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Abstract. Unsupervised domain adaptation (DA) aims to utilize the
well-annotated source domain data to recognize the unlabeled target
domain data that usually have a large domain shift. Most existing DA
methods are developed to align the high-level feature-space distribution
between the source and target domains, while neglecting the seman-
tic consistency and low-level pixel-space information. In this paper, we
propose a novel bidirectional adversarial domain adaptation (BADA)
method to simultaneously adapt the pixel-level and feature-level shifts
with semantic consistency. To keep semantic consistency, we propose a
soft label-based semantic consistency constraint, which takes advantage
of the well-trained source classifier during bidirectional adversarial map-
pings. Furthermore, the semantic consistency has been first analyzed
during the domain adaptation with regard to both qualitative and quan-
titative evaluation. Systematic experiments on four benchmark datasets
show that the proposed BADA achieves the state-of-the-art performance.
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1 Introduction

Deep learning has shown great success in multimedia analysis by learning dis-
criminative representations from massive labeled data [7,9]. However, collect-
ing the well-annotated datasets is exceedingly expensive. A promising alterna-
tive is to take full advantage of labeled data from an easily available source
domain. Unfortunately, the inevitable domain shifts between the source and tar-
get domain limit the generalization of models. To alleviate this issue, recent
domain adaptation methods try to align the feature distribution [4,29], which
focus on minimizing the distance between the source and target feature domain.
However, the feature-level alignment methods suffer two limitations: (1) feature-
level alignment is hard to sufficiently transfer knowledge from the source domain
to the target domain, due to missing the low-level pixel-space variance, which
is critical to the generalization of the model; (2) the measure of feature-level
difference fails to consider the semantic consistency during the alignment, and it
is difficult to directly observe whether the transferred knowledge is reasonable.
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Fig. 1. (a) Structure of CycleGAN: Cycle consistency only ensures the reconstruc-
tion of original content, where the middle mapping suffers label flipping. For example,
the source image Xs is with label “6”, while the transferred target image inconsis-
tently belongs to label “3”, hence it cannot be used to train a new target classifier.(b)
Structure of the proposed BADA method: a generator GST that maps source domain
images Xs to adapted target image Xt

g, and an another inverted generator GTS that
generates the reconstructed image Xs

r as if from original source domain, while keeps
cycle consistency and semantic consistency. For example, the transferred target image
keeps the label “6”, and can be used for training a new target classifier CT . The target
discriminator DT is to distinguish the generated target images Xt

g from unpaired real
target image Xt, which offers the guidance for generators.

Adversarial pixel-level domain adaptation [21] has shown great potential
recently, which tries to align the raw pixel-level distribution between two
domains. Specifically, pixel-level domain adaptation tries to map images from
the source domain to appear as if they were sampled from the target domain,
while keeping their original contents. The existing adversarial pixel-level domain
adaptation is achieved by learning a unidirectional pixel-level mapping with
unpaired images, which must maintain similar foregrounds between two domains
to provide training stability.

Cycle-consistent adversarial network (CycleGAN) [28] introduces a pair of
bidirectional mappings with cycle consistency to relax the strong assumption
that two domains must have similar contents to capture larger domain shifts.
The cycle consistency loss ensures that an image translated from one domain to



186 Y. Zhang et al.

another domain can be reconstructed to original domain. It shows compelling
results on unpaired image-to-image translation tasks. However, CycleGAN can-
not guarantee that the semantic contents are preserved during the translating
process. As shown in Fig. 1(a), CycleGAN suffers from random label flipping,
that is, lack of semantic consistency.

To overcome the shortcoming of CycleGAN in the domain adaptation task,
we proposed a novel Bidirectional Adversarial Domain Adaptation (BADA)
model. As shown in Fig. 1(b), BADA contains a pair of bidirectional reversible
mappings: one generator GST maps source domain images Xs to the adapted
target images Xt

g, and another inverted generator GTS that reconstructs adapted
images back to the source domain, while keep cycle consistency and semantic
consistency. The adapted target images Xt

g not only possess the style of the
target domain, but also inherit the labels from the source domain. And thus the
adapted target images Xt

g can be used to learn a supervised target classifier CT .
Furthermore, through the coordination between the pixel-level adversarial loss
and the feature-level similarity loss, the target classifier CT is able to capture
both the low-level and high-level shifts between the source domain and target
domain. What’s more, BADA is under the guidance of a soft label-based seman-
tic consistency constraint, which takes advantage of semantic information during
bidirectional mappings and is superior to unidirectional semantic consistency in
CyCADA [8] and SBADA-GAN [20]. We summarize our contributions as follows:

– We propose a novel BADA method to jointly consider the pixel-level and
feature-level domain adaptation with semantic consistency. The pixel-level
adaptation preserves more detail information and is easily visualized, while
the feature-level adaptation could capture more high-level domain-invariant
representations.

