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Preface

Welcome to the proceedings of the Second Chinese Conference on Pattern Recognition
and Computer Vision (PRCV 2019) held in Xi’an, China!

PRCV merged from CCPR (Chinese Conference on Pattern Recognition) and
CCCV (Chinese Conference on Computer Vision), which are both the most influential
Chinese conferences on pattern recognition and computer vision, respectively. Pattern
recognition and computer vision are closely inter-related and the two communities are
largely overlapping. The goal of merging CCPR and CCCV into PRCV is to further
boost the impact of the Chinese community in these two core areas of artificial intel-
ligence and further improve the quality of academic communication. Accordingly,
PRCV is co-sponsored by four major academic societies of China: the Chinese
Association for Artificial Intelligence (CAAI), the China Computer Federation (CCF),
the Chinese Association of Automation (CAA), and the China Society of Image and
Graphics (CSIG).

PRCV aims at providing an interactive communication platform for researchers
from academia and from industry. It promotes not only academic exchange, but also
communication between academia and industry. In order to keep track of the frontier of
academic trends and share the latest research achievements, innovative ideas, and
scientific methods in the fields of pattern recognition and computer vision, international
and local leading experts and professors are invited to deliver keynote speeches,
introducing the latest advances in theories and methods in the fields of pattern
recognition and computer vision.

PRCV 2019 was hosted by Northwestern Polytechnical University and was
co-hosted by Xi’an Jiaotong University, Xidian University, and Shaanxi Normal
University. We received 412 full submissions. Each submission was reviewed by at
least three reviewers selected from the Program Committee and other qualified
researchers. Based on the reviewers’ reports, 165 papers were finally accepted for
presentation at the conference, including 18 oral and 147 posters. The acceptance rate is
40%. The proceedings of the PRCV 2019 are published by Springer.

We are grateful to the keynote speakers, Prof. Kyros Kutulakos from the University
of Toronto in Canada, Prof. Licheng Jiao from Xidian University, Prof. Tinne
Tuytelaars from the University of Leuven in Belgium, and Prof. Kyoung Mu Lee from
Seoul National University in South Korea.

We give sincere thanks to the authors of all submitted papers, the Program
Committee members and the reviewers, and the Organizing Committee. Without their
contributions, this conference would not be a success. Special thanks also go to all
of the sponsors and the organizers of the special forums; their support made the
conference a success. We are also grateful to Springer for publishing the proceedings



and especially to Ms. Celine (Lanlan) Chang of Springer Asia for her efforts in
coordinating the publication.

We hope you find the proceedings enjoyable and fruitful.

November 2019 Tieniu Tan
Nanning Zheng

Xilin Chen
Yanning Zhang
Zhouchen Lin
Liang Wang
Jian Yang

Guangming Shi
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Modality Consistent Generative Adversarial
Network for Cross-Modal Retrieval

Zhiyong Wu1, Fei Wu1(&), Xiaokai Luo1, Xiwei Dong1,
Cailing Wang1, and Xiao-Yuan Jing2

1 College of Automation, Nanjing University of Posts and Telecommunications,
Nanjing, China

wuzybarskish@163.com, wufei_8888@126.com,

wangcl@njupt.edu.cn
2 School of Computer, Wuhan University, Wuhan, China

jingxy_2000@126.com

Abstract. Cross-modal retrieval, which aims to perform the retrieval task across
different modalities of data, is a hot topic. Since different modalities of data have
inconsistent distributions, how to reduce the gap of different modalities is the
core of cross-modal retrieval issue. Recently, Generative Adversarial Networks
has been used in cross-modal retrieval due to its strong ability to model data
distribution. We propose a novel approach named Modality Consistent Gener-
ative Adversarial Network for cross-modal retrieval (MCGAN). The network
integrates a generator to generate synthetic image features from text features, a
discriminator to classify the modality of features, and followed by a modality
consistent embedding network that projects the generated image features and real
image features into a common space for learning the discriminative representa-
tions. Experiments on two datasets prove the performance of MCGAN on cross-
modal retrieval, compared with state-of-the-art related works.

Keywords: Generative adversarial network � Cross-modal retrieval

1 Introduction

Nowadays, a large amount of multimedia data with different modalities, e.g., image,
text, video, etc., is mixed together to gain a comprehensive understanding of the real
world. The existence of the huge multi-modal data repository greatly stimulates the
demand for cross-modal retrieval in search engines or digital libraries, such as returning
concerned results from image as response to query of text or vice versa. Cross-modal
retrieval provides queries against any modality to find relevant information with dif-
ferent modalities [1].

The main task of cross-modal retrieval is to bridge the modality gap. A large body
of traditional cross-modal retrieval methods have been proposed to learn linear pro-
jections by optimizing the statistical values from different modalities into a common
semantic space and explore the correlation, like canonical correlation analysis
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(CCA)-based methods [2]. Deep learning technology is widely used in image recog-
nition, natural language processing and object dictation [3, 4]. Deep neural network can
also play a good role in the field of cross-modal retrieval. Deep neural network (DNN)-
based methods [5–7] construct multilayer network to conduct nonlinear projection. The
correlation learning error across different modalities is minimized for bridging the gap
of different modalities and learning the common representation. Recent works have
shown that generative adversarial networks (GANs) [8] have the advantage of mod-
eling data distribution. Inspired by GANs, the heterogeneous gap of different modal-
ities can be reduced through the adversarial mechanism, and some GAN-based cross-
modal retrieval methods are proposed [9, 10].

1.1 Motivation and Contribution

Although many methods were proposed focusing on cross-modal retrieval research,
how to better bridge the gap of different modalities and improve the accuracy of
retrieval are still concerned [11]. Most of existing methods [12, 13] project data from
different modalities into a common semantic space in which the similarity measure-
ments are made. However, these methods directly project data from different modalities
into common semantic space to reduce the gap, which will lead to the loss of semantic
information in both image and text modalities. How to effectively reduce the hetero-
geneous gap and retain the semantic information of each modality as much as possible
has not been well studied.

Inspired by [14] that leverages GANs as a powerful model to convert cross-modal
data to single-modal data for zero-shot learning, we propose a novel approach named
Modality Consistent Generation Adversarial Network for cross-modal retrieval
(MCGAN). The contributions of our study are three-fold:

(1) We design a new generative adversarial network to generate image features with
the input text features, which projects text features into the image feature space. In
this way, the cross-modal retrieval problem is converted into a single-modal
retrieval problem. The gap of different modalities is bridged while the image
semantic information is preserved as much as possible.

(2) We project the generated image features and real image features into a common
space via a sub-network, and utilize label information to model both the inter- and
intra-modal similarity, such that features are semantically discriminative in both
inter- and intra-modal aspects.

(3) MCGAN is evaluated on two widely used datasets, i.e., Wikipedia dataset [2] and
NUS-WIDE-10 k dataset [5]. The experimental results show that it can outper-
form related state-of-the-art works.

2 Related Work

2.1 Non-GANs-Based Cross-Modal Retrieval Methods

There exist many methods proposed to bridge the heterogeneity gap between different
modalities, which focus on learning common representation of different modalities and
measuring similarities to correlate the heterogeneous data [15].
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Traditional cross-modal retrieval methods usually linearly project cross-modal data
into a common space to generate the common representation. The similarity mea-
surement of features in the common space can maximize the correlation between
modalities. Based on canonical correlation analysis (CCA) [16], some representative
methods are developed for cross-modal retrieval. Rasiwasia et al. [2] project text
features and image features into a low-dimensional common subspace and investigate
the correlation between two modalities through CCA. After [2], plenty of extensions,
for example [17] adopts kernel function to pursue features and incorporate the semantic
labels for learning correlation between two modalities. Besides, Wang et al. [12]
present a method learning coupled feature spaces (LCFS) to learn a coupled feature
space by coupled linear regression, and the selection of discriminant and relevant
features is considered in the space. Furthermore, joint feature selection and subspace
learning (JFSSL) [18] method integrates graph regularization and label information to
make inter- and intra-modalities features close to relevant labels while far away from
irrelevant labels.

Recently, deep neural network promotes the development of cross-modal retrieval
due to its great nonlinear fitting ability and self-learning ability [19]. Deep learning
based methods non-linearly project the data of each modality to independent semantic
space for feature extraction. Feng et al. [5] propose correspondence autoencoder (Corr-
AE), which takes representation learning and correlation learning into account to
establish a robust model. Since the convolutional neural network (CNN) can fit the
image well to get the visual features, Wei et al. [13] provide a deep semantic matching
(Deep-SM), which adopts CNN to get deep visual features, validating the superiority of
CNN for improving the performance of cross-modal retrieval. Cross-media multiple
deep network (CMDN) presented by Peng et al. [6] obtains separate representation of
each media type through a model that combines intra- and inter-media representations
hierarchically to get the shared representations.

2.2 Generative Adversarial Networks (GANs)-Based Cross-Modal
Retrieval Methods

Generative Adversarial Networks proposed by Goodfellow et al. [8] is an unsupervised
learning model, which is used to generate desired image from random noise. After
several years of development, it has been used in many applications, such as image
style transformation, object detection, zero-shot learning including cross-modal
retrieval. The original GANs can been divided into two models: generator G and
discriminator D. The two models carry out alternating iterative training in the way of
minimax game and finally enable generator G to learn the data distribution of real
images. Generator G receives random noise, obtains the distribution of real images and
outputs the generated images, while the discriminator D aims to distinguish whether the
input image is real or not.

However, the original GANs has the problems of unstable training, gradient dis-
appearance and mode collapse, which makes the generated results unsatisfactory. In
order to solve these problems, Arjovsky et al. [20] put forward Wasserstein GAN
training strategy and adopt gradient penalty to train the model. Condition generative
adversarial networks (CGANs) [21] is proposed to add constraint conditions for GANs.
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The data is labeled in the generative model and discriminative model respectively, so as
to increase the clarity of the images generated by GANs. Radford et al. propose deep
convolutional generative adversarial networks (DCGAN) [22], which applies the
convolutional neural network to GANs to make the generated images more precise.
Recently, Wang et al. [10] apply GANs to cross-modal retrieval and propose adver-
sarial cross-modal retrieval (ACMR), which projects features of different modalities
into common space through the minimax training strategy to obtain discriminative
feature representations.

These non-GANs-based methods and GANs-based methods directly project data of
different modalities into common semantic space to reduce the gap, which will lead to
the loss of semantic information in both image and text domain. Different from them,
our method effectively transforms the cross-modal retrieval issue into the single-mode
retrieval issue, and retains the semantic information of each modality while reducing
the heterogeneous gap of different modalities. In addition, we use the label information
to model the similarity between and within modality, and obtain semantically more
discriminative feature representations.

3 Our Approach

3.1 Problem Formulation

Let X ¼ on; ynf gNn¼1 be a set of N instances of paired image and text, where each
instance on ¼ vn; tnð Þ includes an image feature vector vn 2 R

dv and a text feature
vector tn 2 R

dt , dv and dt denote the feature dimension of two modalities, and n is the
number of training samples. Let V ¼ v1; . . .; vN½ � and T ¼ t1; . . .; tN½ � be the training
sets of image features and text features, respectively. yn ¼ yn1; . . .; ynC½ �T denotes the
semantic category label vector corresponding to on, where ync ¼ 1 if on ¼ vn; tnð Þ is
from the cth class while ync ¼ 0 otherwise. The generator G is designed to learn
synthetic image feature representations ~V ¼ G T ; hð Þ ¼ ~vn½ �Nn¼12 R

dv�N for text
modality. To explore the correlation between modalities, we adopt a common two
layers feed-forward sub-networks to nonlinearly project V and ~V into a common space

for learning the correlative representations, by Vs ¼ f V ;/ð Þ ¼ snv
� �N

n¼12 R
ds�N and

~Vs ¼ f ~V ;/
� � ¼ sn~v

� �N
n¼12 R

ds�N , where f �;/ð Þ is the mapping function.
The objectives of our approach can be summarized as two points: (1) the text

features can be effectively converted into the space of image features through adver-
sarial mechanism; (2) the learned features should be semantically discriminative. We
alternately and iteratively train the generator G, discriminator D and common
embedding network respectively. Figure 1 shows the overall framework of MCGAN.
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3.2 Generative Model

Our generative adversarial networks (GANs) defines a minimax game between two
competing components: a generator G that captures the image feature distributions
from text features for synthesizing image features, and a discriminator D that is learned
to distinguish the real image features from synthetic features. Specifically, text features
T which are extracted by a well-known bag-of-words (BoW) vector with the TF-IDF
weighting scheme, are accepted as input by three-layer feed-forward networks, and the
generated image features ~V ¼ G T; hð Þ. In the minimax game, the goal of generator G is
to make the synthetic image features approximate to the real image features through the
adversarial training strategy. Inspired by Wasserstein GAN that is stable to synthesize
great images, the loss of generator is defined as:

LG ¼ �ET � pT D G T ; hð Þ;xð Þ½ � ð1Þ

where h and x denote the parameters of generator and discriminator respectively, pT is
the distribution of text features.

3.3 Discrimination Model

The discriminator D is actually a modality classifier used to distinguish whether the
input features are real image features or not. In generative adversarial networks, the
discriminator D plays the role of adversary, distinguishing input feature by minimizing
the classification error of probabilities D V ;xð Þ and D ~V ;x

� �
. As shown in Fig. 1, we

build a modality classifier with a two-layer sub-network, which takes as input either a
real image feature or a generated image feature and the outputs are D V ;xð Þ and

Fig. 1. Our MCGAN overall framework. The architecture of MCGAN consists of two parts.
(1) A generative adversarial network is composed of generative model G and discriminative
model D: the generative model G takes the text features as input and outputs the generated
features near to the real image features; the discriminative model tries to distinguish the real and
generated image features via the adversarial loss. (2) A modality consistent embedding network
is a two feed-forward sub-network, which models both the intra-modal semantic similarity via
label classification loss and the inter-modal semantic similarity via semantic correlation loss.
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D ~V ;x
� �

. In other to solve the problems of unstable training and mode collapse of
GAN, the training strategy of Wasserstein GAN is adopted to train the discriminator
through calculating the Wasserstein distance of the distribution of real image features
and synthetic image features as loss. Furthermore, a differentiable Lipschitz constraint
with gradient penalty is added to prevent the gradient from disappearing during
training. The loss for the discriminator is formulated as:

LD ¼ ET � pT D G T ; hð Þ;xð Þ½ � � Ev� pv D V ;xð Þ½ �

þ kEV̂ � pV̂
rv̂D V̂ ;x

� ��� ��
2�1

� �2
	 
 ð2Þ

where V̂ is the linear interpolation of real image feature V and generated image feature
~V . The first two terms approximate Wasserstein distance of distribution of real image
feature V and generated image feature ~V . The third term is the gradient penalty to
enforce the Lipschitz constraint with k being the penalty coefficient.

3.4 Modality Consistent Embedding Network

Though we have obtained the distribution of image features through the generative
adversarial network and have converted the cross-modal retrieval issue into single-
modal retrieval issue, the similarity measurement of paired features is also what we
should focus on. In other to capture more discriminative features semantically, we
propose a modality consistent embedding network, which is a two-layer sub-network,
mapping paired features into a common space, and then label information is used to
model the inter- and intra-modal semantic similarity.

Intra-modal Semantic Similarity Modeling
To make the paired features to be semantically discriminative, a feed-forward one-layer
sub-network activated by Softmax is adopted as a classifier, such that when the output
of feature embedding network svn ¼ f vn;/ð Þ or s~vn ¼ f ~vn;/ð Þ is the input of classifier,
the corresponding probability distribution of semantic categories, i.e., p̂n svnð Þ or p̂n s~vnð Þ
can be output. We define the following label classification loss:

LC ¼ � 1
N

XN
n¼1

yn log p̂n svnð Þþ log p̂n s~vnð Þð Þ ð3Þ

where yn is the ground-truth label of each feature, which is expressed as an one-hot
vector.

Inter-modal Semantic Similarity Modeling
The embedding features of two modalities in the common space have superior intra-
modal semantic similarity through the combination of GAN and feature embedding
network. Furthermore, in order to get better classification results, the embedding fea-
tures should also show good inter-modal semantic similarity. Motivated by [14], we
design a modality consistent semantic correlation term to calculate the similarity of
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features with the same semantic category. We provided the following semantic cor-
relation loss:

Lm ¼ 1
C

XC
c¼1

Es~vc � pc
~v
s~vc½ � � Esvc � pcv svc½ �

��� ���2 ð4Þ

where C is the number of classes, svc is the embedding image feature of class c and s~vc
is the embedding generated feature of class c. For each modality, the centroid of the
cluster of embedding features should be defined, so we adopt the empirical expectation
Exc � pcx xc½ � to calculate the centroid of the embedding features of class c. We define the
following formulas as:

Esvc � pcv svc½ � ¼ 1
Uc

XUc

i¼1

sivc

Es~vc � pc
~v
s~vc½ � ¼ 1

Mc

XMc

i¼1

si~vc

ð5Þ

where the first formula is the expectation of embedding image features, which is
approximated by averaging the embedding image features for class c, and Uc is the
number of samples in class c. Similarity, the second formula is the expectation of
embedding generated features, and Mc is the number of embedding generated features
for class c.

By combining the Eqs. (4) and (5), we obtain the optimization loss of the modality
consistent embedding network for learning discriminative features as follows

Lemb ¼ LC þ fLm ð6Þ

where f is a parameter to balance two terms.

3.5 Optimization

The overall framework proposed in this paper is composed of two components: a
generative adversarial network to generate the generated image features that are close
to real image features, and a modality consistent embedding network to obtain more
discriminative features. The optimal features can be obtained by integrating the loss
functions in Eqs. (2), (3) and (7). The optimization problems for discriminator D,
generator G and modality consistent embedding network are respectively defined as
follows:

x
_

� �
¼ argmin

x
Lemb þ aLDð Þ ð7Þ

h
_

� �
¼ argmin

h
Lemb þ bLGð Þ ð8Þ
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/
_

� �
¼ argmin

/
Lembð Þ ð9Þ

where a and b are tradeoff parameters. Each part of the network is updated separately
though the optimization objectives above. The parameters x, h and / can be effectively
optimized through the automatic differential back propagation of Pytorch. Algorithm 1
summarizes the process of our approach.

4 Experiments

4.1 Datasets

We evaluate our proposed approach on the widely used Wikipedia dataset [2] and
NUS-WIDE-10 k dataset [5].

Wikipedia dataset is collected from Wikipedia featured articles, and there are 2,866
image-text pairs. Each pair of image and text is extracted from the same articles. All
image-text pairs are from 10 semantic classes, and each pair is labeled with only one
class label. Following [2], 2,173 pairs of samples are used for training, 231 pairs for
validation and 462 pairs for testing. For image modality, 4,096-dimensional features
are extracted by fc7 layer of VGGnet, and each text is represented by a 3,000-
demensional Bag-of-Word feature.
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NUS-WIDE-10 k dataset consists of 10,000 web images including 10 semantic
concepts download from Flicker website. Following [5], this dataset is split into three
subsets: the training set with 8,000 pairs, the validation set with 1,000 pairs, and the
testing set with 1,000 pairs. For each image, 4,096-dimensional feature is extracted by
the fc7 layer of VGGnet, and for each text, 1,000-dimensional Bag-of-Word feature
vector is extracted.

4.2 Evaluation Measure and Compared Methods

In this paper, we use mean Average Precision (mAP) to evaluate the cross-modal
retrieval performances.

mAP ¼ 1
N

XN
i¼1

AP qið Þ ð10Þ

where AP �ð Þ computes the average precision, N is the number of query samples and qi
represents the ith query sample. The larger the mAP value is, the better the retrieval
performance is.

For comparison, we compare our proposed MCGAN approach with six represen-
tative cross-modal retrieval methods: (1) traditional cross-modal retrieval methods:
CCA [2] and LCFS [12]; (2) deep learning-based methods: Deep-SM [13], Corr-AE [5]
and MCSM [23]; (3) GAN-based method: ACMR [10]. We report the experimental
results of the compared methods according to the published results in their papers or
the codes provided by the authors to implement the evaluation.

In experiment, we perform two types of experiments, namely retrieving images
with text and retrieving text with images.

4.3 Implementation Detail

Our proposed MCGAN approach and relevant experiments are implemented on Torch
framework. The implementation details of our generative adversarial network and the
modality consistent embedding network are as follows: our generative adversarial
network consists of two components, the generative model is a 3-layer network, which
is composed of three fully connected layers to learn the generated image features from
text features. The number of neurons in each layer is 3500, 4000, 4096, and the
activation function is Tanh. The discriminative model consists of two fully connected
layers: the number of neurons in the first layer is 1000, the number of neurons in the
second layer is 2, and the subsequent activation function is ReLU. In addition, Softmax
activation is added after the last layer to conduct the modality classification. For the
modality consistent embedding network, two fully connected layers with dimensional
[1000, 10] activated by Tanh are used to project both the generated image features and
the real image features into a common semantic space to learn the discriminative
feature representations.
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In our training procedure, the mini-batch size is 128, and the tradeoff parameters k,
f, a and b are set up by grid search. The good results are achieved with k ¼ 10, f ¼ 1,
a ¼ b ¼ 0:1.

4.4 Result and Discussion

Table 1 tabulates the Map results of compared methods on Wikipedia and NUS-WIDE-
10 k datasets. In can be seen from the table that in both image to text and text to image
retrieval tasks, GAN-based methods such as MCSM and ACMR outperform the non-
GAN-based cross-modal retrieval methods including CCA, LCFS, Corr-AE, CMDN
and Deep-SM on the benchmark datasets. Furthermore, our MCGAN can always
outperform all compared methods. Specifically, for the retrieval task of image to text
and text to image on the Wikipedia dataset, MCGAN improves the mAP results at least
by 0.004 = (0.522 − 0.518), 0.013 = (0.471 − 0.458). Similarly, for the retrieval task
of image to text and text to image on the NUS-WIDE-10 k dataset, our approach
improves the mAP scores at by 0.019 = (0.563 − 0.544), 0.01 = (0.551 − 0.541). The
results show that by turning text features into image features through generative
adversarial network, semantic information can be effectively preserved while the gap of
different modalities can be bridged. Besides, the more discriminative features learned
from the inter- and intra-modal discrimination are helpful to improve the retrieval
performance.

In the modality consistent embedding network, label classification loss and
semantic correlation loss are defined to promote semantically discriminative feature
learning. To demonstrate whether they can contribute to improving the retrieval per-
formance, the version of MCGAN without label classification loss (MCGAN-C), the
version of MCGAN without semantic correlation loss (MCGAN-m) are proposed to
evaluate the role of each component. From the Table 2, the mAP results of MCGAN-C,
MCGAN-m and MCGAN show that the label classification loss and semantic corre-
lation loss are contributed to promoting semantically discriminative feature learning
and improve the retrieval performance.

Table 1. The mAP cross-modal retrieval results on two datasets

Method Wikipedia NUS-WIDE-10 k
Img2txt Txt2img Average Img2txt Txt2img Average

CCA 0.258 0.250 0.254 0.202 0.220 0.211
LCFS 0.455 0.398 0.427 0.383 0.346 0.365
Corr-AE 0.402 0.395 0.399 0.366 0.417 0.392
CMDN 0.488 0.427 0.458 0.492 0.515 0.504
Deep-SM 0.458 0.345 0.402 0.389 0.496 0.443
MCSM 0.516 0.458 0.487 0.543 0.541 0.542
ACMR 0.518 0.412 0.465 0.544 0.538 0.541
MCGAN 0.522 0.471 0.497 0.563 0.551 0.557
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5 Conclusion

In this paper, we present a novel approach named MCGAN that is able to convert the
cross-modal retrieval issue into single-modal retrieval issue on image domain via
generative adversarial network. In this way, the semantic information of image
modality can be preserved effectively. Furthermore, a modality consistent embedding
network is designed to project both the image features and generated image features to
a common semantic space and utilize label information to model both the inter- and
intra-modal similarity via two defined loss functions. Extensive empirical results
demonstrate that MCGAN can achieve significantly better retrieval performance than
several state-of-the-art related methods.
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Abstract. Sketch-based image retrieval (SBIR) intends to use free-hand
sketch drawings as query to retrieve correlated real-world images from
database. Hashing based methods gradually become the mainstream
approaches in SBIR with its low memory usage and high query speed.
Existing hashing based methods are incapable of guiding hash codes to
preserve inter-class relationship and improving object recognition ability
of hash functions simultaneously, which limits the higher performance.
Hence, we propose Discriminative Binary Embedding (DBE), a novel
algorithm of considering inter-class relationship and object recognition
ability in a joint manner by treating retrieval as classification. Specifi-
cally, we apply NLP methods to encode category labels as binary embed-
ding and then build classifiers for images and sketches, so as to obtain
hash codes of instances based on binary embedding of predicted labels.
Experimental results on two benchmarks show that DBE outperforms
several state-of-the-arts.

Keywords: Sketch-based image retrieval · Hashing · Cross modal

1 Introduction

Ubiquitous touch screens provide convenience for people to describe instances as
free-hand sketches, which creates a new type of query entrance to retrieve images.
Since sketches have lower hardware requirements than natural images and convey
information more vividly than words, sketch-based image retrieval (SBIR) [7,
13,18,30] are more competitive compared with text-based image retrieval or
content-based image retrieval, which attracts universal attention in computer
vision and information retrieval community.
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SBIR is a challenging problem due to the heterogeneity between free-hand
sketches and real-world images. To remove heterogeneity, substantial efforts have
been made [13,18,22,32]. As the request of large-scale data, hashing based meth-
ods, which intend to project data into a common hamming space, gradually
become the mainstream approach in this area with their low memory usage and
high query speed [11,19,27].

Among these methods, the first deep hashing method specialized in SBIR
is Deep Sketch Hashing (DSH) [13]. DSH adopts edge structures extracted
from real-world images (i.e., sketch-tokens), as bridges to mitigate the image-
sketch geometric distortion. Benefiting from the rapid development of Gener-
ative Adversarial Networks (GAN) [9], it is feasible to transfer representation
from one domain to another. Following this idea, Generative Domain-Migration
Hashing (GDH) [32] employs cycleGAN [34] to generate synthetic natural images
which are migrated from sketches to eliminate the sketch-image heterogeneity.
Despite significant performance obtained by them, as shown in Fig. 1, they still
can not get rid of heterogeneity completely. There exists discrepancy in the
details not only between sketch-tokens and free-hand sketches, but also between
synthetic images and real-world images.

(a) free-hand sketch (b) sketch-token

(c) real-world image (d) synthetic image

Fig. 1. Sketch-tokens usually contain more details than free-hand sketches. Moreover,
the synthetic images often ignore the rich details of real-world images.

Hence, the semantic-level bridge should be considered to connect sketches
and images instead of instance-level bridges (e.g., sketch-tokens or synthetic
natural images). Intuitively, the retrieval performance will be better if the var-
ious data from the same category have completely same binary codes, which
regards category-labels as the bridge to cross the heterogeneity. Therefore, the
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discriminative hashing methods [14,26,29] are proposed. These methods trans-
form category-labels as binary codes and build hash functions as the regression
from instances to hash codes. Based on semantic-level bridge, these methods are
robust to the instance-level variation.

However, the simple one-hot encoded category labels can not express the
semantic distances among categories (e.g. in daily life, “tiger” and “zebra”
appear together more frequently than “tiger” and “cake”), which makes most
existing methods can not build hash codes to indicate inter-class relationship
correctly. In addition, the neglect of object recognition during hash functions
learning results in false hash codes mapping in the testing phase. Consequently,
a discriminative hashing method that can make binary codes preserve inter-
class relationship and improve object recognition ability of hash functions is
demanded.

To overcome the problems discussed above, we propose Discriminative Binary
Embedding (DBE) algorithm for SBIR to take into account inter-class relation-
ship and object recognition ability in a joint manner by treating retrieval as
classification, leading to discriminative binary embedding and hash functions
with high object recognition ability. Specifically, the proposed DBE first applies
NLP methods to encode category labels as binary embedding and then builds
classifiers for images and sketches. At the end, hash codes of instances are binary
embedding corresponding to predicted labels. Extensive experiments on two
benchmark datasets demonstrate that the proposed DBE algorithm outperforms
other baselines methods for SBIR.

The remainder of this paper is organized as follows. Section 2 introduces
related work and Sect. 3 presents the proposed DBE. Experimental results are
provided in Sect. 4. Finally, Sect. 5 concludes this paper.

2 Related Work

In view of instance representation type, existing methods can be divided into
real-value representation methods and methods.

Real-value representation methods [1,7,20,22,33] usually aim to find a com-
mon subspace where sketches and images can be represented as real-value vec-
tors. Early works [7,22] focus on designing representative features and base on
them to measure similarity. To accelerate the retrieval speed, some works [1,33]
introduce hierarchical database index structure to organize data. Nevertheless,
high storage capacity of database structure still perplexes the practical applica-
tions of SBIR.

To tackle this problem, hashing based methods [13,24,32] which intend to
project multisource data into a common hamming space emerge in SBIR. As
the first deep hashing method specialized in SBIR, DSH extracts edge struc-
tures from images to remove heterogeneity. Afterwards GDH generates synthetic
images based on sketches to cross the sketch-image gap. While SBIR is a specific
form of cross-modal retrieval, the cross-modal hashing methods [5,12,15,31] can
just be applied.
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3 Discriminative Binary Embedding

In this section, we first present the notation and problem definition, and then
bring in semantic binary embedding and retrieval by classification to preserve
inter-class relationship and improve object recognition ability of hash functions.

3.1 Notation and Problem Definition

Scalars are denoted by lowercase letters (e.g., x). Matrices and vectors used in
this paper are represented as boldface uppercase letters (e.g., X) and boldface
lowercase letters (e.g., x), respectively.

Let X1 =
{
x1

i

}N1

i=1
and X2 =

{
x2

j

}N2

j=1
be images and sketches, where

x1
i ∈ Rd1 , x2

j ∈ Rd2 . And, Y =
{
yk

}N3

k=1
is their category labels. Given

the code length c, the cross-modal hashing is to build specific hash functions
f1

(
x1

)
: Rd1 → {−1,1}c and f2

(
x2

)
: Rd2 → {−1,1}c for images and sketches.

Meanwhile, the Hamming distance D
(
h1

i ,h
2
j

)
between hash codes h1

i = f1
(
x1

i

)

and h2
j = f2

(
x2

j

)
indicates the semantic correlation between x1

i and x2
j .

3.2 Framework

Image classifier
(IC)

Image Input

Sketch Input

Sketch classifier
(SC)
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Fig. 2. Our proposed DBE algorithm for SBIR. First, SBE applies NLP methods to
embed category labels into Hamming space. Then IC and SC predict labels of images
and sketches. Finally, each instance is encoded based on binary embedding of labels.

Figure 2 illustrates the overall flow of our proposed DBE, which mainly con-
sists of two parts: Semantic Binary Embedding (SBE) and specialized classi-
fiers (e.g., IC and SC). For SBE, its mission is to encode category labels as c
length hash code while preserve inter-class relationship. Specialized classifiers
IC and SC, intend to classify instances accurately and preserve intra-class rela-
tionship. Moreover, because hash codes of instances are binary embedding cor-
responding to predicted labels, the trained-well classifiers improve object recog-
nition ability of hash functions markedly.
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Semantic Binary Embedding. The binary embedding of semantics (i.e. cat-
egory labels) is primary in semantic hashing methods. Obviously, the distances
between category labels are identical in semantic space. To reveal inter-class
relationship, category labels are embedded as binary codes according to their
frequency of co-occurrence in natural languages.

The first step of SBE is to translate the category labels (e.g. mushroom)
into real-valued vectors in semantic space. The NLP toolbox Word2vec [17]
trained on part of Google News dataset1 (about 100 billion words) is used to
accomplish it. With the Word2Vec model, each category label is projected into
a 300-dim semantic space where the cosine distance can measure the frequency
of co-occurrence in natural languages. So the real-valued vectors of labels are
inter-class relationship preserving.

Once labels are vectorized, the next step is to convert the cosine distance
relationship in the 300-dim semantic space into the Hamming distance relation-
ship in c-dim Hamming space. Proved by [2], Local Sensitive Hashing (LSH) [21]
is competent at this job. Therefore, the hash function of n-th bit is defined as
following:

hn (u) =

{
1, u · rT ≥ 0

−1, u · rT < 0
, (1)

where u is the real-valued vector of label in semantic space and r is a vector
sampled randomly from the Gaussian distribution whose dimension is the same
as u. The c-bit hash function consists of two parts: randomly sample c vectors
and operate every bit following Eq. (1). After its processing of the real-valued
vectors of category labels, category labels are embedded as binary codes.

Retrieval by Classification. Once the binary embedding of semantics is done,
building hash functions that project instances into hash codes corresponding
to their semantics ensues. Similarly, classification devotes to fitting the corre-
sponding relationship between instances and semantics (i.e. category labels). If
semantics in classification is embedded as binary codes, the fitting relationship
in classification can be directly treated as hash function in retrieval. With the
help of classification, we build hash functions in retrieval task. Specifically, we
first classify instances to predict their semantics and then obtain hash codes by
mapping semantics to their binary codes. In this case, object recognition ability
of hash functions is improved.

For images and sketches, two modified CNN-F [3] are implemented as classi-
fiers IC and SC respectively. To accommodate different datasets, the last fully-
connected layer in origin CNN-F is changed to N3-node fully-connected layer
with no activation functions. To classify instances, the softmax-loss is applied,
which can be formulated as:

min
θm

Lm = −
Nm∑

i=1

log
(

exp (fyi
(θm;xm

i ))
Σk exp (fyk

(θm;xm
i ))

)
, (2)

1 https://code.google.com/archive/p/word2vec/.

https://code.google.com/archive/p/word2vec/
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where m = 1, 2 indicates images or sketches, and fyi
(θm;xm

i ) is the output of
classifier corresponding to category label yi. In the operating process, category
labels

{
yk

}N3

k=1
are expressed as one-hot vectors for network training. The Eq. (2)

is derivable, so Back-propagation algorithm (BP) with mini-batch stochastic
gradient descent (mini-batch SGD) method is applied to update it. When IC and
SC are well-trained, instances are labeled according to the maximum of predicted
vectors. For classification task where semantics are expressed as multi-labels, the
non-redundant multi-label labels can be transformed into multi-class labels and
use the aforementioned multi-class classification method to handle. As a result,
the semantics of instances are acquired by classification.

Then, as illustrated in Fig. 1, the last part of hash functions is just to map
semantics of instances to their binary embedding so as to obtain hash codes.
Concurrently, the convenient mapping also avoids the approximation loss for
binarization processing which limits the higher retrieval performance in deep
hashing methods.

4 Experiments

Several experiments are conducted to evaluate our DBE on two benchmark
datasets. The retrieval performance are measured by Hamming ranking and hash
lookup. The effect of each component is also explored in our method using an
ablation study and the discriminability of binary embedding is evaluated based
on t-SNE visualization [16].

4.1 Implementation Details

We implement our method with Tensorflow and run the algorithm in a server
with one NVIDIA 1080ti GPU. The CNN-F pretrained on ImageNet [4] are used
to initialize the first seven layers of classifiers IC and SC. The other weights of
networks are randomly initialized. We apply mini-batch SGD with a learning
rate within 10−2 ∼ 10−3 and set batch size as 128 to learn θ1 and θ2.

4.2 Datasets

Tu-Berlin Extension [13] is a dataset extended from Tu-Berlin [6]. It contains
20,000 free-hand sketches and 204,489 real-world images across 250 categories.
Sketchy [23] includes 75,471 free-hand sketches of 12,500 objects (images) from
125 categories. Another 60,502 real-world images from ImageNet collected by [13]
are used to construct the real-world image set which amounts to 73,002 images.

4.3 Evaluation Protocol and Baselines

The dataset splitting strategy is consistent with DSH [13] and GDH [32]. For Tu-
Berlin Extension, 10 free-hand sketches are randomly selected from every cat-
egory as query set and the remaining 17,500 free-hand sketches are used for train-
ing. For Sketchy, the query set consists of 6250 free-hand sketches (50 sketches
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per category) and the remaining 69,221 free-hand sketches serve as sketch train-
ing set. For both datasets, all real-world images are used as retrieval set and
image training set. Because shallow-structure-based baselines require pairwise
data with corresponding labels as input, similar to DSH [13] and GDH [32], we
randomly select non-redundant 17,500 and 30,000 sketch-image pairs for Tu-
Berlin Extension and Sketchy as their training set, respectively.

Evaluation Metrics. To evaluate retrieval performance, Hamming ranking
and hash lookup are both utilized as protocols. Mean Average Precision (MAP)
and TopN-precision curves are adopted to measure the Hamming ranking which
sorts the data points in retrieval set based on their Hamming distance to the
given query point. The hash lookup intends to return retrieval data in radius of
a certain Hamming distance to the given query point. Precision-recall curve and
the precision of Hamming distance with radius 2 (HD2) are used to evaluate its
accuracy.

Baselines. Several state-of-the-art cross-modal hashing methods are selected
for comparison with our DBE, including: Collective Matrix Factorization Hash-
ing (CMFH) [5], Semantic Correlation Maximization (SCM) [31], Seman-
tic Topic Multimodal Hashing (STMH) [25], Semantics-Preserving Hash-
ing (SePH) [12], Composite Correlation Quantization (CCQ) [15], Deep Sketch
Hashing (DSH) [13], Generative Domain-Migration Hashing (GDH) [32]. Mean-
while, the other three cross-view feature embedding methods including Canonical
Correlation Analysis (CCA) [10], Learning Coupled Feature Spaces (LCFS) [28]
and Partial Least-squares Regression (PLSR) [8] are also used for comparison
with our DBE. To make fair comparisons with shallow-structure-based base-
lines, 4096-dimensional features for sketches and images are extracted by the
well-trained SC and IC networks for Tu-Berlin Extension and Sketchy, sepa-
rately.

4.4 Results and Discussions

Results For Hamming ranking, the MAP and TopN-precision curves of our
DBE and other baselines are presented in Table 1 and Fig. 3, which illustrate that
our DBE outperforms others with significant margin. From Table 1, compared
with the state-of-the-art method GDH, our DBE achieves absolute increase of
7.23% and 6.03% on Tu-Berlin Extension and Sketchy. Meanwhile, the
TopN-precision curves of DBE in Fig. 3 embody its high quality of Hamming
ranking, which also demonstrate better performance for DBE across different
datasets.
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Fig. 3. TopN -precision curves for DBE and other five baselines with 32 bits.

Table 1. Mean average precision (MAP) comparison on Tu-Berlin extension and
sketchy datasets. The results of methods marked by (∗) are reported from the ref-
erence papers, while the others are obtained by running the released code.

Method TU-Berlin Extension Sketchy

32 bits 64 bits 128 bits 32 bits 64 bits 128 bits

Cross-modality hashing methods

(binary codes)

CMFH [5] 0.123 0.171 0.210 0.176 0.229 0.280

SCM [31] 0.119 0.208 0.300 0.227 0.361 0.415

STMH [25] 0.031 0.058 0.096 0.081 0.140 0.216

SePH [12] 0.155 0.234 0.307 0.362 0.478 0.544

CCQ [15] 0.142 0.189 0.225 0.274 0.337 0.373

DSH∗ [13] 0.358 0.521 0.570 0.653 0.711 0.783

GDH∗ [32] 0.563 0.690 0.651 0.724 0.811 0.784

Cross-view feature learning

methods (real-valued vectors)

CCA [10] 0.114 0.149 0.171 0.321 0.449 0.498

LCFS [28] 0.078 0.159 0.299 0.190 0.379 0.705

PLSR [8] 0.163 (4096d) 0.164 (4096d)

Our DBE 0.703 0.705 0.713 0.834 0.831 0.835

The precision-recall curves in Fig. 4 and the precision of HD2 in Fig. 5 reflect
the performance of our DBE and other baselines in hash lookup. Since the cor-
responding curves of our DBE locate above others in Figs. 4 and 5, our DBE
achieves superior results on both datasets.

Fig. 4. Precision-recall curves for DBE and other five baselines with 32 bits.
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Fig. 5. HD2 precision for DBE and other four baselines with 32 bits.

Discussion. Two experiments including ablation study and visualization are
used to further analyze the efficiency of our DBE.

In ablation study, experiments are conducted to evaluate the influence of
problems solved by our DBE, specifically including inter-class relationship and
object recognition ability. The curve marked as label in Fig. 6 represents the
solution that instances are directly encoded as their predicted labels (e.g. 125-
dim predicted labels in Sketchy). And the origin DBE is marked as hash code
curve in Fig. 6. From Fig. 6, the mAPs of label on two datasets across three
bits are higher than those of the state-of-the-art method GDH, which accounts
for the significance of object recognition ability. The inter-class relationship also
plays an vital role to further improve retrieval performance, since it makes hash
code curves locate above label curves in Fig. 6.

Fig. 6. The influence of inter-class relationship and object recognition ability.

To study the discriminability of our DBE, as shown in Fig. 7, t-SNE projec-
tion is applied to visualize the binary embedding of ten categories in retrieval
set from the two datasets. The binary embedding of instances from the same
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category gathers together while different clusters are far away from each other
in Fig. 7. Hence, the binary embedding of our DBE are discriminative.
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Fig. 7. The t-SNE visualizations of hash codes in ten categories from Tu-Berlin Exten-
sion and Sketchy retrieval set, respectively. Better view in color version. (Color figure
online)

5 Conclusion

This paper introduced Discriminative Binary Embedding (DBE), a supervised
deep model for category-level Sketch-Based Image Retrieval (SBIR), composed
of Semantic Binary Embedding (SBE) and specialized classifiers (e.g., IC and
SC). To guide hash codes to preserve inter-class relationship and improve the
recognition ability of hash functions simultaneously, we treated retrieval as clas-
sification. Specifically, the SBE encoded category labels as hash codes while
preserved inter-class relationship. Specialized classifiers IC and SC, intended to
classify instances accurately to improve the recognition ability of hash func-
tions and also preserved intra-class relationship. Experimental results on two
benchmark datasets demonstrated the superiority of DBE compared with the
state-of-the-art methods.
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Abstract. Spectral clustering based algorithms are powerful tools for
solving subspace segmentation problems. The existing spectral clustering
based subspace segmentation algorithms use original data matrices to
produce the affinity graphs. In real applications, data samples are usually
corrupted by different kinds of noise, hence the obtained affinity graphs
may not reveal the intrinsic subspace structures of data sets. In this
paper, we present the conception of relation representation, which means
a point’s neighborhood relation could be represented by the rest points’
neighborhood relations. Based on this conception, we propose a kind
of sparse relation representation (SRR) for subspace segmentation. The
experimental results obtained on several benchmark databases show that
SRR outperforms some existing related methods.

Keywords: Subspace segmentation · Low-rank representation ·
Sparse relation

1 Introduction

Spectral clustering based algorithms have been proven to be powerful tools for
solving subspace segmentation problems such as motion segmentation [1,2], face
clustering [3,4] and so on. Among the existing spectral clustering based meth-
ods, sparse subspace clustering (SSC) [5] and low-rank representation (LRR) [6]
are the two most representative ones. The two algorithms divide the subspace
segmentation procedure into three steps: firstly, they compute a reconstructive
coefficient matrix for a data set, then construct an affinity graph by using the
obtained coefficient matrix, finally produce the segmentation result by means
of a kind of spectral clustering (e.g. Normalize cut (N-cut) [7]). Because of the
excellent performances showed by SSC and LRR, a lot of subsequent researches
have been proposed.

By analyzing SSC and LRR related works, we could find that most of them
hope to enhance the abilities of SSC and LRR for revealing subspace structures
c© Springer Nature Switzerland AG 2019
Z. Lin et al. (Eds.): PRCV 2019, LNCS 11859, pp. 27–37, 2019.
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of data sets by adding additional constraints on the reconstructive coefficient
matrices. For example, Li et al. devised an adaptive weighted sparse constraint
for a reconstructive coefficient matrix obtained by SSC and proposed a struc-
tured SSC method (SSSC) [8]. Chen et al. developed a within-class grouping
constraint for a reconstructive coefficient matrix and introduced it into SSSC
[9]. Zhuang et al. claimed that SSC tends to discover the local structure of a
data set and LRR could discover its global structure. Hence, they combined
SSC and LRR together and proposed a non-negative low-rank and sparse repre-
sentation method (NNLRSR) [10]. Tang et al. generalized NNLRSR algorithm
and designed a structured-constrained LRR method (SCLRR) [11]. Lu et al.
presented a graph-regularized low-rank representation (GLRR) [12] which could
strength the group effect of a coefficient matrix obtained by LRR.

According to the corresponding references, the above mentioned algorithms
have shown to be superior to the classical SSC and LRR. However, we could find
these algorithms follow the same methodology of SSC and LRR as we mentioned
in the first paragraph.

In this paper, we reconsider the data representation problem and present the
concept and technique of relation representation. Based on these new proposi-
tions, we propose a new algorithm, termed sparse relation representation (SRR),
for subspace segmentation. We claim that SRR could find both the local and
global structures of data sets. The experimental results obtained on different
subspace segmentation tasks illustrate that SRR dominates the existing SSC
and LRR related algorithms.

The rest of the paper is organized as follows: we briefly review SSC and LRR
algorithms in Sect. 2. In Sect. 3, we introduce the idea of relation representa-
tion and present sparse relation representation (SRR) method. The optimiza-
tion algorithm for solving SRR problem is described in Sect. 4. Experiments on
benchmark data sets are conducted in Sect. 5. Section 6 gives the conclusions.

2 Preliminary

For a data set X ∈ Rd×n, both SSC and LRR hope to find a reconstruction
matrix C ∈ Rn×n which satisfies X = XC + E. Here, E ∈ Rd×n indicates
the reconstruction residual matrix. With different techniques, SSC expects C to
be a sparse matrix and the l1 norm of E to be minimal, while LRR tends to
minimize the rank of C and the l2,1 norm of E simultaneously. Because of the
different constraints imposed on the coefficient matrix, SSC and LRR tends to
reveal the local and global structures of a data set respectively. The objective
function of SSC and LRR could be precisely expressed as the following Eqs. 1
and 2 respectively:

min ‖C‖1 + λ‖E‖1,
s.t. X = XC + E, [C]ii = 0, i = 1, 2, · · · , n,

(1)

min ‖C‖∗ + λ‖E‖2,1,
s.t. X = XC + E,

(2)
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where [C]ii represents the (i, i)-th element of C and λ > 0 is a parameter
which is used to balance the effects of the two terms. The above two problems
could be solved by using the alternating direction method (ADM) [13]. Once the
reconstructive coefficient matrix C is gotten, an affinity matrix W satisfying
[W]ij =

(
[C]ij + [C]ji

)
/2 could be constructed. Then the final segmentation

result could be produced by using N-cut.

3 Motivation

3.1 Relation Representation

From the above descriptions, we could find that SSC and LRR (actually all the
related algorithms) use a data set itself to compute the reconstruction coeffi-
cient matrix. However, in real applications, data samples usually is corrupted by
different kinds of noise, so the obtained coefficient matrix may not be able to
reveal the subspace structure of a data set.

As we know, the relationships between an object and its neighbors could
usually define the object itself. And two similar objects will often have simi-
lar neighbors with similar relationships (See Fig. 1). Based on these evidences,
for a data set, we consider to use the relations between a data sample and its
neighbors to represent the data sample firstly, then reconstruct the neighbor-
hood relation of a data sample by using the neighborhood relations of other
samples. Hence, the reconstruction coefficient vector corresponding to each data
sample’s neighborhood relation could be acquired. We call this strategy “relation
representation”.

Fig. 1. Two similar objects (red points) and their neighbors (blue triangles) (Color
figure online)

3.2 Sparse Relation Representation (SRR)

Now we discuss how to compute the relations between a data sample and its
neighbors. Actually, many skills could handle this problem. For example, K
nearest neighbors method (KNN) [14] can find each data sample’s K neighbors,
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then linear reconstruction method [15] or Gaussian kernel [14] could be used to
compute the similarities between the data sample and its K neighbors. However,
the neighborhood scale K in KNN is usually difficult to choose for different
data sets. And an improper K will degenerate the performance of corresponding
algorithm sharply.

It has been proven that sparse representation (SR) technique [16] is capable of
adaptively choosing the neighbors of a data sample and getting the corresponding
reconstruction coefficient simultaneously. Therefore, for a data sample xi ∈ X,
its neighborhood relation vector ci could be achieved by using the following SR
problem:

min
ci

‖ci‖1 + α‖xi − Xci‖1. (3)

We hope the reconstruction residual xi − Xci also to be sparse. Then for the
whole data matrix X, we could get its neighborhood relation matrix C by solving
the following problem:

minC ‖C‖1 + α‖X − XC‖1,
s.t. [C]ii = 0, i = 1, 2, · · · , n

(4)

Similar to SSC, we could find that C will discover the local structure of the
original data set.

Then according to the relation representation technique (described in
Sect. 3.1), a data sample xi’s neighborhood relation ci could be represented
by the neighborhood relations of other data samples, namely ci � Czi, where
zi ∈ Rn is the reconstruction coefficient. Consider the whole data set, we could
obtain the following problem:

min
Z

‖Z‖∗ + β‖C − CZ‖2F (5)

where Z = [z1, z2, · · · , zn] is the reconstruction coefficient matrix to the neigh-
borhood relation matrix C. We here use the nuclear norm minimization con-
straint to help Z to discover the global structure of C. Moreover, Because C is
a good representation of original data matrix X, we aim to minimize the Frobe-
nius norm of the reconstruction error. Finally, we combine Eqs. 4 and 5 together
and let E1 = X − XC,E2 = C − CZ, then the sparse relation representation
problem (SRR) could be defined as follows:

minC,Z,E1,E2 ‖C‖1 + ‖Z‖∗ + α‖E1‖1 + β‖E2‖2F ,
s.t. E1 = X − XC,

E2 = C − CZ,
[C]ii = 0, i = 1, 2, · · · , n.

(6)

For a data set X, because C characterizes the local structure of X and Z discovers
the global structure of the neighborhood relation matrix C, Z actually could
reveal both the global and local structure of a data set.
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4 Optimization and Analyses

4.1 Optimization

For solving Problem6, we firstly covert it into the following equivalent problem:

minC,Z,M,J,E1,E2 ‖M‖1 + ‖J‖∗ + α‖E1‖1 + β‖E2‖2F ,
s.t. E1 = X − XC,

C = M, [M]ii = 0, i = 1, 2, · · · , n,
E2 = C − CZ,
Z = J.

(7)

The above could be solved by using ADM method [13]. The augmented
Lagrangian function of Eq. 7 can be described as follows:

L = ‖M‖1 + ‖J‖∗ + α‖E1‖1 + β‖E2‖2F + 〈Y1,X − XC − E1〉 + 〈Y2,C − M〉
+〈Y3,C − CZ − E2〉 + 〈Y4,Z − J〉 + µ

2

(
‖X − XC − E1‖2F + ‖C − M‖2F

+‖C − CZ − E2‖2F + ‖Z − J‖2F
)
,

(8)
where Y1,Y2,Y3 and Y4 are four Lagrange multipliers, μ > 0 is a parame-
ter. Then by minimizing L, the variables C,Z,M,J,E1,E2 could be optimized
alternately. The detailed updating process for each variables presented as follows:

1. Update M with fixed other variables. By collecting the relevant terms
of M in Eq. 8, we have:

minM ‖M‖1 + 〈Y2,C − M〉 + μ/2‖C − M‖2F
= minM ‖M‖1 + μ/2‖C − M + Y2/μ‖2F ,

(9)

then the solution to Eq. 9 could be obtained as

[Mopt]ij =

{
max(0, [C + Y2/μ]ij − 1/μ) + min(0, [C + Y2/μ]ij + 1/μ), i �= j;
0, i = j.

(10)
2. Update C with fixed other variables. By picking the relevant terms of

C in Eq. 8, we have:

minC〈Y1,X − XC − E1〉 + 〈Y2,C − M〉 + 〈Y3,C − CZ − E2〉
+µ

2

(
‖X − XC − E1‖2F + ‖C − M‖2F + ‖C − CZ − E2‖2F

)

= minC ‖X − XC − E1 + Y1/μ‖2F + ‖C − M + Y2/μ‖2F
+‖C − CZ − E2 + Y3/μ‖2F

(11)

We take the derivation of Eq. 11 w.r.t. C and set it to 0, the following equation
holds:

(
XtX + In

)
Copt + Copt

(
In − Z

)(
In − Zt

) − Xt
(
X − E1 + Y1/μ

)

−M + Y2/μ − (
E2 − Y3/μ

)(
In − Zt

)
= 0,

(12)

where In is an n × n identity matrix and Xt and Zt are the transposes of X
and Z respectively. Equation 12 is a Sylvester equation w.r.t. Copt, so it can
be solved by the Matlab function lyap().
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3. Update J with fixed other variables. By abandoning the irrelevant terms
of J, minimizing Eq. 8 becomes to the following problem:

minJ ‖J‖∗ + 〈Y4,Z − J〉 + μ/2‖Z − J‖2F
= minJ ‖J‖∗ + μ/2‖Z − J + Y4/μ‖2F .

(13)

Then the optimal solution to Eq. 13, Jopt = UΘ1/µ(S)V, where USV is the
SVD of matrix Z + Y4/μ and Θ is a singular value thresholding operator
[17].

4. Update Z with fixed other variables. By dropping the irrelevant terms
w.r.t Z in Eq. 8, we have:

minZ〈Y3,C − CZ − E2〉 + 〈Y4,Z − J〉 + μ/2
(
‖C − CZ − E2‖2

F + ‖Z − J‖2
F

)
= minZ ‖C − CZ − E2 + Y3/μ‖2

F + ‖Z − J + Y4/μ‖2
F

(14)
We also take the derivation of Eq. 14 w.r.t. Z and set it to 0, then the following
equation holds:

(
CtC + In

)
Zopt = Ct

(
C − E2 + Y3/μ

)
+ J − Y4/μ. (15)

Hence, Zopt =
(
CtC + In

)−1
[
Ct

(
C − E2 + Y3/μ

)
+ J − Y4/μ

]
.

5. Update E1 with fixed other variables. By abandoning the irrelevant
terms of E1, then minimizing Eq. 8 equals solving the following problem:

minE1 α‖E1‖1 + 〈Y1,X − XC − E1〉 + μ/2‖X − XC − E1‖2F
= minE1 α‖E1‖1 + μ/2‖X − XC − E1 + Y1/μ‖2F .

(16)

Similar to computing the optimal value of M, we could get [Eopt
1 ]ij =

max(0, [X − XC + Y1/μ]ij − α/μ) + min(0, [X − XC + Y1/μ]ij + α/μ).
6. Update E2 with fixed other variables. By gathering the relevant terms

of E2 in Eq. 8, we have

minE2 β‖E2‖2F + 〈Y3,C − CZ − E2〉 + μ/2‖C − CZ − E2‖2F
= minE2 β‖E2‖2F + μ/2‖C − CZ − E2 + Y3/μ‖2F .

(17)

We take the derivation of Eq. 17 w.r.t. E2 and set it to 0, then the following
equation holds:

(2β + μ)Eopt
2 = μ

(
C − CZ + Y3/μ

)
. (18)

Hence, Eopt
2 = μ/(2β + μ)

(
C − CZ + Y3/μ

)
.

7. Update parameters with fixed other variables. The precise updating
schemes for parameters existed in Eq. 8 are summarized as follows:

Yopt
1 = Y1 + μ(X − XC − E1),

Yopt
2 = Y2 + μ(C − M),

Yopt
3 = Y3 + μ(C − CZ − E2),

Yopt
4 = Y4 + μ(Z − J),

μopt = min(μmax, ρμ),

(19)

where μmax and ρ are two given positive parameters.



Robust Subspace Segmentation via Sparse Relation Representation 33

4.2 Algorithm

The algorithmic procedure of SRR is summarized in Algorithm 1. For a data set,
once the solutions to SRR are obtained, SRR defines an affinity graph [W]ij =(
[Z]ij +[Z]ji

)
, then N-cut is performed on the graph to get segmentation result.

Algorithm 1. Sparse relation representation (SRR)
Input:

Data set X = [x1,x2, · · · ,xn] ∈ RD×n, parameters α, β, the maximal number of
iteration Maxiter;

Output:
The two coefficient matrices Zopt,Copt, and two noise term Eopt

1 ,Eopt
2 ;

1: Initialize the parameters, i.e., Y0
1 = Y0

2 = Y0
3 = Y0

4 = 0, μ0 = 10−2, μmax =
1030, ρ = 1.1, ε = 10−8, k = 0 and M0 = C0 = J = Z0 = 0.

2: while ‖X − XCk − Ek
1‖∞ > ε, ‖Ck − CkZk − Ek

2‖∞ > ε and k < Maxiter do
3: Update [M]k+1

ij = max(0, [Ck+Yk
2/μk]ij−1/μk)+min(0, [Ck+Yk

2/μk]ij+1/μk)

when i �= j, else [M]k+1
ij = 0;

4: Update Ck+1 by using Matlab function lyap() to solve
(
XtX + In

)
Ck+1 +

Ck+1
(
In − Zk

)(
In − (Zk)t

) − Xt
(
X − Ek

1 + Yk
1/μk

) − Mk+1 + Yk
2/μ − (

Ek
2 −

Yk
3/μ

)(
In − (Zk)t

)
= 0 ;

5: Update Jk+1 = UΘ1/µk (S)V, where USV is the SVD of matrix Zk + Yk
4/μk

and Θ is a singular value thresholding operator ;

6: Update Zk+1 =
(
(Ck)tCk + In

)−1
[
(Ck)t

(
Ck −Ek

2 +Yk
3/μk

)
+Jk+1 −Yk

4/μk
]
;

7: Update [Ek+1
1 ]ij = max(0, [X−XCk+1+Yk

1/μk]ij−α/μk)+min(0, [X−XCk+1+
Yk

1/μk]ij + α/μk);
8: Update Ek+1

2 = μk/(2β + μk)
(
Ck+1 − Ck+1Zk+1 + Yk

3/μk
)

9: Update Yk+1
1 ,Yk+1

2 ,Yk+1
3 ,Yk+1

4 , μk+1 by following the updating schedule in
Eq. 19;

10: set k = k + 1;
11: end while
12: return the coefficient matrix Zopt = Zk,Copt = Ck,Eopt

1 = Ek
1 ,Eopt

2 = Ek
2 .

4.3 Analyses

Now we discuss the complexity of Algorithm 1. Suppose the data matrix X ∈
RD×n, the complexity of Algorithm1 is mainly determined by the updating of
six variables: M ∈ Rn×n,C ∈ Rn×n,J ∈ Rn×n,Z ∈ Rn×,n,E1 ∈ RD×n,E2 ∈
Rn×n, We analyze the computational burden of updating these variables in each
step.

First, updating M and E1 both need to compute each element of an n × n
matrix, hence their computation burden is O(n2). Secondly, it takes O(n3) time
to solve a Sylvester equations for updating C. Third, by performing SVD, the
update of J is O(n3). Fourthly, updating Z needs to compute the pseudo-inverse
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of an n × n matrix, whose complexity is O(n3). Fifthly, it can be easily to find
that the computation burden for updating E2 is O(n2). Hence, we can see that
the time complexity of Algorithm 1 in each iteration taken together is O(n3),
which is same to that of LRR. Suppose the number of iterations is N , then the
total complexity of Algorithm 1 should be N × O(n3).

5 Experiments

In this section, subspace segmentation experiments will be performed to verify
the effectiveness of SRR. Two types of data sets, such as Hopkins155 motion
segmentation database [18], the extended Yale B [19] and ORL face images
database [20] will be adopted. The related algorithms including SSC [5], LRR
[6], SCLRR1 [10] are chosen for comparisons.

5.1 Experiments on Hopkins 155 Database

Hopkins155 database [18] is a frequently used benchmark database to test the
performances of subspace segmentation algorithms. It consists of 120 sequences
of two motions and 35 sequences of three motions. Each sequence is a sole cluster-
ing task and there are 155 clustering tasks in total. The features of each sequence
were extracted and tracked along with the motion in all frames, and errors were
manually removed for each sequence. So it could be regarded that this database
only contains slight corruptions. In our experiments, we projected the data to
be 12-dimensional by using principal component analysis (PCA) [14]. Figure 2
presents two sample images of Hopkins 155 database.

We performed the four algorithms on Hopkins 155 database and recorded the
detailed statistics of the segmentation errors of the four evaluated algorithms
including Mean, standard deviation (Std.) and maximal error(Max.) in Table 1.
From Table 1, we can see that (1) the mean of segmentation errors obtained
by SRR are all slightly better than those of other algorithms; (2) the standard
deviation on all data sets obtained by SRR is also superior to those of other
algorithms; (3) all the best values are achieved SRR and SCLRR.

5.2 Experiments on Face Image Databases

The brief information of the extended Yale B and ORL face databases are intro-
duced as follows:

The extended Yale B face database contains 38 human faces and around 64
near frontal images under different illuminations per individual. Some images in
this database were corrupted by shadow. We just selected images from first 10
classes of the extended Yale B database to form a heavily corrupted subset.
1 The reasons why we choose SCLRR for comparison are illustrated as follows: firstly,

SCLRR is the generalization of NNLRSR; secondly, both SCLRR and NNLRSR
impose the low-rank and sparse constraints on the reconstruction coefficient matrix
to hope it could find the local and global structures of data sets.
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(a) 1R2RC (b) arm

Fig. 2. Sample Images of Hopkins 155 motion segmentation database. (a) 1R2RC, (b)
arm.

Table 1. The segmentation errors (%) of different algorithms on Hopkins 155 database.
The optimal values of different criterion are emphasized in bold style.

Method 2 motions 3 motions ALL

Mean Std. Max. Mean Std. Max. Mean Std. Max.

SSC 4.02 10.24 41.59 11.16 11.00 37.56 5.63 10.81 41.59

LRR 3.13 7.45 30.20 6.56 7.49 23.41 3.93 7.57 30.20

SCLRR 2.96 6.42 31.09 5.18 7.24 24.68 3.49 8.49 29.09

SRR 2.34 6.50 27.23 5.67 7.16 22.41 2.96 5.73 29.23

Notice: The corresponding parameters in different algorithms varied in the
interval [0.01, 10]. And the best result obtained by each evaluated algorithm
on each sub-database was recorded.

ORL database contains 400 face images (without noise) of 40 persons. Each
person has 10 different images. These images were taken at different times, vary-
ing the lighting, facial expressions (open/closed eyes, smiling/not smiling) and
facial details (glasses/no glasses). In our experiments, all the images from the
extended Yale B and ORL database are resized to 32 × 32 pixels. Moreover, for
effective computation, the element value of each image vector was normalized
into the interval [0,1] by being divided 255. Some sample images from the two
databases are shown in Fig. 3(a) and (b) respectively.

We performed subspace segmentation experiments on some sub-databases
constructed from the above used two image databases. Each sub-database con-
tains the images from q persons (q changes from a relative small number to the
total number of class). Then the four algorithms are performed to obtain the
subspace segmentation accuracies. In these experiments, all the corresponding
parameters in each evaluated algorithm are varied from 0.001 to 20, and the
best values corresponding to the highest accuracy of each evaluated algorithm
are chosen. Finally, the segmentation accuracy curve of each algorithm against
the number of class q are plotted in Fig. 4.
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(a) sample images from the extended Yale B database

(a) sample images from ORL database

Fig. 3. Sample images from (a) the extended Yale B databases and (b) ORL.
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Fig. 4. The segmentation accuracies obtained by the evaluated algorithms versus the
variations of number of class on different databases. (a) the extend Yale B (b) ORL
databases.

Clearly, form Fig. 4, we can find that (1) in all the experiments, the best
results are almost achieved by SRR; (2) the results of SRR are much better than
those of other algorithms on the extended Yale B database.

6 Conclusion

We presented the relation representation conception in this paper and developed
a kind of sparse relation representation (SRR) method for subspace segmenta-
tion. Different from the existing spectral clustering based subspace segmentation
algorithms, SRR used the sparse neighborhood relation of each data sample to
obtained the affinity graph for a data set. We claimed the obtained affinity
graph could discover the subspace structure of the given data set more truth-
fully. The comparative experiments conducted on several benchmark databases
showed that SRR dominated some related algorithms.
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Abstract. Objective and effective algorithm performance evaluation results are
an important basis for the selection of tracking algorithms. Problems in the
existing performance evaluation of moving target tracking algorithms include an
enlarge number of trials, and in particular, failure to consider the influence of
algorithm performance on the multifactor combination scenario. This study
proposes a method based on the orthogonal test to evaluate algorithms. First, the
factors and levels of the tracking algorithm are analyzed, and an orthogonal test
dataset is constructed by using an orthogonal table. Second, the experiments of
the performance evaluation are arranged with the dataset and the results are
analyzed via range analysis. Finally, evaluation results show that the strong–
weak sequence of factors affect the performance of the algorithm and the
combination of levels form the factors that can achieve enhanced algorithm
performance. Experimental results show that the proposed method can evaluate
algorithms comprehensively, objectively, and effectively with decreased test and
data volume.

Keywords: Orthogonal test � Performance evaluation � Evaluation measures �
Multifactor combination

1 Introduction

Moving target detection and tracking is an important research field in digital image
processing and computer vision that has attracted considerable attention from
researchers due to its potential economic benefits and important application value in
human production and living [1–3]. Influenced by objective factors, such as complex
environment and diversity of target motion state, an algorithm is generally applicable to
specific environments or specific conditions. Therefore, performing objective perfor-
mance evaluation for each algorithm under different environments and conditions is
necessary.
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Several datasets, such as VIVID [4], CAVIAR [5], and PETS [6], are available for
the performance evaluation of moving target tracking algorithms. In typical image
sequences, the target is usually a person or a car. These datasets have neither con-
sidered the different levels of factors affecting the performance of the algorithm, nor
have a common labeling box. At present, the mainstream algorithm evaluation plat-
forms include object tracking benchmark (OTB) [7, 8] and VOT [9–12]. OTB uses a
large number of image sequence combinations containing certain factors to obtain the
performance of an algorithm under certain factors. VOT analyzes the relevance of the
tracking algorithm evaluation criteria and obtains an appropriate evaluation measure.
The updated VOT datasets even annotate the factors in every frame, thereby improving
detection accuracy. However, the performance of the algorithm in a multifactor com-
bination scenario is still neglected. Problems, such as large datasets and many trials in
the algorithm evaluation, still exist.

The performance of the moving target tracking algorithm is affected by many
factors, such as illumination changes, scale changes, and deformation. The multifactor
impact analysis is commonly used in data analysis methods, such as simple compar-
ison, grey correlation analysis, and orthogonal experimental design methods. The
principle of simple comparison is straightforward, but different conclusions may be
obtained in cases wherein other factors can change the values, especially when many
factors exist. The Grey correlation analysis method [13] can apply a variety of
dimensionless processing methods to calculate the closeness of each influencing factor.
However, this method is unsuitable for multifactor and multilevel tests. The orthogonal
experimental design method determines the factor level by selecting the factors that
affect the test results, and selects the appropriate orthogonal table for the experimental
design. The use of an orthogonal test design with horizontal combination of factors
allows each factor to be evenly matched, thereby reducing both the number of trials and
the accuracy of test results.

In this study, a method for evaluating the performance of the moving target tracking
algorithm based on an orthogonal experiment is proposed. Taking the performance of
TLD [14] and CXT [15] algorithms as an example, the orthogonal test method is used
to analyze the different levels of factors affecting the algorithm. The primary and
secondary relationships of each factor to the performance of the algorithm and the
horizontal combination of factors when the algorithm performs optimally are obtained
through analysis and discussion.

2 Datasets

The performance evaluation of the moving target tracking algorithm based on an
orthogonal experiment uses the orthogonal principle to write a standardized orthogonal
table, and then selects representative image sequences from the comprehensive
experiment based on the orthogonality of the orthogonal table to be tested. The small
number of trials has reached a comprehensive test result.
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2.1 Test Factors and Levels

At present, the commonly used moving target tracking methods include tracking
methods based on region, contour, target, and motion features. Tracking methods based
on region features, such as Brox [16], use image segmentation results for moving target
localization, and then use the location of the target position to correct the segmentation
target of the image. This type of method performs well in a single background envi-
ronment. However, the target motion, state, and external shape are complex and
variable because of illumination changes, shape changes, and target rotation, in which
case the matching of regional features cannot be achieved. Kass et al. [17] proposed the
classical tracking method based on contour features called the snake model. The
motion scene of the moving target often have occlusion problems, which cause the
external contour to be obtained in real time. Achieving contour information matching is
difficult, making it impossible to track the target effectively. The tracking method based
on target features tracks the target by searching for the position of the target and
matching one or several feature information of the target (such as target color, texture,
and edge) [18]. Even if a part of the target is occluded, the target can be tracked by
using feature points. In this method, regardless if the moving speed is uniform or not,
some features will disappear when the target rotates, and the tracking effect is not ideal.
Motion feature-based tracking methods, such as Kalman filtering [19] and particle [20]
filtering algorithms, use the motion information of the target in the historical video
frame to search within the entire image range, and find the target features in the
previous video frame. According to the target range of the match, the search range is
limited to a small range by using detection techniques.

Many different scenes exist for moving targets, and these scenes bring considerable
challenges to moving target detection and tracking. For example, a striped background
can cause the failure of edge feature based on the tracking algorithm, and when the
background is similar to the color of the moving target, target tracking based on color
features becomes difficult. Illumination changes are also a problem that must be
addressed in moving target detection and tracking. Human targets appear in different
colors under different lighting conditions, making the color-based tracking algorithm
almost ineffective. Different color systems can be used to mitigate the effects of illu-
mination changes on the algorithm. Occlusion is a common situation in which a target
tracks a scene. Which appears as the gradual loss of target information, and the tracking
algorithm aims to search enough target information to determine the target location.
Thus, occlusion causes uncertainty to the reliability of the target tracking algorithm,
possibly leading to unstable target tracking or even loss of target.

According to the aforementioned analysis and discussion, factors affecting the
performance of the moving target tracking algorithm include environmental factors,
target features, and tracking interference factors. Tables 1, 2, and 3 present the three
types of common factors.
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Table 1. Environmental factors

Feature classification Feature description Parameter description

Background Background texture and color Target feature similar background
other background

Weather Atmospheric transparency Sunny day
Foggy day

Rainfall Rainy day
Snowy day

Brightness change Shading Occur

Table 2. Target characteristics

Feature classification Feature description Parameter description

Number of targets Average number of targets per frame Number of targets (ones)
Maximum number of targets Number of targets (ones)

Average target scale Point target Area value (pixels)
Shaped target Area value (pixels)

Speed feature Uniform speed (fast/slow) Speed value (pixels/s)
Acceleration/deceleration Acceleration value
Short pause Pause time (frames)

Direction feature Turn/sudden turn Angle value
Target split Occur
Target consolidation Occur
In-plane rotation Occur
Out-of-plane rotation Occur

Scale change feature From far and near/from near and far Proportional value
Shape change feature Nonrigid deformation Occur

Table 3. Classification of tracking interference factors

Feature classification Feature description Parameter description

Target occlusion Target is obscured by the
background

Occur

Partial occlusion Width ratio (target and
obstruction)All occlusion

Target occlusion time Frames
Occlusion between
targets

Target crossing Occur

Camera-induced
interference

Camera shake Occur
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2.2 Selection of Image Sequences

Based on the above analysis. In this study, seven factors are selected for the perfor-
mance evaluation of the moving target tracking algorithm, and the level (value of the
factors) is appropriately categorized as follows:

2.3 Organization of Image Data Selection

Commonly used orthogonal tables can basically meet the needs. On the basis of the
seven factors and two levels listed in Table 4, Table L8(2

7) [21] is used to arrange this
test. Figure 1 shows the orthogonal table and the dataset.

The “Yes” in the table indicates that the set of image sequences clearly contains the
influencing factors. Out of all the factors in the seventh data set, C, D, and G are the
most significant. The trials are arranged according to a combination of factor levels in
the orthogonal experimental tables. The image sequence of the partial factor level
combination in Table is difficult to capture in actual situations, thus image synthesis
[22] can be considered, that is, the target is merged into the background image to obtain
an image that cannot be acquired. Orthogonal test method is a combination of complete
and simple contrast tests. The selected data are representative. Therefore, the repre-
sentative image sequence should be selected to evaluate the algorithm. In some cases,

Table 4. Factors affecting the performance of the algorithm

Level A B C D E F G

1 Y Y Y Y Y Y Y
2 N N N N N N N

A. Illumination change level Yes/No, B. In-plane rotation level Yes/No, C. Out-of-plane rotation
level Yes/No, D. Scale change level Yes/No, E. Similar to background level Yes/No, F. Target
deformation level Yes/No, G. Target occlusion level Yes/No

Fig. 1. Experimental dataset
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the experimental scene required for the combination of some factors cannot be obtained
by shooting due to certain reasons or the acquisition of this part of the image sequence
is costly. For example, in important military applications, missiles pursue aircraft
targets. To improve the performance of missile pursuit targets, a large amount of
aircraft image data is needed to experiment on and improve the algorithm. Image
synthesis is an effective means to combine data sequences that are not easily available
artificially. The key is to make it close to the real sequence of images. Therefore, image
synthesis is crucial in image sequence motion target detection and tracking algorithm
evaluation (Fig. 2).

2.4 Test Dataset Structure

Figure 1 shows the data selected for the experiment. The eight rows of data represent
the test data for groups 1–8, and each group has three image sequences to avoid failure
in the test caused by the extreme condition of the image sequence. The three image
sequences selected in each group of experiments meet the requirements of experimental
factors and horizontal combination, and the result of this group of experiments is
obtained by using the weighted average sum method for the performance of the
algorithm obtained in it. Figure 3 shows that the combination of several factors
required by Table 5 in each selected image sequence combination is significant.
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... Result
Value1

Initialize

...
Result
Value2

Initialize

... Result
Value3

Sequence 1

Sequence 2

Sequence 3

Fig. 2. Intragroup test
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Distribution of image sequence factors selected by each group

Similar to background Target deformation Target occlusion Out-of-plane rotation
In-plane rotation Scale change Illumination change

Fig. 3. Distribution of group factors
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3 Orthogonal Test Evaluation Method

3.1 Evaluation Framework

After obtaining the test image sequence, the algorithm test and data analysis can be
performed. Figure 3 shows the framework of the performance evaluation method for
the moving target tracking algorithm based on the orthogonal test method. This
framework and mainly includes the following processes:

(1) Data selection. According to the orthogonal table arrangement, eight sets of image
data corresponding to the horizontal combination of orthogonal table factors are
selected and combined.

(2) Algorithm testing. The algorithm is used to perform target tracking on eight sets
of image data, and the results of each set of experiments are counted.

(3) Range analysis [23]. The range analysis method (referred to as the R method) uses
the mathematical statistics method to calculate the magnitude of the change of the
test index of the factor in the range of the orthogonal table. This range R value is
used to assess the primary and secondary relationships of each factor and obtain
the best algorithm performance and best combination of factors. If the value of Rj
is large, then the factor has an enhanced influence on the test results.

Kij ¼ Tij
r
; ð1Þ

Rj = Tij maxð Þ - Tij minð Þ: ð2Þ

(4) Verification test. The orthogonal test is a trial with a decreased number of gen-
erations. The combination of factors based on the test is not necessarily optimal,
but it can obtain improved algorithm performance. The combination of the pre-
ferred factors obtained by the test analysis and the combination of factors of the
optimal solution in the experiment are verified simultaneously to determine the
advantages and disadvantages (Fig. 4).

Select image 
sequence

Algorithm test

Range analysis

Optimal result

Preferred solution

Sort the effects of various 
factors on the algorithmPreferred solution result

Preferred solution is 
better

Evaluation result

YES

Fig. 4. Frame diagram of the performance evaluation method of the moving target tracking
algorithm based on the orthogonal experiment

44 R. Xi et al.



3.2 Selection and Construction of Evaluation Indicators

Various performance evaluation indicators, such as center error, area overlap rate, and
accuracy, were used in the moving target tracking algorithm. Pixel error refers to the
Euclidean distance between the center point of the predicted position and the center
position of the mark. Tracking failure and size of the frame cause the meaning of the
center to be unclear with the result of the index as a reference. The overlap rate S is
measured by using the ratio of the overlap area.

S ¼ rt \ ra
rt [ ra

ð3Þ

where rt and ra are the bounding boxes corresponding to the tracked and true obtained
frames, respectively. A frame is considered successful when the overlap rate is greater
than a certain threshold t0 (0 < t0 < 1). When the threshold changes between 0 and 1,
the success rate of the tracking changes. The curve displayed in this process is called
the success rate graph. The area under the success rate curve (AUC) [24] is equal to the
average overlap rate. Hence, a large area indicates the enhanced performance of the
algorithm. To verify the performance of the algorithm effectively, this study uses AUC
as the test measure under the combination of factors of the group.

The range Rj used in this paper indicates the magnitude of this factor’s impact on
the performance of the algorithm. A large Rj decreases the average overlap rate. The
structural index is used as the score of the algorithm under this factor, indicating the
relationship among the influencing factors.

Scorej ¼ 1� Rj
� �� 50 ð4Þ

When the value is set to 50, this value is basically close to the OTB indicator value.
Figures 5 and 6 compare the test scores with the OTB-related results, and each point
represents the score performance of the algorithm under this factor.
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Fig. 5. Score performance of the CXT algorithm
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4 Experimental Results and Analysis

Figures 7, 8, and 9 show that the application algorithm was tested item by item on eight
sets of datasets, which are eight sets of experimental results. The range analysis was
performed based on these results.
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4.1 Range Analysis

See Table 5.

Table 5. Range analysis process

Test group A B C D E F G TLD–
AUC
(%)

CXT–
AUC
(%)

1 Y Y Y Y Y Y Y 0.40 0.42
2 Y Y Y N N N N 0.30 0.39
3 Y N N Y Y N N 0.52 0.50
4 Y N N N N Y Y 0.55 0.49
5 N Y N Y N Y N 0.48 0.36
6 N Y N N Y N Y 0.43 0.11
7 N N Y Y N N Y 0.58 0.61
8 N N Y N Y Y N 0.39 0.56
TLD T1j 1.77 1.61 1.67 1.98 1.74 1.82 1.96 – –

T2j 1.88 2.04 1.98 1.67 1.91 1.83 1.69 – –

K1j 0.4425 0.4025 0.4175 0.495 0.435 0.455 0.49 – –

K2j 0.47 0.51 0.495 0.4175 0.4775 0.4575 0.4225 – –

Rj 0.0475 0.1075 0.0775 0.0775 0.0425 0.0025 0.0675 – –

Preferred A2 B2 C2 D1 E2 F2 G1 – –

CXT T1j 1.80 1.28 1.98 1.89 1.59 1.83 1.63 – –

T2j 1.64 2.16 1.46 1.55 1.85 1.61 1.81 – –

K1j 0.45 0.32 0.495 0.4725 0.3975 0.4575 0.4075 – –

K2j 0.41 0.54 0.365 0.3875 0.4625 0.4025 0.4525 – –

Rj 0.04 0.22 0.13 0.085 0.065 0.055 0.045 – –

Preferred A1 B2 C1 D1 E2 F1 G2 – –
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4.2 Analysis of Test Results

On the basis of the results of the range analysis in Table 6, the strong–weak rela-
tionship of the seven factors influence the performance of the algorithm. Target
deformation has the greatest influence on the algorithm performance, followed by
target occlusion, out-of-plane rotation, and illumination change, such as target scale
changes, background similarity, and in-plane rotation have a relatively weaker influ-
ence on the performance of the algorithm. The value of the average overlap rate is the
same as the AUC measurement. Table 7 shows that the evaluation result of the TLD
algorithm, and the value shown in the comparison chart of Fig. 5 are substantially close
to the average overlap rate.

Based on the evaluation result of the algorithm in OTB, the algorithm has the
lowest overlap rate under the target deformation factor. Thus, the target deformation
factor has the greatest impact on the performance of the algorithm, followed by target
occlusion, and out-of-plane rotation. The strength and weakness of the factors that
influence the performance of the algorithm are consistent in this study.

Based on the preferred results, the TLD algorithm has the best performance in the
case of illumination change and out-of-plane rotation, such that no scale change, target
occlusion, target deformation, background similarity, and optimal combination of in-
plane rotation are observed. The optimal combination is excluded from the orthogonal
experimental design table. To verify the optimization results of the orthogonal
experiment, the performance of the algorithm under the optimal combination condition
is tested. On the basis of the preferred results, the combination of image sequences with
the most significant factors of out-of-plane rotation and illumination variation is
selected. Figure 10 shows the dataset with the optimal combination.

Table 6. Algorithms in the object tracking benchmark and the performance of this test

Factor A B C D E F G

OTB TLD–average
overlap

48.3 37.4 45.2 46.0 48.9 47.1 46.7

Ours TLD� Scorej 47.6250 44.6250 46.1250 46.1250 47.8750 49.8750 46.6250
OTB CXT–average

overlap
49.3 37.0 45.7 47.2 52.1 48.7 48.5

Ours CXT � Scorej 48 39 43.5000 45.7500 46.7500 47.2500 47.7500

Table 7. Optimal combination of factors in the algorithm performance (preferred result)

Algorithm A B C D E F G

TLD N N N Y N N Y
CXT Y N Y Y N Y N
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The algorithm has an accuracy of 0.71 in the optimal combination data, and the
center error is 10.00, which is significantly lower than the other groups. Compared with
the index values of each group in the orthogonal table, the optimized combination
result obtained by the orthogonal experimental design method is effective.

The CXT algorithm also approximates OTB in terms of the relationship between
factors and algorithm performance, and the preferred combination results outperform
those of the other groups (Fig. 11).

5 Conclusion and Future Directions

This study proposed a performance evaluation method for moving target tracking
algorithm based on an orthogonal experiment. By importing the orthogonal test design,
the performance evaluation of TLD and CXT algorithms under different influencing
factors and levels are completed comprehensively and objectively with less test and
amount of data. The strong–weak relationship between the influencing factors and the
application scenario (combination of different factors) of the algorithm are obtained.
The experimental results show that the conclusions obtained by the method are con-
sistent with actual results, thereby solving the existing problems in algorithm evalua-
tion methods effectively, and the lack of factors that combine the performance of the
algorithm is ignored.

The application of the orthogonal table designed for the performance evaluation of
moving target tracking is an efficient, fast, and economical test method. In addition, the
introduction of the orthogonal test method into the performance evaluation of moving
target tracking algorithm also provides a reference for other image processing algo-
rithms. In future studies, we will further consider the multilevel quantification of factor
levels to optimize score accuracy and applicable scenarios.

Fig. 10. Dataset on the optimal combination scene of TLD algorithm

Fig. 11. Dataset on the optimal combination scene of TLD algorithm
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Abstract. In this paper, an improved Particle Swarm Optimization Algorithm
(GCPSO) is proposed to solve the shortcomings of the existing Particle Swarm
Optimization Algorithm (PSO) which has low convergence precision, slow
convergence rate and is easy to fall into local optimum when performing high-
dimensional optimization in the late iteration. First, the whole particle swarm of
the algorithm was divided into three sub-groups, and different ranges of inertia
weight x are set for balances global search and local search in each sub-group,
which improves the algorithm’s ability to explore. Then we add Gaussian per-
turbation with the greedy strategy to PSO to avoid the algorithm falling into
local optimum and improve the convergence speed. And finally, the proposed
algorithm is compared with Genetic Algorithm (GA), PSO and Grasshopper
Optimization Algorithm (GOA) to analyse its performance and speed. Through
experimental analysis, GCPSO has a significant improvement at convergence
speed, convergence accuracy and stability.

Keywords: Optimization algorithm � Greedy strategy � PSO � GA � GOA

1 Introduction

Optimization problem often appears in scientific research, and many engineering
problems ultimately boil down to optimization problems. It can be expressed as a
mathematical problem. It generally refers to the question of how to find a specific factor
(variable) under a given constraint to make the target reach the optimal value. The
optimization algorithm is used to solve the optimization problem, and the objective
function of the optimization problem is established as an optimization model to obtain
the optimal value. For the more complex optimization problems of non-linear, multi-
dimensional and global optimization, traditional optimization algorithms have been
difficult to meet the needs. And various intelligent optimization algorithms that are
inspired by bionics have a better solution in the complex optimization problem such as
Genetic Algorithm (GA), Particle Swarm Optimization Algorithm (PSO), and
Grasshopper Optimization Algorithm (GOA). And they have attracted the attention of
many scholars. Because of the high efficiency and strong convergence of this kind of
algorithm, more and more scholars have applied it to their respective fields and
achieved good results [1–3]. Genetic Algorithm (GA) is a meta-heuristic algorithm
proposed by Professor Holland [4] in 1975. Its principle on Darwin’s evolutionary
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theory of survival of the fittest. Genetic Algorithm takes all individuals in a group as
variable objects and represents the gene sequence in binary code form. The algorithm
searches for the optimal value within the range of the coded variables through the
genetic operations of selection, crossover and mutation, which retain the excellent
individuals and eliminate the poor individuals, and then form a new population. And
the optimal solution is obtained after repeated iterations. However, the convergence
efficiency of GA is low, and it is easy to converge prematurely. Particle Swarm
Optimization (PSO) is another metaheuristic algorithm proposed by Kennedy et al. [5].
This algorithm simulates the predation behaviour of a flock of birds. The solution of the
optimization problem is compared to a bird in the search space which called “particles”.
And all particles are searched in the space of the variable range, and the fitness value is
calculated by the optimized function to determine the distance of the current location to
the food. The algorithm finds the global optimal by updating the individual historical
optimal value and the overall population optimal value. The original PSO algorithm has
the disadvantages of slow convergence speed and low convergence precision. In order
to balance the local search ability and global search ability in the original PSO algo-
rithm, Shi et al. [6] proposed an improved algorithm with inertia weight x to adjust
convergence and convergence speed dynamically which is called the standard PSO
algorithm (For the convenience of description, PSO refers to the standard PSO algo-
rithm in this paper). However, there are two problems with the algorithms: the algo-
rithm is easy to fall into local optimization and has poor convergence precision when
performing high-dimensional optimization; the convergence efficiency is low when
entering the late iteration. For this reason, Li et al. [7] proposed an efficient and
improved particle swarm optimization strategy, which divides the whole population
into several sub-groups for the division of labor and information exchange to improve
the local search ability and global search ability of the algorithm. Grasshopper Opti-
mization Algorithm (GOA) is a new meta-heuristic algorithm proposed by Salemii
et al. [8] in 2017. The basic idea is based on the regularity of grasshopper cluster
activities and the model of group intelligence activities. The influencing factors are
wind direction, gravity, effects of other grasshoppers in the population and the optimal
position reached in the current population. However, GOA is not only easy to fall into
local optimum but also has high design complexity and time-consuming. Therefore, it
is necessary to improve the algorithm to get a better algorithm. And there are also some
other metaheuristics such as Grey Wolf Optimization Algorithms [9], Whale Opti-
mization Algorithms [10], etc.

Based on the work of Li, this paper improves PSO. The improved algorithm
(GCPSO) uses the variation of inertia weight and adds a Gaussian perturbation strategy
based on greedy thought to make the particles maintain strong vitality during the
evolution process. The algorithm was carried out on the benchmark functions and
compared with other intelligent optimization algorithms. Experiments show that
GCPSO has a significant improvement at convergence speed, convergence accuracy
and stability.
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2 GCPSO Algorithm

Co-evolutionary algorithm establishes two or more populations to establish competi-
tion or cooperation between them [11]. Each population enhances its performance
through its iterative strategy and interaction to achieve the purpose of population
optimization. Traditional particle swarm optimization algorithm uses a single group
iterative strategy. The algorithm has slow convergence speed and is easy to fall into
local optimum when dealing with high-dimensional complex functions so that the
satisfactory results cannot be obtained. This paper draws on the division strategy idea
of the co-evolutionary algorithm, combines Gaussian perturbation strategy based on
greedy thought [12], and proposes an algorithm (GCPSO) with the cooperative division
of labor based on greedy disturbance. The algorithm effectively compensates for the
defect. GCPSO is described as follows:

The whole particle swarm is divided into three subgroups: S1, S2 and S3. Each
subgroup has different iterative strategies. The subgroup S1 adopts the traditional
standard PSO iterative strategy, and the subgroup S2 adopts the global search to
enhance the strategy gradually. The subgroup S3 only uses the “social experience” part,
which considers the information sharing and cooperation between particles. Let xi
refers to the coordinate position of the particle i in the particle group, and vi is the
corresponding velocity, c1 and c2 are constant named learning factors, r1 and r2 are
uniform random numbers between [0, 1]; pbesti is the individual historical optimum of
the particle i and gbest is the global best value of the particle swarm. Let t be the current
number of iterations and T be the maximum number of iterations. Then the iteration
formula for each group is formulated as follows:

Population S1 : vi ¼ x1vi þ c1r1ðpbesti � xiÞþ c2r2ðgbest� xiÞ ð1Þ

Where, x1 ¼ x1max � t � x1max � x1min

T
ð2Þ

Population S2 vi ¼ x2vi þ c1r1ðpbesti � xiÞþ c2r2ðgbest� xiÞ ð3Þ

Where, x2 ¼ x2min þ t � x2max � x2min

T
ð4Þ

Population S3 vi ¼ x3vi þ c2r2ðgbest� xiÞ ð5Þ

Where, x3 ¼ x1 þx2

2
ð6Þ

Among them, x1, x2, and x3 are iterative weights, x1max, x1min and x2max, x2min

are the maximum and minimum values of the iterative weights, respectively. The larger
iterative weight has better exploration ability and global convergence ability, while the
smaller iterative weight makes stronger local convergence ability in the later stage,
which can get more accurate results. At the same time, to prevent the algorithm from
crossing the boundary, the boundary values vmin and vmax are set for the above velocity
term.
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The coordinate position xi of the particle i in each of the above subgroups is
updated by the formula:

xi ¼ xi þ vi ð7Þ

To further avoid the algorithm falling into local optimum, a Gaussian perturbation
is added to the global best position of the particles:

gbest ¼ gbest � ðcþ gauÞ ð8Þ

Where gau represents White Gaussian Noise, and c represents the interference
factor, which is a constant.

To increase the convergence rate, we add the greedy strategy idea and iterate
multiple times in the Gaussian perturbation process:

ð9Þ

Where M represents the maximum number of iterations and f represents the
function to be optimized, gbest fit ¼ fðgbestÞ.

The working principle of GCPSO is to divide the whole group into several sub-
groups and assign different evolution strategies to different sub-groups. Different sub-
groups exchange information by sharing global best information gbest to complete
group collaboration and accelerate the convergence speed. And Gaussian perturbation
with greedy thought is added to prevent local optimum and achieve fast and accurate
convergence. In GCPSO, the subgroup S1 is iterated according to the standard PSO.
And the inertia weight value x1 of S1 is linearly decreased, representing particle
optimization gradually evolves from the strong global convergence at the early stage to
the strong local convergence at the later stage, and the accurate convergence results are
obtained. The inertia weight value x2 of the subgroup S2 is linearly increased to
improve the global search capabilities of whole particle swarm and avoid the local
convergence of S1 in the later stage of the algorithm. The subgroup S3 only contains
the “social experience” part, that is, it only searches near the current optimal position so
that it can quickly converge to the current optimal position.

At the same time, to improve the convergence rate and further avoid the algorithm
falling into local optimum, the disturbance with the thought of greedy strategy is added.
GCPSO improves the efficiency and accuracy of optimization through the divide-and-
conquer strategy of cooperative thinking and greedy disturbances. The pseudo code for
GCPSO is given in Table 1.

A Cooperative Particle Swarm Optimization Algorithm 55



Table 1. The procedure of GCPSO.

Procedure:
Input: Iterator times: T; Dimension: D; Three population sizes; Disturbance times: M
Output: The global best particle’s position gbest and corresponding function value fbest
Initialize each particle i’s position ix1 and speed iv1 in swarm1;

Initialize each particle j’s position jx2 and speed jv2 in swarm2;

Initialize each particle l’s position lx3 and speed lv3 in swarm3;

Set speed boundary maxv and minv , inertia weight boundary 1minω , 1maxω and 2 minω , 2 maxω ; 
Calculate the fitness of each particle;
Set i ipbest1 x1= , j jpbest2 x2= , l lpbest x3= for each particle in three populations;

Update the gbest position of all particles in three populations;
While  ( t T≤ )

Set inertia weight 1ω using Eq.(2);
For each particle in swarm1
        update the speed formula by the Eq.(1);
        update the position of the current particle by the Eq.(7);
End For
Calculate the fitness of each particle in swarm1;
Update the position pbest1 for each particle in swarm1;

Set inertia weight 2ω using Eq.(4);
For  each particle in swarm2
        update the speed formula by the Eq.(3);
        update the position of the current particle by the Eq.(7);
End For
Calculate the fitness of each particle in swarm2;
Update the position pbest2 for each particle in swarm2;

Set inertia weight 3ω using Eq.(6);
For  each particle in swarm3
        update the speed formula by the Eq.(5);
      update the position of the current particle by the Eq.(7);

End For
Calculate the fitness of each particle in swarm3;
Update the position pbest3 for each particle in swarm3;

Update the position gbest of all particles in three populations;
For  k=1 to M
     Update the gbest position by the operation (9);
End For
t t 1← + ; 

End While
Return gbest and fbest . 
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3 Experiments and Analysis

In this section, we focused on the effect of the improved particle swarm optimization
algorithm in global optimization. Ten classical benchmark functions [13, 14] in Table 2
are used to test the algorithm. The functions f1 � f6 are unimodal functions, and the
functions f7 � f11 are multimodal functions. The expressions and parameters of the
functions are shown in Table 2. Dim represents the dimension of the function, and
Range represents the range of values of each variable of the function, fmin represents
the minimum value of the function, and D represents the dimension of the function f7.

The improved algorithm-GCPSO is compared with PSO, GA and GOA in function
optimization experiments. For comparing the experimental performance of each
algorithm quantitatively, the maximum number of iterations is set as 1000 in the
experiment. The experimental parameters of each algorithm are given in Table 3.

Table 2. Description of benchmark functions.

Fun Dim Range fmin

f1(x) ¼
Pn

i¼1 x
2
i 30 [−100, 100] 0

f2(x) ¼
Pn

i¼1 xij j þ Qn
i¼1 xij j 30 [−10, 10] 0

f3(x) ¼
Pn

i¼1

Pi
j¼1 xj

� �2 30 [100, 100] 0

f4(x) ¼ maxi xij j ; 1� i� nf g 30 [−100, 100] 0

f5(x) ¼
Pn�1

i¼1 ½100ðxiþ 1 � x2i Þ2 þðxi � 1Þ2� 30 [−30, 30] 0

f6(x) ¼
Pn

i¼1 ix
4
i þ random 0 ; 1½ Þ 30 [−1.28, 1.28] 0

f7(x) ¼
Pn

i¼1 �xi sinð
ffiffiffiffiffiffiffi
xij jp Þ 30 [−500, 500] −418.9829*D

f8(x) ¼
Pn

i¼1 ½x2i � 10 cos ð2pxi)þ 10� 30 [−5.12, 5.12] 0

f9(x) ¼ �20expð�0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
x2i

r

Þ

�expð1
n

Xn

i¼1
cosð2pxiÞÞþ 20þ e

30 [−32, 32] 0

f10(x) ¼ 1
4000

Pn
i¼1 x

2
i �

Qn
i¼1 cosðxiffi

i
p Þþ 1 30 [−600, 600] 0

f11(x) ¼ p
n

10sinðpy1Þþ
Xn�1

i¼1
ðyi � 1Þ2½1þ 10sin2ðpyiþ 1)� þ ðyn � 1Þ2

n o

þ
Xn

i¼1
u(xi; 5; 100; 4Þ

where yi ¼ 1þ xi þ 1
4

; u(xi; a,k,mÞ ¼
k(xi � a)m ; xi [ a

0 ; �a� xi � a

kð�xi � a)m ; xi\� a

8
>><

>>:

30 [−50, 50] 0
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3.1 Quality Analysis of Solutions

Table 4 shows the performance of GPSO, PSO, GA and GOA on different benchmark
functions. F denotes the benchmark function, ave denotes the average optimal value of
the function, std denotes the average standard deviation of the function value, and tim
denotes the average running time of the algorithm on the function. And each bench-
mark function was run many times to generate these statistical results. The dimension
of the experimental search space is 30-dimensional, and the population size is set to
300. The improved particle swarm optimization algorithm-GCPSO contains 100 par-
ticles per subpopulation, and each test function was run 30 times independently.

From the Table 4, we can see that the proposed algorithm-GCPSO takes a little
shorter time than other algorithms except for PSO, but the mean value of the function is
closer to the theoretical value than PSO. It indicates that GCPSO has advantages in
solving high-dimensional function problems. It effectively solves the problem of poor
convergence and local optimum of PSO in the later iteration period and improves the
accuracy of the solution. At the same time, GCPSO has lower average standard
deviation than PSO, which indicates that GCPSO improves the stability of the original
algorithm. Comparing GCPSO with GA, we can see that GCPSO has better results in
mean, standard deviation and running time for all functions except for a slight dif-
ference in the optimization of function f11. This shows that the GCPSO proposed in this
paper is much better than GA in convergence, convergence accuracy, optimization
speed and robustness. Compared with GOA, except for the function f7, GCPSO is also
in a leading position in three statistical parameters for benchmark functions: the
average time-consuming is short, indicating that GCPSO optimization speed is faster;
the mean value of the function is closer to the theoretical value, indicating that GCPSO
has better global convergence and convergence accuracy; the average standard devi-
ation is lower, indicating that GCPSO has higher robustness than GOA.

Table 3. Parameter settings.

Algorithm Parameter Parameter value

GCPSO Perturbation times: M 10
Interference factor: a 0.5
x1min, x1max 0.001, 0.9
x2min, x2max 0.001, 0.9
vmin, vmax −4, 4

GA Swarm size 300
Crossover probability
Mutation probability

0.6
0.001

PSO Swarm size 300
c1, c2 2, 2
xmin, xmax 0.4, 0.9
vmin, vmax −4, 4

GOA Swarm size 300
cmin, cmax 0.00004, 1
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3.2 Convergence Analysis of the Algorithm

Figure 1 shows the convergence curves of the function values varying with the number
of iterations on the benchmark functions under different optimization algorithms. And
the convergence curves for the functions f1 � f11 are arranged in the order from left to
right and top to bottom. In the lower right corner of the figure, the enlargement effect in
the yellow frame is given to show more clearly.

Table 4. Comparison of optimization results.

F GCPSO PSO GA GOA

ave std tim ave std tim ave std tim ave std tim

f1 5.8805e
−230

0 0.6725 0.1054 0.1749 0.5453 0.4606 0.1857 1.1866 0.0095 0.0045 357.4484

f2 4.9256e
−118

2.6887e
−117

0.7178 2.4504 1.3186 0.5789 0.2848 0.0713 1.4102 0.0371 0.0563 348.2115

f3 4.1432e
−118

0 2.8946 5.5406 2.9889 2.7797 9.9922e
+03

3.2617e
+03

3.0920 10.9614 4.8229 349.2198

f4 7.5103e
−118

3.6256e
−117

0.6809 1.2578 0.6080 0.5478 2.3943 0.5729 0.9109 0.2287 0.1603 339.9627

f5 28.4772 0.2550 0.9670 165.8761 138.1158 0.9180 162.0951 70.7509 1.1970 44.9997 34.5939 345.7606

f6 8.6464e
−05

9.4700e
−05

1.8967 0.0676 0.0368 1.7553 0.0027 9.4723e
−04

2.0853 0.0214 0.0042 341.6339

f7 −5.3806e
+03

639.7023 1.0790 −6.4752e
+03

697.6042 0.9488 −3.0650e
+03

421.7024 1.1954 −6.6520e
+03

852.6289 339.2142

f8 0 0 0.7485 55.5829 16.1783 0.7485 26.0967 11.6551 1.0943 36.1833 34.0773 345.8481

f9 8.8818e
−16

0 0.7693 2.1103 0.6317 0.7515 10.1765 6.8661 1.5543 0.6351 0.7783 350.7806

f10 0 0 1.0285 0.2342 0.2348 0.9198 1.0558 0.0163 1.6603 0.0223 0.0116 341.1963

f11 0.0206 0.0306 4.1695 1.8660 1.2255 3.9015 6.7226e
−04

3.2511e
−04

4.8457 0.5705 1.3724 361.6257

Fig. 1. Convergence curves.
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It can be seen from the Fig. 1 that the final convergence values of GCPSO on the
benchmark functions are the smallest except for the function f7, which indicates that
GCPSO has the best global convergence and high convergence precision, while the
other algorithms fall into local convergence on the benchmark functions, resulting in
low convergence and low convergence accuracy. Observing the convergence curves,
GCPSO can reach the minimum in the number of iterations less than 50 on most
functions, that is, the convergence rate is fast, and the PSO algorithm follows. This
shows that the proposed algorithm-GCPSO not only improves the global search ability
and convergence efficiency of PSO but also can find the optimal value more quickly.
Compared with other algorithms, the proposed algorithm-GCPSO can converge to the
optimal value stably and quickly, the global search ability of the algorithm is stronger,
and the convergence results are better.

In conclusion, the proposed algorithm-GCPSO has the characteristics of high
convergence efficiency, strong global convergence, high convergence accuracy and
good robustness.

4 Conclusion

The algorithm-GCPSO proposed in this paper borrows the divide-and-conquer strategy
of cooperative thinking to makes full use of the advantages of group division and
cooperation. And the algorithm combines the perturbation based on the greedy strategy,
which not only improves the convergence efficiency of the algorithm but also improves
the convergence accuracy of the algorithm. Experiments of 11 benchmark functions
show that GCPSO has great advantages in accuracy, speed and stability compared with
other algorithms. Future research will focus on simplifying the initial parameters and
more complex high-dimensional optimization problems to enhance the universality of
the algorithm.
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Abstract. Automatic natural language description for images is one of
the key issues towards image understanding. In this paper, we propose
an image caption framework, which explores specific semantics jointing
with general semantics. For specific semantics, we propose to retrieve
captions of the given image in a visual-semantic embedding space. To
explore the general semantics, we first extract the common attributes of
the image by Multiple Instance Learning (MIL) detectors. Then, we use
the specific semantics to re-rank the semantic attributes extracted by
MIL, which are mapped into visual feature layer of CNN to extract the
jointing visual feature. Finally, we feed the visual feature to LSTM and
generate the caption of image under the guidance of BLEU 4 similar-
ity, incorporating the sentence-making priors of reference captions. We
evaluate our algorithm on standard metrics: BLEU, CIDEr, ROUGE L
and METEOR. Experimental results show our approach outperforms the
state-of-the-art methods.

Keywords: Cross-modality retrieval · Image captioning · Semantic
attribute

1 Introduction

Image captioning aims to automatically describe an image with natural language
captions. It first grabs information of main objects, relationships among objects
and the scene context as well in the images, and then describes the informa-
tion with natural languages. Thus, it involves the techniques of both computer
vision and natural language processing. However, how to well represent the visual
information of images and describe them reasonably are still challenging. Thus,
image captioning is still a hot research topic. A mass of methods are proposed
to address these issues in recent years.
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Retrieval Based Caption: In retrieval base captioner, caption was retrieved
from captions of similar images in the training set. As we can see, retrieval
based methods need a large amount of annotated sentences for searching valid
similar descriptions. Ordonez et al. [20] utilize global image representations to
retrieve related captions from a large dataset and then transfer to the query
image. Devlin et al. [7] find the visually similar k-Nearest Neighbor (k-NN)
of the testing images in the training set, and then select best captions from
the captions of k-NN images based on highest average lexical similarity. Kiros
et al. [14] proposed an end-to-end method to train embedding mapping with
triplet loss. Faghri et al. [9] uses rank loss to optimize the embedding, which has
achieved the state-of-the-art performance in image-caption retrieval. However,
these approaches cannot generate novel descriptions.

Encoder-Decoder Based Caption: Image captioning has big progress in
recent years, because of deep learning based feature representation and sequen-
tial machine translation. Inspired by the end-to-end machine translation [2,6],
Encoder-Decoder captioner extract the visual feature of images with Convolu-
tional Neural Network (CNN) and then use Recurrent Neural Networks (RNN)
to translate visual representation into natural language descriptions [13,19,26].
Mao et al. [19] propose a multimodal Recurrent Neural Network (m-RNN) model
for generating captions, it consists of a CNN for image representation, a RNN for
text embedding. Vinyals et al. [26] adopt GoogLeNet as an image encoder and
apply LSTM [11] as the decoder. Karpathy et al. [13] attempt to align sentence
fragments to image regions, and then aim at generating descriptions of visual
regions using RNN. In the end-to-end translation framework, some approaches
introduce an attention mechanism to improve the performance of image cap-
tioning [18,28]. Recently, Reinforcement Learning (RL) [24] has been applied to
optimize the image captioning model by using the test metrics as rewards, such
as BLUE in [1] or CIDEr in [22], which improve the results distinctively.

Visual Attribute: Feeding high-level semantic concepts to RNN usually results
in better captioning results. Therefore, visual attributes are incorporated into
image captioning in many ways [27,29,30], among which attribute extraction is
one of the most successful method. Wu et al. [27] demonstrate that the high
level visual concepts play an important role in image captioning. They feed the
detected region-based attributes rather than CNN feature into the Decoder. Yao
et al. [29] confirm that feeding image feature to LSTM at the first time step and
feeding attributes at every step is the best choice. You et al. [30] use a Fully
Convolutional Network (FCN) [23] selectively focus on visual semantic words
while extracting image feature.

However, there are two issues need to be solved: (1) The detected attributes
emphasize on the general attributes in the training set, which may not the most
related to testing images; (2) Using attributes instead of visual features ignores
the spatial layout and context of the attributes. Once the information is lost, it
is hard to be recovered during decoding. To address these issues, we use cross-
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modal retrieval to find related captions for image. Considering the embedding
space should align feature of both objects and scene, we concatenate the scene
feature and object feature to build the multi-feature visual-semantic embed-
ding (MVSE++) based cross-modal retrieval. Retrieved captions are used to
re-rank the detected attributes, which pick the specific semantics. Then, we
map attributes into the CNN to extract their visual feature. This feature con-
tains objects, layout and context of general and specific semantic attributes. We
adopt the Bleu 4 similarity in the decoding to further use the specific semantics,
improving the performance of sentence generation. The framework of our method
is illustrated as Fig. 1. The experimental results on MS-COCO show our method
achieves the best performance on almost all evaluation metrics compared with
the state-of-the-art methods, especially, the BLEU 4 reaches 0.342 and CIDEr
reaches 1.058.

Fig. 1. The main framework of the proposed method.
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2 Our Model

In this paper, we propose a retrieval based attribute model for captioning task.
Our model consists of three parts: Attribute extraction by MIL detectors [10]
to obtain the general semantics existing in the testing image for captioning,
attributes re-ranking based on the specific semantics provided by MVSE++
retrieval and caption generation guided by BLEU 4 similarity. As the detec-
tors were obtained from the whole dataset, we think they can represent general
semantics of captions. We think specific semantics of an image can be provided
by other images which correspond to it, so we called retrieval semantics as spe-
cific semantics.

2.1 Image-Caption Retrieval

We propose to retrieve the captions for the input image in a multi-feature visual-
semantic embedding (MVSE++) space, which avoids the visual semantic miss-
alignment on both aspects of objects and scene context. In the original VSE++
based cross-modal retrieval method, the visual feature is extracted by the CNN
based object classifier trained on ImageNet dataset, which mainly focus on the
objects in images and lacks the scene information. Thus, we joint the object-scene
feature based visual-semantic embedding to retrieve the image specific captions.
The feature of image and semantic features of captions, which are encoded by
GRU as same as basic VSE++ method, which are mapped into the same space.
Thus, we can get the candidates in another modality in this common space by
finding near neighbors, which compose our specific semantics.

2.2 The General and Specific Semantics Jointed Visual Feature
Extraction

First, we need figure out what are the generally happened semantics in image
captions. Follow most attributes detection method, we analyze the distribution
of word frequency in the training captions, and collect 1000 most frequently
appearing words to build an attribute set A = {Att1, Att2, ..., AttN}, N = 1000,
as the common semantics. This set covers 92% words in all captions and acts as
the initial semantic categories for 1000 attribute detectors, which is trained by
a CNN based MIL model.

MIL views each training image as a bag of labels. An image I is a bag of
semantic features. For one attribute Atti, image is a positive sample if its caption
contains Atti, regions in the image build a positive bag, otherwise, it is a negative
sample and we think it is a negative bag. The MIL detectors are alternatively
optimized. Attributes usually describe complex and some of them cannot be
demarcated boundaries clearly, such as “red”, “holding” or “beautiful” etc. So
we follow the work of Lebret et al. [15], detecting attributes with a noisy-OR
version of MIL. We resize an image sample to 567×567 and feed into CNN, which
is based on a modified VGG 16 network. Five convolution layers in front are kept,
in order to maintain regional information for visual words extracting, we replace
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fc layers by three convolutions then obtain a fully convolutional network. So,
the penultimate convolution layer fc7conv represents image feature reserving
location information of original input image. After above steps, it generates a
12×12 coarse response map corresponding to slide the original CNN over image
with stride of 32 and get fc8conv’s output on each location. For each image
I, pAtti

j is the probability of sub-region j corresponding an attribute Atti, then
we calculate an integrated probability combine all regions probabilities in this
image as follows

pAtti = 1 −
∏

j∈I
(1 − pAtti

j ) (1)

We train the network with a multi-label classification task. The class is top
1000 frequent words and labels are built from the ground truth captions. This
is our MIL detector.

Given a testing image I, we detect a set of attributes A =
{Att1, Att2, ..., AttN} by MIL detectors obtain the general semantics existing
in the image for captioning. We obtain the specific semantics by retrieving
top sentences in MVSE++ space. We count the frequency of attribute Atti
in A as cAtti , which is used to reweight the original attributes probabilities
{pAtt1

att , pAtt2
att , ..., pAttN

att } as follows.

pAtti
re−att = pAtti

att + α ∗ cAtti (2)

In Eq. (2), α represents the weighting coefficient, means the proportion of
retrieved words in the overall attributes. According to Eq. (2), we re-rank the
attributes in A and selected top T attributes {Att1, Att2, ..., AttT }, whose prob-
abilities {pAtt1

re−att, p
Att2
re−att, ..., p

AttT
re−att} is defined as ρ, to maintain the testing-

specific attributes and reduce the influence of uncorrelated attributes. Finally,
we map the re-ranked attributes to fc7conv layer of CNN to obtain the general
and specific semantics collaborated visual feature. Corresponding visual features
of the re-ranked attributes are extracted as follows.

