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Abstract. Multi-view spectral clustering methods could utilize the
complementary information from different views to increase the robust-
ness of clustering performances. Graph structures are usually revealed as
affinity matrices. A pseudo label guided spectral embedding algorithm
(PLGS) is proposed in this paper to enhance the consistence between
graph matrices and spectral clustering results. Through iteratively esti-
mating the pseudo labels of all samples and similarity matrices, the clus-
ter assignment vector could be calculated with more confidence. Exten-
sive experimental results on several benchmark datasets show promising
performance and verify the effectiveness of our method.
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1 Introduction

In recent years, multi-view learning methods [1] have received increasing atten-
tions by exploring the consistency and complementary information of different
views. It is difficult to fuse the heterogeneous properties from various repre-
sentations together. If the relationships among different views are not modeled
appropriately, the performance may be degraded compared to the best single
one. The widely popular methods for multi-view learning are grouped into three
main categories: co-training, multiple kernel learning and subspace learning.

As a classical representative paradigm, co-training method [2] utilizes the
labeled data to train two classifiers, then categorizes unlabeled data separately.
Then the predictive samples with great confidence are added to the labeled
data to train the other classifier, and this procedure repeats. Multiple kernel
learning [3] is originally proposed to learn a kernel matrix through optimizing
a linear combination of kernel matrices. And it can be naturally extended to
fuse heterogeneous data sources. Subspace learning-based approaches [4,5] aim
to learn a common subspace shared by multiple views. The most typical method
should be canonical correlation analysis (CCA) [6] that finds a latent space where
the correlations of two projections are mutually maximized.

Different from pattern classification, data clustering aims at grouping vast
unlabeled samples into several clusters in such a way that samples in the same
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cluster are more similar to each other and k-means clustering is the most well-
known method [7]. Spectral clustering (SC) [8] constructs a graph similarity
matrix and solves a relaxation of the normalized min-cut problem on this graph.
It has gained lots of attention because of its robust performance. For multi-view
data, it is assumed that all samples from different views share the same graph
structure. Multi-view spectral clustering aims at discovering this intrinsic graph
structure information exhibited by various data from several different views.
Each view of the same object includes special features may not be described
by other views. It is important to utilize the complementary information max-
imally and enhance the robustness of the final mixed clustering results. Hence
co-regularized spectral clustering [9] find the consistent clusterings across the
views through co-regularizing the clustering hypotheses. One challenging prob-
lems in spectral clustering methods is how affinity matrices are constructed.

Graph matrices are appeared in various methods when the local and global
structure information is needed. The graph structure is described by encoding
the pairwise similarities among all samples. However it is not reasonable to com-
pute all distances between any two samples if they are far apart from each other.
It is assumed that the data are satisfied with the local manifold structure. It is
more robust to only compute the nearby several samples to construct the simi-
larity matrix. Through a sparse similarity matrix, the local manifold structure
could be better exhibited without lots of unnecessary links. The k-nearest and
ε neighbours are widely adopted to compute similarity matrices since their sim-
plicity and effectiveness. However it is hard to select the best k and ε values.
Recently the graph matrix is optimized as a sub-problem when optimizing a
unified global objective function instead of the original pre-computed similarity
matrix [10]. Sparse [11,12] and low rank representation [13,14] could select the
local samples by self-expressive abilities. It formulates the graph matrix automat-
ically once the threshold is given. Multi-view low-rank sparse subspace clustering
(MLRSSC) [15] learns a joint subspace representation imposing both sparse and
low-rank constraint conditions. Kernel trick is utilized when the nonlinear exten-
sion is developed [16]. Multi-view learning with adaptive neighbors (MLAN) [17]
performs clustering and learns the graph matrix simultaneously. The obtained
optimized graph can be partitioned into the intrinsic clusters directly without
a back-end processing. In [18], the common consensus information is leveraged
instead of the weighted sum of different graphs. It is often happened that some
values or views of one object are missing in practice. For traditional multi-view
learning, this object is abandoned. By setting the connected weights correspond-
ing to missing instances as 0, incomplete multi-view spectral clustering with
adaptive graph learning (IMSC AGL) [19] could flexibly handle kinds of incom-
plete cases and prove its effectiveness in incomplete multi-view learning.

