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Abstract. Human pose estimation has made significant advancement in
recent years. However, the existing datasets are limited in their coverage
of pose variety. In this paper, we introduce a novel benchmark “Fol-
lowMeUp Sports” that makes an important advance in terms of specific
postures, self-occlusion and class balance, a contribution that we feel is
required for future development in human body models. This compre-
hensive dataset was collected using an established taxonomy of over 200
standard workout activities with three different shot angles. The col-
lected videos cover a wider variety of specific workout activities than
previous datasets including push-up, squat and body moving near the
ground with severe self-occlusion or occluded by some sport equipment
and outfits. Given these rich images, we perform a detailed analysis of
the leading human pose estimation approaches gaining insights for the
success and failures of these methods.

Keywords: Pose estimation · Benchmark testing · Performance
evaluation

1 Introduction

Human pose estimation is an important computer vision problem [1]. Its basic
task is to find the posture of a person via recognising human joints and rigid
parts from normal RGB images. The extracted pose information is essential to
modelling and understanding the human behaviours, and can be used in many
vision application problems, such as virtual/augmented reality, human-computer
interaction, action recognition and smart perception.

Y. Huang, B. Sun, H. Kan and J. Zhuang—Equal contribution.
Y. Huang—The work was done at Keep Inc. The research was partially supported by
the National Key Research and Development Program of China (2017YFB1002803).

c© Springer Nature Switzerland AG 2019
Z. Lin et al. (Eds.): PRCV 2019, LNCS 11859, pp. 110–121, 2019.
https://doi.org/10.1007/978-3-030-31726-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31726-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-31726-3_10


FollowMeUp Sports: New Benchmark for 2D Human Keypoint Recognition 111

In the psst few years, pose estimation methods based on deep neural net-
work techniques have achieved great progress [2–4]. Although the performance
of some human pose estimation models (e.g. [5–7]) is almost saturated on the
above mentioned datasets, applying these high-precision algorithms to the other
specific industrial tasks shows a degradation in accuracy. For instance, one appli-
cation case is workouts or sports scoring. In this case, lots of activities have severe
self-occlusion or unusual postures, such as push-up and crunch. We find out the
models [8–10] trained on the MS-COCO dataset [11] cannot correctly detect
body joints with atypical postures, as shown in Fig. 1. In the top-right image of
Fig. 1, the right knee is falsely detected as left knee. In the top-left and lower-
part images of Fig. 1, some body joints, such as shoulders, knees and ankles, are
missed in prediction. Since the pose estimation results of the same person in the
standing posture are correct, we argue the false predictions are caused by the
abnormal postures. Current datasets lack the corresponding samples [12,13].

We use the MS-COCO dataset [11] as an example to analyse the distribution
of human postures. In our statistics, the number of human instances in stand-
ing posture achieves 102,495 (84.53%) while people in other postures only have
18,756 (15.47%) as shown in Fig. 2. The human instances in a horizontal position
or an uncommon pose are extremely rare. This makes the model unable to learn
the knowledge of irregular postures during training.

To improve the performance of human pose estimation in the certain sports
situation, a large-scale human keypoints benchmark is presented in this paper.
Our benchmark significantly advances state-of-the-art in terms of particular
activities, and includes more than 16,000 images of people. We used the workout
class videos as a data source and collected images and image sequences using
queries based on the descriptions of more than 200 workout activity types. For
each activity type, there are 3 different shot angles. This results in a diverse set of
images covering not only different workout activities, but contrasting postures.
This allows us to enhance the current human pose estimation methods.

2 Related Work

There are several human keypoints datasets presented in the past decades. Buffy
dataset [14] and PASCAL stickmen dataset [15] only contain upper-bodies, but
we need to process the full-body. In these two datasets pose variation is insignif-
icant. The contrast of image frames is relatively low in the Buffy dataset.

The UIUC people dataset [16] contains 593 images (346 for training, 247 for
testing). Most people in the images are playing badminton. Some people are
playing jogging, Frisbee, standing, walking, etc. There are very aggressive pose
and spatial variations. However, the activity type is limited in this dataset.