ρ′ =
T∑

i=1

ρifc8wi (3)

zre−att = ρ′ � GAP(fc7conv) (4)

where fc8wi is weight from fc7conv to fc8conv for Atti, � represents dot multi-
plication. GAP is global average pooling operation, which is a merging of region
feature so it can provide more details in image. We consider the zre−att as an
importance-weighted visual feature with the most caption-relevant information.
This feature is used as the input of LSTM to improve the accuracy of image
captioning. These re-ranked attributes contain a variety types of word such as
noun, adjective, verb and so on.
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2.3 Image Caption Generator

We use the LSTM model as caption generator. At t time step, LSTM is formu-
lated as below.

it = σ (Wixxt + Wihht−1) (5)
ft = σ (Wfxxt + Wfhht−1) (6)
ot = σ (Woxxt + Wohht−1) (7)
ct = ft � ct−1 + it � tanh(Wcxxt + Wchht−1) (8)
ht = ot � tanh(ct) (9)

where xt, ht and ct are input vector, hidden state and cell state of LSTM. W
represents the embedding matrix. σ is sigmoid function and tanh is hyperbolic
tangent. � represents dot multiplication of two vectors. xt, ht−1 and ct−1 are
given at each time step. it, ft, ot are input gate, forget gate and output gate
respectively.

Instead of feeding the simple image feature directly, we input the attributes
re-ranked image visual feature zre−att in Sect. 3.2 to LSTM as the “source lan-
guage”. Therefore, we establish a dependence relationship between words and
sentences in the training dataset. The decoder maximizing the probability of the
correct description is formulated by Eq. (10).

θ∗ = arg max
θ

∑
(I,S)

log p(S|zre−att; θ) (10)

we define S = {S1, S2, ..., SL} as a sequence of words. It usually uses chain rule
to model the joint probability of previously generated words as

log p(S|zre−att) =
∑L

t=0
log p(St|zre−att, S0 , ..., St−1), (11)

where N is caption length and log p(St|zre−att, S0 , ..., St−1) means the proba-
bility of generating the current word St conditioned on attribute based vector
zre−att and previously generated words.

During training, suppose we have image visual feature zre−att and its descrip-
tion sequence {S0, S1, S2, ..., SN , SN+1}, where S0 is the start symbol and SN+1

is the end symbol. Each element in the sequence is a one-hot word vector,
whose size is 11518. In the proposed approach, feature vector is mapped into
H-dimensional space by the embedding matrixe Wf . LSTM was initialized as
follows.

h0 = LSTM(Wfzre−att,0) (12)

The decoding procedure is given in Eqs. (13)–(15). After initializing LSTM,
one-hot word vector is embedded by WS as input vector. Hidden state ht at each
step is computed by LSTM and mapped into 11518-dimensional word space by
Wh. The generator is formulated to minimize the loss, which is the negative log
likelihood in Eq. (17).
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init (h) = h0 (13)
ht = LSTM(WSSt,ht−1), t ≥ 0 (14)
p(St| zre−att, S0, S1, ..., St−1) = Softmax(Whht) (15)

Similar to Chen et al. [4], LSTM network infers image descriptions in the
testing phase. We use retrieved sentences as references to guide the description
generation by comparing the similarities between current generated sentence and
top k retrieved captions. So during the generation of each sentence, it can correct
the deviation of focus, making descriptions fit the evaluation metrics. Inspired
by Devlin et al. [7], we introduce the consensus score concept that calculated by
the descriptions of similar images from the training set. This consensus scoring
function between image I and generated sentence S as

r(S, I) =
1
k

∑k

ω=1
ϕ(S, ω), (16)

where S is current generated sentence and I is the given image, the k sen-
tences {ω1, ω2, ..., ωk} are retrieved by image I using cross-modal embedding, and
ϕ(S, ω) is the similarity score between two captions: (S, ω). We choose BLEU 4
similarity function which measures 4-gram overlap. At each inference time step
of LSTM, the probability of generating is decided by log likelihood Eq. (11) and
consensus score Eq. (16) together. We use λ to balance these two terms, the final
predict probability as follow.

l(S, zre−att) = λ log p(S|zre−att) + (1 − λ)r(S, I) (17)

3 Experiments and Results

3.1 Datasets and Experimental Setup

MSCOCO contains 82,783 training images, 40,504 validation images and 40,775
testing images [17]. As MSCOCO is the most common dataset of image caption-
ing task and many related works only evaluate on it, we also explore evaluation
result of our model. Each image has five captions annotated by Amazon Mechan-
ical Turk (AMT). Since the original testing set of is not completely available,
we follow standard testing way of previous methods. For comparison with other
approaches fairly, we split the training set and validation set together into three
parts: training, validation and testing as Vinyals et al. [26] did. This split reserves
10% unused 5000 images of MSCOCO validation randomly for testing.

Network Architectures: As for feature extracting, we modify VGG 16 by
keeping the convolutional layers conv11 to conv53 and replacing the fully con-
nected layers fc7 fc8 with three fully convolutional layers. Finally, a MIL layer
is followed for visual attributes prediction. We select all attributes with prob-
abilities higher than 0.3 as candidate terms. For MVSE++, we implemented
ResNet 152 CNN trained on ImageNet and Places365 datasets to obtain two
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2048D feature vectors, which are concatenated as one 4096D visual feature. The
top 20 retrieved sentences are used as the specific semantic prior to re-rank can-
didate attributes to weight layer and output a 4096D feature vector. We feed
this feature to LSTM with a 512D state vector from Google NIC network for
captioning. All these models are trained on NVIDIA Titan Xp.

Evaluation Metrics: The methods are evaluated on the standard metrics:
BLEU n [21], CIDEr [25], ROUGE L [16] and METEOR [3] following coco-
caption [5]. BLEU measures the similarity between two sentences in machine
translation task, which is defined as the geometric mean of n-gram (up to 4)
precision scores multiplied by a brevity penalty on short sentences. CIDEr mea-
sures the consensus between generated descriptions and the reference sentences,
which is a specific evaluation metric designed for image captioning recently.
METEOR is defined as the harmonic mean of precision and recall of unigram
matches between sentences. For all the metrics, the higher is the better.

Baseline: In order to completely verify the effectiveness of our method, we
use an original VGG 16 to extract image features as baseline, however, without
attribute involves. We just make a common VGG Network to extract fc7 feature
as one 4096D vector which is fed into the LSTM directly.

3.2 Results and Analysis

For an intuitive presentation of our joint language retrieval attribute-conditional
approach, we design the following experiment. Table 1 shows how the language
retrieval results improve captioning accuracy. ATTR means an attribute based
feature only mapping visual concepts on fc7 fed into LSTM, its Bleu 4 score
just reaches 0.256. Re-ATTR means the model combined attribute with the
retrieval results, as we can see, Bleu 4 score rapidly increases to 0.32 while CIDEr
increases from 0.765 to 1.001, nearly one-third. Other metrics have an excellent
performance, too. B4-Re-ATTR model consists of visual attribute, MVSE++
retrieval based attribute distribution re-rank, and BLEU 4 similarity guidance
caption generation, that achieves the best performance on all metrics obviously.

Table 1. Results comparison on variety of parameters, testing on MSCOCO dataset
of 5000 images

Model Bleu 1 Bleu 2 Bleu 3 Bleu 4 CIDEr ROUGE L METEOR

Baseline 0.658 0.478 0.347 0.255 0.776 0.491 0.223

ATTR 0.663 0.481 0.347 0.256 0.765 0.491 0.226

Re-ATTR 0.730 0.561 0.423 0.320 1.001 0.540 0.260

B4-Re-ATTR 0.749 0.586 0.446 0.337 1.051 0.548 0.260
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We report performance of our method and other state-of-the-art methods
on MSCOCO in Table 2. The state-of-the-art algorithms are three main types:
(1) The simple encode-decode based model Google NIC [26], LRCN [8] and
m-RNN [19]. (2) Attention based methods such as Guiding LSTM [12] and
Soft/Hard Attention [28], and 3. High level attributes based model ATT FCN
[30], ATT CNN LSTM [27], (3) LSTM-A [29]. Experiment demonstrates that
our joint retrieval attribute-conditional approach achieves almost the excellent
performance on metrics, BLEU 4 is a more convincing evaluation metrics that
measures the matching degree between phrases. Our model has an outstand-
ing performance in BLUE 4, it reaches to 0.342, outperforms all the compared
state-of-the-art approaches. As for the specialized evaluation metric CIDEr, our
1.058 better than all the comparison methods, too. Soft/Hard Attention model
performances better than other models because of the “attention” mechanism.
However, our attribute model still has best results under most metrics. As the
same type, our approach performs better than ATT FCN, ATT CNN LSTM
and LSTM-A, it is not difficult to judge that our cross-modal retrieval method
provides effective scene context and spatial layout similarity of attributes for
image caption task. And BLUE 4 similarity is a key supplement in generation
stage.

Table 2. Performance of our proposed method and other state-of-the-art methods on
MSCOCO

Model Bleu 1 Bleu 2 Bleu 3 Bleu 4 CIDEr ROUGE L METEOR

NIC [26] 0.666 0.451 0.304 0.203 0.855 0.491 0.237

LRCN [8] 0.628 0.442 0.304 0.210 - - -

m-RNN [19] 0.670 0.490 0.350 0.250 - - -

Soft Attention [28] 0.707 0.492 0.344 0.243 - - 0.239

Hard Attention [28] 0.718 0.504 0.357 0.250 - - 0.230

Guiding LSTM [12] 0.670 0.490 0.360 0.260 - - 0.230

ATT FCN [30] 0.709 0.537 0.402 0.304 - - 0.243

ATT CNN LSTM [30] 0.740 0.560 0.420 0.310 0.940 - 0.260

LSTM-A [29] 0.730 0.565 0.429 0.325 0.986 0.538 0.261

Our model 0.730 0.561 0.423 0.320 1.001 0.540 0.260

Our B4 Model 0.749 0.586 0.446 0.337 1.051 0.548 0.260

Qualitative Analysis: In addition to the above exact results, we also draw
a qualitative analysis chart as Fig. 2 to show the superiority of our method.
It compares our model with the initial attributes model ATTR, two decoding
networks use the same LSTM structure so the gap of results only depends on
the differences of image features. We show some captioning examples from the
validation set. As we can see, the visual words often corresponds to salient objects
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Fig. 2. Qualitative analysis of attributes with caption retrieval result. The top line
shows simple visual attributes feature captions. The bottom line shows retrieval
reweighted descriptions.

or relationships of images. Since the retrieval based attributes provide both main
objects and surroundings, the captions of our final network have more fine details,
such as the type and number of objects, the color information and the spatial
relationship between goals. All the above results illustrate that our attribute-
conditional model guided by caption retrieval leads to an overall increase in
caption generation performance.

4 Conclusions

In this paper, we propose a novel caption generation approach based on
reweighted semantic attributes. We use cross-modality retrieval results to re-
rank key visual attributes in image and obtain an attribute-conditional feature,
on the other hand, retrieval results also provide BLEU 4 similarity information
to guide caption generating for testing image. For attribute extraction, a MIL
based VGG 16 network detects preliminary key attributes from sets of image
regions as candidates, these attributes always pay more attention on the regions
with richer semantic information in given image. For cross-modality retrieval, a
MVSE++ model searches similar captions in joint visual-semantic embedding
space. Then, we reweight the candidate attributes distribution according to the
retrieved similar image captions from the training set, moreover, the retrieved
captions also participate in sentence generating on the LSTM decoding stage.
Experiments verify the accuracy of our method. It outperforms several state-of-
the-art methods on MSCOCO 2014 dataset.



72 Y. Ding et al.

Acknowledgement. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grants 61571354 and 61671385. In part by China Post
doctoral Science Foundation under Grant 158201.

References

1. Bahdanau, D., et al.: An actor-critic algorithm for sequence prediction. In: 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France,
24–26 April 2017, Conference Track Proceedings (2017)

2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learn-
ing to align and translate. In: 3rd International Conference on Learning Repre-
sentations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track
Proceedings (2015)

3. Banerjee, S., Lavie, A.: METEOR: an automatic metric for MT evaluation with
improved correlation with human judgments. In: Proceedings of the Workshop
on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or
Summarization@ACL 2005, Ann Arbor, Michigan, USA, 29 June 2005, pp. 65–72
(2005)

4. Chen, M., Ding, G., Zhao, S., Chen, H., Liu, Q., Han, J.: Reference based LSTM for
image captioning. In: Proceedings of the Thirty-First AAAI Conference on Artifi-
cial Intelligence, San Francisco, California, USA, 4–9 February 2017, pp. 3981–3987
(2017)

5. Chen, X., et al.: Microsoft COCO captions: data collection and evaluation server.
CoRR abs/1504.00325 (2015). http://arxiv.org/abs/1504.00325

6. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing, EMNLP 2014, Doha, Qatar, 25–29
October 2014. A meeting of SIGDAT, a Special Interest Group of the ACL, pp.
1724–1734 (2014)

7. Devlin, J., Gupta, S., Girshick, R.B., Mitchell, M., Zitnick, C.L.: Exploring nearest
neighbor approaches for image captioning. CoRR abs/1505.04467 (2015). http://
arxiv.org/abs/1505.04467

8. Donahue, J., et al.: Long-term recurrent convolutional networks for visual recog-
nition and description. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 677–691
(2017)

9. Faghri, F., Fleet, D.J., Kiros, J., Fidler, S.: VSE++: improving visual-semantic
embeddings with hard negatives. In: British Machine Vision Conference 2018,
BMVC 2018, 3–6 September 2018, p. 12. Northumbria University, Newcastle, UK
(2018)

10. Fang, H., et al.: From captions to visual concepts and back. In: IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA,
7–12 June 2015, pp. 1473–1482 (2015)

11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

12. Jia, X., Gavves, E., Fernando, B., Tuytelaars, T.: Guiding the long-short term
memory model for image caption generation. In: 2015 IEEE International Confer-
ence on Computer Vision, ICCV 2015, Santiago, Chile, 7–13 December 2015, pp.
2407–2415 (2015)

13. Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image
descriptions. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 664–676 (2017)

http://arxiv.org/abs/1504.00325
http://arxiv.org/abs/1505.04467
http://arxiv.org/abs/1505.04467


Jointing Retrieval to Reweight Attributes for Image Caption 73

14. Kiros, R., Salakhutdinov, R., Zemel, R.S.: Unifying visual-semantic embeddings
with multimodal neural language models. CoRR abs/1411.2539 (2014). http://
arxiv.org/abs/1411.2539

15. Lebret, R., Pinheiro, P.H.O., Collobert, R.: Simple image description generator
via a linear phrase-based approach. In: 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Workshop Track
Proceedings (2015)

16. Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. Text Sum-
marization Branches Out (2004)

17. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

18. Lu, J., Xiong, C., Parikh, D., Socher, R.: Knowing when to look: adaptive attention
via a visual sentinel for image captioning. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017,
pp. 3242–3250 (2017)

19. Mao, J., Xu, W., Yang, Y., Wang, J., Yuille, A.L.: Deep captioning with multimodal
recurrent neural networks (m-RNN). In: 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference
Track Proceedings (2015)

20. Ordonez, V., Kulkarni, G., Berg, T.L.: Im2text: describing images using 1 million
captioned photographs. In: Advances in Neural Information Processing Systems
24: 25th Annual Conference on Neural Information Processing Systems 2011. Pro-
ceedings of a Meeting Held 12–14 December 2011, Granada, Spain, pp. 1143–1151
(2011)

21. Papineni, K., Roukos, S., Ward, T., Zhu, W.: BLEU: a method for automatic
evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, 6–12 July 2002, Philadelphia, PA,
USA, pp. 311–318 (2002)

22. Rennie, S.J., Marcheret, E., Mroueh, Y., Ross, J., Goel, V.: Self-critical sequence
training for image captioning. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 1179–
1195 (2017)

23. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic
segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)

24. Sutton, R.S., Barto, A.G.: Reinforcement Learning - An Introduction. Adaptive
Computation and Machine Learning. MIT Press, Cambridge (1998)

25. Vedantam, R., Zitnick, C.L., Parikh, D.: Cider: consensus-based image description
evaluation. In: IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, 7–12 June 2015, pp. 4566–4575 (2015)

26. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image cap-
tion generator. In: IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, 7–12 June 2015, pp. 3156–3164 (2015)

27. Wu, Q., Shen, C., Liu, L., Dick, A.R., van den Hengel, A.: What value do explicit
high level concepts have in vision to language problems? In: 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA,
27–30 June 2016, pp. 203–212 (2016)

28. Xu, K., et al.: Show, attend and tell: Neural image caption generation with visual
attention. In: Proceedings of the 32nd International Conference on Machine Learn-
ing, ICML 2015, Lille, France, 6–11 July 2015, pp. 2048–2057 (2015)

http://arxiv.org/abs/1411.2539
http://arxiv.org/abs/1411.2539
https://doi.org/10.1007/978-3-319-10602-1_48


74 Y. Ding et al.

29. Yao, T., Pan, Y., Li, Y., Qiu, Z., Mei, T.: Boosting image captioning with
attributes. In: IEEE International Conference on Computer Vision, ICCV 2017,
Venice, Italy, 22–29 October 2017, pp. 4904–4912 (2017)

30. You, Q., Jin, H., Wang, Z., Fang, C., Luo, J.: Image captioning with semantic
attention. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 4651–4659 (2016)



Pseudo Label Guided Subspace Learning
for Multi-view Data

Shudong Hou(B), Heng Liu, and Xiujun Wang

Anhui University of Technology, Maanshan 340122, China
{shudonghou,xjwang}@ahut.edu.cn, hengliusky@aliyun.com

Abstract. Multi-view spectral clustering methods could utilize the
complementary information from different views to increase the robust-
ness of clustering performances. Graph structures are usually revealed as
affinity matrices. A pseudo label guided spectral embedding algorithm
(PLGS) is proposed in this paper to enhance the consistence between
graph matrices and spectral clustering results. Through iteratively esti-
mating the pseudo labels of all samples and similarity matrices, the clus-
ter assignment vector could be calculated with more confidence. Exten-
sive experimental results on several benchmark datasets show promising
performance and verify the effectiveness of our method.

Keywords: Spectral clustering · Pseudo label · Multi-view data ·
Unsupervised learning

1 Introduction

In recent years, multi-view learning methods [1] have received increasing atten-
tions by exploring the consistency and complementary information of different
views. It is difficult to fuse the heterogeneous properties from various repre-
sentations together. If the relationships among different views are not modeled
appropriately, the performance may be degraded compared to the best single
one. The widely popular methods for multi-view learning are grouped into three
main categories: co-training, multiple kernel learning and subspace learning.

As a classical representative paradigm, co-training method [2] utilizes the
labeled data to train two classifiers, then categorizes unlabeled data separately.
Then the predictive samples with great confidence are added to the labeled
data to train the other classifier, and this procedure repeats. Multiple kernel
learning [3] is originally proposed to learn a kernel matrix through optimizing
a linear combination of kernel matrices. And it can be naturally extended to
fuse heterogeneous data sources. Subspace learning-based approaches [4,5] aim
to learn a common subspace shared by multiple views. The most typical method
should be canonical correlation analysis (CCA) [6] that finds a latent space where
the correlations of two projections are mutually maximized.

Different from pattern classification, data clustering aims at grouping vast
unlabeled samples into several clusters in such a way that samples in the same
c© Springer Nature Switzerland AG 2019
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https://doi.org/10.1007/978-3-030-31726-3_7
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cluster are more similar to each other and k-means clustering is the most well-
known method [7]. Spectral clustering (SC) [8] constructs a graph similarity
matrix and solves a relaxation of the normalized min-cut problem on this graph.
It has gained lots of attention because of its robust performance. For multi-view
data, it is assumed that all samples from different views share the same graph
structure. Multi-view spectral clustering aims at discovering this intrinsic graph
structure information exhibited by various data from several different views.
Each view of the same object includes special features may not be described
by other views. It is important to utilize the complementary information max-
imally and enhance the robustness of the final mixed clustering results. Hence
co-regularized spectral clustering [9] find the consistent clusterings across the
views through co-regularizing the clustering hypotheses. One challenging prob-
lems in spectral clustering methods is how affinity matrices are constructed.

Graph matrices are appeared in various methods when the local and global
structure information is needed. The graph structure is described by encoding
the pairwise similarities among all samples. However it is not reasonable to com-
pute all distances between any two samples if they are far apart from each other.
It is assumed that the data are satisfied with the local manifold structure. It is
more robust to only compute the nearby several samples to construct the simi-
larity matrix. Through a sparse similarity matrix, the local manifold structure
could be better exhibited without lots of unnecessary links. The k-nearest and
ε neighbours are widely adopted to compute similarity matrices since their sim-
plicity and effectiveness. However it is hard to select the best k and ε values.
Recently the graph matrix is optimized as a sub-problem when optimizing a
unified global objective function instead of the original pre-computed similarity
matrix [10]. Sparse [11,12] and low rank representation [13,14] could select the
local samples by self-expressive abilities. It formulates the graph matrix automat-
ically once the threshold is given. Multi-view low-rank sparse subspace clustering
(MLRSSC) [15] learns a joint subspace representation imposing both sparse and
low-rank constraint conditions. Kernel trick is utilized when the nonlinear exten-
sion is developed [16]. Multi-view learning with adaptive neighbors (MLAN) [17]
performs clustering and learns the graph matrix simultaneously. The obtained
optimized graph can be partitioned into the intrinsic clusters directly without
a back-end processing. In [18], the common consensus information is leveraged
instead of the weighted sum of different graphs. It is often happened that some
values or views of one object are missing in practice. For traditional multi-view
learning, this object is abandoned. By setting the connected weights correspond-
ing to missing instances as 0, incomplete multi-view spectral clustering with
adaptive graph learning (IMSC AGL) [19] could flexibly handle kinds of incom-
plete cases and prove its effectiveness in incomplete multi-view learning.

Clustering with adaptive neighbors (CAN) [20] tries to acquire a fixed k-rank
graph matrix and finish clustering using graph connected components without
a back-end k-means method. It is said that the initialization of k-means is a big
problem. However after the graph matrices is optimized, the initialization prob-
lem can be solved by repeating several times independently. And the restricted
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k-rank constraint on graph matrices needs more iterations to balance the
weighted factor. It is hard to judge which one costs more resources.

Inspired by learning to learn, a pseudo label guided multi-view spectral clus-
tering method is proposed in this work. The consistence between data and models
is maximally remained. If two samples do not share the same cluster assignment,
the neighborhood relationship is not reliable. At the first step, we assume all
paired samples have the same class label when the distance between them is more
close than others. This operation may create some misleading linking edges. We
hope to correct them by the following iterations. In each loop, only first k near-
est samples with the same cluster assignment are selected as reliable neighbors.
Then the similarity matrix is updated according to former spectral clustering
results. The true label is approximately estimated after several repeats.

2 Related Work

In this section, we will first review the basic principles of multi-view spectral
clustering. Then the CAN is revisited.

2.1 Spectral Clustering

Given a data set X = {x1, · · · , xn} ∈ Rd×n, spectral clustering methods need
to construct the graph matrix W first. Then the Laplace matrix is defined as

L = D − W (1)

Thus the objective function of spectral clustering can be defined as

min
F

Tr(FTLF ) (2)

s.t. FTF = I

The optimal F is solved by eigen-decomposition. Then the final clustering is
performed by using the formulated F as the low dimensional embedding of the
raw data X.

2.2 Clustering with Adaptive Neighbors

Spectral clustering actually is a graph theory-based method. Thus the clustering
task can be viewed as a graph cut problem. The ideal graph has exact c connected
components for c-class clustering. Usually this strong constraint is difficult to
satisfy due to the noisy and complex data distribution. For the sake of achieving
the ideal graph cut, a reasonable low-rank constraint is added when constructing
the similarity matrix S:

min
si∈Rn×1

n∑

i,j

‖xi − xj‖22sij + α‖S‖2F

s.t. ∀i, sTi 1 = 1, 0 ≤ sij ≤ 1, rank(LS) = n − c (3)
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where si is a column vector with j-th element as sij and LS is the Laplace matrix
of S [17]. In each iterative loop, the value of α is adjusted to automatically select
the local samples.

3 Methodology

The intuitive objective of multi-view clustering is mining the local common struc-
ture information. Since the unavoidable noise existed in each view, it requires
more focus to balance the weights when fusing all graph matrices together. Dif-
ferent from CAN, our proposed PLGS iteratively estimates the pseudo label of
all samples.

3.1 Model

For multi-view data, let X = {X1,X2, · · · ,XV } denotes the V -view feature sets
where Xv ∈ Rn×dv means the v-th feature set. In each feature set, the nearest
k neighbors are selected to construct the similarity matrix Si. Then the global
similarity matrix Sg is calculated by integrating all Si together. The classical
spectral clustering method is performed based on Sg. Lastly, the nearest neigh-
bors are corrected according to previous clustering results. Only the neighbors
that are in the same cluster are remained in the similarity matrix, otherwise this
pseudo label is not reliable and deleted. After the similarity matrix is updated,
a new clustering result is generated again.

The integrated objective function is defined as:

min
S,Q

Tr(QTLgQ)

s.t. ∀i �= j, cluster(qi) = cluster(qj)
&&Sij ≥ 0&&(xj ∈ K(xi)||xi ∈ K(xj)) (4)

where qi is the i-th column of Q, Lg is the Laplace matrix of Sg, K(xi) repre-
sents the nearest neighbors for sample xi and cluster is the assignment vector
calculated by SC methods. The main idea is finding a global optimized similarity
matrix that is consistent with the spectral clustering result.

3.2 Optimization

To solve this challenging problem, an alternative iterative solution is adopted.
The initial similarity matrix is constructed as follows:

S0
ij =

{
exp(−dist(xi, xj)2/(2σ2)), xj ∈ K(xi)||xi ∈ K(xj)
0, otherwise

(i, j = 1, · · · , n) (5)

where dist(xi, xj) means the distance between sample xi and xj . It is measured
by the weighted average of all views. For simplicity the weights of all views
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are set to be the same 1/v. Then the assignment vector cluster is acquired by
spectral clustering (2).

Instead of the strictly matrix rank constraints, the k-means method is uti-
lized to get the cluster assignment vector. Since its randomly initialization, the
clustering results are different from each other for individual replicates. So the
k-means are repeated for t times and the cluster assignment vector is computed
as follows:

{
clusterf (xi) = clusterf (xj), if #(clusterk(xi) == clusterk(xj)) ≥ θ

clusterf (xi) �= clusterf (xj), if #(clusterk(xi) == clusterk(xj)) < θ

(i, j = 1, · · · , n, k = 1, 2, · · · , t) (6)

where the function # means “the number of”. It records how many times these
two samples are in the same cluster. If this value is larger than the predefined
threshold θ, we let them share the same cluster in the final assignment vector
clusterf . According to the new generated cluster assignment vector, the simi-
larity matrix is corrected by deleting the inconsistent values.

S
(t+1)
ij =

{
St
ij , if cluster(xi) = cluster(xj)

0, otherwise
(i, j = 1, · · · , n) (7)

Based on the above analysis, the overall algorithm for solving (4) is summa-
rized in Algorithm 1.

Algorithm 1. PLGS Algorithm
Require:

Multi-view data X , the neighborhood size k and the repeat number t.
Ensure:

The graph Sg and cluster assignment vector label.
1: Construct the initial similarity matrix S according to (5).
2: Formulate the global similarity matrix Sg by integrating all similarity matrices

{S}Vv=1 from all V views.
3: while not convergence
4: Apply spectral clustering on Sg and get F by (2).
5: Perform t times k-means clustering and get assignment vector label using (6).
6: Update Sg by (7).
7: end while

4 Experiments

In order to evaluate the effectiveness of the proposed method, extensive experi-
ments are performed on several real-world multi-view datasets.
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4.1 Datasets and Settings

The experimental results are reported on four real-world datasets: UCI Digits1,
Reuters, 3-sources2 and Prokayotic. The detailed information of these datasets
are listed in Table 1.

In the experiments, two evaluation metrics are used to verify the effective-
ness of the proposed method. They are the accuracy and normalized mutual
information (NMI). The clustering accuracy is defined as

accuracy =
#correct decisions

#total decisions
(8)

And the NMI is defined as

NMI(μ, ν) =
2
∑c

i=1

∑ĉ
j=1

nij

n log
nijn∑c

i=1 ni

∑ĉ
j=1 nj

−∑c
i=1

ni

n log ni

n − ∑ĉ
j=1

nj

n log
nj

n

(9)

where nij denotes the number of data in cluster i and class j, ni and nj denotes
the data number belonging to the ground-truth (μi) and clustering result νj
respectively.

Table 1. Statistics of the multi-view datasets

Dataset Samples Views Clusters

UCI Digits 2000 6 10

Reuters 600 5 6

3-sources 169 3 6

Prokayotic 551 3 4

4.2 Experimental Results

Five methods, including spectral clustering, CAN, MLAN [17]3, MLRSSC and
its kernel extension [15]4, are used for comparison. All parameters of these algo-
rithms are set to values based on the respective source codes provided by their
authors. The experimental results are shown in Table 2. For SC and CAN, the
best single view result is reported.

Compare with spectral clustering, the performance of CAN is much better.
This shows that the adaptive neighbors are more reliable than nearest neigh-
bors. It is hard to adjust the parameter values of MLRSSC and its results are
1 http://archive.ics.uci.edu/ml/datasets/Multiple+Features.
2 http://mlg.ucd.ie/datasets/3sources.html.
3 http://www.escience.cn/people/fpnie/papers.html.
4 https://github.com/mbrbic/MultiViewLRSSC.

http://archive.ics.uci.edu/ml/datasets/Multiple+Features
http://mlg.ucd.ie/datasets/3sources.html
http://www.escience.cn/people/fpnie/papers.html
https://github.com/mbrbic/MultiViewLRSSC
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Table 2. Performance of different methods on four multi-view datasets.

Dataset UCI digit Reuters 3-sources Prokaryotic

Accuray NMI Accuray NMI Accuray NMI Accuray NMI

SC-best 85.45 88.44 56.00 42.54 88.76 75.06 60.25 9.26

CAN-best 86.65 89.61 37.33 32.82 70.41 61.69 75.32 47.96

MLRSSC 88.22 87.21 46.27 33.88 69.08 59.59 65.93 32.62

KMLRSSC 81.70 77.08 45.17 32.67 60.65 52.13 65.05 40.80

MLAN 97.20 93.60 55.33 41.35 92.31 81.87 87.66 58.21

PLGS 98.15 95.72 60.17 43.86 92.90 83.84 86.21 59.92
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Fig. 1. The sensitivity analysis of k

not satisfying. The rank-constraint is remained during the whole processing in
MLAN while MLRSSC aims at optimizing a trace-norm minimization problem
actually. Our proposed PLGS utilizes the k-nearest neighbors and pseudo labels
of all samples to enhance the sparse and discriminative abilities of feature rep-
resentations. Its promising clustering results are presented to demonstrate the
effectiveness of PLGS.
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4.3 Parameter Sensitivity

A predefined k value needs to be determined for MLAN and PLGS. To further
verify the effectiveness of our proposed method, the sensitivity of k is analyzed
in Fig. 1.

Although the neighbors in MLAN are selected adaptively, its clustering
results are more sensitive compared with our PLGS. When the k value is large,
two methods almost have the same performances. If the k value is small, PLGS
usually performs better than MLAN.

5 Conclusion

In this paper, a pseudo label-guided clustering method is proposed to solve the
multi-view clustering problem. Instead of solving a rank constraint optimization,
we utilize a very simple idea to increase the sparse and discriminative abilities of
feature representations. For PLGS, the global similarity matrix is calculated by
average with the same weights. If the weights are carefully designed and iterative
estimated, a better performance will be reached.
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Abstract. In this paper, we present a novel dataset named MVB (Multi
View Baggage) for baggage ReID task which has some essential differ-
ences from person ReID. The features of MVB are three-fold. First, MVB
is the first publicly released large-scale dataset that contains 4519 bag-
gage identities and 22660 annotated baggage images as well as its surface
material labels. Second, all baggage images are captured by specially-
designed multi-view camera system to handle pose variation and occlu-
sion, in order to obtain the 3D information of baggage surface as com-
plete as possible. Third, MVB has remarkable inter-class similarity and
intra-class dissimilarity, considering the fact that baggage might have
very similar appearance while the data is collected in two real airport
environments, where imaging factors varies significantly from each other.
Moreover, we proposed a merged Siamese network as baseline model and
evaluated its performance. Experiments and case study are conducted
on MVB.

Keywords: Dataset · Re-Identification · Siamese networks

1 Introduction

At international airports, baggage from flights normally need to be scanned by
security check devices based on X-ray imaging due to safety issues and customs
declaration. To increase the customs clearance efficiency, X-ray security check
devices have been deployed in BHS (Baggage Handling System) at many newly
constructed airports. After flight arrivals, all check-in baggage will go through
security check devices, which are connected with conveyor of BHS. Therefore,
the X-ray image of each baggage is generated and inspected before baggage
claim. Currently, the common practice is attaching RFID (Radio Frequency
Identification) tags onto interested baggage right after security check devices, in
order to indicate the baggage to be further manually unpacked and inspected.
As passengers claim interested baggage with RFID tags and carry it to RFID
detection zone, alarms will be triggered.

Nevertheless, RFID tag detection has certain drawbacks. First, tags might
fall off in the process of transfer. Certain passengers might also deliberately tear
c© Springer Nature Switzerland AG 2019
Z. Lin et al. (Eds.): PRCV 2019, LNCS 11859, pp. 84–96, 2019.
https://doi.org/10.1007/978-3-030-31726-3_8
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off tags in order to avoid inspections. The loss of tags will directly result in
detection failures of interested baggage. Second, tagging need to be conducted
by manpower or certain equipment, which causes additional cost together with
the tag itself and might affect customs clearance rate. Moreover, baggage of
metal material surface will interfere with detection signal of RFID tags, thus it
also leads to false negative cases.

Considering these defects, a security inspection approach that requires no
physical tags will show great advantages in avoiding detection miss and metal
interference, reducing costs, and increasing efficiency. An approach based on
baggage appearance images is thus employed. Concretely, images of baggage
appearance will be captured at BHS and bundled with inspection information
before baggage claim. While passengers carrying the baggage and entering the
customs checkpoint, i.e. the area for customs declaration and security check
before leaving the airport, the appearance image will be taken again. These
checkpoint images will be analyzed by comparing with those taken at BHS to
identify whether certain baggage is of interest. Practically, passengers often place
feature items such as stickers or ropes on baggage, which can serve as cues in
distinguishing baggage, thus each baggage could be to be unique within certain
time interval. Since the baggage is re-identified cross cameras, the process is
referred as baggage ReID later in this paper.

Similar to the person ReID [1], the baggage ReID task also faces chal-
lenges such as object occlusion, background clutter, motion blurring and vari-
ations of lighting, pose, viewpoint, etc. Particularly, some of these aspects
are even more challenging for baggage ReID. For instance, the baggage pose
often differs between images captured at BHS and checkpoint, as well as per
each baggage. It brings extra difficulties for applying part-based person image
retrieval approaches [2,16] to baggage ReID, since pedestrian in video surveil-
lance mostly remains canonical standing/walking pose. Meanwhile, similar to
vehicle ReID [3,4], baggage images from different view-points vary much more
than the case of person ReID. Furthermore, it is not uncommon that many bag-
gage has very similar appearance thus are less distinctive compared with person.
All these characteristics make baggage ReID a uniquely challenging task.

Recent years, research and application in computer vision have seen great
development, especially with the help of deep learning. An important enabling
factor of the rapid development of deep learning is the availability of large scale
datasets [5,6,10]. Taking person ReID as example, datasets such as Market-
1501 [7], MARS [8], CUHK03 [9], etc., have contributed to improving the state-
of-the-art performance continuously [16,19]. These large-scale datasets played a
key role to evolve the person ReID task from lab problem to real-world industrial
application.

In this paper, a large-scale baggage ReID dataset called MVB (Multi View
Baggage) is proposed. First, as a large-scale image dataset, MVB consists of
4519 baggage identities and 22660 annotated hand-drawn masks and bounding
boxes, as well as surface material labels. Second, all baggage images are cap-
tured by specially-designed multi-view camera system to handle pose variation
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Fig. 1. Baggage ReID application and multi-view camera system at: (a) checkpoint (b)
BHS.

and occlusion. The multi-view images contribute to obtaining 3D information
of baggage surface as complete as possible, which is crucial to the ReID prob-
lem, since there could be notably different textures on specific area of baggage.
Third, in real scenario at airports, the imaging factors like lighting, background,
viewpoint, motion, etc., are quite different between BHS and checkpoint, mak-
ing the baggage ReID task of our dataset tend to be a cross domain problem,
which is more challenging and inspiring. Moreover, baggage might have very
similar appearance thus are hardly distinctive. These aspects make our dataset
have remarkable inter-class similarity and intra-class dissimilarity which domain
adaptation approach [17,18] in person ReID could be applied. To the best of our
knowledge, MVB is the first publicly available baggage ReID dataset, which will
enable utilizing deep learning methods on baggage ReID and benefit research
and application on general object ReID tasks. Additionally, we also propose
baseline models using merged Siamese network with ablation study to under-
stand how baggage ReID performance benefit from features like self-attention,
hard example mining, foreground mask, etc.

This paper is organized as follows. In Sect. 2, MVB dataset will be introduced
in detail. Task and evaluation method on MVB will be given in Sect. 3. Baseline
models and corresponding experiment results will be shown in Sects. 4 and 5. In
Sect. 6, a short conclusion will be summarized.

2 Dataset

2.1 Raw Data Collection System

As raw data, images containing baggage are all captured at an international
airport. The baggage ReID application is illustrated in Fig. 1. The data collection
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process can be divided to two stages, i.e. BHS and checkpoint, both have multi-
view image capture system deployed.

In BHS stage, after unloaded from landed airplanes, baggage is put on BHS
conveyor and transferred to a security check device for X-ray scan in sequence.
At the entrance of the device, a portal frame is set up over the conveyor. In
order to get 3D information of baggage appearance as complete as possible,
three cameras were placed on different position of the frame to capture multi-
view images: right-front, top, and left-back respectively. These cameras receive
the trigger signal as baggage passes by and take three images simultaneously. As
the baggage being scanned by the device next to the frame, the generated X-ray
image can be inspected by staff or algorithm in real-time, then the information
of whether certain baggage is of interest is bundled with the multi-view images
taken by the cameras.

Table 1. Annotation statistics.

#Baggage images #Full-sized images Average views per identity

BHS 13028 13028 2.88

Checkpoint 9632 9237 2.13

Overall 22660 22265 5.01

The second stage for capturing multi-view images is at the checkpoint for cus-
toms clearance. According to procedure of customs clearance, passengers along
with baggage are required to pass through gate at checkpoint after baggage
claim. The checkpoint usually contains several gates. At each gate, four cameras
are embedded for multi-view image capturing. Two pairs of cameras are located
near the exit and entrance of the gate at each side, taking images against and
along the passenger moving direction respectively. The two pairs of cameras are
triggered in proper order to adapt many passenger actions such as pushing a
baggage cart, dragging/pushing a mobile suitcase, etc. The intention of embed-
ding four cameras is trying to capture baggage with different possible poses, such
as lying on baggage cart and standing on ground, considering the fact that in
some view the particular baggage might be heavily occluded by person or other
baggage.

2.2 Data Annotation

Based on the multi-view image capturing system, raw image data were collected
at an airport from actual flight during several days. In real case, a baggage ReID
pipeline consists of two sequential steps, baggage detection and baggage retrieval.
In this paper, the detection step is not considered in the pipeline of baggage ReID
for mainly two reasons. First, we have trained Faster-R-CNN [11] based object
detection models using annotated bounding boxes on full-sized images, it showed
that using detection result for retrieval task has almost the same performance
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compared to using ground truth. Second, a baggage can be identified means it
has at least one valid baggage image taken at BHS and checkpoint respectively.
Since there could be many hold-on baggage also appeared in checkpoint image
besides check-in baggage, the annotation for detection might bring the dataset
many irrelevant baggage which are unable to identify. Therefore, we refer baggage
retrieval as baggage ReID in our paper.

The annotation process can be described as follows. Images taken at BHS and
checkpoint would be annotated if there is a valid baggage. Valid baggage denotes
that one integrated surface of baggage is exposed at checkpoint or more than
50% of baggage surface is exposed at BHS. Each mask is a hand-drawn polygon
and each corresponding bounding box is then cropped as minimum enclosing
rectangle of annotated mask. Because there are four camera views at checkpoint
and three camera views at BHS, the first annotation for ReID is to couple the
same baggage separately based on time. The second step is finding the same
identity between checkpoint and BHS, which is quite a time-consuming work.
Therefore, a ReID model is trained based on a few identities and computed the
scores of similarity between baggage at BHS and checkpoint, the ground-truth
identity would be much easier to locate based on ranking. At last, the annotator
confirms that each identity consists of images from BHS and checkpoint.

MVB consists of 4519 baggage identities and 22660 bounding boxes. Each
identity is examined to be unique. For each bounding box, mask of baggage is
also given as annotation information. 22660 baggage images (13028 at BHS, 9632
at checkpoint) are cropped from 22265 full-sized images (13028 at BHS, 9237
at checkpoint). Most identities have three baggage images taken at BHS. The
number of baggage images at checkpoint gate for each identity fluctuates more.
Most frequent occurrence of missing baggage image from certain view at BHS is
due to missed camera capture, while at checkpoint is more often due to serious
occlusion caused by passenger body parts or cloth, baggage cart, other baggage
on cart or on ground. On average, each baggage identity has respectively 2.88
and 2.13 baggage images at BHS and checkpoint. The statistics of annotation is
listed in Table 1.

For better baggage ReID evaluation, the dataset has also provided the
attribute annotation of baggage surface material. The attribute labels of four
categories are: hard (metal, plastic, etc.), soft (fabric, leather, etc.), paperboard
and others (protective cover, etc.). Table 2 showed the sample baggage images
and label distributions.

Table 2. Surface material annotation.

Categories Hard Soft Paperboard Others

#Identities 2767 1120 198 434

Sample Image
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Table 3. Samples of inter-class similarity on MVB. Images in each row are from one
identity.

SHBtniopkcehC
View1 View2 View1 View2 View3

a

b

Table 4. Samples of intra-class dissimilarity on MVB. Blank cell indicates correspond-
ing view image is not valid. Images in each row represent the same identity.

SHBtniopkcehC
View1 View2 View3 View4 View1 View2 View3

a

b

c

d

e

2.3 Dataset Characteristics

In MVB dataset, each identity of baggage can be regarded as an individual
class containing several images taken at BHS and checkpoint together. It is
necessary to point out the characteristics of inter-class similarity and intra-class
dissimilarity. For inter-class similarity, we have to admit that some baggage is
naturally very hard to distinguish from each other according to their appearance,
even more difficult than the case in person ReID. For instance, Table 3 gives two
baggage that looks very similar but actually has different identities. The cues to
distinguish them are hiding in detail of images. Meanwhile, the images of BHS
and checkpoint are substantially different. The intra-class dissimilarity aspects
are listed in Table 4.
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Background: as most of images in Table 4 indicate, baggage images have quite
different backgrounds between BHS and checkpoint. In BHS images, background
mainly consists of black conveyor belt and security check device entrance. Mean-
while in checkpoint baggage images background varies from passenger body
parts, clothes, baggage cart, floor, etc.

Occlusion: other baggage on cart can easily lead to heavy occlusion in check-
point image as shown in Table 4d, while checkpoint image might be also partially
invisible in BHS image because surface is at bottom, which corresponds to the
case in Table 4c.

Viewpoint and pose: they are essentially unlike due to different locations of
cameras, and baggage can be in various poses such as Table 4a showed.

Lighting: lighting conditions at BHS and checkpoint are not the same which
often leads to color and reflection differences. For instance, Table 4b displays
obviously different color characteristic at BHS and checkpoint.

Motion blur: as passengers walking through checkpoint gate at different speed,
motion blur makes baggage image to be less distinctive, as shown in Table 4e.

All these above factors make baggage ReID on MVB a challenging and inspir-
ing task between different domains.

3 Task and Evaluation Metric

The task of baggage ReID on MVB is to assign a baggage identity to a given
probe by searching among gallery. In baggage ReID task on MVB, definition of
probe and gallery are not exactly the same as person ReID based on application
scenario. Due to the cross domain characteristic, probe and gallery are naturally
separated. Specifically, baggage will be taken appearance images at BHS before
the domain is transferred from BHS to checkpoint. Baggage will be detected
in checkpoint domain and then searched in BHS domain. Therefore, baggage
images captured at checkpoint and BHS are defined as probe and gallery respec-
tively. During test, gallery images from different views of the same identity are
supposed to be treated as a whole in identifying whether a probe corresponds to
a certain identity. Specifically, for each probe, inference result is supposed to be
a possibility rank of all identities rather than all gallery images. Information of
which gallery images belong to the same identity is given in test set, which can
be easily obtained due to the same trigger signal introduced in Sect. 2.1.

Among 4519 identities in MVB, 500 identities randomly selected from all
identities are reserved for test, while all the rest 4019 identities can be used for
training. For the 500 identities test set, there are 1052 probe images and 1432
gallery images. Each probe image will be matched with the 1432 gallery images
and a 500 id-length result vector will be output, indicating the sorted baggage
under certain similarity metric. How to incorporate matching results of probe
with multiple gallery images within an identity to single similarity value is left
to be determined by dataset user. CMC (Cumulated Matching Characteristics)
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is adopted as evaluation metric to measure the performance of baggage ReID
on MVB since there is only one ground-truth identity among gallery of 500
identities. In this paper, CMC at rank1 till rank3 will be evaluated.

4 Baseline Method

One nature of dataset MVB lies in large number of identities yet limited num-
ber of images within each identity, which might make classification scheme less
feasible. In this paper, verification scheme using deep neural network is adopted
for baggage ReID task. A basic Siamese network and a merged Siamese network
are introduced in Sects. 4.1 and 4.2 respectively.

4.1 Basic Siamese Network

Siamese network is originally put forward for verification of signatures [12]. Our
basic Siamese network takes in two input images, processes these inputs using the
same network architecture sharing parameters and subsequently produces two
feature vectors. Ideally the distance under certain metric between the two output
vectors indicates whether the two input vectors are from the same identity or
not.

In the basic Siamese network adopted in our baggage ReID task, VGG16 [13]
is used as backbone model to extract output feature vectors for input probe and
gallery image. Euclidean distance between these two feature vectors is further
calculated as similarity metric. In training phase, contrastive loss is adopted as
loss function, with the intention of pushing Euclidean distance of same identity
feature vectors near while pulling different identity feature vectors apart.

4.2 Merged Siamese Network

Our proposed merged Siamese network treats the verification problem as binary
classification, as shown in Fig. 2. Concretely, feature maps for probe and gallery
image are extracted after the last convolution layer of VGG16. Then an element-
wise subtraction layer is conducted on the feature maps of two paths and the
output is fed into the fully connected layers for binary classification. The classifi-
cation part of network generates possibility of whether probe and gallery images
are from the same baggage identity, cross-entropy loss is adopted as loss function
in training.

Compared with the basic Siamese network, feature maps extracted after the
last convolutional layer contain more spatial information for further merging.
The motivation behind element-wise subtraction lies in that by such operation
co-located similar features at feature maps are suppressed while prominent dis-
similar features are emphasized, meanwhile the spatial information is reserved.
The subtraction output is further fed into binary classification network with
fully connected layers to learn a similarity metric, which has more nonlinear-
ity compared with Euclidean distance metric. Given the remarkable difference
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Fig. 2. Architecture of merged Siamese network.

between probe domain and gallery domain, batch normalization [15] is added
in Conv4 and Conv5, and it should be noted that all parameters except batch
normalization are shared for feature extraction of probe and gallery.

Considering that channels of feature map might have different representa-
tion power, a channel-wise module based on Squeeze-and-Excitation (SE) [14]
is inserted after pooling layer in Conv4 and Conv5, aiming at learning
weighted inter-channel relationship explicitly. The motivation behind Squeeze-
and-Excitation module is to assign higher weight for more informative feature
channels meanwhile lower weight for less informative ones. In baggage ReID
problem specifically, feature channels can be reasonably assumed to be informa-
tive to different extent. For instance, channels in which more activated features
are from background rather than baggage should be suppressed. Since no exter-
nal information other than feature itself is needed, channel-wise attention in
form of SE can be viewed as a self-attention mechanism. The parameters for SE
module are shared between probe and gallery.

5 Experiments

The basic and merged Siamese networks that introduced in Sect. 4 are evaluated
on MVB dataset. 4019 identities and 500 identities are employed for training
and test respectively. Both Siamese networks are finetuned from a pretrained
VGG16 model, setting parameters in Conv1 and Conv2 to be frozen. Training is
performed on 4×NVIDIA Tesla P100 GPUs for 50k iterations with a minibatch
of 128 image pairs. All probe and gallery images are resized to 256 × 256 and
then randomly cropped to 224 × 224 in training phase.

For generating the pair data for Siamese network training, all positive pairs,
i.e. pair of baggage images with the same identity, among 4019 identities are
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used as training data, meanwhile negative training pairs are randomly sampled
among different identities, forming a training set balanced in positive and neg-
ative labels. The merged Siamese network is firstly trained on this balanced
training set with a few epochs. Then the output model is utilized to inference
each probe among 300 identities randomly sampled from 4019 identities for hard
example mining. False positive pairs with high probability are filtered as supple-
ment negative pairs then added to training set. The amount ratio of positive and
negative pairs in the augmented training set is roughly 1:2, and total number of
pairs is around 75k.

Training and evaluation are conducted on original baggage images and
masked baggage images respectively. The masked baggage image is generated
in a simple manner by keeping the pixel value inside the annotated polygon area
and setting pixel value outside polygon area as zero.

At test time, distance and possibility are inferenced between probe and each
image in gallery. For each identity, mean of nearest two distances is regarded as
the distance between probe and corresponding identity. Similarly, in classification
scheme, mean of highest two possibilities within each identity is regarded as the
possibility of same identity. For the minority identities with only one gallery
image, computing mean value is replaced with the only distance or possibility.
At last, 500 identities will be sorted according to the mean value.

5.1 Performance and Ablation Study

Performance of proposed methods evaluated in form of CMC from Rank1 to
Rank3 on MVB is shown in Table 5. As shown, merged Siamese network shows
remarkably superior results compared to basic Siamese network, ca. 20% to 25%
boost at Rank 1, Rank 2 and Rank 3. Augmenting training set (ATS) by hard
example mining can effectively improve performance, ca. 1% to 2% for merged

Table 5. CMC of proposed methods at Rank 1, 2, 3 on MVB.

Siamese networks + Rank1(%) Rank2(%) Rank3(%)

Merged ATS SE Mask

20.15 34.51 43.92

� 24.24 39.16 48.00

� 22.05 36.22 44.01

� � 26.62 39.26 47.24

� 44.39 60.27 68.54

� � 46.39 58.46 65.49

� � 47.91 61.98 68.92

� � � 48.86 61.60 67.49

� � � 47.72 59.60 67.30

� � � � 50.19 61.31 68.73
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(a)

(b)

Fig. 3. Sample ReID results on MVB. Probe and Gallery images are not masked.
Probe images are listed in the left in blue box. Gallery images are displayed in order
of inferenced possibility. Gallery images with same identity as probe are bounded in
green box, otherwise in red. (a) samples of baggage re-identified in top 3, (b) samples
of baggage not re-identified in top 3. (Color figure online)

Siamese network at Rank 1 and ca. 3% to 5% for basic Siamese network at
Rank 1, Rank 2 and Rank 3. Further superior performance, i.e. 50.19% at Rank
1 is obtained by augmenting training set and inserting SE module on masked
bounding box. In real application, the most important metric is CMC Rank1,
and the highest value of our baseline model is produced by combination of all
model features.

5.2 Case Study

Sample baggage ReID results on MVB are shown in Fig. 3. As shown, our pro-
posed network can effectively retrieve baggage with similar appearance from
gallery and has detail discrimination ability to some extent. Nevertheless, there
are still cases where our network fails to represent more distinguishable details
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in retrieving baggage at top ranks. One possible reason is that our proposed
network mainly extracts a global rather than local feature vector for each probe
and gallery image.

5.3 Future Work

Baggage ReID is a research problem toward real-world application, thus the data
pipeline has been set up at certain airports and will be promoted to many others.
It can be expected that the scale of dataset will be continuously growing and
reaching to another order of magnitude within a short period of time. Meanwhile
we are organizing an open contest based on MVB for technology improvements
and suggestions of dataset usage. As shown in case study, a typical mismatch is
related to failing to amplify some important detail information, which is caused
by the feature extraction network mainly relying on global feature. Therefore,
ReID performance could be possibly improved by making better use of salient
details. Last but not least, the dataset potential as 3D object ReID should be
further exploited. For instance, the probe and gallery image both can be 3D
image, which is baggage 3D surface reconstructed by multi camera calibration
and visual SLAM; also one can apply key point detection to understand the pose
of baggage, then re-identify it based on 3D alignment with some geometric shape
constrains.

6 Conclusion

A new baggage ReID dataset named MVB is proposed in this paper. MVB con-
sists of 4519 baggage identities and 22660 bboxes along with mask and material
annotations. All data is collected in real scenario using specially-designed multi-
view camera system. This paper also presented a merged Siamese network as a
baseline model to work on the task of baggage ReID. Considering the large scale
and the challenging factors of MVB, it will significantly contribute to further
research on general 2D and 3D object ReID, especially with different domains.
The performance of merged Siamese network is also evaluated as baseline model
of the dataset. To access MVB dataset, please visit its corresponding contest
website http://volumenet.cn/, any feedback is greatly appreciated.
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Abstract. Personalized travel recommendation has become a significant
approach for people to find attractions in line with their interests from explosive
information. Existing personalized travel recommendation methods always
focus on travel history records but attach limited attention to acquire the high-
level representation of user’s travel preferences from multi-view heterogeneous
information. In this paper, we present a personalized travel recommendation
approach based on multi-view representation learning. In the proposed
approach, four-view representation obtained from rating, comment, image and
regional popularity of attractions are exploited to acquire user’s travel prefer-
ences by deep learning and pair-wise optimization. Specially, the aesthetic
features are extracted to describe the visual appeal of image, and the regional
popularity is introduced to represent the popularities of attractions in a region for
personalized recommendation. Finally, an attention module is utilized to auto-
matically learn the significances of four views to the user, and then the predicted
preferences is obtained through a weighted average pooling strategy. Extensive
experiments constructed on the real-world dataset we collected from tourism
websites have demonstrated that the proposed method based on multi-view
representation learning is effective and significantly improves the accuracy of
personalized travel recommendation.

Keywords: Personalized travel recommendation � Multi-view representation
learning � Multimodal information � Aesthetic attraction � Regional popularity

1 Introduction

Tourism has become an important lifestyle of public in recent years. It is troublesome
for user to find attractions in line with their interests to enjoy a high-quality travel from
explosive information [1–4], which is driving an urgent need for personalized attraction
recommendation to provide smarter travel advice.

Existing travel recommendation methods can be classified into two categories:
collaborative filtering (CF) [1, 8, 12] recommendation and content-based
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recommendation [3, 11, 14]. The performance of CF methods is significantly limited
because of the sparse of user-attraction matrix based on travel records. The content-
based methods can alleviate the data sparse problem, which employ various auxiliary
content information of attractions for travel recommendation. Some existing methods
[1, 2] combine additional information, e.g., tag of attractions, with matrix factorization
to provide travel advice. STM [3] and ATCF [4] utilize latent dirichlet allocation
(LDA) and author-topic model respectively to process textual data of users and
attractions for travel location recommendation. However, these methods only use
unimodal information but neglect multi-view information that affects user interest, such
as the visual feature of attractions.

Previous studies [5, 16] have shown that multi-view data containing complemen-
tary information is able to infer user preferences from different aspects, which is benefit
for personalized travel recommendation. For example, text comments can express
user’s opinions on various characteristics of attractions [17], and images can describe
visual information of attractions [18]. However, the heterogeneity of multimodal multi-
view information makes it difficult to be utilized in a uniform way for personalized
recommendation. DTM [6] uses dynamic topic model and matrix factorization to
excavate explicit feature and text information of attractions but ignore the image
information of attractions. PSA [7] exploits image, text and score to obtain the simi-
larity of attractions, with no consideration of the popularity of attractions influence on
user’s preferences. The difficulty in fusion multi-view heterogeneous information has
become a vital problem that limits the accuracy of personalized travel recommendation.

In fact, user’s travel decision is influenced by the regional popularity of attractions.
Thus, user tends to show different interesting when they are visiting different regions.
To handle the regional dynamic of user preferences, LSARS [10] incorporate uniform
geographical influence with user interest. While, LSARS fails to identify the different
influence of geographical factor on different travelers to provide personalized recom-
mendation. In addition, the visual appeal of attractions is also an important factor which
can influence the decision-making process of travelers. Most methods using attractions
image only utilize low-level semantic features, such as the scale-invariant feature
transform algorithm (SIFT features). The high-level aesthetic features which can
describe the visual appeal of image has not yet been considered in travel
recommendation.

In order to solve the problems, we propose a novel Personalized Travel Recom-
mendation via multi-view representation learning (PTRMRL) approach to mimic the
human decision process by fusing the information of rating, comment, image and
regional popularity of attractions. In our approach, multi-view representation learning
is adopted to learn more informative and compact representation of user and attractions
by exploiting the complementarity of multiple views. The high-level representations of
user preferences are acquired from multi-view heterogeneous information by deep
learning, then an attention module is utilized to automatically learn the significance of
each influencing factor on the user’s decision-making process. Finally, user’s travel
preferences in the destination are predicted after a weighted average pooling. The
model is optimized with the bayesian personalized ranking (BPR) optimization crite-
rion [19].
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The main contributions of this paper are summarized as follows:

1. A personalized travel recommendation approach via multi-view representation
learning is proposed to infer user’s travel preferences, which considers the content
effects, visual effects and regional popularity of attractions effects in a unified way.

2. The aesthetic features describing visual appeal of attractions are leveraged to model
the user’s aesthetic preferences into user’s travel preference to further improve the
travel recommendation performance.

3. A real-world travel dataset with multimodal heterogeneous information is estab-
lished, which includes three popular tourist destinations in China. Extensive
experiments constructed on the dataset have demonstrated the effectiveness and
superiority of the proposed method based on multi-view travel information.

2 Related Work

2.1 Deep Learning Based Recommender System

In recent years, deep learning has been gradually applied to recommendation systems
[20]. He et al. [21] introduce a neural collaborative filtering framework to model the
nonlinear relationship between user and item. Besides, deep networks are also adopted to
learn user and item features from heterogeneous data sources for recommendation in
some works. He et al. [22] utilize a trained (convolutional neural networks) CNN to
extract visual features from product images and combined the featureswith BPR.Yu et al.
[23] incorporate the clothing aesthetic features with a new neural tensor factorization
model for clothing recommendation. Kim et al. [24] adopt CNN to process product’s
review and integrate it with probability matrix factorization model. Zheng et al. [25]
proposed a novel deep cooperative neural network that can learn user behavior and
project attributes from comments. In recent years, the attention network has been proved
to be effective in improving the effect of personalized recommendation. Sidana et al. [26]
designed an attention network to distinguish which historical items in a user profile are
more important for item-based CF. Chen et al. [27] proposed a method consisting of a
two-layered attention network to select project features and historical items.

2.2 Personalized Travel Recommendation

To provide smarter travel recommendation for user, numerous efforts have been made
by researchers. Shi et al. [1] combine weighted matrix factorization and category-based
regularization for landmark recommendation. Zhang et al. [15] exploit user collabo-
rative filtering technology with trust friendship between users and geographic infor-
mation. However, the performance of traditional CF method is limited when the user-
attraction matrix is sparsity. Researchers explored richer auxiliary information to
alleviate the problem. Jiang et al. [4] adopt author topic model to learn user preference
from the textual description of attractions. These methods only use check-in data and
text information neglected geographic information. Zhao et al. [9] incorporate co-
geographical influence into a personalized pairwise preference ranking matrix
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factorization model for point-of-interest (POI) recommendation but ignored the content
information of POI.

3 The Proposed PTRMRL Framework

3.1 Problem Definition

We introduce basic concepts and notations used in this paper.

Definition 1 (Attractions): An attraction v is specific geographical areas, such as
parks, etc. Each attraction v contains information including images, texts, ratings.
Definition 2 (User Visit Activity): A visit activity c is represented as c = (u, vi, l,
rui), which means that user u has visited an attraction vi in city l and writing a rating
rui. We define a user-attraction interaction matrix as R 2 Rm�n, where m, n are the
number of users and attractions respectively. rui denotes (u, i)-th entry of R. rui = 1
means that user u has visited attraction vi, rui = 0 means that attraction vj haven’t
been visited by user u.
Definition 3 (Attractions Recommendation): Given a target user u and a target city
l he/she plans to visit (i.e., a query q = (u, l)), the target is to recommend a group of
attractions in city l that user u would prefer to visit.

3.2 Architecture

Intuitively, we assume that when user choose an attraction to visit he/she will be
affected by following factors: (1) the content of the attraction whether matches his/her
interesting; (2) the visual of the attraction whether matches his/her aesthetic prefer-
ences; (3) the popularity of the attraction in the region. In addition, the factors men-
tioned above have different impact degree on users’ decision-making process of travel.
The proposed PTRMRL method modeling user preferences from four views with
respect to user’s content preferences, user’s aesthetic preferences and user’s rating
preferences and the regional public’s preferences. The framework of PTRMRL is
depicted in Fig. 1.

Given a user u and attraction v which is located in region l, uk and vk denote the
representations of user u and attraction v respectively in different views, k ε K, K = {s,
t, p, l}. s represents rating view, t represents comment view, p represents image view,
and l represents regional popularity view. Especially, ul denote the representation of the
public in region l. Finally, user-attraction preferences score is obtained by merge the
representations of the user and the attraction in each view with an attention network and
weighted average pooling strategy.

Objective Function. The proposed method is optimized with BPR pairwise opti-
mization criterion, which models a triplet of one user and two items, where one of the
item is visited attraction vi and the other one is non-visited attraction vj by user u. Then
it is assumed that the user u prefers vi over vj. The objective function is shown as
follow:
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arg minL ¼
X

u;i;j2RB

X

k2K
f�½lnðrðakui � Uðuk; vki Þ � akuj � Uðuk; vkj ÞÞ�

þ kkðjjukjj2 þ jjvki jj2 þ jjvkj jj2 þ jjhkjj2Þg
ð1Þ

where hk is the network parameter in different views, akui and akuj denotes user u’s
preference degree for vi and vj on view k respectively. U is the inner product function,
kk is the regularization coefficient of different views to avoid overfitting. We employ
end-to-end stochastic gradient descent to optimizing the objective function.

Inference. After we obtain the optimized user and attraction representation uk and vk in
each view as well as the parameters of the attention network. Then the preferences
score that user u will put on the attraction vi can be predicted as:

Y ¼
X

k2K
akuiUðuk; vki Þ ð2Þ

The recommendation of attractions reduced to ranking problem among all items in
the destination based on the estimated score Y.

Fig. 1. Overview of the multi-view representation learning for personalized travel recommen-
dation (PTRMRL) approach, p represents image view, t represents comment view, s represents
rating view, l represents regional popularity view.
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3.3 Multi-view User Preferences Representation

Image View: Aesthetic-Aware User Preferences Representation. The visual appeal
of attractions is an important factor when a user chooses an attraction to visit. The CNN
features or SIFT features of images used in traditional travel recommendation methods
could not encode the visual appeal of images. While, the visual aesthetic quality of
images can measure the visual appeal of images in the human eye. Therefore, we adopt
the effective aesthetic neural network NIMA [13] to extract aesthetic features from
attractions image, and then the output of penultimate fully connected layer of the
network are obtained as attraction’s aesthetic features, which is a feature vector of
length 1024 � 1.

Considering different user has different aesthetic preferences, we propose a neural
network and personalized paired ranking model to learn the aesthetic-aware repre-
sentations of users and attractions. As shown in Fig. 2, pi and pj denote aesthetic
features of the attractions vi and vj respectively. The multi-layer neural network is
adopted to map aesthetic features of attractions into a latent space and the user is
mapped into the same latent space. The representations of the user up and the attraction
vpi in this view were obtained by the BPR pairwise learning, then the user aesthetic
preference score is predicted as: r̂pui ¼ Uðup; vpi Þ. The objective function is as follow:

arg min
u;v;h

X

u;i;j2RB

�lnðrðr̂pui � r̂pujÞÞþ kpðjjupjj2 þ jjvpjj2 þ jjhpjj2Þ ð3Þ

where hp is the network parameters. Only three hidden layers are used empirically. The
objective function for the comment view and the rating view is similar if the view is
used individually, we will not describe in detail in the following views.

Aesthetic 
Feature

Image of Attraction vi

User
Aesthetic 
Feature

Image of Attraction vj

vi
p vj

pup

Loss Function

ˆ p
uir ˆ p

ujr

pi pj

Fig. 2. The architecture of user’s aesthetic preferences
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Comment View: Content-Aware User Preferences Representation. In this section,
we present the modeling of textual comment to obtain the content features of attractions
and infer content-aware user’s preferences. A CNN network, which refers to as
TextCNN in the rest of this paper is adopted to process the reviews of attractions. More
details can be referred to [25]. First, all the reviews of attraction vi are merged into a
single document, consisting of n words in total after flited stop words, then each word
was mapped to n-dimensional distributed vectors by a trained word2vec model [28].
Then, reviews of attraction vi are represented as a matrix of word embeddings Ti and
inputted into TextCNN to learn an n-dimensional vector used in the next step. Finally,
we added a prediction layer to catch the nonlinear interaction between a user and an
attraction. The representations of the attraction vi in this view are denoted as vti,

vt ¼ f ðxtðTextCNNðTiÞÞÞ ð4Þ

where xt is the network parameter, and f is a non-linear activation function such as
sigmoid, tanh or relu. Similar to the image view, let ut denote the representation of user
u in this view. The user’s content preference score for the attraction vi can be estimated
as: r̂tui ¼ Uðut; vtiÞ.
Rating View: Rating-Aware User Preferences Representation. In this subsection,
we present the model for rating view. From the user-attraction matrix R, each attraction
vi is represented as a high-dimensional vector xi, which represent attraction vi’s rating
records among all users. Then xi is put into a multi-layer neural network to learn the
representation of attraction vi in this view.

vs
i
¼ f ð. . .f ðxs

2f ðxs
1xi þ bs1Þþ bs2ÞÞ ð5Þ

where xs
i and bsi (i = 1, 2.. .n) denote the weights and biases of layer i. Only three

hidden layers are used empirically. Similar to the image view, let us denote the rep-
resentation of user u in this view, then the preference score can be predicted as:
r̂sui ¼ Uðus; vsi Þ.
Popularity View: Popular-Aware Regional Public’s Preferences Representation.
Popularity of attractions strongly influence user’s visiting decisions. We use regional
public’s preferences to measure the attractiveness of popularity for user. This is the key
model to solve the problem of a user interest varies in different destinations. The
popularity of an attraction was reflected in the visited numbers by all travelers.

Given a region l, regional publics is all the users who have visited the region and
were mapped into a latent space denote as ul. The representations of the public ul and
the attraction vl in region l were obtained by latent factor model and pairwise learning:

argmin
X

l;i;j2Rl

� ln rðUðul; vliÞ � Uðul; vljÞÞþ klð Ul
�� ��2 þ Vl

�� ��2Þ ð6Þ

For each attraction vi 2 l, an attraction vj 2 l which is not as popular as vi were
selected as the corresponding negative sample. The training data are generated as
follows:
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Rl ¼ fðl; i; jÞjl 2 L ^ i 2 l ^ j 2 lni ^ pi [ p jÞg ð7Þ
where L represents the set of all destinations, pi and pj denote the popularity of attraction
vi and vj respectively. The preference score of publics for attraction vi is: rlui ¼ Uðul; vtiÞ.

3.4 The Attention Network

Considering the different impact degree of different influence factor in the user’s
decision-making process, we use an attention network to select important views for
each user based on the assume that the attentive weight of each view is related with the
embedding vectors of the user and the attraction in each view. The rationale is that the
embedding vectors of users and attractions are supposed to encode the information of
users and attractions. Then, for each user the attention score ak of each view is:

aðu; i; kÞ ¼ w2ReLUðwuu
k þwvv

k
i þ b1Þ ð8Þ

where wu, wv and b1 are the parameters of first layer, w2 is the parameter second layer.
The final weight of each view is obtained by normalizing the above attention scores
using SoftMax.

aðu; i; kÞ ¼ expðaðuk; vki ÞÞP

h2K
expðaðuh; vhi ÞÞ

ð9Þ

4 Experiments

4.1 Dataset and Evaluation Protocols

Dataset Description. We collect a large amount of heterogeneous travel information
from tourism websites-Mafengwo to build the dataset for following experiments. The
dataset contains approximately 40000 user interactions (rating, review, etc.) on
attractions and attractions’ metadata (descriptions, image feature, geographic location,
etc.) of three popular tourist destinations in China. The statistics of the dataset are
shown in Table 1. To filter out noise records, attractions visited by less than 10 users
and users reach less than two destinations are removed from the dataset. A typical
picture of each attraction was selected form the dataset to obtain its visual feature.
Finally, the dataset used for experiments contains 9157 users and 1407 attractions.

Table 1. Basic statistics of the experimental datasets

Destination User
(raw)

User
(filtered)

Attractions
(raw)

Attractions
(filtered)

Comments
(raw)

Comments
(filtered)

Shanghai 25125 7051 750 403 108736 53853
Beijing 33658 8244 780 591 188268 94345
Shaanxi 24797 6308 867 413 108716 50598
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Evaluation Protocols. In our experiments, the visited cities of each user were divided
into two sets training cities and the test city by visiting time. Note that, the visiting time
of training cities was earlier than the testing city. We provide top-N recommendation
list for each user in the testing set. To appropriately evaluate the overall performance
for ranking task, three representative top-N recommendation measures include Preci-
sion, Recall and NDCG with different cut-off value (e.g., P@5, P@10, R@5, R@10,
NDCG@5 and NDCG@10) [16] are adopted to evaluate the performance of
algorithms.

Implementation Details. We implemented our proposed method based on Ten-
sorFlow. The model parameters are randomly initialized according to the Gaussian
distribution (with a mean of 0 and standard deviation of 0.01). The different views were
pretrained independently and then merge the views with the attention network to train
as a whole. The learning rate is 0.001, We primarily set the batch size to 256, and set
the regularization coefficient as kl = kp = 0.01, kp = ks = 0.001.

4.2 The Impact of Embedding Dimension

The dimension of latent factor is an important parameter in latent factor model. Our
model is an extension approach of latent factor model. In this experiment, we studied
the effect of this parameter on the recommended performance by comparing our
approach with two latent factor model BPRMF [19] and DTM [6]. Specially, we use
BPRMF for model learning. The results are shown in Fig. 2. It can be seen from the
experimental results that the linear BPRMF model is greatly affected by the parameter
d. The DTM method can alleviate the influence of this parameter and improve the
latent-factor model’s stability to some extent due to the extra content regularization
term. Our model is less affected by the parameter d and performance stable and
robustness (Fig. 3).

4.3 Overall Comparison

To validate the effectiveness of our proposed method, we compared our method with
several travel recommendation algorithms POP, UCF [12], BPRMF [19], ATCF [5],
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Fig. 3. The impact of the embedding dimension
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STM [4], DTM [6] and deep learning-based recommendation method DeepCONN
[25]. The POP method recommends attractions based on popularity of attractions and is
non-personalized. Table 2 shows the performance of our method and other methods in
terms of precision, recall, NDCG, when the parameters are set to optimal parameters.

It is observed that the proposed method PTRMRL achieves the best performances,
which indicates that the recommendation accuracy can be greatly improved by acquires
user’s travel preference from multi-view heterogeneous information. From the exper-
imental results, we can draw the following conclusions: the POP method performs the
worst among all the methods, because the POP method only considers the popularity of
attractions without considering individual user preference. The UCF and BPRMF
performance worst among all personalized recommendation methods. Because of UCF
and BPRMF method only utilize the travel history records and suffered from the data
sparseness problem. ATCF added additional textual information in conjunction with
CF methods and obtain better result than UCF, which indicates that additional content
information is useful to alleviate the sparsity problem. DTM is superior to BPRMF
model by combines with extra textual information regularization terms with MF.

4.4 The Impact of Single-View Data on Recommendation Effects

The algorithm proposed in this paper utilized four views data include images, com-
ments, rating and regional popularity to infer user preferences. In order to prove that
multi-view information can effectively improve the travel recommendation

Table 2. Performance comparison on Precision, Recall, NDCG

Methods P@5 R@5 P@10 R@10 ndcg@5 ndcg@10

POP 0.128 0.135 0.097 0.183 0.175 0.184
UCF 0.282 0.247 0.225 0.349 0.369 0.382
BPRMF 0.229 0.273 0.229 0.354 0.331 0.357
ATCF 0.257 0.306 0.202 0.390 0.351 0.365
STM 0.265 0.270 0.208 0.375 0.343 0.361
DTM 0.333 0.291 0.277 0.447 0.394 0.430
DeepCONN 0.295 0.261 0.240 0.392 0.369 0.396
PTRMRL 0.353 0.311 0.291 0.467 0.440 0.471

Table 3. The effect of single-view data and multi-views data

Views P@5 R@5 P@10 R@10 ndcg@5 ndcg@10

Rating view 0.203 0.173 0.210 0.339 0.213 0.278
Image view 0.329 0.280 0.282 0.455 0.416 0.456
Comment view 0.152 0.122 0.156 0.234 0.177 0.211
Image + Region 0.348 0.310 0.285 0.464 0.433 0.464
Rating + Region 0.346 0.304 0.289 0.465 0.424 0.460
Comment + Region 0.334 0.296 0.284 0.456 0.405 0.446
All 0.353 0.311 0.291 0.467 0.440 0.471
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performance, we analyze the performance of each view in the PTRMRL model. The
results are shown in Table 3. The Rating + Region, Image + Region, Comment +
Region means that adopt rating, image and comments view incorporate with regional
popularity view respectively, all means all views are combined. It can be seen from the
experimental results that image view performance better than comments and rating
view, which indicates that attraction’s appearance is an important factor for travel
recommendation and user’s aesthetic preferences plays an important role in the tourism
decision-making process. The performance of the three single-view modules have been
improved after adding regional public’s preference, we can conclude that user’s visiting
record in the destination are deeply affected by popularity of attractions in the region.
The research on travel recommendation should pay more attention on the geographical
factors. Lastly, the performance is best when all views are combined, which indicates
that the model learning user’s travel preferences from multi-view data performance
better than the model which only utilized unimodal information due to the comple-
mentarity of multiple views.

5 Conclusion

In this paper, we propose PTRMRL approach to model user’s travel visiting behaviors,
which considering user’s aesthetic preferences, rating preferences, content preferences
and the influence regional popularity at the same time. PTRMRL utilized multi-view
travel information to alleviate the data sparse problem and effective improve the
accuracy of personalized travel recommendation through exploiting the complemen-
tarity of multiple views. However, there are still many shortcomings of our paper-
without considering the time, weather, as well as the user cold start problem, we will
improve it in the later research.
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Abstract. Human pose estimation has made significant advancement in
recent years. However, the existing datasets are limited in their coverage
of pose variety. In this paper, we introduce a novel benchmark “Fol-
lowMeUp Sports” that makes an important advance in terms of specific
postures, self-occlusion and class balance, a contribution that we feel is
required for future development in human body models. This compre-
hensive dataset was collected using an established taxonomy of over 200
standard workout activities with three different shot angles. The col-
lected videos cover a wider variety of specific workout activities than
previous datasets including push-up, squat and body moving near the
ground with severe self-occlusion or occluded by some sport equipment
and outfits. Given these rich images, we perform a detailed analysis of
the leading human pose estimation approaches gaining insights for the
success and failures of these methods.

Keywords: Pose estimation · Benchmark testing · Performance
evaluation

1 Introduction

Human pose estimation is an important computer vision problem [1]. Its basic
task is to find the posture of a person via recognising human joints and rigid
parts from normal RGB images. The extracted pose information is essential to
modelling and understanding the human behaviours, and can be used in many
vision application problems, such as virtual/augmented reality, human-computer
interaction, action recognition and smart perception.
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In the psst few years, pose estimation methods based on deep neural net-
work techniques have achieved great progress [2–4]. Although the performance
of some human pose estimation models (e.g. [5–7]) is almost saturated on the
above mentioned datasets, applying these high-precision algorithms to the other
specific industrial tasks shows a degradation in accuracy. For instance, one appli-
cation case is workouts or sports scoring. In this case, lots of activities have severe
self-occlusion or unusual postures, such as push-up and crunch. We find out the
models [8–10] trained on the MS-COCO dataset [11] cannot correctly detect
body joints with atypical postures, as shown in Fig. 1. In the top-right image of
Fig. 1, the right knee is falsely detected as left knee. In the top-left and lower-
part images of Fig. 1, some body joints, such as shoulders, knees and ankles, are
missed in prediction. Since the pose estimation results of the same person in the
standing posture are correct, we argue the false predictions are caused by the
abnormal postures. Current datasets lack the corresponding samples [12,13].

We use the MS-COCO dataset [11] as an example to analyse the distribution
of human postures. In our statistics, the number of human instances in stand-
ing posture achieves 102,495 (84.53%) while people in other postures only have
18,756 (15.47%) as shown in Fig. 2. The human instances in a horizontal position
or an uncommon pose are extremely rare. This makes the model unable to learn
the knowledge of irregular postures during training.

To improve the performance of human pose estimation in the certain sports
situation, a large-scale human keypoints benchmark is presented in this paper.
Our benchmark significantly advances state-of-the-art in terms of particular
activities, and includes more than 16,000 images of people. We used the workout
class videos as a data source and collected images and image sequences using
queries based on the descriptions of more than 200 workout activity types. For
each activity type, there are 3 different shot angles. This results in a diverse set of
images covering not only different workout activities, but contrasting postures.
This allows us to enhance the current human pose estimation methods.

2 Related Work

There are several human keypoints datasets presented in the past decades. Buffy
dataset [14] and PASCAL stickmen dataset [15] only contain upper-bodies, but
we need to process the full-body. In these two datasets pose variation is insignif-
icant. The contrast of image frames is relatively low in the Buffy dataset.

The UIUC people dataset [16] contains 593 images (346 for training, 247 for
testing). Most people in the images are playing badminton. Some people are
playing jogging, Frisbee, standing, walking, etc. There are very aggressive pose
and spatial variations. However, the activity type is limited in this dataset.

The sport categories of Sport image dataset [17] is more plentiful, which
including soccer, cycling, acrobatics, American football, croquet, golf, horseback
riding, hockey, figure skating, etc. The total number of images is 1299 (649 of
them are split as training set and the rest as testing set).

Leeds Sports Poses (LSP) dataset [1] includes 2000 images, where one half
for training and the other half for testing. The dataset shows people involved in
various sports.
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Fig. 1. Limitations of applying current pose estimation models on some workout pos-
tures, which have severe self-occlusion. Some body keypoints are falsely detected or
missed in prediction even the background is plain.

The image parsing (IP) dataset [18] is a small dataset and contains 305
images of fully visible people, where 100 images for training and 205 images for
testing. The dataset consists of various activities such as dancing, sports and
acrobatics.

The MPII Human pose dataset [12] consists of 24,589 images, in which 17,408
images with 28,883 annotated people are split for training. During the testing
stage, one image may contain multiple different evaluation regions that consist of
a non-identical number of people. [20] defines a set of 1,758 evaluation regions on
the test images with rough position and scale information. The evaluation metric
deploys mean Average Precision (mAP) of the whole body joint prediction. The
accuracy results are evaluated and returned by the staff members of the MPII
dataset.
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Fig. 2. The posture distribution of MS-COCO dataset. Around 85% human instances
are standing with good, upright posture.

The MS-COCO keypoints dataset [11] includes training, validation and test-
ing sets. On the COCO 2017 keypoints challenge, training and validation sets
have 118,287 and 5000 images respectively, totally containing over 150,000 people
with around 1.7 million labelled keypoints. In experiments, we perform ablation
studies on the validation set. To analyse the effect of training, we also combine
the COCO train set with the FollowMeUp train set to validate that new images
will not affect the model’s generality performance.

The DensePose-COCO dataset [19] has reannotated dense body surface anno-
tations on the 50k COCO images. These dense body surface annotations can be
understood as continuous part labels of each human body.

The PoseTrack dataset [13] includes both multi-person pose estimation and
tracking annotations in videos. It can perform not only pose estimation in sin-
gle frames, but also temporal tracking across frames. The dataset contains 514
videos including 66,374 frames in total. The annotation format defined 15 body
keypoints. For the single-frame pose estimation, the evaluation metric uses mean
average precision (mAP) as is done in [20].

3 The Dataset

3.1 Pose Estimation

The key motivation directing our data selection strategy is that we want to
represent rare human postures that might be not easily accessed or captured.
To this end, we follow the method of [21] to propose a two-level hierarchy of
workout activities to guide the collection process. This hierarchy was designed
according to the body part to be trained during the exercise. The first level is
the body part interested to be trained, such as shoulder, whereas the second
level is specific workout activities that can strengthen the muscles of shoulder.

Data Collection. We select candidate workout videos according to the hierar-
chy and filter out videos of low quality and those that people are truncated. This
resulted in over 600 videos spanning over 200 different workout types with three
shot angles. We also filter out the frames in which pose is not recognisable due to
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poor image quality, small scale and dense crowds. This step resulted to a total of
110,000 extracted frames from all collected videos. Secondly, since different exer-
cises have disparate periods, we manually pick key frames with people from each
video. We aim to select frames that either depict the whole one exercise period
in a substantially different pose or different people with dissimilar appearance.
The repeated or no significant distinction postures are ignored. Following this
step we annotate 16,519 images. We rough randomly split the annotated images
for training and use the rest for testing. Images from the same video are either
all in the training or all in the test set. We last obtain the train set of 15,435
images and test set of 1,084 images.

Data Annotation. We follow the keypoint annotation format of COCO
dataset, where 17 body keypoints are defined. This design facilitates us to
utilise the common samples of COCO dataset during training. Following [11]
the left/right joints in the annotations refer to the left/right limbs of the person.
Additionally, for all body joints the corresponding visibility is annotated. At
test time both the accuracy of joints localisation of a person along with the cor-
rect match to the left/right limbs are evaluated. The annotations are performed
by in-house workers and inspected by authors. For some unqualified and incor-
rect annotations are modified continuously until totally correct. To maintain the
quality of annotations, we arranged a number of annotation training classes for
all annotation workers to unify the standard of annotation. We also supervise
and handle some uncertain cases for workers during annotation.

Pose Estimation Evaluation Metrics. Some previous keypoints evaluation
metrics rely on the calculation of body limbs’ length, such as PCP, PCK and
PCKh used in [12]. However, the workout activities usually have specific postures
where the limb’s length may be near 0 if the limb is perpendicular to the image
plane and the evaluation is not numeric stable in these cases. Therefore compar-
ing the distance between points of groundtruth and prediction directly is more
sensible. Here we follow the COCO keypoints dataset, using 5 metrics to describe
the performance of a model. They are AP (i.e. average precision), AP0.5, AP0.75,
APM and APL, as illustrated in Table 1. In the matching between predictions
to groundtruth, a matching criterion called object keypoint similarity (OKS) is
defined to compute the overlapping ratio between groundtruth and predictions
in terms of point distribution [11]. If OKS is larger than one threshold value (e.g.
0.5), the corresponding groundtruth and prediction are considered as a match-
ing pair and the correctness of predicted keypoint types is further analysed.
Here OKS is similar to the intersection over union (IoU) in the case of object
detection. Thresholding the OKS adjusts the matching criterion. Notice that in
general applications, AP0.5 gives a good accuracy already. When computing AP
(averaged across all 10 OKS thresholds), 6 thresholds exceed 0.70 are over strict
due to unavoidable jittering in annotations.
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Table 1. Evaluation metrics on the COCO dataset.

Metric Description

AP AP at OKS∗ = 0.50 : 0.05 : 0.95 (primary metric)

AP0.5 AP at OKS = 0.50

AP0.75 AP at OKS = 0.75

APM AP for medium objects: 322 < area < 962

APL AP for large objects: area > 962

∗OKS–Object Keypoint Similarity, same role as IoU

4 Analysis of the State of the Art

In this section we first compare the leading human pose estimation methods
on the COCO keypoints dataset, and then analyse the performance of these
approaches on our benchmark.

The basis of the comparison is that we note that there is no uniform eval-
uation protocol to measure the performance of existing methods from a view
of practical application. Although human pose estimation is one of the longest-
lasting topics, and significant performance improvement has been achieved in
the past few years, some reported accuracies in these approaches are obtained
through several post-processing steps or some strategies used in the dataset
challenge. For example, performing multi-scale evaluation, refining results by a
different method, or precision is evaluated at one image scale while speed is
recorded at another scale. These post-processing steps interfere the judgement
in identifying the strength and weakness of an algorithm. Therefore, evaluating
a method without any post-processing steps and strategies is more objective and
more valuable for the research and practical application.

The aim of the analysis is to evaluate the generality of the current models
on the different datasets and their performance to the unseen samples, identify
the existing limitations and stimulate further research advances.

Currently, there are two main categories of solutions: top-down methods
[7,22–26] and bottom-up methods [9,10,27–30]. Top-down methods can be seen
as a two-stage pipeline from global (i.e. the bounding box) to local (i.e. joints).
The first stage is to perform human detection and to obtain their respective
bounding boxes in the image. The second stage is to perform single person pose
estimation for each of the obtained human regions. [7] deploys multiple high-
to-low resolution subnetworks with repeated information exchange across multi-
resolution subnetworks. This design obtains rich high-resolution representations
and leading more accurate result. [22] utilises a Symmetric Spatial Transformer
Network to handle inaccurate bounding boxes. [24] uses simple deconvolution
layers to obtain high-resolution heatmaps for human pose estimation. On the side
of bottom-up methods, [9] proposes a limb descriptor and an efficient bottom-
up grouping approach to associate neighbouring joints. [10] modifies the network
architecture of [9] and optimises the post-processing steps to achieve real-time
speed on the CPU devices. [30] designs two new descriptors based on [9] for body



116 Y. Huang et al.

Fig. 3. The comparison of the numbers of effective instance predictions and body
keypoints between top-down and bottom-up methods. The prediction number of top-
down method is around 10 times higher than bottom-up method.

joints and limbs with the additional variable of object’s spread. [28] presents a
network to simultaneously output keypoint detections and the corresponding
keypoint group assignments. [31] designs a feedback architecture that combining
the keypoint results of other pose estimation methods with the original image
as the new input to the human pose estimation network. In our analysis we con-
sider 8 state-of-the-art multi-person pose estimation methods, which are listed
in Table 2.

We compare the performance of each approach in terms of accuracy and speed
on the COCO dataset and our novel FollowMeUp dataset. All the experiments
are performed on a desktop with one NVIDIA GeForce GTX-2080Ti GPU. Since
all testing approaches are trained and optimised on the COCO dataset, their
open source codes have the corresponding configurations, we directly use their
default parameters in our testing.

4.1 Comparisons of Approaches on the COCO Dataset

Table 2 presents the comparison results of testing approaches on the COCO
dataset. The upper part of Table 2 are top-down approaches. [7] has the high-
est AP precision of 0.753. Note that the runtime costs around 50 ms as this
only includes the part of pose estimation since this open source library uses
the groundtruth of human bounding box as the human detection results on the
COCO validation set. [24] and [22] have a relatively lower accuracy than [7] using
smaller input sizes, which illustrates that the high-resolution and detailed rep-
resentation is important for the task of human pose estimation. Note that some
post-processing strategies, such as multi-scale and flip, are ignored to obtain the
actual performance in the real application environments.

For the bottom-up methods, [9] achieves the fastest speed. [30] attains the
highest precision in this group. The joint grouping part of [30] costs much longer
time than [9]. [10] has around 7% degradation compared with [9] due to using a
light-weight network architecture. We also see that the precision of bottom-up
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Table 2. Comparisons of pose estimation results on the COCO 2017 validation set.

Type Method AP AP0.5 AP0.75 APM APL Input size Runtime

Top-down HRNet [7] 0.753 0.925 0.825 0.723 0.803 384× 288 0.049∗

Xiao [24] 0.723 0.915 0.803 0.695 0.768 256× 192 0.110

RMPE [22] 0.735 0.887 0.802 0.693 0.799 320× 256 0.298

Bottom-up PAF [9] 0.469 0.737 0.493 0.403 0.561 432× 368 0.081

Osokin [10] 0.400 0.659 0.407 0.338 0.494 368× 368 0.481

PifPaf [30] 0.630 0.855 0.691 0.603 0.677 401× 401 0.202

AE [28] 0.566 0.818 0.618 0.498 0.670 512×512 0.260

PoseFix [31] 0.411 0.647 0.412 0.303 0.559 384× 288 0.250
∗: without human detection

algorithms are lower than top-down methods. After detailed analysis, we find
that the numbers of predicted effective keypoints of bottom-up methods are
around 10 times less than top-down methods as illustrated in Fig. 3. We note
that top-down methods correspond to performing single-person pose estimation
on each detected human region. Single-person pose estimation can output all
types of keypoints even the keypoint is occluded or truncated. However, for
multi-person bottom-up methods, two or more overlapping keypoints with the
same type can only be detected one due to depth information is not available
on the RGB image. For the COCO dataset, there are a lot of crowded and
occluded human instances. Therefore, the performance of bottom-up methods
is weakened. In the FollowMeUp dataset, the crowding case is rare while most
human instances have self-occlusion. We perform the same comparison on the
FollowMeUp dataset and validate that bottom-up methods have comparable
performance to top-down approaches in this circumstance.

4.2 Comparisons of Approaches on the FollowMeUp Dataset

Table 3 provides the comparison results of testing approaches on the COCO
dataset. Since the open source libraries of [7] and [24] do not provide default
human detection algorithm, using different human detector may bias the preci-
sion distribution, thus we do not test [7] and [24] on the FollowMeUp dataset.
We are surprised that [22] obtains a very high precision value. However, the
training set only including the COCO dataset of [9] just achieve the precision of
0.778. We argue that the training set of [22] may include other samples except
the COCO dataset with particular postures. In this dataset, the precision of [10]
decreases by 13% in AP0.5 compared with [9], which indicates that the general-
ity of [10] is also narrowed. We use the results of [9] as the initial poses of [31].
Through pose refinement, [31] improved the pose estimation results by 0.4%.

4.3 The Effect of Training on the FollowMeUp Dataset

To validate the effectiveness of samples with particular postures, we retrain the
model on the COCO + FollowMeUp train set using the method of [9]. Testing
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Table 3. Comparisons of pose estimation results on the FollowMeUp dataset.

Type Method AP0.5 AP0.6 AP0.7 AP0.8 AP0.9

Top-down RMPE [22] 0.975 0.948 0.885 0.787 0.421

Bottom-up PAF [9] 0.778 0.728 0.625 0.474 0.326

Osokin [10] 0.645 0.585 0.520 0.370 0.215

PoseFix [31] 0.782 0.716 0.621 0.466 0.334

Table 4. Comparisons of pose estimation results on the FollowMeUp dataset.

Method Train set Test set AP0.5 AP0.6 AP0.7 AP0.8 AP0.9

PAF [9] COCO FollowMeUp 0.778 0.728 0.625 0.474 0.326

PAF [9] COCO + FollowMeUp FollowMeUp 0.964 0.959 0.926 0.876 0.691

Table 5. Comparisons of pose estimation results on the COCO dataset.

Method Train set Test set AP AP0.5 AP0.75 APM APL

PAF [9] COCO COCO 0.465 0.740 0.447 0.379 0.597

PAF [9] COCO + FollowMeUp COCO 0.465 0.748 0.454 0.373 0.605

Fig. 4. Comparison of estimation accuracy before and after retraining on the Fol-
lowMeUp dataset. The accuracy of retrained model (marked as green triangles) has an
obvious improvement. (Color figure online)

is performed both on the FollowMeUp test set and COCO validation set. The
results of testing are provided in Table 4. We notice that the performance of
the retrained model is greatly improved by around 20% in AP0.5. While the
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threshold of AP becomes more strict, the AP value is decreased. Even in the
most strict threshold of 0.9, the AP value attains 0.691, which is higher than
the model before retraining by 37%. The accuracy comparison of before and
after retraining on the FollowMeUp dataset is shown in Fig. 4. We also perform
testing on the COCO validation set using before and after retraining models to
check whether the model can maintain the performance on the COCO dataset.
In Table 5 we see that before and after retraining the precision has no change.
The generality of the retrained model is preserved. These results show that
increasing some unusual samples which had not been learnt by the model before
is an effective way to improve the accuracy in some specific scenes.

5 Conclusion

The problem of human pose estimation has obtained a great progress in recent
years. This progress cannot be done without the development of large-scale
human pose datasets. However, the existing human pose datasets are not suffi-
cient for some particular application environments. In this paper, we propose a
new large-scale workout activity human pose dataset, which provides a wide vari-
ety of sport exercise postures. We select 8 state-of-the-art multi-person pose esti-
mation approaches and compare their performance on both the popular COCO
keypoints dataset and our FollowMeUp dataset. The comparison results show
that most methods trained on the COCO dataset do not have ideal performance
on the FollowMeUp dataset. We also test the generality of the model using the
data of both COCO and FollowMeUp datasets. The test results show that train-
ing on the data of both COCO and FollowMeUp datasets will not affect the
performance of the model on the COCO dataset but the performance of the
model on the FollowMeUp dataset is greatly improved. In the future, we will
continue investigate pose tracking [32], multi-view action recognition [33], and
light-weight network design [34] approaches on the FollowMeUp dataset.
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Abstract. Image retrieval plays an important role in the growing computer
vision applications. The computation of the unrelated images in large scale image
retrieval task seriously reduces the retrieval efficiency. In this paper, a new Partial
Order Structure (POS) based image retrieval method is proposed. Partial order
structure diagram is an effective visualization tool in Formal Concept Analysis
(FCA) theory, including object partial order structure diagram and attribute
partial order structure diagram. There are two contributions in this paper. First,
we design an association rule according to the object partial order structure
(OPOS) method to measure the correlation between the query image and the
database, and then improve the database to be retrieved. Second, we perform a
query expansion according to the attribute partial order structure (APOS) method
to improve the generalization ability of the query information. Experimental
results on two databases verify the effectiveness of the proposed algorithm.

Keywords: Image retrieval � Formal Concept Analysis � Partial order
structure � Association rule � Query expansion

1 Introduction

Image retrieval is a significant part of computer vision applications. In the common
retrieval methods, the retrieval process is to calculate the similarity between the feature
descriptions of the query image and image database. However, many images unrelated
to the query image are calculated for the similarity, which wastes a lot of time. To
enhance the computation efficiency, we attempt to improve the database by removing
the images with the unrelated semantics to the query image before the retrieval.

The partial order structure is a powerful visualization tool for the representational
concept in Formal Concept Analysis (FCA) theory [1]. It contains the object partial
order structure and the attribute partial order structure. In the object partial order
structure diagram, nodes represent objects, and branches represent attributes. The
cluster structure in the object partial order structure refers to the structural relationship
of the objects containing the same or similar attributes. Such a structure has the role of
clustering [2, 3]. In the object partial order structure, the attributes in the same cluster
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have the higher similarity than the attributes in different clusters. So in this paper, we
set an association rule to mine the similarities of the attributes based on the object
partial order structure.

In the attribute partial order structure diagram, nodes represent attributes, and
branches represent objects. The similarity of two branches can be calculated by the
number of identical nodes on the branches. To make features of the query image more
expressive, we use the attribute partial order structure to find the several top-ranked
images by calculating the similarity between the query image and the database. The
query image is expanded into the merged image of the top-ranked individuals.

The deep features have strong generalization ability, which can effectively capture
the semantics of the image [4, 5]. The image features extracted by CNN model can
globally represent the image [6]. When the deep neural network is applied to image
feature extraction, the high-dimensional features show the great advantages in image
processing. Many works [7, 8] focused on replacing the traditional hand-crafted
descriptors with the deep features from the fully connected layers of a pre-trained CNN
model for image classification. Other methods [9, 10] used the sum or max pooled
convolutional features instead of the fully connected layer and achieved better results.
Additionally, some methods first divided the image into several blocks [11, 12]. The
features of the image blocks are obtained through the fully connected layer or the
convolution layer, and the image blocks are encoded by the BOW model or the VLAD
model [13, 14]. These methods used the local information of the image block.
Although these methods were commonly used in image retrieval, extracting the CNN
features of each image block is complicated and inefficient [15].

Feature maps are image features produced by the original image after convolution
in a neural network. In this paper, the activations of the different neuron arrays across
all feature maps in a convolutional layer are treated as local features. A single transfer
of an image through CNN is sufficient to obtain its local features of blocks [16]. It
avoids the block segmentation and the feature extraction such that the retrieval com-
plexity is greatly reduced. We obtain the local features of the images in the database
from the last convolutional layer in the VGG network. The visual semantics are
obtained by clustering local features. In this paper, visual semantics are set as the
attributes, and images are set as the objects to establish the formal background. The
partial order structure is built based on the formal background. According to the object
partial order structure, the association rule is designed to improve the image database
that contains the same or similar semantics as the query image, that is, the unrelated
images to the query image are removed. Meanwhile, the query expansion is performed
based on the attribute partial order structure to complete the image retrieval.

2 Related Works

In the theory of Formal Conceptual Analysis (FCA), the human cognition consists of
three basic elements: objects, attributes, and relationship between objects and attributes
[17]. The objects are the individuals in the database. The attributes are the character-
istics of the various objects. The relationship between attributes and objects indicates
the corresponding connection of both [18], which is described by the formal
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background as shown in Table 1. Here, I1–I6 are 6 objects, and S1–S6 are 6 attributes.
The formal background is a Boolean matrix including 1 or 0. Here 1 represents the
object has the corresponding attribute, and 0 represents the non-correspondence.

The formal background is the correspondence between objects and attributes. In
this paper, we use VGG-f model to get the visual fuzzy semantics. Images are regarded
as the objects and visual semantics are regarded as the attributes. The formal back-
ground is built by the objects and attributes, and then the partial order structure diagram
is established. The partial order structure diagram contains the object partial order
structure (OPOS) diagram and the attribute partial order structure (APOS) diagram.
Both realize the hierarchical clustering of the data, which is useful to analyze the
concept composition.

In the OPOS diagram, each node shows an object (image), and each branch under
nodes indicates an attribute (visual semantic). OPOS brings together the objects with
the similar attributes to generate a hierarchy of the database. In OPOS, the data filtering
or data clustering can be completed according to the cluster structure. We put the
clusters with more objects into the top of the hierarchy, and the clusters with less
objects into the bottom of the hierarchy. The resulting hierarchical partial structure is
helpful for data searching.

The generation process of the APOS diagram is similar to the OPOS diagram, but
the node and the branch represent the opposite meaning. In the APOS diagram, each
branch represents an object, and all attributes contained in this object correspond to all
nodes on the branch. For an instance, the OPOS and APOS diagrams generated by the
formal background in Table 1 are shown in Fig. 1.

Figure 1(a) shows an OPOS diagram. Here I1–I6 indicates 6 objects (images), and
S1–S6 represents 6 attributes (fuzzy semantics). Each branch in Fig. 1(a) means an
attribute. The number of attributes is the number of the clusters obtained by the
clustering method. If two attributes contain more of the same images, the two visual
semantics are more likely to appear at the same time. In other words, if the two visual
semantics are more relevant, one is suitable for complementing the other. Figure 1(b)
shows an APOS diagram in which each branch means an image and each node means a
fuzzy semantic. If two branches have the more identical nodes, it means the branches
have the higher similarity. In other words, the similarity between images can be
determined by the number of identical nodes contained on the branch.

Table 1. Formal background

S1 S2 S3 S4 S5 S6
I1 1 1 0 0 0 0
I2 1 1 0 0 1 0
I3 1 0 1 0 1 0
I4 0 0 1 0 0 1
I5 0 1 0 0 1 0
I6 1 1 0 1 1 0
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3 Image Retrieval Based on Partial Order Structure

The proposed method consists of three parts: Deep Feature Extraction (DFE), Partial
Order Structure (POS) and Feature Similarity Metric (FSM). The main framework is
shown in Fig. 2.

The DFE part contains the extraction of the local features in the network and the
extraction of the global features from the full connect layer. The POS section is the
primary step in the proposed method. It completes the adaptation of the database by
using OPOS and association rule (AR). This part also expands the feature information
of the query image, and improves the expressive ability of query images by using query
expansion (QE) based on APOS. The FSM section computes the distance similarity
metric between the query image and the database to generate the rank of the retrieval.

(a) Object partial order structure (b) Attribute partial order structure

Fig. 1. An example for the OPOS diagram and APOS diagram
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Fuzzy 
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Fig. 2. Image Retrieval flowchart based on partial order structure
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3.1 Visual Semantics

In convolutional neural network, the convolution kernel in the convolution layer acts
on the receptive field [6]. The convolution calculation method is selected for each input
image to form the image feature maps. Different feature maps represent different local
features [19]. In the process of obtaining visual semantics, we extract the features by
the last convolution layer (pool5) in the VGG-f network pre-trained on the ImageNet
database. The network has not been fine-tuned. Each vector in the pool5 layer is treated
as a local feature. An image extracts 6*6 local feature descriptions, each of which is
256-dimensional. It means that an image can be represented as the 36 local features
with a dimension of 256.

Among the clustering methods, the k-means algorithm keeps scalability and high
efficiency for dealing with the big data. In this paper, after obtaining the local features,
we perform the k-means clustering to get the centers, which are regarded as the visual
fuzzy semantics. Features of all images in database are mapped into the centers to form
their visual fuzzy semantic representation [20]. We expect that each local feature can be
properly mapped into the most appropriate cluster (i.e. the fuzzy semantics). As we all
know, the number of k is essential for k-means. In this paper, a Davies Bouldin index
(DBI) [21] method is used as a criterion to select the number of cluster centers.

3.2 Object Partial Order Structure

According to the OPOS diagram, we can remove the images on the branches that have
no visual semantics of the query image. However, if we only leave the images with the
same visual semantics as the query image, some images with the similar semantics may
be ignored. It maybe leads to a bad recall rate. Therefore, it is necessary to find the
similar semantics as the complementary semantics.

Some visual semantics often appear at the same time, such as airplane and sky.
These simultaneous semantics are often used to complement the retrieval each other. It
is necessary to calculate the association between the visual semantics by using the
partial order structure, and get the related semantics of each visual semantic. This paper
defines a semantic association rule to measure the degree of association between two
semantics in Eq. 1.

Da ¼ numðImðXÞ \ ImðYÞÞ
numðGÞ ð1Þ

Here X and Y represent two semantics respectively. Im(X) and Im(Y) represent the
images containing the semantics X and Y, respectively. For instance, if X is S1 and Y is
S5 in Fig. 1(a), Im(X) represents the image set {I3, I2, I6, I1} and Im(Y) represents the
image set {I3, I2, I6, I5}. Im(X)\ Im(Y) represents the common images {I3, I2, I6} from
the vertex down. In the object partial order structure, there are some top clusters, that is,
the branches under the nodes in the first level, for example the clusters under the nodes
I3, I2, I6 and I4. So as to standardize the relevance of two semantics, avoided the
influence of the number of pictures between different clusters on semantic relevance,
we perform correlation metrics within clusters in a partial order structure and introduce
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G as the denominator. In Eq. 1, G is the image set of the top cluster in which semantics
X and Y are belonging, that is, {I3, I4, I2, I1, I6, I5} in Fig. 1(a). The function num (∙)
indicates the number of the image set.

As well known, in a database, a picture often has multiple semantics, the semantics
are distributed across multiple clusters. For each semantic, we calculate the similarity
between it and other semantics in a cluster and rank the similarity. The semantics that
the similarity Da is greater than the mean value within the cluster is considered to be the
complementary semantics. The images on the branches with the higher similarity are
merged to form the final image database to be retrieved. Figure 3 displays an example
of the semantics complement.

Suppose that the query image contains semantics S1 and S6, the association rule
algorithm based on the OPOS diagram in Fig. 3 is as follows:

Input: Query image, database, and OPOS.

1. Get the branch {S1, S6} of the query image from OPOS, and take the images on the
branches as a new database DB {I1–I4, I9, I15–I16}.

2. Calculate the degree of association Da between {S1, S6} and other semantics {S2,
S3, S4, S5} by Eq. 1.

3. Calculating the mean value (0.165) of the semantic similarity Da in the cluster
where S1 is located.

4. Update DB by adding images on branches {S2}, that is {I1–I6, I9, I15–I16}.

End
In Fig. 3, the whole image database includes 16 images (i.e. I1–I16). The OPOS

diagram has three top clusters corresponding to the node I1, I10 and I15, respectively.

Fig. 3. Semantic supplementation based on the association rule
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Suppose the query image contains semantic S1 and semantic S6. The right of Fig. 3 is
the Da value of {S1, S6} and other semantics. After the semantics complement by the
association rule, the optimized image database includes 9 images (i.e. I1–I6, I9, I15–I16),
and images (I7–I8, I10–I14) are removed. If we do not perform the association rule, only
the images on the branch S1 and S6 will be retrieved, and the images (such as I5 and I6)
with the similar semantics as the query image will be missed. It will cause the missing
of the retrieval.

3.3 Attribute Partial Order Structure

In the APOS diagram, nodes represent attributes (visual semantics), and branches
represent objects (images). The degree of similarity between two branches is evaluated
by the number of identical nodes on the branches (images) in the APOS diagram. As
well known, the images contain more identical attributes means that they have the
higher similarity. In this paper, we calculate the number of identical attributes on the
corresponding branches between the database and the query image, and sort the images
of the database. The features of the top-ranked N images and the query image are
averaged to obtain a new feature that replaces the feature of query image for the
subsequent image retrieval. The algorithm of query expansion based on the APOS
diagram is as follows:

Input: Query image, database and APOS.

1. Calculate the degree of association between query image and database according to
the APOS diagram.

2. Sort the similarity of the query image and the database, and select the top N images
that are most similar to the query image.

3. Average the features of the top-ranked N pictures and the feature of the query
picture.

4. The obtained mean feature is used as the query feature for image retrieval.

End
The sorted result obtained by APOS is shown in Fig. 4, where the first column

shows the query picture and the last is the top 5 pictures. It can be seen that most of the
top 5 images are correctly retrieved. This paper performs the query expansion by
selecting the top 5 images to improve the representation ability of the query image.

4 Experiments

4.1 Dataset

Two commonly used image databases, DupImage and Paris Buildings [22], are applied
to evaluate the proposed retrieval method. DupImage database has 33 categories of
icon images with a total number of 1188 images. Paris Buildings database contains 11
classes of building images with a total number of 6412 images. For DupImage data-
base, all the images are used for the retrieval in the experiment. For Paris Buildings
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database, we randomly select 200 images for each category thus a total 2200 images to
perform the image retrieval.

In Paris Buildings database, each query image has a groundtruth file which contains
four types of labels: ‘good’, ‘ok’, ‘junk’ and ‘bad’. The images with the four labels are
manually classified according to the similarity between the database and the query
image. Visually, the images with the ‘good’ and ‘ok’ labels are similar to the query
image, while the images with the ‘junk’ and ‘bad’ labels are not similar. Many previous
works only used ‘good’ and ‘ok’ labels for image retrieval. In order to highlight the
filtering ability of the partial order structure, this paper treats all the images under the
category of the query image as similar images instead of using the ‘good’ and ‘ok’
labels given by the database.

4.2 Setup

Suppose that there are M actual semantics for the database. After the clustering by the
k-means method, k semantic centers are produced. If k is bigger than M, the semantics
is over-clustering, that is, the semantics are not representative. If k is less than M, some
actual semantics are merged, that is, some actual semantics are missing. Therefore,
choosing an appropriate k value is necessary for the clustering. In this paper, we utilize
Davies Bouldin index (DBI) to achieve the optimal k value automatically. The defi-
nition of DBI is as follows:

DBI ¼ 1
k

Xk

i¼1

max
j6¼i

ð Ci þCj

wi � wj

�� ��
2

Þ ð2Þ

Ci¼ 1
Ti
ð
XTi

p¼1

Xp � wi

�� ��2Þ1=2 ð3Þ

Here Ci represents the average distance between all the data points in the ith cluster
and its center, which indicates the dispersion degree of the data points in clusters. XP

Query image Top 5  images

Fig. 4. The top 5 ranked results obtained by APOS
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represents the pth data point. Ti represents the number of data points in the ith cluster. wi

represents the clustering center of the ith cluster. The data clustering is performed on
two databases to obtain the DBI curve and get the appropriate k value. To observe the
best k value clearly, the data points are fitted to a curve as shown in Fig. 5.

A smaller DBI value means a better clustering effect. From Fig. 5(a) we can see that
the value of DBI in the DupImage database becomes smaller as the k value increases.
When the k value reaches 100, the curve tends to be stable. From Fig. 5(b), when the
k value is about 150, the DBI of the Paris Building database reaches the lowest value.
Therefore, we take 100 and 150 as the best k values for the DupImages database and
Paris Building database, respectively.

In this paper, the parameters including the mean Average Precisions (mAP), Pre-
cision (P), Recall (R) and F-measure (F) are taken as the evaluation indexes to test the
proposed OPOS and APOS methods. The result is reported as the average of the results
from the 5 individual runs. The definition of F is as follows:

(a) DBI curve on DupImage database 

(b) DBI curve on Paris Building database 

Fig. 5. DBI curves on two image databases
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F ¼ 2PR
PþR

ð4Þ

4.3 Experimental Results

In this section, we randomly select five images for each category in the Paris Building
and DupImage databases as the query images, that is, there are 55 query images for the
Paris Building database and 165 query images for the DupImage database. To
demonstrate the efficiency of the experiment, we calculate the mAP, P, R and F to
evaluate the proposed OPOS and APOS methods.

The P-R curves on two databases are plotted in Fig. 6. We compare the retrieval
performance of three methods, OPOS, OPOS+APOS and CNN. The OPOS method
indicates the database adaption by the semantics association rule based on the OPOS
diagram. The OPOS+APOS method means the OPOS method combined with the query
expansion based on the APOS diagram. The CNN method directly measures similarity
of features extracted by the fully connected layer in VGG-f network without the
database adaption and the query expansion. The number of the returned retrieved
images is ranging from 40 to 200 with an increment by 20 for the DupImage database,
and ranging from 50 to 600 with an increment by 50 for the Paris Building database.

From Fig. 6, the OPOS+APOS method outperforms other methods on two data-
bases. The CNN method has the worst performance. Since the images in the different
categories of the Paris Building database are highly similar, it is hard to increase the
performance for the Paris Building database. From Fig. 6 we can see that the OPOS
+APOS method improves better performance on DupImage database than Paris
Building database.