Clustering with adaptive neighbors (CAN) [20] tries to acquire a fixed k-rank
graph matrix and finish clustering using graph connected components without
a back-end k-means method. It is said that the initialization of k-means is a big
problem. However after the graph matrices is optimized, the initialization prob-
lem can be solved by repeating several times independently. And the restricted
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k-rank constraint on graph matrices needs more iterations to balance the
weighted factor. It is hard to judge which one costs more resources.

Inspired by learning to learn, a pseudo label guided multi-view spectral clus-
tering method is proposed in this work. The consistence between data and models
is maximally remained. If two samples do not share the same cluster assignment,
the neighborhood relationship is not reliable. At the first step, we assume all
paired samples have the same class label when the distance between them is more
close than others. This operation may create some misleading linking edges. We
hope to correct them by the following iterations. In each loop, only first k near-
est samples with the same cluster assignment are selected as reliable neighbors.
Then the similarity matrix is updated according to former spectral clustering
results. The true label is approximately estimated after several repeats.

2 Related Work

In this section, we will first review the basic principles of multi-view spectral
clustering. Then the CAN is revisited.

2.1 Spectral Clustering

Given a data set X = {x1, · · · , xn} ∈ Rd×n, spectral clustering methods need
to construct the graph matrix W first. Then the Laplace matrix is defined as

L = D − W (1)

Thus the objective function of spectral clustering can be defined as

min
F

Tr(FTLF ) (2)

s.t. FTF = I

The optimal F is solved by eigen-decomposition. Then the final clustering is
performed by using the formulated F as the low dimensional embedding of the
raw data X.

2.2 Clustering with Adaptive Neighbors

Spectral clustering actually is a graph theory-based method. Thus the clustering
task can be viewed as a graph cut problem. The ideal graph has exact c connected
components for c-class clustering. Usually this strong constraint is difficult to
satisfy due to the noisy and complex data distribution. For the sake of achieving
the ideal graph cut, a reasonable low-rank constraint is added when constructing
the similarity matrix S:

min
si∈Rn×1

n∑

i,j

‖xi − xj‖22sij + α‖S‖2F

s.t. ∀i, sTi 1 = 1, 0 ≤ sij ≤ 1, rank(LS) = n − c (3)
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where si is a column vector with j-th element as sij and LS is the Laplace matrix
of S [17]. In each iterative loop, the value of α is adjusted to automatically select
the local samples.

3 Methodology

The intuitive objective of multi-view clustering is mining the local common struc-
ture information. Since the unavoidable noise existed in each view, it requires
more focus to balance the weights when fusing all graph matrices together. Dif-
ferent from CAN, our proposed PLGS iteratively estimates the pseudo label of
all samples.

3.1 Model

For multi-view data, let X = {X1,X2, · · · ,XV } denotes the V -view feature sets
where Xv ∈ Rn×dv means the v-th feature set. In each feature set, the nearest
k neighbors are selected to construct the similarity matrix Si. Then the global
similarity matrix Sg is calculated by integrating all Si together. The classical
spectral clustering method is performed based on Sg. Lastly, the nearest neigh-
bors are corrected according to previous clustering results. Only the neighbors
that are in the same cluster are remained in the similarity matrix, otherwise this
pseudo label is not reliable and deleted. After the similarity matrix is updated,
a new clustering result is generated again.

The integrated objective function is defined as:

min
S,Q

Tr(QTLgQ)

s.t. ∀i �= j, cluster(qi) = cluster(qj)
&&Sij ≥ 0&&(xj ∈ K(xi)||xi ∈ K(xj)) (4)

where qi is the i-th column of Q, Lg is the Laplace matrix of Sg, K(xi) repre-
sents the nearest neighbors for sample xi and cluster is the assignment vector
calculated by SC methods. The main idea is finding a global optimized similarity
matrix that is consistent with the spectral clustering result.