The sport categories of Sport image dataset [17] is more plentiful, which
including soccer, cycling, acrobatics, American football, croquet, golf, horseback
riding, hockey, figure skating, etc. The total number of images is 1299 (649 of
them are split as training set and the rest as testing set).

Leeds Sports Poses (LSP) dataset [1] includes 2000 images, where one half
for training and the other half for testing. The dataset shows people involved in
various sports.
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Fig. 1. Limitations of applying current pose estimation models on some workout pos-
tures, which have severe self-occlusion. Some body keypoints are falsely detected or
missed in prediction even the background is plain.

The image parsing (IP) dataset [18] is a small dataset and contains 305
images of fully visible people, where 100 images for training and 205 images for
testing. The dataset consists of various activities such as dancing, sports and
acrobatics.

The MPII Human pose dataset [12] consists of 24,589 images, in which 17,408
images with 28,883 annotated people are split for training. During the testing
stage, one image may contain multiple different evaluation regions that consist of
a non-identical number of people. [20] defines a set of 1,758 evaluation regions on
the test images with rough position and scale information. The evaluation metric
deploys mean Average Precision (mAP) of the whole body joint prediction. The
accuracy results are evaluated and returned by the staff members of the MPII
dataset.
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Fig. 2. The posture distribution of MS-COCO dataset. Around 85% human instances
are standing with good, upright posture.

The MS-COCO keypoints dataset [11] includes training, validation and test-
ing sets. On the COCO 2017 keypoints challenge, training and validation sets
have 118,287 and 5000 images respectively, totally containing over 150,000 people
with around 1.7 million labelled keypoints. In experiments, we perform ablation
studies on the validation set. To analyse the effect of training, we also combine
the COCO train set with the FollowMeUp train set to validate that new images
will not affect the model’s generality performance.

The DensePose-COCO dataset [19] has reannotated dense body surface anno-
tations on the 50k COCO images. These dense body surface annotations can be
understood as continuous part labels of each human body.

The PoseTrack dataset [13] includes both multi-person pose estimation and
tracking annotations in videos. It can perform not only pose estimation in sin-
gle frames, but also temporal tracking across frames. The dataset contains 514
videos including 66,374 frames in total. The annotation format defined 15 body
keypoints. For the single-frame pose estimation, the evaluation metric uses mean
average precision (mAP) as is done in [20].

3 The Dataset

3.1 Pose Estimation

The key motivation directing our data selection strategy is that we want to
represent rare human postures that might be not easily accessed or captured.
To this end, we follow the method of [21] to propose a two-level hierarchy of
workout activities to guide the collection process. This hierarchy was designed
according to the body part to be trained during the exercise. The first level is
the body part interested to be trained, such as shoulder, whereas the second
level is specific workout activities that can strengthen the muscles of shoulder.

Data Collection. We select candidate workout videos according to the hierar-
chy and filter out videos of low quality and those that people are truncated. This
resulted in over 600 videos spanning over 200 different workout types with three
shot angles. We also filter out the frames in which pose is not recognisable due to
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poor image quality, small scale and dense crowds. This step resulted to a total of
110,000 extracted frames from all collected videos. Secondly, since different exer-
cises have disparate periods, we manually pick key frames with people from each
video. We aim to select frames that either depict the whole one exercise period
in a substantially different pose or different people with dissimilar appearance.
The repeated or no significant distinction postures are ignored. Following this
step we annotate 16,519 images. We rough randomly split the annotated images
for training and use the rest for testing. Images from the same video are either
all in the training or all in the test set. We last obtain the train set of 15,435
images and test set of 1,084 images.