In all, the OPOS method removes images that are not related to the query image
and recalls some similar semantic images to improve the original image database,
which indicates the clustering ability of partial order structure and the ability to filter

ParisDupImage

Fig. 6. P-R Statistical curves
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association rules. The APOS method enhances the expressive ability of the query
image according to query expansion based on attribute partial order structure, Table 2
shows the average of P, R and F for the first W returned retrieved images, where W is
the number of images of each category in the database. For two databases, the F value
of the OPOS+APOS method is better than that of CNN method by about 4%.

To further verify the superiority of the OPOS and APOS methods, Table 3 displays
the mAP values of the three methods on the two image databases. For two databases,
the mAP of the OPOS+APOS method is better than that of CNN method by about 4%.
Need to point out, in Paris Building database, Since this paper does not use the
groundtruth file that the database has given, compared with some works that only
returns ‘good’ and ‘ok’ images as the similar images of the query image, the mAP
obtained in this paper is lower.

5 Conclusion

To better explore the relationship between images and the corresponding visual
semantics, in this paper, we construct the formal background and establish the object
partial order structure and attribute partial order structure according to the image and
the visual semantics. We filter the irrelevant images and supplement the similar
semantic images from the original image database by using the object partial order
structure to improve the efficiency of the image retrieval. Also, we use the attribute
partial order structure diagram to expand the query information of the database, which
generalizes the characteristics of the query image. Experimental results demonstrate the
validity of the proposed image retrieval method based on Object Partial Order Structure
(OPOS) and Attribute Partial Order Structure (APOS). However, there is still a problem
to be solved. Because the visual semantics obtained by the clustering are ambiguous, a
few similar semantic images as the query image may be lost in the filtering process.

Table 2. Comparison of the P, R, F on two databases

DupImage Paris
Method CNN OPOS OPOS+APOS CNN OPOS OPOS+APOS

P 0.58 0.59 0.62 0.32 0.33 0.35
R 0.45 0.46 0.49 0.30 0.31 0.33
F 0.51 0.52 0.55 0.31 0.32 0.34

Table 3. Comparison of mAP values on two databases

DupImage Paris

OPOS+APOS 0.56 0.38
OPOS 0.53 0.36
CNN 0.52 0.34
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Abstract. Simultaneous Localization And Mapping (SLAM) is a fun-
damental problem in mobile robotics as well as in virtual reality (VR)
and augmented reality (AR). Traditional visual-SLAM systems, such
as ORB-SLAM, deal with sparse features extracted from high gradient
image regions. While being robust and stable to light changing, camera
rotation and scale changing to some extent, they are easy to accumulate
drifts and cannot provide high-level information of the environment. To
solve this problem, we take advantage of state of the art object detectors
and a robust ICP method to build a map made up of objects providing
semantic information as well as extra constraints to original point-based
SLAM system. What’s more, for indoor scenes where planar structures
are common, we introduce plane landmarks into SLAM framework to
reduce drift. Experiments show that the our method can build a semanti-
cally more meaningful map without reducing the original SLAM system’s
performance remarkably.

Keywords: SLAM · Object detection · Plane extraction · Semantic
understanding

1 Introduction

Semantic understanding and Simultaneous Localization and Mapping (SLAM)
[24] are two essential tasks in computer vision and robotics. Traditional visual-
SLAM systems use low-level primitives (points, lines, patches, etc.) to represent
the environment and localize the sensor. While being robust to light changing,
camera rotation and scale changing to some extent, they are easy to accumulate
drifts and lack high-level information of the environment. As the development of
Convolutional Neural Network (CNN), the performance of image-based object
detection has been improved enormously [31]. Incorporating object detection into
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SLAM and building a map made up of objects will greatly enhance robot intelli-
gence for environment understanding and human-computer interaction, and the
object landmark added can provide extra constraints for SLAM optimization.
Some existing object SLAM [2,3,6] use object model pre-built for object detec-
tion and incorporate object landmarks into SLAM pipeline to get better SLAM
performance. There are also frameworks [18,27,28] reducing scale drift by mea-
suring the size of objects. CubeSLAM [4] and QuadricSLAM [5] firstly detect
objects using CNN based object detectors and then represent them as geomet-
ric models. Planes are typical structures in man-made environments and can
provide long-range constraint. Incorporating planes into a point-based SLAM
framework will reduce drift that is typical for point-based SLAM and enhance
the performance of SLAM where little point features can be seen.

In this work, we propose a SLAM framework incorporating objects and planes
extracted from RGB-D images. The main contributions of the paper are as fol-
lows:

– Propose a method for object detection and matching to incrementally create
a map made up of objects.

– Incorporate a robust ICP method for object pose estimation and add object
poses into SLAM optimization.

– Utilize a Plane Detection method for plane mapping and incorporate plane
landmarks into SLAM optimization.

In the following section, we discuss related work. In Sect. 3.1 we show our sys-
tem framework. In Sect. 3.2 we present the object mapping module of our SLAM
system. In Sect. 3.3 we introduce our method for plane extraction and match-
ing. Section 3.4 describes the joint optimization of objects, planes, and points.
Section 4 shows experimental results and comparisons. Finally, we summarize
the contributions and discuss future work in Sect. 5.

2 Related Work

2.1 Object Detection

In recent years, algorithms based on deep learning (mainly convolutional neu-
ral network, CNN) had made great breakthroughs in various computer vision
tasks, including object detection. With the mature application of the learning
framework of the convolutional neural network (CNN), the technology of object
detection had made remarkable progress. This was because deep learning had the
ability to learn massive data and the ability to learn high dimensional features,
which gave deep features excellent discrimination. Typical method for object
detection was the R-CNN (Region with CNN features) proposed by Girshick et
al., which combined the general candidate region algorithm and CNN classifica-
tion framework. Faster R-CNN [34] was one of the most accurate deep neural
networks with more than 80% mAP in the PASCAL VOC dataset, depending
on region proposal algorithms. Redmon et al. designed a unified architecture for
YOLO [29] and its improved model YOLOv2 [30], making YOLOv2 one of the
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fastest networks that could process images at 91 FPS with 69% mAP or 40 FPS
with 78.6% mAP on PASCAL VOC dataset. Single Shot Multibox Object Detec-
tor (SSD) [31] was the first DNN-based real-time object detector that achieves
above 70% mAP in PASCAL VOC dataset with 40 FPS in TitanX. This detector
balanced speed and accuracy well, hence we deploy SSD as the detector module
in our method.

2.2 Object SLAM

Sünderhauf et al. [7] proposed a semantic mapping system that used object
detection and RGB-D SLAM to build a map containing objects. But the object
models were not used to help localization. McCormac et al. [8] presented a system
that fused multiple semantic predictions with a dense map reconstruction, but
the semantic labels did not inform localization. SLAM++ [2] built object models
by extracting meshes from TSDF volume and discretizing PPFs in search data
structures for them, with the process accelerated by GPU. By dense ICP estima-
tion, SLAM++ built a graph, where each node stored either the estimated SE(3)
pose of object j to the world, or the pose of camera to each other. And finally
the object pose and camera pose were optimized together. Dorian Gálvez-López
et al. [3] used bags of binary words to describe objects. By incorporating objects
into a monocular SLAM, real scale of the scene can be retrieved and more accu-
rate trajectory can be obtained. Without prior models, the recent QuadricSLAM
[5] and CubeSLAM [4] proposed two different object representation of mathe-
matical model. Fusion++ [6] built TSDF volume for every object and did not
rely on pre-built models. [9–11] optimized object mathematical models, points
and planes together, which were most similar to our method. Probabilistic data
association for object SLAM were addressed in [12,13]. PSfMO [15] solved SFM
theoretically with ellipsoid object and affine cameras. [16] solved SFM by jointly
optimizing camera poses, objects, points and planes. [17] and [18] represented
object as spheres to correct the scale drift of monocular SLAM.

2.3 Planar SLAM

Planar SLAM utilized planes as landmark instead of point features for pose
estimation and SLAM optimization. CPA-SLAM [22] used direct image align-
ment towards a keyframe and a global plane model in an EM framework and
optimized the spatial constraints between keyframes and global plane model and
alignment constraints between keyframes. DPPTAM [21] proposed a new initial-
ization scheme for planar areas. By reconstructing high-gradient image areas as
3D points and low-gradient image areas as planes segmented using superpixels,
DPPTAM improved the accuracy and density of semi-dense monocular SLAM.
Lee [19] estimated the layout plane and point cloud registration iteratively to
reduce RGBD mapping drift. Similarly, planes were shown to provide long-range
constraints compared to points in indoor building environments [14,20]. Kaess
[23] presented a novel minimal representation for planar features that are suit-
able for least-squares optimization by mapping from the standard homogeneous
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Fig. 1. Our method adds two more concurrent threads to ORB-SLAM2: (a) Plane
Mapping, (b) Object Mapping. And the local bundle adjustment process will include
object poses, points, planes additionally than just camera poses.

plane parametrization to a quaternion. KDP-SLAM [20] applied the keyframe-
based framework in the planar SLAM solution, with keyframe poses and land-
mark planes optimized in a global factor graph using incremental smoothing and
mapping (iSAM).

3 Method

3.1 System Overview

The pipeline of our system is shown in Fig. 1, which is built upon ORB-SLAM2.
ORB-SLAM2 is a feature based visual SLAM system made up of three parallel
threads: Tracking, Local Mapping and Loop Closing. The Tracking thread is in
charge of tracking the pose of camera frame by frame. Local Mapping thread
maintains a local map made up of several key frames and 3D points and performs
local BA to optimize them. Loop Closing thread finds loops and corrects them.
Compared to ORB-SLAM2, which is made up of three parallel threads, our
system adds two more threads handling objects and planes: Object Mapping and
Plane Mapping. To insure the performance, we run object mapping and plane
mapping thread only on keyframes. The Object Mapping thread (Sect. 3.2) is
responsible for building a map made up of objects. It first detects objects in 2D
images and reconstructs corresponding point cloud for each object with depth
image. The object pose w.r.t the world frame is initialized as identity in global
frame. For data association, the object is compared to all objects already in
the map to find the corresponding one. If there do exist corresponding one, we
merge their point clouds, associated key points and per-class confidence scores,
and estimate new object’s pose w.r.t the former one in the global frame using a
robust ICP method. Otherwise we create new object instance in the object map.

The Plane Mapping thread (Sect. 3.3) creates and maintains a global plane
map. In each keyframe, we extract planes from depth images and find the cor-
responding plane landmark in the plane map. If there are no corresponding
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landmark in the global map, we create new plane landmark in the global map
otherwise we add new constraint between global plane landmark and local plane
for later optimization. We use infinite plane and its minimal representation to
represent plane landmark, which is easy to be optimized and not affected by
singularities.

3.2 Object Mapping

Object Detection. We use the SSD detector [31] and pre-trained model for
object detection in each keyframe. Like [7], we build an object with the bounding
box and confidence score from the RGB-D image. Each object instance is com-
posed of point cloud CO, object pose TWO ∈ SE(3), which maps the point cloud
from object frame

−→F O to World frame
−→F W , associated key points, and accu-

mulated per-class confidence scores C. For the robustness of the system, we only
build static objects and exclude moving objects judged by their labels. What’s
more, we remove key points belong to moving objects in the SLAM process,
which will enhance our system’s performance in dynamic environments.

Point Cloud Reconstruction: We reconstruct an object’s point cloud from
2D bounding boxes and depth image. In the k-th keyframe each detection i
produces a binary mask Mk

i and we project all the masked image coordinates
u = (u1, u2) in depth image into

−→F W ,

Wp = Tk
WCK−1Dk(u)u (1)

where K denotes the 3 × 3 intrinsic camera matrix, Tk
WC ∈ SE(3) the camera

pose estimate, and Dk(u) the corresponding depth estimate of image coordinate
u.

2D-3D Data Association. Data association is important for our system in
order to build a globally consistent object map. By data association, we find if a
new object has corresponding object already existing in the object map. As we
have the 2D bounding box and 3D point cloud for the object, we introduce a 2D-
3D combined data association method. Like CubeSLAM [4], we first associate 2D
key points to objects if those points are observed enough times (3 in our method)
of belonging to the 2D object bounding box. Utilizing the 3D information, we
find a fixed number of objects (5 in our method) in the object map that have
the nearest distances with current object between point cloud centroid. Then in
these fixed number object map objects, we find the object that has most shared
associated key points with current object and judge if the number of shared key
points exceeds a threshold (10 as [4] proposed). If not, new object instance will
be created and if so, new object detection will be merged with the existing one.
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Object Model Update. Every time we merge a new object and an object that
already exists in the object map, we update the object model shown in Fig. 2. As
illustrated in Fig. 2, every object in our map contains (i) the segmented colored
3D point clouds associated with that object by the data association step, (ii)
assoiciated key points that are observed enough times of belonging to the object,
(iii) a vector of object poses w.r.t. the world in the keyframes it has appeared,
and (iV) the accumulated per-class confidences provided by the object detector.
We add new 3D point cloud segments transformed into global coordinate into
the object model. The key points found in the 2D bounding box are added to the
object model for association. Key points not observed enough times of belonging
to the object will be delete. If an object m is observed in keyframe i for the first
time, the pose to world frame T i

m is set to identity. When we merge object model
m and new object n in keyframe j, we calculate global pose T j

n of object n using
ICP to its corresponding point cloud Cn and Cm. With the object observed in
many keyframes we can define the least-square error of object poses and optimize
it in the local BA:

eobject = T−1
ij (T i

m)−1T j
n (2)

As described in [7] when a detection is associated with a map object, its per-class
confidence scores C is updated according to Cc = Cc + s, where c and s are the
class ID reported by object detector, and the associated confidence. The class
label for an object is finally determined by the accumulated score argmaxcCc

and a final confidence σ can be assigned as σ = maxCc/n where n is the total
number of observations for that object.

3.3 Plane Mapping

Plane Segmentation. Planes can provide long rang constraints to the SLAM
progress as well as more semantic information of the environment. We extract
planes from depth images captured by kinect style RGB-D cameras using the
method of [25].

Plane Presentation. Inspired by [23], we use normalised homogeneous coor-
dinate π = (π1, π2, π3, π4)

T and its minimal representation ω to represent
infinite plane π in the map. In projective space a point p = (p1, p2, p3, p4)

T

lies on a plane π = (π1, π2, π3, π4)
T iff

πTp = 0, (3)

represented by homogeneous coordinate. Given the normal vector of the plane
n = (n1, n2, n3)

T and its distance d from the origin, we can get its homogeneous
representation by (3)

π = (
n,−d

‖n, d‖ )T (4)
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Fig. 2. Every object in our map contains (i) the segmented colored 3D point clouds
associated with that object by the data association step, (ii) associated key points that
are observed enough times of belonging to the object, (iii) a vector of object poses
w.r.t. the world in the keyframes it has appeared, and (iV) the accumulated per-class
confidences provided by the object detector.

To transform a plane from local frame to global frame, we can use the inverse
transpose of the corresponding point transform Tgx:

πg = T−T
gx πx (5)

Taking the minimal representation of plane proposed by [23], we can avoid rank-
deficient information matrices in optimization. We use the mapping of R3 to S 3

to transform the 3-dimentional vector ω to quaternion π

exp (ω) =
1
2
sinc(

1
2
‖ω‖)ωcos(

1
2
‖ω‖), (6)

and the inverse mapping of S 3 to R3 to transform quaternion π to its minimal
representation ω:

ω = log(q) =
2cos−1(qw)

‖qv‖ qv (7)

Finally, the error between two planes π and π′ can be measured by the 3
dimentional vector:

eplane = log(q(π)−1q(π′)) (8)

Plane Association. Every time we extract planes from the RGB-D images, we
decide either to create new planes in the global map or to associate them to the
ones already exist. We use the approach introduced in [23] with little change for
data association. Planes detected in the current frame are matched against all
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plane landmarks in the global map instead of planes in some specific keyframes,
with a threshold of angle (8◦) and center distance (0.1 m). The local plane and
global plane landmark that have distance and angle below given threshold will
be seen as the same plane and new constraint between local plane and global
plane landmark will be added into the local bundle adjustment. If there are no
matching planes in the global plane map, we create a new plane landmark for
detected plane in the global plane map.

3.4 Bundle Adjustment with Points, Objects and Planes

ORB-SLAM2 performs local BA and full BA to optimize camera pose and points
together. In our method, we define object pose error in (2) and plane error in
(8) for optimization. And we optimize these two error with point reprojection
error together. The unified cost function is

E = ρ(eTreprojΩ
−1
reprojereproj + eTobjectΩ

−1
objecteobject + eTplaneΩ

−1
planeeplane) (9)

where ρ is the Huber robust cost function and Ωreproj,Ωobject,Ωplane are the
covariance matrices.

4 Experiment

4.1 Experimental Settings

We implement our SLAM system on a desktop computer with an Intel Core
i7-7500 processor, and GPU being used only for visualization, not computa-
tion. We use a pretrained SSD model as a deep detector and PEAC1 as our
plane detector. RGB-D based ORB-SLAM2 is used as our basic SLAM system
for comparison. There are five separate threads in the system: Tracking, Local
Mapping, Plane Mapping (include Plane Segmentation, Plane Matching), Object
Mapping (include Object Detection, Point Cloud Reconstruction, Object Pose
Estimation) and Loop Closing. Our implementation can run at nearly 15 fps. To
evaluate the advantage of our method itself, we assess it on the TUM datasets
[32] and ICL-NUIM datasets [33] by adding or removing one of the modules.

4.2 Results

Figure 3 shows a monitor and teddy bear reconstructed by our object mapping
method. With the plane mapping thread closed, we test the performance of
our object mapping thread on TUM datasets, which contain scenes of various
objects. The result is shown in Table 1. Our object mapping method outperforms
original ORB-SLAM2 in two scenes and is equal in other scenes.

1 https://github.com/symao/PEAC.

https://github.com/symao/PEAC
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Table 1. Comparison of ATE RMSE (unit: m) of our Object Mapping and original
ORB-SLAM2 on the TUM datasets.

Method fr1
desk

fr1
floor

fr1
plant

fr1
teddy

fr2
pioneer

fr3
sitting static

ORB-SLAM2+
Object Mapping

0.018 0.015 0.013 0.050 0.047 0.008

ORB-SLAM2 0.016 0.014 0.018 0.044 0.048 0.007

(a) monitor (b) teddy bear

Fig. 3. Objects reconstructed by our method in TUM dataset

Table 2 shows the performance of object mapping method in scenes with
moving objects. With the moving objects removed, the robustness of the SLAM
system was improved. Figure 4 shows the planes extracted by plane mapping
thread. Table 3 shows the performance of our plane mapping method compared
to ORB-SLAM2 on ICL-NUIM datasets, where plane is the main structure in the
scene. Our plane mapping method outperforms original version in all 4 scenes.
To show the overall performance of ORB-SLAM2+Object Mapping+Plane Map-
ping, we run tests on ICL-NUIM datasets and compare it to other state of the
art RGB-D SLAM. The result in Table 4 shows that our method is comparable
to other methods.

Table 2. Comparison of ATE RMSE (unit: m) of our Object Mapping and original
ORB-SLAM2 on the TUM datasets with moving objects.

Method fr2 desk
with person

fr3 sitting
halfsphere

fr3 sitting
rpy

fr3 sitting
static

fr3 walking
halfsphere

fr3 walking
static

ORB-SLAM2+
Object Mapping

0.008 0.016 0.020 0.007 0.123 0.017

ORB-SLAM2 0.006 0.031 0.020 0.008 0.360 0.114



146 L. Zheng and W. Tao

Table 3. Comparison of ATE RMSE (unit: m) of our Plane Mapping and original
ORB-SLAM2 on the ICL-NUIM datasets.

Method lr kt0n lr kt1n lr kt2n lr kt3n

ORB-SLAM2+Plane Mapping 0.020 0.114 0.055 0.032

ORB-SLAM2 0.021 0.153 0.060 0.034

Table 4. Comparison of ATE RMSE (unit: m) of our ORB-SLAM2+Object Map-
ping+Plane Mapping with other RGB-D SLAM systems

Method lr kt0n lr kt1n lr kt2n lr kt3n

our method 0.024 0.081 0.058 0.032

DVO SLAM [35] 0.104 0.029 0.191 0.152

RGB-D SLAM [36] 0.026 0.008 0.018 0.433

CPA-SLAM [22] 0.007 0.006 0.089 0.009

KDP-SLAM [20] 0.009 0.019 0.029 0.153

Fig. 4. Planes extracted by the plane mapping thread

5 Conclusions

We propose a new semantic SLAM system that combines object and plane infor-
mation, which simultaneously optimizes semantic landmarks with SLAM pro-
cess. We add two concurrent thread handling objects and planes. The object
mapping thread creates object point cloud incrementally and add object pose
into SLAM optimization. Plane mapping thread extracts planes from depth
image and compares their angle and distance to existing plane landmarks. Every
time we determine a corresponding relation of two planes, we add a constraint in
the BA and optimize it latter. The experiment on TUM datasets and ICL-NUIM
datasets prove that our method provides a semantically more meaningful map
while enhancing SLAM system’s performance.
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Abstract. Crime scene sketch plays a significant role in criminal inves-
tigation. In China, the crime scene sketches of all criminal cases should
be uploaded to the National Criminal Scene Investigation Information
System (NCSIIS). However, there are wrong images and low quality
sketches frequently being uploaded to NCSIIS, which would make crime
scene sketches unable to undertake their tasks. Yet, checking the sketches
uploaded to NCSIIS still reamins as a manual work by the police officers.
In this paper, we focus on a new problem of crime scene sketches classifi-
cation. Firstly, a crime scene sketches database was constructed, sampled
from NCSIIS. Secondly, an automatic crime scene sketches classification
method is proposed based on CNN. A new architecture, namely Crime
Scene Sketch Net (CSS-Net) is designed for high accuracy. Experiments
are conducted on the database constructed. The experimental results
show that the method proposed by this paper is of good performance.

Keywords: Criminal investigation · Crime scene sketch · Image
classification · Convolutional Neural Network

1 Introduction

In criminal investigation domain, crime scene sketch establishes a permanent
record of items, conditions, and position relationships [14]. It is an effective way
to document a crime scene. Sketches can provide an in-depth understanding
of the circumstances of crime scene beyond the level of comprehension that
can be attained solely by reading a written report or studying photographs [6].
Compared with notes, sketches are more vivid than words. They also have some
unique advantages over photos. They can show some details better, such as track
of criminal walking. Sketches can eliminate some unnecessary details and pay
more attention to the important items which are more relative to the crime [15].
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This work is supported by the National Key Research and Development Program
(Grant No. 2017YFC0803506), the Ministry of Public Security Technical Research
Project (Grant No. 2018JSYJC20), the Opening Project of Shanghai Key Laboratory
of Crime Scene Evidence (Grant No. 2017XCWZK18).

c© Springer Nature Switzerland AG 2019
Z. Lin et al. (Eds.): PRCV 2019, LNCS 11859, pp. 149–160, 2019.
https://doi.org/10.1007/978-3-030-31726-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31726-3_13&domain=pdf
http://orcid.org/0000-0003-2432-2226
http://orcid.org/0000-0002-5983-7804
http://orcid.org/0000-0002-0824-7206
https://doi.org/10.1007/978-3-030-31726-3_13


150 K. Wang et al.

And in court, sketches would complement other documenting methods, such as
photo, video and report. In addition to these advantages, sketches also play an
important role in restoring and reconstructing crime scene.

Due to the importance of crime scene sketch, the Ministry of Public Security
of People’s Republic of China has established an information system, named
National Crime Scene Investigation Information System (NCSIIS), to store and
manage these records. And according to regulations, criminal investigators are
supposed to draw and upload two types of sketches, one shows the location of
crime scene, the other shows details in crime scene. And the result of spot check
on the qualification of uploaded sketches shows a pretty pessimistic phenomenon.
Lacking of sketches occurred in many cases, would lead to many serious conse-
quences, such as being unable to reconstruct the crime scene and some legal
problems in court. In some cases, investigator did upload two images, nonethe-
less the two images belong to the same class. And plus that there is no such a
function which can recognize different types of sketches in the existing informa-
tion system. Therefore, in a bid to check these uploaded records, there is no other
way except manual verification. However, this method is time consuming and
labour-intensive. Besides, manual verification cannot verify all records as numer-
ous of sketches flock into the system. In conclusion, solving the problem how to
perform automated classification of crime scene sketches is urgently required.

In 2012, the AlexNet which was proposed on ImageNet Large Scale Visual
Recognition Challenge (ILSVRC), showed the dawning of Convolutional Neural
Network (CNN) [4]. In recent years, it has become a mainstream on ILSVRCs
[10]. And the champions that teams with algorithm based on CNN had won,
proved that Convolutional Neural Network have the capacity to solve the prob-
lem of image classification, especially on the large-scale data sets. This led to
a booming of convolutional neural network application study [1,8]. In recent
years, Big Data and Artificial Intelligence started to be employed to Public
Security, and they made a great success. The application of Biometric Technol-
ogy has also provided great help cracking criminal cases. However, to the best
of author’s knowledge, this is first hand-shaking between Convolutional Neural
Network and criminal investigation records management. In addition, peculiar-
ity of crime scene sketch makes it very difficult to build a large-scale data set,
let alone a publicly available large-scale image datasets. These all make this
classification problem challenging.

In this paper, our works are summarized as follows:

– We proposed a new application problem of Convolutional Neural Network. To
solve it, we built a crime scene sketches data set with a training and validation
set of 53,324 images, and a test set of 10,897 images. These data are collected
from the real-life records stored in NCSIIS with manual labeled precisely.

– To solve our problem, we designed our convolutional neural network based on
AlexNet. Then we compared its performance with two classic architectures.

– Finally, we measured the performance of our CSS-Net, to indicates the capa-
bility of recognizing each categories.
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2 Related Works

Because crime scene sketch is confidential, the related work is less than nothing.
However the heart of automated classifying crime scene sketch problem lies a
classic challenge, image classification. It has been a hot issue in pattern recog-
nition and computer vision for a long time.

Back to 1990s, Yann Lecun et al. firstly used CNN on handwriting digit recog-
nition and achieved a great success on MNIST dataset. Then, due to defects of
CNN, the flourish of traditional pattern recognition methods such as Gaussian
mixture model, K-means and support vector machine came to image classifica-
tion domain. They did a good job on solving some simple problems, but in most
cases, they were not competent [9]. Then, with the exploding growth of comput-
ing power, some disadvantages of deep neural network were compensated, while
their benefits were magnified. CNN has a simple network topology, they can
spend less training time by sharing weights, and one architecture of CNN could
solve more than one classification problems, which made CNN more popular in
image classification. Besides, in resent years, many excellent ideas of deep neural
network has emerged, like VGG [11], GoogLeNet [13], ResNet [2] and deepID
[12]. Hence, a trend of CNN application started.

In general, convolutional neural network has the ability to solve our problem.
On account of small number of categories, there is no need to use a deep network
structure. Some classic CNNs could competent this work.

3 Crime Scene Sketch

In this section, we focus on two things, what a qualified sketch should be and
how to distinguish the different types of sketches. To figure them out, we viewed
plenty of official documents and books related to criminal investigation. In China,
there is no such a national or professional standard, but rules of drawing and
classifying sketches exist in working specifications and textbooks about criminal
investigation.

3.1 Sketch Taxonomy

Graph Performance Range. According to performance range of images,
crime scene sketches can be divided into three categories. Location Sketch shows
the location and surrounding of crime scene, which covers the biggest range.
Crime Scene Overview Sketch describes the overall crime scene and it shows
the result of criminal investigation including various items, evidence, traces, etc.
The third one is Key Parts Sketch, highlight matters and crucial site, which is
strongly related to crime. It is the one that covers the smallest range.

Representation of Image. This classification is similar to the one in United
States which divide sketches into floor plan (or bird’s view) sketch, elevation
sketch and the cross-projection (or exploded view) [7]. But in China, there are
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two more categories in this sorting mode, Stereo View Sketch and Cutaway View
Sketch.

– Floor plan is a horizontal top view drawn on the principle of parallel projec-
tion. It is for important evidence and objects distributed on the horizontal
surface of the scene.

– Elevation sketch shows the vertical projection of the crime scene.
– Cross-projection is a combination of the first two types of scene maps. It

shows other façades or tops of the crime scene, on the basis of floor plan
sketch.

– Stereo View Sketch can represent the object’s shape in three directions (eg.
front, top and side) on one projection map, using the methods of angular
parallel or center projection.

– Cutaway View Sketch is a special form of Stereo View Sketch. It removes part
of object’s surface and reflects the internal state of the object

Plotting Scale. In this sorting mode, sketches are divided into two categories,
one with a scale, the other without scale. Sketch with scale should be made to
scale, but sketch without scale could not. Therefore, only in some serious cases,
investigators draw sketch with scale.

In this study, to meet the needs of criminal investigation, sketches are divided
into Crime Scene Overview Sketch and Location Sketch, as these two types can
cover the compulsory information of crime scene.

3.2 Rules of Uploading Sketch

What should a qualified crime scene sketch look like? In China, a qualified sketch
should meet requirements both in format and content. The Ministry of Public
Security revised Public Security Crime Scene Investigation Regulations and Sam-
ple of Crime Scene Investigation Records dated in October 2015, so as to meet
the requirement of revised “Criminal Procedure Law” for crime scene investi-
gation and further standardize the documenting work. In these two documents,
rules are that drawing sketches should meet the following requirements:

– Mark the identifier, discovering time and location of the case.
– The location sketch should exactly reflect the location and scope of the scene.
– Crime Scene Overview Sketch should precisely reflect the main objects related

to criminal activities, indicating the specific location of the body, traces,
physical evidence, and tools for committing crimes.

– Text description should be concise and accurate
– Proper layout with highlighted priority.
– Clear presentation with standardized signs.
– Sketch should indicate the direction, legend (key), drawing date, cartographer

and his (or her) organization.
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Furthermore, on the conference of National Criminal Investigation Work on
December 24, 2014, the Ministry of Public Security presented a series of reg-
ulations of criminal investigation, in order to normalize routine for investigat-
ing crime scene. In the regulations, a complete crime scene investigation record
should cover two types of sketch describing site layout and location in detail.
One is Crime Scene Overview Sketch, and the other is Location Sketch. These
sketches uploaded into the NCSIIS system should be finished images and meet
the requirements mentioned above.

4 Methodology

Convolutional Neural Network usually works in a common way, containing for-
ward propagation and backward propagation. In the forward propagation phase,
when images inputs, CNN begins sampling, down sampling, and finally outputs
a loss value in training or scores of each categories in test. The loss value shows
the distance between predicted results and label. The scores shows the proba-
bility that input image belongs to certain categories. Then it turns to backward
propagation. It only exists in training process and works for finding the minimum
loss value guided by the gradient [9].

The architecture of Convolutional Neural Network usually contains convo-
lutional layer, pooling layer and fully connected layer. Convolutional layer is
responsible for sampling, and pooling layer takes charge of down sampling. These
two layers undertake the main tasks of CNN. How these layers work would be
illustrated in following parts.

In a convolutional layer, there are more than one kernels available. When an
image inputs to this layer, kernels slip on this matrix of image pixels in a fixed
stride. In every step, a convolutional calculation exists. And it can be expressed
as:

f(x) = σ(x × W + b) (1)

In Eq. (1), assuming f(x) as output, x represents the input, then x times weight
matrix W and plus a bias term b, finally put it to a nonlinear activation function
σ(x). When kernels traverses the whole image, the convolutional layer outputs
numbers of feature maps.

Pooling layer usually plays a role in down sampling feature maps output by
convolutional layer. Through this layer, the size of feature maps would shrink,
but the number of them would stay. In this study, we used max pooling method.
It works by sliding windows walking on the feature maps in a fixed stride. On
the area covered by kernel, it works as:

f(x) = max(x) (2)

In Eq. (2), x means the area covered by pooling kernel and this function output
the biggest number in this area. It is a traditional approach where adjacent
pooling kernels do not overlap during it sliding on feature map. In this study,
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however, we used overlapping pooling method. It makes the stride less than
the size of kernel. When pooling kernel slides on feature maps, adjacent ones
would overlap each other. And it has positive effects on reducing error rates and
overfitting.

In the end of convolutional neural network, there would be some fully con-
nected layers. They works for turning the matrix of feature maps into a feature
vector and finally get a probability distribution P based on the input. As the
Eq. (3) shows, the heart of CNN is to perform the operation of multi-layer filter-
ing, reducing the amount of calculation, so as to obtain a mathematical model
of feature expression P .

P (j) = P [L = lj |xj ; (ω, b)] (3)

In Eq. (3), xj represents the input image, lj means label of it, and function
L(ω, b) shows distance between label and the predicted result of forward propa-
gation. Ideally, the best trained model reaches the point where value of L(ω, b)
is minimized.

5 Experiment

In this study, our goal is to apply CNN to solve our problem, and this problem
is not challenging enough to use some complicated architectures. Therefore, we
employed classic architectures, LeNet-5 and AlexNet. To fit our data better,
we designed a new architecture of CNN based on AlexNet and called it Crime
Scene Sketch Net (CSS-Net). The whole experiment were conducted on Caffe
[3], a convolutional architecture.

5.1 Data Set

Due to sensitive information involved in sketch, there is no public dataset to use
in this study. Our first task was to build a dataset. We collected 71,839 sketches
of 32,409 cases occurred in six different provinces from the database of NCSIIS.
These sketches were drawn to documented the investigation of real-life cases and
uploaded to the information system by criminal investigators. It might seem an
easy job by simply downloading the data to get a dataset, but actually it was
time-consuming and labor-intensive.

Manual Inspection. On account of lacking supervision, the images below the
mark were mixed with the qualified sketches. We needed to scrutinize the data
downloaded from the database. Then, 18,515 unqualified images were removed
from the data set.
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Label: Crime Scene Overview 
Sketch

Label: Self-Drawn Location 
Sketch

Label: Map-screenshot 
Location Sketch

Fig. 1. Labeled crime scene sketches

Manual Label. In this study, these data should be labeled into two classes,
crime scene overview sketch and location sketch, based on the range of grapy per-
formance. Finishing labeling, we found that a huge intra-class variation exists in
the location sketches. As known to us all, huge intra-class variation can damage
the performance of the classifier. To get a better result, we subdivided the loca-
tion sketches into two classes by drawing method. One is called Map-screenshot
Location Sketch. It considers the screenshot of electronic map as main body of
the image to show where the crime occurred. The other is called Self-drawn Loca-
tion Sketch. It is manually drawn using graphics software. This type of sketch
uses symbols to represent the buildings, roads, rivers and so on, to indicate the
location and scope of crime scene. Finally we labeled these sketches into three
categories, as shown in Fig. 1 (Table 1).

Table 1. The composition of dataset

Train and validation set Test set

Crime scene overview sketch 16425 4975

Self-drawn location sketch 8876 3647

Map-screenshot location sketch 28023 2275

Total 53324 10897

Train and Validation Set. Then, we got a dataset containing 16,425 Crime
Scene Overview Sketch, 8,876 self-drawn location sketches, and 28,023 map-
screenshot location sketches. In this dataset, we randomly sampled 80% of each
type of sketches as the training set, and the remaining 20% as the validation set.
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Test Set. In order to test the robustness of the trained model, we collected
10,897 new sketches from some provinces different with the six provinces. After
examined and labeled, these new data were used as test set.

This dataset contains variable-resolution images, while the architecture of
CNN needs a constant input dimension. Consequently, we normalized the
sketches to a fixed resolution of 256*256. Finally, we got our crime scene sketch
dataset.

5.2 Architecture

In this study, we employed two classic architectures, LeNet-5 and AlexNet. The
details of them could turn to the Ref [5] and Ref [4]. Although we got a trained
model that can apply to solve our problem, it was not good enough. Therefore,
we revised the AlexNet and designed our new architecture. In this section, we
will mainly focus on our CSS-Net.

Layer 1
Conv layer

Kernel Size: 7
Stride: 3

With ReLU
Number 

Output: 96

Layer 3
Pooling layer

Pool: Max 
Kernel Size: 4

Stride: 3
Number Output:  

128

Layer 4
Conv layer

Kernel Size: 5
With ReLU

Number 
Output: 256

Layer 5
Pooling layer

Pool: Max 
Kernel Size: 3

Stride: 2
Number 

Output: 256

Layer 6
Conv layer

Kernel Size: 3
With ReLU

Number 
Output: 384

Layer 7
Conv layer

Kernel Size: 3
With ReLU

Number 
Output: 384

Layer 8
Conv layer

Kernel Size: 3
With ReLU

Number 
Output: 256

Layer 9
Pooling layer

Pool: Max 
Kernel Size: 3

Stride: 2
Number 

Output: 256

Layer 10
FC layer

ReLU

Number 
Output: 4096

Layer 11
FC layer

ReLU

Number 
Output: 4096

Layer 12
FC layer

Number 
Output: 3

Layer 2
Conv layer

Kernel Size: 5
Stride: 4

With ReLU
Number Output: 

128

output

Input
256*256

Channel:3

Fig. 2. Architecture of CSS-Net: Conv layer means convolutional layer, FC layer rep-
resents fully connected layer

Our CNN has six convolutional layers and three fully connected layers. Dif-
ferent from AlexNet, we added a convolutional layer and set size of input as
256*256 pixels. And for fear of training difficulty growing sharply, we used small
convolution kernels to replace a big kernel. The tricks in AlexNet which benefit
the training process were retained. However, the data augmentation fell short of
lifting accuracy of classification and greatly increased cost of computing resource.
Thence, image cropping was fired. Finally, we got a better classifier than classic
CNNs. More details are shown as Fig. 2.

6 Results and Analysis

6.1 Compared with Classic CNNs

In this part, we trained our CSS-Net and classic nets of same parameters except
the ones mentioned. Details are shown in Table 2.
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Table 2. Parameters of training

CSS-Net AlexNet LeNet-5

Crop size None 227 None None

Mirror False True False False

Batch size 128

lr policy inv

base lr 0.0001

In this table, there are some abbreviations which need to be explained. ‘lr
policy’ means learning rate policy which represents the policy of changing learn-
ing rate during training phase. ‘base lr’ means base learning rate which is the
initial value of it. If ‘Mirror’ was true, data augmentation method of mirror flip-
ping would be used in this net. And during training phase, test on the validation
set existed every 1000 iterations. Finally their accuracy made up this following
Fig. 3.

As the results show that the rate of convergence on our CSS-Net is faster
than classic nets, while LeNet-5 oscillating all the time. Besides, at the end,
CSS-Net get a accuracy of 2% better than AlexNet with crop method. Therefore
we can figure that CSS-Net performs better on our training set as our net get a
higher accuracy and is easy to train.

Fig. 3. Accuracy on validation set

To ensure that our trained model was not overfitting, accuracy of test on test
set plays a significant role. To figure it out, we tested the models of 250,000 iter-
ations and 300,000 iterations trained on AlexNet and our CSS-Net. The results
are shown in following Table 3.

As shown, LeNet-5 lacks the ability to classify crime scene sketches, while
AlexNet did a good job on our dataset, and this is the reason for choosing
AlexNet to modify. It also shows that the image augmentation methods, image
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Table 3. Accuracy on test set

AlexNet with crop AlexNet without crop CSS-Net

250,000 iters 86.5229% 84.5688% 89.8073%

300,000 iters 87.8349% 84.1009% 90.1193%

cropping, benefits on our task. This is behind attributes of crime scene sketches.
Rotation, deformation, and image noises are hardly seen in crime scene sketches,
while image shifting is very common. Image cropping can fix errors caused by
image shifting. It, however, makes the net become more difficult to train. This is
why we remove it from CSS-Net. To make up for the loss of it and to make our
net easier to train, we replaced a convolutional layer using a big kernel with two
layers using small ones, and they did a good job. The performance of trained
model could partly meet the requirements of application.

6.2 Performance Analysis

In this part, we focus on characterizing the performance of our model trained
on CSS-Net. To make it visible, we draw the ROC (Receiver Operator Charac-
teristic) curve and the PR (Precision-Recall) curve. For this study, we plotted
curves of each categories and average of them. For example, in the curve of crime
scene overview sketch, we define it as positive case, and remaining categories are
defined as negative cases. Finally, we averaged the results of each classes and
plotted the average curve.
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Fig. 4. ROC and PR curves of our CNN

In Fig. 4(a), the ROC curves show that performance of distinguishing map-
screenshot location sketch with the rest of two types almost reaches the peak.
But capability of recognizing the two other classes is in a low level, which stuck
the improvement of our net’s classification ability. In Fig. 4(b), PR curves sug-
gest that our model works well on our data set, while there is still much room for
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Fig. 5. Distribution of Deep Features: 1st-class represents Crime Scene Overview
Sketch, 2nd-class represents Self-Drawn Location Sketch, and 3rd-class represents Map-
Screenshot Location Sketch.

improvement, especially for improving capability of recognizing self-drawn loca-
tion Sketch. Although, in the ROC curve, it is similar to the ability of recognizing
crime scene overview sketch.

To show it in a more vivid way, we extracted the deep feature vectors out-
put by the last fully connected layer. Because the number of output equals to
number of categories, we can directly plot it on 3-D space. This figure illustrates
the spacial distribution of data having experienced forward propagation. From
Fig. 5, we can see that the deep features could be distinguished by some decision
boundaries, but the degree of classifying difficulty is different. map-screenshot
location sketch is the easiest one, while the rest are not discriminative enough.
It is behind the results of ROC and PR curves.

7 Conclusion

In this paper, we proposed an application problem of image classification. Then,
we built a crime scene sketch dataset and came up with a solution based on
convolutional neural network as we called it CSS-Net. Our net performs better
than classic ones and can basically meet the requirement of real-life application.
But the capability of recognizing self-drawn location sketch and crime scene
overview sketch needs to be improved. In this study, our dataset lack a class of
negative class to get rid of photos which were usually uploaded as sketches. The
number of self-drawn location sketches is not enough. Besides, our architecture
is based on AlexNet which is too old. As a result, we will continue this study in
two aspects, including expanding the dataset and designing a new architecture
with novel technology.
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Abstract. In this paper, we attempt to estimate the outdoor air quality
only using images. To address this problem, we mainly collect an avail-
able database of high quality outdoor images. We hope this database will
encourage further research on image based air quality estimation. More-
over, we perform comprehensive experiments based on this database. We
use different hand-crafted features to analyze the appearance variances
of outdoor images in different air quality conditions. Results show that
the accuracy of meteorological features is much better than that of tra-
ditional hand-crafted features. Moreover, in meteorological features, the
extinction coefficient indicating the degree of light intensity attenuated
by particles performs best with the accuracy of 64.

Keywords: Air quality estimation · Image database · Hand-crafted
features

1 Introduction

The China economy has grown at a fantastic speed recently. The fast develop-
ment in economy greatly increases the stress on the environment protection. Air
pollution is a serious environmental issue that is attracting increasing attention
globally. Particulate matters like PM2.5, PM10, and NO2, represent air pollu-
tants that can be inhaled via nasal passages to the throat and even the lungs.
Long-term exposure to air pollutants increase the incidence of associated dis-
ease in humans. Therefore, it is important to awake the whole society by the air
quality estimation to work together in controlling the air pollution.

2 Related Work

To estimate fine-grained, city-wide air quality with limited monitoring stations,
there has been much existing literature from several research fields.

Some researchers employ theoretical meteorological emissions models [11,15]
for pollutant discharge simulation [3,16,35]. [5] proposed a CMAQ model to
simulate PM2.5 formation and its response to precursor emission reductions,
which could be used to design effective emissions control strategies for regulatory
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applications. [26] proposed a WRF-CHEM model to simulate the meteorological
model and air quality, which is a fully coupled online model that enables air
quality simulations at the same time as the meteorological model runs, improving
its potential for operational forecasts. However, the simulation processes suffer
from unreliable pollutant emission data and incomplete theoretical foundations,
which leads to low estimation accuracy.

Some researchers adopt statistical methods in a data-driven manner. Artifi-
cial neural networks (ANNs) [4,7], multiple linear regression [17], and support
vector regression [12,23,27] are commonly used for air quality prediction. Con-
sidering the high spatial correlations between different air quality stations, spa-
tiotemporal prediction models have been considered, like the spatiotemporal arti-
ficial neural network (STANN) [22], the spatiotemporal support vector regression
(STSVR) models [8] and the spatiotemporal stacked autoencoder model [19].

Recently, many studies have focused on air quality estimation via spatiotem-
poral (ST) heterogeneous urban big data, which refers to the data sets containing
spatial, temporal, and category information [6,9,13,34]. The basic assumption is
that air quality is considerably influenced by these urban dynamics (e.g., wind,
vehicular traffic, and point of interest (POI)). By analyzing the temporal depen-
dency and spatial correlation between urban dynamics data, such as meteorology
and traffic, air quality at locations which are not covered by monitoring stations
can be estimated. However, These works achieve good results at the cost of time
consumption on the complex algorithms. Moreover, the massive sensing data
used in these works are difficult to obtain.

With the development of computer vision, use of the outdoor camera is of
great interest. Despite the remarkable value, only a few studies have focused on
air quality estimation based on image data. Zhang et al. constructed an image
database of two view sites, and extract several image features as the robust rep-
resentation for air quality prediction. By using machine learning methods, they
learned an adaptive classifier for air quality estimation [32,33]. Wang et al. chose
a view site to collect scene images by a camera. They analyzed a relationship
between the concentration of PM2.5 and the degradation of observed images
[30]. Liu et. al built a database of outdoor images available for Beijing, Shanghai
and Phoenix. They fused image features and other relevant data, such as the
position of the sun, date, time, geographic information and weather conditions,
to predict PM2.5 [20]. Zhang et. al proposed a haze image database and record
the related weather and air quality information at a view site in Hefei [31]. Based
on this database, they proposed a novel no-reference image quality assessment
(IQA) method for haze images.

3 Our Database

In this paper, we present a database of high quality images in different outdoor
scenes, captured regularly for a period of 5 years. The database is called Visual
Air Quality Index Database (VAQI-1).

VAQI-1 contains 7649 images in total, which come from 85 different view sites
in 26 cities in China. The distribution of view cities is shown in Fig. 1. VAQI-1



Image-Based Air Quality Estimation 163

Table 1. AQI values, Air pollution levels, colors and Descriptions.

AQI values Air Pollution level Colors Descriptions

0-50 I Green No air pollution

51-100 II Yellow Air quality is good while a few contaminants exist

101-150 III Orange Concentrations of contaminants increase.

151-200 IV Red Slight irritations may occur.

201-300 V Purple Irritations further deteriorates.

301-500 VI Maroon There may be strong irritations and symptoms.
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Fig. 1. Distribution of view cities in China

is a comprehensive collection of images under a wide variety of air quality. We
adopt the air quality index (AQI) as the ground truth data. AQI is a guideline
for reporting air quality, and is divided into six levels indicating the increasing
air pollutant concentration (in Table 1). The statistic numbers of VAQI at six
air pollution levels are shown in Table 2. Figure 2 shows example outdoor images
at different air pollution levels.
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Fig. 2. Example scene images of VAQI-1

3.1 Collection and Annotation

Images of VAQI come from two sources. The first one is an environmental pro-
tection project, named Yi Mu Liao Ran [2]. Zou Yi, an organizer of this project,
takes an identical photo of a specific site every day by using a smart phone cam-
era and records the corresponding AQI values. He selects the view sites near air
quality monitoring stations, which ensures the accuracy of AQI values. With the
increase of this project’s influence, people from other cities start to follow him.
They use smart phone cameras to take photos of specific sites, and send their
photos along with AQI values to this project. There have been 5315 outdoor
images from 31 view sites in 17 cities. This project has become the main source
of VAQI.
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Table 2. Statistic numbers of outdoor images in VAQI-1.

Air Quality Category Number of Outdoor Images

Excellent 2219

Good 2031

Lightly Polluted 1161

Moderately Polluted 706

Heavily Polluted 831

Severely Polluted 701

The second one is MJ weather [1], which is a free weather information query
software. It offers a public platform where people can upload real-time images
taken by smart phone cameras along with the location and time of photo taking.
The corresponding AQI value is obtained from the nearest air quality monitor-
ing station. We select images with the time strictly coinciding with the update
time of the nearest monitoring station. We select 9 major cities with serious
air pollution. There have been 2334 outdoor images from 54 view sites in these
cities, which enlarges the quantity and enriches the site diversity of VAQI.

3.2 Appearance

Outdoor scene appearance is greatly affected by characteristics of atmosphere
pollutants like PM10, SO2, NO2 and O3. The characteristics include species,
size and concentration. Figure 3 shows the example view site appearances with
different AQI values in VAQI-1. With the increase of concentrations on large-
scale atmosphere pollutants, the air quality is getting worse, which leads to
variances of image features like contrast, transmission, saturation. These features
are the main references to air quality estimation.

Water droplets in the air also have an influence on scene appearance, like fog
scenes. Appearances of fog is similar with haze. However, unlike the atmosphere
pollutants, concentration on water droplets does not affect the air quality. The
AQI values of foggy images are always less than 50. Figure 4 shows a comparison
of fog and haze appearances. As can be seen, the color of fog is more vivid than
haze, and the fog has clearer boundaries. Despite such differences, there is no
effective method to distinguish fog and haze based on scene images, which makes
the image based air quality estimation more challenging.
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Fig. 3. Example view site appearances with different AQI values

3.3 Diversity

(1) Site Diversity: In real life, varieties of air quality occur in any type of sites
(e.g., highway, city, farm, nature scene and so on). With the aim to estimate
the exact air quality anywhere, we collect outdoor images from almost all
types of sites, which provides a wide estimating range of view sites. However,
appearances of different sites at the same AQI will have a huge distinction,
which also pushes a limit of visual estimation abilities for both human and
computers.

(2) Visual Angle Diversity: The visual angle is the angle a viewed object sub-
tends at the camera, which includes high angle, flat angle and low angle. The
high-angle photography technology is utilized in general outdoor surveil-
lance, which employs the camera look down on a distant viewed object from
a high angle. However, there are a lot of outdoor images taken from flat
angle and low angle in real life. In general, images from low angle weaken
the visual effects of scene imaging, which will affect the visual analysis of
air quality (see red box in Fig. 5). Similar, short-distance images also show
the incomplete atmosphere information of scenes (see green box in Fig. 5).
VAQI-1 contains a certain number of such images, which not only enriches
the visual angle diversity, but also increases the difficulty of air quality esti-
mation.

We compare VAQI-1 with existing outdoor air quality databases (see Table 3).
As can be seen, VAQI-1 expands both the database size and the number of view
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AQI:500

AQI:249 AQI:207 AQI:202

AQI:265 AQI:469

AQI:500 AQI:500AQI:439

AQI:289 AQI:500 AQI:337

AQI:15 AQI:24 AQI:17

AQI:34 AQI:20 AQI:26

AQI:34 AQI:28 AQI:38

AQI:39 AQI:29 AQI:27

Fig. 4. Example scene appearances of fog and haze with AQI values. [red box] foggy
scene appearances. [green box] haze scene appearances. (Color figure online)

sites. Only VAQI-1 is publicly available. Moreover, we will constantly update and
maintain VAQI-1 for a long term with the aim to encourage further research on
image based on air quality estimation.

4 Image Based Air Quality Estimation

In this section, we attempt to estimate the air quality based on the VAQI-1. Note
that the scene appearances with adjacent AQI values are almost the same, which
brings difficulty to AQI estimation based on images. Moreover, the diversity of
scene and visual angle further increases the estimation difficulty. According to
the air pollution level, we divide VAQI-1 into six classes, and then the air quality
estimation becomes a six-class classification of air pollution levels. We randomly
select half images from each class as the training set and the rest as testing set.

In traditional image classification tasks, the mainly used hand-crafted fea-
tures are SIFT [10], HOG [29], LBP [29] and color histogram. We attempt to use
these features for air quality estimation. Moreover, by analyzing the visual and
spectral clues related to the air quality, we also extract several meteorological
features:
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AQI:37 AQI:112AQI:65

AQI:45

AQI:39

AQI:130AQI:49 AQI:210

AQI:68

AQI:68AQI:186 AQI:308

AQI:144 AQI:170AQI:120

AQI:200AQI:240

AQI:123

Fig. 5. Example images of low angle and near distance in VAQI-1. [red box] images of
low angle. [green box] images of near distance. (Color figure online)

Table 3. Statistics of databases for image-based air quality estimation.

Database Number of view sites Number of outdoor
images

Collection period

OAQIS in [33] 2 2000 2014

Database in [30] 1 <500 2013–2014

Database in [31] 1 287 2014

Database in [20] 3 6587 2014–2016

VAQI-1 75 7649 2014-Now

(1) Medium transmission: Medium transmission indicates the degree of light
intensity attenuated because of the particulate matter scattering. Based on
He et al. [14], we compute the dark channel values of each image, and com-
bine the scene imaging model to calculate medium transmission.

(2) Extinction Coefficient: Extinction coefficient indicates the scattering degree
of the particles in the atmosphere. We compute the value of extinction coef-
ficient based on [18,25].

(3) Contrast: Contrast indicates the atmospheric clarity. Outdoor images cap-
tured in clear and haze days exhibit different global and local contrast. We
compute the contrast according to Root Mean Square (RMS) [24].

(4) Sky Color: Sky is the most important cue for weather labeling. A clear sky
is blue as air molecules scatter blue light more than other light. Pollution
particles scatter long-wavelength light, which makes sky look gray or yellow.
We detect the sky region in an image with the method suggested in [21,28].
Then, we extract A and B channels in the LAB color space of the sky region
to form a feature vector.

We employ these hand-crafted features and utilize LIBSVM to evaluate their
performance based on VAQI-1 (see Table 3). As can be seen, the accuracy of
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SIFT, HOG, LBP and color histogram, for air quality estimation is quite low,
which shows that the traditional hand-crafted features can not describe the air
quality. On the other hand, the accuracy of meteorological features is much bet-
ter than that of traditional hand-crafted features. However, the sky color is easily
effected by the presence of clouds, as the clouds are made of tiny water droplets,
making sky look gray or white. Although medium transmission and contrast
perform better than sky color, these two features are determined by both the
atmospheric clarity and the distance between the objects and the visual sen-
sors, which can not accurately indicate the air quality like extinction coefficient.
Extinction coefficient performs best with the accuracy 64%, which shows that
this feature gives the best description of air quality (Table 4).

Table 4. The accuracy of air pollution level classification with different hand-crafted
features.

Num Feature Accuracy

1 SIFT 0.06

2 HOG 0.15

3 LBP 0.19

4 Color histogram 0.20

5 Sky color 0.45

6 Contrast 0.52

7 Medium transmission 0.57

8 Extinction coefficient 0.64

5 Conclusion

In this paper, we attempt to solve a challenging problem: How to estimate out-
door air quality only using outdoor images? The absence of public database is a
barrier to solve this problem. Therefore, we build an available database of high
quality outdoor images in different view sites, which is labeled by AQI values. To
the best of our knowledge, this database is currently the largest for image based
air quality estimation. Based on this database, we perform comprehensive exper-
iments by using different hand-crafted features including the traditional features
and meteorological features respectively to analyze the appearance variances
of outdoor images in different air quality conditions. The results show that the
accuracy of meteorological features is much better than that of traditional hand-
crafted features. Moreover, in meteorological features, the extinction coefficient
indicating the degree of light intensity attenuated by particles performs best
with the accuracy of 64%.
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Abstract. In this paper we present a minimal solution for the rotational
alignment of IMU-camera systems based on a homography formulation.
The image correspondences between two views are related by homog-
raphy when the motion of the camera can be effectively approximated
as a pure rotation. By exploiting the rotational angles of the features
obtained by e.g. the SIFT detector, we compute the rotational align-
ment of IMU-camera systems with only 1 feature correspondence. The
novel minimal case solution allows us to cope with feature mismatches
efficiently and robustly within a random sample consensus (RANSAC)
scheme. Our method is evaluated on both synthetic and real scene data,
demonstrating that our method is suited for the rotational alignment of
IMU-camera systems.

Keywords: Rotational alignment · Minimal solution · Pure rotation ·
IMU-camera calibration

1 Introduction

The fusion of vision and IMU data have been applied to a wide variety of appli-
cations, such as structure from motion (SfM) [21] and simultaneous localization
and mapping (SLAM) [14]. The accuracy of these applications highly depends on
the axis alignment between the IMU and the camera coordinate system [5,6,21].
This paper investigates the problem of IMU-camera calibration. In particular,
we are interested in the minimal case, i.e. to compute the rotational alignment
of IMU-camera systems exploiting one point correspondence together with rota-
tional angles obtained by, e.g. SIFT detector [17]. The novel minimal case solu-
tion is significant within a RANSAC scheme, to cope with the outliers of feature
matches efficiently and robustly.

The IMU-camera calibration problem has already been addressed by various
researchers. A class of approaches use IMU measurements directly and estimate
c© Springer Nature Switzerland AG 2019
Z. Lin et al. (Eds.): PRCV 2019, LNCS 11859, pp. 172–183, 2019.
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the calibration parameters as part of visual-inertial sensor fusion by adopting
a filter-based approach [13,18,24]. Due to the large number of DOFs, these
approaches require a high camera frame rate. Considering that common IMUs
output the complete rotation information with respect to the IMU reference coor-
dinate system, IMU-camera calibration is generally regarded as hand-eye cali-
bration regarding the IMU as the hand [3,10,16,19,23]. Hence, the IMU-camera
calibration problem can be represented as the hand-eye calibration equation
AX = XB, where X is the transformation between the IMU coordinate system
and the camera coordinate system which consists of a rotational matrix and a
translational vector, A and B are the relative rigid motions of the camera and
the IMU, respectively. Hand-eye calibration problem has already been addressed
by many researchers in the past. The traditional methods need recover the cam-
era poses in advance by using a calibration device or a SfM approach [10,25,27].
Recently, some methods avoid requiring prior knowledge of the camera poses and
compute the hand-eye calibration directly from feature matches. Heller et al. [9]
and Ruland et al. [20] employ the branch-and-bound algorithm to obtain glob-
ally optimal hand-eye calibration by minimizing the residuals in image space.
Bender et al. [2] perform an in-flight IMU-camera calibration by exploiting a
graph optimization framework.

A class of methods are proposed to perform IMU-camera calibration when the
motion of the calibrated camera is a pure rotation or can be effectively approx-
imated as a pure rotation. Seo et al. [22] solve the rotational matrix between
the IMU coordinate system and the camera coordinate system by assuming all
the translations to be zero. Hwangbo et al. [11] propose a calibration method
based on homography transformation of image correspondences. Karpenko et al.
[12] calibrate the camera and gyroscope system by quickly shaking the camera
while pointing it at a far-away object. Guan et al. [7] propose minimal case
solutions to the rotational alignment of IMU-camera systems using homography
constraints, especially only 1.5 point correspondences are required for the pure
rotation case. In fact, the assumption that the motion of the camera is a pure
rotation is not restrictive in practical environment, because we rotate the camera
outside where the scene is far away, the parallax-shift of most objects is hardly
noticeable and the calibration method for a pure rotation case can be directly
applied to such data. Thus IMU-camera calibration in the pure rotation case has
practical relevance.

Fig. 1. Overview of the proposed IMU-camera calibration method.
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The presented work is an extension of [7] which explores the different min-
imal case solutions to the rotational alignment of IMU-camera systems. Here,
we extend [7] with a novel minimal case solution for the pure rotation case and
achieve more accurate calibration result. Figure 1 illustrates the proposed IMU-
camera calibration method. Our contributions can be summarized in the follow-
ing way: (i) We propose to compute the rotational alignment of IMU-camera
systems with 1 feature correspondence and the corresponding rotational angles
obtained by e.g. the SIFT detector. (ii) Our method adopt the RANSAC [4] to
cope with feature mismatches. The proposed minimal case solution is efficient
within a RANSAC scheme, because the number of random samples that must
be taken to find one outlier free sample depends exponentially on the number
of parameters to instantiate one hypothesis. (iii) A non-linear parameter opti-
mization over all image pairs is proposed. Our method not only can compute
the rotational alignment of IMU-camera systems using a single image pair, but
also can achieve more robust calibration results with multiple image pairs.

The remainder of the paper is structured as follows. We establish basics
and notations for homography constraints for a pure rotation case in Sect. 2. In
Sect. 3, we derive the minimal case solution by exploiting the rotational angles of
the features and describe the non-linear parameter optimization over all image
pairs. In Sect. 4, we validate the proposed method experimentally using both
synthetic and real scene data. Finally, concluding remarks are given in Sect. 5.

2 Homography Constraints

Assume the intrinsic parameters of camera to be known, a general homography
relation between two different views is represented as follows [8]:

λxj = Hxi, (1)

where xi = [xi, yi, 1]T and xj = [xj , yj , 1]T are the normalized homogeneous
coordinates of the ideally projected image points in views i and j. H is the
homography matrix and λ is a scale factor.

As shown in Fig. 2, the motion of the camera between views i and j is a pure
rotation. Fr denotes IMU reference coordinate system. The camera coordinate
systems of the views i and j are expressed with F i

c and F j
c , respectively. The

rotations of F i
c and F j

c in Fr can be expressed as Ri
imuRcalib and Rj

imuRcalib,
respectively. The rotational alignment difference between camera coordinate sys-
tem and IMU coordinate system is expressed with Rcalib. The image correspon-
dences between views i and j are related by homography and the homography
can be written as:

H = RT
calib(R

j
imu)TRi

imuRcalib. (2)

The skew-symmetric matrix [xj ]× is multiplied in both sides of Eq. 1 to fur-
ther eliminate the unknown scale factor λ:

[xj ]×Hxi = 0. (3)
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Fig. 2. The relationship between the views i and j.

Since the skew-symmetric matrix [xj ]× is only of rank 2, Eq. 3 only imposes
two independent constraints on H. In many situations, the approximate instal-
lation relationship between the IMU and the camera can be obtained from hand
measurements or device layouts [7]. Thus the rotational relationship between the
IMU and the camera Rcalib can be represented:

Rcalib = R̂calibRA, (4)

where RA is the approximate installation relationship between the IMU and the
camera, and R̂calib is the remaining rotation between the IMU and the camera.
Since the remaining rotation angles are small, R̂calib can be expressed by its
first-order expansion:

R̂calib = I3×3 + [̂r]×, (5)

where r̂ = [r̂x, r̂y, r̂z]T is a three-dimensional vector. Thus Eq. 2 can be reformu-
lated as follows:

H = RT
AR̂

T
calib(R

j
imu)TRi

imuR̂calibRA. (6)

3 IMU-camera Calibration

3.1 1pt-RANSAC Calibration Method

The widely-used SIFT detector not only provides the image coordinates of point
correspondence, but also provides the rotational angles and scales of features.
Our paper aims at involving the rotational angle of feature into the process to
reduce the size of the minimal sample required for IMU-camera calibration. The
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affine correspondence can be described as a triplet: (xi,xj ,A). The local affine
transformation A is defined as follows [1]:

A =
[
a11 a12

a21 a22

]
=

[
cos(α) − sin(α)
sin(α) cos(α)

] [
sx w
0 sy

]

=
[
sx cos(α) w cos(α) − sy sin(α)
sx sin(α) w sin(α) + sy cos(α)

]
.

(7)

Where the rotational angle α is computed by (αj −αi), note that the rotational
angles of point correspondence αi and αj can be obtained directly from the
SIFT detector. sx and sy are the scales along axes x and y, respectively. w is
the shear parameter. A is given as the first-order approximation of the related
homography matrix for perspective cameras:

a11 =
∂xj

∂xi
=

h11 − h31xj

s
, a12 =

∂xj

∂yi
=

h12 − h32xj

s
,

a21 =
∂yj
∂xi

=
h21 − h31yj

s
, a22 =

∂yj
∂yi

=
h22 − h32yj

s
,

(8)

where hij is the element from the ith row and the jth column of the homography
matrix H, s = xih31 + yih32 + h33 is the projective depth.

Based on Eqs. 7 and 8, we obtain the relationship between the rotational
angle of the feature and the corresponding homography matrix:

a11

a21
=

cos(α)
sin(α)

=
h11 − h31xj

h21 − h31yj
, (9)

We further expand Eq. 9 as follows:

sin(α)(h11 − h31xj) − cos(α)(h21 − h31yj) = 0. (10)

Assume one point correspondence xi = [xi, yi, 1]T , xj = [xj , yj , 1]T and the
corresponding rotational angle α, obtained by e.g. SIFT detector, to be known.
Combining Eqs. 3 and 10, we attain 3 polynomial equations in 3 unknowns r̂ =
[r̂x, r̂y, r̂z]T :

fw(r̂x, r̂y, r̂z) = 0, w = 1, 2, 3. (11)

The automatic Gröbner basis solver [15] is used to solve the above polynomial
equation system. The maximum polynomial degree of Eq. (11) is 2 and there is
at most 8 solutions for r̂. This polynomial equation system only needs 140 lines
to print out, which leads to an extremely short run-time for the solver. Thus
this solver is suitable to perform IMU-camera calibration on smart devices with
limited computational power.

In the 1-point RANSAC loop, we obtain the remaining rotation R̂calib from
each solution r̂ = [r̂x, r̂y, r̂z]T by Eq. 5. The corresponding exact rotation matrix
can be retrieved by projecting the matrix to the closest rotation matrix. Then the
homography H for the image features is composed with Eq. 6, and the solution
with the maximum number of inliers is selected as the final solution. Finally, the
rotational alignment of IMU-camera system Rcalib is calculated by Eq. 4.
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3.2 Non-linear Parameter Optimization

For each image pair, Rcalib and the corresponding inliers can be obtained by 1-
point RANSAC calibration method. The rotational alignment between the IMU
and the camera is further optimized based on all the inliers in M image pairs. We
minimize the total transfer errors of the inliers and the cost function is defined
as follows:

ε = min
R̄

M∑
p=1

Np∑
k=1

∥∥xk
j −Hpxk

i

∥∥

= min
R̄

M∑
p=1

Np∑
k=1

∥∥xk
j − g(R̄,Rp

imu)xk
i

∥∥, (12)

where R̄ is a three-vector used for optimization which is represented in Euler
angles. The initial value of R̄ is set to the mean or median angles of M calibration
results. Each image pair p is composed of views i and j. Np represents the number
of inliers and k is the index of the inliers within each image pair. xk

i and xk
j are the

homogeneous image coordinates of the inlier k. Rp
imu denotes the IMU rotation

matrices of views i and j. The homography g(R̄,Rp
imu) is the transformation

model within each image pair, which transfers the image coordinate xk
i in view

i to the corresponding image coordinate xk
j in view j.

Considering that there may still be a few outliers existed in the image cor-
respondences, the robust cost function created by Cauchy function is used to
reduce the influence of outliers:

ρ(ε) =
σ2

2
log(1 +

ε2

σ2
), (13)

where the σ parameter of the Cauchy function can be set to the inlier threshold
of the RANSAC loop.

4 Experiments

The performance of the proposed IMU-camera calibration method is validated
using both synthetic and real scene data. To obtain expressive results, we also
compare the proposed calibration method to 1.5pt-GB calibration method and
1.5pt-3Q3 calibration method [7]. These methods are suitable for the rotational
alignment of IMU-camera systems in the pure rotation case. For 1.5pt-GB and
1.5pt-3Q3 calibration methods, even though only one of the two available equa-
tions from the second point is used, both methods still need sample 2 feature
correspondences in the RANSAC loop. When a RANSAC scheme is used to cope
with feature mismatches, the necessary number of samples to get an outlier free
sample with a chance of 99% and an outlier ratio of 50% is 17 for the 1.5pt
calibration method, but the 1pt calibration method only need 7 samples.
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4.1 Experiments with Synthetic Data

In the simulation experiments, we assess the calibration error by the root mean
square (RMS) of the errors of all trials. The calibration error compares the angle
difference between the true rotation and estimated rotation:

ξR = arccos((Tr(RgtRT
calib) − 1)/2), (14)

where Rgt denotes the ground-truth rotation and Rcalib is the corresponding
estimated rotation.

Accuracy with Increasing Rotation. Since the remaining rotation matrix
is approximated to the first-order and the higher-order terms are truncated, the
proposed method is evaluated with respect to increasing magnitudes of remain-
ing rotation. We choose three approximate installation angles between the IMU
and the camera randomly from −180◦ to 180◦. Three remaining angles between
the IMU and the camera ranges from 0◦ to 10◦ at an interval of 1◦. At each
remaining rotation magnitude, 10000 independent trials are conducted, and for
each test, one image feature correspondence is generated randomly. We report
the results on the data points within the first interval of a 5-quantile parti-
tioning1 (Quintile) of 10000 trials. As shown in Fig. 3, the calibration error of
the proposed method increases slowly with increasing magnitudes of remaining
rotation. Since all of these methods have utilized a first-order rotation approxi-
mation for the remaining rotation matrix, our method has similar accuracy with
1.5pt-GB and 1.5pt-3Q3 calibration methods.
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Fig. 3. RMSE for the calibration error with increasing magnitudes of remaining
rotation.

1 k-quantiles divide an ordered data set into k regular intervals.
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Accuracy with Increasing Image Noise. We synthesize a pinhole camera
with zero skew and an unit aspect ratio. The resolution is 800 × 640 pixels and
the principle point is assumed to be at the image center. The focal length is cho-
sen as 600 pixels, so that one pixel corresponds to about 0.1◦. The approximate
installation angles between the IMU and the camera are set to (180◦, 0◦,−90◦),
and the remaining rotation angles are set to (1◦, 1◦,−1◦). We add a different
level of Gaussian noise to the image feature observations. The standard devia-
tion of Gaussian noise is ranging from 0 to 2 pixels at an interval of 0.1 pixel. At
each noise level, 10000 independent trials are conducted, and for each test, one
image feature correspondence is generated randomly. We also report the results
on the data points within the first interval of a 5-quantile partitioning of 10000
trials. As shown in Fig. 4, the calibration error of the proposed method increases
almost linearly with the increase of image noise. For image noise of more than
0.4 pixel, our calibration method is slightly more accurate than 1.5pt-GB and
1.5pt-3Q3 calibration methods.
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Fig. 4. RMSE for the calibration error with increasing image noise

4.2 Real Scene Data Experiment

We demonstrate the proposed method using a real scene data set under pure
rotation, which is acquired with the Pixhawk drone [7], see Fig. 5. The markers
are attached to the camera mount and the pose is tracked by a motion capture
system consisting of 10 cameras. The marker poses are used as IMU data in the
experiments. On the basis of the design of the 3D printed mount, the approximate
installation angles between the IMU and the RGB camera are (113◦, 0◦, 90◦).
The resolution of camera is 640 × 480 pixels and the intrinsic parameters are
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calibrated in advance. The camera is typically looking towards the ground and
81 images under pure rotation are captured.

(a) Pixhawk drone (b) Sample image

Fig. 5. Pure rotation data set.

In the 1pt-RANSAC calibration step, we consider feasible image pairs for
image matching and feature matches are created using SIFT feature matching
[17] for each image pair. The inlier threshold is set to 2 pixels and the maximum
number of iterations is set to 1000 in the RANSAC procedure. In the subse-
quent optimization step, the median and mean angle values of the calibration
results of all image pairs are chosen as the initial values for non-linear parameter
optimization, respectively. However, the optimization using the inliers of all the
image pairs converges to the same result for both initializations. The calibration
results of the different calibration methods are shown in Table 1. The calibration
result of the proposed method is quite consistent with 1.5pt-GB and 1.5pt-3Q3
calibration methods.

Table 1. The calibration results for the pure rotation data set.

Method Calibration results (degree)

Approximate installation angle (113.0, 0.0, 90.0)

1pt (114.3300, 1.1364, 88.6720)

1.5pt-GB (114.4211, 1.2609, 88.7395)

1.5pt-3Q3 (114.4241, 1.2845, 88.74310)

To evaluate the accuracy of the calibration results as shown in Table 1, a
data set of images for a checkerboard is acquired by the Pixhawk MAV. 49
images are randomly taken around the checkerboard and the image poses are
computed by OPnP algorithm [26]. The coordinates of the checkerboard corners
are measured by the motion capture system. The ground truth of the relationship
between the IMU and the camera can be determined directly by combining with
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the corresponding IMU data: rotational matrix is (114.1497◦, 1.1152◦, 88.7120◦)
and translational vector is (0.0316 m, 0.0222 m, −0.0638 m) [7].

Then the accuracy of the calibration results is evaluated using the repro-
jection error, which is the mean distance between the measured image corners
and the reprojection of the 3D corner. For comparison, the translational vector
between the IMU and the camera is fixed as (0.0316 m, 0.0222 m, −0.0638 m).
The results of the accuracy evaluation are shown in Table 2. The table shows
that the proposed method produces obviously lower reprojection errors than
using the approximate installation angles directly, and outperforms 1.5pt-GB
and 1.5pt-3Q3 calibration methods in terms of accuracy.

Table 2. The results of the accuracy evaluation

Calibration results Ground truth 3D printer 1pt 1.5pt-GB 1.5pt-3Q3

Reprojection error (pixel) 1.3495 11.5408 2.5066 2.7785 2.8244

The pose of the RGBD camera can be obtained directly from the IMU data
and the calibration result. Thus we reconstruct a common scene using the RGBD
camera to verify the calibration result intuitively. The offset of the RGB camera
and the depth camera has been calibrated beforehand, which is a pure translation
(0.00 m, −0.02 m, 0.00 m). The 3D reconstruction results based on the approxi-
mate installation angles and the calibration result of the proposed method are
shown in Fig. 6. There are many false point clouds around the table and the
deviation of the reconstructed line is quite large in the Fig. 6(a). The 3D recon-
struction result using our calibration result is significantly better than the 3D
reconstruction result using the initial values of 3D printing. This experiment
successfully demonstrates the practicability of the proposed calibration method.
It also means that it is necessary to calibrate the rotational alignment of IMU-
camera systems even though the approximate installation angles is known.

(a) Approximate installation angles (b) Calibration result of our method

Fig. 6. 3D reconstruction results.
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5 Conclusion

In this paper, we show that by exploiting the rotational angles of the features
obtained by e.g. the SIFT detector, it is possible to calibrate IMU-camera sys-
tems with only 1 feature correspondence in the pure rotation case. Our method
need fewer point correspondences for IMU-camera calibration as compared to
other calibration methods. The novel minimal case solution is useful to reduce
the computation time and increase the calibration robustness, when using Ran-
dom Sample Consensus (RANSAC) to cope with feature mismatches. Further-
more, a non-linear parameter optimization over all image pairs is performed for a
more accurate calibration result. The experimental results of both synthetic and
real experiments have demonstrated that our method is suited for the rotational
alignment of IMU-camera systems.
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Abstract. Unsupervised domain adaptation (DA) aims to utilize the
well-annotated source domain data to recognize the unlabeled target
domain data that usually have a large domain shift. Most existing DA
methods are developed to align the high-level feature-space distribution
between the source and target domains, while neglecting the seman-
tic consistency and low-level pixel-space information. In this paper, we
propose a novel bidirectional adversarial domain adaptation (BADA)
method to simultaneously adapt the pixel-level and feature-level shifts
with semantic consistency. To keep semantic consistency, we propose a
soft label-based semantic consistency constraint, which takes advantage
of the well-trained source classifier during bidirectional adversarial map-
pings. Furthermore, the semantic consistency has been first analyzed
during the domain adaptation with regard to both qualitative and quan-
titative evaluation. Systematic experiments on four benchmark datasets
show that the proposed BADA achieves the state-of-the-art performance.

Keywords: Domain adaptation · GAN · Unsupervised learning

1 Introduction

Deep learning has shown great success in multimedia analysis by learning dis-
criminative representations from massive labeled data [7,9]. However, collect-
ing the well-annotated datasets is exceedingly expensive. A promising alterna-
tive is to take full advantage of labeled data from an easily available source
domain. Unfortunately, the inevitable domain shifts between the source and tar-
get domain limit the generalization of models. To alleviate this issue, recent
domain adaptation methods try to align the feature distribution [4,29], which
focus on minimizing the distance between the source and target feature domain.
However, the feature-level alignment methods suffer two limitations: (1) feature-
level alignment is hard to sufficiently transfer knowledge from the source domain
to the target domain, due to missing the low-level pixel-space variance, which
is critical to the generalization of the model; (2) the measure of feature-level
difference fails to consider the semantic consistency during the alignment, and it
is difficult to directly observe whether the transferred knowledge is reasonable.
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Fig. 1. (a) Structure of CycleGAN: Cycle consistency only ensures the reconstruc-
tion of original content, where the middle mapping suffers label flipping. For example,
the source image Xs is with label “6”, while the transferred target image inconsis-
tently belongs to label “3”, hence it cannot be used to train a new target classifier.(b)
Structure of the proposed BADA method: a generator GST that maps source domain
images Xs to adapted target image Xt

g, and an another inverted generator GTS that
generates the reconstructed image Xs

r as if from original source domain, while keeps
cycle consistency and semantic consistency. For example, the transferred target image
keeps the label “6”, and can be used for training a new target classifier CT . The target
discriminator DT is to distinguish the generated target images Xt

g from unpaired real
target image Xt, which offers the guidance for generators.

Adversarial pixel-level domain adaptation [21] has shown great potential
recently, which tries to align the raw pixel-level distribution between two
domains. Specifically, pixel-level domain adaptation tries to map images from
the source domain to appear as if they were sampled from the target domain,
while keeping their original contents. The existing adversarial pixel-level domain
adaptation is achieved by learning a unidirectional pixel-level mapping with
unpaired images, which must maintain similar foregrounds between two domains
to provide training stability.

Cycle-consistent adversarial network (CycleGAN) [28] introduces a pair of
bidirectional mappings with cycle consistency to relax the strong assumption
that two domains must have similar contents to capture larger domain shifts.
The cycle consistency loss ensures that an image translated from one domain to



186 Y. Zhang et al.

another domain can be reconstructed to original domain. It shows compelling
results on unpaired image-to-image translation tasks. However, CycleGAN can-
not guarantee that the semantic contents are preserved during the translating
process. As shown in Fig. 1(a), CycleGAN suffers from random label flipping,
that is, lack of semantic consistency.

To overcome the shortcoming of CycleGAN in the domain adaptation task,
we proposed a novel Bidirectional Adversarial Domain Adaptation (BADA)
model. As shown in Fig. 1(b), BADA contains a pair of bidirectional reversible
mappings: one generator GST maps source domain images Xs to the adapted
target images Xt

g, and another inverted generator GTS that reconstructs adapted
images back to the source domain, while keep cycle consistency and semantic
consistency. The adapted target images Xt

g not only possess the style of the
target domain, but also inherit the labels from the source domain. And thus the
adapted target images Xt

g can be used to learn a supervised target classifier CT .
Furthermore, through the coordination between the pixel-level adversarial loss
and the feature-level similarity loss, the target classifier CT is able to capture
both the low-level and high-level shifts between the source domain and target
domain. What’s more, BADA is under the guidance of a soft label-based seman-
tic consistency constraint, which takes advantage of semantic information during
bidirectional mappings and is superior to unidirectional semantic consistency in
CyCADA [8] and SBADA-GAN [20]. We summarize our contributions as follows:

– We propose a novel BADA method to jointly consider the pixel-level and
feature-level domain adaptation with semantic consistency. The pixel-level
adaptation preserves more detail information and is easily visualized, while
the feature-level adaptation could capture more high-level domain-invariant
representations.

– We propose a soft label-based semantic consistency constraint considering
semantic information during bidirectional mappings, which effectively solves
the random label flipping problem that is suffered by CycleGAN, and we ana-
lyze the semantic consistency with regard to both qualitative and quantitative
evaluation for the first time.

– The proposed BADA significantly outperforms the state-of-the-art domain
adaptation methods on some benchmark datasets, which shows that the pro-
posed semantic consistency constraint, as well as the joint consideration of
the pixel-level and feature-level domain adaptation can improve the domain
adaptation ability.

2 Related Work

Existing methods generally aim to reduce domain shifts by minimizing the dis-
tance of feature distribution [4,26,29] between the source domain and target
domain. The measure of distance can be roughly divided into maximum mean
discrepancy (MMD) [2,14], correlation distances [22,23], deep reconstruction
loss [6] or an adversarial loss [5,13,25,26]. While there are so many feature-level
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domain adaption methods, we mainly focus on the MMD-based and adversarial-
loss based methods, which are highly related to our work. Maximum Mean Dis-
crepancy (MMD) based methods [2,14] are to learn domain-invariant features
by computing the norm of the difference between two domain means. The Deep
Adaptation Network (DAN) [14] applies MMD to the feature layers of deep neu-
ral networks, effectively inducing a high-level feature alignment. Other methods
chose an adversarial loss to measure the domain shifts between the learned fea-
tures [3,25,26], which introduce an extra domain discriminator to encourage
features not being distinguished between two domains. Adversarial loss based
methods could be further divided into discriminative methods and generative
methods. The adversarial discriminative methods [5,25] consider the feature
alignment only, while adversarial generative domain adaptation methods [13,24]
try to utilize a weight sharing constraint to learn a joint multi-domains distri-
bution with the reconstruction of target domain. However, the performance of
feature-level domain adaptation method is far from purely supervised methods,
due to the lack of ability to capture pixel-level domain shifts. Recently, pixel-level
domain adaptation methods have shown the huge potential [1,8,17]. Unsuper-
vised Pixel-level Domain Adaptation (PixelDA) [1] adapts the source-domain
images to appear as if drawn from the target domain, and achieve surprising
results on some unsupervised domain adaptation task. While pixelDA has a
strong assumption that the source domain and target domain must share many
similar foregrounds limiting larger domain shifts.

In contrast, cycle-consistency loss based network [11,28] shows amazing
results on unpaired image-to-image translation by a pair of dual pixel-level map-
pings, which do not need similar foregrounds and instead simply ensure that
the translated images could be reconstructed back to their original domains
with identical contents. However, they fails to keep the semantic consistency
during the conversion process. Motivated by this, the proposed BADA model
considers the unpaired pixel-level translation with a novel semantic consistency
constraint for unsupervised domain adaptation. We note that the motivation
of CyCADA [8] and SBADA-GAN [20] are similar to ours. However, we solve
the label flipping problem from different perspective. Compared to CyCADA
and SBADA-GAN, we propose a more effective semantic consistency constraint,
where we focus on the bidirectional reversible semantic consistency during the
unpaired pixel-level mappings. Furthermore, we combine a simple but effective
MMD feature-level domain adaptation method to boost performance. While
CyCADA needs an extra discriminator neural network and SBADA-GAN needs
to combine the source and target classifier for the final prediction. Moreover,
we firstly analyze the semantic consistency, with regard to both qualitative and
quantitative evaluation, during the domain adaptation.

3 The Proposed Model

3.1 Formulations

Suppose that there are Ns annotated source-domain samples Xs = {xs
i}Ns

i=0 with
labels Ys = {ys

i}Ns

i=0 and N t unlabeled target-domain samples Xt = {xt
i}Nt

i=0.
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With the well-annotated source data, we could learn an optimized source clas-
sifier CS parameterized θCS

by minimizing a standard supervised classification
loss expressed as:

Lcls(CS ;Xs,Ys) = E(xs,ys)∼(Xs,Ys)

[−ys
� log(σ(CS(xs; θCS

)))
]
, (1)

where ys is the one-hot vector of the class label, and σ(·) denotes the softmax
function.

However, the trained source classifier CS is hard to perform well on the
target domain, due to the inevitable shifts across the different domains. Our
model is to adapt images from the source domain to appear as if they were
drawn from the target domain by learning a discriminative mapping, and then
we could use the generated labeled target domain images to train a new target
classifier CT as if the training and test data were from the same distribution.
Unfortunately, lack of the paired images, the key semantic content is hard to
keep consistent by the unidirectional pixel-to-pixel mapping from the source
domain to the target domain. To alleviate this issue, we introduce two reversible
mappings: a generator GST that maps a source domain image xs to an adapted
target image xg

t = GST (xs) , and an another inverted generator GTS that makes
a target domain image back to the source domain, ending up the same semantic
content.

To ensure that learnt pixel-level mappings are semantic consistent between
the source and target domain, we introduce four different losses: a pixel-level
adversarial loss Lpix for matching the distributions of two domains in low-
level pixel-space; an feature-level similarity loss Lfea to guide model to capture
high-level domain-invariant features; a cycle consistency loss Lcyc to prevent the
learned bidirectional mappings GST and GTS from contradicting each other [28];
and a semantic consistency loss Lsem that encourages the consistency of the key
discriminative semantic contents during the pixel-level mapping across domains.

Pixel-Level Adversarial Loss. The two generators are augmented by two
adversarial discriminators respectively. A target discriminator DT distinguishes
between the real target data xt and generated target data GST (xs). In the same
way, a source discriminator DS distinguishes between the real source data xs

and the generated source data GTS(xt). Specifically, for the generator GST ,
it tries to map a source domain image to an adapted target domain sample
xg

t = GST (xs) that cannot be distinguished by its corresponding discriminator
DT , where the discriminator DT is trained to do as well as possible in detecting
generated “fake” target domain image xg

t . More formally, the generator GST (xs)
is trained with DT by adversarial learning with the loss:

Ladv(GST , DT ,Xs,Xt) =Ext∼Xt [log(DT (xt))] + Exs∼Xs [log(1 − DT (GST (xs)))].
(2)

Likewise, for the generator GTS with the discriminator DS , we introduce a simi-
lar adversarial learning process with the adversarial loss Ladv (GTS ,DS ,Xs,Xt).
The pixel-level adversarial loss is defined as:

Lpix = Ladv(GST ,DT ,Xs,Xt) + Ladv(GTS ,DS ,Xs,Xt). (3)



Bidirectional Adversarial Domain Adaptation with Semantic Consistency 189

Feature-Level Similarity Loss. We also add a feature-level similarity loss to
encourage that the high-level features from the adapted target images and the
real target images are as similar as possible. The feature-level similarity loss Lfea

is defined as Eq. 4 based on MMD [2], which is a kernel-based distance function
widely used for the feature-level domain adaptation.

Lfea(CT (GST (xs), CT (xt))) = ||Exs∼Xs [φ(CT (GST (xs)))] − Ext∼Xt [φ(CT (xt))]||2
= E [K(CT (GST (xs)), CT (GST (xs)))]

+ E [K(CT (xt), CT (xt))]

− 2E [K(CT (GST (xs)), CT (xt))] , (4)

where K(·, ·) denotes is a kernel function. In our experiments, we use a linear
combination of multiple RBF kernels expressed as:

K(x,y) =
∑

ηn exp
{

− 1
2σn

‖x − y‖2
}

, (5)

where ηn and σn are the weight and the standard deviation for n-th RBF ker-
nel [2], respectively.

Cycle Consistency Loss. Through the pixel level adversarial learning, ide-
ally, GST could adapt the images from source domain to the images identically
distributed as target domain. However, the adversarial loss alone still cannot
guarantee that the contents of original samples could be reconstructed [28]. We
hope that the image mapping from the source domain to the target domain
should be a reversible process. In other word, the adapted image GST (xs), which
is generated by mapping a source domain image xs to the target domain, should
be able to back to the original image by the reversal mapping GTS , that is
GTS(GST (xs)) ≈ xs. Therefore, we impose a cycle-consistency constraint with
L1 normalization operator ‖ · ‖1 as:

Lcyc(GST , GTS ,Xs,Xt) = Exs∼Xs [‖GTS(GST (xs)) − xs‖1]
+ Ext∼Xt [‖GST (GTS(xt)) − xt‖1] .

(6)

Semantic Consistency Loss. Although the cycle consistency loss in Eq. 6
can encourage the image mapping cycle to bring the source domain image back
to the original image. There is no obvious constraint to ensure that the middle
mapping could keep the semantic contents consistent. As shown in Fig. 1(a), the
mapping is free to shift the semantic contents, i.e. the image of class “3” may
be transferred to the image of class “6”.

To alleviate this issue, as illustrated in Fig. 1(b), we enforce the middle map-
ping is semantic consistent. The basis of the semantic consistency is that the
mapping from the labeled source domain to the target domain should keep the
same class. To evaluate if the generated image GST (xs) is at the same class with
the source image xs, we introduce the pretrained source classifier Cs to do a
preliminary inspection.
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Given that the pretrained source classifier is noisy for the generated images,
we use the output vector CS(xs) of source classier as a soft label vector to
encourage that an image to be classified in the same way after mapping as it
was before mapping. Due to our bidirectional pixel-level mappings are reversible,
both the generated image and the reconstructed image should also keep the
same semantics with the original image. Furthermore, we take full advantage of
both soft label and hard label to augment semantic consistency during mapping
processes, and the semantic consistency loss is defined as follows:

Lsem(GST , GTS ,Xs, CS) = Exs∼Xs

[‖CS(GST (xs)) − CS(xs)‖2
]

+ Exs∼Xs

[‖CS(GTS(GST (xs))) − CS(xs)‖2
]

+ Lcls(CS , GTS(GST (Xs)),Ys). (7)

3.2 Optimization

As shown in Fig. 1(b), the combination of objectives above will encourage a
model to learn bidirectional pixel-to-pixel mappings between two domains, while
keeping the same discriminative semantic content. By the discriminative pixel-to-
pixel mapping from the source domain to the target domain, the generated target
images GST (xs) will preserve the label information from the source domain.
Furthermore, a new target classifier CT could be trained on the generated images
as if trained on samples drawn from the target domain with minimizing the
prediction loss:

L′
cls(CT ;GST (xs),Ys) = E(xs,ys)∼(Xs,Ys)

[−ys
� log(σ(CT (GST (xs))))

]
. (8)

So far, GST , GST , DS , DT and CT could be jointly optimized with the total
optimization objective as:

LDA = L′
cls + Lpix + Lfea + λcycLcyc + λsLsem (9)

where λcyc and λs are weights that control the interaction of losses to achieve
better trade-off between the adaptation and classification. They are trained by
an alternative training way in the concurrent sub-processes:

(θ̂GST
, θ̂GTS

) = arg min
θGST

,θGTS

LDA, (10)

(θ̂DS
, θ̂DT

) = arg max
θDS

,θDT

Lpix, (11)

θ̂CT
= arg min

θCT

L′
cls. (12)

where θGST
, θGTS

, θDS
, θDT

and θCT
denote the parameters of the GST , GTS ,

DS , DT and CT respectively. The parameters can be updated by stochastic
gradient descent optimization algorithms, like Adadelta [27].
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MNIST

USPS

SVHN

MNIST-M

Fig. 2. Dataset samples for our domain adaptation tasks.

4 Experiments

4.1 Datasets

We conduct experiments on 4 widely-used domain adaptation datasets:
MNIST [12], USPS [10], MNIST-M [1], SVHN [19], as shown in Fig. 2. The
statistics of the datasets are summarized in Table 1. For a fair comparison, we
evaluate our algorithm on the 4 common domain adaptation tasks: MNIST →
USPS (M → U), USPS → MNIST (U → M), MNIST → MNIST-M (M → M-M),
SVHN → MNIST (S → M), using the training set only during training process
and evaluating on the standard test sets. The token “→” means the direction
from the source domain to the target. The images are all resized to 28×28 pixels,
and pixels of images are all normalized to [0, 1]. And we use grayscaled images
for all tasks, except M → M-M task, where MNIST dataset were extended to
three channels in order to match the shape of MNIST-M images (RGB images).

4.2 Experimental Setup

Network Architecture. Our network architecture is inspired by the Cycle-
GAN [28]. The GST and GTS use the same generative network architecture [28].
The generative network consists of 3 convolutional blocks, 9 residual blocks, and
3 transposed convolutional blocks. Each convolutional block consists of a convo-
lutional layer followed by instance normalization layer and rectified linear unit
(Relu) [18]. The architecture used for the discriminators DS and DT is a fully
convolutional network with five convolutional layers. The networks used for the
classifiers CS and CT are composed of 4 convolutional layer followed by instance
norm layer with leaky rectified linear unit (Leaky Relu) [15], 2 max-pooling
layers, and a fully connected layer.

Training Details. All of our experiments are implemented with Tensorflow,
and our implementation code will be released soon. We use the Adadelta opti-
mizer [27] with a minibatch of size 16. Considering the regular adversarial loss
suffers from the vanishing gradients problem, we replace the adversarial loss Eq. 3
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Table 1. Datasets, “*/*” in columns of “Instances” denotes the number of train/test
image pairs.

Dataset Instances classes Image size Color map

MNIST 60,000/10,000 10 28 × 28 Gray

USPS 7,291/2,007 10 28 × 28 Gray

MNIST-M 59,001/9,001 10 32 × 32 RGB

SVHN 73,257/26,032 10 32 × 32 RGB

with the least-squares GANs (LSGANs) loss [16], which can generate higher
quality samples and perform more stable during the learning process.

Table 2. Accuracies (mean±std) on unsupervised domain adaptation among MNIST,
USPS, SVHN and MNIST-M

Method Reference M→U U→M M→M-M S→M

Source Only ours 0.812 0.751 0.6070 0.6503

Target Only ours 0.9729 0.9956 0.9545 0.9956

MMD ICML 2015 0.8110 - 0.7690 0.7110

Domain Confusion ICCV 2015 0.791± 0.005 0.665± 0.033 - 0.681± 0.003

DSN w/MMD NIPS 2016 - - 0.8050 0.7220

CoGAN NIPS 2016 0.912± 0.008 0.891± 0.0008 0.620 -

DSN w/DANN NIPS 2016 0.913 - 0.8320 0.827

DANN JMLR 2016 0.771± 0.018 0.730± 0.020 0.7666 0.7385

DRCN ECCV 2016 0.918± 0.0009 0.7367± 0.0004 - 0.8197± 0.0016

ADDA CVPR 2017 0.894± 0.0002 0.901± 0.0008 - 0.760± 0.0018

pixel-DA CVPR 2017 0.959 - 0.982 -

CyCADA ICML 2018 0.956± 0.002 0.965± 0.001 0.976± 0.002 0.904± 0.004

DIFA CVPR 2018 0.923± 0.001 0.910± 0.004 0.924± 0.001 0.897± 0.002

Image2Image CVPR 2018 0.925 0.908 0.916 0.847

RAAN CVPR 2018 0.89 0.921 - 0.892

SBADA-GAN CVPR 2018 0.976 0.950 0.994 0.761

BADA Ours 0.9483± 0.0008 0.9689 ± 0.0004 0.9872± 0.0005 0.9254 ± 0.0012

BADA without Lfea Ours 0.9531± 0.0006 0.9651± 0.0019 0.9866± 0.0003 0.8498± 0.0061

4.3 Comparison with Existing Methods

In this section, we compare the proposed BADA model with different domain
adaptation (DA) methods among 4 widely adopted tasks. The compared
methods are: (1) MMD [1,14], DSN w/MMD [2], Domain Confusion [24,
25], DANN [5], DRCN [6], CoGAN [13], DSN w/DANN [1,2], ADDA [25],
DIFA [26], and RAAN [3], which are feature-level DA methods; (2) pixel-
DA [1], Image2Image [17], CyCADA [8] and SBADA-GAN [20], which are pixel-
level DA methods. Table 2 presents the unsupervised DA recognition accuracy
(mean ± std) over three independent experiments. From Table 2, we can draw
the follow observations:
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– Firstly, we compare our BADA model with the “Source Only” and “Target
Only” model. The “Source Only” and “Target Only” mean that the models
are trained only on the source domain or target domain without any domain
adaptation, respectively. They can be seen as a lower bound and an upper
bound, respectively. We observe that our model achieves much better results
than the “Source Only”. It’s more exciting that our results are much closer
to the “Target Only”.

– Compared with feature-level methods, our model not only achieves much
better performance than MMD [1,14] and DSN w/MMD [2], which use tra-
ditional MMD loss [2,14] to minimize the feature-level difference between the
source and target domain. But also our model is superior to Domain Con-
fusion, DANN, CoGAN, DSNw/DANN, ADDA, DIFA and RAAN that are
based on the feature-level adversarial method. This mainly owes to the pro-
posed BADA model being able to capture the semantic contents transferred
from the source domain to the target, by learning a bidirectional discrimina-
tive pixel-to-pixel mapping.

– Compared with pixel-level methods, our model outperforms the best com-
petitor, pixel-DA on the M→M-M task, which is also an unsupervised pixel-
level domain adaptation model with GAN. However, the pixelDA algorithm
assumes that there are similar backgrounds between the source and target
domain, which cannot perform well on more difficult S→M task. While our
model outperforms the state-of-the-art CyCADA [8] model with a accuracy
gap greater than 2.5% on the S→M task. This indicates the advantage of
using the bidirectional pixel-level mapping with semantic consistency than
the unidirectional pixel-level mapping with content similarity in pixelDA.

– Furthermore, the comparisons with CyCADA and SBADA-GAN also show
the superiority of our bidirectional semantic consistency constraint. Although
the SBADA-GAN method combines the source and target classifier for final
prediction, which achieved the best performance on two tasks, our method
outperforms it with accuracy gaps greater than 16.4% on the more difficult
S→M task.

4.4 Evaluation on Semantic Consistency

Qualitative Analysis. In order to ensure that the proposed model could learn
two semantic consistent mappings, we first visualize the bidirectional mapping
results of the model in different tasks. As shown in Fig. 3, the proposed BADA
learns a semantic consistent forward mapping from the source domain to the
target with an inverted semantic consistent mapping simultaneously.

Quantitative Analysis. Furthermore, we demonstrate the quantitative anal-
ysis of the semantic consistency in Table 3. The first three rows represent the
accuracy of original source image xs on source classifier, generated target image
GST (xs) on the adapted target classifier CT , and the reconstructed source image
GTS (GST (xs)) on the source classifier CS , respectively. Accordingly, the last
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(a) U→M (b) M→M-M (c) S→M

Fig. 3. The visualization of pixel-to-pixel mapping: The left triple shows the mapping
from the source domain to the target domain and back to the original source domain.
The right triple shows the inverted mapping. Each triple consists of the original image
(left), the generated image (middle), and the reconstructed image (right).

three rows report the accuracy of target image xt on the adapted target clas-
sifier, generated source image GTS (xt) on the well-trained source classifier CS ,
and the reconstructed target image GST (GTS (xt)) on the target classifier CT .
We can observe that both the transferred and reconstructed images are recogniz-
able by the corresponding classifiers, which can prove the semantic consistency
during our dual pixel-to-pixel mappings. A comparison between the 4th row and
5th rows in Table 3 shows that the performance of the adapted target images on
the source classifier CS could even nearly equal to the performance of the real
target images on the target classifier. It indicates that the well-trained source
classifier CS can be shared with the target domain, while we only need to transfer
the target image to the source image by the mapping we have learnt.

Table 3. Qualitative analysis of semantic consistency.

Method M→U U→M M→M-M S→M

CS (xs) 0.9956 0.9729 0.9956 0.9308

CT (GST (xs)) 0.9821 0.9640 0.9902 0.8941

CS (GTS (GST (xs))) 0.9868 0.9670 0.9935 0.8721

CT (xt) 0.9483 0.9689 0.9872 0.9254

CS (GTS (xt)) 0.9550 0.9675 0.9907 0.9113

CT (GST (GTS (xt))) 0.9432 0.9663 0.9866 0.9008

4.5 Ablation Study

Effect of Feature-Level Similarity Loss. The feature-level similarity loss
Lfea is used to encourage the robustness of model. In order to investigate the
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effect of the feature-level similarity loss in more detail, we develop and evaluate
two variations of BADA: BADA without Lfea and BADA, while keeping the
optimization procedure in the same way. Table 2 shows the performance of two
variations on the four widely adopted tasks. We can observe that BADA without
Lfea has similar performances with BADA in different domain adaptation tasks,
but one task on the S→M, where BADA performs much better. We infer that
the pixel-level mapping combined with Lfea could capture more difficult domain
shifts to get higher performance. Furthermore, we visualize the distribution of
the target images in task S→M after training on source only and BADA using
t-SNE tool respectively. A comparison between Fig. 4(a) and Fig. 4(b) reveals
that our semantic consistent pixel-level BADA without Lfea still has the ability
to learn an adapted classifier for unsupervised target domain. Furthermore, as
shown in Fig. 4(b) and Fig. 4(c), the proposed model combined with feature-level
similarity loss further boosts the performance.

(a) Source only (b) BADA without Lfea (c) BADA

Fig. 4. The t-SNE visualizations of target domain samples features trained on (a)
source only, (b) BADA without Lfea, (c) BADA with Lfea for the S→M task. We use
1000 test samples to generate the t-SNE plots.

(a) Without Lsem (b) Without Lcyc

Fig. 5. The domain adaptation results of the proposed BADA without semantic con-
sistency or without cycle consistency. In subfigures (a) and (b), a triple in each row
consists of three images: (i) left is the source SVHN image; (ii) middle is the generated
target MNIST image; and (iii) right is the reconstructed source SVHN image.
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Effect of Consistency in BADA. In this scenario, we verify the importance
of the cycle consistency loss Lcyc and semantic consistency loss Lsem for our
pixel-to-pixel mapping. We developed and assessed two variations of our BADA:
no semantic consistency or no semantic consistency, which mean BADA with-
out Lsem or without Lcyc, respectively, while keeping the other loss satisfied
and use the similar optimization. Figure 5 shows the results of the mapping
from the source domain to the target domain, and back to the original source
domain in pixel-level. When there is no semantic consistency but with cycle
consistency, the mapping from the source domain to the target domain suffers
the shift of semantic contents, despite the good reconstruction of the original
images. Conversely, when there is no cycle consistency but with semantic consis-
tency, the middle mapping could preserve the semantic contents, although, the
reconstructed source images are failed to be consistent with the original images.
The two cases indicate that both the cycle consistency and semantic consistency
contribute to the overall performance of model.

Parameter Sensitive Analysis. In this scenario, we evaluate the sensitive-
ness of the hyper-parameter λcyc and λsem on the performance of unsupervised
domain adaptation. In the objective function Eq. 9, λcyc and λsem control the
contributions of cycle consistency and semantic consistency respectively. Here,
we conduct the experiments on the SVHN → MNIST task, where 2000 samples
randomly selected from target test set as a validation set. Specifically, we explore
the different λcyc and λsem from 0, 0.5, 1.0, 2.0, 4.0. As aforementioned, λcyc = 0
and λsem = 0 indicate the proposed BADA without cycle consistency or without
semantic consistency, respectively. The evaluation is conducted by changing one
parameter (e.g. Lcyc) while keeping the other hyper-parameters fixed. As shown
in Fig. 6, both λcyc and λsem are important to the overall performance. Note
that, when λsem = 0, the model performs badly. Thus it indicates that the λsem

plays an essential role in the proposed model.
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Fig. 6. Effect of model parameters (a) λcyc and (b) λsem in the proposed BADA.
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5 Conclusion

In this paper, we proposed a novel BADA model to adapt the source domain
images to appear as if drawn from the target domain by learning a pair of bidi-
rectional pixel-level mappings that keep semantic consistency. BADA is capable
to transfer the label information from the source domain to the target domain
to learn a good target classifier, meanwhile it is advantaged to adapt the target
images to the source domain to share the well-trained source classifier. Compre-
hensive experimental results on some widely used benchmark datasets show that
the proposed BADA method outperforms the state-of-the-art domain adapta-
tion methods with advances on superior visualization and semantic consistency
analysis.
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Abstract. Recently, center loss and triplet loss have proved their effectiveness
for person re-identification. However, they have difficulties in making opti-
mizations of the intra/inter-class distance and the cost of computing and mining
hard training samples simultaneously. To solve these problems, in this paper, we
propose a hard mining center-triplet loss, a novel improved strategy of triplet
loss. For one thing, it combines the advantages of center loss and triplet loss
aiming at minimizing the intra-class distance and maximizing the inter-class
distance. For another thing, it employs hard sample mining strategy on the level
of center of class instead of individual sample to mine hard triplets with the
purpose to reducing the number of hard triplets for training and further reducing
the cost of computing. Finally, the results on two large-scale datasets Mar-
ket1501 and DukeMTMC-reID show the robustness and efficiency of our
method in making optimizations of these problems simultaneously and learning
robust feature representation, which also demonstrate that our method outper-
forms most of existing loss function and achieves better performance for person
re-identification.

Keywords: Person re-identification � Hard sample mining � Hard mining
center-triplet loss

1 Introduction

Person re-identification (ReID) is a challenging task which aims at matching two
pedestrian images from non-overlapping camera views. Because of large appearance
variations in illumination, posture, viewpoint, misalignment, and background occlu-
sions, ReID becomes a difficult task, some examples are shown in Fig. 1.

Benefited from the development of deep convolution neural networks (CNNs) [2–
6], the current work of ReID is mainly to focus on learning robust feature represen-
tation by training an end-to-end CNN directly. There are two key sections of this work
including the design of CNN and the design of metric loss function. In the process of
the design of CNN, most of excellent methods [7–15] use self-designed CNN to learn
discriminative feature representation. In the process of the design of metric loss
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function, most of previous methods usually adopt softmax loss to train and optimize
their networks for the learning of robust feature representation. However, the methods
still have a high error rate to classify samples. To solve this problem, many deep metric
loss functions [10–12, 17–23] are proposed to replace softmax loss to make opti-
mizations, which mainly focus on minimizing the intra-class distance and maximizing
the inter-class distance for clustering of samples. Typical methods are center loss [17]
and triplet loss [10].

However, center loss and triplet loss still have some shortcomings. Center loss is
only designed to pull samples of the same class to their center more closely without the
consideration of maximizing the inter-class distance. Triplet loss only requires the
inter-class distance larger than the intra-class distance by a predefined margin, without
the consideration of minimizing the intra-class distance, which usually results in a
relatively large cluster within intra-class. In addition, it has a sharply increasing number
of triplets including many negative triplets for training when the dataset is explosive.
To deal with the problems of triplet loss, some improved loss functions have been
proposed, such as improved triplet loss [11], trihard loss [18], quadruplet loss [12],
margin sample mining loss [19], etc. They are better at minimizing the intra-class
distance and maximizing the inter-class distance. However, they are suffering from a
huge time consuming in mining and training of hard triplets. Thus, the target of metric
loss function should be making optimizations of the intra/inter-class distance and the
cost of computing and mining hard training samples simultaneously.

Recently, two novel loss functions provide a new idea for us, class-wise triplet loss
(CWTL) [24] and triplet-center loss (TCL) [25]. They both successfully attempt to
combine the ideas of triplet loss and center loss to solve these three problems. Inspired
by them, we propose the hard mining center-triplet loss also with the aim of making
optimizations of the intra/inter-class distance and the cost of computing and mining

(a) (b) (c) (d) (e)

Fig. 1. Some image pairs from the Market1501 [1] dataset. The upper and lower adjacent images
have the same identity: (a) variations in illumination. (b) variations in posture. (c) variations in
viewpoint. (d) variations in misalignment. (e) variations in background occlusion.
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hard training samples simultaneously. It combines with the idea of triplet loss and
center loss, which employs hard sample mining strategy on the level of center of class
instead of individual sample to calculate triplet loss. Finally, the experimental results
show that our method is more efficient than most of other loss functions for ReID. Our
main contributions are summarized as follows.

• We propose a novel improved strategy of triplet loss for ReID.
• We propose a hard mining center-triplet loss (HCTL). It can make optimizations of

the intra/inter-class distance and the cost of computing and mining hard training
samples simultaneously, thereby learns more robust feature representation and
achieves better performance than most of existing losses.

2 Related Work

Traditional deep metric learning methods regard ReID as a multiple classification task
which usually adopt softmax loss to train and optimize their networks. However, the
methods usually result in large clusters in intra-class and heavy overlaps in inter-class,
thereby have a high error rate to classify samples. As illustrated in Fig. 2(a). 1, 2 and 3
represent the overlapping areas of different classes.

Samples of Class1
Samples of Class2
Samples of Class3

Center of Class1
Center of Class2
Center of Class3

Pull

Push

The boundary of class

1
2

3

(c)(a) (b)

(e)(d)

Fig. 2. A visualization illustration of the distributions of samples learned by (a) softmax loss.
(b) softmax loss + center loss. (c) softmax loss + CWTL. (d) softmax loss + TCL. And
(e) describes the idea of the TCL with hard sample mining.
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To improve the performance of ReID, most of deep metric loss functions are
proposed. Wen et al. [17] firstly presented the center loss, by learning a center for the
same class samples to pull them to their centers. Specifically, the center loss can be
formulated as:

Lc ¼ 1
2

XP�k
i¼1

fi � cyi
�� ��2

2 ð1Þ

where P is the number of classes in mini-batch, K is the number of samples of each
class, the cyi denotes the center features of yith class center, fi denotes the deep features
of ith sample.

Since the centers are used with each mini-batch instead of the whole training set,
the updating of which is very unstable. It must be under the joint supervision of
softmax loss during training process which has a good guider for seeking better class
centers. Center loss does not consider how to enlarge inter-class distance and it still has
a few overlaps in the inter-class, as shown in Fig. 2(b).

The successful application of facenet [16] in face recognition has led scholars to
focus on how to efficiently select the triplets to train the end-to-end network for ReID.
Ding et al. [10] made the first attempt at using triplet framework to calculate triplet loss.
Triplet loss aims at controlling the intra-class distance less than the inter-class distance
by a predefined margin m, which can be computed as:

Ltri ¼
X

a; p; n
ya¼yp 6¼yn

max da;p � da;n þm; 0
� � ð2Þ

where a, p, n denote the anchor, positive and negative in each triplet pair respectively,
and m is the margin that is enforced between positive and negative pairs.

However, there are two problems with the classic triplet loss. One is the output of
the model may have a relatively large cluster within intra-class samples because the
loss only requires the inter-class distance larger than the intra-class distance by the
margin m. Another is that the use of large number of negative triplets could produce
poor results. Some improved methods have been proposed based on triplet loss to solve
the above problems. Concerning the first problem, Cheng et al. [11] optimized the
training process of triplet framework by adopting an improved triplet loss which
requires to reduce the distance of the pairs from same class less than a margin a (a is
much less than m). In terms of the second problem, Hermans et al. [18] proposed the
trihard loss which aims at selecting the hardest triplets for training, but mining the
hardest triplets was time consuming.

Thus, it is not optimal to only consider the optimizations of the intra/inter-class
distance. The optimization for reducing cost of computing and mining of hard samples
is also important. Recently, two novel studies have attracted wide attention.

One is Ming et al. [24] proposed the class-wise triplet loss (CWTL) for face
recognition. Different from classic triplet loss, it aims to decrease the distance between
the anchors and the intra-class centers and enlarge the distance of the anchors to the
inter-class centers, by learning the centers of the classes of samples and using them
instead of individual samples as the positives and negatives to form the triplets, which
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can significantly reduce the number of triplets involved in training of model and thus
reduce the cost of calculation loss. The CWTL can be formulated as:

Lcwt ¼
Xp�k

i¼1

Xk

l¼1;l 6¼yi
max D fi; cyi

� �� D fi; clð Þþm; 0
� � ð3Þ

where D A;Bð Þ represents the squared Euclidean distance function denoted as:

D A;Bð Þ ¼ A� Bk k22 ð4Þ

As illustrated in Fig. 2(c), the CWTL effectively solves the problems of large clusters
within intra-class and heavy overlaps within inter-class.

