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Abstract. With the upgrading of application scenarios, computer vision
is progressively expanded to 3D. Many methods that process point cloud
directly provide a new paradigm for 3D understanding. Most of these
methods employ maxpooling to handle the sparsity and disorder of point
cloud. However, maxpooling layer extracts the global feature of the entire
point cloud without learnable parameters, which is heuristics and insuf-
ficient. In this paper, we propose a VLAD enhanced Feature Aggregate
Module to aggregate local features adaptively. In addition, a Channel
Attention Module is applied to the features to reassemble the elements
in high-dimension feature space. The experiments in both classification
and segmentation demonstrate that the proposed method can improve
the capacity of the baseline to extract more informative features. Specif-
ically, we improve the accuracy from 88.5% to 89.8% for classification
in ModelNet40 and improve the accuracy from 78.94% to 82.07% for
semantic segmentation in S3DIS.

Keywords: Point cloud · Feature Aggregate Module · Channel
Attention Module

1 Introduction

With the upgrading of application scenarios, 3D understanding has received a
significant amount of attention in computer vision, especially for automatic driv-
ing and drone. Meanwhile, motivated by huge application demand, significant
progress has been made in sensor technology and innumerous 3D data is gen-
erated by a depth camera, radar, and lidar. Consequently, 3D data has many
formats such as voxels, meshes and point cloud owing to the diversity of sensor.
Among these different 3D data, the point cloud is characterized by high accu-
rate and easy acquisition. The point cloud is a set of points with sparsity and
disorder in 3D Euclidean space and the inherent irregular makes point cloud
very different from 2D data. To enable UAVs [1] and unmanned driving [2] to
perceive a 3D scene, high-level semantic understanding of 3D data is required.
In common with 2D computer vision, the primary tasks for 3D understanding
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are classification and segmentation. However, the input in 2D computer vision
is usually images and videos, which are organized in a regular format. Although
deep learning [3] has revolutionized many research fields in computer vision,
conventional convolutional neural networks are not suitable for the point cloud.
Therefore, many methods have been proposed to process point cloud and this
paper will focus on the identification of point clouds based on convolutional neu-
ral networks. Recently, popular neural networks based methods for point cloud
processing can be divided into four categories:

1. Voxel-based convolutional neural networks: These methods transform the
point cloud into voxels and then employ 3D convolution neural networks
on voxels, such as VoxNet [4] proposed by Maturaba and Scherer. However,
the sparsity of the data causes a loss of details. FPNN [5] and Voted3D [6]
proposed a special method to deal with the sparsity problem, but convolution
is still limited to the sparse voxel. Besides, there are still huge challenges in
dealing with large scenes. Some researchers have optimized the network in
the data structure. For example, Klokov et al. proposed Kd-Net [7], Wang et
al. [8] proposed O-CNN, and Riegler et al. [9] proposed Oct-Net. But sparse
3D data with 3D convolution kernels suffer from computation and memory
cost.

2. Multi-view based Convolutional neural networks: Researchers try to process
3D data by referring to 2D data processing methods. For example, rendering
3D data into 2D images from different perspectives [10–12], and then using
traditional 2D convolutional neural networks. This paradigm has achieved
good results in classification and retrieval thanks to the abstract ability of
deep learning. Among them, Su et al. [11] gather the information from multi-
ple views of the 3D object together and turn them into a single compact shape
descriptor, which is known as MVCNN. However, multi-view convolutional
neural networks are difficult to extend to the segmentation in 3D data. When
rendering 3D data, the choice of angle affects the final experimental results.
In fact, how to select the angle in this method is also difficult. In addition,
rendering the 3D data into 2D data may lose part of the 3D spatial position
information, and the data processing process is relatively complicated.

3. Feature-based deep learning network: Fang et al. [13] and Guo et al. [14]
convert traditional 3D data into corresponding feature description vectors
and then use the fully connected network to obtain the result of classifica-
tion. Because the features are manually designed, the quality of the features
selected directly affects the performance of the network significantly, the pro-
cess of selecting the original data features will be more complicated.

