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Abstract. Cross-modal retrieval, which aims to perform the retrieval task across
different modalities of data, is a hot topic. Since different modalities of data have
inconsistent distributions, how to reduce the gap of different modalities is the
core of cross-modal retrieval issue. Recently, Generative Adversarial Networks
has been used in cross-modal retrieval due to its strong ability to model data
distribution. We propose a novel approach named Modality Consistent Gener-
ative Adversarial Network for cross-modal retrieval (MCGAN). The network
integrates a generator to generate synthetic image features from text features, a
discriminator to classify the modality of features, and followed by a modality
consistent embedding network that projects the generated image features and real
image features into a common space for learning the discriminative representa-
tions. Experiments on two datasets prove the performance of MCGAN on cross-
modal retrieval, compared with state-of-the-art related works.
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1 Introduction

Nowadays, a large amount of multimedia data with different modalities, e.g., image,
text, video, etc., is mixed together to gain a comprehensive understanding of the real
world. The existence of the huge multi-modal data repository greatly stimulates the
demand for cross-modal retrieval in search engines or digital libraries, such as returning
concerned results from image as response to query of text or vice versa. Cross-modal
retrieval provides queries against any modality to find relevant information with dif-
ferent modalities [1].

The main task of cross-modal retrieval is to bridge the modality gap. A large body
of traditional cross-modal retrieval methods have been proposed to learn linear pro-
jections by optimizing the statistical values from different modalities into a common
semantic space and explore the correlation, like canonical correlation analysis
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(CCA)-based methods [2]. Deep learning technology is widely used in image recog-
nition, natural language processing and object dictation [3, 4]. Deep neural network can
also play a good role in the field of cross-modal retrieval. Deep neural network (DNN)-
based methods [5—-7] construct multilayer network to conduct nonlinear projection. The
correlation learning error across different modalities is minimized for bridging the gap
of different modalities and learning the common representation. Recent works have
shown that generative adversarial networks (GANs) [8] have the advantage of mod-
eling data distribution. Inspired by GANSs, the heterogeneous gap of different modal-
ities can be reduced through the adversarial mechanism, and some GAN-based cross-
modal retrieval methods are proposed [9, 10].

1.1 Motivation and Contribution

Although many methods were proposed focusing on cross-modal retrieval research,
how to better bridge the gap of different modalities and improve the accuracy of
retrieval are still concerned [11]. Most of existing methods [12, 13] project data from
different modalities into a common semantic space in which the similarity measure-
ments are made. However, these methods directly project data from different modalities
into common semantic space to reduce the gap, which will lead to the loss of semantic
information in both image and text modalities. How to effectively reduce the hetero-
geneous gap and retain the semantic information of each modality as much as possible
has not been well studied.

Inspired by [14] that leverages GANs as a powerful model to convert cross-modal
data to single-modal data for zero-shot learning, we propose a novel approach named
Modality Consistent Generation Adversarial Network for cross-modal retrieval
(MCGAN). The contributions of our study are three-fold:

(1) We design a new generative adversarial network to generate image features with
the input text features, which projects text features into the image feature space. In
this way, the cross-modal retrieval problem is converted into a single-modal
retrieval problem. The gap of different modalities is bridged while the image
semantic information is preserved as much as possible.

(2) We project the generated image features and real image features into a common
space via a sub-network, and utilize label information to model both the inter- and
intra-modal similarity, such that features are semantically discriminative in both
inter- and intra-modal aspects.

(3) MCGAN is evaluated on two widely used datasets, i.e., Wikipedia dataset [2] and
NUS-WIDE-10 k dataset [5]. The experimental results show that it can outper-
form related state-of-the-art works.

2 Related Work

2.1 Non-GANs-Based Cross-Modal Retrieval Methods

There exist many methods proposed to bridge the heterogeneity gap between different
modalities, which focus on learning common representation of different modalities and
measuring similarities to correlate the heterogeneous data [15].
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Traditional cross-modal retrieval methods usually linearly project cross-modal data
into a common space to generate the common representation. The similarity mea-
surement of features in the common space can maximize the correlation between
modalities. Based on canonical correlation analysis (CCA) [16], some representative
methods are developed for cross-modal retrieval. Rasiwasia et al. [2] project text
features and image features into a low-dimensional common subspace and investigate
the correlation between two modalities through CCA. After [2], plenty of extensions,
for example [17] adopts kernel function to pursue features and incorporate the semantic
labels for learning correlation between two modalities. Besides, Wang et al. [12]
present a method learning coupled feature spaces (LCFS) to learn a coupled feature
space by coupled linear regression, and the selection of discriminant and relevant
features is considered in the space. Furthermore, joint feature selection and subspace
learning (JFSSL) [18] method integrates graph regularization and label information to
make inter- and intra-modalities features close to relevant labels while far away from
irrelevant labels.

