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Abstract. In this paper, an improved Particle Swarm Optimization Algorithm
(GCPSO) is proposed to solve the shortcomings of the existing Particle Swarm
Optimization Algorithm (PSO) which has low convergence precision, slow
convergence rate and is easy to fall into local optimum when performing high-
dimensional optimization in the late iteration. First, the whole particle swarm of
the algorithm was divided into three sub-groups, and different ranges of inertia
weight o are set for balances global search and local search in each sub-group,
which improves the algorithm’s ability to explore. Then we add Gaussian per-
turbation with the greedy strategy to PSO to avoid the algorithm falling into
local optimum and improve the convergence speed. And finally, the proposed
algorithm is compared with Genetic Algorithm (GA), PSO and Grasshopper
Optimization Algorithm (GOA) to analyse its performance and speed. Through
experimental analysis, GCPSO has a significant improvement at convergence
speed, convergence accuracy and stability.
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1 Introduction

Optimization problem often appears in scientific research, and many engineering
problems ultimately boil down to optimization problems. It can be expressed as a
mathematical problem. It generally refers to the question of how to find a specific factor
(variable) under a given constraint to make the target reach the optimal value. The
optimization algorithm is used to solve the optimization problem, and the objective
function of the optimization problem is established as an optimization model to obtain
the optimal value. For the more complex optimization problems of non-linear, multi-
dimensional and global optimization, traditional optimization algorithms have been
difficult to meet the needs. And various intelligent optimization algorithms that are
inspired by bionics have a better solution in the complex optimization problem such as
Genetic Algorithm (GA), Particle Swarm Optimization Algorithm (PSO), and
Grasshopper Optimization Algorithm (GOA). And they have attracted the attention of
many scholars. Because of the high efficiency and strong convergence of this kind of
algorithm, more and more scholars have applied it to their respective fields and
achieved good results [1-3]. Genetic Algorithm (GA) is a meta-heuristic algorithm
proposed by Professor Holland [4] in 1975. Its principle on Darwin’s evolutionary
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theory of survival of the fittest. Genetic Algorithm takes all individuals in a group as
variable objects and represents the gene sequence in binary code form. The algorithm
searches for the optimal value within the range of the coded variables through the
genetic operations of selection, crossover and mutation, which retain the excellent
individuals and eliminate the poor individuals, and then form a new population. And
the optimal solution is obtained after repeated iterations. However, the convergence
efficiency of GA is low, and it is easy to converge prematurely. Particle Swarm
Optimization (PSO) is another metaheuristic algorithm proposed by Kennedy et al. [5].
This algorithm simulates the predation behaviour of a flock of birds. The solution of the
optimization problem is compared to a bird in the search space which called “particles”.
And all particles are searched in the space of the variable range, and the fitness value is
calculated by the optimized function to determine the distance of the current location to
the food. The algorithm finds the global optimal by updating the individual historical
optimal value and the overall population optimal value. The original PSO algorithm has
the disadvantages of slow convergence speed and low convergence precision. In order
to balance the local search ability and global search ability in the original PSO algo-
rithm, Shi et al. [6] proposed an improved algorithm with inertia weight ® to adjust
convergence and convergence speed dynamically which is called the standard PSO
algorithm (For the convenience of description, PSO refers to the standard PSO algo-
rithm in this paper). However, there are two problems with the algorithms: the algo-
rithm is easy to fall into local optimization and has poor convergence precision when
performing high-dimensional optimization; the convergence efficiency is low when
entering the late iteration. For this reason, Li et al. [7] proposed an efficient and
improved particle swarm optimization strategy, which divides the whole population
into several sub-groups for the division of labor and information exchange to improve
the local search ability and global search ability of the algorithm. Grasshopper Opti-
mization Algorithm (GOA) is a new meta-heuristic algorithm proposed by Salemii
et al. [8] in 2017. The basic idea is based on the regularity of grasshopper cluster
activities and the model of group intelligence activities. The influencing factors are
wind direction, gravity, effects of other grasshoppers in the population and the optimal
position reached in the current population. However, GOA is not only easy to fall into
local optimum but also has high design complexity and time-consuming. Therefore, it
is necessary to improve the algorithm to get a better algorithm. And there are also some
other metaheuristics such as Grey Wolf Optimization Algorithms [9], Whale Opti-
mization Algorithms [10], etc.