4. Point cloud based deep learning network: Qi et al. proposed PointNet [15]
and PointNet++ [16] to directly deal with the unordered point cloud. These
methods are not only convenient but also can preserve the integrity of the
point cloud. All points are independently handled to extract local features,
sharing multiple multi-layer perceptrons. Maxpooling layer is used to aggre-
gate the global feature from local features because of its permutation invari-
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ance. But maxpooling layer has no learnable parameters, which makes this
process heuristics and insufficient.

In order to alleviate the weakness caused by the insufficiency of maxpooling
layer, we propose the VLAD enhanced Feature Aggregate Module to extract
more sufficient global feature and Channel Attention Module to reassemble the
elements in high-dimension feature space. The VLAD enhanced Feature Aggre-
gate Module is robust to the order of input points and stores the residuals for
each point to the centers in a trainable manner. The Channel Attention Mod-
ule strengthens the representational power of convolutional layers by enhancing
the spatial encoding throughout its feature hierarchy. The architecture of our
network is illustrated in Fig. 1 and our contributions are as follows:

1. We develop a convolutional neural network with VLAD enhanced Feature
Aggregate Module and Channel Attention modules to extract more informa-
tive global feature for 3D point cloud processing in an end-to-end manner.

2. We demonstrate that the limitations of maxpooling layer can be alleviated
with some learnable feature aggregate modules robust to the order of points,
while the theoretical analysis about the VLAD is provided.

3. We improve the accuracy from 88.5% to 89.8% for classification in Model-
Net40 and improve the accuracy from 78.94% to 82.07% for semantic seg-
mentation in S3DIS, which verifies the effectiveness of the proposed method.

Fig. 1. The architecture of proposed method

2 Related Work

The structure of PointNet is shown in Fig. 2, which can serve as the classifica-
tion network and segmentation network. In the pointnet framework, multi-layer
perceptron (MLP) transforms the 3D coordinate into high-dimensional feature
space. Due to the independence of point-wise transform, the point cloud is easy
to apply the rigid or affine transformation. Therefore, the T-Net [17] is used for
transforming the points adaptively.
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Fig. 2. Structure of PointNet

Formally, given an unordered point set, where an aggregate function can be
defined as follows:

f(x1, x2, ..., xn) = γ( max
i=1,...,n

h(xi)) (1)

Where γ and h usually refer to MLPs to transform the features. It can be
proved that any continuous aggregate function can be arbitrarily approximated.
In this way, points in 3D are transformed into more informative high-dimensional
features and the aggregated global feature is robust to the disorder of point cloud.
However, there are two problems in the PointNet. (1) When projecting the low
dimensional features to high-dimensional features, the surrounding context of
the point is not used. Due to this, the network can’t capture the contextual
features. (2) When using the maxpooling operation, the feature components of
different points are used directly to replace the features of the entire input point
cloud, resulting in the loss of surface information.

3 Method

3.1 Channel Attention Module

Generally, the importance of different feature components varies a great deal for
the final decision. Taking images understanding as an example, an important
feature is usually a region where are corners, edges. In PointNet, features are
transformed into high-dimension space via MLP while MLP is usually imple-
mented with 1 × 1 convolution operation. The amount of convolution kernels
determines the dimension of the target feature and the components of this feature
are supposed to be reassembled for better expression capacity. Inspired by this,
we designed a channel-based attention mechanism, called Channel Attention
module, referred to as CA. CA module is data-driven processing that enhances
representative features and suppresses weaker features. Given a corresponding
input, the CA module can be formulated as:

X
CA−−→ Y,X ∈ RN×D×C , Y ∈ RN×D×C (2)
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Where X is the input, Y is the output, N is the size of the point cloud, D
is 1. C is the number of channels. The size of input and output is identical, so
the CA module can be embedded into any network easily. The specific operation
is shown in Fig. 3. Referring to the idea of Qi et al., in the CA module, we
employ the maxpooling operation to retain the most effective features. To obtain
the most important channel information, we use a fully connected network for
further dimension reducing. The feature information is compressed so that the
reserved channel features are more significant. After that, the nonlinearity of the
network is increased by the ReLU. Then we use another fully connected network
to recover the dimension of the channel with Sigmoid as the activate function. So
the number of the channel is the same as the input. Finally, we do the channel
weighting and fuse the weighted channel feature with the original features.