Another is He et al. [25] proposed the triplet-center loss (TCL) for Multi-View 3D
Object Retrieval. Specifically, the proposed TCL can control the distance between the
samples and their corresponding center cyi less than the distance between the samples
and their nearest negative center cl by a margin m. It could be computed as follows:

Ltc ¼
Xp�k

i¼1
max D fi;cyi

� �� minl 6¼yiD fi; clð Þþm; 0
� � ð5Þ

An illustration of the distributions of samples learned by TCL can been seen from
Fig. 2(e) to (d).

Inspired by CWTL and TCL, we put forward the hard mining center-triplet loss
(HCTL), a novel improved strategy of triplet loss. It can achieve better performance for
ReID. The next chapter, we will present our method in detail.

3 Proposed Hard Mining Center–Triplet Loss

For better making optimizations of the intra/inter-class distance and the cost of com-
puting and mining hard training samples simultaneously, we have proposed our method
in this chapter. We first describe the design of our loss function in Sect. 3.1, then
elaborate the overall CNN model framework and training algorithm of our method in
Sect. 3.2. In addition, we compare the advantage of our method with other loss
functions in extra Sect. 3.3.

3.1 Hard Mining Center–Triplet Loss Function

Inspired by CWTL and TCL, we propose a metric loss function named hard mining
center-triplet loss (HCTL), a novel improved strategy of triplet loss. It aims to learn the
centers of the classes of samples and use them instead of individual samples to form the
hard triplets. Specifically, we firstly regard the centers of all classes as the anchors in
the mini-batch. For each center, we select the hardest positive sample which has the
farthest distance to it with the same class label and the hardest negative sample which
has the closest distance to it with the different class label. Then we use them to form the
hard triplet pair for computing the triplet loss. Our HCTL will control the distance
between the center cp and its farthest positive sample less than the distance between the
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center cp and its nearest negative sample by a predefined margin m. In summary, the
hard mining center-triplet loss we defined is as follows:

Lhct ¼ 1
P

Xp

p¼1
max max1� i� k D cp; fpi

� �� �� minl6¼p;1� l� p;1� j� k D cp; fl j
� �� �þm; 0

� �

ð6Þ

where cp denotes the deep features of pth class center, fpi denotes the deep features of
the ith sample in pth class.

An illustration of the distributions of samples learned by HCTL can been seen in
Fig. 3.

3.2 Our Deep Convolutional Neural Network Architecture

The specific network architecture of our proposed method is shown in Fig. 4.

Samples of Class1
Samples of Class2
Samples of Class3

Center of Class1
Center of Class2
Center of Class3

Pull

Push

The boundary of class

(a) (b) (c)

Fig. 3. A visualization illustration of the distributions of samples learned by (a) softmax loss
and (c) softmax loss + HCTL. And (b) describes the process of mining the hardest triplets.
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We first use ResNet50 [6] as the base model. In each mini-batch, images are resized
into 256 � 128 pixels as inputs and the 2048-d deep features are extracted through the
average pooling layer after the conv5_x layer.

Due to the updating of centers of class is unstable in mini-batch with our HCTL, we
also joint it with softmax loss for training. In order to make softmax loss have a better
guidance for seeking better class centers, we use the label-smoothing regularization
(LSR) [26] to optimize the calculation of softmax loss. Thus, it is divided into two parts
and calculated separately HCTL and softmax loss. For the former, the features of
centers of classes of training samples are learned by averaging the features of the
corresponding classes, then our hard triplets will be mined to compute HCTL by using
hard sample mining strategy. For the latter, the deep features will be calculated the
softmax loss through an added softmax layer. Finally, we need a hyper-parameter k to
balance HCTL and softmax loss to calculate the total loss, which can be formulated as:

L ¼ Lcls þ kLhct ð7Þ

where Lcls denotes the softmax loss, Lhct denotes our HCTL, and k is the weight used to
balance the HCTL and softmax loss.

Since the calculation of softmax loss needs an extra softmax layer, we should make
optimizations of HCTL and softmax loss separately during back propagation. Finally,
Algorithm 1 shows the main procedure of the training by our method.
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3.3 Compared with Other Loss Functions

We compare the proposed method with the similar methods in optimization of metric
loss function. Now most methods adopt softmax loss, center loss, triplet loss or their
varieties to optimize network. Different from them, our HCTL makes the first attempt
that regards the center of class as the anchor, the farthest positive sample as the positive
and the nearest negative sample as the negative, to form a new hard triplet pair for
calculating triplet loss.

Specially, if randomly select P classes of samples and then randomly sample K
images from each class to form a mini-batch for training, there will be a large set of
P*K*(K-1)*(P-1)*K triplets. Since CWTL uses the centers of the classes to represent
the global distribution of the classes rather than the individual samples, which only
have K-1 triplets for each sample, totally there is a set of P*K*(K−1) triplets to be
chosen to train CNN by using CWTL. The design of TCL combines the advantages of
trihard loss and center loss. For each sample, TCL only selects the hardest negative
center as negative to form the triplet, which have one triplet for each anchor. Finally,
P*K triplets will be constructed for one mini-batch, which is same with trihard loss. Far
less than neither of them, our HCTL only considers the distance of a center to the
farthest intra-class sample and the distance to closest inter-class sample, only P hard
triplets are selected in each mini-batch. Thus, our HCTL is more efficient in optimizing
the intra/inter-class distance and the cost of computing and mining hard training
samples.

In next chapter, we will compare the proposed loss with several simialr loss
functions and show improvement performance of our method.

4 Experiments

In this section, we firstly show the processes and the results of the experiments with
different loss functions for ReID, then we compare the performance of the proposed
method with them.

4.1 Datasets

We conduct experiments on two representative large-scale datasets Market1501 and
DukeMTMC-reID [27], respectively.

Market1501 is one of the largest benchmark datasets for ReID, which contains
32,668 images of 1,501 identities from 6 camera views. Each identity is captured by at
most six cameras. There are 751 identities in the training set and 750 identities in the
testing set.

DukeMTMC-reID is a subset of the DukeMTMC [28] tracking dataset, which
contains 36,411 images with 1,812 identities captured from 8 different viewpoints.
Specifically, there are 16,522 images with 702 identities for training, 17,661 images
with 1,110 identities in gallery, and another 2,228 images with 702 identities in the
gallery for query.
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4.2 Implementation Details

In our experiments, every 32 images are randomly selected to form a mini-batch for
training, which contains 8 identities and each identity has 4 images. For optimization,
the standard AMSGrad [29] algorithm is adopted for faster and more robust back
propagation and loss convergence. The initial learning rate of softmax loss and the
initial learning rate of HCTL are both set to 3e−4. The weight of the hard mining
center-triplet loss k is set to 0.001, and the predefined margin m that control the intra-
class distance less than the inter-class distance is set to 0.3.

4.3 Experimental Results and Analysis

We conduct experiments with different loss functions on the standard ResNet50 and
evaluate them with rank-1, 5, 10 accuracy and mAP to illustrate the robustness and
efficiency of our proposed loss. Classic Triplet stands for the classic triplet loss [10],
Quadruplet stands for quadruplet loss [12], OIM stands for Online Instance Matching
Loss [22], Cluster loss stands for cluster loss [20], Trihard stands for the trihard loss
[18], and Softmax stands for softmax loss with LSR. We also combine ring loss [23],
center loss [17], range loss [21], class-wise triplet loss (CWTL), triplet-center loss
(TCL), and our hard mining center-triplet loss (HCTL) with Softmax. The results on
two datasets are shown in Tables 1, 2 and Fig. 5.

Results Analysis on Market1501. As clearly seen in Table 1, our HCTL gets 73.8%
mAP and 88.4% rank-1 accuracy, which outperforms all compared losses, exceeding
the 2nd best TCL by 2.1% in rank-1 and 4% in mAP. Compared with softmax loss,
adding HCTL could increase accuracy by 6.4% on rank-1 and 10.2% on mAP. Com-
pared with trihard loss, they also increase by 3.7% and 4.8%.

Table 1. Scores of different loss for ReID on Market1501. The best scores are in red.

Method MAP Rank-1 Rank-5 Rank-10
Classic Triplet 54.8 75.9 89.6 --
Quadruplet 61.1 80.0 91.8 --
Softmax 63.6 82.0 92.8 95.2 
OIM 62.5 83.0 93.1 95.2 
Softmax+Ring loss 66.9 83.4 93.5 95.7 
Softmax+Center loss 66.4 84.1 94.2 96.3 
Softmax+Range loss 66.2 84.4 94.0 96.1 
Softmax+CWTL 68.0 85.2 93.6 96.0 
Trihard 69.0 84.7 94.2 96.2 
Cluster loss 71.5 86.1 95.0 --
Softmax+TCL 69.8 86.3 94.2 96.3 
Softmax+HCTL Our 73.8 88.4 95.5 97.3
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Results Analysis on DukeMTMC-reID. On DukeMTMC-reID, our HCTL also gains
the highest rank-1 accuracy and the 2nd best mAP. Although the performance does not
improve much compared with trihard loss, fewer hard triplets are mined for training
with our HCTL. It has a significantly reduction of the cost of computing and mining
hard training samples. Compared with softmax loss, adding our HCTL could increase
the rank-1 accuracy and mAP by 6.3% and 7.3%.

In summary, compared with excellent loss functions above all, our loss is more
efficient in training networks and making optimizations of the intra/inter-class distance
and the cost of computing and mining hard training samples simultaneously. It can
learn more robust features and achieve better performance than them.

Table 2. Scores of different loss for ReID on DukeMTMC-reID. The best scores are in red.

Method MAP Rank-1 Rank-5 Rank-10 
Softmax 48.5 68.9 82.4 86.6 
Softmax+Center loss 50.0 70.0 83.3 87.6 
Softmax+Ring loss 51.3 70.7 83.5 87.0 
Softmax+CWTL 52.0 72.2 84.2 88.0 
Softmax+TCL 53.2 72.1 84.4 88.6 
Softmax+Range loss 54.1 73.3 85.5 89.0 
OIM loss 54.6 73.1 85.9 91.5
Trihard loss 57.7 74.5 86.4 89.5 
Softmax+HCTL Our 55.8 75.2 87.0 90.4 

Fig. 5. The CMC curves and rank-1 accuracy on two datasets: (a) Comparison with different
loss on Market1501. (b) Comparison with different loss on DukeMTMC-reID.
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5 Conclusion

In this paper, we firstly reviewed and analyzed the performance of different metric loss
function for person re-identification. Inspired by them, we have proposed our hard
mining center-triplet loss, a novel improved strategy of triplet loss, which builds the
hardest triplet pair for computing loss. It can effectively make optimizations of the
intra/inter-class distance and the cost of computing and mining hard training samples
simultaneously, thereby enhance learning more robust feature representation. Finally,
the experiments on two large-scale datasets Market1501 and DukeMTMC-reID show
the robustness and efficiency of our method and demonstrate that our method out-
performs most of the state-of-the-art loss functions and achieves better performance for
person re-identification. In the future, we would like to verify this effectiveness of our
proposed loss on more datasets and models.
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Abstract. Modeling and assessing balance ability for elderly people is an
important and realistic task with a view to assisting them in mobility status,
correcting postures and preventing accidental falling. The aim of this study was to
develop a novel kinematic feature-based evaluation method for elderly balance
ability by using factor analysis. Based on the kinematics, twenty-five feature
indicators were first extracted from walking gait data, which were collected by
deploying twenty-four monitoring points on the body of the elderly subjects.
Then, two main factors were identified by using factor analysis that affect the
walking balance ability of the elderly, and the comprehensive evaluation scoring
model of the elderly balance ability was constructed. Finally, real data from all the
elderly subjects in free walking state were used to validate our method. The results
of empirical analysis confirm the validity and usefulness of the proposed method.

Keywords: Evaluation method � Elderly balance ability � Kinematic feature �
Factor analysis

1 Introduction

Falling is a major problem of elderly people because it may cause severe injuries and
many complications in elderly people. As a result, the side effects can be so debilitating
as to accelerate body failure. Besides, the fear from falling may impair the ability to
move and maintain balance and posture, which therefore worsen the quality of life
significantly. Consequently, it is of great realistic importance to develop a balance
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ability evaluation method for elderly people with a view to assisting them in mobility
status, correcting postures and preventing accidental falling.

Early time domain parameters (e.g., swing distance and swing speed) and fre-
quency domain features (e.g., power spectrum) were used to evaluate the elderly
balance ability [1]. Then, more characteristic parameters were derived from distance,
position, amplitude distribution, area, velocity, power spectrum and vector to analyze
the relationship between these parameters and balance ability [2, 3]. However, in the
current related work, most parameters are not sensitive to age and reflect static balance
characteristics mainly and the lack of research on the effectiveness of gait parameters
reflecting balance ability leads to blind and one-sided selection of gait characteristics
[4, 5]. Gait symmetry is also an important feature of describing gait, which is closely
related to the risk of fall, but is rarely involved in existing research. Therefore, our main
interest is to develop a novel kinematic feature-based evaluation method for elderly
balance ability by using factor analysis, which help them correct their postures and
prevent accidental falling. The main contributions are summarized as follows:

1. Based on the kinematics, we extract twenty-five feature indicators from walking gait
data.

2. We identify two main factors from twenty-five feature indicators by using factor
analysis, and then establish a comprehensive evaluation scoring model of the elderly
balance ability according to the variance contribution rate of the first two factors.

3. We develop a kinematic feature-based evaluation method to quantitatively assess
the walking balance ability of the elderly.

This paper is structured as follows. Section 2 gives data description and extraction
of feature indicators. Section 3 describes the proposed method. Section 4 present
results and discussions, and Sect. 5 summarizes the paper.

2 Data Description and Extraction of Feature Indicators

2.1 Experimental Data

In order to acquire gait experimental data for walking of the elderly, a random sampling
test is made by deploying twenty-four monitoring points on the body of the elderly
subjects [6]. See the layout of the points indicated in the Fig. 1. The data contains the
coordinates of these twenty-four monitoring points of each subject.

Basic Data for Elderly People. The basic data of a total of seventy-nine elderly
people are collected, including their Number, Sex, Age, Height, Weight, BMI (Body
Mass Index) and Fall times in one year. Table 1 gives the basic data of the elderly
people (Samples data from eight elderly people are given).

Walking Gait Data for Each Elderly Subject. The gait data are gathered in the free
walking state and contain the coordinates of these twenty-four monitoring points of
each elderly subject. Table 2 gives walking gait data for each elderly subject. In
Table 2, the first column is Frame sequence, the second column is Time, and starting
from the third column, each of the three columns represents the motion coordinates of
the monitoring points (x, y, z), for a total of twenty-four monitoring points.
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Fig. 1. The layout of the twenty-four monitoring points for the body of the elderly subjects

Table 1. Basic data of elderly people

Number Sex Age Height Weight BMI Fall times in one year

9 Male 66 164.8 73.1 26.91553 0
13 Female 67 151.1 56.1 24.57163 0
26 Female 70 161.9 61.2 23.34843 1
40 Female 64 159.8 61.2 23.96613 0
53 Male 64 162.2 56.5 21.47567 0
61 Female 65 151 57 24.9989 0
67 Female 65 157.5 72.9 29.38776 0
76 Female 64 165.6 61.1 22.28027 0

Table 2. Walking gait data for each elderly subject

Frame
sequence

Time Monitoring point 1 … Monitoring point 24

x y z x y z

1 0 −400.33051 160.61575 116.47953 … −148.18779 390.34433 1409.57141
2 0.017 −364.45184 165.86482 118.15626 … −135.38573 392.40829 1410.90454

3 0.033 −327.4585 171.01143 118.95445 … −122.67791 394.35785 1412.24402
… … … … … … … … …

179 2.967 2342.21289 195.69763 38.71908 … 2155.9812 342.29654 1400.6626
180 2.983 2342.18311 195.49048 38.72082 … 2167.92505 341.19678 1401.2522
181 3 2342.17627 195.40556 38.7226 … 2179.64136 340.27466 1401.95886

… … … … … … … … …
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2.2 Feature Indicators Extraction Based on the Kinematics

The gait reflects the dynamic posture of human body in free walking state, which
follows certain law of motion. Besides, the kinematic parameters of the gait can be
expressed by spatial and time parameters, such as swing phase, step size and step stride.
Thus, we extract the twenty-five feature indicators from walking gait data based the
kinematics. These feature indicators are summarized as follows:

Left Support Phase. Left support phase (TLstand) is the time when the left lower limb
is in contact with the ground in a gait cycle, TLstand ¼ t2down � t4up, where t2down is the

landing time of the left toe of the second point and t4up is the departure time of the left
toe of the fourth point in the gait cycle.

Right Support Phase. Right support phase (TRstand) is the time when the right lower
limb is in contact with the ground in a gait cycle, TRstand ¼ t1down � t3up, where t1down is

the landing time of the right toe of the first point and t3up is the departure time of the left
heel of the third point in the gait cycle.

Left Swing Phase. Left swing phase (TLsway) refers to the swinging time of the left
lower limb in the air during a gait cycle, TLsway¼t4down � t2up, where t

4
down is the landing

time of the left heel of the third point in the gait cycle.

Right Swing Phase. Right swing phase (TRsway) refers to the swinging time of the
right lower limb in the air during a gait cycle, TRsway¼t3down � t1up, where t3down is the
landing time of the right heel of the first point in the gait cycle.

The Cycle of Left Walk. The cycle of left walk (TLcycle) refers to the time period from
the landing time of the left lower limb to the next landing time in the walking,
TLcycle ¼ t4down Nð Þ � t4down N � 1ð Þ, where t4down Nð Þ is the landing time of the left heel
of the fourth point in the N-th of the gait cycle.

The Cycle of Right Walk. The cycle of right walk (TRcycle) refers to the time period
from the landing time of the right lower limb to the next landing time in the walking,
TRcycle ¼ t3down Nð Þ � t3down N � 1ð Þ, where t3down Nð Þ is the landing time of the right heel
of the third point in the N-th of the gait cycle.

The Length of Left Step. The length of left step (LLstep) refers to the distance between
the left heel strike and the opposite heel strike in the walking,

LLstep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4down Nð Þ � x3down N � 1ð Þ� �2 þ y4down Nð Þ � y3down N � 1ð Þ� �2q

.

The Length of Right Step. The length of right step (LRstep) refers to the distance
between the right heel strike and the opposite heel strike in the walking,

LRstep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3down Nð Þ � x4down N � 1ð Þ� �2 þ y3down Nð Þ � y4down N � 1ð Þ� �2q

.

The Length of Step Stride of Left Foot. The length of step stride of left foot (LLstride)
refers to the coordinate position of the left footprint is the anteroposterior direction
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distance of the next footprint on the same side in a gait cycle,

LLstride ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4down Nð Þ � x3up N � 2ð Þ

� �2
þ y4down Nð Þ � y3up N � 2ð Þ
� �2

r
.

The Length of Step Stride of Right Foot. The length of step stride of right foot
(LRstride) refers to the coordinate position of the left footprint is the anteroposterior
direction distance of the next footprint on the same side in a gait cycle,

LRstride ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3down Nð Þ � x3up N � 2ð Þ

� �2
þ y3down Nð Þ � y3up N � 2ð Þ
� �2

r
.

The Step Width. The step width (Lwidth) refers to the distance between the center lines
of the feet on both sides of the walk, which is the distance from the center of one side of
the footprint to the center of the opposite footprint,

Lwidth ¼ mx3up þ b� y3up

���
���
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ 1
p

, where m and b are constant and can be estimated

from the walking gait data.

The Speed of Left-Step. The speed of left-step (VLgait) refers to the distance traveled
by the left foot per unit time, VLgait ¼ LLstep

�
TLcycle.

The Speed of Right-Step. The speed of right-step (VRgait) refers to the distance
traveled by the right foot per unit time, VRgait ¼ LRstep

�
TRcycle.

Left Walking Rhythm. Left walking rhythm (CLgait) refers to the number of steps of
left walking per minute, CLgait ¼ 120

�
TLcycle.

Right Walking Rhythm. Right walking rhythm (CRgait) refers to the number of steps
of right walking per minute, CRgait ¼ 120

�
TRcycle.

Deflection Angle of Left Foot. Deflection angle of left foot (ALtoe) refers to the angle
between the center line of the left foot and the walking line when walking,
ALtoe ¼ arctan k � mð Þ= 1þ kmð Þj j, where k and m are constant and can be estimated
from the walking gait data.

Deflection Angle of Right Foot. Deflection angle of right foot (ARtoe) refers to the
angle between the center line of the right foot and the walking line when walking,
ARtoe ¼ arctan q� mð Þ= 1þ qmð Þj j, where q and m are constant and can be estimated
from the walking gait data.

Contralateral Heel to Ground Ratio. Contralateral heel to ground ratio (Pb) refers
the elapsed time from the heel strike to the contralateral heel strike in a gait cycle as a
percentage of the gait cycle, Pb ¼ t4down Nð Þ � t3down Nð Þ� ��

TLcycle
� �

.

Contralateral Toe Off-ground Ratio. Contralateral toe off-ground ratio (Pf ) refers to
the elapsed time from the heel strike to the toe off the ground in a gait cycle as a

percentage of the gait cycle, Pf ¼ t2up � t1up
� �.

TLcycle.
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Double-Feet Support Period. Double-feet support period (Sb) refers to the time when
one foot is in contact with the ground during a gait cycle, Sb ¼ t1up Nð Þ � t4down Nð Þ
þ t2up Nð Þ � t3down Nð Þ.
Swing Amplitude of Left Arm. Swing amplitude of left arm (Lh) describes the height
change of the left arm, Lh ¼ z19max Nð Þ � z19min Nð Þ.
Swing Amplitude of Right Arm. Swing amplitude of right arm (Rh) describes the
height change of the right arm, Rh ¼ z18max Nð Þ � z18min Nð Þ.
Swing Frequency of Left Arm. Swing frequency of left arm (TLh) reflects the number
of swings of the left arm in one minute, TLh ¼ 60

�
t19max Nð Þ � t19min Nð Þ� �

.

Swing Frequency of Left Arm. Swing frequency of left arm (TRh) reflects the number
of swings of the right arm in one minute, TRh ¼ 60

�
t18max Nð Þ � t18min Nð Þ� �

.

Head Offset. Head offset (Biashead) can indirectly reflect the angle of inclination of the
body, but is expressed by two linear equations, Biashead ¼ arctan k2 � mð Þ= 1þ k2mð Þj j
where k2 and m are constant and can be estimated from the walking gait data.

3 Kinematic Feature-Based Evaluation Method

This paper develops a novel kinematic feature-based evaluation method for elderly
people’s balance ability by using factor analysis. It consists of balance factor selection
and factor score computation. We first normalize the indicators’ data and then use
factor analysis to identify the two main balance factors of the elderly, so the scores of
each factor can be calculated. Finally, the comprehensive evaluation scoring model of
the elderly balance ability is constructed.

3.1 Elderly Balance Ability Factor Selection and Calculation Method

The factor analysis method explores the basic structure in the observed data by
studying the internal dependencies between variables, and uses a few hypothetical
variables to represent the data structure between the variables. These hypothetical
variables can reflect the main information of many original variables. The original
variable is an observable explicit variable, while the hypothetical variable is an
unobservable latent variable, also known as a factor.

The twenty-five feature indicators extracted in this paper are the explicit variables
we have observed, and the hypothetical variables that need to be merged are the factors
of the system. Based on the principle of factor analysis, we select and calculate the
balance factor of the elderly, as in Eq. (1):

Mi ¼ ai1F1 þ � � � þ aimFm þ ei m� pð Þ ð1Þ
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where Mi i ¼ 1; 2; � � �; 25ð Þ is the twenty-five feature indicators we have observed. It
can also be written as:

M1

M2��
�

M25

2

66664

3

77775
¼

a11 a12 � � � a1m
a21 a22 � � � a2m
� � � � � �
� � � � � �
� � � � � �
að25Þ1 að25Þ1 � � � að25Þm

2

6666664

3

7777775

F1

F2��
�

F25

2

66664

3

77775
þ

e1
e2��
�
e25

2

66664

3

77775
ð2Þ

As common factors, they are unobservable variables, and their coefficients are
called load factors. The special factor ei is a part that cannot be included by the first
m common factors and is satisfied with Eq. (3).

E Fð Þ ¼ 0;E eð Þ ¼ 0;Cov Fð Þ ¼ Im
D eð Þ ¼ Cov eð Þ ¼ diag r21; r

2
2; � � �; r2m

� �

Cov F; eð Þ ¼ 0
ð3Þ

The factor load is the correlation coefficient between the i-th variable and the j-th
common factor, reflecting the relative importance of the i-th variable and the j-th
common factor. The greater the absolute value, the higher the correlation.

Data Normalization. First we standardize the raw data. There are twenty-five index
variables for factor analysis for a total of 76 evaluation objects, and the value of the j-th
index of the i-th evaluation object is aij (i ¼ 1; 2; � � �; 25, j ¼ 1; 2; � � �; 76). Convert
each indicator aij value into a standardized indicator ~aij, as in Eq. (4):

~aij ¼
aij � lj

sj
ð4Þ

where lj and sj are the sample mean and sample standard deviation for the j-th indi-
cator, respectively. Likewise, each indictor variable is also normalized, as in Eq. (5):

~xj ¼
xj � lj

sj
ð5Þ

Calculate the Correlation Coefficient Matrix R. Correlation coefficient matrix R ¼
rij
� �

25�25 has

rij ¼
P25

k¼1
~aki � ~akj

25� 1
ð6Þ

where rij is the correlation coefficient between the i-th index and the j-th index.
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Calculate the Elementary Load Matrix. Calculating the eigenvalues of the corre-
lation coefficient matrix R and the corresponding feature vector vectors u1; u2; � � �; u25,
as in Eq. (7):

uj ¼ u1j; u2j; � � �; uð25Þj
	 
 ð7Þ

Elementary load matrix is obtained, as in Eq. (8):

K1¼
ffiffiffiffiffi
k1

p
u1;

ffiffiffiffiffi
k2

p
u2; � � �;

ffiffiffiffiffiffi
k25

p
u25

h i
ð8Þ

Select m Principal Components. According to the elementary load matrix, calculate
the contribution rate of each common factor and select m main factors. Rotating the
extracted factor load matrix to obtain a matrix, as in Eq. (9):

K2¼Km
1 T ð9Þ

where Km
1 is the first m column of K1, T is an orthogonal matrix, from which the

construction factor model, as in Eq. (10):

~M1 ¼ a11F1 þ a12F2 � � � þ a1mFm

��
�

~M25 ¼ að25Þ1F1 þ að25Þ2F2 � � � þ að25ÞmFm

8
>>><

>>>:
ð10Þ

3.2 Comprehensive Evaluation Scoring Model for Elderly Balance
Ability

This paper calculates factor scores by using regression method to find the single factor
score function, as in Eq. (11):

F̂j ¼ bj1 ~M1 þ bj2 ~M2 þ � � � þ bj25 ~M25 ð11Þ

An estimate of the score of the i-th sample point for the j-th factor, as in Eq. (12):

F̂ij ¼ bj1~a1 þ bj2~a2 þ � � � þ bj25~a25 ð12Þ

We can draw

b11 � bm1
� � �
� � �
� � �
b1ð25Þ � bmð25Þ

2

66664

3

77775
¼ R�1K2 ð13Þ

218 R. Ming et al.



Meanwhile,

F̂¼ F̂ij
� �

25�m¼ X0R�1K2 ð14Þ

According to Eqs. (11)–(14), the comprehensive evaluation scoring model can be
obtained.

4 Results and Discussion

4.1 Analysis of Elderly Balance Ability Factors and Score Results

Based on the kinematics, we selected two factors to express the overall balance ability.
Since the purpose of establishing the kinematic feature-based evaluation method by
using factor analysis is not only to identify common factors and to group variables, but

Table 3. Rotated Component Matrix for twenty-five feature indicators

Index Factor 1 Factor 2

Right support phase 0.887 0.151
Left support phase 0.876 0.022
Right swing phase 0.637 −0.199
Right swing phase 0.500 0.333
The cycle of right walk 0.907 −0.004
The cycle of left walk 0.882 0.242
The length of right step 0.049 −0.422
The length of left step 0.056 −0.610
The length of step stride of right foot −0.163 0.687
The length of step stride of left foot −0.423 0.539
Speed of step −0.536 0.168
Step width −0.160 −0.056
Walking rhythm −0.888 −0.100
Deflection angle of right foot 0.037 −0.245
Deflection angle of left foot −0.085 0.293
Contralateral heel to ground ratio −0.107 −0.263
Contralateral toe off-ground ratio 0.242 −0.038
Double-feet support period 0.332 0.338
Right foot support period 0.854 0.112
Left foot support period 0.808 0.038
Swing amplitude of right arm 0.121 0.363
Swing amplitude of left arm 0.213 0.192
Swing frequency of right arm −0.146 −0.535
Swing frequency of left arm −0.039 −0.277
Head offset 0.043 −0.039
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more importantly, to understand the meaning of each common factor for further
analysis.

Considering that the factor load matrix is not unique, the factor load matrix should
be rotated. Here we use the variance maximization method from each of the simpli-
fication factor load matrices to maximize the variance of the square of the load asso-
ciated with each factor. When only a few variables have a higher load on a factor, the
interpretation of the factor is the simplest. The results of the factor load matrix are
given in Table 3.

As shown in Table 3, the observed factors show that the first factor includes
parameters such as the swing phase, the walking period, and the arm swing frequency,
which represents the motion state of the elderly. The second factor includes the angle of
the foot and the period of support of the two feet, reflecting the change in the center of
gravity of the elderly. The comprehensive evaluation system formed by the two factors
not only contains twenty-five characteristics, but also eliminates the duplicate infor-
mation between them, and can effectively evaluate the balance ability of the elderly.

4.2 Elderly Balance Ability Comprehensive Score Results

Model Parameter Result. According to the factor load matrix of rotation, twenty-five
feature indicators are divided into different factors according to the contribution rate, and
the score function of the two factors composed of twenty-five feature indicators is
F1 ¼ a1MT and F2 ¼ a2MT . Among them, a1 ¼ a1; a2; � � �; a25½ � and a2 ¼ b1; b2; � � �;½
b25� is the weight of twenty-five feature indicators of the first two factor, respectively.
Thus, the comprehensive evaluation scoring model can be rewritten as F ¼ 55:808F1ð
þ 24:780F2Þ=80:588. From this, we can get the contribution rate of twenty-five
feature indicators to the total score. We rewrite the above formula to get F ¼ cMT ,
where c ¼ ½5:60; 6:10; 4:72; 2:73; 6:34; 5:82; 1:12; 1:22;�2:16;�3:59;�3:86; 1:18;
�5:96; 0:44;�0:73;�0:54; 1:43; 1:90; 5:45; 5:68; 0:70; 1:57;�0:15;�0:02; 0:59�.

The KMO and Bartlett’s test of the obtained results (data not shown) show that the
KMO value is 0.62, and there is a good correlation between the indicators, indicating
that it is indeed suitable for factor analysis.

Besides, it can be observed that the coefficients of the walking rhythm, stride speed,
left stride step, right stride step, and left foot declination are negative and their absolute
values are large, indicating that the measured statistical values of the corresponding
index are smaller.

Comprehensive Evaluation Score Results for Each Sample. In this paper, the
balance ability score of each old person is calculated. For the limitation of space, Fig. 2
gives the distribution of their balance ability and Table 4 only gives the comprehensive
evaluation score results of 8 elderly people.
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Based on the comprehensive evaluation score results for each elderly people, the
higher the score of the elderly’s balance ability, the better their balance ability.
According to Table 4, suggestions based on these indicators are: reducing the pace of
walking, reducing the step size and the foot angling. Index step width, left step length,
contralateral toe off-ground ratio, left arm swing amplitude, biped support period, left
swing phase, right swing phase, right single foot support period, left walking period,
left support phase, right walk.

Comparative Analysis. Although all real categories of balance ability for 76 elderly
people cannot be known which leads to not giving the correct rate of our method, we
can give a quantitative analysis. Specifically, after getting the total scores of elderly
balance ability, we analyze the factors affecting the balance ability by combining the
information from Table 1 in Sect. 2.1.

We come to observe the same points between each class and analyze the common
attributes of people with the same balance. First look at people with weak balance

Fig. 2. The distribution of the balance ability of 76 elderly people

Table 4. Comprehensive evaluation score results for some elderly people

No. Principal
component 1

Principal
component 2

Total
score

Score range of
balance ability

Category of
balance Ability

53 −2.07 −0.04 −13.99 score � − 7 Weak
26 −1.61 −0.92 −13.22 Weak
9 −0.41 −1.45 −6.62 −7 < score � 0 Normal
76 −1.45 1.20 −6.54 Normal
40 −0.34 0.95 0.23 0 < score � 7 Strong
67 −0.28 0.86 0.42 Strong
61 1.55 −0.84 8.15 7 � score Very strong
13 2.143 0.67 16.15 Very strong
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ability No. 53 and No. 26 are all women aged 60 and so on. Their BMIs are both higher
than 27 and No. 26 has had a fracture. Then, we compare the differences between the
different classes and find out the differences. People with lower grades have signifi-
cantly lower BMI. And the older person is, the worse the balance ability, and the
women’s balance ability is generally worse than men. In the history of illness, people
who are sick and have multiple illness have more fall times and need to walk on the
stairs more often while going up the stairs.

5 Conclusion

A kinematic feature-based evaluation method is presented for accessing elderly balance
ability by using factor analysis. To the best of authors’ knowledge, the presented work
is the first to apply factor analysis to medical health care. Based on the kinematics, we
extract twenty-five feature indicators from walking gait data, then identify two main
factors from twenty-five feature indicators by using factor analysis and then establish a
comprehensive evaluation scoring model of the elderly balance ability according to the
variance contribution rate of the first two factors.

According to real observed data, the body balance ability can be simulated and
compared. The results of empirical analysis confirm the validity and usefulness of the
proposed method. Meanwhile, effective recommendations for elderly people with weak
balance can be proposed. Furthermore, personalized suggestions can be put forward for
each elderly people to improve his balance and prevent falling.
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Abstract. Previous works on meta-learning either relied on elaborately
hand-designed network structures or adopted specialized learning rules
to a particular domain. We propose a universal framework to optimize
the meta-learning process automatically by adopting neural architec-
ture search technique (NAS). NAS automatically generates and eval-
uates meta-learner’s architecture for few-shot learning problems, while
the meta-learner uses meta-learning algorithm to optimize its parameters
based on the distribution of learning tasks. Parameter sharing and experi-
ence replay are adopted to accelerate the architectures searching process,
so it takes only 1-2 GPU days to find good architectures. Extensive exper-
iments on Mini-ImageNet and Omniglot show that our algorithm excels
in few-shot learning tasks. The best architecture found on Mini-ImageNet
achieves competitive results when transferred to Omniglot, which shows
the high transferability of architectures among different computer vision
problems.

Keywords: Meta-learning · Few-shot learning · Neural architecture
search

1 Introduction

Many meta-learning methods [6,16,22] have achieved success in “K-shot, N -
way” scenario. In this scenario, each task is a N -classification problem, and
the learner only sees K training instances from each class. After training with
these training instances, the learner is able to classify new images in the test
set. Finn et al. [2] proposed a model-agnostic meta-learning approach (MAML).
The key breakthrough is its initialization technology, which allows the learner
to repeatedly train on each sampled task and set parameters at the optimal
start point. Compared to MAML, which needs to calculate second derivatives
in back-propagation, Reptile [12] only uses first-order derivatives with higher
efficiency and less computational resource. However, the Reptile algorithm only
optimizes meta-learner from the parameters level, and the learner’s model is a
simple and powerful network structure that are artificially designed. Designing
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Fig. 1. An overview of efficient automatic meta-learning method

architectures is a time-consuming process which often requires rich expert knowl-
edge and many experimental comparisons. Therefore, we propose a novel joint
optimization scheme which combines model-agnostic meta-learning algorithm
and automatic architecture design to improve the few-shot learning.

As is shown in Fig. 1, our scheme employs the neural architecture search
technique to automate architecture design process. The contributions of each
component are listed as follows: the controller is trained with policy to sample the
meta-learner’s architecture from component library; meta-learner uses Reptile
to seek high adaptive initial parameters for different tasks; experience replay
and parameter sharing speed up meta-learner search by learning from historical
knowledge.

To be specific, our model search method is based on ENAS [13] which
improves the efficiency of NAS by allowing parameter sharing among gener-
ated model. Figure 1 shows a recurrent network – the controller that outputs
variable-length string to define a child model, including configurable model
depth, stochastic skip connection, and different combination of convolution cells.
The parameters of child model are trained by Reptile [12]. After a period of
Reptile training, child model returns the accuracy as reward to evaluate and
adjust the controller’s architecture-generation policy. To speed up model search-
ing procedure, we apply experience replay to reduce the number of controller
interactions with the environment and encourage the controller to fully study its
accumulated experience in the changing environment. Ultimately, the controller
can optimize its policy and yields the best model architecture. We retrain this
model from scratch using Reptile, and it can generalize across tasks with only a
small number of gradient steps using few samples on each task.

We make the following contributions:

• We are the first to propose an automatic meta-optimization system by apply-
ing neural architecture search technique to meta-learning method.
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• A series of experiments show that the joint automatic optimization method
can ensure that the training model has rich expression ability and high cross-
task generalization ability. On Mini-ImageNet benchmark, it achieves excel-
lent performance with 74.20% accuracy.

• We achieve remarkable meta-learner search efficiency (5-shot with 48 GPU
hours; 1-shot with 32 GPU hours). It credits to the incorporation of parameter
sharing and experience replay techniques in search process.

• The algorithm shows high transferability among different computer vision
problems. The best architecture found on Mini-ImageNet achieves compet-
itive results on Omniglot tasks, and the searched models in 5-shot, 5-way
classification are transferable to 1-shot, 5-way scenario.

2 Related Work

2.1 Meta Learning

Meta-learning allows learners to train through a variety of similar tasks, and
expects to generalize to previously unseen tasks quickly. There are several ways
to realize meta-learning. Memory based methods [11,16] adjust bias by weights
update and generate outputs by learning from memories. Santoro et al. [16] make
use of external memory introduced by Neural Turing Machine [3] to realize short
term memory and build connections between labels and input images, so that
latter inputs are able to compare with related images in memories to achieve
better predictions. Gradient based methods [1,6] train a LSTM optimizer to
learn parameter optimization rules of the learner network. While [1] targets at
large-scale classification, [6] is interested in few-shot learning and learns both
optimization rules and weight initialization. Recent work such as relation net-
work [20] and matching network [22] employ idea from metric learning. Instead of
using artificially designed metrics, it completely utilizes neural networks to learn
deep distance metric. Simple Neural Attentive Learner (SNAIL) [10] uses tempo-
ral convolution to collect past experience and soft attention to pinpoint specific
pieces of details. Object-level representation learning [8] decomposes images into
objects, and applies object-level relation learned from source dataset to the tar-
get dataset.

Although the existing approaches have achieved impressive results, they
either introduce extra parameters which need more storage spaces or bring con-
straints on the model architecture. MAML [2] is well accepted for its simplicity
and model-agnostic. This method learns highly adaptive parameters to initial-
ize the neural network so that only a small number of gradients updates are
required for fast learning on a new task. Recently, OpenAI proposes a similar
method Reptile [12] which does not require differentiability during the optimiza-
tion process compared to MAML.

2.2 Neural Architecture Search

Human-designed networks usually only perform specific tasks. An automated
method to generate appropriate architecture with adaptive model parameters
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and hyperparameters for any given tasks is desired. Many hyperparameter opti-
mization methods have been studied [4,7,9,19]. These optimization algorithms
are able to select and fine tune the model hyperparameters automatically which
surpass human expert-level optimizations. However, they are not flexible and
often limited in generating fixed-length configuration for networks.

Recent years evolutionary algorithms and reinforcement learning algorithms
have been adopted for neural architecture search and achieved promising per-
formance. Neuro-evolution methods [14,15] use mutation operations to explore
large search spaces, which have expensive evaluation cost and need heuristic algo-
rithms. The reinforcement learning approach has higher feasibility and achieves
better results. Zoph et al. [23,24] use recurrent network to generate expected
“child model”, and utilize the accuracy of the child model on the validation set
as reward signals to train this RNN. Efficient Neural Architecture Search (ENAS)
[13] speeds up the training process by allowing parameter sharing among child
models. Another efficient method Differentiable Architecture Search (DARTS)
[18] constructs continuous search space and optimizes architecture in a differen-
tiable manner.

3 Method

In meta-learning, learners make progress at task level rather than data point
level. For example, MAML [2] takes in a distribution of tasks, where each task
is an independent learning problem. In order to lower the loss Lτ on task τ , we
need to compute the following formula:

min
θ,A

∑

τ

L(D
′
τ , θ

′
τ ) =

∑

τ

L(D
′
τ , T (Dτ , θ)) (1)

where Dτ and D
′
τ represent the training set and test set on task τ respec-

tively, the T (Dτ , θ) is the training procedure acting on Dτ , and the Lτ is com-
puted on updated parameters θ′ with test samples D

′
τ . A represents the model

architecture of the meta-learner, and the θ are the model parameters under this
architecture. In classic meta-learning setting, A is fixed and we only optimize θ.
In our proposed scheme, A and θ will be joint optimized with the alternatively
training manner.

There are two stages in each meta-optimization search step. First the con-
troller with policy φ is trained to sample a architecture A = f(φ,R), where R is
the reward output by the meta-learner, it is a random value at the first time. Sec-
ond, using this architecture, the meta-learner is trained with Reptile algorithm.
Reptile [12] is the first order of MAML. Using the same principle, it seeks an
initialization condition for model parameters which can be fine-tuned easily, so
that the trained learner is able to achieve high performance on previously unseen
tasks. The score on validation set will be input as reward to the controller based
on reinforcement learning. These two stages are alternatively trained until some
good architecture candidates are generated. After all search steps finished, we
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would finally retrain these candidates to obtain the architecture with highest
score on the meta-test dataset.

Since the discrete domain search of A can be transformed into the continuous
domain optimization of controller network in our method, the formula (1) can be
rewrite as a differential form which can be optimized with end-to-end training:

min
θ,φ

∑

τ

L(D
′
τ , θ

′
τ ) =

∑

τ

L(D
′
τ , T (Dτ , θ)) (2)

3.1 Generating Transferable Architecture by Controller

We use LSTM as the controller to generate a variable-length string which speci-
fies the model architecture. The controller receives a randomly initialized variable
as input at the very beginning, then the input of time step t is the embedding
of the decision sampled from time step t − 1.

As shown in Fig. 2, the controller aims to generate a four-layer child model
architecture. It needs to make two sets of decisions according to the current
generation policy: (1) what operations to be applied and (2) which previous
layers to be concatenated. There are several available operations: ordinary con-
volutions, depthwise-separable convolutions, average pooling and max pooling.
After selecting the operation, the controller will decide to select the previous skip
connection layers. Take layer k as an example, k − 1 indices of previous layers
are sampled, which conduce to 2(k−1) possible choice. Corresponding to Fig. 2,
at layer k = 3, the controller selects the indices 1, 2, which means the output of
layer 1 and 2 are concatenated along depth dimension and sent to layer 4.
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3.2 Training Controller with Reinforcement Learning

Policy Gradient. When training the controller, we freeze parameters of the
child model and only update controller’s policy φ (referred to as Algorithm 1).
Actions a1:T are the decisions made by the controller’s policy in time series:
selecting an operand and layers for skip connection. We utilize policy gradient
[21] to train the controller to maximize the expected reward EP (a1:T ;φ)[R]. The
traditional policy gradient formula is:

∇φU (φ) =
1
m

m∑

j=1

T∑

t=1

∇φ log P
(
at|a(t−1):1;φ

)
Rj (3)

where m stands for the m architectures sampled by the current policy. T
denotes the number of predictions made by the controller. R controls the param-
eter update direction and step size. Equation (3) targets at increasing the gener-
ation probability of high reward models and reducing the opposite. We employ
the empirical average reward of these m architectures to approximate the policy
gradient.

The above method is unbiased but with high variance. As is proposed by [23],
we introduce a baseline bl in reward to reduce the variance. bl is defined as the
exponential moving average of previous architecture accuracy. By subtracting
the baseline, we can understand the improvement of a model compared with an
average one.

Aj = Rj − blj (4)

∇φU (φ) =
1
m

m∑

j=1

T∑

t=1

∇φ log P
(
at|a(t−1):1;φ

)
Aj (5)

The advantage function (4) helps to update policy parameters (5) with a more
specific direction.

Algorithm 1. Automatic architecture search with experience replay.
1: Randomly initialize policy φ, input state S0

2: for j = 1 to J do
3: Observe Sj , and generate action stream Aj = a1:T to form a child model
4: Train Child model with Algorithm 2 on meta-training to get reward Rj

5: Perform PG to φ with this experience (Sj , Aj , Rj)

6: Store (Sj , Aj , Rj) if Rj ≥ bl, or with probability
Rj

bl
into replay buffer M

7: if j mod k == 0 then
8: for r = 1 to R do
9: Uniformly sample transition B from M

10: Update policy parameters φ with B
11: end for
12: end if
13: end for
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Experience Replay. Policy gradient is based on stochastic gradient algorithms.
The controller is updated using only one sample architecture generated by the
current policy and discards it after a single update. Therefore, the controller
tends to forget its past experience which leads to oscillation. We solve this issue
by adopting experience replay skills [17]. To perform experience replay, we store
transition (Sj , Aj , Rj) in a replay buffer, where Aj stands for the j-th architec-
ture string a1:T selected by the controller, Sj refers to the input state of the
controller, and R corresponds to the accuracy computed on the validation set.
Since not all experiences are expected to be learned more than once, experience
will be stored in the buffer with probability:

Pj =
{

Rj

bl , Rj ≤ blj
1, Rj > blj

(6)

The criterion to measure the importance of transition is its reward Rj , which
suggests how good this architecture is compared with current baseline blj .

3.3 Training Child Model with Reptile

When training the child model (referred to as Algorithm 2), we freeze the con-
troller’s policy parameters φ. Child models are required to learn from limited
number of images, so we build our work on a scalable meta-learning algorithm
Reptile. Assume that p(T ) are the distribution probability of tasks, we sample
a batch of tasks T from p(T ). The standard cross-entropy loss Lτi denotes the
task-specific loss function. In order to make the model parameters θ sensitive, we
calculate each task τi with k gradient steps on loss Lτi and get the final parame-
ter vector Wi. Meta-optimization across tasks is performed via Adam algorithm,
where

∑N
i=1(Wi −φ) is treated as gradient. Besides, training the child model on

the validation set generates accuracy R, which will be returned as the reward to
scale gradients of the controller.

Algorithm 2. Reptile at training time.
1: Randomly initialize θ
2: repeat
3: Sample batch of N tasks Tb ∼ p(T )
4: for each τi in Tb do
5: Compute adapted parameters with k gradients step: Wi = SGD(Lτi , θ, k)
6: end for
7: Update θ ← θ + α 1

k

∑N
i=1(Wi − θ)

8: until Convergence
9: return Accuracy on validation set as reward Rj
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4 Experiment

In this section, we evaluate automatic meta-learning method on two important
benchmarks: Mini-ImageNet and Omniglot, and compare our results against
strong baselines. All of our experiments consider solving K-shot, N -way learning
problem. For each task τi of K-shot, N -way classification, the learner trains
on N related classes each with K examples, we firstly sample N classes from
meta-dataset and then select K + 1 examples for each class. Then, we split
these examples into training and test sets, where training set Dtrain contains K
examples for each class and test set Dtest contains the remaining sample. Take
5-shot, 5-way classification as example, we use 25 examples — 5(images) x 5
(classes) to train the learner and use additional examples to test the model.

4.1 Few-Shot Learning Datasets

Mini-ImageNet is created by randomly sampling 100 classes from ImageNet and
selecting 600 examples for each class. Training set has 38, 400 images with 64
classes, test set consists of 12, 000 images with 20 classes, and validation set
contains 9600 images with 16 classes.

Omniglot consists of 1623 characters from 50 different alphabets. We ran-
domly select 1200 characters for training and use the remaining character classes
for testing. As is proposed by Santoro et al. [16], we augment the dataset with
rotations by multiples of 90 degrees. Omniglot was proposed by lake and used
in the 2015 Science paper [5].

4.2 Implementation Details

The controller is a one-layer LSTM with 100 hidden units, whose goal is to
search 8-layers child models. Operations can be selected from: 3 × 3, 5 × 5, and
7 × 7 convolutions, 3× 3, 5 × 5, and 7× 7 depthwise-separable convolutions and
3 × 3 average pooling and max pooling. We perform experience replay on the
controller every 60 steps and 5 transitions each time. A global average pooling
is added before the fully connected layer and dropout layers with 0.25 drop
rates are added after each layer. These tricks reduce the number of parameters
and avoid overfitting during training. We use 1 GPU for 1-2 days to search for
top-3 architectures for meta-learner, and each architecture takes 6 GPU hours
to retrain from scratch. Table 1 presents parameter settings in the final retrain
process.

4.3 Evaluation

As shown in Table 2, Our method achieves competitive results on Mini-ImageNet.
In transductive mode, the trained model classifies all the samples in test set at
once, so the information is allowed to leak between test samples through batch
normalization [12]. As expected, the transductive experiments achieve 74.2%
high accuracy on 5-shot 5-way task.
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Table 1. Parameters for final-retrain on Mini-ImageNet

Parameters 5-shot 5-way 1-shot 5-way

Adam learning rate 0.005 0.003

Outer iterations 7K 7K

Outer step size 1 1

Meta batch size 5 5

Inner iterations 8 8

Inner batch size 10 10

Train shots 15 15

Eval. inner iterations 88 50

Eval. inner batch size 10 5

Table 2. Results on Mini-ImageNet

Algorithm Transduction 5-shot 5-way 1-shot 5-way

MAML [2] Y 63.11 ± 0.92% 48.70 ± 1.84%

Reptile [12] N 62.74 ± 0.37% 45.79 ± 0.44%

Reptile Y 66.00 ± 0.62% 48.21 ± 0.69%

Matching Nets [22] N 55.31 ± 0.73% 43.56 ± 0.84%

Relation Nets [20] N 65.32 ± 0.70% 50.44 ± 0.82%

SNAIL [10] N 68.88 ± 0.92% 55.71±0.99%

Ours N 67.10 ± 0.90% 48.00 ± 0.82%

Ours Y 74.20±0.32% 52.43±1.08%

Ours (Transfer) N \ 47.04 ± 0.52%

Ours (Transfer) Y \ 51.62 ± 0.43%

Automatic searching process learns directly from the task distribution of
dataset, We show it enables some degree of transferability. In experiments, we
transfer the model constructed from 5-shot 5-way configuration into 1-shot 5-
way for final-retrain. It achieves 51.62% accuracy which still beyond the original
Reptile performance on Mini-ImageNet.

Although some methods [10,20] have achieved competitive performance as
ours, our method sacrifices some accuracy in exchange for time and space effi-
ciency. For example, we only select the top3 searched architectures for retrain.
If we select top10, or top100 architectures for retrain, the accuracy may be
improved. In addition, the network could automatically select the number of lay-
ers, the number of feature maps, etc., which is easier than the manual setting to
find the most powerful architecture, but this procedure is very time-consuming.
What’s more, we use the experience replay to encourage learner learning from
past experience but reduce the number of times to explore new architectures.
Although it greatly improves the efficiency, it reduces the possibility of exploring
the best architecture to some extent. Therefore, if we only focus on accuracy,
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there is a great room for improvement, but we think efficient algorithm with
competitive results are more valuable. Compared to the original NAS technol-
ogy, who takes 32,400-43,200 GPU hours, our algorithm can search for good
architectures within 48 GPU hours.

Table 3. Results on Omniglot

Algorithm Transduction 5-shot 20-way 1-shot 20-way

Matching Nets [22] N 98.7% 93.5%

1storder MAML [2] Y 97.0 ± 0.1% 89.4 ± 0.5%

MAML Y 98.9 ± 0.2% 95.8 ± 0.3%

Reptile [12] N 96.65 ± 0.33% 88.14 ± 0.15%

Reptile Y 97.12 ± 0.32% 89.43 ± 0.14%

Ours N 98.97 ± 0.12% 95.50 ± 0.35%

Ours (Transfer) N 97.95 ± 0.23% 93.80 ± 0.18%

In Omniglot, we try the distance transfer experiment to test the general-
ization performance of the searched architecture. Here, we merely transfer the
model architecture from Mini-ImageNet, but all the weights will be re-trained
from scratch. From Table 3 we find that transferred architecture generalize well
to Omniglot problems, even exceeds the accuracy of original Reptile method with
transductive setting. So the automatic meta-learning method has been proven
not only to achieve within-task generalization, but also cross-task generalization.

Figure 3 shows the experience replay contributes to the understanding of new
tasks, and helps the learner to discover better architectures with less computa-
tional cost. Note that the y-axis is the moving average of previous architecture

Fig. 3. Training curves for the architecture search procedure: exponential moving aver-
age architecture accuracy over 7K iterations.
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accuracy, so it only reflects the average value and many architectures can achieve
much higher accuracy. Figure 4 shows the good architectures we discovered.
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Fig. 4. High accuracy architectures searched by 5-shot, 5-way classification on Mini-
ImageNet, and can be transferred to other classification scenes.

5 Conclusion

In this paper, we introduce an efficient automatic meta optimization search for
few-shot learning problems. Rich experiments show that the proposed algorithm
achieves competitive performance in few-shot learning tasks. Our work has a few
key insights. Firstly, the proposed framework is universal because the architec-
ture search will discover scalable architectures for meta-learner, which can be
easily nested on any model-agnostic meta-learning algorithm. Secondly, param-
eter sharing and experience replay techniques greatly save the computational
cost and improve the efficiency of our approach. Lastly, We show the within-
task generalization and cross-task generalization of the learner’s architecture,
this transferability is a desirable characteristic and deserves further study.
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Abstract. We propose a novel architecture for learning camera poses
from image sequences with an extended 2D LSTM (Long Short-Term
Memory). Unlike most of the previous deep learning based VO (Visual
Odometry) methods, our model predicts the pose per frame with tem-
poral information from image sequences by adopting a forward-backward
process. In addition, we use 3D tensors as basic structures to generate
spatial information. The network learns poses in a bottom-up manner by
coupling local and global constraints. Experiments demonstrate that on
the public KITTI benchmark dataset, our architecture outperforms the
state-of-the-art end-to-end methods in term of camera motion prediction
and is comparable with model-based methods. The network generalizes
well on the Málaga dataset without extra training or fine-tuning.

Keywords: Visual Odometry · Motion estimation · Convolutional
Neural Networks · Recurrent Neural Network

1 Introduction

Visual Odometry (VO) estimates camera poses from sequential images by reveal-
ing the consistency between consecutive frames. As an essential task in computer
vision, it has been required in areas such as autonomous driving and robot nav-
igation. The last thirty years have witnessed plenty of VO systems [3,4,11]. In
VO, heavy accumulated errors and scale drift would appear if merely two adja-
cent frames are taken into consideration. Therefore, in order to estimate more
accurate camera poses, most systems leverage the sptio-temporal consistency by
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c© Springer Nature Switzerland AG 2019
Z. Lin et al. (Eds.): PRCV 2019, LNCS 11859, pp. 235–246, 2019.
https://doi.org/10.1007/978-3-030-31726-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31726-3_20&domain=pdf
https://doi.org/10.1007/978-3-030-31726-3_20


236 F. Xue et al.

Fig. 1. Our architecture learns camera motion with forward-backward process using an
extended LSTM. The bottom-up prediction experiences two stages with coupled local
and global constraints.

introducing temporal sliding windows and building local 3D maps. It could be
interpreted as a sequence-to-sequence mechanism, where camera poses can be
estimated and refined by exploiting information from previous and later frames.

Traditional VO methods require sophisticated calibration to ensure estima-
tion precision. Learning-based end-to-end approaches, however, can be used to
tackle VO problem without such a limitation [10,15,16,18,19,21]. These methods
leverage the powerful CNN (Convolutional Neural Network) and RNN (Recur-
rent Neural Network) to solve the problem by learning from massive training
data.

The regular RNN structure adopts only forward processes that predicts cur-
rent poses from previous information, thus may suffer from learning bias and
error accumulations when running on long sequences. Moreover, with only the
constraint on global poses, these frameworks might suffer from over-smoothness
and fail to recover the local irregularities in trajectories such as sharp rotations.
In addition, fully connected layers heavily used in such structures are prone to
over-fitting and thus hampering the generalization ability of the overall network.

In this paper, we propose a novel end-to-end network that learns camera
poses from image sequences by leveraging the Bidirectional Recurrent Neural
Networks (BRNN) with extended LSTM units (as shown in Fig. 1). The main
contributions include:

– A novel architecture with forward-backward processes that can not only pre-
dict the pose of current frame using historical information but refine previous
poses given newly gained knowledge;

– A two-stage bottom-up prediction strategy with coupled local and global con-
straints, which is able to handle various motion patterns among sequences by
extracting motion-sensitive features.
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The paper is organized as follows: Sect. 2 reviews related work on traditional
and learning-based monocular VO methods, and RNNs. In Sect. 3, we introduce
our architecture in detail. Section 4 evaluates the proposed method against the
state-of-the-art methods. Section 5 concludes the paper.

2 Related Work

VO has been studied for decades and great progress has been made in recent
years. In this section we focus mainly on the relevant studies of monocular VO.

Model-Based VO Methods. Classical methods can be roughly categorized
into feature-based and direct methods. Feature-based approaches establish cor-
respondences by matching features between frames, and estimate camera motion
through minimizing reprojection error. VISO2 [6] utilizes sparse feature match-
ing between consecutive frames to realize an efficient VO system. ORB-SLAM2
[11] extracts ORB features, builds sparse 3D point clouds, and optimizes both
camera poses and maps. Direct methods [3,4], on the other hand, recover poses
by directly minimizing photometric error. These methods do not require expen-
sive feature extraction, yet are sensitive to the changing of illumination. DSO
[3] alleviates the problem by integrating a full photometric calibration. Both
feature-based and direct methods are designed for static scenes and may face
problems when they encounter dynamic objects. Meanwhile, they tend to fail in
texture-less environments.

Learning-Based VO Methods. Deep learning has been proved useful for var-
ious computer vision tasks with impressive efficiency, provided sufficient training
datasets. Recently, CNN has been applied to 3D related topics, including depth
map prediction [18,19,21]. It has also been utilized in VO/SLAM systems by
replacing imperfect components in classic systems, such as depth initialization
[17]. There are also end-to-end frameworks directly dealing with VO-related
problems. DeepTAM [20] estimates depth and motion from two consecutive
images captured by a monocular camera. SfmLearner [21], GeoNet [18] and
Depth-VO-Feat [19] recover depth images of scenes and ego-motions from unla-
beled sequences with view synthesis as the supervisory signal. UnDeepVO [10]
extends the work of SfmLearner to stereo images by adding left-right consistency.

DeepVO [15] learns camera poses by combining CNNs and RNNs. It feeds
1D vectors into a regular LSTM to predict pose per frame and builds the loss
function over the absolute global poses. ESP-VO [16] extends DeepVO by infer-
ring poses and uncertainties directly in a unified framework. These approaches
do not emphasize the backward refinement and ignore the spatial connections of
features. In this paper, we aim to tackle VO problem by learning the motion at
each time step with the spatio-temporal consistency over the whole sequence.

Recurrent Neural Networks. RNN extends the feed-forward neural networks
with loops in connection, hence it is able to process sequential inputs. LSTM
[8], a variation of RNN, can deal with the vanishing gradient problem by con-
trolling the flows from input to output. ConvLSTM [14] adopts convolutional
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Fig. 2. Pipeline of our model. A 3D tensor is fed to the Bidirectional RNN to pro-
vide spatio-temporal information. The outputs of forward and backward processes are
combined and fed into a GAP Layer for further 6DoF pose estimation.

structure as basic operations and accepts 3D tensors as input to preserve the
spatial dependence. BRNN (Bidirectional Recurrent Neural Network) [13] is an
extension of standard RNN. It defines a reverted direction on the negative time
in order to utilize future information. We adopt the BRNN with convolutional
LSTM as the basic structure to implement the forward-backward VO system.

3 Approach

As shown in Fig. 1, our model receives monocular RGB image sequences as input.
High-level features are first extracted from consecutive images with encoders
(Sect. 3.1). The feature maps are then fed into the Bidirectional RNNs, experi-
encing a forward-backward operation (Sect. 3.2). Outputs of both forward and
backward processes are concatenated and fused. Finally, 6-DoF poses are pro-
duced from the output of global average pooling (GAP) layer. The bottom-up
learning strategy is adopted using both local and global constraints as loss func-
tions (Sect. 3.3).

3.1 Encoder

We build the encoder upon ResNet34 [7]. ResNet34 is a variation of ResNet
with 16 “basicblocks”, a 3-channel input layer, an additional GAP layer, and
a classifier layer for classification. To consider spatio-temporal information, we
replace the 3-channel input layer with a 6-channel convolutional layer to accept
two RGB images, discard the last pooling and classier layers, and add two con-
volutional layers with 3× 3 kernel size to produce a 2D feature map with 1024
channels (see Fig. 2). We reserve the form of 3D tensors instead of a conversion
to 1D feature vectors so as to keep the information in the spatial domain.
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3.2 Forward-Backward Process with 2D Convolutional LSTM

As depicted in Fig. 1, the core of our framework is the recurrence module that
allows the network to retain the information prior to and following the current
frame and update the memory by controlling the gates in the spatial domain.
A naive solution could be the usage of a vanilla LSTM network such as [15,16].
However, by operating 1D feature vectors, it lacks the ability to maintain spatial
information which is indispensable for predicting sequential camera poses. To
deal with this problem, we design a new architecture that processes the image
flow in forward-backward directions by operating 3D tensors to retain the spatial
information over the whole sequence.

2D Convolutional LSTM. We utilize the 2D convolutional LSTM made up
of a set of structured units spatially distributed in 3D tensors to emphasize
the spatial relationship between neighboring pixels. Each regular LSTM unit
indexed by (i, j) has an independent hidden state ht,(i,j) ∈ RN . The operation
of an standard GRU (Gated Recurrent Unit) [2] can be described by

ut = σ(Wuxt + Uuht−1 + bu), (1)
rt = σ(Wrxt + Urht−1 + br), (2)
ht = (1 − ut) � ht−1 + ut � tanh(Whxt + Uh(rt � ht−1) + bh), (3)

where ut, rt, ht represent the update gate, reset gate, and the hidden state respec-
tively. σ is the sigmoid function. � denotes element-wise multiplication. We use
subscript t to refer to an activation at time t. With the same notation but switch
the input to 3D tensors, equations governing the 2D-LSTM grid are changed to

ut = σ(Wu ∗ xt + Uu ∗ ht−1 + bu), (4)
rt = σ(Wr ∗ xt + Ur ∗ ht−1 + br), (5)
ht = (1 − ut) � ht−1 + ut � tanh(Wh ∗ xt + Uh ∗ (rt � ht−1) + bh). (6)

Here, ∗ denotes the convolution. The output of current unit will be fed into
two modules: the next recurrent unit along the time line, and the fusion module
associating data from two directions for current absolute pose prediction.

Forward-Backward Process. The pose of current frame can be recovered
by accumulating relative poses of previous frames, as shown in Fig. 3(a). How-
ever, this strategy leads to error accumulations and non-negligible scale drift.
Figure 3(b) shows an improved solution which takes more previous frames into
consideration. This is easy to implement by adopting standard unidirectional
RNNs, as DeepVO [15] and ESP-VO [16].

In fact, Fig. 3(c) suggests that the current information is also able to refine
the previous states. This property can not be fully expressed by a regular LSTM
with only forward process. Therefore, we introduce a forward-backward process
by adding an extra backward component. Equipped with such a structure, our
network will be able to predict current camera poses through the forward infer-
ence, and refine previous poses via the backward process, as illustrated in Fig. 2.
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(a) (b) (c)

Fig. 3. Learning pose by building consistency over (a) two locally consecutive frames,
(b) all previous frames, (c) all frames in the sequence. The blue, green and red lines
denote the current, previous and future inputs. (Color figure online)

The outputs from forward and backward are concatenated before being fed to the
fusion module. The fusion model aligns and integrates spatio-temporal informa-
tion by two convolution layers with a 3×3 kernel to generate 3D tensors of 1024
channels. Finally, the pose is regressed from the immediate output of a GAP
layer, in the form of a 6-DoF motion parameters.

3.3 Coupled Local and Global Constraints

Relative poses between two consecutive views are relatively easy to learn due
to small motions. But error accumulations and scale drift will severely reduce
the accuracy if no additional constraint is provided. Absolute poses with large
motions, on the other hand, will be hard to learn through the recurrent module
without proper temporal regularization. We propose to learn camera motion
progressively in two stages from local to global, with constraints over both the
relative and absolute poses respectively, as follows:

Llocal =
1
t

t∑

i=1

||p̂i−1,i − pi−1,i||2 + k||φ̂i−1,i − φi−1,i||2, (7)

Lglobal =
t∑

i=1

1
i
(||p̂0,i − p0,i||2 + k||φ̂0,i − φ0,i||2), (8)

Ltotal = Llocal + Lglobal. (9)

p̂i−1,i,pi−1,i, φ̂i−1,i, and φi−1,i represent the predicted and ground-truth rela-
tive translation and rotation in three directions, respectively; p̂0,i,p0,i, φ̂0,i, and
φ0,i represent the predicted and ground-truth absolute translation and rotation.
Llocal, Lglobal and Ltotal denote the local, global, and total loss respectively. t is
the current frame index in a sequence. k is a fixed parameter for regularizing the
rotational and translational errors. It is set to 50 in all our experiments.
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Local loss is built on the average relative pose regressed from the output of
encoder, which accepts two consecutive images as input. This encourages the net-
work to learn motion-sensitive features at the bottom stage. Global loss is defined
on the absolute pose regressed from the fused outputs from forward and backward
processes. With the local constraints at the bottom stage, the recurrence mod-
ule focuses mainly on temporal consistent motions from the motion-sensitive
features instead of raw features, which enhances the system’s robustness and
improves the accuracy. More importantly, local constraints retain the locality of
motions among the sequence since recorded devices cannot be assumed to move
at a constant speed especially in sharp turns.

We normalize the local loss by averaging all the relative losses in a local
sequence (Eq. 7), while averaging absolute poses with the weight of inverse
sequence length in the global context (Eq. 8). This configuration enables our
model to leverage the encoded motion-sensitive features in local sequences, mean-
while avoids over-emphasizing relative motions that may lead to decay of global
information during long-term localizations.

4 Experiments

We first discuss the implementations in Sect. 4.1 and introduce the benchmarks
used in Sect. 4.2. Then, in Sect. 4.3, we compare the four variations of our net-
work, BRNN lg for Bidirectional RNN (BRNN) plus both local and global con-
straints, BRNN g for BRNN plus global constraint, RNN lg for single directional
RNN plus local and global constraints, and RNN g for RNN plus the global con-
straint and prove the efficacy of the forward-backward and bottom-up configura-
tions. Next, we compare the performance of our model on the KITTI dataset [5]
against current state-of-the-art learning- and model-based methods in Sect. 4.4.
We also show the generalization ability of our network in Sect. 4.5 by testing
the network on Málaga dataset [1] with weights trained on the KITTI dataset
without any fine-tuning.

4.1 Implementation

Monocular RGB images with size 1080×320 are used for training and testing.
We use 7 frames to construct a sequence. At the head of forward and backward
process, the first encoded feature map instead of all-zero/one tensor is used for
initialization. In term of prediction, the poses of the first and last frames are
only influenced by the backward and forward processes respectively, as shown
in Fig. 1. Both relative and absolute poses are represented as 6-DoF parameters
with first 3 for Euler angles and the rest 3 for translation.

We use the PyTorch [12] to build our networks on an NVIDIA 1080 Ti GPU.
Adam [9] is adopted as the optimizer in which β1 and β2 are set to 0.9 and 0.99,
respectively. The networks are trained with a batch size of 4, a weight decay of
10−4 for 150,000 iterations in total. The initial learning rate is 10−4 and reduced
by half every 60,000 iterations.
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(a) Rotation error (b) BRNN lg (c) BRNN g

(d) Translation error (e) RNN lg (f) RNN g

Fig. 4. Rotation and translation errors of four variations of our network on the KITTI
dataset [5]. Recovered trajectories on Seq 10 are also illustrated.

4.2 Dataset

KITTI: The KITTI dataset [5] contains 22 sequences of stereo images collected
from a moving car in urban and highway environments. The dataset was captured
at a relatively low frame rate (10 fps) at the speed up to 90 km/h, and contains
many dynamic objects in the urban area, hence is very challenging for monocular
VO algorithms. In our experiments, only the left RGB images are utilized and
resized to 1080 × 320 for training and testing. As DeepVO [15], Seq 00, 02, 08
and 09 are used for training, and Seq 03–07, 10 are used for evaluation.

Málaga: The Málaga dataset [1] collects data in similar scenes to the KITTI
with stereo image sequences at 20 Hz. The rectified left RGB images with 1024 ×
768 are used to test the pre-trained networks without fine-tuning. These images
are resized to 1080 × 320 to fit in the network pre-trained on KITTI.

4.3 Ablation Study

Figure 4(a) and (d) show the rotation and translation errors on each view of
BRNN lg, BRNN g, RNN lg, and RNN g. In two figures we can observe that
(1) The networks with forward-backward process (BRNNs) built upon bidirec-
tional LSTM outperform the networks based solely on forward process imple-
mented by regular LSTM, especially in term of rotation as shown in Fig. 4(a).
(2) The networks learning poses in bottom-up steps with both local and global
constraints (lg) yield higher accuracy than those built on merely absolute poses.
(3) The performance of the network on each image in RNN varies significantly
in rotation, and the problem is alleviated in BRNN, which might be caused by
spatio-temporal consistency introduced in the bidirectional LSTM units.
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Table 1. Estimated rotation and translation errors on the KITTI dataset [5].

Method Sequence

03 04 05 06 07 10

trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

VISO2-S [6] 3.21 3.25 2.12 2.12 1.53 1.60 1.48 1.58 1.85 1.91 1.17 1.30

VISO2-M [6] 8.47 8.82 4.69 4.49 19.22 17.58 7.30 6.14 23.61 19.11 41.56 32.99

ORB-SLAM2 [11] 2.28 0.40 1.41 0.14 13.21 0.22 18.68 0.26 10.96 0.37 3.71 0.30

ORB-SLAM2 (LC) [11] 2.17 0.39 1.07 0.17 1.86 0.24 4.96 0.18 1.87 0.39 3.76 0.29

SfmLearner [21] 10.78 3.92 4.49 5.24 18.67 4.10 25.88 4.80 21.33 6.65 14.33 3.30

GeoNet [18] 19.21 9.78 9.09 7.54 20.12 7.67 9.28 4.34 8.27 5.93 20.73 9.04

DeepVO [15] 8.49 6.89 7.19 6.97 2.62 3.61 5.42 5.82 3.91 4.60 8.11 8.83

ESP-VO [16] 6.72 6.46 6.33 6.08 3.35 4.93 7.24 7.29 3.52 5.02 9.77 10.2

RNN l 6.13 4.63 5.99 3.81 7.18 3.12 14.53 5.53 4.40 2.53 7.62 3.67

RNN lg 5.60 3.12 3.91 2.38 6.98 3.08 14.82 5.12 4.82 3.62 7.12 3.57

BRNN l 5.66 3.38 5.49 2.33 6.82 2.84 19.86 8.23 3.03 2.84 7.73 3.83

BRNN lg 4.74 3.12 3.90 2.22 6.02 2.72 9.59 2.38 5.28 2.30 7.04 3.29

trel : average translational RMSE (%) on length from 100, 200 to 800m.

rrel : average rotational RMSE (◦/100m) on length from 100, 200 to 800m.

In Fig. 4 we also visualize the predicted trajectories of four networks on KITTI
sequence 10 containing intense translations and rotations. It shows that BRNNs
with forward-backward processes improve the rotation estimation accuracy, espe-
cially at sharp turnings (Fig. 4(b)–(e), (c)–(f)), while the joint local global con-
straint performs better on improving translation (Fig. 4(b)–(c), (e)-(f)).

4.4 Results on KITTI Dataset

We compare our model with previous model-based and learning-based monocular
VO approaches on the testing sets of KITTI benchmark used by DeepVO [15]
and ESP-VO [16]. The KITTI VO/SLAM error metrics, i.e., averaged Root Mean
Square Errors(RMSEs) of the translational and rotational errors, are utilized for
all the subsequences of lengths ranging from 100, 200 to 800 m.

We fist compare against learning-based methods DeepVO [15], ESP-VO [16],
SfmLearner [21] and GeoNet [18]. As shown in Table 1, in general, all the four
variations of our model achieve impressive results, while the networks with
forward-backward process yield better results on the translation and the net-
works with local-global constraints increase the accuracy of predicted motion.
Specifically, our network based on forward-backward process with coupled local-
global constraints achieves up to 50% better performance in terms of rotational
errors on almost all sequences. Moreover, our model also reduces the transla-
tional errors on most sequences. Sharp turns (approximately 180◦) in the two
sequences might cause the degeneration of performance.

Additionally, we compare our approach against state-of-the-art classic VO
systems, including VISO2 [6] and ORB-SLAM2 (with/without loop closure).
In Table 1, our method consistently outperforms monocular VISO2 (VISO2-M)
on most of the test sequences in terms of both translation and rotation. ORB-
SLAM2 (without LC) achieves impressive results in rotation estimation after
aligned with ground-truth due to the lack of scale information. However, it gives
relative lower performance compared with our method, especially in complicated
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(a) KITTI 03 (b) KITTI 07 (c) KITTI 10

Fig. 5. Ground-truth and trajectories estimated by different methods of Seq 03, 07 and
10 from the KITTI odometry benchmark [5] dataset are illustrated.

30agaláM)a( 40agaláM)b( 70agaláM)c(

Fig. 6. We compare our model with VISO2-M and VISO2-S on Seq 03, 04 and 07 of
the Málaga dataset.

environments (Seq 05, 06, 07). Note that the results produced by our model
are vary close to stereo VISO2 (VISO2-S) and ORB-SLAM2 with loop closure
(ORB-SLAM2 (LC)), though our network is only a monocular VO system.

Qualitative comparison is illustrated in Fig. 5. Our approach achieves similar
performance with other methods on simple motions (Fig. 5(a) and (b)) but yields
much better results on complicated motions (Fig. 5(c)) where VISO2-M produces
large drift without loop closure.

We intensively test our model in various scenes with diverse motion patterns
on sequence 11–21, and the trajectories are presented in Fig. 7. In this case, our
network is trained on all the 11 training sequences (00–10) which give sufficient
training data to avoid over-fitting and maximize the generalization ability of our
networks. Due to a lack of ground-truth on the testing sequences, we rely on the
accurate stereo VISO2 as the reference and show the qualitative comparisons
of the trajectories recovered by monocular VISO2-M. Figure 7 shows that our
model outperforms the VISO2-M in almost all sequences and gives very close
performance with VISO2-S.

4.5 Results on Málaga Dataset

We further display the ability of generalization of our network by evaluating
on the Málaga dataset [1] without fine-tuning. Figure 6 shows the predicted
trajectories of sequence 03, 04 and 07. In this experiment, we test our model
against VISO2-M and VISO2-S [6]. Figure 6 demonstrates that our approach per-
forms well on sequences with diverse motion patterns including sharp rotations
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(a) Sequence 11 (b) Sequence 12 (c) Sequence 13

(d) Sequence 14 (e) Sequence 15 (f) Sequence 16

(g) Sequence 17 (h) Sequence 18 (i) Sequence 20

Fig. 7. The predicted trajectories on KITTI sequences 11–20. Stereo VISO2 is used as
reference since there are no ground-truth camera poses provided for these sequences.

(sequence 03 and 07), especially outperforms VISO2-M in terms of rotation. The
experiment verifies that our model is able to generalize well in totally different
urban scenes and camera settings.

5 Conclusion

In this paper, we present an end-to-end neural network to learn camera poses
for monocular image sequences. It estimates camera pose at each time step by
utilizing information in both forward and backward processes upon Bidirectional
RNNs with extended LSTM units. Additionally, constraints from local to global
are coupled to reduce the accumulated error. The network outperforms current
state-of-the-art learning-based methods and yields comparable results needless
extra scale estimation with model-based approaches on the KITTI dataset. Fur-
thermore, we verify the network’s ability to generalize by showing comparable
outcomes with current state-of-the-art monocular VO algorithms on the Málaga
dataset, without re-training or fine-tuning.

In the future we plan to focus on indoor scenes with more complicated motion
patterns. We may also incorporate semantic information for data association,
which might improve localization accuracy in texture-less scenes or environments
with dynamic objects.



246 F. Xue et al.

References
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Abstract. Intelligentization of car navigation is an inevitable trend.
Visual navigation has the advantages of high precision in short distances
and low cost. This paper proposes a fuzzy control reversing system based
on visual information. We obtain the trajectory of the rear camera by
constructing reversing model of the car. YOLO (You Only Look Once)
is used to detect pedestrians and cars appearing in the camera field of
view and segment the detected images during the reversing process. The
dynamic feature points are removed effectively by the proposed environ-
mental statistical information analysis method. Using visual information
to construct constraints to improve the traditional fuzzy control reversing
system can provide drivers with accurate driving assistance information
and effectively reduce the probability of accidents such as collisions. The
experimental results show that the proposed method is effective and fea-
sible.

Keywords: Visual navigation · YOLO · Region segmentation · Fuzzy
control · Driving assistance

1 Introduction

In recent years, the development of visual navigation algorithms has provided
new ideas for self-driving technology [1–3]. Many excellent algorithms have
appeared and been applied to self-driving cars, or driving assistant systems,
achieving fruitful results. This paper proposes an intelligent reversing system
based on visual information in view of the high accuracy in short distance and
low cost of visual navigation.

Fuzzy system has strong robustness and fault tolerance, the use of fuzzy
systems for reversing control is a long-term research problem. Halgamuge et al.
proposed a hierarchical hybrid fuzzy/crisp system, that can be used for assisting
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continuous reversing of vehicles with long trailers [4]. Chen et al. used the natural
parabolic paths as a suboptimal solution to the shortest distance. They developed
a nine-rule controller with fuzzy logic, which can control the truck to follow any
feasible trajectories and successfully move into the parking lot even without
mathematical system models [5]. However, fuzzy system can only provide the
reverse route. If it’s to be used in practice, it needs to be combined with other
specific information in the environment to avoid people or vehicles that may
appear.

In the field of automatic driving or assisted driving, avoiding obstacles is the
most critical issue. Especially in the dynamic environment in which the car is
traveling, identifying and evading dynamic obstacles quickly and effectively is
a major problem that must be solved. Nogami et al. proposed a system that
can estimate the moving space for the vehicle, and velocity of the obstacles, and
choose another path if the current path is estimated to be not possible [6]. Alvarez
et al. developed a method that makes a quadrotor with one single monocular
camera to generate collision-free waypoints [7].

In this paper, we propose a fuzzy control reversing system based on visual
information. The system directly uses the rear camera of the car to detect pedes-
trians and cars that may affect the reversing process, and at the same time judges
whether the car has the risk of collision or friction. First, we construct the revers-
ing model and analyzed the trajectory of the rear camera. Second, the YOLO
network is used to detect pedestrians and cars that appear in the camera field of
view and build threat level models. Then the image is divided into three areas:
pedestrians, cars and environment. By the proposed environmental statistical
information analysis method, cars can be divided into two categories: static and
dynamic. The pose of the camera is accurately estimated through the static fea-
ture points. Finally, the framework of fuzzy control reversing system based on
the visual information is given.

The rest of the paper is structured as follows: Sect. 2 discusses related work
in generally two aspects. Section 3 gives the whole pipeline and details of our
reversing system, Sect. 4 lists our experiment results.

2 Related Work

A. Semantic SLAM in the Dynamic Environment: The main idea of
the semantic SLAM systems work in the dynamic environment is to combine
the semantic with geometric information to find dynamic objects and use the
stationary parts of the environment to estimate the trajectory and pose of the
camera.

DynaSLAM uses Mask R-CNN [8] as the sematic segmentation approach,
it can works on monocular, stereo and RGB-D cameras [9]. DynaSLAM elim-
inates all the potential dynamic targets such as people, vehicle, and animals,
combines with more accurate geometric segmentations remove dynamic targets
that cannot be judged by semantic information, such as rotating chairs.
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DS-SLAM uses SegNet [10] as the semantic segmentation approach. Five par-
allel threads, feature points tracking, targets semantic segmentation, local map-
ping, loop closing and semantic octo-tree map creation are running in the sys-
tem [11]. The system considers people as most possible dynamic targets, whose
feature points are made to be outliers. At the same time, the polar constraint is
used to remove other dynamic feature points in the environment.

MaskFusion uses Mask R-CNN as the semantic segmentation approach [12].
Authors proposed two strategies to judge whether the objects are moving or
not. Firstly, consistence of motion. Secondly, objects interact with people are
considered dynamic. Since Mask-RCNN cannot run in real-time, to improve
performance, MaskFusion performs semantic segmentation every 5 frames.

B. Vehicle Detection and Distance Estimation: Different moving platforms
carrying cameras should also be considered when researching the application of
SLAM [13]. At present, the detection and distance estimation of autonomous
vehicles are based on the camera installed on the front or the roof of the car
to establish a coordinate system. In terms of vehicle detection and distance
estimation, Rezaei et al. proposed a monocular-vision-based collision warning
system that provides real-time detection of vehicles and the distance. They
applied multiple measures to improve the accuracy, including Haar-like features
for detection, tail-light segmentation, and feature fusion technics, etc. The sys-
tem achieved good results under various weather and lighting conditions [14].
Li et al. proposed a pitch angle estimation approach to achieve range measure-
ment. The system is initialized using only a vehicle-mounted camera, and the
estimation process doesn’t have any cumulative error. They used the adjacent
frames captured by the camera to detect optical flow of feature points, then
calculated the ego-motion parameters of the camera and optimizes them simul-
taneously [15]. Kim et al. proposed a real-time lane and vehicle detection system
that can be mounted on the self-driving cars. It can provide distance between
front vehicle and ego-vehicle [16].

3 Method

3.1 Vision-Based Reversing Model

The simplified model of the car is represented by Fig. 1(a). L is the length of
the car, W is the width. Four corners of the car are respectively A,B,C and D.
When the car is steering, the front wheels turn, the angle between center axis
and the horizontal direction is φ, the angle of the front wheels turned is θ, the
rear camera of a car is usually installed at the midpoint (x, y). When reversing,
the motion of the rear camera is the same as the rear midpoint.

Reversing process is shown in Fig. 1(b). Position of the car at moment t is
indicated by the dotted line frame. The car reverses at speed v, and the front
wheels turn angle is θ. After the observation interval Δt, the car reaches the solid
line frame position. Moving distance of the rear end is r. The angle between
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Fig. 1. Reserving model (a) Simplified model (b) Reserving process (c) Coordinate
system of the car

the center axis and the horizontal direction is changed from φ to φ′, and the
coordinates of the midpoint changed from (x, y) to (x′, y′).

In practice, the reversing speed is slow, and the value Δt is small. It can be
considered that the moving trajectory of the car in this period is a straight-line
segment approximately. The calculation expressions for x′, y′, φ′ and r are as
follows:

x′ = x + r cos φ′ (1)

y′ = y + r sin φ′ (2)

φ′ = φ + θ (3)

r = v ∗ Δt (4)

Coordinate system of the camera is shown in Fig. 1(c). When reserving, tra-
jectory of the camera can be decomposed into a rotary motion around the Yc

axis, and translational motions along the optical axis Zc and Xc.
The rotation matrix of the camera is:

R =

⎡
⎣

cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

⎤
⎦ (5)

The translation matrix of the camera is:

t =
[
r cos(φ′), r sin(φ′), 0

]
(6)

Pi = [Xi, Yi, Zi, 1]T are the coordinates of the space points, and pi =
[ui, vi, 1]T are the coordinates of the projection points on the imaging plane,
which satisfy:

sipi = KTPi (7)

T =
[

R t
0T 1

]
(8)

where si are the scale factors, K is the camera’s intrinsic matrix, and T is the
camera’s extrinsic matrix.
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The SURF (Speeded Up Robust Features) [17] algorithm is used in the fea-
ture extraction and matching stage, which is one of the best real-time image
feature extraction and description algorithms. Since we used a stereo camera in
the experiment, the depth information of the matching points can be obtained.
Assume that the one pair of matching points are A = {Pa1, Pa2, ..., Pan} and
B = {Pb1, Pb2, ..., Pbn}. The external parameter matrix of the camera can be
obtained by solving the least squares problem shown below:

min
R,t

N∑
i=1

‖Pai − (RPbi + t)‖2 (9)

By accurately estimating the external parameter matrix, information such
as the front wheels turn angle and the moving distance of car can be derived.

3.2 Real-Time Identification of Obstacles

In the process of reversing, pedestrians or other cars may appear in the rear
camera field of view. To avoid collision or friction with these dynamic obstacles,
the reversing system is required to make a real-time response by identifying the
specific type of obstacles quickly and accurately. Our proposed reversing system
uses YOLO network as target detection method. YOLO runs extremely fast, and
its faster version can process more than 150 frames per second. YOLO suppresses
background error significantly. A general representation of objectives is learnt
by YOLO, giving the network strong generalization ability [18,19].

When reversing the car, the rear camera captures a series images of obsta-
cle at different angles and positions if there are dynamic obstacles suddenly
move into the rear camera field of view, such as pedestrians or cars. Information
available through YOLO includes the center coordinate (xi, yi) of the prediction
frame of obstacles at different viewing angles, the width wi of the frame, the
height hi, and the confidence Ci, where i is the number of times the same obsta-
cle is captured. Through the position change of the obstacle prediction frame,
the moving direction and speed of the obstacle can be inferred. Key frames are
selected out of every three frames to reduce the redundancy of the information,
while other frames are discarded. Figure 2 shows the key frame choosing strategy.

YOLO

t

Fig. 2. Choose key frames from the camera frames

Obstacle edge information obtained through YOLO is often imperfect, and
the edge of the target is usually fused with environment. In order to effectively
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ensure the safety of pedestrians and cars, after obtaining the prediction frame
of pedestrians, we establish a threat level model of obstacles centering on the
prediction frame, increase the width of the prediction frame by half, and the
height by 1/4 as a threat area, where the planned route must not pass through.
For obstacles that has certain pattern of movement such as cars, the width of
the prediction frame is increased by 1/8, and the height is increased by 1/16 as
a threat area.

3.3 Detection and Exclusion of Dynamic Obstacle Feature Points

In the process of positioning and mapping of the rear camera, due to too many
matching points on the dynamic obstacle, the solution of the formula (9) could
be affected, and a large deviation of the camera pose estimation may occur. It
is necessary to eliminate the dynamic obstacles captured by the camera [20].

In scenes such as parking lots, the most common dynamic obstacles are pedes-
trians and cars. YOLO is used to divide the image area into three parts: pedes-
trian area, car area and environmental area. Feature points within the environ-
ment area are considered to be static points. We have agreed that when YOLO
detects pedestrian targets, the feature points in the pedestrian detection frames
are discarded during the feature point matching process.

The state of cars in the camera field of view can be divided into two types,
stationary and moving. We need to find out which car is moving and discard
the feature points in its area. A method of key point motion analysis to find
static and dynamic feature points in the car area is proposed by Fan et al. [21].
Bayona et al. proposed an algorithm focused on obtaining stationary foreground
regions [22], which is based on background difference method and is useful for
applications like the detection of abandoned/stolen objects and parked vehicles.
However, background difference method and optical flow method commonly used
in video surveillance are proved difficult to apply to moving cars.

If the points are stationary, the motion states of these points in the images
can be determined as the camera moves. Meanwhile, their motion states should
be consistent with each other.

A motion statistical information analysis method is proposed to find dynamic
cars. The constraints are constructed by statistical information of the distance
and the main direction of matching points in the static environment. The method
is as follows:

For two continuous detection frames, the two sets of matching points in the
environment area are set to P1, P2, and the distance between the matching points
is:

DIS =
√

‖P2 − P1‖ (10)

An outlier value is defined as a value that is more than three scaled MAD
(median absolute deviations) away from the median. After excluding outliers,
the maximum and minimum values in DIS are taken as the upper and lower
bounds of the distance constraint, namely:

Ubound = max(DIS) (11)
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Dbound = min(DIS) (12)

If the distance between more than 90% of the matching points in the car
detection frame does not satisfy the following relationship, the car is considered
to be dynamic.

Dbound ≤ DIScar ≤ Ubound (13)

When the rear camera of the car makes a rotational motion around the axis
Yc or a translational motion along the axis Xc, we count and divide the direction
change of matching feature points into 8 directions. As shown in Fig. 3(a), the
yellow and blue blocks represent a pair of matching feature points in two con-
tinuous frames, where the yellow blocks come from the previous frame, and the
arrow indicates the direction change of the matching points. In the statistical
process, the direction of the red arrow in the represents the direction change of
matching feature points above, and is divided into the sixth area. The direction
change of matching feature points in the static environment is counted to deter-
mine the main direction of the environment, since they should mostly be the
same. If the main directions of car frames are different from the environment,
cars in the detection frame are considered to be dynamic.

Previous frame

Current frame
(a)

1
2

3

4
5

6

7

8

(b)

Fig. 3. Direction change of the matching feature points in two frames (Color figure
online)

When the rear camera of the car makes a translational motion along the
optical axis Zc, direction change of the matching feature points in the environ-
ment is directed from periphery to the center of the image, or the opposite. The
average value of depth change of the matching feature points de in the static
environment is calculated, which is the translation distance of the car in direc-
tion Zc, and the evaluation value of depth change de in the car detection frame
is calculated, if formula (14) is satisfied, the car is considered static, where τ is
the empirical value, taking 0.1 in the experiment.

‖de − dc‖ < τ ∗ de (14)
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3.4 Obstacle Avoidance and Path Planning

Fuzzy control [23,24] is used to control the process of reversing the self-driving
car. The input variable x is the value of the midpoint coordinates of the car
tail, φ is the angle between the car and the horizontal direction, and the output
variable is the front wheel rotation angle θ. Range for each variable is as follows:

0 ≤ x ≤ 100

−1
2
π ≤ φ ≤ 3

2
π

−1
6
π ≤ θ ≤ 1

6
π

(15)

When θ takes a positive value, it means turning the front wheel clockwise,
and a negative value means counterclockwise.

After determining the initial position, fuzzy system can obtain the turn angle
of the front wheels θ, and the reversing speed is constant. The position and
posture information of the next moment can be obtained by (1)–(2), if there is
a pedestrian or moving car in the field of view of the rear camera, collision and
friction can be predicted by the center of the prediction frame and the threat
level model we built. If it happens, the car stops to observe until the danger is
lifted. The judgment formula is as follows:

zi
f

√
f2 + x2

i + y2
i >

1
2
(
√

L2 + W 2 +
zi
f

√
W 2

i + H2
i ) (16)

where zi is the depth value of the center of the predicted frame, and (xi, yi) is
the center coordinate of the predicted frame. L and W indicate the length and
width of the car, while Wi and Hi indicate the width and height of the obstacle
threat area. If the formula (16) is satisfied, the car can continue to reverse. If not,
it indicates that the car has the danger of collision and should stop to observe.

Pedestrians or moving cars in the process of reversing is not considered in
the traditional fuzzy reversing system, which leads to great limitation in actual
use. The intelligent reversing system fully utilizes information of pedestrians and
cars captured by the rear camera, sets constraints with threat of obstacles, and
effectively improves the safety of the reversing process. The reversing flow chart
is shown in Fig. 4.

4 Experiments

4.1 Reverse Simulation Experiment

We use MATLAB 2018a to simulate the car reversing process. Parameters are as
follows: reversing speed is 8 m/s, reversing observation time interval is 0.4 s, car
width is 3 m, car length is 6 m, site size is 100 m × 100 m, camera field of view is
140◦, camera effective distance is 10 m.
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Fig. 4. Vision-based fuzzy control reserving system

Figure 5 shows the results of the reversing simulation experiment. Sub-graphs
(a) and (b) show the running diagram of the car and the running trajectory of
the rear camera. Sub-graphs (c) and (d) indicate the centroid of the dynamic
obstacle with red dots. The red circle is the threat range of the dynamic obstacle.
In practice, it is determined by the size of the obstacle frame. The green circle
centered on the camera indicates the possible area of car on the next move, and
the radius is 1

2

√
L2 + W 2.

Whether the car is parked or not is determined by (16). In the sub-graph (c),
a random dynamic obstacle appears in the field of view of the camera. Red dot
indicates the center of the detection frame, threat area formed by this obstacle is
represented by the red circle. In the simulation process, the radius of the threat
area is set to 2m, while in practice, it is determined by the size of the detection
frame of the obstacle. When the dynamic obstacle moves to the next position,
the system detects that the car is not at risk of collision or friction, and continues
to operate, as shown in sub-graph (d).

It can be seen form the simulation results that the path planned by the
fuzzy system is smoothing, and when the dynamic obstacles enter the view field
of the camera, the system can provide drivers with accurate driving assistance
information based on the constrains of the threat level model.

4.2 Detection Results of Feature Points in the Image

The parameters of the stereo camera we used in the experiment are as follows:
focal length is 2.1 mm, resolution is 752 × 480, baseline is 120.0 mm, pixel size is
6.0 ∗ 6.0µm, and camera field of view is D : 140◦H : 120◦V : 75◦.

The real experiment site was a parking lot, there are stationary cars, moving
cars and pedestrians. Some experimental results are shown in Figs. 6 and 7.

Figure 6 shows the detection and matching of feature points in the presence
of pedestrians. Pedestrian areas are marked by the red box, and not used for
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Fig. 5. Reserving simulation (a) Car operation diagram (b) Trajectory of rear camera
(c) Car stops and observes when collision or friction may occur (d) Continue operate
when no collision or friction may occur after detection (Color figure online)

(a) (b) (c) (d)

Fig. 6. (a) Match results of SURF (b) Results with YOLO detection and constrains (c)
Constructed threat box for the pedestrian (d) Detail comparison of YOLO detection
box and the constructed threat box. In the semantic segment process of the YOLO,
parts of the pedestrian leaked into the environment. The proposed threat box can encir-
cle the pedestrian effectively. It’s necessary to enlarge the detection box, considering
the uncertainty of pedestrian movement. (Color figure online)

feature points extraction. It can be seen that some parts of the pedestrian cannot
be distinguished from the environment in the YOLO detection and the proposed
threat box can encircle the pedestrian entirely.

Figure 7 shows the situation that a moving car enter the view field of the
camera. When feature points in the detection frame are not removed, there are
many matching feature points on the moving car. Through the analysis of the
motion state of the feature points, the matching points on the moving car are
deleted effectively whereas the matching points on the static cars are reserved.
According to the proportion of the remaining match points to all match points
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(a) (b) (c) (d)

Fig. 7. Detection results and threat boxes (a) Match results of SURF (b) Results with
YOLO detection and constrains, the moving car is marked by red box, static cars by
green boxes (c) Constructed threat box for the moving car. (d) Detail comparision of
YOLO detection and our threat box (Color figure online)

in the car detection frame, the state of the car can be determined. The moving
car is marked by the red frame and static cars by green frames.

5 Conclusion

This paper proposes a fuzzy control reversing system based on visual informa-
tion. For the typical environment of car reversing, the path is planed by fuzzy
system, YOLO is used to identify pedestrians and cars appearing in the rear
camera field of view, and segment the image into pedestrians, cars and environ-
ment according to the recognition results. To accurately estimate the camera
pose, it is necessary to eliminate the dynamic feature points in the image. We
agree not to detect the feature points of the pedestrian area, and at the same
time, use the feature point motion state analysis to find the moving car. The
experimental results show that the proposed method can detect the pedestrians
and the dynamic cars effectively, and the constructed threat boxes can provide
the driver with accurate driving assistance information to ensure the safety of
the vehicles and pedestrians.
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Abstract. Unsupervised domain adaptation (UDA) attempts to trans-
fer knowledge learned from labeled source domain to unlabeled target
domain. Its main challenge is distribution gap between two domains.
Most of works focus on reducing domain shift by domain alignment meth-
ods. Although these methods can reduce the domain shift, the samples
far from the class center of target domain are still easily misclassified.
To solve the problem, we propose a new approach named Adversarial
Domain Alignment Feature Similarity Enhancement Learning (AASE).
It learns domain invariant features by adversarial game and correlation
alignment to reduce the domain gap, and makes these features having
better discrimination via joint central discrimination and feature simi-
larity enhancement. AASE makes the learned features have better intra-
class compactness and inter-class separability. AASE is evaluated on two
datasets, and the results show that AASE has critical improvement in
the performance of UDA.

Keywords: Unsupervised domain adaptation · Domain adversarial ·
Discrimination learning

1 Introduction

Unsupervised domain adaptation [5,18] (UDA) receives wide attention, which
focuses on how to transfer learned knowledge from the source domain with the
large number of labeled samples to adapt the target domain with unlabeled
samples. UDA has different domain distributions, although it has the same task.
The main challenge of this knowledge transfer can be called domain shift [25],
which refers to the domain distribution discrepancy between the source domain
and target domain.
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In recent years, many UDA methods are presented. One kind of typical meth-
ods is to reduce the domain shift by learning the domain invariant features, and
then utilize the knowledge from the source domain to train the target domain
to obtain an adaptive classifier. Following this principle, some previous studies
have been proposed to learn domain invariant features with neural networks
(Deep Domain Confusion (DDC) [23], Deep Adaptation Network (DAN) [14],
Deep Unsupervised Convolutional Domain Adaptation (DUCDA) [28], etc.), by
minimizing the distance metric of domain discrepancy, e.g., Maximum Mean Dis-
crepancy (MMD) [15]. Another type of typical methods is to deal with the UDA
problem by instance re-weighting, such as [2,4,10], which assumes that even in
the shared subspace, some source instances which are irrelated to the target
instances still exist. In addition, some studies introduce adversarial learning into
UDA (ADDA [22], DANN [5], CoGAN [13], etc.), verifying the advantages of
minimizing domain differences relative to traditional methods. Although these
methods reduce the domain discrepancy, they do not learn more discriminative
features to improve the classification accuracy of the target domain.

Recently, [1] proposed a joint domain alignment and discriminative feature
learning (JDDA) method, which reduces the distance between the covariances
of source and target domains to align different domains and makes the learned
features more discriminative in the common feature subspace.

1.1 Motivation and Contribution

Most of the existing methods, such as DDC, DAN, etc., focus on reducing domain
shift but few pay attention to the learning of more discriminative features. There-
fore, how to effectively actualize domain alignment and learn more features with
stronger discriminating ability is a significant research topic.

A few methods attempt to realize domain alignment and make the learned
features more discriminative jointly. [1] is the first method that focuses on effec-
tively and jointly performing domain alignment and discriminate feature learn-
ing, but it does not fully utilize the inter-domain and intra-domain relationships,
and does not align the different domains well. We design a new UDA approach.
The contributions of our study can be summarized as following four points:

1. This is the first UDA approach to effectively joint the adversarial domain
alignment, discriminative feature learning and feature similarity enhance-
ment.

2. To reduce the misclassification rate of the edge samples of the target domain
class, our approach designs center discriminative loss and feature similar-
ity enhancement loss, which make the domain invariant features have better
intra-class compactness and inter-class separability.

3. To maximize the alignment of different domains, we design a dual-channel
parameter shared adversarial convolution network. It achieves final domain
alignment through the minimax game between the domain classifier and the
feature extractor.
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4. We conduct extensive experiments of our approach on two authoritative
bench-marks, digital identification and office-31. The experimental results
verify that our approach can significantly improve the performance of UDA.

2 Related Work

In the classical UDA studies, the methods of processing domain shift attempt to
make different domains aligned. Although many metric methods are proposed
to measure the similarity of different domain distributions, Maximum Mean
Discrepancy (MMD) is the most commonly used in domain adaptation method.
[4,6,8] use MMD to reweight the source sample to minimize the discrepancy
in source and target domain samples distribution. These methods do not fully
use of the feature representations of the source and target domains to make
the intra-class samples of the target domain more compact and the inter-class
samples more separable.

UDA based on deep learning architecture can link tasks from different
domains. In UDA, most methods use deep networks [24] to reduce the domain
distribution discrepancy of different domains by learning domain invariant fea-
tures. In DDC [23], DAN [14] and RTN [16], the authors proposed to link the
source data features of deep learning with the target data feature representa-
tions, thereby reducing the MMD between the source data feature representation
and the target data feature representation. DDC [23] additionally adds an item
into loss function to minimize the MMD of the last fully connected layer. And
[14] minimizes the MMD of multiple independent fully connected layers. [16]
proposed a fusion layer for interaction between multiple feature layers. [28] min-
imizes the domain difference between the source and target domains projected
on second-order correlation statistics. In CORAL [21] and CMD [27], high order
moments are used to align the source and target domains in the common feature
subspace. These deep domain adaptation studies do not consider the weakly
discriminative characteristics of the deep feature representation of class edge
samples in the target domain.

In recent years, most of deep domain adaptation methods are based on dual-
channel structure to represent the source model and the target model, respec-
tively. The dual-channel non-parametric shared structure is used in [19], and
the dual-channel parameter-shared structure is used in [1,23]. Inspired by these
deep methods, we design a dual-channel parameter-shared structure as the basis
of network. In addition, [7] presents adversarial learning which is proved to be
effective, and some researches apply the adversarial learning to the UDA, e.g.,
DANN [5], ADDA [22], CoGAN [13], which verify that adversarial learning is bet-
ter than the traditional method. Therefore, we introduce the adversarial learning
to design our network based on dual-channel parameter-shared convolution net-
work.
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3 Proposed Approach

We design an adversarial dual-channel parameter-shared deep convolutional
domain adaptation network, as shown in Fig. 1. The network is mainly com-
posed of three parts: the feature extractor Gf (·) parameterized by Θf for high-
level feature extraction (vs

i and vt
i), label classifier Gy(·) parameterized by Θy,

and the domain classifier Ga(·) parameterized by Θa. In Gf (·), the parameters
are shared by two channels. We seek optimal parameter Θf that maximizes the
domain classification loss, and look for parameter Θa which minimizes the loss of
domain classification. In addition, we seek the optimal parameter Θy to minimize
the label prediction loss.

Let Xs = {xs
i }ns

i=1 and Xt = {xt
i}nt

i=1 denote image sets from the source
and target domains, respectively, with Y s = {ỹs

i }ns
i=1 being the corresponding

labels, where ỹs
i ∈ {1, ..., C} and C indicates the total number of classes. Here,

ns and nt separately denote the number of samples in Xs and Xt. xs
i and xt

i

have the same dimension. Let Θ = {Θf , Θy} denote a collection of parameters,
Vs = {vi

s}b
i=1 ∈ R

b×l and Vt = {vi
t}b

i=1 ∈ R
b×l denote the output features of

bottleneck layers in the source and target channels, respectively, where b and l
separately represent the numbers of neurons in the trained mini-batch and the
bottleneck (BN) layers.

Fig. 1. Overview of the adversarial dual-channel parameter-shared convolutional
domain adaptation network. The entire network consists of a feature extractor Gf (·), a
label classifier Gy(·), and a domain classifier Ga(·). The domain classifier is connected
to the feature extractor through a gradient reversal layer (GRL).

3.1 Domain Adversarial Training

Inspired by DANN [5], we design the adversarial adaptation network to minimize
domain discrepancy, i.e., we learn high-level invariant features (vi

s and vi
t) from

the source and target domains to maximize domain classification loss by training
Gf (·), and we train Ga(·) to minimize this loss. In the domain classifier, we
manually define the source and target domain labels as as

i = 1 and at
i = 0,
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respectively. Gradient reversal layer (GRL) [5] is introduced in the model to
attain a more feasible adversarial training scheme. Given hyperparameter λ and
function f(x), the GRL can be termed as g(f(x), λ) = f(x), whose gradient is
∂
∂x

g(f(x);λ) = −λ ∂
∂x

f(x). The outputs of the domain classifier, i.e., �
a

s

i and �
a

t

i,
can be written as follows:{

�
a

s

i = Ga (g (Gf (xs
i , Θf )) , Θa)

�
a

t

i = Ga (g (Gf (xt
i, Θf )) , Θa)

(1)

In each mini-batch with the size of b, the domain adversarial loss can be
defined as follows:

La = −1
b

b∑
i=1

(
as

i log �
a

s

i +
(
1 − at

i

)
log(1 − �

a
t

i)
)

(2)

3.2 Feature Extraction and Label Classifier Learning

The purpose of our model is to accurately predict the label �
y

t

i of the target
sample xt

i. The class of the target domain samples in our model is inferred from
�
y

t

i = Gy(Gf (xt
i, Θf ), Θy). To optimize the model, the Lb loss is calculated by

the parameter Θ = {Θf , Θy} as follows:

Lb

(
Θ|Xs, Y s,Xt

)
= Ls + αLd + βLc + γLr (3)

where α, β and γ are hyperparameters that control the interaction of Lb. The
classification loss Ls optimizes the model to predict the output labels we are
interested in. In UDA, the Ls loss only works on the source domain, which is
the cross-entropy cost loss function of the ground truth class over each source
domain sample. This Ls loss function is minimized during training, which is fully
described in Eq. (4):

Ls = − 1
ns

ns∑

i

(ys
i log (Gy (Gf (xs

i , Θf ) , Θy)) + (1 − ys
i ) log (1 − Gy (Gf (xs

i , Θf ) , Θy)))

= − 1
ns

ns∑

i

(ys
i log(

�
y
s

i ) + (1 − ys
i ) log(1 − �

y
s

i ))

(4)

where ys
i ∈ R

C is the one-hot class label vector of the ith source input, and
�
y

s

i (
�
y

t

i) ∈ R
C is the predicted values of xs

i (x
t
i).

Correlation Alignment. To learn the domain invariant features, CORAL [21]
is used to make domain alignment by minimizing the covariance between source
and target features. The CORAL loss is defined as the distance between the
covariances of the high-level features of source and target domains:

Lc = ‖Cs − Ct‖2F
/

4l2 (5)
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where ‖·‖2F represents the square of the Frobenius norm. The covariances of the
source domain data and the target domain data are described in Eq. (6):{

Ct = 1
b−1 (V T

t Vt − 1
b V T

t ZVt)
Cs = 1

b−1 (V T
s Vs − 1

b V T
s ZVs)

(6)

where Z = 11T ∈ R
b×b is an all-one matrix and 1 ∈ R

b is an all-one column
vector.

Feature Similarity Enhancement Loss. To improve the correct classifica-
tion rate of target domain data that is away from the class center, the feature
similarity enhancement [26] term is necessary. It makes full use of the features
of the source data and the target data in the shared projection space, which
enhances the similarity between the source and target domain data, so that the
data of the target domain has better intra-class compactness and inter-class
separability. It is expressed as follows:⎧⎪⎨

⎪⎩
pij

st = exp(−
∥∥∥vi

s − vj
t

∥∥∥2

2
/(σ1

2))

pij
tt = exp(−

∥∥∥vi
t − vj

t

∥∥∥2

2
/(σ2

2))
(7)

where pij
st and pij

tt are the similarities of inter-domain and intra-domain sam-
ples, respectively. σ1 and σ2 are the standard variations of inter-domain and
intra-domain samples. In conclusion, the loss function Lr of feature similarity
enhancement term is:

Lr = 1
b2

b∑

i=1

b∑

j=1

(pij
st||vi

s − vj
t ||22 + pij

tt ||vi
t − vj

t ||22) = 1
b2

(tr(VsPstVt
T ) + tr(VtPttVt

T ))

(8)

where Pst(Ptt) is similarity matrix between inter-domain and intra-domain, and
tr(·) denotes the trace.

Center Discriminative Loss. To enable approach learn more easily discrim-
inative features, we design a center discriminative loss. Since training of our
method is based on mini-batch, we design batch class center to represent the
class center in the training, as shown in Eq. (9):

ck =

t∑

i=1

b∑

j=1
δ((ỹs

j )
i = k)(vj

s)
i

t∑

i=1

b∑

j=1
δ((ỹs

j )
i = k)

(9)

where t represents the current number of iterations and k ∈ {1, ..., C} denotes
category. If (ỹs

j )
i = k, we set δ(·) to 1, otherwise δ(·) is 0. The central discriminant

loss function is shown as Eq. (10):

Ld = ||max(0, Vc − m111T )||sum + ||max(0,m211T − Dc)||sum (10)
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where m1 and m2 are two constraint margins, which are fixed by us as 0 and
100, respectively; Vc = {vi

c}b
i=1 and Vs have the same size, and vi

c represents the
distance of the ith depth feature vi

s from its class center, i.e., vi
c = ||vi

s − cỹs
i
||22.

Dc ∈ R
C×C denotes the distance between the class centers, i.e., Dij

c = ||ci−cj ||22.
Center discriminative loss reduces the distance between the sample and the
corresponding class center, and increases the distance between different class
centers.

Finally, the overall loss function of our model is:

L = Lb + ϕLa = Ls + αLd + βLc + γLr + ϕLa (11)

where ϕ is the trade-off regularizer for the domain classification.

3.3 Optimization with Backpropagation

Our end-to-end model using domain classifier with GRL and feature similarity
enhancement term can be optimized by SGD during backpropagation. Specifi-
cally, the parameters of our model can be learned by minimizing La and maxi-
mizing Lb. This procedure can be described as Eqs. (12) and (13).

�

Θ = (
�

Θf ,
�

Θy) = arg min La(Θf , Θy,
�

Θa) (12)

�

Θa = arg max Lb(
�

Θf ,
�

Θy, Θa) (13)

Saddle points in Eqs. (12) and (13) can be found as stationary points of the
following stochastic update, where η is the learning rate:

�

Θ = Θ − η ∂(Ls+αLd+βLc+γLr)
∂xi

(14)

�

Θa = Θa − η ∂Lb

∂xi
(15)

4 Experiments

We exploit two domain adaptation datasets, Office-31 and Digital Recognition
datasets, to verify the effectiveness of our approach. In the following subsections,
the paper provides detailed analysis and experimental results of each setting of
our approach. And the classification results of our approach on the two datasets
are state-of-the-art compared with the results of other advanced methods.