Data Annotation. We follow the keypoint annotation format of COCO
dataset, where 17 body keypoints are defined. This design facilitates us to
utilise the common samples of COCO dataset during training. Following [11]
the left/right joints in the annotations refer to the left/right limbs of the person.
Additionally, for all body joints the corresponding visibility is annotated. At
test time both the accuracy of joints localisation of a person along with the cor-
rect match to the left/right limbs are evaluated. The annotations are performed
by in-house workers and inspected by authors. For some unqualified and incor-
rect annotations are modified continuously until totally correct. To maintain the
quality of annotations, we arranged a number of annotation training classes for
all annotation workers to unify the standard of annotation. We also supervise
and handle some uncertain cases for workers during annotation.

Pose Estimation Evaluation Metrics. Some previous keypoints evaluation
metrics rely on the calculation of body limbs’ length, such as PCP, PCK and
PCKh used in [12]. However, the workout activities usually have specific postures
where the limb’s length may be near 0 if the limb is perpendicular to the image
plane and the evaluation is not numeric stable in these cases. Therefore compar-
ing the distance between points of groundtruth and prediction directly is more
sensible. Here we follow the COCO keypoints dataset, using 5 metrics to describe
the performance of a model. They are AP (i.e. average precision), AP0.5, AP0.75,
APM and APL, as illustrated in Table 1. In the matching between predictions
to groundtruth, a matching criterion called object keypoint similarity (OKS) is
defined to compute the overlapping ratio between groundtruth and predictions
in terms of point distribution [11]. If OKS is larger than one threshold value (e.g.
0.5), the corresponding groundtruth and prediction are considered as a match-
ing pair and the correctness of predicted keypoint types is further analysed.
Here OKS is similar to the intersection over union (IoU) in the case of object
detection. Thresholding the OKS adjusts the matching criterion. Notice that in
general applications, AP0.5 gives a good accuracy already. When computing AP
(averaged across all 10 OKS thresholds), 6 thresholds exceed 0.70 are over strict
due to unavoidable jittering in annotations.
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Table 1. Evaluation metrics on the COCO dataset.

Metric Description

AP AP at OKS∗ = 0.50 : 0.05 : 0.95 (primary metric)

AP0.5 AP at OKS = 0.50

AP0.75 AP at OKS = 0.75

APM AP for medium objects: 322 < area < 962

APL AP for large objects: area > 962

∗OKS–Object Keypoint Similarity, same role as IoU

4 Analysis of the State of the Art

In this section we first compare the leading human pose estimation methods
on the COCO keypoints dataset, and then analyse the performance of these
approaches on our benchmark.

The basis of the comparison is that we note that there is no uniform eval-
uation protocol to measure the performance of existing methods from a view
of practical application. Although human pose estimation is one of the longest-
lasting topics, and significant performance improvement has been achieved in
the past few years, some reported accuracies in these approaches are obtained
through several post-processing steps or some strategies used in the dataset
challenge. For example, performing multi-scale evaluation, refining results by a
different method, or precision is evaluated at one image scale while speed is
recorded at another scale. These post-processing steps interfere the judgement
in identifying the strength and weakness of an algorithm. Therefore, evaluating
a method without any post-processing steps and strategies is more objective and
more valuable for the research and practical application.

The aim of the analysis is to evaluate the generality of the current models
on the different datasets and their performance to the unseen samples, identify
the existing limitations and stimulate further research advances.

Currently, there are two main categories of solutions: top-down methods
[7,22–26] and bottom-up methods [9,10,27–30]. Top-down methods can be seen
as a two-stage pipeline from global (i.e. the bounding box) to local (i.e. joints).
The first stage is to perform human detection and to obtain their respective
bounding boxes in the image. The second stage is to perform single person pose
estimation for each of the obtained human regions. [7] deploys multiple high-
to-low resolution subnetworks with repeated information exchange across multi-
resolution subnetworks. This design obtains rich high-resolution representations
and leading more accurate result. [22] utilises a Symmetric Spatial Transformer
Network to handle inaccurate bounding boxes. [24] uses simple deconvolution
layers to obtain high-resolution heatmaps for human pose estimation. On the side
of bottom-up methods, [9] proposes a limb descriptor and an efficient bottom-
up grouping approach to associate neighbouring joints. [10] modifies the network
architecture of [9] and optimises the post-processing steps to achieve real-time
speed on the CPU devices. [30] designs two new descriptors based on [9] for body
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Fig. 3. The comparison of the numbers of effective instance predictions and body
keypoints between top-down and bottom-up methods. The prediction number of top-
down method is around 10 times higher than bottom-up method.