Fig. 3. Channel Attention module

The CA module can rank the importance of the components in the feature
and reassemble them, which is an implementation of feature selection in deep
learning. In addition, due to the presence of maxpooling in CA module, the global
information is fused with local features in an early stage. It ultimately enhances
the capability of the network to extract more informative global features.

3.2 NetVLAD Module

Jegou et al. [18] first proposed a local aggregation descriptor vector (VLAD),
which is regarded as a simplification of the Fisher kernel. Fisher kernel captures
statistical information about the local descriptors aggregated on the image, while
VLAD stores the sum of the residuals of each descriptor. Formally, N local image
descriptors of {xi} with D given dimension is taken as input, and there are K
cluster centers. {ck} are the parameters of VLAD. The description vector V of
the output VLAD for the entire image is D × K. For convenience, the vector is
written as a D × K matrix. When used as an image representation, the matrix
needs to be converted to a vector and normalized. The (j, k) element of V can
be expressed as:

V (j, k) =
N∑

i=1

αk (xi) (xi (j) − ck (j)) (3)
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Where, xi (j) represents the j-th dimension of the i-th descriptor, ck (j) rep-
resents the j-th dimension of the k-th cluster center. αk (xi) represents the rela-
tionship between xi and k. Specifically, αk (xi) = 1 if the cluster is closest to
the descriptor; otherwise, αk (xi) = 0. Intuitively, the D dimension in column k
of the vector represents the sum of the descriptor residuals (xi − ck) assigned
to the cluster ck. Then, the matrix V is regularized according to the column,
converted to a vector, and then regularized.

Inspired by the local aggregate descriptor vector (VLAD) representation,
Arandjelovic et al. [19] proposed a new end-to-end convolutional neural net-
work structure that can be used for scene recognition. The main components
of this neural network is NetVLAD. NetVLAD is a new universal VLAD layer
that excels in image retrieval and location recognition. This network structure
can be easily embedded in any CNN framework and can be trained through
backpropagation.

The VLAD is discontinuous because of the hard assignment of the descriptors
while training through back-propagation requires the module to be differentiable.
The problem lies in making VLAD differentiable and Arandjelovic et al. handled
this by replacing the hard assignment of descriptors with the soft assignment of
descriptors:

αk (xi) =
e−α‖xi−ck‖2

∑
k′ e−α‖xi−ck′‖2 (4)

The former equation is equivalent to the proximity of other cluster centers,
and the weight of the descriptor is assigned to the cluster whose proximity is
proportional. The range of αk (xi) is between 0 and 1, with the highest weight
assigned to the nearest cluster center. α is a positive constant that controls the
magnitude of the attenuation of the response. It can be noted that this setting
is the same as the original VLAD.

By extending the square of equation, the e−α‖xi‖2
in denominator and the

intermolecular can be eliminated:

αk (xi) =
ewT

k xi+bk

∑
k′ ewT

k′ xi+bk′
(5)

Among them, vector wk = 2αck, scalar bk = −α‖ck‖2. Substituting Eq. (5) into
Eq. (3), the final form of NetVLAD can be obtained:

V (j, k) =
N∑

i=1

ewT
k xi+bk

∑
k′ ewT

k′ xi+bk′
(xi (j) − ck (j)) (6)

Where {wk}, {bk} and {ck} are the set of parameters that can be trained in each
cluster. Similar to the original VLAD descriptor, the NetVLAD layer aggregates
the first-order statistic of the residuals in different parts of the descriptor space,
which is weighted by the soft assignment of the descriptors to the corresponding
cluster. It is worth noting that the NetVLAD layer has three sets of indepen-
dent parameters {wk}, {bk} and {ck} compared to {ck} of the original VLAD,
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which is more flexible than the original VLAD. And all parameters of NetVLAD
can be obtained automatically. The NetVLAD layer was originally designed to
aggregate the local image features known by VGG and AlexNet into the VLAD
global descriptor. By sending the local feature descriptor of the point cloud into
the neural network, the global representation can also be generated. Descriptor
vector can be viewed as a supplement to the max-pooling operation. Besides,
it allows end-to-end training and reasoning and can extract global descriptors
from a given 3D point cloud. Because of the disorder of the point cloud, the
NetVLAD layer needs to be insensitive to the order of the point cloud. In the
following proof, it can be concluded that NetVLAD is a symmetric function,
that is, it can be applied in the local features to generate global features with
permutation invariance.

