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Abstract. Spectral clustering based algorithms are powerful tools for
solving subspace segmentation problems. The existing spectral clustering
based subspace segmentation algorithms use original data matrices to
produce the affinity graphs. In real applications, data samples are usually
corrupted by different kinds of noise, hence the obtained affinity graphs
may not reveal the intrinsic subspace structures of data sets. In this
paper, we present the conception of relation representation, which means
a point’s neighborhood relation could be represented by the rest points’
neighborhood relations. Based on this conception, we propose a kind
of sparse relation representation (SRR) for subspace segmentation. The
experimental results obtained on several benchmark databases show that
SRR outperforms some existing related methods.

Keywords: Subspace segmentation · Low-rank representation ·
Sparse relation

1 Introduction

Spectral clustering based algorithms have been proven to be powerful tools for
solving subspace segmentation problems such as motion segmentation [1,2], face
clustering [3,4] and so on. Among the existing spectral clustering based meth-
ods, sparse subspace clustering (SSC) [5] and low-rank representation (LRR) [6]
are the two most representative ones. The two algorithms divide the subspace
segmentation procedure into three steps: firstly, they compute a reconstructive
coefficient matrix for a data set, then construct an affinity graph by using the
obtained coefficient matrix, finally produce the segmentation result by means
of a kind of spectral clustering (e.g. Normalize cut (N-cut) [7]). Because of the
excellent performances showed by SSC and LRR, a lot of subsequent researches
have been proposed.

By analyzing SSC and LRR related works, we could find that most of them
hope to enhance the abilities of SSC and LRR for revealing subspace structures
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of data sets by adding additional constraints on the reconstructive coefficient
matrices. For example, Li et al. devised an adaptive weighted sparse constraint
for a reconstructive coefficient matrix obtained by SSC and proposed a struc-
tured SSC method (SSSC) [8]. Chen et al. developed a within-class grouping
constraint for a reconstructive coefficient matrix and introduced it into SSSC
[9]. Zhuang et al. claimed that SSC tends to discover the local structure of a
data set and LRR could discover its global structure. Hence, they combined
SSC and LRR together and proposed a non-negative low-rank and sparse repre-
sentation method (NNLRSR) [10]. Tang et al. generalized NNLRSR algorithm
and designed a structured-constrained LRR method (SCLRR) [11]. Lu et al.
presented a graph-regularized low-rank representation (GLRR) [12] which could
strength the group effect of a coefficient matrix obtained by LRR.

According to the corresponding references, the above mentioned algorithms
have shown to be superior to the classical SSC and LRR. However, we could find
these algorithms follow the same methodology of SSC and LRR as we mentioned
in the first paragraph.

In this paper, we reconsider the data representation problem and present the
concept and technique of relation representation. Based on these new proposi-
tions, we propose a new algorithm, termed sparse relation representation (SRR),
for subspace segmentation. We claim that SRR could find both the local and
global structures of data sets. The experimental results obtained on different
subspace segmentation tasks illustrate that SRR dominates the existing SSC
and LRR related algorithms.

The rest of the paper is organized as follows: we briefly review SSC and LRR
algorithms in Sect. 2. In Sect. 3, we introduce the idea of relation representa-
tion and present sparse relation representation (SRR) method. The optimiza-
tion algorithm for solving SRR problem is described in Sect. 4. Experiments on
benchmark data sets are conducted in Sect. 5. Section 6 gives the conclusions.

2 Preliminary

For a data set X ∈ Rd×n, both SSC and LRR hope to find a reconstruction
matrix C ∈ Rn×n which satisfies X = XC + E. Here, E ∈ Rd×n indicates
the reconstruction residual matrix. With different techniques, SSC expects C to
be a sparse matrix and the l1 norm of E to be minimal, while LRR tends to
minimize the rank of C and the l2,1 norm of E simultaneously. Because of the
different constraints imposed on the coefficient matrix, SSC and LRR tends to
reveal the local and global structures of a data set respectively. The objective
function of SSC and LRR could be precisely expressed as the following Eqs. 1
and 2 respectively:

min ‖C‖1 + λ‖E‖1,
s.t. X = XC + E, [C]ii = 0, i = 1, 2, · · · , n,

(1)

min ‖C‖∗ + λ‖E‖2,1,
s.t. X = XC + E,

(2)
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where [C]ii represents the (i, i)-th element of C and λ > 0 is a parameter
which is used to balance the effects of the two terms. The above two problems
could be solved by using the alternating direction method (ADM) [13]. Once the
reconstructive coefficient matrix C is gotten, an affinity matrix W satisfying
[W]ij =

(
[C]ij + [C]ji

)
/2 could be constructed. Then the final segmentation

result could be produced by using N-cut.