4.1 Datasets

Office-31. Office-31 [20] is a benchmark dataset for computer vision domain
adaptation. It includes three image subsets from different domains. The three
subsets in the Office-31 contain 4110 images from the common 31 categories:
Amazon (A) with 2817 images, DSLR (D) with 498 images, and Webcam (W)
with 795 images, respectively. To test the generalization capabilities of different
methods, according to the standard task settings [14,23], we evaluate all methods
in all six transfer tasks, A→W, A→D, D→W, W→A, D→A, and W→D.
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Digital Recognition Dataset. This dataset contains five widely used sub-
sets: Street View House Numbers (SVHN) [17], synthetic digits (syn digits) [5],
MNIST [12], MNIST-m [5], and USPS [11]. We focus on four transfer tasks for
evaluation as [1,14]: SVHN→MNIST, MNIST→MNIST-m, MNIST→USPS and
syn→MNIST.

4.2 Experimental Settings

In experiments, we compare our approach with different advanced related meth-
ods on these two datasets. Our AASE is compared with DDC [23], DAN [14],
DANN [5], ADDA [22], CMD [27], CORAL [21], DUCDA [28], JDDA [1],
ResNet [9] (one baseline method) and Lenet [12] (another baseline method).

On Office-31, Gf (·) in our network uses the pre-trained ResNet on Ima-
geNet. We choose the active pool5 output in the last layer of the network as
a feature representation of the BN layer and all compared methods utilize the
same ResNet-50 setting. However, on the Digital Recognition dataset, we use
improved Lenet as Gf (·) of our network. And all input data is resized to 32× 32
and converted to the grayscale input. In addition, the domain classifier is com-
posed of three fully connected layers (fc − 64 − 2) and is finally connected to a
Softmax activation layer.

We use Tensorflow framework to perform our approach and select Adam
optimizer in Tensorflow as the optimizer. Due to the small amount of data in
Office-31, only FC and scale 5/Block3 in Resnet are updated with a fine-tuned
way. For other layers in the network, they are frozen to keep the ability of
capturing salient features. In the training process, we set the batch size to 256,
i.e., there are 128 samples in each domain. We set the parameters η to be 10−4.
We fix the hyperparameter ϕ = 1.0 in all experiments. For the hyperparameters
α, β and γ, they are determined as 10, 0.02 and 0.03 experimentally. Besides,
in Ga(·), we gradually change λ from 0 to 1 using the following schedule [5]:
λp = 2/(1 + exp(−ζp)) − 1, where p is the training progress linearly changing
from 0 to 1 and ζ is set to 10 for the sensitivity coefficient.

Table 1. The classification results (%) of the Office-31 dataset.

Method A→W D→W W→D A→D D→A W→A AVG

ResNet 73.1± 0.2 93.3± 0.2 98.4± 0.1 72.6± 0.2 55.4± 0.1 55.9± 0.3 74.7

DDC 73.5± 0.3 93.9± 0.1 98.5± 0.1 74.3± 0.4 56.2± 0.2 56.4± 0.2 75.4

DAN 78.5± 0.3 95.5± 0.2 98.9± 0.1 74.8± 0.3 58.7± 0.2 63.6± 0.3 78.3

DANN 72.7± 0.3 94.3± 0.2 99.3± 0.1 74.1± 0.5 56.9± 0.1 61.4± 0.2 76.4

CMD 76.5± 0.4 93.3± 0.3 99.3± 0.2 74.8± 0.4 56.7± 0.1 61.3± 0.2 76.9

CORAL 78.6± 0.3 92.9± 0.2 99.3± 0.1 74.3± 0.2 56.1± 0.2 62.1± 0.2 77.2

DUCDA 79.4± 0.3 94.6± 0.2 99.6± 0.2 76.7± 0.3 56.4± 0.2 57.7± 0.3 77.4

JDDA 82.6± 0.4 95.2± 0.2 99.7± 0.0 79.8± 0.1 57.4± 0.0 66.7± 0.2 80.2

AASE 84.1± 0.2 96.5± 0.2 99.4± 0.2 81.2± 0.1 58.1± 0.1 67.4± 0.3 81.1
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Table 2. The classification results (%) on the Digital Recognition dataset.

Method SVHN→MNIST MNIST→MNIST-m USPS→MNIST syn→MNIST AVG

Lenet 66.9± 0.2 63.4± 0.2 67.5± 0.3 89.4± 0.2 71.8

DDC 72.7± 0.3 78.2± 0.2 76.6± 0.2 90.2± 0.1 79.4

DAN 78.9± 0.2 78.7± 0.3 90.3± 0.1 76.3± 0.2 81.1

DANN 71.3± 0.2 77.5± 0.3 75.9± 0.2 90.3± 0.2 78.7

ADDA 73.1± 0.2 81.1± 0.2 91.7± 0.3 96.1± 0.3 85.5

CMD 87.2± 0.3 86.3± 0.2 87.2± 0.4 96.3± 0.2 89.2

CORAL 90.2± 0.2 82.3± 0.2 95.9± 0.4 96.4± 0.2 91.2

DUCDA 92.1± 0.3 87.3± 0.2 93.7± 0.2 96.9± 0.3 92.5

JDDA 94.2± 0.1 88.4± 0.2 97.0± 0.2 97.7± 0.0 94.3

AASE 95.6± 0.1 89.4± 0.2 97.7± 0.2 97.4± 0.1 95.0

4.3 Results and Analysis

In this paper, we adopt the measure of classification accuracy to evaluate the
classification effect of our approach and compared methods. The classification
accuracy is the ratio of the correct classification of the test data to the total test
data. The UDA classification results on the office-31 dataset based on Resnet-50
are shown in Table 1. To more fully evaluate our approach, we also use the large-
scale Digital Recognition dataset to verify the superior classification performance
of our AASE in the domain adaptation scene.

In Tables 1 and 2, there are the following observations. First, the classification
results of these comparison methods are better than those of baseline methods
ResNet and Lenet, revealing that domain adversarial and domain adaptation
difference metric learning can improve the performance of UDA. Second, JDDA,
as the first method that focuses on effectively and jointly performing domain
alignment and discriminate feature learning, performs well among comparison
methods. Third, our approach performs the best. Its average classification accu-
racy is significantly improved by 0.9% and 0.7% over JDDA on Office-31 and
Digital Recognition dataset, respectively. Compared with JDDA, AASE app-
roach specially considers the intra-domain high-level features and inter-domain
high-level features correlation in the shared feature space. Thus, AASE promotes
the learning ability of the intra-class compact and inter-class separable features.

In addition, our approach also makes progress in some difficult transfer tasks.
For example, data of SVHN is complex while data of MNIST is relatively simple.
The sample size of W is even smaller than that of A. However, in transfer tasks
SVHN→MNIST and W→A, AASE still shows the best results in Tables 1 and
2. It indicates that AASE has learned transferable feature representations and
is suitable for large-scale, small-scale and complex datasets.
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Fig. 2. The t-SNE visualization of the SVHN→MNIST task. In (a)-(c), feature dimen-
sions are set to 2 and each color representing a category. In (e)-(g), red and blue points
represent samples of the source and target domains, respectively. (Color figure online)

Predictions Visualization. To better illustrate the effectiveness of our
method, we randomly selected 2048 samples with category information and
domain information. Then the features of the last layer are embedded into t-
SEN [3] for visualization. As shown in Fig. 2, (a)-(c) and (e)-(g) represent visu-
alizations of the initial state, the intermediate state, and the convergence state
of category and domain. Observing these graphs, we can see that in the ini-
tial stage, the two domains are obviously differently distributed and intra-class
samples are intertwined; then, the inter-class feature representations is basically
separated and the inter-domain feature representations are basically aligned; in
the convergence phase, the inter-class features are obvious distinguished and
the domains are perfectly aligned. In simple terms, our model can learn more
distinguishing and transferable features.

Table 3. The classification result (%) of the approach variants on the office-31 dataset.

Method A→W D→W W→D A→D D→A W→A AVG

JDDA 82.6± 0.4 95.2± 0.2 99.7± 0.0 79.8± 0.1 57.4± 0.0 66.7± 0.2 80.2

AASE-r 83.5± 0.1 95.4± 0.2 99.2± 0.1 80.6± 0.1 57.8± 0.1 67.0± 0.1 80.6

AASE-a 83.3± 0.2 95.7± 0.1 99.1± 0.2 79.9± 0.1 57.5± 0.0 66.8± 0.1 80.4

AASE 84.1± 0.2 96.5± 0.2 99.4± 0.2 81.2± 0.1 58.1± 0.1 67.4± 0.3 81.1

Table 4. The classification result (%) of the approach variants on the Digital recogni-
tion dataset.

Method SVHN→MNIST MNIST→MNIST-m USPS→MNIST syn→MNIST AVG

JDDA 94.2± 0.1 88.4± 0.2 97.0± 0.2 97.7± 0.0 94.3

AASE-r 94.8± 0.2 89.0± 0.2 97.3± 0.0 97.2± 0.1 94.6

AASE-a 94.4± 0.1 89.1± 0.1 97.1± 0.1 97.4± 0.1 94.5

AASE 95.6± 0.1 89.4± 0.2 97.7± 0.2 97.4± 0.1 95.0
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4.4 Discussion

We evaluate the important components of AASE. We respectively name the
version of AASE without Feature Similarity Enhancement as AASE − a, the
version of AASE without domain adversarial network AASE − r. The same
experimental setting is given in Sect. 4.2. As shown in Tables 3 and 4, the clas-
sification results of the tasks corresponding to JDDA of AASE-a and AASE-r
are better than JDDA in most tasks, such as, in the AVG column, AASE-r is
higher than JDDA by 0.4%/0.3%, respectively. In addition, the complete AASE
approach performs better than AASE-r and AASE-a methods. Therefore, these
analyses indicate that every component of our method is necessary, and the com-
bination of these components has a great help in improving the performance of
the UDA method.

5 Conclusion

In this paper, we propose Adversarial Domain Alignment Feature Similarity
Enhancement Learning for UDA. It jointly learns domain invariant features and
makes these features having better discrimination that leads to better inter-class
separability and intra-class compactness. The dual-channel parameter-shared
adversarial convolution network realizes the domain alignment by the minimax
game between domain classifier and feature extractor. The feature similarity
enhancement term makes the samples far from the class center of target domain
more easily classified. In addition, experimental results on two widely used
datasets demonstrate that AASE outperfroms state-of-the-art UDA methods.
Results prove the effectiveness of adversarial domain alignment feature similar-
ity enhancement learning.
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Abstract. Densely connected network for Image Super-Resolution (SR)
has achieved much better results than most of the other methods owing to
its dense connection architecture which can provide more and deeper fea-
tures for image super-resolution. However, since the dense block accepts
the outputs of all previous blocks, it receives a lot of redundant and con-
flicting information, which results in longer training time and bad super-
resolution reconstruction results. To solve this problem, we introduce
an attention module into a densely connected network and propose an
attention-based densely connected network (ADSRNet) for image super-
resolution. With the attention module, our ADSRNet can select more
important information and cut off those redundant for image super-
resolution from a large number of feature maps by importance ordering.
Thus, we can speed up the training of network. Extensive experiments
are performed over the datasets Set5, Set14 and BSD100, the qualita-
tively and quantitatively evaluated results for our proposed ADSRNet
are better than ones of some state-of-the-art methods.

Keywords: Super-resolution · Channel attention · Dense connection ·
Deep neural network

1 Introduction

The image super-resolution task involves increasing the size of a small image
while preventing its quality from degrading as much as possible. This task has
diverse applications such as surveillance imaging, medical imaging and video
enhancement, and the performance of image super-resolution has achieved sig-
nificant improvement by learning-based SR approaches.

Many learning-based super-resolution methods are emerging recently and
achieve better performance compared with previous hand-crafted methods [1–
4], such as super-resolution convolutional neural network (SRCNN) [5], deep
laplacian pyramid networks (LapSRN) [6], the dense connected convolutional
networks (SRDenseNet) [7], deep-recursive convolutional network (DRCN) [8]
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etc. However, there are still some neglected problems in these methods. First,
most of the network layers only receive the outputs of the previous layer as input
but do not utilize features effectively. Second, even if the connection between
different layers is established, the network receives too many features to select
efficiently, which leads to a lot of information redundancy and conflicting.

To solve these issues, we propose a novel attention-based densely connected
super-resolution network to reconstruct a high resolution (HR) image from a
low resolution (LR) image. The different channels make different contributions
to super-resolution results, in order to select more critical information from a
lot of features for image super-resolution, we introduce a new attention module
to generate importance weight coefficients. With these weight coefficients, we
can guide the subsequent convolutional layer to select the feature maps with
the higher weight which are more important. In this way, we can reduce a lot of
received features so as to speed up the neural network training time. In addition,
some of conflicting features included in those channels with small weight coeffi-
cients are cut off so as to improve super-resolution results. Main contributions
of our work can be summarized as follows:

(1) We propose a new attention-based densely connected network (ADSRNet)
for image super-resolution. Meanwhile, we propose a new dense attention
module (DAM) to select important features. The attention module assigns
small weight coefficients to the redundant and conflicting features, so as
to filter it out and keep important one when features passing through the
subsequent convolutional layers.

(2) In our paper, we utilize the ReLU function instead of the Sigmoid function
to improve the attention module. With the ReLU function, the difference of
features can be well expressed when the features differ greatly, and it can
speed up the convergence.

2 Related Work

Image Super-Resolution Based on Neural Network: Dong et al. [5] pro-
posed a neural network for image super-resolution: SRCNN. And in SRCNN,
they used a bicubic interpolation to amplify the low resolution image to the tar-
get size firstly, then learned the mapping relation from LR to HR images through
a three-layer convolution network, and finally outputted a high-resolution image
result. To further improve the accuracy as well as speed up the training, a num-
ber of CNN models had been proposed since then [8–10]. Kim et al. proposed
deeply-recursive convolutional network (DRCN) [8] and VDSR [9]. In DRCN
[8], they used more convolutional layers to increase the network receptive fields,
in order to avoid excessive network parameters, they used recurrent neural net-
works. In VDSR [9], they used the residual network for training and speeding up
the convergence. Tai et al. proposed deep recursive residual network (DRRN) [10]
which used a deeper network structure (52 layers). However, most of the current
super-resolution methods can get pleasing results only for limited scale factors,
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and when the magnification scale is larger, the results by one-step upsampling
are unsatisfactory. Lai et al. [6] used a cascading network to learn high-frequency
residual details progressively, enabling 8× super resolution. The parameter shar-
ing reduces the computation and improves the computation precision effectively.
Tong et al. [7] proposed SRDenseNet utilizing all hierarchical features, intercon-
necting all layers so that each layer accepts the outputs from all of the previous
layers as its extra inputs. The dense connection improves the gradient back
propagation, making the network easier to train. Ledig et al. [26] proposed per-
ceptual loss function, they replaced the content loss based on MSE with the loss
based on the feature map of VGG network [27]. This network made the gener-
ated high-resolution images looked more realistic. Such GAN based model was
then introduced in EnhanceNet [28], which combined automated texture synthe-
sis and perceptual loss. [11] introduced the attention module to treat different
channels, improving the representation ability of the network.

Fig. 1. Neural network structure of our method. The network consists of feature extrac-
tion, upsampling and reconstruction section. The figure on the lower left represents our
proposed dense attention module (DAM), it consists of a channel attention module and
the dense layer chain. DAM is used to extract the high-level features. The figure on the
lower right shows the new attention block we proposed. Through the attention block,
the feature maps are weighted, and the output channels have different importance.

Attention Module: Recently, the attention module was widely applied to many
computer vision tasks [12–20]. Hu et al. [19] proposed the squeeze-and-excitation
(SE) block, this block squeezes the original channels, then performs an extraction
operation to learn the parameter to establish channel correlation, which is simi-
lar to the door mechanism in RNN. The goal is to learn the importance of each
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channel, enhances the important features and suppresses redundant and conflict-
ing features. Woo and Park et al. [20] proposed convolutional block attention
module (CBAM), which consists of channel-wise attention and spatial attention.
Channel-wise attention allocates resources between channels, and spatial atten-
tion adjusts the weight of each position on the feature maps, so that the model
can focus on the regions that deserve more attention.

3 Proposed Method

3.1 Network Architecture

The overall architecture of our network is illustrated in Fig. 1. Our network
can be divided into four parts: (1) shallow feature extraction, (2) deep feature
extraction, (3) upsampling layers, (4) reconstruction layers. In the shallow fea-
ture extraction layers, we use one convolutional layer to extract the low-level
features. i.e.,

F0 = flow(ILR) (1)

where ILR denotes the input low-resolution image, and F0 denotes the shallow
features extracted from ILR, flow(·) denotes the first convolution operation. And
then we use the dense attention modules to extract the high-level features:

Fd = fhigh(F0) (2)

where Fd (d=1...D) denotes the output of the d-th dense attention module, D
is the number of the dense attention modules, fhigh(·) represents the operation
of the dense attention modules to extract the high-level features. In order to
reduce the computational complexity, we use 1× 1 convolutional layer to reduce
feature map dimensions. For the upsampling and the reconstruction layers, the
feature maps are fed into the deconvolutional layers followed by a convolutional
layer to generate the HR image.

IHR = frecon(fup(FD)) (3)

where FD denotes the output of the last dense attention module, fup(·) denotes
the deconvolution operation, and frecon(·) denotes the reconstruction operation.

3.2 Dense Attention Module

The DenseNet structure was proposed in [21], each dense block accepts the
feature maps produced from all previous dense blocks, which will result in too
many input channels for the dense blocks. The original dense block use ordinary
convolutional layers to extract the features. However, each channel is treated
equally in this way, which makes the network just select some feature maps
randomly from a large number of feature maps and then feed them to the next
convolutional layer. Therefore, the final output feature maps cannot express the
important image information well. With our proposed dense attention module,
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Fig. 2. Structure of our attention block.

the important features will be selected in priority, while unimportant features,
such as noise, will be suppressed. We can alleviate the disadvantage of random
feature selection in the convolutional layers.

As illustrated in Fig. 1 in the lower left corner, the dense attention module
contains a channel attention module (CAM) and a dense layer chain to extract
the high-level features. CAM will be stated in Sect. 3.3 Assuming that there are
D dense attention modules in our network and B dense layers in each dense layer
chain. An channel attention module produces k feature maps, each dense layer
chain produces k feature maps. In order to achieve multi-level information flow,
each dense attention module receives the output of all previous dense attention
modules, and each dense layer receives the output of all previous dense layers.
The operation of the d-th CAM is formulated as

Fd,0 = fatt(Fd−1) (4)

Where Fd−1 and Fd,0 (d=1...D) are the input and output feature maps of the
d-th channel attention module, fatt(·) is the function of CAM. Then, the b-th
dense layer in the d-th dense layer chain can be formulated as below.

Fd,b = fd,b(...fd,2(fd,1(Fd,0))...) (5)

Where fd,b(·) (d=1...D, b=1...B) denotes the function of the b-th dense layer in
the d-th dense layer chain.

3.3 Channel Attention Module

Inspired by the SENet [19], we design a new channel attention module as illus-
trated in the lower right corner of Fig. 1. Our CAM consists of two components:
attention block and convolutional layer. As shown in Fig. 2. In our attention
block, we use the average pooling to get the global information. The feature
maps with the size of 1× 1×C are obtained after the average pooling. Extrac-
tion operation we proposed is FC-ReLU-FC-ReLU, the final re-calibrated output
is also a 1× 1×C weight vector in this way. Then it is multiplied by the original
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Fig. 3. Difference of squeeze-and-excitation block and our attention block.

feature maps with the size of H×W×C. The convolutional layer followed by
the attention block maps the high-dimensional features to the low-dimensional
features. With the channel attention module, channels are given different weight
coefficients, then we can make better feature selection on feature maps. After the
convolutional layer, those channels with higher weights will be preferred, ensur-
ing the redundant features are discarded, thus the expressive ability of network
is enhanced.

3.4 Mapping Function

As shown in Fig. 3. In the excitation process of the SENet, the author uses the
Sigmoid function to generate weight coefficients. In our paper, we use the ReLU
function instead of the Sigmoid function. The Sigmoid function generates weight
coefficients between 0 and 1, these coefficients are multiplied by the original
feature maps, which makes the value of the original feature maps smaller, and
can not distinguish the features well. However, with the ReLU function, the
difference of features can be well expressed when the features differ greatly, and
it can speed up the convergence.

4 Experiments

4.1 Datasets and Metrics

We train our model in DIV2K [22], which consists of 800 high-quality training
images. When using this dataset, we crop the original images firstly, and then
use the bicubic interpolation to get the LR images from HR images. For data
augmentation, the patches are randomly horizontal flipped and rotated. For
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Table 1. Objective comparison

Scale Method Set5 Set14 BSD100

PSNR SSIM PSNR SSIM PSNR SSIM

2× Bicubic 33.68 0.9304 30.24 0.8691 29.56 0.8435

SRCNN 36.66 0.9542 32.45 0.9067 31.36 0.8879

VDSR 37.53 0.9597 33.05 0.9127 31.90 0.8960

LapSRN 37.52 0.9591 32.99 0.9124 31.80 0.8949

DRCN 37.63 0.9588 33.04 0.9118 31.85 0.8942

DRRN 37.74 0.9591 33.23 0.9136 32.05 0.8973

ADSRNet(OURS) 38.00 0.9597 34.32 0.9205 32.60 0.8980

3× Bicubic 30.40 0.8686 27.54 0.7741 27.21 0.7389

SRCNN 32.75 0.9090 29.29 0.8215 28.41 0.7863

VDSR 33.66 0.9213 29.78 0.8318 28.83 0.7976

LapSRN 33.82 0.9227 29.79 0.8320 28.82 0.7973

DRCN 33.82 0.9226 29.76 0.8311 28.80 0.7963

DRRN 34.03 0.9244 29.96 0.8349 28.95 0.8004

ADSRNet(OURS) 34.60 0.9257 30.24 0.8424 29.01 0.8412

4× Bicubic 28.43 0.8109 26.00 0.7023 25.96 0.6678

SRCNN 30.48 0.8628 27.50 0.7513 26.90 0.7103

VDSR 31.35 0.8838 28.02 0.7678 27.29 0.7252

LapSRN 31.54 0.8866 28.09 0.7694 27.32 0.7264

DRCN 31.53 0.8854 28.02 0.7670 27.23 0.7233

DRRN 31.68 0.8888 28.21 0.7720 27.38 0.7284

ADSRNet(OURS) 32.27 0.8890 30.81 0.8257 27.46 0.7326

testing, we use three datasets, dataset Set5 [23], Set14 [2] and BSD100 [24]. Set5
and Set14 are often used for benchmark, BSD100 consists of natural images
in the Berkeley Segmentation, these three datasets can test the validity of our
model. We evaluate the performance of our ADSRNet by calculating peak-signal-
to-noise ratio (PSNR) and structural similarity (SSIM).

4.2 Implementation Details

According to the network structure, we all set the convolution kernel size to 3×
3, padding to 1 in the feature extraction layers, and we use 1× 1 convolutional
layer to reduce feature map dimensions and the network complexity. We observe
that when k = 64, B = 7, D = 8, the experimental results are optimal. All our
networks are optimized using the Adam optimizer [25] to minimize the L1 loss
function. We set learning rate to 0.001 initially and reduced by a factor of 10 per
5 epochs, the training is iterated 14 epochs in total. Our experimental platform
is Pytorch framework with NVIDIA GeForce RTX 2080 Ti.
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Fig. 4. Qualitative comparison. From left to right is the original image, 4× super-
resolution images of SRCNN, VDSR, LapSRN, DRCN, DRRN, and the last one is
our result. (1) The first row shows image “ppt3” (Set14 with scale factor ×4) (2) The
second row shows image “253027” (BSD100 with scale factor ×4).

Table 2. CAM improves the PSNR on test datasets.

Method Set5 Set14 BSD100

Network without CAM 31.56 28.36 27.38

Network with CAM (Ours) 32.27 30.81 27.46

4.3 Model Analysis

In order to show the efficiency of our proposed attention module, we compare
the iterations of our method with and without the attention module. Different
from the 140k iterations network without the attention module, our method
only needs 98k iterations to be convergent, which reduces the training time by
30%. As shown in Table 2, our network is also superior to the original method
in qualitative comparison.

4.4 Comparisons with the State-of-the-Arts

Our method is also compared with the other networks, we use SRCNN [5], VDSR
[9], DRCN [8], DRRN [10], LapSRN [6] to reconstruct HR from LR images. The
experiment results of Set 5 [23], Set 14 [2] and BSD100 [24] datasets are shown in
Table 1. We can see that our improved network has got a significant improvement
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over the average PSNR and SSIM compared with the previous network. We give
some visual results shown in Fig. 4, images reconstructed using our method are
more realistic and have sharpen edges.

5 Conclusion

In order to select the important information from a large number of feature
maps, we introduce a new module DAM into densely connected network, and
we design an attention-based densely connected neural network ADSRNet for
image super-resolution. Our proposed method can speed up the training process
and improve the ability of to select features of the network, the effectiveness of
proposed method is verified both quantitatively and qualitatively. However, the
network is designed to solve the problem of large input dimensions caused by
dense connection, and the other structures have not been tested. Therefore, the
next research direction is to apply the attention module to the other structures
such as ResNet to improve the super-resolution performance.

Acknowledgemet. This work is supported by the National Natural Science Foun-
dation of China (No.61273273), by the national Key Research and Development Plan
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Abstract. Planes commonly exist in a human-made scene and are use-
ful for robust localization. In this paper, we propose a novel monocu-
lar visual-inertial odometry system which leverages multi-plane priors.
A novel visual-inertial-plane PnP algorithm is introduced to use plane
information for fast localization. The planes are expanded via a repro-
jection consensus-based way, which is robust to depth estimation error.
A novel structureless plane-distance cost is used in sliding-window opti-
mization, which allows to use a small size window while maintaining
good accuracy. Together with modified marginalization and sliding win-
dow strategy, the computational cost is significantly reduced. Our VIO
system is tested on various datasets and compared with several state-of-
the-art systems. Our system can achieve very competitive accuracy, and
work pretty well on long and challenging sequences. Our system is also
very efficient and can perform 30 fps averagely on an iPhone 7 mobile
phone with a single thread.

Keywords: Visual inertial odometry · bundle adjustment · Plane
priors · Reprojection consensus · Structureless plane-distance cost

1 Introduction

Cameras and IMUs are already very common on smart mobile phones, which are
small and cheap, with low power consumption. Hence they are good choices for
addressing mobile localization problem in consumer level applications. Recent
advances in visual-inertial odometry (VIO) and simultaneous localization and
mapping (SLAM) communities have give birth to many successful odome-
try/SLAM systems like [4,5,8,16,18]. However, these systems either require high
computation cost with multiple threads or easily drift in challenging situations.

Human-made scenes generally contain rich planar structures, which can ben-
efit odometry/SLAM. Although some methods [9,21] have been proposed to use
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plane information to aid VIO, the computation cost is obviously increased due
to plane extraction and management as well as the increase of optimization com-
plexity. In this paper, we propose a new VIO system which can effectively exploit
plane structures in the scene to achieve good tracking results. The key contribu-
tion is that we propose a novel VIO approach by exploiting plane information in
different modules for robust tracking. Especially, we propose a novel structure-
less plane-distance cost which can enforce plane constraints in sliding-window
optimization without increasing much the computation cost. Thus a very robust
and efficient VIO system is achieved, which can perform 30 fps averagely on an
iPhone 7 mobile phone with a single thread.

2 Related Works

VIO and VISLAM have been studied over decades. MSCKF [15] is an early
filtering-based VIO system. Its state vector contains only a fixed number of the
pose states. Observations to the landmarks are marginalized in the update phase,
and the overall computational time is bounded. Optimization-based systems like
OKVIS [12] generally use marginalization technique to linearize old frames into
priors, keeping the size of its sliding window bounded.

However, error accumulation in VIO is inevitable. A SLAM system can lever-
age loops in the trajectory to reduce error accumulation, achieving better accu-
racy. PTAM [11], an early visual SLAM system, separates tracking and map-
ping in two threads. This later became the standard of many state-of-the-art
SLAM systems. ORB-SLAM [16] improves PTAM in many aspects, including
the use of ORB features, the local mapping with the covisibility graph and the
global optimization with the essential graph. VINS-Mono [18] is a successful
visual-inertial SLAM system, which also uses sliding-window optimization with
marginalization, with a 4-DoF pose-graph map optimization. To achieve real-
time performance on a mobile device, its mobile version [13] limits its front-end
optimization at 10 Hz.

Another type of systems track camera by minimizing the photometric error
directly. Early systems such as LSD-SLAM [5] use dense or semi-dense geome-
try representation, which can lead to heavy computational cost. DSO [4] used
a sparse and direct formulation with sliding window optimization similar to
OKVIS, thus improving the performance. Due to the small/smooth movements
assumption, direct methods can be prone to rolling-shutter distortions and illu-
mination changes.

SVO [8] is a hybrid odometry system which combines direct sparse tracking
with indirect formulation for model optimization. It is highly efficient and is
capable of tracking at very high framerate, which can remedy the requirement
of slow-smooth movement. Nevertheless, it still suffers from many limitations of
direct methods.

Lines and planes can be used for robust tracking in structured environment.
Many existing methods, like [9] and [17] simply augment the existing bundle
adjustment (BA) with additional structure terms. Since they are built on top of
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typical systems, they introduce additional cost to the system, making the sys-
tem obviously heavier. Some methods like StructSLAM [22] assume Manhattan
scene, which may not be used in general cases. StructVIO [23] extends Struct-
SLAM with inertial measurements, and suffer from similar limitation. Methods
like [21] require additional cost to parse planes and can not handle general scenes
containing normal objects and planes. In general, there is still a lack of VIO sys-
tem which can efficiently make use of plane information in a general scene.

3 Visual-Inertial Odometry with Multi-plane Priors

Our framework is illustrated in Fig. 1. Given the input online images and IMU
measurements, we first perform feature point tracking on consecutive images
and pre-integrate the IMU measurements. We employ a visual-inertial align-
ment method (Sect. 3.1) to accomplish the initialization. After initialization, the
feature point tracking and pre-integration results are sent into the pipeline for
localization. We propose a novel visual-inertial-plane PnP (VIP-PnP) to quickly
localize the camera pose (Sect. 3.2), which uses information from plane infor-
mation managed in a local plane map. The output of the VIP-PnP will be
integrated with new IMU measurments to get the most up-to-date pose output.
After VIP-PnP, the localized frame will be fed into the sliding window, and
3D landmarks are triangulated from newly tracked features. If the last frame in
the sliding window is a keyframe, we will do plane expansion via reprojection
consensus (Sect. 3.3), and then slide the window, i.e. inserting this new frame
and marginalizing the oldest keyframe. A local bundle adjustment is employed,
where a novel structureless plane-distance cost is used (Sect. 3.4). If the last
frame in the sliding window is not a keyframe, we will directly replace it with
the new frame and inherit its IMU measurements. In both cases, the new planes
are detected based on the landmarks and added into the local plane map. When
there are no planes, all the plane-based modules are disabled, and our system
becomes a traditional VIO. Hence our system is still a general purpose VIO
which does not fully depend on planes.
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Fig. 1. Pipeline of our visual-inertial odometry with multi-plane priors.
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Before describing the algorithm details, we first introduce the convention
and major notations for our mathematical formulation. We represent the 3D
rotation of image i using Hamiltonian quaternion qi and use C(qi) to represent
its corresponding rotation matrix. The pose of the device with respect to the
world frame is denoted as w

b pi,
w
b qi, and is affixed to the IMU of the device.

Camera frame pose w
c pi,

w
c qi is related to this body frame by rigid extrinsics that

can be calibrated beforehand.
We used the pinhole camera model with fixed camera intrinsics K throughout

our system. For a landmark point xk, its projection on camera image Ii will be

uik = πK(C�(w
c qi)(xk − w

c pi)), (1)

where πK is the projection function with intrinsics K and the corresponding
keypoint for uik is denoted as ũik. We will drop the superscript/subscript and
use pi, qi, xk for brevity if the frame is clear from the context.

We use inverse parameterization for our landmarks [3]:

xk =
1
λk

C(w
c qref(k)) ·

(
uk

1

)
+ w

c pref(k). (2)

The reference frame ref(k) is the first keyframe observing xk. uk is the shorthand
for uref(k),k.

A plane s is parameterized with its normal ns and its (signed) distance ds

to the origin. A point x on plane s should satisfy n�
s x − ds = 0.

3.1 Initialization and Plane Detection

For each input image, we detect keypoints with the Shi-Tomasi keypoint detec-
tor [10]. The keypoints are tracked using the KLT feature tracker [14]. The
IMU measurements are pre-integrated into relative motion constraints using
the method introduced in [7]. Similar to the visual-inertial alignment method
from [19], we build a visual-only SfM from initial frames, and then align them
with the pre-integrations to solve the initial states.

A plane detection module is responsible for spawning new planes. These new
planes are then used for all the tracking and optimization, and will be extended
when possible. We used a 3-point RANSAC [6] for plane detection. After each
new frame is added into the sliding window, we detect the new planes from all
the landmark points in the local map.

3.2 Visual-Inertial-Plane PnP Tracking

Assume there are already P plane models in the local map. For each new image
Ii, we perform a visual-inertial-plane PnP (VIP-PnP) tracking to recover its
pose. Let {xk : k = 1 . . . M} be the visible landmarks not belonging to any
plane, {xsk : k = 1 . . . Ms} be the visible landmarks belonging to plane s, rIMU

be the IMU propagation error, Ψ and Φ be the inverse of the covariance matrix
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for keypoint measurement noise and IMU propagation error correspondingly.
VIP-PnP is done by solving the following 1-frame bundle adjustment:

arg min
w
b pi,wb qi

M∑
k=1

‖uik − ũik‖2Ψ + ‖rIMU(w
b pi,

w
b qi)‖2Φ +

P∑
s=1

Ms∑
k=1

‖u⊥
i,sk − ũi,sk‖2Ψ (3)

In (3), the projected plane point u⊥
i,sk is obtained by forcing the landmark on

the plane. We cast ray from Iref(k), and find the intersection depth with plane s:

λ⊥
sk =

n�
s C(w

c qref(k))
(
uk

1

)
ds − n�

s
w
c pref(k)

. (4)

Then we compute u⊥
i,sk with this depth enforced. We are solving the BA “as if”

there are some points perfectly lying on some planes.
In a typical VIO, depth estimation can be noisy or even degenerated due

to small camera translation, especially when the whole sliding window cannot
provide sufficient motion parallax. By incorporating plane priors, the depth esti-
mation becomes much more stable, especially when the motion parallax is small.
Thus a smooth and robust tracking can be achieved even without maintaining
global map and optimization.

3.3 Plane Expansion via Reprojection Consensus

We perform plane expansion when a new keyframe is pushed into the sliding
window. A plane can be continuously tracked and refined over time, by keeping
expanding new points. Since the triangulation error easily leads to a large error
in depth, we use a reprojection consensus-based method for plane expansion. For
landmark xk and plane s, we can re-cast xk onto the plane s according to (4).
The reprojection errors without/with re-casting are computed as:

εk =
∑

i

‖uik(λk) − ũik‖2, ε⊥
k =

∑
i

‖uik(λ⊥
k ) − ũik‖2. (5)

If ε⊥
k ≤ max{αεk, γ}, i.e., the new reprojection error is not greater than a

threshold, the xk is thought to be consistent with plane s, and we add this
landmark to the plane. In our experiments, we used α = 1.2, γ = 0.5.

In order to avoid introducing large error, we do not expand distant points
into a local plane area. We represent planes with 12 fan-shaped sectors, 30◦ each.
For a sector τ , its radius rτ is determined by the currently most distant plane
point in it. A new point xk can be added only if it is within μrτ distance to the
center. We generally set μ = 1.2.

It’s worth mentioning that when the motion degenerates, a landmark at
arbitrary depth can still be falsely added by the reprojection criteria. However, it
also helps to keep the landmark at a reasonable depth. And these false inclusions
will be pruned after the depths becoming observable under sufficient translation.
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3.4 Sliding-Window Optimization with Structureless Plane-Distance
Cost

We utilize a local bundle adjustment (LBA) to refine the camera poses and the
landmark points in the sliding window. We keep N image frames in the sliding
window. When a new frame comes, we check the parallax of its keypoint matches
with respect to the last keyframe. If the parallax exceeds a threshold, we tag
the new frame as a keyframe. If the number of matches is below a lower bound,
or there have not been any keyframes for the recent T frames, we also mark
the frame as a keyframe. After this keyframe evaluation, the new frame will be
added into the sliding window. In the following, we assume I1, . . . , IN be the N
the frames already in the sliding window, and IN+1 be the new one.

We slide the window with marginalization in the following way: If IN is a
keyframe, we first marginalize out I1 and all keypoints it observes. Then we add
IN+1 into the sliding window. If IN is a non-keyframe, we replace it with IN+1

directly. The IMU measurements in between are kept and the pre-integration is
updated. This particular order is different from systems like VINS-Mono, where
they first add the frame, and then perform the marginalization.

As shown in Fig. 2(c–f), if the marginalization is done after the frame inser-
tion, the result marginalization factor will contain an edge to the new frame.
Next time, if this frame is not a keyframe, it will be replaced. And this edge
must be marginalized again, resulting in a two-way marginalization in VINS-
Mono’s implementation. In our system, the marginalization is done before the
insertion. As a result, the marginalization factor will constrain the oldest N − 1
frames. No marginalization is required when replacing IN .

Before marginalizing the oldest keyframe, we marginalize all related land-
marks first, which is similar to VINS-Mono. If not, the information matrix for
the related landmarks will become dense, which will significantly increase com-
putation cost. For plannar landmarks, we replace them with the following struc-
tureless plane-distance cost, which avoids marginalization.

Structureless Plane-Distance Cost. In the core of our local bundle adjust-
ment, we utilize a structureless plane-distance cost. Based on the linear least
square triangulation method, we can triangulate a landmark xk with all its key-
point observations {ũik} on images {Ii} by constructing matrix A and vector b
as:

Ak =

⎛
⎜⎜⎜⎜⎝

...
ũikxri3 − ri1

ũikyri3 − ri2

...

⎞
⎟⎟⎟⎟⎠ , bk =

⎛
⎜⎜⎜⎜⎝

...
ũikxpi3 − pi1

ũikypi3 − pi2

...

⎞
⎟⎟⎟⎟⎠ . (6)

So xk can be found by solving Akxk = bk. The row vectors rij are the rows of
KC�(w

c qi), i.e.,
(
r�
i1 r�

i2 r�
i3

)
= [KC�(w

c qi)]�. Scalars pij are the components of
−KC�(w

c qi)w
c pi, (pi1, pi2, pi3)� = −KC�(w

c qi)w
c pi. With 2 or more observations

that are not degenerated, Ak has more than 4 rows and is a full rank matrix, so
we can have the least square solution for xk.
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When there is only one observation ũik, or there are insufficient movements
in the images, Ak will be ill-conditioned. We use plane information to regularize
it: for a landmark xsk belonging to a plane s, we augment the terms in (6) as:

Ask =
(

Ak

wkn�
s

)
, bsk =

(
bk

wkds

)
. (7)

The augmented row corresponds to the plane constraint n�
s xsk = ds, and is

weighted by wk. By augmenting the matrix, the solution to Askxsk = bsk is
regularized by the plane structure. As long as the camera center is not on the
plane, Ask is always full-rank. We can then rewrite the closed-form solution of
xsk as a function of the related states observing it:

xsk = (A�
skAsk)−1Askbsk = f({w

b pi,
w
b qi}, ns, ds). (8)

Since the landmark xsk should be on the plane, we can minimize the following
plane-distance error:

rP ({w
b pi,

w
b qi}, ns, ds) = |n�

s xsk − ds|. (9)

Although the size of Ask depends on the length of the feature track. A�
skAsk

and A�
skbsk are 3 × 3 and 3 × 1. This leads to the efficient evaluation of the cost

function and its corresponding Jacobians.
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Figure 2(a) and (b) illustrate the structure and marginalization in sliding-
window optimization. For planar landmarks, we totally remove its original repro-
jection error terms, and use the structureless cost instead. Given m observations
of a landmark, m reprojection error terms are replaced with 1 structureless
cost. The state of the plane landmark no longer participate in its correspond-
ing structureless cost. So we can skip these landmarks in the marginalization.
Plane parameters are kept fixed during BA. We re-triangulate planar points with
refined camera poses after BA, and then update the planes.

4 Experiments

We implemented our system in C++ and use Ceres Solver [1] for solving nonlin-
ear optimization problems. We run our algorithm on public benchmark datasets
and evaluate the performance for quantitative results. We also make compar-
isons with 4 state-of-the-art odometry/SLAM systems: VINS-Mono [18], ORB-
SLAM2 [16], SVO2 [8], and DSO [4]. Our system, as a plane-based VIO, will be
referred as PVIO in the following.

4.1 Tracking Accuracy and Robustness

We analyze the accuracy of the algorithm by comparing the RMSE of the abso-
lute localization error. We used the suggested configurations from the algorithms,
including tuned IMU noise parameters, for the test of VINS-Mono and ORB-
SLAM2. The results of SVO2 and DSO on EuRoC dataset are directly from [8].
On TUM dataset, SVO2 performed badly, which always lost quickly. PVIO used
the sensor parameters from the specification of datasets, and its sliding window
has N = 8 frames. Table 1 lists the RMSE of the odometry/SLAM systems
on EuRoC [2] and a few results on TUM-VI [20] datasets. The full results on
TUM-VI dataset are included in the supplementary material1.

Accuracy. As shown in Table 1, PVIO has comparable accuracy to VINS-Mono.
As for ORB-SLAM, since it does not recover true scale, we scale the camera
trajectory and align it with the ground truth, which hence has lower RMSE.
SVO2 and DSO are also visual only, whose recovered camera trajectories are also
scaled. Despite that, we can still achieve better accuracy on many sequences. We
also analyse the error accumulation on several sequences, which are included in
the supplementary material due to the limited space. TUM-VI is a challenging
dataset, where many sequences contain vigorous movement, and all the sequences
are rather long. PVIO still achieves very competitive accuracy.

Robustness. We compare the keyframes involved in the local BA: PVIO has
8 frames, VINS-Mono has 10 frames, while ORB-SLAM2 can have as much as
30 frames. With such a small sliding window, a traditional VIO will easily have

1 http://www.cad.zju.edu.cn/home/gfzhang/projects/SLAM/PVIO/pvio-supp.zip.

http://www.cad.zju.edu.cn/home/gfzhang/projects/SLAM/PVIO/pvio-supp.zip
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Table 1. The RMSE (m) of localization for different algorithms. “+/−Loop” means
loop-closure turned on/off. For SVO2, “E+P” means edgelet+prior and “BA” means
bundle adjustment. See [8] for the explanations about E+P and BA. For PVIO,
“+/−Plane” means with/without plane priors. For the values in parenthesis, the cor-
responding trajectory is less than 80% complete. × means the trajectory is less than
50% complete (lost). The best results for visual-inertial algorithms are bolded.

Dataset ORB-SLAM2 SVO2 DSO VINS-Mono PVIO

−Loop +Loop E+P BA −Loop +Loop −Plane +Plane

EuRoC [2] MH 01 0.02 0.03 0.10 0.06 0.05 0.16 0.15 0.19 0.13

MH 02 0.03 0.03 0.12 0.07 0.05 0.18 0.26 0.16 0.21

MH 03 0.17 0.05 0.41 × 0.18 0.20 0.11 0.31 0.16

MH 04 0.15 0.37 0.43 0.40 2.50 0.35 0.37 0.29 0.29

MH 05 0.06 0.04 0.30 × 0.11 0.30 0.28 0.79 0.34

V1 01 0.03 0.03 0.07 0.05 0.12 0.09 0.10 0.10 0.08

V1 02 0.15 0.03 0.21 × 0.11 0.11 0.09 × 0.09

V1 03 (0.49) 0.10 × × 0.93 0.19 0.18 × 0.16

V2 01 0.03 0.03 0.11 × 0.04 0.09 0.08 0.11 0.05

V2 02 0.15 0.03 0.11 × 0.13 0.16 0.17 × 0.20

V2 03 (0.73) (0.40) 1.08 × 1.16 0.29 0.37 × 0.29

TUM-VI [20] Room1 × 0.10 × × 0.06 0.07 0.07 1.65 0.26

Room2 × 0.12 × × 0.11 0.07 0.07 0.12 0.15

Room3 × (0.04) × × 0.12 0.12 0.12 0.18 0.18

Corridor1 × × × × 5.43 0.59 0.59 × 0.23

Outdoors1 × × × × × 74.55 81.57 × 22.26

robustness problems especially when the motion parallax is insufficient. In con-
trast, PVIO can still track robustly. We also tried disabling all the plane-related
modules. Without using plane priors, PVIO failed to track some sequences on
EuRoC dataset, and diverged on almost all long sequences in TUM-VI.
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Fig. 3. Trajectories of: — PVIO, — VINS-Mono, — DSO. Axes are in meters.
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TUM-VI is a very challenging dataset, where all sequences contain vigorous
movement, and many of them are rather long. On almost all sequences, our
system successfully tracks the data without lost or divergence. Only VINS-Mono
performed better in terms of completeness. DSO diverges occasionally, and the
trajectories become completely useless after divergence. ORB-SLAM is almost
incapable of running on TUM-VI, which repeatedly gets lost and re-localizes in
room sequences, and completely gets lost in other sequences. DSO can only track
for few frames, and then fail to continue further.

The Outdoors1 sequence in TUM-VI dataset is a 2656m-long sequence.
Figure 3 shows the top-down view of the trajectories from PVIO, VINS-Mono
and DSO. Only VINS-Mono and PVIO can get reasonable results in this
sequence. PVIO, albeit of being a VIO method, achieving 22.26m RMSE, which
is smaller than 1% of the total length. VINS-Mono fails to detect loops in the
end, and has significant error accumulation in its orientation estimation. PVIO,
on the other hand, successfully takes advantage of the information provided by
the ground plane and produces a less distorted trajectory. As a general purpose
VIO, plane-priors give PVIO extra robustness, result in good accuracy.

4.2 Efficiency

With the multi-plane priors, the size of the sliding window can be effectively
reduced. At the same time, the revisited marginalization strategy and the struc-
tureless cost also helped to reduce the computation time. In a canonical system,
one can enforce plane constraints by adding additional point-to-plane distance
error to the bundle adjustment. We also implemented such bundle adjustment,
and name the corresponding VIO system as Ref-VIO. We run VINS-Mono, Ref-
VIO and PVIO on the same computer with i7-7700 3.6GHz×4 and 16G memory.
We also measure the running time for different parts of the systems. We set the
sliding window size of VINS-Mono to 8 frames, and also disable its backend. So
three systems have fair competition. Table 2 shows the running time of different
components on sequence V1 01 easy.

Table 2. Running time (ms) of VINS-Mono (frontend), Ref-VIO and PVIO.

Module VINS-Mono Ref-VIO PVIO

Keypoint Tracking 8.34 7.42 7.40

Pre-Integration 0.44 0.04 0.04

Plane Management – 1.04 1.09

Non-Keyframe PnP 17.78 0.93 0.90

Non-Keyframe Marg 0.68 – –

Keyframe BA 19.18 30.59 19.87

Keyframe Marg 32.91 3.26 2.81

Keyframe Average 60.87 42.35 31.02

All Frames Average 44.72 14.80 13.53
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Fig. 4. AR effect on a mobile phone. A virtual “laptop” is placed next to the real one.

As we can see, if we directly use point-to-plane distance in BA, the com-
putation cost will significantly increase. By replacing traditional reprojection
error with structureless plane-distance cost, the keyframe BA in PVIO takes
almost the same time as the normal BA in VINS-Mono. In the meantime, VINS-
Mono uses a 3-frame BA with older frames fixed in its non-keyframe PnP, while
PVIO only solves 1 frame, without involving any historical frames. The modified
marginalization strategy also significantly reduce the computation time. Sum-
ming up all the accelerations, the keyframe processing time of PVIO is only 1/2
of VINS-Mono, and all frames average is taking less than 1/3 of VINS-Mono.

To further verify the efficiency of PVIO, we successfully run PVIO on an
iPhone 7 mobile phone. The image is captured at 640× 480 (30fps), while IMU
is incoming at 100 Hz. The whole system runs in a single thread, and can perform
metric tracking and AR on the camera image. The average speed can reach 30fps.
Figure 4 shows the AR effect in our demo App.

5 Conclusions and Disscusions

We presented a new robust and efficient VIO system, which exploits multi-plane
priors in the tracking and the local mapping. With the design of the structureless
plane-distance cost, we can incorporate multi-plane prior constraints into bun-
dle adjustment without introducing much computation cost. Compared to other
state-of-the-art systems, our proposed VIO system can get competitive accu-
racy. Even on long and challenging sequences, our system can track successfully,
whereas many other systems fail. Especially, our VIO system is very efficient and
requires much less computation cost compared to the complex SLAM systems
such as ORB-SLAM and VINS-Mono. Our VIO can perform in real-time even
on an iPhone 7 with a single thread. To further improve the robustness and
efficiency of our VIO system, we would like to explore the possibilities in using
more structure information in the future.
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Abstract. Feature representation is one of the crucial components in
person re-identification(re-ID). Recently, local feature has attracted great
attention from the re-ID community, and extra visual cues have been
well exploited to guide local feature learning, such as pose cues, seman-
tic parsing and etc. Besides, the latest research demonstrates that gen-
eral CNN-based deep models have a bias to texture feature in pattern
recognition, but ignore shape-based feature, which has been verified as
significant for cross-domain invariance. As far as we know, there is little
work focusing on shape-based feature on person re-ID. In this paper,
we introduce a new data modality, pedestrian contour, into the re-ID
community, which to our best knowledge is the first attempt to utilize
contour explicitly in deep re-ID models. We hypothesize that, as an alter-
native of other exploited visual cues, pedestrian contour could guide deep
models to learn robust shape-based feature, with build-in prior informa-
tion. We propose several contour-guided architectures to explicitly use
pedestrian contour, including plain ones and multi-scale one. Extensive
experiments have validated the effectiveness of our models. Moreover, we
transfer the methodology into a powerful part-based model, Part-based
Convolutional Baseline(PCB), and boost the model performance, which
verifies the promising prospect of contour-guided models to expand as
an auxiliary mechanism in re-ID.

Keywords: Person re-identification · Pedestrian contour · Local
feature learning

1 Introduction

Person re-identification(re-ID) aims to search all images of the same pedestrian
across different non-overlapping cameras with a given query image, which could
intrinsically be seen as a problem of cross-camera pedestrian retrieval. Real-world
re-ID is still an extremely challenging task due to large variations of pedestrian
pose and camera viewpoint, background clutter, defective person detection, illu-
mination change, and occlusion, etc.
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Fig. 1. Randomly selected pedestrian images and their extracted contours in Market-
1501, DukeMTMC-reID and MSMT17.

Considering the factors above, most existing methods for re-ID focus on either
robust feature representation or discriminative distance metric. Deep learning
methods [1,14,19,24] currently dominate the re-ID search community. Although
deep models have achieved remarkable progress, there is still a gap hindering
reliable, real-world application of person re-ID. Many existing deep models for
person re-ID typically learn a global full-body embedding [1]. However, the capa-
bility of global representation is limited by lack of emphasis on local differences
and sensitivity to domain variance and background clutter. Recent improve-
ments in feature representation have mainly been achieved by leveraging local
visual cues, which are supposed to be more robust. Either pedestrian pose cue
[12,20,21] or semantic parsing [7] has been exploited explicitly as prior guidance
for local feature learning.

Since priori information is critical to improving re-ID model performance,
here we raise a heuristic question: Is there any other visual cue could help learn
robust local feature as a prior guidance? In an end to address this question, in
this paper we use pedestrian contour(see Fig. 1) explicitly as an alternative to
bounding boxes and semantic parsing in re-ID deep model. To the best of our
knowledge, this is the first attempt to leverage contour information explicitly in
the community of person re-ID.

Pedestrian contour is vital to identity recognition and many computer vision
applications, but yet not received due attention in person re-ID research. Intu-
itively, human beings recognize different objects fundamentally depending on a
shape-based guidance, object contour. Researches in human vision and neuro-
science also prove that shape perception is a fundamental component in object
recognition. From the perspective of image processing, object contour indicates
a transitional area where color and texture change dramatically. Theoretically,
contour contains abundant gradient information of color, which has potential to
help distinguish different objects.

The latest work [4] takes an insight into how CNN learn deep vision feature.
Empirical experiments on ImageNet [3] show that deeply-learned models have a
bias to texture-based feature rather than shape-based feature, which is in stark
contrast to human behavioural evidence. For example, a cat with an elephant
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texture is an elephant to CNNs, but still a cat to humans. The different classifica-
tion strategies inspires authors to carry out further experiments for overcoming
texture bias of CNNs. It reveals that deep models learn a long-ranged contour fea-
ture show stronger capability of generalization upon domain-shifted or distorted
testing samples. A mixture of both texture-based and contour-based embedding
is also verified as able to improve performance of image classification and object
detection. Nevertheless, it is also be demonstrated that models trained on sole
shape-based images perform poorly and struggle in fitting testing samples in
the same domain. In the light of the above, it is more reasonable to make use
of contour information as auxiliary component to guide domain-invariant local
feature learning, instead of processing as an independent modality.

Summarized from the above discussion, we could make several conclusions:
First, a feature representation covering both global and local information is
a superior pedestrian descriptor. Second, pedestrian contour is an unexploited
but potential data modality in future re-ID research, which may be the key to
cross-domain generalization. Third, it is notable that existing CNN-based models
tend to ignore contour-based feature, so extra prior information for guidance is
indispensable for enhancing shape-based learning.

In this paper, we make the first attempt to introduce pedestrian contour
explicitly into deeply-based model in person re-ID and put forward several
contour-guided deep proposals. Utilizing an off-the-shelf edge detection model,
we extract pedestrian contours across several large-scale datasets as advance
preparation. Both original pedestrian images and extracted contours are fed as
inputs into the convolutional neuron network for feature embedding. We propose
several simple but effective architectures to integrate features derived from orig-
inal images and contours, learning global and contour-guided local features in a
unified manner. We not only try to make correlation between different feature
branches in a straightforward way, but also take fusion of different scales into
consideration and devise a multi-scale schema by hierarchically enhancing their
correlation layer to layer. Extensive experiments carried out with no bells and
whistles on three datasets(Market-1501, DukeMTMC-reID and MSMT17) have
demonstrated the great power of contour-guided models. Surprisingly, even the
plain version(see (c) in Fig. 2) outperforms the baseline model by a dramatical
margin(Market-1501 by 8.9% in mAP and 5.1% in Rank-1, DukeMTMC-reID
by 6.1% in mAP and 2.9% in Rank-1, and MSMT17 by 6.9% in mAP and 6.3%
in Rank-1), meanwhile surpassing most of the state-of-the-art. The multi-scale
version further boosts the performance slightly.

Furthermore, we also transfer our mechanism into a currently leading re-
ID model, PCB, verifying that the proposed methodology is compatible and
applicable in the part-based model with performance bonus.

In summary, the contributions of this paper are as follow:

• We exploit pedestrian contour explicitly in deep re-ID model for the first time,
since contour is very important in computer vision. Experiments have shown
the effectiveness of contour-guided local feature learning, which expectantly
might encourage in-depth exploration in this direction.
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• We propose several simple but powerful contour-guided architectures for inte-
grating pedestrian contour into a unified framework. Besides the proposed
plain versions, the multi-scale model is also devised. Both of them exceed the
baseline dramatically, and surpass the current state-of-the-art.

• Our contour-guided mechanism is also applied upon the leading part-based
model PCB, and convincingly brings with performance improvement, showing
enormous potential to expand.

2 Related Work

Local Feature Learning. The emergence of deep learning greatly advances the
development of person re-ID thanks to excellent representation power. Deeply-
learned methods transfer the re-ID problem to deep metric learning [1,24], or
classification task as a proxy target to learn deep representation [14,19]. Many
existing deep models for person re-ID typically learn a global full-body embed-
ding for the input person image in an end-to-end manner [1]. However, for one
thing, image-level global feature is not sufficient to holistically depict a pedes-
trian identity for lack of saliency emphasis on local differences. For another,
global representation is prone to background clutter and occlusion. In recent
years, strengthening deep global representation by integrating local feature has
become a hot topic in person re-identification research. Some works have lever-
aged extra priori visual information as explicit guidance for learning local fea-
ture. Human pose cues(which identifies different types of parts, e.g., arm, shoul-
der, etc.) are utilized to alleviate pose variation and learn part-aligned features
[12,20,21]. Besides, some works parse the body into several parts and use prob-
ability maps explicitly for pixel-level local saliency weighting [7]. The great sig-
nificance of prior visual cues has been validated in these works. As a pioneer,
we introduce pedestrian contour into deep person re-ID model as an explicit
guidance for the first time, and demonstrate the effectiveness empirically.

Contour Related. Edge detection has been well developed in a long term and
contour plays a fundamental role in many computer vision areas ranging from
traditional tasks such as visual saliency, semantic segmentation, object detec-
tion/tracking, motion analysis, medical imaging, and 3D reconstruction [6,16], to
modern applications like autonomous driving and image-to-text analysis [2,10].
Precisely localizing contours in image involves visual perception of various levels,
which benefits visual image understanding. The latest research [4] has also illus-
trated contour-based feature learning is beneficial to cross-domain invariance.
Nevertheless, there is little focus on contour in person re-ID. In this paper, we
hypothesize that pedestrian contour could make deep models pay more attention
to contour-based feature and propose several contour-guided architectures.
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Fig. 2. Our proposed plain architectures. The inputs include original pedestrian images
and contours. All plain architectures contain global and contour-guided local feature
branches. ⊗ denotes element-wise product. (a) processes different branches indepen-
dently without any correlation. (b) makes fusion after all feature extraction layers. (c)
make fusion after the first convolutional layer.

3 Contour-Guided Architecture

In order to learn a holistic and robust pedestrian descriptor, we propose contour-
guided architectures with both global and contour-guided local feature learning
branches. We attempt to make fusion on the learning of different data modal-
ities, hoping that the prior distributions of contours could guide the local fea-
ture branch to capture something shape-related and learn a domain-invariant
embedding. In this work, we use ResNet [5] as the backbones of all proposed
contour-guided architectures.

The global feature learning branch that takes original images as inputs, is
the same as a standard ResNet. We denote the feature map on the ith layer(see
Fig. 2) of this branch as F

(i)
global. As for the contour-guided local feature branch,

we firstly feed contours as inputs and the extracted feature map on the ith
layer is indicated as F

(i)
local. Then we adopt a straightforward manner to make

fusion by operating element-wise product upon 3D feature maps from two feature
branches. The feature map after fusion operation could be seen as contour-guided
local feature, which is a composite of global feature and contour-based feature.
The fusion operation could be formulated as

F
(i)
local = F

(i)
global ⊗ F

(i)
local (1)

where ⊗ denotes the operation of element-wise product.
Theoretically, given an input pedestrian contour with larger value from 0

to 1 in edge pixels, corresponding positions on intermediate feature maps are
more likely to be activated in forward propagation and deservedly contain larger
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Fig. 3. The first row displays feature maps of global branch. The second row displays
feature maps of contour-guided local branch before fusion and the third row corresponds
to those after fusion.

values. Thus we take advantage of such intermediate feature maps as weights
for contour attention through element-wise product. Furthermore, feature maps
shown in Fig. 3 empirically validate our success of guiding the model to capture
salient local contour-based features.

3.1 Plain Architecture

We design three plain contour-guided architectures as shown in Fig. 2. All plain
versions carry out dual-branch learning and every branch corresponds to an indi-
vidual loss. In the stage of testing, features from dual branches are concatenated
as an integrated feature. The architecture (a) in Fig. 2 is designed to investigate
whether features extracted solely from contour have the ability of generaliza-
tion. The architecture (b) makes fusion after all feature extraction layers, while
another schema makes fusion after the first convolution layer. Experiments show
the last one is the best solution in the setting of single-scale fusion.

3.2 Multi-scale Architecture

Hierarchical methodology plays an important role in computer vision, which
has yielded significant performance in object detection, semantic segmentation,
etc. Additionally, considering effectiveness of plain architectures fused in differ-
ent scales, and that making single fusion on a specific scale may not excavate
full potential of contour-based guidance, we further propose a multi-scale archi-
tecture(as shown in Fig. 4), aiming at fusing contour-guided local features on
different scales into an integrated representation.

In the multi-scale version, fusion between original feature and contour-based
feature are made from high-resolution to low-resolution, and accumulated layer
to layer in a bottom-up pathway. F

(i)
global makes lateral fusion with F

(i)
local and

the intermediate result will be added back to F
(i)
local on contour-guided local

branch. The multi-scale architecture could be seen as inherent combination of
plain architectures that make fusion on different scales and is foreseeable to make
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Fig. 4. Our proposed multi-scale architectures. ⊗ and ⊕ denote element-wise product
and plus.

the effect of contour guidance more intensive in a hierarchical way. While testing,
Fglobal and Flocal is concatenated to discriminate pedestrian identifies. Here the
fusion operation on ith layer could be reformulated as

F
(i)
local = F

(i)
local ⊕ F

(i)
global ⊗ F

(i)
local (2)

where ⊕ and ⊗ denotes element-wise addition and product, respectively.

3.3 Contour-Guided Auxiliary Mechanism

We further transfer our effective methodology to a part-based deep model, PCB
[14], demonstrating that our contour-guided method could feasibly serve as an
auxiliary mechanism to promote existing state-of-the-art models. We choose
ResNet50 as the backbone of PCB model and make slight modification on PCB
by applying the architecture(as shown in Fig. 2(c)) on the backbone network.
Experiments illustrate that part-based learning and contour-guided mechanism
could in fact compensate each other. The contour-guided mechanism shows
promising future of combining with other re-ID deep models thanks to simplicity
and effectiveness.

4 Experiment

4.1 Datasets and Evaluation Protocol

For performance evaluation, we carry out experiments on three large-scale person
re-ID benchmarks: Market-1501 [22], DukeMTMC-reID [23], MSMT17 [17]. We
adopt the standard person re-ID setting including the training/test ID split and
test protocol on three datasets. Specially, we do not employ validation set of
MSMT17 for fairness. For performance measure, we use the cumulative matching
characteristic (CMC) and mean Average Precision(mAP) metrics.
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4.2 Implementation Details

To extract pedestrian contours, we employ a powerful edge detection model RCF
[8]. We implement our contour-guided architectures in the PyTorch framework
and conduct a unified parameter setting on three datasets. We leverage the
ImageNet-pretrained ResNet as the backbone initialization. All person images
are resized to 256 × 128. In each iteration of training phase, 32 samples form a
batch and are forwarded to softmax loss layer. We use AMSGrad optimizer [9]
with hyper-parameters β1 = 0.9 and β2 = 0.999. We start with fixing all layers
of the backbones and solely training the linear classification layer for 10 epochs.
Then all layers are trained together for 60 epochs. The initial learning rate of the
unified training is set as 3e−4. After iterating for 20 epochs and 40 epochs, the
learning rate will be updated as 1/10 and 1/100 of the initial value. To overcome
overfitting, we employ a probability of 0.5 to augment training data by means
of horizontal flipping and spatial translation.

4.3 Performance Evaluation

Comparisons with Baseline Model. Table 1 compares our contour-guided
models against the ResNet50 baseline person re-identification. The structures
which make fusion between original images and contours surpass the base-
line dramatically. For example, Plain-C improves performance over the base-
line model by 8.9%/5.1% in mAP/Rank-1 on Market-1501, 6.1%/2.9% on
DukeMTMC-reID and 6.9%/6.3% on MSMT17. The multi-scale one boost the
performance further in most situations. With contours as prior guidance infor-
mation, deep models seems to learn a more robust and generalized feature rep-
resentation, which verifies our hyphothesis to some extend. However, Plain-A
learns original image feature and contour feature separately and degrades a lot.
We take an insight of the phenomenon. As shown in Fig. 5, it is harder for con-
tour branch to converge in a classification re-ID model, implying that features
individually extracted from contour are not competent enough to fitting com-
plicated pedestrian benchmarks, consistent with the illustration in [4]. So it is
appropriate to utilize contour as guidance for learning local features based on
global feature.

Table 1. Model performance compared with the baseline model ResNet50. We denote
plain architectures in Fig. 2 orderly as Plain-A, Plain-B, Plain-C, and the multi-scale
architecture in Fig. 4 as Multi-Scale.

Models Market-1501 DukeMTMC-reID MSMT17

mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10

ResNet50 67.2 85.3 93.8 96.2 58.9 78.3 88.8 91.3 31.1 59.2 74.4 79.9

Plain-A 59.6 81.9 93.2 95.3 49.2 73.0 85.2 88.7 23.2 52.5 67.8 73.9

Plain-B 72.2 88.5 95.8 97.2 60.5 78.8 88.9 91.8 34.4 63.9 77.2 81.8

Plain-C 76.1 90.4 96.4 97.5 65.0 81.2 90.7 93.4 38.0 65.5 78.7 83.6

Multi-Scale 75.7 89.7 96.0 97.6 66.0 82.3 91.7 95.1 40.3 67.2 80.4 85.0
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Table 2. Model performance of architectures based on different backbone networks,
such as ResNet18, ResNet34 and ResNet50. We denote the ResNet50-based architecture
(c) in Fig. 2 as Plain-C-50, and the architecture in Fig. 4 as Multi-Scale-50. The rest
are done in the same manner. Specially, Plain-C-50+18 represents the model that use
ResNet50 for global branch and ResNet18 for contour-guided local branch.

Models Market-1501 DukeMTMC-reID MSMT17

mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10

ResNet18 60.2 82.0 92.8 95.2 52.9 75.0 86.0 89.2 23.4 51.9 68.1 74.3

Plain-C-18 69.5 88.2 95.5 97.1 58.6 77.9 87.7 90.7 30.3 60.1 73.7 78.8

Multi-Scale-18 69.1 87.3 94.9 96.3 57.9 77.6 87.4 89.9 30.7 60.0 74.1 79.3

ResNet34 68.1 86.3 94.6 96.5 59.1 78.7 88.6 90.9 26.8 55.4 70.8 76.6

Plain-C-34 72.9 89.4 95.9 97.4 62.3 80.0 89.1 91.9 35.1 64.0 77.6 82.3

Multi-Scale-34 72.4 88.2 95.7 97.2 62.1 79.9 89.8 91.9 35.3 64.2 78.3 82.8

ResNet50 67.2 85.3 93.8 96.2 58.9 78.3 88.8 91.3 31.1 59.2 74.4 79.9

Plain-C-50+18 73.0 88.9 96.1 97.2 61.7 79.5 89.0 92.5 34.9 63.4 76.6 81.4

Plain-C-50 76.1 90.4 96.4 97.5 65.0 81.2 90.7 93.4 38 65.5 78.7 83.6

Multi-Scale-50 75.7 89.7 96.0 97.6 66.0 82.3 91.7 95.1 40.3 67.2 80.4 85.0

Effectiveness of Backbone and Feature Selection. Table 2 shows per-
formance of contour-guided models beyond different backbone networks. We
apply the architecture (c) in Fig. 2 on the foundation of different backbones. It
reveals that either the plain version or the multi-scale version could well gener-
alize remarkable improvement on different backbone networks. Besides, inherent
capacity of backbone networks substantially determines competence of contour-
guided models. Figure 6 makes a comparison on model performance when testing
the multi-scale model with different feature selection(as shown in Fig. 4). The
concatenation of global feature and local feature shows overwhelming superiority
over individual ones universally, which is regarded as the fusion of common CNN
features and contour-guided features.

Performance of Contour-Guided PCB. For the sake of fairness, here we
train the standard PCB with the same protocol in our setting. Table 3 shows
that the contour-guided mechanism is still effective on PCB model. We could
find that contour-guided and part-based learning in fact compensate each other,
when comparing PCB-Contour with the other two models. Experiments has
proved contour-guided mechanism as simple but useful for expanding and trans-
ferring. Notably, plain model also conspicuously surpasses the standard PCB on
all benchmarks, showing superiority over the part-based learning.

Comparisons with State-of-the-Art. Table 4 shows the performance of our
contour-guided models against the current state-of-the-art. We compares the
proposed models with two types of deep models: the global learning ones and
pose-guided ones. All of our models including the primitive plain one, surpass the
state-of-the-art models. PCB-Contour achieves the best performance on Market-
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Table 3. Model comparision between original PCB and our contour-guided models.
PCB-Contour represents the contour-guided PCB with a backbone in the same struc-
ture of Plain-C.

Models Market-1501 DukeMTMC-reID MSMT17

mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10

Plain-C 76.1 90.4 96.4 97.5 65.0 81.2 90.7 93.4 38.0 65.5 78.7 83.6

PCB 69.1 86.7 94.7 96.4 59.0 79.5 88.4 91.2 33.0 59.9 75.5 80.9

PCB-Contour 76.7 91.2 96.0 97.4 68.8 82.8 91.0 93.4 39.1 64.9 77.7 82.6

Table 4. Performance comparision with the state-of-the-art.

Models Market-1501 DukeMTMC-reID MSMT17

mAP R-1 mAP R-1 R-1 mAP

SVDNet [13] 62.1 82.3 56.8 76.7 – –

AWTL [11] 75.7 89.5 63.4 79.8 – –

GoogleNet [15] – – – – 23.0 47.6

GLAD [18] 73.9 89.9 – – 34.0 61.4

PDC [12] 63.4 84.1 – – 29.7 58.0

PIE [21] 69.0 87.7 62.0 79.8 – –

Plain-C 76.1 90.4 65.0 81.2 38.0 65.5

Multi-Scale 75.7 89.7 66.0 82.3 40.3 67.2

PCB-Contour 76.7 91.2 68.8 82.8 39.1 64.9

1501 and DukeMTMC-reID which exceeds global learning and pose-guided com-
petitors by 1%/1.7% and 5.4%/3% in mAP/Rank-1. The multi-scale model is
the winner on MSMT17, achieving a performance improvement of 6.3%/5.8% in
mAP/Rank-1 over the currently leading models. Contour-guided models taking
advantage of both global and contour-guided local learning, empirically demon-
strate the huge superiority over conventional global learning methods and pose-
guided ones, certifying that contour is a reliable modality to develop in the field
of person re-ID.

Fig. 5. Loss curves of original RGB image branch and contour-based local branch on
architecture (a) in Fig. 2.
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Fig. 6. CMC curves of the multi-scale model when testing with different feature groups.
Feat-G and Feat-L denote the feature learned by global branch and local branch shown
in Fig. 4. Feat-G+Feat-L means testing with the concatenation of Feat-G and Feat-L.

5 Conclusion

In this paper, we make the first attempt to utilize pedestrian contour explic-
itly in deep re-ID model. We feed the contours as inputs of deep models, and
together with original images form multi-branch architectures. We propose sev-
eral contour-guided architectures, which not only outperform the baseline model
by a large margin, but surpass both of global learning and pose-guided com-
petitors. Empirical experiments have fully demonstrated the great significance
of contour-guided learning for robust feature representation. Furthermore, we
also apply our methodology on the backbone of a part-based model, PCB. It
is revealed that the part-based and contour-guided learning could compensate
each other on a unified architecture.
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Abstract. License plate detection has wide applications in the intelli-
gent transportation system, while it still remains challenges to improve
the robustness under various shooting distance and observation angles.
To get better performance, a novel convolutional-neural-network-based
method is proposed, which is achieved with auxiliary information and
context fusion model. First, the auxiliary information is employed in
our framework, which corresponds with resolutions, orientations and
shapes of license plates. Specifically, the multiple resolutions are col-
lected through integrating multi-level features of convolution hierarchy.
Besides the various scales and ratios, the region proposal network (RPN)
with multi-angle anchors and branching structure is applied to generate
proper proposals. Second, an effective context fusion model is designed to
fully exploit the hidden correlation between license plates and contextual
properties. The local and contextual features are independently learned
in the dual pathways, which are later joint to form a powerful represen-
tation in subsequent layers. Comprehensive experiments on the publicly
available datasets confirm the effectiveness of the proposed method.

Keywords: License plate detection · Convolutional neural network ·
Auxiliary information · Context fusion

1 Introduction

License plate detection plays an important role in intelligent transportation sys-
tem (ITS), which facilitates wide applications such as vehicle retrieval, traffic
control and parking payment. The robustness of license plate detection under
different environments, being a crucial component for the whole license plate
recognition system. As observed in [1], the main challenges of license plate
detection attribute to various resolutions, observation angles and environmental
interference. Although numbers of approaches have been proposed, it is still a
challenging task to accurately locate license plates in an open environment.
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In the past two decades, license plate detection has been an active subject
in computer vision, a large number of methods are proposed to get robust per-
formance. Zhou et al. [2] build the principal visual word through bag of words
model, the local features are joint to find license plate regions. Yu et al. [4]
analyze the characteristics of license plates in frequency domain, the wavelet
transform and empirical mode decomposition analysis are used for license plate
detection. There are some methods following that combining candidate regions
and feature analysis to improve detection results. In [5], connection component
analysis is used to extract candidate regions and a geometric relationship matrix
models the layout of characters. Then the final locations are screened out through
genetic algorithm. Panahi et al. [6] perform connected component analysis and
random sampling consensus after applying adaptive binarization and block divi-
sion to gray images. In [7], a line density filter (LDF) based on edge and texture
characteristics of license plate is proposed, which unites the similar pixels in each
row. Although these methods have made great progress, the detection results of
traditional methods are relatively coarse and manually designed features are
limited to a certain environment.

In recent years, many researchers focus on convolutional-neural-network-
based (CNN) methods to achieve impressive detection results. Kurpiel et al. [13]
propose a license plate detection method based on adjacent sub-regions. The
input image is segmented into several overlapping sub-regions, each of which
gets a confidence score to estimate final results through CNN. In [14], the sig-
nificance of license plate is enhanced through multi-step preprocessing, then
the candidate regions are further screened out through CNN model. Laroca
et al. [15] apply the general object detector for license plate detection, which is
divided into two consecutive subtasks: vehicle detection and license plate detec-
tion. Although this method reduces environmental interference, the false alarms
of the multi-step process will propagate in subsequent tasks. The current CNN-
based methods rarely take into account license plate’s characteristics, which will
lead a further improvement to detection performance.

In this paper, we propose a framework for license plate detection under dif-
ferent shooting distances and observation angles. The main contributions are
summarized as follows. Firstly, the auxiliary information corresponding to char-
acteristics of license plate is customized in classical Faster R-CNN. We enhance
the robustness of small license plates through integrating features of multiple res-
olutions. Then rotated anchors are adopted in the RPN stage to reduce detection
redundancy caused by observation angles. Secondly, focusing on fully exploiting
the contextual information of license plate, an effective context fusion model is
designed, in which it builds upper and lower branches for powerful representa-
tions. The local and contextual correlations are further combined for classifica-
tion and box regression.

The remainder of this paper is organized as follows. The related works
adopted for our method are introduced in Sect. 2. In Sect. 3, the proposed method
is introduced in detail. The effectiveness of our method is proved through exper-
iments in Sect. 4. The conclusion of our work is stated in Sect. 5.
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2 Related Work

2.1 Deep Learning for License Plate Detection

Comparing to traditional methods with manually designed features, the auto-
matic feature extraction through CNN overcomes the unstable features and envi-
ronmental interferences to a certain extent. Therefore, some researchers propose
CNN-based methods for license plate detection [17–20]. However, a large num-
ber of annotated samples are basis for higher performance in deep convolution
networks, the generalization ability will inevitably decrease in absence of sam-
ples. At present, there are some publicly available datasets, such Brazilian road
license plate dataset SSIG [12] and Taiwan’s multi-scene license plate dataset
AOLP [16]. Abundant samples allow CNN to fit more complex patterns, the
data augmentation technology and proper training strategies are also essential
to the convolutional neural network.

In the past few years, more and more object detection subjects have adopted
deep learning to achieve advanced performance. Girshick et al. [11] first introduce
CNN into object detection which achieves impressive improvements compared
with traditional methods. Subsequently, a series of CNN-based methods are
developed [8–10], there are also many researchers employing such object detec-
tion models for license plate detection. Xie et al. [17] propose a multi-directional
license plate detection method based on YOLO [9], which detects license plates
orderly in two subnetworks. Polishetty et al. [18] propose a heuristic-based
method that combining visual significance and deep features. The coarse bound-
ary is extracted by manually designed filters, which is further refined through
CNN. Rafique et al. [19] carry out a series of experiments on different detection
methods, which provides a feasible work to solve the problem of license plate
detection. In [20], the CNN model is used to extract the candidate regions of
license plate and the bounding box is refined through horizontal and vertical
edge projection. These convolutional-neural-network-based methods prove that
automatically extracted features produce more robust performance.

2.2 Available Information for License Plate Detection

The advancement of Faster R-CNN [8], owes a lot to the fact that the region
proposal network generates numerous high-quality translation-invariant propos-
als. For license plate detection task, applying such a multi-category model is not
exactly suitable. Since license plates have some special properties and available
priors, it is feasible to employ multiple characteristics of license plate in the
network to achieve more effective performance. In the actual scene, the angle
between license plate and camera often leads a redundant detection region, which
is adverse to subsequent recognition. We have noticed that few researchers focus
on solving the problem of observation angles, the text detection methods [21,22]
can be migrated to establish a suitable bounding box. Furthermore, compared
with general objects, license plate normally occupies fewer pixels and its context
region is usually fixed in the image, which will provide a wealth of information.
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Chen et al. [24] have illustrated that utilizing contextual region has expected
effects on small objects. Lin et al. [23] have shown that utilizing the semantic
and location information of multi-level feature hierarchies will improve the per-
formance of small object detection. The combination of high and low-resolution
features will improve the detection performance for license plates in various res-
olutions. Therefore, we employ the auxiliary information and context region in
Faster R-CNN to solve small targets, multiple angles and interference problems
in license plate detection.

3 Proposed Method

In this section, the license plate detection framework is introduced in detail,
as shown in Fig. 1. The two-stage network Faster R-CNN is employed as our
baseline, which is augmented through auxiliary information and contextual fea-
tures. Given an input license plate image, the multi-level feature maps in shared
convolution are integrated to collect multi-resolution details. The customized ori-
entation and shapes are used in the RPN stage for proposal generation. At last,
an effective context fusion model is designed to fully exploit local and contextual
features, which forms a comprehensive representation for final results.

Fig. 1. Overview of proposed framework architecture, which consists of three sequential
modules: feature integration, RPN stage and context fusion model.

3.1 Auxiliary Information Enhancement

Due to different shooting distance, the size of license plates vary in a wide range.
Aside from license plates with large spatial resolutions, the information repre-
senting small license plates is continuously lost in the convolution feature hier-
archy. Different from the single-scale feature map exploited in original Faster
R-CNN, we reuse the multi-level feature maps to integrate multi-resolution infor-
mation of license plates, the details are shown in Fig. 2. The multi-level feature
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Fig. 2. The detailed architecture of feature integration, which have a comprehensive
collection of features at multiple resolutions.

maps {C2, C3, C4, C5} correspond to output of each block in ResNet [3], which
have a scaling step of 2 strides from high to low.

In the feedforward network, the bottom-up C3, C4 and C5 are exploited to
integrate multi-level features in consideration of the variation range of license
plates. In detail, the bilinear interpolation scales C3, C5 to the same resolution as
C4, since C4 has appropriate strides for the multi-scale license plates in image.
Then a 1 × 1 convolution layer unifies channels to the fixed number of 256.
Furthermore, the element-wise addition integrates high-level semantics and low-
level details into powerful features. At last, the 3×3 convolution layer is used to
remove aliasing caused by sampling and refine features. The integrated features
are utilized for classification and regression in the following stages.

Classical Faster R-CNN uses horizontal boxes (x, y, w, h) to represent loca-
tion of objects. However, applying horizontal boxes for multi-directional license
plates inevitably leads a redundancy in detection region, as illustrated in Fig. 3.

(a) horizontal bounding box (b) rotational bounding box

Fig. 3. The illustration of difference between horizontal and rotational detection. The
red box denotes the prediction results and the green one denotes the ground truth.
(Color figure online)

To handle this problem, a new variable θ is applied to represent the orienta-
tion of anchors in the RPN stage. θ is defined as the angle between the longer
side of the bounding box and the positive direction of the x-axis. The orientation
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or its opposite has the same role for the symmetrical structure of license plate.
In this paper, we always keep the acute angle to denote the orientation. Finally,
the detected license plates are represented by five variables (x, y, w, h, θ).

In addition, the special shape of license plate is taken into account, two
convolution layers with similar shapes are applied to efficiently extract features.
The original 3×3 convolution layer is replaced by two rectangular layers with size
of 5×3 and 3×1, both of which separately slide on each location of the integrated
feature map in RPN stage. We concatenate the two 256-dimensional features into
512-dimensional output for proposal generation. The anchor strategy and branch
structure in the PRN stage are shown in Fig. 4.

Fig. 4. The anchor strategy and branch structure in the RPN stage. The multiple
scales, aspect ratios and angles are used for translation-invariant anchors. The mapped
features of each sliding windows are concatenated for proposal generation.

In the RPN stage, a total of 256 anchors are collected in a mini-batch for pro-
posal generation. In order to avoid fewer positive anchors caused by low-quality
angles, another strategy is adopted to select positive and negative anchors. (i)
The anchors that keep the highest IoU or greater than 0.7 overlapped with the
ground-truth are selected as positive samples. (ii) The anchors that keep IoU
in the range [0.3, 0.7] within 10◦ differences to the ground-truth are selected as
positive samples. (iii) The negative anchors keep the IoU less than 0.3. Consid-
ering inaccuracy of using horizontal IoU to select the rotated anchors, a skew
IoU algorithm [22] based on triangle partition is applied. The collected anchors
will serve as inferences to learn proper proposals for license plates.

3.2 Context Fusion Model

In this subsection, we focus on fully exploiting the local and contextual informa-
tion to improve the robustness of license plate detection. The proposed method is
the first introducing contextual region as supplementary information in license
plate detection. Since license plates usually possess distinct texture and fixed
backgrounds, it can be considered that contextual region will provide compre-
hensive features and enhance the capability against environmental interference.



314 N. Wang et al.

The robustness of classification and box regression will be enhanced through
combination with contextual features.

Fig. 5. The architecture of designed context model, which is a dual-path network with
multiple layers, the upper blue branch is for context and the lower red branch is for
license plate. Features are deeply encoded for final classification and box regression.
(Color figure online)

Based on the analysis above, an effective context fusion model is designed
to exploit contextual information, as shown in Fig. 5. After proposal generation
in the RPN stage, the context regions are extracted from the 4 times of license
plate proposal boxes. The ROI align [27] is applied to project the contextual
region and proposal onto the multi-scale features which are encoded into fixed
dimensions. Subsequently, a fully connected layer (FC1) is used to capture high-
level nonlinear representations as well as remove redundancy. Then the learned
context and proposal features are concatenated, which are fed into two hidden
FCs to mine joint representation of the correlation in local and context. Each
fully connected layer follows a non-linearity ReLU, after which the final repre-
sentations are used for classification and box regression.

In context model, we use horizontal boxes for contextual region to prevent
information loss caused by sensitive angles. Since grid splitting has the problem
of feature misalignment which will cause a deviation for location regression, the
bilinear interpolation is employed in ROI align. Moreover, taking into account
the special aspect ratio of license plate, the cropped features are formed into a
fixed dimension of 13 × 4 instead of default 7 × 7. The learning parameters of
upper and lower branches are updated separately in back propagation.

3.3 Loss Function

In the proposed method, the total loss includes two parts: the classification loss
Lcls(pi, p

∗
i ) and regression loss Lreg(ti, t∗i ), which is defined as:

L(pi, p
∗
i ; ti, t

∗
i ) =

1
Ncls

∑

i

Lcls(pi, p
∗
i ) + λ

1
Nreg

∑

i

p∗
i Lreg(ti, t∗i ) (1)

In Eq. (1), Lcls employs cross-entropy loss and Lreg is defined as SmoothL1 loss.
The weight λ is 1, the subscript i is the index of anchor in a mini-batch, if the
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anchor is positive, p∗
i is 1 otherwise it is 0. pi indicates the probability that anchor

i is positive. ti and t∗i are 5-dimensional parameterized coordinates defined as:

tx = (x − xa) /wa, ty = (y − ya) /ha

tw = log(w/wa), th = log(h/ha) (2)
tθ = θ − θa + kπ

t∗x = (x∗ − xa) /wa, t∗y = (y∗ − ya) /ha

t∗w = log(w∗/wa), th = log(h∗/ha) (3)
t∗θ = θ∗ − θa + kπ

where variables x, x∗ and xa are for the predicted, ground-truth and anchor
boxes, likewise y, w, h, θ. The integer k, k ∈ Z is used to ensure θ within a
predefined range of license plate orientations in Eqs. (2) and (3).

4 Experiments

In this section, we first report the experimental datasets and implementation
details of the proposed framework. Then a series of experiments are set up to
confirm the effectiveness of proposed method. All experiments are implemented
on Tesla K40C GPU with 12G memory.

4.1 License Plate Datasets

The Application-Oriented License Plate (AOLP) and SSIG datasets are used in
the experiment. The AOLP dataset contains 2049 images of Taiwanese license
plates, including three subsets with different difficulties: access control (AC),
traffic enforcement (LE) and road patrol (RP). The SSIG dataset is collected
on the road, including 6675 images with the size of 1920 × 1080, which contains
mutative shooting distance and actual interference. It should be noted that the
two datasets are annotated with horizontal boxes, we add angle information
through (x, y, w, h, θ) to cover the ground truth. A total of 8000 images are
obtained for each dataset through data augmentation, we randomly assigned to
70% for training and the other 30% for testing in the experiment.

4.2 Implementation Details

In the training stage, we adopt the end-to-end strategy to train the proposed
framework until it reaches the best performance. The pre-trained resnet-50 is
employed as the backbone for feature extraction. The weight decay is set to
10−4. The Adam optimizer [25] with a decreasing learning rate is adopted for
total 105 iterations. The learning rate maintains 10−3 for first 30k iterations and
10−4 for another 30k, it remains 10−5 to last iteration. In the RPN stage, the
proportion of positive and negative anchors is set to 1:1. The basic anchor scales
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are set in range {16, 32, 64, 128, 256}, the aspect ratios in {2, 3, 4}, and the angles
in {−20◦,−10◦, 0◦, 10◦, 20◦}. For each location on the integrated feature map, a
total of 5 × 3 × 5 anchors are generated. The other hyper parameters follow the
common settings in original Faster R-CNN.

4.3 Experimental Results

In this subsection, we report comparisons of the performance of our proposed
method with other detection methods on SSIG and AOLP datasets. The Preci-
sion(P), Recall(R) and F-measure(F) are employed for quantitative assessment.
Firstly, we analyze the effectiveness of the proposed method through comparing
different models on SSIG dataset, the results are shown in Table 1.

Table 1. Comparison with other detection methods on the SSIG dataset

Model Feature
integration

Rotated
anchors

Context
fusion

P(%) R(%) F(%)

Faster R-CNN [8] 94.10 92.96 93.53

Ma et al. [21]
√

94.74 93.22 93.97

Open ALPR [26] 93.24 91.78 92.50

Part-1
√ √

94.95 94.24 94.59

Proposed
√ √ √

96.58 95.91 96.24

The comparative results in Table 1 show that the proposed method exhibits
superior performance to other methods. Compared to RRPN [21] and Open
ALPR [26], the auxiliary and contextual information in the license plate detec-
tion network facilitate further improvements. To further evaluate the proposed
method, we set up another detailed experiment compared with Faster R-CNN [8]
and YOLO [9]. As shown in Fig. 6, the proposed model achieves better perfor-
mance under different environments and IoU thresholds.

(a) F-measure of different environments (b) F-measure of different IoU thresholds

Fig. 6. Evaluation of the baselines and proposed method.
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In order to prove the effectiveness of the proposed method, we carried out a
comparison with other license plate detection methods on the AOLP dataset, as
shown in Table 2. It should be noted that the detection results of the second row
in Table 2 are quoted from [18]. The multi-directional text detection method [21]
are verified on the license plate detection, as shown in the third row. Open
ALPR [26] in the fifth row is an open source system. The proposed method has
achieved the highest precision and recall on the three subsets.

Table 2. Comparison with other detection methods on the AOLP dataset

Approach AC LE RP

P(%) R(%) F(%) P(%) R(%) F(%) P(%) R(%) F(%)

Faster R-CNN [8] 98.96 98.89 98.92 96.91 96.66 96.78 95.93 95.14 95.53

Polishetty et al. [18] 98.93 98.87 98.90 98.34 96.81 97.57 96.28 97.43 96.85

Li et al. [20] 98.53 98.38 98.45 97.75 97.62 97.20 95.28 95.58 95.42

Ma et al. [21] 96.81 96.62 96.72 95.70 95.51 95.60 97.32 97.19 97.25

Open ALPR [26] 97.83 98.15 97.99 96.90 97.25 97.07 97.34 97.62 97.48

Proposed 99.12 99.06 99.09 98.62 98.77 98.69 98.19 98.24 98.22

The experiment results on the AOLP dataset demonstrate that the pro-
posed method has competitive results with other methods in the literature.
Since the RP subset contains many multi-directional license plates that the pro-
posed method shows a marked improvement over other approaches. Although
artificially introducing the auxiliary and contextual information in the network
increase additional computation, the time request for testing is averagely 0.76 s
per image, which is still at a relatively fast level. The detection examples in
Fig. 7 show the superiority of our framework. The example images are partially
cropped in the third row.

5 Conclusion

In this paper, we propose an accurate license plate detection framework to solve
problems of various scales and observation angles. First, we embed characteris-
tics of license plate in Faster R-CNN to improve the performance. The multi-
resolution information is collected through reusing multi-level features. The rota-
tional anchors and branch structure generate suitable proposals for license plate.
Moreover, the detection performance is further augmented by utilizing contex-
tual information. Additionally, our framework can also be applied to other region
proposal-based methods. Experimental results show that the proposed frame-
work has superior performance in different environments.
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Fig. 7. Examples of the detection results.
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Abstract. With the upgrading of application scenarios, computer vision
is progressively expanded to 3D. Many methods that process point cloud
directly provide a new paradigm for 3D understanding. Most of these
methods employ maxpooling to handle the sparsity and disorder of point
cloud. However, maxpooling layer extracts the global feature of the entire
point cloud without learnable parameters, which is heuristics and insuf-
ficient. In this paper, we propose a VLAD enhanced Feature Aggregate
Module to aggregate local features adaptively. In addition, a Channel
Attention Module is applied to the features to reassemble the elements
in high-dimension feature space. The experiments in both classification
and segmentation demonstrate that the proposed method can improve
the capacity of the baseline to extract more informative features. Specif-
ically, we improve the accuracy from 88.5% to 89.8% for classification
in ModelNet40 and improve the accuracy from 78.94% to 82.07% for
semantic segmentation in S3DIS.

Keywords: Point cloud · Feature Aggregate Module · Channel
Attention Module

1 Introduction

With the upgrading of application scenarios, 3D understanding has received a
significant amount of attention in computer vision, especially for automatic driv-
ing and drone. Meanwhile, motivated by huge application demand, significant
progress has been made in sensor technology and innumerous 3D data is gen-
erated by a depth camera, radar, and lidar. Consequently, 3D data has many
formats such as voxels, meshes and point cloud owing to the diversity of sensor.
Among these different 3D data, the point cloud is characterized by high accu-
rate and easy acquisition. The point cloud is a set of points with sparsity and
disorder in 3D Euclidean space and the inherent irregular makes point cloud
very different from 2D data. To enable UAVs [1] and unmanned driving [2] to
perceive a 3D scene, high-level semantic understanding of 3D data is required.
In common with 2D computer vision, the primary tasks for 3D understanding
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are classification and segmentation. However, the input in 2D computer vision
is usually images and videos, which are organized in a regular format. Although
deep learning [3] has revolutionized many research fields in computer vision,
conventional convolutional neural networks are not suitable for the point cloud.
Therefore, many methods have been proposed to process point cloud and this
paper will focus on the identification of point clouds based on convolutional neu-
ral networks. Recently, popular neural networks based methods for point cloud
processing can be divided into four categories:

1. Voxel-based convolutional neural networks: These methods transform the
point cloud into voxels and then employ 3D convolution neural networks
on voxels, such as VoxNet [4] proposed by Maturaba and Scherer. However,
the sparsity of the data causes a loss of details. FPNN [5] and Voted3D [6]
proposed a special method to deal with the sparsity problem, but convolution
is still limited to the sparse voxel. Besides, there are still huge challenges in
dealing with large scenes. Some researchers have optimized the network in
the data structure. For example, Klokov et al. proposed Kd-Net [7], Wang et
al. [8] proposed O-CNN, and Riegler et al. [9] proposed Oct-Net. But sparse
3D data with 3D convolution kernels suffer from computation and memory
cost.

2. Multi-view based Convolutional neural networks: Researchers try to process
3D data by referring to 2D data processing methods. For example, rendering
3D data into 2D images from different perspectives [10–12], and then using
traditional 2D convolutional neural networks. This paradigm has achieved
good results in classification and retrieval thanks to the abstract ability of
deep learning. Among them, Su et al. [11] gather the information from multi-
ple views of the 3D object together and turn them into a single compact shape
descriptor, which is known as MVCNN. However, multi-view convolutional
neural networks are difficult to extend to the segmentation in 3D data. When
rendering 3D data, the choice of angle affects the final experimental results.
In fact, how to select the angle in this method is also difficult. In addition,
rendering the 3D data into 2D data may lose part of the 3D spatial position
information, and the data processing process is relatively complicated.

3. Feature-based deep learning network: Fang et al. [13] and Guo et al. [14]
convert traditional 3D data into corresponding feature description vectors
and then use the fully connected network to obtain the result of classifica-
tion. Because the features are manually designed, the quality of the features
selected directly affects the performance of the network significantly, the pro-
cess of selecting the original data features will be more complicated.

4. Point cloud based deep learning network: Qi et al. proposed PointNet [15]
and PointNet++ [16] to directly deal with the unordered point cloud. These
methods are not only convenient but also can preserve the integrity of the
point cloud. All points are independently handled to extract local features,
sharing multiple multi-layer perceptrons. Maxpooling layer is used to aggre-
gate the global feature from local features because of its permutation invari-
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ance. But maxpooling layer has no learnable parameters, which makes this
process heuristics and insufficient.

In order to alleviate the weakness caused by the insufficiency of maxpooling
layer, we propose the VLAD enhanced Feature Aggregate Module to extract
more sufficient global feature and Channel Attention Module to reassemble the
elements in high-dimension feature space. The VLAD enhanced Feature Aggre-
gate Module is robust to the order of input points and stores the residuals for
each point to the centers in a trainable manner. The Channel Attention Mod-
ule strengthens the representational power of convolutional layers by enhancing
the spatial encoding throughout its feature hierarchy. The architecture of our
network is illustrated in Fig. 1 and our contributions are as follows:

1. We develop a convolutional neural network with VLAD enhanced Feature
Aggregate Module and Channel Attention modules to extract more informa-
tive global feature for 3D point cloud processing in an end-to-end manner.

2. We demonstrate that the limitations of maxpooling layer can be alleviated
with some learnable feature aggregate modules robust to the order of points,
while the theoretical analysis about the VLAD is provided.

3. We improve the accuracy from 88.5% to 89.8% for classification in Model-
Net40 and improve the accuracy from 78.94% to 82.07% for semantic seg-
mentation in S3DIS, which verifies the effectiveness of the proposed method.

Fig. 1. The architecture of proposed method

2 Related Work

The structure of PointNet is shown in Fig. 2, which can serve as the classifica-
tion network and segmentation network. In the pointnet framework, multi-layer
perceptron (MLP) transforms the 3D coordinate into high-dimensional feature
space. Due to the independence of point-wise transform, the point cloud is easy
to apply the rigid or affine transformation. Therefore, the T-Net [17] is used for
transforming the points adaptively.
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Fig. 2. Structure of PointNet

Formally, given an unordered point set, where an aggregate function can be
defined as follows:

f(x1, x2, ..., xn) = γ( max
i=1,...,n

h(xi)) (1)

Where γ and h usually refer to MLPs to transform the features. It can be
proved that any continuous aggregate function can be arbitrarily approximated.
In this way, points in 3D are transformed into more informative high-dimensional
features and the aggregated global feature is robust to the disorder of point cloud.
However, there are two problems in the PointNet. (1) When projecting the low
dimensional features to high-dimensional features, the surrounding context of
the point is not used. Due to this, the network can’t capture the contextual
features. (2) When using the maxpooling operation, the feature components of
different points are used directly to replace the features of the entire input point
cloud, resulting in the loss of surface information.

3 Method

3.1 Channel Attention Module

Generally, the importance of different feature components varies a great deal for
the final decision. Taking images understanding as an example, an important
feature is usually a region where are corners, edges. In PointNet, features are
transformed into high-dimension space via MLP while MLP is usually imple-
mented with 1 × 1 convolution operation. The amount of convolution kernels
determines the dimension of the target feature and the components of this feature
are supposed to be reassembled for better expression capacity. Inspired by this,
we designed a channel-based attention mechanism, called Channel Attention
module, referred to as CA. CA module is data-driven processing that enhances
representative features and suppresses weaker features. Given a corresponding
input, the CA module can be formulated as:

X
CA−−→ Y,X ∈ RN×D×C , Y ∈ RN×D×C (2)
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Where X is the input, Y is the output, N is the size of the point cloud, D
is 1. C is the number of channels. The size of input and output is identical, so
the CA module can be embedded into any network easily. The specific operation
is shown in Fig. 3. Referring to the idea of Qi et al., in the CA module, we
employ the maxpooling operation to retain the most effective features. To obtain
the most important channel information, we use a fully connected network for
further dimension reducing. The feature information is compressed so that the
reserved channel features are more significant. After that, the nonlinearity of the
network is increased by the ReLU. Then we use another fully connected network
to recover the dimension of the channel with Sigmoid as the activate function. So
the number of the channel is the same as the input. Finally, we do the channel
weighting and fuse the weighted channel feature with the original features.

Fig. 3. Channel Attention module

The CA module can rank the importance of the components in the feature
and reassemble them, which is an implementation of feature selection in deep
learning. In addition, due to the presence of maxpooling in CA module, the global
information is fused with local features in an early stage. It ultimately enhances
the capability of the network to extract more informative global features.

3.2 NetVLAD Module

Jegou et al. [18] first proposed a local aggregation descriptor vector (VLAD),
which is regarded as a simplification of the Fisher kernel. Fisher kernel captures
statistical information about the local descriptors aggregated on the image, while
VLAD stores the sum of the residuals of each descriptor. Formally, N local image
descriptors of {xi} with D given dimension is taken as input, and there are K
cluster centers. {ck} are the parameters of VLAD. The description vector V of
the output VLAD for the entire image is D × K. For convenience, the vector is
written as a D × K matrix. When used as an image representation, the matrix
needs to be converted to a vector and normalized. The (j, k) element of V can
be expressed as:

V (j, k) =
N∑

i=1

αk (xi) (xi (j) − ck (j)) (3)
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Where, xi (j) represents the j-th dimension of the i-th descriptor, ck (j) rep-
resents the j-th dimension of the k-th cluster center. αk (xi) represents the rela-
tionship between xi and k. Specifically, αk (xi) = 1 if the cluster is closest to
the descriptor; otherwise, αk (xi) = 0. Intuitively, the D dimension in column k
of the vector represents the sum of the descriptor residuals (xi − ck) assigned
to the cluster ck. Then, the matrix V is regularized according to the column,
converted to a vector, and then regularized.

Inspired by the local aggregate descriptor vector (VLAD) representation,
Arandjelovic et al. [19] proposed a new end-to-end convolutional neural net-
work structure that can be used for scene recognition. The main components
of this neural network is NetVLAD. NetVLAD is a new universal VLAD layer
that excels in image retrieval and location recognition. This network structure
can be easily embedded in any CNN framework and can be trained through
backpropagation.

The VLAD is discontinuous because of the hard assignment of the descriptors
while training through back-propagation requires the module to be differentiable.
The problem lies in making VLAD differentiable and Arandjelovic et al. handled
this by replacing the hard assignment of descriptors with the soft assignment of
descriptors:

αk (xi) =
e−α‖xi−ck‖2

∑
k′ e−α‖xi−ck′‖2 (4)

The former equation is equivalent to the proximity of other cluster centers,
and the weight of the descriptor is assigned to the cluster whose proximity is
proportional. The range of αk (xi) is between 0 and 1, with the highest weight
assigned to the nearest cluster center. α is a positive constant that controls the
magnitude of the attenuation of the response. It can be noted that this setting
is the same as the original VLAD.

By extending the square of equation, the e−α‖xi‖2
in denominator and the

intermolecular can be eliminated:

αk (xi) =
ewT

k xi+bk

∑
k′ ewT

k′ xi+bk′
(5)

Among them, vector wk = 2αck, scalar bk = −α‖ck‖2. Substituting Eq. (5) into
Eq. (3), the final form of NetVLAD can be obtained:

V (j, k) =
N∑

i=1

ewT
k xi+bk

∑
k′ ewT

k′ xi+bk′
(xi (j) − ck (j)) (6)

Where {wk}, {bk} and {ck} are the set of parameters that can be trained in each
cluster. Similar to the original VLAD descriptor, the NetVLAD layer aggregates
the first-order statistic of the residuals in different parts of the descriptor space,
which is weighted by the soft assignment of the descriptors to the corresponding
cluster. It is worth noting that the NetVLAD layer has three sets of indepen-
dent parameters {wk}, {bk} and {ck} compared to {ck} of the original VLAD,
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which is more flexible than the original VLAD. And all parameters of NetVLAD
can be obtained automatically. The NetVLAD layer was originally designed to
aggregate the local image features known by VGG and AlexNet into the VLAD
global descriptor. By sending the local feature descriptor of the point cloud into
the neural network, the global representation can also be generated. Descriptor
vector can be viewed as a supplement to the max-pooling operation. Besides,
it allows end-to-end training and reasoning and can extract global descriptors
from a given 3D point cloud. Because of the disorder of the point cloud, the
NetVLAD layer needs to be insensitive to the order of the point cloud. In the
following proof, it can be concluded that NetVLAD is a symmetric function,
that is, it can be applied in the local features to generate global features with
permutation invariance.

As shown in Fig. 4, the input of the NetVLAD layer is a high-dimensional
feature of the point cloud. It can be obtained by projecting the features with
the MLPs. The output is the VLAD descriptor of the input feature. However,
the VLAD descriptor is a high-dimensional vector, i.e., a (D × K) dimensional
vector. To alleviate resource conservation, a fully connected layer can be used to
compress the (D × K) vector into a more compact output feature vector, which
is then quadraticized to generate the final global descriptor vector.

Fig. 4. NetVLAD layer structure

3.3 Proof of Symmetry of NetVLAD

Pixels of an image have a fixed spatial position, so there is no need to consider
the order of input pixels when using filters. However, when it comes to point
clouds, the order of points matters. The output of traditional convolutional neu-
ral network varies when the order of point cloud changed. Therefore, methods
processing points directly must characteristic with permutation invariance. In
other words, the points in different orders should produce the same output. In
this paper, we use the NetVLAD architecture to get the features of the point
cloud because it’s symmetrical. The invariance of the NetVLAD layer for the
point cloud order is demonstrated below. Given the input point cloud, the MLP
independently transforms the input features to another feature space. To prove
that NetVLAD is symmetrical, it means the output of the result is irrelevant
with the order of the input point cloud.
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Proof. Assuming that the characteristics of the input point cloud P are expressed
as {p′

1, p
′
2, · · · , p′

N}, the output of the NetVLAD is V = [V1, V2, · · · , Vk], for ∀k,
we have

Vk = hk(p′
1) + hk(p′

2) + · · · + hk(p′
N ) =

n∑

t=1

hk(p′
t) (7)

where Vk(p′) satisfying

Vk(p′) =
ewT

k p′+bk

∑
k′ ewT

k′p
′+bk′

(p′ − ck)

Suppose there is another point cloud P̃ = {p1, · · · , pi−1, pj , pi+1, · · · , pj−1,

pi, pj+1, · · · , pN}, when P̃ are the same as P except for the order of pi and pj .
So for ∀k, we have

Ṽk = hk(p′
1) + · · · + hk(p′

i−1) + hk(p′
j) + hk(p′

i+1) + · · ·

+ hk(p′
j−1) + hk(p′

i) + hk(pj+1) =
n∑

t=1

hk(p′
t) = Vk

(8)

From the former equation, we can draw the conclusion that NetVLAD is
symmetrical. Therefore we can use the NetVLAD module to enhance the global
feature of the point cloud.

4 Experiments

In this paper, we incorporate the CA module and NetVLAD module into the
original PointNet network. The corresponding classification network and seg-
mentation network are designed respectively. The data set of the classification
experiment is ModelNet40 [20], and the data set used in the segmentation exper-
iment is S3DIS [21]. The proposed framework is effective both in classification
and in segmentation.

4.1 3D Object Classification

The dataset for classification is ModelNet40. It includes 12,311 CAD models, of
which 9843 are for training and 2,468 are for testing. The same data used for the
PointNet 3D target classification is to evenly sample 2048 points on the mesh
surface and normalize them to a unit sphere. During training, training data is
augmented by rotating the upper axis and dithering the points by Gaussian noise
with zero mean and 0.02 standard deviation. The experimental is conducted
on Ubuntu 14.04, and the framework is Tensorflow. Same as PointNet, each
experiment has a batch size of 32, the number of input points is 1024, the initial
learning rate is 0.001, the learning rate attenuation parameter is 0.7, the step
size is 20000 and the optimizer is Adam. PointNet consists of five convolution
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layers and one maximum pooling layer. In order to verify the validity of the CA
module proposed, we embed CA modules in different locations. The results are
shown in Table 1:

Table 1. Classification results for different CA module locations

Location Accuracy avg. class Accuracy overall

PointNet 85.5 88.5

CONV 1 86.4 89.3

CONV 2 85.3 88.4

CONV 3 86.4 89.0

CONV 4 85.9 88.9

CONV 5 85.9 88.5

MAX POOLING 86.2 88.6

When testing the CA module, the data set used is ModelNet40, the setting is
consistent with PointNet, the number of input points is 1024, and the dimension
reduction factor of the CA channel is 4. It shows that the CA module improves
the performance when embedded into most convolutional layers especially the
first and third convolutional layer. It can be concluded that the CA module is
effective, but the embedding location is sensitive.

Table 2. Classification results for ModelNet40

Methods Input # views Accuracy avg. class Accuracy overall

SPH mesh – 68.2 –

VoxNet voxel 12 83.0 85.9

Subvolume voxel 20 86.0 89.2

LFD image 10 75.5 –

MVCNN image 80 90.1 –

PointNet (vanilla) point – 83.6 87.4

PointNet (baseline) point – 85.5 88.5

CA-VLADNet point – 86.5 89.8

As we can see in Table 2, compared with previous works, the proposed method
achieves better performance. However, there is still a certain gap between the
proposed method and the multi-view based method (MVCNN) owing to the
information loss in the sampling process. In preprocessing, only 1024 points are
sampled from point cloud as the input in the proposed method while a large
number of images can be obtained by rendering in MVCNN. It is the lack of
geometric details that results in this gab.
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4.2 3D Semantic Segmentation

The dataset for semantic segmentation is S3DIS data set. It is a large-scale
semantic 3D dataset constructed by Armeni et al. of Stanford University. The
data set detected 13 semantic elements, including structural elements (ceiling,
floor, wall, beam, pillar, window, and door), common items and furniture (tables,
chairs, sofas, bookcases, and planks), and finally type of clutter, each point in
the scan is labeled with one of them. The dataset is divided into rooms, and the
room is divided into areas of 1 m by 1 m. Each of these points is represented by
a 9-dimensional vector from the three-dimensional coordinates XYZ, the color
information RGB, and the normalized position of the opposing room (from 0
to 1). During training, 4096 points are randomly extracted from each block
randomly, in testing, all points are tested. As mentioned in Armeni et al. [21],
training and testing were performed in the k-fold strategy. The batch size is 24,
the learning rate is set to 0.001, the learning rate attenuation parameter is 0.5,
and the optimizer is Adam. According to Qi et al. [15], the S3DIS data set is
divided into 6 regions, and the method of six-fold cross-validation is used. Table 3
shows the six-fold cross-validation results on the S3DIS.

Table 3. Semantic segmentation results for S3DIS

Region Evaluation PointNet (baseline) AC-VLADNet

Region one IOU 52.86 57.06

Accuracy 80.82 83.57

Region two IOU 28.92 34.51

Accuracy 64.23 73.70

Region three IOU 54.76 59.20

Accuracy 83.59 85.99

Region four IOU 40.06 42.90

Accuracy 78.55 80.48

Region five IOU 41.98 43.74

Accuracy 80.03 80.76

Region six IOU 47.23 50.99

Accuracy 78.94 82.07

Average IOU 47.23 50.99

Accuracy 78.94 82.07

It can be seen that the IOU and accuracy of each region in this model are
higher than that of PointNet. The average IOU of the six regions is about 3.76%
higher than the baseline, and the accuracy rate is increased by 3.13%. The result
demonstrates that the proposed method is feasible to extract more informative
features for semantic segmentation while semantic segmentation rely more on
the detail context of the point cloud.
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5 Conclusion

We presented a VLAD enhanced PointNet equipped with Channel Attention
module for 3D point cloud processing. Both VLAD enhanced Feature Aggregate
Module and Channel Attention Module are readily pluggable into any convolu-
tional neural network and trained in an end-to-end manner. Most remarkable of
all is that the proposed method aggregate global features with learnable param-
eters while keeping the robustness to the order of points. The experiments in
classification and segmentation verify the effectiveness of the proposed method
and the necessity of improving maxpooling to aggregate more informative global
features.
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Abstract. Satellite images are used in all aspects of human life, and the
demand for high-resolution satellite images is increasing dramatically as human
technology advances. The most straightforward way to improve imaging reso-
lution is to improve hardware design or reduce satellite flight altitude, but at a
higher cost and with unbreakable physical limits. Super-resolution reconstruc-
tion is a way to improve image resolution. Satellite imagery has a wide imaging
range. The scale of the ground target varies greatly and the texture information is
diversified, which brings new challenges to the existing image super-resolution
technology. A multi-scale residual deep neural network is proposed for the
multi-scale characteristics of satellite imagery in this paper. In the middle of the
residual body, the series-parallel combined dilated convolution is used to obtain
different sizes of receptive fields which can achieve different scale information,
and finally generate high-resolution satellite images after pixel shuffle. The
experimental results on the Airbus satellite ship image dataset prove the supe-
riority of the proposed algorithm.