3.2 Optimization

To solve this challenging problem, an alternative iterative solution is adopted.
The initial similarity matrix is constructed as follows:

S0
ij =

{
exp(−dist(xi, xj)2/(2σ2)), xj ∈ K(xi)||xi ∈ K(xj)
0, otherwise

(i, j = 1, · · · , n) (5)

where dist(xi, xj) means the distance between sample xi and xj . It is measured
by the weighted average of all views. For simplicity the weights of all views
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are set to be the same 1/v. Then the assignment vector cluster is acquired by
spectral clustering (2).

Instead of the strictly matrix rank constraints, the k-means method is uti-
lized to get the cluster assignment vector. Since its randomly initialization, the
clustering results are different from each other for individual replicates. So the
k-means are repeated for t times and the cluster assignment vector is computed
as follows:

{
clusterf (xi) = clusterf (xj), if #(clusterk(xi) == clusterk(xj)) ≥ θ

clusterf (xi) �= clusterf (xj), if #(clusterk(xi) == clusterk(xj)) < θ

(i, j = 1, · · · , n, k = 1, 2, · · · , t) (6)

where the function # means “the number of”. It records how many times these
two samples are in the same cluster. If this value is larger than the predefined
threshold θ, we let them share the same cluster in the final assignment vector
clusterf . According to the new generated cluster assignment vector, the simi-
larity matrix is corrected by deleting the inconsistent values.

S
(t+1)
ij =

{
St
ij , if cluster(xi) = cluster(xj)

0, otherwise
(i, j = 1, · · · , n) (7)

Based on the above analysis, the overall algorithm for solving (4) is summa-
rized in Algorithm 1.

Algorithm 1. PLGS Algorithm
Require:

Multi-view data X , the neighborhood size k and the repeat number t.
Ensure:

The graph Sg and cluster assignment vector label.
1: Construct the initial similarity matrix S according to (5).
2: Formulate the global similarity matrix Sg by integrating all similarity matrices

{S}Vv=1 from all V views.
3: while not convergence
4: Apply spectral clustering on Sg and get F by (2).
5: Perform t times k-means clustering and get assignment vector label using (6).
6: Update Sg by (7).
7: end while

4 Experiments

In order to evaluate the effectiveness of the proposed method, extensive experi-
ments are performed on several real-world multi-view datasets.
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4.1 Datasets and Settings

The experimental results are reported on four real-world datasets: UCI Digits1,
Reuters, 3-sources2 and Prokayotic. The detailed information of these datasets
are listed in Table 1.

In the experiments, two evaluation metrics are used to verify the effective-
ness of the proposed method. They are the accuracy and normalized mutual
information (NMI). The clustering accuracy is defined as

accuracy =
#correct decisions

#total decisions
(8)

And the NMI is defined as

NMI(μ, ν) =
2
∑c

i=1

∑ĉ
j=1

nij

n log
nijn∑c

i=1 ni

∑ĉ
j=1 nj

−∑c
i=1

ni

n log ni

n − ∑ĉ
j=1

nj

n log
nj

n

(9)

where nij denotes the number of data in cluster i and class j, ni and nj denotes
the data number belonging to the ground-truth (μi) and clustering result νj
respectively.

Table 1. Statistics of the multi-view datasets

Dataset Samples Views Clusters

UCI Digits 2000 6 10

Reuters 600 5 6

3-sources 169 3 6

Prokayotic 551 3 4

4.2 Experimental Results

Five methods, including spectral clustering, CAN, MLAN [17]3, MLRSSC and
its kernel extension [15]4, are used for comparison. All parameters of these algo-
rithms are set to values based on the respective source codes provided by their
authors. The experimental results are shown in Table 2. For SC and CAN, the
best single view result is reported.