3 Motivation

3.1 Relation Representation

From the above descriptions, we could find that SSC and LRR (actually all the
related algorithms) use a data set itself to compute the reconstruction coeffi-
cient matrix. However, in real applications, data samples usually is corrupted by
different kinds of noise, so the obtained coefficient matrix may not be able to
reveal the subspace structure of a data set.

As we know, the relationships between an object and its neighbors could
usually define the object itself. And two similar objects will often have simi-
lar neighbors with similar relationships (See Fig. 1). Based on these evidences,
for a data set, we consider to use the relations between a data sample and its
neighbors to represent the data sample firstly, then reconstruct the neighbor-
hood relation of a data sample by using the neighborhood relations of other
samples. Hence, the reconstruction coefficient vector corresponding to each data
sample’s neighborhood relation could be acquired. We call this strategy “relation
representation”.

Fig. 1. Two similar objects (red points) and their neighbors (blue triangles) (Color
figure online)

3.2 Sparse Relation Representation (SRR)

Now we discuss how to compute the relations between a data sample and its
neighbors. Actually, many skills could handle this problem. For example, K
nearest neighbors method (KNN) [14] can find each data sample’s K neighbors,
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then linear reconstruction method [15] or Gaussian kernel [14] could be used to
compute the similarities between the data sample and its K neighbors. However,
the neighborhood scale K in KNN is usually difficult to choose for different
data sets. And an improper K will degenerate the performance of corresponding
algorithm sharply.

It has been proven that sparse representation (SR) technique [16] is capable of
adaptively choosing the neighbors of a data sample and getting the corresponding
reconstruction coefficient simultaneously. Therefore, for a data sample xi ∈ X,
its neighborhood relation vector ci could be achieved by using the following SR
problem:

min
ci

‖ci‖1 + α‖xi − Xci‖1. (3)

We hope the reconstruction residual xi − Xci also to be sparse. Then for the
whole data matrix X, we could get its neighborhood relation matrix C by solving
the following problem:

minC ‖C‖1 + α‖X − XC‖1,
s.t. [C]ii = 0, i = 1, 2, · · · , n

(4)

Similar to SSC, we could find that C will discover the local structure of the
original data set.

Then according to the relation representation technique (described in
Sect. 3.1), a data sample xi’s neighborhood relation ci could be represented
by the neighborhood relations of other data samples, namely ci � Czi, where
zi ∈ Rn is the reconstruction coefficient. Consider the whole data set, we could
obtain the following problem:

min
Z

‖Z‖∗ + β‖C − CZ‖2F (5)

where Z = [z1, z2, · · · , zn] is the reconstruction coefficient matrix to the neigh-
borhood relation matrix C. We here use the nuclear norm minimization con-
straint to help Z to discover the global structure of C. Moreover, Because C is
a good representation of original data matrix X, we aim to minimize the Frobe-
nius norm of the reconstruction error. Finally, we combine Eqs. 4 and 5 together
and let E1 = X − XC,E2 = C − CZ, then the sparse relation representation
problem (SRR) could be defined as follows:

minC,Z,E1,E2 ‖C‖1 + ‖Z‖∗ + α‖E1‖1 + β‖E2‖2F ,
s.t. E1 = X − XC,

E2 = C − CZ,
[C]ii = 0, i = 1, 2, · · · , n.

(6)

For a data set X, because C characterizes the local structure of X and Z discovers
the global structure of the neighborhood relation matrix C, Z actually could
reveal both the global and local structure of a data set.
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4 Optimization and Analyses

4.1 Optimization

For solving Problem6, we firstly covert it into the following equivalent problem:

minC,Z,M,J,E1,E2 ‖M‖1 + ‖J‖∗ + α‖E1‖1 + β‖E2‖2F ,
s.t. E1 = X − XC,

C = M, [M]ii = 0, i = 1, 2, · · · , n,
E2 = C − CZ,
Z = J.