Keywords: Super resolution � Satellite images � Multi-scale

1 Introduction

Satellite images are applied in all aspects of human life, and the demand for high-
resolution satellite images is increasing rapidly as human technology levels increase.
The most straightforward way to improve imaging resolution is to improve satellite-
equipped cameras, or to reduce satellite altitude. However, these methods are costly
and have unbreakable physical limits, which makes these methods only limited to
improve the resolution of satellite imaging systems.

Super-resolution (SR) reconstruction is exactly a way to improve image resolution.
SR refers to the recovery of high-resolution (HR) image from its low-resolution
(LR) image. SR reconstruction technology is a way to improve image resolution by
computer vision method with limited resolution and no change of original hardware. It
has the advantages of higher flexibility, short development cycle, low cost and high
feasibility comparing to hardware. The obtained HR images have good visual effects,
and have important application value in the fields of monitoring equipment, remote
sensing images and medical images [1, 2], and have broad commercial, military and
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other application prospects, such as object tracking, detection [3], identification and so
on. SR can be divided into two types: reconstructing HR image from multiple LR
images (VSR) [4] and reconstructing HR image from single LR image [5–7]. Gener-
ally, SR using deep learning is always single image super-resolution (SISR). And this
paper mainly introduces a SISR deep learning method based on satellite imagery.

Satellite images have a wide range of imaging amplitudes. The scale of ground
targets varies greatly and the texture information is diversified, which brings new
challenges to existing image SR technology. Satellite images have a wide range of
imaging, and the scale of the target is quite different. In a satellite image, objects with
large differences may appear at the same time.

In response to the above questions, here we propose a very deep multi-scale CNN-
based framework for satellite images based SISR which takes the advantages of skip
connections, encoder-decoder architecture, additional dilated convolution layers and
pixel shuffle. The input of our framework is a LR satellite image, and the output is its
HR version. We observe that it is beneficial to train a very deep model for low-level
tasks like denoising, SR and JPEG deblocking [8–11]. The network is composed of
multiple layers of convolution and deconvolution operators. As deeper networks tend
to be more difficult to train, we further propose to symmetrically link convolutional and
deconvolutional layers with multiple skip-layer connections [12], with which the
training converges much faster and better performance is achieved. Also, the dilated
convolution layers provide different receptive fields for our network which brings
multi-scale features.

The remaining content is organized as follows. We provide a brief review of related
work in Sect. 2. We present the architecture of the proposed network, as well as
training, testing details in Sect. 3. Experimental results and analysis are provided in
Sect. 4.

2 Related Work

The concept of SR first appeared in the field of optics. In the field of optics, SR refers to
the process of trying to recover data outside the diffraction limit. In 1984, Tsai and
Huang [13] first proposed SR reconstruction based on sequence or multi-frame images,
and SR reconstruction technology began to receive wide attention. The algorithm
before the SR reconstruction technique generates the deep learning method is to treat
the image as a signal. It was not until 2014 that various DL-based algorithms were
produced. From the algorithm point of view, SR reconstruction can be roughly divided
into interpolation-based reconstruction [14], reconstruction-based reconstruction [15]
and learning-based reconstruction [16]. The deep learning reconstruction method based
on deep learning is a common learning-based SR method. In this section, we will
review these approaches.

VDSR [6] proposed by Kim et al. is the first method to introduce global residuals
into SR. Since the input LR image and the output HR image are largely similar, that is,
the low frequency information carried by the LR image is similar to the low frequency
information of the HR image, this part takes a lot of time to train. In fact, we only need
to learn the high frequency partial residual between the HR image and the LR image.
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The idea of residual network structure is particularly suitable for solving SR problems,
which can be said to affect the deep learning SR method.

Upsampling is an indispensable part of SR. The first SR network SRCNN [17]
applied convolution layers on the pre-upscaled LR image. It is inefficient because all
convolutional layers have to compute on high-resolution feature space, yielding S2

times computation than on low-resolution space, where S is the upscaling factor. To
accelerate processing speed without loss of accuracy, FSRCNN [18] utilized parametric
deconvolution layer at the end of SR network, making all convolution layers compute
on LR feature space. Another non-parametric efficient alternative is pixel shuffling [19]
(a.k.a., sub-pixel convolution). Pixel shuffling is also believed to introduce less
checkerboard artifacts than the deconvolutional layer.

Recently, deep convolutional neural networks (DCNNs) have shown their domi-
nance on many visual recognition tasks. Of course, DCNNs have been successfully
applied to the task of SISR. Recently, DCNNs based methods have achieved significant
improvements over conventional SR methods [8–11]. Among them, Dong et al. pro-
posed SRCNN [17] by firstly introducing a three-layer CNN for Image SR. Then the
depth of networks increased to 20 in VDSR [6] and DRCN [20] and 52 to DRRN [21],
achieving notable improvements over SRCNN. Network depth was demonstrated to be
of central importance for many visual recognition tasks, When He et al. proposed
residual net (ResNet [22]), which reaches 1000 layers with residual blocks. Such
effective residual learning strategy was then introduced in many other CNN-based
image SR methods. Lim et al. [23] built a very wide network EDSR and a very deep
one MDSR (about 165 layers) by using simplified residual blocks. The great
improvements on performance of EDSR and MDSR indicate that the depth of repre-
sentation is of crucial importance for image SR.

All of the above mentioned are SR reconstruction of ordinary images. And there are
a few super-resolution reconstruction tasks based on deep learning for satellite images.
There are several VSR-based and SISR-based remote sensing imagery SR [4] men-
tioned in Sect. 4. Satellite image-based SR reconstruction still has something to do.

3 Proposed Method

In this section, we mainly describe the proposed network structure. For the multi-scale
characteristics of satellite images, combined with the latest super-resolution network,
we propose a super-resolution network with multi-scale features for satellite images. In
addition to the multi-scale module is specifically designed to deal with multi-scale
problems in satellite imagery, the encoder-decoder part is also very helpful to increase
the multi-scale information of deep CNNs.

3.1 Symmetric Convolution and Deconvolution

The Peak Signal-to-Noise Ratio (PSNR) on the validation set in RED [24] is reported,
which shows that using deconvolution works better than the fully convolutional
counterpart. The residual body in our network contains layers of symmetric convolu-
tion layers and deconvolution layers except dilation module (see Fig. 1). Skip shortcuts
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are connected every layer from convolutional feature maps to their mirrored decon-
volutional feature maps. The response from a convolutional layer is directly propagated
to the corresponding mirrored deconvolutional layer, both forwardly and backwardly.
Each convolutional layer and deconvolution layer are followed by a RELU activation.
According to EDSR [23], we have abandoned the BN operation which saved us a lot of
computing space to increase the depth of the network. In addition, we did not use the
pooling operations that are often used in encoder-decoder networks. The reason is that
for low-level image restoration, the aim is to eliminate low level corruption while
preserving image details instead of learning image abstractions. Different from high-
level applications such as segmentation or recognition, pooling typically eliminates the
abundant image details and can deteriorate restoration performance.

3.2 Multi-scale Module

Considering the multi-scale nature of satellite imagery, our model specifically adds a
multi-scale module that utilizes dilated convolution constructs. As we all known,
pooling can reduce the dimension, reduce the number of parameters, and increase the
receptive field in many tasks. However, it is not a sagacious idea in super resolution
tasks for pooling makes great difficulties in image restoration. So we want to migrate
the model of other image task to the image super resolution, and as shown by some
state-of-the-art deep learning models [25–27], the convolutional layer can be an ideal
alternative to the pooling layer. We use several dilated convolutional layers (also called
atrous convolution) and jump connections like D-LinkNet [28] in the central part.

Fig. 1. The overall architecture of our proposed network. Each convolution layer is followed by
a ReLU activation.
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Due to [25], dilated convolution can be stacked in cascade mode (see Fig. 1,
Dilation Module). If the dilation rates of the stacked dilated convolution layers are 1, 2,
4, 8, 16 respectively, then the receptive field of each layer will be 3, 7, 15, 31, 63. Due
to the size of the feature map after the first half of the 15-layer encoder layers is
32 � 32, our model uses 3 � 3 dilated convolution layers with dilation rate of 1, 2, 4,
8, so the feature points on the last layer will see 31 � 31 points on the first center
feature map, which covering almost all part of the feature map. Still, our module takes
the advantage of multi-resolution features, and the dilation module can be viewed as
the parallel mode.

This dilation module allows the network to obtain different sizes of receptive fields,
and will not change the size of the feature map. At the same time, this allows the
network to feel different scales of information, making the network more adaptable to
satellite image tasks.

3.3 Architecture

The input low-resolution image and the output high-resolution image are largely
similar, that is, the low-frequency information carried by the low-resolution image is
similar to the low-frequency information of the high-resolution image, and it takes a lot
of time to bring this part during training. In fact, we only need to learn the high-
frequency partial residual between the high-resolution image and the low-resolution
image. The idea of the residual network structure is particularly suitable for solving the
super-resolution problem, which can be said to affect the deep learning super-resolution
method. Our method also uses this idea. We only trained the high-frequency residual
and add the trained residual to the enlarged low-resolution image. After applying the
idea of residuals, since the residual image is relatively sparse, many values are small or
even zero, which speeds up the training.

Our proposed method extracts all features in the low-resolution stage. According to
WDSR [29], we known that it does not affect the accuracy of the SR network, while
greatly increasing the speed. A new convolution method called pixel shuffle was
proposed in ESPCN [23], also called sub-pixel convolution. This new type of con-
volution is tailor-made for SR. First get the feature map with the same size as the input
image, but the feature channel is C � r2 after convolution (Where r is the target
magnification of the image). And then r2 channels of each pixel of the feature map are
rearranged into an r � r region corresponding to an r � r-sized sub-block in the high-
resolution image. Thus, the feature map of size H � W � C � r2 is rearranged into an
HR image of rH � rW � C. Our model performs pixel-shuffle operations on the LR
image and the high-frequency residuals separately and adds them as output.

4 Experiments

4.1 Datasets

Original high-resolution images are from ‘Kaggle Airbus Ship Detection Challenge’
[30], this competition provides a large number of images which have many images that
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do not contain ships and many contain multiple ships or only one ship. All the images
are satellite images which are around sea. We choose 1000 images to build our super
resolution dataset. We use the bicubic interpolation of MATLAB to get a 2 � re-
duction of low-resolution images. 800 of them are used as training set, 100 as vali-
dation set, 100 as test set. The resolution of the high-resolution images is 768 � 768,
and the resolution of the low-resolution images is 384 � 384.

4.2 Implementation Details

We use Pytorch [31] to train our model on NVIDIA GTX1080 GPUs. For training, we
use the RGB input patches of size 64 � 64 from LR image with the corresponding HR
patches. We pre-process all the images by subtracting the mean RGB value of the
airbus ship dataset. Before training, we did some data augmentation operations on the
data such as random horizontal flips and rotations. We use ADAM optimizer with
b1 = 0.9, b2 = 0.999, and e = 10−8 to train our model. We set batch size as 16. The
learning rate is initialized as 10−4 and halved at every 2 � 105 iterations. We train our
networks using L1 loss instead of L2.

4.3 Results

We measure the accuracy with the two most common super-resolution standard Peak
Signal to Noise Ratio (PSNR) and structural similarity index (SSIM). We compare our
model with other works on the Airbus satellite ship dataset. The following Table 1
gives the performance comparison between our model and other models. And other
works include super-resolution construction based on typical neural networks [17, 24,
32], multi-scale model [33] and the satellite images [4, 34].

For each architecture, we measured the average PSNR (dB)/SSIM on the same
dataset on the same conditions. We used MATLAB for evaluation. We can see that our
method achieves the highest PSNR/SSIM score on the airbus satellite ship dataset. In
the experiment, we only used 30 layers. If we deepen our network, we will get better
results. In addition, LapSRN [33] gets better result than other dataset, it takes advantage

Table 1. Performance comparison between architectures on the Airbus Satellite Ship Dataset
with two standard PSNR (dB) and SSIM for scale 2�.

Networks PSNR/dB SSIM

Bicubic 25.10 0.8701
A+ [32] 25.22 0.8778
SRCNN [17] 25.45 0.8812
RED30 [24] 26.03 0.8920
LapSRN [33] 27.89 0.9199
VISR [4] 28.21 0.9308
DMCN [34] 29.87 0.9432
Ours (30 layers) 30.55 0.9610
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of LapSRN’s multi-scale characteristic. This proves that multi-scale features are nec-
essary when doing super-resolution reconstruction on satellite images. At the same
time, we also show the qualitative results (see Fig. 2).

Fig. 2. Qualitative comparison of our model with other works (including Bicubic, RED [24],
LapSRN [33], DMCN [34]) on �2 super-resolution.
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5 Conclusion

In this paper, considering the particularity of satellite imagery, multi-scale module is
used to improve the adaptability of CNN-based networks to different scales of remote
sensing satellite imagery. By combining multi-scale residuals, more accurate high-
frequency information such as edges and textures can be obtained. The experimental
results on the Airbus ship dataset show that the proposed multi-scale residual deep
neural network can effectively enhance the high-frequency information in the recon-
structed image, and has better subjective and objective reconstruction quality. Since the
paper is mainly aimed at the multi-scale feature of satellite imagery, the proposed
methods can also be helped to deal with the multi-scale characteristics of ordinary
images.
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Abstract. As an important part of animation production, the existing
method for drawing and rendering the CG animated characters accord-
ing to motion information mostly relays on expensive manual processing.
By adopting the conditional adversarial learning, an automatic anima-
tion rendering system for geometry structure attribute is proposed, using
a deep convolution generative adversarial network called “pix2pixHD”.
A training database containing a variety of motion stick figure is estab-
lished for different virtual characters to achieve an end-to-end training
system to verify this idea. The trained generator is the desired CG ani-
mation creator which shows great performance on visual quality and time
efficiency proved by the experimental results.

Keywords: CG animation rendering · Conditional GAN · Deep
learning · pix2pixHD

1 Introduction

CG (computer graphics) technology is widely used in the modern film and tele-
vision animation production industry. It can introduce some virtual characters
and special effects to enhance the visual effect through the form of computer-
generated animation. In order to achieve a better virtual effect for the generated
animation, motion capture technology is usually used in CG animation. After
obtaining the motion information of a real human by the sensor, the motion
data is rendered to the corresponding virtual carrier, resulting in the desired
animation, such as King Kong, Spider-Man, Avatar. Accurately matching the
motion data to the virtual images is critical, but the acquirement of motion
data is usually costly. The mainstream methods of making CG animation use
some professional production software to draw and render the images in the
video frame by frame according to the pose of motion. In this process, with the
increase of video duration and the complexity of action form, the cycle and costs
of animation production will become unacceptable. Therefore, the technology of
automatic animation generation with motion stick figures is extremely desired
by the film-television industry.
c© Springer Nature Switzerland AG 2019
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At the same time, how to automatically generate high-quality visual content
using the attributes of the real world, and establish interaction between virtual
and reality is the ultimate goal of computer graphics. In recent years, deep learn-
ing techniques start applying to solve some problems in the field of computer
graphics. A sketch-based modeling method of facial expression is proposed in [5]
to assist users to get face models quickly. A general framework for style migra-
tion is developed in [25] to realize the visual style migration of different images.
Google has also opened source the TensorFlow Graphics framework, using com-
puter vision systems to extract scene parameters for 3D graphics modeling [19].

Fig. 1. An adversarial rendering framework based on attribute coding.

Inspired by these works, we explore applying the deep learning technique to
automatic animation rendering to resolve the conflict between rendering effect
and speed. In this paper, we propose an adversarial framework that extracts
object properties from the real world and uses them for CG rendering. We
replaced the renderer mentioned in the TensorFlow Graphics framework with a
generator and introduced a discriminator for adversarial training (Fig. 1). This
makes the overall architecture similar to a VAE-GAN [11], but become more
complex. The encoder can extract some hidden attributes of the real world, such
as geometry or texture. Then we can render the corresponding virtual scene
based on these attributes. Because the distribution of hidden attributes is very
complex, we designed a simple animation rendering task to verify the feasibility
of this idea from a single geometric attribute. We use a high-resolution semantic
generation network called pix2pixHD [22] to establish the mapping relationship
between the simple stick figures to animation images and realize fast anima-
tion rendering. The automatic animation production can be achieved once the
end-to-end training of deep neural network is done. The visual quality of gen-
erated animation is quite good based on the metric of SSIM. The experimental
results show that this method greatly improves the efficiency of animation ren-
dering without the manual operation. Thus, this method can greatly reduce the
cost of animation production and greatly shorten the cycle of anime or movie
production.
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2 Related Work

Some deep generation models are proposed by previous research work on image
and video generation [3,14,20,21], including the popular model of generative
adversarial network (GAN) [3], and conditional generative adversarial network
(CGAN) [14]. The generator of GAN uses a deep convolution neural network
[12,16], which can achieve the super-resolution restoration of a single image
and successfully recover the lost high-frequency texture details. The geometry-
contrastive generative adversarial network is designed to generate face images
according to target expression, based on the geometric information of face [15].
Aiming on the image-to-image translation problems, the models in [7,22] train
neural networks with image pairs to learn the mapping relationship between
input images and output images. These models can not only generate new images
from the object contour, but also generate maps based on satellite remote sensing
images, and achieve high-resolution image synthesis using semantic annotation
maps. Recently, two interesting research focus on replacing faces and movements.
One can transfer one person’s motion to another, done by UC Berkeley [2]. The
other one is a face changing software based on GAN, named “DeepFake”, which
has aroused widespread concern [10]. All these works show the potential of GAN
on high resolution graphics rendering.

As for the rendering techniques for animation production, a generation model
of a 2D animation characters is proposed in [8] for batch generation of head
portrait. A progressive structure-conditional generative adversarial networks is
designed to generate images with a preset sequence of gestures [4]. Because
the preset posture sequence set is extremely simple, it has a large difference
with the real model of the human body. Moreover, there is only one dataset
used for training which pays more attention to the color change of clothing.
Thus, the performance of this model cannot meet the requirement of complex
CG animation rendering tasks. To overcome the shortcoming of that model,
this paper uses the advanced high-resolution image translation model called
pix2pixHD as the ideal renderer to achieves a fast and automatic animation
rendering based on motion stick figures. At the same time, we also compare the
animation rendering quality at different resolutions with other image translation
models like pix2pix [7].

3 Animation Rendering System Based
on High-Resolution Conditional Learning
Network with Semantic Information

For a rendering task with a stick figure, the geometric structure attribute will
be the only variable, and the image will change along the geometric structure
dimension, resulting in a specific animation effect. It can achieve a comparable
rendering result like frame-by-frame manual calibration. In the proposed model,
the process of automatic rendering is divided into three steps. First, we built a
full-pose database of animation, matching animation to its structural attributes.
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Then, the database is used to train the GAN. Finally, we use the trained gener-
ator to achieve automatic rendering of the animation characters based on their
stick figures.

3.1 Database Creation for System Training

Database for training can be created in two ways. For the first way, with some
professional animation production software such as 3DMAX and MAYA, the
animation modeling maps of various poses are used to obtain the virtual char-
acters and the stick figure contains precise information of key points of pose.
This method is easy for professional animation companies because they have
accumulated a large amount of animated characters and pose stick figure during
the animation production in the past. The second way, by capturing the anima-
tion images, uses the open source pose extraction framework such as OpenPose
[1,24] to locate the key points and obtain the corresponding pose. In this case,
OpenPose will be used as an encoder in the rendering system mentioned ear-
lier to obtain geometric properties. This method can be seen as an upgrade to
traditional CG motion capture technology, since the trained network can not
only complete the rendering of the given pose stick figure, but also realize the
production of motion special effects at low cost.

In order to facilitate the experimental operation and comparison with man-
ual animation, the second method is used in the propose model to create four
data sets, including 2000 pairs of doll images, 2000 pairs of cartoon images, 8500
pairs of anime images, and 3800 pairs of RPG game character models, respec-
tively. The doll images are with single color and no facial key points in the pose
information. The cartoon images and the anime images are rich in color and
contains facial information. RPG game characters have a variety of clothing and
rich background colors. Through these four data sets, it is possible to effectively
demonstrate the rendering capabilities of conditional adversarial learning in dif-
ferent CG animation generation tasks. Figure 2 shows some examples of the data
sets constructed in this paper, which are the animation images on the left and
the pose images on the right.

3.2 Pix2pixHD for High-Resolution Image Synthesis and Semantic
Manipulation

Animation rendering is essentially image generation technology, so the generative
adversarial network is usually adopted as the model for animation rendering. The
conditional generative adversarial network (CGAN) introduces some conditional
constraints to the training of GAN. If both the generator and the discriminator
are satisfied to some conditional information C, the constraints can be applied
on the generator and discriminator respectively, to guide the image generation.
Inspired by CGAN, taking the stick figure of cartoon as the condition informa-
tion and the extracted structural attribute, we establish a mapping between the
pose skeleton and the rendered image by the generator, achieving the automatic
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Fig. 2. Examples of four datasets. (Color figure online)

animation rendering in a given pose. The structure of the proposed render-
ing system is shown in Fig. 3. Because we chose “pose” as the latent variable
attribute, the whole pipeline is partially similar to [2]. An end-to-end animation
rendering system is constructed by a CGAN model, which makes the training of
network easier and more efficient. The stick figure of cartoon directly participates
in the training of CGAN. For a better rendering performance, the pix2pixHD
framework which is an improved version of CGAN is used as the high-resolution
automatic animation rendering model, for the generator and the discriminator.
pix2pixHD is a high-resolution image synthesis framework with semantic infor-
mation, which introduces a new adversarial loss function in CGAN, and adopts
multi-scale generator and discriminator [22].

pix2pixHD is based on the image translation model “pix2pix” [7]. Unlike
CGAN, the input of generator of pix2pix is not the random noise, but the con-
dition information as an image. In order to manipulate the generation process
by the condition information, the training of network is carried out using the
true and false data pairs as the input. As shown in Fig. 3, the cartoon image x
and the stick figure y in the animation image datasets are used as the training
set for network training. Specifically speaking, the pose stick figure y is fed into
the generation network G to realize the 2D image filling rendering based on the
posture skeleton, acquiring the automatically rendered image x′ = G (y). These
three datasets are combined into two pairs of data: (x, y) and (x′, y), which will
be fed into the discriminator for adversarial learning. The network N is used to



346 J. Lin et al.

Fig. 3. Automatic animation rendering model, in which the network N calculates the
animation rendering error, the network G is generator and D is discriminator.

calculate the loss between the cartoon image x and the rendered image x′. The
loss function is:

Lpix2pix = arg min
G

max
D

LCGAN (G,D) + λLL1 (G) (1)

where the first term LCGAN (G,D) = Ex,y [log D (x, y)] + Ey [log (1 − D (x′, y))]
is the loss of CGAN and the second term of reconstruction error is defined as
LL1 (G) = Ex,y [‖x − x′‖1]. The original pix2pix network adopts U-Net [17] as
the generator and a patch-based fully convolutional network [13] as the discrimi-
nator. In order to improve the visual authenticity and resolution of the generated
image, the model of pix2pixHD utilizes a coarse-to-fine generator plus a multi-
scale discriminator architecture and a robust adversarial learning objective func-
tion, which greatly improves the performance of pix2pix. Specifically, pix2pixHD
uses a pyramidal network structure to gradually generate more refined images,
as shown in Fig. 4 [22]. First, a residual network G1 [6] is trained to generate
low-resolution pictures. Then, the generated low-resolution picture’s last feature
map and the high-resolution stick figure’s output feature map are fed into the
residual network G2 in the next layer, and a high-resolution picture is gener-
ated. At the same time, in order to render more details and realistic textures,
the multi-scale discriminators are adopted by pix2pixHD, denoted as D1, D2, as
shown in Fig. 4. Thus, the objective function of pix2pixHD with 3 layers is as
follows [2,22]:

Lpix2pixHD = arg min
G

(( max
D1,D2,D3

∑

k=1,2,3

LCGAN (G,Dk))

+λFM

∑

k=1,2,3

LFM (G,Dk) + λV GGLV GG (x, x′)) (2)
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Fig. 4. Schematic diagram of pix2pixHD structure

where the first term LCGAN (G,D) is the same as in Eq. (1), the second term
LFM (G,D) represents the discriminator feature-matching loss, and the last term
LV GG (x, x′) is perceptual reconstruction loss [9], which measures the rendering
error of the model with a pre-trained VGGNet [18]. For the training, the gener-
ator G produces image with realistic rendering effect as far as possible to induce
the discriminator D to judge it as truth, while the discriminator D improves its
discriminating ability as far as possible to correctly classify the real images and
the rendered images. Ideally, when the game reaches the Nash equilibrium state,
the training is completed, and the rendered animation by the generator can be
considered to be indistinguishable from the real one.

4 Experimental Results and Analysis

4.1 The Experimental Setups

For animation rendering task, the stick figure is directly fed into the generator as
the semantic information of pix2pixHD. The database with four data sets: 2000
pairs of doll images, 2000 pairs of cartoon images, 8500 pairs of anime images, and
3800 pairs of RPG game character models, is used for animation rendering. The
image resolution for training is 512×512 and each batch contains 640 images, so
as to reduce the memory cost and the computation burden of network training.
And when pix2pix is selected as the renderer, the image resolution used for
training is reduced to 256 × 256.

To quantitatively measure the performance of the proposed rendering sys-
tem, the similarity between the rendered animation and the real animation is
compared. We adopt the metric of structural similarity (SSIM) [23] to evaluate
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the quality of the resulting rendered image. SSIM measures the image similarity
from three aspects, i.e., brightness, contrast and structure, which conforms to
the human visual system.

4.2 The Similarity Evaluation of Rendered Animation Image

First of all, we show the SSIM results of the rendered images produced by the
proposed rendering system, in Table 1. And we also show some rendered images
for subjective evaluation, shown in Fig. 5. As can be seen from Table 1, since
the SSIM metric reflects the structure and texture of image, it synchronously
changes with the visual quality of the rendered image in Fig. 5. The required
iteration times for training is related with the size of dataset and the complexity
of image. The size of doll and cartoon datasets are smaller than the anime
dataset, thus it required more iteration for a comparable quality. The biggest
size of anime dataset results in a fast convergence. As for the RPG character
dataset, a variety of clothing and rich background colors demands more iteration
times for generating an image with good visual quality. At the same time, the
comparable experimental data in Table 2 show that the two image translation
frameworks can produce similar rendering effects, but pix2pixHD can produce
higher resolution images indeed.

Fig. 5. Auto-rendering results for four datasets. (Color figure online)



CG Animation Creator 349

Table 1. SSIM variation for four datasets.

Doll Epoch 01 20 30 40

SSIM 0.8319 0.9026 0.9414 0.9498

Cartoon Epoch 01 20 30 40

SSIM 0.8875 0.9357 0.9784 0.9493

Anime Epoch 01 03 05 08

SSIM 0.8459 0.7971 0.8718 0.8843

RPG Epoch 01 25 75 100

SSIM 0.8122 0.8943 0.8649 0.9378

Table 2. SSIM comparison of two translation models on Cartoon dataset.

pix2pix [7]
(256 × 256)

Epoch 01 20 30 40

SSIM 0.8733 0.9705 0.9766 0.9775

pix2pixHD [22]
(512 × 512)

Epoch 01 20 30 40

SSIM 0.8875 0.9357 0.9784 0.9493

4.3 The Rendering Loss and Nash Equilibrium of the Model

In all the deep learning methods, the dataset scale is the key. In this subsection,
we use VGG-loss [22] and Nash equilibrium state curve to analyze the influence
of data set scale and iteration number on animation rendering effect, as shown
in Fig. 6. The anime dataset with 8200 image pairs and RPG character with
3800 image pairs are used to obtain the rendering loss and Nash equilibrium
curve. In Fig. 6, D REAL and D FAKE represent the two components of D
cost associated with the classification performance for both “real image pair”
and “rendered image pair”, respectively. They approximately reflect the Nash
equilibrium state of the system. It can be seen from the Fig. 6, the big date size of
dataset “anime” brings obvious benefit on convergence speed of loss curve. The
rendering system can reach to a good visual effect when the iteration times is
about 10 for anime dataset, while near 100 for RPG dataset. The lines D FAKE
and D REAL trend to reach the equilibrium cost after serval iterations, which
implies that upon convergence the good performance of the generator. Also, as
we all known, the training of GAN is difficult, and it usually cannot reach to an
ideal Nash equilibrium state. So, there is fluctuation on the curve of both loss
function and Nash equilibrium trend.

It should be noting that, the size of “RPG character” dataset is not quite big
enough, so it takes more iteration number to get a good rendering effect. There
is hump on the loss curve at 75-th iteration, the rendered image shown in Fig. 5
has a different appearance of clothing, which shows the imagination ability of
the proposed model when it lacks image detail.
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Fig. 6. Nash equilibrium trend and rendering loss. (Color figure online)

4.4 The Time Efficiency of the Automatic Rendering System

In this subsection, we analyze the auto-rendering speed of the model with four
sets of action with different duration. In Table 3, the average rendering rate is
presented, and the computation resource is a single TITAN Xp GPU. It can be
seen that, the time for auto-rendering is about 2–4 times longer than the motion
duration. Compared with the traditional manual rendering which usually takes
weeks or months, this is a huge leap. If a distributed parallel framework or high-
performance computing cluster is used, we believe that a real-time animation
rendering can be achieved. Therefore, the automatic rendering of animation is a

Table 3. Automatic rendering speed.

Motion
time (Sec.)

Frame
number

Auto-render
time (Sec.)

Average
rendering rate
(frames/Sec.)

Motion 1 40 1000 112 8.93

Motion 2 106 2669 229 11.66

Motion 3 151 3793 342 11.09

Motion 4 285 8523 1178 7.24
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revolutionary technique for movie and TV production. This technique will soon
be adopted widely in the future.

*The rendered animation demo can be seen online at here: Demo Show :
YouKu Video.

Notes: the training data are captured from MikuMikuDance and the Internet.
The CG model is Hatsune Miku and Chinese Paladin. They are only used for
test case display. The copyright of the animation model is owned by their author.

5 Conclusion

In this paper, the data-driven method of deep learning is used to solve the auto-
matic rendering problem in traditional computer graphics. We build a system
which can extract the real object attribute description and use the attribute to
quickly render the virtual target to balance the contradiction between rendering
speed and quality. The experimental results show that, compared with man-
ual rendering technique, the proposed model can get a comparable visual effect
and a very fast speed of rendering. Limited by the acquisition of professional
animation database, we have only made a simple attempt in a single geomet-
ric attribute dimension (pose). It can be predicted that by selecting different
CV systems as encoders, we can achieve changes in other dimensions, such as
costumes, appearance, expression, and background. Maybe this work can bring
some new inspiration and thinking to the traditional animation industry.
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Abstract. Human visual system relies on both binocular stereo cues
and monocular focusness cues to gain effective 3D perception. In com-
puter vision, the two problems are traditionally solved in separate tracks.
In this paper, we present a unified learning-based technique that simul-
taneously uses both types of cues for depth inference. Specifically, we
use a pair of focal stacks as input to emulate human perception. We
first construct a comprehensive focal stack training dataset synthesized
by depth-guided light field rendering. We then construct three individ-
ual networks: a Focus-Net to extract depth from a single focal stack, a
EDoF-Net to obtain the extended depth of field (EDoF) image from the
focal stack, and a Stereo-Net to conduct stereo matching. We show how
to integrate them into a unified BDfF-Net to obtain high-quality depth
maps. Comprehensive experiments show that our approach outperforms
the state-of-the-art in both accuracy and speed and effectively emulates
human vision systems.

Keywords: Depth from Focus · Stereo matching · Deep learning ·
Light field

1 Introduction

Human visual system relies on a variety of depth cues to gain 3D perception. The
most important ones are binocular, defocus, and motion cues. Binocular cues
such as stereopsis, eye convergence, and disparity yield depth from binocular
vision through exploitation of parallax. Defocus cue allows depth perception
even with a single eye by correlating variation of defocus blurs with the motion
of the ciliary muscles surrounding the lens. Motion parallax also provides useful
input to assess depth, but arrives over time and depends on texture gradients.

Computer vision algorithms such as stereo matching [20] and depth-from-
focus [12,15] seek to employ binocular and defocus cues which are available
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Fig. 1. BDfF-Net integrates Focus-Net, EDoF-Net and Stereo-Net to predict high qual-
ity depth map from binocular focal stacks.

instantaneously without scene statistics. Recent studies have shown that the
two types of cues complement each other to provide 3D perception [6]. In this
paper, we seek to develop learning-based approaches to emulate this process.

To exploit binocular cues, traditional stereo matching algorithms rely on fea-
ture matching and optimization to maintain the Markov Random Field property.
In contrast, depth-from-focus (DfF) exploits differentiations of sharpness at each
pixel across a focal stack and assigns the layer with the highest sharpness as its
depth. Compared with stereo, DfF generally presents a low fidelity estimation
due to limited aperture size. Earlier DfF techniques use a focal sweep camera to
produce a coarse focal stack due to mechanical limitations whereas more recent
ones attempt to use a light field to synthetically produce a denser focal stack.

Our solution benefits from recent advances on computational photography
and we present an efficient and reliable learning-based technique to conduct
depth inference from a focal stack pair, emulating the process of how human eyes
work. We call our technique binocular DfF or B-DfF. Our approach leverages
deep learning techniques that can effectively extract features learned from large
amount of imagery data. Such a deep representation has shown great promise in
stereo matching [11,28]. Little work, however, has been proposed on using deep
learning for DfF or more importantly, integrating stereo and DfF. This is mainly
due to the lack of fully annotated DfF datasets.

We first construct a comprehensive focal stack dataset. Our dataset is based
on the highly diversified dataset from [13], which contains both stereo color
images and ground truth disparity maps. Then we adopt the algorithm from
Virtual DSLR [26] to generate the refocused images. [26] uses color and depth
image pair as input for light field synthesis and rendering, but without the need
to actually create the light field. The quality of the rendered focal stacks is com-
parable to those captured by expensive DSLR camera. Next, we propose three
individual networks: (1) Focus-Net, a multi-scale network to extract depth from
a single focal stack (2) EDoF-Net, a deep network consisting of small convolution
kernels to obtain the extended depth of field (EDoF) image from the focal stack
and (3) Stereo-Net to obtain depth directly from a stereo pair. The EDoF image
from EDoF-Net serves to both guide the refinement of the depth from Focus-
Net and provide inputs for Stereo-Net. We also show how to integrate them into
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a unified BDfF-Net to obtain high-quality depth maps. Figure 1 illustrates the
pipeline.

We evaluate our approach on both synthetic and real data. To physically
implement B-DfF, we construct a light field stereo pair by using two Lytro Illum
cameras. Light field rendering is then applied to produce the two focal stacks as
input to our framework. Comprehensive experiments show that our technique
outperforms the state-of-the-art techniques in both accuracy and speed.

2 Related Work

Our work is closely related to depth from focus/defocus and stereo. The strength
and weakness of the two approaches have been extensively discussed in [21,25].

Depth from Focus. Blur carries information about the object’s distance.
Depth from Focus (DfF) recovers scene depth from a collection of images cap-
tured under varying focus settings. In general, DfF [12,15] determines the depth
by analyzing the most in-focus slice in the focal stack. [3] combined focal stack
with varying aperture to recover scene geometry. Suwajanakorn et al. [23] pro-
posed the DfF with mobile phone under uncalibrated setting. They first aligned
the focal stack, then jointly optimized the camera parameters and depth map,
and further refined the depth map using anisotropic regularization.

A drastic difference of these methods to our approach is that they rely on
hand-crafted features to estimate the focusness, whereas in this paper we leverage
the neural network to learn more discriminative features from the focal stack and
directly predict the depth at a fraction of the computational cost.

Learning Based Stereo. Depth from stereo has been studied extensively by
the computer vision community for decades [20]. Here we only discuss recent
methods based on Convolutional Neural Network (CNN).

Deep learning benefits stereo matching at various stages. A number of
approaches exploit CNN to improve the matching cost. The seminal work by
Žbontar and LeCun [28] computed a similarity score from patches using CNN,
then applied the traditional cost aggregation and optimization to solve the
energy function. Luo et al. [11] speeded up the matching process by using a
product layer, and treated the disparity estimation as a multi-class classification
problem. [1,18,27] conducted similar work but with different network architec-
ture.

End-to-end network architectures have also been explored. Mayer et al. [13]
adopted and extended the architecture of the FlowNet, which consists of a con-
tractive part and an expanding part to learn depth at multiple scales. They also
created three synthetic datasets to facilitate the training process. Knöbelreiter et
al. [9] learned unary and pairwise cost of stereo using CNNs, then posed the opti-
mization as a conditional random field (CRF) problem. The hybrid CNN-CRF
model was trained in image’s full resolution in an end-to-end fashion.
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Fig. 2. A binocular focal stack pair consists of two horizontally rectified focal stacks.
The upper and lower triangles show corresponding slices focusing at respective depths.
Bottom shows the ground truth color and depth images. We add Poisson noise to
training data, a critical step for handling real scenes. (Color figure online)

Combining DfF and stereo matching has also been studied, although not
within the learning framework. Early work [8] attempted to utilize the depth map
from the focus to reduce the search space for stereo and solve the correspondence
problem more efficiently. [19] simultaneously recovered depth and restored the
original focused image from a defocused stereo pair.

Aforementioned approaches leave the combination and optimization of focus
and disparity cue to post-processing. In contrast, we resort to extra layers of
network to infer the optimized depth with low computational cost and efficiency.

3 Dual Focal Stack Dataset

With fast advances of the data-driven methods, numerous datasets have been
created for various applications. However, by far, there are limited resources
on focal stacks. To this end, we generate our dual focal stack dataset based
on FlyingThings3D from [13]. Their 3D models and textures are separated into
disjointed training and testing parts. In total, the dataset contains about 25,000
stereo images with ground truth disparity. To make the data tractable, we select
stereo frames whose largest disparity is less than 100 pixels to avoid objects
appearing in one image but not in the other.

Takeda et al. [24] demonstrate that in a stereo setup, the disparity and the
diameter of the circle of confusion have a linear relationship. Based on above
observation, we adopt the Virtual DSLR approach from [26] to generate syn-
thetic focal stacks. Virtual DSLR requires color and disparity image pair as
inputs, and outputs refocused images with quality comparable to those cap-
tured from regular, expensive DSLR. The advantage of their algorithm is that
it resembles light field synthesis and refocusing but does not require actual cre-
ation of the light field, hence reducing both memory and computational load. In
addition, their method takes special care of occlusion boundaries to avoid color
bleeding and discontinuity commonly observed in brute-force blur-based defocus
synthesis.
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For binocular focal stack dataset, we evenly separate the scene into 16 depth
layers and render a refocused image for each layer. Figure 2 shows two slices
from the dual focal stack and their corresponding color and depth images. We
further add Poisson noise to both datasets to simulate real images captured by
a camera. This turns out to be critical in real scene experiments, as described
in Sect. 6. Our final datasets each contain 750 training samples and 160 testing
samples, with each sample consisting of 16 differently focused stereo image pair.
The resolution of the generated images is 960 × 540, the same as the ones in
FlyingThings3D.

4 B-DfF Network Architecture

When designing our network, one general principle is to use deep architecture
with small kernels. [22] shows that such a structure is very effective in image
recognition tasks. Further, we aim to take an end-to-end approach to predict a
depth map.

As already mentioned, the input to the neural network is two rectified focal
stacks. To extract depth from defocus and disparity, our solution is composed
of three individual networks. We start in Sect. 4.1 by describing the Focus-Net-
Guided, a multi-scale network that estimates depth from a single focal stack and
further enhanced by the extended depth of field images from EDoF-Net. Then
we combine Stereo-Net and Focus-Net-Guided in Sect. 4.2 to construct BDfF-Net
for high quality depth from binocular focal stacks.

4.1 Focus-Net and Focus-Net-Guided for DfF

Motivated by successes from multi-scale networks, we propose Focus-Net, a mul-
tiscale network to extract depth from a single focal stack. Specifically, Focus-Net
consists of four branches of various scales. Except for the first branch, other
branches subsample the image by using different strides in the convolutional
layer, enabling aggregation of information over large areas. Therefore, both the
high-level information from the coarse feature maps and the fine details could
be preserved. At the end of the branch, a deconvolutional layer is introduced to
upsample the image to its original resolution. Finally, we stack the multi-scale
features maps together, resulting in a concatenated per-pixel feature vector. The
feature vectors are further fused by layers of convolutional networks to predict
the final depth value.

An illustration of the network architecture is shown in Fig. 3(a). We use 3×3
kernels for most layers except those convolutional layers used for downsampling
and upsampling, where a larger kernel is used to cover more pixels. Following [22],
the number of feature maps increases as the image resolution decreases. Between
the convolutional layers we insert PReLU layer [4] to increase the network’s
nonlinearity. For the input of the network, we simply stack the focal stack images
together along the channel’s dimension.
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Fig. 3. (a) Focus-Net is a multi-scale network for conducting depth-from-focus. (b)
EDoF-Net consists of 20 layers of convolutional layers to form an extended depth-of-
field (EDoF) image from focal stack. (c) Our Focus-Net-Guided combines Focus-Net
and EDoF-Net by using the EDoF image to refine the depth estimation.

To further enhance the depth image quality, we set out to extract the EDoF
image from the focal stack, and use it to guide the refinement of the depth image.
Existing EDoF image extraction methods [10,23] are suboptimal in terms of
computational efficiency. Thus, we seek to directly output an EDoF image from
a separate network, which we termed EDoF-Net. EDoF-Net is composed of 20
convolutional layers, with PRelu as its activation function. The input of the
EDoF-Net is the focal stack, the same as the input of Focus-Net, and the output
is the EDoF image. With the kernel size of 3×3, a 20 layer convolutional network
will produce a receptive field of 41×41, which is larger than the size of the largest
blur kernel. Figure 3(b) shows the architecture of EDoF-Net.

Finally, we concatenate the depth image from Focus-Net and the EDoF image
from the EDoF-Net, and fuse them by using another 10 convolutional layers. We
call the new network Focus-Net-Guided, as illustrated in Fig. 3(c).

4.2 Stereo-Net and BDfF-Net for Depth from Binocular Focal
Stack

Given the EDoF stereo pair from the EDoF-Net, we set out to estimate depth
from stereo using another network, termed Stereo-Net. For stereo matching, it is
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Fig. 4. (a) Stereo-Net follows the Hourglass network architecture which consists of the
max pooling layer (yellow), the deconvolution layer (green) and the residual module
(blue). (b) Shows the detailed residual module. (Color figure online)

critical to consolidate both local and global cues to generate precise pixel-wise
disparity.

To this end, we propose Stereo-Net by adopting the Hourglass network archi-
tecture [16], as shown in Fig. 4. The advantage of this network is that it can
attentively evaluate the coherence of features across scales by utilizing large
amount of residual modules [5]. The network composes of a downsampling part,
an upsampling part and connection layers comprising of residual modules. In this
way, the network could both learn a holistic representation of input images and
maintain fine structures. Prediction is generated at the end of the upsampling
part. One round of downsampling and upsampling part can be viewed as one
iteration of predicting, whereas additional rounds can be stacked to refine initial
estimates. For Stereo-Net, we use two rounds of downsampling and upsampling
parts as they already give a good performance. After each pair of downsam-
pling and upsampling parts, supervision is applied using the same ground truth
disparity map. The final output is of the same resolution as the input images.

Finally, we construct BDfF-Net by concatenating the results from Stereo-Net,
Focus-Net-Guided, and adding 10 more convolutional layers. The convolutional
layers serve to find the optimal combination from focus cue and disparity cue.

5 Implementation

Given the focal stack as input and ground truth color/depth image as label, we
train all the networks end-to-end. In our implementation, we first train each net-
work individually, then fine-tune the concatenated network with the pre-trained
weights as initialization. Because Focus-Net and Focus-Net-Guided contains mul-
tiple convolutional layers for downsampling, the input image needs to be cropped
to the nearest number that is multiple of 8 for both height and width. We use
the mean absolute error with l2-norm regularization as the loss for all models.

Following [7], we apply batch normalization after the convolution layer and
before PRelu layer. We initialize the weights using the technique from [4]. We
employ MXNET as the learning framework and train and test the networks on
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Focal Stack Focus-Net Focus-Net-Guided Ground Truth

Ground TruthEDoF ImageFocal Stack

(a)

(b)

Fig. 5. (a) Results of our EDoF-Net. First column shows two slices of the focal stack
focusing at different depth. Second and third columns show the EDoF and ground truth
image respectively. (b) Comparisons on Focus-Net vs. Focus-Net-Guided, i.e., without
and with the guide of an all-focus image.

a NVIDIA K80 graphic card. We make use of the Adam optimizer and set the
weight decay = 0.002, β1 = 0.9, β2 = 0.999. The initial learning rate is set to
be 0.001. All the networks are trained for 80 epochs.

6 Experiments

6.1 Extract the EDoF Image from Focal Stack

We train EDoF-Net on a single focal stack of 16 slices. Although the network
has a simple structure, the output EDoF image features high image quality.
Our network also runs much faster than conventional methods based on global
optimization: for 960 × 540 images it runs at 4 frames per second. Figure 5(a)
shows the result of EDoF-Net. Our experiments also show that it suffices to
guide the refinement of depth image and be used as the input of Stereo-Net.

6.2 Depth Estimation from Focal Stack

As mentioned in Sect. 4.1, to construct Focus-Net-Guided, we first train Focus-
Net and EDoF-Net respectively, then concatenate their output with more fusion
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[23] [14] Ours w/o Noise

Fig. 6. Comparisons on depth estimation from a single focal stack using our Focus-
Net-Guided vs. [23] and [14]. Focus-Net-Guided is able to maintain smoothness on flat
regions while preserving sharp occlusion boundaries. The last column shows Results
from Focus-Net-Guided trained by the clean dataset without poisson noise. [23] and
[14] generate depth value while our Focus-Net-Guided generates disparity value, so the
colors of the images are inverted. (Color figure online)

layers and train the combination. Figure 5 shows the result of both Focus-Net and
Focus-Net-Guided. We observe that Focus-Net produces results with splotchy
artifact, and depth bleeds across object’s boundary. However, Focus-Net-Guided
utilizes the EDoF color image to assist depth refinement, alleviating the artifacts
and leading to clearer depth boundary. It is worth noting that we also trained
a network that has identical structure to Focus-Net-Guided from scratch, but
the result is of inferior quality. We suspect this is due to the good initialization
provided by the pre-trained model.

We compare our DfF results with [23] and [14] using the data provided by
the authors of [23]. We select 16 images from their focal stack for DfF. Figure 6
illustrates the results. Our Focus-Net-Guided is capable of predicting disparity
value with higher quality, while using significantly less time (0.9 s) than [23]
(10 min) and [14] (4 s).

Table 1. MAE and running time of models.

Focus-Net Focus-Net-Guided Stereo-Net BDfF-Net

MAE 0.045 0.031 0.024 0.021

Time (s) 0.6 0.9 2.8 9.7
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Focal Stack Stereo-Net BDfF-Net Ground Truth

Fig. 7. Comparisons on results only using Stereo-Net vs. the composed BDfF-Net.
BDfF-Net produces much sharper boundaries while reducing blocky artifacts.

Focus-Net-Guided Stereo-Net BDfF-Net

(a) (b)
Color Image MC-CNN BDfF-Net Ground Truth

0.39

10.19 0.65

1.89

(c)

Fig. 8. (a) To emulate our B-DfF setup, we combine a pair of Lytro Illum cameras
into a stereo setup. (b) Comparisons of Focus-Net-Guided, Stereo-Net and BDfF-Net
on data captured with (a). (c) Comparisons with [29] on data captured with RGB-
D camera (on top-right shows MAE of each predicted disparity map). (Color figure
online)

We also train the Focus-Net-Guided on a clean dataset without Poisson noise.
It performs better on synthetic data, but exhibits severe noise pattern on real
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images, as shown in the last column of Fig. 6. The experiment confirms the
necessity to add noise to the dataset for simulating real images.

6.3 Depth Estimation from Stereo and Binocular Focal Stack

Figure 7 shows the results from Stereo-Net and BDfF-Net. Compared with Focus-
Net-Guided, Stereo-Net gives better depth estimation. This is expected since
Stereo-Net requires binocular focal stacks as input, while Focus-Net-Guided
only use a single focal stack. However, Stereo-Net exhibits blocky artifacts and
overly smoothes boundary. In contrast, depth prediction from BDfF-Net features
sharper edges. Table 1 describes the mean absolute error (MAE) and running
time of all models.

6.4 Real Scene Experiment

We further conduct tests on real scenes. To physically implement B-DfF, we
construct a light field stereo pair by using two Lytro Illum cameras, as illustrated
in Fig. 8(a). Light field camera contains a microlens array to capture multiple
views of the scene, allowing users to perform post-capture refocusing. In our
experiment, the two light field cameras share the same configuration including
the zoom and focus settings. The raw images are pre-processed using Light Field
Toolbox [2]. Finally, we conduct refocusing using shift-and-add algorithm [17]
to synthesize the focal stack. Figure 8(b) shows the predicted depth from Focus-
Net-Guided, Stereo-Net and BDfF-Net. Results show that BDfF-Net benefits
from both Focus-Net-Guided and Stereo-Net to offer smoother depth with sharp
edges. The experiments also demonstrate that models learned from our dataset
could be transferred to predict real scene depth.

For quantitative analysis, we use a RGB-D camera (Kinect) to collect ground-
truth depth. We mount the Kinect on a translation stage and move it horizontally
to obtain a stereo pair of color images and disparity images, which we utilize to
synthesize dual focal stacks using Virtual DSLR [26]. Figure 8(c) compares our
BDfF-Net with the stereo matching method from [29]. Note that our method
produces accurate results in textureless regions while the results from [29] contain
large errors. This demonstrates the advantage of our approach, which effectively
incorporates both focus and disparity cues in a multi-scale scheme.

7 Discussions and Future Work

Our deepeye solution exploits efficient learning and computational light field
imaging to infer depths from a focal stack pair. Our technique mimics human
vision system that simultaneously employs binocular stereo matching and
monocular depth-from-focus. Comprehensive experiments show that our tech-
nique is able to produce high-quality depth estimation orders of magnitudes
faster than the prior art. In addition, we have created a large dual focal stack
database with ground truth disparity.
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Our current implementation limits the input size of our network to be focal
stacks of 16 layers. In the future, we will investigate approaches to handle denser
focal stack. Further, aside from computer vision, we hope our work will stimulate
significant future work in human perception and the nature of human eyes.
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Abstract. It’s crucial to ensure the complete reliability of each metallic com-
ponent in vehicle industry. In the past few years, X-ray testing has been widely
adopted in defect detection field. Due to huge production in industry, it’s
absolutely necessary for manufacturers to employ more intelligent and auto-
mated inspection scheme to detect defects efficiently. This study develops an
accurate and fast detection method combined with X-ray images using computer
vision and deep learning techniques to recognize small defects, mark theirs’ area
and divide them into different levels according to their sizes. This program
modifies the original RetinaNet to adapt to tiny defects. We present a novel data
augmentation method aiming to expand the number of defects. Then a multi-
scale transform module is designed to generate scale-specific feature map which
helps to grade defects better. Experiments show that the proposed method can
achieve significant precision improvement over X-ray machine with similarly
high recall rate. Both speed and accuracy of this scheme reach practical
industrial-service demand.

Keywords: Defect detection � X-ray � Dilated convolution � CNN

1 Introduction

Defect detection is an indispensable part of the aluminum alloy wheel production line,
which is usually arranged after casting the wheel. Different from the surface scratches
and bumps of the finished product, in this phase we need to detect internal flawed
region. These defects, such as bubble, shrink and so on, were born during the casting
period. Therefore, X-ray images must be generated by means of an X-ray camera at
first. Then X-ray machine can filter a small part of products that are obviously free of
any flaws by using light and dark changes between pixels. Despite this, it still need a lot
of manpower to screen remaining X-ray images for 24 h all days without rest because
of the huge production and the rather low precision of the machine.

At present, with the rapid development of computing power, more and more people
focus on deep learning technology. Since deep convolutional neural networks made
great progress in ILSVRC2012 [1], convolutional networks quickly reach peak in
various computer vision tasks such as image classification, object detection, instance
segmentation and so on. A large number of new object detection algorithms [2–5] have
been proposed from different optimization perspectives. Meanwhile, traditional image
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processing algorithms and plain machine learning methods can hardly satisfy our need
in many complex industrial scenarios.

In this paper, we apply RetinaNet [6] with ResNet-101 [7], which achieves start-of-
the-art performance in generic object detection task, into the wheel internal defect
detection. What’s more, to enhance the performance of the model, it has been modified
in three aspects.

1.1 Small Defect Data Augmentation

Because the casting process is relatively stable, the cost to collect enough defective
wheel samples is enormous. Besides, there are only one or two flaws in the most X-ray
images. The proportion of defective areas to the entire image is so small that it’s hard
for model to learn enough valid information. Therefore, we choose data augmentation
method, including copying and pasting small defects in the same image. Specifically,
we pull out the defective area at first and paste it into the other position of the hub in the
original image. This method can greatly increase the amount of defects.

1.2 Low-Level Features Detection

Deep convolutional networks can extract high-level semantic features of images.
However, there are very little small object information remaining in the high-level
features due to multiple down-sampling. Thus we add an extra low-level feature as an
output layer to improve the detection of small defect and fuse it with the upper-level
features to increase its semantic information. Through this strategy, the detection effect
for small defects is greatly improved.

1.3 Multi-scale Transform Module

In training and test period, defects are assigned to different feature maps according to
their sizes. But for some middle layers, it’s hard for model to grade defects clearly due
to its insensitivity to objective scale. Thus a multi-scale transform module, called MST
for short, is designed to generate scale-specific feature maps. This module consists of a
parallel multi-branch architecture in which each branch has different receptive fields
with the help of dilated convolutions. The most suitable receptive field is well-designed
to match the scale of defects.

Based on this modified RetinaNet, experimental results on the wheel hub X-ray
image datasets achieve 5.0 MAP higher than baseline.

2 Related Work

Defect detection methods based on X-ray images normally adopt image processing
algorithms. [8] experimented various of traditional methods to identify defects,
including Gabor, SIFT, LBP and so on, and at last achieved best result by a simple LBP
descriptor with a SVM-linear classifier. [9] applied digital fringes and binary image
processing techniques to detect the tiny bump defects.
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In recent years, the theory based on CNN is widely adopted in object detection task.
RCNN [2], which was proposed in 2014, was the first to detect objects with convo-
lutional networks. Since then, Faster RCNN [3] introduced RPN, which integrated
RCNN into an end-to-end model. To overcome slow detection speed of two-stage
algorithms, SSD [4] and YOLO [5] was proposed. Afterwards RetinaNet solved the
extreme imbalance between easy and hard samples, which achieves start-of-the-art
performance in both speed and accuracy.

Referring to these algorithms, defects in the wheel hub can be treated as objects.
Thus we adopt modified RetinaNet to make bounding box regression to these objects
and locate their positions.

2.1 RetinaNet

Object detection task has been dominated by more accurate two-stage detectors
developed by RCNN for a long time. In contrast, one-stage detectors can achieve faster
detection speeds, but at the expense of partial precision [10]. RetinaNet expounds the
main reason for low precision of one-stage detectors represented by SSD is extreme
imbalance over foreground and background. This is caused by the fact that detectors
sets too many possible object locations. The imbalance problem is solved by modifying
the standard cross entropy in RentinaNet, which down-weights the loss of well-
classified samples. In defect detection, the number of defects is so small and defective
area accounts for a tiny proportion of the entire image, which leads to an extreme
imbalance between positive and negative samples. Thus, RetinaNet is chosen as the
basic model. Overview of RetinaNet can be inferred from Fig. 1.

The main innovation of RetinaNet is to modify standard cross entropy to solve the
imbalance problem. In one-stage object detection algorithms, in order to accurately
cover all targets, numbers of possible candidate locations need to be set. However, only
a few candidates match the real object bounding boxes. This imbalance is also evident
in defects detection. The imbalance leads to two severe problems: (a) Too many well-
classified examples can lead to inefficient training and difficult for model to learn useful
information; (b) Easy negatives will overlord training process and result in model
degradation. RetinaNet proposed Focal Loss, which reduces the loss of simple samples
to focus the model on difficult samples, and add a balance parameter at of positive and
negative samples. The specific loss expression is shown in (1), where pt means clas-
sified probability of the model.

FL ptð Þ ¼ �at 1� ptð Þclog ptð Þ ð1Þ

2.2 FPN

For most detectors based on multi-scale feature layers, the shallow feature maps with
more detailed information are mainly responsible for the detection of small targets.
However, the shallow features are not good enough due to insufficient semantic
information, while the high-level features are just on the opposite. Thus FPN [11] was
proposed to solve this problem. FPN exploits pyramidal hierarchy of convolutional
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networks to construct feature pyramids, which combines high-level semantic features
with low-level pixel features by means of a top-down architecture with up-sampling
operations. Through this way, FPN has a perfect effect on targets of different scales,
especially on small objects, which is highly suitable for this small defect detection. In
RetinaNet, the basic structure applies SSD network with FPN. As in Fig. 1, the layers,
including P2, P3, P4, P5, are connected with backbone through FPN mode.

3 Data

3.1 Datasets

In order to establish a standard dataset which is in keeping with actual production, X-
ray images are exported from the Dicastal Corporation database. Two representative
defects are selected as shown in Fig. 2. Defects are located on wheel spokes and hub
respectively, both born in the casting phase. The characteristics of defects can be
obviously seen by examples. Tiny defects are too small to distinguish. Moreover, since
defects often appear in pieces, a plurality of small defects are treated as a defective
object together by a larger bounding box. However, such a defective area contains a lot
of unnecessary background information, and the boundary becomes difficult to define,
which brings great obstruction to our detection.

Prediction

C2
C3

C4
C5 P6 P7

P2 P3
P4 P5

MSF MSF

Fig. 1. Overview of modified RetinaNet. The P7 is used as an output layer in original RetinaNet
and P2 not. In this paper, P2 is added and P7 is abandoned. The MSF module is added after P3
and P5.
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A large number of original images were manually screened and marked. All images
which are free of defective areas were discarded. Due to the relatively small amount of
defects, 1053 defective images were collected finally, including 1288 defect instances.
The original size of X-ray images is 1024*1024 pixels. All defects are divided into
three grades according to their sizes, namely, level 1, level 2 and level 3. The anno-
tations of dataset are labelled by trained people in the style of COCO [12]. The
statistics of training set, validation set and test set are shown in Table 1. More than
80% of defects are in level 1 which are too small to identify.

3.2 Metrics

In deep learning, it’s common to evaluate the performance of a simple model by means
of accuracy, precision, recall, and so on. For a binary classification model, the distri-
bution of labels and predictions can be shown as Table 2.

Fig. 2. Examples of defects. The left one shows a level-3 defect on the spoke and the right
shows a level-1 defect on the rim. The right defect is so small that partial enlargement is shown.

Table 1. Statics of datasets.

Sample Defects Level 1 Level 2 Level 3

Training 843 1021 830 133 58
Validation 85 108 89 10 9
Test 125 159 132 16 11
Total 1053 1288 1051 159 78

Table 2. Label and prediction for binary classification.

Prediction
True False

Label True True positive(TP) False negative(FN)
False False positive(FP) True negative(TN)
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Then these metrics can be calculated individually by formulas shown in (2) (3) (4).

Accuracy ¼ TPþ TN
TPþ TN þFPþFN

ð2Þ

Precision ¼ TP
TPþFP

ð3Þ

Recall ¼ TP
TPþFN

ð4Þ

In the object detection task, it is difficult to measure the performance of a model
with above single metric. Thus IOU (intersection over union) is used to indicate the
overlap between the detection and the real area, that is, intersection of two regions
divided by union. It is considered that the correct result is detected if IOU is greater
than 0.5. For a certain category of object, the prediction results can be sorted according
to the classification confidence and the corresponding precision and recall can be
calculated respectively. Then the area under the P-R curve is AP. For multi-class
detection, MAP can be calculated as the mean of AP value for each class. As the most
important evaluation metric in the object detection task, MAP can reflect the com-
prehensive ability of a model in different aspects such as false detection, missing
inspection and judgment accuracy.

4 Methods

In this hub defect dataset, the proportion of defective area to whole image is so small
that the amount of negative samples is far more than positive ones during training
phase. In order to better deal with these problems, we choose to apply the modified
RetinaNet as object detection algorithm.

4.1 Data Augmentation

In the raw dataset, there are only one or two defects in most X-ray images so that the
total number of positive samples is small. Thus it’s necessary to resort to data aug-
mentation technology. The main method adopted is to copy and paste small defects to
construct defects artificially. Specifically, the defective instance generates a flawed
mask and then it’s pasted elsewhere in the same image. One of the processed images is
shown in Fig. 3.

At first, use the annotation of an image to extract defective areas as a flawed mask.
And then, there is two basic requirements for pasting. The first point is that defects are
required to be pasted into hub area and not overlap with others and the second is that
the pasted defects should be in harmony with the surroundings. The data augmentation
algorithm is outline in Table 3. In X-ray images, the blank area is fully white so the hub
area can be directly divided by a simple Image Binarization method. Then randomly
select a coordinate point as a candidate center point and calculate the IOU value of the
chosen area to other defects. If there is an IOU value greater than threshold, reselect
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one. After that, paste the flawed mask with the transparency at 60% to smooth the
boundary of defects. Finally, repeat the paste process multiple times, that is N times in
Table 3, to generate several defects. Other common data augmentation methods such as
horizontal flip, translation and crop are also applied.

Fig. 3. Example of the data augmentation method. The black box is the original defect and the
others in red are generated by data augmentation. (Color figure online)

Table 3. Data augmentation algorithm for each image.
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4.2 Low-Level Features Extraction

In this dataset, most of the defective area are so small and basically there is no
particularly large target. The configuration of generic object detection algorithm
doesn’t exactly match the hub defect detection. Thus the structure of RetinaNet is
modified to adapt to tiny flaw identification.

Due to the intrinsic multi-level structure of deep convolutional network, it’s easy to
extract features of an image in different levels separately. The original RetinaNet
selects three feature layers of the backbone network, including C3, C4 and C5, and then
adds two additional convolutional layers P6 and P7. Afterwards the former three
feature maps are connected through FPN mode. In this defect detection, the feature
layer C2 of backbone, which is a lower layer than C3, is selected as an available feature
map and fused with high-level features. The oversized feature layer P7 is removed
because there is no such big defective area. Lower convolutional layers have better
details for better detection result. The specific network structure is shown in Fig. 1.

4.3 Multi-scale Transform Module

In defect detection task, not only the location of defects needs to be detected accurately,
but also defects need to be classified into different grades according to their scales. The
common defects are classified into three levels, including level 1, level 2 and level 3.
However, the generic detection algorithms are not insensitive to object size so that it is
difficult to achieve a good classification effect. Therefore, to deal with scale variation in
the defect detection, a multi-scale transform module, called MST for short, is designed
elaborately. For different grades of defects, this module consists of a parallel multi-
branch architecture aiming to generate scale-specific feature maps.

In the MST module, all branches, which have the same network with dilated
convolutions [13], are applied to extract features respectively, while each branch gets
different receptive fields with specific dilation rate [14]. Dilated convolutions with
dilation rate ti means to insert ti � 1 zeros between convolutional kernel values,
enlarging the filter size without additional parameters and computations. The receptive
field of dilated convolution is calculated as (5), where k means the size of convolutional
kernel and i means the ith layer.

RFi ¼ RFi�1 þ k � 1ð Þ � ti ð5Þ

The most effective receptive field is strongly related to the scale of objects. The
convolutional branch with smaller receptive field is more suitable for detecting minor
defects, while the branch with larger dilation rate can extract the features of severe
defects better. Thus, adjusting the receptive field by regulate the dilation rate can help
to achieve a better effect on detecting objects of different scales. At last, all the branches
features are merged into an integrated feature map as an output. The architecture of the
multi-scale transform module is shown in Fig. 4.

In this paper, the multi-scale transform module is arranged over P3 and P5 as
shown in Fig. 1 because the defects assigned to the two layers are hard to grade.
Specifically, the MST module arranged over P2 is to distinguish level 1 and level 2
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defects and the another one is to distinguish level 2 and level 3. Thus the dilated rates
of two MST modules are set to 1,2 and 2,3 respectively. For each branch, the number
of dilated convolutional layers is set to 5. What’s more, the multi-scale transform
module can greatly enrich the extracted features, which helps model identify defects of
different grades more accurately [15].

5 Experiments

In this section, experiments are conducted on the hub defect dataset. Considering that
the dataset is not big enough to train a complete model like RetinaNet, all following
models are pre-trained on the COCO [11] dataset. After that, detectors are trained
carefully on the hub dataset described in Sect. 3. Ablation experiments are conducted
on the validation set to verify our modification on RetinaNet.

5.1 Implementation Details

We re-implement RetinaNet with ResNet-101 as our baseline method in Keras. The
input images are resized to 800*800 pixels. All models used in this article is trained
end-to-end in a batch size of 2 on 2 2080TI GPUs with Adam. At First, learning rate
start from 0.01 and backbone network is frozen. And then train the whole model with
learning rate falling to 0.001. For the evaluation, models are evaluated by MAP
described in Sect. 4 (same as VOC [16]) and the threshold is set to 0.5. Other
implementation details are as in [1]. The entire training process takes about 10 h
excluding pre-training process.

Fig. 4. Structure of the MST module. Each branch consists of several dilated convolutional
layers with the same dilation rate while different branches have different dilation rates.
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5.2 Ablation Studies

Ablation studies are conducted by keeping other configuration constant and the
experimental results are shown in Table 4. The MST module is verified with low-level
features modification together.

From the experimental results, the methods used in this paper has greatly improved
the performance of RetinaNet on defect detection. Without any other tricks, AP of the
model has improved by 3.2 compared to baseline.

5.3 Comparison with Other Models

To further verify the superiority of our modified RetinaNet, we try to compare it with
other object detection models. We re-implement Faster RCNN with FPN or not and
RFCN [17]. All implementation details are the same as their original papers. From the
experimental results in Table 5, it’s obviously to find out that our modified RetinaNet is
much better than other models. What’s more, with multi-scale training/test, AP of our
model has improved by 5.0 compared to baseline.

5.4 Comparison with X-Ray Machine

The existing x-ray machine applies image processing technology to detect more than a
dozen partial images for each wheel hub. If an image is judged to be defective, all
images of the hub will be exported to be determined by well-trained workers. Under
such conditions, the X-ray machine can get a high recall rate at 100%. According to
historical statistics, the actual defect rate is only about 1%, while images exported by

Table 4. Ablation Studies.

Method Data Aug MST AP@0.5

(a) Baseline – – 35.2
(b) Baseline w Data Aug U 37.0
(c) Baseline w MST U 36.7
(d) Ours U U 38.4

Table 5. Comparison with other models.

Method Backbone AP@0.5

(a) Faster RCNN ResNet-101 31.5
(b) Faster RCNN w FPN ResNet-101-FPN 34.1
(c) RetinaNet ResNet-101 35.2
(d) RFCN ResNet-50 33.0
(e) Ours (single scale) ResNet-101 38.4
(f) Ours (multi scale) ResNet-101 40.2
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the X-ray machine account for about 35% of the total, including the true defective and
false defective samples. Due to the low precision, workers are required to assist in
detecting defects in turn all days.

In this paper, our proposed method could guarantee the same high recall rate by
lowering the threshold of classification confidence to 0.4 at the expense of partial
precision. Even so, all defective samples judged by modified RetinaNet account for
about 24% of the total as in Table 6. Compared with the x-ray machine, the workload
of workers can be reduced by 31.4%, which greatly improves productivity. What’s
more, the speed of our model achieves 10 FPS on 1080ti, which can fully reach
practical industrial-service demand.

6 Conclusion

In this work, we apply object detection algorithm based on deep learning theory into
wheel hub internal defect detection. we choose RetinaNet with ResNet-101, which
achieves start-of-the-art performance in generic object detection task, as our baseline.
Then apply a novel data augmentation method, extract low-level features and construct
a multi-scale transform module to modify RetinaNet to deal with tiny defect detection
in small dataset. Experiments show that the modified model we built achieves excellent
results in hub defect detection.
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Abstract. 3D shape segmentation is a vital and fundamental issue in 3D shape
analysis tasks, and the multi-view paradigm is one of practical approaches to
solve it. The typical multi-view paradigm contains an image-based convolu-
tional neural network (CNN) for effective view-based semantic segmentation.
To improve the accuracy of multi-view paradigm, this paper presents a new
dilated convolution network called Optimized Dilated Convolution Network
(ODCN). We derive a novel network architecture by using the gradient descent
with momentum algorithm to minimize some objective functions related to
neural network propagation. In addition, the dilated convolution, which
increases the resolution of output feature maps without reducing the receptive
field of network, is adopted for semantic segmentation. Experimental results
verify that the proposed method achieves better performance over other state-of-
the-art methods.

Keywords: Dilated convolution � Optimization algorithm � Multi-view �
3D shape segmentation � CNN

1 Introduction

Recently, 3D shape data has experienced explosive growth due to the fast development
of AR/VR technology. 3D shape representation of objects in the form of polygonal
meshes or point clouds can be easily obtained by using depth sensors on fixed or
mobile ends. 3D shape segmentation [1–4] is widely applied in various tasks, including
3D shape analysis [5], texture mapping [6] and shape retrieval [7, 8]. In order to
improve the quality of 3D shape segmentation, multi-view approaches [14, 15] have
been extensively used. In multi-view segmentation, a set of viewpoints is selected to
render 3D model to generate multiple view images, and all the images are fed into a
convolutional neural network with shared weights to obtain semantic labeled maps,
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then the maps are mapped back to the 3D shape surface. The typical multi-view shape
segmentation approach has three challenges: (1) How to select multiple viewpoints so
that the selected viewpoints set is able to minimize surface occlusion and completely
cover the shape surface. In this paper, a method of shape surface enclosure is proposed,
which obtains viewpoints set from all vertices of a tetrahedron surrounding shape
surface, and complete coverage of the surface is obtained by rotating angle. (2) Multi-
view approaches require semantic segmentation of all input images, but a better net-
work designed for multi-view paradigm is still challenging [9]. This paper proposes a
new variant of dilated CNN inspired by recent advance in designing network archi-
tecture by unfolding optimization algorithms [27], the proposed OCDN network is
constructed based on momentum gradient descent [20]. The idea is motivated by the
success of the designed networks [27] for image recognition tasks. (3) Multi-view
approaches output confidence maps of each image. When these maps are fused and
mapped back to the 3D shape surface, the consistency of shape boundary and occluded
part must be guaranteed. In this paper, a conditional random field (CRF) [17] is used to
ensure the surface consistent segmentation.

The main contribution of this paper is the Optimized Dilated Convolution Network
(ODCN) for 3D shape segmentation, which belongs to multi-view paradigm.
The ODCN derives its network architecture according to optimization algorithms,
resulting in faster convergence speed. Compared with the most popular deep neural
networks (ResNet [11], DenseNet [12]) with the same depth, the ODCN outperforms
by accuracy. Dilated convolution [13] is adopted to achieve larger receptive field while
maintaining the resolution of network input. It makes the ODCN more applicable for
semantic segmentation at the image level and 3D shape segmentation at the mesh level.
Experiments demonstrate that the ODCN outperforms other state-of-the-art approaches.

The rest of the paper is organized as follows. Some related work is reviewed in
Sect. 2. The proposed ODCN is described in detail in Sect. 3. Section 4 presents and
discusses experimental results, and conclusion is drawn in Sect. 5.

2 Related Work

Convolutional Neural Networks. Our work relates to advances in semantic seg-
mentation using dilated convolutions [13, 16]. Dilated convolution increases the
receptive field of a CNN without pooling operation. The VGG network [18] was
modified by [13], which removed two last pooling and convolution layers, and added
dilated convolutions. Yu et al. [16] raised the Dilated Residual Networks (DRN) by
adding dilated convolution operations in ResNet. Li et al. [27] derived AGD-Net
through Nesterov’s accelerated gradient descent algorithm [32], and achieved good
performance on the CIFAR dataset.

Optimization Algorithms for Deep Learning. Gradient descent method (GD) [19]
obtains the global optimal solution by minimizing the loss function of all training
samples, it can be very slow. The stochastic gradient descent algorithm (SGD) uses
partial samples to approximate the whole samples, the final solution is often near the
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global optimum. Gradient descent with momentum (GDM) [20] uses momentum term
to offset the fluctuations of the gradient descent, making the algorithm converge faster.

3D Shape Segmentation. Early 3D mesh model shape segmentations rely on artifi-
cially designed geometric features (such as surface curvature [21], shape context [22],
etc.). Later, CNN was used [1], but this method only operated on hand-designed geo-
metric descriptors in 2D matrices and lacked spatial coherence structure. Kalogerakis
et al. [24] proposed a data-driven method for marking meshes by optimizing conditional
random field (CRF). Recently, multi-view approaches [2, 14, 25] have been widely
used. On the one hand, the cost of 2D image feature descriptors is lower than 3D shape
descriptors. On the other hand, semantic segmentation for 2D images is more mature.

3 Proposed Method

In this section, we’ll introduce the ODCN, a multi-view approach for shape segmen-
tation. Figure 1 presents the pipeline of ODCN framework. The method uses a set of
images obtained from multiple viewpoints uniformly placed around the 3D model as
input, and the images are segmented into a set of semantic labeling confidence maps by
ODCN network. These confidence maps will be integrated and back projected to the
shape surface. At last, a surface-based CRF achieves consistent segmentation of the
model surface.

3.1 Input

3D shapes may not upright oriented along a consistent axis, so we need to find a
tetrahedron that can enclose the surface of the shape. All the vertices of the tetrahedron
form a set of observation points, where 24 virtual cameras are located. All the cameras
point to the centroid of the 3D mesh model. Then according to the Phong reflection
model [26], using perspective projection, four 512 � 512 shadow grey images are
rendered from each camera by rotating 0, 90, 180 and 270 degrees along the axis from
the camera to the centroid. In order to improve the accuracy of segmentation, the paper

Fig. 1. Pipeline of ODCN framework for 3D shape segmentation.
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simultaneously generates depth images of 512 � 512 size of the 3D shape while
rendering the shadow images. The grayscale image and depth image at the same
location will be joined into a single two-channel image that is fed into the image
processing module as input of the ODCN network.

Besides the shadow image and depth image, for each camera point, the 3D shape is
rasterized into amesh reference image for storing the ID of themesh vertex corresponding
to each pixel. The correspondence is determined by the proximity from 2D image pixel to
the nearest 3D vertices. These mesh reference images are used in the unprojection layer
for back projecting the two-channel images to the shape surface (Fig 2).

3.2 ODCN Structure

Li et al. [27] raised an assumption: Since the propagation in standard CNN type
feedforward neural networks could be summarized as finding the minimum value of an
objective function, and optimization algorithms were used to solve the value, the
structure of the neural network may be derived during the solving process. They used
the gradient descent algorithm to minimize some functions related to the propagation in
the feedforward neural networks that the networks have same linear transformation in
different layers. Experiments on ImageNet and CIFAR-10 verified their hypothesis.
Inspired by their creative works, we try to use gradient descent algorithm with
momentum (GDM) [20] to design new network structure.

The GDM is an improved algorithm of gradient descent:

diþ 1 ¼ di � ddi þ b di � di�1ð Þ ð1Þ

where b is a hyperparameter of momentum term. And the parameter of gradient is set to
1 for simplify. The formula is also vividly called the heavy ball algorithm [23].

In order to link network derivation with optimization algorithms, suppose there is a
symmetric positive definite matrix U, let:

V ¼
ffiffiffiffi
U

p
; h ¼ Vd ð2Þ

Fig. 2. Virtual cameras are placed at each vertex of a tetrahedron to render the 3D shape model.
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One of the objective functions that meets the above assumption [27] is:

f hð Þ ¼ k h k2
2

�
X

i
Wi hð Þ ð3Þ

where

Wi hð Þ ¼
VT
i hð Þ2
2 ; if VT

i h[ 0;
0; otherwise

(

ð4Þ

for every hi in columns of h, and hi [ 0, the derivative of the objective function is:

dhi ¼ hi � VW Vhið Þ ð5Þ

using (1) to minimize (3), by substituting formula (2) and (5), formula (1) becomes

hiþ 1 ¼ hi � hi � VW Vhið Þð Þþ b hi � hi�1ð Þ
¼ VW Vhið Þþ bhi � bhi�1

ð6Þ

if we replace b by b1 and b2, set b1 ¼ 1; b2 ¼ �1 and combine with formula (2), we
shall get the building block of our ODCN network:

diþ 1 ¼ W Udið Þþ di þ di�1 ð7Þ

the function W Udð Þ represents for combination of convolution, batch-normalization
(BN) and ReLU. Figure 3 gives the structure of the building block.

Inspired by DRN, the paper modifies the above building block by adding dilated
convolution to it. Firstly, we use the mentioned building block to replace every block of
ResNet-18. Secondly, pooling operations are removed from ResNet-18, and additional
convolutional filters are added after the 7 � 7 convolution. Thirdly, we add 2-dilated

Fig. 3. The building block of ODCN
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convolutions in the fourth groups of convolutional layers, and replaces the fifth groups
of ResNet-18 by 4-dilated convolutions. Finally, we apply a different strategy with
DRN to overcome the “degridding” problem. Illustrated in Fig. 4, level 7 to level 9
remove residual connection from several additional building blocks, and have different
dilated rate by 1,2,5. Since the input two-channel images are 512 � 512 scale, and
level 10 outputs confidence maps of size 64 � 64,we resize the maps to 512 � 512
scale through a deconvolution operation of stride 8. The consistent confidence maps
produced by ODCN network are back projected to 3D surface using the mentioned
above mesh reference images.

The unprojection layer projects the confidence maps back to 3D surface. Since the
paper doesn’t assume that shapes are oriented consistently, there is no need to care
about the order of the input images. Mesh reference images preserve pixel-to-vertex
information, ensuring that the two-channel images correspond correctly to the shape
surface. For each triangle mesh m, the paper specifies its label as lm, which is the label
of all two-channel images mapped to the mesh with the maximum label confidence. It’s
worth noting that triangular mesh reference may be absent near the edge of the model
shape, and occluded portion may be mapped onto the shape contour, making the
occluded portion unreliable. A reasonable operation is to use the CRF method to
initialize the segmentation of shape edges and occlusion portions. Defining lm as the
initial label of mesh m, if m has no label, set lm ¼ 0. Let M be the set of the whole
meshes in 3D surface, a CRF x operating on the surface representation contains a unary
factor and a pairwise term:

Fig. 4. Architecture of ODCN. Each black frame rectangle is a combination of convolution, BN
and ReLU. The whole network is separated into different level for different rate of dilation.
Deconvolution is used to resize the feature maps to 512 � 512.

ODCN for 3D Shape Segmentation 383



W xð Þ ¼
X

m2M Wunary xmð Þþ
X

m;nð Þ2 M;Mð Þ Wpairwise xm; xnð Þ ð8Þ

the unary term is set according to the labels produced in the projection layer:

Wunary xm ¼ gð Þ ¼
0; 8g if lm ¼ 0
0 if lm ¼ g
1 else

8
<

:
ð9Þ

the pairwise term measures the label similarity between two neighbor meshes:

Wpairwise xm ¼ gm; xn ¼ gnð Þ ¼ e�d2m;n if gm 6¼ gn
e� 1�dm;nð Þ2 if gm ¼ gn

(

ð10Þ

where dm;n represents the geodesic distance between mesh m and mesh n. Distances are
normalized to [0,1]. The formula (8) can be solved by mean-field approximation [28].

4 Experimental Setup and Evaluation

In this section, we evaluate the quality of our proposed ODCN framework on two
widely-used 3D datasets: PSB and COSEG datasets [29] (Fig. 5).

4.1 Datasets and Implementation Details

The PSB dataset contains 11 categories and each contains 20 mesh models.
The COSEG dataset is smaller with 8 categories, about 20 mesh models per category.
All models in the PSB have water-tight mesh representation with clean topology. Most
shapes in COSEG are similarly preprocessed, facilitating use in geometry processing.

Fig. 5. Mesh representation of the PSB dataset.
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The experiments were carried out using a Xeon Bronze 1.7 GHz CPU, powered
with a GTX 1080Ti GPU and 16 GB RAM. In each category of PSB and COSEG
datasets, we randomly selected 16 models as training sets and 4 models as test sets. We
used GDM optimization algorithm with initial learning rate 0.01, batch size 4 and
trained for 30000 iterations.

4.2 Comparison Between Different Methods

Our shape segmentation approach is compared against (I) the SVM by Chang et al. [30]
(II) the CNN method proposed by Guo et al. [1], (III) ShapeBoost proposed by
Kalogerakis et al. [24], (IV) ShapePFCN [2] combines image-based fully convolutional
networks and surface-based CRF to yield coherent segmentations of 3D shapes.

Taking labeling accuracy as metric, the performance of all above methods on the
PSB dataset is shown in Table 1. Labeling accuracy measures the percentage of meshes
labeled correctly according to the ground-truth mesh labeling. Our ODCN approach
outperforms the best-performing prior work [1] by 0.81% in terms of the average of
per-category accuracies. Moreover, our approach obtains significantly higher perfor-
mance in categories like airplanes, cups, fishes, glasses, octopus, pliers and tables. The
best segmentation results on PSB dataset of our approach is shown in Fig. 6. Figure 7
demonstrates the segmentation results on COSEG dataset, and Table 2 gives the
numbers of labeling accuracy.

Fig. 6. Representative segmentation results produced by our ODCN framework on PSB dataset.
Different categories have different numbers of labels.
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Figure 8 presents the segmentation results of the ground-truth segmentations, along
with our approach (ODCN), and two high-performance prior approaches, ShapeBoost
and ShapePFCN. It demonstrates that our approach can achieve better segmentation
effect on the boundaries of the shapes with complex topology.

Table 1. Precision compare on PSB dataset

SVM CNN ShapeBoost ShapePFCN Ours

Airplane 80.43 96.67 96.10 92.50 97.00
Bird 81.49 88.35 89.60 86.30 93.08
Chair 81.38 98.67 98.10 98.10 98.57
Cup 94.11 99.73 94.00 93.70 99.98
Fish 87.05 95.64 95.70 95.90 96.23
Glasses 95.92 97.60 96.92 96.30 98.49
Mech 81.87 95.60 98.70 97.90 98.02
Octopus 97.04 98.79 98.26 98.10 99.11
Plier 92.04 96.22 95.20 95.70 96.44
Table 90.16 99.55 99.45 99.30 99.79
Teddy 91.01 98.24 98.70 96.50 97.30
Average 88.41 96.82 96.43 95.48 97.64

Fig. 7. Representative segmentation results on the COSEG dataset. COSEG dataset is smaller
than PSB dataset but has more labels in several categories.

Table 2. Labeling accuracy on COSEG dataset

Candelabra Chair Fourleg Goblet Guitar Iron Lamp Vase

Accuracy 95.73 97.82 90.58 95.94 98.30 90.08 97.19 91.13
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4.3 Analysis of the ODCN

We also evaluated our framework to its alternative degradation variations, to determine
the primary source of performance gain. Table 3 shows labeling accuracy on PSB for
the following cases: (i) we use ODCN network without “degridding”, (ii) we adopt the
unary term rather than the entire CRF. Numerical results show that both “degridding”
and CRF are responsible for large performance improvement. It also proves the
effectiveness of our degridding strategy.

Fig. 8. Comparison between Ground-truth, ShapeBoost, ShapePFCN and our method.

Table 3. Labeling accuracy on PSB dataset for degraded variants of our approach

ODCN ODCN without CRF ODCN without degridding

Airplane 97.00 84.42 71.20
Bird 82.08 78.47 68.80
Chair 98.57 92.25 78.08
Cup 99.99 93.48 87.77
Fish 96.23 80.96 73.92
Mech 98.02 93.66 82.72
Octopus 99.11 97.99 95.82
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5 Conclusion

We presented a novel ODCN architecture for 3D shape segmentation. We use a
tetrahedron that surrounds the shape surface to obtain multiple viewpoints. The shadow
images and depth images rendered from multiple viewpoints are fused and fed to the
ODCN network. The ODCN structure design is inspired by the optimization algorithms
of deep learning. And dilated convolution is introduced to keep high spatial resolution
all the way through the final ODCN output layer. Then, a surface-based unprojection
layer aggregates ODCN outputs across multiple views and a CRF improves coherent
shape segmentation. Evaluation results show that the ODCN framework has superior
performance than prior works on 3D shape segmentation.

The focus of future work is to study whether faster and more stable optimization
algorithms can improve the network with better performance. Another issue is to
experiment the optimal viewpoint selection method based on viewpoint entropy [31].

Acknowledgments. This work was supported by National Key R&D Program of China
(2016YFC0303707).
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Abstract. Due to diversity among tumor lesions and less difference between
surroundings, to extract the discriminative features of a medical image is still a
challenging job. In order to improve the ability in the representation of these
complex objects, the type of approach has been proposed with the encoder-
decoder architecture models for biomedical segmentation. However, most of them
fuse coarse-grained and fine-grained features directly which will cause a semantic
gap. In order to bridge the semantic gap and fuse features better, we propose a style
consistency loss to constrain semantic similarity when combing the encoder and
decoder features. The comparison experiments are done between our proposed U-
Net with style consistency loss constraint in with the state-of-art segmentation
deep networks including FCN, original U-Net and U-Net with residual block.
Experimental results on LiTS-2017 show that our method achieves a liver dice
gain of 1.7% and a tumor dice gain of 3.11% points over U-Net.

Keywords: Liver Tumor Segmentation � U-Net � Style consistency constraints

1 Introduction

At present, most of the deep learning networks used in biomedical segmentation have a
similar structure, viz. encoder-decoder architecture, like a fully convolutional network
(FCN) [1] and U-Net [2]. In these encoder-decoder networks, the most important part
for segmentation is the skip connection combines the coarse-grained feature mapping
from the decoder stage with the fine-grained feature mapping from the encoder stage,
which helps recover fine-grained details for determining the region of interested and
increasing the accuracy of segmentation.

However, the author of UNet++ [3] thinks the skip connection used in U-Net directly
fast-forward high-resolution featuremaps from the encoder to the decoder network which
will cause a semantic gap, thereby affecting the effect of the feature combination.

In order to make a better combination of features, we introduce a Style Consistency
Loss. By reducing the difference of Gram matrix between two features with the Style
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Consistency Loss, it facilitates improving the semantic similarity. According to our
experiments, architecture with the style constraint is effective and achieves the sig-
nificant performance outperforming that of U-Net.

2 Related Work

The exploration of the segmentation network architecture for medical image has been a
focused study. FCN is the first network to use the convolution layer instead of the full
connection layer for the pixel level classification, thus solving the problem of image
segmentation at the semantic level. Referring to the idea of FCN, U-Net first proposed
the encoding and decoding structure which fuse the Fine-grained with Coarse-grained
feature through skip connection, thus improving the segmentation accuracy. As an
improvement of U-Net, UNet++ use a series of nested, dense skip pathway to connect
the encoder and decoder sub-networks which aim at reducing the semantic gap between
the feature maps of the encoder and decoder sub-networks. By doing this, UNet++
achieves an average IoU gain of 3.9 and 3.4 points over U-Net. X. Li et al. combined
DenseNet [4] with U-Net and proposed H-DenseUnet [5] which achieved very com-
petitive performance on the segmentation results of tumors for liver segmentation even
with a single model. These works show that Encoder-decoder architecture has great
potential for medical image segmentation.

3 Proposed Method

This section details the general formulation of a Style Consistency Loss and then
introduce an instantiation of the model using U-Net.

3.1 Style Consistency Loss

In U-Net, encoder features mainly reflect the details of the image, while decoder features
are derived from more abstract information. They are like two pictures that depict the
same thing but have different styles. One is realistic, whilst the other is abstract. If we
combine them directly, there will be a semantic gap. By reducing the semantic distance
between the two features, the model can be better optimized to improve performance.

Referring to the style loss function of neural style transfer [6, 7], we propose a Style
Consistency Loss (SC) as:

lsc ¼ MSE G fAð Þ;G fBð Þð Þ ð1Þ

where MSE is mean-square error and G is Gram matrix which defined as follow:

G ¼ 1
WH

XWH

i
xix

T
i ¼ 1

WH
XXT ð2Þ
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therein, taking an image of size W� H, xi means the location of the image. Gram
matrix is exploited to measure the characteristics of the feature at one dimension and
the relationship of the feature between the dimensions.

By optimizing the distance of the two features’ Gram matrix, the similarity is
accordingly improved. Additionally, Gram matrix used in Bilinear CNN [8] for fine-
grained visual recognition achieves the state-of-the-art performance on a number of
fine-grained datasets. This demonstrates the good ability of Gram matrix in semantic
similarity assessment.

3.2 Segmentation Network

According to our experiments, the adopted U-Net consists of an input layer that accepts
a 256� 256 image, an output layer and 6 blocks in the middle (as see Fig. 1). To deal
with the semantic gap, we apply the proposed style consistency loss on each pair of
features from the encoder and decoder end. The overall loss function for the proposed
network is shown as Eq. 3,

Ltotal ¼ lce þ
Xn

i
lsci ð3Þ

where lce is the Cross-Entropy Loss for segmentation, lsc is the style consistency loss.

Fig. 1. The architecture of the Segmentation Network used in our paper.
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4 Experiments

4.1 Datasets

The Dataset for this study comes from Liver Tumor Segmentation (LiTS) challenge [9],
which was collected from 6 medical centers. It consists of 130 training and 70 testing
CT scans, meanwhile, the segmentation masks are provided as Nifti.nii files. All
ground truth annotations were carefully prepared under the supervision of expert
radiologists. Since the challenge no longer provides the test data, we split the training
data into two parts: 100 for training and 30 for testing. Due to the limitation of
experimental equipment, the network architecture we use is based on 2D convolution.
Because the original medical data is 3D data, we slice the 3D medical images into
several 2D planes and apply 2D segmentation for each 2D plane. So, the final dataset
employed in the paper contains 13419 for 2D training data and 5503 for 2D test data.

4.2 Experiment Settings

We train the network using SGD with size 256� 256 and bitch size 1. The network is
trained for 10 epochs, the learning rate is set to 0:007, momentum is 0.9 and weight
decay is set to 5� 10�4.

4.3 Comparison Methods

To verify the effectiveness of the proposed method, three typical networks are used as
the comparing methods: FCN8s, U-Net, ResUnet, U-Net + SC.

FCN8s is one version of the original FCN methods, which achieves the best
performance in this series.

U-Net is a method based on the encoder-decoder architecture, which used widely in
biomedical segmentation.

ResUNet is a residual version of U-Net, we use the original type of residual block
with two 3� 3 conv instead of the double conv in U-Net.

U-Net + SC is the same architecture with U-Net, except we apply style consistency
loss on each skip connection part.

4.4 Evaluation Metrics

Dice is a common Metrics in biomedical segmentation, the equation as follows:

Dice ¼ 2� truepredict
groundturthþ predict

ð4Þ

For the dataset, we used liver dice and tumor dice to verify the methods. separately.

Style Consistency Constrained Fusion Feature Learning 393



4.5 Results and Analysis

This section details the experiments on Liver Tumor Segmentation (LiTS) datasets. The
experiment results are shown in Table 1.

As shown in Table 1, our method gains the best performance than the other four
methods, which achieves 1.7% liver dice improvement and 3.11% tumor dice
improvement on LiTS dataset, compared to UNet without style consistency loss.
Specifically, our method obtains 0.11% liver dice improvement and 1.14% tumor dice
improvement compared to ResUNet, which demonstrates the effectiveness of the
proposed method for the feature combination. U-Net achieves better performance than
FCN8s on tumor segmentation but worse on the liver. The reason is that method of
feature combination used in FCN8s is superposition, that is not friendly to the small
object of the tumor. This is also can be reflected in the Fig. 2.

Table 1. Experiment results on Liver Tumor Segmentation (LiTS) datasets

Network Liver dice Tumor dice

FCN8s 98.62 11.9
U-Net 97.16 76.15
ResUNet 98.75 78.12
U-Net + SC 98.86 79.26

Fig. 2. An example test result. (Color figure online)
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Figure 2 shows an example test result, including a comparison of U-Net, ResUNet
and Our method. As can be seen, our method gains better performance on both the liver
(green mask) and tumor (red mask) segmentation. In addition, because the network is
not deep and wide enough, there are some small tumors that can’t be identified, but it is
enough to prove the superiority of our method.

Figure 3 shows a visualization of feature maps, while the top is the coarse-grained
feature maps, and the bottom is the fine-grained feature maps. We can see that com-
paring traditional U-Net, our method’s feature maps work better. In particular, the
region of interest of the coarse-grained feature map in our method shows better dis-
tinguishability, which is constrained by the consistency of the fine-grained feature map.

5 Conclusion

In this paper, we propose a Style Consistency Loss used in U-Net for biomedical
segmentation. The proposed loss function is helpful in the feature fusion with
increasing similarity in semantics by reducing the difference of Gram matrix between
them. The comparison experiment has been done between our proposed U-Net with the
style consistency loss with FCN, original U-Net and U-Net with residual block. Our
results on the LiTS dataset achieve a liver dice gain of 1.7% and a tumor dice gain of
3.11% points over that with U-Net. This demonstrates our proposed method of
improving the segmentation results with more accuracy region determination while

Fig. 3. Visualization of feature maps.
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taking account of the semantic consistency. In future work, the proposed method will
be explored and improved with more clinical liver medical images from the hospital.
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Abstract. Recently, stereo matching from a pair of rectified images has
been cast as a supervised learning task using the powerful representa-
tion of convolutional neural networks. However, existing methods only
utilize last feature maps output from Siamese Networks to compute sim-
ilarity measurement, which are lack of multi-levels similarity information
to construct an informative cost volume. To solve this problem, we pro-
pose a hierarchical correlation operation to compute similarity of stereo
pairs at multiple levels. In addition, to yield accurate disparity in ill-
posed region, we propose a stacked hourglass feature network with dense
connections to effectively incorporate context information. Then, hybrid
matching cost volume is built leveraging hierarchical correlation features
and concatenation features of left and right. 3D CNN encoder-decoder
architecture is utilized to regularize the cost volume and regress dis-
parity. Experiments demonstrate that our network achieves competitive
performance with state-of-the-art methods on Scene Flow, KITTI 2012,
and KITTI 2015 datasets.

Keywords: Stereo matching · Stacked hourglass · Hierarchical
correlation · Dense connection

1 Introduction

Stereo matching is a fundamental task in computer vision for sensing depth.
Accurately estimating depth of real world scene is crucial to several applications
including autonomous driving [10], robotics [14] and 3D scene understanding.
The key problem tackled by stereo matching is to find corresponding pixels
between left and right rectified images. Given a pixel with coordinate (x, y) in
left image, its corresponding pixel in right image can be found at (x− d, y). d is
defined as disparity of the pixel(x, y) in left image. After acquiring d, the depth
of a pixel in left image can be formulated by fb

d , where f refers to camera’s focal
length and b refers to baseline distance of binocular cameras.

In the recent years, convolutional neural networks have showed significant
performance in diverse computer vision tasks such as image classification and

X. Chen— Student.

c© Springer Nature Switzerland AG 2019
Z. Lin et al. (Eds.): PRCV 2019, LNCS 11859, pp. 397–408, 2019.
https://doi.org/10.1007/978-3-030-31726-3_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31726-3_34&domain=pdf
https://doi.org/10.1007/978-3-030-31726-3_34


398 X. Chen and Y. Zhou

object detection. The first CNN-based stereo matching method proposed by
Zbontar and Lecun [20] utilizes powerful ability of CNN to distinguish whether
a pair of image patches are matched. This method outperforms contemporary
Non-CNN based methods. However, due to lack of context information, it is
still a problem for tackling ill-posed region by simply embedding CNN into the
conventional stereo matching pipeline. End-to-end CNN model has been applied
to dense pixel-wise tasks such as semantic segmentation [6] and pose estimation
[11] because it can effectively aggregate global context information to make a
prediction. Similar to semantic segmentation, estimating depth is also a dense
image-to-image task which can be handled by end-to-end CNN model [1,5,8].
DispNetC [8] proposes a correlation layer to measure similarity about left and
right unary features and then form cost volume followed by 2D convolutions
to regularize cost volume and regress disparity. GC-Net [5] and PSMNet [1]
adopt 3D convolutions to regularize concatenated cost volume over spatial and
disparity dimensions thus sufficiently utilizing context information. However,
owing to only leveraging deepest unary feature map to construct cost volume,
these current methods [1,5,8] are limited by unable to construct a cost volume
with multi-levels similarity information.

In this paper, we propose a stacked hourglass feature network with dense
connections. The repeated bottom-up and top-down processing in a single hour-
glass allows network to effectively incorporate global and local features. The
dense connections between different hourglasses allow low-level features to flow
forward. Therefore, discriminative features are learned for matching cost com-
putation. Based on this, hierarchical correlation is employed to provide compre-
hensive similarity measurements from low level to high level. Eventually, we can
form an informative matching cost volume with both correlation and concate-
nation manners. 3D CNN aggregation network further regularizes cost volume
and regresses disparity. To summarize, our contributions are listed below:

– We propose a stacked hourglass feature network with dense connections. In
this way, our network can effectively fuse global and local features thus learn-
ing discriminative for matching cost computation.

– We propose a novel hierarchical correlation which contributes to better sim-
ilarity measurements. In this way, our network can construct a cost volume
with rich details.

– Comprehensive experiments demonstrate that our model yields promising
performance on Scene Flow, KITTI 2012, and KITTI 2015 datasets.

2 Related Work

The traditional pipeline of stereo matching mainly works on four steps [13]:
matching cost computation, cost aggregation, disparity optimization and post
processing. In the past, many local [9,21] and global [16] methods have been pro-
posed to improve whole or portions of the four steps in pipeline. However, these
classical methods share a weakness relying on hand-crafted features to calculate
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matching cost and customtized functions to aggregate cost which results in bad
performance.

When deep learning comes to stage, the hand-crafted cost computation and
regularization functions have been replaced by learnable CNN layers. Zbontar
and Lecun propose [20] in which they train a Siamese network to match 9 × 9
image patches. [7] proposed by Luo et al. computes local matching costs in
an efficient way with multi-label classification of disparities. Learnable penalty
terms of regularization are proposed by Seki et al. in SGM-Nets [15].

Recently, end-to-end networks have been developed to cover all procedures
in stereo matching. Many of these methods yield state-of-the-art performance.
Mayer et al. [8] first propose an end-to-end stereo matching network which
directly regresses disparity from correlation cost volume. CRL [12] introduces
a two-stage strategy to refine disparity estimation from initial disparity through
residual learning. Yu et al. [19] propose a novel two-stream neural network where
one is for generating cost aggregation proposals and the other one is for aggre-
gation guidance. By explicitly guiding the aggregation procedure using low-level
structure information, [19] can handle the ill-posed region very well. GC-Net
[5] and PSMNet [1] construct cost volume directly from raw unary features
and employ 3D-convolutions to regularize cost volume. 3D-convolutions excel
2D-convolutions because the previous can incorporate context from one more
dimension i.e. disparity. Guo et al. [3] proposes group-wise correlation which
divides left and right features into groups along channel dimension and compute
correlation along groups.

The key insight of stereo matching is to integrate context information which
is crucial to predict the disparity in ambiguous regions. In semantic segmentation
[6] and pose estimation [11], encoder-decoder architecture with skip connections
is useful to fuse global and local features. Inspired by stacked hourglass net-
work for pose estimating [11], we propose a stacked hourglass feature network
to extract discriminative features for matching cost computation. To preserve
thin structure information, dense connections between different hourglasses are
adopted to forward low-level features through shortcut. Based on this effective
feature extractor, hierarchical correlation is adopted to measure features similar-
ity from low-level to high-level thus constructing an informative matching cost
volume.

3 Approach

In this section, we present the details of our proposed model. Firstly, the whole
pipeline of network is described. Secondly, we elaborate each import part of the
model. Lastly, output and loss function are explained.

3.1 Network Architecture

The proposed network architecture is illustrated in Fig. 1. In the beginning of
the input of Siamese network, a convolution with kernal size 3×3 and stride 2 is
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Fig. 1. An overview of the proposed hierarchical correlation stereo matching network.
The original left and right image are downsampled to 1/4 resolution of input by con-
secutive stride convolution and max pooling. Then, stacked hourglass network with
dense connections further extracts unary features. For brief display, dense connection
is drawn for the first two hourglasses. Hierarchical correlation is implemented among
multi-levels features to form hierarchical correlation cost volume. Concatenation vol-
ume and hierarchical correlation volume are concatenated to build up hybrid cost
volume, which is regularized to regress disparity by 3D CNN.

implemented to downsample raw input image to 1
2 resolution of original. Before

fed into stacked-hourglass feature network, feature maps are further downsam-
pled to 1

4 size of the input image by max pooling. In addition, several resblocks
[4] are inserted after these two downsamplings. Then, we adopt stacked hour-
glass network to extract unary feature. The stacked hourglass feature network
and pre-hourglass modules share weights in both left and right input stream.
Each hourglass outputs a unary feature proposal.

For the cost volume construction, by following [3], two kinds of cost volume
are adopted to build up the hybrid cost volume. The concatenation volume pro-
posed in [1] is constructed by concatenating the last hourglass outputs of left and
right stream. The hierarchical correlation volume is built utilizing intermediate
unary features output from stacked hourglass feature network. Two volumes are
concatenated to form a 4D hybrid cost volume, which is fed into 3D CNN for
regularization.

For cost aggregation, we adopt the stacked 3D hourglass network proposed
in [1] to regularize cost volume and regress disparity map.

3.2 Stacked Hourglass Feature Network

According to [11], hourglass architecture has an advantage to extract global
semantic information while preserving spatial location which is crucial for match-
ing the ambiguous area. Following the same idea in [11], we design stacked hour-
glass feature network to extract discriminative features for matching cost com-
putation.

Inner structure of a single hourglass is illustrated in Fig. 2 left. Firstly, in
bottom-up sequence, the feature map is downsampled to 1/16 size of input by 4
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Fig. 2. Left: Inner structure of each hourglass in stacked hourglass feature network.
Gray block refers to input feature map. Blue block refers to resblock [4] which don’t
shrink the resolution of feature maps. Orange block refers to max pooling. Green block
refers to nearest neighbor upsampling. The skip connection means that feature map
is operated by one resblock and then is fused with the upsampled one by element-
wise adding. Right: Dense connections between hourglasses. The rectangle behind each
hourglass is the output feature map of corresponding hourglass. (Color figure online)

consecutive modules, each of which consists of a resblock [4] and a max pooling.
After reaching the lowest resolution, to fuse adjacent high resolution feature map
in bottom-up sequence, nearest neighbor upsampling is implemented followed by
element-wise adding. The design of residual block in our hourglass is the same
as the one proposed in [11].

The right of Fig. 2 illustrates how we stack hourglasses together. For lth
hourglass, its input is the concatenation of input of the first hourglass and pre-
ceding hourglasses’ outputs, which is denoted as [X0,X1, ...,Xl−1] . The output
is fomulated as:

Xl = Hl([X0,X1, ...,Xl−1]), (1)

where Hl denotes the lth hourglass mapping function. “[·]” denotes concatena-
tion.

In our implementation, the number of hourglasses stacked is 4. The settings
of overall residual blocks within the hourglass are the same with 128 channels
in input and output. Additional convolution handles the channels of feature
map to fit the input size of hourglass after concatenation. At the end of stacked
hourglass network ,we implement a 1 × 1 convolution to reduce the channels of
unary feature so as to form a concatenation cost volume with moderate size. The
dash lines shown in Fig. 1 refer to intermediate unary feature outputs. Except
for the input of first hourglass, the concatenated features after each hourglass
are fused by 1 × 1 convolution to yield intermediate unary feature output.

3.3 Cost Volume

In previous literatures [1,5,8], the cost volume is constructed by only utilizing the
last output of Siamese feature network. Limited spatial structure information is
provided when feature goes deeper and deeper. It is harmful for matching small
object and thin structure.

To solve the issue mentioned above, we propose a novel hierarchical corre-
lation, in which multi-levels features are taken into consideration to calculate
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similarity. Therefore, similarity computation is more comprehensive than only
correlating the last unary feature output.

Correlaiton is implemented on each group of intermediate unary feature
output, as shown in Fig. 1. Instead of using the plain correlation [8], group-
wise correlation [3] is adopted for constructing more informative correlation
cost volume. At each level, the correlation cost volume has the dimension of
[Dmax/4,H/4,W/4, Ng]. Ng refers to number of groups. Dmax/4 is the max
disparity level corresponding to 1/4 resolution of original input. Eventually, cor-
relation volumes of all levels are concatenated to form the hierarchical correlation
cost volume, which has size of [Dmax/4,H/4,W/4, Nl × Ng], where Nl refers to
number of levels.

The concatenation cost volume is constructed by concatenating the left and
the right feature fl, fr output from last hourglass.

Cconcat(d, x, y, ·) = Concat[fl(x, y), fr(x − d, y)], (2)

where d denotes disparity level. The size of concatenation cost volume can be
[Dmax/4,H/4,W/4, 2N ], where N denotes channels of feature map before con-
catenated.

For constructing hybrid cost volume, two cost volume is concatenated at
channel dimension.

3.4 Cost Aggregation Network

In our model, the stacked hourglass network proposed in [1] is adopted to achieve
better performance by integrating more context information. But, in our imple-
mentation, the shortcut connections within each hourglass proposed in [3] replace

Fig. 3. The architecture of 3D CNN for cost aggregation.
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the original shortcut connections between different hourglasses. The whole archi-
tecture is illustrated in Fig. 3. For detail, there is a pre-hourglass modules fol-
lowed by three stacked hourglass networks. pre-hourglass module and each hour-
glass generate a disparity map prediction. The pre-hourglass module yields initial
disparity prediction. The following hourglass networks generate residual features
which are added to the previous disparity output for refinement. Four dispar-
ity outputs are supervised during training. When running testing, only the last
hourglass outputs the disparity prediction.

3.5 Loss Function

For each output module in cost aggregation network, before regressing disparity
map, a branch is introduced where two 3D convolutions are conducted to reduce
the channels of 4D cost volume into 1. Then, the cost volume is upsampled to
size of H × W × Dmax. For each pixel, the matching costs for Dmax different
disparity levels are explicitly predicted. Softmax function is applied along the
disparity dimension to obtain probability distribution. Soft argmin proposed in
[5] is adopted to regress disparity map.

d̂ =
Dmax−1∑

d=0

d × pd, (3)

where d and pd denote the disparity level candidate and the corresponding prob-
ability.

The loss function for each output branch is defined as:

L =
1
N

N∑

i=1

SmoothL1(d̂i − d∗
i ), (4)

in which,

SmoothL1(x) =
{

0.5x2, if |x| < 1
|x| − 0.5, otherwise (5)

where, d̂ and d∗ denote predicted disparity and disparity ground truth. N is the
number of labeled pixels. The loss of the whole network is defined as sum of loss
of each output branch Li weighted by its corresponding coefficient λi.

L =
3∑

i=0

λi · Li (6)

4 Experiments

We use three datasets: Scene Flow [8], KITTI 2012 [2], and KITTI 2015 [10]
to evaluate our proposed model. In Sects. 4.1 and 4.2, details about datasets
and implementation are described. In Sect. 4.3, we have conducted a ablation
study to demonstrate the effectiveness of our designs. In Sect. 4.4, we compare
our proposed model with the other state-of-the-art methods in KITTI stereo
leaderboard.
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4.1 Datasets and Metrics

Scene Flow is a large scale synthetic dataset which is generated by computer. it
contains 35,454 stereo images for training and 4,370 stereo images for testing.
The resolution of each image is H = 540 and W = 960. Dense and accurate
disparity ground truth is provided. The metric used to evaluate Scene Flow test
set is end-point error (EPE), which is defined as disparity error averaged in
pixels.

KITTI 2015 is a realistic dataset in driving scene. Training set contains 200
stereo images with sparse disparity ground truth which is measured by LiDAR.
Testing set contains 200 stereo images without disparity ground truth. The size
of each image is 376 × 1240. In our experiment, 200 training stereo pairs are
divided into two parts: 160 for training and 40 for validation. The percentage
of erroneous pixels is used to evaluate algorithm. A pixel whose disparity end-
point error is larger than 3px and 5% of ground-truth disparity is considered as
a erroneous pixel.

KITTI 2012 has the same setting as KITTI 2015, except that there are 194
stereo pairs for training and 195 stereo pairs for testing. In our experiment,
194 training stereo pairs are divided into two parts: 160 for training and 34 for
validation. The percentage of erroneous pixels and average end-point error are
evaluated on KITTI 2012.

4.2 Implementation Details

We implement our network(HcNet) using PyTorch. Adam optimizer with β1 =
0.9, β2 = 0.999 is employed to end-to-end train the network.

During training in Scene Flow, we use random crop for data augmentation.
Each image is randomly cropped to 256 × 512 before fed into the network. The
maximum disparity is set to 192 following previous methods [1,5]. We set the
batch size to 8 and learning rate to a constant value 0.001 for training 10 epochs
on Scene Flow. For testing on Scene Flow, input images are padded on the top to
size of 960 × 576. To supervise the training, loss is only computed at the pixels
with ground-truth disparity within the valid range [0,Dmax). The coefficients
set in Eq. 6 are 0.5, 0.5, 0.7, 1.0 from λ0 to λ3.

For KITTI 2012 and KITTI 2015 dataset, The model pre-trained on Scene
Flow dataset is finetuned on KITTI for 300 epochs. The learning rate is set to
0.001 for 200 epochs and reduced to 0.0001 for the rest of 100 epochs. Simi-
larly, random crop is also adopted for data augmentation. For testing on KITTI
dataset, input images are padded on the top and the left to size of 1280 × 384.

The experiment is conducted on four GTX 1080Ti GPUs. It takes almost
20 hours for training on Scene Flow dataset and 5 h for finetuning on KITTI
dataset.

4.3 Ablation Study

Using the same cost aggregation network and cost volume construction method,
our model has better performance when compared with PSMNet [1] as shown on
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Table 1. Ablation study of different model settings. 3px error rate on KITTI 2015
validation set and average end-point error on Scene Flow test set are reported. Densehg
represents the stack hourglass feature network with dense connections. Hc and Cat
denote to hierarchical correlation volume and concatenation volume. The following
number refers to channels of volume. Base is the basic 3D CNN architecture in [1].
Stackhourglass is the 3D CNN architecture mentioned in this paper.

Model KITTI 2015
val error(%)

Scene flow
EPE(px)

PSMNet-Base [1] 2.097 1.357

Densehg-Cat64-Base 2.087 1.290

Densehg-Hc64-Base 2.090 1.255

Densehg-Hc40-Cat24-
Base

2.016 1.291

Densehg-Hc40-Cat24-
Stackhourglass

1.581 1.198

first row and second row in Table 1. For fair comparison, PSMNet [1] is imple-
mented with official code in our experimental condition. It demonstrates that
our proposed stack hourglass feature network can yield more effective features
for matching.