Recently, deep neural network promotes the development of cross-modal retrieval
due to its great nonlinear fitting ability and self-learning ability [19]. Deep learning
based methods non-linearly project the data of each modality to independent semantic
space for feature extraction. Feng et al. [5] propose correspondence autoencoder (Corr-
AE), which takes representation learning and correlation learning into account to
establish a robust model. Since the convolutional neural network (CNN) can fit the
image well to get the visual features, Wei et al. [13] provide a deep semantic matching
(Deep-SM), which adopts CNN to get deep visual features, validating the superiority of
CNN for improving the performance of cross-modal retrieval. Cross-media multiple
deep network (CMDN) presented by Peng et al. [6] obtains separate representation of
each media type through a model that combines intra- and inter-media representations
hierarchically to get the shared representations.

2.2 Generative Adversarial Networks (GANs)-Based Cross-Modal
Retrieval Methods

Generative Adversarial Networks proposed by Goodfellow et al. [8] is an unsupervised
learning model, which is used to generate desired image from random noise. After
several years of development, it has been used in many applications, such as image
style transformation, object detection, zero-shot learning including cross-modal
retrieval. The original GANs can been divided into two models: generator G and
discriminator D. The two models carry out alternating iterative training in the way of
minimax game and finally enable generator G to learn the data distribution of real
images. Generator G receives random noise, obtains the distribution of real images and
outputs the generated images, while the discriminator D aims to distinguish whether the
input image is real or not.

However, the original GANs has the problems of unstable training, gradient dis-
appearance and mode collapse, which makes the generated results unsatisfactory. In
order to solve these problems, Arjovsky et al. [20] put forward Wasserstein GAN
training strategy and adopt gradient penalty to train the model. Condition generative
adversarial networks (CGANSs) [21] is proposed to add constraint conditions for GANS.
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The data is labeled in the generative model and discriminative model respectively, so as
to increase the clarity of the images generated by GANs. Radford et al. propose deep
convolutional generative adversarial networks (DCGAN) [22], which applies the
convolutional neural network to GANs to make the generated images more precise.
Recently, Wang et al. [10] apply GANs to cross-modal retrieval and propose adver-
sarial cross-modal retrieval (ACMR), which projects features of different modalities
into common space through the minimax training strategy to obtain discriminative
feature representations.

These non-GANs-based methods and GANs-based methods directly project data of
different modalities into common semantic space to reduce the gap, which will lead to
the loss of semantic information in both image and text domain. Different from them,
our method effectively transforms the cross-modal retrieval issue into the single-mode
retrieval issue, and retains the semantic information of each modality while reducing
the heterogeneous gap of different modalities. In addition, we use the label information
to model the similarity between and within modality, and obtain semantically more
discriminative feature representations.

3 Our Approach

3.1 Problem Formulation

Let Q= {on,yn}n]\’:1 be a set of N instances of paired image and text, where each
instance o, = (v,,1,) includes an image feature vector v, € R% and a text feature
vector t, € R%, d, and d, denote the feature dimension of two modalities, and # is the
number of training samples. Let V = [vy,...,vy] and T = [t1,...,ty] be the training
sets of image features and text features, respectively. y, = [Vn1, - - - y,,C}T denotes the
semantic category label vector corresponding to o,, where y,. = 1 if 0, = (vu,1,) is
from the ¢” class while y,. = 0 otherwise. The generator G is designed to learn
synthetic image feature representations V = G(T;0) = [7,]_ € R®¥ for text
modality. To explore the correlation between modalities, we adopt a common two
layers feed-forward sub-networks to nonlinearly project V and V into a common space
for learning the correlative representations, by V, = f(V;¢) = [sff]nNzle R4*N and
v :f(V; }) = [sﬂiv:lé R %N where f(-; ¢) is the mapping function.