Compare with spectral clustering, the performance of CAN is much better.
This shows that the adaptive neighbors are more reliable than nearest neigh-
bors. It is hard to adjust the parameter values of MLRSSC and its results are
1 http://archive.ics.uci.edu/ml/datasets/Multiple+Features.
2 http://mlg.ucd.ie/datasets/3sources.html.
3 http://www.escience.cn/people/fpnie/papers.html.
4 https://github.com/mbrbic/MultiViewLRSSC.

http://archive.ics.uci.edu/ml/datasets/Multiple+Features
http://mlg.ucd.ie/datasets/3sources.html
http://www.escience.cn/people/fpnie/papers.html
https://github.com/mbrbic/MultiViewLRSSC
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Table 2. Performance of different methods on four multi-view datasets.

Dataset UCI digit Reuters 3-sources Prokaryotic

Accuray NMI Accuray NMI Accuray NMI Accuray NMI

SC-best 85.45 88.44 56.00 42.54 88.76 75.06 60.25 9.26

CAN-best 86.65 89.61 37.33 32.82 70.41 61.69 75.32 47.96

MLRSSC 88.22 87.21 46.27 33.88 69.08 59.59 65.93 32.62

KMLRSSC 81.70 77.08 45.17 32.67 60.65 52.13 65.05 40.80

MLAN 97.20 93.60 55.33 41.35 92.31 81.87 87.66 58.21

PLGS 98.15 95.72 60.17 43.86 92.90 83.84 86.21 59.92
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Fig. 1. The sensitivity analysis of k

not satisfying. The rank-constraint is remained during the whole processing in
MLAN while MLRSSC aims at optimizing a trace-norm minimization problem
actually. Our proposed PLGS utilizes the k-nearest neighbors and pseudo labels
of all samples to enhance the sparse and discriminative abilities of feature rep-
resentations. Its promising clustering results are presented to demonstrate the
effectiveness of PLGS.
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4.3 Parameter Sensitivity

A predefined k value needs to be determined for MLAN and PLGS. To further
verify the effectiveness of our proposed method, the sensitivity of k is analyzed
in Fig. 1.

Although the neighbors in MLAN are selected adaptively, its clustering
results are more sensitive compared with our PLGS. When the k value is large,
two methods almost have the same performances. If the k value is small, PLGS
usually performs better than MLAN.

5 Conclusion

In this paper, a pseudo label-guided clustering method is proposed to solve the
multi-view clustering problem. Instead of solving a rank constraint optimization,
we utilize a very simple idea to increase the sparse and discriminative abilities of
feature representations. For PLGS, the global similarity matrix is calculated by
average with the same weights. If the weights are carefully designed and iterative
estimated, a better performance will be reached.
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15. Brbić, M., Kopriva, I.: Multi-view low-rank sparse subspace clustering. Pattern
Recogn. 73, 247–256 (2018)

16. Houthuys, L., Langone, R., Suykens, J.A.K.: Multi-view kernel spectral clustering.
Inf. Fusion 44, 46–56 (2018)

17. Nie, Y., Cai, G., Li, J., Li, X.: Auto-wighted multi-view learning for image cluster-
ing and semi-supervised classification. IEEE Trans. Image Process. 27(3), 1501–
1511 (2018)

18. Zhan, K., Nie, N., Wang, J., Yang, Y.: Multiview consensus graph clustering. IEEE
Trans. Image Process. 28(3), 1261–1270 (2019)

19. Wen, J., Xu, Y., Liu, H.: Incomplete multiview spectral clustering with adaptive
graph learning. IEEE Trans. Cybern. (in press)

20. Wang, Q., Qin, Z., Nie, F., Li, X.: Spectral embedded adaptive neighbors clustering.
IEEE Trans. Neural Netw. Learn. Syst. 40(3), 1265–1271 (2019)


	Pseudo Label Guided Subspace Learning for Multi-view Data
	1 Introduction
	2 Related Work
	2.1 Spectral Clustering
	2.2 Clustering with Adaptive Neighbors

	3 Methodology
	3.1 Model
	3.2 Optimization

	4 Experiments
	4.1 Datasets and Settings
	4.2 Experimental Results
	4.3 Parameter Sensitivity

	5 Conclusion
	References