For evaluating effectiveness of hierarchical correlation, as shown in Tabel 1
from second to fourth row, we have experimented three types of cost volume: vol-
ume with only concatenation features, volume with only hierarchical correlation
features, and volume with both two features. The model with hybrid cost vol-
ume has best performance on KITTI dataset. The model with only hierarchical
correlation volume has best performance on Scene Flow dataset.

After replacing the aggregation network with stackhourglass 3D CNN. our
model reaches lowest 1.581% 3px error rate on KITTI 2015 validation set.

4.4 KITTI Test Results

In this section, we present qualitative and quantitative test results on KITTI
2012 and KITTI 2015. The model performing best in our ablation experiments
is adopted to run the test on KITTI 2012 and 2015.

For KITTI 2015, 200 stereo pairs are tested and the results are submitted to
KITTI evaluation server. The results reported by KITTI website are shown in
Table 2. Our method outperforms PSMNet [1] 0.22% on D1-all. For qualitative
evaluation, some examples are shown in Fig. 4. Compared with PSMNet [1], our
model(HcNet) yields more accurate prediction in repeated texture region such
as fence and reflective region such as car window.

For KITTI 2012, 195 testing stereo pairs are tested by our model. Results
are shown in Table 3. Our model outperforms PSMNet [1] by a large margin.
Moreover, compared with GwcNet [3], our method has better performance in
reflective region and keeps comparable performance in the whole image. Quali-
tative results on KITTI 2012 test set are illustrated in Fig. 5.
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Fig. 4. Results of KITTI 2015 test set.The left column: the left image of stereo pairs.
The middle column: disparity estimated by HcNet(ours), PSMNet [1] from top to
bottom. The right column: error map of its corresponding disparity prediction on the
left side.

Table 2. Comparison with other methods on KITTI 2015 test set.

Method All(%) Noc(%) Time(s)

D1-bg D1-fg D1-all D1-bg D1-fg D1-all

MC-CNN-acrt [20] 2.89 8.88 3.89 2.48 7.64 3.33 67

DispNetC [8] 4.32 4.41 4.34 4.11 3.72 4.05 0.06

SegStereo [18] 1.88 4.07 2.25 1.76 3.70 2.08 0.6

GC-Net [5] 2.21 6.16 2.87 2.02 5.58 2.61 0.9

PSMNet [1] 1.86 4.62 2.32 1.71 4.31 2.14 0.41

HcNet(ours) 1.71 4.05 2.10 1.58 3.69 1.93 0.48

Table 3. Comparison with other methods on KITTI 2012 test set.

Method >3px(%) >5px(%) Mean error(px) Time(s)

Noc All Refl Noc All Refl Noc All Refl

SGM-Net [15] 2.29 3.50 18.97 1.60 2.36 13.55 0.7 0.9 3.8 67

DispNetC [8] 4.11 4.65 18.15 2.05 2.39 9.88 0.9 1.0 2.3 0.06

GC-Net [5] 1.77 2.30 12.80 1.12 1.46 7.99 0.6 0.7 2.0 0.9

PSMNet [1] 1.49 1.89 10.18 0.90 1.15 5.64 0.5 0.6 1.6 0.41

GwcNet [3] 1.32 1.70 9.28 0.80 1.03 5.22 0.5 0.5 1.4 0.32

HcNet(ours) 1.32 1.71 8.19 0.78 1.03 4.69 0.5 0.5 1.3 0.48
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Fig. 5. Qualitative results on KITTI 2012 test set. From left to right: input left image
of stereo pairs, disparity estimation, error map.

5 Conclusion

In this paper, we propose a novel hierarchical correlation to measure feature sim-
ilarity at multi-levels. In this way, informative cost volume can be constructed.
We also propose a stacked hourglass feature network with dense connections
to effectively incorporate context information. Therefore, discriminative features
can be learned for matching cost computation. Experiments show that our model
is able to yield robust disparity prediction in ill-posed region. The performance
on KITTI 2012 and KITTI 2015 Benchmark is comparable with other state-
of-the-art methods. In the future, we are going to explore light weight stereo
matching deep network and apply stereo system in other applications such as
multiple-object tracking [17].
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Abstract. Pulse signal is an effective indicator to reflect the physiolog-
ical and physical state of the human body. There are many heart rate
estimation methods in videos and most of them manually design algo-
rithm to modeling noise signal, which is not enough to represent the
actual distribution of noise. In this paper, we propose to train a two-
layer LSTM to estimate pulse signals because long short-term memory
(LSTM) can preserve useful signals by filtering out noise signals upon
data-driven. In order to overcome the problem of insufficient heart rate
public database, we propose to use quantities of synthetic signals which
are generated by the algorithm we designed to pre-train the model and
pure periodic signals are filtered from LSTM to calculate the heart rate.
Experiential results on the public-domain database show the effective-
ness of our proposed method that can be a reference for the heart rate
estimation.

Keywords: Pulse signal · LSTM network · Synthetic signal · Heart
rate estimation

1 Introduction

Heart rate signal is one of the important signals that reflects the human body
condition. Heart rate measurement has many applications [16,23] such as phys-
ical condition examination and patient medical monitoring. Methods of pulse
estimation are mainly divided into contact methods and non-contact methods.
Contact methods are mainly based on contact sensor detection devices, such as
electrocardiograph (ECG) [2] and contact photoplethysmography (cPPG) [10].
Although its accuracy in detection is more higher and more stable than non-
contract methods, it is inconvenient to take devices around in various scenarios.
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Non-contact methods have gradually become a research focus because of low cost
and easy implementation [3] and mainly based on photoplethysmography (PPG)
[5,15,20,23] which can detect subtle color signals changes caused by heart beats
from human face regions in videos. In recent years, non-contact pulse estima-
tion methods based on the remote photoplethysmography (rPPG) has attracted
increasingly attention, and multiple heart rate estimation algorithms have been
proposed [4,8,12,14].

Traditional methods of pulse estimation based on rPPG is mainly to manually
design the algorithm to extract the periodic signal or map the color signal into
a new space to get a better signal quality and they could not deal with multiple
types of noise [9] caused by body motions, illumination changes, camera sensor
well. Deep learning methods have been applied in many fields and achieved quite
good results, such as machine translation [17] and semantic analysis [6], which
mainly require training on huge data while the heart rate estimation public
database is still scarce. To solve problems above, we consider learning from
signals per frame with a sequential network [13] based on data augmentation we
made up for the shortage of the database.

In this paper, we present a novel method by training a sequential network as
a signal filter heart rate estimation upon data-driven. Specifically, we design a
two-layer LSTM for regression from raw signals after normalization to estimate
pulse wave signals and generate a large scale of synthetic heart rate signals
which is used to pre-train the LSTM network to prevent over-fitting. We take a
part of the public database MMSEHR [24]’s signal into the LSTM network after
normalization for the purpose of fine-tuning the LSTM network parameters [18].
By testing on the same public database, our proposed method has better than
baseline methods.

The main contributions of this work include: (i) we propose to use LSTM
network to filter raw signals with rPPG information and multiply noises to purely
periodic pulse wave signals based on data-driven. (ii) We generate quantities of
synthetic signals by our designed algorithm to stimulate pulse signals in real
scenarios with noises to pre-train the model. (iii) Our proposed method is better
than the traditional methods in experiments shows the practicability for heart
rate estimation in videos.

2 Related Work

The principle of photoplethysmography for heart rate monitoring is that the
periodic contraction and relaxation of the human heart can cause a slight peri-
odic change in facial blood volume. Blood can absorb light signals more easily
than skin tissue, and can be reflected and scattered by light. The camera sen-
sor collects a color signal that changes the blood volume of the face, and then
processes the color signal to obtain a time-domain signal that changes approx-
imately periodically, and finally converts to the frequency domain to calculate
heart rate [15]. Nowadays, PPG technology is extended to the imaging photo-
plethysmography (iPPG) and remote photoplethysmography (rPPG), they are
the related technology with almost the same principles.
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Color-Based Methods. In [14], green channel in the raw signal collecting
from the skin tends to contain the strongest PPG information compare to red
and blue channel and Verkruysse W et al. proved that green channel signals
can estimate heart rate. In [4], Poh et al. proposed a approach based on auto-
matic face tracking and blind source separation of color channels signals into
independent components. This method can be more robust for the interference
of motion during heart rate estimation. Inspired by previous work, the chromi-
nance space analysis (CHROM) method proposed in 2013 [12] mainly focused
on the improvement of motion robustness in estimating heart rate. They calcu-
late chrominance feature based on two orthogonal projections of Red-Green-Blue
(RGB) space in order to reduce the influence of face motion. Based on previous
work, in [8] proposed a plane orthogonal to the skin tone (POS) analysis method
is improved by CHROM method using a projection plane orthogonal to the skin
tone as pulse extraction based on optical and physiological considerations and
assumption of a single light source with a constant spectrum.

The current traditional methods for pulse estimation of video faces based on
color space analysis including green channel analysis method, independent com-
ponent analysis method, chrominance space analysis method, and plane orthog-
onal to the skin tone analysis method. These methods generally require manual
design of signal processing algorithms to extract pure periodic signals.

Motion-Based Methods. In [17], Balakrishnan et al. extracted heart rate from
videos by detecting subtle head motion caused by the Newtonian reaction. A
combination of frequency filtering and principal component analysis (PCA) can
identify the component of motion corresponding to the pulse and then extract
peaks of the trajectory to calculate individual beats. Since the method is based
on subtle motion and large head movements appear to be common, it results in
many limitations in real scenarios.

Deep Learning-Based Methods. There are some methods for heart rate
estimation based on deep learning [7,11]. In [19], Hsu et al. proposed to use VGG-
16 model to classify 2D Time-Frequency Representations (TFRs) of sequences to
estimate the heart rate. We found that Hsu et al. train VGG-16 with thousands
of parameters in PPF database containing 5848 samples is far from enough,
exposing the problem of data scarcity in deep learning methods. The results
of the experiment may depend on the quality of the original signal processing
and the number of training samples. The latest representative work is the first
end-to-end system for video-based measurement of heart rate by using VGG-
style CNN for estimating the physiological signal derivative from the motion
representation proposed by [20] and added attention mechanism by using gating
schemes [21]. The shortage of their work is estimating heart rate by manually
preprocess signals same as traditional methods far enough to eliminate multiply
noises in different scenarios.

In summary, existing methods of heart rate detection are mainly based on
handcrafted features, and fewer attempts are made to design an end-to-end heart
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rate estimate. Some methods have their own limitations. For example, some
methods need to be based on some lighting or motion assumptions so as to be
limited to special application scenarios. Most of methods do not pay attention to
the variation of the signal of each frame of videos, but focus on the improvement
of signal processing methods.

3 Proposed Approach

Figure 1 gives a diagram for our proposed approach of learning a pulse signal filter
based on LSTM network. Generally speaking, we first train the LSTM network
model with a large number of time domain synthetic signals, and then normalize
the signal extracting from face ROI in real database to fine-tune the pre-trained
model. We calculate the heart rate by making the Fast Fourier transform on the
filtered signal from model.

Fig. 1. The framework of our approach.

3.1 Signal Preprocessing

In the whole process of signal preprocessing, we first locate and track facial key
points. The green channel signal contains more PPG signals [14], so we extract
the green signal of the region of interest (ROI) for normalization. In Fig. 1, we
first locate and track the face in the video, then define the ROI using some
pre-selected facial landmarks detected by dlib [22] as shown by the bluish region
in Fig. 1, finally normalize the G channel signal to a mean of 0 and a standard
deviation of 1 extracting from the region of interest of the face in videos.
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3.2 LSTM Filtering Model

We designed a two-layer LSTM and dimensions of the hidden state and cell state
of each layer are both 128. We believe that LSTM network can be an excellent
signal filter after quantities of synthetic noises data training because it can model
multiply types of noise in heart rate estimation. The input of the model training
is a noisy pulse signal sequence, supervision signal is the corresponding noiseless
pulse signal sequence, and the loss function uses the mean square error loss
between the prediction sequence and the supervision sequence.

L(θ) =
N∑

t=0

(St (θ, xt) − S∗
t )2 (1)

where θ is learnable weights and bias parameters in LSTM neural networks. S∗
t

represents a noiseless pulse signal, that is a temporal sequence. N represents the
length of time series. The optimization method of the model we used is stochastic
gradient descent.

3.3 Training Strategy

Training a deep neural network requires thousands of data while collecting a
large-scale face videos database containing heart rate signals requires a lot of
manpower and financial resources. Therefore, we consider generating a large
amount of simulation data for model pre-training. The auxiliary training of a
large amount of simulation data can make the model parameters well optimized
for the pulse signal de-noising task. A network train only on synthetic data has
poor generalization in real scenarios, so we then uses a amount of real data for
model fine-tuning. It can effectively improve the generalization ability of the
filter model on real data.

There are only 101 video sequences in the MMSE-HR database [8], so we
need to design the simulation data generation algorithm to make up for the
lack of data. We first use the sine function with a frequency range of [0.4, 3]
Hz, corresponding to the heart rate range of [42, 180] bpm, as the basis of the
simulation signal. Then we add the random Gaussian noise signals simulating the
noise caused by illumination changes and random step signal to the sine signal
simulating the noise caused by head motion. The formulation of the simulation
signal can be expressed as follow,

S = M sin (ωt + φ) +
N∑

i

(−1)�ti� ∗ QStep (t − ti) + G(t) (2)

where M, Q are the magnitude, while M randomly sampled from [0, 1], Q ran-
domly sampled from [0, 10], and ω corresponding to the frequencies of heart
rate limited in [0.4, 3] Hz; Step (t) means the step signal and ti randomly ranges
from [0, 250]; �.� is a round up function and G(t) denotes the Gaussian noise.
We generate 3000 simulation signals and we can see an example of sine signals
and synthetic signals in Fig. 2. It can be seen that the synthetic signals can
approximate simulate real color signals with rPPG information.
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Fig. 2. The sine signal (left) and synthetic signal (right).

4 Experiments

In this section, we (i) analyze and explain the parameter settings in experiments,
(ii) compare the proposed method and baseline methods on a public database to
analyze advantages of our method and (iii) show the effectiveness of pre-training
using synthetic data.

4.1 Experimental Settings

In this paper, we design comparative experiments between traditional methods
and our proposed method on public-domain MMSE-HR [24] database, which is
widely used on the task of heart rate estimation. For sake of the video alignment
in time, we cut the 101 videos in MMSE-HR [24] database into 367 clips of the
same length which has 250 frames, the ground-truth heart rate are calculated
by real time blood pressure signal measurement provided by this database.

In order to test the effectiveness of our proposed method fairly compare to the
GREEN method [14], ICA method [4], CHROM method [12], POS method [8]
and the traditional methods are tested directly on the whole databases without
training [1]. Our method is based on data-driven, so we randomly divided whole
database into 5 folds and trained on four folds and tested on the rest fold, the
finally test results we take the arithmetic mean of the results on all test folds.
There are many standards for evaluating performance, we use such as the Mean
Square Error (MSE), Mean Absolute Error (MAE) and Standard Deviation (std)
of heart rate error and Pearson correlation coefficient (ρ) between estimated
heart rate and ground-truth heart rate. The formulation of ρ can be expressed
as follow,

ρx,y =
E(XY ) − E(X)E(Y )√

E (X2) − E2(X)
√

E (Y 2) − E2(Y )
(3)

4.2 Experimental Results

In our experiments, following the test protocol we have mentioned in Experi-
mental Settings, we compare the proposed method with several state-of -the-art
methods for estimating the average heart rate given a video with 250 frames from
MMSE-HR database [24]. We found in the experiment that the model without
pre-training does not converge because the real training data is too small, which
indirectly illustrates the importance of data augmentation. In Fig. 3, we can see
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that the continuous curve of blue is G channel signals after normalization, and
the orange dotted line is the waveform obtained after filtering. We can clearly see
that the model can eliminate the noise signal after training by large amounts of
simulated noise data and our method can be applied to more scenarios generally
by learning the distribution of multiple noises.

From Table 1, we can see the results of our method with pre-train shows the
best result demonstrating the practical effectiveness of our model and the neces-
sity of pre-trained for optimizing the model. and compare to the best methods
with traditional methods we used, our method dropped by 0.2955 on MSE, 1.12
on MAE, 0.2793 on std, and increased by 0.0567 on ρ. Our model can be more
stable based on the data-driven and more robust in different scenarios.

Fig. 3. The waveform after filtering. (Color figure online)

Table 1. The result of experiments on MMSE-HR.

Method MSE MAE std ρ

GREEN [14] 21.7697 13.53 19.0592 0.302

ICA-Poh [4] 19.0234 11.77 18.1387 0.3471

POS-Wang [8] 14.9463 7.07 14.7692 0.5676

CHROM [12] 10.4503 5.47 10.5009 0.7686

Our method 10.1548 4.35 10.2216 0.8254

5 Conclusion and Further Work

Remote heart rate estimation through face videos is a challenging task that the
heart rate signals we detect in real scenarios is so weak and it is susceptible
to body motion, illumination changes and camera sensors. In this paper, we
propose a new regression model for optimally filtering the rPPG signal with
noise and achieved good results in our experiments. Based on data-driven, the
ability to eliminate noise interference in different scenarios can be effectively
trained by supervisory signals. In the future work, we will consider improving
our model abilities on larger databases, assisting in training by designing new
model architectures to do real time heart rate estimation, and trying to improve
the generalization of the model through cross-database testing.
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Abstract. Lane detection is an indispensable part in advanced driving
systems. The task is typically tackled with a two-step pipeline: predict-
ing a segmentation of lane markings and fitting the lane markings by a
suitable curve model. In this work, we propose a method to optimally fit
lane lines by applying a learned perspective transformation, according
to the input image. We leverage fundamental computer vision theories
and integrate prior geometric knowledge into a deep learning framework,
which can be trained in a self-supervised manner. By doing this, we
perform multi-lane joint fitting in a realistic top-view space, which is
robust against ground-planes slope changes. We tested our model on the
CULane dataset. The results show that the proposed fitting method can
also improve the location accuracy of lane markings effectively.

Keywords: Self-supervised CNN · Lane marking fitting

1 Introduction

Lane detection is an active topic in autonomous driving research with increasing
interests from academic and industrial groups. For self-driving vehicles, it is an
important task to identify lanes on the road to ensure that vehicles stay within
lane limits while driving, so that to reduce the chance of colliding with other
vehicles by crossing lane lines accidentally. Lane markers tell where the passable
area is and guide vehicles to find the right way forward. Most lanes are designed
to be relatively simple, not only to encourage order but also to make it easier
for human drivers to drive at the same speed. However, lane detection is not an
easy task due to complex road conditions. Apart from bad weather and lighting
conditions, occlusion and degraded markings also affect visibility of lane lines.

With advances of deep learning, recognition tasks such as detection, classifica-
tion, and segmentation have been solved under a wide set of conditions. Method
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of deep learning has shown considerable promise as a solution to the shortcom-
ings of classic computer vision. However, general CNN for object detection or
semantic segmentation only extract features from the original pixel semantics,
unable to capture the image pixel spatial relationships. Lanes are kind of things
with strong shape priori but less appearance coherence, so spatial relations are
very important for lane detection. In this way, putting forward more targeted
approaches for lane detection is imperative. Kim et al. [9] propose a method, in
which a CNN extracts lane candidate regions and uses the RANSAC algorithm
to remove outliers and to perform line fitting. Huval et al. [5] use Overfeat [14] to
predict two end-points of a local lane segment in a sliding window and connects
these lane segments to get complete lane lines. In [10], a multi-task network
guided by vanishing point is designed to jointly handle lane and road marking
detection, where a series of post-processing (e.g. point sampling, clustering, lane
regression) are required. In AAAI 2018, [13] propose Spatial CNN (SCNN) to
output probability maps of lane curves and search position with the highest
response. These positions are then connected by cubic splines to generate the
final predictions.

The above several methods have in common that they tackle the task of
lane detection with a two-step pipeline involving separate feature extraction and
model fitting steps. In this work, we focus on the latter stage and propose a sim-
ple and practical curve-fitting module, which is a post-processing step in lane
detection to get desired prediction. Having estimated the position or probability
map, i.e. which pixels belong to lane markings, it is often necessary to line up
these pixels. That is to describe them by a parametric expression or a fitting
model. Cubic polynomials [11,15], splines [1] or clothoids [3] are some popular
fitting models. To better fitting curving lane markings, it is common to convert
the original image reference frame into ortho-view (i.e. the top-down view) using
a perspective transformation [2] and perform curve fitting there. Typically, we
can achieve this conversion by simply multiplying the coordinates from perspec-
tive image with a homographic projection matrix. However, the transformation
matrix is always calculated once and keeps fixed for all images, which will lead to
fitting errors when the relative pose between vehicle and ground plane changes
(e.g. by mountain, hilly ground or acceleration/deceleration of vehicles). To alle-
viate this problem, [12] train a network to output 6 degrees of freedom for a
learned perspective transformation matrix. In the field of computer vision, some
works have predicted special geometry by network architecture [6,7,16] (e.g. The
spatial transformer network (STN) of Jaderberg et al. [6] and the perspective
transformer net of Yan et al. [16]). Kendall et al. [7,8] propose a deep learning
architecture for 6-DOF camera relocalization.

In this work, we focus on constructing a learned homographic projection
matrix to optimally fit lane markings. A self-supervised neural network that
can learn an adaptive perspective transformation matrix between the camera
and ground is proposed. Unlike in [12] where the lane markings in an image
are treated independently, our network is fed with all of the lane markings and
trained in a self-supervised manner. Therefore, a better homographic prediction
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could be achieved. Then the lane markings can be jointly fitted in a more real-
istic top-view space that is robust against changes of road plane, thanks to this
homographic matrix. The experimental results show that our fitting method is
able to improve the location accuracy of lane markings effectively.

The remainder of the paper is organized as follows. Section 2 describes proce-
dures of the proposed curve fitting method, followed by experiments and results
presented in Sect. 3. Finally, we give the summary of our work in Sect. 4.

2 Methods

The overview of our pipeline is illustrated in Fig. 1. Unlike general task of object
detection, in which only bounding boxes are required, lane detection is sup-
posed to get precise prediction of curves. Spatial CNN (SCNN) [13] is adopted
to distinguish different lane markings and output probability maps of these lane
curves. Having predicted probability maps, lane markings with existence confi-
dence larger than a threshold are kept. Then pixel positions whose probability
response are the highest are searched in the map by every some rows. As the
post-processing of lane detection, for each lane a curve fitting is required to get
a parametric description. Instead of directly connecting these pixel positions by
cubic splines in image space like [13], we propose to apply a learned adaptive
perspective transformation and fit curves in the projected ground planes. To
realize our purpose, a homography prediction network that is able to adaptively
estimate the transformation between the camera and the road plane is designed.
In this way, the lane fitting is insensitive to the variations of ground-planes.

2.1 Deep Network for Homography Predition

Having estimated which pixels belong to the lane markings by SCNN [13], we
are supposed to fit a curve through these pixels to get the parametrization.
As a frequently used trick, the lane pixels are first projected into a birds-eye-
view representation, in which the lane are ordinarily parallel and their curvature
can be accurately fitted with low-order polynomials, not having to resort to
higher order polynomials in the original image space. In addition, removing
the perspective effects causes lane markings to look parallel regardless of their
distance away from the camera. However, due to the fact that the projection
operation always employ a fixed transformation matrix, this raises issues when
non-flat ground-planes are encountered. In particular, lane points close to the
horizon may be projected into infinity, hindering the process of line fitting. To
remedy this situation, we train a network to output three crucial factors that
affect the perspective transformation: the focal length of camera f, the depression
angle θ and the height h at which camera is set. The neural network takes as
input the image and is self-supervised trained with a loss function that is tailored
to the lane fitting problem.
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Fig. 1. Overview of the framework. Given an input image, SCNN [13] outputs a prob-
ability map and predicts the existence of every lane marking. For each line whose
existence probability is larger than 0.5, we search the corresponding map every 20
rows for the pixel with the highest response. Next, we project these lane pixels by a
learned homographic projection matrix and perform lane fitting. Finally, the lanes are
transformed back to the original image, which are the final predictions.

Transformation Matrix. In our case, the transformation matrix can be
derived with prior geometric knowledge and computer vision theories. A full
camera model describes the mapping from world to pixel coordinates. It accounts
for the following transformations: the rigid body transformation between camera
and scene; the perspective projection onto the image plane; the discrete sampling
on image plane to obtain the final pixel coordinates.

Fig. 2. Transformation from the word to the camera.

See Fig. 2, consider a coordinate system XG = (xG, yG, zG) attached to the
world and another coordinate system Xc = (xc, yc, zc) attached to the camera.
The rigid body motion is a kind of transformation that brings a point from the
world coordinate system to the camera coordinate system. In a real life scenario,
the front facing camera mounted at a certain degrees roll relative to the ground
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plane. The rigid body motion can be described by a rotation matrix R and a
translation vector T. In this way, the relationship between XG and the camera
coordinate system without rotation Xc1 is:

R1[xG, yG, zG]T + T1 = [xc1, yc1, zc1]T (1)

here R1 =

⎡
⎣

1 0 0
0 0 −1
0 1 0

⎤
⎦, T1 = [0, h, 0]T , h is the height.

Assuming a rotation θ about x-axis between the camera and ground, a new
coordinates under frame Xc2 can be obtained:

Xc2 =

⎡
⎣

xc2

yc2
zc2

⎤
⎦ =

⎡
⎣

1 0 0
0 cosθ sinθ
0 −sinθ cosθ

⎤
⎦

⎡
⎣

xc1

yc1
zc1

⎤
⎦

=

⎡
⎣

1 0 0
0 sinθ −cosθ
0 cosθ sinθ

⎤
⎦

⎡
⎣

xG

yG
zG

⎤
⎦ +

⎡
⎣

0
hcosθ

−hsinθ

⎤
⎦

(2)

Thus, the transformation between the world and the camera coordinate sys-
tem with rotation is:

⎡
⎢⎢⎣

xc2

yc2
zc2
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
0 sinθ −cosθ hcosθ
0 cosθ sinθ −hsinθ
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

xG

yG
zG
1

⎤
⎥⎥⎦ (3)

Then, the overall mapping from world coordinates XG to pixel coordinates
is given by:

zc2

⎡
⎣

u
v
1

⎤
⎦ =

⎡
⎣

fx 0 u0 0
0 fy v0 0
0 0 1 0

⎤
⎦

⎡
⎢⎢⎣

1 0 0 0
0 sinθ −cosθ hcosθ
0 cosθ sinθ −hsinθ
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

xG

yG
zG
1

⎤
⎥⎥⎦ (4)

Assuming fx = fy = f and ZG = 0, we can get:

zc2

⎡
⎣

u
v
1

⎤
⎦ =

⎡
⎣

f 0 u0

0 f v0
0 0 1

⎤
⎦

⎡
⎣

1 0 0
0 sinθ hcosθ
0 cosθ −hsinθ

⎤
⎦

⎡
⎣

xG

yG
1

⎤
⎦ (5)

Finally, in this case, the homographic projection 3 × 3 matrix H is:

H =

⎡
⎣

f 0 u0

0 f v0
0 0 1

⎤
⎦

⎡
⎣

1 0 0
0 sinθ hcosθ
0 cosθ −hsinθ

⎤
⎦

=

⎡
⎣

f u0cosθ −u0hsinθ
0 fsinθ + v0cosθ fhcosθ − v0hsinθ
0 cosθ −hsinθ

⎤
⎦

(6)
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Note that by obtaining the above style homographic matrix, we assume the
depression angle θ be the only influential factor among three pose angles. It is
reasonable that most of the incorrect projection is caused by the ground slope
or pitching angle of vehicle. Fully predicting the whole H in Eq. (6) needs 7
dependent components. Modeling them together as independent output elements
of a network is not a good idea since it can be unstable and making the prediction
inaccurate. Considering only 3 degrees of freedom in H, it is wise to model it
using 3 variables, i.e., f, h and θ.

Network Architecture. The network architecture used in this work is kept
intentionally simple for real-time purpose. The network is constructed out of
three consecutive blocks of 3 × 3 convolutions, batch-normalization and ReLUs.
Each block is followed by a max pooling layer to decrease the dimension. Two
fully-connected layers are added in the end. Figure 3 demonstrates the network
architecture that we use in this work. To accelerate the inference process, the
network takes RGB images with a reduced size of 128× 64 as input and outputs
three parameters of transformation. The design of loss function for training this
network will be described in the next section.

Fig. 3. The network architecture.

2.2 Loss Function and Self-supervised Learning

As explained in the previous section, we apply a learned perspective transforma-
tion, conditioned on the input image, in contrast to a fixed transformation. By
doing so, the lane fitting is robust against road plane changes and is specifically
optimized for better fitting the lanes. In particular, the lane markings are paral-
lel to each other in the birds-eye-view and as such, curve lanes can be fitted by
2nd or 3rd order polynomials. After predicting the parameters of the perspective
transformation by the network and generating the final transformation matrix
H, lane points are projected to the top-view space for curve fitting.

Curve Fitting. The ground-truth lane points before curve fitting are defined
as P where each lane pixel is pi = [xi, yi, 1]T ∈ P. After transformed by
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the matrix H, the projected pixel p′
i = [x′

i, y
′
i, 1]T ∈ P′is equal to Hpi . The

least-squares algorithm is then used to fit a group of polynomials f(y′
i) through

the transformed pixels P′. The polynomial curves are evaluated at different y-
positions, that is, to get the x-position x′∗

i on the fitting line at y-position y′
i

of the transformed lane points with x′∗
i = f(y′

i). Gained the fitted points P′∗

with p′∗
i = [x′∗

i , y′
i, 1]T ∈ P′∗, we re-project them back to the original image

space via the inverse transformation matrix, so that to get: p∗
i = H−1p′∗

i with
p∗
i = [x∗

i , yi, 1]T . Note that the y-positions of the lane points are remain the same
while the x-positions are changed through curve fitting. Considering every input
image has the same transformation matrix, we jointly fit all the lane curves on
one image each time, with the prior that these lanes are parallel to each other.
The above process is presented in Fig. 4.

Fig. 4. Illustration of curve fitting. (a) GT points (green) in the original image are
projected into ortho-view space by the transformation matrix H. (b) A group of parallel
curves are fitted through the transformed points (blue) and evaluate the curves at
different heights (red points). (c)The evaluated points are transformed back to the
original image space (yellow points). (Color figure online)

Loss Function. In order to train the network for predicting the optimal
transformation parameters and produce the learned transformation matrix H
for fitting curves in birds-eye-view, we adopt the following loss function. As
described before, the given ground-truth lane points pi = [xi, yi, 1]T ∈ P are
first projected to: p′

i = Hpi = [x′
i, y

′
i, 1]T ∈ P′. And then we fit polynomials

f(y′) = αy′3 + βy′2 + γy′ + δ, for the case of the 3rd order polynomial, through
these transformed points. Using the least squares closed-form solution, we can
get the coefficients of polynomials:

w = (YTY)−1YTx′ (7)

here, we assume that there is 4 lanes and N lane points on an image in all, thus,
w = [α, β, γ, δ1, δ2, δ3, δ4]T , x′ = [x′

1, x
′
2, · · · , x′

N ]T , and

Y =

⎡
⎢⎢⎣

y′3
1 y′2

1 y′
1 1 0 0 0

y′3
2 y′2

2 y′
2 1 0 0 0

· · · · · · · · ·
y′3
N y′2

N y′
N 0 0 0 1

⎤
⎥⎥⎦ (8)
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with [1 0 0 0] is added to the columns following the y-positions (or their power)
of points on the first lane, and [0 1 0 0], [0 0 1 0], [0 0 0 1] for the 2nd, 3rd, 4th
lane respectively. For images with 3 lanes, we use [1 0 0], [0 1 0], [0 0 1] and so
on. In this way, we can get x′∗

i prediction by evaluating the polynomial at each
y′
i location as follows:

x′∗ = Y × w (9)

⎡
⎢⎢⎣

x′∗
1

x′∗
2

· · ·
x′∗
N

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

y′3
1 y′2

1 y′
1 1 0 0 0

y′3
2 y′2

2 y′
2 1 0 0 0

· · · · · · · · ·
y′3
N y′2

N y′
N 0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α
β
γ
δ1
δ2
δ3
δ4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

Note that in real traffic situation the fitting lines can be parallel to each
other with the same polynomial coefficients except the constant terms δi are
different, thus the proposed perspective transformation to birds-eye-view space
can be reasonable and practical.

Afterwards, the evaluated points are transformed back to the original image
space by the inverse matrix: p∗

i = H−1p′∗
i , with p∗

i = [x∗
i , yi, 1]T and p′∗

i =
[x′∗

i , y′
i, 1]T . The y-positions are kept unchanged, but the x∗-positions could be

supervised by comparing them with the x-positions of ground-truth lane points
using a mean squared error criterion, leading to a L2 loss:

Loss =
1
N

N∑
i=1

(x∗
i − xi)2 (11)

In this work, the network is trained involving backpropagation through a
least-squares fitting and a loss function for supervision. Since the curve fitting
use the closed-form solution of the least squares algorithm, the loss is differen-
tiable and as such, the gradients could be calculated by automatic differentia-
tion. During training process of this homography prediction network, the input
(ground truth lane points) itself are also treated as supervised signal in return,
therefore it is a self-supervised network.

3 Experiments

3.1 Dataset

In this paper, we adopt the CULane dataset [13] which is a challenging large
scale dataset for lane detection task. The dataset incorporates data captured
during the day and night time, under various circumstances including urban,
rural, and highway scenes. These images have a resolution of 1640× 590 and are
divided into 88880 for training set, 9675 for validation set, and 34680 for testing
set. On each image, the current (ego) lanes and left/right lanes are annotated
no matter the lane markings are occluded or unseen.
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3.2 Training Setup and Testing

We manually selected 2340 images which have clear parallel lane lines in real
life, filtering out those with obviously inaccurate annotations for training. These
images are prepared for pre-training with a scaled version of dimension 128×64.
The network was trained using Adam optimizer with a learning rate of 1e−8 and
batch size of 5. Our model was implemented on the Tensorflow [4] framework.
After training, test was carried out on the testing set. Some qualitative results
of homographic projection and fitting are shown in Fig. 5.

(a) Straight Lines

(b) Curves

Fig. 5. Examples of projection and fitting results. (a) and (b) are the case of straight
and curving lane markings, respectively. Original images with lane labels are in the top
followed by the projected results in the bottom. (Color figure online)

As shown in Fig. 5, the projection results in testing set are quite satisfac-
tory for both straight lines and curves. Green points are ground truth in test
images. They are transformed using the predicted homographic matrix H into
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blue points on top-view space (at the bottom). Next, a group of parallel lines are
fitted through these transformed points and the curves are evaluated at different
distances (red points). After that, we project these evaluated points back to the
original image space (at the top) as the yellow points represent.

3.3 Evaluation and Results

Since only the x-positions of pixels have changed through projection and curve
fitting, we calculate the mean difference of x-value between ground truth and
fitted points in image space as follows:

error =
1
N

N∑
i=1

|Δx| =
1
N

N∑
i=1

|xfit − xgt| (12)

Table 1. Errors using three different fitting models (2nd,3rd order polynomial and
cubic spline) before and after projection. The units are in pixels.

Error Normal Crowd Hlight Shadow Noline Arrow Curve Night Total

Img 2nd 14.964 17.240 29.054 29.846 41.712 14.491 33.681 20.890 19.584

Proj 2nd 13.646 16.109 26.454 25.800 41.479 12.308 32.078 19.421 18.178

Img 3rd 16.317 18.747 30.778 30.797 43.536 16.347 35.433 21.644 20.804

Proj 3rd 14.239 16.986 28.695 28.423 41.548 13.477 32.974 20.322 19.030

Img cubic 18.036 20.447 31.546 32.504 45.006 17.932 35.861 22.515 22.203

Proj cubic 17.988 20.438 32.145 32.548 44.829 18.020 34.201 22.527 22.176

In Table 1, we compare our proposed fitting method (Proj xxx) with directly
fitting curves in the original image space (Img xxx) using 2nd,3rd order polyno-
mial or cubic spline fit. The results show that fitting in the projected space leads
to superior results.

Table 2. F1-measure values of three different fitting models (2nd,3rd order polynomial
and cubic spline).

F1 Normal Crowd Hlight Shadow Noline Arrow Curve Night Total

Img 2nd 0.6984 0.5247 0.4729 0.3760 0.2786 0.6533 0.4285 0.4549 0.5178

Proj 2nd 0.7651 0.5970 0.4910 0.4705 0.3006 0.7336 0.4618 0.5013 0.5751

Img 3rd 0.6976 0.5269 0.4774 0.3760 0.2780 0.6680 0.4406 0.4521 0.5175

Proj 3rd 0.7582 0.5892 0.4796 0.4755 0.2952 0.7120 0.4784 0.4954 0.5689

Img cubic 0.5550 0.3990 0.3801 0.3044 0.2369 0.5142 0.3588 0.3572 0.4079

Proj cubic 0.6975 0.5368 0.4231 0.4113 0.2564 0.6386 0.3997 0.4321 0.5106

Our proposed fitting module can also directly improve the detection results.
Refering to the evaluation approach of SCNN [13], the correct lane predic-
tions are regarded as those whose intersection-over-union (IoU) with GT lanes
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higher than a threshold. In this paper, we consider IoU = 0.7 as a threshold for
strict metric of True Positives (TP). Then F1-measure = 2 × Precicion×Recall

Precision+Recall

is adopted as the final evaluation indicator, where Precision = TP
TP+FP and

Recall = TP
TP+TN . As shown in Table 2, no matter what curving models are used,

fitting in top-view space has better performance than fitting in images.

Table 3. F1-measure values of the detection by curve fitting under different projections
(image only without projection, fixed and predicted projection)

F1 Normal Crowd Hlight Shadow Noline Arrow Curve Night Total

Image 0.5550 0.3990 0.3801 0.3044 0.2369 0.5142 0.3588 0.3572 0.4079

Fixed 0.6833 0.5051 0.4231 0.3885 0.2455 0.6425 0.3830 0.4133 0.4914

Ours 0.6975 0.5368 0.4231 0.4113 0.2564 0.6386 0.3997 0.4321 0.5106

In Table 3, we compare the values of F1-measure with cubic spline fitting
model. Here, lane lines were respectively fitted using no projection, fixed and
predicted homographic projection by network. It shows that our method works
the better than fitting in image and fitting with a fixed homographic projection,
thanks to the adaptive homographic prediction network.

4 Conclusion

In this work, we proposed a self-supervised homographic prediction neural net-
work for optimally fitting the lane curves. To parametrize segmented lanes, we
have trained a network to predict the parameters and generate the perspec-
tive transformation matrix, conditioned on the image. The neural network takes
images as input and is optimized with a custom loss function for lane mark-
ing fitting. We jointly fit the transformed coordinate points using a group of
parallel lines, which is similar to the situation where lane lines are projected
into birds-eye-view. The experimental results show that our proposed method
for curve fitting could directly improve the results of lane detection. Besides the
application in lane fitting, we can also use the proposed method to determine
which lines are parallel to each other in original images or transform lane lines
into the bird-view for easier detection. We believe that the learned model for
estimating homography projection can inspire more work on the other detection
or recognition tasks and demonstrate its wide impact on image understanding.
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Abstract. Referring Expression Comprehension (REC) is a task that
requires to indicate particular objects within an image by natural lan-
guage expressions. Previous studies on this task have assumed that the
language expression and the image are one-to-one correspondence, that
is, the language refers to the target region must exist in the current
image and then the region with the highest score will be located, no
matter whether they match or not. However, in practical applications,
REC is required to locate the reference target region from a series of
matched, semi-matched and mismatched scene image sequences. It is the
3D version of this challenge that refers to as Scenario Referring Expres-
sion Comprehension (SREC) in this paper. To accomplish such a task,
we made a testset based on the existing real-scenario dataset enhance-
ment, constructed a Dual Attributes Recursive Retrieve Reasoning Model
(DA3R) for the first time with the Attributes of both images and expres-
sions, and finally verified the feasibility of the method on the testset by
assess with three different types of enhanced expression.
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1 Introduction

Referring Expression Comprehension (REC) [8,15,18] is a task that requires
to indicate particular objects within an image by natural language expressions,
which inputs an image I and its corresponding language expression L, obtains a
set of candidate regions {O} through image processing and outputs O matching
with L. The whole task can be regarded as the process of language expression
and target region retrieve matching. Previous work all default that the image and
expression are corresponding, so when all subjects {O} cannot match with the
language expression L, the model will still locate a region with the highest score,
which is obviously not conducive to the application. For example, in the scene
of visual-and-language based robot navigation, the robot is required to find the
target object from the random position of the scene according to the language
expression. (The scene here is not represented by a single image or a panoramic
image spliced from a set of images, but the scene image sequences, which were
collected from different angles of any position in the real environment from the
first perspective of a human/robot.) To complete such a practical application,
REC must learn to locate the referring target O in a series of matched, semi-
matched and mismatched scene image sequences {I}|P osition∈Scene based on
the language expression L. This task is referred as Scenario Referring Expression
Comprehension (SREC) in this paper (Fig. 1).

Fig. 1. SREC requires to locate the target region (red-box) by one or more consecutive
images in the scene image sequence according to the text expression. (Color figure
online)

Despite its impressive achievements, REC has undeniably neglected the rela-
tionship between vision and language, which is both “relevant” and “indepen-
dent”. At present, all solutions for REC tied the fate of images and expressions
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together make the whole process can be regarded as a “one-shot” retrieval match-
ing, but the matched, semi-matched and mismatched relationship between them
cannot be determined, which is not conducive to the crossing of REC from 2D
images to 3D scenes. To solve such a contradiction and fulfill the task require-
ments of SREC, this paper constructed a Dual Attributes Recursive Retrieve Rea-
soning Model (DA3R) for the first time with the Attributes of both images and
expressions. Firstly, parsing the language expression to get its main instances:
“subject”, “object” and “relationship” as the Attributes {AL} of the expres-
sion. Secondly, the scene image sequences of any position are processed through
the traditional object detection method to obtain the Attributes {AO } of the
image. Then the Attributes of the two parts are embedded through Word2Vec,
and the distance between the two embedded vectors are calculated to get the
matching rate P (AO |AL). The matching rate is given a range here to solve the
problem of agreeing on different statements between the training label and the
expression, such as “TV” and “television”. When the Attributes in the scene
image sequence completely matched the Attributes of expression, finally output
the region and the image in which the target is expressed. Otherwise, trans-
form scene image sequence continues to locate the referential target until the
key observation positions of the scene is recurred completely and then output
the final result.

2 Related Work

With the rapid development of visual and language research in recent years,
there are more and more tasks of visual-and-language integration. V2L [22],
Image/Text Retrieval [13], VQA [4], Referring Expression [8,15,18] and so on,
which all pushing the theoretical research forward to the practical applications.
To facilitate the expansion of these tasks to actual scenes, lots of scene datasets
and simulators [3,19] are competing to appear, providing convenience for the
study of the tasks.

2.1 Image and Text Retrieval

Image and Text Retrieval is to measure the similarity between an image and
a piece of text, which is the core algorithm of multiple pattern recognition
tasks [9,13]. For example, in the cross-modal retrieval task of image and text [13],
when given the query text, it is needed to retrieve images with similar contents
according to the similarity of the image and the text; in the Image Caption
task [22], given an image, we need to retrieve a similar text based on the image
content and further generate a text description of it; in the VQA task [4], it
is required to find the content that contains the corresponding answer in the
image based on the given text question, and then retrieve the similar text as the
predicted answer from the found content. Traditional method extracts multiple
local instances contained in the image and text by CNN-LSTM, and then inserts
them into a common space to complete the task of retrieval and matching. The
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process of instance extraction usually requires explicit use of additional object
detection algorithms or manual tagging. The processing flow of this task can be
regarded as the retrieval and matching process of image instances and language
expression instances.

2.2 Referring Expression Comprehension

This task requires both visual features and textual features to comprehend the
expressed reference. Modern approaches of REC usually embed the image and
its expression into a common space through CNN-LSTM, then the task can
be addressed in a retrieval manner, wherein the target region is selected with
the minimum distance to the expression in the common space. In the process,
object detection can be utilized to obtain a group of candidate regions in the
first place [8,10,12,15,18,24]. However, this method focuses on the global infor-
mation of the image and expression, irrelevant instances will be concerned in
the process, and there is always an unbridgeable gap between the image and
the text. Therefore, Referring to V2L [22] and VQA [21] using Attributes, the
Referring Expression task is trying to use Attributes to replace the global image
information and eliminate the semantic gap between images and texts [11,23].
At the same time, more and more attention has been paid on the effect of
useless instances in language expression on visual-language tasks, and improve-
ments have been made to methods by analyzing the effect of language expression
instances on results [7,14,23].

2.3 Scenario Image Dataset

The scenario image dataset is different from the traditional image sets used
by VQA and other tasks. It plays a crucial role in verifying the application of
various visual-and-language tasks in reality. At present, there are many virtual
and real scene simulators for robot navigation tasks, and the datasets used by
these simulators are also applicable to other visual-language tasks. Action Vision
Dataset (AVD) [1] is such a small scene real image dataset. In its acquisition
process, the sampling points of the scene were firstly obtained discretely with the
nearest neighbor distance of 30 cm, which has four nearest neighbors. Then the
real scene images were sampled at every angle of 30◦ for each sampling point,
which can simulate the environment seen when the person/robot moves. The
datasets used by MINOS [19] and Matterport3D [3] are also real scene images,
and the collection process is similar to AVD too, but their sampling points are
relatively sparse, which are not as dense as AVD and conform to the motion
state in the process of robot movement. In this paper, the SREC testset was
obtained by the enhencement of AVD, so that the REC task was extended from
the 2D image level to the 3D scene to be more suitable for practical application.

3 Approach

The overall solution to the SREC task in this paper can be seen as a retrieval
matching process for the instances of image and language expression. The frame-
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Fig. 2. Architecture of the Dual Attributes Recursive Retrieve Reasoning Model

work, as shown in Fig. 2, consists of three main parts: Expression Attributes
Extraction, Image Attributes Extraction, and Attributes Retrieval Matching.
The following sections provide a detailed interpretation of each part.

3.1 Scenario Dataset Enhancement

Scenario Dataset is crucial for SREC task. In this paper, Action Vision
Dataset [1] was selected as the benchmark of the testset for SREC task, which
includes 20,000+ RGB-D images in 9 unique scenes. The collection process is
described in Sect. 2.3. Therefore, the dataset can greatly simulate the scene seen
by the robot/human movement and restore its 3D structure.

In the AVD dataset, each sampling point P contains 12 consecutive scene
images, which will constitute the complete scene observed under the sampling
point. In the SREC task, scene images collected at each sampling point are
taken as a sequence, then the scene image set S =

∑∑∑
p{Ip,n}12

n=1|p∈scene . Due
to the size of the scene in AVD, the number of image sequences included in each
scene is different, but for the entire SREC testset, the number of S is 2062.
After that, in order to ensure the integrity of the experiment and verify the
influence of observation position on the results, we divided the regions according
to its characteristics of each scene. The divison criterion is that all items can be
observed by the sampling points in the region, and finally confirmed the central
point C of the region to facilitate the experiment. We also enhanced the scene
dataset with text expressions, which made the corresponding text expressions
for the items and their relations contained in each scene, so as to meet the
requirements of the testset for SREC task.

3.2 Expression Attributes Extraction

When the text is expressed as “Go to the sofa beside the table.” only the main
instances “sofa, beside, table” transmit all the information, while other non-main
instances have no influence on the meaning expressed, but will interfere with the
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result of the retrieval matching process. So, we extract the main instances as the
Attributes from the text expression and use it as a part of DA3R. The process
is expressed by the following formula:

L = 〈l1, l2, l3, ...〉 parse−→ AL = 〈Lsubject , Lrelation , Lobject〉 (1)

To extract Attributes from text expressions, we use the semantic instance
extraction pipeline used in the SPICE metric [2]. SPICE was originally defined
as the measurement in image captioning, a sentence was converted into a scene
graph by using the Stanford Scene Graph Parser [20], and then the instances
of the text expression was extracted from the representation. As this pipeline
was originally designed for descriptive captions rather than text expressions in
here, so, inspired by Question premises [14], some modifications are made to
help extract the main instances of the expression, including disabling pronoun
resolution and verb lemmatization, etc. In addition, the SPICE procedure occa-
sionally produces duplicate nodes or object nodes not linked to nouns in the text
expression, which we filter out. We also removed the instances like photo, image,
scene, house, home, room, etc., because these words refer to the scene image,
not the content of the image.

3.3 Image Attributes Extraction

An image usually contains endless information, but for SREC task, the useful
infor only occupies a part of it. So, it is essential to obtain the main semantic
infor (Attributes) from the image. For previous work, object detection algorithm
was generally utilized to extract the Attributes of images [11,23]. In accordance
with this idea, this paper makes use of YOLOv3 [17] to implement it.

In order to make the model more generalized for different scenarios, we use
the VOC2007 dataset [6] to train the object detection model for the indoor
instances. For training there use convolutional weights that are pre-trained
on ImageNet [5], then the final weight will be obtained after that, which is
used to achieve the object detection and Attributes extraction. When the scene
image cross the model, relevant tuples of the target region are usually output
like t = [name, prob, [x, y, w, h]], where there is respectively represent of
the instance’s name, probability and the central coordinate, width and height
of the Bounding-Box. For the output tuple, the BBox is particularly impor-
tant, which can be used to infer the “relationship” between “subject” and
“object”, see Sect. 3.4 for more detail. After that, the Attributes of the scene
image = 〈t1, t2, t3, ...〉n and is ultimately used to matching the text expression
Attributes for retrieval. This process can be expressed by the following formula:

AI =
∑∑∑

Y OLO(Ip)|p∈sequence∈scene (2)

3.4 Attributes Retrieval Matching

After the Attributes of the text expression and scene image are extracted,
retrieval and matching them is the final and most important process. We embed-
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ded them into a common space and calculated their vector distance to get the
matching rate. In this process, we need to retrieve ts and to that matched with
Lsubject and Lobject from the AI , and then indicate the Irelation in the image
based on them. If the Irelation matchs with Lrelation , the Attributes Retrieval
Matching process is completed, finally output the region and the image in which
the target is expressed. Otherwise, convert the scene image sequence to aug-
ment the AI until the mission is completed or the scene image sequences of key
observation points are fully recursed.

Embedding and Calculation. In order to calculate the matching degree of
the Attributes extracted from images and text expressions, Word2Vec [16] was
selected to embed them, then calculate the distance of the embedded vectors
to obtain their matching rate. Firstly, massive text data is trained to obtain
the vector spatial distribution between each word, and then the Attributes of
expressions and images are binary embedded through W2V to obtain the cor-
responding spatial vector representation respectively:

−−→
v(I) = [vI1, vI2, vI3, ...]

and
−−→
v(L) = [vL1, vL2, vL3, ...]. Finally, the matching rate of the two vectors can

be evaluated by calculating the cosine value between them. The measurement of
matching rate P was implemented by the following formula:

P (VI |VL) = cosine(VI |VL) =

∑n
k=1 vIkvLk

√∑n
k=1 v2

Ik

√∑n
k=1 v2

Lk

(3)

Process of Comprehension. We already know the expression Attributes
AL = 〈Lsubject , Lrelation , Lobject〉. Then, firstly, the image Attributes AI

should be retrieved and matched with the Lsubject and Lobject to determine
the existence of the Isubject and Iobject . If they are both exist in one image, the
relation between them will be determined next; if the existence crosses the image,
recourse the scene image sequence to augment the AI until the matching is com-
pleted or the sequence is fully recoursed. Secondly, the existence of Lrelation is
to connect Lsubject and Lobject , but there are missing the Irelation to match
with it. Fortunately, from BBOX that existed in the image instance tuples, we
can get the center coordinates of the instance in the image, and according to the
center coordinates of the Isubject and Iobject , we can get the extension of the
relationship between them. For example, the center coordinate of the Isubject

is located to the left of the Iobject , then the Irelation can be defined as “left”,
“beside” and “near”. In this way, we extend the common positional relationship
expressions such as “left”, “right”, “on”, “in”, “near” etc., and finally use it to
match with Lrelation to complete the task. It should be specially noted that
when the existence of the Isubject and the Iobject are cross images, the deter-
mination of the Irelation will consider the recursing direction of the view. For
example, when the Isubject exists in the subsequent image of the Iobject , the
“left” will be determined by the recursion of the image. Finally, we set a thresh-
old value t for each instance of the match, which is the maximum tolerance. And
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after a lot of tests, we find that t = 0.8 is the most suitable here. The result of
the final comprehension is represented by the following formula:

θ = argmax
∑∑∑

P (VI |VL) (4)

4 Experiments

Before the experiment, we have trained the image Attributes extraction model
to ensure the best performance. We have also tested the expression Attributes
extraction module and trained the word vector spatial distribution data required
by the Attributes embedding. Next, we will verify the reliability of the entire
DA3R model for SREC task.

4.1 Single-Sequence Comprehension

Comprehension with any single point scene image sequence is the most direct
way to measure the reliability of DA3R and the benchmark for other experi-
ments. The experiment random selects an image in the scenario dataset as the
initial one and locates the target referred by the expression around the sequence.
We complete the experiment in all image sequences with each text expression

Fig. 3. Above is a partial view of the SSC experiment. The whole test proves the
feasibility of DA3R, but the error in the bottom example indicates that the judgment
of instances relationship in the scene still needs to be further improved.
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corresponded to the scene. For example, in Scene I, there have 1536 scene images,
each of which can be used as the initial one to form a sequence of scene images.
What we need to do is to locate the reference target in the 1536 image sequences
through each expression, and output the relevant regions and image. Figure 3
shows part of the test results.

4.2 Multi-sequences Comprehension

According to the above experiment, it can be seen that the result will be affected
by the size of the target and the difference in the position, distance and angle
of the observation point [25]. So to make the experiment more completely, it
is also necessary to consider find the target in multiple image sequences deter-
mined by the key observation points of the scene. Based on the results of the
Single-Sequence Comprehension experiment, when the model fails to locate the
correct target region, the scene image sequence will be converted according to
the key observation points until the task complete, which means that multiple
image sequences will participate in the final comprehension of the task. Figure 4
is a partial demonstration of experimental results for Multi-Sequences compre-
hension.

Fig. 4. This is an example of the MSC experiment. The process shows that the target
to which the expression refers cannot be found in the initial scene image sequence due
to problems such as distance and angle, etc. Then change the sequence based on the
key observation point, continue to locate the target region and image.

4.3 Results and Analysis

After the above two groups of experiments, we obtained the corresponding results
as shown in Table 1, which is measured against the standard mIoU metric, but
with a few changes – when the IoU ≥ 0.5 for a single test, the result is set to
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Table 1. Accuracy of the Single/Multi-Seq. experiments

Experiments Single-Seq. Multi-Seq.

Single objective reference
(Eg. The TV in the room.)

0.84 (10368/12288) 1.00 (12288/12288)

Explicit relationship reference
(Eg. The cup on the table.)

0.81 (7465/9216) 0.93 (8571/9216)

Implicit relationship reference
(Eg. The sofa near the table.)

0.57 (5253/9216) 0.68 (6267/9216)

1; otherwise set to 0. The correct rate R is calculated by the following formula.
Where L is the text expression, S is the scene image sequence and O is the
correct referred region.

R =
∑∑∑

i

∑∑∑

j

P (O|Li, Sj) (5)

According to the description of the above two parts, we conducted experi-
ments of Single/Multi scene image sequences. In the process of the experiments,
text expressions in the testset were divided into three types, it is separate as
“Single objective reference”, “Explicit relationship reference” and “Implicit rela-
tionship reference”. The first one in the sort refers to the expression that only
contains the subject. This form of expression is crucial to verify the basic relia-
bility of the model, and we regard it as the benchmark for task completion. The
next two are both contained the “subject”, “object” and “relationship”, but the
“relationship” between them is different. For the former, relationship is explic-
itly expressed, such as “on”, “in”, “left”, “right”, etc. But the relationship of the
latter is not clear, such as “near”, “beside”, etc. The whole experiment carried
out for the overall scene image sequences by each expression, just as the single
objective reference, we have tested 12288 times, the whole process is difficult and
time-consuming. So we used a piece of NVIDIA RTX 2080Ti for the training and
testing, which greatly saved our precious time, and bringing convenience to the
experiment.

Through the analysis of the experiment results in Table 1, we can see that: (1)
The result of the Multi-Sequences experiment is better than the Single-Sequence,
which can well overcome the influence caused by the distance, position, and
angle between the target and the observation points. (2) For the experiments
with single objective reference form as the benchmark, due to the target in the
test scenes can be detected perfectly (although the accuracy of object detection
cannot be 100%, but in the experiments of this paper, the targets contained in
the test scenes all can be detected correctly), so if our DA3R model is reliable, the
correct rate will be 100%. The experimental results of single objective reference
finally verified this point, which further illustrates the reliability of the method
in this paper. (3) Results of the explicit relationship test are obviously better
than the implicit type, which indicates that the model cannot well complete the
determination of fuzzy relationships. Furthermore, it is difficult to identify the
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relations from the cross-images (as shown in the bottom of Fig. 3), which is the
reason for the low accuracy of corresponding experimental results. In general,
DA3R model can achieve the basic SREC mission requirements and perform
well under some certain experiments, but there are still some issues that require
further consideration and resolution.

5 Conclusion

In this paper, contrapose the application of REC in real scenes, the SREC task
is proposed, which is required to indicate the relevant image and regions in the
scene image sequence through the language expression. To complete such a task,
we made a testset based on the existing scenario dataset and constructed a Dual
Attributes Recursive Retrieval Reasoning Model. DA3R overcomes the deficiency
of the previous REC model that only capable of completing the task under the
condition of a single image and corresponding expression, which is able to realize
the process of retrieval matching the candidate regions in a set of matched,
semi-matched and mismatched scene image sequences. The experimental results
showed the reliability of the method and confirmed the influence of different
scene observation point on SREC’s implement. But in practical applications, we
cannot directly obtain the key detection point to complete the acquisition of
the scene instance. In future work, the sight of us will locate in the reasoning
of the scene position changes and the determination of the cross-image target
relationship. We believe that these studies will push the existing visual-language
tasks into more and more practical applications and provide more possibilities
for our life.
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oping and benchmarking active vision, February 2017. https://doi.org/10.1109/
ICRA.2017.7989164

2. Anderson, P., Fernando, B., Johnson, M., Gould, S.: SPICE: semantic propositional
image caption evaluation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.)
ECCV 2016. LNCS, vol. 9909, pp. 382–398. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-46454-1 24

3. Anderson, P., et al.: Vision-and-language navigation: interpreting visually-
grounded navigation instructions in real environments, November 2017

4. Antol, S., et al.: VQA: visual question answering. CoRR abs/1505.00468 (2015).
http://arxiv.org/abs/1505.00468

5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: ImageNet: a large-scale
hierarchical image database, pp. 248–255, June 2009. https://doi.org/10.1109/
CVPR.2009.5206848

6. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
PASCAL visual object classes challenge 2007 (VOC2007) results. http://www.
pascal-network.org/challenges/VOC/voc2007/workshop/index.html

7. Hu, R., Rohrbach, M., Andreas, J., Darrell, T., Saenko, K.: Modeling relationships
in referential expressions with compositional modular networks. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (2017)

https://doi.org/10.1109/ICRA.2017.7989164
https://doi.org/10.1109/ICRA.2017.7989164
https://doi.org/10.1007/978-3-319-46454-1_24
https://doi.org/10.1007/978-3-319-46454-1_24
http://arxiv.org/abs/1505.00468
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html


SREC via Attributes of Vision and Language 441

8. Hu, R., Xu, H., Rohrbach, M., Feng, J., Saenko, K., Darrell, T.: Natural language
object retrieval, November 2015

9. Huang, Y., Wang, W., Wang, L.: Instance-aware image and sentence matching
with selective multimodal LSTM, pp. 7254–7262, July 2017. https://doi.org/10.
1109/CVPR.2017.767

10. Nagaraja, V.K., Morariu, V.I., Davis, L.S.: Modeling context between objects for
referring expression understanding. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) ECCV 2016. LNCS, vol. 9908, pp. 792–807. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46493-0 48

11. Liu, J., Wang, L., Yang, M.H.: Referring expression generation and comprehension
via attributes. In: The IEEE International Conference on Computer Vision (ICCV),
October 2017

12. Luo, R., Shakhnarovich, G.: Comprehension-guided referring expressions, January
2017

13. Ma, L., Lu, Z., Shang, L., Li, H.: Multimodal convolutional neural networks for
matching image and sentence. In: 2015 IEEE International Conference on Com-
puter Vision (ICCV), pp. 2623–2631, December 2015. https://doi.org/10.1109/
ICCV.2015.301

14. Mahendru, A., Prabhu, V., Mohapatra, A., Batra, D., Lee, S.: The promise of
premise: harnessing question premises in visual question answering, May 2017

15. Mao, J., Huang, J., Toshev, A., Camburu, O., Yuille, A., Murphy, K.: Generation
and comprehension of unambiguous object descriptions, pp. 11–20, June 2016.
https://doi.org/10.1109/CVPR.2016.9

16. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. In: Proceedings of Workshop at ICLR 2013, January
2013

17. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv (2018)
18. Rohrbach, A., Rohrbach, M., Hu, R., Darrell, T., Schiele, B.: Grounding of textual

phrases in images by reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) ECCV 2016. LNCS, vol. 9905, pp. 817–834. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46448-0 49

19. Savva, M., Chang, A., Dosovitskiy, A., Funkhouser, T., Koltun, V.: MINOS: mul-
timodal indoor simulator for navigation in complex environments, December 2017

20. Schuster, S., Krishna, R., Chang, A., Li, F.F., Manning, C.D.: Generating seman-
tically precise scene graphs from textual descriptions for improved image retrieval.
In: Workshop on Vision & Language (2015)

21. Wu, Q., Shen, C., Wang, P., Dick, A., van den Hengel, A.: Image captioning and
visual question answering based on attributes and external knowledge. IEEE Trans.
Pattern Anal. Mach. Intell. 40(06), 1367–1381 (2018). https://doi.org/10.1109/
TPAMI.2017.2708709

22. Wu, Q., Shen, C., van den Hengel, A., Liu, L., Dick, A.R.: Image captioning with
an intermediate attributes layer. CoRR abs/1506.01144 (2015). http://arxiv.org/
abs/1506.01144

23. Yu, L., et al.: MAttNet: modular attention network for referring expression com-
prehension, pp. 1307–1315, June 2018. https://doi.org/10.1109/CVPR.2018.00142

24. Yu, L., Poirson, P., Yang, S., Berg, A.C., Berg, T.L.: Modeling context in referring
expressions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016.
LNCS, vol. 9906, pp. 69–85. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-46475-6 5

25. Zhu, Y., et al.: Target-driven visual navigation in indoor scenes using deep rein-
forcement learning, September 2016

https://doi.org/10.1109/CVPR.2017.767
https://doi.org/10.1109/CVPR.2017.767
https://doi.org/10.1007/978-3-319-46493-0_48
https://doi.org/10.1007/978-3-319-46493-0_48
https://doi.org/10.1109/ICCV.2015.301
https://doi.org/10.1109/ICCV.2015.301
https://doi.org/10.1109/CVPR.2016.9
https://doi.org/10.1007/978-3-319-46448-0_49
https://doi.org/10.1007/978-3-319-46448-0_49
https://doi.org/10.1109/TPAMI.2017.2708709
https://doi.org/10.1109/TPAMI.2017.2708709
http://arxiv.org/abs/1506.01144
http://arxiv.org/abs/1506.01144
https://doi.org/10.1109/CVPR.2018.00142
https://doi.org/10.1007/978-3-319-46475-6_5
https://doi.org/10.1007/978-3-319-46475-6_5


Incremental Poisson Surface
Reconstruction for Large Scale
Three-Dimensional Modeling

Qiang Yu1,2(B) , Wei Sui2, Ying Wang2, Shiming Xiang1,2,
and Chunhong Pan2

1 School of Artificial Intelligence, University of Chinese Academy of Sciences,
Beijing 100049, China

qiang.yu@nlpr.ia.ac.cn
2 National Laboratory of Pattern Recognition, Institute of Automation,

Chinese Academy of Sciences, Beijing 100190, China

Abstract. A novel Incremental Poisson Surface Reconstruction (IPSR)
method based on point clouds and the adaptive octree is proposed in
this paper. It solves two problems of the most popular Poisson Surface
Reconstruction (PSR) method. First, the PSR is time and memory con-
suming when treating large scale scenes with millions of points. Second,
the PSR can hardly handle the incremental reconstruction for scenes
with newly arrived points, unless being restarted on all points. In our
method, large scale point clouds are first partitioned into small neigh-
boring blocks. By providing an octree node classification mechanism, the
Poisson equation is reformulated with boundary constraints to achieve
the seamless reconstruction between adjacent blocks. Solving the Poisson
equation with boundary constraints, the indicator function is obtained
and the surface mesh is extracted. Experiments on different types of
datasets verify the effectiveness and the efficiency of our method.

Keywords: Surface reconstruction · Large scale point cloud ·
Incremental

1 Introduction

Surface reconstruction is a widely studied problem in fields of computer graph-
ics, and is significant for applications such as Augmented Reality (AR), City
Digitalization and 3D Printing, etc.. Surface reconstruction from point clouds is
very challenging since the point clouds obtained from scanning or image based
methods are usually unorganized, noisy, data-missing or with misregistration.

With the efforts of researchers, numbers of surface reconstruction methods
have been proposed in the last two decades, which can be roughly clustered into
two categories, i.e., Computational Geometry (CG) based methods [1,3,6] and
Implicit Function Fitting (IFF) based methods [4,8,9]. The CG based methods
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Our IPSR method can incrementally and seamlessly reconstruct surface meshes
from a series of neighboring point cloud blocks. Compared to existent methods (for
instance the PSR method), the proposed method does not need to process all points
from scratch repeatedly whenever new points are provided. (a) A skeleton point cloud
containing two blank regions without points. (b) The reconstruction result of (a). (c)
A new inner point cloud block which fills one of the blank regions in (a). (d) The
incremental reconstruction result of (c) on the basis of (b). (e) Another new inner
point cloud block like (c). (f) The incremental reconstruction result of (e) on the basis
of (d).

attempt to directly recover geometry structures from point clouds. These meth-
ods are quite fast, but they are essentially local algorithms, and hence can not
fill holes and are liable to be affected by noise.

Despite the effectiveness of the IFF based methods, the low efficiency and
heavy computational load prevent their applications for large scale scenes.
Besides, these methods can only deal with all points simultaneously.

To address the preceding problems, we propose an improved version of Pois-
son Surface Reconstruction (PSR) [9], called Incremental Poisson Surface Recon-
struction (IPSR). Two main modifications are made compared to PSR: (1) Orig-
inal octree is replaced by an adaptive octree which can be expanded flexibly
when new points are provided; (2) Boundary constraints are integrated to Pois-
son equation, which guarantee the overall implicit function to be seamless. In
our method, instead of repairing surface meshes after mesh fusion [5,11,15], the
overall implicit function is reconstructed seamlessly in a divided and progressive
way (shown in Fig. 1). The underlying mathematical model behind our method
is a Poisson equation with well designed boundary constraints.

The main contributions of our method can be summarized as follows:
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– An incremental surface reconstruction method is proposed for large scale
scenes where point clouds are provided online and area by area. The proposed
method is quite flexible and resource saving with the comparable reconstruc-
tion accuracy to the original PSR method, which is a popular benchmark of
surface reconstruction.

– A novel Poisson equation with boundary constraints is formulated based on
the adaptive octree, with which neighboring point cloud blocks can be recon-
structed incrementally and seamlessly.

– An octree node classification method is designed to classify octree nodes into
inner and boundary types. The inner nodes help reconstruct implicit functions
while the boundary nodes provide boundary constraints.

2 Related Work

2.1 Surface Reconstruction

The CG based methods, such as Delaunay triangulation [3], Alpha shapes [6] and
Voronoi diagram [1], are early but effective ones for surface reconstruction. These
methods directly reconstruct 2D triangles or 3D tetrahedrons by interpolating
the whole or subset of points. Thus, they are quite fast and easy to implement.
Furthermore, they do not need any prior assumption or auxiliary information
about the scene. The main drawback of these methods is that noises and outlier
points are taken into consideration during the surface reconstruction process,
which will result in seriously bad results when the quality of points is poor.

Afterwards, the IFF based methods have been proposed to improve the
robustness of surface reconstruction algorithm. These methods are designed to
fit a scalar three-dimensional spacial implicit function or calculate signed dis-
tance field to points to represent the model, and then extract the surface as a
level set of the implicit function. The implicit functions can be represented as the
weighted sum of radial basis functions or piece-wise polynomial functions. The
final watertight and manifold mesh will be obtained through marching cubes
algorithm [10].

2.2 Poisson Surface Reconstruction

The PSR method is developed under the IFF framework. The main idea of the
PSR method is that the implicit function can be estimated as the indicator func-
tion (whose value is 1 inside the surface and 0 outside the surface) of the model.
The smoothed gradient of the indicator function corresponds to the divergence
of normal vector field, which can be approximated by a summation over the
oriented points.

We begin by reviewing the PSR method concisely. Let V : R3 �→ R
3 be the

normal vector field of input oriented points, and X : R3 �→ R
1 be the indicator

function. Then the problem is formed as a Poisson equation:

ΔX = ∇ · V, (1)
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where Δ is the Laplace operator and ∇ · V represents the divergence of normal
vector field V.

The implicit function in the PSR method is represented as the weighted sum
of a set of multiresolution Gaussian functions constructed on nodes of the octree.
Suppose Fi : R3 �→ R

1 is the Gaussian function attached to the i-th node in the
octree, and then its value at point q ∈ R

3 can be represented as

Fi(q) = F
(

q − ci
wi

)
1
w3

i

, (2)

where F : R3 �→ R
1 is the standardized Gaussian function, ci and wi are the

center and width of the i-th node. Correspondingly, the indicator function and
the normal vector field can be represented as

X =
n∑
i

xiFi = xTF, (3)

V =
n∑
i

viFi = vTF, (4)

respectively, where n is the number of octree nodes, x ∈ R
n×1 and v ∈ R

n×3 are
the coefficients vectors of indicator function and the divergence of normal vector
field respectively, and F is a column vector of all node functions.

In Eq. (4), vi ∈ R
3 is the vector held by the i-th node in the octree. It

is calculated using the normal vectors of the points in the point cloud by the
following function

vi =
∑

p∈Ng(oi)

1
Ds(p)

αp,oi p.n, (5)

where p is a point in the point cloud, oi is the i-th node, Ng(oi) is the point set
bounded in the 3×3×3 = 27 neighboring nodes of oi, Ds(p) is the point density
at p which is estimated as the number of points in its neighborhood [9], αp,oi is
the trilinear interpolation weight of oi among 2×2×2 = 8 nearest nodes around
p and p.n is the normal vector held by the point p.

Combined with Eqs. (2), (3) and Eqs. (4), (1) can be reformulated as an
linear expression as follows

Lx = v, (6)

where L ∈ R
n×n is the Laplace matrix defined as

Li,j =
〈

∂2Fi

∂x2
,Fj

〉
+

〈
∂2Fi

∂y2
,Fj

〉
+

〈
∂2Fi

∂z2
,Fj

〉
. (7)

After obtaining the coefficients vector x, the indicator function can be easily
calculated.

However, based on global Poisson equation, the PSR method easily results
in over-smoothing of the input points. Another problem is that the PSR method
can not deal with out-of-core reconstruction.
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(a) Point cloud (b) Blocks

(c) Octree (d) Surface implicit function

(e) Integration

Partition

"Splat" into octree

Solve Poisson equation with 
boundary constraints

Fusion

Marching cubes
block

1

block
2

block
n

...
...

(f) Surface mesh

Fig. 2. The pipeline of our IPSR method. (a) The whole point cloud. (b) The parti-
tioned blocks shown in different colors. (c) The parts of octree, on which the Poisson
equations with boundary constraints are constructed and then solved. (d) The solved
indicator function. We illustrate the indicator function by a series of spheres in 3D
space. (e) The integration of the indicator function. (f) The surface mesh extracted
from the octree using the marching cubes algorithm. (Color figure online)

2.3 Incremental Surface Reconstruction

Although the PSR method does well in handling noisy data, it suffers from
a limitation that all points should be present before performing the surface
reconstruction process. Hence, some methods have been proposed to address
this problem.

Newcombe et al. [12] incrementally constructed a truncated signed distance
function (TSDF) using the input points of each scan. Schertler et al. [14] incre-
mentally refined the coarse base mesh using field-aligned method. These existing
methods have a similar application of reconstructing small models from RGB-D
images by indoor scanners.

In contrast, we propose the IPSR method based on the PSR method (and
compatible with the SPSR method), which aims at incrementally reconstructing
large scale scenes and accepts a series of neighboring but no-overlap-required
point clouds.

3 The Proposed Method

In this section, we describe the proposed IPSR method for surface reconstruction
from oriented points. Our method is specially designed such that it can perform
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(a) Two point cloud blocks (b) Octree for "block 1" (c) Octree nodes classification
for "block 2"

"Splat" "block 1" into octree

block
1

block
2

"Splat" "block 2" into octree

Fig. 3. The proposed octree nodes classification method. Left: the input two point
cloud blocks, where different colors represents different blocks. Middle: the octree after
the reconstruction of the blue block. Right: the new octree when reconstructing the
red block. The nodes of categories 1, 2, 3 and 4 are colored in red, yellow, blue and
black. The nodes of category 5 are ignored for clarity. (Color figure online)

the reconstruction process in an incremental manner. It is very flexible and
resource saving with comparable reconstruction accuracy to the original PSR
method.

3.1 Motivation

In the original PSR method [9], the coefficients vector of the indicator function
x ∈ R

n is obtained by solving Eq. (6), where n is the total number of octree
nodes. When the scale of the scene grows, the number of octree nodes become
larger accordingly, which makes solving the linear system more time-consuming.
Besides, when the scene of points are obtained multiple times, the linear system
have to be constructed and solved repeatedly, which is resource wasteful.

Our method aims at reconstructing large scale scene incrementally, such as
landscape or urban regions point cloud from the LiDAR on aircraft etc.. There
are two situations which we pay attention to. First, the points are provided
online, that is, one point cloud is provided each time the aircraft flies a line.
Thus, we should incrementally reconstruct a series of point clouds from different
flight lines. Second, all points are provided offline. In this situation, in order to
make the use of our IPSR method, the point cloud should be first partitioned
into a series of neighboring blocks. Figure 2 shows the pipeline of our method.

Comparing with the PSR method, the proposed IPSR method in incremental
reconstruction mode requires less time and space.

3.2 Point Cloud Partition

When applying the proposed IPSR method to one single large scale point cloud,
the whole point cloud needs to be partitioned into a number of blocks of arbitrary
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size. To make the full use of boundary constraints, we create two conditions to
guide the point cloud partition progress.

A good partition should satisfy two conditions:

1. The point density in boundary regions should be as high as possible;
2. The underlying surface in boundary regions should be as smooth as possible.

3.3 Octree Nodes Classification

After dividing the point cloud into different blocks, each block is “splatted” into
the octree and a corresponding Poisson equation is constructed on inner nodes
while the boundary constraints are imposed on intra nodes. In this subsection,
we classify the octree nodes to determine whether they should be taken into
the reconstruction. According to the influence from the new coming points, the
corresponding octree nodes can be classified into five categories as follows:

1. Nodes that are newly created.
2. Nodes where corresponding normal vector contributions are updated.
3. Nodes that are not included in categories 1 and 2 but the corresponding node

functions interact with that of the nodes in categories 1 and 2.
4. Nodes that are not included in categories 1, 2 and 3 but the corresponding

node functions interact with that of the nodes in categories 1, 2 and 3.
5. The rest nodes.

Naturally, the coefficients of nodes in the category 1 need to be calculated.
In addition, the coefficients of nodes in categories 2 and 3 should be recalculated
since the variation of the nodes’ normal vector contributions and the corre-
sponding items of the Laplace matrix. The nodes in category 4 are used for
boundary constraints, because both their normal vector contributions and their
corresponding items of the Laplace matrix keep unchanged during the recon-
struction progress for the current block. In the following, we call the nodes in
categories 1, 2 and 3 the Poisson nodes, call the nodes in category 4 the bound-
ary nodes and call the nodes in category 5 the unused nodes. An example is
given in Fig. 3 to demonstrate the classification results.

3.4 Incremental Reconstruction with Boundary Constraints

The underlying model of the proposed IPSR method is the Poisson equation
with boundary constraints.

Let xp ∈ R
np×1 be the coefficients vector of the Poisson nodes, xb ∈ R

nb×1 be
the coefficients vector of the boundary nodes and xu ∈ R

nu×1 be the coefficients
vector of the unused nodes, where the np, nb and nu are number of nodes in
corresponding categories. We stack xp, xb and xu into a uniform vector x, which
is given by:

x =

⎡
⎣xp

xb

xu

⎤
⎦ . (8)



IPSR 449

Let x∗
b and x∗

u denote the true values of xb and xu, which are used as the
boundary constraints. Accordingly, the linear system of our IPSR method can
be rewritten as: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
Lp Lb Lu

]
⎡
⎣xp

xb

xu

⎤
⎦ = vp

xb = x∗
b

xu = x∗
u

, (9)

where Lp ∈ R
np×np is the Laplace matrix of the Poisson node functions,

Lb ∈ R
np×nb is the pseudo Laplace matrix of the Poisson node functions

against the boundary node functions, Lu ∈ R
np×nu is the pseudo Laplace

matrix of the Poisson node functions against the unused node functions and
thus L′ =

[
Lp Lb Lu

] ∈ R
np×n is the top np rows of the matrix L ∈ R

n×n in
Eqs. (6) and (7).

Since the node functions of nodes in category 5 do not interact with that of
any nodes in categories 1, 2 and 3, we have:

Lu ≡ 0. (10)

By substituting Eq. (10) into Eq. (9), we get:

Lpxp = vp − Lbx∗
b , (11)

where Lp and vp−Lbx∗
b can be calculated from the normal vector field. It can be

seen that xp can be easily solved by the methods such as the conjugate gradient
algorithm [7].

4 Experiments

In this section, we evaluate our method for incremental surface reconstruction on
two datasets. Although there are many new methods such as KinectFusion [12]
and field-aligned method [14], the comparison is not shown in this paper because
of the limitation of paper space. In addition, our method is mainly designed on
top of the PSR method, so we conduct comparative experiments with the PSR
method to further demonstrate the capacity of our method.

Two different datasets are employed to evaluate our method. One is that
collected from [2], which consists of 4 small point clouds. These point clouds
are uniformly sampled from the corresponding MPU models [13] and hence the
ground truths can be provided. With the ground truths, this dataset can be
used to conduct experiments for quantitative comparison and analysis. For con-
venience, we name it as the benchmark dataset.

Another is a dataset in which the point clouds are obtained from large scale
outdoor scenes such as landscape, hill, valley and buildings. It consists of 6 large
scale point clouds without ground truth. For convenience, we name it as the
landscape dataset.
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Fig. 4. The surface reconstruction results of point clouds in the benchmark dataset.
Different colors indicate points in different blocks. We can see that the results of our
method are nearly the same as the ground truths, and the boundary regions are natural
and seamless. (Color figure online)

4.1 Reconstruction on Benchmark Dataset

In this subsection, we conduct qualitative and quantitative comparison exper-
iments between our method and the original PSR method on the benchmark
dataset. We simply partition the point clouds into several blocks uniformly and
set the max depth of octree to 10 for all point clouds, which is deep enough to
recover the details.

Qualitative Comparison. The surface reconstruction results of the bench-
mark dataset are illustrated in Fig. 4 (only two models are shown due to space
limitation). We can see that the results of the proposed method are nearly the
same as the ground truths. The boundary constraints constructed in Eq. (9)
guarantee the seamless transition from one block to another.
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Fig. 5. The incremental surface reconstruction result of point clouds in the landscape
dataset. Different colors indicate points in different blocks. (Color figure online)

Quantitative Comparison. To further demonstrate the advantage of our
method, we conduct a quantitative comparison to evaluate the reconstruction
accuracy of our method and the PSR method. Two metrics in [2] are used to
measure the reconstruction accuracy: the distance error and the angle error.
This experiment is conducted on the benchmark dataset since it contains ground
truth.

As expected, the error values of our method are very close to those of the
PSR method. When the octree depth is set to 10, the distance error and the
angle error are bounded in 0.1 mm and 5◦ respectively.

4.2 Reconstruction on Landscape Dataset

In this subsection, we conduct qualitative comparison experiments between our
method and the original PSR method on the landscape dataset, and show the
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Fig. 6. The result of the incremental reconstruction for the landscape dataset. Our
method saves a large amount of time than the PSR method.

great advantages in our incremental reconstruction method. It should be men-
tioned that this experiment is conducted not to prove that our method can deal
with large scale data which the PSR method can not deal with, but to show that
our method can perform faster and need less memory than the PSR method.

Reconstruction Result. The surface reconstruction results of the landscape
dataset are illustrated in Fig. 5 (only two models are shown due to space lim-
itation). From the reconstruction results we can see that the details are well
maintained by our incremental reconstruction method.

Incremental Reconstruction. Under the circumstances that the point cloud
of entire scene can not be provided at one time, our method is more profitable
than almost all the IFF based surface reconstruction methods for its flexibility
and resource saving ability.

The incremental surface reconstruction process is illustrated in Fig. 6.

5 Conclusion

We have proposed an incremental surface reconstruction framework, specially for
large scale scenes where the point clouds are provided sequentially. The under-
lying mathematical model of our method is the Poisson equation with boundary
constraints. Comparative experiments on different datasets verify the advantages
of our method.
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Abstract. Thanks to the development of deep learning, voice-visual
cross-modal retrieval has made remarkable progress in recent years. How-
ever, there still exist some bottlenecks: how to establish effective corre-
lation between voices and images to improve the retrieval precision and
how to reduce data storage and speed up retrieval in large-scale cross-
modal data. In this paper, we propose a novel Voice-Visual Cross-Modal
Hashing (V2CMH) method, which can generate hash codes with low
storage memory and fast retrieval properties. Specially, the proposed
V2CMH method can leverage deep feature similarity to establish the
semantic relationship between voices and images. In addition, for hash
codes learning, our method attempts to preserve the semantic similarity
of binary codes and reduce the information loss of binary codes genera-
tion. Experiments illustrate that V2CMH algorithm can achieve better
retrieval performance than other state-of-the-art cross-modal retrieval
algorithms.

Keywords: Cross-modal retrieval · Deep hashing · Deep feature
similarity

1 Introduction

Voice-visual cross-modal retrieval has been widely applied in computer vision and
natural language processing communities [2,25,26], such as unmanned driving
and search engines. The task of voice-visual cross-modal retrieval is to leverage
visual images (resp. voices) as the query to retrieve relevant voices (resp. visual
images). Because of the heterogeneity of multi-model data, it is difficult for users
to find useful information efficiently and quickly. How to solve the heterogeneity
problem of multi-model data and how to effectively implement retrieval is a huge
challenge for cross-modal retrieval [21].
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Recently, many deep learning works have been developed to address the issue
of the heterogeneity of multi-model data [5,7,19,22]. They generally encode the
data of each modality into their own features, and then these features are lever-
aged to calculate the similarity between voice and image in the common rep-
resentational space. Although existing voice-visual cross-modal retrieval meth-
ods have made some progress, there are still some shortcomings. Firstly, their
retrieval features are all real-valued features, which require large storage space
and long retrieval time. Secondly, these methods haven’t taken full advantage of
deep feature relationship between the voice modality and the image modality.

In fact, the hash code of a voice query (resp. image) is more accurately
associated with the hash code of related images (resp. voices) if more similarity
relationship between images and voices is noticed by humans [4]. Apparently,
the above issues would be addressed if we fully associate the voice modality with
image modality and hash codes can be leveraged as retrieval features. Motivated
by this idea, an adaptive voice-visual cross-modal learning scheme is exploited to
generate hash codes by bridging the deep feature similarity relationship between
the voice modality and the image modality.

Fig. 1. The overall framework of the proposed V2CMH method.

In this paper, we propose deep voice-visual cross-modal retrieval method,
namely Voice-Visual Cross-Modal Hashing (V2CMH), to generate hash codes
by leveraging deep feature similarity to establish the relationship between voices
and images, as illustrated in Fig. 1. To reduce the storage space and accelerate
the retrieval speed, we learn hash codes from raw voices and images. Further-
more, the pairwise loss term and the regularized term are proposed to produce
more efficient hash codes. To build the relationship between images and voices,
V2CMH leverages deep feature representation to learn the semantic similar-
ity relationship of images and voices in the feature space. Moreover, the regu-
larized constraint for voices and images is proposed to reduce the information
loss for binary codes generation. Experiments illustrate that V2CMH algorithm
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can achieve better retrieval performance than other state-of-the-art cross-modal
retrieval algorithms.

The contributions of our paper can be summarized into several aspects: (1)
A novel voice-visual cross-modal learning framework is proposed to exploit deep
feature similarity to solve the problem of insufficient utilization of the semantic
relationship between images and voices. To the best of our knowledge, it is
the first work to generate hash codes for voice-visual cross-modal retrieval by
exploiting high-level semantics similarity. (2) Due to the fact that the information
loss of binary codes generation is inevitable, the regularized term is proposed
to drive continuous values to approximate discrete values, which can reduce the
information loss for binary codes generation. (3) Experimental results show that
leveraging deep feature similarity can achieve better search precision than other
state-of-the-art cross-modal retrieval algorithms.

2 Prior Work

With the development of multimedia technology, cross-modal retrieval has
become a hot issue [9]. And in computer vision, the relationship between vision
and voice has been explored recently [13,25].

Non-deep Cross-Modal Retrieval: Some early works focused on Canon-
ical Correlation Analysis (CCA) to learn linear transformations to maximize
the correlations between two modalities representations. Later, there appears
some extensions of CCA. For example, [12] utilized CCA to exploit the relation-
ships between talking face and spoken words. [28] analyzed canonical correlation
between image and voice feature matrices though subspace mapping and applied
such correlations for clustering on different datasets. In recent years, ranking
techniques have attracted wide attention for multimodal problems. [27] pre-
sented a novel semi-supervised algorithm named ranking with Local Regression
and Global Alignment (LRGA) to learn a robust Laplacian matrix for ranking.

Deep Cross-Modal Retrieval: Recently, many deep learning based mod-
els have been put forward to solve multimodal problems. [19] proposed a new
deep visual-voice network to explore the multimodal correlates and performed
the bi-directional cross-modal retrieval for images and speeches. [24] used the
recurrent neural network to predict features of voice from videos and then gen-
erated waveforms from the learned features. [5] presented a novel deep neural
network model which can acquire rudimentary spoken language through untran-
scribed voice data with the guiding of contextually relevant visual images. [1]
designed a novel voice-visual correspondence learning task with the correspon-
dence between visual and voice as supervised information. [22] presented a new
problem, inferring from the voice about the face and vice versa, and introduced
the multi-stream dynamic- or static-fusion architecture.
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Many existing research on cross-modal voice-visual retrieval focuses on using
real-valued feature to perform cross-modal retrieval. Different from these meth-
ods, our method not only leverages hash codes to perform cross-modal retrieval,
but also establishes the similarity relationship between voices and images in the
feature space by exploiting deep feature representation.

3 The Proposed Method

3.1 Problem Definition

Given N pairwise units P = {Ii, Vi}Ni=1 and N pairwise labels Y = {yi}Ni=1

where Ii denotes i-th sample in the image modality, Vi denotes i-th sample
in the voice modality. yi ∈ {0, 1}, where yi = 1 denotes that image Ii and
voice Vj share identical concepts, yi = 0 denotes that image Ii and voice Vj

do not share identical concepts. The aim of cross-modal hashing learning is to
find two appropriate mapping function HI : I = {Ii}Ni=1 → {−1, 1}k×N and
HV : V = {Vi}Ni=1 → {−1, 1}k×N for the two modalities while maintaining the
similarity of cross-modal data in the Hamming space [10,14], where k denotes
the length of hash codes.

3.2 Multimodal Architecture

Figure 1 shows the entire network architecture of the proposed deep voice-visual
cross-modal hashing framework. The whole system consists of voice branch and
image branch. And then the two branches are explained below.

Voice Modeling: Similar to [6], we use a Mel-frequency cepstral coefficients
(MFCC) to represent the voice. We use a 16 ms window size with a 5 ms shift
between neighbouring frames, specifying 36 filters for the mel-scale filterbank. To
take advantage of the computational efficiency, we force every voice spectrogram
to the same size. We do this by fixing the spectrogram size at L frames (2000
in our experiments, corresponding to approximately 10 s of voice). We truncate
any captions longer than L, and zero pad any shorter voice. The voice model is
shown in Fig. 1. The first convolution layer of the voice network leverages filters
with the width of one frame across the whole frequency axis. And then the
following layers of the voice network is three 1-D dimensional convolution with
batch normalization and max-pooling. The last two layers of the voice network
are fully connected layers. The respective widths of these convolutional layers
are 11, 17 and 19, respectively. All pooling operations exploit 2 strides. These
convolutional layers leverage the Rectified Linear Unit (ReLU) [23] function as
the activation function. The first fully connected layer exploits 1000 nodes, and
the activation function of the first fully connected layer is tanh function. The
second fully connected layer is hash layer, which contains k units and exploits
tanh function as the activation function. The hash layer can produce k-bits
binary-like codes, which can be leveraged to generate k-bits binary codes by the
quantization function.
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Image Modeling: The configuration of our proposed image model is listed in
Fig. 1. Following [19], the convolution architecture of VGG16 is exploited to the
backbone of the image model. Then the following layers of the image model are
two fully connected layers. To build the relationship between images and voices,
the first fully connected layer exploits 1000 nodes, and the activation function
is tanh function. The second fully connected layer is hash layer, which contains
k units and exploits tanh function as the activation function. The hash layer
can produce k-bits binary-like codes, which can be leveraged to generate k-bits
binary codes by the quantization function.

3.3 Joining the Voice and Image Branches

Different from these voice-visual cross-modal feature learning methods [5,19], the
proposed method learns hash codes to perform voice-visual cross-modal retrieval.
The raw image and voice are mapped into a common Hamming space. Given any
image Ii and voice Vi, for image branch, deep hash function H can be defined as

bIi = HI(Ii) = sign(τ(FI(Ii); θI)), (1)

where bIi denotes k-bits hash codes for image Ii, FI(IIi ) denotes deep feature
representation for image branch, θI denotes the parameters of the hash layer for
image branch. τ denotes tanh function. sign(·) denotes the element-wise sign
function, i.e. sign(x) = 1 if x > 0, otherwise sign(x) = −1. For voice branch,
deep hash function can be defined as

bVi = HV (Vi) = sign(τ(FV (Vi); θV )), (2)

where bVi denotes k-bits hash codes for voice Vi, FV (Vi) denotes deep feature
representation in voice branch, θI denotes the parameters of the hash layer in
voice branch.

Our aim is to find two appropriate mapping function HI and HV for the two
modalities while maintaining the similarity of cross-modal data in the Hamming
space [18]. For this aim, the pairwise loss is naturally designed to make matched
image and voice as relevant as possible and mismatched image and voice as far
away as possible [20]. Based on this purpose, approximate contrastive loss form
is exploited as the pairwise loss to avoid collapsed situation [16], the pairwise
loss Lp can be defined as

Lp =
1
2
yiH(bIi , b

V
i )2 +

1
2
(1 − yi)max(m − H(bIi , b

V
i ), 0)2, (3)

where H(bIi , b
V
i ) denotes the Hamming distance between bIi and bVi , m denotes

margin threshold parameter. max(·) denotes maximum function. The first term
makes the hash codes of matched image and voice as close as possible, the second
term provides the hash codes of mismatched image and voice as far away as
possible when the Hamming distance of two hash codes is smaller than margin
threshold m.
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Directly optimizing the pairwise loss Eq. 3 is infeasible because the compu-
tation of the Hamming distance H(bIi , b

V
i ) needs to thresh deep neural network

outputs. Nevertheless, threshing the network outputs may earn it intractable
in the network training stage [17]. To solve this issue, a relaxation strategy is
adopted to use l2-norm of binary-like codes to replace the Hamming distance of
hash codes, then Eq. 3 is rewritten as

Lp =
1
2
yi||hI

i − hV
i ||22 +

1
2
(1 − yi)max(m − ||hI

i − hV
i ||22, 0)2, (4)

where || · ||2 denotes the l2-norm of the vector. hI
i denotes hash-like codes of

image model, which is the continuous values of the hash layer in image branch.
hV
i denotes binary-like codes of voice model, which is the continuous values of

the hash layer in voice branch.
Because binary codes (+1/−1) are relaxed to continuous binary-like codes,

we can leverage deep neural network to learn hash-like codes. And then binary-
like codes are quantized into binary codes. However, the information loss between
binary-like codes and binary codes will increase due to the quantization opera-
tion. Inspired by Iterative Quantization (ITQ) [3], a regularizer term is consid-
ered to reduce the information loss between binary-like codes and binary codes.
The regularizer loss Lr can be defined as

Lr = ||bIi − hI
i ||22 + ||bVi − hV

i ||22, (5)

To further learn effective hash codes, the proposed approach leverages deep
feature representation to build the relationship between images and voices in
the Euclidean space. Because similar deep feature representation can promote
similarity learning of hash codes. To preserve the similarity relationship of deep
feature representation, the deep feature similarity loss can be define as

Ld =
1
2
yi||FV (Vi) − FI(Ii)||22 +

1
2
(1 − yi)max(m − ||FV (Vi) − FI(Ii)||22, 0)2, (6)

where FI(IIi ) denotes deep feature representation for image branch, FV (Vi)
denotes deep feature representation in voice branch. The first term makes deep
feature representation of matched image and voice as close as possible, the sec-
ond term provides deep feature representation of mismatched image and voice
as far away as possible when the l2-norm of two deep feature representations is
smaller than margin threshold m.

By considering Eqs. 4, 5 and 6, the overall objective function L of the pro-
posed V2CMH model can be defined as follows:

L = Lp + αLr + βLd

=
N∑

i=1

{1
2
(1 − yi)max(m − ||hI

i − hV
i ||22, 0)2 +

1
2
yi||hI

i − hV
i ||22

+ α(||bIi − hI
i ||22 + ||bVi − hV

i ||22) + β(
1
2
yi||FV (Vi) − FI(Ii)||22

+
1
2
(1 − yi)max(m − ||FV (Vi) − FI(Ii)||22, 0)2)},

(7)
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where α and β denote the weighting parameters. The overall objective function
in Eq. 7 can be optimized by Adam [11]. During the training stage, Lp makes
the hash codes of matched image and voice as relevant as possible and the hash
codes of mismatched image and voice as far away as possible. Lr can reduce
the information loss between binary-like codes and binary codes. Ld makes deep
feature representation of matched image and voice as close as possible and deep
feature representation of mismatched image and voice as far away as possible.

4 Experiments

4.1 Dataset and Evaluation Protocols

To prove the effectiveness of the proposed V2CMH method, we exploit two
image-voice datasets to compare with other cross-modal retrieval methods. (1)
Mirflickr 25K dataset [8] contains 25,000 images taken from the “flickr” web-
site. The dataset is a multi-label image dataset, which contains 38 semantic
labels. In order to accomplish the cross-modal task of voice and image, we
generate voice from semantic tags in text form, and use different speakers to
ensure the diversity of speech samples. We construct 50,000 positive and neg-
ative image-voice pairs and select 40,000 image-voice pairs as the training set.
The rest 10,000 image-voice pairs are chosen as the test and retrieval set. (2)
MS COCO dataset [15] is a public dataset established by Microsoft team for
image recognition, segmentation and image text description tasks. This dataset
aims at scene understanding. It mainly intercepts from complex daily scenes.
Similarly, we transform form the text of the validation set into speech and build
our image-voice database to complete the task of cross-modal retrieval. We con-
struct 81,008 positive and negative image-voice pairs and select 80% image-voice
pairs as the training set. The rest 20% image-voice pairs are chosen as the test
and retrieval set. The ground-truth neighbors can be given as image-voice pairs
that contains the same concepts. According to previous works, two widely met-
rics are used in this paper: mean average precision (mAP) and the precision in
top K of the retrieval list (precision@K). If the values of these metric indexes
are higher, the performance of the experimental methods is more effective.

4.2 Implementation Detail

The proposed V2CMH approach is implemented by using the open-source
KERAS1 library. The experiments are conducted on workstation with GeForce
GTX Titan X GPU, Inter Core i7−5930K 3.50 GHZ CPU and 64G RAM. The
objective function Eq. 7 is optimized by exploiting Adam [11] with the learning
rate 10−3. The batch size is set to 64. To produce {16, 24, 36, 48, 64}-bit hash
codes, hash code length k is set from 16 to 64 respectively. The initial weights of
the image network leverage pre-trained weights. The initial weights of the voice
network exploit glorot uniform distribution. The parameter α is set as 0.1 and
1 https://github.com/fchollet/keras.

https://github.com/fchollet/keras
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Table 1. Comparison of V2CMH-R, V2CMH-D and V2CMH on Mirflickr 25K dataset
with mAP for different hash bits

Constraint 16 bits (mAP) 32 bits (mAP) 48 bits (mAP) 64 bits (mAP)

V → I V2CMH-D 54.86 55.32 55.78 56.34

V2CMH-R 55.76 56.18 56.84 57.63

V2CMH 58.45 59.32 60.11 60.96

I → V V2CMH-D 58.22 59.27 59.80 60.21

V2CMH-R 59.58 60.16 60.96 61.73

V2CMH 62.76 63.53 64.02 64.87
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Fig. 2. The retrieval precision within different number of top returned samples with
64 bits on Mirflickr 25K dataset. (a) Using images to retrieve voices. (b) Using voices
to retrieve images.

the parameter β is set as 1. The network is trained for 1,000 epoches, or stopped
training until the loss does not diminish.

4.3 Evaluation of Different Factors

To measure the effectiveness of the regularized constraint and deep feature sim-
ilarity in the proposed V2CMH approach, we implement the experiments in fol-
lowing three aspects: Firstly, we use the proposed method without using the reg-
ularized constraint to learn hash function (i.e. V2CMH-R). Secondly, we use the
proposed method without considering deep feature similarity to generate hash
codes (i.e. V2CMH-D). Thirdly, we exploit the proposed method (i.e. V2CMH).
Table 1 shows contrastive results of V2CMH-R, V2CMH-D and V2CMH on Mir-
flickr 25K dataset with different bits. Here, “V→ I” represents the case where
the query sample is voice and the database is image. “I→ V” represents the case
where the query sample is image and the database is voice. It is seen from Table 1
that the proposed method can achieve better performance over V2CMH-R or
V2CMH-D. For example, for using image to retrieve voice, V2CMH can improve
the mAP with 32 bits to 63.53% from 60.16% implemented by V2CMH-R and
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59.27% implemented by V2CMH-D. For using voice to retrieve image, V2CMH
can improve the mAP with 32 bits to 59.32% from 56.18% implemented by
V2CMH-R and 55.32% implemented by V2CMH-D. This is because the pro-
posed method considers the regularized constraint and deep feature similarity
to learn more efficient hash functions.

4.4 Method Comparison

To measure the effectiveness of the proposed V2CMH method, we compare our
method with SIFT+M, DBLP [5], CNN+SPEC [1], and DVAN [19]. The method
SIFT+M means that using SIFT to represent image and using MFCC to rep-
resent voice. And then project their own features to a common representational
space, which is usually optimized by the pairwise loss that make matched voice-
image pairs as relevant as possible and mismatched voice-image pairs as far away
as possible. The methods DBLP [5], CNN+SPEC [1], and DVAN [19] were imple-
mented according to the authors’ papers. To compare the retrieval performance
with those methods, we use the 64 bit hash code.
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Fig. 3. The retrieval precision within different number of top returned samples with
64 bits on MS COCO dataset. (a) Using images to retrieve voices. (b) Using voices to
retrieve images.

Table 2 shows the comparison of experimental results in our proposed
V2CMH method and other methods on Mirflickr 25K and MS COCO dataset.
We can explicitly observe that: (1) Although contrastive cross-modal retrieval
algorithms have achieved good results on four widely metrics, the proposed
V2CMH approach can achieve the highest retrieval precision within mean aver-
age precision, the highest retrieval precision within top 1 retrieved list, the high-
est retrieval precision within top 5 retrieved list and the highest retrieval pre-
cision within top 10 retrieved list on Mirflickr 25K and MS COCO dataset. (2)
The conventional cross-modal retrieval approaches exploiting deep feature can
achieve better performance than the identical approaches exploiting hand-crafted
feature. For example, for the use of image to retrieve voice, CNN+SPEC can
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Table 2. The comparison of experimental results in our proposed V2CMH method
and other methods on Mirflickr 25K and MS COCO dataset

Task Method Mirflickr 25K MS COCO

mAP P@1 P@5 P@10 MAP P@1 P@5 P@10

V → I SIFT+M 40.71 51.78 50.36 48.57 24.88 32.14 27.13 26.81

DBLP [5] 45.76 52.18 51.61 50.49 25.04 33.76 32.54 28.26

CNN+SPEC [1] 51.24 57.66 56.37 54.21 25.41 34.23 32.33 29.79

DVAN [19] 54.26 63.28 60.45 59.03 28.32 38.23 35.57 29.90

V2CMH 57.96 67.07 66.24 65.42 31.78 41.34 40.26 38.84

I → V SIFT+M 43.64 54.20 52.19 51.56 24.98 32.87 28.09 27.37

DBLP [5] 48.67 58.46 57.52 55.83 26.23 35.34 34.51 30.48

CNN+SPEC [1] 52.37 61.81 60.92 59.48 27.77 36.61 34.93 31.24

DVAN [19] 57.35 67.26 66.96 64.56 28.45 39.12 36.69 32.10

V2CMH 64.87 72.28 71.54 70.79 32.06 41.89 40.81 39.56

improve the mAP result on Mirflickr 25K dataset to 52.37% from 43.64% imple-
mented by SIFT+M, For the use of voice to retrieve image, CNN+SPEC can
improve the MAP result on Mirflickr 25K dataset to 51.24% from 40.71% imple-
mented by SIFT+M, which demonstrates that deep feature can improve conven-
tional hand-crafted features’ performance. (3) For the use of image to retrieve
voice on MS COCO dataset, the proposed V2CMH method can improve the
mAP result from SIFT+M (24.88%), DBLP (25.04%), CNN+SPEC (25.41%),
DVAN (28.32%) to 31.78%. Furthermore, for the use of voice to retrieve image
on MS COCO dataset, the proposed V2CMH method can improve the average
mAP result from SIFT+M (24.98%), DBLP (26.23%), CNN+SPEC (27.77%),
DVAN (28.45%) to 32.06%. This is because V2CMH does not only learn binary
representation by exploiting deep feature similarity learning, but also leverage
the regularized constraint to enhance binary representation learning.

Figure 2(a) shows the retrieval precision within different number of top
returned samples for using images to retrieve voices with 64 bits on Mirflickr
25K dataset. Figure 2(b) presents the retrieval precision within different number
of top returned samples for using voices to retrieve images with 64 bits on Mir-
flickr 25K dataset. Figure 3(a) illustrates the retrieval precision within different
number of top returned samples for using images to retrieve voices with 64 bits
on MS COCO dataset. Figure 3(b) reflects the retrieval precision within different
number of top returned samples for using voices to retrieve images with 64 bits
on MS COCO dataset. The results of these four figures further demonstrate the
effectiveness of the proposed method.

5 Conclusion

In this paper, we propose a novel cross-modal retrieval method, which can lever-
age hash codes to implement retrieval for voice and image. The proposed method
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develop a deep feature similarity idea to establish semantic relationship between
voices and images. Furthermore, we design a novel regularized constraint to
reduce the information loss of binary codes generation. Extensive experiments
demonstrate that the combine of deep feature similarity can achieve better search
precision than other state-of-the-art cross-modal retrieval algorithms.
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Abstract. Weakly-supervised temporal action localization aims to pre-
dict when and what actions occur in untrimmed videos with only video-
level class labels. Most current methods make prediction based on global
features, while ignoring the classification performance of local descrip-
tions of human body. Additionally, these methods generate incomplete
proposals via thresholding, which is too single and crude. To acquire
high-quality proposals, we focus on incorporating local information, i.e.
human body poses in videos, and propose a noval method called Class
Activation and Pose Pattern (CAPP) for weakly-supervised temporal
action localization. In our method, action proposals are generated by
two modules: a Class Activation Sequence (CAS) module and a Pose
Pattern Sequence (PPS) module. The CAS module fuses global features
and local features to improve clip-level classification performance and the
PPS module adds complementary proposals with high recall via pose pat-
tern clustering. CAPP outperforms the state-of-the-art methods on both
the THUMOS-14 and ActivityNet v1.2 datasets, which demonstrates the
effectiveness of our method.

Keywords: Temporal action localization · Weakly supervised · Pose
estimation

1 Introduction

Temporal Action Localization (TAL) [6,15,24] in untrimmed videos has achieved
great progress in the past several years, which is considered as a fully-supervised
problem with both class category annotations and temporal interval annotations.
However, it is expensive and time-consuming to manually annotate the tempo-
ral boundaries of actions. In addition, different from video-level labels, temporal
annotations are more subjective. For example, different people have different
views on the start and end time when labeling the same action instance. Thus,
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Fig. 1. This figure presents how to utilize pose infromation for weakly-supervised TAL.
(a) Add into the network to improve clip level classification. (b) Generate more com-
plete proposals by joint points and pose features.

weakly-supervised TAL methods [13,14,17,20] have been proposed to address
these problems, which localize actions with only video-level labels available dur-
ing training.

Most existing methods of weakly-supervised TAL focus on firstly generating
good Class Activation Sequence (CAS) [13,20,25] with global features, and then
producing proposals by thresholding on CAS. In these methods, they resort the
loss function, such as Outer-Inner-Contrastive (OIC) loss in AutoLoc [17], to
improve the video-level classification performance. However, what we need is
the classification result of proposals. Detection performance is not only affected
by the proposal-level classification, but also affected by the Intersection-over-
Union (IoU) of proposals, which can also be regarded as the recall of proposals.
The limitations of current methods are reflected in two aspects: (1) Global video
features are used to describe scene information for clip-level classification while
the action itself is usually ignored, which degrades the detection performance.
(2) These methods only set the threshold on CAS to generate proposals, which
is simple and unilateral, thus leading to low recall.

To tackle these problems, we try to exploit more information from local
regions in the video frames, and propose to use human pose information. Many
pose estimation methods [2,10,11] have achieved good performance as they can
generate real-time and accuracy human pose joints. However, the high accuracy
depends on high resolution frames so that the estimated pose joints in videos are
not precise enough. On the other hand, it is still difficult to convert pose joint
points into pose features [4,19,23] for classification and the classification perfor-
mance is much lower than two-stream or C3D features. So we use pose pattern
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sequence as a complementary module to improve the classification performance
of video clips as well as the recall of proposals.

In this paper, we propose a novel method called Class Activation and Pose
Pattern (CAPP) for weakly-supervised temporal action localization, which con-
sists of a Class Activation Sequence (CAS) module and a Pose Pattern Sequence
(PPS) module. The CAS module fuses global features and local pose features
for prediction, and connects the predicted class activation scores in temporal
order as CAS. Then we set threshold on CAS to generate proposals, which are
named as threshold-based proposals. In the CAS module, pose features improve
the recall of threshold-based proposals by boosting the clip-level classification
performance, as shown in Fig. 1(a). However, the threshold-based proposals can
still not cover large region of action instances. Thus, we take full advantage of
human pose joints and design the PPS module to generate high-recall propos-
als. As shown in Fig. 1(b), we use two selection strategies to remove background
frames and segments. In the first selection, we remove frames by the number
of human pose joints and compose the remained frames as candidate segments.
In the second selection, we consider that poses would change obviously with
the human movement. So we cluster the pose features to distinguish between
action segments and non-action segments, where the action segments are named
as pose-based proposals. Finally, we perform Non-Maximum Suppression(NMS)
[12] to combine threshold-based proposals and pose-based proposals for tempo-
rally localizing actions.

In summary, the main contributions of this paper are:
(1) We propose exploiting human body poses for weakly-supervised temporal

action localization. The estimated poses are newly applied in both proposal
generation and feature representation.

(2) We propose a novel method (CAPP), which fuses global features and
local features to improve clip-level classification performance and puts forward
a clustering method with human pose information to generate high recall pro-
posals.

(3) Our method outperforms the state-of-the-art methods on two challenging
datasets, which demonstrate the superiority of our method on exploiting body
pose for weakly-supervised temporal action localization.

2 Related Work

Weakly-Supervised Temporal Action Localization. It is essential to
develop weakly-supervised TAL models since video label annotation is more
easily collected than temporal instance annotation. Wang et al. [20] proposed
a framework called UntrimmedNet, consisting of a classification module to per-
form action classification and a selection module to detect important temporal
segments. Nguyen et al. [13] designed a network to identify a sparse subset of key
segments associated with target action in a video by an attention module and
fuse the key segments through adaptive temporal pooling. Shou et al. [17] pro-
posed a novel Outer-Inner-Contrastive loss to automatically discover the needed
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segment-level supervision for training a boundary predictor. Paul et al. [14] pre-
sented W-TALC with two complimentary loss functions: a Multiple Instance
Learning Loss and a Co-Activity Simialrity Loss.

Pose Estimation and Pose-Based Recognition. In recent years, studies
in pose estimation have achieved great achievements and many pose estima-
tion methods can generate accuracy human pose joints in real-time speed. Some
methods [5][11] adopt the top-down framework. This framework firstly detects
human bounding boxes and then applies single person pose estimation on each
bounding box. Li et al. [11] proposed joint-candidate SPPE and a global maxi-
mum joints association algorithm to estimate poses in crowd scene. On the other
hand, bottom-up methods [2,10] detect human pose joints firstly, and then asso-
ciate detected joints into persons. Kocabas et al. [10] proposed pose residual
network to group detected joints in a single shot by considering all the joints
together. There have been many pose-based action recognition methods. These
methods can be divided into two categories: joint-based methods [19,23] and
heatmap-based methods [4]. Joint-based methods extract pose features from
pose joints. Yan et al. [23] proposed ST-GCN to use spatial temporal graph
convolutional network to automatically extract spatial configuration and tem-
poral dynamics of joints. Heatmap-based methods extract pose features from
pose heatmaps which represents the probability of being joints. Choutas et al.
[4] proposed colored heatmap to better model the temporal dynamics of human
pose.

