
A Cost-Sensitive Shared Hidden Layer
Autoencoder for Cross-Project Defect

Prediction

Juanjuan Li1, Xiao-Yuan Jing2(&), Fei Wu1, Ying Sun1,
and Yongguang Yang1

1 College of Automation, Nanjing University of Posts and Telecommunications,
Nanjing, China

2 School of Computer, Wuhan University, Wuhan, China
jingxy_2000@126.com

Abstract. Cross-project defect prediction means training a classifier model
using the historical data of the other source project, and then testing whether the
target project instance is defective or not. Since source and target projects have
different data distributions, and data distribution difference will degrade the
performance of classifier. Furthermore, the class imbalance of datasets increases
the difficulty of classification. Therefore, a cost-sensitive shared hidden layer
autoencoder (CSSHLA) method is proposed. CSSHLA learns a common feature
representation between source and target projects by shared hidden layer
autoencoder, and makes the different data distributions more similar. To solve
the class imbalance problem, CSSHLA introduces a cost-sensitive factor to
assign different importance weights to different instances. Experiments on 10
projects of PROMISE dataset show that CSSHLA improves the performance of
cross-project defect prediction compared with baselines.

Keywords: Shared hidden layer autoencoder � Cost-sensitive learning �
Cross-project software defect prediction

1 Introduction

Software defect prediction (SDP) has been a hot research topic in software engineering
[23]. Its main goal is to discover defects exist in the software for improving the
software quality. The previous research mainly focused on within-project defect pre-
diction (WPDP) [19, 20], mainly using the historical data of one project to train a
prediction model and testing the defect tendency of the same project software instance.
However, when there is not enough historical data available in the same project, the
performance of WPDP becomes significantly worse, and cross-project defect prediction
(CPDP) can be considered.

Training a prediction model by using plenty of historical data from other project
and predicting defects in a new project instances, is called cross-project defect

The first author is a student.

© Springer Nature Switzerland AG 2019
Z. Lin et al. (Eds.): PRCV 2019, LNCS 11859, pp. 491–502, 2019.
https://doi.org/10.1007/978-3-030-31726-3_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31726-3_42&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31726-3_42&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31726-3_42&domain=pdf
https://doi.org/10.1007/978-3-030-31726-3_42

prediction(CPDP) [6, 15]. However, its prediction performance is usually poor,
because of the data distribution difference phenomenon between source and target
projects, e.g., coding styles, programming language [4]. If the data distribution dif-
ference between source project and target project is small enough [8], CPDP model can
achieve better results. To solve the problem of data distribution difference in CPDP,
several CPDP methods have been developed [6, 15]. However, these methods [4, 8, 15]
use the traditional features rather than deep features extracted by deep learning. Such as
TCA+ [15], which maps source and target projects into a latent subspace, making the
difference of data distribution between source and target projects is minimized. Deep
learning has been successfully applied to the field of speech recognition [10] and image
classification [1] due to its powerful feature learning capability. Stacked denoising
autoencoders model [7] is applied in the field of SDP and proved that the deep features
are more promising than the traditional software metric. Furthermore, the shared-
hidden-layer autoencoder’ method has solved the typical inherent mismatch between
the two domains in the field of speech emotion recognition [10, 11].

Besides, class imbalance problem reduces the prediction performance of the CPDP
model. That is, the number of defect-free instances is far greater than that of defective
instances [2]. Thus the SDP model will more likely to identify defect-free instances.
Especially for minority classes, imbalanced distribution is the main reason of poor
performance of certain classification models [16]. In this paper, cost-sensitive tech-
nique is used to deal with class imbalance problem.

Similar to the idea of transfer learning, a cost-sensitive shared hidden layer
autoencoder (CSSHLA) method is proposed for CPDP to solve the data distribution
difference problem and the class imbalance problem. It mainly includes two phases:
feature extraction stage and classifier learning phase. In the feature extraction stage, we
extract a set of deep nonlinear features from the source and target projects by using
shared hidden layer autoencoder. In the classifier learning phase, we build a cost-
sensitive softmax classifier based on the deep features of source project data.