joints and limbs with the additional variable of object’s spread. [28] presents a
network to simultaneously output keypoint detections and the corresponding
keypoint group assignments. [31] designs a feedback architecture that combining
the keypoint results of other pose estimation methods with the original image
as the new input to the human pose estimation network. In our analysis we con-
sider 8 state-of-the-art multi-person pose estimation methods, which are listed
in Table 2.

We compare the performance of each approach in terms of accuracy and speed
on the COCO dataset and our novel FollowMeUp dataset. All the experiments
are performed on a desktop with one NVIDIA GeForce GTX-2080Ti GPU. Since
all testing approaches are trained and optimised on the COCO dataset, their
open source codes have the corresponding configurations, we directly use their
default parameters in our testing.

4.1 Comparisons of Approaches on the COCO Dataset

Table 2 presents the comparison results of testing approaches on the COCO
dataset. The upper part of Table 2 are top-down approaches. [7] has the high-
est AP precision of 0.753. Note that the runtime costs around 50 ms as this
only includes the part of pose estimation since this open source library uses
the groundtruth of human bounding box as the human detection results on the
COCO validation set. [24] and [22] have a relatively lower accuracy than [7] using
smaller input sizes, which illustrates that the high-resolution and detailed rep-
resentation is important for the task of human pose estimation. Note that some
post-processing strategies, such as multi-scale and flip, are ignored to obtain the
actual performance in the real application environments.

For the bottom-up methods, [9] achieves the fastest speed. [30] attains the
highest precision in this group. The joint grouping part of [30] costs much longer
time than [9]. [10] has around 7% degradation compared with [9] due to using a
light-weight network architecture. We also see that the precision of bottom-up
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Table 2. Comparisons of pose estimation results on the COCO 2017 validation set.

Type Method AP AP0.5 AP0.75 APM APL Input size Runtime

Top-down HRNet [7] 0.753 0.925 0.825 0.723 0.803 384× 288 0.049∗

Xiao [24] 0.723 0.915 0.803 0.695 0.768 256× 192 0.110

RMPE [22] 0.735 0.887 0.802 0.693 0.799 320× 256 0.298

Bottom-up PAF [9] 0.469 0.737 0.493 0.403 0.561 432× 368 0.081

Osokin [10] 0.400 0.659 0.407 0.338 0.494 368× 368 0.481

PifPaf [30] 0.630 0.855 0.691 0.603 0.677 401× 401 0.202

AE [28] 0.566 0.818 0.618 0.498 0.670 512×512 0.260

PoseFix [31] 0.411 0.647 0.412 0.303 0.559 384× 288 0.250
∗: without human detection

algorithms are lower than top-down methods. After detailed analysis, we find
that the numbers of predicted effective keypoints of bottom-up methods are
around 10 times less than top-down methods as illustrated in Fig. 3. We note
that top-down methods correspond to performing single-person pose estimation
on each detected human region. Single-person pose estimation can output all
types of keypoints even the keypoint is occluded or truncated. However, for
multi-person bottom-up methods, two or more overlapping keypoints with the
same type can only be detected one due to depth information is not available
on the RGB image. For the COCO dataset, there are a lot of crowded and
occluded human instances. Therefore, the performance of bottom-up methods
is weakened. In the FollowMeUp dataset, the crowding case is rare while most
human instances have self-occlusion. We perform the same comparison on the
FollowMeUp dataset and validate that bottom-up methods have comparable
performance to top-down approaches in this circumstance.