3 Method

In this section we walk through the pipeline of CAPP, which is illustrated in
Fig. 2. The PPS module and the CAS module are introduced in Sects. 3.2 and
3.3, respectively.

Problem Statement. Given a training set of Nv videos V = {vi}Nv
i=1, each

video can be described with a frame sequence X = {xi}Nx
i=1, where Nx is the

frame number. Each video has an action label set A = {ai}Na
i=1, Na ≥ 1 and we

train models only with the label set A. We also define the set of all the action
categories as S = {aj}NS

j=1, in which NS is the number of total categories. During

test time, given a test video, we need to predict a set Φ = {φ = (si, ei, ci, pi)}Nφ

i=1,
where Nφ is the number of predicted proposals. si and ei are the start time and
end time of the ith proposal, respectively. ci represents the predicted category
and pi represents the confidence score.

3.1 Feature Extraction

The input of the PPS module is a frame sequence X, and then for each frame we
use the CrowdPose network [11] to estimate human poses and obtain a set P =
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Fig. 2. Method Overview. Our proposed method CAPP contains the PPS module and
the CAS module. In the PPS module, we use first selection on pose sequences and
generate segments with joints number filtering. Then we use the second selection on
segments to remove non-action segments by pose pattern clustering method. In the
CAS module, the frame sequence of an input video would be divided as clips, which
are used to extract global features and local fetures. Then these features will be fed
into our network to generate CAS and predict action class label.

{pτ}Nx
τ=1, with pτ = {(xj

i , y
j
i , s

j
i )|i = 1, ..., Np, j = 1, ..., Nj}, where (xj

i , y
j
i , s

j
i )

represents the pose position and confidence score in the τ -th frame, Np represents
the number of persons and Nj represents the number of joints on one person.
Then the pose set P is divided into clips and clips are fed into the ST-GCN
network [23] to extract pose features. With the interval σ, the pose sequence P
can be divided into non-overlap clips with the total clip number Nc = Nx/σ.
The features are denoted as FPPS = {fi}Nc

i=1, where fi ∈ R256×1.
The input of the CAS module is a clip sequence with the total clip num-

ber Nc = Nx/σ, which is also generated from the frame sequence X. We use
the CrowdPose network and the ST-GCN network to extract local features
fpose ∈ R256×1. For global features, we use the I3D network [3] pre-trained
on the Kinetics dataset [9] to extract two stream features: fRGB ∈ R1024×1 and
fflow ∈ R1024×1. We concatenate global features and local features as the final
video encoding, denoted as FCAS = {fi}Nc

i=1, where fi = [fRGB ; fflow; fpose].

3.2 Pose Pattern Sequence Module

The goal of the PPS module is to propose a noval way for generating action
proposals. So we design two selection strategies to select segments which may
contain actions.

The First Selection. The first selection utilizes the number of human pose
joints. The pose frame pτ with the human pose joint number Jτ less than thresh-
old θ will be viewed as a background frame. For each untrimmed video X with
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Nx frames, we first use the Crowdpose network to extract human pose joints,
pτ = {(xj

i , y
j
i , s

j
i )|τ = 1, .., Nx, i = 1, ..., Np, j = 1, ..., Nj}, where (xj

i , y
j
i , s

j
i ) rep-

resents the position and confidence score of the jth joint of the ith person in the
τ th frame. The total joint number Jτ in the τ th frame is computed as follows:

Jτ =
Np∑

i=1

Nj∑

j=1

step(sj
i , 0.05) (1)

where step(·) represents a step function with threshold 0.05. The remaining
continuous frames are integrated into segments, denoted as the set Φfirst =
{φi = (si, ei)}Nfirst

i=1 , where si and ei represent the start time and end time of
the ith proposal, respectively.

The Second Selection. In the second selection, based on the characteristic
that poses can convey syntax information in a long duration, we suppose that the
poses in non-action segments will not change apparently, while poses in action
segments will show the apparent trend of change. Then we divide segments
into two categories using a clustering method which is named Pose Pattern
Clustering, and segments that may contain actions are regarded as proposals.

For each segment in the set Φfirst, we extract the corresponding pose features
from FPPS , denoted as Fφ = {fi}Nf

i=1, where Nf means the number of clip
features in the segment φ. We compute the distance of clip features as dt =
cos(f1, ft). So the segment can be represented as D = {dt}Nf

t=1. And for each
video, Φfirst = {φi = (si, ei,Di)}Nfirst

i=1 .
As for different segments, Nf is also different, which needs to be scaled

for clustering. So we apply linearly interpolation to D, sampling the distance
sequence with 16 points, denoted as D′ ∈ R16. We name D′ as Pose Pattern.
Then for all the video sets, we apply clustering to divide segments into two cat-
egories according to the results of clustering and denote the segment set that
contains actions as pose-based proposals ΦPPS = {φi = (si, ei)}NP P S

i=1 .

3.3 Class Activation Sequence Module

The CAS module fuses global features and local features to generate class acti-
vation sequences, and then sets threshold on it to generate proposals.

Prediction and Localization. The two-stream features and pose features are
fused for clip-level prediction in weakly-supervised layers and prediction scores
are connected in temporal order, then CAS is set with a threshold to generate
proposals. Concretely, for each video X, we get its feature set FCAS = {fi}Nc

i=1,
where fi = [fRGB ; fflow; fpose] ∈ R2304×1. Then these features are passed into
a weakly-supervised network as follows:

X = D(Relu(Wfc1[fRGB ; fflow; fpose]T
⊕

bfc1), kdp). (2)
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where D represents dropout layer with the dropout rate of kdp. Wfc1∈R2304×2304

and bfc1∈R2304×1 are parameters to be learned in the first fully-connected layer.⊕
represents the element-wise addition operation. X is the fused feature map,

and is passed into the second fully-connected layer to compute the class activa-
tion score o∈RNS×1 where NS is the number of categories:

o = Wfc2X
⊕

bfc2. (3)

where Wfc2∈RNS×2304 and bfc2∈RNS×1 are parameters to be learned. The
sequence of class activation score o can also be called as class activation sequence
O = {oi}Nc

i=1, which will be used for classification and localization.
To classify the whole untrimmed video X, we select k-max clip-level class

activation scores to compute the video-level scores S. The value of k is pro-
portional to video clip length Nc, and computed as follows: k = max(1,

⌊
Nc

p

⌋
),

where p is proportional coefficient. We denote the indexes of k-max-scored clips
as ID = {idi,c|i∈1, ..., k, c = 1, ..., NS}, then the video-level score Sc for class c

is computed as follows: Sc = 1
k

∑k
i=1 oidi,c

. Finally, the class prediction of the
whole untrimmed video is defined by {c|Sc > η}NS

c=1, which indicates that classes
whose scores Sc more than threshold η are predicted.

To generate proposals, we set a threshold μ on the class activation sequence,
and the continuous clips whose scores are more than μ are connected as propos-
als. The proposal set ΦCAS = {φi = (si, ei, ci, pi)}NCAS

i=1 need to be predicted,
where NCAS is the number of proposals. si and ei are the start time and end
time of ith proposal, respectively. ci and pi are class label and confidence score
of the proposal, respectively.

Loss Function. We use the general Multi Instance Learning (MIL) loss [26] in
weakly-supervised object localization and the CAS loss proposed in WTALC
[14]. MIL loss is the cross-entropy summation of predicted class score with
ground-truth:

LMIL =
1

Nv

Nv∑

i=1

NS∑

j=1

−yi,j log(pi,j) (4)

where yi,j = [y1
i , ..., yNS

i ]T is the normalized ground-truth vector, and pi,j is the
softmaxed video-level class activation scores.

The CAS loss is designed to make non-action and action features far from
each other, as well as action features of the same class similar to each other.
Given two videos xm and xn of the class c, the loss is computed by:

Lmn
c =

1
2
{max(0, d[fH

m,c, f
H
n,c] − d[fH

m,c, f
L
n,c] + δ)

+ max(0, d[fH
m,c, f

H
n,c] − d[fL

m,c, f
H
n,c] + δ)}.

(5)

where fH
m,c, f

L
m,c∈R2304×1 represents the high and low attention weights of video

xm for category c, d[·, ·] is the degree of similarity between two features, δ is
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the margin parameter. Then the total loss for the entire training set can be
represented as follows:

LCAS =
1

NS

NS∑

c=1

1
(|Sc|

2

)
∑

xm,xn∈Sc

Lmn
c (6)

where Sc is the training subset which contains all videos with label c. The final
loss function which is used to learn the weight of the weakly-supervised layer
can be represented as follows:

L = (1 − λ)LMIL + λLCAS + α ‖W‖2 (7)

where W represents the weight of the weakly-supervised layers Wfc1 and Wfc2.

3.4 Post Processing

After the PPS module and the CAS module, we can get the set ΦPPS and ΦCAS ,
while in the ΦPPS , φ lacks a class category and a proposal confidence. Since in
the CAS module, each video has a video score Sc. If Sc > η, we set the same
label for φ in the PPS module.

Score Fusion for Retrieving. To achieve better retrieving performance, for
each candidate proposal φ = (s, e, c), we fuse its class activation score with its
video-level score to get the final confidence score p:

p = max(O(s,e)
c ) + υ × Sc (8)

where O
(s,e)
c means the cth class sequence duration from s to e and Sc represents

the video-level score for the class c.

Redundant Proposals Suppression. Since our final proposals is composed
by ΦPPS and ΦCAS , we need to suppress redundant proposals to obtain higher
recall with fewer proposals. We use non-maximum suppression (NMS) [12] algo-
rithm which suppresses redundant results. For each proposal φa in ΦPPS , if its
Intersection-over-Union (IoU) with φb in ΦCAS is higher than 0.5, we will remove
φb from ΦCAS and add φa in it. After suppression, we get the final proposal set
Φ = ΦCAS = {φi = (si, ei, ci, pi)}Nφ

i=1.

4 Experiment

In this section, we experimentally evaluate the proposed method CAPP on two
datasets. Firstly we introduce the datasets and metrics in the experiments, then
we will give the implementation details and the quantitative results. Following
conventions, we use mean Average Precision (mAP) to evaluate the accuracy
of video-level classification and weakly detection result. The proposal will be
regraded as a correct action instance when it (1) has a high IoU with groundtruth
which is more than a preset threshold, and (2) has the same label as ground-
truth.
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Table 1. Study of effectiveness of parts in CAPP on THUMOS-14 dataset, where the
results are reported with mAP with IoU from 0.1 to 0.5.

Method 0.1 0.2 0.3 0.4 0.5

CAS-no pose 55.2 49.6 40.1 31.1 22.8

CAS-pose 57.4 52.7 43.1 33.4 23.8

CAS-pose + PPS 56.5 51.5 42.3 33.5 26.3

4.1 Dataset

THUMOS-14. [8] The temporal action localization task in the THUMOS-14
dataset contains 20 classes. 200 untrimmed videos with video class labels in the
validation set are used for training, and 213 untrimmed videos with video class
labels in the test set are used for testing. Each video contains at least one action
and no more than three classes.

ActivityNet V1.2. [1] The ActivityNet v1.2 dataset contains totally 100 activ-
ity classes, 4819 videos in the training set, 2383 videos in the validation set, and
2480 videos in the test set. As in literature, we use the training set for training
and the validation set for testing.

4.2 Implementation Details

The I3D features and ST-GCN features are extracted by the released source code.
The I3D network is not finetuned and the ST-GCN network is finetuned with 20
class videos of the UCF101 dataset [18]. The weights of the weakly supervised
layers are initialized by Xavier method [7]. Our network is trained on a single
nvidia GPU using pytorch. On the THUMOS-14 dataset, we use I3D features
provided by [14]. On the ActivityNet v1.2 dataset, we extract TSN features by
ourselves. When extracting features, we set σ = 8 in the PPS module and σ = 16
in the CAS module. In the PPS module, we set θ = 9 for differentiating action
frames and background frames. For generating set Φfirst, we set inteval as 8 just
like σ and at least 24 frames to be a segment. For clustering, we use K-Means
algorithm which is implemented by sklearn. In the CAS module, we set p = 8 and
η = 0. In the loss function, we set δ = 0.5, λ = 0.5, and α = 5×10−4. For the class
activation sequence O = {oi}Nc

i=1, we set μ = max(O)− (max(O)−min(O)×0.5.
When fusing score, we set υ = 0.7.

4.3 Ablation Study

To evaluate the effectiveness of each part in the PPS module and the CAS
module, we demonstrate experiment results by combining each part in Table 1.
We can see that “CAS-pose” performs much better than “CAS-no pose” as local
information really works by improving the clip level classification with the same
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Table 2. Video level classification performance comparisons on THUMOS-14 dataset.

Supervision Method mAP

Full TSN [21] 67.7

Weak UntrimmedNets [20] 74.2

Weak W-TALC [14] 85.6

Weak Ours 96.2

Table 3. Detection performance comparisons on THUMOS-14 dataset with state-of-
the-art methods, where the results are reported with mAP with IoU from 0.1 to 0.5.

Supervision Method 0.1 0.2 0.3 0.4 0.5

Full CDC [16] - - 40.1 29.4 23.3

R-C3D [22] 54.5 51.5 44.8 35.6 28.9

SSN [24] 60.3 56.2 50.6 40.8 29.1

Weak UntrimmedNets [20] 44.4 37.7 28.2 21.1 13.7

Step-by-step [25] 45.8 39.0 31.1 22.5 15.9

STPN [13] 52.0 44.7 35.5 25.8 16.9

AutoLoc [17] - - 35.8 29.0 21.2

W-TALC [14] 55.2 49.6 40.1 31.1 22.8

Ours 56.5 51.5 42.3 33.5 26.3

threshold on the sequence. While by adding the PPS module, it significantly
improves from 23.8 to 26.3 when IoU is 0.5 as we consider that the proposal
generated by the PPS module has more recall region than the CAS module. The
PPS module can generate more complete proposals. But the results drop down
when IoU is 0.1, 0.2 and 0.3, and the possible reason is that the retrieving order
has changed after adding the pose-based proposals.

We also perform our framework on the activity classification and present
the result on the THUMOS-14 dataset in Table 2. We use only videos from the
THUMOS-14 validation set for training and test set for testing. From Table 2, we
can see that our method performs significantly better than other state-of-the-art
approaches.

4.4 Comparison with the State-of-the-Art Methods

We compare our method with the state-of-the-art methods under both full and
weak supervision on the THUMOS-14 and ActivityNet v1.2 datasets, shown in
Tables 3 and 4 respectively. Our framework performs much better than other
weakly-supervised methods and achieves comparable results compared with
fully-supervised methods.
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Table 4. Detection performance comparisons on ActivityNet v1.2 dataset with state-
of-the-art methods, where the results are reported with mAP when IoU is 0.5, 0.75 and
0.95. The last column Avg. indicates the average mAP for IoU thresholds 0.5:0.05:0.95.

Method 0.5 0.75 0.95 Avg

UntrimmedNets [20] 7.4 3.2 0.7 3.6

Step-by-step [25] 27.3 14.7 2.9 15.6

AutoLoc [17] 27.3 15.1 3.3 16.0

Ours 28.9 16.0 3.6 16.8

5 Conclusion

In this paper, we present a noval approach for weakly-supervised temporal action
localization. We utilize local information to improve the clip level classification
performance, and exploit pose estimation and Pose Pattern Clustering to gener-
ate more complete proposals. Experiments on two challenging datasets demon-
strate that our method achieves the state-of-the-art results.
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Abstract. Fabric defect detection plays an important role in automated
inspection and quality control in textile manufacturing. As the textures
and defects in fabric images have complexity and diversity, the tradi-
tional detection methods show a poor adaptability and low detection
accuracy. Low-rank decomposition model that can be used to separate
the image into object and background have proven applicable in fabric
defect detection. However, how to represent texture feature of the fab-
ric image more effectively is still problematic in this kind of method.
Also, in traditional Low-rank decomposition model, we tend to seek the
convex surrogate to resolve this model. However, this results in low accu-
racy and more noises in sparse part. In this paper, a novel fabric defect
detection method based on combination of deep global feature and hand-
crafted local features and NTV-NRPCA is proposed. In this method,
image representation ability is well enhanced through fusing the global
deep feature extracted by a convolutional neural network and the hand-
crafted low-level feature masterly. Then, the non-convex total variation
regularized non-convex RPCA (NTV-NRPCA) is proposed in which non-
convex solution is more approximate to the real solution and non-convex
total variation constraint significantly reduces the noises in sparse part.
Finally, the defect region is located by segmenting the saliency map gen-
erated by the sparse matrix via a threshold segmentation algorithm.
The experimental results show that the proposed method improves the
adaptability and detection accuracy comparing to the state-of-the-art.

Keywords: Fabric defect detection · Deep-handcrafted feature ·
RPCA · Total variation · Non-convex

1 Introduction

Fabric defect detection plays an essential role in the process of textile manufac-
turing, which determines the textiles quality. Currently, fabric defect detection
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is conducted visually by human workers in most of the production lines, which
results in a low detection rate and is easily influenced by subjective factors of
workers. Machine-vision based fabric defect detection can provide objective, sta-
ble, reliable performance, and thus has become a research focus. An expectation
is that such automated system can deal with different kinds of fabric textures,
from the unpatterned fabric images (plain or twill fabrics, as shown in Fig. 1(a))
to patterned fabric images (star-, box-, and dot-patterned fabrics, as shown in
Fig. 1(b–d)).

Fig. 1. Fabric images: (a) unpatterned fabric. (b) box-patterned fabric. (c) star-
patterned fabric. (d) dot-patterned fabric.

Most existing defect detection methods focus on simple plain or twill fab-
rics, which can be classified into four categories: statistical-based methods [1],
frequency analysis-based methods [2], model-based methods [3], and dictionary
learning-based methods [4]. These defect detection methods achieve high detec-
tion accuracy for the plain and twill fabrics. However, because of the complexity
and sophisticated design on patterned fabrics, these proposed methods cannot be
extended to detect the patterned fabric defects. Currently, some studies had been
conducted on the defect detection for the patterned fabric images, such as motif-
based method [5], wavelet-based methods [6], image decomposition method [7],
and Elo rating method [8]. However, the above patterned fabric defect detection
methods still adopt traditional handcrafted feature descriptor to characterize the
fabric images, which cannot efficiently characterize the fabric texture. In addi-
tion, these methods adopt template matching technology to localize the defect,
detection accuracy depends on precise alignment and a suitable template.

Robust principal component analysis (RPCA), also known as low-rank
decomposition model, can divide the image into object and background, have
been applied into object detection, image segmentation [9]. For the fabric images,
the non-defective background which is macro-homogeneous and highly redun-
dant can be treated as low-rank subspace, defective area which is small and
deviates from this subspace can be treated as sparse part, so the low-rank
decomposition model is suitable for the fabric defect detection. Some researchers
had noticed the superiority of this model in defect detection, a series of related
approaches have been proposed and obtain some results [10]. However, consid-
ering the case where the test images are contaminated by various noises, among
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them including Gaussian noise or impulse noise which are also sparse, such sparse
noise may be separated into the saliency defect part by low-rank decomposition
model. Meanwhile, such RPCA based methods are mainly convex optimization,
the solution of them can seriously deviate from the original solution. There is
still a long way to go before in the research of defect detection method based on
RPCA.

In addition, the performance of the detection method based on RPCA not
only depends on construction and solution of the model, but also relies on effec-
tive representation of the fabric image. The reason lies in that the effective
descriptor can make the background part in a lower dimensional feature sub-
space, and make the sparse defect farther away from the subspace. In recent
years, Convolutional Neural Networks (CNNs) have achieved many successes
in visual recognition field. It had been proved that features extracted by using
CNNs are highly versatile and often more effective than traditional handcrafted
features [11]. Meanwhile, Li et al. [12] asserted that high-level deep feature is
complementary to handcrafted low-level feature. Inspired by this, in our work,
we will seek to combine the advantages of both deep features and hand-crafted
features.

Building on the above analysis, we mainly focus on the improvements of the
image representation and RPCA model. Therefore, a Fabric defect detection
based on deep-handcrafted feature and non-convex total variation regularized
non-convex RPCA (NTV-NRPCA) is proposed in this paper.

The contributions of this paper can be summarized as two folds:
1. A novel fabric image representation method is proposed which can deal

with the complex and diverse fabric texture through fusing the high-level deep
feature and the low-level handcrafted feature masterly

2. The non-convex total variation regularized non-convex RPCA can not only
effectively detect the defect saliency map with less noise, but also improve the
solution accuracy.

The remainder of this paper is organized as follows: Sect. 2 presents the
specific procedures of the proposed method including the details about deep-
handcrafted feature and NTV-NRPCA. In Sect. 3, comprehensively experiments
are shown to evaluate the performance of our method in comparison of other
state-in-the-art methods. Section 4 summarizes the whole research.

2 Proposed Method

In this paper, a novel fabric defect detection method based on deep-handcrafted
feature and NTV-NRPCA is proposed. Firstly, the deep information extracted
by a convolutional neural network and some handcrafted low-level contrast infor-
mation are fused to improve the image representation ability. Then, non-convex
total variation regularized non-convex RPCA is constructed, which can not only
effectively detect the defect saliency map with less noise, but also further improve
the solution accuracy. Finally, the defect region is located by segmenting the
saliency map generated by the sparse matrix via a threshold segmentation algo-
rithm. The process can be shown in Fig. 2.
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Fig. 2. The flow chart of the proposed method.

2.1 Deep-Handcrafted Feature Extraction

It is well known that an effective feature extractor that can transform the raw
images into a suitable internal representation is extremely important and nec-
essary for constructing a pattern recognition or machine learning system. For
decade, convolutional neural networks (CNNs) had led to a large volume of aston-
ishing breakthroughs for image classification, location and detection. Actually,
CNNs can be deemed to a transferability feature extractor that can automat-
ically learn representative features via a layer-to-layer successive propagation
pipeline, the most important is that we do not have to design complicated hand-
crafted features descriptors which usually depend on knowledge of designer and
application scenarios to a great extent. While CNNs are originally inspired by
biological neural network, it is a natural choice to build a feature extractor for
visual saliency. So, deep features, extracted by CNNs, had been supposed to
have a stronger versatility and portability than traditional handcrafted features.
Inspired by this, the feature extraction based on CNNs will be performed in this
paper.

Unfortunately, there is no public fabric defect datasets that have enough
labeled images to support training a new network yet, we only possess a fraction
of an unopened datasets. One way to alleviate this problem is transferring a
model pretrained over the ImageNet dataset. Since ImageNet contains images
of a large number of object categories, extracted features contain rich and dis-
tinguishable information. Therefore, we will adopt DenseNet201 [13] as the pre-
trained model to extract deep features from the input fabric images, because
there is a direct connection between any convolutional layer of this network,
termed as dense connection. In the adopted network, the feature maps learned
by this convolutional layer will be transmitted to all subsequent convolutional
layers as input, such structure can realize feature reuse i.e. multiple convolution
layer information fusion, that is of great importance to fabric defect detection.

Recognition algorithms based on CNN typically use the output of the last
layer as a feature representation. However, the information in this layer is the
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most sensitive to category-level semantic information and may be too coarse
spatially to allow precise localization. This is because multiple levels of convo-
lutional and pooling layers blur the object boundaries. When the task we are
interested in is finer-grained, the top layer is not the optimal representation. So
feature extracted by the first convolutional layer of DenseNet201 will be consid-
ered as the deep feature. Considering the feature map inconsistency caused by
convolution and pooling operations, such deep feature maps will be resized to
the same size of the input images.

Li et al. [12] proposed that deep features contain sufficient high-level seman-
tic information, but low-level contrast information is insufficient, and it is worth
noting that deep high-level features and handcrafted low-level features are com-
plementary. There is no need for too much semantic information in fabric defect
detection, we also find the deep-handcrafted hybrid feature could obtain an
enhanced result by adding some simple low-level feature in practice. Although
low-level features has been obtained by extracting the shallowest convolutional
layer in this paper, the extracted low-level features are still relatively insufficient,
because the kernel size and stride of initial convolution layer is relatively large
in DenseNet201.

Therefore, some handcrafted low-level features including edge and texture
information will be extracted as the compensation of deep high-level features.
The handcrafted low-level features of fabric images are shown in Table 1. For
the edge information, an 18 bin edge direction histogram was used to describe
the edges distribution in the image. For the texture information, ten different
sub-bands was obtained by computing the three level wavelet transform, then
the average absolute value of the coefficients and their standard deviation was
computed for each band.

Table 1. Handcrafted low-level features of fabric images.

Edge information Edge direction values: histogram

Texture information Coeff. of wavelet transform: mean

Coeff. of wavelet transform: standard deviation

Then the deep-handcrafted hybrid feature maps are decomposed into small
square regions. For each segment Ri, the mean of feature vectors fi within this
segment is treated as the feature of this segment. Finally they will be stacked to
form the deep-handcrafted features of this image.

F = [f1, f2, ..., fi] (1)

2.2 Model Construction

Based on the fact that fabric is woven by warp and weft in a particular way,
and the defect breaks this regularity, so the background of a fabric image always
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can be considered as a highly redundant part which lies in a low dimensional
subspace, while the defect is different from the background and usually occu-
pies a relatively small size which implies sparse. Due to the characteristics of
background and defects in fabric images, the RPCA could be good at dealing
with fabric defect detection, it can be realized through minimizing the following
problem:

min
L,S

‖L‖∗ + γ ‖S‖1 s.t. F = L + S (2)

where F is the aforementioned deep-handcrafted feature matrix, L is a low-rank
matrix representing the background, S is a sparse matrix indicating the defective
object, γ is used to balance the effect of the two items.

However, fabric images are easily contaminated by noise derived from camera
sensors and background clutters. At this moment, if we just leverage previous
RPCA (2) for saliency inference, defect and sparse noise including Gaussian
noise or impulse noise are easily separated into matrix S simultaneously for
the reason that they both have the sparse property. Hence, it is meaningful to
establish an efficient model to suppress noise in saliency map. A prior knowledge
is that the noise in the image is always tiny and can be regarded as pixel-
wise discontinuous changes, while the defect is an aggregation of multiple pixels
and occupied a fraction of the fabric image. Due to superior performance on
suppressing pixel-wise discontinuous changes, preserving the edge information
and spatially promoting piece-wise smoothness, total variation regularization
[14] is integrated into RPCA to denoising. Such a unit framework, termed as the
total variation regularized robust principal component analysis (TV-RPCA), can
be formulized via

min
L,S

‖L‖∗ + γ ‖S‖1 + β ‖S‖TV s.t. F = L + S (3)

Where ‖�‖TV is total variation regularization (TV-norm) including anisotropic
case and isotropic case, β is a weighting parameter whose role is identical to γ.

However, the above model (3) belongs to a convex optimization problem. The
common drawback deriving from such convex relaxation may make the solution
seriously deviate from the original solution. Along with the development of non-
convex regularization, non-convex optimization had been proved to result in a
more accurate estimation. Inspired by this, we will introduce non-convex TV reg-
ularization into non-convex RPCA model, termed as the non-convex total vari-
ation regularized non-convex RPCA (NTV-NRPCA), it can be realized through
minimizing the following problem:

min
L,S

‖L‖pw,Sp
+ γ ‖S‖1 + β ‖S‖NTV s.t. F = L + S (4)

where ‖L‖w,Sp
=

(
min(m,n)∑

i=1

wiσ
p
i

)1/p

presents a non-convex relaxation of

rank(·) based on Schatten p norm [15] and weighted nuclear norm [16]. ‖S‖NTV

denotes a non-convex TV regularizations based on the Moreau envelop and
minimax-concave penalty [17].
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Algorithm 1 Solving NTV-NRPCA by ADMM
Input: Deep-handcrafted featuresx F ; parameter γ > 0, β > 0;
Initialize: L0 = S0 = J0 = 0,Y 0

1 = F/max(‖F‖2, γ
−1‖F‖∞) ,Y 0

2 = 0,μ0 =
1.25/‖F‖2 ,μmax = μ0107,ρ = 1.5,k = 0,tol = 3e − 4
while not converged do

1. Fix the others and update L by

arg min
L

ξ
(
L, Sk, Jk, Y k

1 , Y k
2 , μk

)

= arg min
L

1
μ

‖L‖p
w,Sp

+ 1
2

∥
∥∥L − (F − Sk +

Y k
1

μk )
∥
∥∥
2

F

such subproblem can be solved by Generalized Soft-thresholding (GST) in [18].
2. Fix the others and update S by

arg min
S

ξ
(
Lk+1, S, Jk, Y k

1 , Y k
2 , μk

)

= arg min
S

γ
2μ

‖S‖1 + 1
2

∥
∥∥S − 1

2
(Jk + F − Lk+1 + (Y k

1 − Y k
2 )

/
μ)

∥
∥∥
2

F

such subproblem can be solved by Singular Value Thresholding (SVT) in [19].
3. Fix the others and update J by

arg min
J

ξ
(
Lk+1, Sk+1, J, Y k

1 , Y k
2 , μk

)

= arg min
J

β
μk ‖J‖NTV + 1

2

∥
∥
∥J − (Sk+1 +

Y k
2

μk )
∥
∥
∥
2

F

such subproblem can be solved by Forward-Backward splitting (FBS) in [20].
4. Update the Lagrange multipliers Y1, Y2 and penalty parameter μ by

Y1
k+1 = Y1

k + μk(F − Lk+1 − Sk+1)
Y2

k+1 = Y2
k + μk(Sk+1 − Jk+1)

μk+1 = min(μmax, ρμk)

5. Check the stop condition:
∥
∥F − Lk+1 − Sk+1

∥
∥

F

/
‖F‖F

< tol

6. k = k + 1.

end while
Output: The optimal solution Sk+1

In order to split the energy, an auxiliary variable S = J will be introduced.
Then, its augmented Lagrangian function is

ξ(L, S, J, Y1, Y2, μ)
= ‖L‖pw,Sp

+ γ ‖S‖1 + β ‖J‖NTV + 〈Y1, F − L − S〉 + 〈Y2, S − J〉
+µ

2 (‖F − L − S‖2F + ‖S − J‖2F )
= ‖L‖pw,Sp

+ γ ‖S‖1 + β ‖J‖NTV − 1
2µ (‖Y1‖2F + ‖Y2‖2F )

+µ
2 (

∥∥∥F − L − S + Y1
µ

∥∥∥2

F
+

∥∥∥S − J + Y2
µ

∥∥∥2

F
)

(5)
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Where Y1 and Y2 are the Lagrange multiplier matrices, 〈·〉 represents the inner
product, ‖·‖F denotes the Frobenius norm and μ is a positive penalty parameter.
The specific sub-problem of the above function can be worked out efficiently.
Finally we can obtain the optimal value until reaching the stop condition. The
template update scheme is presented in Algorithm 1.

2.3 The Generation and Segmentation of the Saliency Map

According to the above method, let Sk+1 obtained by the optimal solution to
the (3) be the spare component. Saliency score for the ith image block can be
obtained by the l1 norm of the ith column of Sk+1.

M(Ri) =
∥∥Sk+1(:, i)

∥∥
1

(6)

The higher saliency score M(Ri) indicates the image block belongs to the defect
with higher probability, the corresponding saliency map M is generated accord-
ing to the spatial position relation.

Then the following equation will be used to estimate the upper and lower
boundary of the automatic thresholding value.

T = μ ± c · σ (7)

Where c is a constant, μ and σ are mean and standard deviation of pixel values
in the saliency map.

Finally, the segmentation results are given by a binary image M̂ to locate
the defect regions.

M̂(i, j) =
{

0, μ − c · σ < M(i, j) < μ + c · σ
255, otherwise

(8)

Where i and j are locations of pixel.

3 Experiments

In this section, we will investigate the effect of the proposed method in this
paper. We first introduce implementation details. Then we compare our method
with state-of-the-art on the benchmark datasets for performance evaluation.

3.1 Implementation Details

Our experiment is performed in matlab2018b, run on a PC with an i7-8750H
CPU and speeded up by a NVIDIA GeForce GTX 1080 GPU. There are two
databases will be tested in our experience, one is unpatterned fabric image
database set by workgroup on texture analysis of German Research Council
[21]. Another one is patterned fabric image database set by Research Associate
of Industrial Automation Research Laboratory, Department of Electrical and
Electronic Engineering, Hong Kong University. The size of the fabric image is
set to 512 pixels × 512 pixels uniformly.
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3.2 Comparison with State-of-the-Art

In order to verify the validity and robustness of the proposed method, quali-
tatively and quantitatively evaluation will be considered on two fabric image
benchmarks comparing with several state-of-the-art methods.

Qualitative Evaluations: We compare our method with some visual saliency
models, including the histogram of oriented gradient (HOG), the prior guided
least squares regression method (PGLSR), and unified method based on low-rank
matrix recovery (ULR). The experimental results are demonstrated in Fig. 3. The
first column shows the original images. The detection results of HOG [22], ULR
[23], PGLSR [24], and our method are listed from the second column to the fifth
column.

Fig. 3. Comparison of the detection results using different methods: (A) Detection
results for unpatterned fabric image; (B) Detection results for patterned fabric image.
The first column is the original image, detection results of HOG, ULR, PGLSR and
our method are listed from the second column to the fifth column.

From the Fig. 3, we can conclude that the HOG method is only suitable for
the fabric images with simple textures, not for the unpatterned fabric images,
because that the results of HOG method have serious noise and defect area suffer
from severe dispersion. The ULR method is only suitable for the unpatterned
fabric images and a fraction of patterned fabric images, but even so, its detection
results is not good enough due to detection results contains a lot of texture
information. The PGLSR method could mostly detect defects effectively in the
unpatterned and patterned fabric images, but similarities in texture between
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the background and the defect may lead to inaccurate shape descriptions of the
defects. Our method can not only highlight the position of defective regions, but
also outline the shape of defects for all types of fabric images.

Quantitative Evaluations: Two criteria, including receiver operating charac-
teristic (ROC) curves and precision-recall (PR) curves, are adopted to perform a
comprehensive qualitative evaluation for different methods. Because of the lack
of groundtruth images in the unpatterned fabric image database, we only con-
sider the patterned fabric databases for our quantitative evaluation, as shown in
Fig. 4.
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Fig. 4. The quantitative performance of four methods on patterned fabric image
database: The left row corresponds to ROC curve, the right row corresponds to PR
curve.

It can be noticed that the area under the ROC curve (AUC) of OURS is
the largest, which indicates that our proposed method performs better than the
other three methods for the patterned fabric datasets. We can see that the PR
of our method is higher than the other three methods, which also indicates that
our method can achieve the best performance in the four methods.

Table 2. The detection precision (%) of four methods on patterned fabric image
database, and the best score is highlighted in bold fonts.

Methods Fabrics

Box-patterned Dot-patterned Star-patterned Average

ULR 71.08 68.32 74.89 71.43

HOG 93.91 84.46 95.23 91.20

PGLSR 92.46 92.30 94.48 93.08

OURS 97.87 96.47 97.54 97.29
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In order to express that our model can achieve the best results in four meth-
ods more intuitively. We will exhibit the detection precision of four methods on
patterned fabric image database, the experimental results are shown in Table 2.
Statistic data shows that our method is effective and efficient in front of the
fabric images including box-, dot- and star-patterned fabric. Besides, it is easy
to see that that our method can maintain a high accuracy in average.

4 Conclusion

In this paper, a fabric defect detection algorithm based on deep-handcrafted fea-
ture and NTV-NRPCA is proposed. Based on the fact that hand-crafted feature
is incapable of characterizing the fabric texture comprehensively, the deep fea-
tures extracted by a CNN and some handcrafted low-level information are fused
to improve the image representation ability. In order to separate the defects,
RPCA is adopted to decompose the fabric images into background parts and
salient defect parts. Meanwhile, total variation regularization term is integrated
into RPCA to prevent defect saliency map from being polluted by noises as
much as possible. Besides, non-convex optimization is applied into total varia-
tion regularization term and RPCA, which can improve the solution accuracy.
The experimental results emphasize that the proposed method is superior to the
state-of-the-art methods. Moreover, the proposed method could be extended to
detect surface defects of other industrial products such as paper and glass.
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Abstract. Cross-project defect prediction means training a classifier model
using the historical data of the other source project, and then testing whether the
target project instance is defective or not. Since source and target projects have
different data distributions, and data distribution difference will degrade the
performance of classifier. Furthermore, the class imbalance of datasets increases
the difficulty of classification. Therefore, a cost-sensitive shared hidden layer
autoencoder (CSSHLA) method is proposed. CSSHLA learns a common feature
representation between source and target projects by shared hidden layer
autoencoder, and makes the different data distributions more similar. To solve
the class imbalance problem, CSSHLA introduces a cost-sensitive factor to
assign different importance weights to different instances. Experiments on 10
projects of PROMISE dataset show that CSSHLA improves the performance of
cross-project defect prediction compared with baselines.

Keywords: Shared hidden layer autoencoder � Cost-sensitive learning �
Cross-project software defect prediction

1 Introduction

Software defect prediction (SDP) has been a hot research topic in software engineering
[23]. Its main goal is to discover defects exist in the software for improving the
software quality. The previous research mainly focused on within-project defect pre-
diction (WPDP) [19, 20], mainly using the historical data of one project to train a
prediction model and testing the defect tendency of the same project software instance.
However, when there is not enough historical data available in the same project, the
performance of WPDP becomes significantly worse, and cross-project defect prediction
(CPDP) can be considered.

Training a prediction model by using plenty of historical data from other project
and predicting defects in a new project instances, is called cross-project defect
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prediction(CPDP) [6, 15]. However, its prediction performance is usually poor,
because of the data distribution difference phenomenon between source and target
projects, e.g., coding styles, programming language [4]. If the data distribution dif-
ference between source project and target project is small enough [8], CPDP model can
achieve better results. To solve the problem of data distribution difference in CPDP,
several CPDP methods have been developed [6, 15]. However, these methods [4, 8, 15]
use the traditional features rather than deep features extracted by deep learning. Such as
TCA+ [15], which maps source and target projects into a latent subspace, making the
difference of data distribution between source and target projects is minimized. Deep
learning has been successfully applied to the field of speech recognition [10] and image
classification [1] due to its powerful feature learning capability. Stacked denoising
autoencoders model [7] is applied in the field of SDP and proved that the deep features
are more promising than the traditional software metric. Furthermore, the shared-
hidden-layer autoencoder’ method has solved the typical inherent mismatch between
the two domains in the field of speech emotion recognition [10, 11].

Besides, class imbalance problem reduces the prediction performance of the CPDP
model. That is, the number of defect-free instances is far greater than that of defective
instances [2]. Thus the SDP model will more likely to identify defect-free instances.
Especially for minority classes, imbalanced distribution is the main reason of poor
performance of certain classification models [16]. In this paper, cost-sensitive tech-
nique is used to deal with class imbalance problem.

Similar to the idea of transfer learning, a cost-sensitive shared hidden layer
autoencoder (CSSHLA) method is proposed for CPDP to solve the data distribution
difference problem and the class imbalance problem. It mainly includes two phases:
feature extraction stage and classifier learning phase. In the feature extraction stage, we
extract a set of deep nonlinear features from the source and target projects by using
shared hidden layer autoencoder. In the classifier learning phase, we build a cost-
sensitive softmax classifier based on the deep features of source project data.

The main contributions of this paper can be summarized as follows:

1. We propose a shared hidden layer autoencoder for CPDP. It can extract deep feature
representations from original features, making the data distribution of source and
target projects be more similar in the nonlinear feature subspace to solve the data
distribution difference problem. It can also make the instances of same class in
source project be more compact.

2. To alleviate the class imbalance problem, we propose a cost-sensitive softmax
classification technique. Different misclassification costs are assigned to instances
from different class in the model building stage. In this way, the features of
defective instances can be better learned.

3. Based on the above two techniques, a cost-sensitive shared hidden layer autoen-
coder method (CSSHLA) is proposed for CPDP. We evaluate CSSHLA with the
baselines on the 10 projects from PROMISE. One conclusion is that we get better
results on F-measure and Accuracy than other baselines.
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2 Related Work

2.1 Cross-Project Defect Prediction

In recent years, CPDP is a hot topic in software engineering [22]. The most important
problem is data distribution difference problem between source and target projects in
CPDP. TCA+ [15] is an effective CPDP method that uses transfer component analysis
(TCA) to map instance of source and target projects into a common latent subspace,
and the difference of feature distributions between the source and the target is small
enough. Dynamic cross-company mapped model learning (Dycom) is first used in web
effort estimation [13], and transfer learning method Dycom [4] is successfully applied
to CPDP, in which 10% of the labeled data comes from the target project in the training
process. Log transformations (LT) [3] reduces the data distribution difference by log
transformation of the feature values in the source and the target projects, and then
aligns the median values of each source project and target project. Training data
selection (TDS) [8] selects the most suitable training data related to the test data based
on the similarity distance to improve the performance of cross-project defect prediction.

Most of the CPDP methods do not consider the class imbalance problem. In our
approach, we consider the class imbalance problem and use cost-sensitive factor to
solve the problem.

2.2 Deep Learning

In recent years, deep learning has been successfully applied in many fields because of
its powerful feature generation ability, such as speech emotion recognition [9], image
classification [1], face recognition [5], etc. Convolution neural network (CNN), deep
belief network (DBN) and autoencoder play an important role in deep learning. Wang
et al. [17] used DBN to learn the most relevant semantic features from the program’s
Abstract Grammar Tree (AST) and showed that the deep semantic features are better
than the traditional features. Good results are obtained by using DBN to predict the
defects for just-in-time defect prediction [21] than without deep feature representation.
By integrating the similar feature learning technology and distance measurement
learning technology, siamese dense neural network [14] is successfully applied to
SDP. The autoencoder has been successfully applied to the field of speech recognition
[10]. Some researchers applied autoencoder in the field of defect prediction [7].

Because of the strong feature extraction advantage of deep learning, a deep learning
autoencoder method is introduced to solve the CPDP problem in our paper. And the
improved autoencoder is used to solve the problem of data distribution difference in
CPDP effectively.

3 Proposed Methodology

We design a cost-sensitive shared hidden layer autoencoder (CSSHLA) network, and
the overall framework of CSSHLA is shown in Fig. 1. It is mainly summarized as two
stages: (1) Data normalization. It makes the source data and target data have same order
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of magnitude. (2) Training network. The network is composed of feature extraction
model and classifier model. Feature extraction model takes the source data and target
data as input and outputs their deep features. Classifier model uses the deep source
features and its corresponding labels to build a classifier.

Let x 2 fXtr [Xteg, Xtr ¼ fxitrgNtr
i¼1 2 RNtr�n and Xte ¼ fxitegNte

i¼1 2 RNte�n mean fea-
ture sets from source and target projects, respectively, and Ys ¼ fyisgNtr

i¼1 is the corre-
sponding labels, where x means Xtr and Xte scrambled sets, yitr 2 f1; 2g, 2 means the
number of classes, and n is the number of corresponding data features. Ntr and Nte refer
to the number of instances of source and target projects, and usually Ntr is not equal to
Nte. Let hall denote a collection of parameters. yðxiÞ 2 RNtrðteÞ�m refers to the feature
representations of hidden layer in the autoencoder, where m denotes the number of
hidden layer neurons during the autoencoder training.

3.1 Data Normalization

We perform data normalization on these features due to the 20 basic metrics used are
not the same order of magnitude. We use the 20 basic metrics [12] and min-max data
normalization method [18] to convert all the values in the interval from 0 to 1 in this
paper. Given feature x, its maximum and minimum values are maxðxÞ and minðxÞ,
respectively. For each value xi of the feature x, the normalized value Pi is computed as:

Pi ¼ xi �minðxÞ
maxðxÞ �minðxÞ ð1Þ

3.2 Feature Extraction Model

In the feature extraction model, we use shared hidden layer autoencoder to extract
features. Figure 2 shows the architecture of a basic autoencoder. Figure 3 shows the
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Fig. 1. The overall framework of CSSHLA. It mainly includes three parts: (1) Data
normalization stage. Source data and target data can be preprocessed to the same order of
magnitude. (2) Feature extraction stage. The source data features and target data features can be
better converted into similar data distribution by weight sharing mechanism. (3) Classifier
learning stage. The learned source features and its corresponding labels are used to learn a
classifier model.
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architecture of shared hidden layer autoencoder, which is an improved version of the
basic autoencoder.

Autoencoder. Autoencoder means that the output data is equal to the input data as
much as possible, and it finds the common deep feature representation from input data.
It mainly includes coding phase and decoding phase. Given an input data xi 2 Xtr , these
two phases can be expressed as follows:

Encoding phase : yðxiÞ ¼ f ðw1x
i þ b1Þ ð2Þ

Decoding phase: x̂i ¼ f ðw2yðxiÞþ b2Þ ð3Þ

...input

...

hidden

output

( )L θ

encoding

decoding

ix

ˆ ix

( )iy x

1x 2x nx

ˆ1x ˆ2x ˆnx

Fig. 2. Architecture of basic autoencoder. First, the original input xi is mapped to yðxiÞ. Then x̂i

tries to reconstruct xi. The reconstruction error loss is expressed as LðhÞ.
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Fig. 3. Architecture of shared hidden layer autoencoder. It mainly includes two stages:
(1) Encoding stage. Input data includes source data and target data, which are scrambled into the
network to obtain feature representation of the hidden layer. The parameters of the input data
adopt the parameter sharing mechanism in this stage. (2) Decoding stage. The feature
representation of the hidden layer is decoded to get the reconstructed output data, making that the
output data is equal to the input data as much as possible. In this phase, the source data and target
data have different parameter settings, respectively.
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where f ð�Þ is a non-linear activation function, usually f ð�Þ is sigmoid function, w1 2
Rm�n and w2 2 Rn�m are weight matrices, b1 2 Rm and b2 2 Rn are bias vectors. h ¼
fw1; b1;w2; b2g is included in the autoencoder network parameters, the optimization of
parameters is actually to minimize the reconstruction error LðhÞ:

LðhÞ ¼ 1
2

X

xi2X
x̂i � xi

�� ��2 ð4Þ

The implementation of minimizing LðhÞ is achieved through the Adam optimizer
during the autoencoder training.

Shared Hidden Layer Autoencoder. To a certain extent, it is similar to autoencoder,
except that some improvements have been made in the setting of parameters. In order
to solve the data distribution difference problem in CPDP, shared hidden layer
autoencoder is used to obtain the advanced deep feature representation of the hidden
layer by minimizing the reconstruction error loss LðhallÞ. LðhallÞ loss consists of two
parts: LðhtrÞ and LðhteÞ. LðhtrÞ is defined as the Euclidean distance between the input
source data and the output source data. We add the label information of the source data
to make the source data with the same label more compact in the decoding phase.
LðhteÞ is defined as the Euclidean distance between the input target data and the output
target data. LðhtrÞ and LðhteÞ can be expressed as follows:

LðhtrÞ ¼ 1
2

X

xitr2Xtr

x̂itr � xitr
�� ��2 þ

X

x̂itr2X0
tr

x̂itr � �̂xitr0
�� ��2 þ

X

x̂itr2X1
tr

x̂itr � �̂xitr1
�� ��2 ð5Þ

LðhteÞ ¼ 1
2

X

xite2Xte

x̂ite � xite
�� ��2 ð6Þ

where x̂itr refers to the source data features obtained after the decoding phase, x̂ite refers
to the target data features obtained after the decoding phase. X0

tr refers to all the
instances in the source project are 0 and X1

tr refers to all the instances in the source
project are 1. �̂xitr0 and

�̂xitr1 are the mean values of all source project instances labeled 0
and all source project instances labeled 1 after decoding the source project data,
respectively.

Combined with the above two formulas, optimizing LðhtrÞ and LðhteÞ two formulas
at the same time, the final objective function can be expressed as:

LðhallÞ ¼ LðhtrÞþ rLðhteÞ ð7Þ

The network needs to optimize parameter hall: hall ¼ fw1; b1;w2
tr; b

2
tr;w

2
te; b

2
teg. r is a

regularization parameter, it can help to regularize the functional behavior of the
autoencoder. The goal of this term is to make the source as similar as possible to the
distribution of the target by changing the value of r.

496 J. Li et al.



3.3 Cost-Sensitive Softmax Classifier Model

To better learn features of minority class, cost-sensitive softmax classifier model is used
to alleviate the class imbalance problem by assigning different misclassification costs to
instances from different classes in the model building stage. In the trained autoencoder
above, the deep feature representations of source data learned from the hidden layer are
used to build a classifier.

To calculate the classification loss C, we usually measure the similarity between the
real label and the predicted label by using the cross-entropy loss function, which is
expressed as follows:

C ¼ � 1
Ntr

XN

i¼1

Xk

c¼1

yis
� �

c� log gðxisÞ
� �

c

� �
ð8Þ

where Ntr is the number of source project instances, c refers to class of label, k is
number of label class, which is set as 2 in this paper. yis is ground-truth label, gðxisÞ is
the final predicted label, gð�Þ is softmax activation function.

Furthermore, we add the cost-sensitive method to the classifier, so we propose a
cost-sensitive softmax classifier. The goal of cost-sensitive learning is to take the cost
matrix into consideration and generate a prediction model with minimum misclassifi-
cation cost. The cost matrix as shown Table 1, costði; jÞ is the cost value f ðcÞ of
classifying a instance from the i�th class as the j�th class, a correct classification will
be no cost in the cost matrix, that is costði; iÞ ¼ 0 and costðj; jÞ ¼ 0. Because more
defective modules should be found, the cost of defective modules should be higher.
The setting of the remaining cost value is set according to the works of [24]. f ðcÞ is
defined as:

f ðcÞ ¼
N0

N1
; c ¼ 1

1; c ¼ 0

8
<

: ð9Þ

Based on this, the final cost-sensitive cross-entropy loss can be defined as:

C ¼ � 1
Ntr

XN

i¼1

Xk

c¼1

f ðcÞ � yis
� �

c� log gðxisÞ
� �

c

� �
ð10Þ

Table 1. Cost matrix for CSSHLA.

Actual defective Actual defect-free

Predict defective costði; iÞ costði; jÞ
Predict defect-free costðj; iÞ costðj; jÞ
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where N0 is the number of the defective instances, N1 is the number of the defect-free
instances. f ðcÞ means the cost of instance of class c.

4 Experiment

4.1 Datasets

In this experiment, we chose 10 projects from the PROMISE repository [12]. Table 2
lists the project name, the number of instances (#instance), the number of defective
instances (#defect) and the percentage of defective instances in all instances (%defect).

4.2 Evaluation Metrics

In order to evaluate the performance of proposed method, the evaluation metrics
F-measure and Accuracy are widely used in SDP. As shown in Table 3, they can be
defined by the confusion matrix.

where TP is the number of defective instances that are predicted as defective, FP is the
number of defect-free instances that are predicted as defective, TN is the number of
defect-free instances that are predicted as defect-free, FN is the number of defective
instances that are predicted as defect-free. So F-measure and Accuracy can be defined as:

Table 2. Datasets in our experiment.

Datasets #instance #defect %defect

ant-1.7 745 166 22.28
camel-1.6 965 188 19.48
jedit-3.2 272 90 33.09
log4j-1.0 135 34 25.19
lucene-2.0 195 91 46.67
poi-1.5 237 141 59.49
redaktor 176 27 15.34
synapse-1.0 157 16 10.19
xalan-2.6 885 411 46.44
xerces-1.3 453 69 15.23

Table 3. Confusion matrix.

Predicted as defective Predicted as defect-free

True defective TP FN
True defect-free FP TN
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precision ¼ TP=ðTPþFPÞ; recall ¼ TP=ðFPþFNÞ ð11Þ
F-measure ¼ ð2 � precision � recallÞ=ðprecisionþ recallÞ ð12Þ

Accuracy ¼ ðTPþ TNÞ=ðTPþ TNþFPþFNÞ ð13Þ

4.3 Implementation Detail

In the training process, the CSSHLA model has 4 hidden layers and the number of
nodes in each layer is 20-15-10-10-2, where 20 is the dimension of the input data, 2 is
the dimension of the data that enters the softmax classifier. Each layer uses rectified
linear unit (ReLU) activation function and the setting of layers is empirically obtained.
CSSHLA using Adam optimizer performs the parameter optimization of during the
training process. The mini-batch is set 64, and the hyper-parameter r is the following:
r 2 f0:1; 0:5; 1; 5; 10; 15g, the good results are obtained at r ¼ 10.

4.4 Experiment Setup

In this paper, to prove the effectiveness of the proposed method CSSHLA for CPDP,
we compare CSSHLA with prior CPDP methods: TCA+ [15], TDS [8], Dycom [4], LT
[3] and SHLA(shared hidden layer autoencoder without cost-sensitive). We use 10
projects from PROMISE datasets as our experiments data. And we select one project
from 10 projects as target, select one of the remaining nine projects and take their turn
as source. We have nine possible combinations for each target project, in total, we have
90 possible CPDP combinations from 10 projects of PROMISE datasets. For example,
we chose ant 1.7 as target, and our combination of CPDP is as follows: camel 1.6 - ant
1.7, jedit 3.2 - ant 1.7, camel 1.6 - ant 1.7, log4j 1.0 - ant 1.7, etc.

4.5 Experiment Result and Analysis

Through the above experimental settings, we made a comparison between CSSHLA
and baselines(TCA+ , TDS, Dycom, LT, HLA). Tables 4 and 5 present the F-measure
and Accuracy performance of CSSHLA compared with the five baselines, respectively.
We can see that the average of F-measure of CSSHLA exceeds 5 baseline methods
from Table 4, the F-measure values of CSSHLA range from 0.257 to 0.647, and
CSSHLA improves F-measure results at least by 0.015 = (0.433−0.418). Table 5
shows that CSSHLA gets an average Accuracy of 0.652. Accuracy results in an
improvement of at least 0.002 = (0.652−0.650).

CSSHLA can effectively solve class imbalance by using cost-sensitive learning
technology compared with SHLA. The F-measure and Accuracy of CSSHLA were
increased by 0.056 and 0.017, respectively. There are two reasons why our results are
better than the baselines: First, to learn more about the features of minority class, we
consider the influence of the class imbalance problem on the model learning by
assigning different importance weights to different instances. Second, we use the
advanced deep features, which are more efficient than traditional features. The results
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of F-measure and Accuracy of CSSHLA are better than baseline results. According to
the evaluation metrics, the proposed method CSSHLA outperform better than baseline
methods.

5 Conclusion

In this paper, we present a cost-sensitive shared hidden layer autoencoder (CSSHLA)
method for cross-project defect prediction. To solve the problem of data distribution
difference in CPDP, we use autoencoder with shared parameter mechanism. It can
make the network adapt to source and target projects, and make the distribution of
source and target projects more similar to each other by minimizing the reconstruction

Table 4. F-measure comparison of CSSHLA model versus 5 baselines.

Target TDS TCA+ Dycom LT SHLA CSSHLA

ant-1.7
camel-1.6
jedit-3.2
log4 g-1.0
lucene-2.0
poi-1.5
redaktor
synapse-1.0
xalan-2.6
xerces-1.3

0.530
0.160
0.444
0.373
0.288
0.225
0.387
0.333
0.404
0.345

0.463
0.321
0.510
0.466
0.530
0.596
0.235
0.265
0.481
0.317

0.408
0.070
0.415
0.428
0.508
0.579
0.197
0.336
0.546
0.299

0.447
0.260
0.532
0.413
0.316
0.423
0.367
0.097
0.405
0.360

0.361
0.233
0.481
0.416
0.492
0.611
0.223
0.212
0.432
0.291

0.440
0.288
0.530
0.487
0.549
0.647
0.257
0.287
0.533
0.308

Average 0.349 0.418 0.379 0.365 0.377 0.433
Improved 0.084 0.015 0.054 0.068 0.056 –

Table 5. Accuracy comparison of CSSHLA model versus 5 baselines.

Target TDS TCA+ Dycom LT SHLA CSSHLA

ant-1.7
camel-1.6
jedit-3.2
log4 g-1.0
lucene-2.0
poi-1.5
redaktor
synapse-1.0
xalan-2.6
xerces-1.3

0.680
0.742
0.593
0.715
0.538
0.559
0.579
0.761
0.417
0.714

0.684
0.618
0.663
0.657
0.621
0.576
0.556
0.641
0.591
0.627

0.674
0.769
0.710
0.763
0.600
0.435
0.386
0.796
0.603
0.764

0.675
0.722
0.599
0.726
0.533
0.527
0.648
0.643
0.531
0.757

0.631
0.731
0.702
0.711
0.621
0.611
0.361
0.592
0.582
0.810

0.701
0.609
0.722
0.716
0.636
0.616
0.494
0.603
0.611
0.815

Average 0.630 0.623 0.650 0.636 0.635 0.652
Improved 0.022 0.029 0.002 0.016 0.017 –
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error loss. Besides, we use cost sensitive learning technology to solve the class
imbalance problem. CSSHLA takes into account the different misclassification costs,
different weights are assigned to instances of different class. The average values of F-
measure and Accuracy of CSSHLA are at least 0.015 and 0.002 better than the baseline
methods, respectively. Empirical results show that CSSHLA can achieve better pre-
diction performance than baselines.
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Abstract. It is manifested that when training and testing models on different
datasets, the performance of trained models will severely dropped due to the
differences in style of the datasets. In person ReID task, the clothing style is a
crucial factor existing in different datasets, which has not been considered in the
current research. We proposed a novel approach of Optimization of Domain
Adaption Though Clothing Style Transfer (ODA-CST), which includes clothing
mask extraction and clothing style transfer. Firstly, we generate the clothing
mask by jointly locally extracting clothing and globally detecting the person.
Meanwhile, we also organize a clothing mask dataset to improve the model. Our
ODA-CST can effectively generate photos with the clothing style transferred,
which is the first method that tries to solve the clothing style gap in person ReID
task to the best knowledge. The importance of clothing style transfer and the
effectiveness of our method are verified by the experiment.

Keywords: Person Re-identification � GAN � Domain Adaption � Style
Transfer

1 Introduction

Person re-identification (person ReID) aims to obtain all pictures or videos matching
specific targets from the gallery data collected by a large-scale camera network. It has
important application prospects in the field of smart city construction such as intelligent
security and intelligent monitoring. In recent years, ReID is regarded by academic
circles and industry as a critical hot spots in computer vision research.

However, there are still many challenges in the field of person ReID. One of them is
the demand for a large amount of training data, which is reflected in the fact that
training data is very limited [1, 3, 4], data acquisition is difficult, and data labeling is
difficult. In the current mainstream three person ReID datasets [1–4], the number of
person IDs and the number of pictures are relatively small. At the same time, there is a
widespread problem of domain gaps between different datasets. In other word, the
performance of model be seriously reduced when dealing with cross datasets problems.
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There are relatively fixed picture style due to the short time span of data collection and
limited on the number of cameras in most ReID datasets. So the exited models that
cannot adapt to the complex changes under realistic conditions. This results in most of
the person ReID models unable to adapt to complex scene changes under realistic
conditions.

Therefore, the academic community has begun to try to expand the capacity of
datasets through various methods. On the one hand, some new large-scale datasets are
constantly proposed including MSMT 17 [9]. On the other hand, GAN [10] can be used
to solve learning problems when the annotation data is insufficient, such as unsuper-
vised learning, semi-supervised learning, and so on. Therefore, one of the applications
of deep learning in ReID is to use GAN to generate unmarked pedestrian data for data
augmentation [11].

The academic community has tried to use GAN to generate images to expand the
dataset, mainly to generate images of different poses of the same pedestrian for data
augmentation, such as FD-GAN [13], have achieved good results. In addition, Zhong
et al. [12] transferred the photos of different cameras for the problem of domain gap,
and PTGAN [9] transferred the background style between different datasets, which
reduced the domain gap and improved the domain adaptability when training and
testing the model on different datasets (Fig. 1).

However, most of the related research on the domain gap of person ReID are
focused on the domain gap caused by the overall picture environment, background
style, lighting conditions. Our proposed method is no longer limited by these factors,
but also include differences in the style of pedestrian clothing. The different seasons of

Fig. 1. Overview of the proposed approach of Optimization of Domain Adaption Though
Clothing Style Transfer (ODA-CST). We first obtain the mask of the pedestrian clothing through
the pedestrian clothing extraction model, and then feed the pedestrian image together with the
corresponding clothing mask into the clothing style migration model, and the generated new
dataset obtains better performance on the person ReID model than the baseline.
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different datasets may result in huge differences in the style of dressing, especially
when one dataset was collected in winter and the other was collected in summer.
However, there is no related research to the best knowledge, which motivates us to
explore the clothing style transfer between datasets to reduce the domain gap.

To verify our ideas, we proposed a novel approach of Optimization of Domain
Adaption Though Clothing Style Transfer (ODA-CST), which includes clothing mask
extraction model and clothing style transfer model. In the model of clothing style
transfer, we need the clothing binary mask in the person ReID dataset as a constraint.
Unfortunately, there are currently few pedestrian clothing semantic segmentation tags
for person ReID datasets. We integrated the existing pedestrian semantic segmentation
dataset [14–16] and organized a pedestrian clothing mask extraction dataset in the first
stage. This dataset is composed of manually selected pictures with similar pedestrian
styles in the image of the person ReID dataset. There are more than 8,000 pedestrian
pictures and corresponding clothing masks. Subsequently, based on the framework of
CycleGAN [17], we used the pedestrian image and the clothing mask of the person
ReID dataset to transfer the clothing style and generate a new dataset with the similar
clothing style of the transfer target domain.

Our ODA-CST method is the first method known in the field of person ReID to
reduce the domain gap caused by clothing style difference. Experiments have been
conducted on benchmark datasets, which shows that the performance was significantly
improved compared with the baseline. The accuracy of top-1, top-5, top-10 increased
by 1.3%–11.4%, and mAP improved by 1%–3.3%. This also verifies that the clothing
style is also one of the crucial factors that cause domain gaps, which has been ignored
in the former research. And the clothing style transfer can effectively reduce the
clothing domain gap, making the model more adaptable to unseen datasets.

2 Related Works

2.1 Semantic Segmentation of Pedestrian Mask

Pedestrian masks are increasingly being used in person ReID research. Wei et al. [9]
used PSPNet [22] for the extraction of the pedestrian mask. Song et al. [14] used the
FCN-based model to train on the Baidu People Segmentation Dataset, effectively
extracting the pedestrian binary segmentation mask from person ReID datasets.

2.2 Image-to-Image Translation with GAN

GAN [10] is able to generate images that are consistent with the distribution of real
data, making itself a widely-used network structure for style transfer. Radford et al.
[19] propose DCGAN, which significantly improved the quality of the generated
photos and speed up the convergence. Isola et al. [20] proposed a very adaptable and
effective image-to-image transfer model called pix2pix, which is able to generate
photos of almost every given style corresponding to an input photo.
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Zhu et al. [17] proposed CycleGAN without requiring paired photos for training as
pix2pix does. Compared with the traditional GAN, it mainly constrains the generated
image by a cyclic consistency loss: GYX (GXY(x)) � x and GXY (GYX(y)) � y.

However, the CycleGAN [17] learns is mainly the distribution pattern and global
style information of images without any local instance awareness. Direct application of
CycleGAN in the ReID task will lead to confusion of the pedestrians and the back-
grounds. The quality of the generated picture will be degraded with distraction of
identity-related information, which means CycleGAN [17] is not adaptive to the task of
local style transfer. At the same time, CycleGAN [17] isn’t a promising solution in
changing the shape between source and target domain. To solve this problem, Mo et al.
[21] optimized CycleGAN and proposed a new InstaGAN model. InstaGAN takes the
instance segmentation label and the original image as input, and only converts the
instances and keep the background unchanged as possible.

2.3 GAN in Person ReID Research

In the field of person ReID, the current application of GAN in person ReID mainly lie
in data augmentation as labeled person ReID data is difficult to obtain. GAN can be
applied to generate more unmarked pedestrian images [11]. However, due to the low
resolution of images in the person ReID datasets and the insufficient performance of the
model itself, the quality of generated pedestrian image is also limited. On the other
hand, photos taken with different cameras in the same person ReID dataset have biases
in terms of lighting conditions and viewpoints. Zhong et al. [12] performed style
transfer between photos taken with different cameras and generated more new images
with higher quality. PTGAN [9] process a style transfer among different datasets in
order to reduce the bias due to background environment and other factors.

On the other hand, domain gaps of ReID caused by pedestrian pose change [2, 13]
attracts more attention. Qian et al. [2] used GAN to generate eight standard pose images
of every person, and extracted the features of descendants with different pose. These
features were combined with the extracted pose-independent features to obtain the
pooled comprehensive features, making the model well adapted to the bias caused by
pedestrian pose changes.

3 Implementation

Our proposed ODA-CST method aims to improve the domain adaptability of the
person ReID model when training and testing on different datasets by performing
clothing style transfer on different datasets. New datasets obtained by style transfer can
be used to train the person ReID model to achieve data augmentation effects and adapt
the model to the style characteristics of different datasets. We first extract the clothing
mask of the person ReID dataset, and then input it into the clothing style transfer model
together with pedestrian pictures to generate new pedestrian pictures.
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3.1 Clothing Mask Extraction

The extraction model of the clothing mask is the first part of our ODA-CST method,
whose extraction accuracy directly affects the model effect of the subsequent part. In
order to optimize the CycleGAN [17], we take masks of pedestrian clothing as a
constraint for style transfer.

The extraction of the mask requires an extra model. We leverage the pix2pix [20]
model as backbone and develop a clothing mask extraction model. Although the
semantic segmentation is not included in the common application of pix2pix model, it’s
found efficient in our task. The original image and the binary mask are regarded as a
separate picture style. The model needs paired pictures of the labeled clothing mask
and the original pictures. Currently, the datasets of the mainstream person ReID do not
have a corresponding pedestrian mask. Therefore, we first train the model by using the
pedestrian street image of the Clothing Co-parsing (CCP) dataset [15] and the ATR
dataset [16] and the corresponding pixel-level semantic masks (Fig. 2).

min
G

max
D

E log D x;G xð Þð Þþ log 1� D x; yð Þð Þ½ � ð1Þ

The objective function of the pix2pix [20] model is as follows. As showed in
formula (1), the optimization target of pix2pix combines the input x and the generated

Fig. 2. Model of clothing mask extraction. We first use the pedestrian mask in the paper of Song
et al. [22] to train a pedestrian global mask extraction model, then merge each photo with the
corresponding global mask, and then extract the local mask based on the framework of the pix2pix
model, which is the mask of pedestrian clothing. In this way, we can use the global mask to filter
out the background interference and improve the accuracy of the clothing mask extraction.
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picture G(x). According to the information of the two pictures, the discriminator D can
judge whether the generated picture is related to the input image x, instead of randomly
generating a picture that matches the target domain style.

It should be emphasized that if the pix2pix model is used directly to extract the
mask of pedestrian clothing, the test results are not stable. For this reason, the clothing
mask extraction model need to be improved. We first train the clothing extraction
model to extract the global mask, and use these global masks to merge the pedestrian
image, covering the pedestrian background in the original image, making the model
more sensitive to the pedestrian’s body information. The model combines the global
mask and then extracts the local clothing mask, which improves the accuracy.

3.2 Clothing Style Transfer

The clothing style transfer model is the second part of our ODA-CST method, which
takes good use of the extracted clothing mask to achieve the effective clothing style
transfer while keeping the rest of the picture unchanged. In other words, it maintains
the overall characteristics (identity-related information) of the pedestrian and can
accommodate the style transfer of objects with very large difference on shapes (such as
the style transfer between pants and shorts or skirts in this paper).

The InstaGAN [21] is based on this idea to perform the image style transfer with
instance awareness. However, the InstaGAN is a style transfer model for multiple
instances of a picture. In this task, most of the pedestrian’s bounding box images
contain only one person, so we only need to transfer one instance of the clothing in an
image. Therefore, we adopt the framework of InstaGAN [21] and streamline its
structure.

Architecture. Given a set of image pairs (x, a) are fed to the model and obtain another
set of (y, b). x is a pedestrian picture and a is its corresponding clothing mask. The
generator G uses fGX and fGA to extract the features of x and a respectively, and then
inputs them into the image and attribute generator, and then fuses the extracted features
with hGX and hGA to generate the migrated images and attributes respectively. The
output of hGX is input to the generator gGX, and the output of hGA is input to the
generator gGA. The formulas for hGX and hGA are as follows.

hGX x; að Þ ¼ fGX xð Þ; fGA að Þ½ �; hGA x; að Þ ¼ fGX xð Þ; fGA að Þ; fGA að Þ½ � ð2Þ

On the other hand, the discriminator D can encode x and a, and determine whether
the picture pair belongs to this field, and hDX is finally input to gDX. Similar to the
previous one, the hDX formula is as follows.

hDX x; að Þ ¼ fDX xð Þ; fDA að Þ½ � ð3Þ

With the constraint of the attribute feature corresponding to the pedestrian picture,
the generator can generate new clothes on the clothing position of the original picture.
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Training Loss. According to the InstaGAN model [21], in order to maintain the
background while changing the style of the clothes, the loss should be divided into two
parts, namely domain loss and content loss. The domain loss is used to constrain the
generated image to conform to the characteristics of the target domain, and the content
loss is to constrain the generated image to retain the overall content of the image.
Specifically, domain loss is the loss of GAN (LSGAN [5]), and content loss includes
loss of cycle-consistency (Kim et al. [6]), identity mapping loss (Taigman et al. [7]) and
content preserving loss (from InstaGAN [21]), as showed in the bellow.

LLSGAN ¼ DX x; að Þ � 1ð Þ2 þDX GYX y; bð Þð Þ2 þ DY y; bð Þ � 1ð Þ2 þDY GXY x; að Þð Þ2 ð4Þ

Lcyc ¼ GYX GXY x; að Þð Þ � x; að Þk k1 þ GXY GYX y; bð Þð Þ � y; bð Þk k1 ð5Þ

Lidt ¼ GXY y; bð Þ � y; bð Þk k1 þ GYX x; að Þ � x; að Þk k1 ð6Þ

Lctx ¼ w a; b0ð Þ � x� y0ð Þk k1 þ w b; a0ð Þ � y� x0ð Þk k1 ð7Þ

Finally, the loss function of the model is as follows.

LInstaGAN ¼ LLSGAN þ kcycLcyc þ kidtLidt þ kctxLctx ð8Þ

4 Experiment

4.1 Implement Details

In the DukeMTMC-reID dataset, 16,522 bounding boxes of 702 identities are used for
training and the rest are included in the testing set. In the Market1501 dataset, the
training set contains 12,936 bounding boxes of 751 identities, and the rest 750 iden-
tities are included in the testing set. When training the ResNet50 model, we used 4
NVIDIA 1080Ti GPUs and set the batch size to 256 with an initial learning rate of 0.1
(if only one GPU is used, the batch size is set to 64 and the initial learning rate is
0.025). The size of input image is 256 � 256. Finally, we train the model for 100
epochs. Our network is implemented in PyTorch.

4.2 Clothing Mask Extraction

We used pants and shorts or skirts as winter and summer clothes, and filtered the data
of 6000 pants and 2000 shorts or skirts, respectively, and put the corresponding binary
masks and original photos to the network for training (Fig. 3).
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To improve the adaptability of the trained model on the person ReID dataset, we
first crop the image of the training set and the corresponding clothing binary mask,
which is similar to the pedestrian bounding boxes in the person ReID dataset. The
advantages includes unify the size of the image in the person ReID, while avoiding the
interference caused by the excessive background of the training set. The trained model
can realize the clothing mask extraction of the person ReID dataset.

It can be seen that the pix2pix model can complete the extraction task of the
pedestrian clothing mask. We applied it to DukeMTMC (data collected in winter) and
Market1501 (data collected in summer) datasets for trousers and shorts or skirts masks.

4.3 Clothing Style Transfer

The DukeMTMC dataset [1] was collected in the winter, people mainly wear thick
coats, trousers and other clothing, the Market1501 dataset [3] is collected in the
summer, people mainly wear T-shirts, shorts or skirts. Reducing the difference in
clothing style between different datasets will help reduce the domain gap.

We use InstaGAN model for clothing transfer as it can accommodate style transfer
of targets with big differences in shape. Clothing mask and the bounding boxes are the
input. The summer dress (pants) and winter clothes (shorts and skirts) of the CCP
dataset [15] and ATR dataset [16] are regarded as an individual domain. We tested the
pants of the DukeMTMC dataset [1] and the shorts and skirts of the Market1501
dataset [3]. The results are shown in the Figs. 4 and 5.

Fig. 3. (a) Examples of mask extraction in Market1501 dataset. (b) Examples of mask extraction
in DukeMTMC-reID dataset. The 1st row presents the original images and the 2nd row presents
the results of binary mask of pants or shorts in the images.
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We can conclude that clothing transfer has a good effect on these two Person ReID
datasets. It’s observed that most of the images have obvious clothing transfer effects.

4.4 Tests of Domain Adaption on Transferred Datasets

Quantitative Evaluations. The data of the DukeMTMC dataset [1] and the Mar-
ket1501 dataset [3] after clothing style transfer are taken as a new dataset, and the ReID
model is trained on the new dataset, and then the corresponding test data can be
obtained. The baseline for test is a model trained in the source dataset using the
ResNet50 [18] model which is common used in person ReID study.

Fig. 4. Examples of clothing style transfer in DukeMTMC-reID dataset. Direction: from
jeans/pants to shorts/skirts, the 1st row presents the original images and the 2nd row presents the
generated images.

Fig. 5. Examples of clothing style transfer in Market1501 dataset. Direction: from shorts/skirts
to jeans/pants, the 1st row presents the original images and the 2nd row presents the generated
images.
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We apply the model trained on one dataset and the test it on another dataset to
observe the adaptability of the model. The mAP and Top-n accuracy is used as a
quantitative standard. The adaption of a model trained is positively correlated with the
accuracy of test results on another dataset. For fair comparison, we will select the
model when the new dataset and the original dataset are trained to achieve the same
accuracy on their own test sets. The obtained precision is shown in the Table 1.

From Table 1, we can conclude that the trained ResNet50 [18] model is better able
to adapt to the test on the Market1501 dataset by training on the new dataset obtained
after the pants of the DukeMTMC dataset are converted to shorts or skirts. At the same
time, the trained ResNet50 [18] model is more adaptable to testing on the DukeMTMC
dataset [1] by training the new dataset obtained after the shorts or skirts of the Mar-
ket1501 dataset [3] transferring to pants. The mAP has increased by more than 1%, and
the accuracy of top-1, top-5, and top-10 has also increased by 1.3%–2.8%. As shown in
the Table 2, it’s observed that our purposed ODA-CST method is also outperformed
significantly in the contrast experiment on DukeMTMC and CUHK03 dataset.
Experimental results of Table 3 demonstrate that our purposed ODA-CST method
outperforms other unsupervised methods. Therefore, we can conclude that clothing
style transfer are indispensable for improving the transferable ability of ReID models.

Table 1. Contrast experiment on DukeMTMC and Market dataset. The subscript Market
denotes the transferred target dataset Market1501, and the subscript Duke denotes the transferred
target dataset DukeMTMC-reID.

Model Training set Test set Top-1 Top-5 Top-10 mAP

Baseline DukeMTMC Market1501 37.5 54.6 62.5 15.3
Ours DukeMTMCMarket Market1501 38.8 56.7 64.9 16.3
Baseline Market1501 DukeMTMC 24.3 40.2 47.5 13.2
Ours Market1501Duke DukeMTMC 27.1 43.0 50.2 14.7

Table 2. Contrast experiment on DukeMTMC and CUHK dataset. The subscript CUHK
denotes the transferred target dataset CUHK03, and the subscript Duke denotes the transferred
target dataset DukeMTMC-reID.

Model Training set Test set Top-1 Top-5 Top-10 mAP

Baseline DukeMTMC CUHK03 19.5 42.9 56.6 13.0
Ours DukeMTMCCUHK CUHK03 20.4 46.5 60.1 12.7
Baseline CUHK03 DukeMTMC 15.8 27.8 34.4 8.3
Ours CUHK03Duke DukeMTMC 23.8 38.8 45.8 11.6

Table 3. Performance comparison to other methods.

Model Training set Test set Top-1 mAP

UMDL [23] Market1501 DukeMTMC 18.5 7.3
Verif + Identif [8] Market1501 DukeMTMC 25.7 12.8
Ours Market1501Duke DukeMTMC 27.1 14.7
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Limitation. We notice that due to data bias (e.g., pose, lighting) in the original training
set, our generative module tends to be occasionally unstable. As shown in Table 2, we
transfer the clothing style from DukeMTMC to CUHK03 and the Top-n accuracy are
all improved notably while the mAP accuracy decrease.

4.5 Ablation Study

Comparison. In our purposed ODA-CST method, the key component is the clothing
mask extraction model without which the clothing style transfer model will fail.
Therefore, we trained the CycleGAN model which can not aware the local clothing
features of different domain as the baseline model for comparison. As shown in Fig. 6,
our purposed ODA-CST method is found to be able to sense the profile of clothing
while the baseline model isn’t.

Qualitative Evaluations. Experiment results in Table 4 clearly verifies that the per-
formance of ReID model boost as the effect of clothing transfer improved, which
demonstrate it is the clothing style transfer that attribute to the improvement of the
ReID model performance.

Table 4. Qualitative evaluations of ablation study.

Model Training set Test set Top-1 Top-5 Top-10 mAP

Baseline DukeMTMC Market1501 37.5 54.6 62.5 15.3
CycleGAN DukeMTMCMarket Market1501 38.4 56.9 64.9 15.1
Ours DukeMTMCMarket Market1501 38.8 56.7 64.9 16.3

Fig. 6. Ablation study on the effect of clothing style transfer model of our method.
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5 Conclusions

Based on the idea of data augmentation for person ReID datasets, we explored the
problem of severe performance degradation of person ReID models in cross-dataset
scenarios. By transferring the clothing style between different datasets, we effectively
reduce the domain gap between different datasets, so that the person ReID models can
more effectively adapt to the style of different datasets, which is useful in unsupervised
domain adaptation. In addition, during the experiment, we also integrated a new dataset
of pedestrian clothing segmentation mask, and trained a model that can effectively
extract the clothing segmentation mask in low-resolution pedestrian image. In the
future, we will try to speed up the training process, and try to improve the model so that
it can simultaneously transfer both the background and clothing style.
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Abstract. Object detection has many difficulties and challenges in the agricul-
tural field, mainly due to the lack of data and the complexity of the agricultural
environment. Therefore, we built a shellfish dataset containing 3772 images in 7
categories, all of which were manually labeled and verified. In addition, based on
the SSD model framework, we used the lightweight MobileNet-v2 classification
network to replace the original VGG16 network, and introduced a residual
attention mechanism between the classification network and the prediction
convolution layer. This could not only lead to a better capture the local features of
the images, but also meet the needs of real-time and mobile use. The experi-
mental results show that the performance of our model on the shellfish dataset is
better than the current mainstream target detection models. And the verification
results achieved an accuracy of 95.38% and a detection speed of 33 ms per
picture, indicating that the validity of the model we proposed.

Keywords: Shellfish detection � Attention mechanism � MobileNet-v2 � SSD

1 Introduction

Object detection is an important part of computer vision, and it is of great significance
in smart agriculture and human-computer interaction. The traditional object detection
algorithm based on manual extraction features has occupied a dominant position for a
long time, but it faces the problem of severe redundancy, lack of pertinence and high
time complexity of the region selection strategy window of the sliding window. RBG
et al. designed the R-CNN [1] framework in 2014 using a combination of convolutional
neural networks (CNN) and regional suggestion networks, and replaced the methods
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based on sliding windows and manual design features in traditional object detection.
Since then, object detection has made a huge breakthrough.

There are two main targets for the current object detection. One is the method with
Region Proposal as the main step, such as R-CNN, SPP-NET [2], Fast-RCNN [3],
Faster-RCNN [4]. The other is based on end-to-end regression, such as Yolo [5], Yolo
v3 [6] and other models. The former introduces a deep neural network into the object
detection, achieving a qualitative leap in accuracy, but does not meet the real-time
requirements in terms of speed. The latter uses the idea of regression to directly return
the object frame and the object category at this position in multiple positions of the
image, which greatly speeds up the detection, but it is difficult to improve in accuracy.
The SSD [7] method proposed by Liu et al. combines the Anchor mechanism in Faster
R-CNN with the regression idea in YOLO, and returns the regional features of each
position of the whole graph through a multi-scale method. This method also achieves
good accuracy and speed in the case of low image resolution. However, as the depth of
the model deepens, the complexity of the model increases. For example, the number of
layers in ResNet [8] has reached 152 layers. So these methods have high computational
power requirements for hardware and are difficult to popularize. To this end,
researchers have begun to study lightweight networks for better versatility.

In order to meet the needs of the equipment, some lightweight networks have been
proposed, the most typical of which are MobileNet [9], SqueezeNet [10], ShuffleNet
[11], Xception [12] and so on. Especially the MobileNet uses different convolution
kernels for each input channel and uses a smaller convolution kernel of 1x1 to improve
accuracy. These lightweight networks are a good solution to the problem of insufficient
memory due to the deep depth of the model. However, these networks are faced with a
large number of invalid feature maps during the training process. Then, the attention
mechanism based on recurrent neural network has entered people’s field of vision,
which has enabled researchers to have new ideas in the direction of improving object
detection efficiency. Wang et al. [13] proposed an Attention-based residual learning
approach to improve the performance of stackable rescue attention modules. In addi-
tion, the first-ranked SENet [14] network in the ILSVRC 2017 classification project
introduces the residual attention network and repeatedly adjusts the network model by
weight function to re-weight the information features to achieve better image classi-
fication tasks. The introduction of these attention mechanisms further increases the
efficiency of object detection.

At present, mainstream object detection algorithms have achieved certain results in
academia and industry, and research in the agricultural field is still rare. As an
important part of the agricultural economy, marine shellfish have many kinds and
complicated characteristics. The traditional human-oriented operation is difficult to
meet the market demand. Therefore, the research on shellfish object detection has great
significance for the agricultural economy.

In the existing shellfish target recognition, most of them are based on the manual
extraction of contour features, using the principle of graphics to identify. For example,
Kun et al. [15] proposed an algorithm based on Gabor filter and two-dimensional
principal component analysis to extract the characteristics of snail shellfish, which can
be used to classify snail shells. Hiroki et al. [16] used a 1-MHz acoustic focus probe to
detect shellfish in sediments and then acquired shellfish targets using two-dimensional
acoustic imaging techniques. These traditional methods of detection are often
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inefficient and inaccurate, and studies based on CNNs have not yet been discovered.
This is because of the complexity of the agricultural environment and there is currently
no corresponding shellfish dataset.

In this paper, we use the basic framework of SSD, combined with MobileNet
lightweight network, through the introduction of residual attention mechanism, con-
tinuous parameter tuning, and finally achieved good results in the detection accuracy
and speed of the shellfish dataset. The shellfish detection effect process is shown in
Fig. 1. Our main contributions are as follows:

(1) We built a shellfish dataset by means of our own shooting and web crawling,
which included 7 types of 3772 photos. And all the pictures are manually labeled
and verified.

(2) Based on the SSD framework, we adopt a lightweight MobileNet-v2 network and
introduce a residual attention mechanism to propose a shellfish detection and
recognition model. And our method achieves 95.38% accuracy and 32 ms/sheet
speed, laying the foundation for intelligent research of shellfish.

2 Methodology

The CNN can capture the characteristics of the image from the global receptive field to
describe the image. However, it is quite difficult to learn a very powerful network.
Therefore, the suggestion of attention mechanism can make up for this deficiency very
well. In essence, it is to imitate the way humans observe objects, and can gather local
features of targets in images to improve detection accuracy.

Therefore, the main idea of our model is based on the SSD model and based on the
MobileNet classification network. A residual attention module is introduced between
the MobileNet network and the prediction module to strengthen the selected interest
area. The overall network framework is shown in Fig. 2. Our approach starts with the
relationship between feature channels, explicitly models the interdependence between
feature channels, and adopts a new “feature recalibration” strategy to automatically
obtain the importance of each feature channel. Then, according to this importance level,
the useful features are enhanced and the features that are not useful for the current task
are suppressed, so that the feature channel adaptive calibration can be realized. This
allows the entire network structure to focus not only on the overall information, but
also on the local information. The schematic diagram of introducing the attention
residual module is shown in Fig. 3.

Fig. 1. Shellfish detection framework.
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The above figure is interpreted as assuming that the original feature map is
W � H � C, and then globally pooled through W � H pooled window to get the
feature map of 1� 1� C. Then use two fully connected layers and one sigmoid layer
to output the result. In order to better fit the complex correlation between the channels,
when the first fully connected layer is used, the number of neurons C is divided by r for
dimensionality reduction, and the second fully connected layer is added to the
dimension to return to F. feature. In addition, due to the correlation between the
channels, the final output is 1� 1� C, where sigmoid is used instead of SoftMax. And
our model uses default boxes and loss functions similar to the SSD framework.

Default Boxes. To deal with objectives of different sizes and shapes in images, it is
necessary to set prior frames of corresponding scale and proportion according to the
network’s feature map. The setting of a prior frame is mainly consisting of three
parameters: scale, ratio and default box. The specific formula is as follows:

To calculate scale, the size of Default Box in each Feature Map could be calculated
as follows:

Sk ¼ Smin þ Smax � Smin

m� 1
k � 1ð Þ; k 2 1;m½ � ð1Þ

In the formula, the value of Smin is 0.2 and the value of Smax is 0.95, which means
the level of the lowest layer is 0.2 and that of the highest layer is 0.5. Different values of

Fig. 2. MobileNet-v2-SSD framework.

Fig. 3. Framework drawing introducing attention mechanism.
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ar ¼ 1; 2; 3; 1=2; 1=3 are respectively applied to calculate the height and width of the
Default Box. The height and width could be calculated as follows:

wa
k ¼ Sk

ffiffiffiffiffi
ar

p
; hak ¼ Sk

ffiffiffiffiffi
ar

p ð2Þ

In addition, for the case of Ratio = 1, a specific Default Box is added with a scale of
s
0
k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

skskþ 1
p

. As a result, there are 6 different Default Boxes. Set the center of each
Default Box to ðiþ 0:5Þ= fkj j; ðjþ 0:5Þ= fkj jð Þ. And fkj j represents the size of the first
feature map i; j 2 0; fkj j½ Þ.
Loss Function. The loss function is calculated similar to the loss function in
Fast RCNN. The total loss function is the weighted sum of localization loss (LOC) and
confidence loss (CONF). The formula is as follows:

L x; c; l; gð Þ ¼ 1
N

Lconf x; cð Þþ aLloc x; l; gð Þ� � ð3Þ

In this formula, N is the number of default boxes matching the ground truth box.
x ¼ 0; 1f g is an indicator parameter. And the weighting coefficient a is set to 1 by
cross-validation. For CONF, the idea of SoftMax loss is used, defined as follows:

Lconf x; cð Þ ¼ �
XN

i2Pos
xpij log ĉpið Þ �

X

i2Neg
log ĉ0i

� � ð4Þ

Where xpij is the identifier of whether the i
th default box matches the jth normal data

of the category p, and the value is in 0; 1f g. cpi is the output of the softmax of the
category confidence of the ith default box, ĉpi is the confidence level of the background
class of the ith default box. Pos and Neg respectively identify the positive sample set
and the negative sample set.

For LOC, Smooth L1 loss mechanism is used, defined as follows:

L x; l; gð Þ ¼
XN

i2Pos

X

m2 cx;cy;w;hf g
xkijsmoothL1 lmi � ĝmj

� �
ð5Þ

Because xkij ¼ f0; 1g, the position error could only be calculated for positive sam-
ples. It is worth noting that the ground truth g is first encoded to obtain ĝ, because the
predicted value l is also the encoded value. g represent the ground truth box. l indicates
the offset of the predicted box from the default box.

3 Experiments

We use dual NVIDIA 1080Ti graphics cards as the computing platform on the Ubuntu
18.04LTS system. This experiment is based on the basic framework of SSD and
incorporates lightweight networking and attention mechanisms such as MobileNet. The
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comparison models we used include Faster R-CNN, Yolo v3, SSD-MobileNet-v1,
SSD-inception-v2, and so on. The comparison experiment employs the Object
Detection API framework, which provides a nice API interface and rich varieties of
object detection models. 2726 original training sets and 565 test sets are used in the
experiment, and they are from the same data source. There is no intersection between
the data sets and they are relatively independent.

3.1 Dataset

The shellfish dataset contains 3772 pictures in 7 categories. The pictures taken in the
field account for about 75%, and those from the network account for about 25%. The 7
categories are scallop, clam, oyster, oncomelania, mussel, razor clam and conch, and
the distribution is shown in Fig. 4. Due to the limitations of machine performance, all
images are reset to around 500*500 pixels, and the targets in the images are manually
labeled according to the Pascal VOC standard. Then the dataset is randomly divided
into training set, verification set and test set according to the ratio of 8:1:1. The results
of the division are shown in Table 1.

Fig. 4. Dataset type and label distribution.

Table 1. .

Total number Total spices Train Validation Test

3772 7 2726 481 565
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3.2 Data Augmentation

The size and quality of the dataset are critical in deep learning algorithms. On the one
hand, a large amount of data could enable the deep learning network to be suitable for
complex functions. On the other hand, it could accurately extract the high-level
semantic features of data samples. Therefore, in order to make this algorithm more
robust to the input in different sizes and shapes, a variety of data augmentation is
performed on the images in the dataset, including horizontal flip, random crop and
color distortion, randomly sample a patch. Each of the training images randomly
samples multiple patches, and the smallest jaccard overlap between objects is: 0.1, 0.3,
0.5, 0.7, and 0.9. This data enhancement operation could increase the number of
training samples, and construct more targets of different shapes and sizes, thereby
guiding the network to learn more robust features.

3.3 Training Procedure

Before training, the parameters of our model were initialized by a pre-trained model
which had been trained on VOC2007 dataset. At the beginning of the training, we
randomly weight the image features and use a Gaussian distribution to initialize the
weight matrix. The deviation term is a standard normal distribution of 0.0005, and the
initial learning rate of the weight is set to 0.0001. In order to improve the training
efficiency and make the model converge faster, the Adam gradient descent algorithm is
used to train the optimization model. To save training time and speed up the conver-
gence, the experiment uses migration learning to train the deep learning model. First,
the parameters of the trained MobileNet classification network are loaded. And then the
last classification layer is removed. Finally, the remaining parameter values are
assigned to the corresponding parameters in the SSD model.

In training, the values of batch-size, impulse, weight attenuation coefficient,
maximum iteration number and initial learning rate are set to 24, 0.9, 0.002, 20000,
0.004, respectively. Then the model is saved once every 5000 iterations, and finally the
model with the highest precision is selected. Meanwhile, the Hard-negative mining [17]
strategy is used in the training process to enhance the ability of the model to dis-
criminate false positives.

4 Results and Analysis

All of the tests were conducted on our own shellfish dataset. During the evaluation, for
each prediction box, the category and the confidence value are first determined
according to the category confidence, and the prediction box is filtered out. The pre-
diction boxes with lower confidence threshold is then filtered out. Decode the left
prediction frame and get its true positional parameter according to the default box.
After decoding, the prediction boxes are arranged in descending order according to its
confidence, after which only about 400 of them could be reserved. Finally, the NMS
algorithm is performed to filter the prediction boxes with relatively large overlap, and
the remaining prediction boxes are the detection result. In order to test the network
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performance of the integration of attention mechanisms, the result is compared with
those by current mainstream object detection methods. Table 2 shows the results of
different model methods for shellfish object detection.

From Table 2 we can see that our model achieved the accuracy of 95.38% on the
shellfish dataset. In addition, the object detection based on the end-to-end series of
Yolo v3 and SSD series is considerably faster than the region-based Faster R-CNN
method. The detection speed of our model is comparable to the lightweight network
MobileNet in SSD. And the detection precision scatter plot is shown in Fig. 5.

We can see from Fig. 5 that our model is superior to other models. In order to
further better demonstrate the detection performance of the model on each type of
shellfish, we give the detection accuracy of each type of shellfish, as shown in Table 3.

Table 2. Comparison of the test results of each model in the Shellfish test library.

Models Method Speed (ms) mAP

Faster RCNN Resnet50 89 92.59%
Inception_v2 58 93.09%

Yolo v3 Darknet-53 38 90.94%
SSD VGG16 40 94.38%

Inception-v2 42 94.14%
Mobilenet-v1 30 92.74%
Mobilenet-v2 31 93.77%

Our model 33 95.38%

Fig. 5. Shellfish detection accuracy scatter plot.
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The detailed experimental results show that the proposed method of the model is
better than the original model, indicating that our improved model improves the
penetration capability of the network. The average mAP of our method in shellfish
object detection is higher than other methods, although the mAP in some types is not as
good as the existing models. For example, the detection accuracy of conch and Razor
clam is not as good as Faster R-CNN resnet-50, and the detection accuracy of oyster
and scallop is not as good as Faster R-CNN Inception-v2. But this does not affect it’s
overall mAP. We used the time required to test a single image to evaluate the speed in
the experiment. The shorter the time, the faster the detection speed. It could be seen
from Table 3 that our method is comparable to SSD MobileNet in speed and is superior
in accuracy. Object detection based on the SSD framework could ignore the input size
of the image, which means in actual applications, the user can use different camera
models to take samples. Replacing the original Vgg16 network with MobileNet
lightweight network makes the whole model more portable, laying the foundation for
mobile applications such as microcontrollers or mobile phones. The introduction of the
attention mechanism is more able to express the local features of the target and improve
the detection accuracy. A more intuitive comparison is shown in Fig. 6.

Table 3. .

Models Method conch oncomelania mussel oyster razor
clam

scallop clam

Faster
RCNN

Resnet50 98.00 88.91 87.85 97.67 98.00 88.78 88.91
Inception-v2 96.26 91.36 89.85 97.87 95.27 90.12 90.91

Yolo v3 Darknet-53 92.00 90.51 91.93 91.83 92. 86.33 91.97
SSD
300*300

VGG16 95.36 92.34 95.07 96.31 96.79 89.33 95.43
Inception-v2 95.70 93.88 95.49 96.84 96.52 87.07 93.25
Mobilenet-
v1

94.82 93.90 93.85 92.59 96.49 86.83 90.7

Mobilenet-
v2

95.31 94.07 95.22 93.18 96.43 86.41 95.78

Our model 96.75 95.00 96.27 97.35 96.98 89.42 95.89

Fig. 6. MobileNet-SSD and our model’s precision-recall curve.
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It could be seen from Fig. 6 that in the shellfish object detection, the effect of the
Precision-Recall graph using only the MobileNet original network is not as good as the
effect of adding the residual attention mechanism. To better demonstrate the difference
between the better performances in the above two figures, the start values of the recall
coordinates in Fig. 6(a) and the precision coordinates in the Fig. 6(b) are respectively
set to 0.4 and 0.7. Part of the detection effect is shown in Fig. 7.

From the pictures of the test we can see that most of the shellfish can still be
detected, and can well mark the position of the shellfish target in the picture. However,

Fig. 7. Detection examples on Shellfish test data with our model.
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when the target object is too dense or too large, the false detection rate will increase.
This is because the current work is only a macro classification, and it is not classified
from fine-grained. This is a work we will do in the later period, which is to detect and
classify the characteristics of the smaller particles of the shellfish data.

5 Conclusions and Future Works

In this paper, we mainly do two aspects of work. On the one hand, we made a dataset
containing seven kinds of shellfish, and performed a series of object detection tasks on
it. On the other hand, based on the MobileNet-v2-SSD framework, we proposed a
shellfish object detection model using the residual attention mechanism. It could better
show features in the local detail section, and could simplify the training process of the
object detection model and shorten the training time. We replaced the original VGG16
network in the SSD with a lightweight MobileNet-v2 classification network and
introduced the attention residual mechanism between MobileNet-v2 and the predictive
convolutional layer. This can not only better capture the local features of the image, but
also meet the needs of real-time and mobile use. Our experimental results show that
compared with the current mainstream object detection model, the model with residual
attention mechanism has higher accuracy and speed for target recognition. Meanwhile,
our work also has some shortcomings, such as high error rate in intensive targets, large
targets and similarly shaped shellfish targets. Our future work will further expand the
variety and number of shellfish datasets and study the fine-grained classification of
images to enable them to be used for more visualization tasks.
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Abstract. Plant disease recognition is a challenging task in agriculture
to classify the diseases from the image of plants’ leaves, because the
plant species and diseases can be various and images of infected leaves
may have various appearances and similar structure to normal ones. To
solve this problem, hierarchical classification is usually adopted. How-
ever, the class information of plant species and diseases has not been yet
well exploited. In this paper, we proposed an end-to-end multi-branch
hierarchical classification model based on convolutional neural network.
Through our designed Select Branch, the proposed model can choose the
sub-class from the current cluster iteratively. Meanwhile, a generalized
model in hierarchical structure is presented to make the model more
scalable for similar classification task. Experiments have been conducted
on the benchmark dataset, and the proposed model can achieve better
accuracy and be trained much faster than the previous flat classification
model.

Keywords: Plant disease recognition · Convolution neural network ·
Hierarchical classification

1 Introduction

The problem of pests and plant diseases is a long-standing problem in agricul-
tural production. In severe cases, it will cause a huge production reduction. The
pests and diseases in the natural environment are complex, and the professional
requirements for identifying pests and diseases are high, making prevention and
treatment more difficult. How to recognize the disease from the plant leaves and
then take appropriate actions is still a challenging problem.

Plant disease recognition is a typical fine-grained few-shot image classifica-
tion problem. Due to the difficulty of collecting images and make annotations,
common datasets are always lacking in images and suffer from imbalanced data
problem. The traditional plants disease recognition methods are mainly based

c© Springer Nature Switzerland AG 2019
Z. Lin et al. (Eds.): PRCV 2019, LNCS 11859, pp. 528–538, 2019.
https://doi.org/10.1007/978-3-030-31726-3_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31726-3_45&domain=pdf
https://doi.org/10.1007/978-3-030-31726-3_45


Multi-branch Structure for Hierarchical Classification 529

on the morphological features or color features. Rumpf et al. [19] use hyperspec-
tral reflectance features and SVM to classify the plant diseases. Arivazhagan et
al. [20] use texture features for automatic detection of plant diseases. These kinds
of methods have three main limitations: (1) Few disease classes are included in
the dataset, most of the datasets have merely several common diseases of one
single species, the recognition usage is limited. (2) Most recognition approaches
are based on traditional digital image processing algorithm, the parameters of
the algorithm are heavily depended on the data, one set of parameters work
well on a specific disease and may perform poorly on other task, even if they
are similar. (3) The features are not variable enough, the features of different
diseases are diverse but the feature extraction is not adaptive.

A hierarchical structure can handle the fine-grained classification task effi-
ciently. It is a natural way to handle the fine-grained classification task through
the hierarchical structure. Traditional flat classification methods neglect the
structural information between different classes. A tree-based structure for hier-
archical classification is suitable for the inter-relation between classes.

Fig. 1. Tree-based classification structure

A common approach for building hierarchical structure is visual tree [2–
4]. In the tree-based classification structure (see Fig. 1), every non-leaf node
represents a classifier, every edge from top to bottom represents that the output
of the previous classifier is treated as the input of next classifier. However, the
simple direct structure has three main disadvantages: (1) The model is not end-
to-end. The output of the previous classifier still needs to be sent to the next
classifier manually. (2) The number of the classifiers is large. The model consume
a large amount of resources (GPU memory etc.). (3) The training process is time-
consuming and cumbersome, which is not conductive to online deployment and
inference.

In this paper, we proposed an end-to-end multi-branch hierarchical classifica-
tion model based on deep convolutional neural network. Through our designed
Select Branch, the proposed model can choose the sub-class from the current
cluster iteratively. Moreover, a generalized model in hierarchical structure is
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presented to make the model more scalable for similar classification task. The
proposed have been evaluated on the benchmark dataset, and experiment results
show that the proposed model can achieve better accuracy and be trained much
faster than the previous flat multi-class classification model.

Compared with traditional method, our model has three main advantages:
(1) the model is light and end-to-end, the training process is less time-consuming
and it’s easier for deployment and online inference. (2) Using the deep convo-
lutional neural network, the model shares a public low-level feature and each
branch in inner-classes have its own high-level feature branch, making the feature
extraction more adaptive and efficient. (3) Compared with the flat classification
model, our model shows a significant improvement in accuracy by fully consider
the inter-relation of different plants species and the training convergence speed
is higher.

The rest of this paper is organized as follows. In Sect. 2, we reviews some
related works. In Sect. 3, we introduces the proposed model for hierarchical clas-
sification. In Sect. 4, we illustrates the result of related experiments. Section 5
provides some conclusions.

2 Related Work

Image classification benefit from the hierarchical structure [3] that can exploit
the correlation in different labels. The approaches [1] for building hierarchical
structure can be divided into three groups: (1) semantic tree; (2) label tree;
(3) visual tree. Researchers like Li et al. [18] constructed image classification
dataset like ImageNet based on semantic factors. However, they focus on image
classification but did not visualize the hierarchical inter-class relation. Some
other researchers use label tree for a better representation. Griffin et al. [5]
constructed a binary branch tree to improve visual categorization. Liu et al. [6]
constructed a probabilistic label tree for large-scale classification. Bengio et al. [7]
built a label-embedding tree for multi-class classification. However, the label tree
structure performs poorly on imbalanced data and has low training efficiency. By
contrast, visual tree structure with some mechanisms can deal with imbalanced
data better. Visual trees constructed by clustering [9–11] produce an efficient
hierarchical structure. Lei et al. [10] implemented spectral clustering to construct
visual trees. Zheng et al. [12] utilize hierarchical affinity propagation clustering
and active learning to build the visual tree. Nister et al. [13] built a vocabulary
tree by employing hierarchical clustering.

Recently, the deep Convolutional neural networks (CNN) have achieved great
success in image classification [8]. CNN-based multi-class image classification
algorithms have received great attention and developed rapidly. Zhu st al. [17]
propose the a hierarchical model structure that outputs multiple predictions
ordered from coarse to fine along the concatenated convolutional layers corre-
sponding to the hierarchical structure of the target classes. Lin et al. [15] pro-
posed Focal Loss for CNN to deal with imbalanced data by focusing on the hard
image samples. By combining powerful feature learning of CNN and visual tree
structure, our method can make full use of the inter-relation of labels.
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3 Multi-branch Hierarchical Classification Model

3.1 The Inter-relation of Diseases Across Species

We try simple flat classification model on an open source dataset (thoroughly
introduced in Sect. 4) provided by AIChallenger PDR1 (plant disease recogni-
tion) competition. The dataset contains 61 classes of pest and disease images.
Through the observation of the error samples in the validation stage, we found
that the 61-classes flat classification model like ResNet-50 [14] performs poorly
on adjacent classes like ‘Apple Scab general’ and ‘Apple Scab serious’. The simple
flat classification model do well in cross-species classification but performs poorly
in inner-classes distinction like inner diseases of one species and the severity.

(a) pe Black Measles
Fungus general”

(b) Grape Black Measles
Fungus serious”

Gra

” ”

Fig. 2. Grape images from dataset (Color figure online)

Figure 2 shows some different Grape species image samples from PDR
dataset, it is obvious that the classification criteria of the severity of the Grape
Black Measles Fungus disease mainly lies in size of the infected area.

(a)

” ”

Peach Bacterial Spot
general”

(b) Peach Bacterial Spot
serious”

Fig. 3. Peach images from dataset

Figure 2 shows some different Peace species image samples from PDR dataset,
it is obvious that the classification criteria of the severity of Peach Bacterial Spot
disease mainly lies in the color of the leaves.
1 https://challenger.ai/competition/pdr2018.

https://challenger.ai/competition/pdr2018
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From Figs. 2 and 3 we can see that for different species, the criteria for classi-
fying the inner-diseases or severity is different. In order to get higher classification
accuracy, it is necessary to first classify the species of the leaves, and then train
the inner classifiers for each species, which corresponds with the hierarchical
classification.

3.2 Model Architecture

To solve the problem found in Sect. 3.1, we propose our Multi-branch hierarchical
classification model based on the ResNet-50 model (Fig. 4).

Fig. 4. Multi-branch hierarchical classification model for plant disease recognition

The model has a tree-based end-to-end structure and has specific Clusters
and Branches for the plant disease recognition problem introduced in Sect. 1. We
modify the feature extraction layer, classification layer and the Loss function of
the ResNet. The main idea of the model is to choose the corresponding branch
in Disease Cluster according to the classification result of species select branch.

As the network goes deeper, the receptive field of the top-layer pixels is
larger. The feature map in bottom-layer carries more texture information while
the feature map in top-layer carries more semantic information. We cut off the
ResNet branch from conv4 x and make every branch its own con5 x part to build
its own semantic classifier because both of the infected area size or the color are
semantic level criteria. Every branch shares a public part and also has its inner
feature extraction layers to learn different refined features.
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In the classification layers, the process is different from flat multi-class classi-
fication. Every stage of classification correspond to a pair of branch and cluster.
The species select branch trains a 10-class classifier to determine which branch
in disease cluster to choose. Based on the result of the species select branch, we
pick the corresponding branch in cluster to train inner classifiers and calculate
the loss. The results in un-chosen branch are ignored in the calculation of loss
function.

Consider the PDR dataset {X,Y }. xi ∈ X is the ith input sample, yi ∈ Y is
the label of xi. ys

i and yd
i are species-level index label and inner species disease-

level index label generated from yi, respectively. When training our model, The
total loss is defined as the sum of the species loss and the selected disease loss.
The total loss function can be written as:

L(X,Y s,Y d) =
L∑

i=1

{CEsoftmax(fs(Xi),ys
i ) + CEsoftmax(fd(Xi),yd

i )} (1)

where CEsoftmax(·) represents the Cross-Entropy Softmax Loss. fs(Xi) is the
output of species branch for sample Xi. Similarly, fd(Xi) is the output of selected
disease branch for sample Xi. And L is the number of samples.

3.3 Generalized Model

The exclusive model for plant disease recognition in Sect. 3.2 can be generalized
to a general hierarchical classification model.

Fig. 5. General multi-branch hierarchical classification model

The generalized model (see Fig. 5) work well for all multi-stage classification
problem. Every stage of classification correspond to a pair of Select Branch and
choice cluster. Choice cluster is consist of several inner classes in the current
stage, every inner classes have their own feature extraction layers and classifiers.
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The inner classes are defined as (n1, n2, ..., nc), the cluster level number (or the
stage number) c and the chosen inner-class index nc are defined by the specific
task. The lager c means the more refined classification. Similarly, the Select
Branch’s result determine the choice of branch in the cluster and the loss only
counts logits of the chosen branch, the model is still end-to-end.

Fig. 6. Data processed in general model

Figure 6 shows the process of classifying a mapped label sample. The (1, 2, 1)
is the classes-mapped label of the original flat label. The Select Path shows how
the Select Branch choose the branch in current cluster to achieve hierarchical
classification.

4 Experimental Results

We evaluate our proposed model on the dataset provided by AIChallenger PDR
(plant disease recognition) competition. The dataset has around 50000 photos
of plant leaves and these photos are categorized into 61 categories by the for-
mat ‘species-disease-severity’. These 61 categories are divided into 10 species,
27 diseases (24 diseases were respectively classified into general and serious by
severity). Each image contains one leaf occupying main position of the image.
The dataset was randomly divided into training set and validation set by a ratio
of 7:1.

As shown in Fig. 7, the data distribution is imbalance and the 61 categories
need a coarse-to-fine classification. Hierarchical classification is efficient at deal-
ing with such imbalanced, structured data, making it possible to make use of
whole imbalanced dataset and obtain higher classification accuracy.
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Fig. 7. Statistics of the dataset

In order to prove the utility of our model, we compare the accuracy of the
model we proposed in Sect. 3 with some augmentation method and different loss
function on PDR dataset. We use 61-classes flat classification with backbone
ResNet-50 (pretrained on ImageNet) for baseline. We conduct the experiments
on a remote server with 2 Nvidia 1080Ti GPUs. The input image size is 331×331
and batch size is 32. We train the model in Adam optimizer in 30 epoch. The
learning rate is 1e−4 and the weight decay is 1e−4, we run the validation process
after each epoch.

Our model has a faster convergence speed than the baseline model (see Fig. 8)
and achieves better training and validation accuracies than the baseline model
(see Figs. 9 and 10).

The final validation accuracy Table (see Table 1) shows that the mixup [16]
augmentation mechanism and Focal Loss have an improvement on the accuracy
of flat classification, indicating that mixup has a effect on anti-overfitting and
Focal Loss helps the model to deal with imbalance data. However, when using
the mixup and Focal Loss at the same time, the accuracy is even worse than
the baseline. We speculate that when linearly blending the input images, the
class distribution of the labels were changed, which affects the use of Focal Loss.
The experiments on our model shows that our model has higher accuracy and
faster training speed than the baseline, better than some common mechanisms
like mixup or Focal Loss. Further more, our improvement is structure-based so
it can also be combined with similar mechanisms to achieve better performance.
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Fig. 8. Training loss of our model (blue) and baseline (red) (Color figure online)

Fig. 9. Training top1 accuracy of our model (blue) and baseline (red) (Color figure
online)

Fig. 10. Validation top1 accuracy of our model (blue) and baseline (red) (Color figure
online)
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Table 1. Final validation accuracy of different models

Model Accuracy (%)

ResNet-50 (baseline) 87.6

Baseline + mixup 87.8

Baseline + FocalLoss 88.0

Baseline + mixup + FocalLoss 87.5

Ours 89.1

Table 2. Final validation accuracy in ablation study of our model on CIFAR-100

Model Accuracy (%)

ResNet-50 (baseline) 64.97

Ours 66.16

We conduct the ablation study on the CIFAR-100 dataset. The CIFAR-
100 dataset has 100 classes containing 600 images each. The 100 classes in the
CIFAR-100 are grouped into 20 superclasses. Each image comes with a “fine”
label and a “coarse” label, which corresponds with the idea of our two-stage
model. The coarse-to-fine classification corresponds with the hierarchical struc-
ture of our model. The experimental result (see Table 2) shows that our model
works well on similar hierarchical classification problem, making the conclusion
more convincing.

5 Conclusion

In this paper, we focus on the plant disease recognition, which is an important
application of computer vision to agriculture. It is a challenging task to clas-
sify the diseases from the image of plants’ leaves, because the plant species and
diseases can be various and images of infected leaves may have various appear-
ances and similar structure to normal ones. To address this issue, we proposed
an end-to-end multi-branch hierarchical classification model based on deep con-
volutional neural network. Through our designed Select Branch, the proposed
model can choose the sub-class from the current cluster iteratively. Meanwhile,
a generalized model in hierarchical structure is presented to make the model
more scalable for similar classification task. Experiments results on the bench-
mark dataset show that the proposed model can achieve better accuracy and be
trained much faster than the previous flat multi-class classification model.
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