– We propose a soft label-based semantic consistency constraint considering
semantic information during bidirectional mappings, which effectively solves
the random label flipping problem that is suffered by CycleGAN, and we ana-
lyze the semantic consistency with regard to both qualitative and quantitative
evaluation for the first time.

– The proposed BADA significantly outperforms the state-of-the-art domain
adaptation methods on some benchmark datasets, which shows that the pro-
posed semantic consistency constraint, as well as the joint consideration of
the pixel-level and feature-level domain adaptation can improve the domain
adaptation ability.

2 Related Work

Existing methods generally aim to reduce domain shifts by minimizing the dis-
tance of feature distribution [4,26,29] between the source domain and target
domain. The measure of distance can be roughly divided into maximum mean
discrepancy (MMD) [2,14], correlation distances [22,23], deep reconstruction
loss [6] or an adversarial loss [5,13,25,26]. While there are so many feature-level
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domain adaption methods, we mainly focus on the MMD-based and adversarial-
loss based methods, which are highly related to our work. Maximum Mean Dis-
crepancy (MMD) based methods [2,14] are to learn domain-invariant features
by computing the norm of the difference between two domain means. The Deep
Adaptation Network (DAN) [14] applies MMD to the feature layers of deep neu-
ral networks, effectively inducing a high-level feature alignment. Other methods
chose an adversarial loss to measure the domain shifts between the learned fea-
tures [3,25,26], which introduce an extra domain discriminator to encourage
features not being distinguished between two domains. Adversarial loss based
methods could be further divided into discriminative methods and generative
methods. The adversarial discriminative methods [5,25] consider the feature
alignment only, while adversarial generative domain adaptation methods [13,24]
try to utilize a weight sharing constraint to learn a joint multi-domains distri-
bution with the reconstruction of target domain. However, the performance of
feature-level domain adaptation method is far from purely supervised methods,
due to the lack of ability to capture pixel-level domain shifts. Recently, pixel-level
domain adaptation methods have shown the huge potential [1,8,17]. Unsuper-
vised Pixel-level Domain Adaptation (PixelDA) [1] adapts the source-domain
images to appear as if drawn from the target domain, and achieve surprising
results on some unsupervised domain adaptation task. While pixelDA has a
strong assumption that the source domain and target domain must share many
similar foregrounds limiting larger domain shifts.

In contrast, cycle-consistency loss based network [11,28] shows amazing
results on unpaired image-to-image translation by a pair of dual pixel-level map-
pings, which do not need similar foregrounds and instead simply ensure that
the translated images could be reconstructed back to their original domains
with identical contents. However, they fails to keep the semantic consistency
during the conversion process. Motivated by this, the proposed BADA model
considers the unpaired pixel-level translation with a novel semantic consistency
constraint for unsupervised domain adaptation. We note that the motivation
of CyCADA [8] and SBADA-GAN [20] are similar to ours. However, we solve
the label flipping problem from different perspective. Compared to CyCADA
and SBADA-GAN, we propose a more effective semantic consistency constraint,
where we focus on the bidirectional reversible semantic consistency during the
unpaired pixel-level mappings. Furthermore, we combine a simple but effective
MMD feature-level domain adaptation method to boost performance. While
CyCADA needs an extra discriminator neural network and SBADA-GAN needs
to combine the source and target classifier for the final prediction. Moreover,
we firstly analyze the semantic consistency, with regard to both qualitative and
quantitative evaluation, during the domain adaptation.