The main contributions of this paper can be summarized as follows:

1. We propose a shared hidden layer autoencoder for CPDP. It can extract deep feature
representations from original features, making the data distribution of source and
target projects be more similar in the nonlinear feature subspace to solve the data
distribution difference problem. It can also make the instances of same class in
source project be more compact.

2. To alleviate the class imbalance problem, we propose a cost-sensitive softmax
classification technique. Different misclassification costs are assigned to instances
from different class in the model building stage. In this way, the features of
defective instances can be better learned.

3. Based on the above two techniques, a cost-sensitive shared hidden layer autoen-
coder method (CSSHLA) is proposed for CPDP. We evaluate CSSHLA with the
baselines on the 10 projects from PROMISE. One conclusion is that we get better
results on F-measure and Accuracy than other baselines.

492 J. Li et al.

2 Related Work

2.1 Cross-Project Defect Prediction

In recent years, CPDP is a hot topic in software engineering [22]. The most important
problem is data distribution difference problem between source and target projects in
CPDP. TCA+ [15] is an effective CPDP method that uses transfer component analysis
(TCA) to map instance of source and target projects into a common latent subspace,
and the difference of feature distributions between the source and the target is small
enough. Dynamic cross-company mapped model learning (Dycom) is first used in web
effort estimation [13], and transfer learning method Dycom [4] is successfully applied
to CPDP, in which 10% of the labeled data comes from the target project in the training
process. Log transformations (LT) [3] reduces the data distribution difference by log
transformation of the feature values in the source and the target projects, and then
aligns the median values of each source project and target project. Training data
selection (TDS) [8] selects the most suitable training data related to the test data based
on the similarity distance to improve the performance of cross-project defect prediction.

Most of the CPDP methods do not consider the class imbalance problem. In our
approach, we consider the class imbalance problem and use cost-sensitive factor to
solve the problem.

2.2 Deep Learning

In recent years, deep learning has been successfully applied in many fields because of
its powerful feature generation ability, such as speech emotion recognition [9], image
classification [1], face recognition [5], etc. Convolution neural network (CNN), deep
belief network (DBN) and autoencoder play an important role in deep learning. Wang
et al. [17] used DBN to learn the most relevant semantic features from the program’s
Abstract Grammar Tree (AST) and showed that the deep semantic features are better
than the traditional features. Good results are obtained by using DBN to predict the
defects for just-in-time defect prediction [21] than without deep feature representation.
By integrating the similar feature learning technology and distance measurement
learning technology, siamese dense neural network [14] is successfully applied to
SDP. The autoencoder has been successfully applied to the field of speech recognition
[10]. Some researchers applied autoencoder in the field of defect prediction [7].

Because of the strong feature extraction advantage of deep learning, a deep learning
autoencoder method is introduced to solve the CPDP problem in our paper. And the
improved autoencoder is used to solve the problem of data distribution difference in
CPDP effectively.

3 Proposed Methodology

We design a cost-sensitive shared hidden layer autoencoder (CSSHLA) network, and
the overall framework of CSSHLA is shown in Fig. 1. It is mainly summarized as two
stages: (1) Data normalization. It makes the source data and target data have same order

A Cost-Sensitive Shared Hidden Layer Autoencoder 493

of magnitude. (2) Training network. The network is composed of feature extraction
model and classifier model. Feature extraction model takes the source data and target
data as input and outputs their deep features. Classifier model uses the deep source
features and its corresponding labels to build a classifier.

Let x 2 fXtr [Xteg, Xtr ¼ fxitrgNtr
i¼1 2 RNtr�n and Xte ¼ fxitegNte

i¼1 2 RNte�n mean fea-
ture sets from source and target projects, respectively, and Ys ¼ fyisgNtr

i¼1 is the corre-
sponding labels, where x means Xtr and Xte scrambled sets, yitr 2 f1; 2g, 2 means the
number of classes, and n is the number of corresponding data features. Ntr and Nte refer
to the number of instances of source and target projects, and usually Ntr is not equal to
Nte. Let hall denote a collection of parameters. yðxiÞ 2 RNtrðteÞ�m refers to the feature
representations of hidden layer in the autoencoder, where m denotes the number of
hidden layer neurons during the autoencoder training.