As shown in Fig. 4, the input of the NetVLAD layer is a high-dimensional
feature of the point cloud. It can be obtained by projecting the features with
the MLPs. The output is the VLAD descriptor of the input feature. However,
the VLAD descriptor is a high-dimensional vector, i.e., a (D × K) dimensional
vector. To alleviate resource conservation, a fully connected layer can be used to
compress the (D × K) vector into a more compact output feature vector, which
is then quadraticized to generate the final global descriptor vector.

Fig. 4. NetVLAD layer structure

3.3 Proof of Symmetry of NetVLAD

Pixels of an image have a fixed spatial position, so there is no need to consider
the order of input pixels when using filters. However, when it comes to point
clouds, the order of points matters. The output of traditional convolutional neu-
ral network varies when the order of point cloud changed. Therefore, methods
processing points directly must characteristic with permutation invariance. In
other words, the points in different orders should produce the same output. In
this paper, we use the NetVLAD architecture to get the features of the point
cloud because it’s symmetrical. The invariance of the NetVLAD layer for the
point cloud order is demonstrated below. Given the input point cloud, the MLP
independently transforms the input features to another feature space. To prove
that NetVLAD is symmetrical, it means the output of the result is irrelevant
with the order of the input point cloud.
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Proof. Assuming that the characteristics of the input point cloud P are expressed
as {p′

1, p
′
2, · · · , p′

N}, the output of the NetVLAD is V = [V1, V2, · · · , Vk], for ∀k,
we have

Vk = hk(p′
1) + hk(p′

2) + · · · + hk(p′
N ) =

n∑

t=1

hk(p′
t) (7)

where Vk(p′) satisfying

Vk(p′) =
ewT

k p′+bk

∑
k′ ewT

k′p
′+bk′

(p′ − ck)

Suppose there is another point cloud P̃ = {p1, · · · , pi−1, pj , pi+1, · · · , pj−1,

pi, pj+1, · · · , pN}, when P̃ are the same as P except for the order of pi and pj .
So for ∀k, we have

Ṽk = hk(p′
1) + · · · + hk(p′

i−1) + hk(p′
j) + hk(p′

i+1) + · · ·

+ hk(p′
j−1) + hk(p′

i) + hk(pj+1) =
n∑

t=1

hk(p′
t) = Vk

(8)

From the former equation, we can draw the conclusion that NetVLAD is
symmetrical. Therefore we can use the NetVLAD module to enhance the global
feature of the point cloud.

4 Experiments

In this paper, we incorporate the CA module and NetVLAD module into the
original PointNet network. The corresponding classification network and seg-
mentation network are designed respectively. The data set of the classification
experiment is ModelNet40 [20], and the data set used in the segmentation exper-
iment is S3DIS [21]. The proposed framework is effective both in classification
and in segmentation.

4.1 3D Object Classification

The dataset for classification is ModelNet40. It includes 12,311 CAD models, of
which 9843 are for training and 2,468 are for testing. The same data used for the
PointNet 3D target classification is to evenly sample 2048 points on the mesh
surface and normalize them to a unit sphere. During training, training data is
augmented by rotating the upper axis and dithering the points by Gaussian noise
with zero mean and 0.02 standard deviation. The experimental is conducted
on Ubuntu 14.04, and the framework is Tensorflow. Same as PointNet, each
experiment has a batch size of 32, the number of input points is 1024, the initial
learning rate is 0.001, the learning rate attenuation parameter is 0.7, the step
size is 20000 and the optimizer is Adam. PointNet consists of five convolution
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layers and one maximum pooling layer. In order to verify the validity of the CA
module proposed, we embed CA modules in different locations. The results are
shown in Table 1:

Table 1. Classification results for different CA module locations

Location Accuracy avg. class Accuracy overall

PointNet 85.5 88.5

CONV 1 86.4 89.3

CONV 2 85.3 88.4

CONV 3 86.4 89.0

CONV 4 85.9 88.9

CONV 5 85.9 88.5

MAX POOLING 86.2 88.6

When testing the CA module, the data set used is ModelNet40, the setting is
consistent with PointNet, the number of input points is 1024, and the dimension
reduction factor of the CA channel is 4. It shows that the CA module improves
the performance when embedded into most convolutional layers especially the
first and third convolutional layer. It can be concluded that the CA module is
effective, but the embedding location is sensitive.

Table 2. Classification results for ModelNet40

Methods Input # views Accuracy avg. class Accuracy overall

SPH mesh – 68.2 –

VoxNet voxel 12 83.0 85.9

Subvolume voxel 20 86.0 89.2

LFD image 10 75.5 –

MVCNN image 80 90.1 –

PointNet (vanilla) point – 83.6 87.4

PointNet (baseline) point – 85.5 88.5

CA-VLADNet point – 86.5 89.8

As we can see in Table 2, compared with previous works, the proposed method
achieves better performance. However, there is still a certain gap between the
proposed method and the multi-view based method (MVCNN) owing to the
information loss in the sampling process. In preprocessing, only 1024 points are
sampled from point cloud as the input in the proposed method while a large
number of images can be obtained by rendering in MVCNN. It is the lack of
geometric details that results in this gab.
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4.2 3D Semantic Segmentation

The dataset for semantic segmentation is S3DIS data set. It is a large-scale
semantic 3D dataset constructed by Armeni et al. of Stanford University. The
data set detected 13 semantic elements, including structural elements (ceiling,
floor, wall, beam, pillar, window, and door), common items and furniture (tables,
chairs, sofas, bookcases, and planks), and finally type of clutter, each point in
the scan is labeled with one of them. The dataset is divided into rooms, and the
room is divided into areas of 1 m by 1 m. Each of these points is represented by
a 9-dimensional vector from the three-dimensional coordinates XYZ, the color
information RGB, and the normalized position of the opposing room (from 0
to 1). During training, 4096 points are randomly extracted from each block
randomly, in testing, all points are tested. As mentioned in Armeni et al. [21],
training and testing were performed in the k-fold strategy. The batch size is 24,
the learning rate is set to 0.001, the learning rate attenuation parameter is 0.5,
and the optimizer is Adam. According to Qi et al. [15], the S3DIS data set is
divided into 6 regions, and the method of six-fold cross-validation is used. Table 3
shows the six-fold cross-validation results on the S3DIS.

Table 3. Semantic segmentation results for S3DIS

Region Evaluation PointNet (baseline) AC-VLADNet

Region one IOU 52.86 57.06

Accuracy 80.82 83.57

Region two IOU 28.92 34.51

Accuracy 64.23 73.70

Region three IOU 54.76 59.20

Accuracy 83.59 85.99

Region four IOU 40.06 42.90

Accuracy 78.55 80.48

Region five IOU 41.98 43.74

Accuracy 80.03 80.76

Region six IOU 47.23 50.99

Accuracy 78.94 82.07

Average IOU 47.23 50.99

Accuracy 78.94 82.07

It can be seen that the IOU and accuracy of each region in this model are
higher than that of PointNet. The average IOU of the six regions is about 3.76%
higher than the baseline, and the accuracy rate is increased by 3.13%. The result
demonstrates that the proposed method is feasible to extract more informative
features for semantic segmentation while semantic segmentation rely more on
the detail context of the point cloud.
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5 Conclusion

We presented a VLAD enhanced PointNet equipped with Channel Attention
module for 3D point cloud processing. Both VLAD enhanced Feature Aggregate
Module and Channel Attention Module are readily pluggable into any convolu-
tional neural network and trained in an end-to-end manner. Most remarkable of
all is that the proposed method aggregate global features with learnable param-
eters while keeping the robustness to the order of points. The experiments in
classification and segmentation verify the effectiveness of the proposed method
and the necessity of improving maxpooling to aggregate more informative global
features.
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