3 The Proposed Model

3.1 Formulations

Suppose that there are Ns annotated source-domain samples Xs = {xs
i}Ns

i=0 with
labels Ys = {ys

i}Ns

i=0 and N t unlabeled target-domain samples Xt = {xt
i}Nt

i=0.
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With the well-annotated source data, we could learn an optimized source clas-
sifier CS parameterized θCS

by minimizing a standard supervised classification
loss expressed as:

Lcls(CS ;Xs,Ys) = E(xs,ys)∼(Xs,Ys)

[−ys
� log(σ(CS(xs; θCS

)))
]
, (1)

where ys is the one-hot vector of the class label, and σ(·) denotes the softmax
function.

However, the trained source classifier CS is hard to perform well on the
target domain, due to the inevitable shifts across the different domains. Our
model is to adapt images from the source domain to appear as if they were
drawn from the target domain by learning a discriminative mapping, and then
we could use the generated labeled target domain images to train a new target
classifier CT as if the training and test data were from the same distribution.
Unfortunately, lack of the paired images, the key semantic content is hard to
keep consistent by the unidirectional pixel-to-pixel mapping from the source
domain to the target domain. To alleviate this issue, we introduce two reversible
mappings: a generator GST that maps a source domain image xs to an adapted
target image xg

t = GST (xs) , and an another inverted generator GTS that makes
a target domain image back to the source domain, ending up the same semantic
content.

To ensure that learnt pixel-level mappings are semantic consistent between
the source and target domain, we introduce four different losses: a pixel-level
adversarial loss Lpix for matching the distributions of two domains in low-
level pixel-space; an feature-level similarity loss Lfea to guide model to capture
high-level domain-invariant features; a cycle consistency loss Lcyc to prevent the
learned bidirectional mappings GST and GTS from contradicting each other [28];
and a semantic consistency loss Lsem that encourages the consistency of the key
discriminative semantic contents during the pixel-level mapping across domains.

Pixel-Level Adversarial Loss. The two generators are augmented by two
adversarial discriminators respectively. A target discriminator DT distinguishes
between the real target data xt and generated target data GST (xs). In the same
way, a source discriminator DS distinguishes between the real source data xs

and the generated source data GTS(xt). Specifically, for the generator GST ,
it tries to map a source domain image to an adapted target domain sample
xg

t = GST (xs) that cannot be distinguished by its corresponding discriminator
DT , where the discriminator DT is trained to do as well as possible in detecting
generated “fake” target domain image xg

t . More formally, the generator GST (xs)
is trained with DT by adversarial learning with the loss:

Ladv(GST , DT ,Xs,Xt) =Ext∼Xt [log(DT (xt))] + Exs∼Xs [log(1 − DT (GST (xs)))].
(2)

Likewise, for the generator GTS with the discriminator DS , we introduce a simi-
lar adversarial learning process with the adversarial loss Ladv (GTS ,DS ,Xs,Xt).
The pixel-level adversarial loss is defined as:

Lpix = Ladv(GST ,DT ,Xs,Xt) + Ladv(GTS ,DS ,Xs,Xt). (3)
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Feature-Level Similarity Loss. We also add a feature-level similarity loss to
encourage that the high-level features from the adapted target images and the
real target images are as similar as possible. The feature-level similarity loss Lfea

is defined as Eq. 4 based on MMD [2], which is a kernel-based distance function
widely used for the feature-level domain adaptation.

Lfea(CT (GST (xs), CT (xt))) = ||Exs∼Xs [φ(CT (GST (xs)))] − Ext∼Xt [φ(CT (xt))]||2
= E [K(CT (GST (xs)), CT (GST (xs)))]

+ E [K(CT (xt), CT (xt))]

− 2E [K(CT (GST (xs)), CT (xt))] , (4)

where K(·, ·) denotes is a kernel function. In our experiments, we use a linear
combination of multiple RBF kernels expressed as:

K(x,y) =
∑

ηn exp
{

− 1
2σn

‖x − y‖2
}

, (5)

where ηn and σn are the weight and the standard deviation for n-th RBF ker-
nel [2], respectively.