The objectives of our approach can be summarized as two points: (1) the text
features can be effectively converted into the space of image features through adver-
sarial mechanism; (2) the learned features should be semantically discriminative. We
alternately and iteratively train the generator G, discriminator D and common
embedding network respectively. Figure 1 shows the overall framework of MCGAN.
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Fig. 1. Our MCGAN overall framework. The architecture of MCGAN consists of two parts.
(1) A generative adversarial network is composed of generative model G and discriminative
model D: the generative model G takes the text features as input and outputs the generated
features near to the real image features; the discriminative model tries to distinguish the real and
generated image features via the adversarial loss. (2) A modality consistent embedding network
is a two feed-forward sub-network, which models both the intra-modal semantic similarity via
label classification loss and the inter-modal semantic similarity via semantic correlation loss.

3.2 Generative Model

Our generative adversarial networks (GANs) defines a minimax game between two
competing components: a generator G that captures the image feature distributions
from text features for synthesizing image features, and a discriminator D that is learned
to distinguish the real image features from synthetic features. Specifically, text features
T which are extracted by a well-known bag-of-words (BoW) vector with the TF-IDF
weighting scheme, are accepted as input by three-layer feed-forward networks, and the
generated image features V = G(T; 0). In the minimax game, the goal of generator G is
to make the synthetic image features approximate to the real image features through the
adversarial training strategy. Inspired by Wasserstein GAN that is stable to synthesize
great images, the loss of generator is defined as:

Lo = —Er~ p;[D(G(T; 0); )] (1)

where 0 and o denote the parameters of generator and discriminator respectively, pr is
the distribution of text features.

3.3 Discrimination Model

The discriminator D is actually a modality classifier used to distinguish whether the
input features are real image features or not. In generative adversarial networks, the
discriminator D plays the role of adversary, distinguishing input feature by minimizing
the classification error of probabilities D(V; w) and D(V; w) As shown in Fig. 1, we
build a modality classifier with a two-layer sub-network, which takes as input either a
real image feature or a generated image feature and the outputs are D(V;w) and
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D(f/; co) In other to solve the problems of unstable training and mode collapse of
GAN, the training strategy of Wasserstein GAN is adopted to train the discriminator
through calculating the Wasserstein distance of the distribution of real image features
and synthetic image features as loss. Furthermore, a differentiable Lipschitz constraint
with gradient penalty is added to prevent the gradient from disappearing during
training. The loss for the discriminator is formulated as:

Lp = Er«  [D(G(T; 0); )] — E,., [D(V: )]

—‘rlEVNpV[(HV{,D(V;Q))Hz_l)Z] (2)

where V is the linear interpolation of real image feature V and generated image feature
V. The first two terms approximate Wasserstein distance of distribution of real image

feature V and generated image feature V. The third term is the gradient penalty to
enforce the Lipschitz constraint with 4 being the penalty coefficient.

3.4 Modality Consistent Embedding Network

Though we have obtained the distribution of image features through the generative
adversarial network and have converted the cross-modal retrieval issue into single-
modal retrieval issue, the similarity measurement of paired features is also what we
should focus on. In other to capture more discriminative features semantically, we
propose a modality consistent embedding network, which is a two-layer sub-network,
mapping paired features into a common space, and then label information is used to
model the inter- and intra-modal semantic similarity.

Intra-modal Semantic Similarity Modeling

To make the paired features to be semantically discriminative, a feed-forward one-layer
sub-network activated by Softmax is adopted as a classifier, such that when the output
of feature embedding network s,, = f(vn; ¢) or s5, = f(¥n; ¢) is the input of classifier,
the corresponding probability distribution of semantic categories, i.e., P, (sy,) or pu(s3,)
can be output. We define the following label classification loss:

1 A ;
Lec = 7ﬁzyn(10gpn(svn) + logp,,(Sf;”)) (3)

n=1

where y, is the ground-truth label of each feature, which is expressed as an one-hot
vector.

Inter-modal Semantic Similarity Modeling

The embedding features of two modalities in the common space have superior intra-
modal semantic similarity through the combination of GAN and feature embedding
network. Furthermore, in order to get better classification results, the embedding fea-
tures should also show good inter-modal semantic similarity. Motivated by [14], we
design a modality consistent semantic correlation term to calculate the similarity of
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features with the same semantic category. We provided the following semantic cor-
relation loss:
1 & 2
L=z D ||Eve~ lind = Eun el

c=1

(4)

where C is the number of classes, s,, is the embedding image feature of class ¢ and s;,
is the embedding generated feature of class c. For each modality, the centroid of the
cluster of embedding features should be defined, so we adopt the empirical expectation
E. ~ pc[x] to calculate the centroid of the embedding features of class c. We define the
following formulas as:

1 i
Eq, ~pclsv] = T E s,
(5)

1 .
Eg ~ pe [ss.] = ﬁzsh
4

where the first formula is the expectation of embedding image features, which is
approximated by averaging the embedding image features for class ¢, and U, is the
number of samples in class c. Similarity, the second formula is the expectation of
embedding generated features, and M, is the number of embedding generated features
for class c.