3.1 Data Normalization

We perform data normalization on these features due to the 20 basic metrics used are
not the same order of magnitude. We use the 20 basic metrics [12] and min-max data
normalization method [18] to convert all the values in the interval from 0 to 1 in this
paper. Given feature x, its maximum and minimum values are maxðxÞ and minðxÞ,
respectively. For each value xi of the feature x, the normalized value Pi is computed as:

Pi ¼ xi �minðxÞ
maxðxÞ �minðxÞ ð1Þ

3.2 Feature Extraction Model

In the feature extraction model, we use shared hidden layer autoencoder to extract
features. Figure 2 shows the architecture of a basic autoencoder. Figure 3 shows the

software defect
datasets

preprocessing

loss
function

training
classifier

model

training
data

testing
data prediction

result
evaluation

Encoding

Decoding

weight
sharing

mechanism

training
data

preprocessingtesting
data

Fig. 1. The overall framework of CSSHLA. It mainly includes three parts: (1) Data
normalization stage. Source data and target data can be preprocessed to the same order of
magnitude. (2) Feature extraction stage. The source data features and target data features can be
better converted into similar data distribution by weight sharing mechanism. (3) Classifier
learning stage. The learned source features and its corresponding labels are used to learn a
classifier model.

494 J. Li et al.

architecture of shared hidden layer autoencoder, which is an improved version of the
basic autoencoder.

Autoencoder. Autoencoder means that the output data is equal to the input data as
much as possible, and it finds the common deep feature representation from input data.
It mainly includes coding phase and decoding phase. Given an input data xi 2 Xtr , these
two phases can be expressed as follows:

Encoding phase : yðxiÞ ¼ f ðw1x
i þ b1Þ ð2Þ

Decoding phase: x̂i ¼ f ðw2yðxiÞþ b2Þ ð3Þ

...input

...

hidden

output

()L θ

encoding

decoding

ix

ˆ ix

()iy x

1x 2x nx

ˆ1x ˆ2x ˆnx

Fig. 2. Architecture of basic autoencoder. First, the original input xi is mapped to yðxiÞ. Then x̂i

tries to reconstruct xi. The reconstruction error loss is expressed as LðhÞ.

..

..

....

Input

Hidden

Output

Encoding

Decoding

{ : }trx x X∈{ : }tex x X∈

tr tex X X∈ ∪

Fig. 3. Architecture of shared hidden layer autoencoder. It mainly includes two stages:
(1) Encoding stage. Input data includes source data and target data, which are scrambled into the
network to obtain feature representation of the hidden layer. The parameters of the input data
adopt the parameter sharing mechanism in this stage. (2) Decoding stage. The feature
representation of the hidden layer is decoded to get the reconstructed output data, making that the
output data is equal to the input data as much as possible. In this phase, the source data and target
data have different parameter settings, respectively.

A Cost-Sensitive Shared Hidden Layer Autoencoder 495

where f ð�Þ is a non-linear activation function, usually f ð�Þ is sigmoid function, w1 2
Rm�n and w2 2 Rn�m are weight matrices, b1 2 Rm and b2 2 Rn are bias vectors. h ¼
fw1; b1;w2; b2g is included in the autoencoder network parameters, the optimization of
parameters is actually to minimize the reconstruction error LðhÞ:

LðhÞ ¼ 1
2

X
xi2X

x̂i � xi
�� ��2 ð4Þ

The implementation of minimizing LðhÞ is achieved through the Adam optimizer
during the autoencoder training.

Shared Hidden Layer Autoencoder. To a certain extent, it is similar to autoencoder,
except that some improvements have been made in the setting of parameters. In order
to solve the data distribution difference problem in CPDP, shared hidden layer
autoencoder is used to obtain the advanced deep feature representation of the hidden
layer by minimizing the reconstruction error loss LðhallÞ. LðhallÞ loss consists of two
parts: LðhtrÞ and LðhteÞ. LðhtrÞ is defined as the Euclidean distance between the input
source data and the output source data. We add the label information of the source data
to make the source data with the same label more compact in the decoding phase.
LðhteÞ is defined as the Euclidean distance between the input target data and the output
target data. LðhtrÞ and LðhteÞ can be expressed as follows:

LðhtrÞ ¼ 1
2

X
xitr2Xtr

x̂itr � xitr
�� ��2 þ

X
x̂itr2X0

tr

x̂itr � �̂xitr0
�� ��2 þ

X
x̂itr2X1

tr

x̂itr � �̂xitr1
�� ��2 ð5Þ

LðhteÞ ¼ 1
2

X
xite2Xte

x̂ite � xite
�� ��2 ð6Þ

where x̂itr refers to the source data features obtained after the decoding phase, x̂ite refers
to the target data features obtained after the decoding phase. X0

tr refers to all the
instances in the source project are 0 and X1

tr refers to all the instances in the source
project are 1. �̂xitr0 and

�̂xitr1 are the mean values of all source project instances labeled 0
and all source project instances labeled 1 after decoding the source project data,
respectively.

Combined with the above two formulas, optimizing LðhtrÞ and LðhteÞ two formulas
at the same time, the final objective function can be expressed as:

LðhallÞ ¼ LðhtrÞþ rLðhteÞ ð7Þ

The network needs to optimize parameter hall: hall ¼ fw1; b1;w2
tr; b

2
tr;w

2
te; b

2
teg. r is a

regularization parameter, it can help to regularize the functional behavior of the
autoencoder. The goal of this term is to make the source as similar as possible to the
distribution of the target by changing the value of r.

496 J. Li et al.

3.3 Cost-Sensitive Softmax Classifier Model

To better learn features of minority class, cost-sensitive softmax classifier model is used
to alleviate the class imbalance problem by assigning different misclassification costs to
instances from different classes in the model building stage. In the trained autoencoder
above, the deep feature representations of source data learned from the hidden layer are
used to build a classifier.

To calculate the classification loss C, we usually measure the similarity between the
real label and the predicted label by using the cross-entropy loss function, which is
expressed as follows:

C ¼ � 1
Ntr

XN
i¼1

Xk
c¼1

yis
� �

c� log gðxisÞ
� �

c

� �
ð8Þ

where Ntr is the number of source project instances, c refers to class of label, k is
number of label class, which is set as 2 in this paper. yis is ground-truth label, gðxisÞ is
the final predicted label, gð�Þ is softmax activation function.

Furthermore, we add the cost-sensitive method to the classifier, so we propose a
cost-sensitive softmax classifier. The goal of cost-sensitive learning is to take the cost
matrix into consideration and generate a prediction model with minimum misclassifi-
cation cost. The cost matrix as shown Table 1, costði; jÞ is the cost value f ðcÞ of
classifying a instance from the i�th class as the j�th class, a correct classification will
be no cost in the cost matrix, that is costði; iÞ ¼ 0 and costðj; jÞ ¼ 0. Because more
defective modules should be found, the cost of defective modules should be higher.
The setting of the remaining cost value is set according to the works of [24]. f ðcÞ is
defined as:

f ðcÞ ¼
N0

N1
; c ¼ 1

1; c ¼ 0

8<
: ð9Þ

Based on this, the final cost-sensitive cross-entropy loss can be defined as:

C ¼ � 1
Ntr

XN
i¼1

Xk
c¼1

f ðcÞ � yis
� �

c� log gðxisÞ
� �

c

� �
ð10Þ

Table 1. Cost matrix for CSSHLA.

Actual defective Actual defect-free

Predict defective costði; iÞ costði; jÞ
Predict defect-free costðj; iÞ costðj; jÞ

A Cost-Sensitive Shared Hidden Layer Autoencoder 497

where N0 is the number of the defective instances, N1 is the number of the defect-free
instances. f ðcÞ means the cost of instance of class c.

4 Experiment

4.1 Datasets

In this experiment, we chose 10 projects from the PROMISE repository [12]. Table 2
lists the project name, the number of instances (#instance), the number of defective
instances (#defect) and the percentage of defective instances in all instances (%defect).

4.2 Evaluation Metrics

In order to evaluate the performance of proposed method, the evaluation metrics
F-measure and Accuracy are widely used in SDP. As shown in Table 3, they can be
defined by the confusion matrix.

where TP is the number of defective instances that are predicted as defective, FP is the
number of defect-free instances that are predicted as defective, TN is the number of
defect-free instances that are predicted as defect-free, FN is the number of defective
instances that are predicted as defect-free. So F-measure and Accuracy can be defined as:

Table 2. Datasets in our experiment.