4.2 Comparisons of Approaches on the FollowMeUp Dataset

Table 3 provides the comparison results of testing approaches on the COCO
dataset. Since the open source libraries of [7] and [24] do not provide default
human detection algorithm, using different human detector may bias the preci-
sion distribution, thus we do not test [7] and [24] on the FollowMeUp dataset.
We are surprised that [22] obtains a very high precision value. However, the
training set only including the COCO dataset of [9] just achieve the precision of
0.778. We argue that the training set of [22] may include other samples except
the COCO dataset with particular postures. In this dataset, the precision of [10]
decreases by 13% in AP0.5 compared with [9], which indicates that the general-
ity of [10] is also narrowed. We use the results of [9] as the initial poses of [31].
Through pose refinement, [31] improved the pose estimation results by 0.4%.

4.3 The Effect of Training on the FollowMeUp Dataset

To validate the effectiveness of samples with particular postures, we retrain the
model on the COCO + FollowMeUp train set using the method of [9]. Testing
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Table 3. Comparisons of pose estimation results on the FollowMeUp dataset.

Type Method AP0.5 AP0.6 AP0.7 AP0.8 AP0.9

Top-down RMPE [22] 0.975 0.948 0.885 0.787 0.421

Bottom-up PAF [9] 0.778 0.728 0.625 0.474 0.326

Osokin [10] 0.645 0.585 0.520 0.370 0.215

PoseFix [31] 0.782 0.716 0.621 0.466 0.334

Table 4. Comparisons of pose estimation results on the FollowMeUp dataset.

Method Train set Test set AP0.5 AP0.6 AP0.7 AP0.8 AP0.9

PAF [9] COCO FollowMeUp 0.778 0.728 0.625 0.474 0.326

PAF [9] COCO + FollowMeUp FollowMeUp 0.964 0.959 0.926 0.876 0.691

Table 5. Comparisons of pose estimation results on the COCO dataset.

Method Train set Test set AP AP0.5 AP0.75 APM APL

PAF [9] COCO COCO 0.465 0.740 0.447 0.379 0.597

PAF [9] COCO + FollowMeUp COCO 0.465 0.748 0.454 0.373 0.605

Fig. 4. Comparison of estimation accuracy before and after retraining on the Fol-
lowMeUp dataset. The accuracy of retrained model (marked as green triangles) has an
obvious improvement. (Color figure online)

is performed both on the FollowMeUp test set and COCO validation set. The
results of testing are provided in Table 4. We notice that the performance of
the retrained model is greatly improved by around 20% in AP0.5. While the
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threshold of AP becomes more strict, the AP value is decreased. Even in the
most strict threshold of 0.9, the AP value attains 0.691, which is higher than
the model before retraining by 37%. The accuracy comparison of before and
after retraining on the FollowMeUp dataset is shown in Fig. 4. We also perform
testing on the COCO validation set using before and after retraining models to
check whether the model can maintain the performance on the COCO dataset.
In Table 5 we see that before and after retraining the precision has no change.
The generality of the retrained model is preserved. These results show that
increasing some unusual samples which had not been learnt by the model before
is an effective way to improve the accuracy in some specific scenes.

5 Conclusion

The problem of human pose estimation has obtained a great progress in recent
years. This progress cannot be done without the development of large-scale
human pose datasets. However, the existing human pose datasets are not suffi-
cient for some particular application environments. In this paper, we propose a
new large-scale workout activity human pose dataset, which provides a wide vari-
ety of sport exercise postures. We select 8 state-of-the-art multi-person pose esti-
mation approaches and compare their performance on both the popular COCO
keypoints dataset and our FollowMeUp dataset. The comparison results show
that most methods trained on the COCO dataset do not have ideal performance
on the FollowMeUp dataset. We also test the generality of the model using the
data of both COCO and FollowMeUp datasets. The test results show that train-
ing on the data of both COCO and FollowMeUp datasets will not affect the
performance of the model on the COCO dataset but the performance of the
model on the FollowMeUp dataset is greatly improved. In the future, we will
continue investigate pose tracking [32], multi-view action recognition [33], and
light-weight network design [34] approaches on the FollowMeUp dataset.
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