By combining the Egs. (4) and (5), we obtain the optimization loss of the modality
consistent embedding network for learning discriminative features as follows

Lemh = LC + CLm (6)

where ( is a parameter to balance two terms.

3.5 Optimization

The overall framework proposed in this paper is composed of two components: a
generative adversarial network to generate the generated image features that are close
to real image features, and a modality consistent embedding network to obtain more
discriminative features. The optimal features can be obtained by integrating the loss
functions in Egs. (2), (3) and (7). The optimization problems for discriminator D,
generator G and modality consistent embedding network are respectively defined as
follows:

(&J) = arg min(Ley, + oLp) (7)
(0]

(a> = arg m()in(Lemb + ﬁLG) (8)
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(ab) = arg md)in(Lemb) 9)

where o and f are tradeoff parameters. Each part of the network is updated separately
though the optimization objectives above. The parameters w, 6 and ¢ can be effectively
optimized through the automatic differential back propagation of Pytorch. Algorithm 1
summarizes the process of our approach.

Algorithm 1 Optimization procedure of MCGAN
1. Input: mini-batch image features V =[v,..,v,]| and text features

T =[t,...ty] , the semantic category label y, = [ynl,...,ync]r and number of

training epoch S .
2. Training procedure:
(1) Initialize generative network G , discriminative network D and modality

consistent embedding network;
(2) for i=1to S do

VeG(T:0); s, =f(v,:8): s, =f(V,:4):
Compute L, , +aL, using Egs. (2) and (6);
Update @ by Adam(V L, +aLy,);
Compute L, + L. using Egs. (1) and (6);
Update 0 by Adam(V L, +fL;);
Compute L, using Equation (6);

Update ¢ by Adam(V¢Lemb);

end for
3. Output: Optimized parameters @, 6, ¢.

4 Experiments

4.1 Datasets

We evaluate our proposed approach on the widely used Wikipedia dataset [2] and
NUS-WIDE-10 k dataset [5].

Wikipedia dataset is collected from Wikipedia featured articles, and there are 2,866
image-text pairs. Each pair of image and text is extracted from the same articles. All
image-text pairs are from 10 semantic classes, and each pair is labeled with only one
class label. Following [2], 2,173 pairs of samples are used for training, 231 pairs for
validation and 462 pairs for testing. For image modality, 4,096-dimensional features
are extracted by fc7 layer of VGGnet, and each text is represented by a 3,000-
demensional Bag-of-Word feature.
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NUS-WIDE-10 k dataset consists of 10,000 web images including 10 semantic
concepts download from Flicker website. Following [5], this dataset is split into three
subsets: the training set with 8,000 pairs, the validation set with 1,000 pairs, and the
testing set with 1,000 pairs. For each image, 4,096-dimensional feature is extracted by
the fc7 layer of VGGnet, and for each text, 1,000-dimensional Bag-of-Word feature
vector is extracted.

4.2 Evaluation Measure and Compared Methods

In this paper, we use mean Average Precision (mAP) to evaluate the cross-modal
retrieval performances.

mAP = %;AP(%) (10)

where AP(-) computes the average precision, N is the number of query samples and ¢;
represents the i query sample. The larger the mAP value is, the better the retrieval
performance is.

For comparison, we compare our proposed MCGAN approach with six represen-
tative cross-modal retrieval methods: (1) traditional cross-modal retrieval methods:
CCA [2] and LCFS [12]; (2) deep learning-based methods: Deep-SM [13], Corr-AE [5]
and MCSM [23]; (3) GAN-based method: ACMR [10]. We report the experimental
results of the compared methods according to the published results in their papers or
the codes provided by the authors to implement the evaluation.

In experiment, we perform two types of experiments, namely retrieving images
with text and retrieving text with images.