(7)

The above could be solved by using ADM method [13]. The augmented
Lagrangian function of Eq. 7 can be described as follows:

L = ‖M‖1 + ‖J‖∗ + α‖E1‖1 + β‖E2‖2F + 〈Y1,X − XC − E1〉 + 〈Y2,C − M〉
+〈Y3,C − CZ − E2〉 + 〈Y4,Z − J〉 + µ

2

(
‖X − XC − E1‖2F + ‖C − M‖2F

+‖C − CZ − E2‖2F + ‖Z − J‖2F
)
,

(8)
where Y1,Y2,Y3 and Y4 are four Lagrange multipliers, μ > 0 is a parame-
ter. Then by minimizing L, the variables C,Z,M,J,E1,E2 could be optimized
alternately. The detailed updating process for each variables presented as follows:

1. Update M with fixed other variables. By collecting the relevant terms
of M in Eq. 8, we have:

minM ‖M‖1 + 〈Y2,C − M〉 + μ/2‖C − M‖2F
= minM ‖M‖1 + μ/2‖C − M + Y2/μ‖2F ,

(9)

then the solution to Eq. 9 could be obtained as

[Mopt]ij =

{
max(0, [C + Y2/μ]ij − 1/μ) + min(0, [C + Y2/μ]ij + 1/μ), i �= j;
0, i = j.

(10)
2. Update C with fixed other variables. By picking the relevant terms of

C in Eq. 8, we have:

minC〈Y1,X − XC − E1〉 + 〈Y2,C − M〉 + 〈Y3,C − CZ − E2〉
+µ

2

(
‖X − XC − E1‖2F + ‖C − M‖2F + ‖C − CZ − E2‖2F

)

= minC ‖X − XC − E1 + Y1/μ‖2F + ‖C − M + Y2/μ‖2F
+‖C − CZ − E2 + Y3/μ‖2F

(11)

We take the derivation of Eq. 11 w.r.t. C and set it to 0, the following equation
holds:

(
XtX + In

)
Copt + Copt

(
In − Z

)(
In − Zt

) − Xt
(
X − E1 + Y1/μ

)

−M + Y2/μ − (
E2 − Y3/μ

)(
In − Zt

)
= 0,

(12)

where In is an n × n identity matrix and Xt and Zt are the transposes of X
and Z respectively. Equation 12 is a Sylvester equation w.r.t. Copt, so it can
be solved by the Matlab function lyap().
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3. Update J with fixed other variables. By abandoning the irrelevant terms
of J, minimizing Eq. 8 becomes to the following problem:

minJ ‖J‖∗ + 〈Y4,Z − J〉 + μ/2‖Z − J‖2F
= minJ ‖J‖∗ + μ/2‖Z − J + Y4/μ‖2F .

(13)

Then the optimal solution to Eq. 13, Jopt = UΘ1/µ(S)V, where USV is the
SVD of matrix Z + Y4/μ and Θ is a singular value thresholding operator
[17].

4. Update Z with fixed other variables. By dropping the irrelevant terms
w.r.t Z in Eq. 8, we have:

minZ〈Y3,C − CZ − E2〉 + 〈Y4,Z − J〉 + μ/2
(
‖C − CZ − E2‖2

F + ‖Z − J‖2
F

)
= minZ ‖C − CZ − E2 + Y3/μ‖2

F + ‖Z − J + Y4/μ‖2
F

(14)
We also take the derivation of Eq. 14 w.r.t. Z and set it to 0, then the following
equation holds:

(
CtC + In

)
Zopt = Ct

(
C − E2 + Y3/μ

)
+ J − Y4/μ. (15)

Hence, Zopt =
(
CtC + In

)−1
[
Ct

(
C − E2 + Y3/μ

)
+ J − Y4/μ

]
.

5. Update E1 with fixed other variables. By abandoning the irrelevant
terms of E1, then minimizing Eq. 8 equals solving the following problem:

minE1 α‖E1‖1 + 〈Y1,X − XC − E1〉 + μ/2‖X − XC − E1‖2F
= minE1 α‖E1‖1 + μ/2‖X − XC − E1 + Y1/μ‖2F .

(16)

Similar to computing the optimal value of M, we could get [Eopt
1 ]ij =

max(0, [X − XC + Y1/μ]ij − α/μ) + min(0, [X − XC + Y1/μ]ij + α/μ).
6. Update E2 with fixed other variables. By gathering the relevant terms

of E2 in Eq. 8, we have

minE2 β‖E2‖2F + 〈Y3,C − CZ − E2〉 + μ/2‖C − CZ − E2‖2F
= minE2 β‖E2‖2F + μ/2‖C − CZ − E2 + Y3/μ‖2F .

(17)

We take the derivation of Eq. 17 w.r.t. E2 and set it to 0, then the following
equation holds:

(2β + μ)Eopt
2 = μ

(
C − CZ + Y3/μ

)
. (18)

Hence, Eopt
2 = μ/(2β + μ)

(
C − CZ + Y3/μ

)
.