Based on the work of Li, this paper improves PSO. The improved algorithm
(GCPSO) uses the variation of inertia weight and adds a Gaussian perturbation strategy
based on greedy thought to make the particles maintain strong vitality during the
evolution process. The algorithm was carried out on the benchmark functions and
compared with other intelligent optimization algorithms. Experiments show that
GCPSO has a significant improvement at convergence speed, convergence accuracy
and stability.
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2 GCPSO Algorithm

Co-evolutionary algorithm establishes two or more populations to establish competi-
tion or cooperation between them [11]. Each population enhances its performance
through its iterative strategy and interaction to achieve the purpose of population
optimization. Traditional particle swarm optimization algorithm uses a single group
iterative strategy. The algorithm has slow convergence speed and is easy to fall into
local optimum when dealing with high-dimensional complex functions so that the
satisfactory results cannot be obtained. This paper draws on the division strategy idea
of the co-evolutionary algorithm, combines Gaussian perturbation strategy based on
greedy thought [12], and proposes an algorithm (GCPSO) with the cooperative division
of labor based on greedy disturbance. The algorithm effectively compensates for the
defect. GCPSO is described as follows:

The whole particle swarm is divided into three subgroups: S1, S2 and S3. Each
subgroup has different iterative strategies. The subgroup S1 adopts the traditional
standard PSO iterative strategy, and the subgroup S2 adopts the global search to
enhance the strategy gradually. The subgroup S3 only uses the “social experience” part,
which considers the information sharing and cooperation between particles. Let x;
refers to the coordinate position of the particle i in the particle group, and v; is the
corresponding velocity, ¢; and c, are constant named learning factors, r; and r, are
uniform random numbers between [0, 1]; pbest; is the individual historical optimum of
the particle i and gbest is the global best value of the particle swarm. Let t be the current
number of iterations and T be the maximum number of iterations. Then the iteration
formula for each group is formulated as follows:

Population S1 : v = wyv; 4 ¢ir1(pbest; — X;) + cora(gbest — x;) (1)
Where, | = Wjmax — t * M (2)
Population S2  v; = w,v; + ¢iry(pbest; — x;) + cora(gbest — x;) (3)
Where, @ = Womin +t * M 4)
Population S3  v; = w3Vv; + cora(gbest — x;) (5)
Where, w3 = w (6)

Among them, w;, w,, and w3 are iterative weights, Wimax, @1min AN W2maxs D2min
are the maximum and minimum values of the iterative weights, respectively. The larger
iterative weight has better exploration ability and global convergence ability, while the
smaller iterative weight makes stronger local convergence ability in the later stage,
which can get more accurate results. At the same time, to prevent the algorithm from
crossing the boundary, the boundary values v, and vy are set for the above velocity
term.
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The coordinate position x; of the particle i in each of the above subgroups is
updated by the formula:

Xi = Xj + Vi (7)

To further avoid the algorithm falling into local optimum, a Gaussian perturbation
is added to the global best position of the particles:

gbest = gbest * (¢ + gau) (8)

Where gau represents White Gaussian Noise, and c represents the interference
factor, which is a constant.

To increase the convergence rate, we add the greedy strategy idea and iterate
multiple times in the Gaussian perturbation process:

for i=1:M
gbest temp = gbest x (a+ gau)
gbest _temp _fit = f(gbest_temp);
if gbest temp fit < gbest fit 9)
gbest = gbest_temp;
end
end

Where M represents the maximum number of iterations and f represents the
function to be optimized, gbest_fit = f(gbest).