Cycle Consistency Loss. Through the pixel level adversarial learning, ide-
ally, GST could adapt the images from source domain to the images identically
distributed as target domain. However, the adversarial loss alone still cannot
guarantee that the contents of original samples could be reconstructed [28]. We
hope that the image mapping from the source domain to the target domain
should be a reversible process. In other word, the adapted image GST (xs), which
is generated by mapping a source domain image xs to the target domain, should
be able to back to the original image by the reversal mapping GTS , that is
GTS(GST (xs)) ≈ xs. Therefore, we impose a cycle-consistency constraint with
L1 normalization operator ‖ · ‖1 as:

Lcyc(GST , GTS ,Xs,Xt) = Exs∼Xs [‖GTS(GST (xs)) − xs‖1]
+ Ext∼Xt [‖GST (GTS(xt)) − xt‖1] .

(6)

Semantic Consistency Loss. Although the cycle consistency loss in Eq. 6
can encourage the image mapping cycle to bring the source domain image back
to the original image. There is no obvious constraint to ensure that the middle
mapping could keep the semantic contents consistent. As shown in Fig. 1(a), the
mapping is free to shift the semantic contents, i.e. the image of class “3” may
be transferred to the image of class “6”.

To alleviate this issue, as illustrated in Fig. 1(b), we enforce the middle map-
ping is semantic consistent. The basis of the semantic consistency is that the
mapping from the labeled source domain to the target domain should keep the
same class. To evaluate if the generated image GST (xs) is at the same class with
the source image xs, we introduce the pretrained source classifier Cs to do a
preliminary inspection.
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Given that the pretrained source classifier is noisy for the generated images,
we use the output vector CS(xs) of source classier as a soft label vector to
encourage that an image to be classified in the same way after mapping as it
was before mapping. Due to our bidirectional pixel-level mappings are reversible,
both the generated image and the reconstructed image should also keep the
same semantics with the original image. Furthermore, we take full advantage of
both soft label and hard label to augment semantic consistency during mapping
processes, and the semantic consistency loss is defined as follows:

Lsem(GST , GTS ,Xs, CS) = Exs∼Xs

[‖CS(GST (xs)) − CS(xs)‖2
]

+ Exs∼Xs

[‖CS(GTS(GST (xs))) − CS(xs)‖2
]

+ Lcls(CS , GTS(GST (Xs)),Ys). (7)

3.2 Optimization

As shown in Fig. 1(b), the combination of objectives above will encourage a
model to learn bidirectional pixel-to-pixel mappings between two domains, while
keeping the same discriminative semantic content. By the discriminative pixel-to-
pixel mapping from the source domain to the target domain, the generated target
images GST (xs) will preserve the label information from the source domain.
Furthermore, a new target classifier CT could be trained on the generated images
as if trained on samples drawn from the target domain with minimizing the
prediction loss:

L′
cls(CT ;GST (xs),Ys) = E(xs,ys)∼(Xs,Ys)

[−ys
� log(σ(CT (GST (xs))))

]
. (8)

So far, GST , GST , DS , DT and CT could be jointly optimized with the total
optimization objective as:

LDA = L′
cls + Lpix + Lfea + λcycLcyc + λsLsem (9)

where λcyc and λs are weights that control the interaction of losses to achieve
better trade-off between the adaptation and classification. They are trained by
an alternative training way in the concurrent sub-processes:

(θ̂GST
, θ̂GTS

) = arg min
θGST

,θGTS

LDA, (10)

(θ̂DS
, θ̂DT

) = arg max
θDS

,θDT

Lpix, (11)

θ̂CT
= arg min

θCT

L′
cls. (12)

where θGST
, θGTS

, θDS
, θDT

and θCT
denote the parameters of the GST , GTS ,

DS , DT and CT respectively. The parameters can be updated by stochastic
gradient descent optimization algorithms, like Adadelta [27].
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Fig. 2. Dataset samples for our domain adaptation tasks.

4 Experiments

4.1 Datasets

We conduct experiments on 4 widely-used domain adaptation datasets:
MNIST [12], USPS [10], MNIST-M [1], SVHN [19], as shown in Fig. 2. The
statistics of the datasets are summarized in Table 1. For a fair comparison, we
evaluate our algorithm on the 4 common domain adaptation tasks: MNIST →
USPS (M → U), USPS → MNIST (U → M), MNIST → MNIST-M (M → M-M),
SVHN → MNIST (S → M), using the training set only during training process
and evaluating on the standard test sets. The token “→” means the direction
from the source domain to the target. The images are all resized to 28×28 pixels,
and pixels of images are all normalized to [0, 1]. And we use grayscaled images
for all tasks, except M → M-M task, where MNIST dataset were extended to
three channels in order to match the shape of MNIST-M images (RGB images).