Datasets #instance #defect %defect

ant-1.7 745 166 22.28
camel-1.6 965 188 19.48
jedit-3.2 272 90 33.09
log4j-1.0 135 34 25.19
lucene-2.0 195 91 46.67
poi-1.5 237 141 59.49
redaktor 176 27 15.34
synapse-1.0 157 16 10.19
xalan-2.6 885 411 46.44
xerces-1.3 453 69 15.23

Table 3. Confusion matrix.

Predicted as defective Predicted as defect-free

True defective TP FN
True defect-free FP TN

498 J. Li et al.

precision ¼ TP=ðTPþFPÞ; recall ¼ TP=ðFPþFNÞ ð11Þ
F-measure ¼ ð2 � precision � recallÞ=ðprecisionþ recallÞ ð12Þ

Accuracy ¼ ðTPþ TNÞ=ðTPþ TNþFPþFNÞ ð13Þ

4.3 Implementation Detail

In the training process, the CSSHLA model has 4 hidden layers and the number of
nodes in each layer is 20-15-10-10-2, where 20 is the dimension of the input data, 2 is
the dimension of the data that enters the softmax classifier. Each layer uses rectified
linear unit (ReLU) activation function and the setting of layers is empirically obtained.
CSSHLA using Adam optimizer performs the parameter optimization of during the
training process. The mini-batch is set 64, and the hyper-parameter r is the following:
r 2 f0:1; 0:5; 1; 5; 10; 15g, the good results are obtained at r ¼ 10.

4.4 Experiment Setup

In this paper, to prove the effectiveness of the proposed method CSSHLA for CPDP,
we compare CSSHLA with prior CPDP methods: TCA+ [15], TDS [8], Dycom [4], LT
[3] and SHLA(shared hidden layer autoencoder without cost-sensitive). We use 10
projects from PROMISE datasets as our experiments data. And we select one project
from 10 projects as target, select one of the remaining nine projects and take their turn
as source. We have nine possible combinations for each target project, in total, we have
90 possible CPDP combinations from 10 projects of PROMISE datasets. For example,
we chose ant 1.7 as target, and our combination of CPDP is as follows: camel 1.6 - ant
1.7, jedit 3.2 - ant 1.7, camel 1.6 - ant 1.7, log4j 1.0 - ant 1.7, etc.

4.5 Experiment Result and Analysis

Through the above experimental settings, we made a comparison between CSSHLA
and baselines(TCA+ , TDS, Dycom, LT, HLA). Tables 4 and 5 present the F-measure
and Accuracy performance of CSSHLA compared with the five baselines, respectively.
We can see that the average of F-measure of CSSHLA exceeds 5 baseline methods
from Table 4, the F-measure values of CSSHLA range from 0.257 to 0.647, and
CSSHLA improves F-measure results at least by 0.015 = (0.433−0.418). Table 5
shows that CSSHLA gets an average Accuracy of 0.652. Accuracy results in an
improvement of at least 0.002 = (0.652−0.650).

CSSHLA can effectively solve class imbalance by using cost-sensitive learning
technology compared with SHLA. The F-measure and Accuracy of CSSHLA were
increased by 0.056 and 0.017, respectively. There are two reasons why our results are
better than the baselines: First, to learn more about the features of minority class, we
consider the influence of the class imbalance problem on the model learning by
assigning different importance weights to different instances. Second, we use the
advanced deep features, which are more efficient than traditional features. The results

A Cost-Sensitive Shared Hidden Layer Autoencoder 499

of F-measure and Accuracy of CSSHLA are better than baseline results. According to
the evaluation metrics, the proposed method CSSHLA outperform better than baseline
methods.

5 Conclusion

In this paper, we present a cost-sensitive shared hidden layer autoencoder (CSSHLA)
method for cross-project defect prediction. To solve the problem of data distribution
difference in CPDP, we use autoencoder with shared parameter mechanism. It can
make the network adapt to source and target projects, and make the distribution of
source and target projects more similar to each other by minimizing the reconstruction

Table 4. F-measure comparison of CSSHLA model versus 5 baselines.