The working principle of GCPSO is to divide the whole group into several sub-
groups and assign different evolution strategies to different sub-groups. Different sub-
groups exchange information by sharing global best information gbest to complete
group collaboration and accelerate the convergence speed. And Gaussian perturbation
with greedy thought is added to prevent local optimum and achieve fast and accurate
convergence. In GCPSO, the subgroup S1 is iterated according to the standard PSO.
And the inertia weight value w; of Sl is linearly decreased, representing particle
optimization gradually evolves from the strong global convergence at the early stage to
the strong local convergence at the later stage, and the accurate convergence results are
obtained. The inertia weight value w;, of the subgroup S2 is linearly increased to
improve the global search capabilities of whole particle swarm and avoid the local
convergence of S1 in the later stage of the algorithm. The subgroup S3 only contains
the “social experience” part, that is, it only searches near the current optimal position so
that it can quickly converge to the current optimal position.

At the same time, to improve the convergence rate and further avoid the algorithm
falling into local optimum, the disturbance with the thought of greedy strategy is added.
GCPSO improves the efficiency and accuracy of optimization through the divide-and-
conquer strategy of cooperative thinking and greedy disturbances. The pseudo code for
GCPSO is given in Table 1.
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Table 1. The procedure of GCPSO.

Procedure:

Input: Iterator times: T; Dimension: D; Three population sizes; Disturbance times: M
Output: The global best particle’s position gbest and corresponding function value fbest

Initialize each particle i’s position x1; and speed vl in swarml;
Initialize each particle j’s position X2 ; and speed v2 ; inswarm2;
Initialize each particle I’s position x3, and speed v3, in swarm3;

Set speed boundary v, . and v inertia weight boundary @, .., @, and @, . @,

min ? max
Calculate the fitness of each particle;

Set pbestl; = xI;, pbest2; = x2;, pbest, = x3, for each particle in three populations;

Update the gbest position of all particles in three populations;
While (t<T)
Set inertia weight @) using Eq.(2);
For cach particle in swarml
update the speed formula by the Eq.(1);
update the position of the current particle by the Eq.(7);

End For
Calculate the fitness of each particle in swarm1;

Update the position pbestl for each particle in swarml;
Set inertia weight @), using Eq.(4);
For each particle in swarm2
update the speed formula by the Eq.(3);
update the position of the current particle by the Eq.(7);

End For
Calculate the fitness of each particle in swarm?2;

Update the position pbest2 for each particle in swarm2;
Set inertia weight @), using Eq.(6);
For each particle in swarm3

update the speed formula by the Eq.(5);

update the position of the current particle by the Eq.(7);

End For
Calculate the fitness of each particle in swarm3;

Update the position pbest3 for each particle in swarm3;

Update the position gbest of all particles in three populations;
For k=1toM
Update the gbest position by the operation (9);
End For
te—t+1;
End While
Return gbest and fbest .
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3 Experiments and Analysis

In this section, we focused on the effect of the improved particle swarm optimization
algorithm in global optimization. Ten classical benchmark functions [13, 14] in Table 2
are used to test the algorithm. The functions f; — f are unimodal functions, and the
functions f7 — f; are multimodal functions. The expressions and parameters of the
functions are shown in Table 2. Dim represents the dimension of the function, and
Range represents the range of values of each variable of the function, f,;, represents
the minimum value of the function, and D represents the dimension of the function f7.

Table 2. Description of benchmark functions.