4.3 Implementation Detail

Our proposed MCGAN approach and relevant experiments are implemented on Torch
framework. The implementation details of our generative adversarial network and the
modality consistent embedding network are as follows: our generative adversarial
network consists of two components, the generative model is a 3-layer network, which
is composed of three fully connected layers to learn the generated image features from
text features. The number of neurons in each layer is 3500, 4000, 4096, and the
activation function is Tanh. The discriminative model consists of two fully connected
layers: the number of neurons in the first layer is 1000, the number of neurons in the
second layer is 2, and the subsequent activation function is ReLU. In addition, Softmax
activation is added after the last layer to conduct the modality classification. For the
modality consistent embedding network, two fully connected layers with dimensional
[1000, 10] activated by Tanh are used to project both the generated image features and
the real image features into a common semantic space to learn the discriminative
feature representations.
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In our training procedure, the mini-batch size is 128, and the tradeoff parameters A,
{, « and f are set up by grid search. The good results are achieved with A = 10, { = 1,
o= p=0.1.

4.4 Result and Discussion

Table 1 tabulates the Map results of compared methods on Wikipedia and NUS-WIDE-
10 k datasets. In can be seen from the table that in both image to text and text to image
retrieval tasks, GAN-based methods such as MCSM and ACMR outperform the non-
GAN-based cross-modal retrieval methods including CCA, LCFS, Corr-AE, CMDN
and Deep-SM on the benchmark datasets. Furthermore, our MCGAN can always
outperform all compared methods. Specifically, for the retrieval task of image to text
and text to image on the Wikipedia dataset, MCGAN improves the mAP results at least
by 0.004 = (0.522 — 0.518), 0.013 = (0.471 — 0.458). Similarly, for the retrieval task
of image to text and text to image on the NUS-WIDE-10 k dataset, our approach
improves the mAP scores at by 0.019 = (0.563 — 0.544), 0.01 = (0.551 — 0.541). The
results show that by turning text features into image features through generative
adversarial network, semantic information can be effectively preserved while the gap of
different modalities can be bridged. Besides, the more discriminative features learned
from the inter- and intra-modal discrimination are helpful to improve the retrieval
performance.

Table 1. The mAP cross-modal retrieval results on two datasets

Method | Wikipedia NUS-WIDE-10 k

Img2txt | Txt2img | Average | Img2txt | Txt2img | Average
CCA 0.258 ]0.250 0.254 0202 |0.220 0.211
LCFS 0455 ]0.398 0.427 0383 |0.346 0.365
Corr-AE | 0.402 |0.395 0.399 |0.366 |0.417 0.392
CMDN | 0488 |0.427 0.458 0492 |0.515 0.504
Deep-SM | 0.458 | 0.345 0.402 0389 |0.496 0.443
MCSM |0.516 |0.458 0.487 0.543 |0.541 0.542
ACMR |0.518 [0412 0.465 0.544 |0.538 0.541
MCGAN |0.522 |0.471 0497 |0.563 |0.551 0.557

In the modality consistent embedding network, label classification loss and
semantic correlation loss are defined to promote semantically discriminative feature
learning. To demonstrate whether they can contribute to improving the retrieval per-
formance, the version of MCGAN without label classification loss (MCGAN-C), the
version of MCGAN without semantic correlation loss (MCGAN-m) are proposed to
evaluate the role of each component. From the Table 2, the mAP results of MCGAN-C,
MCGAN-m and MCGAN show that the label classification loss and semantic corre-
lation loss are contributed to promoting semantically discriminative feature learning
and improve the retrieval performance.
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Table 2. The mAP results of cross-modal retrieval with fully MCGAN, MCGAN without L,
and MCGAN without L,,.

Method Wikipedia NUS-WIDE-10 k

Img2txt | Txt2img | Average | Img2txt | Txt2img | Average
MCGAN |0.522 | 0.471 0.497 |0.563 |0.551 0.557
MCGAN-C | 0.234 |0.188 0.211 0.203 1 0.181 0.192
MCGAN-m | 0.480 |0.422 0.451 0.511 |0.506 0.508

5 Conclusion

In this paper, we present a novel approach named MCGAN that is able to convert the
cross-modal retrieval issue into single-modal retrieval issue on image domain via
generative adversarial network. In this way, the semantic information of image
modality can be preserved effectively. Furthermore, a modality consistent embedding
network is designed to project both the image features and generated image features to
a common semantic space and utilize label information to model both the inter- and
intra-modal similarity via two defined loss functions. Extensive empirical results
demonstrate that MCGAN can achieve significantly better retrieval performance than
several state-of-the-art related methods.
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