Target TDS TCA+ Dycom LT SHLA CSSHLA

ant-1.7
camel-1.6
jedit-3.2
log4 g-1.0
lucene-2.0
poi-1.5
redaktor
synapse-1.0
xalan-2.6
xerces-1.3

0.530
0.160
0.444
0.373
0.288
0.225
0.387
0.333
0.404
0.345

0.463
0.321
0.510
0.466
0.530
0.596
0.235
0.265
0.481
0.317

0.408
0.070
0.415
0.428
0.508
0.579
0.197
0.336
0.546
0.299

0.447
0.260
0.532
0.413
0.316
0.423
0.367
0.097
0.405
0.360

0.361
0.233
0.481
0.416
0.492
0.611
0.223
0.212
0.432
0.291

0.440
0.288
0.530
0.487
0.549
0.647
0.257
0.287
0.533
0.308

Average 0.349 0.418 0.379 0.365 0.377 0.433
Improved 0.084 0.015 0.054 0.068 0.056 –

Table 5. Accuracy comparison of CSSHLA model versus 5 baselines.

Target TDS TCA+ Dycom LT SHLA CSSHLA

ant-1.7
camel-1.6
jedit-3.2
log4 g-1.0
lucene-2.0
poi-1.5
redaktor
synapse-1.0
xalan-2.6
xerces-1.3

0.680
0.742
0.593
0.715
0.538
0.559
0.579
0.761
0.417
0.714

0.684
0.618
0.663
0.657
0.621
0.576
0.556
0.641
0.591
0.627

0.674
0.769
0.710
0.763
0.600
0.435
0.386
0.796
0.603
0.764

0.675
0.722
0.599
0.726
0.533
0.527
0.648
0.643
0.531
0.757

0.631
0.731
0.702
0.711
0.621
0.611
0.361
0.592
0.582
0.810

0.701
0.609
0.722
0.716
0.636
0.616
0.494
0.603
0.611
0.815

Average 0.630 0.623 0.650 0.636 0.635 0.652
Improved 0.022 0.029 0.002 0.016 0.017 –

500 J. Li et al.

error loss. Besides, we use cost sensitive learning technology to solve the class
imbalance problem. CSSHLA takes into account the different misclassification costs,
different weights are assigned to instances of different class. The average values of F-
measure and Accuracy of CSSHLA are at least 0.015 and 0.002 better than the baseline
methods, respectively. Empirical results show that CSSHLA can achieve better pre-
diction performance than baselines.

Acknowledgements. The work described in this paper was supported by National Natural
Science Foundation of China (No. 61702280), Natural Science Foundation of Jiangsu Province
(No. BK20170900), National Postdoctoral Program for Innovative Talents (No. BX20180146),
Scientific Research Starting Foundation for Introduced Talents in NJUPT (NUPTSF,
No. NY217009), and the Postgraduate Research & Practice Innovation Program of Jiangsu
Province KYCX17_0794.

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

2. Boehm, B.W.: Industrial software metrics top 10 list. IEEE Softw. 4(5), 84–85 (1987)
3. Camargo Cruz, A.E., Ochimizu, K.: Towards logistic regression models for predicting fault-

prone code across software projects. In: International Symposium on Empirical Software
Engineering and Measurement, pp. 460–463 (2009)

4. Liu, C., Yang, D., Xia, X., Yan, M., Zhang, X.: A two-phase transfer learning model for
cross-project defect prediction. Inf. Softw. Technol. 107, 125–136 (2019)

5. Wu, F., et al.: Intraspectrum discrimination and interspectrum correlation analysis deep
network for multispectral face recognition. IEEE Trans. Cybern. 1–14 (2018)

6. Wu, F., et al.: Cross-project and within-project semisupervised software defect prediction: a
unified approach. IEEE Trans. Reliab. 67(2), 581–597 (2018)

7. Tong, H., Liu, B., Wang, S.: Software defect prediction using stacked denoising
autoencoders and two-stage ensemble learning. Inf. Softw. Technol. 96, 94–111 (2018)