4.2 Experimental Setup

Network Architecture. Our network architecture is inspired by the Cycle-
GAN [28]. The GST and GTS use the same generative network architecture [28].
The generative network consists of 3 convolutional blocks, 9 residual blocks, and
3 transposed convolutional blocks. Each convolutional block consists of a convo-
lutional layer followed by instance normalization layer and rectified linear unit
(Relu) [18]. The architecture used for the discriminators DS and DT is a fully
convolutional network with five convolutional layers. The networks used for the
classifiers CS and CT are composed of 4 convolutional layer followed by instance
norm layer with leaky rectified linear unit (Leaky Relu) [15], 2 max-pooling
layers, and a fully connected layer.

Training Details. All of our experiments are implemented with Tensorflow,
and our implementation code will be released soon. We use the Adadelta opti-
mizer [27] with a minibatch of size 16. Considering the regular adversarial loss
suffers from the vanishing gradients problem, we replace the adversarial loss Eq. 3
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Table 1. Datasets, “*/*” in columns of “Instances” denotes the number of train/test
image pairs.

Dataset Instances classes Image size Color map

MNIST 60,000/10,000 10 28 × 28 Gray

USPS 7,291/2,007 10 28 × 28 Gray

MNIST-M 59,001/9,001 10 32 × 32 RGB

SVHN 73,257/26,032 10 32 × 32 RGB

with the least-squares GANs (LSGANs) loss [16], which can generate higher
quality samples and perform more stable during the learning process.

Table 2. Accuracies (mean±std) on unsupervised domain adaptation among MNIST,
USPS, SVHN and MNIST-M

Method Reference M→U U→M M→M-M S→M

Source Only ours 0.812 0.751 0.6070 0.6503

Target Only ours 0.9729 0.9956 0.9545 0.9956

MMD ICML 2015 0.8110 - 0.7690 0.7110

Domain Confusion ICCV 2015 0.791± 0.005 0.665± 0.033 - 0.681± 0.003

DSN w/MMD NIPS 2016 - - 0.8050 0.7220

CoGAN NIPS 2016 0.912± 0.008 0.891± 0.0008 0.620 -

DSN w/DANN NIPS 2016 0.913 - 0.8320 0.827

DANN JMLR 2016 0.771± 0.018 0.730± 0.020 0.7666 0.7385

DRCN ECCV 2016 0.918± 0.0009 0.7367± 0.0004 - 0.8197± 0.0016

ADDA CVPR 2017 0.894± 0.0002 0.901± 0.0008 - 0.760± 0.0018

pixel-DA CVPR 2017 0.959 - 0.982 -

CyCADA ICML 2018 0.956± 0.002 0.965± 0.001 0.976± 0.002 0.904± 0.004

DIFA CVPR 2018 0.923± 0.001 0.910± 0.004 0.924± 0.001 0.897± 0.002

Image2Image CVPR 2018 0.925 0.908 0.916 0.847

RAAN CVPR 2018 0.89 0.921 - 0.892

SBADA-GAN CVPR 2018 0.976 0.950 0.994 0.761

BADA Ours 0.9483± 0.0008 0.9689 ± 0.0004 0.9872± 0.0005 0.9254 ± 0.0012

BADA without Lfea Ours 0.9531± 0.0006 0.9651± 0.0019 0.9866± 0.0003 0.8498± 0.0061

4.3 Comparison with Existing Methods

In this section, we compare the proposed BADA model with different domain
adaptation (DA) methods among 4 widely adopted tasks. The compared
methods are: (1) MMD [1,14], DSN w/MMD [2], Domain Confusion [24,
25], DANN [5], DRCN [6], CoGAN [13], DSN w/DANN [1,2], ADDA [25],
DIFA [26], and RAAN [3], which are feature-level DA methods; (2) pixel-
DA [1], Image2Image [17], CyCADA [8] and SBADA-GAN [20], which are pixel-
level DA methods. Table 2 presents the unsupervised DA recognition accuracy
(mean ± std) over three independent experiments. From Table 2, we can draw
the follow observations:
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– Firstly, we compare our BADA model with the “Source Only” and “Target
Only” model. The “Source Only” and “Target Only” mean that the models
are trained only on the source domain or target domain without any domain
adaptation, respectively. They can be seen as a lower bound and an upper
bound, respectively. We observe that our model achieves much better results
than the “Source Only”. It’s more exciting that our results are much closer
to the “Target Only”.