Fun Dim | Range finin

fi(x) = S0, x? 30 | [~100, 100] O

f2x) = > xil + TTieg [xil 30 |[-10, 10] 0

Fi) = (Z}=1 Xj>2 30 | [100, 100] |0

f4(x) = max;{|x;] , 1<i<n} 30 | [-100, 100] |0

500 = 070 [100(x; 1 — 2%+ (xi — 1)) 30 1730301 0

fo(x) => 1, ixf +random[0 , 1) 30 | [—1.28,1.28]|0

f7(x) = Z?:l —X; sin(\/RJ) 30 | [-500, 500] |—-418.9829*D
fs(x) = > 1 [x} — 10cos (2nx;) + 10] 30 | [-5.12,5.12]|0

T 30 [[-32,32] |0
fo(x) = —20exp(—0.2 gzi=1 x2)

1 ¢
—exp(H Zi=1 cos(2nx;)) +20+e
Fio06) = iy X1 ¢ — T2 cos(3) + 1 301600, 600 0
f11(x) :E{IOSin(ny,) + Z:] (y; — 1)*[1 + 10sin?(my; , )] + (v, — 1)2} 30 [—50, 50] 0

n
+ ) ux;,5,100,4)
k(x; —a)™, X > a

i+ 1
where y; = 14 % , u(x;,akm) = { 0, —a<x;<a

k(=x—a)™, x<-—a

The improved algorithm-GCPSO is compared with PSO, GA and GOA in function
optimization experiments. For comparing the experimental performance of each
algorithm quantitatively, the maximum number of iterations is set as 1000 in the
experiment. The experimental parameters of each algorithm are given in Table 3.
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Table 3. Parameter settings.

Algorithm | Parameter Parameter value
GCPSO | Perturbation times: M | 10
Interference factor: a | 0.5

@1min, ®1max 0001, 0.9
@2mins M2max 0001, 0.9
Vmins Vmax —4, 4

GA Swarm size 300

Crossover probability | 0.6
Mutation probability |0.001

PSO Swarm size 300
Ci, C2 2,2
Wmin, Wmax 0.4,09
Vmin, Vmax —4,4
GOA Swarm size 300
Crmin> Cmax 0.00004, 1

3.1 Quality Analysis of Solutions

Table 4 shows the performance of GPSO, PSO, GA and GOA on different benchmark
functions. F denotes the benchmark function, ave denotes the average optimal value of
the function, std denotes the average standard deviation of the function value, and tim
denotes the average running time of the algorithm on the function. And each bench-
mark function was run many times to generate these statistical results. The dimension
of the experimental search space is 30-dimensional, and the population size is set to
300. The improved particle swarm optimization algorithm-GCPSO contains 100 par-
ticles per subpopulation, and each test function was run 30 times independently.