8. Herbold, S.: Training data selection for cross-project defect prediction. In: International
Conference on Predictive Models in Software Engineering, p. 6 (2013)

9. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition. IEEE
Signal Process. Mag. 29(6), 82–97 (2012)

10. Deng, J., Xia, R., Zhang, Z., Liu, Y., Schuller, B.: Introducing shared-hidden-layer
autoencoders for transfer learning and their application in acoustic emotion recognition. In:
International Conference on Acoustics, Speech and Signal Processing, pp. 4818–4822
(2014)

11. Deng, J., Zhang, Z., Eyben, F., Schuller, B.: Autoencoder-based unsupervised domain
adaptation for speech emotion recognition. IEEE Signal Process. Lett. 21(9), 1068–1072
(2014)

12. Jureczko, M., Madeyski, L.: Towards identifying software project clusters with regard to
defect prediction. In: International Conference on Predictive Models in Software Engineer-
ing, p. 9 (2010)

13. Minku, L., Sarro, F., Mende, E., Ferrucci, F.: How to make best use of cross-company data
for web effort estimation? In: International Symposium on Empirical Software Engineering
and Measurement, pp. 1–10 (2015)

A Cost-Sensitive Shared Hidden Layer Autoencoder 501

14. Zhao, L., Shang, Z., Zhao, L., Qin, A., Tang, Y.Y.: Siamese dense neural network for
software defect prediction with small data. IEEE Access 7, 7663–7677 (2019)

15. Nam, J., Pan, S.J., Kim, S.: Transfer defect learning. In: International Conference on
Software Engineering, pp. 382–391 (2013)

16. Wang, S., Yao, X.: Using class imbalance learning for software defect prediction. IEEE
Trans. Reliab. 62(2), 434–443 (2013)

17. Wang, S., Liu, T., Tan, L.: Automatically learning semantic features for defect prediction. In:
International Conference on Software Engineering, pp. 297–308 (2016)

18. Kotsiantis, S.B., Kanellopoulos, D., Pintelas, P.E.: Data preprocessing for supervised
learning. Int. J. Comput. Sci. 1(2), 111–117 (2006)

19. Kim, S., Zhang, H., Wu, R., Gong, L.: Dealing with noise in defect prediction. In:
International Conference on Software Engineering, pp. 481–490 (2011)

20. Liu, W., Liu, S., Gu, Q., Chen, J., Chen, X., Chen, D.: Empirical studies of a two-stage data
preprocessing approach for software fault prediction. IEEE Trans. Reliab. 65(1), 38–53
(2016)

21. Yang, X., Lo, D., Xia, X., Zhang, Y., Sun, J.: Deep learning for just-in-time defect
prediction. In: International Conference on Software Quality, Reliability and Security,
pp. 17–26 (2015)

22. Gao, Y., Yang, C., Liang, L.: Software defect prediction based on geometric mean for
subspace learning. In: Advanced Information Technology, Electronic and Automation
Control Conference, pp. 225–229 (2017)

23. Yang, Y., et al.: Are slice-based cohesion metrics actually useful in effort-aware post-release
fault-proneness prediction? An empirical study. IEEE Trans. Softw. Eng. 41(4), 331–357
(2015)

24. Li, Z., Jing, X., Wu, F., Zhu, X., Xu, B., Ying, S.: Cost-sensitive transfer kernel canonical
correlation analysis for heterogeneous defect prediction. Autom. Softw. Eng. 25(2), 201–245
(2018)

502 J. Li et al.

	A Cost-Sensitive Shared Hidden Layer Autoencoder for Cross-Project Defect Prediction
	Abstract
	1 Introduction
	2 Related Work
	2.1 Cross-Project Defect Prediction
	2.2 Deep Learning

	3 Proposed Methodology
	3.1 Data Normalization
	3.2 Feature Extraction Model
	3.3 Cost-Sensitive Softmax Classifier Model

	4 Experiment
	4.1 Datasets
	4.2 Evaluation Metrics
	4.3 Implementation Detail
	4.4 Experiment Setup
	4.5 Experiment Result and Analysis

	5 Conclusion
	Acknowledgements
	References