– Compared with feature-level methods, our model not only achieves much
better performance than MMD [1,14] and DSN w/MMD [2], which use tra-
ditional MMD loss [2,14] to minimize the feature-level difference between the
source and target domain. But also our model is superior to Domain Con-
fusion, DANN, CoGAN, DSNw/DANN, ADDA, DIFA and RAAN that are
based on the feature-level adversarial method. This mainly owes to the pro-
posed BADA model being able to capture the semantic contents transferred
from the source domain to the target, by learning a bidirectional discrimina-
tive pixel-to-pixel mapping.

– Compared with pixel-level methods, our model outperforms the best com-
petitor, pixel-DA on the M→M-M task, which is also an unsupervised pixel-
level domain adaptation model with GAN. However, the pixelDA algorithm
assumes that there are similar backgrounds between the source and target
domain, which cannot perform well on more difficult S→M task. While our
model outperforms the state-of-the-art CyCADA [8] model with a accuracy
gap greater than 2.5% on the S→M task. This indicates the advantage of
using the bidirectional pixel-level mapping with semantic consistency than
the unidirectional pixel-level mapping with content similarity in pixelDA.

– Furthermore, the comparisons with CyCADA and SBADA-GAN also show
the superiority of our bidirectional semantic consistency constraint. Although
the SBADA-GAN method combines the source and target classifier for final
prediction, which achieved the best performance on two tasks, our method
outperforms it with accuracy gaps greater than 16.4% on the more difficult
S→M task.

4.4 Evaluation on Semantic Consistency

Qualitative Analysis. In order to ensure that the proposed model could learn
two semantic consistent mappings, we first visualize the bidirectional mapping
results of the model in different tasks. As shown in Fig. 3, the proposed BADA
learns a semantic consistent forward mapping from the source domain to the
target with an inverted semantic consistent mapping simultaneously.

Quantitative Analysis. Furthermore, we demonstrate the quantitative anal-
ysis of the semantic consistency in Table 3. The first three rows represent the
accuracy of original source image xs on source classifier, generated target image
GST (xs) on the adapted target classifier CT , and the reconstructed source image
GTS (GST (xs)) on the source classifier CS , respectively. Accordingly, the last
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(a) U→M (b) M→M-M (c) S→M

Fig. 3. The visualization of pixel-to-pixel mapping: The left triple shows the mapping
from the source domain to the target domain and back to the original source domain.
The right triple shows the inverted mapping. Each triple consists of the original image
(left), the generated image (middle), and the reconstructed image (right).

three rows report the accuracy of target image xt on the adapted target clas-
sifier, generated source image GTS (xt) on the well-trained source classifier CS ,
and the reconstructed target image GST (GTS (xt)) on the target classifier CT .
We can observe that both the transferred and reconstructed images are recogniz-
able by the corresponding classifiers, which can prove the semantic consistency
during our dual pixel-to-pixel mappings. A comparison between the 4th row and
5th rows in Table 3 shows that the performance of the adapted target images on
the source classifier CS could even nearly equal to the performance of the real
target images on the target classifier. It indicates that the well-trained source
classifier CS can be shared with the target domain, while we only need to transfer
the target image to the source image by the mapping we have learnt.

Table 3. Qualitative analysis of semantic consistency.