From the Table 4, we can see that the proposed algorithm-GCPSO takes a little
shorter time than other algorithms except for PSO, but the mean value of the function is
closer to the theoretical value than PSO. It indicates that GCPSO has advantages in
solving high-dimensional function problems. It effectively solves the problem of poor
convergence and local optimum of PSO in the later iteration period and improves the
accuracy of the solution. At the same time, GCPSO has lower average standard
deviation than PSO, which indicates that GCPSO improves the stability of the original
algorithm. Comparing GCPSO with GA, we can see that GCPSO has better results in
mean, standard deviation and running time for all functions except for a slight dif-
ference in the optimization of function f1;. This shows that the GCPSO proposed in this
paper is much better than GA in convergence, convergence accuracy, optimization
speed and robustness. Compared with GOA, except for the function f7, GCPSO is also
in a leading position in three statistical parameters for benchmark functions: the
average time-consuming is short, indicating that GCPSO optimization speed is faster;
the mean value of the function is closer to the theoretical value, indicating that GCPSO
has better global convergence and convergence accuracy; the average standard devi-
ation is lower, indicating that GCPSO has higher robustness than GOA.
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Table 4. Comparison of optimization results.
F | GCPSO PSO GA GOA
ave std tim ave std tim ave std tim ave std tim
f, | 5.8805¢ |0 0.6725 | 0.1054 | 0.1749 | 0.5453 | 04606 | 0.1857 | 11866 | 0.0095 | 0.0045 | 357.4484
-230
f, | 49256e | 2.6887¢ | 0.7178 | 2.4504 | 1.3186 | 0.5789 |0.2848 | 0.0713 | 1.4102|0.0371 |0.0563 | 3482115
-118 -117
f; | 41432 |0 2.8946 | 5.5406 | 2.9880 | 27797 | 9.9922¢ |3.2617¢ |3.0920 | 10.9614 |4.8229 |349.2198
-118 +03 +03
fy | 75103 | 3.6256c | 0.6809 | 12578 | 0.6080 | 0.5478 [ 23943 | 0.5720 | 09109 | 0.2287 | 0.1603 | 339.9627
-118 -117
fs | 284772 02550 | 0.9670 | 165.8761 | 138.1158 | 0.9180 | 162.0951 | 70.7509 | 1.1970 | 44.9997 | 34.5939 | 345.7606
fo | 8.646de | 9.4700c | 1.8967 | 0.0676 | 0.0368 | 17553 [ 0.0027 | 9.4723¢ |2.0853 | 0.0214 | 0.0042 | 3416339
-05 -05 -04
f; | =5.3806¢ | 639.7023 | 1.0790 | —6.4752¢ | 697.6042 | 0.9488 | ~3.0650c | 421.7024 | 1.1954 | —6.6520¢ | 852.6289 | 339.2142
+03 +03 +03 +03
fy |0 0 0.7485 | 55.5820 | 16.1783 | 0.7485 | 26.0967 | 11.6551 | 1.0943 | 36.1833 | 34.0773 | 345.8481
fy | 8.8818¢ |0 07693 | 2.1103 | 0.6317 | 0.7515 [ 10.1765 | 6.8661 | 1.5543 | 0.6351 | 0.7783 | 350.7806
-16
fio | 0 0 10285 | 02342 | 0.2348 | 0.9198 | 1.0558 | 0.0163 | 1.6603 | 0.0223 | 0.0116 | 341.1963
fii | 00206 | 00306 |4.1695 | 1.8660 | 1.2255 | 3.9015 | 6.7226e | 3.251le | 4.8457 | 0.5705 | 13724 | 361.6257
-04 -04

3.2 Convergence Analysis of the Algorithm

Figure 1 shows the convergence curves of the function values varying with the number
of iterations on the benchmark functions under different optimization algorithms. And
the convergence curves for the functions f; — f|; are arranged in the order from left to
right and top to bottom. In the lower right corner of the figure, the enlargement effect in
the yellow frame is given to show more clearly.

Fig. 1. Convergence curves.
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It can be seen from the Fig. 1 that the final convergence values of GCPSO on the
benchmark functions are the smallest except for the function f7, which indicates that
GCPSO has the best global convergence and high convergence precision, while the
other algorithms fall into local convergence on the benchmark functions, resulting in
low convergence and low convergence accuracy. Observing the convergence curves,
GCPSO can reach the minimum in the number of iterations less than 50 on most
functions, that is, the convergence rate is fast, and the PSO algorithm follows. This
shows that the proposed algorithm-GCPSO not only improves the global search ability
and convergence efficiency of PSO but also can find the optimal value more quickly.
Compared with other algorithms, the proposed algorithm-GCPSO can converge to the
optimal value stably and quickly, the global search ability of the algorithm is stronger,
and the convergence results are better.

In conclusion, the proposed algorithm-GCPSO has the characteristics of high
convergence efficiency, strong global convergence, high convergence accuracy and
good robustness.

4 Conclusion

The algorithm-GCPSO proposed in this paper borrows the divide-and-conquer strategy
of cooperative thinking to makes full use of the advantages of group division and
cooperation. And the algorithm combines the perturbation based on the greedy strategy,
which not only improves the convergence efficiency of the algorithm but also improves
the convergence accuracy of the algorithm. Experiments of 11 benchmark functions
show that GCPSO has great advantages in accuracy, speed and stability compared with
other algorithms. Future research will focus on simplifying the initial parameters and
more complex high-dimensional optimization problems to enhance the universality of
the algorithm.
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