7. Update parameters with fixed other variables. The precise updating
schemes for parameters existed in Eq. 8 are summarized as follows:

Yopt
1 = Y1 + μ(X − XC − E1),

Yopt
2 = Y2 + μ(C − M),

Yopt
3 = Y3 + μ(C − CZ − E2),

Yopt
4 = Y4 + μ(Z − J),

μopt = min(μmax, ρμ),

(19)

where μmax and ρ are two given positive parameters.
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4.2 Algorithm

The algorithmic procedure of SRR is summarized in Algorithm 1. For a data set,
once the solutions to SRR are obtained, SRR defines an affinity graph [W]ij =(
[Z]ij +[Z]ji

)
, then N-cut is performed on the graph to get segmentation result.

Algorithm 1. Sparse relation representation (SRR)
Input:

Data set X = [x1,x2, · · · ,xn] ∈ RD×n, parameters α, β, the maximal number of
iteration Maxiter;

Output:
The two coefficient matrices Zopt,Copt, and two noise term Eopt

1 ,Eopt
2 ;

1: Initialize the parameters, i.e., Y0
1 = Y0

2 = Y0
3 = Y0

4 = 0, μ0 = 10−2, μmax =
1030, ρ = 1.1, ε = 10−8, k = 0 and M0 = C0 = J = Z0 = 0.

2: while ‖X − XCk − Ek
1‖∞ > ε, ‖Ck − CkZk − Ek

2‖∞ > ε and k < Maxiter do
3: Update [M]k+1

ij = max(0, [Ck+Yk
2/μk]ij−1/μk)+min(0, [Ck+Yk

2/μk]ij+1/μk)

when i �= j, else [M]k+1
ij = 0;

4: Update Ck+1 by using Matlab function lyap() to solve
(
XtX + In

)
Ck+1 +

Ck+1
(
In − Zk

)(
In − (Zk)t

) − Xt
(
X − Ek

1 + Yk
1/μk

) − Mk+1 + Yk
2/μ − (

Ek
2 −

Yk
3/μ

)(
In − (Zk)t

)
= 0 ;

5: Update Jk+1 = UΘ1/µk (S)V, where USV is the SVD of matrix Zk + Yk
4/μk

and Θ is a singular value thresholding operator ;

6: Update Zk+1 =
(
(Ck)tCk + In

)−1
[
(Ck)t

(
Ck −Ek

2 +Yk
3/μk

)
+Jk+1 −Yk

4/μk
]
;

7: Update [Ek+1
1 ]ij = max(0, [X−XCk+1+Yk

1/μk]ij−α/μk)+min(0, [X−XCk+1+
Yk

1/μk]ij + α/μk);
8: Update Ek+1

2 = μk/(2β + μk)
(
Ck+1 − Ck+1Zk+1 + Yk

3/μk
)

9: Update Yk+1
1 ,Yk+1

2 ,Yk+1
3 ,Yk+1

4 , μk+1 by following the updating schedule in
Eq. 19;

10: set k = k + 1;
11: end while
12: return the coefficient matrix Zopt = Zk,Copt = Ck,Eopt

1 = Ek
1 ,Eopt

2 = Ek
2 .

4.3 Analyses

Now we discuss the complexity of Algorithm 1. Suppose the data matrix X ∈
RD×n, the complexity of Algorithm1 is mainly determined by the updating of
six variables: M ∈ Rn×n,C ∈ Rn×n,J ∈ Rn×n,Z ∈ Rn×,n,E1 ∈ RD×n,E2 ∈
Rn×n, We analyze the computational burden of updating these variables in each
step.

First, updating M and E1 both need to compute each element of an n × n
matrix, hence their computation burden is O(n2). Secondly, it takes O(n3) time
to solve a Sylvester equations for updating C. Third, by performing SVD, the
update of J is O(n3). Fourthly, updating Z needs to compute the pseudo-inverse
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of an n × n matrix, whose complexity is O(n3). Fifthly, it can be easily to find
that the computation burden for updating E2 is O(n2). Hence, we can see that
the time complexity of Algorithm 1 in each iteration taken together is O(n3),
which is same to that of LRR. Suppose the number of iterations is N , then the
total complexity of Algorithm 1 should be N × O(n3).

5 Experiments

In this section, subspace segmentation experiments will be performed to verify
the effectiveness of SRR. Two types of data sets, such as Hopkins155 motion
segmentation database [18], the extended Yale B [19] and ORL face images
database [20] will be adopted. The related algorithms including SSC [5], LRR
[6], SCLRR1 [10] are chosen for comparisons.