Method M→U U→M M→M-M S→M

CS (xs) 0.9956 0.9729 0.9956 0.9308

CT (GST (xs)) 0.9821 0.9640 0.9902 0.8941

CS (GTS (GST (xs))) 0.9868 0.9670 0.9935 0.8721

CT (xt) 0.9483 0.9689 0.9872 0.9254

CS (GTS (xt)) 0.9550 0.9675 0.9907 0.9113

CT (GST (GTS (xt))) 0.9432 0.9663 0.9866 0.9008

4.5 Ablation Study

Effect of Feature-Level Similarity Loss. The feature-level similarity loss
Lfea is used to encourage the robustness of model. In order to investigate the
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effect of the feature-level similarity loss in more detail, we develop and evaluate
two variations of BADA: BADA without Lfea and BADA, while keeping the
optimization procedure in the same way. Table 2 shows the performance of two
variations on the four widely adopted tasks. We can observe that BADA without
Lfea has similar performances with BADA in different domain adaptation tasks,
but one task on the S→M, where BADA performs much better. We infer that
the pixel-level mapping combined with Lfea could capture more difficult domain
shifts to get higher performance. Furthermore, we visualize the distribution of
the target images in task S→M after training on source only and BADA using
t-SNE tool respectively. A comparison between Fig. 4(a) and Fig. 4(b) reveals
that our semantic consistent pixel-level BADA without Lfea still has the ability
to learn an adapted classifier for unsupervised target domain. Furthermore, as
shown in Fig. 4(b) and Fig. 4(c), the proposed model combined with feature-level
similarity loss further boosts the performance.

(a) Source only (b) BADA without Lfea (c) BADA

Fig. 4. The t-SNE visualizations of target domain samples features trained on (a)
source only, (b) BADA without Lfea, (c) BADA with Lfea for the S→M task. We use
1000 test samples to generate the t-SNE plots.

(a) Without Lsem (b) Without Lcyc

Fig. 5. The domain adaptation results of the proposed BADA without semantic con-
sistency or without cycle consistency. In subfigures (a) and (b), a triple in each row
consists of three images: (i) left is the source SVHN image; (ii) middle is the generated
target MNIST image; and (iii) right is the reconstructed source SVHN image.
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Effect of Consistency in BADA. In this scenario, we verify the importance
of the cycle consistency loss Lcyc and semantic consistency loss Lsem for our
pixel-to-pixel mapping. We developed and assessed two variations of our BADA:
no semantic consistency or no semantic consistency, which mean BADA with-
out Lsem or without Lcyc, respectively, while keeping the other loss satisfied
and use the similar optimization. Figure 5 shows the results of the mapping
from the source domain to the target domain, and back to the original source
domain in pixel-level. When there is no semantic consistency but with cycle
consistency, the mapping from the source domain to the target domain suffers
the shift of semantic contents, despite the good reconstruction of the original
images. Conversely, when there is no cycle consistency but with semantic consis-
tency, the middle mapping could preserve the semantic contents, although, the
reconstructed source images are failed to be consistent with the original images.
The two cases indicate that both the cycle consistency and semantic consistency
contribute to the overall performance of model.

Parameter Sensitive Analysis. In this scenario, we evaluate the sensitive-
ness of the hyper-parameter λcyc and λsem on the performance of unsupervised
domain adaptation. In the objective function Eq. 9, λcyc and λsem control the
contributions of cycle consistency and semantic consistency respectively. Here,
we conduct the experiments on the SVHN → MNIST task, where 2000 samples
randomly selected from target test set as a validation set. Specifically, we explore
the different λcyc and λsem from 0, 0.5, 1.0, 2.0, 4.0. As aforementioned, λcyc = 0
and λsem = 0 indicate the proposed BADA without cycle consistency or without
semantic consistency, respectively. The evaluation is conducted by changing one
parameter (e.g. Lcyc) while keeping the other hyper-parameters fixed. As shown
in Fig. 6, both λcyc and λsem are important to the overall performance. Note
that, when λsem = 0, the model performs badly. Thus it indicates that the λsem

plays an essential role in the proposed model.
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Fig. 6. Effect of model parameters (a) λcyc and (b) λsem in the proposed BADA.
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5 Conclusion

In this paper, we proposed a novel BADA model to adapt the source domain
images to appear as if drawn from the target domain by learning a pair of bidi-
rectional pixel-level mappings that keep semantic consistency. BADA is capable
to transfer the label information from the source domain to the target domain
to learn a good target classifier, meanwhile it is advantaged to adapt the target
images to the source domain to share the well-trained source classifier. Compre-
hensive experimental results on some widely used benchmark datasets show that
the proposed BADA method outperforms the state-of-the-art domain adapta-
tion methods with advances on superior visualization and semantic consistency
analysis.
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