
ative labels. The merged Siamese network is firstly trained on this balanced
training set with a few epochs. Then the output model is utilized to inference
each probe among 300 identities randomly sampled from 4019 identities for hard
example mining. False positive pairs with high probability are filtered as supple-
ment negative pairs then added to training set. The amount ratio of positive and
negative pairs in the augmented training set is roughly 1:2, and total number of
pairs is around 75k.

Training and evaluation are conducted on original baggage images and
masked baggage images respectively. The masked baggage image is generated
in a simple manner by keeping the pixel value inside the annotated polygon area
and setting pixel value outside polygon area as zero.

At test time, distance and possibility are inferenced between probe and each
image in gallery. For each identity, mean of nearest two distances is regarded as
the distance between probe and corresponding identity. Similarly, in classification
scheme, mean of highest two possibilities within each identity is regarded as the
possibility of same identity. For the minority identities with only one gallery
image, computing mean value is replaced with the only distance or possibility.
At last, 500 identities will be sorted according to the mean value.

5.1 Performance and Ablation Study

Performance of proposed methods evaluated in form of CMC from Rank1 to
Rank3 on MVB is shown in Table 5. As shown, merged Siamese network shows
remarkably superior results compared to basic Siamese network, ca. 20% to 25%
boost at Rank 1, Rank 2 and Rank 3. Augmenting training set (ATS) by hard
example mining can effectively improve performance, ca. 1% to 2% for merged

Table 5. CMC of proposed methods at Rank 1, 2, 3 on MVB.

Siamese networks + Rank1(%) Rank2(%) Rank3(%)

Merged ATS SE Mask

20.15 34.51 43.92

� 24.24 39.16 48.00

� 22.05 36.22 44.01

� � 26.62 39.26 47.24

� 44.39 60.27 68.54

� � 46.39 58.46 65.49

� � 47.91 61.98 68.92

� � � 48.86 61.60 67.49

� � � 47.72 59.60 67.30

� � � � 50.19 61.31 68.73
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(a)

(b)

Fig. 3. Sample ReID results on MVB. Probe and Gallery images are not masked.
Probe images are listed in the left in blue box. Gallery images are displayed in order
of inferenced possibility. Gallery images with same identity as probe are bounded in
green box, otherwise in red. (a) samples of baggage re-identified in top 3, (b) samples
of baggage not re-identified in top 3. (Color figure online)

Siamese network at Rank 1 and ca. 3% to 5% for basic Siamese network at
Rank 1, Rank 2 and Rank 3. Further superior performance, i.e. 50.19% at Rank
1 is obtained by augmenting training set and inserting SE module on masked
bounding box. In real application, the most important metric is CMC Rank1,
and the highest value of our baseline model is produced by combination of all
model features.

5.2 Case Study

Sample baggage ReID results on MVB are shown in Fig. 3. As shown, our pro-
posed network can effectively retrieve baggage with similar appearance from
gallery and has detail discrimination ability to some extent. Nevertheless, there
are still cases where our network fails to represent more distinguishable details
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in retrieving baggage at top ranks. One possible reason is that our proposed
network mainly extracts a global rather than local feature vector for each probe
and gallery image.

5.3 Future Work

Baggage ReID is a research problem toward real-world application, thus the data
pipeline has been set up at certain airports and will be promoted to many others.
It can be expected that the scale of dataset will be continuously growing and
reaching to another order of magnitude within a short period of time. Meanwhile
we are organizing an open contest based on MVB for technology improvements
and suggestions of dataset usage. As shown in case study, a typical mismatch is
related to failing to amplify some important detail information, which is caused
by the feature extraction network mainly relying on global feature. Therefore,
ReID performance could be possibly improved by making better use of salient
details. Last but not least, the dataset potential as 3D object ReID should be
further exploited. For instance, the probe and gallery image both can be 3D
image, which is baggage 3D surface reconstructed by multi camera calibration
and visual SLAM; also one can apply key point detection to understand the pose
of baggage, then re-identify it based on 3D alignment with some geometric shape
constrains.

6 Conclusion

A new baggage ReID dataset named MVB is proposed in this paper. MVB con-
sists of 4519 baggage identities and 22660 bboxes along with mask and material
annotations. All data is collected in real scenario using specially-designed multi-
view camera system. This paper also presented a merged Siamese network as a
baseline model to work on the task of baggage ReID. Considering the large scale
and the challenging factors of MVB, it will significantly contribute to further
research on general 2D and 3D object ReID, especially with different domains.
The performance of merged Siamese network is also evaluated as baseline model
of the dataset. To access MVB dataset, please visit its corresponding contest
website http://volumenet.cn/, any feedback is greatly appreciated.
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