5.1 Experiments on Hopkins 155 Database

Hopkins155 database [18] is a frequently used benchmark database to test the
performances of subspace segmentation algorithms. It consists of 120 sequences
of two motions and 35 sequences of three motions. Each sequence is a sole cluster-
ing task and there are 155 clustering tasks in total. The features of each sequence
were extracted and tracked along with the motion in all frames, and errors were
manually removed for each sequence. So it could be regarded that this database
only contains slight corruptions. In our experiments, we projected the data to
be 12-dimensional by using principal component analysis (PCA) [14]. Figure 2
presents two sample images of Hopkins 155 database.

We performed the four algorithms on Hopkins 155 database and recorded the
detailed statistics of the segmentation errors of the four evaluated algorithms
including Mean, standard deviation (Std.) and maximal error(Max.) in Table 1.
From Table 1, we can see that (1) the mean of segmentation errors obtained
by SRR are all slightly better than those of other algorithms; (2) the standard
deviation on all data sets obtained by SRR is also superior to those of other
algorithms; (3) all the best values are achieved SRR and SCLRR.

5.2 Experiments on Face Image Databases

The brief information of the extended Yale B and ORL face databases are intro-
duced as follows:

The extended Yale B face database contains 38 human faces and around 64
near frontal images under different illuminations per individual. Some images in
this database were corrupted by shadow. We just selected images from first 10
classes of the extended Yale B database to form a heavily corrupted subset.
1 The reasons why we choose SCLRR for comparison are illustrated as follows: firstly,

SCLRR is the generalization of NNLRSR; secondly, both SCLRR and NNLRSR
impose the low-rank and sparse constraints on the reconstruction coefficient matrix
to hope it could find the local and global structures of data sets.
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(a) 1R2RC (b) arm

Fig. 2. Sample Images of Hopkins 155 motion segmentation database. (a) 1R2RC, (b)
arm.

Table 1. The segmentation errors (%) of different algorithms on Hopkins 155 database.
The optimal values of different criterion are emphasized in bold style.

Method 2 motions 3 motions ALL

Mean Std. Max. Mean Std. Max. Mean Std. Max.

SSC 4.02 10.24 41.59 11.16 11.00 37.56 5.63 10.81 41.59

LRR 3.13 7.45 30.20 6.56 7.49 23.41 3.93 7.57 30.20

SCLRR 2.96 6.42 31.09 5.18 7.24 24.68 3.49 8.49 29.09

SRR 2.34 6.50 27.23 5.67 7.16 22.41 2.96 5.73 29.23

Notice: The corresponding parameters in different algorithms varied in the
interval [0.01, 10]. And the best result obtained by each evaluated algorithm
on each sub-database was recorded.

ORL database contains 400 face images (without noise) of 40 persons. Each
person has 10 different images. These images were taken at different times, vary-
ing the lighting, facial expressions (open/closed eyes, smiling/not smiling) and
facial details (glasses/no glasses). In our experiments, all the images from the
extended Yale B and ORL database are resized to 32 × 32 pixels. Moreover, for
effective computation, the element value of each image vector was normalized
into the interval [0,1] by being divided 255. Some sample images from the two
databases are shown in Fig. 3(a) and (b) respectively.

We performed subspace segmentation experiments on some sub-databases
constructed from the above used two image databases. Each sub-database con-
tains the images from q persons (q changes from a relative small number to the
total number of class). Then the four algorithms are performed to obtain the
subspace segmentation accuracies. In these experiments, all the corresponding
parameters in each evaluated algorithm are varied from 0.001 to 20, and the
best values corresponding to the highest accuracy of each evaluated algorithm
are chosen. Finally, the segmentation accuracy curve of each algorithm against
the number of class q are plotted in Fig. 4.
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(a) sample images from the extended Yale B database

(a) sample images from ORL database

Fig. 3. Sample images from (a) the extended Yale B databases and (b) ORL.
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Fig. 4. The segmentation accuracies obtained by the evaluated algorithms versus the
variations of number of class on different databases. (a) the extend Yale B (b) ORL
databases.

Clearly, form Fig. 4, we can find that (1) in all the experiments, the best
results are almost achieved by SRR; (2) the results of SRR are much better than
those of other algorithms on the extended Yale B database.

6 Conclusion

We presented the relation representation conception in this paper and developed
a kind of sparse relation representation (SRR) method for subspace segmenta-
tion. Different from the existing spectral clustering based subspace segmentation
algorithms, SRR used the sparse neighborhood relation of each data sample to
obtained the affinity graph for a data set. We claimed the obtained affinity
graph could discover the subspace structure of the given data set more truth-
fully. The comparative experiments conducted on several benchmark databases
showed that SRR dominated some related algorithms.
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